
www.allitebooks.com

http://www.allitebooks.org

Implementing Domain-Specific
Languages with Xtext and Xtend
Second Edition

Learn how to implement a DSL with Xtext and Xtend
using easy-to-understand examples and best practices

Lorenzo Bettini

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Implementing Domain-Specific Languages with
Xtext and Xtend
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Second Edition: August 2016

Production reference: 1230816

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78646-496-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Lorenzo Bettini

Reviewer
Dr. Jan Koehnlein

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Reshma Raman

Content Development Editors
Divij Kotian

Sweta Basu

Technical Editor
Rutuja Vaze

Copy Editor
Charlotte Carneiro

Project Coordinator
Sheejal Shah

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

In the age of the digital transformation, every business and every company
eventually needs to write software in some way. After all, "software is eating the
world" and business that we all thought were mature and well developed, get
disrupted by small startups that are smart enough to leverage the possibilities
of software (for example, Uber, AirBnb, or Tesla). It is pretty clear that in future
software development will become even more important than it is today. In order
to meet the ever increasing demand of software systems, we need to find ways to
enable more people to participate and contribute in software development.

Domain-Specific Languages (DSL) are a way to define powerful interfaces for
domain experts to help them participating in software development process.
DSLs not only help to do more with less code, but also significantly improves
communication between stakeholders. Furthermore, it reduces maintenance costs
greatly as it decouples technical aspects from domain aspects.

Xtext is the one-stop solution for building DSLs, and is widely used in industry
and research. It not only lets you define a parser, but also provides you with a
full environment, including rich IDEs and text editors to support your DSL. It is
everything you need to help professionals work efficiently.

Lorenzo has written an excellent book on DSL engineering with Xtext, that is both
a great reference as well as a good way to learn the most important parts of the
framework. If you are a software developer that wants to add an important and
powerful new weapon to your tool belt, I can only recommend reading this book
and diving into the possibilities of language engineering.

Sven Efftinge

Founder of Xtext and Xtend

www.allitebooks.com

http://www.allitebooks.org

About the Author

Lorenzo Bettini is an associate professor in computer science at the Dipartimento
di Statistica, Informatica, Applicazioni "Giuseppe Parenti," Università di Firenze,
Italy. Previously, he was a researcher in computer science at Dipartimento di
Informatica, Università di Torino, Italy. He also was a Postdoc and a contractual
researcher at Dipartimento di Sistemi e Informatica, Università di Firenze, Italy.
He has a masters degree summa cum laude in computer science and a PhD in
"Logics and Theoretical Computer Science." His research interests cover design,
theory, and the implementation of programming languages (in particular, object-
oriented languages and network-aware languages). He has been using Xtext since
version 0.7. He has used Xtext and Xtend for implementing many domain-specific
languages and Java-like programming languages. He also contributed to Xtext, and
he recently became an Xtext committer. He is the author of the first edition of the
book "Implementing Domain-Specific Languages with Xtext and Xtend", published
by Packt Publishing (August 21, 2013). He is also the author of about 80 papers
published in international conferences and international journals. You can contact
him at http://www.lorenzobettini.it.

www.allitebooks.com

http://www.lorenzobettini.it
http://www.allitebooks.org

Acknowledgments

First of all, I would like to thank the reviewer of this book, Jan Koehnlein. His
constructive criticism, extensive suggestions, and careful error reporting helped
extremely in improving the book. Since this is a second edition, which contains some
material from the previous edition, I am also grateful to the reviewers of the first
edition, Henrik Lindberg, Pedro J. Molina, and Sebastian Zarnekow.

I'm also grateful to all the people from Packt I dealt with, Sweta Basu and Reshma
Raman. I would also like to thank Divij Kotian and Rutuja Vaze for their continuous
support throughout the book.

This book would not have been possible without the efforts that all the skilled Xtext
developers have put in this framework. Most of them are always present in the Xtext
forum and are very active in providing help to the users. Many other people not
necessarily involved with Xtext development are always present in the forum and
are willing to provide help and suggestions in solving typical problems about Xtext.
They also regularly write on their own blogs about examples and best practices with
Xtext. Many contents in this book are inspired by the material found on the forum
and on such blogs. The list would be quite long, so I will only mention the ones
with whom I interacted most: Christian Dietrich, Moritz Eysholdt, Dennis Huebner,
Jan Koehnlein, Anton Kosyakov, Henrik Lindberg, Ed Merks, Holger Schill, Miro
Spoenemann, and Karsten Thoms.

I am particularly grateful to Sebastian Zarnekow, one of the main Xtext committers.
In the last few years, he has always been willing to help me to get familiar with most
of the things about Xtext and Xbase internals I know today.

A very special thank you to Sven Efftinge, the project lead of Xtext, for creating such a
cool and impressive framework. Not to mention the nice foreword Sven wrote for this
second edition. I am also grateful to Sven for nominating me as an Xtext committer.

I am grateful to itemis Schweiz for sponsoring the writing of this book, and in
particular, I am thankful to Serano Colameo.

Last but not least, a big thank you to my parents for always supporting me through all
these years. A warm thank you to my Silvia, the "rainbow" of my life, for being there
and for not complaining about all the spare time that this book has stolen from us.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Dr. Jan Koehnlein has earned several years of experience in the development of
programming tools. That involves language design, modeling, combining textual
and graphical notations, and the integration into an IDE on various platforms.

Jan has been a committer to the Eclipse projects Xtext and Xtend right from their
beginnings. In addition, he designed FXDiagram, an open source framework to
visualize any kind of model with a strong focus on user experience and a modern
look and feel.

Jan is a well-known speaker at international conferences, and he has published a
number of articles in magazines. He also gives trainings and lectures on Xtext and
surrounding technologies.

In 2016, Jan and two friends founded the company TypeFox. It is specialized in
the development of tools and languages for software engineers and other domain
experts, providing everything from contract work, to professional support,
consulting, and workshops.

In his private life, Jan is a passionate father. He loves photography and kayaking.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface	 ix
Chapter 1: Implementing a DSL	 1

Domain-Specific Languages	 1
Need for a new language	 2

Implementing a DSL	 3
Parsing	 4
The Abstract Syntax Tree (AST)	 6

IDE integration	 8
Syntax highlighting	 8
Background validation	 9
Error markers	 9
Content assist	 9
Hyperlinking	 10
Quickfixes	 10
Outline	 10
Automatic build	 11
Summarizing DSL implementation	 11

Enter Xtext	 12
Installing Xtext	 12
Let's try Xtext	 13

The aim of this book	 19
Summary	 20

Chapter 2: Creating Your First Xtext Language	 21
A DSL for entities	 21

Creating the project	 22
Xtext projects	 23
Modifying the grammar	 23
Let's try the Editor	 26

Table of Contents

[ii]

The Xtext generator	 30
The Eclipse Modeling Framework (EMF)	 32
Improvements to the DSL	 35

Dealing with types	 36
Summary	 40

Chapter 3: Working with the Xtend Programming Language	 41
An introduction to Xtend	 41

Using Xtend in your projects	 42
Xtend – a better Java with less "noise"	 44

Types	 45
Methods	 46
Fields and Variables	 47
Operators	 48
Syntactic sugar	 48
Static members and inner types	 48
Literals	 49
Extension methods	 50
The implicit variable – it	 53
Lambda expressions	 53
Multi-line template expressions	 57

Additional operators	 60
Polymorphic method invocation	 62
Enhanced switch expressions	 63
Other Xtend expressions	 65
Xtend IDE	 66
Debugging Xtend code	 66

Summary	 68
Chapter 4: Validation	 69

Validation in Xtext	 69
Default validators	 70
Custom validators	 72

Quickfixes	 77
Textual modification	 80
Model modification	 81
Quickfixes for default validators	 82

Summary	 85
Chapter 5: Code Generation	 87

Introduction to code generation	 87
Writing a code generator in Xtend	 88
Integration with the Eclipse build mechanism	 91

Table of Contents

[iii]

Standalone command-line compiler	 94
Summary	 97

Chapter 6: Customizing Xtext Components	 99
Dependency injection	 99
Google Guice in Xtext	 104
Customizations of IDE concepts	 106

Labels	 106
The Outline view	 110
Customizing other aspects	 112

Custom formatting	 112
Other customizations	 118
Summary	 121

Chapter 7: Testing	 123
Introduction to testing	 123
JUnit 4	 125
The ISetup interface	 126
Implementing tests for your DSL	 127

Testing the parser	 128
Testing the validator	 130
Testing the formatter	 133
Testing code generation	 136

Test suite	 140
Testing the UI	 140

Testing the content assist	 141
Testing workbench integration	 143
Testing the editor	 145
Learning Tests	 146
Testing the outline	 149
Other testing frameworks	 150

Testing and modularity	 150
Clean code	 153
Summary	 154

Chapter 8: An Expression Language	 155
The Expressions DSL	 156

Creating the project	 156
Digression on Xtext grammar rules	 157

The grammar for the Expressions DSL	 159
Left recursive grammars	 162

Associativity	 165
Precedence	 168

Table of Contents

[iv]

The complete grammar	 171
Forward references	 173

Custom Content Assist	 176
Typing expressions	 179

Loose type computation, strict type checking	 180
Type computer	 181
Validator	 184

Writing an interpreter	 188
Using the interpreter	 191

Optimizations and fine tuning	 194
Summary	 197

Chapter 9: Type Checking	 199
SmallJava	 199

Creating the project	 200
SmallJava grammar	 200

Rules for declarations	 201
Rules for statements and syntactic predicates	 202
Rules for expressions	 205
Rule fragments	 208
The complete grammar	 209

Utility methods	 211
Testing the grammar	 212

First validation rules	 214
Checking cycles in class hierarchies	 214
Checking member selections	 216
Checking return statements	 217
Checking for duplicates	 219

Type checking	 222
Type computer for SmallJava	 222
Type conformance (subtyping)	 225
Expected types	 227
Checking type conformance	 229
Checking method overriding	 231

Improving the UI	 232
Summary	 234

Chapter 10: Scoping	 237
Cross-reference resolution in Xtext	 237

Containments and cross-references	 238
The index	 238
Qualified names	 239
Exported objects	 240

Table of Contents

[v]

The linker and the scope provider	 242
Component interaction	 246

Custom scoping	 247
Scope for blocks	 247
Scope for inheritance and member visibility	 251
Visibility and accessibility	 256
Filtering unwanted objects from the scope	 260

Global scoping	 261
Packages and imports	 262
The index and the containers	 266
Checking duplicates across files	 268

Providing a library	 270
Default imports	 271
Using the library outside Eclipse	 272
Using the library in the type system and scoping	 275

Classes of the same package	 278
Dealing with super	 280
What to put in the index?	 281
Additional automatic features	 282
Providing a project wizard	 283
Summary	 284

Chapter 11: Continuous Integration	 285
Eclipse features and p2 repositories	 286
Release engineering	 289

Headless builds	 289
Target platforms	 289
Continuous integration	 290

Introduction to Maven/Tycho	 291
Using the Xtext project wizard	 292

Running the Maven build	 296
Customizing the feature	 298
Using and customizing the target platform	 298
Customizing the pom files	 302

Continuous Integration systems	 302
Maintaining the examples of this book	 303

Your DSL editor on the Web	 303
IntelliJ and Gradle	 305
Pitfalls with Maven/Tycho	 308

Versioning	 309
PDE test problems	 309

Table of Contents

[vi]

Concluding remarks	 310
Installation requirements	 310
Make contributions easy	 311

Summary	 312
Chapter 12: Xbase	 313

Introduction to Xbase	 313
The common Java type model	 315

The Expressions DSL with Xbase	 316
Creating the project	 316
The IJvmModelInferrer interface	 319
Code generation	 322
Debugging	 323

The Entities DSL with Xbase	 324
Creating the project	 324
Defining attributes	 325
Defining operations	 328
Imports	 332
Validation	 333

Additional Xbase features	 334
Annotations	 334
Reusing Java error markers	 335
Using 'extension'	 337
Using type parameters	 338
Formatter	 340
Further Customizations	 340

Summary	 341
Chapter 13: Advanced Topics	 343

Creating an Xtext project from an Ecore model	 344
Defining the Ecore model	 344
Creating the Xtext project	 345
Fixing the StandaloneSetup	 349
Tweaking the Ecore model	 350
Derived State	 353
Adding new rules to the language	 358

Switching to an imported Ecore model	 358
Generating EMF classes during the build	 362
Customizing the EMF Java classes	 364

Xcore	 366
Creating the Xcore project	 366
Creating the Xtext project from an existing Xcore model	 367

Table of Contents

[vii]

Modifying the Xcore model	 369
Extending Xbase	 370

Overriding a rule in an Xtext grammar	 370
Customizing the type system	 372
Testing the type computer	 373
Customizing the validator	 374
Customizing the compiler	 376
Using the type system in the compiler	 381
Testing the compiled code	 382
Improving code generation	 383
Smoke tests	 385

Summary	 386
Chapter 14: Conclusions	 387
Bibliography	 389
Index	 391

[ix]

Preface
Xtext is an open source Eclipse framework for implementing Domain Specific
Languages together with their integration in the Eclipse IDE. Xtext allows you
to implement languages quickly by covering all aspects of a complete language
infrastructure, starting from the parser, code generator, or interpreter, up to a full
Eclipse IDE integration, with all the typical IDE features such as editor with syntax
highlighting, code completion, error markers, automatic build infrastructure, and so on.

This book will incrementally guide you through the very basics of DSL
implementation with Xtext and Xtend, such as grammar definition, validation,
and code generation. The book will then cover advanced concepts such as unit
testing, type checking, and scoping. Xtext comes with good and smart default
implementations for all these aspects. However, every single aspect can be
customized by the programmer.

Although Java can be used for customizing the implementation of a DSL, Xtext
fosters the use of Xtend, a Java-like programming language completely interoperable
with the Java type system which features a more compact and easier to use
syntax and advanced features such as type inference, extension methods, multi-
line template strings and lambda expressions. For this reason, we will use Xtend
throughout the book.

Most of the chapters have a tutorial nature and will describe the main concepts of
Xtext through uncomplicated examples. The book also uses test driven development
extensively. The last chapters will describe more advanced topics such as Continuous
Integration and Xbase, a reusable Java-like expression language that ships with Xtext
which can be used in your DSLs.

Preface

[x]

This book aims at being complementary to the official documentation, trying to
give you enough information to start being productive in implementing a DSL
with Xtext. This book will try to teach you some methodologies and best practices
when using Xtext, filling some bits of information that are not present in the
official documentation.

The chapters are meant to be read in order, since they typically refer to concepts that
were introduced in the previous chapters.

All the examples shown in the book are available online, see the section Downloading
the example code. We strongly suggest that you first try to develop the examples
while reading the chapters and then compare their implementations with the ones
provided by the author.

What this book covers
After a small introduction to the features that a DSL implementation should cover,
including integration in an IDE, the book will introduce Xtend since it will be used
in all the examples. The book proceeds by explaining the main concepts of Xtext. For
example, validation, code generation, and customizations of runtime and UI aspects.
The book will then show how to test a DSL implemented in Xtext with JUnit in order
to follow a Test Driven Development strategy that will help you to quickly implement
cleaner and more maintainable code. The test-driven approach is used in the rest of
the book when presenting advanced concepts such as type checking and Scoping. The
book also shows how to build a DSL with Continuous Integration mechanisms and
how to produce a release of your DSL so that others can install it in Eclipse. At the
end of the book Xbase is introduced. Finally, the book describes some advanced topics
and mechanisms that can be used when implementing an Xtext DSL.

Chapter 1, Implementing a DSL, gives a brief introduction to Domain Specific
Languages (DSL) and sketches the main tasks for implementing a DSL and its
integration in an IDE. The chapter also shows how to install Xtext and gives a first
idea of what you can do with Xtext.

Chapter 2, Creating Your First Xtext Language, shows a first example of a DSL
implemented with Xtext and gives an introduction to some features of the Xtext
grammar language. The chapter describes the typical development workflow
of programming with Xtext and provides a small introduction to EMF (Eclipse
Modeling Framework), a framework on which Xtext is based.

Chapter 3, Working with the Xtend Programming Language, describes the main features
of the Xtend programming language, a Java-like language interoperable with the
Java type system. We will use Xtend in all the other chapters, to implement every
aspect of an Xtext DSL.

Preface

[xi]

Chapter 4, Validation, describes validation, in particular, the Xtext mechanism to
implement validation, that is, the validator. This chapter is about implementing
additional constraint checks that cannot be done at parsing time. It also shows how
to implement quickfixes corresponding to the errors generated by the validator.

Chapter 5, Code Generation, shows how to write a code generator for an Xtext DSL
using the Xtend programming language. The chapter also shows how a DSL
implementation can be exported as a Java standalone command-line compiler.

Chapter 6, Customizing Xtext Components, describes the main mechanism for
customizing Xtext components, Google Guice, a Dependency Injection framework. In
particular, the chapter shows how to customize both the runtime and the UI aspects
of an Xtext DSL.

Chapter 7, Testing, describes how to test a DSL implementation using JUnit and the
additional utility classes provided by Xtext. The chapter shows the typical techniques
for testing both the runtime and the UI aspects of a DSL implemented in Xtext.

Chapter 8, An Expression Language, covers the implementation of a DSL for
expressions, including arithmetic, boolean, and string expressions. The chapter
shows how to deal with recursive rules and with typical problems when writing
Xtext grammars. The implementation will be described incrementally and in a
test-driven way. The chapter also shows how to implement a type system for
checking that expressions are correct with respect to types and how to implement
an interpreter for these expressions. Some hints for optimizing the performance of a
DSL implementation are also presented.

Chapter 9, Type Checking, covers the implementation of a small object-oriented DSL,
which can be seen as a smaller version of Java that we call SmallJava. This chapter
shows how to implement some type checking techniques that deal with object-
oriented features, such as inheritance and subtyping. The chapter also describes
some good practices in Xtext DSL implementations.

Chapter 10, Scoping, covers the main mechanism behind visibility and cross-reference
resolution in Xtext. Since scoping and typing are often strictly connected and inter-
dependent especially for object-oriented languages, the chapter is based on the
SmallJava DSL introduced in the previous chapter. The chapter describes both local
and global scoping and how to customize them.

Chapter 11, Continuous Integration, describes how you can release your DSL
implementation by creating an Eclipse update site so that others can install it in
Eclipse. The chapter also describes how to build and test your DSL implementation
on a continuous integration server, using Maven/Tycho or Gradle. We will also
show how to have a web application with a web editor for your DSL, and how your
DSL implementation can be easily ported to IntelliJ.

Preface

[xii]

Chapter 12, Xbase, describes Xbase a reusable expression language interoperable with
Java. By using Xbase in your DSL, you will inherit all the Xbase mechanisms for
performing type checking according to the Java type system and the automatic Java
code generation.

Chapter 13, Advanced Topics, describes a few advanced topics concerning an Xtext
DSL implementation, and some advanced techniques. In the first part of the chapter
we will show how to manually maintain the Ecore model for the AST of an Xtext
DSL. We will show how to create an Xtext DSL starting from an existing Ecore
model, how to switch to a manually maintained Ecore model, starting from the one
generated by Xtext, and how to use Xcore to maintain the Ecore model for the AST.
In the last section we will show how to extend an Xbase DSL with new expressions,
customizing the Xbase type system and the Xbase compiler in order to handle the
new Xbase expressions.

Chapter 14, Conclusions, concludes the book by providing a few references to some
additional material available online.

What you need for this book
The book assumes that you have a good knowledge of Java; it also assumes that
you are familiar with Eclipse and its main features. Existing basic knowledge of a
compiler implementation would be useful, though not strictly required, since the
book will explain all the stages of the development of a DSL.

Who this book is for
This book is for programmers who want to learn about Xtext and how to use it to
implement a DSL or a programming language together with the Eclipse IDE tooling.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

Preface

[xiii]

A block of code is set as follows:

public static void main(String args[]) {
 System.out.println("Hello world");

Where keywords of the languages are typeset in bold, and references to static
members are typeset in italics (for example, Java static methods).

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.4.0</version>
 <executions>
 <execution>
 <!-- new execution for generating EMF classes -->
 <id>mwe2GenerateEMFClasses</id>

Any command-line input or output is written as follows:

mvn org.eclipse.tycho:tycho-versions-plugin:set-version

 -DnewVersion=1.1.0-SNAPSHOT -Dtycho.mode=maven

Bibliographic references are of the form "Author" "year" when there is a single
author, or "First author" et al. "year" when there is more than one author.
Bibliographic references are used for books, printed articles or articles published on
the web. The Bibliography can be found at the end of the book.

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen." When the user is requested to select
submenus, we separate each menu with a pipe, like this: "To create a new project,
navigate to File | New | Project...".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xiv]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

The example code for this book is also available on a Git repository at

https://github.com/LorenzoBettini/packtpub-xtext-book-2nd-examples.

We suggest you to monitor this git repository, since it will always contain the most
up-to-date version of the examples.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/LorenzoBettini/packtpub-xtext-book-2nd-examples
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[xv]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

The Errata is also available on the Git repository of the examples of the book
https://github.com/LorenzoBettini/packtpub-xtext-book-2nd-examples.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://github.com/LorenzoBettini/packtpub-xtext-book-2nd-examples

[xvii]

Preface to the second edition
Since the very beginning, Xtext has always been a continuously evolving software.
Each new version of Xtext comes with many new features and bugfixes.

When I wrote the first edition of the book, which was published in August 2013,
Xtext 2.4.0 had been recently released. Since then, all the features introduced in each
new release of Xtext aimed at making DSL implementation easier and at improving
the user experience.

All these things came with a small price though—the contents of the book were
getting stale in time, and they did not respect the features of Xtext in the new
releases anymore.

In all these years, Xtext has always been my daily framework since my research is
based on programming language design, theory, and most of all, implementation.
I've been implementing lots of DSLs since the first edition of the book and doing that
I've also learned many more aspects of Xtext and new best practices. I've also started
to contribute more actively to the Xtext code base, and I can proudly announce that I
recently became an Xtext committer.

Thus, at the end of 2015, I decided to propose to Packt a second edition of the book
and they reacted very positively.

While working on this second edition, I updated all the contents of the previous
edition in order to make them up to date with respect to what Xtext provides in the
most recent release (at the time of writing, it is 2.10). All the examples have been
rewritten from scratch. With respect to the examples of the first edition, many parts
of the DSLs have been modified and improved, focusing on efficient implementation
techniques and the best practices I learned in these years. Thus, while the features of
most of the main example DSLs of the book is the same as in the first edition, their
implementation is completely new. In the last chapters, many more examples are
also introduced.

Preface

[xviii]

In particular, Chapter 11, Continuous Integration, which in the previous edition was
called Building and Releasing, has been completely rewritten and it is now based on
Maven/Tycho instead of Buckminster, since Xtext now provides a project wizard
that also creates a Maven/Tycho build configuration for your Xtext DSL. This new
chapter also briefly describes the new Xtext features that allow you to port your
DSL editor on the web and also on IntelliJ. I also added a brand new chapter at the
end of the book, Chapter 13, Advanced Topics, is loaded with much more advanced
material and techniques that are useful when your DSL grows in size and features.
For example, the chapter will show how to manually maintain the Ecore model for
the AST of your DSL in several ways, including Xcore. This chapter also presents
an example that extends Xbase, including the customization of its type system and
compiler. An introduction to Xbase is still presented in Chapter 12, Xbase, as in the
previous edition, but with more details.

As in the previous edition, the book fosters unit testing a lot. An entire chapter,
Chapter 7, Testing, is devoted to testing all aspects of an Xtext DSL implementation. I
also kept the same tutorial nature of most chapters as in the previous edition.

Summarizing, while the title and the subject of most chapters is still the same, their
contents has been completely reviewed, extended, and hopefully, improved.

If you enjoyed the first edition of the book and found it useful, I hope you'll like this
second edition even more.

Lorenzo Bettini

[1]

Implementing a DSL
In this chapter, we will provide a brief introduction on Domain-Specific Languages
(DSLs) and the issues concerning their implementation, especially in the context of
an Integrated Development Environment (IDE). In the initial part of the chapter,
we will sketch the main tasks for implementing a DSL and its integration in an IDE.
At the end of the chapter, we will also show you how to install Xtext and will give
you a glimpse of what you can do with Xtext. It is an Eclipse framework for the
development of DSLs that covers all aspects of a language implementation, including
its integration in the Eclipse IDE.

This chapter will cover the following topics:

•	 An introduction to DSLs
•	 The main steps for implementing a DSL
•	 The typical IDE tooling for a DSL
•	 The very first demo of Xtext

Domain-Specific Languages
Domain Specific Languages, abbreviated to DSLs, are programming languages or
specification languages that target a specific problem domain. They are not meant to
provide features for solving all kinds of problems. You probably will not be able to
implement all programs you can implement with, for instance, Java or C, which are
known as General Purpose Languages (GPL). On the other hand, if your problem's
domain is covered by a particular DSL, you will be able to solve that problem easier
and faster using that DSL instead of a GPL.

www.allitebooks.com

http://www.allitebooks.org

Implementing a DSL

[2]

Some examples of DSLs are SQL (for querying relational databases), Mathematica
(for symbolic mathematics), HTML, and many others you have probably used in
the past. A program or specification written in a DSL can then be interpreted or
compiled into a GPL. In other cases, the specification can represent simple data that
will be processed by other systems.

For a wider introduction to DSLs, you should refer to the books Fowler 2010, Ghosh
2010, and Voelter 2013.

Need for a new language
You may now wonder why you need to introduce a new DSL for describing specific
data, models, or applications, instead of using XML, which allows you to describe
data in a machine in human-readable form. There are so many tools now that allow
you to read, write, or exchange data in XML without having to parse such data
according to a specific syntax such as an XML Schema Definition (XSD). There is
basically only one syntax (the XML tag syntax) to learn, and then all data can be
represented with XML.

Of course, this is also a matter of taste, but many people, including myself, find
that XML is surely machine readable, but not so much human-readable. It is fine to
exchange data in XML, if the data in that format is produced by a program. But often,
people (programmers and users) are requested to specify data in XML manually; for
instance, for specifying an application's specific configuration.

If writing an XML file can be a pain, reading it back can be even worse. In fact, XML
tends to be verbose, and it fills documents with too much additional syntax noise
due to all the tags. The tags help a computer to process XML, but they surely distract
people when they have to read and write XML files.

Consider a very simple example of an XML file describing people:

<people>
 <person>
 <name>James</name>
 <surname>Smith</surname>
 <age>50</age>
 </person>
 <person employed="true">
 <name>John</name>
 <surname>Anderson</surname>
 <age>40</age>
 </person>
</people>

Chapter 1

[3]

It is not straightforward for a human to grasp the actual information about a person
from such a specification—a human is distracted by all those tags. Also, writing
such a specification may be a burden. An editor might help with some syntax
highlighting and early user feedback concerning validation, but still there are too
many additional details.

JSON (JavaScript Object Notation) could be used as a less verbose alternative
to XML. However, the burden of manually reading, writing, and maintaining
specifications in JSON is only slightly reduced with respect to XML.

The following version is written in an ad hoc DSL:

person {
 name=James
 surname=Smith
 age=50
}
person employed {
 name=John
 surname=Anderson
 age=40
}

This contains less noise, and the information is easier to grasp. We could even do
better and have a more compact specification:

James Smith (50)
John Anderson (40) employed

After all, since this DSL only lets users describe the name and age of people, why not
design it to make the description both compact, easy to read and write?

Implementing a DSL
For the end user, using a DSL is surely easier than writing XML code. However, the
developer of the DSL is now left with the task of implementing it.

Implementing a DSL means developing a program that is able to read text written
in that DSL, parse it, process it, and then possibly interpret it or generate code in
another language. Depending on the aim of the DSL, this may require several phases,
but most of these phases are typical of all implementations.

Implementing a DSL

[4]

In this section, we only sketch the main aspects of implementing a DSL. For a deeper
introduction to language implementations and the theory behind, we refer the
interested reader to the book Aho et al. 2007.

From now on, throughout the book, we will not distinguish,
unless strictly required by the context, between DSL and
programming language.

Parsing
First of all, when reading a program written in a programming language, the
implementation has to make sure that the program respects the syntax of that language.

To this aim, we need to break the program into tokens. Each token is a single atomic
element of the language; this can be a keyword (such as class in Java), an identifier
(such as a Java class name), or a literal, that is, a fixed value. Examples of literals
are string literals, typically surrounded by quotes, integer literals, and boolean
literals (for example, true and false). Other kinds of tokens are operators (such
as arithmetic and comparison operators) and separators (such as parentheses and
terminating semicolons).

For instance, in the preceding example, employed is a keyword, the parentheses are
separators, James is an identifier, and 50 is an integer literal.

The process of converting a sequence of characters into a sequence of tokens is called
lexical analysis, and the program or procedure that performs such analysis is called
a lexical analyzer, lexer, or simply a scanner. This analysis is usually implemented
by using regular expressions syntax.

Having the sequence of tokens from the input file is not enough, we must make sure
that they form a valid statement in our language; that is, they respect the syntactic
structure expected by the language. This phase is called parsing or syntactic
analysis. The program or procedure that performs such analysis is called a parser.

Let's recall the DSL to describe the name and age of various people and a possible
input text:

James Smith (50)
John Anderson (40) employed

Chapter 1

[5]

In this example, each line of the input must respect the following structure:

•	 two identifiers
•	 the separator (
•	 one integer literal
•	 the separator)
•	 the optional keyword employed

In our language, tokens are separated by white spaces, and lines are separated by a
newline character.

You can now deduce that the parser relies on the lexer. In fact, the parser asks the
lexer for tokens and tries to build valid statement of the language.

If you have never implemented a programming language, you might be scared
at this point by the task of implementing a parser, for instance, in Java. You are
probably right, since this is not easy. The DSL we just used as an example is very
small and still it would require some effort to implement. What if your DSL has
to deal also with, say, arithmetic expressions? In spite of their apparently simple
structure, arithmetic expressions are recursive by their own nature; thus a parser
implemented in Java would have to deal with recursion as well, and, in particular,
it should avoid possible endless loops.

There are tools to deal with parsing so that you do not have to implement a parser
by hand. In particular, there are DSLs to specify the grammar of the language, and
from this specification, they automatically generate the code for the lexer and parser.
For this reason, these tools are called parser generators or compiler-compilers. In
this context, such specifications are called grammars. A grammar is a set of rules that
describe the form of the elements that are valid according to the language syntax.

Here are some examples of tools for specifying grammars.

Bison and Flex (Levine 2009) are the most famous in the C context: from a high
level specification of the syntactic structure (Bison) and lexical structure (Flex)
of a language, they generate the parser and lexer in C, respectively. Bison is an
implementation of Yacc (Yet Another Compiler-compiler, Brown et al. 1995), and
there are variants for other languages as well, such as Racc for Ruby.

In the Java world, the most well-known is probably ANTLR (ANother Tool for
Language Recognition) pronounced Antler, (see the book Parr 2007). This allows
the programmer to specify the grammar of the language in one single file (without
separating the syntactic and lexical specifications in different files), and then it
automatically generates the parser in Java.

Implementing a DSL

[6]

Just to have an idea of what the specification of grammars looks like in ANTLR, here
is a very simplified grammar for an expression language for arithmetic expressions
with sum and multiplication (as we will see in Chapter 9, Type Checking we cannot
write a recursive rule such as the one shown in the following snippet):

expression
 : INT
 | expression '*' expression
 | expression '+' expression
;

Even if you do not understand all the details, it should be straightforward to get its
meaning—an expression is either an integer literal or (recursively) two expressions
with an operator in between (either * or +).

From such a specification, you automatically get the Java code that will parse
such expressions.

The Abstract Syntax Tree (AST)
Parsing a program is only the first stage in a programming language implementation.
Once the program is checked as correct from the syntactic point of view, the
implementation will have to do something with the elements of the program.

First of all, the overall correctness of a program cannot always be determined during
parsing. One of the correctness checks that cannot be performed during parsing is
type checking, that is, checking that the program is correct with respect to types. For
instance, in Java, you cannot assign a string value to an integer variable, or you can
only assign instances of a variable's declared type or subclasses thereof.

Trying to embed type checking in a grammar specification could either make the
specification more complex, or it could be simply impossible, since some type checks
can be performed only when other program parts have already been parsed.

Type checking is part of the semantic analysis of a program. This often includes
managing the symbol table, that is, for instance, handling the variables that are
declared and that are visible only in specific parts of the program (think of fields
in a Java class and their visibility in methods).

Chapter 1

[7]

For these reasons, during parsing, we should also build a representation of the
parsed program and store it in memory so that we can perform the semantic analysis
on the memory representation without needing to parse the same text over and over
again. A convenient representation in memory of a program is a tree structure called
the Abstract Syntax Tree (AST). The AST represents the abstract syntactic structure
of the program. Being abstract, the tree representation does not represent many
details of the original program, such as grouping parentheses and formatting spaces.
In this tree, each node represents a construct of the program.

Once the AST is stored in memory, we will not need to parse the program anymore,
and we can perform all the additional semantic checks on the AST. If all the checks
succeed, we can use the AST for the final stage of the implementation, which can be
the interpretation of the program or code generation.

In order to build the AST, we need two additional things.

First of all, we need the code for representing the nodes of such a tree. If we are
using Java, this means that we need to write some Java classes, typically one for each
language construct. For instance, for the expression language, we might write one
class for the integer literal and one for the binary expression. Remember that since
the grammar is recursive, we need a base class for representing the abstract concept
of an expression. For example:

public interface Expression { }

public class Literal implements Expression {
 Integer value;
 // constructor and set methods...
}

public class BinaryExpression implements Expression {
 Expression left, right;
 String operator;
 // constructor and set methods...
}

Then, we need to annotate the grammar specification with actions that construct the
AST during the parsing. These actions are basically Java code blocks embedded in
the grammar specification itself. The following is just an (simplified) example, and it
does not necessarily respect the actual ANTLR syntax:

expression:
 INT { $value = new Literal(Integer.parseInt($INT.text)); }
| left=expression '*' right=expression {
 $value = new BinaryExpression($left.value, $right.value);

Implementing a DSL

[8]

 $value.setOperator("*");
}
| left=expression '+' right=expression {
 $value = new BinaryExpression($left.value, $right.value);
 $value.setOperator("+");
}
;

IDE integration
Even if you have implemented your DSL, that is, the mechanisms to read,
validate, and execute programs written in your DSL, your work cannot really be
considered finished.

Nowadays, many programmers are accustomed to use powerful IDEs such as
Eclipse. For this reason, a DSL should be shipped with good IDE support. This
will increase the likelihood of your DSL being adopted and successful.

If your DSL is supported by all the powerful features in an IDE such as a
syntax-aware editor, immediate feedback, incremental syntax checking,
suggested corrections, auto-completion, and so on, then it will be easier to learn,
use, and maintain.

In the following sections, we will see the most important features concerning IDE
integration. In particular, we will assume Eclipse as the underlying IDE (since Xtext
is mainly an Eclipse framework).

Syntax highlighting
The ability to see the program colored and formatted with different visual styles
according to the elements of the language (for example, comments, keywords,
strings, and so on) is not just cosmetic.

First of all, it gives immediate feedback concerning the syntactic correctness of what
you are writing. For instance, if string constants (typically enclosed in quotes) are
rendered as red, and you see that at some point in the editor the rest of your program
is all red, you may soon get an idea that somewhere in between you forgot to insert
the closing quotation mark.

Chapter 1

[9]

Background validation
The programming cycle consisting of writing a program with a text editor, saving
it, switching to the command line, running the compiler, and in the case of errors,
shifting back to the text editor is surely not productive.

The programming environment should not let the programmer realize about
errors too late. On the contrary, it should continuously check the program in the
background while the programmer is writing, even if the current file has not been
saved yet. The sooner the environment can tell the programmer about errors, the
better it is. The longer it takes to realize that there is an error, the higher the cost in
terms of time and mental effort to correct it.

Error markers
When your DSL parser and checker issue some errors, the programmer should
not have to go to the console to discover such errors. Your implementation should
highlight the parts of the program with errors directly in the editor by underlining
(for instance, in red) only the parts that actually contain the errors. It should
also put some error markers with an explicit message on the left of the editor in
correspondence to the lines with errors, and should also fill the Problems view with
all these errors. The programmer will then have the chance to easily spot the parts of
the program that need to be fixed.

Content assist
Content assist is the feature that automatically, or on demand, provides suggestions
on how to complete the statement/expression the programmer just typed. The
proposed content should make sense in that specific program context in order to
be effectively useful. For instance, when editing a Java file, after the keyword new,
Eclipse proposes only Java class names as possible completions.

Again, this has to do with productivity. It does not make much sense to be forced to
know all the syntax of a programming language by heart (especially for DSLs, which
are not common languages such as Java), neither to know all the language's library
classes and functions.

In Eclipse, the content assist is usually accessed with the keyboard shortcut
Ctrl + Space bar.

Implementing a DSL

[10]

Hyperlinking
Hyperlinking is a feature that makes it possible to navigate between references
in a program. For example, from a variable to its declaration, or from a function,
call to the function definition. If your DSL provides declarations of any sort (for
instance, variable declarations or functions) and a way to refer to them (for instance,
referring to a variable or invoking a declared function), then it should also provide
Hperlinking from a token referring to a declaration. It should be possible to directly
jump to the corresponding declaration. This is particularly useful if the declaration is
in a file different from the one being edited. In Eclipse, this corresponds to pressing
F3 or using Ctrl + click.

Hovering is a similar IDE feature—if you need some information about a specific
program element, just hovering on that element should display a pop-up window
with some documentation about that element.

Quickfixes
If the programmer made a mistake and your DSL implementation is able to fix it
somehow, why not help the programmer by offering suggested quickfixes?

As an example, in the Eclipse Java editor, if you invoke a method that does not exist
in the corresponding class, you are provided with some quickfixes. For instance, you
are given a chance to fix this problem by actually creating such a method. This is
typically implemented by a context menu available from the error marker.

In a test-driven scenario this is actually a methodology. Since you write tests before
the actual code to test, you can simply write the test that invokes a method that does
not exist yet, and then employ the quickfix to let the IDE create that method for you.

Outline
If a program is big, it is surely helpful to have an outline of it showing only the main
components. Clicking on an element of the outline should bring the programmer
directly to the corresponding source line in the editor.

Furthermore, the outline can also include other pieces of information such as types
and structure that are not immediately understood by just looking at the program
text. It is handy to have a view that is organized differently, perhaps sorted
alphabetically to help with navigation.

Chapter 1

[11]

Automatic build
In an Eclipse Java project, when you modify one Java file and save it, you know
that Eclipse will automatically compile that file and, consequently, all the files that
depend on the file you have just modified. There is no need to manually call the
Java compiler.

Summarizing DSL implementation
In this section, we briefly and informally introduced the main steps to implement
a DSL.

The IDE tooling can be implemented on top of Eclipse, which already provides a
comprehensive framework.

Indeed, all the features of the Eclipse Java editor, which is part of the project JDT
(Java Development Tools), are based on the Eclipse framework; thus, you can
employ all the mechanisms offered by Eclipse to implement the same features for
your own DSL.

Unfortunately, this task is not really easy, it certainly requires a deep knowledge of
the internals of the Eclipse framework and lot of programming.

Finally, the parser and the checker will have to be connected to the Eclipse editing
framework.

To make things a little bit worse, if you learned how to use all these tools (and this
requires time) for implementing a DSL, when it comes to implement a new DSL,
your existing knowledge will help you, but the time to implement the new DSL will
still be huge.

All these learning and timing issues might push you to stick with XML, since the
effort to produce a new DSL does not seem to be worthwhile. Indeed, there are many
existing parsing and processing technologies for XML for different platforms that can
be used, not to mention existing editors and IDE tooling for XML.

But what if there was a framework that lets you achieve all these tasks in a very
quick way? What if this framework, once learned (yes, you cannot avoid learning
new things), lets you implement new DSLs even quicker than the previous ones?

Implementing a DSL

[12]

Enter Xtext
Xtext is an Eclipse framework for implementing programming languages and
DSLs. It lets you implement languages quickly, and most of all, it covers all aspects
of a complete language infrastructure, starting from the parser, code generator, or
interpreter, up to a complete Eclipse IDE integration with all the typical IDE features
we discussed previously.

The really amazing thing about Xtext is that, to start a DSL implementation, it only
needs a grammar specification similar to ANTLR. You do not have to annotate
the rules with actions to build the AST, since the creation of the AST (and the Java
classes to store the AST) is handled automatically by Xtext itself. Starting from
this specification, Xtext will automatically generate all the mechanisms sketched
previously. It will generate the lexer, the parser, the AST model, the construction of the
AST to represent the parsed program, and the Eclipse editor with all the IDE features!

Xtext comes with good and smart default implementations for all these aspects,
and indeed most of these defaults will surely fit your needs. However, every single
aspect can be customized by the language designer.

With all these features, Xtext is easy to use. It produces a professional result quickly,
and it is even fun to use.

Since version 2.9.0, Xtext allows you to seamlessly port your DSL implementation
and IDE tooling to IntelliJ and also to embed your DSL editor in a web application.

Installing Xtext
We will use the latest version of Eclipse. At the time of writing this book, the latest
version of Eclipse is 4.6, named Neon. This version requires Java 8, so you will also
have to make sure that you have Java 8 installed (see https://www.eclipse.org/
downloads).

Xtext is an Eclipse framework; thus, it can be installed into your Eclipse installation
using the update site as follows:

http://download.eclipse.org/modeling/tmf/xtext/updates/composite/
releases

Just copy this URL into the dialog you get when you navigate to Help | Install New
Software… in the textbox Work with and press Enter; after some time (required to
contact the update site), you will be presented with lots of possible features to install,
grouped by categories. Navigate to the Xtext category and select the Xtext Complete
SDK feature.

https://www.eclipse.org/downloads
https://www.eclipse.org/downloads
http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases
http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases

Chapter 1

[13]

Alternatively, an Eclipse distribution for DSL developers based on Xtext is also
available from the main Eclipse downloads page, http://www.eclipse.org/
downloads, called Eclipse IDE for Java and DSL Developers.

Using Xtext with IntelliJ will be discussed later in Chapter 11, Continuous Integration.

At the time of writing this book, the current version of Xtext
was 2.10, and this is the version used in this book.

Let's try Xtext
Hopefully, by now you should be eager to see for yourself what Xtext can do! In this
section, we will briefly present the steps to write your first Xtext project and see what
you get. Do not worry if you have no clue about most of the things you will see in
this demo; they will be explained in the coming chapters.

Perform the following steps:

1.	 Start Eclipse and navigate to File | New | Project…; in the dialog, navigate to
the Xtext category and select Xtext Project. Refer to the following screenshot:

http://www.eclipse.org/downloads
http://www.eclipse.org/downloads

Implementing a DSL

[14]

2.	 In the next dialog, you can leave all the defaults and press Finish:

3.	 The wizard will create several Eclipse projects and will open the file MyDsl.
xtext, which is the grammar definition of the new DSL we are about to
implement. You do not need to understand all the details of this file's contents
for the moment. But if you understood how the grammar definitions work
from the examples in the previous sections, you might have an idea of what
this DSL does. It accepts lines starting with the keyword Hello followed by an
identifier, then followed by !. Refer to the following screenshot:

Chapter 1

[15]

4.	 Now, it is time to start the first Xtext generation, so navigate to the file
MyDsl.xtext in the org.xtext.example.mydsl project, right-click on
it, and navigate to Run As | Generate Xtext Artifacts. The output of the
generation will be shown in the Console view. You will note that a file will
be downloaded from the Internet (thus, an Internet connection is required at
this stage): ''downloading file from http://download.itemis.com/antlr-
generator-3.2.0-patch.jar …''. This JAR will be downloaded and stored
in your project once and for all as .antlr-generator-3.2.0-patch.jar
(this file cannot be delivered together with Xtext installation: its license, BSD,
is not compatible with the Eclipse Public License. Note however that such a
jar is not needed at runtime). Note that since this file starts with a dot, it is
automatically hidden from the Eclipse Package Explorer, just like the files
.classpath and .project. You can make them visible by removing the filter
.* resources in the Package Explorer. Wait for that file to be downloaded,
and once you read Done in the console, the code generation phase is
finished, and you will note that all the projects now contain much more code.
Of course, you will have to wait for Eclipse to build the projects and you
need to make sure that Project | Build Automatically is enabled.

http://download.itemis.com/antlr-generator-3.2.0-patch.jar
http://download.itemis.com/antlr-generator-3.2.0-patch.jar

Implementing a DSL

[16]

If you want to avoid downloading this additional JAR, you need to
install an additional feature into your Eclipse. Use this update site:
http://download.itemis.com/updates/releases/

Navigate to the Xtext Antlr category and install the feature Xtext
Antlr SDK Feature. When you restarted Eclipse, if you create
a new Xtext project from scratch and you run Generate Xtext
Artifacts, then the additional JAR is not needed anymore.

5.	 Your DSL implementation is now ready to be tested! Since what the wizard
created for you are Eclipse plug-in projects, you need to start a new Eclipse
instance to see your implementation in action. To do so, right-click on
the org.xtext.example.mydsl project and navigate to Run As | Run
Configurations…; in the dialog, select Eclipse Application, and then the
New button to create a new launch configuration. Select it and click on Run.
Refer to the following screenshot:

http://download.itemis.com/updates/releases/

Chapter 1

[17]

If for any reason, you are using an earlier version than Java
8, before you start the new Eclipse instance, you must make
sure that the launch configuration has enough PermGen
size; otherwise, you will experience out of memory errors.
You need to specify this VM argument in your launch
configuration's Arguments tab, in the box VM arguments:
-XX:MaxPermSize=256m.

6.	 A new Eclipse instance will be run and a new workbench will appear
(you may have to close the Welcome View). In this instance, your
DSL implementation is available. Make sure you are using the Plug-in
Development perspective or the Java perspective (you select the perspective
with Window | Perspective | Open Perspective). Let's create a new General
project (File | New | Project… | General | Project) and call it, for instance,
sample. Inside this project, create a new file (File | New | File); the name of
the file is not important, but the file extension must be mydsl (remember that
this was the extension we chose in the Xtext new project wizard). As soon as
the file is created, it will also be opened in a text editor, and you will be asked
to convert the project to an Xtext project. You should accept that to make
your DSL editor work correctly in Eclipse.

Implementing a DSL

[18]

7.	 Now, try all the things that Xtext created for you! The editor features syntax
highlighting. You can see that by default Xtext DSLs are already set up to
deal with Java-like comments such as // and /* */. You also get immediate
error feedback with error markers in the relevant parts of the file, even if
you have not saved the file yet. The error markers will also appear in the
Problems view and in the corresponding file in the Package Explorer as you
soon as you save the file. The outline view is automatically synchronized
with the elements in the text editor. The editor also features code completion.
All of these features have been automatically generated by Xtext starting
from a grammar specification file:

This short demo should have convinced you about the powerful features of Xtext.
Implementing the same features manually would require a huge amount of work.
The result of the code generated by Xtext is so close to what Eclipse provides you for
Java that your DSLs implemented in Xtext will be of high-quality and will provide
the users with all the IDE tooling benefits.

Chapter 1

[19]

The aim of this book
Xtext comes with a lot of nice documentation; you can find it in your Eclipse help
system or online at https://www.eclipse.org/Xtext/documentation/.

This book aims at being complementary to the official documentation, trying to
give you enough information to start being productive in implementing DSLs
with Xtext. This book will try to teach you some methodologies and best practices
when using Xtext, filling some bits of information that are not present in the official
documentation. This book will also focus on automatic testing methodologies so
that your DSL implementation will have a solid JUnit test suite. This will help you
develop your Xtext DSL faster, with better confidence, and to keep it maintainable.
Most chapters will have a tutorial nature and will provide you with enough
information to make sure you understand what is going on. However, the official
documentation should be kept at hand to learn more details about the mechanisms
we will use throughout the book.

The source codes of the examples shown in this book are available online as a
Git repository at https://github.com/LorenzoBettini/packtpub-xtext-book-
2nd-examples.

We strongly suggest that you try to implement the examples yourself from scratch
while reading the chapters of the book. Then, you can compare your implementation
with the sources you find on the Git repository.

We will maintain the source code of the examples up-to-date with respect to future
releases of Xtext. In the main README file at the preceding URL, we will also
document possible updates to the source code and to the contents of the book itself.

We do not commit the generated files into the Git repository, for example, the
src-gen and xtend-gen folders; thus, for each example in the repository, you will
need to generate the Xtext artifacts yourself, using the procedure you used when
creating the first project. In the README file, we also document an automated
procedure, using the Eclipse Installer Oomph, for having an Eclipse with all the
required plug-ins for developing with Xtext and a workspace with all the sources
of the examples and the corresponding generated files.

https://www.eclipse.org/Xtext/documentation/
https://github.com/LorenzoBettini/packtpub-xtext-book-2nd-examples
https://github.com/LorenzoBettini/packtpub-xtext-book-2nd-examples

Implementing a DSL

[20]

Summary
In this chapter, we introduced the main concepts related to implementing a DSL,
including IDE features. At this point, you should also have an idea of what Xtext
can do for you.

In the next chapter, we will use an uncomplicated DSL to demonstrate the main
mechanisms and to get you familiar with the Xtext development workflow.

[21]

Creating Your First
Xtext Language

In this chapter, we will develop a DSL with Xtext and learn how the Xtext grammar
language works. We will see the typical development workflow of programming
with Xtext when we modify the grammar of the DSL. The chapter will also provide
a small introduction to EMF (Eclipse Modeling Framework) a framework that Xtext
relies on to build the AST of a program.

This chapter will cover the following topics:

•	 A DSL for entities
•	 The Xtext generator
•	 The Eclipse Modeling Framework
•	 Improvements to the DSL

A DSL for entities
We will now implement a simple DSL to model entities, which can be seen as simple
Java classes. Each entity can have a super type entity (you can think of it as a Java
superclass) and some attributes (similar to Java fields). This example is a variant of
the domain model example that can be found in the Xtext documentation.

www.allitebooks.com

http://www.allitebooks.org

Creating Your First Xtext Language

[22]

Creating the project
First of all, we will use the Xtext project wizard to create the projects for our DSL. We
have already experimented with this at the end of Chapter 1, Implementing a DSL.

1.	 Start Eclipse and navigate to File | New | Project.... In the dialog, navigate
to the Xtext category and select Xtext Project.

2.	 In the next dialog, you should specify the following names:
°° Project name: org.example.entities
°° Name: org.example.entities.Entities
°° Extensions: entities

3.	 Press Finish.

The wizard will create several projects and it will open the file Entities.xtext,
which is the grammar definition.

The main dialog of the wizard is shown in the following screenshot:

Chapter 2

[23]

Xtext projects
The Xtext wizard generates several projects (with a name based on the Project name
you specified in the wizard). In our example we have the following:

•	 org.example.entities: This is the main project that contains the grammar
definition and all the runtime components that are independent from the UI.

•	 org.example.entities.ide: This contains the components related to the UI
that are independent from Eclipse (as we will see in Chapter 11, Continuous
Integration, this is useful for targeting IntelliJ and web integration).

•	 org.example.entities.tests: This contains the JUnit tests that do not
depend on any UI.

•	 org.example.entities.ui.tests: This contains the JUnit tests that depend
on the Eclipse UI.

•	 org.example.entities.ui: This contains the components related to the
Eclipse UI (the Eclipse editor and features related to the Eclipse tooling).

We will describe UI mechanisms in Chapter 6, Customizing Xtext Components, and
unit tests in Chapter 7, Testing.

Modifying the grammar
As you may recall from Chapter 1, Implementing a DSL, a default grammar is
generated by Xtext. In this section, you will learn what this generated grammar
contains, and we will modify it to contain the grammar for our Entities DSL. The
default generated grammar looks like the following:

grammar org.example.entities.Entities with org.eclipse.xtext.common.
Terminals

generate entities "http://www.example.org/entities/Entities"

Model:
 greetings+=Greeting*;

Greeting:
 'Hello' name = ID '!';

The first line declares the name of the language and of the grammar. This
corresponds to the fully qualified name of the .xtext file; the file is called
Entities.xtext, and it is in the org.example.entities package.

Creating Your First Xtext Language

[24]

The declaration of the grammar also states that it reuses the grammar Terminals,
which defines the grammar rules for common things such as quoted strings,
numbers, and comments, so that in our language we will not have to define such
rules. The grammar Terminals is part of the Xtext library. In Chapter 12, Xbase we
will see another example of Xtext library grammar—the Xbase grammar.

The generate declaration defines some generation rules for EMF, and we will
discuss this later.

After the first two declarations, the actual rules of the grammar will be specified. For
the complete syntax of the rules, you should refer to the official Xtext documentation
(https://www.eclipse.org/Xtext/documentation). For the moment, all the rules
we will write will have a name, a colon, the actual syntactic form accepted by that
rule, and are terminated by a semicolon.

Now we modify our grammar, as follows:

grammar org.example.entities.Entities with
 org.eclipse.xtext.common.Terminals

generate entities "http://www.example.org/entities/Entities"

Model: entities += Entity*;

Entity:
 'entity' name = ID ('extends' superType=[Entity])? '{'
 attributes += Attribute*
 '}'
;

Attribute:
 type=[Entity] array?=('[]')? name=ID ';' ;

The first rule in every grammar defines where the parser starts and the type of the
root element of the model of the DSL, that is, of the AST. In this example, we declare
that an Entities DSL program is a collection of Entity elements. This collection is
stored in a Model object, in particular in a feature called entities. As we will see
later, the collection is implemented as a list. The fact that it is a collection is implied
by the += operator. The star operator, *, states that the number of the elements (in
this case Entity) is arbitrary. In particular, it can be any number >= 0. Therefore, a
valid Entities program can also be empty and contain no Entity.

https://www.eclipse.org/Xtext/documentation

Chapter 2

[25]

If we wanted our programs to contain at least one Entity,
we should have used the operator + instead of *.

The shape of Entity elements is expressed in its own rule:

Entity:
 'entity' name = ID ('extends' superType=[Entity])? '{'
 attributes += Attribute*
 '}'
;

First of all, string literals, which in Xtext can be expressed with either single or
double quotes, define keywords of the DSL. In this rule, we have the keywords
entity, extends, '{', and '}'.

Therefore, a valid entity declaration statement starts with the 'entity' keyword
followed by an ID. There is no rule defining ID in our grammar because that is one
of the rules that we inherit from the Terminals.

The parsed ID will be assigned to the feature name of the parsed Entity model element.

If you are curious to know how an ID is defined, you can Ctrl + click
or press F3, on the ID in the Xtext editor, and that will bring you to
the grammar Terminals, where you can see that an ID starts with an
optional '^' character, followed by a letter ('a'..'z'|'A'..'Z'),
a '$' character, or an underscore '_' followed by any number of
letters, '$' characters, underscores, and numbers ('0'..'9'):

'^'? ('a'..'z'|'A'..'Z'|'$'|'_') ('a'..'z'|'A'..
'Z'|'$'|'_'|'0'..'9')*;

The optional '^' character is used to escape an identifier if there are
conflicts with existing keywords.

The ()? operator declares an optional part. Therefore, after the ID, you can
write the keyword extends and the name of an Entity. This illustrates one of the
powerful features of Xtext, that is, cross-references. In fact, what we want after the
keyword extends is not just a name, but the name of an existing Entity. This is
expressed in the grammar using square brackets and the type we want to refer to.
Xtext will automatically resolve the cross-reference by searching in the program for
an element of that type (in our case, an Entity) with the given name. If it cannot find
it, it will automatically issue an error. Note that, in order for this mechanism to work,
the referred element must have a feature called name. As we will see in the following
section, the automatic code completion mechanism will also take into consideration
cross-references, thus proposing elements to refer to.

Creating Your First Xtext Language

[26]

By default, cross-references and their resolutions are based
on the feature name and on an ID. This behavior can be
customized as we will see in Chapter 10, Scoping.

Then, the curly brackets '{' '}' are expected and within them Attribute elements
can be specified (recall the meaning of += and *). These Attribute elements will be
stored in the attributes feature of the corresponding Entity object.

The shape of Attribute elements is expressed in its own rule:

Attribute:
 type=[Entity] array?=('[]')? name=ID ';';

The rule for Attribute requires an Entity name (as explained previously, this
is a cross-reference) that will be stored in the type feature and an ID that will be
stored in the name feature of the attribute. It must also be terminated with ;. Note
that, after the type, an optional '[]' can be specified. In this case, the type of the
attribute is considered an array type, and the feature array will be true. This feature
is boolean since we used the ?= assign operator, and after such an operator, we
specify an optional part.

Let's try the Editor
At the end of Chapter 1, Implementing a DSL, we saw how to run the Xtext generator.
You should follow the same steps, but instead of right-clicking on the.xtext file
and navigating to Run As | Generate Xtext Artifacts, we right-click on the .mwe2
file (in our example it is GenerateEntities.mwe2) and navigate to Run As |
MWE2 Workflow. (Refer to Chapter 1, Implementing a DSL, concerning the additional
downloaded JAR file, and for the tip to avoid that).

After the generation has finished and after Eclipse has built the entire workspace, we
can run a new Eclipse instance to try our DSL (refer to Chapter 1, Implementing a DSL,
for the procedure to run a new Eclipse instance).

Chapter 2

[27]

A new Eclipse instance will be run and a new workbench will appear. In this
instance, our Entities DSL implementation is available. So, let's create a new general
project (call it, for instance, sample). Inside this project, create a new file. The name
of the file is not important, but the file extension must be entities (remember that
this was the extension we chose in the Xtext Project wizard). As soon as the file is
created, it will also be opened in a text editor, and you will be asked to convert the
project to an Xtext project. You should accept that to make your DSL editor work
correctly in Eclipse.

The editor is empty, but there is no error since an empty program is a valid Entities
program (remember how the Model rule was defined with the cardinality *). If you
access content assist, with Ctrl + Space, you will get no proposal. Instead, the entity
keyword is inserted for you. This is because the generated content assist is smart
enough to know that in that particular program context there is only one valid thing
to do—start with the keyword entity.

After that you get an error (refer to the following screenshot), since the entity
definition is still incomplete. You can see that the syntax error tells you that an
identifier is expected instead of the end of file:

Creating Your First Xtext Language

[28]

If you access the content assist again, you will get a hint that an identifier is expected
(refer to the following screenshot), so let's write an identifier:

If you access the content assist after the identifier, you will see that you get two
proposals (refer to the following screenshot). Again, the generated content assist
knows that, in that program context, you can continue either with an extends
specification or with an open curly bracket. Refer to the following screenshot:

Chapter 2

[29]

If you choose the open curly bracket, {, and press ENTER, you will note some
interesting things in the generated editor (refer to the following screenshot):

•	 The editor automatically inserts the corresponding closing curly bracket.
•	 Inserting a newline between the brackets correctly performs indentation and

moves the cursor to the right position.
•	 The folding on the left of the editor is automatically handled.
•	 The error marker turned gray, meaning that the problems in the current

program are solved, but it has not been saved yet. Saving the file makes the
error marker go away and the Problems view becomes empty.

Continue experimenting with the editor. In particular, in the context where an
entity reference is expected, that is, after the extends keyword or when declaring
an attribute, you will see that the content assist will provide you with all the Entity
elements defined in the current program.

We should not allow an entity to extend itself. Moreover, the
hierarchy should be acyclic. However, there is no way to express
these constraints in the grammar. These issues have to be dealt
with by implementing a custom Validator (Chapter 4, Validation)
or a custom Scoping mechanism (Chapter 10, Scoping).

We would also like to stress that all these mechanisms, which are quite hard to
implement manually, have been automatically generated by Xtext starting from the
grammar definition of our DSL.

Creating Your First Xtext Language

[30]

The Xtext generator
Xtext uses the MWE2 (Modeling Workflow Engine 2) DSL to configure the
generation of its artifacts. The generated .mwe2 file already comes with good
defaults; thus, for the moment, we will not modify it. However, it is interesting
to know that by tweaking this file we can request the Xtext generator to generate
support for additional features, as we will see later in this book.

In order to deal with additional platforms besides Eclipse,
such as IntelliJ and Web editors (Chapter 11, Continuous
Integration), in Xtext 2.9, a brand new generator infrastructure
has been introduced, which also aims at simplifying the overall
configuration of the generated artifacts. This new generator is
completely different from the old one. However, the old generator
is still present in Xtext so that projects created before Xtext 2.9
still work and do not need to migrate to the new generator
immediately. This book will always use the new generator.

During the MWE2 workflow execution, Xtext will generate artifacts related to the UI
editor for your DSL, but most important of all, it will derive an ANTLR specification
from the Xtext grammar with all the actions to create the AST while parsing. The
classes for the nodes of the AST will be generated using the EMF framework (as
explained in the next section).

The generator must be run after every modification to the grammar (the .xtext
file). The whole generator infrastructure relies on the Generation Gap Pattern
(Vlissides 1996). Indeed, code generators are fine, but when you have to customize
the generated code, subsequent generations may overwrite your customizations.
The Generation Gap Pattern deals with this problem by separating the code that is
generated (and can be overwritten) from the code that you can customize (without
the risk of being overwritten). In Xtext, the generated code is placed in the source
folder src-gen (this holds for all the Xtext projects). What is inside that source
folder should never be modified, since on the next generation it will be deleted and
rewritten. The programmer can instead safely modify everything in the source folder
src. On the first generation, Xtext will also generate a few stub classes in the source
folder src to help the programmer with a starting point. These classes are never
regenerated and can thus safely be edited without the risk of being overwritten by
the generator. Some stub classes inherit from default classes from the Xtext library,
while other stub classes inherit from classes that are in src-gen.

Chapter 2

[31]

Most generated stub classes in the src folder are Xtend classes. The Xtend
programming language will be introduced in the next chapter, thus, for the moment,
we will not look at these stub classes.

There is one exception to the previously described generation strategy, which
concerns the plugin.xml file (in the runtime and in the UI plugins); further Xtext
generations will generate the file plugin.xml_gen in the root directory of your
projects. It is up to you to check whether something has changed by comparing it
with plugin.xml. In that case, you should manually merge the differences. This can
be easily done using Eclipse: select the two files, right-click on them, and navigate to
Compare With | Each Other, as illustrated in the following screenshot:

In general, checking the differences between plugin.xml and plugin.xml_gen is
only needed either when you have modified the .mwe2 file or when you are using a
new version of Xtext, which can introduce new features. If you add something to the
plugin.xml file, in order to facilitate the comparison, it is best practice to append
your custom additions to the end of the file.

Finally, after running the MWE2 workflow, since the grammar has changed, new
classes can be introduced or some existing classes can be modified. Thus, it is
necessary to restart the other Eclipse instance where you are testing your editor.

Creating Your First Xtext Language

[32]

The Eclipse Modeling Framework (EMF)
The EMF (Eclipse Modeling Framework) (Steinberg et al, 2008), http://www.
eclipse.org/modeling/emf, provides code generation facilities for building tools
and applications based on structured data models. Most of the Eclipse projects that in
some way deal with modeling are based on EMF since it simplifies the development
of complex software applications with its mechanisms. The model specification
(metamodel) can be described in XMI, XML Schema, Unified Modeling Language
(UML), Rational Rose, or annotated Java. It is also possible to specify the metamodel
programmatically using Xcore, which was implemented in Xtext. Typically, a
metamodel is defined in the Ecore format, which is similar to an implementation of
a subset of UML class diagrams.

Pay attention to the meta levels in this context—an Ecore model
is a metamodel, since it is a model describing a model. Using the
metamodel EMF produces a set of Java classes for the model. If
you are not familiar with modeling technologies, you can think of
a metamodel as a way of defining Java classes, that is, hierarchy
relations, fields, method signatures, and so on. All Java classes
generated by EMF are subclasses of EObject, which can be
seen as the EMF equivalent of java.lang.Object. Similarly,
EClass corresponds to java.lang.Class for dealing with
introspection and reflection mechanisms. The relationship
between a metamodel and a model is instantiation.

Xtext relies on EMF for creating the AST, Abstract Syntax Tree, which we talked
about in Chapter 1, Implementing a DSL. From your grammar specification, Xtext will
automatically infer the EMF metamodel for your language. You can refer to the Xtext
documentation for all the details about metamodel inference. For the moment, you
can consider this simplified scenario—for each rule in your grammar, an EMF Java
interface and the corresponding implementation class will be created with a field
for each feature in the rule, together with a getter and setter. For instance, for the
Entity rule, we will have the corresponding Java interface (and the corresponding
implementation Java class):

public interface Entity extends EObject {
 String getName();
 void setName(String value);
 Entity getSuperType();
 void setSuperType(Entity value);
 EList<Attribute> getAttributes();
}

http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/emf

Chapter 2

[33]

Since these Java artifacts are generated, they are placed in the corresponding package
in the src-gen folder. Refer to the following screenshot, where you can also see
some expanded Java interfaces generated by EMF:

Creating Your First Xtext Language

[34]

The generated EMF metamodel is placed in the directory model/generated. You
can have a look at the generated Entities.ecore by opening it with the default
EMF Ecore editor. Although you may not know the details of the description of a
metamodel in EMF, it should be quite straightforward to grasp the meaning of it.
Refer to the following screenshot:

The inference of the metamodel and the corresponding EMF code generation is
handled transparently and automatically by Xtext. However, Xtext can also use an
existing metamodel that you maintain yourself. We will show an example of a DSL
with a manually maintained metamodel in Chapter 13, Advanced Topics.

Since the model of your DSL programs are generated as instances of these generated
EMF Java classes, a basic knowledge of EMF is required. As soon as you have to
perform additional constraint checks for your DSL and to generate code, you will
need to inspect this model and traverse it.

It is easy to use the generated Java classes since they follow conventions. In particular,
instances of EMF classes must be created through a static factory, which results from
EMF generation itself, thus, there is no constructor to use. Initialization of fields, that
is, features, is performed using getters and setters. A collection in EMF implements
the EList interface, which is an extension of the standard library java.util.List.
With only these notions in mind, it is easy to programmatically manipulate the
model of your program. For instance, this Java snippet programmatically creates an
Entities model that corresponds to an Entities DSL program:

import org.example.entities.entities.Attribute;
import org.example.entities.entities.EntitiesFactory;
import org.example.entities.entities.Entity;
import org.example.entities.entities.Model;

Chapter 2

[35]

public class EntitiesEMFExample {

 public static void main(String[] args) {
 EntitiesFactory factory = EntitiesFactory.eINSTANCE;

 Entity superEntity = factory.createEntity();
 superEntity.setName("MySuperEntity");

 Entity entity = factory.createEntity();
 entity.setName("MyEntity");
 entity.setSuperType(superEntity);

 Attribute attribute = factory.createAttribute();
 attribute.setName("myattribute");
 attribute.setArray(false);
 attribute.setType(superEntity);

 entity.getAttributes().add(attribute);

 Model model = factory.createModel();
 model.getEntities().add(superEntity);
 model.getEntities().add(entity);
 }
}

EMF is easy to to learn, but as with any powerful tool, there is much to learn to fully
master it. As hinted previously, EMF is widely used in the Eclipse world; thus you
can consider it as an investment.

Improvements to the DSL
Now that we have a working DSL, we can do some improvements and modifications
to the grammar.

After every modification to to the grammar, as we said in the section The Xtext
generator, we must run the MWE2 workflow so that Xtext will generate the new
ANTLR parser and the updated EMF classes.

First of all, while experimenting with the editor, you might have noted that

MyEntity[] myattribute;

is a valid statement of our DSL, while the one below (note the spaces between the
square brackets):

MyEntity[] myattribute;

produces a syntax error.

Creating Your First Xtext Language

[36]

This is not good, since we do not want spaces to be relevant (although there are
languages such as Python and Haskell where spaces are indeed relevant).

The problem is due to the fact that, in the Attribute rule, we specified [], thus, no
space is allowed between the square brackets; we can modify the rule as follows:

Attribute: type=[Entity] (array?='[' ']')? name=ID ';';

Since we split the two square brackets into two separate tokens, spaces between
the brackets are allowed in the editor. Indeed, spaces are automatically discarded,
unless they are explicit in the token definition. In general, spaces in keywords should
be avoided.

Xtext 2.8 introduced support for whitespace-aware languages,
where whitespaces, for example indentations, are used to
specify the structure of programs (such as in Python). We will
not describe this feature in this book. We refer the interested
reader to the Xtext documentation and to the example language
Home Automation that ships with Xtext.

We can further refine the array specification in our DSL by allowing an optional
length:

Attribute:
 type=[Entity] (array ?='[' (length=INT)? ']')? name=ID ';';

There is no rule defining INT in our grammar—we inherit this rule from the
grammar Terminals. As you can imagine, INT requires a positive integer literal,
thus the length feature in our model will have an integer type as well. Since the
length feature is optional (note the question mark), both the following attribute
definitions will be valid statements of our DSL:

MyEntity[] a;
MyEntity[10] b;

When the length is not specified, the length feature will hold the default integer
value (0).

Dealing with types
The way we defined the concept of an AttributeType is not conceptually correct,
since the array feature is part of Attribute when it should be something that
concerns only the type of Attribute.

Chapter 2

[37]

We can then specify the concept of AttributeType in a separate rule, which will also
result in a new EMF class in our model:

Attribute:
 type=AttributeType name=ID ';';

AttributeType:
 entity=[Entity] (array ?='[' (length=INT)? ']')?;

If you run the MWE2 workflow, you will note no difference in your DSL editor,
but the metamodel for your AST has changed. For example, consider this part of
EntitiesEMFExample that we showed previously:

 Attribute attribute = factory.createAttribute();
 attribute.setName("myattribute");
 attribute.setArray(false);
 attribute.setType(superEntity);

This is no longer valid Java code and has to be changed as follows:

 Attribute attribute = factory.createAttribute();
 attribute.setName("myattribute");
 AttributeType attributeType = factory.createAttributeType();
 attributeType.setArray(false);
 attributeType.setLength(10);
 attributeType.setEntity(superEntity);
 attribute.setType(attributeType);

As a further enhancement to our DSL, we would like to have some basic types—at
the moment, only entities can be used as types. For instance, let's assume that our
DSL provides three basic types—string, int, and boolean. Therefore, a basic type
is represented by its literal representation. On the contrary, an EntityType (the
only type concept we have used up to now) is actually a reference to an existing
Entity. Furthermore, we want to be able to declare arrays both of BasicType and of
EntityType.

For these reasons, the array feature still belongs to AttributeType, but we need to
abstract over elementType. Thus, we modify the grammar as follows:

AttributeType:
 elementType=ElementType (array ?='[' (length=INT)? ']')?;

ElementType:
 BasicType | EntityType;

BasicType:

Creating Your First Xtext Language

[38]

 typeName=('string'|'int'|'boolean');

EntityType:
 entity=[Entity];

As you can see, we introduce a rule, ElementType, which in turn relies on two
alternative mutually exclusive rules: BasicType and EntityType. Alternative rules
are separated using the pipe operator |. Note that rules such as ElementType, which
delegates to other alternative rules, implicitly introduce an inheritance relation in
the generated EMF classes. Thus, both BasicType and EntityType inherit from
ElementType. In the BasicType rule, the string feature typeName will contain the
corresponding keyword entered in the program.

After running the MWE2 workflow, you can try your editor and see that now
you can also use the three basic types. Furthermore, in a context where a type
specification is expected, the content assist will present all possible elementType
alternatives, both entity types and BasicType. Refer to the following screenshot:

In general, it is better not to rely on hardcoded alternatives in the
grammar such as the BasicType we used previously. Instead,
it would be better to provide a standard library for the DSL with
some predefined types and functions. An application of this
technique will be presented in Chapter 10, Scoping.

Chapter 2

[39]

Now that our EMF model has changed again, we need to change our
EntitiesEMFExample class accordingly as follows:

 Attribute attribute = factory.createAttribute();
 attribute.setName("myattribute");
 AttributeType attributeType = factory.createAttributeType();
 attributeType.setArray(false);
 attributeType.setLength(10);
 EntityType entityType = factory.createEntityType();
 entityType.setEntity(superEntity);
 attributeType.setElementType(entityType);
 attribute.setType(attributeType);

If you reopen the generated Entities.ecore, you can see the current metamodel for
the AST of our DSL (note the inheritance relations—BasicType and EntityType
inherit from ElementType). Refer to the following screenshot:shot:

Creating Your First Xtext Language

[40]

The preceding EMF metamodel can also be represented with a graphical notation
following UML-like conventions. Refer to the following diagram:

We now have enough features in the Entities DSL to start dealing with additional
tasks typical of language implementation. We will be using this example DSL in the
upcoming chapters.

Summary
In this chapter, you learned how to implement a simple DSL with Xtext and you
saw that, starting from a grammar definition, Xtext automatically generates many
artifacts for the DSL, including IDE tooling.

You also started to learn the EMF API that allows you to programmatically
manipulate a model representing a program AST. Being able to programmatically
access models is crucial to perform additional checks on a program that has been
parsed and also to perform code generation, as we will see in the rest of the book.

In the next chapter, we will introduce the programming language Xtend, which is
shipped with Xtext and is implemented in Xtext itself. Xtend is a Java-like general
purpose programming language, completely inter-operable with Java that allows
you to write much simpler and much cleaner programs. We will use Xtend in the rest
of the book to implement all the aspects of Xtext languages.

[41]

Working with the Xtend
Programming Language

In this chapter, we will introduce the Xtend programming language, a fully featured
general purpose Java-like language that is completely interoperable with Java.
Xtend has a more concise syntax than Java and provides powerful features such
as type inference, extension methods, dispatch methods, and lambda expressions,
not to mention multiline template expressions, which are useful when writing code
generators. All the aspects of a DSL implemented in Xtext can be implemented in
Xtend instead of Java, since it is easier to use and allows you to write better readable
code. Since Xtend is completely interoperable with Java, you can reuse all the Java
libraries. Moreover, all the Eclipse JDT (Java Development Tools) will work with
Xtend seamlessly.

This chapter will cover the following topics:

•	 An introduction to the Xtend programming language
•	 A description of the main features of Xtend, which we will use throughout

the book

An introduction to Xtend
The Xtend programming language comes with very nice documentation, which
can be found on its website, https://www.eclipse.org/xtend/documentation/.
We will give an overview of Xtend in this chapter, but we strongly suggest that you
then go through the Xtend documentation thoroughly. Xtend itself is implemented
in Xtext and it is a proof of concept of how involved a language implemented in
Xtext can be.

https://www.eclipse.org/xtend/documentation/

Working with the Xtend Programming Language

[42]

We will use Xtend throughout this book to write all parts of a DSL implementation.
Namely, we will use it to customize UI features, to write tests, to implement
constraint checks, and to write code generators or interpreters for all the example
DSLs we will develop in this book. In particular, all the stub classes generated by
Xtext for your DSL projects are Xtend classes.

You can still generate Java stub classes by customizing the MWE2 workflow,
but in this book, we will always use Xtend classes. Xtend, besides providing
useful mechanisms for writing code generators, for example, multiline template
expressions, also provides powerful features that make model visiting and traversing
really easy, straightforward, and natural to read and maintain. Indeed, besides the
grammar definition, for the rest of the time when implementing a DSL, you will have
to visit the AST model. Xtend programs are translated into Java, and Xtend code can
access all the Java libraries; thus Xtend and Java can cooperate seamlessly.

Xtend is a general-purpose programming language, which can
be used independently from Xtext language development. In
particular, Xtend can be used as an alternative to Java or together
with Java for any kind of Java application development, including
web applications and Android applications.

Using Xtend in your projects
All the Eclipse projects generated by the Xtext wizard are already setup to use Xtend.
However, in this chapter, in order to give an introduction to the language, we will
use Xtend independently from Xtext language development.

You can use Xtend in your Eclipse Java projects (both plain Java and plugin projects).
Let's now create an Eclipse plugin project where we will write a few Xtend examples.
Perform the following steps:

1.	 Start Eclipse, navigate to File | New | Project…, and select Plug-in Project.
2.	 In the next dialog, you should specify the following Project name: org.

example.xtend.examples.

3.	 Press Next, and unselect the checkboxes Generate an Activator and This
plugin will make contributions to the UI.

4.	 Press Finish. If asked to switch to the Plug-in Development perspective,
choose Yes.

Chapter 3

[43]

In order to create a new Xtend file, for example, an Xtend Class, right-click on your
source folder and select New | Xtend Class. You will see that this wizard is similar
to the standard New Java Class wizard, so you can choose the Package, the class
Name, Superclass, and Interfaces. Refer to the following screenshot:

As soon as the class is created, you will get an error marker with the message
Couldn't find the mandatory library org.eclipse.xtext.xbase.lib 2.8.0
or higher on the project's classpath. You just need to use the quickfix Add
Xtend libs to classpath and the required Xtend bundles will be added to your
project's dependencies. The quickfix can be accessed by clicking on the error marker
in the editor's left ruler.

Working with the Xtend Programming Language

[44]

A new source folder will be created in your plugin project, xtend-gen, where the
Java code corresponding to your Xtend code will be automatically generated as
soon as you save an .xtend file. Just like src-gen created by the Xtext generator
(as seen in the previous chapter), the files in xtend-gen must not be modified by the
programmer, since they will be overwritten by the Xtend compiler.

The folder xtend-gen is not automatically added to the build
source folders of your plug-in project, and therefore you should
add it manually in your build.properties file. The file has a
warning marker and the editor will provide you with a quickfix
to add that folder. This is required only for plug-in projects.

You can use the same steps to create an Xtend class in a plain Java project. Also in
this case, you will have to use the quickfix to add the Xtend libraries to the classpath.
Of course, in this case, there is no build.properties to adjust in plain Java projects.

Xtend – a better Java with less "noise"
Xtend is a statically typed language and it uses the Java type system, including Java
generics and Java annotations. Thus, Xtend and Java are completely interoperable.

Most of the linguistic concepts of Xtend are very similar to Java, that is, classes,
interfaces, and methods. One of the goals of Xtend is to have a less "noisy" version
of Java. Indeed, in Java, some linguistic features are redundant and only make
programs more verbose.

The Xtend Eclipse editor supports the typical features of the Eclipse Java editor,
including templates. Thus, we can create a main method inside the previously
created Xtend class as shown in the following screenshot, using the content assist
template proposal:

Chapter 3

[45]

Let's write the "Hello World" print statement in Xtend:

package org.example.xtend.examples

class XtendHelloWorld {
 def static void main(String[] args) {
 println("Hello World")
 }
}

You can see that it is similar to Java, though the removal of syntactic noise is already
evident by the fact that terminating semicolons (;) are optional in Xtend. All method
declarations start with either def or override (explained later in the chapter).
Methods are public by default.

Note that the editor works almost the same as the one provided by JDT. You
may also want to take a look at the generated Java class in the xtend-gen folder
corresponding to the Xtend class.

Although it is usually not required to see the generated Java code, it might be
helpful, especially when starting to use Xtend, to see what is generated in order to
learn Xtend's new constructs. Instead of manually opening the generated Java file,
you can open the Xtend Generated Code view. The contents of this view will show
the generated Java code, in particular, the code corresponding to the section of the
Xtend file you are editing. This view will be updated when the Xtend file is saved.

Since the Xtend class we have just written contains a main method, we can execute
it. Instead of running the generated Java class, we can directly execute the generated
Java class by right-clicking on the Xtend file and navigate to Run As | Java
Application. The output will be shown, as usual, in the Console view.

Types
Class and interface declarations in Xtend are similar to Java syntax, but all Xtend
types are public by default. Moreover, in Xtend, you can declare multiple
public top-level types per file, and they will be compiled into separate Java files.
Inheritance and interface implementation are just the same as in Java. All Xtend
classes implicitly extend java.lang.Object.

Package declarations in Xtend work as in Java.

Working with the Xtend Programming Language

[46]

In an Xtend class you can define any number of constructors, using the keyword new,
without repeating the name of the class. Constructors support the same accessibility
modifiers as in Java, but they are public by default:

class MyFirstXtendClass {
 new () {
 ...
 }
 new (String s) {
 ...
 }
}

Xtend supports also static nested classes and anonymous inner classes. Moreover,
it supports annotation (see https://eclipse.org/xtend/documentation/204_
activeannotations.html) and enum declarations. We will not use such
declarations in this book though.

Methods
Method declarations start with either def or override and are public by default.
The usual method Java modifiers are available in Xtend.

Xtend is stricter concerning method overriding: if a subclass overrides a method,
it must explicitly define that method with override instead of def, otherwise a
compilation error is raised. This will avoid accidental method overrides; that is, you
did not intend to provide an overridden version of a method of a superclass. Even
more importantly, if the method that is being overridden later is removed.

For example, the following method definition will raise a compiler error, since we
should have used override instead of def:

class MyFirstXtendClass {
 def String toString() { // toString() is defined in java.lang.Object
 return ""
 }
}

In Xtend there are no statements, since everything is an expression. In a method
body, the last expression is the return expression, and an explicit return statement
is optional.

The return type of a method can be omitted if it can be inferred from the method
body. Of course, if the return type is specified, then the method body return
expression must be compliant with the specified return type.

https://eclipse.org/xtend/documentation/204_activeannotations.html
https://eclipse.org/xtend/documentation/204_activeannotations.html

Chapter 3

[47]

For example, all the following method definitions are valid in Xtend:

class MyFirstXtendClass {
 def m1() {
 ""
 }
 def String m2() {
 ""
 }
 def m3() {
 return ""
 }
 def String m4() {
 return ""
 }
}

If your Xtend code is meant to be used as API, it is advisable to
always specify the return type of the public methods explicitly.
This will make your intentions clearer to your users and will avoid
inadvertently breaking the API if you change the method body.

The type of method parameters must always be specified, since it cannot be inferred
automatically.

Method parameters are always implicitly final in Xtend, and there is no way of
specifying a method parameter as non-final.

Fields and Variables
Fields and local variables are declared using val (for final fields and variables)
and var (for non-final fields and variables). Fields are private by default. Standard
Java accessibility modifiers are available for fields. The type of fields and variables
can be omitted and it is inferred from the context, not only from the initialization
expression. Of course, final fields and variables must be initialized in the declaration.
The standard Java syntax for field definition is also supported, but in this case the
type must be declared explicitly.

Here are some examples of Xtend variable declarations:

val s = 'my variable' // final variable
var myList = new LinkedList<Integer> // non final variable, type
inferred
val aList = newArrayList
aList += "" // now the type of aList is inferred as ArrayList<String>

Working with the Xtend Programming Language

[48]

Note that, in the preceding example, aList is inferred as ArrayList<String> from
its usage, not from the initialization expression.

Text hovering the Xtend elements in the editor will give you
information about the inferred types.

Operators
The semantics of Xtend operators differ slightly from Java. In particular == actually
compares the values of the objects by mapping the operator to the method equals.
To achieve the Java semantics of object identifier equality, you must use the triple
equality operator: ===.

Standard arithmetic operators are extended to lists with the expected meaning. For
example, when executing the following code:

val l1 = newArrayList("a")
l1 += "b"
val l2 = newArrayList("c")
val l3 = l1 + l2
println(l3)

The string [a, b, c] will be printed.

Syntactic sugar
Xtend provides some syntactic sugar, that is, syntax that is designed to write code
which is easier to read, for getter and setter methods. For example, instead of
writing, o.getName(), you can simply write o.name. Similarly, instead of writing
o.setName("..."), you can simply write o.name = "...". The same convention
applies for boolean fields according to JavaBeans conventions, where the getter
method starts with is instead of get. Similar syntactic sugar is available for method
invocations so that, when a method has no parameter, the parenthesis can be avoided.

Static members and inner types
Access to static members (fields and methods) of types is specified in Xtend, just like
in Java, using the dot (.). Refer to the following code snippet:

Chapter 3

[49]

import java.util.Collections

class StaticMethods {
 def static void main(String[] args) {
 val list = Collections.emptyList
 System.out.println(list)
 }
}

The same holds for inner types (classes and interfaces). For example, given this
Xtend class, with an inner interface:

class MyXtendClass {
 interface MyInnerInterface {
 public static String s = "s";
 }
}

We can access the inner interface in Xtend using the following syntax:

MyXtendClass.MyInnerInterface

In older versions of Xtend, access to static members had to be
specified using the operator ::, for example, System::out.
println(). Access to inner types had to be specified using the
operator $, for example, MyXtendClass$MyInnerInterface.
Since this syntax is still valid in Xtend, you may happen to see
that in old Xtend programs.

Literals
Literals are specified in Xtend as in Java but for a few exceptions.

References to a type, that is, a type literal, is expressed in Xtend simply with the type
name (instead, in Java, you need to use the class name followed by .class). Type
literals can also be specified using the keyword typeof, with the type name as an
argument, for example, typeof(String). For references to array types, you must
use the latter syntax, for example, typeof(String[]).

Working with the Xtend Programming Language

[50]

In Xtend (and in general, by default, in any DSL implemented with Xtext using the
default terminals grammar), strings can be specified both with single and double
quotes. This allows the programmer to choose the preferred format depending on the
string contents so that quotes inside the string do not have to be escaped, for example:

val s1 = "my 'string'"
val s2 = 'my "string"'

Escaping is still possible using the backslash character \ as in Java.

Xtend supports collection literals to create immutable collections and arrays. List
or array literals are specified using the syntax #[…]. Whether a list or an array is
created depends on the target type:

val aList = #["a", "b"] // creates a list of strings
val String[] anArray = #["a", "b"] // creates an array of strings

Immutable sets are created with the syntax #{…}. Finally, an immutable map is
created like this:

val aMap = #{"a" -> 0, "b" -> 1} // creates a Map<String, Integer>

Extension methods
Extension methods is a syntactic sugar mechanism that allows you to add new
methods to existing types without modifying them. Instead of passing the first
argument inside the parentheses of a method invocation, the method can be called
with the first argument as its receiver. It is as if the method was one of the argument
type's members.

For example, if m(Entity) is an extension method, and e is of type Entity, you can
write e.m() instead of m(e), even though m is not a method defined in Entity.

Using extension methods often results in a more readable code, since method
calls are chained; for example, o.foo().bar() rather than nested, for example,
bar(foo(o)).

Xtend provides several ways to make methods available as extension methods,
as described in this section.

Xtend provides a rich runtime library with several utility classes and static methods.
These static methods are automatically available in Xtend code so that you can
use all of them as extension methods. They aim at enhancing the functionality of
standard types and collections.

Chapter 3

[51]

Of course, the editor also provides code completion for extension methods so that
you can experiment with the code assistant. These utility classes aim at enhancing
the functionality of standard types and collections.

Extension methods are highlighted in orange in the Xtend editor.

"my string".toFirstUpper

For example, the above code is equivalent to this code:

StringExtensions.toFirstUpper("my string")

Similarly, you can use some utility methods for collections, for example, head and
last as in the following code:

val list =
newArrayList("a", "b", "c")
println(list.head) // prints a
println(list.last) // prints b

You can also use static methods from existing Java utility classes (for example,
java.util.Collections) as extension methods using a static extension import in
an Xtend source file, for example:

import static extension java.util.Collections.*

In that Xtend file, all the static methods of java.util.Collections will then be
available as extension methods.

Methods defined in an Xtend class can automatically be used as extension methods
in that class, for example:

class ExtensionMethods {
 def myListMethod(List<?> list) {
 // some implementation
 }

 def m() {
 val list = new ArrayList<String>
 list.myListMethod
 }

Working with the Xtend Programming Language

[52]

Finally, by adding the extension keyword to a field, a local variable, or a parameter
declaration, its instance methods become extension methods in that class, code
block, or method body, respectively. For example, assume you have this class:

class MyListExtensions {

 def aListMethod(List<?> list) {
 // some implementation
 }

 def anotherListMethod(List<?> list) {
 // some implementation
 }
}

Here you want to use its methods as extension methods in another class, C. Then, in
C, you can declare an extension field (that is, a field declaration with the extension
keyword) of type MyListExtensions, and in the methods of C, you can use the
methods declared in MyListExtensions as extension methods:

class C {

 extension MyListExtensions e = new MyListExtensions

 def m() {
 val list = new ArrayList<String>
 list.aListMethod // equivalent to e.aListMethod(list)
 list.anotherListMethod // equivalent to e.anotherListMethod(list)
 }

As mentioned earlier, you can achieve the same goal by adding the keyword
extension to a local variable:

 def m() {
 val extension MyListExtensions e = new MyListExtensions
 val list = new ArrayList<String>
 list.aListMethod
 list.anotherListMethod
 }

Alternatively, you can add it to a parameter declaration:

 def m(extension MyListExtensions e) {
 val list = new ArrayList<String>
 list.aListMethod
 list.anotherListMethod
 }

Chapter 3

[53]

When declaring a field with the keyword extension, the name of the field is optional.
The same holds true when declaring a local variable with the keyword extension.

The implicit variable – it
You know that, in Java, the special variable this is implicitly bound in a method
to the object on which the method was invoked. The same holds true in Xtend.
However, Xtend introduces another special variable it. While you cannot declare
a variable or parameter with name this, you are allowed to do so using the name
it. If in the current program context a declaration for it is available, then all the
members of that variable are implicitly available, just like all the members of this are
implicitly available in an instance method, for example:

class ItExamples {
 def trans1(String it) {
 toLowerCase // it.toLowerCase
 }

 def trans2(String s) {
 var it = s
 toLowerCase // it.toLowerCase
 }
}

This allows you to write a much more compact code.

Lambda expressions
A lambda expression (or lambda for short) defines an anonymous function. Lambda
expressions are first class objects that can be passed to methods or stored in a
variable for later evaluation.

Lambda expressions are typical of functional languages that existed long before object-
oriented languages were designed. Therefore, as a linguistic mechanism, they are so
old that it is quite strange that Java has provided them only since version 8. Java 8
has been available for some time now, so we assume that you are familiar with Java 8
lambdas. Xtend has been supporting lambda expressions since the very beginning, and
Xtend lambdas have a more compact form as we will show in the rest of this section.

When using Java 8, Xtend translates its lambda expressions into
Java lambda expressions. When using previous versions of Java,
Xtend translates its lambda expressions into Java anonymous
inner classes. This is all transparent for the end user.

Working with the Xtend Programming Language

[54]

Xtend lambda expressions are declared using square brackets []; parameters and the
actual body are separated by a pipe symbol,|. The body of the lambda is executed by
calling its apply method and passing the needed arguments.

The following code defines a lambda expression that is assigned to a local variable,
taking a string and an integer as parameters and returning the string concatenation
of the two. It then evaluates the lambda expression passing the two arguments:

val l = [String s, int i | s + i]
println(l.apply("s", 10))

Xtend also introduces types for lambda expressions (function types). Parameter
types (enclosed in parentheses) are separated from the return type by the symbol
=>. Generic types can be fully exploited when defining function types. For example,
the preceding declaration could have been written with an explicit type as follows:

val (String, int)=>String l = [String s, int i | s + i]

Recall that Xtend has powerful type inference mechanisms—variable type
declarations can be omitted when the context provides enough information. In the
preceding declaration, we made the type of the lambda expression explicit, thus
the types of parameters of the lambda expression are redundant since they can be
inferred:

val (String, int)=>String l = [s, i | s + i]

Function types are useful when declaring methods that take a lambda expression
as a parameter (remember that the types of parameters must always be specified),
for example:

def execute((String, int)=>String f) {
 f.apply("s", 10)
}

We can then pass a lambda expression as an argument to this method. When we pass
a lambda as an argument to this method, there is enough information to fully infer
the types of its parameters, which allows us to omit these declarations:

execute([s, i | s + i])

A lambda expression also captures the local variables and parameters defined in
the current program context. All such variables and parameters can be used within
the lambda expression's body. Recall that in Xtend all method parameters are
automatically final.

Chapter 3

[55]

Thus, when evaluated, a lambda expression is closed over the environment in which
it was defined: the referenced variables and parameters of the enclosing context are
captured by the lambda expression. For this reason, lambda expressions are often
referred to as closures.

For example, consider the following code:

package org.example.xtend.examples
class LambdaExamples {
 def static execute((String,int)=>String f) {
 f.apply("s", 10)
 }
 def static void main(String[] args) {
 val c = "aaa"
 println(execute([s, i | s + i + c])) // prints s10aaa
 }
}

You can see that the lambda expression uses the local variable c when it is defined,
but the value of that variable is available even when it is evaluated.

Formally, lambda expressions are a linguistic construct, while
closures are an implementation technique. From another point
of view, a lambda expression is a function literal definition
while a closure is a function value. However, in most
programming languages and in the literature, the two terms
are often used interchangeably.

Although function types are not available in Java, Xtend can automatically perform
the required conversions in the presence of Java SAM (Single Abstract Method)
types, also known as Java functional interfaces. If a Java or Xtend method expects
an instance of a SAM type, in Xtend, you can call that method by passing a lambda.
Xtend will perform all the type checking and conversions.

For example, java.util.Collections.sort expects a List<T> and a
Comparator<T>, which is a functional interface in Java 8, with the abstract method
int compare(T o1, T o2). In Xtend, we can pass a lambda that is compliant with
such method, just like in Java:

val list = newArrayList("Second", "First", "Third")
Collections.sort(list,
 [arg0, arg1 | arg0.compareToIgnoreCase(arg1)])

Xtend infers the types of the parameters of the lambda automatically.

Working with the Xtend Programming Language

[56]

Xtend provides some additional syntactic sugar for lambdas to make code even
more readable.

First of all, when a lambda is the last argument of a method invocation, it can be put
outside the (...) parentheses (and if the invocation only requires one argument,
the () can be omitted):

Collections.sort(list)[arg0, arg1 |
 arg0.compareToIgnoreCase(arg1)]
strings.findFirst[s | s.startsWith("F")]

Furthermore, the special symbol it we introduced earlier is also the default
parameter name in a lambda expression. Thus, if the lambda has only one parameter,
you can avoid specifying it and instead use it as the implicit parameter:

strings.findFirst[it.startsWith("F")]

Since all the members of it are implicitly available without using ".", you can
simply write the following:

strings.findFirst[startsWith("F")]

This is even more readable.

If the parameters of a lambda can be inferred from the context, you can avoid
specifying the parameter names. In that case, the lambda parameters are
automatically available in the shape of $0, $1, and so on. For example, the code
invoking Collections.sort can also be written as follows:

Collections.sort(list)[$0.compareToIgnoreCase($1)]

Sophisticated data processing queries are easier to express in Xtend than in Java,
since there is no need to use Java 8 Streams. For example, suppose you have the
following list of Person (where Person is a class with string fields firstname,
surname, and an integer field age):

personList = newArrayList(
 new Person("James", "Smith", 50),
 new Person("John", "Smith", 40),
 new Person("James", "Anderson", 40),
 new Person("John", "Anderson", 30),
 new Person("Paul", "Anderson", 30))

Chapter 3

[57]

Here, you want to find the first three younger persons whose first name starts
with J, and we want to print them as surname, firstname on the same line
separated by "; ", thus, the resulting output should be (note: ; must be a separator):

Anderson, John; Smith, John; Anderson, James

In Xtend, with lambdas and extension methods, it is as simple as follows:

val result = personList.filter[firstname.startsWith("J")].
 sortBy[age].
 take(3).
 map[surname + ", " + firstname].
 join("; ")
println(result)

Multi-line template expressions
Besides traversing models, when writing a code generator, most of the time you will
write strings that represent the generated code. Unfortunately, in Java, you cannot
write multi-line string literals.

This actually results in two main issues: if the string must contain a newline
character, you have to use the special character \n; if, for readability, you want to
break the string literal in several lines, you have to concatenate the string parts with
+. If you want to indent the generated code nicely, then things become even harder.

If you have to generate only a few lines, this might not be a big problem. However, a
generator of a DSL usually needs to generate lots of lines.

Xtend provides multi-line template expressions to address all of the preceding issues
(indeed, all strings in Xtend are multi-line).

Working with the Xtend Programming Language

[58]

For example, let's assume that you want to write a generator for generating some
Java method definitions. The corresponding code generator written in Xtend using
multi-line template expressions is shown in the following screenshot:

Before explaining the code, we must first mention that the final output is nicely
formatted as it was meant to be, including indentation:

public void m() {
 /* body of m */
 System.out.println("Hello");
 return;
}

Template expressions are defined using triple single quotes ('''). This allows us
to use double quotes directly without escaping them. Template expressions can
span multiple lines, and a newline in the expression will correspond to a newline
in the final output. Variable parts can be directly inserted in the expression using
guillemets («», also known as angle quotes or French quotation marks). Note that
between the guillemets, you can specify any expression and even invoke methods.
You can also use conditional expressions and loops (we will see an example later in
this book; you can refer to the documentation mentioned earlier in the introduction
for all the details).

Curly brackets {} are optional for Xtend method bodies that only
contain template expressions.

Chapter 3

[59]

Another important feature of template expressions is that indentation is handled
automatically and in a smart way. As you can see from the previous screenshot, the
Xtend editor uses a specific syntax coloring strategy for multi-line template strings, in
order to give you an idea of what the indentations will look like in the final output.

To insert the guillemets in the Xtend Eclipse editor, you can use the
keyboard shortcuts Ctrl + Shift + < and Ctrl + Shift + > for « and »
respectively. On a Mac operating system, they are also available
with Alt + q («) and Alt + Q (»). Alternatively, you can use content
assist inside a template expression to insert a pair of them.

The drawback of guillemets is that you will have to have a consistent encoding,
especially if you work in a team using different operating systems. You should
always use UTF-8 encoding for all the projects that use Xtend to make sure that the
right encoding is stored in your project preferences (which is in turn saved on your
versioning system, such as Git). You should right-click on the project and then select
Properties, and in the Resource property, set the encoding explicitly. You must set
this property before writing any Xtend code (changing the encoding later will change
all the guillemets characters, and you will have to fix them all by hand). Systems
such as Windows use a default encoding that is not available in other systems, such
as Linux, while UTF-8 is available everywhere. Refer to the following screenshot:

Working with the Xtend Programming Language

[60]

All the projects generated by the Xtext wizard are already created
with the UTF-8 encoding. The encoding can also be changed by
changing the corresponding property in the MWE2 file.

Additional operators
Besides standard operators, Xtend has additional operators that help to keep the
code compact.

Quite often, you will have to check whether an object is not null before invoking
a method on it; otherwise, you may want to return null or simply perform no
operation. As you will see in DSL development, this is quite a recurrent situation.
Xtend provides the operator "?.", which is the null-safe version of the standard
selection operator (the dot .). Writing o?.m corresponds to if (o != null) o.m.
This is particularly useful when you have cascade selections, for example, o?.f?.m.

The Elvis operator ("?:") is another convenient operator for dealing with default
values in case of null instances. It has the following semantics: x ?: y returns x if it
is not null and y otherwise.

Combining the two operators allows you to set up default values easily, for example:

// equivalent to: if (o != null) o.toString else 'default'
result = o?.toString ?: 'default'

The with operator (or double arrow operator), =>, binds an object to the scope of a
lambda expression in order to do something on it. The result of this operator is the
object itself. Formally, the operator => is a binary operator that takes an expression
on the left-hand side and a lambda expression with a single parameter on the right-
hand side: the operator executes the lambda expression with the left-hand side as the
argument. The result is the left operand after applying the lambda expression.

For example, see the following code:

return eINSTANCE.createEntity => [name = "MyEntity"]

It is equivalent to:

val entity = eINSTANCE.createEntity
entity.name = "MyEntity"
return entity

Chapter 3

[61]

This operator is extremely useful in combination with the implicit parameter it and
the syntactic sugar for getter and setter methods to initialize a newly created
object to be used in a further assignment without using temporary variables. As a
demonstration, consider the Java code snippet we saw in Chapter 2, Creating Your
First Xtext Language, that we used to build an Entity with an Attribute (with its
type) that we will report here for convenience:

Entity entity = eINSTANCE.createEntity();
entity.setName("MyEntity");
entity.setSuperType(superEntity);
Attribute attribute = eINSTANCE.createAttribute();
attribute.setName("myattribute");
AttributeType attributeType = eINSTANCE.createAttributeType();
attributeType.setArray(false);
attributeType.setLength (10);
EntityType entityType = eINSTANCE.createEntityType();
entityType.setEntity(superEntity);
attributeType.setElementType(entityType);
attribute.setType(attributeType);
entity.getAttributes().add(attribute);

This requires many variables that are a huge distraction (are you able to get a quick
idea of what the code does?). In Xtend, we can simply write the following:

eINSTANCE.createEntity => [
 name = "MyEntity"
 superType = superEntity
 attributes += eINSTANCE.createAttribute => [
 name = "myattribute"
 type = eINSTANCE.createAttributeType => [
 array = false
 length = 10
 elementType = eINSTANCE.createEntityType => [
 entity = superEntity
]
]
]
]

If you want to try the preceding code in the Xtend example project,
you need to add as dependencies the bundles org.example.
entities and org.eclipse.emf.ecore.

Working with the Xtend Programming Language

[62]

Polymorphic method invocation
Method overloading resolution in Java and in Xtend is a static mechanism, meaning
that the selection of the specific method takes place according to the static type
of the arguments. When you deal with objects belonging to a class hierarchy,
this mechanism soon shows its limitation you will probably write methods that
manipulate multiple polymorphic objects through references to their base classes,
but since static overloading only uses the static type of those references, having
multiple variants of those methods will not suffice. With polymorphic method
invocation (also known as multiple dispatch or dynamic overloading), the method
selection takes place according to the runtime type of the arguments.

Xtend provides Dispatch Methods for polymorphic method invocation; upon
invocation, overloaded methods marked as dispatch are selected according to the
runtime type of the arguments.

Going back to our Entities DSL of Chapter 2, Creating Your First Xtext Language,
ElementType is the base class of BasicType and EntityType, and AttributeType
has a reference, elementType, to an ElementType. In order to have a string
representation for such a reference, we can write two dispatch methods as in the
following example:

def dispatch typeToString(BasicType type) {
 type.typeName
}
def dispatch typeToString(EntityType type) {
 type.entity.name
}

Now, when we invoke typeToString on the reference elementType, the selection
will use the runtime type of that reference:

def toString(AttributeType attributeType) {
 attributeType.elementType.typeToString
}

With this mechanism, you can get rid of all the ugly instanceof cascades and
explicit class casts that have cluttered many Java programs.

Chapter 3

[63]

Note that Xtend will automatically infer an entry point for dispatch methods
with a parameter representing the base class of all the parameters used in
the dispatch methods. In the preceding example, it will generate the Java
method typeToString(ElementType) since ElementType is the base class of
BasicType and EntityType. This generated Java method entry point will throw
IllegalArgumentException if we pass an ElementType (that is, an ElementType
object which is neither a BasicType nor an EntityType). For this reason, when
writing dispatch methods, you may want to provide yourself a dispatch method
for the base type and handle the base case manually.

Enhanced switch expressions
Xtend provides a more powerful version of Java switch statements. First of all, only
the selected case is executed, in comparison to Java that falls through from one case
to the next. For this reason, you do not have to insert an explicit break instruction
to avoid subsequent case block execution. Indeed, Xtend does not support break
statements at all. Furthermore, a switch can be used with any object reference.

Xtend switch expressions allow you to write involved case expressions, as shown in
the following example:

def String switchExample(Entity e, Entity specialEntity) {
 switch e {
 case e.name.length > 0 : "has a name"
 case e.superType != null : "has a super type"
 case specialEntity : "special entity"
 default: ""
 }
}

If the case expression is a boolean expression (like the first two cases in the
preceding example), then the case matches if the case expression evaluates to true.
If the case expression is not of type boolean, it is compared to the value of the main
expression using the equals method (the third case in the preceding example). The
expression after the colon of the matched case is then evaluated, and this evaluation
is the result of the whole switch expression.

Working with the Xtend Programming Language

[64]

Another interesting feature of Xtend switch expressions is type guards. With this
functionality, you can specify a type as the case condition and the case matches only
if the switch value is an instance of that type (formally, if it conforms to that type).
In particular, if the switch value is a variable, that variable is automatically casted
to the matched type within the case body. This allows you to implement a cleaner
version of the typical Java cascades of instanceof and explicit casts. Although we
could use dispatch methods to achieve the same goal, switch expressions with type
guards can be a valid and more compact alternative.

For example, the code in the previous section using dispatch methods can be
rewritten as follows:

def toString(AttributeType attributeType) {
 val elementType = attributeType.elementType
 switch elementType {
 BasicType: // elementType is a BasicType here
 elementType.typeName
 EntityType: // elementType is an EntityType here
 elementType.entity.name
 }
}

Note how entityType is automatically casted to the matched type in the case body.

Depending on your programming scenario, you may want to choose
between dispatch methods and type-based switch expressions.
Keep in mind that, while dispatch methods can be overridden and
extended (that is, in a derived class, you can provide an additional
dispatch method for a combination of parameters that was not
handled in the base class), switch expressions are inside a method,
and thus they do not allow for the same extensibility features.
Moreover, dispatch cases are automatically reordered with
respect to type hierarchy (most concrete types first), while switch
cases are evaluated in the specified order.

Chapter 3

[65]

Other Xtend expressions
Xtend also provides all the typical Java constructs such as for loops, if else,
synchronized blocks, try, catch, and finally expressions and instanceof
expressions. Recall that, although these have the same syntax as in Java, in Xtend these
are considered expressions and not statements. Each of the preceding expressions
evaluate to the last expression and can be returned just like any other expression.

Moreover, Xtend type inference is used also for the preceding expressions, thus, for
instance, the type of the variable in a for loop can be omitted.

Casts in Xtend are specified using the infix operator as. Thus, the Xtend expression e
as T corresponds to the Java cast expression (T) e.

When using instanceof as a condition of an if expression, Xtend automatically
casts to the matched type within the body of the if branch. This is shown in the
following example, where the casts are implicit and are not needed (Xtend will issue
a warning about a useless cast if you insert the cast explicitly):

def toString(AttributeType attributeType) {
 val elementType = attributeType.elementType
 if (elementType instanceof BasicType)
 elementType.typeName // elementType is a BasicType here
 else if (elementType instanceof EntityType)
 elementType.entity.name // elementType is an EntityType here
}

Xtend introduces Active Annotations, which is a mechanism allowing the developer
to hook in the translation process of Xtend source code to Java code through library.
This is useful to have a lot of boilerplate automatically generated. We will not
use active annotations in this book, but we invite you to have a look at the Xtend
documentation about that.

The Xtend library provides some ready to use active annotations. For example,
annotating an Xtend class with @Data will automatically add in the generated
Java class getter methods for the fields, a constructor with parameters and other
methods from java.lang.Object, such as equals, hashCode, and toString.

Working with the Xtend Programming Language

[66]

The Person class we used in Section Lambda expressions, can be implemented in
Xtend as follows:

import org.eclipse.xtend.lib.annotations.Data

@Data class Person {
 String firstname
 String surname
 int age
}

Xtend IDE
Xtend is obviously implemented with Xtext, thus its integration into Eclipse
provides rich tooling features. In particular, Xtend provides the same IDE tooling
of the Eclipse JDT. Here, we just mention a few features, and we encourage you to
experiment further:

•	 Rich content assist for all the existing Java libraries types and methods
•	 Automatic import statement insertion during the content assistant
•	 Organize Imports menu and keyboard shortcut (Ctrl + Shift + O)
•	 Call Hierarchy view
•	 Refactoring mechanisms, including Rename, Extract Variable, and Extract

Method refactoring

Finally, you can debug Xtend code directly, as we will show in the next section.

Debugging Xtend code
The Java code generated by Xtend is clean and easy to debug. However, it is also
possible to debug Xtend code directly (instead of the generated Java), thanks to the
complete integration of Xtend with the Eclipse JDT debugger.

Chapter 3

[67]

This means that you can debug Java code that has been generated by Xtend and,
stepping through that, automatically brings you to debugging the original Xtend
source. You can also debug an Xtend file containing a main method directly, since
all the Run and Debug configuration launches are available for Xtend files as well.
Breakpoints can be inserted in an Xtend file by double-clicking on the breakpoint
ruler in the editor. The Debug context menu is available for Xtend files as well.

The next screenshot shows a debugging session of Xtend code. We have set a
breakpoint on the Xtend file, which is also shown in the Breakpoints view. Note
that all the JDT debugger views are available. Implicit variables such as it can be
inspected in the Variables view:

Working with the Xtend Programming Language

[68]

If, for any reason, while debugging Xtend code you need to debug the generated Java
code, you can do so by right-clicking on the Debug view on an element corresponding
to an Xtend file line and selecting Show Source. Refer to the following screenshot:

Xtend expressions are indeed Xbase expressions. We will describe Xbase in
Chapter 12, Xbase.

Summary
Xtend provides many features that allow you to write clean and more readable code.
Since it is completely interoperable with Java, all the Java libraries are accessible
from within Xtend. Moreover, the IDE tooling of Xtend itself is basically the same as
the ones of JDT. For all of the aforementioned reasons, Xtext fosters the use of Xtend
to develop all the aspects of a DSL implementation.

In the next chapter, we will show you how to implement constraint checks for a DSL
using the EMF Validator mechanism and the Xtext enhanced API.

[69]

Validation
In this chapter, we will introduce the concept of validation, and in particular, the
Xtext mechanism to implement validation: the validator. With validation, you can
implement additional constraint checks of a DSL, which cannot be done at parsing
time. Xtext allows you to implement such constraint checks in an easy and declarative
way. You only need to communicate to Xtext the possible errors or warnings, and it
will take care of generating the error markers accordingly in the IDE. The validation
will take place in the background while the user of the DSL is typing in the editor
so that an immediate feedback is provided. We will also show how to implement
quickfixes corresponding to the errors and warnings generated during validation,
in order to help the user to solve problems due to validation errors.

This chapter will cover the following topics:

•	 An introduction to validation in Xtext
•	 The default Xtext validator for checking duplicate names
•	 Some examples of custom validations
•	 Some examples of quickfixes

Validation in Xtext
As we anticipated in Chapter 1, Implementing a DSL, parsing a program is only the
first stage in a programming language implementation. In particular, the overall
correctness of a program cannot always be determined during parsing. Trying to
embed additional constraint checks in the grammar specification could either make
such specification more complex or it could be simply impossible, as some additional
static analysis can be performed only when other program parts are already parsed.

Validation

[70]

Actually, the best practice is to do as little as possible in the grammar and as much
as possible in validation (we will use this practice in Chapter 9, Type Checking and
Chapter 10, Scoping). This is because it is possible to provide far better error messages
and to more precisely detect problems that are eligible for quickfixes.

The mechanism of validation will be used extensively in all example DSLs of this
book. Typically, even for small DSLs, a validator has to be implemented to perform
additional constraint checks.

In Xtext, these constraints checks are implemented using a validator, which is a
concept inherited from the corresponding EMF API (see the book Steinberg et al,
2008). In EMF, you can implement a validator that performs constraint checks on
the elements of an EMF model. Since Xtext uses EMF for representing the AST of a
parsed program, the mechanism of the validator naturally extends to an Xtext DSL.
Xtext enhances the EMF API for validation, by providing a declarative way to specify
rules for constraints of your DSL. Moreover, Xtext comes with default validators,
some of which are enabled by default, to perform checks which are common to many
DSLs (for example, cross-reference checks). Your custom validator can be composed
with the default ones of Xtext.

Default validators
Let's go back to the Entities DSL of Chapter 2, Creating Your First Xtext Language.
Since we expressed cross-references in our Entities grammar, we can see the Xtext
cross-reference validator in action in the generated editor. If we enter an incorrect
reference, for example, the name of a super entity that does not exist, we get the error
Couldn't resolve reference to.... This check on cross-references is performed
by one of the default validators provided by Xtext (cross-reference resolution is the
main subject of Chapter 10, Scoping).

Another standard validator provided by Xtext is the one that checks whether the
names are unique within your program. This check validates that names are unique
per element type. For example, you can have an attribute named the same as an
entity, but not two entities with the same name.

This validator is not enabled by default, but it can be turned on by modifying
the MWE2 file as shown in the following code snippet. In our example, it is
GenerateEntities.mwe2. We need to uncomment the composedCheck specification,
which concerns NamesAreUniqueValidator:

language = StandardLanguage {
 name = "org.example.entities.Entities"
 fileExtensions = "entities"
 ...

Chapter 4

[71]

 validator = {
 composedCheck =
 "org.eclipse.xtext.validation.NamesAreUniqueValidator"
 }
}

After that, of course, you need to run the MWE2 workflow.

If you now try to declare two entities with the same name in the Entities DSL editor,
you will get an error as shown in the following screenshot:

It is interesting to note that, besides the element type, this validator also takes into
consideration the containment relations. For example, two attributes declared in
two different entities are allowed to have the same name (as you can see from the
preceding screenshot, both A and B have the attribute s, and this is allowed).

www.allitebooks.com

http://www.allitebooks.org

Validation

[72]

Technically, everything that can be referenced through name is named
in a namespace, implied by the containment relation. This leads to
qualified names, which will be explained in Chapter 10, Scoping.

The default behavior of this validator should suit most DSLs. If your DSL needs to
have more rigid constraints about names, or in general about duplicate elements, you
will have to implement a customized NamesAreUniqueValidator class or simply
disable NamesAreUniqueValidator and implement these name checks in your own
validator. An example of a custom duplicate name check is shown in Chapter 9,
Type Checking.

Custom validators
While the default validators can perform some common validation tasks, most of the
checks for your DSL will have to be implemented by you, according to the semantics
you want your DSL to have. That is why we will usually have to implement a custom
validator for a DSL.

These additional checks can be implemented using the Xtend class that Xtext has
generated for you in the validation subpackage in the src folder of the runtime
plug-in project. In our example, this class is called EntitiesValidator. Remember
that, since this class is in the src folder, it will not be overwritten by future MWE2
workflow executions. Xtext performs validation by invoking each method annotated
with @Check, passing all instances having a compatible runtime type to each
such method. The name of the method is not important, but the type of the single
parameter is important. You can define as many annotated methods as you want
for the same type. Xtext will invoke them all. Inside such methods, you implement
the semantic checks for that element. If a semantic check fails, you call the error
method, which will be explained shortly.

For example, we want to make sure that there is no cycle in the hierarchy of an
entity. Thus, we write the following annotated method in our validator:

package org.example.entities.validation

import org.eclipse.xtext.validation.Check
import org.example.entities.entities.EntitiesPackage
import org.example.entities.entities.Entity

class EntitiesValidator extends AbstractEntitiesValidator {

 @Check

Chapter 4

[73]

 def checkNoCycleInEntityHierarchy(Entity entity) {
 if (entity.superType == null)
 return // nothing to check

 val visitedEntities = newHashSet(entity)

 var current = entity.superType
 while (current != null) {
 if (visitedEntities.contains(current)) {
 error("cycle in hierarchy of entity '"+current.name+"'",
 EntitiesPackage.eINSTANCE.entity_SuperType)
 return
 }
 visitedEntities.add(current)
 current = current.superType
 }
 }
}

In the preceding method, we traverse the hierarchy of an entity by recording all the
entities we are visiting. Of course, if an entity has no superType, there is nothing to
check. If during this visit we find an entity that we have already visited, it means that
the hierarchy contains a cycle and we issue an error. It is crucial to leave the while
loop in that case; otherwise, the loop will never end (after all, we found a cycle and
we would traverse the hierarchy endlessly).

The error method has many overloaded versions (we refer to Xtext documentation
for further details). In this example, we use the version that requires the following:

•	 A message for the error. It is up to you to provide meaningful information.
•	 The EMF feature of the examined EObject, which the error should be

reported against, that is, which should be marked with error. In this case,
the feature containing the error is the superType feature.

Usually, if in doubt, the feature to place the error on should be the
feature name of the erroneous element.

Validation

[74]

Access to classes and features are obtained from the EPackage class that is generated
for our DSL's metamodel. In our example, it is EntitiesPackage. Using this
EPackage, EMF features can be obtained in two ways:

•	 Using the static instance of the package and then the method corresponding
to the feature, as we did in the preceding code:
EntitiesPackage.eINSTANCE.entity_SuperType.

•	 Using the static fields of the inner interface Literals:

EntitiesPackage.Literals.ENTITY__SUPER_TYPE.

In both cases, in your Xtend programs, you can rely on the content assist to select
the feature easily.

We can now try the preceding validation check in the Entities DSL editor by defining
entities which contain a cycle in the hierarchy, as shown in the following screenshot:

Chapter 4

[75]

You can see that the elements marked with an error in the editor are the entity names
after the keyword extends, since they correspond to the superType feature.

The three error markers also show that Xtext calls our @Check annotated method for
all the elements of type Entity in the program.

Calling the error method with the appropriate information will let Xtext manage
the markers for Xtext-based resources, clearing them before reparsing, keeping
track of dirty versus saved state, and so on. Markers will appear wherever they are
supported in the IDE: in the right and left editor ruler, in the Problems view, and in
the package explorer.

Errors are considered to mean that the model is invalid. If you want to issue
warnings instead of errors, simply call the warning method that has the same
signature as the error method. A program with only warnings and no errors is
considered valid anyway.

For example, in our Entities DSL, we follow a standard convention about names—the
name of an entity should start with a capital letter, while the name of an attribute
should be lowercase. If the user does not follow this convention, we issue a warning.
The program is considered valid anyway. To implement this, we write the following
methods in the EntitiesValidator class (note the use of imported static methods
as extension methods from the class Character):

import org.example.entities.entities.Attribute
import static extension java.lang.Character.*
...

class EntitiesValidator extends AbstractEntitiesValidator {

 ...
 @Check
 def checkEntityNameStartsWithCapital(Entity entity) {
 if (entity.name.charAt(0).lowerCase)
 warning("Entity name should start with a capital",
 EntitiesPackage.eINSTANCE.entity_Name)
 }

 @Check
 def checkAttributeNameStartsWithLowercase(Attribute attr) {
 if (attr.name.charAt(0).upperCase)
 warning("Attribute name should start with a lowercase",
 EntitiesPackage.eINSTANCE.attribute_Name)
 }
}

Validation

[76]

The following screenshot shows how warning markers are created instead of
error markers:

An info severity level is also available, and the corresponding method
to call is info. In this case, an information marker is shown only in the
editor's ruler, while the corresponding file is not marked.

This is just an example of a simple validator implementation. In the rest of the book,
we will see many other implementations that perform more complex constraint
checks (among which, type checking, as shown in Chapter 8, An Expression Language
and in Chapter 9, Type Checking).

Chapter 4

[77]

Quickfixes
As we said in Chapter 1, Implementing a DSL, a quickfix is a proposal to solve a
problem in a program. Quickfixes are typically implemented by a context menu
available from the error marker, and they are available both in the editor ruler and in
the Problems view.

Since quickfixes are tightly connected to validation, we describe
them in this chapter. Moreover, they allow us to get familiar with the
manipulation of the EMF model representing the AST of a program.

In our Entities DSL, we can provide a quickfix for each warning and error issued by
our validator. As we will see later, we can also provide quickfixes for errors issued
by Xtext default validators.

Xtext provides an easy mechanism to implement a quickfix connected to an error or
warning issued by a validator. The Xtext generator generates an Xtend stub class for
quickfixes into the UI plug-in project. In our Entities DSL example, this class is org.
example.entities.ui.quickfix.EntitiesQuickfixProvider.

A quickfix is triggered by an issue code associated with an error or warning marker.
An issue code is simply a string that uniquely identifies the issue. Thus, when
invoking the error or warning method, we must provide an additional argument
which represents the issue code. In the validator, this is typically done by defining
a public String constant, whose value is prefixed with the package name of the
DSL and ends with a sensible name for the issue. It might also make sense to pass
additional issue data that can be reused by the quickfix provider to show a more
meaningful description of the quickfix and to actually fix the program. The issue
data is very useful when validation needs to compute something that is costly—the
quickfix then avoids having to compute it again. Thus, we use another version of the
method error and warning, which takes four arguments; we modify our validator
as follows (only the modified parts are shown):

class EntitiesValidator extends AbstractEntitiesValidator {

 protected static val ISSUE_CODE_PREFIX = "org.example.entities.";

 public static val HIERARCHY_CYCLE =
 ISSUE_CODE_PREFIX + "HierarchyCycle";

 public static val INVALID_ENTITY_NAME =
 ISSUE_CODE_PREFIX + "InvalidEntityName";

Validation

[78]

 public static val INVALID_ATTRIBUTE_NAME =
 ISSUE_CODE_PREFIX + "InvalidAttributeName";

 @Check
 def checkNoCycleInEntityHierarchy(Entity entity) {
 ...
 error("cycle in hierarchy of entity '"+current.name+"'",
 EntitiesPackage.eINSTANCE.entity_SuperType,
 HIERARCHY_CYCLE, // issue code
 current.superType.name) // issue data
 ...
 }

 @Check
 def checkEntityNameStartsWithCapital(Entity entity) {
 if (entity.name.charAt(0).lowerCase)
 warning("Entity name should start with a capital letter",
 EntitiesPackage.eINSTANCE.entity_Name,
 INVALID_ENTITY_NAME,
 entity.name)
 }

 @Check
 def checkAttributeNameStartsWithLowercase(Attribute attr) {
 if (attr.name.charAt(0).upperCase)
 warning("Attribute name should start with a lowercase",
 EntitiesPackage.eINSTANCE.attribute_Name,
 INVALID_ATTRIBUTE_NAME,
 attr.name)
 }
}

The issue code string constant is passed as the third argument to the methods
error and warning. Issue data is optional, and you can pass a variable number
of issue data arguments. To implement a quickfix, we define a method in
EntitiesQuickfixProvider annotated with @Fix and a reference to the issue code
this quickfix applies to. The name of the method is not important, but the parameter
types are fixed.

For example, for the warning concerning the first letter of an entity name, which
must be capital, we implement a quickfix that automatically capitalizes the first letter
of that entity:

Chapter 4

[79]

package org.example.entities.ui.quickfix

import org.eclipse.xtext.ui.editor.quickfix.DefaultQuickfixProvider
import org.eclipse.xtext.ui.editor.quickfix.Fix
import org.eclipse.xtext.ui.editor.quickfix.IssueResolutionAcceptor
import org.eclipse.xtext.validation.Issue
import org.example.entities.validation.EntitiesValidator

class EntitiesQuickfixProvider extends DefaultQuickfixProvider {

 @Fix(EntitiesValidator.INVALID_ENTITY_NAME)
 def void capitalizeEntityNameFirstLetter(Issue issue,
 IssueResolutionAcceptor acceptor) {
 acceptor.accept(issue,
 "Capitalize first letter", // label
 "Capitalize first letter of '"
 + issue.data.get(0) + "'", // description
 "Entity.gif", // icon
 [
 context |
 val xtextDocument = context.xtextDocument
 val firstLetter = xtextDocument.get(issue.offset, 1);
 xtextDocument.replace(issue.offset, 1,
 firstLetter.toFirstUpper);
]
)
 }

Let's analyze what this code does. The first parameter of a quickfix provider method
is the Issue object that represents the error information. This is built internally
by Xtext using the information passed to error or warning in your validator. The
second parameter is an acceptor. Acceptor is a pattern, and you will see different
types of acceptors used in many places in Xtext. You usually only have to invoke the
method accept on an acceptor, passing some arguments. An acceptor is used when
an operation can return any number of results, instead of returning a List.

The first three arguments passed to the accept method of the acceptor are the label
(shown in the quickfix pop-up for this fix), a description (which should show what
the effect of selecting this quick fix would mean or something that makes the user
confident it is a fix they want to apply), and an icon (if you do not want an icon, you
can pass an empty string; how to use custom icons in your DSL UI will be explained
in Chapter 6, Customizing Xtext Components). Note that, for the description, we use
the first element of the issue data (an array) since we know that in the validator we
passed the name of the supertype as the single issue data. When implementing the
quickfix, you must be consistent with the information passed by the validator.

Validation

[80]

The fourth argument is the lambda that actually implements the modification code of
the quickfix when selected by the user. Quickfixes can perform the correction based
on the source text (textual modification) or on the model (semantic modification).
These are explained in the next two sections.

Textual modification
You can specify a lambda that takes a single parameter of the type
IModificationContext. Due to the type inference mechanisms of Xtend, it is
enough to just specify the name of the parameter. In our example, the name of the
parameter was explicitly stated for clarity.

In the preceding code, we use the IDocument argument, which is passed in the given
modification context, to get access to the text we want to modify in our quickfix. We
have been given the offset and length of where the error/warning is marked in the
Issue object. We can now use the document methods get(offset, length) and
replace(offset, length, text) to perform the capitalization of the first letter.

This quickfix is shown in the following screenshot:

Using this strategy for implementing quickfixes has the drawback that we need to
deal with the actual text of the editor.

Chapter 4

[81]

Model modification
The alternative strategy relies on the fact that the program is also available in memory
as an EMF model. If we modify the model, the Xtext editor will automatically update
its contents. For this reason, we can specify a lambda, which takes two parameters:
the EObject that contains the error and the modification context.

For instance, to uncapitalize the first letter of an attribute, we write the quickfix
using the following strategy (remember to import the Attribute type):

@Fix(EntitiesValidator.INVALID_ATTRIBUTE_NAME)
def void uncapitalizeAttributeNameFirstLetter(Issue issue,
 IssueResolutionAcceptor acceptor) {
 acceptor.accept(issue,
 "Uncapitalize first letter", // label
 "Uncapitalize first letter of '"
 + issue.data.get(0) + "'", // description
 "Attribute.gif", // icon
 [
 element, context |
 (element as Attribute).name = issue.data.get(0).toFirstLower
]
)
}

In this case, the element is the Attribute object against which the warning was
reported. Therefore, we simply assign the fixed name to the name of the attribute.
Note that, with this strategy, we only manipulate the EMF model, without having to
deal with the contents of the editor. Xtext will then take care of updating the editor's
contents.

The ability to directly modify the EMF model of the program makes more complex
quickfixes easier to implement. For example, if we want to implement the quickfix to
remove the supertype of the entity which contains a cycle in the hierarchy, we just
need to set the superType feature to null, as shown in the following code snippet,
where you also have to import the Entity type. You can see the quickfix in the
following screenshot:

@Fix(EntitiesValidator.HIERARCHY_CYCLE)
def void removeSuperType(Issue issue,
 IssueResolutionAcceptor acceptor) {
 acceptor.accept(issue,
 "Remove supertype",
 '''Remove supertype '«issue.data.get(0)»' ''',
 "delete_obj.gif",

Validation

[82]

 [element, context |
 (element as Entity).superType = null;
]
)
}

Note that the semantic change results in there not being any supertype in the model
element and thus the source text extends is also removed. Implementing the same
quickfix by modifying the text of the program would require more effort and would
be more error-prone. On the other hand, textual modifications allow you to fix
things that are not present in the semantic model. Also, semantic changes always
include formatting, and this may have other unwanted side effects (we will deal with
formatting in Chapter 6, Customizing Xtext Components).

Quickfixes for default validators
We can also provide quickfixes for errors issued by default Xtext validators. You
might have noted that, if you refer to a missing entity in the Entities DSL editor,
Xtext already proposes some quickfixes: if there are other entities in the source file,
it proposes to change the reference to one of the existing entities. We can provide an
additional quickfix that proposes to automatically add the missing entity. In order
to do this, we must define a method in our quickfix provider for the issue org.
eclipse.xtext.diagnostics.Diagnostic.LINKING_DIAGNOSTIC. We want to
add the missing entity to the current model. To make things more interesting, the
quickfix should add the missing entity after the entity, which refers to the missing
entity. For example, consider the following source file:

Chapter 4

[83]

entity MyFirstEntity {
 FooBar s;
 int[] a;
}

entity MyOtherEntity {
}

The referred FooBar entity in the attribute definition is not defined in the program,
and we would like to add it after the definition of MyFirstEntity and before
MyOtherEntity, since that is the entity that contains the attribute definition referring
to the missing entity.

Let's first present the code for this quickfix (we will use Xtend features for getters,
setters, template strings, and the with operator to make our logic more compact):

import static extension org.eclipse.xtext.EcoreUtil2.*

@Fix(Diagnostic.LINKING_DIAGNOSTIC)
def void createMissingEntity(Issue issue,
 IssueResolutionAcceptor acceptor) {
 acceptor.accept(issue,
 "Create missing entity",
 "Create missing entity",
 "Entity.gif",
 [element, context |
 val currentEntity =
 element.getContainerOfType(Entity)
 val model = currentEntity.eContainer as Model
 model.entities.add(
 model.entities.indexOf(currentEntity)+1,
 EntitiesFactory.eINSTANCE.createEntity() => [
 name = context.xtextDocument.get(issue.offset,
 issue.length)
]
)
]
)
}

Validation

[84]

Consider that the EObject element passed to the lambda is the program element
which refers to the missing entity, thus, it is not necessarily an Entity. For instance,
if the missing entity is in a type specification of an attribute, as in the preceding
Entities program snippet, then the EObject element is an AttributeType. To
get the containing entity, we could walk up the containment relation of the EMF
model till we get to an Entity element. Alternatively, we use one of the many static
utility methods, here imported as extension methods, provided by Xtext in the class
EcoreUtil2 (this complements the standard EcoreUtil class of EMF). In particular,
we use getContainerOfType, which does this walking up in the containment
relation for us, until it finds an element of the specified type. For retrieving the root
Model element, we can simply cast the container of the found entity because, in our
Entities DSL, an Entity can only be contained in a Model. Then, we insert the
newly created entity in the desired position, that is, right after the position of the
current entity.

Spend some time to take a look at the classes EcoreUtil and
EcoreUtil2, since they provide many useful methods you will need
when dealing with an EMF model.

To create the missing entity, we must know its name. For this issue, which is not
generated by our own validator, the issue data does not contain any information
about the missing element name. However, the issue offset tells us in which position
in the document the missing element name is referred. Thus, the name of the missing
element can be retrieved using this offset from the editor's document (the length is
also contained in the issue).

You can now check what this quickfix does, Refer to the following screenshot; this
also shows the default quickfixes provided by Xtext, which propose to change the
name of the referred entity to one available in the current source:

Chapter 4

[85]

Summary
In this chapter, you learned how to implement constraint checks, using the Xtext
validator mechanism based on @Check annotated methods. Just by implementing
a custom validator and calling the method error or warning with the appropriate
information, Xtext produces error and warning markers that result in marking the
text regions as well as showing the markers in the various views in Eclipse.

We also showed how to implement quickfixes. We can implement a quickfix by
directly modifying the text of the current program. Alternatively, since Xtext
automatically synchronizes the DSL editor's contents with the EMF model of
the AST, we can simply modify such model without dealing with the textual
representation of the program.

In the next chapter, we will write a code generator for the Entities DSL implemented
in Xtend, using its advanced features for code generation. Starting from a program
written in our Entities DSL, we will generate the corresponding Java code. You
will see that Xtext automatically integrates your code generator into the building
infrastructure of Eclipse.

[87]

Code Generation
In this chapter, you will learn how to write a code generator for your Xtext DSL
using the Xtend programming language. Using the Entities DSL that we developed
in the previous chapters, we will write a code generator which, for each entity
declaration, will generate a Java class. We will also see how the code generator is
automatically integrated by Xtext into the Eclipse builder infrastructure. Finally, the
DSL implementation can be exported as a Java standalone command-line compiler.

This chapter will cover the following topics:

•	 How to write a code generator with Xtend
•	 The integration of your code generator in the Eclipse building mechanisms
•	 How to export a standalone command-line compiler of your DSL

Introduction to code generation
After a program written in your DSL has been parsed and validated, you might
want to do something with the parsed EMF model, that is, the AST of that program.
Typically, you may want to generate code in another language, for example, Java
code, a configuration file, XML, a text file, and so on. In all of these cases, you will
need to write a code generator.

Since the parsed program is an EMF model, you can use any EMF framework which
somehow deals with code generation. Of course, you might also use plain Java to
generate code, after all, as we saw in the previous chapters, you have all the Java
APIs to access the EMF model.

However, in this book, we will use Xtend (introduced in Chapter 3, Working with the
Xtend Programming Language) to write code generators, since it is very well suited for
the task.

Code Generation

[88]

Xtext automatically integrates your code generator into the Eclipse build
infrastructure. All we have to deal with is producing the desired output, for example,
Java source, XML, and so on.

Writing a code generator in Xtend
A generator stub is automatically created by Xtext. In our example, the stub is
created in the org.example.entities.generator package:

class EntitiesGenerator extends AbstractGenerator {
 override void doGenerate(Resource res,
 IFileSystemAccess2 fsa, IGeneratorContext
context) {
 // TODO implement me
 }
}

Before writing the actual code, let's recall that Xtext is a framework; thus, the overall
flow of control is dictated by the framework, not by the programmer. This is also
known as the Hollywood Principle: Don't call us, we'll call you. This means that
you do not have to manually run the generator. Your DSL Xtext editor is already
integrated in the automatic building infrastructure of Eclipse, and the generator will
be automatically called when a source written in your DSL changes. Indeed, it will
be called also if one of its dependencies changes, as we will see in later chapters.

Note that the method you have to implement just accepts an EMF Resource,
which contains the EMF model representation of the program. If this generation
method is invoked, the corresponding source program has already been parsed
and validated. The generator will only be called when the source program does
not have any validation errors. You do not even have to worry about the physical
base path location where your code will be generated; that is hidden in the passed
IFileSystemAccess2 argument. You only need to specify the relative path where
the generated file will be created and its contents as java.lang.CharSequence
(typically, an Xtend template expression). Finally, the third parameter is an
IGeneratorContext instance. This interface contains the CancelIndicator
getCancelIndicator()method. By calling the method isCanceled() on the
CancelIndicator object, you get to know if the Eclipse build has been canceled. This
is useful if your generator performs many operations and it generates lots of output
files—during the generation you can periodically query the CancelIndicator object;
and if the build has been canceled you should interrupt your generation as well. For
the example DSLs, we will implement in this book, the generator will not take much
computing time, neither it will generate many output files, so we will never use the
IGeneratorContext.

Chapter 5

[89]

First of all, we need to decide what we want to generate from our DSL programs.
For the Entities DSL, it might make sense to generate a Java class for each Entity. In
such a generated Java file, we will generate a field for each Attribute, together with
a getter and a setter method. Thus, we need to retrieve all the Entity objects in
the passed Resource. Here is how to do this with Xtend:

resource.allContents.toIterable.filter(Entity)

Then, we iterate over these entities and generate a Java file for each of them using the
entity's name for the filename. Since we do not have explicit packages in our DSL, we
choose to generate all the Java classes in the package entities. Thus, the Java file
path will be as follows:

"entities/" + entity.name + ".java"

Remember that we do not have to care about the base path since it will be configured
into the passed IFileSystemAccess2 argument.

If you summarize it, we get the following:

override void doGenerate(Resource res,
 IFileSystemAccess2 fsa, IGeneratorContext
context) {
 for (e : res.allContents.toIterable.filter(Entity)){
 fsa.generateFile(
 "entities/" + e.name + ".java",
 e.compile)
 }
}

Now, we have to implement the compile method, which must return a string
with the contents that will be stored in the generated file. We use Xtend multi-line
template expressions to implement such a method. The method is illustrated in the
following screenshot:

Code Generation

[90]

Remember that the Xtend editor also shows the tab indentations of the final resulting
string. Xtend smartly ignores indentations of the loop constructs, which are there
only to make Xtend code more readable: these indentations and newline characters
will not be a part of the resulting string.

We basically write a template for a Java class using the information stored in the
Entity object. We generate the extends part only if the entity has a supertype.
This is achieved using the IF conditional inside the template. Then, we iterate over
the entity's attributes twice using the template FOR loop construct; the first time to
generate Java fields and the second time to generate getter and setter methods.
Doing that in two separate iterations allows us to generate all the fields at the
beginning of the Java class. We use the toFirstUpper extension method to correctly
generate the names of the getter and setter methods.

Notice that IF and FOR (with capital letters) are used to specify
conditions and loops, respectively, within a template expression.

We delegate the compilation of attribute types to other methods:

def compile(AttributeType attributeType) {
 attributeType.elementType.typeToString +
 if (attributeType.array) "[]"
 else ""
}

def dispatch typeToString(BasicType type) {
 if (type.typeName == "string") "String"
 else type.typeName
}

def dispatch typeToString(EntityType type) {
 type.entity.name
}

Observe that the BasicType literals of our DSL already correspond to Java primitive
types. The only exception is string, which in Java corresponds to String. To keep
the example simple, we do not consider the length feature of AttributeType
during the code generation.

To generate Java code that corresponds to the JavaBeans convention,
the getter method for a boolean field should start with is, instead
of get. This is left to the reader as an exercise.

Chapter 5

[91]

Integration with the Eclipse build
mechanism
It is time to see our generator in action: launch Eclipse, create a Java Project in the
workspace, and in the src folder, create a new .entities file (remember to accept
to convert the project to an Xtext project, otherwise the generator will not run).
Continue by adding one or more entities with some attributes. Note that a src-gen
folder is automatically created as soon as you save the file. At this point, you should
also add this generated folder to the projects source folders by navigating to Build
Path | Use as Source Folder. Exploring the content of the src-gen folder, you will
find a generated Java class for each entity in your .entities file. You can see an
example in the following screenshot:

Observe that a code generator just creates text. Other components
have to make sense of that, for example, a Java compiler. That is why
we need to add the src-gen folder to the project source folders: this
way, the Eclipse Java compiler automatically compiles the generated
Java sources.

Xtext also generates a context menu for your DSL editor Open Generated File. If
from the contents of your DSL editor only one output file is generated, that context
menu will open the single generated file. If multiple files are generated, like in the
previous screenshot, then a dialog will let you select the generated file to open.

Code Generation

[92]

Make some changes and observe that the Java files are regenerated as you save the
changes. Remove an entity and observe that the corresponding Java file is removed.
Your DSL generator is completely integrated in the Eclipse build system.

For instance, in the following screenshot, we can see how the generated Java file
is changed after removing a field from MyFirstEntity and how the previously
generated Java file for MySecondEntity is automatically deleted after we removed
the corresponding entity definition in the input file:

The generator is automatically invoked by Xtext when the input file changes,
provided that the file contains no validation error. Xtext also automatically keeps
track of the association between the generated files and the original input file. As in
this example, from an input file, we can generate several output files. When a DSL
source file is found to be invalid, that is, having validation errors, everything that
was generated from that file is automatically removed, independent of the input
program's element that contains the error.

Chapter 5

[93]

For instance, in the following screenshot, we show what happens if we modify
the example.entities file introducing an error and we save the file: even if the
error does not concern MyFirstEntity, its corresponding generated Java file is
still deleted:

The integration with the Eclipse build infrastructure is customizable,
but the default behavior, including the automatic removal of generated
files corresponding to an invalid source file, should fit most cases.
In fact, code generators tend to be written for complete and valid
models and often throw exceptions for incomplete models or produce
complete garbage.

Code Generation

[94]

When running the MWE2 workflow, Xtext also creates preference pages for your
DSL. One of these preference pages concerns code generation. In the new Eclipse
instance, you can check what Xtext created (navigate to Window | Preferences).
There is a dedicated section for the Entities DSL with typical configurations (for
example, syntax highlighting colors and fonts and code generation preferences),
see the following screenshot:

Standalone command-line compiler
We already know that the Xtext project wizard created the projects for our DSL
separating the features related to the user interface in separate projects, the .ide
project and the .ui project. The runtime project does not depend on the Eclipse user
interface. Thus, we can create a command-line application consisting of a simple class
with a main method. Xtext can generate such a class for you. We need to add the
generator specification in the StandardLanguage block in the MWE2 workflow file:

Chapter 5

[95]

language = StandardLanguage {
 name = "org.example.entities.Entities"
 fileExtensions = "entities"
 ...
 generator = {
 generateXtendMain = true
 }
}

If you now run the workflow, you will find an Xtend Main class in the src folder of
your project in the org.example.entities.generator package. As you may recall
from Chapter 2, Creating Your First Xtext Language, files generated into the src folder
are only generated once, and thus you can safely add/modify the logic of the Main
class. This is not required at this point. We will use the class as it was generated.
You do not have to worry about not understanding everything that is done by the
Main class at this point; this will be revealed in later chapters. For now, it is enough
to know that the generated main method of the Main class accepts a command-line
argument for the file to parse, validate, and generate code for.

Finally, you can also export a JAR file for the standalone Entities compiler. In Eclipse,
an easy way to do that is given in the following steps:

1.	 Run the Main.xtend file as a Java application (right-click and navigate to
Run As | Java Application). In the Console view, you can see that the
application terminates with the Aborting: no path to EMF resource
provided! error, since you did not specify any command-line argument
(but that is not the reason why we are creating this launch configuration).

2.	 From the File menu, select Export… | Java | Runnable JAR File, then click
on Next.

Code Generation

[96]

3.	 Select the launch configuration you created in step 1, specify the path of the
exported JAR file (for example, entities-compiler.jar), and in the Library
handling section, select Package required libraries into generated JAR and
click on Finish. See the following screenshot:

The generated JAR file is found in the directory denoted by the output path. Note
that this JAR file is quite big (almost 30 MB) because besides the class files of your
projects, it also contains all the required JARs (for example, the Xtext and EMF JAR
files). This means that your JAR file is self-contained and does not need any further
library. You can now try your standalone compiler from the command line, just go
in the directory where the JAR file has been created and run it with Java, giving the
path of an .entities file as an argument, as shown in the following:

java -jar entities-compiler.jar <path to an .entities file>

Chapter 5

[97]

If the given file contains errors, you will see the errors reported as result; otherwise,
you should see the Code generation finished message. In the latter case, you will
find all the generated Java files in the src-gen folder.

This was a demonstration that Xtext can generate a standalone
command-line-based compiler that does not require a full Eclipse
infrastructure. In the sources of this example you will find a pom.
xml file that generates such a jar file without using the Eclipse export
wizard. This file must be used with Maven, which will be described
In Chapter 11, Continuous Integration.

Summary
Generating code from your DSL sources is a typical task when developing a
DSL. Xtend provides many interesting features that make writing a code
generator really easy.

Xtext automatically integrates your code generator into the Eclipse building
infrastructure so that building takes place incrementally on file saving, just like in
the Eclipse JDT. You can also get a command-line standalone compiler so that your
DSL programs can be compiled without Eclipse.

In the next chapter, you will learn about the Dependency Injection framework
Google Guice, on which Xtext heavily relies for customizing all of its features.
In particular, you will also see how to customize the runtime and the IDE concepts
for your DSL.

[99]

Customizing Xtext
Components

In this chapter, we describe the main mechanism for customizing Xtext
components—Google Guice, a Dependency Injection framework. With Google
Guice, we can easily and consistently inject custom implementations of specific
components into Xtext. In the first section, we will briefly show some Java examples
that use Google Guice. Then, we will show how Xtext uses this dependency injection
framework. In particular, you will learn how to customize both the runtime and the
UI aspects.

This chapter will cover the following topics:

•	 An introduction to Google Guice dependency injection framework
•	 How Xtext uses Google Guice
•	 How to customize several aspects of an Xtext DSL

Dependency injection
The Dependency Injection pattern (see the article Fowler, 2004) allows you to inject
implementation objects into a class hierarchy in a consistent way. This is useful
when classes delegate specific tasks to objects referenced in fields. These fields have
abstract types (that is, interfaces or abstract classes) so that the dependency on actual
implementation classes is removed.

Customizing Xtext Components

[100]

In this first section, we will briefly show some Java examples that use Google Guice.
Of course, all the injection principles naturally apply to Xtend as well.

If you want to try the following examples yourself, you need
to create a new Plug-in Project, for example, org.example.
guice and add com.google.inject and javax.inject as
dependencies in the MANIFEST.MF.

Let's consider a possible scenario: a Service class that abstracts from the actual
implementation of a Processor class and a Logger class. The following is a possible
implementation:

public class Service {
 private Logger logger;
 private Processor processor;

 public void execute(String command) {
 logger.log("executing " + command);
 processor.process(command);
 logger.log("executed " + command);
 }
}

public class Logger {
 public void log(String message) {
 System.out.println("LOG: " + message);
 }
}

public interface Processor {
 public void process(Object o);
}

public class ProcessorImpl implements Processor {
 private Logger logger;

 public void process(Object o) {
 logger.log("processing");
 System.out.println("processing " + o + "...");
 }
}

Chapter 6

[101]

These classes correctly abstract from the implementation details, but the problem
of initializing the fields correctly still persists. If we initialize the fields in the
constructor, then the user still needs to hardcode the actual implementation
classnames. Also, note that Logger is used in two independent classes; thus, if we
have a custom logger, we must make sure that all the instances use the correct one.

These issues can be dealt with using dependency injection. With dependency
injection, hardcoded dependencies will be removed. Moreover, we will be able to
easily and consistently switch the implementation classes throughout the code.
Although the same goal can be achieved manually by implementing factory method
or abstract factory patterns (see the book Gamma et al, 1995), with dependency
injection framework it is easier to keep the desired consistency and the programmer
needs to write less code. Xtext uses the dependency injection framework Google
Guice, https://github.com/google/guice. We refer to the Google Guice
documentation for all the features provided by this framework. In this section, we
just briefly describe its main features.

You annotate the fields you want Guice to inject with the @Inject annotation (com.
google.inject.Inject):

public class Service {
 @Inject private Logger logger;
 @Inject private Processor processor;

 public void execute(String command) {
 logger.log("executing " + command);
 processor.process(command);
 logger.log("executed " + command);
 }
}

public class ProcessorImpl implements Processor {
 @Inject private Logger logger;

 public void process(Object o) {
 logger.log("processing");
 System.out.println("processing " + o + "...");
 }
}

The mapping from injection requests to instances is specified in a Guice Module,
a class that is derived from com.google.inject.AbstractModule. The method
configure is implemented to specify the bindings using a simple and intuitive API.

https://github.com/google/guice

Customizing Xtext Components

[102]

You only need to specify the bindings for interfaces, abstract classes, and for custom
classes. This means that you do not need to specify a binding for Logger since it
is a concrete class. On the contrary, you need to specify a binding for the interface
Processor. The following is an example of a Guice module for our scenario:

public class StandardModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(Processor.class).to(ProcessorImpl.class);
 }
}

You create an Injector using the static method Guice.createInjector by passing a
module. You then use the injector to create instances:

Injector injector = Guice.createInjector(new StandardModule());
Service service = injector.getInstance(Service.class);
service.execute("First command");

The initialization of injected fields will be done automatically by Google Guice. It is
worth noting that the framework is also able to initialize (inject) private fields, like in
our example. Instances of classes that use dependency injection must be created only
through an injector. Creating instances with new will not trigger injection, thus all the
fields annotated with @Inject will be null.

When implementing a DSL with Xtext you will never have to create
a new injector manually. In fact, Xtext generates utility classes to
easily obtain an injector, for example, when testing your DSL with
JUnit, as we will see in Chapter 7, Testing. We also refer to the article
Köhnlein, 2012 for more details. The example shown in this section
only aims at presenting the main features of Google Guice.

If we need a different configuration of the bindings, all we need to do is define
another module. For example, let's assume that we defined additional derived
implementations for logging and processing. Here is an example where Logger and
Processor are bound to custom implementations:

public class CustomModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(Logger.class).to(CustomLogger.class);
 bind(Processor.class).to(AdvancedProcessor.class);
 }
}

Chapter 6

[103]

Creating instances with an injector obtained using this module will ensure that the
right classes are used consistently. For example, the CustomLogger class will be used
both by Service and Processor.

You can create instances from different injectors in the same application, for
example:

executeService(Guice.createInjector(new StandardModule()));
executeService(Guice.createInjector(new CustomModule()));

void executeService(Injector injector) {
 Service service = injector.getInstance(Service.class);
 service.execute("First command");
 service.execute("Second command");
}

It is possible to request injection in many different ways, such as
injection of parameters to constructors, using named instances,
specification of default implementation of an interface, setter
methods, and much more. In this book, we will mainly use
injected fields.

Injected fields are instantiated only once when the class is instantiated. Each injection
will create a new instance, unless the type to inject is marked as @Singleton (com.
google.inject.Singleton). The annotation @Singleton indicates that only one
instance per injector will be used. We will see an example of Singleton injection in
Chapter 10, Scoping.

If you want to decide when you need an element to be instantiated from within
method bodies, you can use a provider. Instead of injecting an instance of the wanted
type C, you inject a com.google.inject.Provider<C> instance, which has a get
method that produces an instance of C.

For example:

public class Logger {
 @Inject
 private Provider<Utility> utilityProvider;

 public void log(String message) {
 System.out.println("LOG: " + message + " - " +
 utilityProvider.get().m());
 }
}

Customizing Xtext Components

[104]

Each time we create a new instance of Utility using the injected Provider class.
Even in this case, if the type of the created instance is annotated with @Singleton,
then the same instance will always be returned for the same injector. The nice thing
is that to inject a custom implementation of Utility, you do not need to provide
a custom Provider: you just bind the Utility class in the Guice module and
everything will work as expected:

public class CustomModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(Logger.class).to(CustomLogger.class);
 bind(Processor.class).to(AdvancedProcessor.class);
 bind(Utility.class).to(CustomUtility.class);
 }
}

It is crucial to keep in mind that once classes rely on injection,
their instances must be created only through an injector;
otherwise, all the injected elements will be null. In general,
once dependency injection is used in a framework, all classes
of the framework must rely on injection.

Google Guice in Xtext
All Xtext components rely on Google Guice dependency injection, even the
classes that Xtext generates for your DSL. This means that in your classes, if you
need to use a class from Xtext, you just have to declare a field of such type with
the @Inject annotation.

The injection mechanism allows a DSL developer to customize basically every
component of the Xtext framework. This boils down to another property of
dependency injection, which, in fact, inverts dependencies. The Xtext runtime can
use your classes without having a dependency to its implementer. Instead, the
implementer has a dependency on the interface defined by the Xtext runtime. For
this reason, dependency injection is said to implement inversion of control and the
dependency inversion principle.

Chapter 6

[105]

When running the MWE2 workflow, Xtext generates both a fully configured module
and an empty module that inherits from the generated one. This allows you to
override generated or default bindings. Customizations are added to the empty stub
module. The generated module should not be touched. Xtext generates one runtime
module that defines the non-user interface-related parts of the configuration and one
specific for usage in the Eclipse IDE. Guice provides a mechanism for composing
modules that is used by Xtext—the module in the UI project uses the module in the
runtime project and overrides some bindings.

Let's consider the Entities DSL example. You can find in the src directory of the
runtime project the Xtend class EntitiesRuntimeModule, which inherits from
AbstractEntitiesRuntimeModule in the src-gen directory. Similarly, in the UI
project, you can find in the src directory the Xtend class EntitiesUiModule, which
inherits from AbstractEntitiesUiModule in the src-gen directory.

The Guice modules in src-gen are already configured with the bindings for the stub
classes generated during the MWE2 workflow. Thus, if you want to customize an
aspect using a stub class, then you do not have to specify any specific binding. The
generated stub classes concern typical aspects that the programmer usually wants to
customize, for example, validation and generation in the runtime project (as we saw
in the previous chapters), and labels, and outline in the UI project (as we will see in
the next sections). If you need to customize an aspect which is not covered by any
of the generated stub classes, then you will need to write a class yourself and then
specify the binding for your class in the Guice module in the src folder. We will see
an example of this scenario in the Other customizations section.

Bindings in these Guice module classes can be specified as we saw in the previous
section, by implementing the configure method. However, Xtext provides an
enhanced API for defining bindings; Xtext reflectively searches for methods with a
specific signature in order to find Guice bindings. Thus, assuming you want to bind
a BaseClass class to your derived CustomClass, you can simply define a method in
your module with a specific signature, as follows:

def Class<? extends BaseClass> bindBaseClass() {
 return CustomClass
}

Remember that in Xtend, you must explicitly specify that you
are overriding a method of the base class; thus, in case the bind
method is already defined in the base class, you need to use
override instead of def.

Customizing Xtext Components

[106]

These methods are invoked reflectively, thus their signature must follow the
expected convention. We refer to the official Xtext documentation for the complete
description of the module API. Typically, the binding methods that you will see in
this book will have the preceding shape, in particular, the name of the method must
start with bind followed by the name of the class or interface we want to provide a
binding for.

It is important to understand that these bind methods do not necessarily have to
override a method in the module base class. You can also make your own classes,
which are not related to Xtext framework classes at all, participants of this injection
mechanism, as long as you follow the preceding convention on method signatures.

In the rest of this chapter, we will show examples of customizations of both IDE
and runtime concepts. For most of these customizations, we will modify the
corresponding Xtend stub class that Xtext generated when running the MWE2
workflow. As hinted before, in these cases, we will not need to write a custom Guice
binding. We will also show an example of a customization, which does not have an
automatically generated stub class.

Xtext uses injection to inject services and not to inject state (apart
from EMF Singleton registries). Thus, the things that are injected
are interfaces consisting of functions that take state as arguments
(for example, the document, the resource, and so on.). This leads
to a service-oriented architecture, which is different from an
object-oriented architecture where state is encapsulated with
operations. An advantage of this approach is that there are far
less problems with synchronization of multiple threads.

Customizations of IDE concepts
In this section, we show typical concepts of the IDE for your DSL that you may want
to customize. Xtext shows its usability in this context as well, since, as you will see, it
reduces the customization effort.

Labels
Xtext UI classes make use of an ILabelProvider interface to obtain textual
labels and icons through its methods getText and getImage, respectively.
ILabelProvider is a standard component of Eclipse JFace-based viewers. You can
see the label provider in action in the Outline view and in content assist proposal
popups (as well as in various other places).

Chapter 6

[107]

Xtext provides a default implementation of a label provider for all DSLs, which
does its best to produce a sensible representation of the EMF model objects using
the name feature, if it is found in the corresponding object class, and a default image.
You can see that in the Outline view when editing an entities file, refer to the
following screenshot:

However, you surely want to customize the representation of some elements of
your DSL.

The label provider Xtend stub class for your DSL can be found in the UI plug-
in project in the subpackage ui.labeling. This stub class extends the base
class DefaultEObjectLabelProvider. In the Entities DSL, the class is called
EntitiesLabelProvider.

This class employs a Polymorphic Dispatcher mechanism (similar to the dispatch
methods of Xtend described in Chapter 3, Working with the Xtend Programming
Language), which is also used in many other places in Xtext. Thus, instead of
implementing the getText and getImage methods, you can simply define several
versions of methods text and image taking as parameter an EObject object of
the type you want to provide a representation for. Xtext will then search for such
methods according to the runtime type of the elements to represent.

For example, for our Entities DSL, we can change the textual representation of
attributes in order to show their names and a better representation of types (for
example, name : type). We then define a method text taking Attribute as a
parameter and returning a string:

class EntitiesLabelProvider extends ... {

 @Inject extension TypeRepresentation

Customizing Xtext Components

[108]

 def text(Attribute a) {
 a.name +
 if (a.type != null)
 " : " + a.type.representation
 else ""
 }
}

To get a representation of the AttributeType element, we use an injected extension,
TypeRepresentation, in particular its method representation:

class TypeRepresentation {
 def representation(AttributeType t) {
 val elementType = t.elementType
 val elementTypeRepr =
 switch (elementType) {
 BasicType : elementType.typeName
 EntityType : elementType?.entity.name
 }
 elementTypeRepr + if (t.array) "[]" else ""
 }
}

Remember that the label provider is used, for example, for the
Outline view, which is refreshed when the editor contents
change, and its contents might contain errors. Thus, you must
be ready to deal with an incomplete model, and some features
might still be null. That is why you should always check that the
features are not null before accessing them.

Note that we inject an extension field of type TypeRepresentation instead of creating
an instance with new in the field declaration. Although it is not necessary to use
injection for this class, we decided to rely on that because in the future we might want
to be able to provide a different implementation for that class. Another point for using
injection instead of new is that the other class may rely on injection in the future. Using
injection leaves the door open for future and unanticipated customizations.

Chapter 6

[109]

The Outline view now shows as in the following screenshot:

We can further enrich the labels for entities and attributes using images for them. To do
this, we create a directory in the org.example.entities.ui project where we place the
image files of the icons we want to use. In order to benefit from Xtext's default handling
of images, we call the directory icons, and we place two gif images there, Entity.gif
and Attribute.gif (for entities and attributes, respectively). You fill find the icon files
in the accompanying source code in the org.example.entities.ui/icons folder. We
then define two image methods in EntitiesLabelProvider where we only need to
return the name of the image files and Xtext will do the rest for us:

class EntitiesLabelProvider extends DefaultEObjectLabelProvider {
 ... as before
 def image(Entity e) { "Entity.gif" }

 def image(Attribute a) { "Attribute.gif" }
}

You can see the result by relaunching Eclipse, as seen in the following screenshot:

Customizing Xtext Components

[110]

Now, the entities and attributes labels look nicer.

If you plan to export the plugins for your DSL so that others can
install them in their Eclipse (see Chapter 11, Continuous Integration),
you must make sure that the icons directory is added to the
build.properties file, otherwise that directory will not be
exported. The bin.includes section of the build.properties
file of your UI plugin should look like the following:

bin.includes = META-INF/,\

 .,\

 plugin.xml,\

 icons/

The Outline view
The default Outline view comes with nice features. In particular, it provides toolbar
buttons to keep the Outline view selection synchronized with the element currently
selected in the editor. Moreover, it provides a button to sort the elements of the tree
alphabetically.

By default, the tree structure is built using the containment relations of the
metamodel of the DSL. This strategy is not optimal in some cases. For example,
an Attribute definition also contains the AttributeType element, which is a
structured definition with children (for example, elementType, array, and length).
This is reflected in the Outline view (refer to the previous screenshot) if you expand
the Attribute elements.

This shows unnecessary elements, such as BasicType names, which are now
redundant since they are shown in the label of the attribute, and additional elements
which are not representable with a name, such as the array feature.

We can influence the structure of the Outline tree using the generated stub
class EntitiesOutlineTreeProvider in the src folder org.example.entities.
ui.outline. Also in this class, customizations are specified in a declarative
way using the polymorphic dispatch mechanism. The official documentation,
https://www.eclipse.org/Xtext/documentation/, details all the features
that can be customized.

https://www.eclipse.org/Xtext/documentation/

Chapter 6

[111]

In our example, we just want to make sure that the nodes for attributes are leaf
nodes, that is, they cannot be further expanded and they have no children. In
order to achieve this, we just need to define a method named _isLeaf (note the
underscore) with a parameter of the type of the element, returning true. Thus, in
our case we write the following code:

class EntitiesOutlineTreeProvider extends
 DefaultOutlineTreeProvider {
 def _isLeaf(Attribute a) { true }
}

Let's relaunch Eclipse, and now see that the attribute nodes do not expose
children anymore.

Besides defining leaf nodes, you can also specify the children in the tree for a specific
node by defining a _createChildren method taking as parameters the type of
outline node and the type of the model element. This can be useful to define the
actual root elements of the Outline tree. By default, the tree is rooted with a single
node for the source file. In this example, it might be better to have a tree with many
root nodes, each one representing an entity. The root of the Outline tree is always
represented by a node of type DefaultRootNode. The root node is actually not
visible, it is just the container of all nodes that will be displayed as roots in the tree.

Thus, we define the following method (our Entities model is rooted by a
Model element):

public class EntitiesOutlineTreeProvider ... {
 ... as before
 def void _createChildren(DocumentRootNode outlineNode,
 Model model) {
 model.entities.forEach[
 entity |
 createNode(outlineNode, entity);
]
 }
}

Customizing Xtext Components

[112]

This way, when the Outline tree is built, we create a root node for each entity
instead of having a single root for the source file. The createNode method is part
of the Xtext base class. The result can be seen in the following screenshot:

Customizing other aspects
In Chapter 8, An Expression Language, we will show how to customize the content
assistant. There is no need to do this for the simple Entities DSL since the default
implementation already does a fine job.

Custom formatting
An editor for a DSL should provide a mechanism for rearranging the text of the
program in order to improve its readability, without changing its semantics. For
example, nested regions inside blocks should be indented, and the user should be
able to achieve that with a menu.

Besides that, implementing a custom formatter has also other benefits, since the
formatter is automatically used by Xtext when you change the EMF model of the
AST. If you tried to apply the quickfixes we implemented in Chapter 4, Validation, you
might have noticed that after the EMF model has changed, the editor immediately
reflects this change. However, the resulting textual representation is not well
formatted, especially for the quickfix that adds the missing referred entity.

In fact, the EMF model representing the AST does not contain any information about
the textual representation, that is, all white space characters are not part of the EMF
model (after all, the AST is an abstraction of the actual program).

Chapter 6

[113]

Xtext keeps track of such information in another in-memory model called the node
model. The node model carries the syntactical information, that is, offset and length
in the textual document. However, when we manually change the EMF model, we
do not provide any formatting directives, and Xtext uses the default formatter to get
a textual representation of the modified or added model parts.

Xtext already generates the menu for formatting your DSL source programs in the
Eclipse editor. As it is standard in Eclipse editors (for example, the JDT editor), you
can access the Format menu from the context menu of the editor or using the Ctrl +
Shift + F key combination.

The default formatter is OneWhitespaceFormatter and you can test this in the
Entities DSL editor; this formatter simply separates all tokens of your program with
a space. Typically, you will want to change this default behavior.

If you provide a custom formatter, this will be used not only when the Format menu
is invoked, but also when Xtext needs to update the editor contents after a manual
modification of the AST model, for example, a quickfix performing a semantic
modification.

The easiest way to customize the formatting is to have the Xtext generator create a
stub class. To achieve this, you need to add the following formatter specification in
the StandardLanguage block in the MWE2 workflow file, requesting to generate an
Xtend stub class:

language = StandardLanguage {
 name = "org.example.entities.Entities"
 fileExtensions = "entities"
 ...
 formatter = {
 generateStub = true
 generateXtendStub = true
 }
}

If you now run the workflow, you will find the formatter Xtend stub class in the
main plugin project in the formatting2 package. For our Entities DSL, the class is
org.example.entities.formatting2.EntitiesFormatter. This stub class extends
the Xtext class AbstractFormatter2.

Customizing Xtext Components

[114]

Note that the name of the package ends with 2. That is
because Xtext recently completely changed the customization
of the formatter to enhance its mechanisms. The old formatter
is still available, though deprecated, so the new formatter
classes have the 2 in the package in order not to be mixed with
the old formatter classes.
In the generated stub class, you will get lots of warnings
of the shape Discouraged access: the type
AbstractFormatter2 is not accessible due to
restriction on required project org.example.
entities. That is because the new formatting API is still
provisional, and it may change in future releases in a non-
backward compatible way. Once you are aware of that, you
can decide to ignore the warnings. In order to make the
warnings disappear from the Eclipse project, you configure
the specific project settings to ignore such warnings, as shown
in the following screenshot:

Chapter 6

[115]

The Xtend stub class already implements a few dispatch methods, taking as
parameters the AST element to format and an IFormattableDocument object. The
latter is used to specify the formatting requests. A formatting request will result in a
textual replacement in the program text. Since it is an extension parameter, you can
use its methods as extension methods (for more details on extension methods, refer
to Chapter 3, Working with the Xtend Programming Language, Section Extension methods).
The IFormattableDocument interface provides a Java API for specifying formatting
requests. Xtend features such as extension methods and lambdas will allow you to
specify formatting request in an easy and readable way.

The typical formatting requests are line wraps, indentations, space addition and
removal, and so on. These will be applied on the textual regions of AST elements.
As we will show in this section, the textual regions can be specified by the EObject
of AST or by its keywords and features.

For our Entities DSL, we decide to perform formatting as follows:

1.	 Insert two newlines after each entity so that entities will be separated by an
empty line; after the last entity, we want a single empty line.

2.	 Indent attributes between entities curly brackets.
3.	 Insert one line-wrap after each attribute declaration.
4.	 Make sure that entity name, super entity, and the extends keyword are

surrounded by a single space.
5.	 Remove possible white spaces around the ; of an attribute declaration.

To achieve the empty lines among entities, we modify the stub method for the
Entities Model element:

def dispatch void format(Model model,
 extension IFormattableDocument
document) {
 val lastEntity = model.entities.last
 for (entity : model.entities) {
 entity.format
 if (entity === lastEntity)
 entity.append[setNewLines(1)]
 else
 entity.append[setNewLines(2)]
 }
}

Customizing Xtext Components

[116]

We append two newlines after each entity. This way, each entity will be separated
by an empty line, since each entity, except for the first one, will start on the second
added newline. We append only one newline after the last entity.

Now start a new Eclipse instance and manually test the formatter with some entities,
by pressing Ctrl + Shift + F. We modify the format stub method for the Entity
elements. In order to separate each attribute, we follow a logic similar to the
previous format method. For the sake of the example, we use a different version of
setNewLines, that is setNewLines(int minNewLines, int defaultNewLines,
int maxNewLines), whose signature is self-explanatory:

for (attribute : entity.attributes) {
 attribute.append[setNewLines(1, 1, 2)]
}

Up to now, we referred to a textual region of the AST by specifying the EObject.
Now, we need to specify the textual regions of keywords and features of a given AST
element.

In order to specify that the "extends" keyword is surrounded by one single space
we write the following:

entity.regionFor.keyword("extends").surround[oneSpace]

We also want to have no space around the terminating semicolon of attributes, so we
write the following:

attribute.regionFor.keyword(";").surround[noSpace]

In order to specify that the the entity's name and the super entity are surrounded by
one single space we write the following:

entity.regionFor.feature(ENTITY__NAME).surround[oneSpace]
entity.regionFor.feature(ENTITY__SUPER_TYPE).surround[oneSpace]

After having imported statically all the EntitiesPackage.Literals members,
as follows:

import static org.example.entities.entities.EntitiesPackage.Literals.*

Finally, we want to handle the indentation inside the curly brackets of an entity
and to have a newline after the opening curly bracket. This is achieved with the
following lines:

val open = entity.regionFor.keyword("{")
val close = entity.regionFor.keyword("}")
open.append[newLine]
interior(open, close)[indent]

Chapter 6

[117]

Summarizing, the format method for an Entity is the following one:

def dispatch void format(Entity entity,
 extension IFormattableDocument document) {
 entity.regionFor.keyword("extends").surround[oneSpace]
 entity.regionFor.feature(ENTITY__NAME).surround[oneSpace]
 entity.regionFor.feature(ENTITY__SUPER_TYPE).surround[oneSpace]

 val open = entity.regionFor.keyword("{")
 val close = entity.regionFor.keyword("}")
 open.append[newLine]
 interior(open, close)[indent]

 for (attribute : entity.attributes) {
 attribute.regionFor.keyword(";").surround[noSpace]
 attribute.append[setNewLines(1, 1, 2)]
 }
}

Now, start a new Eclipse instance and manually test the formatter with some
attributes and entities, by pressing Ctrl + Shift + F.

In the generated Xtend stub class, you also find an injected extension for accessing
programmatically the elements of your grammar. In this DSL it is the following:

@Inject extension EntitiesGrammarAccess

For example, to specify the left curly bracket of an entity, we could have written this
alternative line:

val open = entity.regionFor.keyword(entityAccess.
leftCurlyBracketKeyword_3)

Similarly, to specify the terminating semicolon of an attribute, we could have written
this alternative line:

attribute.regionFor.keyword(attributeAccess.semicolonKeyword_2)
 .surround[noSpace]

Eclipse content assist will help you in selecting the right method to use.

Customizing Xtext Components

[118]

Note that the method names are suffixed with numbers that
relate to the position of the keyword in the grammar's rule.
Changing a rule in the DSL's grammar with additional elements
or by removing some parts will make such method invocations
invalid since the method names will change. On the other hand,
if you change a keyword in your grammar, for example, you
use square brackets instead of curly brackets, then referring
to keywords with string literals as we did in the original
implementation of the format methods will issue no compilation
errors, but the formatting will not work anymore as expected.
Thus, you need to choose your preferred strategy according to
the likeliness of your DSL's grammar evolution.

You can also try and apply our quickfixes for missing entities and you will see that
the added entity is nicely formatted, according to the logic we implemented.

What is left to be done is to format the attribute type nicely, including the array
specification. This is left as an exercise. The EntitiesFormatter you find in the
accompanying sources of this example DSL contains also this formatting logic for
attribute types.

You should specify formatting requests avoiding conflicting
requests on the same textual region. In case of conflicts, the
formatter will throw an exception with the details of the conflict.

Other customizations
All the customizations you have seen so far were based on modification of a
generated stub class with accompanying generated Guice bindings in the module
under the src-gen directory.

However, since Xtext relies on injection everywhere, it is possible to inject a custom
implementation for any mechanism, even if no stub class has been generated.

Chapter 6

[119]

If you installed Xtext SDK in your Eclipse, the sources of Xtext
are available for you to inspect. You should learn to inspect
these sources by navigating to them and see what gets injected
and how it is used. Then, you are ready to provide a custom
implementation and inject it. You can use the Eclipse Navigate
menu. In particular, to quickly open a Java file (even from a
library if it comes with sources), use Ctrl + Shift + T (Open
Type…). This works both for Java classes and Xtend classes. If
you want to quickly open another source file (for example, an
Xtext grammar file) use Ctrl + Shift + R (Open Resource…). Both
dialogs have a text field where, if you start typing, the available
elements soon show up. Eclipse supports CamelCase everywhere,
so you can just type the capital letters of a compound name to
quickly get to the desired element. For example, to open the
EntitiesRuntimeModule Java class, use the Open Type…
menu and just digit ERM to see the filtered results.

As an example, we show how to customize the output directory where the generated
files will be stored (as we saw in Chapter 5, Code Generation, the default is src-gen).
Of course, this output directory can be modified by the user using the Properties
dialog that Xtext generated for your DSL (see Chapter 5, Code Generation), but we
want to customize the default output directory for Entities DSL so that it becomes
entities-gen.

The default output directory is retrieved internally by Xtext using an injected
IOutputConfigurationProvider instance. If you take a look at this class (see the
preceding tip), you will see the following:

import com.google.inject.ImplementedBy;

@ImplementedBy(OutputConfigurationProvider.class)
public interface IOutputConfigurationProvider {
 Set<OutputConfiguration> getOutputConfigurations();
 ...

 The @ImplementedBy Guice annotation tells the injection mechanism the default
implementation of the interface. Thus, what we need to do is create a subclass of the
default implementation (that is, OutputConfigurationProvider) and provide a
custom binding for the IOutputConfigurationProvider interface.

Customizing Xtext Components

[120]

The method we need to override is getOutputConfigurations; if we take a look at
its default implementation, we see the following:

public Set<OutputConfiguration> getOutputConfigurations() {
 OutputConfiguration defaultOutput = new
 OutputConfiguration(IFileSystemAccess.DEFAULT_OUTPUT);
 defaultOutput.setDescription("Output Folder");
 defaultOutput.setOutputDirectory("./src-gen");
 defaultOutput.setOverrideExistingResources(true);
 defaultOutput.setCreateOutputDirectory(true);
 defaultOutput.setCleanUpDerivedResources(true);
 defaultOutput.setSetDerivedProperty(true);
 defaultOutput.setKeepLocalHistory(true);
 return newHashSet(defaultOutput);
}

Of course, the interesting part is the call to setOutputDirectory.

We define an Xtend subclass as follows:

class EntitiesOutputConfigurationProvider extends
 OutputConfigurationProvider {

 public static val ENTITIES_GEN = "./entities-gen"

 override getOutputConfigurations() {
 super.getOutputConfigurations() => [
 head.outputDirectory = ENTITIES_GEN
]
 }
}

Note that we use a public constant for the output directory since we might need it
later in other classes. We use several Xtend features: the with operator, the implicit
static extension method head, which returns the first element of a collection, and the
syntactic sugar for setter method.

We create this class in the main plug-in project, since this concept is not just an
UI concept and it is used also in other parts of the framework. Since it deals with
generation, we create it in the generator subpackage.

Chapter 6

[121]

Now, we must bind our implementation in the EntitiesRuntimeModule class:

class EntitiesRuntimeModule extends
 AbstractEntitiesRuntimeModule {

 def Class<? extends IOutputConfigurationProvider>
 bindIOutputConfigurationProvider() {
 return EntitiesOutputConfigurationProvider
 }
}

If we now relaunch Eclipse, we can verify that the Java code is generated into
entities-gen instead of src-gen. If you previously used the same project, the
src-gen directory might still be there from previous generations; you need to
manually remove it and set the new entities-gen as a source folder.

Summary
In this chapter, we introduced the Google Guice dependency injection framework
on which Xtext relies. You should now be aware of how easy it is to inject custom
implementations consistently throughout the framework. You also learned how to
customize some basic runtime and IDE concepts for a DSL.

The next chapter shows how to perform unit testing for languages implemented in
Xtext. Test-driven development is an important programming technique, which will
make your implementations more reliable, resilient to changes of the libraries, and
will allow you to program quickly.

[123]

Testing
In this chapter, you will learn how to test a DSL implementation using the JUnit
framework and the additional utility classes provided by Xtext. This way, your DSL
implementation will have a suite of tests that can be run automatically. We will use the
Entities DSL developed in the previous chapters for showing the typical techniques for
testing both the runtime and the UI features of a DSL implemented in Xtext.

This chapter will cover the following topics:

•	 A small introduction to automated testing with JUnit
•	 How to test the runtime and the UI aspects of an Xtext DSL
•	 Some hints on how to keep the code clean and modular

Introduction to testing
Writing automated tests is a fundamental technology/methodology when
developing software. It will help you write quality software where most aspects
(possibly all aspects) are somehow verified in an automatic and continuous way.
Although successful tests do not guarantee that the software is bug free, automated
tests are a necessary condition for professional programming (see the books Beck
2002, Martin 2002, 2008, 2011 for some insightful reading about this subject).

Tests are a form of documentation that does not risk getting stale with respect to the
implementation itself. Javadoc comments will likely not be kept in synchronization
with the code they document; manuals will tend to become obsolete if not updated
consistently, while tests will fail if they are not up to date.

Testing

[124]

The Test Driven Development (TDD) methodology fosters the writing of tests
even before writing production code. When developing a DSL, one can relax this
methodology by not necessarily writing the tests first. However, one should write
tests as soon as a new functionality is added to the DSL implementation. This must
be taken into consideration right from the beginning, thus, you should not try to
write the complete grammar of a DSL, but proceed gradually; write a few rules to
parse a minimal program, and immediately write tests for parsing some test input
programs. Only when these tests pass, you should go on to implementing other parts
of the grammar.

Moreover, if some validation rules can already be implemented with the current
version of the DSL, you should write tests for the current validator checks as well.

Ideally, one does not have to run Eclipse to manually check whether the current
implementation of the DSL works as expected. Using tests will then make the
development much faster.

The number of tests will grow as the implementation grows, and tests should be
executed each time you add a new feature or modify an existing one. You will see
that since tests will run automatically, executing them over and over again will
require no additional effort besides triggering their execution (think instead if you
should manually check what you added or modified did not break something).

This also means that you will not be scared to touch something in your
implementation; after you made some changes, just run the whole test suite and
check whether you broke something. If some tests fail, you will just need to check
whether the failure is actually expected (and in case, fix the test) or whether your
modifications have to be fixed.

It is worth noting that using a version control system (such as Git)
is essential to easily get back to a known state. Just experimenting
with your code and finding errors using tests does not mean you
can easily backtrack.

You will not even be scared to port your implementation to a new version of the
used frameworks. Even if your sources still compile using the new version of
a framework, it will be your test suite to tell you whether the behavior of your
program is still the same. In particular, if some of the tests fail, you can get an
immediate idea of which parts need to be changed.

Chapter 7

[125]

If your implementation relies on a solid test suite, it will be easier for contributors
to provide patches and enhancements for your DSL; they can run the test suite
themselves or they can add further tests for a specific bugfix or for a new feature.
It will also be easy for the main developers to decide whether to accept the
contributions by running the tests.

Last but not the least, you will discover that writing tests right from the beginning
will force you to write modular code; otherwise you will not be able to easily test it,
and it will make programming much more fun.

Xtext and Xtend themselves are developed with a lot of tests.

JUnit 4
JUnit is the most popular unit test framework for Java, and it is shipped with Eclipse
Java Development Tools (JDT). In particular, the examples in this book are based on
JUnit version 4.

To implement JUnit tests, you just need to write a class with methods annotated
with @org.junit.Test. We will call such methods simply test methods. Such
Java or Xtend classes can then be executed in Eclipse using the JUnit test launch
configuration. All methods annotated with @Test will be then executed by JUnit.
In test methods you can use assert methods provided by the org.junit.Assert
class. For example, assertEquals(expected, actual) checks whether the
two arguments are equal; assertTrue(expression) checks whether the passed
expression evaluates to true. If an assertion fails, JUnit will record such failure. In
Eclipse, the JUnit view will provide you with a report about tests that failed. Ideally,
no test should fail, and you should see the green bar in the JUnit view.

All test methods can be executed by JUnit in any order;
thus, you should never write a test method that depends
on the outcome of another one. All test methods should be
executable independently from each other.

If you annotate a method with @Before, that method will be executed before each
test method in that class, thus, it can be used to prepare a common setup for all
the test methods in that class. Similarly, a method annotated with @After will be
executed after each test method, even if it fails, thus, it can be used to clean up the
environment. A static method annotated with @BeforeClass will be executed only
once before the start of all test methods (@AfterClass has the complementary
intuitive functionality). All these methods must be void methods.

Testing

[126]

The ISetup interface
Running tests means that we somehow need to bootstrap the environment to make
it support EMF and Xtext in addition to the implementation of our DSL. This is done
with a suitable implementation of ISetup. We need to configure things differently
depending on how we want to run tests; with or without Eclipse and with or without
Eclipse UI being present. The way to set up the environment is quite different
when Eclipse is present, since many services are shared and already part of the
Eclipse environment. When setting up the environment for non-Eclipse use (also
referred to as standalone) there are a few things that must be configured, such as
creating a Guice injector and registering information required by EMF. The method
createInjectorAndDoEMFRegistration in the ISetup interface is there to do
exactly this.

Besides the creation of an Injector, this method also performs the initialization of
EMF global registries so that after the invocation of that method, the EMF API to
load and store models of your language can be fully used, even without a running
Eclipse. Xtext generates an implementation of this interface, named after your DSL,
which can be found in the runtime plug-in project. For our Entities DSL, it is called
EntitiesStandaloneSetup.

The name standalone expresses the fact that this class has to be used
when running outside Eclipse. Thus, the preceding method must
never be called when running inside Eclipse; otherwise, the EMF
registries will become inconsistent.

In a plain Java application, the typical steps to set up the DSL (for example, our
Entities DSL) can be sketched as follows:

Injector injector = new
 EntitiesStandaloneSetup().createInjectorAndDoEMFRegistration();
XtextResourceSet resourceSet =
 injector.getInstance(XtextResourceSet.class);
resourceSet.addLoadOption
 (XtextResource.OPTION_RESOLVE_ALL, Boolean.TRUE);
Resource resource = resourceSet.getResource
 (URI.createURI("/path/to/my.entities"), true);
IResourceValidator validator =
 injector.getInstance(IResourceValidator.class);
List<Issue> issues = validator.validate(resource, CheckMode.ALL,
 CancelIndicator.NullImpl);
// check possible validation issues (omitted)
Model model = (Model) resource.getContents().get(0);

Chapter 7

[127]

This standalone setup class is especially useful also for JUnit tests that can then be
run without an Eclipse instance. This will speed up the execution of tests. Of course,
in such tests, you will not be able to test UI features.

As we will see in this chapter, Xtext provides many utility classes for testing,
which do not require us to set up the runtime environment explicitly. However, it
is important to know about the existence of the setup class in case you either need
to tweak the generated standalone compiler (see Chapter 5, Code Generation, section
Standalone command-line compiler) or you need to set up the environment in a specific
way for unit tests.

Implementing tests for your DSL
Xtext highly fosters using unit tests, and this is reflected by the fact that, by default,
the MWE2 workflow generates specific plug-in projects for testing your DSL. In fact,
usually tests should reside in a separate project, since they should not be deployed
as part of your DSL implementation. Xtext generates two test projects. One that ends
with the .tests suffix, for tests that do not depend on the UI, and one that ends with
the .ui.tests suffix, for tests that depend on the UI. For our Entities DSL, these two
projects are org.example.entities.tests and org.example.entities.ui.tests.
The test plug-in projects have the needed dependencies on the required Xtext utility
bundles for testing.

We will use Xtend to write JUnit tests; thanks to all its features, tests will be easier to
write and easier to read.

In the src-gen directory of the test projects, you will find the injector providers for
headless and UI tests respectively. You can use these providers to easily write JUnit
test classes without having to worry about the injection mechanisms setup. The JUnit
tests that use the injector provider will typically have the following shape (using the
Entities DSL as an example):

@RunWith(XtextRunner)
@InjectWith(EntitiesInjectorProvider)
class MyTest {
 @Inject MyClass
 ...

As hinted in the preceding code, in this class you can rely on injection. We used
@InjectWith and declared that EntitiesInjectorProvider has to be used to create
the injector. EntitiesInjectorProvider will transparently provide the correct
configuration for a standalone environment. As we will see later in this chapter, when
we want to test UI features, we will use EntitiesUiInjectorProvider(note the "Ui"
in the name). The injector provider for the UI is generated in the ui.tests project.

Testing

[128]

Testing the parser
The first tests you might want to write are the ones which concern parsing.

This reflects the fact that the grammar is the first thing you must write when
implementing a DSL. You should not try to write the complete grammar before
starting testing: you should write only a few rules and soon write tests to check if
those rules actually parse an input test program as you expect.

The nice thing is that you do not have to store the test input in a file (though you
could do that); the input to pass to the parser can be a string, and since we use Xtend,
we can use multiline strings.

The Xtext test framework provides the class ParseHelper to easily parse a string.
The injection mechanism will automatically tell this class to parse the input
string with the parser of your DSL. To parse a string, we inject an instance of
ParseHelper<T>, where T is the type of the root class in our DSL's model—in our
Entities example, this class is called Model. The ParseHelper.parse method will
return an instance of T after parsing the input string given to it.

By injecting the ParseHelper class as an extension, we can directly use its methods
on the strings we want to parse.

The Xtext generator already generates a stub class in the .tests project for testing
the parser. In the Entities DSL, this Xtend class is called EntitiesParsingTest.
This stub class is generated for the initial "hello" grammar, so if you run it as it is, the
test will fail.

Thus, we modify the stub class as follows:

@RunWith(XtextRunner)
@InjectWith(EntitiesInjectorProvider)
class EntitiesParsingTest {

 @Inject extension ParseHelper<Model>

 @Test
 def void testParsing() {
 val model = '''
 entity MyEntity {
 MyEntity attribute;
 }
 '''.parse

 val entity = model.entities.get(0)

Chapter 7

[129]

 Assert.assertEquals("MyEntity", entity.name)

 val attribute = entity.attributes.get(0)
 Assert.assertEquals("attribute", attribute.name);
 Assert.assertEquals("MyEntity",
 (attribute.type.elementType as EntityType).
 entity.name);
 }
 ...

In this test, we parse the input and test that the AST of the parsed program has the
expected structure. These tests do not add much value in the Entities DSL, but in a
more complex DSL you do want to test that the structure of the parsed EMF model is
as you expect (we will see an example of that in Chapter 8, An Expression Language).

You can now run the test; right-click on the Xtend file and navigate to Run As |
JUnit Test. The test should pass, and you should see the green bar in the JUnit view.

Note that the parse method returns an EMF model even if the input string contains
syntax errors since it tries to parse as much as it can. Thus, if you want to make
sure that the input string is parsed without any syntax error, you have to check that
explicitly. To do that, you can use another utility class, ValidationTestHelper.
This class provides many assert methods that take an EObject argument. You can
use an extension field and simply call assertNoErrors on the parsed EMF object.
Alternatively, if you do not need the EMF object, but you just need to check that
there are no parsing errors, you can simply call it on the result of parse, for example:

class EntitiesParsingTest {

 @Inject extension ParseHelper<Model>
 @Inject extension ValidationTestHelper
...
 @Test
 def void testCorrectParsing() {
 '''
 entity MyEntity {
 MyEntity attribute
 }
 '''.parse.assertNoErrors
 }

If you try to run the tests again, you will get a failure for this new test:

java.lang.AssertionError: Expected no errors, but got :
ERROR (org.eclipse.xtext.diagnostics.Diagnostic.Syntax)
'missing ';' at '}'' on Entity, offset 41, length 1

Testing

[130]

The reported error should be clear enough: we forgot to add the terminating ';' in
our input program; thus, we can fix it and run the test again. This time, the green bar
should be back.

You can now write other @Test methods for testing the various features of the DSL
(see the sources of the examples). Depending on the complexity of your DSL, you
may have to write many of them.

Tests should test one specific thing at a time; lumping things
together (to reduce the overhead of having to write many test
methods) usually makes it harder later.

Remember that you should follow this methodology while implementing your DSL,
not after having implemented all of it. If you follow this strictly, you will not have to
launch Eclipse to manually check that you implemented a feature correctly, and you
will note that this methodology will let you program really fast.

Testing the validator
Earlier, we used the ValidationTestHelper class to test that it was possible to parse
without errors. Of course, we also need to test that errors and warnings are detected.
In particular, we should test any error situation handled by our own validator. The
ValidationTestHelper class contains utility methods, besides assertNoErrors,
that allow us to test whether the expected errors are correctly issued.

For instance, for our Entities DSL, we wrote a custom validator method that checks
that the entity hierarchy is acyclic (Chapter 4, Validation). Thus, we should write a test
that, given an input program with a cycle in the hierarchy, checks that such an error
is indeed raised during validation.

It is better to separate JUnit test classes according to the tested features; thus, we
write another JUnit class, EntitiesValidatorTest, which contains tests related to
validation. The start of this new JUnit test class should look familiar:

@RunWith(XtextRunner)
@InjectWith(EntitiesInjectorProvider)
class EntitiesValidatorTest {

 @Inject extension ParseHelper<Model>
 @Inject extension ValidationTestHelper
 ...

Chapter 7

[131]

We are now going to use the assertError method from ValidationTestHelper,
which, besides the EMF model element to validate, requires the following
arguments:

•	 The EClass of the object which contains the error. This is usually
retrieved through the EMF EPackage class generated when running the
MWE2 workflow.

•	 The expected issue code.
•	 An optional string describing the expected error message.

Thus, we parse input containing an entity extending itself, and we pass the arguments
to assertError according to the error generated by checkNoCycleInEntityHierarchy
in EntitiesValidator (see Chapter 4, Validation):

@Test
def void testEntityExtendsItself() {
 '''
 entity MyEntity extends MyEntity {

 }
 '''.parse.assertCycleInHierarchy("MyEntity")
}

def private assertCycleInHierarchy(Model m, String entityName) {
 m.assertError(
 EntitiesPackage.eINSTANCE.entity,
 EntitiesValidator.HIERARCHY_CYCLE,
 "cycle in hierarchy of entity '" + entityName + "'"
)

}

Note that the EObject argument is the one returned by the parse method (we use
assertError as an extension method). Since the error concerns an Entity object, we
specify the corresponding EClass (retrieved using EntitiesPackage), the expected
issue code, and finally, the expected error message. This test should pass.

We can now write another test, which tests the same validation error on a more
complex input with a cycle in the hierarchy involving more than one entity. In this
test, we make sure that our validator issues an error for each of the entities involved
in the hierarchy cycle:

@Test
def void testCycleInEntityHierarchy() {
 '''

Testing

[132]

 entity A extends B {}
 entity B extends C {}
 entity C extends A {}
 '''.parse => [
 assertCycleInHierarchy("A")
 assertCycleInHierarchy("B")
 assertCycleInHierarchy("C")
]
}

You can also check that the error marker generated by the validator is created
on the right element in the source file. In order to do that, you use the version of
assertError that also takes the expected offset and the expected length of the text
region marked with error. For example, the EntitiesValidator should generate the
error for a cycle in the hierarchy on the superType feature. We write the following
test to check this:

@Test
def void testCycleInHierarchyErrorPosition() {
 val testInput =
 '''
 entity MyEntity extends MyEntity {
 }
 '''
 testInput.parse.assertError(
 EntitiesPackage.eINSTANCE.entity,
 EntitiesValidator.HIERARCHY_CYCLE,
 testInput.lastIndexOf("MyEntity"), // offset
 "MyEntity".length // length
)
}

We check that the offset and the length of the text region marked with error
corresponds to the entity named after "extends", that is, the last occurrence of
"MyEntity" in the input.

You can also assert warnings, using assertWarning, which has the same signatures
as the assertError used in the previous code snippet. Similarly, you can use
assertNoWarnings, which corresponds to assertNoErrors, but with respect
to warnings. The assertIssue and assertNoIssues methods perform similar
assertions without considering the severity level.

Chapter 7

[133]

You should keep in mind that a broken implementation of a validation rule could
always mark entities with errors. For this reason, you should always write a test for
positive cases as well:

@Test
def void testValidHierarchy() {
 '''
 entity FirstEntity {}
 entity SecondEntity extends FirstEntity {}
 '''.parse.assertNoErrors
}

Do not worry if it seems tricky to get the arguments for
assertError right the first time; writing a test that fails the first
time it is executed is expected in Test Driven Development. The error
of the failing test should put you on the right track to specify the
arguments correctly. However, by inspecting the error of the failing
test, you must first make sure that the actual output is what you
expected, otherwise something is wrong either with your test or with
the implementation of the component that you are testing.

Testing the formatter
As we said in the previous chapter, the formatter is also used in a non-UI
environment, thus, we can test the formatter for our DSL with plain JUnit tests.
To test the formatter, we create a new Xtend class, and we inject as extension the
FormatterTester class:

@RunWith(XtextRunner)
@InjectWith(EntitiesInjectorProvider)
class EntitiesFormatterTest {

 @Inject extension FormatterTester
...

Just like it happened in Chapter 6, Customizing Xtext Components,
when we used the new formatter API, we get a lot of Discouraged
Access warnings when using FormatterTester. Refer to that
chapter for the reasons of the warnings and how to disable them.

Testing

[134]

To test the formatter, we use the assertFormatted method that takes a lambda
where we specify the input to be formatted and the expected formatted program:

@Test
def void testEntitiesFormatter() {
 assertFormatted[
 toBeFormatted = '''
 entity E1 { int i ; string s; boolean b ;}
 entity E2 extends E1{}
 '''
 expectation = '''
 ...
 '''
]
}

Why did we specify … as the expected formatted output? Why did we not try to
specify what we really expect as the formatted output? Well, we could have written
the expected output and probably we would have gotten it right on the first try, but
why not simply make the test fail and see the actual output? We can then copy that in
our test once we are convinced that it is correct. So let's run the test, and when it fails,
the JUnit view tells us what the actual result is, as shown in the following screenshot:

Chapter 7

[135]

If you now double-click on the line showing the comparison failure in the JUnit
view, you will get a dialog showing a line-by-line comparison, as shown in the
following screenshot:

You can verify that the actual output is correct, copy that, and paste it into your test
as the expected output. The test will now succeed:

@Test
def void testEntitiesFormatter() {
 assertFormatted[
 toBeFormatted = '''

 entity E1 { int i ; string s; boolean b ;}
 entity E2 extends E1{}
 '''
 expectation = '''
 entity E1 {
 int i;
 string s;
 boolean b;
 }

 entity E2 extends E1 {
 }
 '''
]
}

Testing

[136]

Note that the Xtend editor will automatically indent the
pasted contents.

Using this technique, you can easily write JUnit tests that deal with comparisons.
However, remember that the Result Comparison dialog appears only if you
compare String objects.

Testing code generation
Xtext provides a helper class to test your code generator, CompilationTestHelper,
which we inject as an extension field in the JUnit test class. This helper class parses
an input string and runs the code generator, thus we do not need the parser helper in
this test class:

@RunWith(XtextRunner)
@InjectWith(EntitiesInjectorProvider)
class EntitiesGeneratorTest {

 @Inject extension CompilationTestHelper

The CompilationTestHelper requires the Eclipse JDT
compiler, so you must add org.eclipse.jdt.core as
dependency of the .tests project.

This helper class provides the method assertCompilesTo, which takes a char
sequence representing an input program and a char sequence representing the
expected generated output. Using that as an extension method, we can then write
the following test method, which tests that the generated Java code is as we expect
(we use the technique of the JUnit view to get the actual output as illustrated in the
previous section):

@Test
def void testGeneratedCode() {
 '''
 entity MyEntity {
 string myAttribute;
 }
 '''.assertCompilesTo(
 '''
 package entities;

 public class MyEntity {

Chapter 7

[137]

 private String myAttribute;

 public String getMyAttribute() {
 return myAttribute;
 }

 public void setMyAttribute(String _arg) {
 this.myAttribute = _arg;
 }

 }
 ''')
}

Testing that the generated output corresponds to what we expect is already a good
testing technique. However, when the generated code is Java code, it might be good
to also test that it is valid Java code, that is, the Java compiler compiles the generated
code without errors.

To test that the generated code is valid Java code, we use the
CompilationTestHelper.compile method, which takes an input string and a
lambda. The parameter of the lambda is a Result object (an inner class). In the
lambda, we can use the Result object to perform additional checks. To test the
validity of the generated Java code, we can call the Result.getCompiledClass
method. This method compiles the generated code with the Eclipse Java compiler. If
the Java compiler issues an error, then our test will fail and the JUnit view will show
the compilation errors.

We write the following test (remember that if no parameter is explicitly declared in
the lambda, the special implicit variable it is used):

@Test
def void testGeneratedJavaCodeIsValid() {
 '''
 entity MyEntity {
 string myAttribute;
 }
 '''.compile[getCompiledClass]
 // check that it is valid Java code
}

Testing

[138]

If the getCompiledClass class terminates successfully, it also returns a Java Class
object, which can be used to instantiate the compiled Java class by reflection. This
allows us to test the generated Java class' runtime behavior. We can easily invoke the
created instance's methods through the reflection support provided by the Xtext class
ReflectExtensions. For example (Assert's static methods are imported statically):

@Inject extension ReflectExtensions

@Test
def void testGeneratedJavaCode() {
 '''
 entity E {
 string myAttribute;
 }
 '''.compile[
 getCompiledClass.newInstance => [
 assertNull(it.invoke("getMyAttribute"))
 it.invoke("setMyAttribute", "value")
 assertEquals("value",
 it.invoke("getMyAttribute"))
]
]
}

This method tests (through the getter method) that the attributes are initialized to
null and that the setter method sets the corresponding attribute.

You can test situations when the generator generates several files originating
from a single input. In the Entities DSL, a Java class is generated for each entity,
thus, we can perform checks on each generated Java file by using the Result.
getGeneratedCode(String) method that takes the name of the generated Java class
as an argument and returns its contents. Since the generator for our Entities DSL
should generate the Java class entities.E for an entity named "E", you must specify
the fully qualified name to retrieve the generated code for an entity.

Similarly, we can check that the several generated Java files compile correctly. We
can perform reflective Java operations on all the compiled Java classes using Result.
getCompiledClass(String) specifying the fully qualified name of the generated
Java class:

@Test def void testGeneratedJavaCodeWithTwoClasses() {
 '''
 entity FirstEntity {
 SecondEntity myAttribute;
 }

Chapter 7

[139]

 entity SecondEntity {
 string s;
 }
 '''.compile[
 val FirstEntity =
 getCompiledClass("entities.FirstEntity").newInstance
 val SecondEntity =
 getCompiledClass("entities.SecondEntity").newInstance
 SecondEntity.invoke("setS", "testvalue")
 FirstEntity.invoke("setMyAttribute", SecondEntity)
 SecondEntity.assertSame(FirstEntity.invoke("getMyAttribute"))
 "testvalue".assertEquals
 (FirstEntity.invoke("getMyAttribute").invoke("getS"))
]
}

In particular, in this last example, the first generated Java class depends on the
second generated Java class.

These tests might not be valuable in this DSL, but in more complex DSLs, having
tests which automatically check the runtime behavior of the generated code
enhances productivity.

The getGeneratedCode method assumes that the requested
generated artifact is a Java file. If your DSL generates
other artifacts, such as XML or textual files, you must use
getAllGeneratedResources, which returns a java.util.
Map where the key is the file path of the generated artifact and
the value is its content.

The CompilationTestHelper class runs your DSL validator, but it will call the
generator even if the parsed model is not valid. The output of the generator might
be meaningless in such cases. If you want to make sure that's what you pass to
CompilationTestHelper is a valid input for your DSL, you need to manually check
whether the Result contains validation errors. This is an example of how to do that:

def void testInputWithValidationError() {
 '''
 entity MyEntity {
 // missing ;
 string myAttribute
 }
 '''.compile [
 val allErrors = getErrorsAndWarnings.filter[severity ==
Severity.ERROR]

Testing

[140]

 if (!allErrors.empty) {
 throw new IllegalStateException(
 "One or more resources contained errors : " +
 allErrors.map[toString].join(", ")
);
 }
]
}

If you run this test it will fail, since the input contains a parser error.

Test suite
When you write several JUnit classes, it becomes uncomfortable to run them
individually. You can run all the Xtend tests in a package by right-clicking on the
corresponding package in the xtend-gen folder and select Run As | JUnit Test.

If you need more control over the tests that must be run or you want to group some
tests, you can write a JUnit Test Suite. For example, you can write a suite for tests
which are not related to generation as shown in the following Java class:

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith(Suite.class)
@Suite.SuiteClasses({
 EntitiesParsingTest.class,
 EntitiesFormatterTest.class,
 EntitiesValidatorTest.class
})
public class EntitiesNotGeneratorRelatedTests {
}

You can run such suite as a standard JUnit test, and it will run all the test methods in
all the test classes specified in the test suite.

Testing the UI
Most of the mechanisms of a DSL implemented in Xtext can be tested with plain Java
JUnit tests without a UI environment. However, when testing UI features, tests need
a running Eclipse.

Eclipse provides a specific launch configuration, "JUnit Plug-in Test", which executes
JUnit tests with a running Eclipse.

Chapter 7

[141]

Implementing tests for the UI concepts might be tricky, since usually you will need
to write code to set up Eclipse workbench infrastructures such as projects, files, and
so on. Xtext provides some base classes for testing UI concepts, which do most of
the job for you so that you can simply test specific features without having to worry
about the setup steps.

All the UI tests we implement in this section are created in the project org.example.
entities.ui.tests.

The examples in this section do not necessarily represent valuable
tests; they should be seen as starting points for more complex tests
of more complex DSLs.

Testing the content assist
In the Entities DSL, we did not customize the content assist, thus we do not really
need to test it. For more complex DSLs, you want to test that the custom content
assist works as expected, and you want to avoid having to manually check that.
Thus, it is better to learn how to test it right now. To test the content assist, we use
the base class AbstractContentAssistTest.

This class requires org.eclipse.xtext.common.types.ui and
org.eclipse.jdt.core, so you must add them as dependencies
in the MANIFEST.MF of the .ui.tests project. You will then have
to configure the project setting to get rid of the Discouraged Access
warnings as we did when using FormatterTester.

We use the @RunWith and @InjectWith annotations, as we did in
the previous sections but we use the generated UI injector provider
EntitiesUiInjectorProvider (note the "Ui" in the name):

@RunWith(XtextRunner)
@InjectWith(EntitiesUiInjectorProvider)
class EntitiesContentAssistTest extends
 AbstractContentAssistTest {

Then, in the test methods, we can simply use the API of the
AbstractContentAssistTest base class:

•	 newBuilder creates an object to test the content assist
•	 append appends some input text
•	 assertText declares the expected content assist proposals as strings

(there are other assert methods, but this is the only one we will use)

Testing

[142]

Thus, our test class looks like as follows:

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(EntitiesUiInjectorProvider))
class EntitiesContentAssistTest extends
 AbstractContentAssistTest {
 @Test def void testEmptyProgram() {
 newBuilder.assertText("entity")
 }

 @Test def void testSuperEntity() {
 newBuilder.append
 ("entity E extends ").assertText("E")
 }
 @Test def void testSuperEntity2() {
 newBuilder.append("entity A{} entity E extends ").
 assertText("A", "E")
 }

 @Test def void testAttributeTypes() {
 newBuilder.append("entity E { ").
 assertText
 ("E", "boolean", "int", "string", "}")
 }
}

Remember that you must run this class as a "JUnit Plug-in Test".

Let's examine what the preceding tests do:

•	 When the input is empty, we should get "entity" as the only proposal
•	 After an "extends", we should get as proposals the names of the available

entities (with a single entity, we get its own name as the only proposal)
•	 If there are two entities, we get both names as proposals.
•	 After the entity opening curly bracket, we get as proposals all the types

available, but also the closing curly bracket, since an entity can be defined
without attributes.

Chapter 7

[143]

Testing workbench integration
Sometimes you may want to test whether your DSL implementation "integrates"
correctly with the Eclipse workbench. Usually, in these tests you also need a project
in the running Eclipse.

These kinds of tests are called integration tests, since they
test the integration of several software components. In our
case, they test the integration of our DSL implementation
with the Eclipse workbench. Integration tests are expected
to be long running.

In the following example, we want to test whether a project with Entities DSL files
builds correctly without errors.

Xtext provides the base class AbstractWorkbenchTest for testing Eclipse workbench
related operations. In particular, this base class implements @Before and @After
methods so that each @Test method is executed in a clean environment (that is, with
an empty workbench), and the workbench is cleaned after each test (that is, all test
projects are closed and deleted).

Besides that, Xtext provides the classes IResourcesSetupUtil and
JavaProjectSetupUtil with many static utility methods to programmatically create
workspace projects. We will import these static methods as static extension methods
in the Xtend test class.

In our case, before each test we want to create a Java workspace project and add the
Xtext nature to that project (this corresponds to the dialog you get when you first
add an entities file into a project, asking you to convert that project to an Xtext
project); moreover, we also add entities-gen as a source folder. The ID of Xtext
nature is retrieved using the XtextProjectHelper class.

We then write a reusable method which:

•	 Creates an entities file in the workspace project with the specified contents
•	 Waits for Eclipse to build the project
•	 Checks whether there are error markers related to the entities file.

All these operations use the utility methods of the two preceding mentioned classes
(the error markers are retrieved using the standard Eclipse API):

import static org.junit.Assert.*
import static extension org.eclipse.xtext.junit4.ui.util.
JavaProjectSetupUtil.*

Testing

[144]

import static extension org.eclipse.xtext.junit4.ui.util.
IResourcesSetupUtil.*

class EntitiesWorkbenchTest extends AbstractWorkbenchTest {

 val TEST_PROJECT = "mytestproject"

 @Before
 override void setUp() {
 super.setUp
 createJavaProjectWithXtextNature
 }

 def void createJavaProjectWithXtextNature() {
 createJavaProject(TEST_PROJECT) => [
 getProject().addNature
 (XtextProjectHelper.NATURE_ID)
 addSourceFolder("entities-gen")
]
 }

 def void checkEntityProgram(String contents,
 int expectedErrors) {
 val file = createFile(TEST_PROJECT +
 "/src/test.entities", contents)
 waitForBuild();
 assertEquals(expectedErrors,
 file.findMarkers(EValidator.MARKER, true,
 IResource.DEPTH_INFINITE).size);
 }

Now, we can write two test methods to check that for a valid entities file there is no
error marker and that for a non-valid entities file we get an error marker:

 @Test
 def void testValidProgram() {
 checkEntityProgram("entity E {}", 0)
 }

 @Test
 def void testNotValidProgram() {
 checkEntityProgram("foo", 1)
 }

Chapter 7

[145]

We did not use any injection mechanisms in the test. Indeed, we only
manipulate Eclipse concepts (such as projects, files, and so on); thus,
we do not need direct access to classes of our DSL implementation.
Xtext is executing in the background while we programmatically
create projects and files in the Eclipse test workbench.

Testing the editor
There are situations where you may want to perform specific test operations
with the editor of your DSL. The test class in this case should derive from
AbstractEditorTest (which in turn derives from AbstractWorkbenchTest). This
base class provides utility methods to programmatically open an Eclipse editor on a
file in the workbench (represented by IFile). The base class AbstractEditorTest
requires us to implement the method getEditorId to return the ID of the editor of
the DSL we want to test; the setup methods are similar to EntitiesWorkbenchTest,
so we omit them here:

class EntitiesEditorTest extends AbstractEditorTest {

 ... as in EntitiesWorkbenchTest

 override protected getEditorId() {
 "org.example.entities.Entities"
 }

 def createTestFile(String contents) {
 createFile(TEST_PROJECT +
 "/src/test.entities", contents)
 }

 @Test
 def void testEntitiesEditor() {
 createTestFile("entity E {}").openEditor
 }

The code also shows a first test, which checks that we can open an editor for our
DSL. Note that openEditor returns an instance of XtextEditor, which can be used
to access (and possibly to modify) the editor contents, as shown in the next section.

Testing

[146]

Learning Tests
When developing your DSL, you may want to add further features in the IDE which
are not covered by the Xtext framework itself; for example, you may want to add
context menus for the editor of your DSL that perform some actions on the contents
of the editor and possibly change the contents. As we saw in Chapter 6, Customizing
Xtext Components, Xtext already adds menus such as "Format" and mechanisms such
as quickfixes. In order to do that, you must learn the API of Eclipse editors and, in
particular, of XtextEditor, which specializes the standard Eclipse text editor.

A nice way of learning a new API is to write Learning Tests (see the book Beck 2002);
these tests basically verify that the API works as expected. Thus, in the rest of this
section, we write some tests which allow us to learn how to use the XtextEditor
API. Note that, besides making you learn how to use this API, these tests will also
guarantee that if that API changes in a non-backward compatible way in the future,
we will realize that since these tests will fail.

The actual text edited by an Eclipse editor is stored in an IDocument instance and can
be retrieved as a String using the get method (we have already used this in Chapter
4, Validation, when implementing quickfixes). This works also with XtextEditor, as
shown by following test, which only checks that the editor's text is exactly the same
as stored in the test file:

@Test
def void testEntitiesEditorContents() {
 "entity E {}".assertEquals(
 createTestFile("entity E {}").
 openEditor.document.get)
}

Usually, you will not need the string text, you will need the parsed EMF model.
The class XtextEditor uses a specialization of IDocument, IXtextDocument, which
provides access to the underlying parsed EMF model. However, in an Eclipse
workbench, the access to the EMF model underlying an edited program must be
performed in a "synchronized" way, since there are concurrent components running
in different threads accessing such model (both UI components, like the editor itself,
and non UI components, such as the parser and validator). Thus, for example, if you
open an Xtext editor and you need the parsed EMF model, you will have to wait for
the editor's text to be parsed. Similarly, if you want to modify the underlying model,
you will have to wait until there are no other threads that are using it. This is also
due to the fact that EMF has no support for concurrent threads.

Chapter 7

[147]

The EMF model of an Xtext editor's document can be accessed using the method
readOnly; this method takes as an argument a lambda with a parameter of type
XtextResource (a specialized EMF resource). We can retrieve the model from the
passed XtextResource. When the body of the lambda is executed, there will be no
other concurrent threads accessing the EMF resource. Thus, within the body of the
lambda, the access to the model is guaranteed to be synchronized. This learning test
reads the EMF model corresponding to the editor contents, retrieves the entity, and
checks that its name is as expected:

@Test
def void testEntitiesEditorContentsAsModel() {
 "E".assertEquals(
 createTestFile("entity E {}").
 openEditor.document.readOnly [
 // 'it' is an XtextResource
 contents.get(0) as Model
].entities.get(0).name
)
}

The lambda passed to readOnly can return any type (Xtend will infer it). In the
preceding test, the return type of the lambda is Model.

The .tests.ui project of a DSL does not have the runtime
project as dependency. If you need to use the EMF model types
of your DSL, you need to explicitly add such dependency. In
this example, you need to add org.example.entities as
dependency of the project org.example.entities.ui.tests.

Similarly, we can access and modify the EMF model using the method modify and
passing a lambda. The synchronization, in case of a modification, will also ensure
that after the underlying model is modified, all the other components (such as the
parser and validator) will be notified.

The following test creates a test file with a single entity, E, and then modifies the
EMF model by adding another entity, Added, which extends E; it then checks that the
editor string contents have been updated accordingly:

@Test
def void testChangeContents() {
 val editor = createTestFile("entity E {}").openEditor

 editor.document.modify [
 val model = (contents.get(0) as Model)
 val currentEntity = model.entities.get(0)

Testing

[148]

 model.entities +=
 EntitiesFactory.eINSTANCE.createEntity => [
 name = "Added"
 superType = currentEntity
]
]
 '''
 entity E {}

 entity Added extends E {
 }
 '''.toString.assertEquals(editor.document.get)
}

Note that the resulting editor's text corresponding to the entity we added
programmatically is formatted according to the formatter we implemented in
Chapter 6, Customizing Xtext Components. In that chapter, we also saw that the
formatter is automatically triggered when selecting the quickfix provider based
on semantic modification. Indeed, quickfix provider implementations are also
automatically executed in a synchronous way.

Although the tests for the editor shown in this section are learning tests, they should
give you an idea of how the Xtext editor API works.

Both readOnly and modify take a IUnitOfWork as an argument. This interface
defines a single method exec with a single generic parameter. Since this is a Single
Abstract Method (SAM) type (introduced in Chapter 3, Working with the Xtend
Programming Language), you can pass a lambda as argument. There is a specialization
of IUnitOfWork called CancelableUnitOfWork whose exec abstract method also
takes a CancelIndicator as argument. We have already seen the CancelIndicator
class in Chapter 5, Code Generation. This is useful if the unit of work performs
many operations: you can periodically query the CancelIndicator object, and
if other Xtext components has requested a cancel operation you should interrupt
your operations as well. For example, you may want to implement a modify
operation that has to perform several changes on the model. While performing such
modification, the user can type something in the editor and this invalidates the
model and you will be notified that the modification operation should be canceled.

Chapter 7

[149]

Testing the outline
In the Entities DSL, we customized the Outline view. To test the Outline, we use the
base class AbstractOutlineTest. This class extends AbstractEditorTest, so we
must implement the method getEditorId to return the ID of our editor as we did
in the previous sections. We then use the assertAllLabels method that takes two
arguments: the input program and the expected string representation of the outline.
This method creates a string representation of the outline tree, indenting the children
and then compares that with the passed expected representation. This also allows
us to test that the label provider works as expected, since the the label provider is
implicitly used for representing the labels of the outline tree. We can then test the
outline simply as follows:

@RunWith(XtextRunner)
@InjectWith(EntitiesUiInjectorProvider)
class EntitiesOutlineTest extends AbstractOutlineTest {

 override protected getEditorId() {
 "org.example.entities.Entities"
 }

 @Test
 def void testOutline() {
 '''
 entity E1 {
 string s;
 int i;
 }

 entity E2 {}
 '''.assertAllLabels(
 '''
 E1
 s : string
 i : int
 E2
 '''
)
 }
}

Testing

[150]

Other testing frameworks
In this section, we briefly describe some other testing frameworks that you can use to
test several aspects of an Xtext DSL. The treatment of these frameworks is out of the
scope of this book.

An interesting framework for testing XtextDSLs is Xpect (http://www.xpect-tests.
org). Xpect aims at reducing the effort of writing the tests, by stating assertions in a
more expressive way.

The UI tests, we saw in the previous sections, do not test the actual operations that
a user can perform in the IDE, like, for example, selecting a menu, right-clicking
on an item and selecting a context menu, interacting with a dialog, and so on. The
tests that confirm that a system does what the users are expecting it to are called
Functional Tests.

The most known functional testing frameworks in the Eclipse context are SWTBot
(http://www.eclipse.org/swtbot), Jubula (http://www.eclipse.org/jubula),
and RCP Testing Tool (http://www.eclipse.org/rcptt). Other frameworks
(free, open source, or commercial) are briefly described at this URL—http://wiki.
eclipse.org/Eclipse/Testing.

Testing and modularity
One of the nice advantages of TDD is that it forces you to write modular code; it
is not easy to test code that is not modular. Thus, either you give up on testing (an
option, which I hope you will never consider) or you decouple modules to easily test
them. If you did not adopt this methodology from the beginning, remember that it
is always possible to refactor the code to make it more modular and more testable.
Thus, TDD and modular/decoupled design go hand in hand and drive quality; well
designed modular code is easier to test and well-tested code has a known quality.

When evaluating whether to accept this programming methodology, you should also
take into consideration that testing UI aspects is usually harder. Thus, you should try
to isolate the code that does not depend on a running Eclipse. Fortunately, in a DSL
implementation this is easy.

Let's consider the quickfix provider we implemented in Chapter 4, Validation, which
adds the missing referred entity; we show that here again for convenience:

@Fix(Diagnostic.LINKING_DIAGNOSTIC)
def void createMissingEntity(Issue issue,
 IssueResolutionAcceptor acceptor) {
 acceptor.accept(issue,
 "Create missing entity",

http://www.xpect-tests.org
http://www.xpect-tests.org
http://www.eclipse.org/swtbot
http://www.eclipse.org/jubula
http://www.eclipse.org/rcptt
http://wiki.eclipse.org/Eclipse/Testing
http://wiki.eclipse.org/Eclipse/Testing

Chapter 7

[151]

 "Create missing entity",
 "Entity.gif",
 [EObject element, IModificationContext context |
 val currentEntity =
 element.getContainerOfType(Entity)
 val model = currentEntity.eContainer as Model
 model.entities.add(model.entities.indexOf(currentEntity)+1,
 EntitiesFactory.eINSTANCE.createEntity() => [
 name =
 context.xtextDocument.get(issue.offset, issue.length)
]
)
]
);
}

Testing the quickfix provider is not straightforward. However, what we would really
like to test here is that the desired entity is added in the right place in the model; this
has nothing to do with the quickfix provider itself.

The manipulation of the EMF model does not need any IDE feature; thus, we can
isolate that in a utility class' static method, for example:

class EntitiesModelUtil {
 def static addEntityAfter(Entity entity,
 String nameOfEntityToAdd) {
 val model = entity.eContainer as Model
 EntitiesFactory.eINSTANCE.createEntity() => [
 name = nameOfEntityToAdd
 model.entities.add
 (model.entities.indexOf(entity)+1, it)
]
 }
}

Manipulating an EMF model is easy using the EMF API, but when the operations to
perform on the model are complex, it is crucial to test them. Now that the code that
modifies the EMF model is in a method that is independent from the UI, it is easy to
test the insertion of an entity in the expected position:

class EntitiesModelUtilTest {
 val factory = EntitiesFactory.eINSTANCE

 @Test
 def void testAddEntityAfter() {
 val e1 = factory.createEntity => [name = "First"]

Testing

[152]

 val e2 = factory.createEntity => [name = "Second"]
 val model = factory.createModel => [
 entities += e1
 entities += e2
]

 EntitiesModelUtil.addEntityAfter(e1, "Added").
 assertNotNull
 3.assertEquals(model.entities.size)
 "First".assertEquals(model.entities.get(0).name)
 "Added".assertEquals(model.entities.get(1).name)
 "Second".assertEquals(model.entities.get(2).name)
 }
}

This checks that the new entity is inserted right after the desired existing entity, that
is, between First and Second.

Now, we can also test that this code can be executed with an EMF model underlying
an Xtext editor:

class EntitiesEditorTest extends AbstractEditorTest {
 … as in the preceding code
@Test
def void testAddEntity() {
 val editor = createTestFile(
 '''
 entity E1 {}

 entity E2 {}
 ''').openEditor

 editor.document.modify [
 EntitiesModelUtil.addEntityAfter(
 (contents.get(0) as Model).entities.get(0),
 "Added")
]
 '''
 entity E1 {}

 entity Added {
 }

 entity E2 {}
 '''.toString.assertEquals(editor.document.get)
}

Chapter 7

[153]

This shows that our method for adding an entity works also in the context of an
Xtext editor and that its contents get updated consistently.

Now, we can refactor our quickfix provider method as follows:

@Fix(Diagnostic.LINKING_DIAGNOSTIC)
def void createMissingEntity(Issue issue,
 IssueResolutionAcceptor acceptor) {
 acceptor.accept(issue,
 "Create missing entity", // label
 "Create missing entity", // description
 "Entity.gif", // icon
 [EObject element, IModificationContext context |
 EntitiesModelUtil.addEntityAfter(
 element.getContainerOfType(Entity),
 context.xtextDocument.get(issue.offset, issue.length)
)
]
)
}

We can safely assume that this quickfix provider will work, since it depends on
concepts that we have already tested in isolation. We could retrieve the name of the
entity to add in the wrong way, but that would be easier to spot in the preceding
code than in the original implementation of the quickfix provider.

Clean code
Keeping your code clean (see the books Martin 2008, 2011) is important for
the development of software and this includes modularity, readability, and
maintainability. Xtext provides many features to keep your DSL implementation
clean and modular, thanks to its decomposition into many customizable aspects.
Xtend extremely enhances the ability to write clean code thanks to its syntax and its
features such as lambda expressions and extension methods. In this book, we will
put much effort into writing clean code when implementing a DSL; in particular, we
will try to write small methods and to factor common code into reusable methods.

Tests must be clean as well, since they are part of the development cycle, and they
will have to be modified often. Remember that tests also provide documentation,
thus they must be easily readable. In this chapter, we tried to write small test
methods by relying on reusable utility methods and classes. Note that writing small
methods does not necessarily mean writing a few lines of code; for example, when
we want to compare generated code, we need to embed the expectation in the test
method. However, the number of expressions/statements is kept to the minimum,
and the meaning of the test should be easily understood.

Testing

[154]

Summary
In this chapter, we introduced unit testing for languages implemented with Xtext.
Being able to test most of the DSL aspects without having to start an Eclipse
environment, really speeds up development.

TDD is an important programming methodology that helps you make your
implementations more modular, more reliable, and resilient to changes of the
libraries used by your code.

In the next chapter, we will implement a DSL based on expressions. In spite of
the apparent simplicity, parsing and checking expressions is not that simple,
since arithmetic and boolean expressions are inherently recursive, and dealing
with recursion always requires some additional attention and effort. We will also
implement a type system to check that expressions are well typed. Finally, we will
implement an interpreter for these expressions.

[155]

An Expression Language
In this chapter, we will implement a DSL for expressions, including arithmetic,
boolean, and string expressions. We will do that incrementally and in a test-driven
way. Since expressions are by their own nature recursive, writing a grammar for
this DSL requires some additional efforts, and this allows us to discover additional
features of Xtext grammars.

You will also learn how to implement a type system for a DSL to check that
expressions are correct with respect to types, for example, you cannot add an integer
and a boolean. We will implement the type system so that it fits the Xtext framework
and integrates correctly with the corresponding IDE tooling.

Finally, we will implement an interpreter for these expressions. We will use this
interpreter to write a simple code generator that creates a text file with the evaluation
of all the expressions of the input file, and also to show the evaluation of an
expression in the editor.

This chapter will cover the following topics:

•	 Additional details on Xtext grammars
•	 Dealing with left recursion in an Xtext grammar
•	 Writing a small type system for expressions
•	 Writing an interpreter
•	 Some hints on fine tuning a DSL implementation

An Expression Language

[156]

The Expressions DSL
In the DSL we develop in this chapter, which we call Expressions DSL, we
want to accept input programs consisting of the following statements: variable
declarations with an initialization expression and evaluations of expressions.
Variable declarations have the shape var name = exp and evaluation statements
have the shape eval exp. Expressions can refer to variables and can perform
arithmetic operations, compare expressions, use logical connectors (and and or), and
concatenate strings. We will use + both for representing arithmetic addition and for
string concatenation. When used with strings, the + will also have to automatically
convert integers and Booleans occurring in such expressions into strings.

Here is an example of a program that we want to write with this DSL:

var i = 0
var j = (i > 0 && 1 < (i+1))
var k = 1
eval j || true
eval "a" + (2 * (3 + 5)) // string concatenation
eval (12 / (3 * 2))

For example, "a" + (2 * (3 + 5)) should evaluate to the string "a16".

Creating the project
First of all, we will use the Xtext project wizard to create the projects for our
DSL (following the same procedure explained in Chapter 2, Creating Your First
Xtext Language).

Start Eclipse and perform the following steps:

1.	 Navigate to File | New | Project..., and in the dialog, navigate to the
Xtext category and click on Xtext Project.

2.	 In the next dialog, provide the following values:
°° Project name: org.example.expressions
°° Name: org.example.expressions.Expressions
°° Extensions: expressions

3.	 Press Finish.
4.	 The wizard will create several projects, and it will open the Expressions.

xtext file, which is the grammar definition.

Chapter 8

[157]

Digression on Xtext grammar rules
Before writing the Xtext grammar for the Expressions DSL, it is important to spend
some time to understand how the rules in an Xtext grammar and the corresponding
EMF model generated for the AST are related.

From the previous chapters, we know that Xtext, while parsing the input program,
will create a Java object corresponding to the used grammar rule. Let's go back to our
Entities DSL example and consider the rule:

Entity:
 'entity' name = ID ('extends' superType=[Entity])? '{'
 attributes += Attribute*
 '}' ;

When the parser uses this rule, it will create an instance of the Entity class
(that class has been generated by Xtext during the MWE2 workflow). However, the
actual creation of such an instance will be deferred to the first assignment to a feature
of the rule; in this example, no object will be created when the input only contains
entity; the object will be created as soon as a name is specified, for example,
when the input contains entity A. This happens because such an ID is assigned
to the feature name in the rule. This is reflected in the outline view, as shown in the
following two screenshots:

This also means that the created Entity object is not "complete" at this stage, that
is, when only a part of the rule has been applied. That is why when writing parts of
the DSL implementation, for example, the validator, the UI customizations, and so
on, you must always take into consideration that the model you are working on may
have some features set to null.

An Expression Language

[158]

The actual creation of the object of the AST can be made explicit by the programmer
using the notation {type name} inside the rule; for example:

Entity:
 'entity' {Entity} name = ID ('extends' superType=[Entity])? '{'
 attributes += Attribute*
 '}' ;

If you change the rule as shown, then an Entity object will be created as soon as the
entity keyword has been parsed, even if there has not been a feature assignment.

In the examples we have seen so far, the type of the object corresponds to the rule name;
however, the type to instantiate can be specified using returns in the rule definition:

A returns B:
 ... rule definition ...
;

In this example, the parser will create an instance of B. A is simply the name of the
rule, and there will be no generated A class. Indeed, the shape of the rule definitions
we have used so far is just a shortcut for:

A returns A:
 ... rule definition ...
;

That is, if no returns is specified, the type corresponds to the name of the rule.

Moreover, the returns statement and the explicit {type name} notation can
be combined:

A returns B:
 ... {C} ... rule definition ...
;

In this example, the parser will create an instance of C (and the class C is generated
as a subclass of B). However, the object returned by the rule will have type B. Also in
this case, there will be no generated A class.

The Xtext editor highlights rule's name and rule's type differently—the types are in
italic font.

When defining a cross-reference in the grammar, the name
enclosed in square brackets refers to a type, not to a rule's name,
unless they are the same.

When writing the grammar for the Expressions DSL, we will use these features.

Chapter 8

[159]

The grammar for the Expressions DSL
The DSL that we want to implement in this chapter should allow us to write lines
containing either a variable declaration consisting of the keyword "var", an identifier
and an initialization expression (the angle brackets denote non-terminal symbols):

var <ID> = <Expression>

Or the evaluation of an expression, consisting of the keyword "eval" and the
expression to evaluate:

eval <Expression>

If we write something as follows:

ExpressionsModel:
 variables += Variable*
 evaluations += EvalExpression*
;

We will not be able to write a program where variables and evaluations can be
defined in any order; we can only write variables first and then evaluations.

To achieve the desired flexibility, we introduce an abstract class for both variable
declarations and evaluations; then, our model will consist of a (possibly empty)
sequence of such abstract elements.

For the moment, we consider a very simple kind of expression—integer constants.
These are the first rules (we skip the initial declaration parts of the grammar):

ExpressionsModel:
 elements += AbstractElement*;

AbstractElement:
 Variable | EvalExpression ;

Variable:
 'var' name=ID '=' expression=Expression;

EvalExpression:
 'eval' expression=Expression;

Expression:
 value=INT;

An Expression Language

[160]

The generated EMF classes for Variable and EvalExpression will be subclasses of
AbstractElement.

Since both the rule Variable and the rule EvalExpression
have the feature expression of the same type (Expression),
then the generated class AbstractElement will have the
corresponding field Expression expression inherited by the
two generated subclasses.

We are ready to write the first tests for this grammar. This chapter assumes that you
fully understood the previous chapter about testing; thus, the code for testing we
show here should be clear:

import static extension org.junit.Assert.*

@RunWith(XtextRunner)
@InjectWith(ExpressionsInjectorProvider)
class ExpressionsParsingTest {

 @Inject extension ParseHelper<ExpressionsModel>

 @Test def void testEvalExpression() {
 "eval 10".parse.assertNotNull
 }

 @Test def void testVariable() {
 "var i = 10".parse.assertNotNull
 }
}

These methods test that both variable declarations and expressions can be parsed.

We now continue adding rules. We want to parse string and boolean constants
besides integer constants.

We could write a single rule for all these constant expressions:

Expression:
 (intvalue=INT)|
 (stringvalue=STRING)|
 (boolvalue=('true'|'false'));

Chapter 8

[161]

But, this would not be good. It is generally not a good idea to have constructs that
result in a single class that represents multiple language elements, since later when
we are performing validation and other operations, we cannot differentiate on class
alone and instead have to inspect the corresponding fields.

It is much better to write a separate rule for each element as shown in the following
code snippet, and this will lead to the generation of separate classes:

Expression:
 IntConstant | StringConstant | BoolConstant;

IntConstant: value=INT;
StringConstant: value=STRING;
BoolConstant: value=('true'|'false');

Note that, although IntConstant, StringConstant and BoolConstant will all
be subclasses of Expression, the field value will not be part of the Expression
superclass; for IntConstant, the field value will be of type integer; while for the
other two, it will be of type string. Thus, it cannot be made common.

At this point, you must run the MWE2 workflow, and make sure that the previous
tests still run successfully; then, you should add additional tests for parsing a
string constant and a boolean constant (this is left as an exercise). We can write the
aforementioned rules in a more compact form, using the {type name} notation that
we introduced in the previous section, Digression on Xtext grammar rules:

Expression:
 {IntConstant} value=INT |
 {StringConstant} value=STRING |
 {BoolConstant} value=('true'|'false');

Again, run the workflow and make sure the tests still pass.

We add a rule, which accepts a reference to an existing variable as follows:

Expression:
 {IntConstant} value=INT |
 {StringConstant} value=STRING |
 {BoolConstant} value=('true'|'false') |
 {VariableRef} variable=[Variable];

To test this last modification, we need an input with a variable declaration and an
expression that refers to that variable:

@Test def void testVariableReference() {

'''

An Expression Language

[162]

 var i = 10
 eval i
 '''.parse => [
 (elements.last.expression as VariableRef).variable.
 assertSame(elements.head)
]
}

Note that we also test that the variable reference actually corresponds to the declared
variable; assertSame comes from org.junit.Assert, whose static methods have
been imported as extension methods.

Left recursive grammars
When moving on to more complex expressions, such as addition, we need to write a
recursive rule since the left and right parts of an addition are expressions themselves.
It would be natural to express such a rule as follows:

Expression:
 ... as above
 {Plus} left=Expression '+' right=Expression;

However, this results in an error from the Xtext editor as shown in the
following screenshot:

Chapter 8

[163]

Xtext uses a parser algorithm that is suitable for interactive editing due to its better
handling of error recovery. Unfortunately, this parser algorithm does not deal with
left recursive rules. A rule is left recursive when the first symbol of the rule is non-
terminal and refers to the rule itself. The preceding rule for addition is indeed left
recursive and is rejected by Xtext. Note that a rule can also be left recursive via
multiple rule calls without any token consumption.

Xtext generates an ANTLR parser (see the book Parr 2007), which
relies on an LL(*) algorithm; we will not go into detail about
parsing algorithms; we refer the interested reader to the book
Aho et al, 2007. Such parsers have nice advantages concerning
debugging and error recovery, which are essential in an IDE to
provide a better feedback to the programmer. However, such
parsers cannot deal with left-recursive grammars.

The good news is that we can solve this problem; the bad news is that we have to
modify the grammar to remove the left recursion using a transformation referred
to as left factoring.

The parser generated by ANTLR cannot handle left recursion since it relies on a
top-down strategy. Bottom-up parsers do not have this problem, but they would
require handling operator precedence (which determines which sub-expressions
should be evaluated first in a given expression) and associativity (which determines
how operators of the same precedence are grouped in the absence of parentheses).
As we will see in this section, left factoring will allow us to implicitly define operator
precedence and associativity.

We remove the left recursion using a standard technique: we introduce a rule for
expressions which are atomic, and we state that an addition consists of a left part,
which is an atomic expression, and an optional right part, which is recursively an
expression (note that the right recursion does not disturb the ANTLR parser):

Expression:
 {Plus} left=Atomic ('+' right=Expression)?;

Atomic returns Expression:
 {IntConstant} value=INT |
 {StringConstant} value=STRING |
 {BoolConstant} value=('true'|'false') |
 {VariableRef} variable=[Variable];

An Expression Language

[164]

Remember that the rule name is Atomic, but objects in the AST created by this
rule will be of type IntConstant, StringConstant, and so on, according to the
alternative used (indeed, no Atomic class will be generated from the preceding rule).
Statically, these objects will be considered of type Expression, and thus the left
and right fields in the Plus class will be of type Expression.

The preceding solution still has a major drawback, that is, additional useless nodes will
be created in the AST. For example, consider an atomic expression such as a variable
reference; when the atomic expression is parsed using the preceding rule, the AST will
consist of a Plus object where the VariableRef object is stored in the left feature:

This indirection tends to be quite disturbing. For instance, the previous test method
testVariableReference will now fail due to a ClassCastException.

What we need is a way of telling the parser to:

•	 Try to parse an expression using the Atomic rule
•	 Search for an optional + followed by another expression
•	 If the optional part is not found, then the expression is the element parsed

with the Atomic rule
•	 Otherwise, instantiate a Plus object where left is the previously parsed

expression with Atomic and right is the expression parsed after the +

All these operations can be expressed in an Xtext grammar as follows:

Expression:
 Atomic ({Plus.left=current} '+' right=Expression)? ;

The {Plus.left=current} part is an assigned action (which is similar to a tree
rewrite action in Antlr), and it does what we want: if the part (...)? can be parsed,
then the resulting tree will consist of a Plus object where left is assigned the
subtree previously parsed by the Atomic rule and right is assigned the subtree
recursively parsed by the Expression rule.

Now, the test method testVariableReference can go back to its original form,
since parsing an atomic expression does not result in an additional Plus object.

Chapter 8

[165]

Associativity
Associativity instructs the parser how to build the AST when there are several infix
operators with the same precedence in an expression. It will also influence the order
in which elements of the AST should be processed in an interpreter or compiler.

What happens if we try to parse something like 10 + 5 + 1? The parsing rule
invokes the rule for Expression recursively; the rule is right recursive, and thus we
expect the preceding expression to be parsed in a right-associative way, that is, 10 +
5 + 1 will be parsed as 10 + (5 + 1). In fact, the optional part (...)? can be used
only once; thus, the only way to parse 10 + 5 + 1 is to parse 10 with the Atomic
rule and the rest with the optional part:

If, on the contrary, we write the rule as follows:

Expression:
 Atomic ({Plus.left=current} '+' right=Atomic)* ;

We will get left associativity, that is, 10 + 5 + 1 will be parsed as (10 + 5) +
1. In fact, the optional part (...)* can be used many times; thus, the only way
to parse 10 + 5 + 1 is to apply that part twice (note that right=Atomic and not
right=Expression as in the previous section).

An Expression Language

[166]

It is important to check that the associativity of the parsed expressions is as expected.
A simple way to check the result of associativity is to generate a string representation
of the AST where nonatomic expressions are enclosed in parentheses.

def private String stringRepr(Expression e) {
 switch (e) {
 Plus:
 '''(«e.left.stringRepr» + «e.right.stringRepr»)'''
 IntConstant: '''«e.value»'''
 StringConstant: '''«e.value»'''
 BoolConstant: '''«e.value»'''
 VariableRef: '''«e.variable.name»'''
 }.toString
}

Then, we write a method assertRepr(input,expected) that checks that the
associativity of the input corresponds to the expected representation:

def private assertRepr(CharSequence input, CharSequence expected) {
 ("eval " + input).parse => [
 expected.assertEquals(
 elements.last.expression.stringRepr
)
]
}

We will use this method in the rest of the section to test the associativity of
expressions. For instance, for testing the associativity of an addition, we write:

@Test def void testPlus() {
 "10 + 5 + 1 + 2".assertRepr("(((10 + 5) + 1) + 2)")
}

We add a rule for parsing expressions in parentheses:

Atomic returns Expression:
 '(' Expression ')' |
 {IntConstant} value=INT |
 ... as above

Note that the rule for parentheses does not perform any assignment to features; thus,
given the parsed text (exp) the AST will contain a node for exp, not for (exp). This
can be verified by this test:

@Test def void testParenthesis() {
 10.assertEquals(
 ("eval (10)".parse.elements.head.expression as IntConstant).value)
}

Chapter 8

[167]

Although parentheses will not be part of the AST, they will influence the structure
of the AST:

@Test def void testPlusWithParenthesis() {
 "(10 + 5) + (1 + 2)".assertRepr("((10 + 5) + (1 + 2))")
}

For the sum operator, left associativity and right associativity are equivalent, since
sum is an associative operation. The same holds for multiplication (with the possible
exception of overflows or loss of precision that depends on the order of evaluation).
This does not hold for subtraction and division. In fact, how we parse and then evaluate
such operations influences the result: (3 – 2) – 1 is different from 3 – (2 – 1).

In these cases, you can disable associativity using this pattern for writing the
grammar rule:

Expression:
 Atomic ({Operation.left=current} '-' right=Atomic)? ;

In fact the ? operator (instead of *) does not allow to parse an Atomic on the right more
than once. This way, the user will be forced to explicitly use grouping expressions for
the operations with no associativity when there are more than two operands.

The alternative solution is to choose an associativity strategy for the parser and
implement the evaluator accordingly. Typically arithmetic operations are parsed
and evaluated in a left-associative way, as, for example, in Java. We prefer this
solution since users will get no surprises with this default behavior. Of course,
parentheses can always be used for grouping. We modify the grammar for dealing
with subtractions; we want to use a dedicated class for a subtraction expression, for
example, Minus. We then modify the rule for Expression as follows:

Expression:
 Atomic (
 ({Plus.left=current} '+' | {Minus.left=current} '-')
 right=Atomic
)* ;

Note that the assigned action inside the rule is selected according to the parsed
operator. Though we are not doing that in this section, you should write a test with
a subtraction operation; of course, you must also update the stringRepr utility
method for handling the case for Minus.

An example of right associative operator is the exponentiation operator, that is,
2**3**4 = 2**(3**4), which is different from (2**3)**4. Another example is the
assignment operator; as we will see in Chapter 9, Type Checking, a nested assignment
a = b = c must be parsed as a = (b = c).

An Expression Language

[168]

Precedence
We can write the case for addition and subtraction in the same rule because they
have the same arithmetic operator precedence. If we add a rule for multiplication and
division, we must handle their precedence with respect to addition and subtraction.

To define the precedence, we must write the rule for the operator with less
precedence in terms of the rule for the operator with higher precedence. This
means that in the grammar, the rules for operators with less precedence are defined
first. Since multiplication and division have higher precedence than addition and
subtraction, we modify the grammar as follows:

Expression: PlusOrMinus;

PlusOrMinus returns Expression:
 MulOrDiv (
 ({Plus.left=current} '+' | {Minus.left=current} '-')
 right=MulOrDiv
)* ;

MulOrDiv returns Expression:
 Atomic (
 ({MulOrDiv.left=current} op=('*'|'/'))
 right=Atomic
)* ;

In the preceding rules, we use returns to specify the type of the created objects;
thus, the features left and right in the corresponding generated Java classes will be
of type Expression.

We added a main rule for Expression, which delegates to the first rule to start
parsing the expression. Remember that this first rule (at the moment, PlusOrMinus)
concerns the operators with lowest precedence. There will be no class called
PlusOrMinus since only objects of class Plus and Minus will be created by this rule.
On the contrary in the rule MulOrDiv, we create objects of class MulOrDiv. In this
rule, we also chose another strategy: we have a single object type, MulOrDiv, both for
multiplication and division expressions. After parsing, we can tell between the two
using the operator, which is saved in the feature op. Whether to have a different class
for each expression operator or group several expression operators into one single
class is up to the developer. Both strategies have their advantages and drawbacks, as
we will see in the next sections.

Chapter 8

[169]

We now test the precedence of these new expressions:

@Test def void testPlusMulPrecedence() {
 "10 + 5 * 2 - 5 / 1".assertRepr("((10 + (5 * 2)) - (5 / 1))")
}

def stringRepr(Expression e) {
 switch (e) {
 Plus:
 '''(«e.left.stringRepr» + «e.right.stringRepr»)'''
 Minus:
 '''(«e.left.stringRepr» - «e.right.stringRepr»)'''
 MulOrDiv:
 '''(«e.left.stringRepr» «e.op» «e.right.stringRepr»)'''
... as before

Now, we add boolean expressions and comparison expressions to the DSL. Again,
we have to deal with their precedence, which is as follows, starting from the ones
with less precedence:

1.	 boolean or (operator ||)
2.	 boolean and (operator &&)
3.	 equality and dis-equality (operators == and !=, respectively)
4.	 comparisons (operators <, <=, >, and >=)
5.	 addition and subtraction
6.	 multiplication and division

Following the same strategy for writing the grammar rules, we end up with the
following expression grammar:

Expression: Or;

Or returns Expression:
 And ({Or.left=current} "||" right=And)* ;

And returns Expression:
 Equality ({And.left=current} "&&" right=Equality)* ;

Equality returns Expression:
 Comparison (
 {Equality.left=current} op=("=="|"!=")
 right=Comparison
)* ;

An Expression Language

[170]

Comparison returns Expression:
 PlusOrMinus (
 {Comparison.left=current} op=(">="|"<="|">"|"<")
 right=PlusOrMinus
)* ;

... as before

When writing tests for these new expressions, we need to test the correct precedence
for the new operators both in isolation and in combination with other expressions
(remember to update the stringRepr method to handle the new classes). We leave
these tests as an exercise; they can be found in the sources of the examples. While
adding rules for new expressions, we also added test methods in our parser test
class, and we run all these tests each time; this will not only ensure that the new rules
work correctly, but also that they do not break existing rules.

As a final step, we add a rule for boolean negation (operator "!"); this operator has
the highest precedence among all the operators seen so far. Therefore, we can simply
add a case in the Atomic rule:

Atomic returns Expression:
 '(' Expression ')' |
 {Not} "!" expression=Atomic |
 ... as before

We can now write a test with a complex expression and check that the parsing takes
place correctly:

@Test def void testPrecedences() {
 "!true||false&&1>(1/3+5*2)".
 assertRepr
 ("((!true) || (false && (1 > ((1 / 3) + (5 * 2)))))")
}

Now might be a good time to refactor the rule Atomic, since it includes cases that are
not effective atomic elements. We introduce the rule Primary for expressions with
the highest priority the rule MulOrDiv is refactored accordingly:

MulOrDiv returns Expression:
 Primary (
 {MulOrDiv.left=current} op=('*'|'/')
 right=Primary
)*
;

Chapter 8

[171]

Primary returns Expression:
 '(' Expression ')' |
 {Not} "!" expression=Primary |
 Atomic
;

Atomic returns Expression:
 {IntConstant} value=INT |
 {StringConstant} value=STRING |
 {BoolConstant} value=('true'|'false') |
 {VariableRef} variable=[Variable]
;

We also refer the interested reader to the article Efftinge 2016,
for another example of parsing expressions with Xtext.

The complete grammar
We sum up the section by showing the complete grammar of the Expressions DSL:

grammar org.example.expressions.Expressions with
 org.eclipse.xtext.common.Terminals

generate expressions
 "http://www.example.org/expressions/Expressions"

ExpressionsModel:
 elements += AbstractElement*;

AbstractElement:
 Variable | EvalExpression ;

Variable:
 'var' name=ID '=' expression=Expression;

EvalExpression:
 'eval' expression=Expression;

Expression: Or;

Or returns Expression:

An Expression Language

[172]

 And ({Or.left=current} "||" right=And)*
;

And returns Expression:
 Equality ({And.left=current} "&&" right=Equality)*
;

Equality returns Expression:
 Comparison (
 {Equality.left=current} op=("=="|"!=")
 right=Comparison
)*
;

Comparison returns Expression:
 PlusOrMinus (
 {Comparison.left=current} op=(">="|"<="|">"|"<")
 right=PlusOrMinus
)*
;

PlusOrMinus returns Expression:
 MulOrDiv (
 ({Plus.left=current} '+' | {Minus.left=current} '-')
 right=MulOrDiv
)*
;

MulOrDiv returns Expression:
 Primary (
 {MulOrDiv.left=current} op=('*'|'/')
 right=Primary
)*
;

Primary returns Expression:
 '(' Expression ')' |
 {Not} "!" expression=Primary |
 Atomic
;

Atomic returns Expression:
 {IntConstant} value=INT |
 {StringConstant} value=STRING |
 {BoolConstant} value=('true'|'false') |
 {VariableRef} variable=[Variable]
;

Chapter 8

[173]

Forward references
You should know by now that parsing is only the first stage when implementing
a DSL and that it cannot detect all the errors from the programs. We need to
implement additional checks in a validator.

One important thing we need to check in our Expressions DSL is that an expression
does not refer to a variable defined after the very expression. Using an identifier
before its declaration is usually called a forward reference.

Therefore, this program should not be considered valid:

var i = j + 1
var j = 0

Since the initialization expression of i refers to j, which is defined after. Of course,
this is a design choice. Since we want to interpret the expressions, it makes sense to
interpret them in the order they are defined.

This strategy also avoids possible mutual dependency problems:

var i = j + 1
var j = i + 1

A variable which is initialized referring to itself is a special case of the preceding:

var i = i + 1

We want to avoid this because our interpreter would enter an endless loop when
evaluating expressions.

Restricting the visibility of references can also be implemented
with a custom ScopeProvider; the subject of Scoping will be
detailed in Chapter 10, Scoping. However, visibility and validity
are not necessarily the same mechanism. Therefore, it also makes
sense to implement this checking in the validator.

We write a @Check method in the ExpressionsValidator class to report
such problems.

Given a variable reference inside an expression, we need to:

•	 Get the list of all the variables defined before the containing expression
•	 Check that the referred variable is in the list

An Expression Language

[174]

Note that we need to do that only if the variable is correctly bound; that is, if the
cross-reference has already been resolved by Xtext, otherwise an error has already
been reported.

This functionality only deals with model traversing, and we isolate it into a utility
class, ExpressionsModelUtil (we have already seen this technique in Chapter 7,
Testing, section Testing and Modularity). We will also reuse this utility class when
implementing other parts of this DSL.

We implement the method variablesDefinedBefore. Given an expression, we get
the AbstractElement containing such expression, let's call it containingElement,
using the method org.eclipse.xtext.EcoreUtil2.getContainerOfType. From
the root, we get the list of all the elements. Then, we get the sublist of variables up
to containingElement. The method isVariableDefinedBefore checks that the
referred variable is contained in the set returned by variablesDefinedBefore. This
is implemented in Xtend as follows:

import static extension org.eclipse.xtext.EcoreUtil2.*

class ExpressionsModelUtil {
 def isVariableDefinedBefore(VariableRef varRef) {
 varRef.variablesDefinedBefore.contains(varRef.variable)
 }

 def variablesDefinedBefore(Expression e) {
 e.getContainerOfType(AbstractElement).variablesDefinedBefore
 }

 def variablesDefinedBefore(AbstractElement containingElement) {
 val allElements =
 (containingElement.eContainer as ExpressionsModel).elements

 allElements.subList(0,
 allElements.indexOf(containingElement)).typeSelect(Variable).
toSet
 }
}

This algorithm is potentially slow when dealing with large
models and complex logic, since it always searches from the
top element down. Depending on your DSL, you might want
to implement other strategies, such as bottom-up search,
creating an index upfront, and so on. Once you have a bunch of
tests for the simple implementation, you can experiment with
optimizations and make sure that the tests still succeed. We will
show some examples of optimizations later in this chapter.

Chapter 8

[175]

We can now test this class in a separate JUnit test class (we show only a snippet) to
make sure it does what we expect (testing the method isVariableDefinedBefore is
left as an exercise):

@Inject extension ParseHelper<ExpressionsModel>
@Inject extension ExpressionsModelUtil

@Test def void variablesBeforeVariable() {
 '''
 eval true // (0)
 var i = 0 // (1)
 eval i + 10 // (2)
 var j = i // (3)
 eval i + j // (4)
 '''.parse => [
 assertVariablesDefinedBefore(0, "")
 assertVariablesDefinedBefore(1, "")
 assertVariablesDefinedBefore(2, "i")
 assertVariablesDefinedBefore(3, "i")
 assertVariablesDefinedBefore(4, "i,j")
]
}

def void assertVariablesDefinedBefore(ExpressionsModel model,
 int elemIndex, CharSequence expectedVars) {
 expectedVars.assertEquals(
 model.elements.get(elemIndex).variablesDefinedBefore.
 map[name].join(",")
)
}

Writing the @Check method in the validator is easy now:

class ExpressionsValidator extends AbstractExpressionsValidator {
 protected static val ISSUE_CODE_PREFIX = "org.example.expressions."
 public static val FORWARD_REFERENCE =
 ISSUE_CODE_PREFIX + "ForwardReference"

 @Inject extension ExpressionsModelUtil

 @Check
 def void checkForwardReference(VariableRef varRef) {
 val variable = varRef.getVariable()

An Expression Language

[176]

 if (!varRef.isVariableDefinedBefore)
 error("variable forward reference not allowed: '"
 + variable.name + "'",
 ExpressionsPackage..eINSTANCE.variableRef_Variable,
 FORWARD_REFERENCE, variable.name)
 }
}

It is also easy to test it (we show only a snippet):

@Test
def void testForwardReferenceInExpression() {
 '''var i = j var j = 10'''.parse => [
 assertError(ExpressionsPackage.eINSTANCE.variableRef,
 ExpressionsValidator.FORWARD_REFERENCE,
 "variable forward reference not allowed: 'j'"
)
 // check that it is the only error
 1.assertEquals(validate.size)
]
}

@Test
def void testNoForwardReference() {
 '''var j = 10 var i = j'''.parse.assertNoErrors
}

Note that in this test we also make sure that there is only one error. We test this using
the list of issues returned by ValidationTestHelper.validate. We also write a test
where there is no forward reference and we make sure that no error is raised.

Custom Content Assist
We issue an error in case of a forward reference, but we did not customize the way
Xtext resolves references; thus, the user of the Expressions DSL can still jump to the
actual declaration of the variable, also in case of a forward reference error. This is
considered a good thing in the IDE; for example, in Eclipse Java editor if you try to
access a private member of a different class, you get an error, but you can still jump
to the declaration of that member.

Chapter 8

[177]

At the same time, though, the content assist of our DSL will also propose variables
defined after the context where we are writing in the editor; this should be avoided
since it is misleading. We can fix this by customizing the content assist. Xtext
already generated an Xtend stub class in the UI plug-in project for customizing
this; in this example, it is org.example.expressions.ui.contentassist.
ExpressionsProposalProvider in the src folder. Also, this class relies on a method
signature convention as shown in the following code snippet:

public void complete{RuleName}_{FeatureName} (
 EObject element, Assignment assignment,
 ContentAssistContext context,
 ICompletionProposalAcceptor acceptor)
public void complete_{RuleName} (
 EObject element, RuleCall ruleCall,
 ContentAssistContext context,
 ICompletionProposalAcceptor acceptor)

In the signatures, RuleName is the name of the rule in the grammar and FeatureName
is the name of the feature (with the first letter capitalized) assigned in that rule. The
idea is to use the first method signature to customize the proposals for a specific
feature of that rule and the second one for customizing the proposals for the rule
itself. In our case, we want to customize the proposals for the variable feature in the
Atomic rule (that is, the rule which parses a VariableRef); thus, we define a method
called completeAtomic_Variable. The stub class extends a generated class in the
src-gen folder, AbstractExpressionsProposalProvider that implements all of
these complete methods. You can inspect the base class to get the signature right.
Most of the time, you will only use the first parameter, which is the EObject object
representing the object corresponding to the rule being used and the acceptor to
which you will pass your custom proposals.

In the completeAtomic_Variable method, we get the variables defined before the
passed EObject and create a proposal for each variable:

@Inject extension ExpressionsModelUtil

override completeAtomic_Variable(EObject elem,
 Assignment assignment,
 ContentAssistContext context,
 ICompletionProposalAcceptor acceptor) {
 if (elem instanceof Expression)
 elem.variablesDefinedBefore.forEach[
 variable |
 acceptor.accept(

An Expression Language

[178]

 createCompletionProposal(
 variable.name, variable.name + " - Variable", null, context
)
)
]
}

Proposals are created using the createCompletionProposal method; you need to
pass the string which will be inserted in the editor, the string shown in the content
assist menu, a default image, and the context you received as a parameter. Each
proposal must be passed to the acceptor.

Remember that for a given offset in the input program file, there
can exist several possible grammar elements. Xtext will dispatch
to the method declarations for any valid element, and thus many
complete methods may be called.

In the previous chapter, we showed you how to test the content assist; we will now
test our custom implementation (we only show the relevant parts):

@Test def void testVariableReference() {
 newBuilder.append("var i = 10 eval 1+").
 assertText('!', '"Value"', '(', '+', '1', 'false', 'i', 'true')
}

@Test def void testForwardVariableReference() {
 newBuilder.append("var k = 0 var j=1 eval 1+ var i = 10 ").
 assertTextAtCursorPosition("+", 1,
 '!', '"Value"', '(', '+', '1', 'false', 'j', 'k', 'true')
}

In the first method, we verify that we did not remove variable proposals that are
valid; in the second one, we verify that only the variables that are defined before
the current context are proposed. In particular, in the second test, we used an
assert method passing the character in the input to set the (virtual) cursor at and an
additional offset: we ask for the proposals right after the first + in the input string.
We test that j and k are proposed, but not i.

Chapter 8

[179]

Typing expressions
In the Expressions DSL, types are not written explicitly by the programmer.
However, due to the simple nature of our expressions, we can easily deduce the type
of an expression by looking at its shape. In this DSL, we have a fixed set of types:
string, integer, and boolean. The mechanism of deducing a type for an expression is
usually called type computation or type inference.

The base cases for type computation in the Expressions DSL are constants; trivially,
an integer constant has type integer, a string constant has type string, and a boolean
constant has type boolean.

As for composed expressions, besides computing a type, we must also check that
its sub-expressions are correct with respect to types. This mechanism is usually
called type checking. For example, consider the expression !e, where e is a generic
expression. We can say that it has type boolean, provided that, recursively, the sub-
expression e has type boolean; otherwise, the whole expression is not well-typed.

All the type mechanisms are part of the type system of the language. The type
system depends on the semantics, that is, the meaning that we want to give to the
elements of the DSL. For the Expressions DSL we design a type system that reflects
the natural treatment of arithmetic and boolean expressions, in particular:

•	 If in a Plus expression one of the sub-expressions has type string, the whole
expression is considered to have type string; if they have both type integer,
then the whole expression has type integer; two boolean expressions cannot
be added

•	 Equality can only act on sub-expressions with the same type
•	 Comparison can only act on sub-expressions with the same type, but not

on booleans

Of course, a type system should also be consistent with code generation or
interpretation; this is typically formally proved, but this is out of the scope of the
book (we refer the interested reader to the books Hindley 1987 and Pierce 2002 and
to the article Cardelli 1996). For instance, in our DSL, we allow expressions of the
shape 1 + "a" and "a" + true: we consider these expressions to have type string,
since we use + also for string concatenation and implicit string conversion. If in a
Plus expression the two sub-expressions have both type integers then the whole
expression will have type integer, since that will be considered as the arithmetic
addition. During interpretation, we must interpret such expressions accordingly.

An Expression Language

[180]

Loose type computation, strict type checking
Typically, type computation and type checking are implemented together and,
as just seen, they are recursive. In general, the type of an expression depends on
the type of the sub-expressions; the whole expression is not well-typed if any of
its sub-expressions are not well-typed. Here are some examples: j * true is not
well-typed since multiplication is defined only on integers; true == "abc" is not
well-typed, since we can only compare by equality expressions of the same type;
true < false is not well-typed since comparison operators do not make sense on
booleans, and so on.

When implementing a type system in an Xtext DSL, we must take into consideration a
few aspects; Xtext automatically validates each object in the AST, not only on the first
level elements. For instance, in our validator, we have these two @Check methods:

@Check
def checkType(And and)

@Check
def checkType(Not not)

And the input expression is !a && !b, then Xtext will automatically call the second
method on the Not objects corresponding to !a and !b and the first method on the
object And corresponding to the whole expression. Therefore, it makes no sense
to perform recursive invocations ourselves inside the validator's methods. If an
expression contains some sub-expressions which are not well-typed, it should be
considered not well-typed itself; however, does it make sense to mark the whole
expression with an error? For example, consider this expression:

(1 + 10) < (2 * (3 + "a"))

If we mark the whole expression as not well-typed, we would provide useless
information to the programmer. The same holds true if we generate additional
errors for the sub-expressions (2 * (3 + "a")) and (3 + "a"). Indeed, the useful
information is that (3 + "a") has type string while an integer type was expected by
the multiplication expression.

Due to all the aforementioned reasons, we adopt the following strategy:

•	 Type computation is performed without recurring on sub-expressions unless
required in some cases; for example, a MulOrDiv object has type integer
independently of its sub-expressions. This is implemented by the class
ExpressionsTypeComputer.

Chapter 8

[181]

•	 In the validator, we have a @Check method for each kind of expression,
excluding the constant expressions, which are implicitly well-typed;
each method checks that the types of the sub-expressions, obtained using
ExpressionsTypeComputer, are as expected by that specific expression. For
example, for MulOrDiv, we check that its sub-expressions have both type
integer, otherwise, we issue an error on the sub-expression that does not
have type integer.

As we will see, this strategy avoids checking the same object with the
validator several times, since the type computation is delegated to
ExpressionsTypeComputer, which is not recursive. It will also allow the validator
to generate meaningful error markers only on the problematic sub-expressions.

Type computer
Since we do not have types in the grammar of the Expressions DSL, we need a way
of representing them. The types for this DSL are simple; we just need an interface for
types, for example, ExpressionsType, and a class implementing it for each type, for
example, StringType, IntType, and BoolType. These classes implement a toString
method for convenience, but they do not contain any other information.

We write the classes for types and for the type computer in the
new Java sub-package typing. If you want to make its classes
visible outside the main plug-in project, for example, for testing,
you should add this package to the list of exported packages in
the Runtime tab of the MANIFEST.MF editor.

In the type computer, we define a static field for each type. Using singletons will
allow us to simply compare a computed type with such static instances (remember
that triple equal in Xtend, ===, corresponds to Java object reference equality):

class ExpressionsTypeComputer {
 public static val STRING_TYPE = new StringType
 public static val INT_TYPE = new IntType
 public static val BOOL_TYPE = new BoolType

 def isStringType(ExpressionsType type) {
 type === STRING_TYPE
 }
… isIntType and isBoolType are similar

An Expression Language

[182]

We now write a method, typeFor, which, given an Expression, returns an
ExpressionsType object. We use the dispatch methods for special cases and switch
for simple cases. For expressions whose type can be computed directly, we write:

def dispatch ExpressionsType typeFor(Expression e) {
 switch (e) {
 StringConstant: STRING_TYPE
 IntConstant: INT_TYPE
 BoolConstant: BOOL_TYPE
 Not: BOOL_TYPE
 MulOrDiv: INT_TYPE
 Minus: INT_TYPE
 Comparison: BOOL_TYPE
 Equality: BOOL_TYPE
 And: BOOL_TYPE
 Or: BOOL_TYPE
 }
}

We now write a test class for our type computer with several test methods (we only
show some of them):

import static extension org.junit.Assert.*
import static org.example.expressions.typing.ExpressionsTypeComputer.*

@RunWith(XtextRunner)
@InjectWith(ExpressionsInjectorProvider)
class ExpressionsTypeComputerTest {
 @Inject extension ParseHelper<ExpressionsModel>
 @Inject extension ExpressionsTypeComputer
 @Test def void intConstant() { "10".assertEvalType(INT_TYPE) }
 @Test def void stringConstant() { "'foo'".assertEvalType(STRING_
TYPE) }
...
 @Test def void notExp() { "!true".assertEvalType(BOOL_TYPE) }
 @Test def void multiExp() { "1 * 2".assertEvalType(INT_TYPE) }
...
 def assertEvalType(CharSequence input, ExpressionsType expectedType)
{
 ("eval " + input).assertType(expectedType)
 }

 def assertType(CharSequence input, ExpressionsType expectedType) {
 input.parse.elements.last.

Chapter 8

[183]

 expression.assertType(expectedType)
 }

 def assertType(Expression e, ExpressionsType expectedType) {
 expectedType.assertSame(e.typeFor)
 }
}

We wrote the methods assertEvalType and assertType that do most of the work.

Then, we can move on to more elaborate type computations, which we implement in
a dispatch method for better readability.

def dispatch ExpressionsType typeFor(Plus e) {
 val leftType = e.left.typeFor
 val rightType = e.right?.typeFor
 if (leftType.isStringType || rightType.isStringType)
 STRING_TYPE
 else
 INT_TYPE
}

For Plus, we need to compute the types of the sub-expressions, since if one of them
has type string, the whole expression is considered to be a string concatenation (with
implicit conversion to string); thus, we give it a string type. Otherwise, it is considered
to be the arithmetic sum and we give it type integer. In this type system, this is the
only case where type computation depends on the types of sub-expressions.

Remember that the type computer can also be used on a non-complete model, and
thus we use the null-safe operator ?., described in Chapter 3, Working with the Xtend
Programming Language. We do that only on the right sub-expression. In fact, if a Plus
is parsed, then the left sub-expression must be non-null.

We can now test this case for the type computer:

@Test def void numericPlus() { "1 + 2".assertEvalType(INT_TYPE) }
@Test def void stringPlus() { "'a' + 'b'".assertEvalType(STRING_TYPE)
}
@Test def void numAndStringPlus() { "'a' + 2".assertEvalType(STRING_
TYPE) }
@Test def void numAndStringPlus2() { "2 + 'a'".assertEvalType(STRING_
TYPE) }
@Test def void boolAndStringPlus(){"'a' + true".assertEvalType(STRING_
TYPE) }
@Test def void boolAndStringPlus2(){"false+'a'".assertEvalType(STRING_
TYPE) }

An Expression Language

[184]

Also, the case for variable reference requires some more work:

@Inject extension ExpressionsModelUtil
...
def dispatch ExpressionsType typeFor(VariableRef varRef) {
 if (!varRef.isVariableDefinedBefore)
 return null
 else
 return varRef.variable.expression.typeFor
}

We must check that the reference concerns a variable defined before the
current expression, otherwise we might enter an infinite loop. We reuse
ExpressionsModelUtil. In case the referred variable is not defined before the
current variable reference we simply return null, and we know that an error has
already been reported by our validator. Otherwise, the type of a variable reference
is the type of the referred variable, which, in turn, is the type of its initialization
expression. The tests for this case of the type computer is as follows:

@Test def void varRef() { "var i = 0 eval i".assertType(INT_TYPE) }
@Test def void varRefToVarDefinedAfter() {
 "var i = j var j = i".assertType(null)
}

Remember that you should follow the Test Driven Development
strategy illustrated in Chapter 7, Testing; first, write the
implementation for a single kind of expression, write a test for
that case then execute it; then, proceed with the implementation
for another kind of expression, write a test for that case and
run all the tests, and so on. As an exercise, you should try to re-
implement everything seen in this section from scratch yourself
following this methodology.

Validator
We are ready to write the @Check methods in the ExpressionsValidator for
checking that the types of expressions are correct.

In the existing validator, we inject an instance of ExpressionsTypeComputer and
we write some reusable methods, which perform the actual checks. Thanks to these
methods, we will be able to write the @Check methods in a very compact form.

class ExpressionsValidator extends
 AbstractExpressionsValidator {
 ...

Chapter 8

[185]

 public static val TYPE_MISMATCH =
 ISSUE_CODE_PREFIX + "TypeMismatch"

 @Inject extension ExpressionsTypeComputer
 ...
 def private checkExpectedBoolean(Expression exp,
 EReference reference) {
 checkExpectedType(exp,
 ExpressionsTypeComputer.BOOL_TYPE, reference)
 }

 def private checkExpectedInt(Expression exp,
 EReference reference) {
 checkExpectedType(exp,
 ExpressionsTypeComputer.INT_TYPE, reference)
 }

 def private checkExpectedType(Expression exp,
 ExpressionsType expectedType, EReference reference) {
 val actualType = getTypeAndCheckNotNull(exp, reference)
 if (actualType != expectedType)
 error("expected " + expectedType +
 " type, but was " + actualType,
 reference, TYPE_MISMATCH)
 }

 def private ExpressionsType getTypeAndCheckNotNull(
 Expression exp, EReference reference) {
 var type = exp?.typeFor
 if (type == null)
 error("null type", reference, TYPE_MISMATCH)
 return type;
 }...

Although we present the reusable methods first, the actual strategy
we followed when implementing the type checking in the validator is
to first write some @Check methods, and then refactor the common
parts. Before refactoring, we wrote some tests; after refactoring, we
execute the tests to verify that refactoring did not break anything.

It should be straightforward to understand what the aforementioned methods do.
The methods are parametrized over the EMF feature to use when generating an error;
remember that this feature will be used to generate the error marker appropriately.

An Expression Language

[186]

Let's see some @Check methods:

@Check def checkType(Not not) {
 checkExpectedBoolean(not.expression,
 ExpressionsPackage.Literals.NOT__EXPRESSION)
}

@Check def checkType(And and) {
 checkExpectedBoolean(and.left,
 ExpressionsPackage.Literals.AND__LEFT)
 checkExpectedBoolean(and.right,
 ExpressionsPackage.Literals.AND__RIGHT)
}

For Not, And, and Or, we check that the sub-expressions have type boolean, and
we pass the EMF features corresponding to the sub-expressions. (The case for Or
is similar to the case of And and it is therefore not shown).

Following the same approach, it is easy to check that the sub-expressions of Minus
and MultiOrDiv both have integer types (we leave this as an exercise, but you can
look at the sources of the example).

For an Equality expression, we must check that the two sub-expressions have the
same type. This holds true also for a Comparison expression, but in this case, we also
check that the sub-expressions do not have type boolean, since in our DSL, we do not
want to compare two boolean values. The implementation of these @Check methods
are as follows, using two additional reusable methods:

@Check def checkType(Equality equality) {
 val leftType = getTypeAndCheckNotNull(equality.left,
 ExpressionsPackage.Literals.EQUALITY__LEFT)
 val rightType = getTypeAndCheckNotNull(equality.right,
 ExpressionsPackage.Literals.EQUALITY__RIGHT)
 checkExpectedSame(leftType, rightType)
}

@Check def checkType(Comparison comparison) {
 val leftType = getTypeAndCheckNotNull(comparison.left,
 ExpressionsPackage.Literals.COMPARISON__LEFT)
 val rightType = getTypeAndCheckNotNull(comparison.right,
 ExpressionsPackage.Literals.COMPARISON__RIGHT)
 checkExpectedSame(leftType, rightType)
 checkNotBoolean(leftType,
 ExpressionsPackage.Literals.COMPARISON__LEFT)
 checkNotBoolean(rightType,

Chapter 8

[187]

 ExpressionsPackage.Literals.COMPARISON__RIGHT)
}

def private checkExpectedSame(ExpressionsType left,
 ExpressionsType right) {
 if (right != null && left != null && right != left) {
 error("expected the same type, but was "+left+", "+right,
 ExpressionsPackage.Literals.EQUALITY.getEIDAttribute(),
 TYPE_MISMATCH)
 }
}

def private checkNotBoolean(ExpressionsType type,
 EReference reference) {
 if (type.isBoolType) {
 error("cannot be boolean", reference, TYPE_MISMATCH)
 }
}

The final check concerns the Plus expression; according to our type system, if one
of the two sub-expressions has type string, everything is fine and therefore all
these combinations are accepted as valid: string+string, int+int, string+boolean,
and string+int (and the corresponding specular cases). We cannot add two boolean
expressions or an integer and a boolean. Therefore, when one of the two
sub-expressions has type integer or when they both have a type different from
string, we must check that they do not have type boolean:

@Check def checkType(Plus plus) {
 val leftType = getTypeAndCheckNotNull(plus.left,
 ExpressionsPackage.Literals.PLUS__LEFT)
 val rightType = getTypeAndCheckNotNull(plus.right,
 ExpressionsPackage.Literals.PLUS__RIGHT)
 if (leftType.isIntType || rightType.isIntType
 || (!leftType.isStringType && !rightType.
isStringType)) {
 checkNotBoolean(leftType,
 ExpressionsPackage.Literals.PLUS__LEFT)
 checkNotBoolean(rightType,
 ExpressionsPackage.Literals.PLUS__RIGHT)
 }
}

Of course, while writing these methods, we also wrote test methods in the
ExpressionsValidatorTest class. Due to a lack of space, we are not showing these
tests, and instead we refer you to the source code of the Expressions DSL.

An Expression Language

[188]

Let's try the editor and look at the error markers, as shown in the following
screenshot:

The error markers are only placed on the sub-expression that is not well-typed; it
is clear where the problem inside the whole expression is. If we did not follow the
preceding strategy for computing and checking types, in a program with some not
well-typed expressions, most of the lines would be red, and this would not help. With
our implementation, the expression j || true does not have error markers, although
the initialization expression of j contains an error; our type computer is able to deduce
that j has type boolean anyway. Formally, also j, and in turn j || true, are not well-
typed; however, marking j || true with an error would only generate confusion.

Writing an interpreter
We will now write an interpreter for our Expressions DSL. The idea is that this
interpreter, given an AbstractElement, returns a Java object, which represents
the evaluation of that element. Of course, we want the object with the result of the
evaluation to be of the correct Java type; that is, if we evaluate a boolean expression,
the corresponding object should be a Java boolean object.

Chapter 8

[189]

Such an interpreter will be recursive, since to evaluate an expression, we must first
evaluate its sub-expressions and then compute the result.

When implementing the interpreter we make the assumption that the passed
AbstractElement is valid. Therefore, we will not check for null sub-expressions. We
will assume that all variable references are resolved, and we will assume that all the
sub-expressions are well-typed. For example, if we evaluate an And expression, we
assume that the objects resulting from the evaluation of its sub-expressions are Java
Boolean objects.

We write the classes for the interpreter in the new Java sub-package
interpreter. If you want to make its classes visible outside the
main plug-in project, for example, for testing, you should add this
package to the list of exported packages in the Runtime tab of the
MANIFEST.MF editor.

For constants, the implementation of the evaluation is straightforward:

class ExpressionsInterpreter {

 def dispatch Object interpret(Expression e) {
 switch (e) {
 IntConstant: e.value
 BoolConstant: Boolean.parseBoolean(e.value)
 StringConstant: e.value

Note that the feature value for an IntConstant object is of Java type int and for
a StringConstant object, it is of Java type String, and thus we do not need any
conversion. For a BoolConstant object the feature value is also of Java type
String, and thus we perform an explicit conversion using the static method of
the Java class Boolean.

As usual, we immediately start to test our interpreter, and the actual assertions are
all delegated to a reusable method:

class ExpressionsInterpreterTest {
 @Inject extension ParseHelper<ExpressionsModel>
 @Inject extension ValidationTestHelper
 @Inject extension ExpressionsInterpreter

 @Test def void intConstant() { "eval 1".assertInterpret(1)}
 @Test def void boolConstant() { "eval true".assertInterpret(true)}
 @Test def void stringConstant() {"eval 'abc'".
assertInterpret("abc")}

An Expression Language

[190]

 def assertInterpret(CharSequence input, Object expected) {
 input.parse => [
 assertNoErrors
 expected.assertEquals(elements.last.expression.interpret)
]
 }...

Note that in order to correctly test the interpreter, we check that there are no errors
in the input (since that is the assumption of the interpreter itself) and we compare the
actual objects, not their string representation. This way, we are sure that the object
returned by the interpreter is of the expected Java type.

Then, we write a case for each expression. We recursively evaluate the sub-
expressions and then apply the appropriate Xtend operator to the result of the
evaluation of the sub-expressions. For example, for And:

switch (e) {
...
 And: {
 (e.left.interpret as Boolean) && (e.right.interpret as Boolean)
}

Note that the method interpret returns an Object, and thus we need to cast the
result of the invocation on sub-expressions to the right Java type. We do not perform
an instanceof check because, as hinted previously, the interpreter assumes that the
input is well-typed.

With the same strategy, we implement all the other cases. We show here only the
most interesting ones. For MulOrDiv, we will need to check the actual operator,
stored in the feature op:

switch (e) {
...
 MulOrDiv: {
 val left = e.left.interpret as Integer
 val right = e.right.interpret as Integer
 if (e.op == '*')
 left * right
 else
 left / right
}

Chapter 8

[191]

For Plus, we need to perform some additional operations; since we use + both
as the arithmetic sum and as string concatenation, we must know the type of the
sub-expressions. We use the type computer and write the following:

class ExpressionsInterpreter {
 @Inject extension ExpressionsTypeComputer

 def dispatch Object interpret(Expression e) {
 switch (e) {
 ...
 Plus: {
 if (e.left.typeFor.isStringType || e.right.typeFor.isStringType)
 e.left.interpret.toString + e.right.interpret.toString
 else
 (e.left.interpret as Integer) +
 (e.right.interpret as Integer)
 }...

Finally, we deal with the case of variable reference, variable declaration and
evaluation statement. We handle variable declaration and evaluation statement
in a single method, using their common superclass AbstractElement:

def dispatch Object interpret(Expression e) {
 switch (e) {
 ...
 VariableRef: e.variable.interpret
 ...
}

def dispatch Object interpret(AbstractElement e) {
 e.expression.interpret
}

Using the interpreter
Xtext allows us to customize all UI aspects, as we saw in Chapter 6, Customizing Xtext
Components. We can provide a custom implementation of text hovering (that is, the pop-
up window that comes up when we hover for some time on a specific editor region)
so that it shows the type of the expression and its evaluation. We refer to the Xtext
documentation for the details of the customization of text hovering; here, we only show
our implementation (note that we create a multiline string using HTML syntax):

import static extension org.eclipse.emf.ecore.util.EcoreUtil.*

class ExpressionsEObjectHoverProvider extends

An Expression Language

[192]

 DefaultEObjectHoverProvider {
 @Inject extension ExpressionsTypeComputer
 @Inject extension ExpressionsInterpreter
 override getHoverInfoAsHtml(EObject o) {
 if (o instanceof Expression && o.programHasNoError) {
 val exp = o as Expression
 return '''
 <p>
 type : «exp.typeFor.toString»

 value : «exp.interpret.toString»
 </p>
 '''
 } else
 return super.getHoverInfoAsHtml(o)
 }

 def programHasNoError(EObject o) {
 Diagnostician.INSTANCE.validate(o.rootContainer).
 children.empty
 }
}

Remember that our interpreter is based on the assumption that it is invoked only on
an EMF model that contains no error. We invoke our validator programmatically
using the EMF API that is, the Diagnostician class. We must validate the entire
AST, thus, we retrieve the root of the EMF model using the method EcoreUtil.
getRootContainer and check that the list of validation issues is empty. We need to
write an explicit bind method for our custom implementation of text hovering in the
ExpressionsUiModule:

def Class<? extends IEObjectHoverProvider>
 bindIEObjectHoverProvider() {
 return ExpressionsEObjectHoverProvider
}

In the following screenshot, we can see our implementation when we place the
mouse over the * operator of the expression 2 * (3 + 5); the pop-up window
shows the type and the evaluation of the corresponding multiplication expression:

Chapter 8

[193]

Finally, we can write a code generator which creates a text file (by default, it will be
created in the src-gen directory):

import static extension
 org.eclipse.xtext.nodemodel.util.NodeModelUtils.*

class ExpressionsGenerator implements IGenerator {
 @Inject extension ExpressionsInterpreter

 override void doGenerate(Resource resource,
 IFileSystemAccess2 fsa, IGeneratorContext
context) {
 resource.allContents.toIterable.
 filter(ExpressionsModel).forEach[
 fsa.generateFile
 ('''«resource.URI.lastSegment».evaluated''',
 interpretExpressions)
]
 }

 def interpretExpressions(ExpressionsModel model) {
 model.elements.map[
 '''«getNode.getTokenText» ~> «interpret»'''
].join("\n")
 }
}

An Expression Language

[194]

Differently from the code generator we saw in Chapter 5, Code Generation, here we
generate a single text file for each input file (an input file is represented by an EMF
Resource); the name of the output file is the same as the input file (retrieved by taking
the last part of the URI of the resource), with an additional evaluated file extension.

Instead of simply generating the result of the evaluation in the output file, we
also generate the original expression. This can be retrieved using the Xtext class
NodeModelUtils. The static utility methods of this class allow us to easily access
the elements of the node model corresponding to the elements of the AST model.
(Recall from Chapter 6, Customizing Xtext Components that the node model carries the
syntactical information, for example, offsets and spaces of the textual input.) The
method NodeModelUtils.getNode(EObject) returns the node in the node model
corresponding to the passed EObject. From the node of the node model, we retrieve
the original text in the program corresponding to the EObject.

An example input file and the corresponding generated text file are shown in the
following screenshot:

Optimizations and fine tuning
Now that we implemented this DSL with a test suite, we can concentrate on
refactoring some parts of it in order to optimize the performance.

Chapter 8

[195]

In the Forward references section, we implemented the method variablesDefinedBefore
and we anticipated that its performance might not be optimal. Since that method is
used in the validator, in the type system and in the content assist it would be good to
somehow cache its results to improve the performance.

Caching usually introduces a few problems since we must avoid that its contents
become stale. Xtext provides a cache that relieves us from worrying about this
problem, org.eclipse.xtext.util.IResourceScopeCache. This cache is
automatically cleared when a resource changes, thus its contents are never stale.
Moreover, its default implementation is annotated as com.google.inject.
Singleton, thus all our DSL components will share the same instance of the cache.

To use this cache we call the method:

<T> T get(Object key, Resource res, Provider<T> provider)

We must provide the key of the cache, which can be any object, the Resource
associated with the cache, and the Provider whose get() method is called
automatically if no value is associated to the specified key.

Let's use this cache in the ExpressionsModelUtil for the implementation of
variablesDefinedBefore:

@Inject IResourceScopeCache cache
…
def variablesDefinedBefore(AbstractElement containingElement) {
 cache.get(containingElement, containingElement.eResource) [
 val allElements =
 (containingElement.eContainer as ExpressionsModel).elements

 allElements.subList(0,
 allElements.indexOf(containingElement)).typeSelect(Variable)
]
}

We specify the AbstractElement as the key, its resource and a lambda for the
Provider parameter. The lambda is simply the original implementation of the
method body. Remember that the lambda will be called only in case of a cache miss.
This is all we have to do to use the cache.

We now run the whole test suite, including the UI tests for the content assist, to make
sure that the cache does not break anything.

An Expression Language

[196]

Another aspect that is worth caching is the type computation. In fact, the type system
is used by the validator, by the interpreter and by the custom hover implementation.
In particular, it is good to cache type computation for cases that are not simple, such
as variable reference. For computing, the type of a variable reference we compute the
type of the referred variable's initialization expressions. This is performed over and
over again for all the variable references that refer to the same variable.

Remember that the cache is shared by all the components of the DSL, thus we cannot
simply reuse the referred variable as the key in this case, since that would conflict
with the use of cache that we do in variablesDefinedBefore. Thus, in the type
computer, we use a "pair" for the key, where the first element is the string "type"
and the second element is the variable. A pair can be specified in Xtend with the
following syntax: e1 -> e2.

This is the modified part in the type computer:

@Inject IResourceScopeCache cache
…
def dispatch ExpressionsType typeFor(VariableRef varRef) {
 if (!varRef.isVariableDefinedBefore)
 return null
 else {
 val variable = varRef.variable
 return cache.get("type" -> variable, variable.eResource) [
 variable.expression.typeFor
]
 }
}

Again, make sure you run the whole test suite to check that nothing is broken.

You can also try and experiment with a type computer where the type computation
for all kinds of expression is cached.

Another part that can be optimized is the interpretation of a variable reference in the
ExpressionsInterpreter: instead of interpreting the same variable over and over
again, we can cache the result of the interpretation of variables:

VariableRef: {
 // avoid interpreting the same variable over and over again
 val v = e.variable
 cache.get("interpret" -> v, e.eResource) [
 v.interpret
]
}

Chapter 8

[197]

In the sources of this DSL, you will also find a few tests that compare the
performance of the DSL with and without caching. It is important to have such tests
so that you can work on fine-tuning your DSL implementation. You need to make
sure that the use of cache does not introduce overhead in some contexts, or you will
get the opposite effect.

Summary
In this chapter, we implemented a DSL for expressions. This allowed us to explore
some techniques for dealing with recursive grammar rule definitions in Xtext
grammars and some simple type checking. We also showed how to write an
interpreter for an Xtext DSL.

In the next chapter, we will develop a small object-oriented DSL. We will use this
DSL to show some advanced type checking techniques that deal with object-oriented
features such as inheritance and subtyping (type conformance).

[199]

Type Checking
In this chapter we will develop a small object-oriented DSL, which can be seen as a
smaller version of Java that we call SmallJava. We will use this DSL to show some
type checking techniques that deal with object-oriented features such as inheritance
and subtyping (type conformance). This will also allow you to learn other features of
Xtext grammars and to see some good practices in Xtext DSL implementations.

This chapter will cover the following topics:

•	 A small object-oriented language implemented with Xtext
•	 Some additional features of Xtext grammars
•	 The type system for object-oriented languages
•	 Some best practices for Xtext DSL implementation

SmallJava
The language we develop in this chapter is a simplified version of Java, called
SmallJava. This language does not aim at being useful in practice and cannot be
used to write real programs such as Java. However, SmallJava contains enough
language features that will allow us to explore advanced type checking techniques
that can also be reused for other DSLs, which have OOP mechanisms such as
inheritance and subtyping.

The implementation we see in this chapter will not be complete, since some features of
this language, such as correct member access, will be implemented in the next chapter
when we introduce the mechanism of local and global scoping. In a Java-like language
type checking and scoping are tightly connected and complement each other; for the
sake of readability, we will split typing and scoping into two separate chapters.

Type Checking

[200]

We will not describe how to write a code generator for SmallJava; we will focus on
statically checking SmallJava programs rather than executing them. However, in the
code of the SmallJava DSL, you will also find a code generator that generates the
corresponding Java classes.

Let's stress that implementing the whole Java language and, in particular, its
complete type system, would not be feasible in this book. If your DSL needs to access
Java types and to be interoperable with Java, you may want to consider using Xbase
described in Chapter 12, Xbase. If your DSL does not have to interact with Java, the
concepts described in this chapter can be reused and adapted to fit your DSL.

Creating the project
First of all, we will use the Xtext project wizard to create the projects for our DSL
(following the same procedure that we saw in the previous chapters).

Start Eclipse and perform the following steps:

1.	 Navigate to File | New | Project...; in the dialog, navigate to the Xtext
category and click on Xtext Project.

2.	 In the next dialog, fill in the details for the following fields:
°° Project name: org.example.smalljava
°° Name: org.example.smalljava.SmallJava
°° Extensions: smalljava

3.	 Press Finish.

The wizard will create several projects into your workspace and it will open the
SmallJava.xtext file that is the grammar definition.

SmallJava grammar
Before starting to develop this language, we sketch the simplifications we will adopt:

•	 Classes have no explicit constructors
•	 There is no cast expression
•	 Arithmetic and boolean expressions are not implemented
•	 Basic types (such as int, boolean, and so on) and void methods are not

considered (methods must always return something)
•	 There is no method overloading

Chapter 9

[201]

•	 Member access must always be prefixed with the object, even if it is this
•	 Variable declarations must always be initialized
•	 super is not supported, but it will be implemented in the next chapter
•	 The new instance expression does not take arguments, since there are only

implicit default constructors
•	 Package and imports are not supported, but they will be implemented in the

next chapter

Basically, the features that we are interested in and that will allow us to have a case
study for type checking and scoping (next chapter) are class inheritance, field and
method definitions, and blocks of statements with local variable definitions.

Rules for declarations
The rules in the SmallJava grammar are prefixed with SJ to avoid confusion with the
classes and terms in Java that they mimic.

The first rules are straightforward and they state that a SmallJava program is a
possibly empty sequence of classes:

SJProgram:
 classes+=SJClass*;

SJClass: 'class' name=ID ('extends' superclass=[SJClass])? '{'
 members += SJMember*
'}' ;

SJMember:
 SJField | SJMethod ;

SJField:
 type=[SJClass] name=ID ';' ;

SJMethod:
 type=[SJClass] name=ID
 '(' (params+=SJParameter (',' params+=SJParameter)*)? ')'
 body=SJBlock ;

SJParameter:
 type=[SJClass] name=ID ;

Type Checking

[202]

Each class can have a superclass, that is, a reference to another SmallJava class and a
possibly empty sequence of members. An SJMember object can be either an SJField
object or an SJMethod object; note that since both fields and methods have a type and
a name feature, these two features will end up in their common base class SJMember.

The body of a method is a block, that is a possibly empty sequence of SJStatement
(defined later) enclosed in curly brackets:

SJBlock:
 '{' statements += SJStatement* '}' ;

If we define the rule for block as in the preceding code snippet, we get a warning:

The rule 'SJBlock' may be consumed without object instantiation. Add
an action to ensure object creation, for example, '{SJBlock}'.

In fact, the only assignment is to the feature statements, which is based on
SJStatement*; if no statement is parsed, the rule will be valid, but the feature will
not be assigned and no object will be instantiated (see the Digression on Xtext grammar
rules section, Chapter 8, An Expression Language for an explanation of how object
instantiation and feature assignment in a rule are connected). As suggested by the
warning, we add an action to ensure object creation:

SJBlock:
 {SJBlock} '{' statements += SJStatement* '}' ;

Rules for statements and syntactic predicates
These are the rules for statements:

SJStatement:
 SJVariableDeclaration |
 SJReturn |
 SJExpression ';' |
 SJIfStatement
;

SJReturn:
 'return' expression=SJExpression ';'
;

SJVariableDeclaration:
 type=[SJClass] name=ID '=' expression=SJExpression ';'
;

Chapter 9

[203]

SJIfStatement:
 'if' '(' expression=SJExpression ')' thenBlock=SJIfBlock
 (=>'else' elseBlock=SJIfBlock)?
;

SJIfBlock returns SJBlock:
 statements += SJStatement
 | SJBlock ;

The blocks for an if statement can also be specified without curly brackets; in this
case, a single statement can be specified. The alternative is an SJBlock. In case of a
single statement, we still assign it to the statements list feature. Since this feature is
used also in SJBlock, we specify that the rule returns an SJBlock element. This way,
we can treat both a method body and the blocks of an if statement in the same way,
even in case of a single statement. This will be useful when dealing with variable
declarations in nested program blocks in the next chapter.

The rule for the if statement shows another important feature of Xtext grammars,
syntactic predicates represented by the symbol =>. These are useful to solve
ambiguities in a grammar. We will use the if statement as an example to describe
such situations. If we write the rule for the if statement as follows:

SJIfStatement:
 'if' '(' expression=SJExpression ')' thenBlock=SJIfBlock
 ('else' elseBlock=SJIfBlock)?
;

During the MWE2 workflow, we will get this warning in the console:

warning(200): Decision can match input such as "'else'" using
multiple alternatives: 1, 2

As a result, alternative(s) 2 were disabled for that input

This issue is also known as the Dangling Else Problem; if you consider this
nested if statement:

if (...)
 if (...)
 statement
 else
 statement

Type Checking

[204]

The parser would not know to which if statement the else belongs to (remember
that spaces and indentation are ignored by the parser); it could belong either to the
outer if or to the inner one, and this leads to an ambiguity.

Never ignore warnings issued by the MWE2 workflow concerning
the generated ANTLR parser. Each warning will surely be a
source of problems if not solved, even when ambiguities are
automatically resolved by the parser itself using a default strategy.
Make sure each ambiguity is resolved the way you want.

Using the syntactic predicate, that is, the => before the 'else' keyword, we remove
such ambiguity by directing the parser. We tell the parser that if it finds the 'else'
keyword, then it should not try to search for other ways of parsing the statement,
and the else will belong to the inner if, which is the typical behavior of languages
with an if statement.

Another way of solving ambiguities is to enable backtracking
for the ANTLR parser generator. However, this is strongly
discouraged, and it is only a source of further problems not easily
detectable; thus, we will not consider this option in this book.

The rule SJParameter and the rule SJVariableDeclaration have something in
common: the type and name features. Therefore, we introduce a rule for forcing the
creation of a common superclass:

SJSymbol: SJVariableDeclaration | SJParameter ;

This will give us a common supertype for referring to a local variable and a
parameter from within a method body, as we will see later in this chapter. Note that
the rule name is grayed in the Xtext grammar editor; this highlights the fact that this
rule is never called by the parser.

Finally, it is helpful to have a common type for all the elements with the
feature name:

SJNamedElement:
 SJClass | SJMember | SJSymbol;

This will be useful later when checking for duplicate elements with the same name.

Chapter 9

[205]

Rules for expressions
As we saw in the rule SJStatement, a statement can also be an expression
terminated by ;. In fact, as in Java, a method invocation can be both a standalone
statement and an expression, that is, the right-hand side of an assignment or the
argument for another method invocation.

Also an assignment statement can itself be an expression; for instance, in Java you
can write:

a = b = c ;

With the meaning that c is assigned to b and then b is assigned to a. Thus, the
preceding statement should be parsed as:

a = (b = c) ;

Moreover, both the left-hand and right-hand side of an assignment can be expressions.

For all of the aforementioned reasons, and from what you learned from Chapter 8, An
Expression Language, you should know that we will have to deal with left recursion.

The same holds when writing the rule for a member selection expression, that is,
for selecting a field or a method on an object. In fact, in order to be able to write
selection expressions like:

a.b().c.d()

The left-hand side of a member selection, which is usually called the receiver of the
selection, must be an expression.

Therefore, we need to left factor the grammar using the technique introduced in
Chapter 8, An Expression Language.

To keep the presentation simple, we will not deal with arithmetic and boolean
expressions in the grammar. We will concentrate only on assignments, member
selections, and some additional terminal expressions. All the other expressions
can be easily added taking the Expressions DSL of Chapter 8, An Expression Language
as inspiration.

We must write the rule for the expression with lower precedence first, that is, the
rule for assignment:

SJExpression: SJAssignment;

SJAssignment returns SJExpression:
 SJSelectionExpression

Type Checking

[206]

 ({SJAssignment.left=current} '=' right=SJExpression)? // Right
associativity
;

The left factoring technique should be familiar by now. Just note that an assignment
expression must be right-associative (refer to Chapter 8, An Expression Language for
associativity). That is why we wrote the right recursive part as:

right=SJExpression)? // Right associativity

instead of:

right=SJSelectionExpression)* // Left associativity

Therefore, a nested assignment expression like:

a = b = c

Will be parsed as:

a = (b = c)

As required by our DSL.

The rule for member selection is as follows:

SJSelectionExpression returns SJExpression:
 SJTerminalExpression
 (
 {SJMemberSelection.receiver=current} '.'
 member=[SJMember]
 (methodinvocation?='('
 (args+=SJExpression (',' args+=SJExpression)*)? ')'
)?
)* ;

Remember that while the name of the rule is SJSelectionExpression, the rule will
instantiate an SJMemberSelection object.

Note that this rule deals both with field selection and method invocation; for this
reason, the part that deals with method invocation can have optional parentheses
and arguments. We keep track of the presence of parentheses using the boolean
feature methodinvocation; this will allow us to distinguish between an
SJMemberSelection object that represents a field selection from one that represents
a method invocation.

Chapter 9

[207]

You might be tempted to distinguish between a field selection and a method
invocation explicitly in the grammar. For instance, we could write the rule as follows:

// alternative DISCOURAGED implementation
SJSelectionExpression returns SJExpression:
 SJTerminalExpression
 (
 ({SJMethodInvocation.receiver=current} '.'
 method=[SJMethod]
 '(' (args+=SJExpression (',' args+=SJExpression)*)? ')')
 |
 ({SJFieldSelection.receiver=current} '.' field=[SJField])
)* ;

After parsing a dot, the parser needs to scan all the way to the right parenthesis; if
it finds it, then it creates an instance of SJMethodInvocation that refers directly
to an SJMethod; otherwise, it parses the selection by creating an instance of
SJFieldSelection, which refers directly to an SJField object. This solution has the
advantage that in the AST it is straightforward to distinguish a field selection from a
method invocation since they are represented by objects of different types.

However, this version of the rule will require a parser that performs additional work,
and most important of all, many IDE features, such as the content assist, will not
work as expected.

In general, a good practice in Xtext DSL implementations is to keep the grammar
simple. It is better to have a loose grammar and a strict validation phase (loose
grammar, strict validation, see the presentation Zarnekow 2012).

Therefore, we keep the selection rule in its original form, and we will deal with
the cases for field selection and method invocation in the validator and in other
components.

Finally, we have the rule for terminal expressions:

SJTerminalExpression returns SJExpression:
 {SJStringConstant} value=STRING |
 {SJIntConstant} value=INT |
 {SJBoolConstant} value = ('true' | 'false') |
 {SJThis} 'this' |
 {SJNull} 'null' |
 {SJSymbolRef} symbol=[SJSymbol] |
 {SJNew} 'new' type=[SJClass] '(' ')' |
 '(' SJExpression ')'
;

Type Checking

[208]

Note that we have a single rule for referring both to a parameter (SJParameter)
and to a local variable (SJVariableDeclaration), since we have a cross-reference
of type SJSymbol (see the rule we added previously to have a base class for both
parameters and local variables). In our DSL, you cannot pass arguments when
creating an instance (SJNew), since we simplified the language by removing explicit
parameterized constructors. Finally, as in the Expressions DSL, we have a rule that
allows explicit parentheses.

As we hinted in the beginning of this chapter, member access always requires a
receiver expression, even if it is this. If we also wanted to handle member access
with an implicit receiver expression, we could have changed the rule for SJSymbol
to also include SJMember, for example:

SJSymbol: SJVariableDeclaration | SJParameter | SJMember;

The features type and name are common to SJMember as well. However, this would
require some additional work when implementing other aspects of the DSL, which
might distract from the real intent of the SmallJava DSL, that is, being a case study
for typing and scoping.

Rule fragments
In some of the rules we have written so far, there is a recurrent fragment:

type=[SJClass] name=ID

It would be nice to avoid such duplication without adding a rule that would
introduce an additional node in the AST. To this aim, we use a parser rule fragment.
Such a rule can be called by other rules, and the result will correspond to a literal
inclusion of the rule fragment content into the calling rule. For example:

SJField:
 SJTypedDeclaration ';' ;

SJMethod:
 SJTypedDeclaration
 '(' … as before

SJParameter:
 SJTypedDeclaration ;

SJVariableDeclaration:
 SJTypedDeclaration '=' expression=SJExpression ';' ;

fragment SJTypedDeclaration:
 type=[SJClass] name=ID ;

Chapter 9

[209]

A rule fragment will correspond to a new type in the AST, and the types of the
calling rules will automatically inherit from such a type. In this example, the type
SJVariableDeclaration will inherit from the SJTypedDeclaration type. We do
not want this to happen, since we want to manage the hierarchy of the AST types
ourselves. For example, we want SJVariableDeclaration and SJParameter to
have a common supertype, but we do not want SJMember to do so. To disable the
creation of a type in the AST for the rule fragment and the corresponding implied
inheritance relations we put an * in the rule fragment as follows:

fragment SJTypedDeclaration *:
 type=[SJClass] name=ID ;

The complete grammar
We will sum up by showing the complete grammar of the SmallJava DSL (in the next
chapter, we will modify this grammar):

grammar org.example.smalljava.SmallJava with org.eclipse.xtext.
common.Terminals

generate smallJava "http://www.example.org/smalljava/SmallJava"

SJProgram:
 classes+=SJClass*;

SJClass: 'class' name=ID ('extends' superclass=[SJClass])? '{'
 members += SJMember*
'}' ;

SJMember:
 SJField | SJMethod ;

SJField:
 SJTypedDeclaration ';' ;

SJMethod:
 SJTypedDeclaration
 '(' (params+=SJParameter (',' params+=SJParameter)*)? ')'
 body=SJBlock ;

SJParameter:
 SJTypedDeclaration ;

Type Checking

[210]

SJBlock:
 {SJBlock} '{' statements += SJStatement* '}' ;

SJStatement:
 SJVariableDeclaration |
 SJReturn |
 SJExpression ';' |
 SJIfStatement
;

SJVariableDeclaration:
 SJTypedDeclaration '=' expression=SJExpression ';'
;

SJReturn:
 'return' expression=SJExpression ';'
;

SJIfStatement:
 'if' '(' expression=SJExpression ')' thenBlock=SJIfBlock
 (=>'else' elseBlock=SJIfBlock)?
;

SJIfBlock returns SJBlock:
 statements += SJStatement
 | SJBlock ;

SJSymbol: SJVariableDeclaration | SJParameter ;

fragment SJTypedDeclaration *:
 type=[SJClass] name=ID ;

SJNamedElement:
 SJClass | SJMember | SJSymbol ;

SJExpression: SJAssignment ;

SJAssignment returns SJExpression:
 SJSelectionExpression
 ({SJAssignment.left=current} '=' right=SJExpression)? // Right
associativity
;

Chapter 9

[211]

SJSelectionExpression returns SJExpression:
 SJTerminalExpression
 (
 {SJMemberSelection.receiver=current} '.'
 member=[SJMember]
 (methodinvocation?='('
 (args+=SJExpression (',' args+=SJExpression)*)? ')'
)?
)* ;

SJTerminalExpression returns SJExpression:
 {SJStringConstant} value=STRING |
 {SJIntConstant} value=INT |
 {SJBoolConstant} value = ('true' | 'false') |
 {SJThis} 'this' |
 {SJNull} 'null' |
 {SJSymbolRef} symbol=[SJSymbol] |
 {SJNew} 'new' type=[SJClass] '(' ')' |
 '(' SJExpression ')'
;

Utility methods
As we did for previous DSLs, we write an Xtend class, SmallJavaModelUtil, with
utility methods for accessing the AST model of a SmallJava program:

class SmallJavaModelUtil {
 def fields(SJClass c) {
 c.members.filter(SJField)
 }

 def methods(SJClass c) {
 c.members.filter(SJMethod)
 }

 def returnStatement(SJMethod m) {
 m.body.returnStatement
 }

 def returnStatement(SJBlock block) {
 block.statements.filter(SJReturn).head
 }
}

Type Checking

[212]

Since the feature members in an SJClass object contains both the SJField and
SJMethod instances, it is useful to have utility methods to quickly select them based
on type. We will use these methods as extension methods in other Xtend classes
so that we will be able to write expressions such as c.methods and c.fields. The
method to quickly access the return statement will be useful when writing unit tests
for the DSL. We will add other utility methods in the next sections.

Testing the grammar
As you should know by now, we should write unit tests for the parser as soon as
we write some rules for the DSL grammar. In this chapter, we show only a few
interesting cases, in particular the tests for the associativity of expressions such as
assignments and member selection (see Chapter 8, An Expression Language, for the
technique for testing associativity). We use the SmallJavaModelUtil utility methods
to write cleaner tests:

import static extension org.junit.Assert.*

@RunWith(XtextRunner)
@InjectWith(SmallJavaInjectorProvider)
class SmallJavaParsingTest {
 @Inject extension ParseHelper<SJProgram>
 @Inject extension SmallJavaModelUtil

 @Test def void testMemberSelectionLeftAssociativity() {
 '''
 class A {
 A m() { return this.m().m(); }
 }
 '''.parse.classes.head.methods.head.
 body.statements.last.assertAssociativity("((this.m).m)")
 }

 @Test def void testAssignmentRightAssociativity() {
 '''
 class A {
 A m() {
 A f = null;
 A g = null;
 f = g = null;
 }
 }
 '''.parse.classes.head.methods.head.

Chapter 9

[213]

 body.statements.last.assertAssociativity("(f = (g = null))")
}

 def private assertAssociativity(SJStatement s, CharSequence
expected) {
 expected.toString.assertEquals(s.stringRepr)
 }

 def private String stringRepr(SJStatement s) {
 switch (s) {
 SJAssignment:'''(«s.left.stringRepr» = «s.right.stringRepr»)'''
 SJMemberSelection:'''(«s.receiver.stringRepr».«s.member.
name»)'''
 SJThis: "this"
 SJNew: '''new «s.type.name»()'''
 SJNull: "null"
 SJSymbolRef: s.symbol.name
 SJReturn: s.expression.stringRepr
 }
 }

We also write tests for the syntactic predicate for the if statement rule:

@Test def void testElse() {
 '''
 class C {
 C c;
 C m() {
 if (true)
 if (false)
 this.c = null;
 else
 this.c = null;
 return this.c;
 }
 }
 '''.parse => [
 val ifS = (classes.head.methods.head.
 body.statements.head as SJIfStatement)
 ifS.elseBlock.assertNull
 // thus the else is associated to the inner if
]
}

Type Checking

[214]

@Test def void testElseWithBlock() {
 '''
 class C {
 C c;
 C m() {
 if (true) {
 if (false)
 this.c = null;
 } else
 this.c = null;
 return this.c;
 }
 }
 '''.parse => [
 val ifS = (classes.head.methods.head.
 body.statements.head as SJIfStatement)
 ifS.elseBlock.assertNotNull
 // thus the else is associated to the outer if
]
}

The additional effort in writing tests for the SmallJava DSL is that when you need to
access statements and expressions, you will need to walk the AST model to access
the class, then the method, and then access the desired expression or statements in
the method's body statement list.

First validation rules
Before getting to the main subject of this chapter, we will first implement some
constraint checks that are complementary to type checking. Correct access to fields
and methods will be checked in the next chapter, where we implement a custom
scoping mechanism.

Checking cycles in class hierarchies
The SmallJava parser accepts input with cyclic class hierarchies, for instance:

class A extends C {}

class C extends B {}

class B extends A {}

Chapter 9

[215]

This cannot be checked in the parser; we must write a validator @Check method to
mark such situations as errors (this is similar to the validator for the Entities DSL
in Chapter 4, Validation). As you will see later in this chapter, we will often need to
traverse the inheritance hierarchy of a class to perform additional checks. Also in this
case, it is our job to avoid an infinite loop in case of cycles. We write a utility method
in SmallJavaModelUtil that collects all the classes in the hierarchy of a given
SJClass, to avoid entering an infinite loop. Similarly to what we did for the Entities
DSL, we will visit the class hierarchy inspecting the superclass feature, and we will
stop the visit either when the superclass is null or when a class is already in the list
of visited classes:

class SmallJavaModelUtil {

 def classHierarchy(SJClass c) {
 val visited = newLinkedHashSet()

 var current = c.superclass
 while (current != null && !visited.contains(current)) {
 visited.add(current)
 current = current.superclass
 }

 visited
 }...

When looking at the example code, you will find that
testing is done in isolation in its own JUnit test class for
SmallJavaModelUtil—this is not shown in this chapter.

Now it is straightforward to write the validator method for checking whether the
hierarchy of a class contains a cycle; given an SJClass object, we check whether that
class is contained in its own class hierarchy. Refer to the following code:

class SmallJavaValidator extends AbstractSmallJavaValidator {

 protected static val ISSUE_CODE_PREFIX =
 "org.example.smalljava.";
 public static val HIERARCHY_CYCLE =
 ISSUE_CODE_PREFIX + "HierarchyCycle";

 @Inject extension SmallJavaModelUtil

Type Checking

[216]

 @Check def checkClassHierarchy(SJClass c) {
 if (c.classHierarchy.contains(c)) {
 error("cycle in hierarchy of class '" + c.name + "'",
 SmallJavaPackage.eINSTANCE.SJClass_Superclass,
 HIERARCHY_CYCLE, c.superclass.name)
 }
 }...

Differently from what we did in Chapter 4, Validation for the Entities DSL, we do
not build the inheritance hierarchy directly in the validator; we implemented this
functionality in SmallJavaModelUtil, since we will use it in other parts. This
validation rule can be tested as we did for the Entities DSL example in Chapter 7,
Testing, section Testing the validator.

Checking member selections
As we said in the section Rules for Expressions, we preferred to have a simple rule
for member selection. This means that we must check whether a member selection
actually refers to a field and whether a method invocation actually refers to a method
("Loose grammar, Strict validation").

We therefore write a @Check method for checking these situations. In particular,
we use the boolean feature methodinvocation to know what we need to check;
remember that this feature is set to true if the program text contains an opening
parenthesis after the member reference:

public static val FIELD_SELECTION_ON_METHOD =
 ISSUE_CODE_PREFIX + "FieldSelectionOnMethod"
public static val METHOD_INVOCATION_ON_FIELD =
 ISSUE_CODE_PREFIX + "MethodInvocationOnField"

@Check def void checkMemberSelection(SJMemberSelection sel) {
 val member = sel.member

 if (member instanceof SJField && sel.methodinvocation)
 error(
 '''Method invocation on a field''',
 SmallJavaPackage.eINSTANCE.
 SJMemberSelection_Methodinvocation,
 METHOD_INVOCATION_ON_FIELD)
 else if (member instanceof SJMethod && !sel.methodinvocation)
 error(
 '''Field selection on a method''',

Chapter 9

[217]

 SmallJavaPackage.eINSTANCE.
 SJMemberSelection_Member,
 FIELD_SELECTION_ON_METHOD
)

}

Note that for an error concerning a method invocation on a field, we pass the
methodinvocation feature when calling error. This way, the error marker will
be placed on the opening parenthesis.

This validator rule is verified by the following two test methods:

@Test def void testInvocationOnField() {
 '''
 class A {
 A f;
 A m() {
 return this.f();
 }
 }
 ''' => [
 parse.assertError(
 SmallJavaPackage.eINSTANCE.SJMemberSelection,
 SmallJavaValidator.METHOD_INVOCATION_ON_FIELD,
 lastIndexOf("("), 1, // check error position
 "Method invocation on a field"
)
]
}

@Test def void testFieldSelectionOnMethod() { // similar
}

Checking return statements
We must check that a return statement is the last statement of a block. If there were
other statements after the return statement, they would never be executed, and thus
we should issue an "Unreachable code" error, like Java does. We could have enforced
this in the grammar in the rule for SJBlock , but you should know by now that this
should be avoided.

Type Checking

[218]

In fact, such a solution would have several drawbacks. First of all, while you can
easily access the return statement of a block, you cannot treat all the statements of
a block uniformly, and you will need to consider the case for the return statement
separately. Most important of all, in case the return statement is not the last
statement of a block, the error issued by the parser does not bring much information.
Indeed, several syntax errors will be generated that are hard to understand by the
user. Not getting AST elements in such cases also means it is not possible (or very
hard) to offer good quick fixes.

It is much better to have a loose grammar rule in combination with a strict check
to provide better error messages. If we find a return statement that is not the last
element of a block's statement list, then we generate an error on the statement
following the return statement, specifying that it is "Unreachable code" as shown in
the following code snippet:

public static val UNREACHABLE_CODE = ISSUE_CODE_PREFIX +
"UnreachableCode"

@Check def void checkUnreachableCode(SJBlock block) {
 val statements = block.statements
 for (var i = 0; i < statements.length-1; i++) {
 if (statements.get(i) instanceof SJReturn) {
 // put the error on the statement after the return
 error("Unreachable code",
 statements.get(i+1),
 null, // EStructuralFeature
 UNREACHABLE_CODE)
 return // no need to report further errors
 }
 }

}

Note that the for loop ends at the last but one statement. Thus, we do not check the
last statement, since the error is represented by the situation where we find a return
that is not the last statement. We use the version of the error method that also
accepts the EObject to mark with the error (if not specified, the object that is passed
to the @Check method is marked). Since we pass null for the EStructuralFeature
argument, the whole statement will be marked with the error.

To test that the error is actually generated on the correct statement, we rely on the
type of the statement:

@Test def void testUnreachableCode() {
 '''
 class C {

Chapter 9

[219]

 C m() {
 return null;
 this.m(); // the error should be placed here
 }
 }
 '''.parse.assertError(
 SmallJavaPackage.eINSTANCE.SJMemberSelection,
 SmallJavaValidator.UNREACHABLE_CODE,
 "Unreachable code"
)
}

In the preceding code, we check that the error is on the statement of type
SJMemberSelection, that is, the statement after the return statement in the
test input code.

If we need a quick way of accessing the return statement of a block, we call the utility
method returnStatement in SmallJavaModelUtil.

The same utility method can be used to check that a method actually ends with a
return statement, since in SmallJava there are no void methods. The implementation
of this validator method can be found in the sources of the example. Also, in this
case, the error contains more information than what we would get if we tried to rule
out this situation in the grammar.

Checking for duplicates
In the DSL examples we have seen so far, we have always used the default validator
NamesAreUniqueValidator to check for elements of the same kind with the same
name. In this example, we will deal with such checks manually in our own validator.
To check for duplicate elements, we avoid to compare each name with other every
other name, since this would have quadratic complexity. Instead, we will populate
a multi-map, where the key is the name and the values are the elements of the same
type with that name. For the multi-map, we use com.google.common.collect.
HashMultimap; this is part of com.google.guava, on which the DSL project already
depends on. If such a map then contains a list with more than one element for a
given key, then we mark all such elements as duplicates. Using a multi-map, which
we fill upfront, will allow us to generate the exact number of errors. In contrast,
filling a plain map while inspecting the collection and generating a errors if we find
an existing element in the map with the same name, would yield too many errors.

Type Checking

[220]

We first implement a reusable method, which performs such check given an iterable
of SJNamedElement objects and a description of the type of element to be used when
reporting errors:

public static val DUPLICATE_ELEMENT =
 ISSUE_CODE_PREFIX + "DuplicateElement"

def private void checkNoDuplicateElements(
 Iterable<? extends SJNamedElement> elements, String desc) {
 val multiMap = HashMultimap.create()

 for (e : elements)
 multiMap.put(e.name, e)

 for (entry : multiMap.asMap.entrySet) {
 val duplicates = entry.value
 if (duplicates.size > 1) {
 for (d : duplicates)
 error(
 "Duplicate " + desc + " '" + d.name + "'",
 d,
 SmallJavaPackage.eINSTANCE.SJNamedElement_Name,
 DUPLICATE_ELEMENT)
 }
 }
}

Then, we will call this method with classes, fields, methods, parameters of a method,
and variables of a method body. The check for duplicate variable declarations must
deal with possible nested blocks, since we do not allow a local variable to shadow a
previously defined variable with the same name. Instead of inspecting all possible
nested blocks manually, we use the EcoreUtil2.getAllContentsOfType method,
which returns the list of all elements of a given type, even the nested ones:

@Check def void checkNoDuplicateClasses(SJProgram p) {
 checkNoDuplicateElements(p.classes, "class")
}

@Check def void checkNoDuplicateMembers(SJClass c) {
 checkNoDuplicateElements(c.fields, "field")
 checkNoDuplicateElements(c.methods, "method")
}

@Check def void checkNoDuplicateSymbols(SJMethod m) {

Chapter 9

[221]

 checkNoDuplicateElements(m.params, "parameter")
 checkNoDuplicateElements(
 m.body.getAllContentsOfType(SJVariableDeclaration), "variable")
}

Then, we write the tests for all these checks (here we only show a few of them). For
members, we also write a test ensuring that a method and a field are allowed to have
the same name:

@Test def void testDuplicateFields() {
 '''
 class C {
 C f;
 C f;
 }
 '''.toString.assertDuplicate(
 SmallJavaPackage.eINSTANCE.SJField, "field", "f")
}

@Test def void testDuplicateVariables() {
 '''
 class C {
 C m() {
 C v = null;
 if (true)
 C v = null;
 return null;
 }
 }
 '''.toString.assertDuplicate(
 SmallJavaPackage.eINSTANCE.SJVariableDeclaration, "variable",
"v")
}

@Test def void testFieldAndMethodWithTheSameNameAreOK() {
 '''
 class C {
 C f;
 C f() { return null; }
 }
 '''.parse.assertNoErrors
}

def private void assertDuplicate(String input, EClass type,
 String desc, String name) {

Type Checking

[222]

 input.parse => [
 // check that the error is on both duplicates
 assertError(type,
 SmallJavaValidator.DUPLICATE_ELEMENT,
 input.indexOf(name), name.length,
 "Duplicate " + desc + " '" + name + "'")
 assertError(type,
 SmallJavaValidator.DUPLICATE_ELEMENT,
 input.lastIndexOf(name), name.length,
 "Duplicate " + desc + " '" + name + "'")
]
}

Type checking
Most of the constraint checks for an object-oriented language such as SmallJava
will deal with type checking, that is, checking that expressions and statements are
well-typed.

We have already seen how to perform a simple form of type checking in the
Expressions DSL (Chapter 8, An Expression Language). In this chapter, we will
see an advanced type checking mechanism, which includes subtyping or type
conformance: an object of class C can be used in a context where an object of a
superclass of C is expected.

We will follow the same strategy illustrated in Chapter 8, An Expression Language: we
will separate the type computation from the actual type checking. We will be able
to generate the error on the sub-expression or statement that is the source of the
problem. As in the previous chapter, we will implement all the type system related
classes in the package typing. This package must be exported in the MANIFEST.MF in
order to test the classes contained in this package.

Type computer for SmallJava
The type computer for SmallJava expressions we are about to construct will compute
the type of any SJExpression. The concept of type will be represented by SJClass,
since SmallJava does not support primitive types, such as int, boolean, and so on.

We write a single typeFor method, which returns an SJClass object using a type
switch (the default case simply returns null):

import static extension org.eclipse.xtext.EcoreUtil2.*

class SmallJavaTypeComputer {
 def SJClass typeFor(SJExpression e) {

Chapter 9

[223]

 switch (e) {
 SJNew: e.type
 SJSymbolRef: e.symbol.type
 SJMemberSelection: e.member.type
 SJAssignment: e.left.typeFor
 SJThis : e.getContainerOfType(SJClass)
 ...
 }
 }...

In the preceding method, the type of a new instance expression is clearly the class
that we are instantiating (the feature: type). The type of a symbol reference is the
type of the referred symbol. Similarly, the type of a member reference is the type
of the referred member. The type of an assignment expression is the type of the left
hand side. The type for this is simply the type of the containing class. Note that
while at runtime the actual object replacing this could be an object of a subclass,
statically, its type is always the class where this is being used. In all of the preceding
cases, the type always corresponds to an existing SJClass.

Now we need to provide a type for the remaining terminal expressions, that is,
null and the constant expressions. For these expressions, there are no existing
SJClass instances that we can use as types; we will create static instances in
SmallJavaTypeComputer (for convenience, we will also give them a name):

class SmallJavaTypeComputer {
 private static val factory = SmallJavaFactory.eINSTANCE
 public static val STRING_TYPE =
 factory.createSJClass => [name='stringType']
 public static val INT_TYPE =
 factory.createSJClass => [name = 'intType']
 public static val BOOLEAN_TYPE =
 factory.createSJClass =>[name='booleanType']

 public static val NULL_TYPE =
 factory.createSJClass => [name = 'nullType']

 def SJClass typeFor(SJExpression e) {
 switch (e) {
 ...continuation
 SJNull: NULL_TYPE
 SJStringConstant: STRING_TYPE
 SJIntConstant: INT_TYPE
 SJBoolConstant: BOOLEAN_TYPE
 }

Type Checking

[224]

 }

 def isPrimitive(SJClass c) {
 c.eResource == null
 }
...

Note that it is convenient to have a way of identifying the types we created for null
and for constant expressions, which we call primitive types; we have a specific
method for that called isPrimitive. An easy way to identify such types is to check
that they are not part of a resource. We will need this distinction in the next chapter.

To test the type computer and keep the tests clean and compact, we implement a
method that contains the skeleton of the test logic where a single passed expression
is replaced. We will use the class names R for method return type, P for parameter
type, and so on. This way, the actual test methods are compact and simple since they
only specify the expression and the expected type name:

@RunWith(XtextRunner)
@InjectWith(SmallJavaInjectorProvider)
class SmallJavaTypeComputerTest {
 @Inject extension ParseHelper<SJProgram>

 @Inject extension SmallJavaModelUtil
 @Inject extension SmallJavaTypeComputer

 def private assertType(CharSequence testExp,
 String expectedClassName) {
 '''
 class R { }
 class P { }
 class V { }
 class N { }
 class F { }

 class C {
 F f;

 R m(P p) {
 V v = null;
 «testExp»;
 return null;
 }
 }
 '''.parse => [

Chapter 9

[225]

 expectedClassName.assertEquals(
 classes.last.methods.last.
 body.statements.get(1).statementExpressionType.name
)
]
 }

 def private statementExpressionType(SJStatement s) {
 (s as SJExpression).typeFor
 }

 @Test def void thisType() {"this".assertType("C")}
 @Test def void paramRefType() {"p".assertType("P")}
 @Test def void varRefType() {"v".assertType("V") }
 @Test def void newType() {"new N()".assertType("N")}
 @Test def void fieldSelectionType() {"this.f".assertType("F")}
...other cases...
 @Test def void intConstantType() {'10'.assertType("intType")}
 @Test def void nullType() {'null'.assertType("nullType")}

This technique is useful when you need a complete program to perform tests. In
SmallJava you cannot type an expression without having a containing method and
a containing class.

Type conformance (subtyping)
In an object-oriented language, the type system must also take type conformance (or
subtyping) into account: an object of class C can be used in a context where an object
of a superclass of C is expected. For instance, the following code is well-typed:

C c = new D();

Provided that D is a subclass (subtype) of C., that is, either D extends C or D
extends B and, recursively, B is a subclass of C. This holds true in every context
where an expression is assigned, for example, when we pass an argument in a
method invocation.

We implement type conformance in a separate class, SmallJavaTypeConformance.

To check whether a class is a subclass of another class, we need to inspect the class
hierarchy of the former and see whether we find the latter. We compute the class
hierarchy using SmallJavaModelUtil.classHierarchy(), which computes the
class hierarchy avoiding infinite loops in case of a cyclic hierarchy.

Type Checking

[226]

Type conformance deals with subclasses as well as other special cases. For instance,
a class is not considered a subclass of itself, but it is of course conformant to itself.
Another special case is the expression null; it can be assigned to any variable and
field and passed as an argument for any parameter. The type for null, which is
represented by the static instance NULL_TYPE in SmallJavaTypeComputer, must be
conformant to any other type.

This is the initial implementation of type conformance for SmallJava:

import static org.example.smalljava.typing.SmallJavaTypeComputer.*

class SmallJavaTypeConformance {

 @Inject extension SmallJavaModelUtil

 def isConformant(SJClass c1, SJClass c2) {
 c1 === NULL_TYPE || // null can be assigned to everything
 c1 === c2 ||
 c1.isSubclassOf(c2)
 }

 def isSubclassOf(SJClass c1, SJClass c2) {
 c1.classHierarchy.contains(c2)
 }...

For the moment, we are not considering other cases (we need some additional
concepts, as we will see in the next chapter).

We test this implementation as follows:

@RunWith(XtextRunner)
@InjectWith(SmallJavaInjectorProvider)
class SmallJavaTypeConformanceTest {
 @Inject extension ParseHelper<SJProgram>
 @Inject extension SmallJavaTypeConformance

 @Test def void testClassConformance() {
 '''
 class A {}
 class B extends A {}
 class C {}
 class D extends B {}
 '''.parse.classes => [
 // A subclass of A
 get(0).isConformant(get(0)).assertTrue

Chapter 9

[227]

 // B subclass of A
 get(1).isConformant(get(0)).assertTrue
 // C not subclass of A
 get(2).isConformant(get(0)).assertFalse
 // D subclass of A
 get(3).isConformant(get(0)).assertTrue
 // null's type is conformant to any type
 NULL_TYPE.isConformant(get(0)).assertTrue
]
 }...

Expected types
Now, we must check whether an expression has a type which conforms to the one
expected by the context where it is used. The context is not necessarily an assignment
or a method invocation; for instance, the expression used in an if statement must
have the type boolean.

An obvious but not very good way of implementing this check is to write a
@Check method in the validator for each specific context where the conformance
needs to be checked. For example, the check for the assignment expression could be
implemented as shown in the following code snippet:

@Check
def void checkAssignment(SJAssignment a) {
 val actualType = a.right.typeFor
 val expectedType = a.left.typeFor
 if (!actualType.isConformant(expectedType)) {
 error(...
 }
}

However, if we followed this approach, we would need to write several methods in
the validator, which all have the preceding logic in common.

It is easier to compute the expected type and the actual type of an expression
separately and then check for conformance rather than checking explicitly for each
language construct. The expected type of an expression depends on the context
where the expression is being used. We implement the method, expectedType, in
SmallJavaTypeComputer.

The idea is that, given an expression, its expected type depends on its role in the
container of the expression. For instance, consider this SJVariableDeclaration:

C c = new D();

Type Checking

[228]

The expected type of the expression new D() depends on the fact that it is
contained in a variable declaration. The role, in particular, is represented by the
feature of the container that contains the expression. In this example, the feature of
SJVariableDeclaration is expression. We get the container using the method
eContainer and the containing feature using the method eContainingFeature.
Then, it is just a matter of dealing with all the cases. We will use a typed switch that
allows us to specify additional conditions, using the keyword case. Note that the
typed switch is performed on the container of the expression, and the case part deals
with the containing feature. When an expression can only be contained in a single
feature, we do not need to check the containing feature. For example, if an expression
is contained in a variable declaration, then it can only be contained in the feature
expression. Similarly, when we do not need the container, we simply check the
containing feature, as in the case of the expression of an if statement.

To summarize, when the expression:

•	 Is the initialization expression of a variable declaration, the expected type is
the type of the declared variable

•	 Is the right-hand side of an assignment, the expected type is the type of the
left-hand side of the assignment

•	 Is the expression of a return statement, the expected type is the return type
of the containing method

•	 Is the expression of an if statement, the expected type is boolean
•	 Is an argument of a method invocation, the expected type is the type of the

corresponding parameter of the invoked method

The implementation is as follows:

static val ep = SmallJavaPackage.eINSTANCE

def expectedType(SJExpression e) {
 val c = e.eContainer
 val f = e.eContainingFeature
 switch (c) {
 SJVariableDeclaration:
 c.type
 SJAssignment case f == ep.SJAssignment_Right:
 typeFor(c.left)
 SJReturn:
 c.getContainerOfType(SJMethod).type
 case f == ep.SJIfStatement_Expression:
 BOOLEAN_TYPE

Chapter 9

[229]

 SJMemberSelection case f == ep.SJMemberSelection_Args: {
 // assume that it refers to a method and that there
 // is a parameter corresponding to the argument
 try {
 (c.member as SJMethod).params.get(c.args.indexOf(e)).type
 } catch (Throwable t) {
 null // otherwise there is no specific expected type
 }
 }
 }
}

Note that in the last case, we enclose the computation of the expected type in a try
catch; in fact, there are some things that can go wrong in this case. The invoked
member does not exist, it is not a method, or there is no parameter corresponding to
the argument. In these cases, an exception is thrown and we simply return null as
the expected type. If this happens, the corresponding error situation is reported by
other validation checks. In general exceptions are a bad protocol; we used them here
just for the sake of simplicity.

Checking type conformance
Now, we are able to write a single validator method to check type conformance for a
generic expression:

 @Inject extension SmallJavaTypeComputer
 @Inject extension SmallJavaTypeConformance

 public static val INCOMPATIBLE_TYPES =
 ISSUE_CODE_PREFIX + "IncompatibleTypes"

 @Check def void checkConformance(SJExpression exp) {
 val actualType = exp.typeFor
 val expectedType = exp.expectedType
 if (expectedType == null || actualType == null)
 return; // nothing to check
 if (!actualType.isConformant(expectedType)) {
 error("Incompatible types. Expected '" + expectedType.name
 + "' but was '" + actualType.name + "'", null,
 INCOMPATIBLE_TYPES);
 }
 }

Type Checking

[230]

To test this method in SmallJavaValidatorTest, we must create a test for each
situation where conformance is not respected; as we did for the type computer, we
write a method that contains the skeleton of the input, where the passed expression
or statement is replaced (considering that B is conformant to A, but C is not
conformant to A):

def private void assertIncompatibleTypes(CharSequence method-Body,
 EClass c, String expectedType, String actualType) {
 '''
 class A {}
 class B extends A {}
 class C {
 A f;
 A m(A p) {
 «methodBody»
 }
 }
 '''.parse.assertError(
 c, SmallJavaValidator.INCOMPATIBLE_TYPES,
 "Incompatible types. Expected '" + expectedType
 + "' but was '" + actualType + "'"
)
 }

 @Test def void testVariableDeclExpIncompatibleTypes() {
 "A v = new C();".
 assertIncompatibleTypes(
 SmallJavaPackage.eINSTANCE.SJNew,"A", "C")
 }

 @Test def void testReturnExpIncompatibleTypes() {
 "return new C();".
 assertIncompatibleTypes(
 SmallJavaPackage.eINSTANCE.SJNew , "A", "C")
 }
 … test for the valid cases not shown

 @Test def void testArgExpIncompatibleTypes() {
 "this.m(new C());".
 assertIncompatibleTypes(
 SmallJavaPackage.eINSTANCE.SJNew, "A", "C")
 }...other cases not shown...

Chapter 9

[231]

We still need to check whether the number of arguments passed to a method
invocation is equal to the number of parameters of the invoked method:

public static val INVALID_ARGS = ISSUE_CODE_PREFIX + "InvalidArgs"

@Check def void checkMethodInvocationArguments(SJMemberSelection sel)
{
 val method = sel.member
 if (method instanceof SJMethod) {
 if (method.params.size != sel.args.size) {
 error(
 "Invalid number of arguments: expected " +
 method.params.size + " but was " + sel.args.size
 SmallJavaPackage.eINSTANCE.SJMemberSelection_Member,
 INVALID_ARGS)
 }
 }
}

Checking method overriding
Finally, we must check that method overrides are correct: the return type must be
conformant to the type of the overridden method and the parameter types must be
the same as the ones of the overridden method (of course, the parameter names can
be different). In order to do that in an efficient way, we first aggregate all the methods
inherited by a class into a map, where the key is the method name. Since we are not
considering method overloading, using the method name as the key is sufficient. We
use SmallJavaModelUtil.classHierarchy() to get the class hierarchy, and we get
all the methods of the classes in the hierarchy. Since we want the methods in a subclass
to have precedence over the homonymous methods in a superclass, we perform the
following operations. We first reverse the class hierarchy so that superclasses appear
first. We combine this list of lists of methods into a single Iterable of methods using
the standard library utility method flatten. Then, we use the utility method toMap
that takes a lambda for computing the key; in our case, the key is the method's name.
Since adding an element to a map replaces a possible existing element with the same
key, due to the way the classes in the hierarchy appear after the reversing, methods
defined in subclasses will replace the homonymous methods in superclasses. We
implement this method in SmallJavaModelUtil as follows:

def classHierarchyMethods(SJClass c) {
 c.classHierarchy.toList.reverseView.
 map[methods].flatten.toMap[name]
}

Type Checking

[232]

Then we can write the validator check as follows:

public static val WRONG_METHOD_OVERRIDE =
 ISSUE_CODE_PREFIX + "WrongMethodOverride"

@Check
def void checkMethodOverride(SJClass c) {
 val hierarchyMethods = c.classHierarchyMethods
 for (m : c.methods) {
 val overridden = hierarchyMethods.get(m.name)
 if (overridden != null &&
 (!m.type.isConformant(overridden.type) ||
 !m.params.map[type].elementsEqual(overridden.params.
map[type]))) {
 error("The method '" + m.name + "' must override a superclass
method",
 m, SmallJavaPackage.eINSTANCE.SJNamedElement_Name,
 WRONG_METHOD_OVERRIDE)
 }
 }
}

We search for a method in the class hierarchy with the same name as the examined
method. If we find it, we check that the return type of the examined method is
conformant to the one of the overridden method and that the parameter types are the
same. For this latter check, we get the list of types of parameters of the two methods,
and we use the standard library utility method elementsEqual; this checks whether
the two Iterable instances have the same number of elements and that each element
of the first Iterable is equal to the corresponding element of the other Iterable.

Improving the UI
To provide a better experience to the user of the SmallJava editor and tooling, we
customize the appearance of SmallJava members (fields and methods) in several
places of the UI.

First of all, we give a better string representation of members by also showing their
type feature; thus, the string representation of a member is its name and its type's
name separated by a colon :. Moreover, for methods, we also show the type of
each parameter. We mimic the representation of Java members as implemented
by Eclipse JDT. We then implement the methods for string representation in
SmallJavaModelUtil:

def memberAsString(SJMember m) {
 m.name +
 if (m instanceof SJMethod)

Chapter 9

[233]

 "(" + m.params.map[type.name].join(", ") + ")"
 else ""
}

def memberAsStringWithType(SJMember m) {
 m.memberAsString + " : " + m.type.name
}

We also borrow icons from Eclipse JDT for classes, fields, and methods. As we
saw in Chapter 6, Customizing Xtext Components, we can specify the label
representation for our DSL model elements by implementing text and image
methods in SmallJavaLabelProvider. When we implement text, we can return a
JFace StyledString object, which allows us to also specify the style (font, color, and
so on) of the resulting label. For instance, we want to represent the part starting with
: using a different style, again to mimic JDT:

class SmallJavaLabelProvider extends DefaultEObjectLabelProvider {
...

 @Inject extension SmallJavaModelUtil

 def text(SJMember m) {
 new StyledString(m.memberAsString).
 append(new StyledString(" : " + m.type.name,
 StyledString.DECORATIONS_STYLER))
 }
...

We also want a custom representation of members when they are proposed by
the content assist; this will provide the user with additional information about the
available members. In our SmallJavaProposalProvider class, we can simply
override the getStyledDisplayString method that is automatically called by
the default implementation of the proposal provider to represent the proposals. In
this case, we return a custom StyledString object for representing an SJMember
element, and we use a different style for representing the class containing the
proposed member:

class SmallJavaProposalProvider extends
 AbstractSmallJavaProposalProvider {

 @Inject extension SmallJavaModelUtil

 override getStyledDisplayString(EObject element,
 String qualifiedNameAsString, String shortName) {
 if (element instanceof SJMember) {

Type Checking

[234]

 new StyledString(element.memberAsStringWithType).
 append(new StyledString(" - " +
 (element.eContainer as SJClass).name,
 StyledString.QUALIFIER_STYLER))
 } else
 super.getStyledDisplayString(element,
 qualifiedNameAsString, shortName)
 }...

The result can be seen in the following screenshot (we also customized the outline
view, as we did in Chapter 6, Customizing Xtext Components). Note all the type related
information that is now available in the UI:

Summary
In this chapter, we presented type checking techniques that are typical for a
DSL with object-oriented features. A small Java-like language was introduced to
demonstrate how to parse features such as member access and inheritance and how
to handle validation of type conformance. The reader might want to experiment with
the caching techniques we described in the previous chapter and apply them to the
implementation of the DSL.

Chapter 9

[235]

For further reading concerning type system implementations for Xtext languages,
we refer the interested reader to the articles Bettini et al. 2012, Bettini 2013, and Bettini
2016. In these articles, a DSL for implementing type systems for Xtext languages,
Xsemantics is also described. Xsemantics is available as an open source project at
http://xsemantics.sourceforge.net. There is, however, a crucial aspect that we
still have to deal with—correct access to members (fields and methods). In fact, the
following selection expression:

e.f

well-typed only if the field f is declared in the class of e (similarly for methods) or in
any superclass of the class of e: If you perform some experiments, you will note that
at the moment, you can access members which are not declared in the class of the
receiver expression, and that you cannot access all the members of the hierarchy of
the class of the receiver expression. Furthermore, local variable access does not work
correctly in the current implementation; you can also refer to variables defined later
and variables defined in inner blocks.

In order to correctly deal with the preceding issues, which concern cross-reference
resolution, we will need to implement a custom scoping mechanism, as we will see
in the next chapter. Scoping defines what is visible in a specific context so that Xtext
can correctly resolve cross references.

In the next chapter, we will also add to SmallJava access level modifiers for members
(that is, private, protected, and public). We will show you how a SmallJava
program can access classes defined in other files and how to provide a library with
some predefined classes (for example, Object, String, and so on).

http://xsemantics.sourceforge.net

[237]

Scoping
Usually, the first aspect you need to customize in your DSL implementation in Xtext
is the validator. Typically, the second aspect you need to customize is scoping,
which is the main mechanism behind visibility and cross-reference resolution. As
soon as the DSL needs some constructs for structuring the code, a custom scoping
implementation is required. In particular, scoping and typing are often strictly
connected and interdependent especially for object-oriented languages. For this
reason, in this chapter, we will continue developing the SmallJava DSL introduced
in the previous chapter. We will describe both local and global scoping and explain
how to customize scoping using SmallJava as a case study.

This chapter will cover the following topics:

•	 A detailed description of the Xtext mechanisms for local and global scoping
•	 How to customize the local scoping in an object-oriented language
•	 How to customize the global scoping with the concepts of packages

and imports
•	 How to provide a library and a project wizard for your DSL
•	 How to customize the indexing of elements of your DSL

Cross-reference resolution in Xtext
Cross-reference resolution involves several mechanisms. In this section, we introduce
the main concepts behind these mechanisms and describe how they interact. We will
also write tests to get familiar with cross-reference resolution.

Scoping

[238]

Containments and cross-references
Xtext relies on EMF for the in-memory representation of a parsed program, thus, it is
necessary to understand how cross-references are represented in EMF.

In EMF, when a feature is not a datatype (string, integer, and so on), it is a reference,
that is, an instance of EReference. A containment reference defines a stronger type
of association. The association is stronger regarding the lifecycle. The referenced
object is contained in the referring object, called the container. In particular, an object
can have only one container. If you delete the container, all its contents are also
automatically deleted. For non-containment references, the referenced object is stored
somewhere else, for example, in another object of the same resource or even in a
different resource. A cross-reference is implemented as a non-containment reference.

In Ecore, the EReference class has a boolean property
called containment that defines whether the reference is a
containment reference or not.

Let's recall the SmallJava DSL rule for a class definition:

SJClass: 'class' name=ID ('extends' superclass=[SJClass])? '{'
 members += SJMember*
'}' ;

An SJMember member is contained in an SJClass class, that is, members is a
multi-value containment reference. On the contrary, superclass is a single-value
cross-reference.

Scoping deals with cross-references, that is, references with the boolean attribute
containment set to false.

The index
The Xtext index stores information about all the objects in every resource. This
mechanism is the base for cross-reference resolution. For technical reasons (mainly
efficiency and memory overhead), the index stores the IEObjectDescription
elements instead of the actual objects. An IEObjectDescription element is an
abstract description of an EObject. This description contains the name of the object
and the EMF URI of the object. The EMF URI is a path that includes the resource of
the object and a unique identifier in the resource. The URI provides a means to locate
and load the actual object when needed. The description also contains the EClass of
the object, which is useful to filter descriptions by type.

Chapter 10

[239]

The set of resources handled by the index depends on the context of execution.
In the IDE, Xtext indexes all the resources in all the Xtext projects. The index is kept
up-to-date in an incremental way using the incremental building mechanism of
Eclipse, thus keeping the overhead minimal.

In a plain runtime context, where there is no workspace, the index is based on the
EMF ResourceSet. We will see what this implies when we write JUnit tests and
when we implement a standalone compiler.

In both contexts, the index is global. Visibility across resources is handled by using
containers as shown later in the The index and the containers section.

Qualified names
The default implementation of the index uses a mechanism based on names.
The computation of names is delegated to IQualifiedNameProvider. The
default implementation of the name provider is based on the string attribute name.
This is why we always defined elements that we want to refer to with a feature
name in the grammar.

The Xtext editor highlights the string attribute name in orange
in the grammar.

Using only the simple name will soon raise problems due to duplicates, even in a
simple program. Most Java-like languages use namespaces to allow for elements with
the same name in different namespaces. Thus, for example, two different methods are
allowed to have local variables with the same name, two different classes are allowed
to have fields with the same name, two different packages are allowed to have classes
with the same name, and so on. For this reason, the default implementation of the
name provider computes a qualified name. It concatenates the name of an element
with the qualified name of its container recursively; elements without a name are
simply skipped. By default, all segments of a qualified name are separated by a dot,
which is a common notation for expressing qualified names like in Java.

For example, consider the following SmallJava program (the type of declarations is not
important here, thus, we use the class A that we assume as defined in the program):

class C {
 A f;
 A m(A p) {
 A v = null;
 return null;
 }
}

Scoping

[240]

The containment relations are shown in the following tree figure:

The qualified names of the elements of the preceding SmallJava class are shown in
the following table:

Object Qualified Name
SJClass C C
SJField f C.f
SJMethod m C.m
SJParameter p C.m.p
SJVariableDeclaration v C.m.v

Note that SJMethodBody does not participate in the computation of the qualified
name of the contained variable declaration, since it does not have a name feature.

Qualified names are the mechanism also used by
NamesAreUniqueValidator to decide when two
elements are considered as duplicates.

Exported objects
To understand the mechanism behind scoping, it is useful to learn how to access
the index. Accessing the index will also be useful for performing additional checks
as shown later in this chapter. We show how to get all the object descriptions of the
current resource.

The indexed object descriptions of a resource are stored in IResourceDescription,
which is an abstract description of a resource. The index is implemented
by IResourceDescriptions (plural form) and can be obtained through an
injected ResourceDescriptionsProvider using the getResourceDescriptions(Re
source) method.

Chapter 10

[241]

Different resource descriptions are returned depending on the context they are
retrieved. For example, there are resource descriptions of the files as they are
on disk. However, while typing in the editor, a different resource description
will be retrieved, which reflects the unsaved changes and that will shadow the
resource description of the corresponding file saved on the disk. The ResourceSet
records in which context it was created, that is why it is used as a parameter in the
ResourceDescriptionsProvider.

Once we have the index, we get the IResourceDescription of a resource by
specifying its URI. Once we have the IResourceDescription, we get the list of all
the IEObjectDescription elements of the resource that are externally visible, that
is, globally exported, using the method getExportedObjects. We can also filter
exported elements by type:

We implement all the index-related operations in a separate class, SmallJavaIndex,
in the package scoping:

class SmallJavaIndex {
 @Inject ResourceDescriptionsProvider rdp

 def getResourceDescription(EObject o) {
 val index = rdp.getResourceDescriptions(o.eResource)
 index.getResourceDescription(o.eResource.URI)
 }

 def getExportedEObjectDescriptions(EObject o) {
 o.getResourceDescription.getExportedObjects
 }

 def getExportedClassesEObjectDescriptions(EObject o) {
 o.getResourceDescription.
 getExportedObjectsByType(SmallJavaPackage.eINSTANCE.SJClass)
 }
}

We then write a learning test (see Chapter 7, Testing) listing the qualified names of the
exported object descriptions:

@RunWith(XtextRunner)
@InjectWith(SmallJavaInjectorProvider)
class SmallJavaIndexTest {
 @Inject extension ParseHelper<SJProgram>
 @Inject extension SmallJavaIndex
 @Test def void testExportedEObjectDescriptions() {
 '''

Scoping

[242]

 class C {
 A f;
 A m(A p) {
 A v = null;
 return null;
 }
 }
 class A {}
 '''.parse.assertExportedEObjectDescriptions
 ("C, C.f, C.m, C.m.p, C.m.v, A")
 // this will have to be adapted at the end of the chapter
 }
 def private assertExportedEObjectDescriptions(EObject o,
 CharSequence expected) {
 expected.toString.assertEquals(
 o.getExportedEObjectDescriptions.map[qualifiedName].join(", ")
)
 }
}

The linker and the scope provider
The actual cross-reference resolution, that is, the linking, is performed by
LinkingService. Usually, you do not need to customize the linking service, since
the default implementation relies on IScopeProvider, which is the component you
would customize instead. The default linking service relies on the scope obtained
for a specific context in the model, and chooses an object whose name matches the
textual representation of the reference in the program.

Thus, a scope provides information about:

•	 The objects that can be reached, that is, they are visible, in a specific part of
your model, the context

•	 The textual representation to refer to them

You can think of a scope as a symbol table (or a map), where the keys are the names
and the values are instances of IEObjectDescription. The Java interface for scopes
is IScope.

Chapter 10

[243]

The overall process of cross-reference resolution, that is, the interaction between the
linker and the scope provider, can be simplified as follows:

1.	 The linker must resolve a cross-reference with text n in the program context c
for the feature f of type t.

2.	 The linker queries the scope provider: "give me the scope for the elements
assignable to f in the program context c".

3.	 The scope searches for an element whose key matches with n.
4.	 If it finds it, it locates and loads the EObject pointed to by the

IEObjectDescription and resolves the cross-reference.
5.	 Otherwise, it issues an error of the shape "Couldn't resolve reference to...".

The IScopeProvider entry point is a single method:

IScope getScope(EObject context, EReference reference)

Since the program is stored in an EMF model, the context is an EObject and the
reference is an EReference. Note that cross-references in an Xtext grammar specify
the type of the referred elements. Thus, the scope provider must also take the types
of objects for that specific reference into consideration when building the scope. The
type information is retrieved from EReference that is passed to getScope.

Both scopes and the index deal with object descriptions. The crucial difference is
that a scope also specifies the actual string with which you can refer to an object. The
actual string does not have to be equal to the object description's qualified name in
the index. Thus, the same object can be referred to with different strings in different
program contexts.

To put it in another way, the index provides all the qualified names of the visible
objects of a resource so that all these objects can be referred to using their qualified
names. The scope provides further information, that is, in a given program context,
some objects can be referred to even using simple names or using qualified names
with less segments.

If in our DSL we can only use IDs to refer to objects, and objects are visible only by
their fully qualified names, then we will not be able to refer to any object. Thus, being
able to refer to an object by a simple name is essential.

Scoping

[244]

Another important aspect of scopes is that they can be nested. Usually, a scope is
part of a chain of scopes so that a scope can have an outer scope, also known as
the parent scope. If a matching string cannot be found in a scope, it is recursively
searched in the outer scope. If a matching string is found in a scope, the outer
scope is not consulted. This strategy allows Xtext to implement typical situations in
programming languages. For example, in a code block, you can refer to variables
declared in the containing block. Similarly, declarations in a block usually shadow
possible declarations with the same name in the outer context.

The default implementation of IScopeProvider reflects the nested nature of scopes
using the containment relations of the EMF model. For a given program context, it
builds a scope where all objects in the container of the context are visible by their
simple name. The outer scope is obtained by recursively applying the same strategy
on the container of the context.

Let's go back to our previous SmallJava example:

class C {
 A f;
 A m(A p) {
 A v = null;
 return null; // assume this is the context
 }
}

Let's assume that the context is the expression of the return statement; in that context,
the SJMember elements will be visible by simple names and by qualified names:

f, m, C.f, C.m

In the same context, the SJSymbol elements will be visible by the following names:

p, v, m.p, m.v, C.m.p, C.m.v

This is because p and v are contained in m, which in turn is contained in C. Note that
they are also visible by simpler qualified names, that is, qualified names with less
segments, m.p and m.v, respectively.

In the SmallJava grammar, we can refer to members and symbols only by their
simple name using an ID, not by a qualified name. Without a scope, we would not
be able to refer to any of such elements, since they would be visible only by their
qualified names.

Chapter 10

[245]

A learning test that invokes the method getScope can help understand the
default scope provider implementation (note how we specify EReference using
SmallJavaPackage):

@RunWith(XtextRunner)
@InjectWith(SmallJavaInjectorProvider)
class SmallJavaScopeProviderTest {
 @Inject extension ParseHelper<SJProgram>
 @Inject extension SmallJavaModelUtil

 @Inject extension IScopeProvider
 @Test def void testScopeProvider() {
 '''
 class C {
 A f;
 A m(A p) {
 A v = null;
 return null; // return's expression is the context
 }
 }
 class A {}
 '''.parse.classes.head.
 methods.last.returnStatement.expression => [
 // THIS WILL FAIL when we customize scoping in the next
sections
 assertScope
 (SmallJavaPackage.eINSTANCE.SJMemberSelection_Member,
 "f, m, C.f, C.m")
 assertScope
 (SmallJavaPackage.eINSTANCE.SJSymbolRef_Symbol,
 "p, v, m.p, m.v, C.m.p, C.m.v")
]
 }

 def private assertScope(EObject context,
 EReference reference, CharSequence expected) {

 expected.toString.assertEquals(
 context.getScope(reference).
 allElements.map[name].join(", "))
 }
}

Scoping

[246]

In the next diagram, we show the interaction between the linker and the scope
provider for the resolution of the member in a member selection expression:

Summarizing, the default implementation of the scope provider fits most DSLs; in
fact, for the Entities DSL, the cross-reference resolution worked out of the box.

The scope provider is also used by the content assist to provide
a list of all visible elements. Since the scope concerns a specific
program context, the proposals provided by the content assist
are actually sensible for that specific context.

Component interaction
Before getting into scope customization, we conclude this section by summarizing,
in a simplified way, how all of the preceding mechanisms are executed internally
by Xtext's builder:

•	 Parsing: Xtext parses the program files and builds the corresponding EMF
models; during this stage, cross-references are not resolved

•	 Indexing: All the contents of the EMF models are processed; if an element
can be given a qualified name, a corresponding object description is put in
the index

Chapter 10

[247]

•	 Linking: The linking service performs cross-reference resolution using the
scope provider

This workflow is fixed. Consequently, we cannot rely on resolved cross-references
during indexing. We need to keep that into consideration if we modify the indexing
process, as we will see later in the section, What to put in the index?

Custom scoping
As soon as a DSL introduces more involved features, such as nested blocks or
inheritance relations, the scope provider must be customized according to the
semantics of the language.

The Xtext generator generates an Xtend stub class for implementing a custom scope
provider. In the SmallJava DSL, it is SmallJavaScopeProvider.

In order to customize the scope provider we redefine the method getScope, and we
manually check the reference and the context's class, for example:

override getScope(EObject context, EReference reference) {
 if (reference == SmallJavaPackage.eINSTANCE.SJSymbolRef_Symbol) {
 if (context instanceof ...)
 ...
 } else if (reference ==
 SmallJavaPackage.eINSTANCE.SJMemberSelection_Member) {
 ...
 } else {
 super.getScope(context, reference)
 }
}

Scope for blocks
The default scope provider can be too permissive. For example, in SmallJava, it
allows an expression to refer to a variable declaration that is defined after that
expression. As we have seen in Chapter 8, An Expression Language, forward references
for variables are usually not permitted in languages. Moreover, if the language
has nested code blocks, the default scope provider allows an outer block to access
variable declarations of an inner block.

Scoping

[248]

Let's consider an example of nested blocks in SmallJava:

class C {
 A m(A p) {
 A v1 = v4; // forward reference
 if (true) {
 A v2 = null;
 A v3 = v4; // forward reference
 }
 A v4 = v2; // reference to a var of an inner block
 return null;
 }
}

The example shows variable references that should not be valid. However, with
the default scope provider, all variable declarations are visible in all contexts of the
method body.

In Chapter 8, An Expression Language, we solved the problem of forward references by
implementing a check in the validator, while in this chapter we show how to solve
the visibility of symbols with a custom scope. The idea of the solution is basically the
same; we want to build a scope consisting of the list of symbols defined before the
current program context. In SmallJava, we have nested blocks, and we also need to
examine containing blocks. Moreover, when examining the containing block, we still
need to limit the list of visible variables to those declared before the block containing
the current context. This implicitly prevents a variable definition from referring to
itself in its initialization expression. Considering the previous example, when the
context is the variable declaration A v3 = v4 in the if block, the scope should consist
of all the variables of the container (the if block) declared before the context, that
is, only v2. The outer scope should consist of all the variables of the container of the
container (the method's body) declared before the container of the context, that is,
only v1, and so on. The end of this recursion will be the case when the container is the
method itself, in which case the scope is the list of parameters. Thus, we want to build
the following nested scope for the variable declaration A v3 = v4 in the if block:

v2, outer: (v1, outer: (p, outer: null))

To actually create the scope instance, which would require us to build a list of
IEObjectDescription, we can use the static utility method Scopes.scopeFor. This
method takes an Iterable<EObject> and creates a scope with the corresponding
IEObjectDescription elements. In particular, the object descriptions are created
using the string attribute name of the passed EObject elements. This way, the
descriptions will have simple names instead of qualified ones, which is what we
want. You can also pass the outer scope to the method Scopes.scopeFor.

Chapter 10

[249]

To implement the custom scoping for symbol references, we override getScope in
SmallJavaScopeProvider as follows:

val epackage = SmallJavaPackage.eINSTANCE

override getScope(EObject context, EReference reference) {
 if (reference == epackage.SJSymbolRef_Symbol) {
 return scopeForSymbolRef(context)
 }
 return super.getScope(context, reference)
}

def protected IScope scopeForSymbolRef(EObject context) {
 val container = context.eContainer
 return switch (container) {
 SJMethod: Scopes.scopeFor(container.params)
 SJBlock:
 Scopes.scopeFor(
 container.statements.takeWhile[it != context].
 filter(SJVariableDeclaration),
 scopeForSymbolRef(container) // outer scope
)
 default: scopeForSymbolRef(container)
 }
}

Since we want to customize the scope for symbol references, we check whether the
passed EMF reference is SJSymbolRef_Symbol. In the SmallJava grammar, this is the
only case where we can refer to a symbol. We delegate the computation of the scope
to the recursive method scopeForSymbolRef. In this method, we perform a typed
switch on the container of the context. The case for SJMethod ends the recursion by
returning a scope consisting of the parameters of the method. The case for SJBlock
builds a scope consisting of the variables in the block defined before the current
context, using the Xtend library utility method takeWhile; the outer scope is the
one returned by the recursive invocation walking the containment hierarchy. Recall
that the case for SJBlock includes the cases for the body of an SJMethod and for the
branches of an SJIfStatement. The default case simply performs another step of the
recursion, without participating in the building of the scope.

Scoping

[250]

The following table illustrates the recursive construction of the scope when the
context is the variable declaration A v3 = v4. The table shows the container, the
context, and the scope for symbols in that context:

Container Context Scope
If block A v3 = v4 v2
If statement If block
Method body If statement v1
Method definition Method body p

Note that when the context is SJIfBlock, the container is SJIfStatement, and there
is no symbol to add in the scope.

The resulting scope is as we wanted:

v2, outer: (v1, outer: (p, outer: null))

In this way, we get the correct behavior for symbol references, which can be verified
in the following test (the testScopeProvider that we wrote a few sections before
will now fail, since we customized the scope provider):

@Test def void testScopeProviderForSymbols() {
 '''
 class C {
 A m(A p) {
 A v1 = null;
 if (true) {
 A v2 = null;
 A v3 = null;
 }
 A v4 = null;
 return null;
 }
 }
 class A {}
 '''.parse.classes.head.methods.last.body.eAllContents.
 filter(SJVariableDeclaration) => [
 findFirst[name == 'v3'].expression.assertScope
 (SmallJavaPackage.eINSTANCE.SJSymbolRef_Symbol,
 "v2, v1, p")
 findFirst[name == 'v4'].expression.assertScope
 (SmallJavaPackage.eINSTANCE.SJSymbolRef_Symbol,
 "v1, p")
]
}

Chapter 10

[251]

In this test, we verify the scope when the context is the variable declaration with
name v3, and when the context is the variable declaration with name v4.

With this scope provider implementation, the variables defined in an inner block or
after the program context cannot be referred; the user will get errors of the "Couldn't
resolve reference to..." type.

Scope for inheritance and member visibility
The default scope provider implementation based on containments does not work
for more complex relations implied by the semantics of the DSL. A typical example is
the inheritance relation in object-oriented languages.

In SmallJava a subclass's method body must be able to refer to superclass's members.
Note that for the moment, SmallJava does not have access level modifiers like
private and protected; every member is implicitly public. We will add such
modifiers in the next section.

For example, consider the following code snippet:

class C {
 A a;
 A n() { return null; }
}

class D extends C {
 A b;
 A m() {
 this.n(); // cannot access inherited method
 return this.a; // cannot access inherited field
 }
}

With the current scope provider, the members a and n of C will be visible only by
their qualified name in the subclass D. Thus, the body of m of the subclass D is not able
to refer to the members of the superclass C.

Moreover, the default scope provider implementation's strategy of considering
only the containment relation cannot take into consideration the actual receiver of a
member selection, which is instead needed for a valid member access.

Scoping

[252]

For example, with the current scope provider implementation the following code
would be considered valid:

class C {

}

class D {
 A b;
 A m() { return new C().b; }
}

While it should not be well typed in SmallJava, since the field b is not defined in the
class C of the receiver new C().

We must build a custom scope for resolving an SJMember reference in an
SJMemberSelection expression with the following strategy:

1.	 Get the type C of the receiver expression.
2.	 Return a nested scope consisting of:

°° All the members in C
°° As outer scope, all the members of the class hierarchy of C

To compute the collection of the members in the class hierarchy, we add to
SmallJavaModelUtil the following method:

def classHierarchyMembers(SJClass c) {
 c.classHierarchy.map[members].flatten
}

This is similar to the method classHierarchyMethods we developed in Chapter 9,
Type Checking, section Checking method overriding. The members in subclasses will
appear first, which is what we need to build the scope.

We must check whether the context is of type SJMemberSelection. We modify the
scope provider as follows:

@Inject extension SmallJavaModelUtil
@Inject extension SmallJavaTypeComputer

override getScope(EObject context, EReference reference) {
 if (reference == epackage.SJSymbolRef_Symbol) {
 return scopeForSymbolRef(context)
 } else if (context instanceof SJMemberSelection) {
 return scopeForMemberSelection(context)

Chapter 10

[253]

 }
 return super.getScope(context, reference)
}

def protected IScope scopeForMemberSelection(SJMemberSelection sel) {
 val type = sel.receiver.typeFor
 if (type == null || type.isPrimitive)
 return IScope.NULLSCOPE

 return Scopes.scopeFor(
 type.members,
 Scopes.scopeFor(type.classHierarchyMembers)
)
}

Let's examine the preceding method. If the receiver has a primitive type, we return
an empty scope, since primitive types have no members. The scope will consist of
all the members in the class of the receiver and the outer scope will consist of all
the members in the superclasses of the receiver. If the class of the receiver has no
superclass, the outer scope will be empty.

This implementation will also make field shadowing and method redefinitions work
out of the box; a member in a subclass will be considered before a homonymous
member in a superclass due to the way classHierarchyMembers is implemented.

You should never return null as a scope; if you need to return
an empty scope, you should return IScope.NULLSCOPE.

With this implementation of the scope provider, the members of a superclass will be
visible in the subclass and the first example of this section is now considered valid. At
the same time, only the members in the class hierarchy of the receiver will be visible in
a member selection expression and the second example will be considered invalid.

The following test verifies whether references to fields are resolved correctly (a
similar test can be written for methods), in particular, if fields in subclasses have the
precedence over homonymous fields in superclasses:

@Test def void testFieldScoping() {
 '''
 class A {
 D a;
 D b;
 D c;

Scoping

[254]

 }

 class B extends A {
 D b;
 }

 class C extends B {
 D a;
 D m() { return this.a; }
 D n() { return this.b; }
 D p() { return this.c; }
 }
 class D {}
'''.parse.classes => [
 // a in this.a must refer to C.a
 get(2).fields.get(0).assertSame
 (get(2).methods.get(0).returnExpSel.member)
 // b in this.b must refer to B.b
 get(1).fields.get(0).assertSame
 (get(2).methods.get(1).returnExpSel.member)
 // c in this.c must refer to A.c
 get(0).fields.get(2).assertSame
 (get(2).methods.get(2).returnExpSel.member)
]
}

def private returnExpSel(SJMethod m) {
 m.returnStatement.expression as SJMemberSelection
}

This implementation still has a problem though, due to the fact that we allow a
method and a field to have the same name, as in Java. With this implementation of
scoping, methods and fields are mixed in the scope and they appear in the scope with
their declaration order. Thus, when referring to a member, the first one will be linked
irrespective of whether the expression is a field selection or a method invocation.

Consider the following example:

class C {
 A m;
 A m() {
 return this.m();
 }
}

Chapter 10

[255]

The method invocation expression will wrongly refer to the field m.

Indeed, this test fails:

@Test def void testFieldsAndMethodsWithTheSameName() {
 '''
 class C {
 A f;
 A f() {
 return this.f(); // must refer to method f
 }
 A m() {
 return this.m; // must refer to field m
 }
 A m;
 }
 class A {}
 '''.parse.classes.head => [
 // must refer to method f()
 methods.head.assertSame(methods.head.returnExpSel.member)
 // must refer to field m
 fields.last.assertSame(methods.last.returnExpSel.member)
]
}

We must build the scope for member selection according to whether it is a method
invocation or a field selection. We distinguish between a method invocation
and a field selection using the feature methodinvocation. We modify the
scopeForMemberSelection method as follows:

def protected IScope scopeForMemberSelection(SJMemberSelection sel) {
 val type = sel.receiver.typeFor
 if (type == null || type.isPrimitive)
 return IScope.NULLSCOPE

 val grouped = type.
 classHierarchyMembers.groupBy[it instanceof SJMethod]
 val inheritedMethods = grouped.get(true) ?: emptyList
 val inheritedFields = grouped.get(false) ?: emptyList

 if (sel.methodinvocation) {
 return Scopes.scopeFor(
 type.methods + type.fields,
 Scopes.scopeFor(inheritedMethods + inheritedFields)
)

Scoping

[256]

 } else {
 return Scopes.scopeFor(
 type.fields + type.methods,
 Scopes.scopeFor(inheritedFields + inheritedMethods)
)
 }
}

We use the Xtend library utility method groupBy, using the it instanceof
SJMethod lambda predicate; this way, we build a map where methods are associated
to the key true and fields to the key false.

Now, the previous test succeeds.

Why do we return the other members, instead of returning only methods or fields
according to the actual member selection kind? Because, without this strategy a
program like the following would issue an error saying that the member f cannot be
resolved, and this would not be informative:

class C {
 C f;
 C m() { return this.f(); }
}

Instead, with the preceding scoping implementation, f is resolved and our validator
issues an error saying that we are trying to perform method invocation using a field
(see Chapter 9, Type Checking); such an error is much better.

Visibility and accessibility
One important thing to understand about scoping is that it should deal with
visibility, not necessarily with validity. For example, an element can be visible in a
certain program context, but that context should not access it.

To illustrate this concept, we introduce in SmallJava the access level modifiers as
in Java. To keep the example simple, we will not consider the Java package-private
modifier, which is the default in Java.

Thus, we modify field and method declarations with the optional access level
specification:

SJField:
 access=SJAccessLevel? SJTypedDeclaration ';';
SJMethod:
 access=SJAccessLevel? SJTypedDeclaration
 '(' (params+=SJParameter (',' params+=SJParameter)*)? ')'

Chapter 10

[257]

 body=SJBlock ;
enum SJAccessLevel:
 PRIVATE='private' | PROTECTED='protected' | PUBLIC='public';

To express access level we use an enum rule; this will correspond to a Java enum.
An enum rule always has an implicit default value, which corresponds to the first
value. Thus, if no access level is specified in a SmallJava program, the value PRIVATE
will be assumed.

Remember that, in Java, member access is checked at class
level, not at object level. Inside a class C, you can access private
members on any object of class C, not only on this. We will use
the same semantics in SmallJava.

To check if a member is accessible in a given program context, we need to check the
subclass relation between the class containing the context and the class containing
the referred member. We define a dedicated class SmallJavaAccessibility, in the
package validation, as follows:

import static extension org.eclipse.xtext.EcoreUtil2.*

class SmallJavaAccessibility {

 @Inject extension SmallJavaTypeConformance

 def isAccessibleFrom(SJMember member, EObject context) {
 val contextClass = context.getContainerOfType(SJClass)
 val memberClass = member.getContainerOfType(SJClass)
 switch (contextClass) {
 case contextClass === memberClass : true
 case contextClass.isSubclassOf(memberClass) :
 member.access != SJAccessLevel.PRIVATE
 default:
 member.access == SJAccessLevel.PUBLIC
 }
 }
}

If the two classes are the same, the member can always be accessed. In a subclass,
you can access only members of superclasses that are not private. In all other cases,
you can only access public members.

It is straightforward to test this class, and we leave it as an exercise; as usual, the
code of this example has such a test case.

Scoping

[258]

Now we could modify the scope provider so that only the members that are
accessible in a context are visible in that context. However, as we said at the
beginning of the section, scoping should only deal with visibility, not with validity.
In many ways, all members of a class are actually visible, the fact that some of them
cannot be accessed is a validation issue.

Instead of restricting the scope, we write a validator rule that checks the accessibility
of a referred member. With this strategy, we can provide better error information,
for example, "private member is not accessible", instead of the default "couldn't
resolve reference to...". In the editor, the user will still be able to navigate to the
definition of a member even if the validator issues an error, since that member is still
visible from the scoping point of view. This strategy is implemented by the Eclipse
JDT editor as well, and it is considered a good practice (Loose scoping, Strict validation,
see Zarnekow 2012).

The following is the validator rule:

class SmallJavaValidator extends AbstractSmallJavaValidator {
...
 @Inject extension SmallJavaAccessibility
 public static val MEMBER_NOT_ACCESSIBLE =
 ISSUE_CODE_PREFIX + "MemberNotAccessible"
...
 @Check
 def void checkAccessibility(SJMemberSelection sel) {
 val member = sel.member
 if (member.name != null && !member.isAccessibleFrom(sel))
 error(
 '''The «member.access» member «member.name» is not accessible
here''',
 SmallJavaPackage.eINSTANCE.SJMemberSelection_Member,
 MEMBER_NOT_ACCESSIBLE
)
 }...

Note that before checking accessibility, we check whether the member's name is
not null. If it is null, it means that the member reference cannot be resolved, and it
would not make sense to generate an additional error on accessibility. An example
of accessibility error is shown in the next screenshot. In the subclass D, we can access
the protected field f of superclass C, but not to the private method m (remember that
members are private by default in SmallJava). However, m is correctly linked to its
method definition, and the reported error clearly states the problem.

Chapter 10

[259]

We adopted the same philosophy of a loose scoping and a strict
validation in Chapter 8, An Expression Language, when checking
forward references to variables. In this chapter, we rule out
forward references to symbols with a restricted scope. In general,
the validator approach allows you to give better feedback to the
user, but it requires you to customize the content assist as shown
in the following section. On the contrary, the restricted scope
approach does not require customization of other aspects, but the
user receives errors of the type "Couldn't resolve reference to...",
which are less informative.

Now, we must update the check for correct method overriding that we implemented
in Chapter 9, Type Checking, section Checking method overriding: an overriding method
cannot reduce the access level of the overridden method:

public static val REDUCED_ACCESSIBILITY =
 ISSUE_CODE_PREFIX + "ReducedAccessibility"

@Check def void checkMethodOverride(SJClass c) {
 val hierarchyMethods = c.classHierarchyMethods
 for (m : c.methods) {
 val overridden = hierarchyMethods.get(m.name)
 if (overridden != null && … as before
 } else if (m.access < overridden.access) {
 error("Cannot reduce access from " + overridden.access +
 " to " + m.access,
 m, SmallJavaPackage.eINSTANCE.SJMember_Access,
 REDUCED_ACCESSIBILITY)
 }
 }
}

Scoping

[260]

Due to the way the enum access levels are defined in the grammar, we have the
needed ordering on access enums—private < protected < public.

Filtering unwanted objects from the scope
Since we are not restricting the scope of the members, the content assist will
still provide all members as proposals, even the private and the protected ones,
irrespective of their accessibility in that specific program context. As we saw in
Chapter 8, An Expression Language, it is good practice to modify the proposals
so that only valid ones are presented to the programmer. In that chapter, we
manually built the proposals; in this chapter, since we introduced scoping, we
use a different technique. The default implementation for proposals concerning
a cross-reference relies on scoping; if you look at the implementation of the
AbstractSmallJavaProposalProvider.completeSJSelectionExpression_
Member method, it uses the method lookupCrossReference, which in turn uses
the scope provider. There is an overloaded version of lookupCrossReference
that also takes a predicate to filter proposals. In Xtend, a predicate corresponds to
a lambda returning a boolean. Such a predicate receives IEObjectDescription
as an argument, and it returns true if that description has to be included in
the proposals. We override completeSJSelectionExpression_Member in
SmallJavaProposalProvider and we call lookupCrossReference passing a
lambda to filter out members that are not accessible in that context:

class SmallJavaProposalProvider extends
 AbstractSmallJavaProposalProvider {
 ...
 @Inject extension SmallJavaAccessibility
 override void completeSJSelectionExpression_Member
 (EObject model, Assignment a,
 ContentAssistContext context,
 ICompletionProposalAcceptor acceptor) {
 lookupCrossReference
 (a.getTerminal() as CrossReference, context, acceptor) [
 description |
 (description.getEObjectOrProxy as SJMember)
 .isAccessibleFrom(model)
]
 }
}

Chapter 10

[261]

Note that in the lambda we retrieve the EObject from the description.

In the code of the SmallJava implementation, you can find
some content assist tests for this customization.

You can now experiment with the content assist, which will propose only the
members that are actually accessible in the current context.

Global scoping
Xtext has a default mechanism for global scoping that allows you to refer to
elements defined in a different file, possibly in a different project of the workspace;
in particular, it uses the dependencies of the Eclipse projects. For Java projects, it uses
the classpath of the projects. Of course, this mechanism relies on the global index.

Global scoping is implied by the fact that the default scoping
mechanism always relies on an outer scope that consists of the
visible object descriptions in the index.

With the default configuration in the MWE2, this mechanism for global scoping
works out of the box. You can experiment with a project with some SmallJava files.
You will see that you can refer to the SmallJava classes defined in another file;
content assist works accordingly.

Before proceeding to the use of global scoping, it is worthwhile to learn how to write
JUnit tests that concern several input programs.

As hinted in the section The index, when running in a plain Java context where there
is no workspace concept, the index is based on an EMF ResourceSet. There is an
overloaded version of ParseHelper.parse that also takes the resource set to be
used when loading the passed program string. Thus, if we want to write a test that
involves several files where one of them refers to elements of the other, we need to
parse all input strings using the same resource set.

This can be accomplished in two ways. You can inject a Provider<ResourceSet>,
create a resource set through this provider, and pass it to the parse method as
follows (we write this test in the SmallJavaValidatorTest):

@Inject Provider<ResourceSet> resourceSetProvider;
@Test def void testTwoFiles() {
 val resourceSet = resourceSetProvider.get
 val first = '''class B extends A {}'''.parse(resourceSet)
 val second = '''class A { B b; }'''.parse(resourceSet)

Scoping

[262]

 first.assertNoErrors
 second.assertNoErrors

 second.classes.head.assertSame(first.classes.head.superclass)
}

Note that in this test, the two input programs have mutual dependencies and the
cross-reference mechanism works, since we use the same resource set.

It is crucial to validate the models only after all the programs are
loaded; remember that ParseHelper only parses the program, it
does not try to resolve cross-references.

Alternatively, you can parse the first input and retrieve its resource set from the
returned model object; then, the subsequent inputs are parsed using that resource set:

@Test def void testTwoFilesAlternative() {
 val first = '''class B extends A {}'''.parse
 val second = '''class A { B b; } '''.
 parse(first.eResource.resourceSet)
 ... as before

In the following sections, we will implement some aspects related to global scoping
and the index.

Packages and imports
Since we can refer to elements of other files, it might be good to introduce the notion
of namespace in SmallJava, which corresponds to the Java notion of a package.

Thus, we add an optional package declaration in the rule for SJProgram:

SJProgram:
 ('package' name=QualifiedName ';')?
 classes+=SJClass*;

QualifiedName: ID ('.' ID)* ;

Chapter 10

[263]

The rule QualifiedName is a data type rule. A data type rule is similar to a
terminal rule, for example, the terminal rule for ID, and it does not contain feature
assignments. Differently from a terminal rule, a data type rule is valid only in
specific contexts, that is, when it is used by another rule. A data type rule is executed
by the parser, which has a much more sophisticated lookahead strategy than the
lexer that executes the terminal rules. This way, it will not conflict with terminal
rules; for example, the rule QualifiedName will not conflict with the rule ID.

The Xtext editor highlights a data type rule's name in blue.

According to the default mechanism for computing a qualified name (see the
section Qualified names), when a SJClass is contained in a program with a package
declaration, its fully qualified name will include the package name. For example,
given this program:

package my.pack;
class C { }

The class C will be stored in the index with the qualified name my.pack.C.

It now makes sense to allow the user to refer to a SmallJava class with its fully
qualified name, like in Java.

When you specify a cross-reference in an Xtext grammar, you can use the complete
form [<Type>|<Syntax>], where <Syntax> specifies the syntax for referring to the
element of that type. The compact form [<Type>] we used so far is just a shortcut
for [<Type>|ID]. In fact, until now, we have always referred to elements by their ID.
Now, we want to be able to refer to SJClass using the QualifiedName syntax; thus,
we modify all the involved rules accordingly. We show the modified rule for SJClass,
but also the rules for SJTypedDeclaration and SJNew must be modified accordingly:

SJClass:
 'class' name=ID ('extends' superclass=[SJClass|QualifiedName])?
 '{' members += SJMember* '}' ;

Scoping

[264]

The rule for QualifiedName also accepts a single ID, thus, if there is no package,
everything keeps on working as before. This means that all existing tests should
still be successful.

We can now test class references with qualified names in separate files:

@Test def void testPackagesAndClassQualifiedNames() {
 val first = '''
 package my.first.pack;
 class B extends my.second.pack.A {}
 '''.parse
 val second = '''
 package my.second.pack;
 class A {
 my.first.pack.B b;
 }
 '''.parse(first.eResource.resourceSet)
 first.assertNoErrors
 second.assertNoErrors

 second.classes.head.assertSame(first.classes.head.superclass)
}

Now, it would be nice to have an import mechanism as in Java so that we can import
a class by its fully qualified name once and then refer to that class simply by its
simple name. Similarly, it would be helpful to have an import with wildcard * in
order to import all the classes of a specific package. Xtext supports imports, even
with wildcards; it only requires that a feature with name importedNamespace is
used in a parser rule and then the framework will automatically treat that value with
the semantics of an import; it also handles wildcards as expected:

SJProgram:
 ('package' name=QualifiedName ';')?
 imports+=SJImport*
 classes+=SJClass*;

SJImport:
 'import' importedNamespace=QualifiedNameWithWildcard ';' ;

QualifiedNameWithWildcard: QualifiedName '.*'? ;

Chapter 10

[265]

The following test verifies imports:

@Test def void testImports() {
 val first = '''
 package my.first.pack;
 class C1 { }
 class C2 { }'''.parse

 '''
 package my.second.pack;
 class D1 { }
 class D2 { }'''.parse(first.eResource.resourceSet)

 '''
 package my.third.pack;
 import my.first.pack.C1;
 import my.second.pack.*;

 class E extends C1 { // C1 is imported
 my.first.pack.C2 c; // C2 not imported, but fully qualified
 D1 d1; // D1 imported by wildcard
 D2 d2; // D2 imported by wildcard
 }
 '''.parse(first.eResource.resourceSet).assertNoErrors
}

To keep the SmallJava DSL simple, we do not require the path of the .smalljava
file to reflect the fully qualified name of the declared class as in Java. Indeed,
in SmallJava, all classes are implicitly public and can be referred by any other
SmallJava class.

Scoping

[266]

The index and the containers
The index does not know anything about visibility across resources. In fact, the index
is global in that respect. The Xtext index can also be seen as the counterpart of the
JDT indexing mechanism for all the Java types, and the Eclipse platform indexing
mechanism that keeps track of all the files in all the projects in the workspace. JDT
provides the dialog "Open Type" that can be accessed using the menu Navigate |
Open Type or with the shortcut Ctrl + Shift + T. This allows you to quickly open any
Java type that is accessible from the workspace. Eclipse provides the dialog "Open
Resource" that can be accessed using the shortcut Ctrl + Shift + R. This allows you
to quickly open any file in the workspace. Xtext provides a similar dialog, "Open
Model Element" that can be accessed by navigating to the Navigate | Open Model
Element menu or with the shortcut Ctrl + Shift + F3. This allows you to quickly
open any Xtext DSL element that is in the index, independently from the project. An
example is shown in the next screenshot, where the dialog provides you quick access
to all the elements of all the DSLs we implemented so far:

Chapter 10

[267]

The mechanism concerning the visibility across resources is delegated to IContainer
that can be seen as an abstraction of the actual container of a given resource. The
inner class IContainer.Manager provides information about the containers that are
visible from a given container. Using these containers, we can retrieve all the object
descriptions that are visible from a given resource.

The implementation of the containers and the managers depends
on the context of execution. In particular, when running in Eclipse,
containers are based on Java projects. In this context, for an element to
be referable, its resource must be on the classpath of the caller's Java
project and it must be exported. This allows you to reuse for your
DSL all the mechanisms of Eclipse projects, and the users will be able
to define dependencies in the same way as they do when developing
Java projects inside Eclipse. We refer to the About the index, containers,
and their manager section of the Xtext documentation for all the details
about available container implementations.

The procedure to get all the object descriptions, which are visible from a given
EObject o consists of the following steps:

1.	 Get the index.
2.	 Retrieve the resource description of the object o.
3.	 Use the IContainer.Manager instance to get all the containers in the index

that are visible from the resource description of o.
4.	 Retrieve the object descriptions from the visible containers, possibly filtering

them by type.

We thus add some utility methods to the class SmallJavaIndex:

class SmallJavaIndex {
 ...
 @Inject IContainer.Manager cm
 ...
 def getVisibleEObjectDescriptions(EObject o, EClass type) {
 o.getVisibleContainers.map[container |
 container.getExportedObjectsByType(type)
].flatten
 }

 def getVisibleClassesDescriptions(EObject o) {
 o.getVisibleEObjectDescriptions
 (SmallJavaPackage.eINSTANCE.SJClass)
 }

Scoping

[268]

 def getVisibleContainers(EObject o) {
 val index = rdp.getResourceDescriptions(o.eResource)
 val rd = index.getResourceDescription(o.eResource.URI)
 cm.getVisibleContainers(rd, index)
 }...

Note that the result of map in the preceding code is a List<Iterable<IEO
bjectDescription>>; the flatten utility method from the Xtend library
combines multiple iterables into a single one. Thus, the final result will be an
Iterable<IEObjectDescription>.

In the section Exported objects, we created the class SmallJavaIndex with utility
methods to retrieve all the descriptions exported by a resource. We used those
methods to write learning tests to get familiar with the index. The methods we have
just added to SmallJavaIndex will be effectively used in the rest of the chapter to
perform specific tasks that require access to all the visible elements. In particular,
getVisibleClassesDescriptions will be useful for checking duplicate classes
across files, in the next section.

Checking duplicates across files
The visibility of elements is implemented in the scope provider; thus, usually the
index is not used directly. One of the scenarios where you must use the index is
when you want to check for duplicates across files in a given container, that is,
in a project and all its dependencies. The validator for SmallJava currently only
implements checks for duplicates in a single resource.

We now write a validator method to check for duplicates across files using the
index. We only need to check instances of SJClass, since they are the only globally
visible objects.

Do not traverse the resources in the resource set (that is, visit all
of them) since this is an expensive operation. Instead, use the
index in these situations since this is both better and cheaper. It
is OK to visit elements in the resource being processed.

Chapter 10

[269]

The idea is to use the method SmallJavaIndex.getVisibleClassesDescriptions
to get all the object descriptions of the type SJClass that are visible from the
resource of a given SmallJava class and search for duplicate qualified names.
These descriptions include both the elements stored in other resources and the
one exported by the resource under validation. Thus, it is essential to compute
the difference, so that we collect only the descriptions, corresponding to SJClass
elements that are defined in resources different from the one under validation. To
this aim, we add the following method to SmallJavaIndex:

def getVisibleExternalClassesDescriptions(EObject o) {
 val allVisibleClasses = o.getVisibleClassesDescriptions
 val allExportedClasses = o.getExportedClassesEObjectDescriptions
 val difference = allVisibleClasses.toSet
 difference.removeAll(allExportedClasses.toSet)
 return difference.toMap[qualifiedName]
}

To compute such difference, we first transform the descriptions to sets and use the
Set.removeAll method. We also transform the result into a Map, where the key is
the description's qualified name. This allows us to quickly find a description given a
qualified name.

In the validator, it is just a matter of checking that for each SJClass c in the
SJProgram there is no element in the preceding map with the same qualified
name of c:

@Inject extension SmallJavaIndex
@Inject extension IQualifiedNameProvider
public static val DUPLICATE_CLASS =
 ISSUE_CODE_PREFIX + "DuplicateClass"

// perform this check only on file save
@Check(CheckType.NORMAL)
def checkDuplicateClassesInFiles(SJProgram p) {
 val externalClasses = p.getVisibleExternalClassesDescriptions
 for (c : p.classes) {
 val className = c.fullyQualifiedName
 if (externalClasses.containsKey(className)) {
 error("The type " + c.name + " is already defined",
 c,
 SmallJavaPackage.eINSTANCE.SJNamedElement_Name,
 DUPLICATE_CLASS)
 }
 }
 }
}

Scoping

[270]

Note that we specified the CheckType.NORMAL in the @Check annotation; this instructs
Xtext to call this method only on file save, not during editing as it happens normally
(the default is CheckType.FAST). This is a good choice since this check might require
some time, and if executed while editing, it might reduce the editor performance.
Eclipse JDT also checks for class duplicates across files only on file save.

Providing a library
Our implementation of SmallJava does not yet allow to make references to types
such as Object, String, Integer, and Boolean We could use these to declare
variables initialized with constant expressions. In this section, we show how to create
a library with predefined types.

One might be tempted to hardcode these classes/types directly in the grammar,
but this is not the best approach. There are many reasons for not doing that; mostly,
that the grammar should deal with syntax only. Moreover, if we hardcoded, for
example, Object in the grammar, we would only be able to use it as a type, but what
if we wanted Object to have some methods? We would not be able to express that in
the grammar.

Instead, we will follow the library approach (see also the article Zarnekow 2012-b).
Our language implementation will provide a library with some classes, for example,
Object, String, and so on, just like Java does. Since Xtext deals with EMF models,
this library could consist of any EMF model. However, we can write this library just
like any other SmallJava program.

To keep things simple, we write one single file, mainlib.smalljava, with the
following SmallJava classes:

package smalljava.lang;
class Object {
 public Object clone() {
 return this;
 }

 public String toString() {
 // fake implementation
 return "not implemented";
 }

 public Boolean equals(Object o) {
 // fake implementation
 return false;
 }

Chapter 10

[271]

}

class String extends Object {}
class Integer extends Object {}
class Boolean extends Object {}

SmallJava does not aim at being usable and useful; thus, this is just an example
implementation of the classes of SmallJava library. We also use a package name,
smalljava.lang, which reminds us of the main Java library, java.lang. We create a
new Source Folder, smalljavalib, in the main smalljava project (Right-click on the
project, New | Source Folder). In this new source folder we create the file smalljava/
lang/mainlib.smalljava. Furthermore, in the MANIFEST of the main SmallJava plug-
in project, we make sure that the package smalljava.lang is exported and we add the
smalljavalib folder as a source folder in the build.properties file (as usual, use the
quickfix on the warning placed in the build.properties file).

Now, if we run Eclipse, create a project, and add as dependency our org.example.
smalljava project, the classes of mainlib.smalljava will be automatically
available. In fact, Xtext global scoping implementation takes into consideration the
project's dependencies; thus, the classes of our library are indexed and available in
SmallJava programs.

In the next sections, we will adapt the type system implementation in order to take
into accounts the SmallJava types defined in this library.

Default imports
As we saw in the last sections, a DSL can automatically refer to elements in other files
thanks to global scoping. In particular, Xtext also takes imported namespaces into
consideration; if we import smalljava.lang.*, then we can refer to, for example,
Object directly, without its fully qualified name. The scope provider delegates this
mechanism to the class ImportedNamespaceAwareLocalScopeProvider.

At this point, in order to use library classes like Object, we have to explicitly
import smalljava.lang. In Java, you do not need to import java.lang,
since that is implicitly imported in all Java programs. It would be nice to
implement this implicit import mechanism also in SmallJava for the package
smalljava.lang. All we need to do is to provide a custom implementation
of ImportedNamespaceAwareLocalScopeProvider and redefine the method
getImplicitImports (the technical details should be straightforward):

class SmallJavaImportedNamespaceAwareLocalScopeProvider
 extends ImportedNamespaceAwareLocalScopeProvider {
 override getImplicitImports(boolean ignoreCase) {
 newArrayList(new ImportNormalizer(

Scoping

[272]

 QualifiedName.create("smalljava", "lang"),
 true, // wildcard
 ignoreCase
))
 }
}

In the previous code, the important part is the creation of ImportNormalizer, which
takes a qualified name and interprets it as an imported namespace, with a wildcard
when the second argument is true. This way, it is as if all SmallJava programs
contained an import of smalljava.lang.*.

Now, we need to bind this implementation in the runtime module
SmallJavaRuntimeModule. This is slightly different from other customizations
in the Guice module we have seen so far; in fact, we need to bind the delegate
field in the scope provider:

 override void configureIScopeProviderDelegate(Binder binder) {
 binder.bind(org.eclipse.xtext.scoping.IScopeProvider)
 .annotatedWith(
 com.google.inject.name.Names
 .named(AbstractDeclarativeScopeProvider.NAMED_DELEGATE))
 .to(SmallJavaImportedNamespaceAwareLocalScopeProvider);
 }

With this modification, we can simply remove the import statement import
smalljava.lang.* and still be able to refer to the classes of the SmallJava library.

Using the library outside Eclipse
Being able to load the SmallJava library outside Eclipse is important both for testing
and for implementing a standalone command-line compiler for the DSL.

As we saw in the previous sections, when we write unit tests with several dependent
input programs, we need to load all the resources corresponding to input programs
into the same resource set. Thus, we must load our library into the resource set as
well to make the library available when running outside Eclipse.

We write a reusable class SmallJavaLib, which deals with all the aspects concerning
the SmallJava library. We start with a method that loads the library in the passed the
resource set:

class SmallJavaLib {

 public val static MAIN_LIB = "smalljava/lang/mainlib.smalljava"
 def loadLib(ResourceSet resourceSet) {

Chapter 10

[273]

 val url = getClass().getClassLoader().getResource(MAIN_LIB)
 val stream = url.openStream
 val resource = resourceSet.createResource(URI.createFileURI(url.
path))
 resource.load(stream, resourceSet.getLoadOptions())
 }
}

The important thing here is that we get the contents of mainlib.smalljava using
the class loader. We use getResource, which returns an URL for the requested
file and URL.openStream, which returns InputStream to read the contents of the
requested file. The class loader will automatically search for the given file using the
classpath. This will work both for JUnit tests and even when the program is bundled
in a JAR as for the case of the standalone compiler. Then, we create an EMF resource
and load it using the contents of the library file.

We are now able to write a test to verify that implicit imports work correctly. We use
the version of the method parse that also takes the resource set as an argument, and
we use the same resource set both for loading an input program and for loading the
library using the method SmallJavaLib.loadLib shown previously:

@RunWith(XtextRunner)
@InjectWith(SmallJavaInjectorProvider)
class SmallJavaLibTest {
 @Inject extension ParseHelper<SJProgram>
 @Inject extension ValidationTestHelper
 @Inject extension SmallJavaLib
 @Inject Provider<ResourceSet> rsp
 @Test def void testImplicitImports() {
 '''
 class C extends Object {
 String s;
 Integer i;
 Object m(Object o) { return null; }
 }
 '''.loadLibAndParse.assertNoErrors
 }
 def private loadLibAndParse(CharSequence p) {
 val resourceSet = rsp.get
 loadLib(resourceSet)
 p.parse(resourceSet)
 }...

We also use SmallJavaLib to implement a standalone command-line compiler
(see section Standalone command-line compiler of Chapter 5, Code Generation).

Scoping

[274]

In the MWE2 workflow, we enable the following fragment:

generator = {
 generateXtendMain = true
}

In the code of this example, you will also find a simple code
generator for SmallJava, which basically generates Java classes
corresponding to SmallJava classes.

We modify the generated Main Xtend class in order to load the library, load all the
passed input files, and then validate all the resources in the resource set and run the
generator for each resource. Remember that we must validate the resources only
after all the resources have been loaded, otherwise the cross-reference resolution will
fail. Here, we show the modified lines in the generated Main Xtend class:

class Main {
 def static main(String[] args) {
 val injector =
 new SmallJavaStandaloneSetupGenerated().
 createInjectorAndDoEMFRegistration
 val main = injector.getInstance(Main)
 main.runGenerator(args)
 }

 ...
 @Inject SmallJavaLib smallJavaLib
 ...

 def protected runGenerator(String[] strings) {
 val set = resourceSetProvider.get
 // Configure the generator
 fileAccess.outputPath = 'src-gen/'
 val context = new GeneratorContext => [
 cancelIndicator = CancelIndicator.NullImpl
]
 // load the library
 smallJavaLib.loadLib(set)
 // load the input files
 strings.forEach[s | set.getResource(URI.createFileURI(s), true)]
 // validate the resources
 var ok = true

Chapter 10

[275]

 for (resource : set.resources) {
 println("Compiling " + resource.URI + "...")
 val issues = validator.
 validate(resource, CheckMode.ALL,
 CancelIndicator.NullImpl)
 if (!issues.isEmpty()) {
 for (issue : issues) {
 System.err.println(issue)
 }
 ok = false
 } else {
 generator.generate(resource, fileAccess, context)
 }
 }
 if (ok)
 System.out.println('Programs well-typed.')
 }
}

After we finished adapting the type system to using the library, we can follow the
same procedure illustrated in Chapter 5, Code Generation, to export a runnable JAR file
together with all its dependencies. The file mainlib.smalljava will be bundled in
the JAR, and the class loader will be able to load it.

Using the library in the type system and
scoping
Now that we have a library, we must update the type system and scope provider
implementations in order to use the classes of the library. We declare public
constants in SmallJavaLib for the fully qualified names of the classes declared in
our library:

class SmallJavaLib {
 ...
 public val static LIB_PACKAGE = "smalljava.lang"
 public val static LIB_OBJECT = LIB_PACKAGE+".Object"
 public val static LIB_STRING = LIB_PACKAGE+".String"
 public val static LIB_INTEGER = LIB_PACKAGE+".Integer"
 public val static LIB_BOOLEAN = LIB_PACKAGE+".Boolean"

Scoping

[276]

We use these constants to modify SmallJavaTypeConformance to define special
cases as follows:

class SmallJavaTypeConformance {
 @Inject extension IQualifiedNameProvider
 def isConformant(SJClass c1, SJClass c2) {
 c1 === NULL_TYPE || // null can be assigned to everything
 c1 === c2 ||
 c2.fullyQualifiedName.toString == SmallJavaLib.LIB_OBJECT ||
 conformToLibraryTypes(c1, c2) ||
 c1.isSubclassOf(c2)
 }

 def conformToLibraryTypes(SJClass c1, SJClass c2) {
 (c1.conformsToString && c2.conformsToString) ||
 (c1.conformsToInt && c2.conformsToInt) ||
 (c1.conformsToBoolean && c2.conformsToBoolean)
 }

 def conformsToString(SJClass c) {
 c == STRING_TYPE ||
 c.fullyQualifiedName.toString == SmallJavaLib.LIB_STRING
 }... similar implementations for int and boolean

Recall that in the type computer we have constants for some types, for example,
for string, integer and boolean constant expressions. We now have to match such
constant types with the corresponding SmallJava classes of the library. The type of
string constant expression is type conformant to the library class String. The cases
for boolean and integer expressions are similar.

Each class is considered type conformant to the library class Object, as in Java, even
if that class does not explicitly extend Object. If we introduced basic types directly in
SmallJava, for example, int and boolean, we would still have to check conformance
with the corresponding library classes, for example, Integer and Boolean.

The fact that every SmallJava class implicitly extends the library class Object must
be reflected in the scope provider so that any class is able to access the methods
implicitly inherited from Object. For example, the following SmallJava class
should be well typed even if it does not explicitly extend Object, but the current
implementation rejects it, since it cannot resolve the references to members of Object:

class C {
 Object m(Object o) {
 Object c = this.clone();
 return this.toString();
 }
}

Chapter 10

[277]

To solve this problem, we first add a method in SmallJavaLib that loads the EMF
model corresponding to the library Object class:

class SmallJavaLib {
 @Inject extension SmallJavaIndex
 ...

 def getSmallJavaObjectClass(EObject context) {
 val desc = context.getVisibleClassesDescriptions.findFirst[
 qualifiedName.toString == LIB_OBJECT]
 if (desc == null)
 return null
 var o = desc.EObjectOrProxy
 if (o.eIsProxy)
 o = context.eResource.resourceSet.
 getEObject(desc.EObjectURI, true)
 o as SJClass
 }

In the preceding code, we get the object description of the library class Object using
SmallJavaIndex.getVisibleClassesDescriptions. If the EObject corresponding
to Object is still a proxy, we explicitly load the actual EObject from the resource
set of the passed context using the URI of the object description. The preceding code
assumes that the library classes are visible in the current projects. It also assumes that
the EObject context is already loaded, otherwise the resolution of the proxy will fail.

Since the scope provider uses the class hierarchy computed by
SmallJavaModelUtil, we just need to modify the method SmallJavaModelUtil.
classHierarchy, we developed in Chapter 9, Type Checking, section Checking
method overriding, so that it adds the library Object SmallJava class at the end of the
hierarchy, if not already present:

class SmallJavaModelUtil {
 @Inject extension SmallJavaLib
 ...
 def classHierarchy(SJClass c) {
 val visited = newLinkedHashSet()

 var current = c.superclass
 while (current != null && !visited.contains(current)) {
 visited.add(current)
 current = current.superclass
 }

 // new part

Scoping

[278]

 val object = c.getSmallJavaObjectClass
 if (object != null)
 visited.add(object)

 visited

 }
}

Now, the scope provider will automatically retrieves also the methods defined in the
library class Object.

Note that it is important to be able to easily modify the structure of the library
classes in the future. We did hardcode as public constants the fully qualified names
of library classes in SmallJavaLib, but not the library classes' structure, so if in the
future we want to modify the implementation of the library classes, we will not have
to modify the type system neither the scope provider.

The other interesting feature is that one could easily provide a different
implementation of the library as long as the main library class names are kept. The
current SmallJava implementation will seamlessly be able to use the new library
without any change. This is another advantage of keeping the DSL and the library
implementations separate.

Classes of the same package
Just like in Java, SmallJava classes should be able to refer to external classes in the
same package without importing the package. However, this is not yet the case in the
current implementation. For example, given the following two SmallJava files, they
are not able to refer to each other without an explicit import, although they are in the
same package:

// first file
package my.pack;

class A {
 B b;
}

// second file
package my.pack;

class B extends A {}

Chapter 10

[279]

To solve this problem, we need to go back to our custom
SmallJavaImportedNamespaceAwareLocalScopeProvider that
we implemented in section Default imports. The idea is to customize
internalGetImportedNamespaceResolvers so that when the context is a
SmallJava program then we add an implicit import of the same package of the
current SmallJava program, if the program has a package.

To do that, we create an ImportNormalizer. We have already used
ImportNormalizer in section Default imports. This is the implementation of
internalGetImportedNamespaceResolvers:

class SmallJavaImportedNamespaceAwareLocalScopeProvider extends
 ImportedNamespaceAwareLocalScopeProvider {
 @Inject extension IQualifiedNameProvider
 …
 override protected List<ImportNormalizer>
 internalGetImportedNamespaceResolvers(
 EObject context, boolean ignoreCase) {
 val resolvers = super.internalGetImportedNamespaceResolvers
 (context, ignoreCase)
 if (context instanceof SJProgram) {
 val fqn = context.fullyQualifiedName
 // fqn is the package of this program
 if (fqn != null) {
 // all the external classes with the same package of this
program
 // will be automatically visible in this program, without an
import
 resolvers += new ImportNormalizer(
 fqn,
 true, // use wildcards
 ignoreCase
)
 }
 }
 return resolvers
 }

}

Now, the previous two SmallJava files compile without errors.

Scoping

[280]

Dealing with super
As a final feature, we add the mechanism for invoking the implementation of a
method in the superclass using the keyword super. Note that super should be used
only as the receiver of a member selection expression, that is, it cannot be passed as
the argument of a method. Following the practice "loose grammar, strict validation",
we do not impose this at the grammar level. Thus, we add the rule for super as a
terminal expression:

SJTerminalExpression returns SJExpression:
 ...
 {SJSuper} 'super' | ...

We add a validator rule that checks the correct super usage:

public static val WRONG_SUPER_USAGE =
 ISSUE_CODE_PREFIX + "WrongSuperUsage"

@Check def void checkSuper(SJSuper s) {
 if (s.eContainingFeature !=
 SmallJavaPackage.eINSTANCE.SJMemberSelection_Receiver)
 error("'super' can be used only as member selection receiver",
 null, WRONG_SUPER_USAGE)
}

Thanks to the way we implemented the scope provider, in order to make members of
the superclass visible when the receiver expression is super, we only need to provide
a type for super. The type for super is the superclass of the containing class:

class SmallJavaTypeComputer {
 def SJClass typeFor(SJExpression e) {
 switch (e) {
 ...
 SJSuper : e.getContainerOfType(SJClass).superclass
 ...as before

However, this way, if a class does not explicitly extend Object, it will not be able
to access the methods of Object with super. To solve this, we just need to return
the loaded instance of Object in case the superclass is null using SmallJavaLib.
getSuperclassOrObject:

class SmallJavaTypeComputer {
 @Inject extension SmallJavaLib
 def SJClass typeFor(SJExpression e) {
 switch (e) {

Chapter 10

[281]

 SJThis : e.containingClass
 SJSuper : e.getContainerOfType(SJClass).getSuperclassOrObject
 ...as before
 }

 def getSuperclassOrObject(SJClass c) {
 c.superclass ?: getSmallJavaObjectClass(c)
 }

What to put in the index?
As explained earlier in this chapter, everything that can be given a name will have
a corresponding entry in the index; moreover, by default, each element of the index
can be referred through its fully qualified name. However, only the references
that use the qualified name syntax can refer to these elements using the index. In
SmallJava, only classes can be referred with qualified names.

The index is also used by Xtext to keep track of dependencies among files and to
determine when to rebuild other files when a file changes.

Therefore, it makes no sense to index those elements that cannot be referred from
other files. In our DSL, this means that it does not make sense to index variables, since
they can only be accessed from a method in the containing class. Instead, we leave the
methods and their parameters in the index, because we want the other files using a
method of an external class to be notified if the method changes name or parameters.
Although the presence of entries in the index for local variables does not harm, still it
occupies some memory space uselessly. Moreover, the indexing procedure could be
optimized by removing the overhead of indexing useless elements.

To tweak the strategy for building the index we provide a custom implementation
of DefaultResourceDescriptionsStrategy and redefine the method
createEObjectDescriptions. This method is automatically called by Xtext when
the index is built or updated when resources change. This method is expected to
return false if the children of the passed EObject must not be processed. In our
case, we simply return false when the object is an SJBlock:

@Singleton
class SmallJavaResourceDescriptionsStrategy extends
DefaultResourceDescriptionStrategy {

 override createEObjectDescriptions(EObject e,
 IAcceptor<IEObjectDescription> acceptor) {
 if (e instanceof SJBlock)

Scoping

[282]

 return false
 else
 return super.createEObjectDescriptions(e, acceptor)
 }
}

Note that this class must be annotated with @Singleton, indicating that only one
instance per injector will be used for all injections for this class.

Of course, we bind our implementation in the runtime module:

 def Class<? extends IDefaultResourceDescriptionStrategy>
 bindIDefaultResourceDescriptionStrategy() {
 return SmallJavaResourceDescriptionsStrategy;
 }...

This way, we improve the default indexing behavior.

If you now run the test method testExportedEObjectDescriptions
shown in the section Exported objects, you will see that it fails. You will
need to modify it according to the descriptions found in the index after
our customization.

Additional automatic features
Xtext makes use of the index to automatically provide many additional IDE features
for your DSL. Some examples are shown in the next screenshot. For example, you can
mark occurrences of any named element by toggling the corresponding toolbar button.
In the following screenshot, it is the one right on top of the Plug-in Development
perspective button, marked with (1). The markers will be evident both in the editor
and in its right-hand side ruler. This feature is based on the IResourceDescription
instances stored in the index; they contain information about cross-references, possibly
to other resources. Furthermore, by right-clicking on an element in the editor, you can
choose the menu References, and in the Search view, you can see all the files in your
project that reference the selected element. In the following screenshot, we selected
the method predicate in the file example.smalljava, and the view shows all its
occurrences also in the other file example2.smalljava:

Chapter 10

[283]

The editor for your DSL automatically supports refactoring of names: just select an
element with a name, right-click on it, and choose Rename Element. This refactoring
has the same user interface as the one of JDT; you can also access the refactoring
dialog so that you can have a preview of what will be modified and possibly deselect
some modifications. Refactoring works across multiple files as well. References in
the same file are updated while you rename the element. External references will be
updated after pressing Enter.

Providing a project wizard
It is nice to provide the clients of your DSL a project wizard that creates an
Eclipse project, sets its source folders, for example, src and src-gen and adds
the needed dependencies.

Xtext can generate such a project wizard for you, in the .ui project, if you enable this
fragment in the MWE2 file in the StandardLanguage section:

newProjectWizardForEclipse = {
 generate = true
}

Scoping

[284]

After running the MWE2 workflow, you must merge manually the plugin.xml and
the plugin.xml_gen.

The generated project wizard will be available in the Eclipse New Project dialog, in
the Xtext category.

The above MWE2 fragment will generate the classes for the wizard in the src-gen
folder of the .ui project. Moreover, in the src folder, it will generate a stub class, in
this example it is SmallJavaNewProjectWizardInitialContents, which you can
use to generate some initial contents in the project created by the wizard. In our case,
we will generate a simple SmallJava class.

The generated wizard will create a plug-in project, and it will add the DSL runtime
project as a dependency. This way, the SmallJava projects created by the wizard will
be able to access the SmallJava library.

Summary
In this chapter we described scoping, which is the main mechanism behind
visibility and cross-reference resolution. In particular, scoping and typing are often
strictly connected and interdependent especially for object-oriented languages. We
described both local and global scoping, and we showed how to customize these
mechanisms using the SmallJava DSL as a case study.

In the next chapter we will show how you can create an Eclipse update site for your
DSL implementation; this way, other users can easily install it in Eclipse. Moreover,
we will describe the features provided by Xtext for building and testing DSLs
headlessly, for example. in a continuous integration system.

[285]

Continuous Integration
In this chapter, we describe how you can release your DSL implementation by
creating an Eclipse update site, also known as p2 repository. In this way, others can
install it in Eclipse. The Xtext project wizard can create a project for such an update
site. Moreover, Xtext can create the infrastructure for building with Maven/Tycho.
This will allow you to build and test your DSL implementation on a continuous
integration server. We will also show how to get a web application with a web
editor for your DSL; the Xtext project wizard will generate it and reuse most of the
components you develop for your DSL. Finally, your DSL implementation can be
easily ported to IntelliJ; to this aim, Xtext generates the infrastructure for building
with Gradle, a build system alternative to Maven.

This chapter will cover the following topics:

•	 How to create an update site for your DSL
•	 Some general concepts about release engineering and continuous integration
•	 How to build and test your DSL with Maven/Tycho in an headless way

(that is, from the command line, outside Eclipse)
•	 How to get a web editor for your DSL
•	 How to create and build with Gradle a version of your DSL to be installed in

IntelliJ IDEA

Continuous Integration

[286]

Eclipse features and p2 repositories
An Eclipse feature groups together several related plug-ins that can be installed
in an Eclipse instance. Eclipse handles installation and updates of software using
the provisioning platform called p2. This provisioning technology will take care
of resolving dependencies between software components; p2 will compute the
complete set of required software automatically. We will go into more details about
installation requirements at the end of the chapter.

Features and the plug-ins included in the features are served by a p2 repository.
Such a repository can be put on a web server to make it available to other users.
Old style Eclipse update sites have been since long deprecated and replaced by p2
repositories. Most of the sites you have been using to install new features into your
Eclipse are p2 repositories; thus, you should build a p2 repository for your DSL, if
you want users to easily install it in Eclipse.

Pay attention to the fact that "p2 repositories" are almost always
referred to as "update sites", since the term "update site" is
surely more comprehensible and immediate to the user than "p2
repository". In the following, when we use "update site," we always
refer to "p2 repository" and never to an old Eclipse update site.

An Eclipse feature is defined in an Eclipse feature project. The Xtext project wizard
allows you to create a feature project and an update site project. This can be achieved
in the second page of the Xtext project wizard.

By now, you should be familiar with the procedure to create an Xtext project. So,
create an Xtext project and fill in the fields of the first page of the wizard as you
prefer (we will not develop anything in this project). Instead of Finish, press Next.
In the next page, you can specify several options for your project, and we will see
some of them in this chapter. For the moment, you need to select Create Feature and
Create Update Site and press Finish.

Besides the projects you have already seen so far, you will find two new projects, the
.feature project and the .repository project for the feature of your DSL and the
update site (p2 repository) of your DSL, respectively.

Chapter 11

[287]

The .feature project contains the definition of your feature in the file feature.xml,
which can be edited with the Eclipse feature editor or as an XML file. The feature.
xml already includes the runtime plug-in, the .ide plug-in, and the .ui plug-in of
your DSL. The .repository project contains the file category.xml, which can be
edited with the Eclipse category editor or as an XML file.

An Eclipse repository can potentially contain hundreds of different features to install.
Categories are used to structure features in a way that is meaningful to a user. The
names of such categories and the features that are part of the categories are specified
in the category.xml file. You have already seen categories each time you installed
something in Eclipse using update sites, for example, when you installed Xtext. The
category.xml already contains a category, named after your DSL name, including
your DSL feature, and a category with the same name and the suffix "(Sources)"
including the feature that contains the sources of your DSL. You can tweak this file
as you see fit.

Note that the main.source category refers to a feature
whose name is not shown, and its icon is gray. If you open
category.xml with a text editor, you can see that it refers to
the source feature of your DSL that does not exist. This will be
created when the update site is created, as we will do in the
next paragraph, so you can ignore that.

Now, you should run the MWE2 workflow and then you can generate an update site
for your DSL using the Eclipse tooling:

1.	 Navigate to File | Export….
2.	 In the Export dialog, navigate to Plug-in Development | Deployable

features.
3.	 In the next dialog, you need to select the feature that has been created by the

Xtext project wizard. In this example, if you accepted the defaults in the Xtext
project wizard dialog, it is org.xtext.example.mydsl.feature.

4.	 Specify a destination directory for your update site.

Continuous Integration

[288]

5.	 Navigate to the tab Options, select the options as shown in the following
screenshot and select the category.xml of the update site project of your DSL:

Now, press Finish and wait for the procedure of update site creation to terminate.

The update site is created in the output directory you specified. You can put the
contents of such directory on a web server so that other users can install your DSL.
You can also test this update site locally in your Eclipse: navigate to Help | Install
New Software… and in the Install dialog, in the text field Work with, paste the full
local path of your update site. Press ENTER, and you should see the categories MyDsl
and MyDsl (Sources) categories with your DSL feature and the source feature.

Chapter 11

[289]

If a user also installs the source feature, he/she will be able
to inspect the sources of your implementation from Eclipse.

In the next sections, we will show how to make the procedure of building your DSL,
testing it and creating its update site automatic so that it can be part of a continuous
integration system.

Release engineering
In software engineering, release engineering, abbreviated as releng, concerns the
compilation, assembly, and delivery of source code into finished products or other
software components. In this section, we briefly introduce some scenarios which
require release engineering mechanisms and the main concepts behind them. These
will be connected to the creation of an installable version of your software, that is, an
update site, and also to the capability to build and test your projects outside Eclipse,
in an automatic way.

Headless builds
An important aspect when developing a DSL, and in general any project, is that you
should be able to build all your projects headlessly, that is, from the command line
outside Eclipse, in an automatic way. This will give you more confidence that your
plug-ins can be installed in other Eclipse installations without problems. Installation
problems easily go unnoticed, although it was possible to build the software locally.
If dependencies of your components are not present in the user's environment, and
you did not describe these dependencies, it will not be possible for others to install
your software. While developing, these problems are easily detected. It simply will
not build, but when installing, there are more considerations such as, will it install on
all intended platforms, which Eclipse versions will it work with, and so on.

For all of the stated reasons, being able to build your software in isolation is a
requirement in software production. This way, the headless building process will
not rely on your Eclipse installation, but on a separate set of dependencies which are
specified in a separate configuration.

Target platforms
A target platform is a set of features and plug-ins that your software depends on, for
compiling, testing, and running.

Continuous Integration

[290]

Using a defined target platform, you can easily separate the tools that you need to
develop your software from the actual dependencies that are required to compile
and execute your software. Moreover, the tools are usually not needed during the
automatic building process, thus, the target platform contains only what is actually
needed to build and test your software. This way, the compilation of your plug-ins will
be decoupled from the Eclipse development environment. This also holds when you
test your plug-ins both with JUnit tests and when you run another Eclipse instance.

The launch configuration will run the new Eclipse instance with the plug-ins specified
in the target platform, and not the ones of your Eclipse development environment.

If no specific target platform is specified, the target platform
defaults to the current Eclipse installation, that is why, even
if you never explicitly define target platforms, everything
works anyway.

Defining a target platform allows you to compile and test your software against
dependencies without installing them in your Eclipse development environment.
Defining different target platforms also allows you to test your software against
different Eclipse versions.

If you develop your software in a team, all developers should use the same target
platform definition. They can develop using different Eclipse installations with
possibly different installed tools, but the compilation and the testing will use the
same defined target platform, ensuring consistency and reproducibility.

In Eclipse, a target platform can be defined using a target definition file. Since such
target definition files are XML files, a target definition can be easily shared in a SCM
repository (such as Git) used by all the developers of the team. Later in this chapter,
we will see how to use a target definition file during the development and how to
customize it.

Continuous integration
If your software consists of many loosely coupled components, you probably
have tests that test them in isolation; however, you should also have tests for the
integration of all of them, to make sure that they are able to run altogether without
problems in the final execution environment. In this book, we implemented both
plain JUnit tests and JUnit Plug-in tests (see Chapter 7, Testing). Plain JUnit tests are
expected to run really fast. On the contrary, plug-in tests require much more time
since they need a running Eclipse instance and interact with the UI.

Chapter 11

[291]

Thus, running all tests after every modification might be a burden for the
programmer, decreasing the production cycle. Typically, you run tests that concern
a specific task/modification/new feature that you are working on. However,
single component modifications should also be tested when integrated in the
whole application. With this respect, Continuous Integration, often abbreviated
as CI, (see the article Fowler, 2006) is the practice in which isolated changes are
immediately tested in the complete code base. In this way, if a bug is introduced into
the application by a single component, it can be easily and quickly identified and
corrected. For this reason, it is crucial to have a build automation mechanism, which
relies on a headless building process. Usually, the actual build process is delegated to
a specific software run on a dedicated server. A complete integration build can take
several minutes and the developer can continue working while the server executes
the build and check the result periodically.

Xtext provides a nice wizard to set up the configuration files to allow you to easily
build and test your DSL headlessly and create a release of your DSL. This way, most
of the setup for build automation and continuous integration is already done for you
by this wizard. The resulting building infrastructure created by this wizard relies on
Maven/Tycho, which we will introduce in the next section.

Introduction to Maven/Tycho
Maven is the de-facto building tool for Java projects. The configuration of a
Maven build is specified in an XML file, pom.xml, that must be placed in the root
directory of every project that must be built and tested. Maven can be extended
with several plug-ins.

Tycho is a set of Maven plug-ins that allows you to build Eclipse plug-ins projects
and to run tests based on Eclipse plugins. Tycho aims at bridging the Maven build
system with PDE (Plug-in Development Environment) by taking the dependencies
specified in the MANIFEST.MF files into consideration and by downloading
dependencies from Eclipse p2 repositories. This way, it can compile Java files in
Eclipse plug-in projects, create jars, create features, and update sites.

Continuous Integration

[292]

A Maven build can be run on the command line, if you install
Maven on your system. You can download Maven binaries from
https://maven.apache.org/. The Maven executable is called
mvn. Alternatively, a Maven build can be easily run from within
Eclipse if you install M2Eclipse, abbreviated as m2e, a set of
Eclipse plug-ins that integrate Maven into Eclipse (https://www.
eclipse.org/m2e/). We will use m2e in this chapter, which also
has the benefit to embed the Maven binaries so that you do not
need to install Maven on your computer. The feature you need to
install in your Eclipse is "m2e - Maven Integration for Eclipse,"
which is available from the standard Eclipse update site.

Maven automatically downloads all the dependencies from the Internet from the
Maven Central repository, which can be seen as the counterpart of the Eclipse
update sites. Tycho instructs Maven to also download dependencies from Eclipse
update sites. All these dependencies will be cached on your hard disk in the .m2
directory in your home directory. The downloading of all the dependencies requires
an Internet connection and it will take some time initially. Next builds, however, will
reuse the cached downloaded dependencies, unless you change the dependencies or
new versions of dependencies are found on the remote repositories.

Using the Xtext project wizard
Setting up pom files is not easy, especially if you are not familiar with Maven, Tycho,
their plugins and their building lifecycle. An introduction to Maven is out of the
scope of this book. On the Maven website, you find some "Getting Started" tutorials;
the Tycho documentation can be found here https://eclipse.org/tycho/
documentation.php.

Fortunately, the Xtext project wizard can create all the pom files in all the projects for
you. These generated pom files are surely enough to get you started building your
DSL with Maven/Tycho, and for most DSLs, they do not need to be customized at all.

In this section, we will create a new example DSL project to demonstrate the building
and releasing mechanisms:

1.	 Navigate to File | New | Project...; in the dialog, navigate to the Xtext
category and select Xtext Project.

2.	 In the next dialog, you should specify the following names:
°° Project name: org.example.hellomaven
°° Name: org.example.hellomaven.HelloMaven
°° Extensions: hellomaven

https://maven.apache.org/
https://www.eclipse.org/m2e/
https://www.eclipse.org/m2e/
https://eclipse.org/tycho/documentation.php
https://eclipse.org/tycho/documentation.php

Chapter 11

[293]

3.	 Press Next.
4.	 In the next page, select Create Feature and Create Update Site and choose

Maven as the Preferred Build System (refer to the following screenshot).
5.	 Press Finish.

Continuous Integration

[294]

The number of projects created by the wizard and their directory layout is different
from all the DSL projects we created in the previous chapters (refer to the following
screenshot):

Chapter 11

[295]

Let's now examine the new projects (we have already seen the .feature and
.repository projects on the first section of this chapter):

•	 org.example.hellomaven.target: This contains the target platform
definition with all the dependencies to build and test this DSL

•	 org.example.hellomaven.parent: This is the parent project for all the
projects of this DSL. In fact, although Eclipse shows you all these project in a
flat view, all the projects of this DSL are directories inside the org.example.
hellomaven.parent directory.

The parent project is a concept that comes from the Maven world. It is used both
for specifying in its pom all the common Maven configurations, which are inherited
by all the contained projects, thus avoiding repetitions and enforcing consistency,
and for building all the projects contained in the parent project. For this reason, the
parent project is often referred to also as the aggregator or the releng project. In the
parent project's pom, you can then find all the common properties, like versions of
required software, common Maven and Tycho plug-ins configurations, and the list of
all the projects to build. In this context, the projects are called modules.

We will use this example DSL only for building with Maven/Tycho, thus, we are
not interested in the DSL itself; we can simply leave the default grammar as it is.
However, make sure to run the MWE2 workflow at least once. We add a Plug-in
JUnit test, HelloMavenContentAssistTest, in the org.example.hellomaven.
ui.tests project just to have a UI test to run during the headless build. Remember
that a parser test is already generated by the MWE2 workflow in the org.example.
hellomaven.tests project.

The default for Eclipse Java projects is to generate all the
.class files into the directory bin. The default for Maven is to
generate the .class files in the directory target/classes. To
avoid having class files into different directories, all the projects
generated by the wizard are configured to generate class files
into target/classes also when compiling from Eclipse. If
you maintain your projects in a SCM repository (for example,
Git, Svn, and CVS), make sure to configure the SCM repository
to ignore this target directory.

Continuous Integration

[296]

Running the Maven build
We are now ready to run the Maven build for this project. We will do that from
Eclipse. This assumes that you have already installed m2e into Eclipse, as shown at
the beginning of the chapter. Right-click on the org.example.hellomaven.parent
and select Run As | Maven build… and in the appearing dialog specify "clean
verify" as the goals. Refer to the following screenshot:

The goal clean will instruct Maven to perform a clean build, thus, all the existing
generated artifacts will be removed before building, for example, all Java class files
will be removed before compiling. The goal verify will instruct Maven to compile
everything, generate artifacts, for example jar files and update sites, and run all the tests.

Chapter 11

[297]

You can now press the button Run, and you will see the Maven build in the
Console view.

This requires an Internet connection, and it will take several minutes the first time,
since all the requirements will be downloaded from the Internet.

Once the dependencies are resolved, each project will be compiled, one after the other.
If a project contains tests, then Maven will also run the JUnit tests. When the runtime
project of the DSL is built, the pom is configured to also run the MWE2 workflow
during the build. Projects that contain Xtend files have a pom that instructs Maven to
run the Xtend compiler during the build before running the Java compiler itself.

When the build finishes, you should see in the console the message "BUILD
SUCCESSFUL". This means that during the build, there has been no compilation error
and that all tests passed.

Since the pom files are configured to run the MWE2 workflow
and the Xtend compiler, there is no need to store the generated
sources, that is, the folders src-gen and xtend-gen, into
your SCM repository.

For each plug-in project, the target folder contains one jar with the binaries and one
with the sources. The same holds for feature projects. The target folder of projects
with tests will contain a subdirectory, surefire-reports, with the JUnit reports,
both in text format and in XML format; the latter is suitable to be imported in the
JUnit view in Eclipse. Finally, the target folder of the .repository project will
contain a zipped version of the update site and the subdirectory repository will
contain the update site itself.

You can put the zipped repository on the web as well to offer
an offline installable version of your software. The Eclipse
Install New Software... dialog allows you to also specify a local
ZIP file as the repository.

If you installed the Maven binaries in your system, you can run the same build from
the command line: from the directory of the parent project just run:

mvn clean verify

Continuous Integration

[298]

Customizing the feature
The projects created by the Xtext wizard contain sensible defaults to build the
update site.

The description of the feature for your DSL implementation can be found in the
feature.xml file in the org.example.hellomaven.feature project. Here, you
can change the name of the feature, the vendor, copyright information, and other
things. Eclipse has a form-based editor for features, and we refer to the Eclipse
documentation for the structure of this file.

You can create additional features for your DSL. For example, you may want to
create Eclipse documentation for your DSL Eclipse editor (creation of Eclipse
documentation is out of the scope of the book). If you manually create new features
that you want to serve with the update site, you need to manually add such features
in the category.xml file. You will also need to manually add pom files in the
new projects. Similarly, you will have to add the references the new projects in the
modules section in the parent pom.

Using and customizing the target platform
A defined target platform should be used during the development, in order to have
a better control on the requirements of the software we are developing. As we said at
the beginning of this chapter, this will also allow you to keep the plug-ins installed in
your Eclipse separate from the ones of the target platform.

For plug-ins that generate code, such as Xtext and Xtend, it is
really important to install in the IDE the same version as the
one in the target platform.

For all the preceding reasons, it is advisable that you use the same target definition
file, which is used during the Maven/Tycho build, also in your Eclipse workbench.
To activate a target platform in your Eclipse navigate to Window | Preferences. In
the dialog, navigate to Plug-in Development | Target Platform. You should see
that the current active target platform is the running platform, meaning that by
default the target platform corresponds to all the installed plug-ins of your Eclipse
installation. You should also see all the available target definition files contained in
all the projects of the workspace (refer to the following screenshot):

Chapter 11

[299]

Select the checkbox of the one corresponding to the project we created and press
Apply and OK.

This will start resolving and downloading all the features and plug-ins specified
in the target definition file. This requires an Internet connection, and it might take
several minutes depending on your network connection, since all the required
features and plug-ins will be downloaded from remote p2 repositories.

Currently, there is no way of reusing the dependencies that
Maven downloads during the build also for target platform
resolution in Eclipse and viceversa.

Continuous Integration

[300]

When this process finishes, your target platform will be the one that you have set,
not the running platform anymore. From then on, you will be compiling and testing
your projects using only the software in this target platform.

You can always switch back to the running platform using
the same preferences dialog.

The target platform definition file generated by the Xtext project wizard already
contains all you need to implement a DSL in Xtext.

However, you should learn to modify the target definition file in case you need to
switch to another version of Xtext or in case you need additional dependencies.
Eclipse provides an editor for .target files, but this editor has a very bad reputation
concerning its usability and its limitations. For this reason, here, we will briefly
describe how to modify a target definition file, which is an XML file, manually using
the Eclipse text editor. To open a .target file, for example the one in the hellomaven.
target project, right-click on the file and navigate to Open With | Text Editor.

A target definition file is a set of location tags. Each location tag specifies an Eclipse
p2 repository and a list of plug-ins and features identifiers to be downloaded from
such a repository and installed in the target platform. For example:

<location includeAllPlatforms="false" includeConfigurePhase="false"
includeMode="planner" includeSource="true" type="InstallableUnit">
<unit id="org.eclipse.jdt.feature.group" version="0.0.0"/>
<unit id="org.eclipse.platform.feature.group" version="0.0.0"/>
<unit id="org.eclipse.pde.feature.group" version="0.0.0"/>
<unit id="org.eclipse.xpand" version="0.0.0"/>
<unit id="org.eclipse.xtend" version="0.0.0"/>
<repository location="http://download.eclipse.org/releases/
mars/201506241002/"/>
</location>

A feature can be distinguished from a plug-in from the additional .feature.group
suffix. The version 0.0.0 means that we want the latest version available from that
repository. It is also possible to specify the full version. However, if you want to
be sure to always use a specific version, we suggest you use a different approach;
instead of specifying the version manually, you should use an Eclipse repository,
which provides only that specific version and keep the version number 0.0.0. For
example, Xtext provides an update site with all the available versions, http://
download.eclipse.org/modeling/tmf/xtext/updates/releases, and an update
site for each single version; for example, for version 2.10.0, it is http://download.
eclipse.org/modeling/tmf/xtext/updates/releases/2.10.0. This will also
make the target platform resolution faster, since the update sites to be consulted will
contain fewer features.

http://download.eclipse.org/modeling/tmf/xtext/updates/releases
http://download.eclipse.org/modeling/tmf/xtext/updates/releases
http://download.eclipse.org/modeling/tmf/xtext/updates/releases/2.10.0
http://download.eclipse.org/modeling/tmf/xtext/updates/releases/2.10.0

Chapter 11

[301]

If a new version of Xtext is released and you want to switch to that new version, you
will have to install the new version in your Eclipse and modify the target platform
accordingly. After a target definition file has been modified, you need to reload it
with the preference dialog we described before.

If you want to install other dependencies in the target platform, you have to know
the URL of their Eclipse repository and the identifiers of the features and plug-ins.
This might be tricky, especially the first time. You may want to use the Repository
Explorer view (Show View | Oomph | Repository Explorer), switching to Expert
Mode (refer to the following screenshot). This way, you can easily retrieve the
correct identifiers for features and plugins:

Another way to define a target platform is using the Target
Platform Definition DSL and Generator, available from https://
github.com/mbarbero/fr.obeo.releng.targetplatform.
This provides a DSL, which is easier to use than directly editing
a .target file. The corresponding .target file will then be
automatically generated. Such a DSL is implemented in Xtext and it
provides a rich editor with all the Eclipse tooling.

https://github.com/mbarbero/fr.obeo.releng.targetplatform
https://github.com/mbarbero/fr.obeo.releng.targetplatform

Continuous Integration

[302]

Customizing the pom files
All the pom files generated by the Xtext project wizard already contain all the
configured Maven/Tycho plugins for building and testing your Xtext DSL.

You can of course modify the pom files to enable and configure other Maven/Tycho
plug-ins. This is out of the scope of the book. You will have to modify at least the
parent project's pom if you switch to another version of Xtext. In fact, during the
Maven build, some Xtext Maven plug-ins are used to compile the Xtend files of your
project. Thus, you need to make sure you specify the same version of such Xtext plug-
ins as the Xtext Eclipse plugins installed in Eclipse and used in the target platform.

This is configured in the properties section of the parent's pom.xml:

<properties>
 <tycho-version>0.23.1</tycho-version>
 <xtextVersion>2.10.0</xtextVersion>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
</properties>

Similarly, if you want to switch to a new version of Tycho, you need to update the
corresponding property accordingly.

Continuous Integration systems
Using Maven/Tycho, the building and testing of your DSL implementation can be
automated, even on a continuous integration server. One of the most common open
source continuous integration servers is Jenkins (http://jenkins-ci.org/). This
subject is outside the scope of the book; we refer the interested reader to the Jenkins
documentation for its installation and use. Once you get familiar with Jenkins,
setting up a build job for your Xtext DSL project is really straightforward by relying
on the Maven configuration files generated by the Xtext project wizard.

You can use build jobs in Jenkins for your DSL to continuously test your DSL
projects when new modifications are committed to the SCM repository as we do
for the examples of this book, as briefly described in the next section. You can have
nightly jobs that create the p2 repository and make it available on the web; the
nightly builds are common to many Eclipse projects, such as Xtext itself.

http://jenkins-ci.org/

Chapter 11

[303]

If your project is open source and hosted on Github, you may want to take a look at
Travis (http://travis-ci.org) that allows you to build and test projects hosted on
Github. This service is free for open source projects.

Some tutorials related to Maven/Tycho, the building on continuous integration
servers such as Jenkins and Travis and the deployment of update sites on free cloud
systems, like Sourceforge and Bintray, can be found on my blog: http://www.
lorenzobettini.it/.

Maintaining the examples of this book
All the examples DSLs shown in this book are built using Maven/Tycho. Since I
have several DSLs and I prefer to have a single headless build procedure to build
and test them all, the structure and configuration of Maven projects of the examples
of this book is slightly modified. In particular, there is a single shared project for the
target platform, so that I do not have to duplicate it for all the DSLs. Similarly, there
is a single parent project. The only exceptions are the DSLs created in this chapter,
whose structure is not modified.

Furthermore, all the examples in this book are built on a personal Jenkins continuous
integration server and on Travis. The examples are maintained in a Git repository
on Github, and as soon as a commit is pushed to the remote Git repository, the build
on Travis automatically starts. If something goes wrong during the build, Travis will
send a notification email.

This allows me to continuously test all the code of the examples, especially when
new versions of Xtext come out.

Your DSL editor on the Web
In this section, we briefly show the mechanisms of Xtext that allow you to port the
editor for your DSL to the web. The web editor for your DSL will be implemented
in JavaScript. This editor will then communicate to a server side component,
which implements all Xtext related aspects. The server consists of a Java servlet
and communications take place through HTTP requests. This way, the runtime
implementation of your DSL will be reused by the server-side component and UI
aspects will be rendered on the web accordingly. The set of UI features available on the
web editor depends on the JavaScript text editor library being used. The default one
is Ace, but Orion and CodeMirror can also be enabled. For further details and more
advanced features, we refer to the Xtext documentation, section Web Editor Support.

http://travis-ci.org
http://www.lorenzobettini.it/
http://www.lorenzobettini.it/

Continuous Integration

[304]

Let's create a new Xtext project:

1.	 Project name: org.example.hell oweb
2.	 Name: org.example.helloweb.HelloWeb
3.	 Extensions: helloweb
4.	 Press Next.
5.	 In the next page, select Web Integration and choose Maven as the

Preferred Build System.
6.	 Press Finish.

Note that when we choose the web integration, we need to also specify a build
system; in this example we chose Maven.

Also in this case, the DSL itself is not important, neither is building an update site.
You need to run the MWE2 workflow as usual.

This time, you will find a new project for this DSL, the .web project. This project is
a Java project but not an Eclipse plug-in project. During the Maven build, a WAR
file will be generated for the web project, which contains the web editor that can be
deployed on an application server, for example Tomcat.

In the .web project you will also find an Xtend class ServerLauncher, with a main
method that starts a Jetty server on the port 8080. This way, you can try the web
editor without deploying the war file. You can run this class as a Java application
and once you get the confirmation on the Console view that the server has started,
you can open a browser and specify the URL http://localhost:8080/. The web
editor for your DSL will appear. You can start typing and see syntax highlighting in
action, use the content assist, see the error markers, and so on.

Jetty is a web server and Java servlet container.

http://localhost:8080/

Chapter 11

[305]

In the following screenshot, you can see the web editor of SmallJava, which you find
in the source code of the examples, in action:

Note that the web editor generated by the Xtext wizard is just a starting point.
Though all the editing and validation mechanisms work out of the box, the contents
of the web editor are not saved anywhere and no generation takes place. It is up to
you to implement such services in the web application.

IntelliJ and Gradle
In version 2.9, Xtext introduced the support for IntelliJ IDEA, another famous
IDE, https://www.jetbrains.com/idea. Thus, an Xtext DSL can be developed in
Eclipse but it can also target IntelliJ and an installable version of the DSL for IntelliJ
can be provided to its users. In this section, we will briefly describe the procedure for
achieving IntelliJ integration.

https://www.jetbrains.com/idea

Continuous Integration

[306]

In order to compile the projects that implement IntelliJ integration of an Xtext DSL,
you need to use Gradle, http://gradle.org. Gradle is another build system,
which has been gaining lot of attention and interest lately. In particular, it is the
official build system for Android applications. Differently from Maven, Gradle
configuration files are written in Groovy, http://www.groovy-lang.org, not in
XML, thus, they are less verbose and easier to write and read. Moreover, Gradle is
much more flexible than Maven, which is known to have a rigid structure. Gradle is
also able to reuse all the Java libraries available from Maven Central.

You will not need to know Gradle to read this section, since the Xtext project wizard
will generate all the Gradle configuration files for you.

In order to use Gradle from Eclipse, you need to install
Buildship, if this is not already installed (Buildship is already
installed in many Eclipse variants). Buildship is the Eclipse
project that integrates Gradle into Eclipse. This can be installed
from the main Eclipse update site; the feature to install is
Buildship: Eclipse Plug-ins for Gradle.

We will now create a new Xtext project with IntelliJ integration:

1.	 Use the Xtext project wizard as usual with these configurations:
°° Project name: org.example.helloidea
°° Name: org.example.helloidea.HelloIdea
°° Extensions: helloidea

2.	 Press Next.
3.	 In the next page, select IntelliJ IDEA Plugin and choose Gradle as the

Preferred Build System.
4.	 Press Finish.

Currently, there is no Gradle plugin that acts as a bridge between
Gradle projects and Eclipse plugin projects, such as Tycho for
Maven. For this reason, building Eclipse plugins with Gradle
requires much more effort and the Xtext project wizard will warn
you that the Eclipse-related projects will still contain a Maven/
Tycho build configuration. In case you specify no build system at
all, the wizard will warn you that a Gradle build system will still
be created to build the IntelliJ projects.

http://gradle.org
http://www.groovy-lang.org

Chapter 11

[307]

The first time you will have to wait for Eclipse Buildship to download a gradle
distribution, if you have no gradle binaries installed on your system. Moreover, just
like for the Maven projects we saw in this chapter, you will have to wait for gradle
to resolve all the dependencies which will be downloaded from the gradle artifact
repository. Gradle will cache all the dependencies and other artifacts in the directory
.gradle of your home folder.

The structure and layout of the created projects are the same as the ones we saw
when we created the HelloMaven DSL. However, there is an additional project,
.idea, which contains the IntelliJ plugin for your Xtext DSL. This project will not be
built with Maven, it will be built with Gradle. The .target, the .ui, and the .ui.
tests projects will be built only with Maven. All the other projects can be built with
both build tools.

To run a Gradle build from Eclipse, you need to use the Gradle Tasks view (navigate
to View | Gradle | Gradle Tasks), that shows all the available build tasks in the
generated Gradle configurations (refer to the following screenshot), for example,
clean, build, and test. To run any task, just double-click on that:

For example, let's try to run the build task. The status of the build will be shown in
the Gradle Executions view, which will be opened automatically. You can also see
the more verbose output in the Console view. During the build the MWE2 workflow
will be run, Xtend files will be compiled, jar files will be created, and tests will be
run (but not the UI tests which are Eclipse specific). As usual, the first time all the
required dependencies will have to be downloaded from the Internet, so the first
build will take a few minutes.

Continuous Integration

[308]

If you want to run the Gradle build from the command line, you can install the
gradle binaries into your system. Alternatively, you can use the Gradle Wrapper,
which is generated in the parent project. This consists of a shell script, gradlew, to
be used in Linux and MacOSX, and a Windows batch file, gradlew.bat, to be used
in Windows. This wrapper will automatically download a Gradle distribution and
cache it in the .gradle folder. Thus, you can simply run the following:

•	 ./gradlew <task> (on Linux and Mac OS X)
•	 gradlew <task> (on Windows; this will use the batch file gradlew.bat)

In each Gradle project, the build folder contains the generated artifacts. The sub-
folder libs contains the generated jar file. The sub-folder test-results of the
.tests project contains the JUnit reports in XML format that can also be imported in
the JUnit view in Eclipse; in the same project, the sub-folder reports/tests contains
an HTML test report that can be opened in a web browser.

If you maintain your projects in a SCM repository (for example,
Git, Svn, and CVS), make sure to configure the SCM repository to
ignore both the build directory and the .gradle directory that
are generated in the projects.

If you run the task ideaRepository, you will find in the .idea project, folder
build/ideaRepository, a repository that you can put on-line so that IntelliJ users
can install your DSL plugins. This is the homologous of an Eclipse update site. Using
such a repository you can try your DSL in IntelliJ.

Alternatively, there is an easier way to try your DSL in IntelliJ; you can run the task
runIdea, which will download the IntelliJ SDK, install your DSL plugins and run
IDEA directly from Eclipse. Once IntelliJ IDEA has started you can configure it,
create a project and try your DSL.

It is out of the scope of this book to describe IntelliJ IDEA, so if you want to try
your DSL inside IntelliJ you need to have a look at IntelliJ IDEA documentation,
concerning creating a new project.

Pitfalls with Maven/Tycho
There are few things that you need to be aware of when using Maven/Tycho for
building and testing your DSL. As we said in this chapter, Tycho is a valuable plug-
in that reuses most information specified in the Eclipse plugin projects so that they
can be built with Maven. However, a few pieces of information must be duplicated
in the pom files. Moreover, tests run from Eclipse do not always behave exactly the
same way when run from the Maven build.

Chapter 11

[309]

Versioning
Eclipse plug-ins and features have version numbers of the shape major.
minor.micro.qualifier. By default, your DSL projects will then have version
1.0.0.qualifier (in the MANIFEST.MF for plug-in projects and in the feature.
xml for feature projects). The qualifier segment of the version will be automatically
replaced, in the produced jar files, with a timestamp when the update site
is generated. For example, in the update site, you will find jars of the org.
example.hellomaven.feature_1.0.0.201605021231.jar org.example.
hellomaven_1.0.0.201605021231.jar shape depending on the date and time the
jars are produced. Maven projects' versions have a similar shape, but the qualifier
is specified with the suffix -SNAPSHOT, for example 1.0.0-SNAPSHOT. The versions
in the pom files and the versions in the Eclipse projects must be kept consistent;
otherwise, the Maven build will fail. Keeping the versions in sync might be tricky if
you have many projects and you want to change the versions.

Tycho provides a specific plug-in to set a new version in all the Eclipse projects and
in all the pom files in a consistent way. This can be executed on the command line.
For example, if you want to change all the versions of the hellomaven example
projects to 1.1.0 you need to run this command from the directory of the parent
project (this assumes that you installed Maven binaries on your system):

mvn org.eclipse.tycho:tycho-versions-plugin:set-version
-DnewVersion=1.1.0-SNAPSHOT -Dtycho.mode=maven

This will make sure that all the pom files will be modified with the new version
1.1.0-SNAPSHOT and, consistently, all the MANIFEST.MF and feature.xml files will
be modified with the new version 1.1.0.qualifier.

PDE test problems
If you have plug-in JUnit tests that rely on the PDE (Plug-in Development
Environment), then some test cases that succeed when run from Eclipse might fail
during the Maven/Tycho build.

Continuous Integration

[310]

For example, in Chapter 10, Scoping, we enriched the SmallJava DSL implementation
with a project wizard. The project wizard will create a plugin project, and it will
add the DSL runtime project as a dependency. This way, the SmallJava projects
created by the wizard will be able to access the SmallJava library. In order to test
that the wizard generates the project correctly we write a Plug-in JUnit test that
creates a project with the wizard and checks that the project compiles without
errors. This checks that the added dependency to the DSL runtime project can
be found by PDE, that is, that the SmallJava library can be loaded correctly. This
is implemented in the project org.example.smalljava.ui.tests in the test
SmallJavaNewProjectWizardTest.xtend. Without any additional configuration,
this test succeeds when run from Eclipse but fails when run by the Maven/
Tycho build. Indeed, during the Maven/Tycho build, PDE is not able to find the
dependency on the SmallJava runtime project. The details are quite technical and
can be found on these two bugs: https://bugs.eclipse.org/bugs/show_bug.
cgi?id=343152 and https://bugs.eclipse.org/bugs/show_bug.cgi?id=343156.
The workaround is to programmatically set the target platform for the plugin JUnit
test when it is run during the build. The implementation of the workaround can be
found in the sources of the examples of the book.

Concluding remarks
We conclude this chapter by describing a few additional concepts.

Installation requirements
After you provide an update site for your DSL, other users will be able to install
your DSL Eclipse plugins into their Eclipse installation. When Eclipse installs
plug-ins it also makes sure that all the required software of the plug-ins being
installed is also installed, using the p2 provisioning mechanisms. If the required
software is not already installed, all the required features and plugins will be
searched for in the update sites that are already configured in Eclipse. For this
reason, the checkbox "Contact all update sites during install to find required
software" in the "Install New Software" dialog should always be selected when you
install new plug-ins into your Eclipse. Your DSL users should do the same.

For example, if your users have not already installed Xtext plugins in their Eclipse,
when they install your Xtext DSL from your update site, all the required Xtext
plug-ins will be automatically installed as well from the other update sites. However,
this assumes that the update sites configured in your users' Eclipse contain the
version of Xtext required by your DSL.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=343152
https://bugs.eclipse.org/bugs/show_bug.cgi?id=343152
https://bugs.eclipse.org/bugs/show_bug.cgi?id=343156

Chapter 11

[311]

If that is not the case, you should document the installation procedure so that the
main Xtext update site is added to the Eclipse installation before installing your DSL.

Alternatively, you can instruct Tycho to create a self-contained p2 repository,
which will include, besides your own software, also all the requirements. This way,
users can install your DSL from such an update site without having to contact other
Eclipse repositories. To achieve that, you need to add this plugin configuration in the
pom of the .repository project:

<build>
 <plugins>
 <plugin>
 <groupId>org.eclipse.tycho</groupId>
 <artifactId>tycho-p2-repository-plugin</artifactId>
 <version>${tycho-version}</version>
 <configuration>
 <includeAllDependencies>true</includeAllDependencies>
 </configuration>
 </plugin>
 </plugins>
</build>

Keep in mind that this way the generated update site, and its zipped version, will
consist of a few hundreds of Mb.

Make contributions easy
If you want to make contributions to your DSL easy, you should provide an
automatic setup procedure for the development environment. This holds both if your
DSL is an open-source project and if you work in a team. Using a target definition
file is a first step toward development environment reproducibility. However, the
contributors are still left with the burden of downloading and installing a specific
Eclipse version and install the required plug-ins, using the right version, for
example, the right version of Xtext. Then, the sources of your DSL have to be taken
from a SCM repository, for example Git, and the projects have to be imported in the
development workspace. The right target platform has to be set in the workspace. It
is best practice not to put generated sources in the SCM repository; this implies that
once the projects are imported in the workspace, some additional commands have to
be performed manually be the developer, for example, running the MWE2 workflow.
All these manual tasks require lot of time.

Continuous Integration

[312]

The Eclipse project Oomph, https://projects.eclipse.org/projects/tools.
oomph, aims at making all the preceding tasks completely automatic. You have to
create a setup file, where you specify all the preceding tasks (how to create such
a setup file is documented here: https://wiki.eclipse.org/Eclipse_Oomph_
Authoring). The contributors will only need to download the Oomph Eclipse
Installer, choose a starting Eclipse distribution, a setup file from the Oomph
catalog, a few local paths for the Eclipse installation, the projects and the workspace
to be created and then Oomph will do all the rest. It will download the Eclipse
distribution, install all the plugins, download the sources from the SCM repository,
install the target platform, import all the projects into the workspace, and run all
the additional tasks for generating additional sources. This procedure will still take
time, especially for downloading all the software from the Internet and for running
the MWE2 workflow. However, it will be completely automatic. At the end of the
procedure, the developer is ready to contribute to the project.

The examples of this book consist of many DSLs. The instructions to use Oomph and
the corresponding setup file for the examples can be found on the Git repository of
the examples of the book. Then, you can use the Oomph installer to have an Eclipse
installed on your machine, with all the required plugins and all the imported projects.

Summary
In this chapter we only skimmed the surface of release engineering and continuous
integration in the context of Xtext DSL implementations. Xtext helps the programmer
also in the context of release engineering and continuous integration. Using the
Xtext project wizard, it is easy to build a p2 repository for releasing your DSL
implementation. It is also easy to set up a headless build process based on Maven/
Tycho or Gradle that can be executed in a continuous integration server.

The configuration files for building with Maven/Tycho and Gradle generated by
the Xtext project wizard provide a nice starting point for build automation of your
Xtext DSL.

In the next chapter, we will briefly present Xbase, a reusable expression language
completely interoperable with the Java type system. When you use Xbase in your
DSL, you will not only inherit the grammar of its expressions, but also its Java type
system, its code generator, and all its IDE aspects.

https://projects.eclipse.org/projects/tools.oomph
https://projects.eclipse.org/projects/tools.oomph
https://wiki.eclipse.org/Eclipse_Oomph_Authoring
https://wiki.eclipse.org/Eclipse_Oomph_Authoring

[313]

Xbase
In this chapter we briefly present Xbase, a reusable expression language completely
interoperable with the Java type system. Using Xbase in your DSL, you will inherit
the mechanisms for performing type checking according to the Java type system
and the automatic Java code generation. Xbase also comes with many default
implementations of UI aspects. The Xbase expression language is rich and has all
the features of a Java-like language, such as object instantiation, method invocation,
exceptions, and so on, and more advanced features such as lambda expressions and
type inference. The Xtend programming language itself is built on Xbase.

This chapter will cover the following topics:

•	 An introduction to the main concepts and features of Xbase
•	 Two DSLs implemented with Xbase
•	 Some additional features of Xbase applied to an example DSL

Introduction to Xbase
As we have seen throughout the examples of this book, it is straightforward to
implement a DSL with Xtext. This is particularly true when you only need to care
about structural aspects; in the Entities DSL of Chapter 2, Creating Your First Xtext
Language, we only defined the structure of entities. Things become more complicated
when it comes to implementing expressions in a DSL; as we have seen in Chapter 8, An
Expression Language, we need to define many rules in the grammar using left factoring
to avoid left recursion, even when we only deal with a limited number of expressions.
Besides the grammar, the validation part also becomes more complex due to type
checking. When we mix structures and expressions, such as in the SmallJava DSL, the
complexity increases again; in addition to advanced type checking (Chapter 9, Type
Checking), we also need to take care of scoping (Chapter 10, Scoping), that is implied by
relations such as inheritance. An inheritance relation also requires type conformance
(subtyping) in the type system, and this introduces additional complexity.

Xbase

[314]

To simplify many of these tasks, when the DSL needs to implement behavioral
aspects like expressions and functions or methods, Xtext provides Xbase, an
expression language that can be reused in a DSL (see the article Efftinge et al. 2012).
Xbase expressions have a rich Java-like syntax, which includes standard expressions
(arithmetic and boolean), control structures (for example, if statements and loops),
exceptions and object-oriented expressions (for example, method invocation and
field selection). Moreover, it provides advanced features such as lambda expressions.
Indeed, Xtend method bodies are based on Xbase, thus, if you use Xbase in your
DSL, you will have the expressive power of Xtend expressions. However, Xtend-
specific extensions such as templates, anonymous classes, extension variables, and
extension parameters are not available in Xbase.

A DSL based on Xbase will inherit the syntax of such Java-like expressions and all
its language infrastructure components, such as its type system, scoping, validation,
and the compiler that generates Java code. The Xbase type system is completely
interoperable with the Java type system: a DSL that uses Xbase will be able to
seamlessly access all Java types and use any Java library, just like in Xtend.

Note that Xbase only deals with expressions; your DSL will
have to deal with structural features such as functions and class
hierarchies.

In this chapter, we only give a brief introduction to Xbase. It also provides an
interpreter for Xbase expressions, but we will not describe it in this book. We refer
to the Xtext official documentation, section Integration with Java and to the seven
languages examples, https://github.com/xtext/seven-languages-xtext.
Furthermore, by navigating to File | New | Example... | Xtext Examples | Xtext
Domain-Model Example, you can import the Domain-Model Example that ships with
Xtext into your workspace; this is another example of how Xbase can be used in a DSL.
In Chapter 13, Advanced Topics, we will show a more advanced example using Xbase.

Keep in mind that when using Xbase, your DSL will be tightly
coupled with Java, which might not always be what you need.
We will get back to this in the final section, Summary.

https://github.com/xtext/seven-languages-xtext

Chapter 12

[315]

The common Java type model
Before getting into the details on how to embed Xbase in a DSL, we will first
describe the main concept behind Xbase. It provides interoperability with the
Java type system using a Common Java Type model, abbreviated from now
as Java model. This model represents Java concepts like types (that is, classes,
interfaces, enumerations, and annotations), fields, constructors, and methods. Xbase
automatically creates such a model from the Java source files and the Java classes
available in a Java project.

The basic idea underlying a DSL that uses Xbase is to map the DSL concepts into
this common Java model of Xbase. Then, Xbase will be able to automatically resolve
references to Java types and Java members using the common Java model, also
respecting Java visibility and accessibility constraints.

This means that once the DSL concepts are mapped into the common Java model,
Xbase will take care of performing cross-reference resolution. That includes scoping,
type checking, and validation, without any further intervention from the language
implementor. Moreover, Xbase is also able to generate Java code directly from the
mapped model.

Summarizing, the main task that the language implementor has to perform is the
mapping of the DSL concepts to the Xbase Java model.

This mapping is performed by implementing an IJvmModelInferrer interface, that
we will describe in more detail in the forthcoming sections. The Xbase expressions
used in your DSL will then have to be associated to a Java model method, which
becomes the expression's logical container. Such mapping and association will let
Xbase automatically implement a proper scope for the expressions so that scoping
and type checking will work out of the box.

Xbase

[316]

The interactions among the Xbase components and the tasks implemented by the
DSL implementor are shown in the following diagram:

The Expressions DSL with Xbase
For the first example of the use of Xbase, we implement a DSL similar to the
Expressions DSL that we presented in Chapter 8, An Expression Language, which we
call as Xbase Expressions DSL; this DSL is inspired by the Scripting Language DSL
of the seven languages examples.

Creating the project
Let's create a new project with the following settings:

•	 Project name: org.example.xbase.expressions
•	 Name: org.example.xbase.expressions.Expressions
•	 Extensions: xexpressions

Chapter 12

[317]

Before running the MWE2 generator for the first time, you should modify the
grammar so that it uses the Xbase grammar, not the Terminals grammar:

grammar org.example.xbase.expressions.Expressions with
 org.eclipse.xtext.xbase.Xbase

Since our grammar now inherits from the Xbase grammar, all the Xbase grammar
rules are in effect in our DSL.

When using Xbase, some files in the projects will contain lots of
warnings of the shape:
Discouraged access: The method ... from the type
... is not accessible due to restriction on
required library org.eclipse.xtext.xbase_....jar

This is due to the fact that a part of the Xbase API is still provisional,
and it could be subject to changes in the future possibly breaking
backward compatibility. When a new version of Xbase is released,
you might have to run the MWE2 workflow again, and possibly
modify your code to be compatible with the new version. In any
case, a test suite helps to make sure that your code is still working
with a new version of Xbase. To ignore the warnings, refer to
Chapter 6, Customizing Xtext Components, section Custom formatting.

We want to recreate a DSL similar to the Expressions DSL we introduced in Chapter
8, An Expression Language. A program in this DSL is like a big code block. Xbase has a
specific rule for dealing with code blocks: XBlockExpression.

The most generic form of Xbase expression, which also corresponds
to the base class of all Xbase expressions, is XExpression.

Since Xbase has its own validator that implements lots of useful constraint checks,
and since, like all the validators we implemented in this book, it is based on the types
of the elements being validated, we should make the main rule for our DSL return
an XBlockExpression object. This way, our DSL root element will be conforming
to XBlockExpression and it will be automatically validated accordingly by Xbase.
In the Expressions DSL of Chapter 8, An Expression Language, we also made sure
that variable references are validated so that a variable can only refer to variables
already defined; this check is not necessary anymore when we use Xbase since it is
automatically implemented for the XBlockExpression elements.

Xbase

[318]

We start writing the grammar as follows:

grammar org.example.xbase.expressions.Expressions with org.eclipse.
xtext.xbase.Xbase

generate expressions "http://www.example.org/xbase/expressions/
Expressions"

import "http://www.eclipse.org/xtext/xbase/Xbase"

ExpressionsModel returns XBlockExpression:...

Remember that when we use returns in a rule, we specify a type, not a rule name.
Since this type, XBlockExpression, is defined in Xbase EMF metamodel, we need to
import this metamodel. We do this by specifying the EMF namespace corresponding
to Xbase (recall that each Xtext grammar defines an EMF namespace; it is the one
defined after the generate section).

Now, we want our ExpressionsModel to consist of variable declarations and single
expressions. Xbase has a specific rule for that: XExpressionOrVarDeclaration; thus,
we can simply reuse that rule:

ExpressionsModel returns XBlockExpression:
 {ExpressionsModel}
 (expressions+=XExpressionOrVarDeclaration ';'?)*;

The feature expressions is part of XblockExpression. With this simple grammar,
we have a working parser that allows to write programs consisting of variable
declarations and single expressions. These have the same syntax as Xtend
expressions. If you want to experiment with this DSL, you can start Eclipse, create a
plug-in project in the workspace, and, in the src folder, create a new .xexpressions
file (remember to accept the conversion to an Xtext project). You should also add the
bundle org.eclipse.xtext.xbase.lib as a dependency in the Dependencies section
of the MANIFEST.MF editor.

The org.eclipse.xtext.xbase.lib bundle contains the
Xbase runtime library classes that are used by Xbase during
type checking, validation, and code generation. Moreover, it
contains several static methods that are automatically available
as extension methods.

Chapter 12

[319]

The IJvmModelInferrer interface
Besides the grammar rules which can be reused in a DSL, the interesting feature
of Xbase is the integration with Java. The same integration you have already
experienced in Xtend can be reused in any DSL based on Xbase. This means that the
entire type system of Xbase, which corresponds to the type system of Java, together
with the additional type inference mechanisms that you enjoyed in Xtend, will be a
part of your DSL as well.

In order to reuse the Xbase type system in your DSL, it is not enough to use Xbase
grammar rules; you also need to give your model elements a context so that Xbase
can check your model elements according to that context. You basically need to tell
Xbase how your model elements are mapped to the Java model elements. The Xbase
expressions which are contained in your model elements will then be typed and
checked by Xbase as parts of the mapped Java model elements.

You basically have to map your model elements to Java types (classes and
interfaces), fields, and methods. This mapping is a model to model mapping, since
you map your DSL model elements to the Java model elements. When you map a
model element to a Java model method, you can specify that its body is represented
by an Xbase expression. Given that, Xbase will be able to type and check that Xbase
expression, since it will consider it in the context of a Java method, which in turn
is part of a Java class, which can extend another Java class, and so on. If that Xbase
expression uses this, Xbase will know what it refers to. It is similar for super,
method parameters, and so on. Unless you extend the Xbase expression language
itself, just specifying this mapping to Java elements will be enough; you will not need
to provide a custom scoping, since Xbase will be able to compute the scope using the
mapped Java elements.

This mapping is specified by implementing an IJvmModelInferrer interface, since
we use Xbase in our grammar, the MWE2 workflow generates an Xtend stub class,
ExpressionsJvmModelInferrer in the jvmmodel subpackage. The stub class has an
empty dispatch method named infer, which is the method where you specify the
mapping to Java elements:

def dispatch void infer(ExpressionsModel element,
 IJvmDeclaredTypeAcceptor acceptor,
 boolean isPreIndexingPhase)

Xbase

[320]

In this method, you will create Java model elements, associate them to your DSL
elements, and pass them to the acceptor; this implements the mapping. The Java
elements themselves are created using the injected extension JvmTypesBuilder,
already part of the stub class. This provides a useful API to create Java model
elements, for instance, toClass, toMethod, toField, and so on. All these methods
take the source element as the first parameter. Besides creating a Java model element,
these methods also record the association with the original source element. Xtext
uses this association to provide a default implementation of many UI concepts.

Note that with JvmTypesBuilder, you will not create effective
Java elements (for example, java.lang.Class, java.
lang.reflect.Method, java.lang.reflect.Field,
and so on), but their representation in the Xbase EMF model
for Java model elements (for example, JvmGenericType,
JvmOperation, JvmField, and so on).

For our DSL, given an ExpressionsModel object, we map it to a Java class with a
single main method. Since ExpressionsModel is itself an XBlockExpression object,
we can directly associate the ExpressionsModel object itself with the body of the
main method. The implementation of our inferrer is as follows:

class ExpressionsJvmModelInferrer extends AbstractModelInferrer {
 @Inject extension JvmTypesBuilder

 def dispatch void infer(ExpressionsModel element,
 IJvmDeclaredTypeAcceptor acceptor,
 boolean isPreIndexingPhase) {
 val className = element.eResource.URI.trimFileExtension.
lastSegment
 acceptor.accept(element.toClass(className)) [
 members += element.toMethod('main', typeRef(Void.TYPE)) [
 // add a parameter String[] args
 parameters +=
 element.toParameter("args", typeRef(String).
addArrayTypeDimension)
 // make the method static
 static = true
 // Associate the model with the body of the main method
 body = element
]
]
 }
}

Chapter 12

[321]

Let's comment on this code. First of all, we name the Java class after the input file,
without the file extension. Note that the class, an instance of JvmGenericType,
is created using the JvmTypesBuilder method toClass. However, further
initialization operations concerning this class are deferred to the lambda passed as
the last argument. In fact, the inferrer is used by Xtext first on the indexing phase
(see Chapter 10, Scoping) and again after the indexing phase has finished. The lambda
is evaluated in the second step. In the first step, the index has not been completely
built, thus you cannot rely on cross-references having been resolved. In the indexing
phase, you just create Java classes or interfaces for your model elements; after
the indexing has finished, you can add elements to the created Java types. This
mechanism allows for circular references between classes.

In the previous code, we add a method to the Java model class, an instance of
JvmOperation, using JvmTypesBuilder.toMethod, passing the name of the method
and its return type. When we specify types for Java model elements, we must always
use instances of class JvmTypeReference. To create a type reference to an existing
Java type, we use the method typeRef that takes a Java Class object. For the main
method, the return type must be void, thus we use the static instance java.lang.
Void.TYPE.

Once we created a Java method, we can further initialize it with a lambda that
gets the created Java model JvmOperation as parameter. In this example, we add
a parameter named args of type String[] to the created Java method using the
JvmTypesBuilder API; we also specify that the method is static.

Finally, we associate the whole Xbase expression of the program with the body of
the method (recall that ExpressionsModel is an XBlockExpression). As said before,
this will allow Xbase to build a proper scope for the expressions and to perform type
checking and validation of expressions.

Xbase

[322]

You can now restart Eclipse and try the editor for this DSL again (we assume you
have already created the project as detailed before). The result is shown in the
following screenshot. Here, you can see that in the xexpressions file we can declare
variables with the Xbase syntax, which corresponds to the same syntax for variable
declaration in Xtend:

Note that all the type checking is automatically performed by Xbase. In the
preceding screenshot, you can see an error due to wrong types in the expressions.
Note also that the conversion to string type, when using the operator +, is performed
automatically. Indeed, besides the IJvmModelInferrer interface, we did not have to
specify anything else, neither a custom scoping nor a custom validator.

Moreover, although the args variable is not defined anywhere in our program,
we can still refer to it since the whole expression block has been associated with
the body of a method with the args parameter. The association we specified in the
inferrer corresponds to the fact that the parameter args is available in the program
with the specified type. Since in the inferrer, we specified that args is an array of
String, we can call the method size on args in our program as follows:

println("args size: " + args.size)

Code generation
When using Xbase, we get code generation for free. This can be observed by saving
an error-free .xexpressions file in the IDE. When you do so, a src-gen source
folder is automatically created in your project. We have already seen this behavior
in Chapter 5, Code Generation, when we wrote a code generator for the Entities DSL.
However, this time, we did not write any code generator.

Chapter 12

[323]

This automatic Xbase code generator mechanism is based on the
IJvmModelInferrer interface that we implemented. The Xbase code generator uses
the mapped Java model to generate Java code. See the following screenshot:

This is an extremely useful feature, since when using Xbase we only need to write
the IJvmModelInferrer interface correctly. Xbase will take care of all the rest,
including type checking and code generation.

The automatic code generation mechanism is performed by
JvmModelGenerator, which is automatically bound in the
Guice module generated during the MWE2 workflow. Of course,
you could still write your own code generator and override the
Guice binding; it is recommended to rely on the automatic Xbase
code generator though, since writing a code generator manually
for a DSL that uses Xbase would require some effort.

Debugging
With Xbase, you can debug your DSL sources instead of the generated Java
code—just like when working with Xtend. This is another valuable feature
you get for free.

Xbase

[324]

You can try and set a breakpoint in the .xexpressions program, and then
right-click on the generated Java file and navigate to Debug As | Java Application
(this menu is available since the generated Java file contains a main method). Now,
when the execution reaches the line corresponding to the set breakpoint in the
.xexpressions file, you will see that the debugger perspective is opened with the
Expressions editor and the Variables view shows the contents of the variables of
your program. Refer to the following screenshot:

Just like when debugging Xtend code, if you need to debug the generated Java code,
you can do so by right-clicking on the Debug view and by navigating to Show
Source | Java.

The Entities DSL with Xbase
We will now implement a modified version of the Entities DSL that we implemented
in Chapter 2, Creating Your First Xtext Language. This will allow us to implement a
more complex DSL where, inside entities, we can also write operations apart from
attributes. This is inspired by the Xtext Domain-Model example.

Creating the project
We create a new Xtext project with the following settings:

•	 Project name: org.example.xbase.entities
•	 Name: org.example.xbase.entities.Entities
•	 Extensions: xentities

Chapter 12

[325]

Defining attributes
We define the rules for attributes using some rules inherited from the Xbase grammar:

grammar org.example.xbase.entities.Entities
 with org.eclipse.xtext.xbase.Xbase

generate entities "http://www.example.org/xbase/entities/Entities"

Model:
 entities+=Entity*;

Entity:
'entity' name=ID ('extends' superType=JvmParameterizedTypeReference)?
'{'
 attributes += Attribute*
'}';

Attribute:
 'attr' (type=JvmTypeReference)? name=ID
 ('=' initexpression=XExpression)? ';';

The rule for Entity is similar to the corresponding rule of the Entities DSL of Chapter
2, Creating Your First Xtext Language. However, instead of referring to another Entity
in the feature superType, we refer directly to a Java type; since Xbase implements
the Java type system, an entity can extend any other Java type. Moreover, since
an Entity will correspond to a Java class (we will implement this mapping in the
inferrer), it will still be able to have an entity as a super type, though it will specify it
through the corresponding inferred Java class.

We refer to a Java type using the Xbase rule JvmParameterizedTypeReference.
As the name of the rule suggests, we can also specify type parameters, for instance,
we can write:

entity MyList extends java.util.LinkedList<Iterable<String>> {}

Similarly, for attributes, we use Java types for specifying the type of attribute.
In this case, we use the Xbase rule JvmTypeReference; differently from
JvmParameterizedTypeReference, this rule also allows to specify types for
lambdas. Thus, for instance, we can define an attribute as follows:

attr (String,int)=>Boolean c;

Xbase

[326]

We also allow an attribute to specify an initialization expression using a generic Xbase
expression, XExpression. Note that both the type and the initialization expression are
optional; this design choice will be clear after looking at the model inferrer:

class EntitiesJvmModelInferrer extends AbstractModelInferrer {
 @Inject extension JvmTypesBuilder

 def dispatch void infer(Entity entity,
 IJvmDeclaredTypeAcceptor acceptor, boolean
isPreIndexingPhase) {
 acceptor.accept(entity.toClass("entities." + entity.name)) [
 documentation = entity.documentation
 if (entity.superType != null)
 superTypes += entity.superType.cloneWithProxies
 for (a : entity.attributes) {
 val type = a.type ?: a.initexpression?.inferredType
 members += a.toField(a.name, type) [
 documentation = a.documentation
 if (a.initexpression != null)
 initializer = a.initexpression
]
 members += a.toGetter(a.name, type)
 members += a.toSetter(a.name, type)
 }
]
 }
}

Note that, in this example, we provide an infer method for Entity, not
for the root Model. In fact, the default implementation of the superclass
AbstractModelInferrer can be summarized as follows:

public void infer(EObject e, ...) {
 for (EObject child : e.eContents()) {
 infer(child, acceptor, preIndexingPhase);
 }
}

It simply calls the infer method on each element contained in the root of the model.
Thus, we only need to provide a dispatch method infer for each type of our model
that we want to map to a Java model element. In the previous example, we needed
to map the whole program, that is, the root model element, while in this example we
map every entity of a program.

Chapter 12

[327]

As we did in the previous section, we use an injected JvmTypesBuilder extension
to create the Java model elements and associate them with the elements of our DSL
program AST.

First of all, we specify that the superclass of the mapped class will be the entity's
superType if one is given.

Note that we clone the type reference of superType. This is
required since superType is an EMF containment reference. The
referred element can be contained only in one container; thus,
without the clone, the feature superType would be set to null
after the assignment.
The clone is performed using cloneWithProxies, which clones
an EMF object without resolving cross references.

For each attribute, we create a Java field using toField, which returns a JvmField
instance, and a getter and setter method using toGetter and toSetter, respectively
(these are part of JvmTypesBuilder). If an initialization expression is specified for
the attribute, the corresponding Java field will be initialized with the Java code
corresponding to the XExpression.

The interesting thing in the mapping for attributes is that we use Xbase type
inference mechanisms; if no type is specified for the attribute, the type of the Java
field will be automatically inferred by Xbase using the type of the initialization
expression. If neither the type nor the initialization expression is specified, Xbase
will automatically infer the type Object. If we specify both the type of the attribute
and its initialization expression, Xbase will automatically check that the type of the
initialization expression is conformant to the declared type. The following screenshot
shows a validation error issued by Xbase:

Xbase

[328]

Both for the mapped Java model class and Java model field we set the
documentation feature using the documentation attached to the program element.
This way, if in the program we write a comment with /* */ before an entity or an
attribute, in the generated Java code this will correspond to a JavaDoc comment, as
illustrated in the following screenshot:

Defining operations
Now we add operations to our entities, which will correspond to Java methods.
Thus, we add the rule for Operation. To keep the example simple and to concentrate
on Xbase, we did not introduce an abstract element for both attributes and
operations, and we require that operations are specified after the attributes:

Entity:
'entity' name=ID ('extends' superType=JvmParameterizedTypeReference)?
'{'
 attributes += Attribute*
 operations += Operation*
'}';

Chapter 12

[329]

Operation:
 'op' (type=JvmTypeReference)? name=ID
 '(' (params+=FullJvmFormalParameter (','
 params+=FullJvmFormalParameter)*)? ')'
 body=XBlockExpression;

Here, we use the Xbase rule FullJvmFormalParameter to specify parameters;
parameters will have the syntactic shape of Java parameters, that is, a
JvmTypeReference stored in the feature parameterType and a name. However, the
keyword final is not considered by the FullJvmFormalParameter rule, in fact, just
like in Xtend, Xbase parameters are implicitly final. The body of an operation is
specified using the Xbase rule XBlockExpression, which includes the curly brackets.

In our inferrer, we add the mapping to a Java model method with the following
code:

for (op : entity.operations) {
 members += op.toMethod(op.name, op.type ?: inferredType) [
 documentation = op.documentation
 for (p : op.params) {
 parameters += p.toParameter(p.name, p.parameterType)
 }
 body = op.body
]
}

This is similar to what we did in the first example of this chapter. We still use
toMethod; however, this time, we have a corresponding element in our DSL,
Operation. Thus, we create a Java model parameter for each parameter defined in
the program, and we use the Operation instance's body as the body of the mapped
Java model method. Also, for the operation, the return type can be omitted; in that
case, the corresponding Java model method will have the return type that Xbase
infers from the operation's XBlockExpression.

The association of the method's body with the operation's body implicitly defines
the scope of the XBlockExpression object. Since an operation is mapped to a non-
static Java method, in the operation's expressions you can automatically refer to the
attributes and operations of the containing entity and of the entity's superType, since
they are mapped to Java fields and methods, respectively.

Xbase

[330]

This can be seen in the following screenshot, where the operation accesses the
entity's fields and the inherited method add; Xbase automatically adds other tooling
features, such as information hovering and the ability to jump to the corresponding
Java method:

In fact, the scope for this is implied by the association between the operation
and the Java model method. The same holds for super, as shown in the following
example, where the operation m overrides the one in the supertype and can access
the original version with super:

entity Base {
 op m() { "Base" }
}

entity Extended extends Base {
 op m() { super.m() + "Extended" }
}

Indeed, associating an Xbase expression with the body of a Java model method
corresponds to making the expression logically contained in the Java method. This
logical containment defines the scope of the Xbase expression.

An Xbase expression can have only one logical container.

In the examples we have shown so far, we have always associated an XExpression
with the body of a Java method or with the initializer of a field. There might be
cases where you want to add a method to the Java model that does not necessarily
correspond to an element of the DSL.

Chapter 12

[331]

In these cases, you can specify an Xtend template string as the body of the created
method. For instance, we can add to the mapped Java class a toString method
as follows:

members += entity.toMethod("toString", typeRef(String)) [
 body = '''
 return
 "entity «entity.name» {\n" +
 «FOR a : entity.attributes»
 "\t«a.name» = " + «a.name».toString() + "\n" +
 «ENDFOR»
 "}";
 '''
]

For instance, given this entity definition:

entity C {
 attr List l;
 attr s = "test";
}

The generated Java method will be:

public String toString() {
 return
 "entity C {\n" +
 "\tl = " + l.toString() + "\n" +
 "\ts = " + s.toString() + "\n" +
 "}";
}

As usual, remember to write JUnit tests for your DSL (see Chapter 7, Testing); for
instance, this test checks the execution of the generated toString Java method:

@RunWith(XtextRunner)
@InjectWith(EntitiesInjectorProvider)
class EntitiesCompilerTest {
 @Inject extension CompilationTestHelper
 @Inject extension ReflectExtensions

 @Test def void testGeneratedToStringExecution() {
 '''
 entity C {
 attr l = newArrayList(1, 2, 3);
 attr s = "test";

Xbase

[332]

 }'''.compile[
 val obj = it.compiledClass.newInstance
 '''
 entity C {
 l = [1, 2, 3]
 s = test
 }'''.toString.assertEquals(obj.invoke("toString"))
]
 }
}

Imports
We saw in Chapter 10, Scoping, that Xtext provides support for namespace-based
imports for qualified names. Xbase provides an automatic mechanism for imports of
Java types and many additional UI features for the Eclipse editor. To include such
feature in a DSL that uses Xbase it is enough to use the rule XImportSection; for
instance, in our Xbase Entities DSL we modify the root rule as follows:

Model:
 importSection=XImportSection?
 entities+=Entity*;

The addition of this rule automatically adds to the DSL the same import mechanisms
that you saw in Xtend; in addition to the standard Java imports, including static
imports, you can now write import static extension statements for static methods
and those static methods will be available as extension methods in the program.

Besides this enhanced import statements, Xbase adds nice UI features in the editor of
the DSL that reflect the ones of JDT and Xtend:

•	 Warnings for unused imported types
•	 An Organize Imports menu, available also with the keyboard shortcut

Ctrl + Shift + O (CMD + Shift + O on Mac)
•	 Automatic insertion of import statements: When you use the autocompletion

for specifying a Java type reference in the program, the corresponding import
statement is automatically added

Remember to merge the files plugin.xml and plugin.xml_gen
in the UI project after running the MWE2 workflow; this is required
to add the Organize Imports menu items in the editor.

Chapter 12

[333]

Validation
Xbase automatically performs type checking and other validation checks on the
Xbase expressions used in your DSL. Other validation checks, concerning the
structural parts of the DSL, are left to the language implementor. For example,
we still need to implement checks on possible cycles in the inheritance hierarchy.
In Chapter 4, Validation, we implemented a similar validation check. In this
example, though, we cannot walk the hierarchy of entities, since an entity, in this
DSL, does not extend another entity, it extends any Java type (superType is a
JvmParameterizedTypeReference).

Thus, the search for possible cycles must be performed on the inferred Java model, in
particular on JvmGenericType objects, which are the ones created in the inferrer with
the method toClass. This is performed by the following recursive method:

def private boolean hasCycleInHierarchy(JvmGenericType t,
 Set<JvmGenericType> processed) {
 if (processed.contains(t))
 return true
 processed.add(t)
 return t.superTypes.map[type].filter(JvmGenericType).
 exists[hasCycleInHierarchy(processed)]
}

We use this method in this validator check method:

protected static val ISSUE_CODE_PREFIX =
 "org.example.xbase.entities.";
public static val HIERARCHY_CYCLE =
 ISSUE_CODE_PREFIX + "HierarchyCycle";

@Inject extension IJvmModelAssociations

@Check def checkNoCycleInEntityHierarchy(Entity entity) {
 val inferredJavaType = entity.jvmElements.filter(JvmGenericType).
head
 if (inferredJavaType.hasCycleInHierarchy(newHashSet())) {
 error("cycle in hierarchy of entity '" + entity.name + "'",
 EntitiesPackage.eINSTANCE.entity_SuperType,
 HIERARCHY_CYCLE)
 }
}

Xbase

[334]

We call the recursive method passing the inferred JvmGenericType for the given
entity. The mapping between DSL elements and Java model elements is handled
by Xbase. You can access such mapping by injecting an IJvmModelAssociations.
Note that, in general, you can infer several Java model elements from a single DSL
element, that is why the method IJvmModelAssociations.getJvmElements returns
a set of associated inferred elements.

Additional Xbase features
In this section, we will show a few additional Xbase features, and we will apply them
to the Xbase Entities DSL we implemented so far.

Annotations
Xbase provides support for Java-like annotations. This support is not enabled in the
standard Xbase grammar. If you want to use Xbase annotations in your DSL, then
you must use org.eclipse.xtext.xbase.annotations.XbaseWithAnnotations
as the super grammar:

grammar org.example.xbase.entities.Entities
 with org.eclipse.xtext.xbase.annotations.XbaseWithAnnotations

Now, you can use the Xbase grammar rules for annotations. In this example, we will
add annotations to entities and attributes:

Entity:
annotations+=XAnnotation*
'entity' name=ID ('extends' superType=JvmParameterizedTypeReference)?
'{'
 attributes += Attribute*
 operations += Operation*
'}';

Attribute:
 annotations+=XAnnotation*
 'attr' (type=JvmTypeReference)? name=ID
 ('=' initexpression=XExpression)? ';';

Chapter 12

[335]

We run the MWE2 generator in order to update our DSL infrastructure to deal with
annotations. Now, we need to translate the Xbase annotations of our DSL elements
into the corresponding annotations in the Java model. We do that in the inferrer,
implementing a reusable method for this purpose:

 def dispatch void infer(Entity entity,
 IJvmDeclaredTypeAcceptor acceptor, boolean
isPreIndexingPhase) {
 acceptor.accept(entity.toClass("entities." + entity.name)) [
 documentation = entity.documentation
 if (entity.superType != null)
 superTypes += entity.superType.cloneWithProxies
 translateAnnotations(entity.annotations)
 for (a : entity.attributes) {
 val type = a.type ?: a.initexpression?.inferredType
 members += a.toField(a.name, type) [
 translateAnnotations(a.annotations)
 documentation = a.documentation
...

 def private void translateAnnotations(JvmAnnotationTarget target,
 Iterable<XAnnotation> annotations) {
 target.addAnnotations
 (annotations.filterNull.filter[annotationType != null])
 }

The JvmAnnotationTarget is a common superclass for all Java model elements
that can have annotations, for example, JvmGenericType (representing any Java
type), JvmField (representing a Java field), and JvmOperation (representing a Java
method). Now, the Entities DSL supports annotations for entities and attributes,
and the Xbase infrastructure will take care of handling them both during the type
checking and in the code generator.

Reusing Java error markers
As we saw in section Validation, validation checks, concerning the structural parts
of the DSL, are left to the language implementor. Since we added annotations to
the Entities DSL, we should check whether an annotation is valid on a specific
DSL element.

Xbase

[336]

For example, let's consider the com.google.inject.Inject annotation, which is
defined as follows:

@Target({ METHOD, CONSTRUCTOR, FIELD })
@Retention(RUNTIME)
public @interface Inject {

This means that using @Inject on a Java type is disallowed by Java. In the Entities
DSL, you can annotate an entity with @Inject, and you will get no validation error,
but the generated Java code will contain an error.

Checking the validity of annotations should be performed in the
EntitiesValidator, but it would not be straightforward. You may want to check
how Xtend performs this check, and other checks on annotations, by looking at the
Xtend implementation, in particular, the XtendValidator.

While it is not nice to generate invalid Java code, it is even worse not to mark
the corresponding DSL element that led to specific Java errors. Xbase has a
mechanism for reusing error markers in the generated Java code so that they are
reported also on the original DSL program. This can be enabled by customizing
XbaseConfigurableIssueCodes as follows:

import org.eclipse.xtext.preferences.PreferenceKey
import org.eclipse.xtext.util.IAcceptor
import org.eclipse.xtext.validation.SeverityConverter
import org.eclipse.xtext.xbase.validation.IssueCodes
import org.eclipse.xtext.xbase.validation.XbaseConfigurableIssueCodes

class EntitiesConfigurableIssueCodes extends
XbaseConfigurableIssueCodes {
 override protected initialize(IAcceptor<PreferenceKey> iAcceptor) {
 super.initialize(iAcceptor)
 iAcceptor.accept(create(IssueCodes.COPY_JAVA_PROBLEMS,
 SeverityConverter.SEVERITY_ERROR))
 }
}

Then, we bind this implementation in the EntitiesRuntimeModule:

override bindConfigurableIssueCodesProvider() {
 EntitiesConfigurableIssueCodes
}

Chapter 12

[337]

With this modification, if the Java code generated by the Entities DSL contains
errors, like the one concerning the wrong use of annotations, the error marker will
be reported also on the original DSL source file, with the prefix "Java problem:".
An example is shown in the following screenshot. We created a Plug-in project, with
dependencies org.eclipse.xtext.xbase.lib and com.google.inject. We then
created an .xentities file, we wrote the @Inject annotation on an entity and we
saved the file. The generated Java code contains a compilation error, which is also
reported on the .xentities source file.

Using 'extension'
Using XImportSection, as we did in section Imports, your DSL source files can use
'extension' in static imports so that all the imported static methods can be used
as extension methods inside Xbase expressions. We can add a keyword extension
also to entities' attributes in order to have the same semantics of extension fields in
Xtend classes:

Attribute:
 annotations+=XAnnotation*
 'attr' (extension?='extension')? (type=JvmTypeReference)? name=ID
 ('=' initexpression=XExpression)? ';';

We could do the same for parameters and variable declarations, but this would require
to redefine the corresponding Xbase rules, which we will not do in this chapter.

Xbase will be able to handle our entities' attributes as extension methods providers
if we simply add a Java annotation to the Java model element inferred from
our attributes. The Java annotation to add is org.eclipse.xtext.xbase.lib.
Extension:

members += a.toField(a.name, type) [
 if (a.extension) {

Xbase

[338]

 annotations += annotationRef(Extension)
 }
 ...

The annotationRef method is similar to typeRef that we have already used, but it
is specific for Java annotations.

Now, we can write in our Entities DSL programs like the following one, which make
use of attributes as extension methods providers:

import java.util.List

entity ListExtension {
 op void printList(List<String> l) {
 // implementation
 }
}

entity MyEntity {
 attr extension ListExtension listExtension = new
ListExtension();
 op void m(List<String> list) {
 // equivalent to listExtension.printList(list)
 list.printList
 }
}

Using type parameters
In this section, we introduce in the Entities DSL the possibility of declaring
entities with type parameters. Xbase provides a specific grammar rule for type
parameters JvmTypeParameter, which also deals with type parameters bounds and
wildcards, with the same syntax as Java type parameters. We modify the rule for
entities as follows:

Entity:
annotations+=XAnnotation*
'entity' name=ID
('<' typeParameters+=JvmTypeParameter (','
 typeParameters+=JvmTypeParameter)* '>')?
('extends' superType=JvmParameterizedTypeReference)? '{'
 attributes += Attribute*
 operations += Operation*
'}';

Chapter 12

[339]

In a similar way, we could add type parameters to operations, thus mimicking Java
generic methods (this is left as an exercise).

Then, we need to map the type parameters of our entities into type parameters of the
corresponding Java model elements. We create the following method for this purpose:

def private void copyTypeParameters(JvmTypeParameterDeclarator target,
 List<JvmTypeParameter> typeParameters) {
 for (typeParameter : typeParameters) {
 target.typeParameters += typeParameter.cloneWithProxies
 }
}

The JvmTypeParameterDeclarator is a common superclass for all Java
model elements that can have type parameters, for example, JvmGenericType
(representing any Java type), JvmConstructor (representing a Java constructor),
and JvmOperation (representing a Java method). If you add generic types to entity
operations, you can reuse this method in the inferrer.

We call this method to set the type parameters of the JvmGenericType inferred for
an entity:

acceptor.accept(entity.toClass("entities." + entity.name)) [
 copyTypeParameters(entity.typeParameters)

Now, we can write programs like the following one, which make use type
parameters for entity definitions (note that you can declare bounds for type
parameters just like in Java):

import java.util.List

entity ListExtension<T extends Comparable<T>> {
 op void printList(List<T> l) {
 // implementation
 }
}

entity MyEntity {
 attr ListExtension<String> stringListExtension;
 attr ListExtension<Integer> intListExtension;
 op void m(List<String> stringList, List<Integer> intList) {
 stringListExtension.printList(stringList)
 intListExtension.printList(intList)
 }
}

Xbase

[340]

Formatter
Xbase has a default formatter for all the Xbase expressions and type references.
If you enable the formatter in the MWE2 as we saw in Chapter 6, Customizing
Xtext Components, section Custom formatting, the generated Xtend stub class
EntitiesFormatter will extend the Xbase formatter.

We implement the EntitiesFormatter for this DSL similarly to the one for the Entities
DSL in Chapter 6, Customizing Xtext Components, section Custom formatting. For elements
that are related to Xbase, we simply delegate to the Xbase formatter base class, which
will take care of formatting them. Thus, the formatting for import statements, Java type
references and all Xbase expressions will be inherited from Xbase.

Here are some examples:

def dispatch void format(Model model,
 extension IFormattableDocument document) {
 model.getImportSection.format
 val lastEntity = model.entities.last
 for (entity : model.entities) {
 … similar to the EntitiesFormatter of Chapter 6
 }
}

def dispatch void format(Entity entity,
 extension IFormattableDocument document) {
 for (annotation : entity.getAnnotations()) {
 annotation.format
 annotation.append[newLine]
 }
 for (typeParameter : entity.getTypeParameters()) {
 typeParameter.format
 }
 entity.regionFor.keyword("<").append[noSpace]
 entity.regionFor.keyword(">").prepend[noSpace]

 entity.getSuperType.format
 ...

Further Customizations
Depending on the complexity of your DSL, you might want to customize the
default implementation of several components of Xbase, such as scoping. This can
be achieved by subclassing the corresponding Xbase classes and by specifying the
bindings in the Guice module.

Chapter 12

[341]

It is also possible to override some rules of the Xbase grammar in order to change the
syntactic shape of some expressions. Moreover, you can change an Xbase expression
rule in order to add syntax for new expressions, which are specific to your DSL.
In this case, you also need to provide custom implementations for some classes of
Xbase, such as the type computer and the compiler. In particular, you need to specify
how to type your expressions and how they compile to Java. We will show an
example in the next chapter.

Summary
Xbase can add a powerful Java-like expression language to your DSL, and by
implementing the model inferrer, you will automatically reuse the Xbase Java type
system implementation and the generation of Java code. This does not imply that
all the concepts described in all the previous chapters (validation, code generation,
scoping, and so on) are useless. In fact, knowing the main concepts underlying Xtext
is required to effectively implement a DSL even when using Xbase. Moreover, in case
you need to modify or add expressions to a DSL that uses Xbase, you may have to
provide a custom scoping and validation as well.

When using Xbase, your DSL will be tightly coupled with Java, which might not
always be what you need. Your DSL could be used only for writing specifications
or simpler structures, and in that case, you will not need Xbase expressions; these
would only add unwanted complexity. Alternatively, your DSL might not be bound
to Java and might require code generation into another target language; also in this
case, you cannot use Xbase.

[343]

Advanced Topics
In this chapter, we will describe a few advanced topics concerning an Xtext DSL
implementation, and some advanced techniques. In the first part of the chapter, we
will show how to manually maintain the Ecore model for the AST of an Xtext DSL.
This way, you will have full control on the shape of the AST, instead of delegating
that to the automatic Xtext Ecore inference mechanisms. Of course, the Xtext
grammar and the Ecore model will still have to be consistent, but you will be able
tweak the AST structure. You will also be able to add to the AST some derived state,
which is computed from the DSL program, but which is not directly present in the
program itself. In the first section, we will show how to create an Xtext DSL starting
from an existing Ecore model, while in the second section, we will show how to
switch to a manually maintained Ecore model, starting from the one generated by
Xtext. In the third section, we will use Xcore to maintain the Ecore model for the
AST. These first three sections of the chapter assume that you are already familiar
with EMF and the Ecore model. In the last section, we will show how to extend an
Xbase DSL with new expressions. This will require to customize the Xbase type
system and the Xbase compiler in order to handle the new Xbase expressions.

This chapter will cover the following topics:

•	 How to create an Xtext project from an existing Ecore model
•	 How to switch to an imported Ecore model
•	 How to add to the AST some derived state
•	 How to use Xcore with Xtext
•	 How to extend Xbase and customize its compiler and type system

Advanced Topics

[344]

Creating an Xtext project from an
Ecore model
In this section, we will implement an Xtext DSL starting from an existing Ecore
model, which will represent the structure of AST.

Defining the Ecore model
We assume that we already have an EMF Ecore model for representing schools with
students and teachers.

This Ecore model has the following structure:

•	 SchoolModel: This is the root element. The feature schools is a multi-value
containment reference of School objects.

•	 School: The feature persons is a multi-value containment reference of
Person objects.

•	 Person: This is an abstract class.
•	 Student is a Person: The registrationNum attribute is an integer, teachers

is a multi-value non-containment reference of Teacher objects, that is, a
student can refer to several teachers.

•	 Teacher is a Person.
•	 Named is an abstract class, which is the base class for School and Person. It

contains the string attribute name.

During this section, we will modify this Ecore model. If you
want to implement the example DSL in this section yourself,
while reading, you can download the initial version of the project
containing the Ecore model from here: https://github.com/
LorenzoBettini/emf-school-model. On the other hand,
the sources of the examples of the book contain the Ecore model
already modified according to the contents of this chapter.

https://github.com/LorenzoBettini/emf-school-model
https://github.com/LorenzoBettini/emf-school-model

Chapter 13

[345]

The class diagram of this model is shown in the next screenshot:

We implemented this Ecore model using the Ecore diagram
editor, which is shown in the preceding screenshot. If you
want to try that, you can install the feature "Ecore Diagram
Editor (SDK)", if that is not already installed in your Eclipse.
Alternatively, you can edit the Ecore model using the standard
EMF Ecore tree editor.

Creating the Xtext project
We will now create a new Xtext project starting from an existing Ecore model.

Xtext grammar can refer to an existing Ecore model as long as the
project containing the Ecore model is an Xtext project. If this is not
the case, the Xtext grammar will show lots of errors when referring
to the model classes. If the project is not already an Xtext project,
you can convert it to an Xtext project by right-clicking on the project
and navigating to Configure | Convert to Xtext Project.

Advanced Topics

[346]

In order to create the Xtext project, perform the following steps:

1.	 Navigate to File | New | Project...; in the dialog, navigate to the Xtext
category and click on Xtext Project From Existing Ecore Models.

2.	 In the next dialog, press the Add… button to select a GenModel.
3.	 Select the School.genmodel and press OK, refer to the following screenshot:

Chapter 13

[347]

4.	 Specify SchoolModel for the Entry rule, refer to the following screenshot:

5.	 After you press Next, the dialogs are the same as the ones you have already
seen in previous examples. Fill in the details for the following fields and
press Finish:

°° Project name: org.example.school
°° Name: org.example.school.School
°° Extensions: school

The first part of the grammar is slightly different from the grammars we have seen
so far, since, instead of the generate line there is an import line. In fact, this time
Xtext will not generate the Ecore model:

grammar org.example.school.School
 with org.eclipse.xtext.common.Terminals

import "http://www.example.org/school"

Advanced Topics

[348]

The School.xtext contains an initial grammar deduced by the Xtext project wizard
from the Ecore model. The generated grammar rules are meant only as an initial
content. We replace the rules completely with these grammar rules:

SchoolModel returns SchoolModel:
 schools+=School*;

School returns School:
 'school' name=STRING
 '{'
 persons+=Person*
 '}';

Person returns Person:
 Student | Teacher;

Student returns Student:
 'student' name=STRING 'registrationNum' registrationNum=INT
 ('{'
 teachers+=[Teacher|STRING] ("," teachers+=[Teacher|STRING])*
 '}')?;

Teacher returns Teacher:
 'teacher' name=STRING;

The programs of this DSL will have the following shape:

school "A school" {
 student "A student" registrationNum 100 {
 "A teacher"
 }
 teacher "A teacher"
}
school "Another school" {
 teacher "Another teacher"
}

Note that in this DSL the names are specified as strings, not as IDs; cross
references are declared accordingly, using the [<Type>|<Syntax>] form, that is
[Teacher|STRING].

You can now run the MWE2 workflow. Of course, you will get no model/generated
folder in the project and no automatically inferred Ecore model.

Chapter 13

[349]

Fixing the StandaloneSetup
If we now start writing JUnit tests, for example by modifying the generated stub
SchoolParsingTest, and we try to run such tests, we get an exception during the
execution of the shape:

java.lang.IllegalStateException: Unresolved proxy http://www.example.
org/school#//School. Make sure the EPackage has been registered.

In fact, the generated StandaloneSetup class for DSLs based on an imported Ecore
model does not perform any registration of the EMF package. We need to do that
ourselves explicitly. In this example, we must modify the SchoolStandaloneSetup
as follows:

class SchoolStandaloneSetup extends SchoolStandaloneSetupGenerated {
...
 override register(Injector injector) {
 if (!EPackage.Registry.INSTANCE.containsKey(SchoolPackage.eNS_
URI)) {
 EPackage.Registry.INSTANCE.put(SchoolPackage.eNS_URI,
 SchoolPackage.eINSTANCE);
 }
 super.register(injector)
 }
}

If you take a look at the StandaloneSetup generated classes of the other DSLs we
implemented so far, you can see that similar instructions are performed.

All the other aspects of an Xtext DSL implementation based on an imported Ecore
model work exactly the same as all the other DSLs we implemented so far. For
example, we can implement validator checks about possible duplicate elements of
the same kind. We can follow the same approach shown in Chapter 9, Type Checking,
section Checking for duplicates, based on the fact that the Ecore model has a base class
for all elements with a name, Named:

class SchoolValixtends extends AbstractSchoolValidator {

 protected static val ISSUE_CODE_PREFIX = "org.example.school."
 public static val DUPLICATE_ELEMENT = ISSUE_CODE_PREFIX +
 "DuplicateElement"

 @Check def void checkNoDuplicateSchools(SchoolModel e) {
 checkNoDuplicateElements(e.schools, "school")
 }

 @Check def void checkNoDuplicatePersons(School e) {

Advanced Topics

[350]

 checkNoDuplicateElements(e.persons.filter(Teacher), "teacher")
 checkNoDuplicateElements(e.persons.filter(Student), "student")
 }

 def private void checkNoDuplicateElements(
 Iterable<? extends Named> elements, String desc) {
 val multiMap = HashMultimap.create()

 for (e : elements)
 multiMap.put(e.name, e)

 for (entry : multiMap.asMap.entrySet) {
 val duplicates = entry.value
 if (duplicates.size > 1) {
 for (d : duplicates)
 error("Duplicate " + desc + " '" + d.name + "'",
 d, SchoolPackage.eINSTANCE.named_Name,
 DUPLICATE_ELEMENT)
 }
 }
 }
}

Tweaking the Ecore model
As we did for other DSLs, in the School DSL, we do not impose any order in the
definition of students and teachers within a school, and they can even be interleaved.
All students and teachers are saved into the feature persons in the School class.
In fact, in the preceding validator, we filtered the list of persons based on their
type, either Student or Teacher, because we allow a teacher and a student to have
the same name. We might need to perform such filtering in other parts of the DSL
implementation, for example, in the generator. In other DSLs, we implemented
utility methods in a model utility class that we used as extension methods. Since now
we have complete control on the Ecore model, we can add such utility mechanisms
directly in the Ecore model itself.

We first add a new EMF EDataType in the Ecore model, Iterable, whose Instance
Type Name is java.lang.Iterable, and we add an ETypeParameter, say T, to the
data type.

Then we add two EMF operations to the School class, getStudents() and
getTeachers(), that return an Iterable with a EGeneric Type Argument
argument Student and Teacher, respectively.

Chapter 13

[351]

The relevant parts in the Ecore XMI file are as follows:

<eClassifiers xsi:type="ecore:EClass" name="School"
 eSuperTypes="#//Named">
 <eOperations name="getStudents">
 <eGenericType eClassifier="#//Iterable">
 <eTypeArguments eClassifier="#//Student"/>
 </eGenericType>
 </eOperations>
 <eOperations name="getTeachers">
 <eGenericType eClassifier="#//Iterable">
 <eTypeArguments eClassifier="#//Teacher"/>
 </eGenericType>
 </eOperations>
...
</eClassifiers>
...
<eClassifiers xsi:type="ecore:EDataType" name="Iterable"
 instanceClassName="java.lang.Iterable">
 <eTypeParameters name="T"/>
</eClassifiers>

The resulting Ecore model in the Ecore tree editor will be as in the following
screenshot:

Advanced Topics

[352]

If we now regenerate the Java model code from the modified Ecore model, the
SchoolImpl Java class will contain two unimplemented methods for the added
operations, of the shape:

/**
 * @generated
 */
public Iterable<Student> getStudents() {
 // TODO: implement this method
 // Ensure that you remove @generated or mark it @generated NOT
 throw new UnsupportedOperationException();
}

/**
 * @generated
 */
public Iterable<Teacher> getTeachers() {
 // TODO: implement this method
 // Ensure that you remove @generated or mark it @generated NOT
 throw new UnsupportedOperationException();
}

We implement these methods using the static utility method com.google.common.
collect.Iterables.filter (this is the same method we used in Xtend, since it is
available as an extension method), which is part of com.google.guava, so we first
need to add this as a dependency in the school.model project:

/**
 * @generated NOT
 */
public Iterable<Student> getStudents() {
 return Iterables.filter(getPersons(), Student.class);
}

/**
 * @generated NOT
 */
public Iterable<Teacher> getTeachers() {
 return Iterables.filter(getPersons(), Teacher.class);
}

Note that we marked these methods as @generated NOT so that a further EMF
generation will not overwrite them.

In the validator, we can use these additional methods and avoid the manual filtering:

 @Check def void checkNoDuplicatePersons(School e) {
 checkNoDuplicateElements(e.teachers, "teacher")

Chapter 13

[353]

 checkNoDuplicateElements(e.students, "student")
 }

Mixing generated and manually written code is bad since it makes
it much harder to maintain such code. In the following sections, we
will show some alternatives that allow you to customize the model
code without mixing generated and manually written code.

Derived State
In this section, we describe another mechanism, provided by Xtext, which allows you
to add some additional state to the AST model.

For example, let's add another EClass to the School Ecore model,
SchoolStatistics, with the integer fields studentsNumber and teachersNumber
and the Iterable<Student> field studentsWithNoTeacher, with the obvious
semantics. We then add a field in the School class called statistics, which is a
containment reference of type SchoolStatistics. This is a transient feature, so that
it will not be saved when the model is serialized. Refer to the following screenshot:

Advanced Topics

[354]

We would like statistics to be computed once and for all, each time the AST is
modified.

Xtext allows you to do that by implementing an org.eclipse.xtext.resource.
IDerivedStateComputer. This interface has two methods that you need to
implement installDerivedState and discardDerivedState. These are called by
Xtext after the AST has been created and when the program is going to be reparsed,
respectively. In this example, we will implement the installDerivedState so
that for each School object we create and fill a SchoolStatistics instance and set
it in the School object. The discardDerivedState method will simply unset the
statistics field of each School object:

class SchoolDerivedStateComputer implements IDerivedStateComputer {
 override discardDerivedState(DerivedStateAwareResource resource) {
 resource.allContents.filter(School).forEach [
 statistics = null
]
 }

 override installDerivedState(DerivedStateAwareResource resource,
 boolean preLinkingPhase) {
 if (!preLinkingPhase)
 resource.allContents.filter(School).forEach [school |
 school.statistics = SchoolFactory.eINSTANCE.
createSchoolStatistics => [
 studentsNumber = school.students.size
 teachersNumber = school.teachers.size
 studentsWithNoTeacher = school.students.filter[teachers.
empty]
]
]
 }
}

The preLinkingPhase parameter tells you whether this method is called before the
indexing phase (see Chapter 10, Scoping) or after the indexing phase; it has the same
semantics as in the JvmModelInferrer (Chapter 12, Xbase). Since we do not need to
index the statistics, we create and set the statistics when the method is called after the
indexing phase.

We then need to specify a few custom Guice bindings in SchoolRuntimeModule:

import org.eclipse.xtext.resource.DerivedStateAwareResource
import
 org.eclipse.xtext.resource.
DerivedStateAwareResourceDescriptionManager
import org.eclipse.xtext.resource.IDerivedStateComputer

Chapter 13

[355]

import org.eclipse.xtext.resource.IResourceDescription
import org.example.school.resource.SchoolDerivedStateComputer

class SchoolRuntimeModule extends AbstractSchoolRuntimeModule {
 override bindXtextResource() {
 DerivedStateAwareResource
 }

 def Class<? extends IDerivedStateComputer>
bindIDerivedStateComputer() {
 SchoolDerivedStateComputer
 }

 def Class<? extends IResourceDescription.Manager>
 bindIResourceDescriptionManager() {
 DerivedStateAwareResourceDescriptionManager
 }
}

Note that, besides our custom derived state computer, we need to tell Xtext to use a
special XtextRe source and a special IResourceDescriptionManager that are aware
of derived state.

When using Xbase, you must not specify the additional bindings
for Xtext resource and resource description manager, since
Xbase already has its own implementations for these classes and
should not be overwritten. Similarly, Xbase has its own default
implementation of IDerivedStateComputer. This is the one
responsible of calling your JvmModelInferrer implementation:
all the mapped Java model elements will be part of the derived
state of the resource. If you need to install additional derived state
in an Xbase DSL, you can do that directly in the model inferrer.

We can now use this additional statistics field to issue warnings in the validator,
in case a school has teachers and a student does not have any teacher:

public static val STUDENT_WITH_NO_TEACHER =
 ISSUE_CODE_PREFIX + "StudentWithNoTeacher"

@Check def void checkStudentsWithNoTeachers(School e) {
 val statistics = e.statistics
 if (statistics.teachersNumber > 0) {
 for (s : statistics.studentsWithNoTeacher) {
 warning(
 "Student " + s.name + " has no teacher",

Advanced Topics

[356]

 s,
 SchoolPackage.eINSTANCE.named_Name,
 STUDENT_WITH_NO_TEACHER)
 }
 }
}

Similarly, we can write a code generator using both the custom operations and the
derived statistics. In this example, the generator simply generates a text file with the
information about the schools and its contents:

class SchoolGenerator extends AbstractGenerator {
 override void doGenerate(Resource resource, IFileSystemAccess2 fsa,
 IGeneratorContext context) {
 resource.allContents.toIterable.filter(SchoolModel).forEach [
 fsa.generateFile
 ('''«resource.URI.lastSegment».txt''', generateSchools)
]
 }

 def generateSchools(SchoolModel schoolModel) {
 schoolModel.schools.map [
 '''
 school «name»
 students number «statistics.studentsNumber»
 students with no teacher «statistics.studentsWithNoTeacher.
size»
 teachers number «statistics.teachersNumber»
 teachers
 «generateTeachers(teachers)»
 students
 «FOR it : students»
 «name» registration number «registrationNum»
 student's teachers
 «generateTeachers(teachers)»
 «ENDFOR»
 '''
].join("\n")
 }

 def generateTeachers(Iterable<Teacher> teachers) '''
 «FOR it : teachers»
 «name»
 «ENDFOR»
 '''
}

Chapter 13

[357]

Finally, we customize the label provider so that statistics information will appear in
the Outline view:

class SchoolLabelProvider extends DefaultEObjectLabelProvider {
 def text(Named e) {
 e.eClass.name + " " + e.name
 }

 def String text(SchoolStatistics s) {
 '''teachers «s.teachersNumber», students «s.studentsNumber»›››
 }
}

In the following screenshot, we show the new node with the statistics of a school:

If we modify the the input file, the statistics will be updated consistently, as shown in
the following screenshot (note the number of teachers is updated):

In fact, the nice thing of the derived state computer mechanism is that we do not
need to worry about when to update the derived state; Xtext will automatically call
our derived state computer at the right moments.

Advanced Topics

[358]

Adding new rules to the language
Since now the Ecore model is not automatically inferred and generated by Xtext,
you cannot simply add a new rule to the DSL, since the classes for the new rules
and the features inside the new rules must already be present in the Ecore model.
Thus, when your DSL is based on an imported Ecore model, you first need to
add the classes and their features in the Ecore model and then you can add the
corresponding rules in the DSL.

Thus, the advantage of manually maintaining the Ecore model is that you have full
control on that, and it is easier to have in the AST derived features. The drawback is
that you need to keep the Ecore model consistent with your DSL grammar.

Switching to an imported Ecore model
During the development of a more complex Xtext DSL, at some point, you might
find the automatic Xtext Ecore inference mechanism too restrictive and you might
want to have full control on the Ecore model of the AST. The Ecore model is also a
very important API to all kinds of Xtext services, which you may want to to control
more directly. In such cases, you can decide to switch to an imported and manually
maintained Ecore model, starting from the one Xtext inferred for you from the
grammar. In this section, we will detail the manual procedure to perform such a
switching. we will detail the manual procedure to perform such a switching.

First of all, we create a new DSL that we will use as an example, using the
following settings:

•	 Project name: org.example.customgreetings.
•	 Name: org.example.customgreetings.Greetings.
•	 Extensions: greetings.

Press Next.

In the next page, choose Maven as the Preferred Build System.

The DSL itself is not important, so we simply use the default grammar for greetings.
Now, we run the MWE2 for the first time.

Let's assume we want to switch to a manually maintained Ecore model. Of course,
we start from the one that Xtext generated for us, which can be found in the model/
generated directory of the runtime project. This directory contains both the
Greetings.ecore file, which contains the Ecore model, and Greetings.genmodel,
which is used by the EMF generator. We rename the folder into model/custom.

Chapter 13

[359]

You should perform this renaming from Eclipse, using the
context menu Refactor | Rename…; this way, Eclipse will take
care of renaming references to the directory in the plugin.xml
file and in build.properties.

The .genmodel is configured to generate the EMF model Java classes into the src-
gen folder, which is perfectly fine when the Ecore is handled by Xtext. Since we
want to handle the Ecore model and the EMF generation ourselves, we cannot rely
on the src-gen folder, since that will be completely removed when running the
MWE2 workflow. For this reason, we modify the .genmodel file as follows: we open
the Greetings.genmodel file with its default GenModel tree editor, we select the
root element, and in the Properties view (which can be opened by double-clicking
on the tree), we navigate to the Model section and we modify the Model Directory
property from src-gen to emf-gen. Refer to the following screenshot:

Advanced Topics

[360]

We save the file and we run the EMF generator manually, by right-clicking on the
root element and select Generate Model Code. A new emf-gen folder will be created
in the runtime project. We must set this folder as a source folder (right-click on and
navigate to Build Path | Use as Source Folder). As usual, when adding a new source
folder to a project, remember to update the build.properties accordingly. The new
source folder will contain compilation errors due to duplicate Java classes: in fact the
EMF Java model classes are present both in this new source folder emf-gen and in
the src-gen folder. We can ignore these errors for the moment.

In the grammar, we must turn off the generation of the Ecore model, and replace that
line with the import of the Ecore model, using its namespace URI:

//generate greetings "http://www.example.org/customgreetings/
Greetings"
import "http://www.example.org/customgreetings/Greetings"

In the MWE2, in the StandardLanguage section, we must add a resource reference to
our custom genmodel:

language = StandardLanguage {
 name = "org.example.customgreetings.Greetings"
 fileExtensions = "greetings"
 // lines to refer to our custom genmodel
 referencedResource =
"platform:/resource/org.example.customgreetings/model/custom/
Greetings.genmodel"

We can now run the MWE2 workflow. This time, Xtext will not generate an Ecore
model, since it will reuse our custom one. Moreover, the EMF Java classes will be
removed from the src-gen folder, and the errors in the emf-gen folder will go away.

Chapter 13

[361]

The layout of the directories in the project will be as in the following screenshot:

Thus, the EMF Java classes are not generated anymore by Xtext in the src-gen
folder, and they will be generated in the emf-gen folder by manually running the
EMF generator.

From now on, it is our responsibility to modify the Ecore model and possibly add
new classes or change the structure of existing classes if we want to modify the DSL
grammar, as we said in the previous section Adding new rules to the language. Each
time we modify the Ecore model, we also must rerun the EMF generator.

Advanced Topics

[362]

As we saw in the Fixing the StandaloneSetup section, to make JUnit tests work, we
need to modify GreetingsStandaloneSetup as follows:

class GreetingsStandaloneSetup extends
GreetingsStandaloneSetupGenerated {
...
 override register(Injector injector) {
 if (!EPackage.Registry.INSTANCE.containsKey(GreetingsPackage.eNS_
URI)) {
 EPackage.Registry.INSTANCE.put(GreetingsPackage.eNS_URI,
 GreetingsPackage.eINSTANCE);
 }
 }
}

Generating EMF classes during the build
If we want to follow the good practice of not putting generated sources in the SCM
repository, we must tweak the Maven build for this DSL so that the EMF Java classes
are generated during the Maven build itself.

To do that, we create a new MWE2 file, say GenerateGreetingsModel.mwe2, and
we use a component which is shipped with MWE2: org.eclipse.emf.mwe2.ecore.
EcoreGenerator. This is configured with the path of the .genmodel file, the property
genModel, and it will run the EMF generator for generating the EMF Java classes.
We also enable the component org.eclipse.emf.mwe.utils.DirectoryCleaner,
to clean up the emf-gen folder so that we are sure that each generation will remove
possibly stale classes. The MWE2 file is as follows:

module org.example.customgreetings.GenerateGreetingsModel

import org.eclipse.xtext.xtext.generator.*
import org.eclipse.xtext.xtext.generator.model.project.*

var rootPath = ".."
var project = "org.example.customgreetings"

Workflow {
 bean = org.eclipse.emf.mwe.utils.StandaloneSetup {
 scanClassPath = true
 }
 component = org.eclipse.emf.mwe.utils.DirectoryCleaner {
 directory = "${rootPath}/${project}/emf-gen"
 }

Chapter 13

[363]

 component = org.eclipse.emf.mwe2.ecore.EcoreGenerator {
 genModel =
 "platform:/resource/${project}/model/custom/Greetings.genmodel"
 srcPath = "platform:/resource/${project}/src"
 }
}

The additional StandaloneSetup bean is required to make the workflow find the
genmodel. The additional srcPath property is required by the EcoreGenerator
component and will be useful when we customize the EMF Java classes as shown later.

You can try and run the MWE2 workflow to make sure it works correctly.

During the Maven build, the MWE2 workflow will be run
using the exec-maven-plugin and the Maven artifacts
will be used during the execution, not the Eclipse bundles.
The genmodel that Xtext originally generated is configured
to use EMF 2.12, but there is no such a version of EMF
available as Maven artifact. When running the MWE2
during the Maven build you will get a failure of the shape
The value '2.12' is not a valid enumerator of
'GenRuntimeVersion'. To fix the problem, you need to
downgrade the targeted EMF runtime version to 2.11; in the
genmodel editor, using the Properties view, navigate to the
All section and set the Runtime Version property to 2.11.

The pom file generated by the Xtext project wizard in the runtime project already
contains the exec-maven-plugin configuration to run the MWE2 workflow
GenerateGreetings.mwe2 that generates the Xtext artifacts. We just need to add
another execution of that plug-in to run also our new GenerateGreetingsModel.
mwe2 workflow. The final configuration of the Maven plug-in is as follows:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.4.0</version>
 <executions>
 <execution>
 <!-- new execution for generating EMF classes -->
 <id>mwe2GenerateEMFClasses</id>
 <phase>generate-sources</phase>
 <goals><goal>java</goal></goals>
 <configuration>
 <mainClass>

Advanced Topics

[364]

 org.eclipse.emf.mwe2.launch.runtime.Mwe2Launcher
 </mainClass>
 <arguments>
 <argument>
 /${project.basedir}/src/org/example/customgreetings/
GenerateGreetingsModel.mwe2
 </argument>
 <argument>-p</argument>
 <argument>rootPath=/${project.basedir}/..</argument>
 </arguments>
 <classpathScope>compile</classpathScope>
 <includePluginDependencies>true</includePluginDependencies>
 <cleanupDaemonThreads>false</cleanupDaemonThreads>
 </configuration>
 </execution>
 <execution>
 <!-- execution already present -->
 <id>mwe2Launcher</id>
 <phase>generate-sources</phase>
 <goals><goal>java</goal></goals>
 <configuration>
 <mainClass>
 org.eclipse.emf.mwe2.launch.runtime.Mwe2Launcher
 </mainClass>
 <arguments>
 <argument>
 /${project.basedir}/src/org/example/customgreetings/
GenerateGreetings.mwe2
 </argument>

Now, the EMF Java classes will be generated during the Maven build.

Customizing the EMF Java classes
EMF generated code contains Javadoc comments with the annotation @generated. If
you want to customize a generated Java method, you need to remove that annotation
or specify @generated NOT. This way, the next time you run the EMF generator, the
custom methods will not be overwritten. We cannot use this technique if we generate
the EMF Java classes using the MWE2 workflow approach we described in the
previous section.

However, the org.eclipse.emf.mwe2.ecore.EcoreGenerator component still
allows you to manually customize the EMF Java classes using the generation gap
pattern.

Chapter 13

[365]

For example, let's say we want to customize the toString() method of the
GreetingImpl Java class. What we need to do is create in the src folder a class in
the same package of GreetingImpl, org.example.customgreetings.greetings.
impl, named GreetingImplCustom that extends GreetingImpl and redefine the
toString() method:

package org.example.customgreetings.greetings.impl;

public class GreetingImplCustom extends GreetingImpl {
 @Override
 public String toString() {
 return "Hello " + getName();
 }
}

If we run the GenerateGreetingsModel.mwe2 workflow, the generated EMF
GreetingsFactoryImpl will create Greeting objects by instantiating our custom
GreetingImplCustom classes:

/**
 * @generated
 */
public Greeting createGreeting()
{
 GreetingImplCustom greeting = new GreetingImplCustom();
 return greeting;
}

This can also be verified with a JUnit test:

@RunWith(XtextRunner)
@InjectWith(GreetingsInjectorProvider)
class GreetingsParsingTest{
 @Inject ParseHelper<Model> parseHelper

 @Test def void testCustomGreetingToString() {
 val result = parseHelper.parse('''
 Hello Xtext!
 ''')
 Assert.assertEquals("Hello Xtext", result.greetings.head.toString)
 }
}

The advantage of this approach, based on the generation gap pattern, is that it is easy
to keep the custom code separated from the generated code. The drawback is that
you cannot use the EMF generator manually to generate the EMF Java model classes;
you need to run the MWE2 workflow.

Advanced Topics

[366]

Xcore
If you often find yourself customizing the Ecore model with operations or redefining
existing methods, you might want to try Xcore for maintaining your Ecore model.
Xcore is a DSL for Ecore. It is implemented in Xtext and Xbase, allowing you to
specify the Ecore model with a Java-like syntax. Besides the structure of the model,
you can also use Xcore to specify the behavior of operations, derived features, and
provide custom implementation of methods. Moreover, the mapping of data types to
Java types is more straightforward in Xcore. Being a DSL based on Xtext/Xbase, with
Xcore you do not need a .genmodel file to generate the Java code for your model;
you just edit your file, and the Java code will be automatically generated on save.

In order to use Xcore, you need to install the feature "EMF - Eclipse Modeling
Framework Xcore SDK" into your Eclipse, unless it is already installed.

In this section, we will implement a new Xtext DSL, for specifying libraries, books,
and authors. The Ecore model will be specified with Xcore.

Creating the Xcore project
Let's create an Xcore project for defining the Ecore model for the DSL that we are
going to implement in this section. Steps are as follows:

1.	 Navigate to File | New | Project...; in the dialog, navigate to the Xcore
category and click on Xcore Project.

2.	 Specify org.example.library.model as the project name and press Finish.

In the model directory of the project, create an .xcore file, for example, Library.
xcore. Here we define the Ecore model, using a Java-like syntax:

package org.example.library

class LibraryModel {
 contains Library[] libraries
}

abstract class Named {
 String name
}

class Library extends Named {
 contains Writer[] writers
 contains Book[] books

Chapter 13

[367]

}

class Writer extends Named {
}

class Book {
 String title
 refers Writer[] authors
}

As soon as you save the file, the Java code for the Ecore model will be automatically
generated in the src-gen folder. Containment references are specified with the
keyword contains, while cross-references with the keyword refers. The fact that
a reference is a multi-value reference is specified with the []. Of course, you can
use the content assist while editing an Xcore file. The documentation of Xcore is
https://wiki.eclipse.org/Xcore.

Creating the Xtext project from an existing
Xcore model
We will now create a new Xtext project starting from the Ecore model implemented
in Xcore.

An Xcore project is an Xtext project, so you can directly use
its Ecore model in your Xtext DSL.

In order to create the Xtext project, perform the following steps:

1.	 Navigate to File | New | Project...; in the dialog, navigate to the Xtext
category and click on Xtext Project From Existing Ecore Models.

2.	 In the next dialog, press the Add… button to select a GenModel.
3.	 Select the Library.xcore and press OK.
4.	 Specify LibraryModel for the Entry rule.
5.	 After you press Next, fill in the details for the following fields and

press Finish:

°° Project name: org.example.library
°° Name: org.example.library.Library
°° Extensions: library

https://wiki.eclipse.org/Xcore

Advanced Topics

[368]

As in the School DSL, the first part of the grammar uses an import line to refer to the
existing Ecore model:

grammar org.example.library.Library
 with org.eclipse.xtext.common.Terminals

import "org.example.library"

We replace the rules of the Library.xtext grammar completely with these
grammar rules:

LibraryModel returns LibraryModel:
 libraries+=Library*;

Library returns Library:
 'library' name=STRING
 '{'
 ('writers' '{' writers+=Writer ("," writers+=Writer)* '}')?
 ('books' '{' books+=Book ("," books+=Book)* '}')?
 '
Writer returns Writer:
 name=STRING;

Book returns Book:
 'title' title=STRING
 ('authors' authors+=[Writer|STRING] ("," authors+=[Writer|STRING])*
)?
;

Valid programs for this DSL have the following shape:

library "A library" {
 writers {
 "A writer", "Another writer", "Third writer"
 }
 books {
 title "A book",
 title "Another book"
 authors "Third writer", "A writer"
 }
}

library "An empty library" {

}

Chapter 13

[369]

Remember to fix the LibraryStandaloneSetup before running any JUnit tests:

override register(Injector injector) {
 if (!EPackage.Registry.INSTANCE.containsKey(LibraryPackage.eNS_URI))
{
 Epackage.Registry.INSTANCE.put(LibraryPackage.eNS_URI,
 LibraryPackage.eINSTANCE);
 }
 super.register(injector)
}

Modifying the Xcore model
As in the previous DSLs, let's assume that we want to modify the Ecore model. Since
we use Xcore, everything will be much easier since we can write a model operation
directly in the Xcore file, keeping in mind that the body of an operation in Xcore uses
the Xbase syntax. For example, we add a datatype Books that corresponds to the Java
type Iterable<Book>, and we implement in the Writer class the getBooks operation:

type Books wraps Iterable<Book>

class Writer extendsextends Named {
 op Books getBooks() {
 (eContainer as Library).books.
 filter[authors.contains(this)]
 }
}

That's all we need to do. On saving the file, Xcore will automatically regenerate the
Java code. We do not need to modify the generate code and specify the Javadoc @
generated NOT, neither we need to create a separate Java file with ImplCustom.

The same holds if we want to give a custom implementation of methods such as
toString. Differently from what we had to do in the previous example DSL, with
Xcore it's just a matter of writing:

class Book {
...
 op String toString() {
 'title: "' + title + '"' +
 if (!authors.empty)
 ", by " + authors.map[name].join(", ")
 }
}

We can use the added operation in the validator, in the code generator, and in other
parts of the DSL. This is left as an exercise.

Advanced Topics

[370]

Building an Xtext DSL that is based on Xcore with Maven/Tycho requires some
ad-justments to the pom files. You can also generate the Java code from the Xcore
model during the Maven build, using the xtext-maven-plugin. In the source code
of the examples of the book, you will find all the pom files for this example DSL
configured to use Xcore. Further and advanced details about using Xcore with Xtext
can be found in the presentation Schill 2015.

Extending Xbase
In this section, we will extend the Xbase Expressions DSL presented in the previous
chapter with a new Xbase expression. We will add the new XExpression eval to the
DSL, which takes as an argument any Xbase expression.

In order to present the aspects of Xbase that need to be customized when adding new
expressions, we want our new EvalExpression to have the following semantics:

•	 It can be used both as a statement and as an expression inside any other
expression

•	 It has a String type and the argument expression must not have type void
•	 When it is used as a statement, it will be compiled into a Java System.out.

println statement with the evaluation of the argument expression
•	 When it is used inside another expression, it will be compiled into a Java

String expression corresponding to the string representation of the
evaluated argument expression.

This semantics does not necessarily make sense, but it allows us
to explore many aspects of the customization of Xbase.

Overriding a rule in an Xtext grammar
Since we want to add another expression to the Xbase primary expression list, we need
to override the corresponding Xbase grammar rule. By looking at the Xbase grammar
(you can navigate to the grammar by pressing F3 on the Xbase grammar reference after
the with keyword), we find that the rule we need to override is XPrimaryExpression.
Before Xtext 2.9, you were forced to copy the whole rule and paste it into your
grammar to add a new rule element. Xtext 2.9 introduced the possibility to refer from
within an overridden rule to the original rule in the super grammar, similar to the
Java super mechanism in an overridden method. Thus, it is enough to write:super
mechanism in an overridden method. Thus, it is enough to write:

grammar org.example.xbase.expressions.Expressions with
 org.eclipse.xtext.xbase.Xbase

Chapter 13

[371]

generate expressions "http://www.example.org/xbase/expressions/
Expressions"

import "http://www.eclipse.org/xtext/xbase/Xbase"

ExpressionsModel returns XBlockExpression:
 {ExpressionsModel}
 (expressions+=XExpressionOrVarDeclaration ';'?)*;

XPrimaryExpression returns XExpression:
 {EvalExpression} 'eval' expression=XExpression |
 super;

This way, we extend the Xbase grammar rule XPrimaryExpression with our new
expression while keeping also all the original expressions.

Some parsing tests make sure that our new eval expressions are parsed as expected:

@Test def void testEvalExpressionAsReceiver() {
 '''
 val i = 0
 (eval i).toString
 '''.parse.expressions.last => [
 assertTrue(
 (it as XMemberFeatureCall).
 actualReceiver instanceof EvalExpression)
]
}

@Test def void testEvalExpressionAssociativity() {
 '''
 val i = 0
 eval i.toString
 '''.parse.expressions.last => [
 assertTrue((it as EvalExpression).
 expression instanceof XMemberFeatureCall)
]
}

Note that if we want to use an eval expression inside another expression, we need to
put it inside parenthesis.

Advanced Topics

[372]

Customizing the type system
The two preceding JUnit tests succeed, but the console shows some exceptions
thrown by Xbase of the shape java.lang.UnsupportedOperationException:
Missing type computation for expression type: EvalExpression. In fact,
Xbase does not know how to type our new expression.

In order to customize the Xbase type system, we must implement our custom
XbaseTypeComputer derived class, ExpressionsTypeComputer and bind it in the
Guice module:

class ExpressionsRunule extends AbstractExpressionsRuntimeModule {
 def Class<? extends ITypeComputer> bindITypeComputer() {
 ExpressionsTypeComputer
 }
}

In the previous chapters, when we implemented a type system, we simply returned
the computed type of our DSL expressions; the types were computed on demand.
The Xbase type system works in a batch mode; all types are computed in a single
batch operation for all the expressions of a program. The Xbase internal framework
calls the type computer passing both the expression and the type computation
state ITypeComputationState. Instead of returning the computed type, we must
add information about the computed types in the passed state, and Xbase will then
take care of using such type state information to perform type inference and type
checking. Moreover, we must explicitly compute the types of the subexpressions.
When computing the types of subexpressions, we can also impose some type
expectations. If such expectations are not satisfied, the Xbase type system will
automatically generate the appropriate type mismatch errors so that we will not
have to implement any validator rules for that.

This is the implementation of our custom type computer:

class ExpressionsTypeComputer extends XbaseTypeComputer {
 def dispatch void computeTypes(EvalExpression eval,
 ITypeComputationState state) {
 state.withNonVoidExpectation.computeTypes(eval.expression)
 state.acceptActualType(getRawTypeForName(String, state));
 }
}

Chapter 13

[373]

Given a type computation state, we can create new states with additional
expectations. We want the argument expression to have a type different from void,
and we declare that using withNonVoidExpectation. We then declare that an
EvalExpression has type String by calling the method acceptActualType. This is
enough for the Xbase type system to do all the rest.

In an Xbase DSL, both in the grammar and in the
JvmModelInferrer, we refer to Java types using
JvmTypeReference objects. In the Xbase type computer,
instead, we must always use LightweightTypeReference
objects. Conversions between the two references are possible.

Testing the type computer
As said in the previous section, we cannot call the Xbase type computer directly. If we
want to test our custom type computer, we need to inject an IBatchTypeResolver,
trigger type resolution by calling resolveTypes, which returns an IResolvedTypes
object, and get the actual type of an expression by calling getActualType on the
IResolvedTypes object:

import org.eclipse.xtext.xbase.typesystem.IBatchTypeResolver
...
import static extension org.junit.Assert.*

@RunWith(XtextRunner)
@InjectWith(ExpressionsInjectorProvider)
class ExpressionsTypeComputerTest {
 @Inject extension ParseHelper<ExpressionsModel>
 @Inject IBatchTypeResolver typeResolver;

 @Test
 def void testEvalExpressionActualType() {
 '''
 val i = 0
 eval i
 '''.parse.expressions.last => [
 "java.lang.String".assertEquals(
 typeResolver.resolveTypes(it).getActualType(it).identifier
)
]
 }
}

Advanced Topics

[374]

This is the standard mechanism to use the types computed by the Xbase type system.
We will use this technique later for using the types in the compiler.

For further details about the Xbase type system, we refer to the presentation
(Zarnekow 2015).

Customizing the validator
In our custom type computer, we specified expectations on the eval expression
argument. Xbase will automatically generate mismatch errors accordingly. We can
verify this behavior with the following tests. Since println(), without arguments, is
a void method, we expect Xbase to generate an error when we use it as the argument
of an eval; any other expression with a type different from void should instead be a
valid argument:

import org.eclipse.xtext.xbase.validation.IssueCodes

@RunWith(XtextRunner)
@InjectWith(ExpressionsInjectorProvider)
class ExpressionsValidatorTest {
 @Inject extension ParseHelper<ExpressionsModel>
 @Inject extension ValidationTestHelper

 @Test def void testEvalExpressionWithVoidArgument() {
 '''
 eval println()
 '''.parse.assertError(
 XbasePackage.eINSTANCE.XfeatureCall, // error on println()
 IssueCodes.INCOMPATIBLE_TYPES,
 "Type mismatch: type void is not applicable at this location"
)
 }

 @Test def void testValidEvalExpression() {
 '''
 val i = 0;
 eval i;
 '''.parse.assertNoErrors
 }
}

Chapter 13

[375]

The first test succeeds as expected, but the second one fails with the "(org.eclipse.
xtext.xbase.validation.IssueCodes.invalid_inner_expression) 'This
expression is not allowed in this context, since it doesn't cause
any side effects.'" error. The Xbase validator checks that all expressions are
valid in the context they are used. In particular, an expression like the variable
reference i does not cause any side effect unless it is used in a context where a value
is expected, for example, as the last expression of a method body or as the argument
of a method call. Xbase does not know anything about our new EvalExpression,
so it cannot detect that the variable reference is actually used in a context where a
value is expected, and marks it as invalid. For this reason, we need to override the
Xbase validator method isValueExpectedRecursive so that it returns true if the
container of an expression is an EvalExpression:

class ExpressionsValidator extends AbstractExpressionsValidator {
 override protected isValueExpectedRecursive(XExpression expr) {
 return expr.eContainer instanceof EvalExpression ||
 super.isValueExpectedRecursive(expr)
 }
}

Now, the preceding testValidEvalExpression succeeds as expected. Of course, we
also must make sure that validation errors are still raised by Xbase on expressions,
that are invalid:

@Test def void testInvalidExpressionWithNoSideEffect() {
 '''
 val i = 0;
 i;
 '''.parse.assertError(
 XbasePackage.eINSTANCE.XFeatureCall,
 IssueCodes.INVALID_INNER_EXPRESSION,
 "This expression is not allowed in this context, since it doesn't
cause any side effects."
)
}

In fact, in the preceding input program, the variable reference is invalid.

We also check that Xbase does not generate any error when an EvalExpression is
used as a String object:

@Test def void testValidEvalExpressionAsStringReceiver() {
 '''
 val i = 0;
 val s = (eval i).trim; // trim is a method of String
 '''.parse.assertNoErrors
}

Advanced Topics

[376]

Customizing the compiler
Now that the Xbase type system knows how to type our EvalExpression,
we must tell Xbase how to generate Java code for that. We must implement
an ExpressionsCompiler that extends XbaseCompiler and bind it in the
runtime module:

class ExpressionsRuntimeModule extends
AbstractExpressionsRuntimeModule {
...
 def Class<? extends XbaseCompiler> bindXbaseCompiler() {
 ExpressionsCompiler
 }
}

We want to compile our EvalExpression differently depending on whether it is
used a statement or inside another expression.

Let's deal with the statement case first. Remember that in this case, we want to
generate a Java System.out.println statement with the value of the eval expression
argument. We must override the doInternalToJavaStatement method, which
is passed the expression to compile, an ITreeAppendable instance that we use to
generate the Java code and a boolean parameter that tells you whether the result of
the compilation of that expression is going to be used in other compiled expressions:

import org.eclipse.xtext.xbase.compiler.XbaseCompiler
import org.eclipse.xtext.xbase.XExpression
import org.eclipse.xtext.xbase.compiler.output.ITreeAppendable
import orle.xbase.expressions.expressions.EvalExpression

class ExpressionsCompiler extends XbaseCompiler {
 override protected doInternalToJavaStatement(XExpression obj,
 ITreeAppendable a, boolean isReferenced) {
 if (obj instanceof EvalExpression) {
 obj.expression.internalToJavaStatement(a, true)
 a.newLine
 a.append('''System.out.println(''')
 obj.expression.internalToJavaExpression(a)
 a.append(");")
 } else
 super.doInternalToJavaStatement(obj, a, isReferenced)
 }
}

Chapter 13

[377]

Let's comment on this implementation. First we compile the eval argument
expression, using internalToJavaStatement. In case the eval argument expression
requires intermediate compilation of subexpressions, the compilation of the
subexpressions will be generated accordingly in the same appendable instance.
Since we specify true as the second argument, we require the Xbase compiler to
generate in the Java code an additional variable with the result of the evaluation
of subexpressions. When later we call internalToJavaExpression Xbase will
generate a reference to such a variable. If the eval argument expression does not
contain any subexpression or it can be compiled directly as a Java expression, for
example, a constant expression, then internalToJavaStatement will not generate
any additional code and internalToJavaExpression will directly generate the Java
code corresponding to the eval argument expression.

For example, given this input file, where the eval argument expression is a simple
constant expression:

eval 0

The compiler will generate this Java code:

System.out.println(0);

While given this input file, where the eval's argument expression requires
compilation of subexpressions:

eval if (args.length > 0) args.get(0) else ""

The compiler will generate the following Java code:

String _xifexpression = null;
int _length = args.length;
boolean _greaterThan = (_length > 0);
if (_greaterThan) {
 _xifexpression = args[0];
} else {
 _xifexpression = "";
}
System.out.println(_xifexpression);

Now, let's deal with the case when the eval is used inside another expression.
Remember that in this case we want it to be compiled into a Java String
expression corresponding to the string representation of the evaluation of the eval
argument expression.

Advanced Topics

[378]

For this case, we need to take into consideration how the Xbase compiler workflow
takes place. We saw that in some cases the subexpressions of a given expression
e must be first recursively compiled, the intermediate result must be stored in a
variable and then that variable must be used as the result of the compilation of e.
The additional synthetic variables created during the compilation of subexpressions
are automatically handled by Xbase and stored in the appendable object. Each new
created synthetic variable is associated to the original expression. The appendable
will also make sure that no two synthetic variables have the same name, by
appending incremental suffixes.

When subexpressions require recursive compilation, the Xbase compiler
will first compile the subexpressions as Java statements, using the method
doInternalToJavaStatement, passing true as the last argument. Then, it calls the
internalToConvertedExpression method.

Thus, we must implement doInternalToJavaStatement, taking into consideration
the isReferenced parameter; if isReferenced is true, it means that our eval
expression is used inside another expression. So, we create a synthetic variable with
a proposed name and generate Java code that assigns to that variable the result of the
compilation of the eval argument expression. Xbase will automatically append an
incremental suffix to the proposed name in case a variable with the same name has
already been used:

class ExpressionsCompiler extends XbaseCompiler {
 override protected doInternalToJavaStatement(XExpression obj,
 ITreeAppendable a, boolean isReferenced) {
 if (obj instanceof EvalExpression) {
 obj.expression.internalToJavaStatement(a, true)
 a.newLine
 if (isReferenced) {
 val name = a.declareSyntheticVariable(obj, "_eval")
 a.append('''String «name» = "" + ''')
 obj.expression.internalToJavaExpression(a)
 a.append(";")
 } else {
 a.append('''System.out.println(''')
 obj.expression.internalToJavaExpression(a)
 a.append(");")
 }
 } else
 super.doInternalToJavaStatement(obj, a, isReferenced)
 }

Chapter 13

[379]

Note that since we generate in the Java code an assignment to a String variable, which
is consistent with the fact that our eval expressions are given type String in the type
system, we must make sure that the assigned Java expression has always type String;
we do that by generating an explicit string concatenation with an empty string.

Then, we implement internalToConvertedExpression by simply generating in the
Java code a reference to the synthetic variable associated to the original eval expression:

 override protected internalToxpression(XExpression obj,
 ITreeAppendable a) {
 if (obj instanceof EvalExpression)
 a.append(getVarName(obj, a))
 else
 super.internalToConvertedExpression(obj, a)
 }
}

The implementations of these two methods must be consistent:
if you implement internalToConvertedExpression
assuming that a synthetic variable has been generated
for an expression, you also must make sure that in the
doInternalToJavaStatement implementation you always
generate such a synthetic variable when the isReferenced
parameter is true. Otherwise, you might end up generating
Java code, which is invalid.

Given this input file, where eval is used inside another expression:

val i = eval 0
val j = eval true

The generated Java code will be:

String _eval = "" + 0;
final String i = _eval;
String _eval_1 = "" + true;
final String j = _eval_1;

Note that each synthetic variable has a unique name.

As said earlier, the Xbase compiler performs the compilation of statements and
expressions and their subexpressions also taking into consideration whether a given
Xbase expression can be directly compiled into a Java expression without additional
Java statements. Xbase knows this information for all its expressions, but when we
add new Xbase expressions we must explicitly provide such information.

Advanced Topics

[380]

Thus, we must override the internalCanCompileToJavaExpression method,
specifying that an EvalExpression cannot be compiled directly into a Java
expression:

override protected internalCanCompileToJavaExpression(XExpression e,
 ITreeAppendable a) {
 if (e instanceofinstanceof EvalExpression)
 return false
 else
 super.internalCanCompileToJavaExpression(e, a)
}

This allows our eval expression to be compiled correctly even in contexts where
the Xbase compiler needs to generate Java code with additional compilation of
subexpressions. For example, given this input.

var i = 0
while (!(eval args.get(i)).empty) {
 println(args.get(i++))
}

The generated Java code will be:

int i = 0;
String _get = args[i];
String _eval = "" + _get;
boolean _isEmpty = _eval.isEmpty();
boolean _not = (!_isEmpty);
boolean _while = _not;
while (_while) {
 int _plusPlus = i++;
 String _get_1 = args[_plusPlus];
 InputOutput.<String>println(_get_1);
 String _get_2 = args[i];
 String _eval_1 = "" + _get_2;
 boolean _isEmpty_1 = _eval_1.isEmpty();
 boolean _not_1 = (!_isEmpty_1);
 _while = _not_1;
}

Later in this section, we will modify our custom compiler in order to reduce the size
of the generated Java code.

Chapter 13

[381]

Using the type system in the compiler
The Xbase type system can be used also in the compiler to generate Java code according
to the types of the expression being compiled. For example, in this DSL, we could
avoid to generate the explicit string concatenation with an empty string when the eval
argument expression is a String expression.

As we saw in the Testing the type computer section, we need to inject an
IBatchTypeResolver, trigger type resolution by calling resolveTypes, and get the
actual type by calling getActualType. We generate the explicit string concatenation
with an empty string only when the actual type of the eval argument expression is
not String:

@Inject IBatchTypeResolver batchTypeResolver

override protected doInternalToJavaStatement(XExpression obj,
 ITreeAppendable a, boolean isReferenced) {
...
 if (isReferenced) {
 val e = obj.expression
 val name = a.declareSyntheticVariable(obj, "_eval")
 a.append('''String «name» = ''')
 e.generateStringConversion(a)
 e.internalToJavaExpression(a)
 a.append(";")
 } else {
...
}

def private generateStringConversion(XExpression e, ITreeAppendable a)
{
 val actualType = batchTypeResolver.resolveTypes(e).getActualType(e)
 if (!actualType.isType(String)) {
 a.append('''"" + ''')
 }
}

In Chapter 8, An Expression Language, section Optimizations and fine tuning,
we used the Xtext caching mechanism, IResourceScopeCache, to
cache the results of type computations, in order to avoid to compute
the type for the same expressions over and over again. We do not need
this technique when using Xbase, since the default implementation of
IBatchTypeResolver, that is CachingBatchTypeResolver, already
implements caching.

Advanced Topics

[382]

Testing the compiled code
In Chapter 7, Testing, section Testing code generation, we showed how to test the
compiled code, including checking that the generated Java code is valid Java code,
and checking the runtime behavior of the generated Java code. In that section, we
instantiated the compiled generated Java class and called methods on the instance. In
this DSL, we generate a Java class with a main method so, while we can still call such
a method, we cannot use the returned value to perform checks, since the generated
Java main method only prints something on the standard output.

In such a scenario, in order to test that the generated code prints what we expect on
the standard output, we can temporarily replace the System.out with a new output
stream, run the main method on the created instance, and check that the output
stream contains what we expect. A way to do that is illustrated in the following test
of the ExpressionsCompilerTest:

@Test def void testEvalExpressionInWhileExecution() {
 '''
 var i = 0
 while (!(eval args.get(i)).empty) {
 println(args.get(i++))
 }
 '''.assertExecuteMain('''
 1
 2
 ''', #["1", "2", "", "3"])
}

def private assertExecuteMain(CharSequence file,
 CharSequence expectedOutput, String[] args) {
 val classes = newArrayList()
 file.compile [
 classes += compiledClass
]
 val clazz = classes.head
 val out = new ByteArrayOutputStream()
 val backup = System.out
 System.setOut(new PrintStream(out))
 try {
 val instance = clazz.newInstance
 clazz.declaredMethods.findFirst[name == 'main'] => [
 accessible = true
 invoke(instance, #[args])
]
 } finally {

Chapter 13

[383]

 System.setOut(backup)
 }
 assertEquals(expectedOutput.toString, out.toString)
}

Improving code generation
Once we have fully tested our Xbase custom compiler, we can take some time
to improve the generated Java code. The way we previously implemented
internalCanCompileToJavaExpression does not take into consideration the
eval argument expression. If the eval argument expression can be directly compiled
into a Java expression, we can also compile the entire eval expression as a single
Java expression.

Going back to the previous example:

var i = 0
while (!(eval args.get(i)).empty) {
 println(args.get(i++))
}

The Xbase compiler is able to compile the eval argument expression, args.get(i),
directly into a Java expression, without all the additional intermediate Java
compilations. So, instead of generating:

int i = 0;
String _get = args[i];
String _eval = "" + _get;
boolean _isEmpty = _eval.isEmpty();
boolean _not = (!_isEmpty);
boolean _while = _not;
while (_while) {
 int _plusPlus = i++;
 String _get_1 = args[_plusPlus];
 InputOutput.<String>println(_get_1);
 String _get_2 = args[i];
 String _eval_1 = "" + _get_2;
 boolean _isEmpty_1 = _eval_1.isEmpty();
 boolean _not_1 = (!_isEmpty_1);
 _while = _not_1;
}

Advanced Topics

[384]

We should be able to generate smaller Java code, which has the same semantics:

int i = 0;
while ((!(args[i]).isEmpty())) {
 int _plusPlus = i++;
 String _get = args[_plusPlus];
 InputOutput.<String>println(_get);
}

That is, we should be able to compile eval args.get(i) simply as args.get[i].

To do that, we implement the internalCanCompileToJavaExpression method, in
terms of the EvalExpression argument expression:

override protected internalCanCompileToJavaExpression(XExpression e,
 ITreeAppendable a) {
 if (e instanceof EvalExpression)
 return e.expression.internalCanCompileToJavaExpression(a)
 else
 super.internalCanCompileToJavaExpression(e, a)
}

Then, we need to update our implementation of internalToConvertedExpression
accordingly. We cannot assume that a synthetic variable for an eval expression has
always been generated. If a synthetic variable for an eval expression has not been
generated in the appendable, then we can assume that our eval expression can be
compiled directly into a Java expression:

override protected internalToConvertedExpression(XExpression obj,
 ITreeAppendable a) {
 ITreeAppendable a) {
 if (obj instanceof EvalExpression) {
 if (a.hasName(obj)) {
 a.append(getVarName(obj, a))
 } else {
 // compile the eval directly as a Java expression
 val e = obj.expression
 a.append("(")
 e.generateStringConversion(a)
 e.internalToJavaExpression(a)
 a.append(")")
 }
 } else
 super.internalToConvertedExpression(obj, a)
}

Note that we the generated Java expression for an eval expression is enclosed in
parenthesis in order to ensure the right associativity in the generated Java code.

Chapter 13

[385]

Smoke tests
A smoke test verifies that the basic features of your software are not completely
broken, meaning that the software can deal with critical and corner cases. The
Xbase testing framework provides a utility class, org.eclipse.xtext.xbase.
junit.typesystem.TypeSystemSmokeTester, that checks that your custom
implementation of the Xbase type system can deal also with incomplete programs
by gracefully failing, without throwing exceptions. It also checks that the expected
invariants of the Xbase type system hold, for example, that all the expressions of the
program are visited by the type computation and are given a type. Broken invariants
would essentially break almost all the downstream components that want to use the
results of the type system.

You use the TypeSystemSmokeTester in conjunction with the
XtextSmokeTestRunner to run your existing JUnit tests as a test suite, for example:

@RunWith(XtextSmokeTestRunner)
@ProcessedBy(
	 value=TypeSystemSmokeTester,
	 processInParallel=false
)
@SuiteClasses(
	 ExpressionsParsingTest,ExpressionsCompilerTest,
	 ExpressionsTypeComputerTest, ExpressionsValidatorTest
)
class ExpressionsSmokeTest {
	
}

The TypeSystemSmokeTester will intercept all the input programs used in your
tests that are being parsed and performs some permutations on them, for example,
it simulates typing from the first to the last character. It then verifies that the type
system can still handle such invalid inputs. Note that when running your tests as a
test suite with the TypeSystemSmokeTester the assertions in your tests will not be
executed. Thus, the preceding test suite does not replace your JUnit tests that check
the validity of your DSL implementation.

Since the TypeSystemSmokeTester performs many permutations for each test case,
the preceding test suite takes much longer to execute.

Advanced Topics

[386]

Summary
In this chapter, we showed many advanced topics and techniques related to an Xtext
DSL implementation. When your DSL grows in features, you may want to take some
of the techniques described in this chapter into consideration. These could be useful
to make the implementation cleaner and more maintainable, to make a few aspects
easier to implement and to improve the overall performance.

Finally, we showed how Xbase can be extended with new expressions, by
customizing the type system, the validator, and the compiler accordingly.

[387]

Conclusions
By the end of this book, you should have a good knowledge of Xtext and Xtend and
their mechanisms. You should be able to implement even a complex DSL and all its
aspects, both concerning the runtime and the UI. If your DSL needs to inter-operate
with Java and its type system, you should really consider adopting Xbase in your
DSL, since this will save you from implementing most aspects, including the type
system and the code generator.

However, this book could not cover all the details of Xtext, so while developing your
DSL you might have to face problems that this book did not even mention.

For this reason, you should always keep the official Xtext documentation at hand. As
we said in the book, you find the documentation online at: https://www.eclipse.
org/Xtext/documentation/. Remember that the Xtext documentation is also
available in your Eclipse, navigating to Help | Help Contents | Xtext Documentation.
The same holds for the Xtend programming language, whose documentation can
be found online at https://eclipse.org/xtend/documentation/ or in Eclipse
navigating to Help | Help Contents | Xtend User Guide.

The Xtext forum is also a good source for finding help about Xtext problems and
for discovering new features. The forum is accessible on the web, https://www.
eclipse.org/forums/index.php/f/27/, and as a newsgroup, eclipse.modeling.
tmf, using the news server news.eclipse.org. In both cases, you need to register in
order to be able to post messages. You can also use StackOverflow to find help for
Xtext, http://stackoverflow.com/questions/tagged/xtext.

Finally, you may want to have a look at some blogs on the web about Xtext. Many
users and Xtext committers, including myself, constantly write some blog posts
about tips and tricks on Xtext and tutorials.

https://www.eclipse.org/Xtext/documentation/
https://www.eclipse.org/Xtext/documentation/
https://eclipse.org/xtend/documentation/
https://www.eclipse.org/forums/index.php/f/27/
https://www.eclipse.org/forums/index.php/f/27/
eclipse.modeling.tmf
eclipse.modeling.tmf
news.eclipse.org
http://stackoverflow.com/questions/tagged/xtext

Conclusions

[388]

My blog is http://www.lorenzobettini.it/. And these are some blogs and
website I always keep an eye on for new Xtext articles:

•	 http://blogs.itemis.com/topic/xtext.
•	 http://typefox.io/blog

•	 http://christiandietrich.wordpress.com

•	 http://blog.efftinge.de

•	 http://koehnlein.blogspot.com

•	 http://kthoms.wordpress.com

•	 http://blog.moritz.eysholdt.de

•	 http://xtextcasts.org

You may also want to follow the official Xtext Twitter account @xtext.

Finally, I hope that you enjoyed this book as much as I enjoyed writing it! If you had
never used Xtext before, I hope that this book gave you enough knowledge to get
started and get productive in developing DSLs with Xtext and Xtend. If you were
already familiar with Xtext, I hope that this book increased your knowledge about
this framework and that the methodologies and best practices illustrated throughout
the chapters will make you more productive.

Keep your code clean and well tested!

http://www.lorenzobettini.it/
http://blogs.itemis.com/topic/xtext
http://typefox.io/blog
http://christiandietrich.wordpress.com
http://blog.efftinge.de
http://koehnlein.blogspot.com
http://kthoms.wordpress.com
http://blog.moritz.eysholdt.de
http://xtextcasts.org

[389]

Bibliography
Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D. (2007). Compilers: principles, techniques, and
tools. 2nd edition. Addison Wesley.

Beck, K., (2002). Test Driven Development: By Example. Addison-Wesley.

Bettini, L., Stoll, D., Völter, M., Colameo, S., (2012). Approaches and Tools for
Implementing Type Systems in Xtext. Software Language Engineering. 392-412. Volume
7745 of LNCS. Springer.

Bettini, L., (2013). Implementing Java-like languages in Xtext with Xsemantics. Proceedings
of the 28th Annual ACM Symposium on Applied Computing. 1559-1564. ACM.

Bettini, L., (2016). Implementing type systems for the IDE with Xsemantics. Journal of
Logical and Algebraic Methods in Programming. 85(5):655-–680. Elsevier.

Brown, D., Levine, J., Mason, T. (1995) lex & yacc. O’Reilly.

Cardelli, L. (1996). Type Systems. ACM Computing Surveys, 28(1):263–264.

Efftinge, S., Eysholdt, M., Köhnlein. J., Zarnekow, S., Hasselbring, W., von Massow, R.,
Hanus, M. (2012). Xbase: Implementing Domain-Specific Languages for Java. Proceedings of
the 11th International Conference on Generative Programming and Component Engineering,
112-121, ACM.

Efftinge, S. (2016). Parsing Expressions With Xtext, http://typefox.io/parsing-
expressions-with-xtext.

Fowler, M. (2004). Inversion of Control Containers and the Dependency Injection pattern.
http://www.martinfowler.com/articles/injection.html.

Fowler, M. (2006). Continuous Integration. http://martinfowler.com/articles/
continuousIntegration.html.

Fowler, M. (2010). Domain-Specific Languages. Addison-Wesley.

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

Bibliography

[390]

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley.

Ghosh, D. (2010). DSLs in Action. Manning.

Hindley, J.R. (1987). Basic Simple Type Theory. Cambridge University Press.

Köhnlein, J. (2012). Xtext tip: How do I get the Guice Injector of my language?
http://koehnlein.blogspot.it/2012/11/xtext-tip-how-do-i-get-guice-
injector.html

Levine, J. (2009). Flex & Bison: Text Processing Tools. O’Reilly.

Martin, R.C. (2002). Agile Software Development, Principles, Patterns, and Practices.
Prentice Hall.

Martin, R.C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall.

Martin, R.C. (2011). The Clean Coder: A Code of Conduct for Professional Programmers.
Prentice Hall.

Parr, T. (2007) The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Programmers.

Pierce, B.C. (2002). Types and Programming Languages. The MIT Press, Cambridge, MA.

Schill, H. (2015). Using Xcore with Xtext. XtextCon, http://www.slideshare.net/
holgerschill/using-xcore-with-xtext.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2008). EMF: Eclipse Modeling
Framework. Addison-Wesley, 2nd edition.

Vlissides, J. (1996). Generation Gap [software design pattern]. C++ Report, 8(10),
p. 12, 14-18.

Voelter, M. (2013). DSL Engineering: Designing, Implementing and Using Domain-Specific
Languages.

Zarnekow, S. (2012). Xtext Best Practices. EclipseCon Europe, http://www.eclipsecon.
org/europe2012/sessions/xtext-best-practices.

Zarnekow, S. (2012-b). Xtext Corner #8 - Libraries Are Key, http://zarnekow.
blogspot.it/2012/11/xtext-corner-8-libraries-are-key.html.

Zarnekow, S. (2015). Extending the Xbase Typesystem. XtextCon, http://www.
slideshare.net/szarnekow/extending-the-xbase-typesystem.

[391]

Index
A
abstract factory 101
Abstract Syntax Tree (AST) 6, 7
access level modifiers 256
Active Annotations 65
actual type 227
additional operators

about 60, 61
enhanced switch expressions 63, 64
polymorphic method invocation 62
Xtend code, debugging 66-68
Xtend expressions 65, 66
Xtend IDE 66

aggregator project 295
Android applications 306
annotations 334, 335
ANTLR (ANother Tool for Language

Recognition) 5
ANTLR parser 163
assert methods 125
assignment operator 167
associative operation 167
automatic features 282, 283

B
batch mode 372
Bintray

reference link 303
Buildship 306

C
casts 65
classes

of same package 278, 279

clean code
writing 153

code generation
about 87
testing 136-139

code generator
integrating, with Eclipse build

mechanism 91-94
writing, in Xtend 88-90

CodeMirror 303
common Java type model 315
compiler

customizing 376-380
Xbase type system, using 381

component interaction 246
container 238, 266, 267
containment reference 238
content assist

testing 141, 142
context 242
continuous integration (CI) 290, 291
continuous integration systems

about 302
examples 303

cross reference 238
cross-reference resolution, Xtext

about 237
component interaction 246
containments 238
cross references 238
exported objects 240, 241
index 238, 239
linker 242-246
qualified names 239, 240
scope provider 242-246

custom content assist 176-178

[392]

custom formatting 112-117
customizations 118-121
custom scoping

about 247
accessibility 256-260
scope, for blocks 247-251
scope, for inheritance 251-256
scope, for member visibility 251-256

D
Dangling Else Problem 203
data type rule 263
Dependency Injection 99-104
dependency inversion principle 104
derived state 343, 353-357
Dispatch Methods 62
Domain-Specific Languages (DSLs)

about 1, 2
Abstract Syntax Tree (AST) 6, 7
implementing 3, 11
need for 2, 3
parsing 4, 5

DSL
contributions 311
fine tuning 195-197
improvements, performing 35, 36
installation, requisites 310, 311
optimizations 194-197
tests, implementing 127
types, dealing with 36-40

DSL editor
porting, on web 303, 304

DSL, for entities
about 21
creating 22
editor, using 26-29
grammar, modifying 23-26
Xtext projects 23

duplicates
checking, across files 268-270

dynamic overloading 62

E
Eclipse

URL 12
code generator, integrating with 91-94

feature 286-289
Eclipse Modeling Framework (EMF)

about 32-35
classes, generating 362-364
Java classes, customizing 364
reference link 32

Eclipse Oomph Authoring
URL 312

Ecore diagram editor 345
Ecore model

defining 344
new rules, adding 358
tweaking 350-352
URL 344
Xtext project, creating 344

editor
testing 145

Entities DSL
attributes, defining 325-328
imports 332
operations, defining 328-330
project, creating 324
validation 333, 334
with Xbase 324

enum rule 257
expected type 227
exponentiation operator 167
exported objects 240, 241
expressions

typing 179
Expressions DSL

about 156
code generation 322, 323
debugging 324
grammar 159-162, 316-318
IJvmModelInferrer interface 319-322
project, creating 156
with Xbase 316
Xtext grammar rules, digression 157, 158

expressions, typing
loose-type computation 180
strict-type checking 180
type computer 181-184
validator 184-188

extension methods
about 50
using 337, 338

[393]

F
factory method 101
formatter

about 340
testing 133-136

formatting request 115
forward reference

about 173-176
custom content assist 176-178

Functional Tests 150

G
General Purpose Languages (GPL) 1
generation gap pattern 30, 364
global scoping 261
Google Guice

in Xtext 104-106
reference link 101

Gradle
about 305-308
URL 306

Gradle Wrapper 308
Groovy

URL 306

H
Hollywood Principle 88
Home Automation 36
hovering 10
hyperlinking 10

I
IDE concepts customization

about 106
content assistant 112
labels 106-110
Outline view 110-112

IDE integration
about 8
automatic build 11
background validation 9
content assist 9
Domain-Specific Languages (DSLs),

implementing 11

error markers 9
hyperlinking 10
outline 10
quickfixes 10
syntax, highlighting 8

IJvmModelInferrer interface 319-322
imported Ecore model

EMF classes, generating 362-364
EMF Java classes, customizing 364, 365
switching 358-362

index 238, 246, 282
Integrated Development

Environment (IDE) 1
integration tests 143
IntelliJ 12
IntelliJ IDEA

about 305-308
URL 305

interpreter
using 191-194
writing 188-191

inversion of control 104
ISetup interface 126

J
Java 8 Streams 56
Java Development Tool (JDT) 11, 41, 125
Java error markers

reusing 335, 336
Java model 315
JavaScript 303
Java servlet 303, 304
Jenkins

URL 302
Jetty 304
JSON (JavaScript Object Notation) 3
Jubula

URL 150
JUnit 4 125

L
lambda expression (lambda) 53
learning tests 146-148
left associativity 165
left factoring 163

[394]

left recursive grammars
about 162-164
associativity 165-167
complete grammar 171
precedence 168-170

library
default imports 271, 272
providing 270, 271
using, in scoping 275-278
using, in type system 275-278
using, outside Eclipse 272-275

linking 247
loose-type computation 180

M
M2Eclipse

about 292
URL 292

Maven
about 291, 292
PDE test problems 309, 310
pitfalls 308
versioning 309

Maven binaries
URL 292

Maven build
executing 296, 297

Maven Central repository 292
mismatch errors 372
Modeling Workflow Engine 2 (MWE2) 30
modularity

testing 150-153
modules 295
multiple dispatch 62
mvn 292

N
namespaces 239, 262
Neon 12
node model 113, 194

O
Oomph

URL 312
Oomph Eclipse Installer 312

operator precedence 163
Orion 303
outer scope 244

P
p2 repository 286-289
package 262
parent project 295
parent scope 244
parser

testing 128-130
parser rule fragment 208
parsing 246
Plug-in Development

Environment (PDE)
about 291
URL, for bugs 310

polymorphic method invocation 62
pom files

customizing 302
primitive types 224
project wizard

providing 283, 284
provisioning platform (p2) 286

Q
qualified names 239, 240
quickfixes

about 10
for default validators 82-84
implementing 77-80
model modification 81, 82
textual modification 80

R
Racc for Ruby 5
RCP Testing Tool

URL 150
release engineering (releng)

about 289
continuous integration (CI) 290, 291
headless builds 289
target platform 289, 290

releng project 295

[395]

S
scope provider

about 237, 242
library, using in 275-278

Scripting Language 316
self-contained p2 repository 311
seven languages example

URL 314
Single Abstract Method (SAM) 55 148
SmallJava

about 199, 200
complete grammar 209
grammar, testing 212-214
project, creating 200
utility methods 211, 212

SmallJava grammar
about 200, 201
declarations rules 201, 202
expressions rules 205-207
fragments rules 208
statements and syntactic

predicates rules 202-204
smoke test 385
StackOverflow

URL 387
standalone command-line compiler

exporting 94-97
StandaloneSetup

fixing 349
strict type checking 180
super keyword 280
switch expressions 63, 64
SWTBot

URL 150
synthetic variables 378

T
target definition 290
target platform

about 289, 290
customizing 298-300
using 298-300

Test Driven Development (TDD) 124, 184
testing

about 123, 124
modularity 150-153

test methods 125
tests

code generation, testing 136-139
formatter, testing 133-136
implementing, for DSL 127
parser, testing 128-130
validator, testing 130-133

test suite 140
text hovering 191
textual replacement 115
Tomcat 304
transient feature 353
Travis

URL 303
Tycho

about 291, 292
PDE test problems 309, 310
pitfalls 308
URL 292
versioning 309

type checking
about 179, 222
expected types 227, 228
method overriding, checking 231, 232
type computer, for SmallJava 222-225
type conformance, checking 229, 231
type conformance (subtyping) 225, 226

type computation 179
type computer

about 181-184
testing 373, 374

type inference 179
type parameters

using 338, 339
type system

about 179
customizing 372, 373
library, using in 275-278
using, in compiler 381

U
UI

content assist, testing 141, 142
editor, testing 145
improving 232, 233
learning tests 146-148

[396]

outline, testing 149
testing 140
testing frameworks 150
workbench integration, testing 143, 144

Unified Modeling Language (UML) 32
unwanted objects

filtering, from scope 260, 261
update site 286
URI 238

V
validation rules

about 214
cycles, checking in class

hierarchies 214, 215
duplicates, checking 219, 220
member selections, checking 216, 217
return statements, checking 217, 218

validation, Xtext
about 69, 70
custom validators 72-76
default validators 70-72

validator
about 70, 184-188
customizing 374, 375
testing 130-133

W
WAR file 304
web

DSL editor, porting 303, 304
workbench integration

testing 143, 144

X
Xbase

about 313, 314
code generation, improving 383, 384
common Java type model 315
compiled code, testing 382
compiler, customizing 376-380
Entities DSL 324
expressions DSL 316
extending 370

rule, overriding in Xtext grammar 370, 371
smoke test 385
type computer, testing 373, 374
type system, customizing 372, 373
type system, using in compiler 381
validator, customizing 374, 375

Xbase features
annotations 334, 335
customization 340, 341
extension, using 337, 338
formatter 340
Java error markers, reusing 335, 336
type parameters, using 338, 339

Xcore
about 32, 366
URL 367
Xcore model, modifying 369, 370
Xcore project, creating 366, 367
Xtext project, creating from existing

Xcore model 368, 369
XML Schema Definition (XSD) 2
Xpect

URL 150
Xtend

about 41, 42
advantages 44, 45
annotation, reference link 46
classes 31
code, debugging 66-68
code generator, writing 88-90
expressions 65
extension methods 50-52
fields 47
inner types 48, 49
it variable 53
lambda expressions 53-57
literals 49, 50
methods 46, 47
multi-line template expressions 57-60
operators 48
reference link 41
static members 48, 49
syntactic sugar 48
types 45, 46
using, in projects 42, 44
variables 47
URL 387

[397]

Xtext
about 12
cross-reference resolution 237
Google Guice 104-106
installing 12
project, creating 13-18
references 300
URL 13
validation 69

Xtext forum
about 387
URL 387

Xtext generator 30, 31
Xtext grammar rule

digression 157, 158
overriding 370, 371

Xtext nature 143
Xtext project

creating 345-348
creating, from Ecore model 344
creating, from existing Xcore

model 368, 369
derived state 353-357
examples 23
StandaloneSetup, fixing 349

Xtext project wizard
feature, customizing 298
Maven build, executing 296, 297
pom files, customizing 302
target platform, customizing 298-300
target platform, using 298-300
using 292-295

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewer
	Untitled
	Table of Contents
	Preface
	Chapter 1: Implementing a DSL
	Domain-Specific Languages
	Need for a new language

	Implementing a DSL
	Parsing
	The Abstract Syntax Tree (AST)

	IDE integration
	Syntax highlighting
	Background validation
	Error markers
	Content assist
	Hyperlinking
	Quickfixes
	Outline
	Automatic build
	Summarizing DSL implementation

	Enter Xtext
	Installing Xtext
	Let's try Xtext

	The aim of this book
	Summary

	Chapter 2: Creating Your First
Xtext Language
	A DSL for entities
	Creating the project
	Xtext projects
	Modifying the grammar
	Let's try the Editor

	The Xtext generator
	The Eclipse Modeling Framework (EMF)
	Improvements to the DSL
	Dealing with types

	Summary

	Chapter 3: Working with the Xtend Programming Language
	An introduction to Xtend
	Using Xtend in your projects

	Xtend – a better Java with less "noise"
	Types
	Methods
	Fields and Variables
	Operators
	Syntactic sugar
	Static members and inner types
	Literals
	Extension methods
	The implicit variable – it
	Lambda expressions
	Multi-line template expressions

	Additional operators
	Polymorphic method invocation
	Enhanced switch expressions
	Other Xtend expressions
	Xtend IDE
	Debugging Xtend code

	Summary

	Chapter 4: Validation
	Validation in Xtext
	Default validators
	Custom validators

	Quickfixes
	Textual modification
	Model modification
	Quickfixes for default validators

	Summary

	Chapter 5: Code Generation
	Introduction to code generation
	Writing a code generator in Xtend
	Integration with the Eclipse build mechanism
	Standalone command-line compiler
	Summary

	Chapter 6: Customizing Xtext Components
	Dependency injection
	Google Guice in Xtext
	Customizations of IDE concepts
	Labels
	The Outline view
	Customizing other aspects

	Custom formatting
	Other customizations
	Summary

	Chapter 7: Testing
	Introduction to testing
	JUnit 4
	The ISetup interface
	Implementing tests for your DSL
	Testing the parser
	Testing the validator
	Testing the formatter
	Testing code generation

	Test suite
	Testing the UI
	Testing the content assist
	Testing workbench integration
	Testing the editor
	Learning Tests
	Testing the outline
	Other testing frameworks

	Testing and modularity
	Clean code
	Summary

	Chapter 8: An Expression Language
	The Expressions DSL
	Creating the project
	Digression on Xtext grammar rules

	The grammar for the Expressions DSL
	Left recursive grammars
	Associativity
	Precedence
	The complete grammar

	Forward references
	Custom Content Assist

	Typing expressions
	Loose type computation, strict type checking
	Type computer
	Validator

	Writing an interpreter
	Using the interpreter

	Optimizations and fine tuning
	Summary

	Chapter 9: Type Checking
	SmallJava
	Creating the project
	SmallJava grammar
	Rules for declarations
	Rules for statements and syntactic predicates
	Rules for expressions
	Rule fragments
	The complete grammar

	Utility methods
	Testing the grammar

	First validation rules
	Checking cycles in class hierarchies
	Checking member selections
	Checking return statements
	Checking for duplicates

	Type checking
	Type computer for SmallJava
	Type conformance (subtyping)
	Expected types
	Checking type conformance
	Checking method overriding

	Improving the UI
	Summary

	Chapter 10: Scoping
	Cross-reference resolution in Xtext
	Containments and cross-references
	The index
	Qualified names
	Exported objects
	The linker and the scope provider
	Component interaction

	Custom scoping
	Scope for blocks
	Scope for inheritance and member visibility
	Visibility and accessibility
	Filtering unwanted objects from the scope

	Global scoping
	Packages and imports
	The index and the containers
	Checking duplicates across files

	Providing a library
	Default imports
	Using the library outside Eclipse
	Using the library in the type system and scoping

	Classes of the same package
	Dealing with super
	What to put in the index?
	Additional automatic features
	Providing a project wizard
	Summary

	Chapter 11: Continuous Integration
	Eclipse features and p2 repositories
	Release engineering
	Headless builds
	Target platforms
	Continuous integration

	Introduction to Maven/Tycho
	Using the Xtext project wizard
	Running the Maven build
	Customizing the feature
	Using and customizing the target platform
	Customizing the pom files

	Continuous Integration systems
	Maintaining the examples of this book

	Your DSL editor on the Web
	IntelliJ and Gradle
	Pitfalls with Maven/Tycho
	Versioning
	PDE test problems

	Concluding remarks
	Installation requirements
	Make contributions easy

	Summary

	Chapter 12: Xbase
	Introduction to Xbase
	The common Java type model

	The Expressions DSL with Xbase
	Creating the project
	The IJvmModelInferrer interface
	Code generation
	Debugging

	The Entities DSL with Xbase
	Creating the project
	Defining attributes
	Defining operations
	Imports
	Validation

	Additional Xbase features
	Annotations
	Reusing Java error markers
	Using 'extension'
	Using type parameters
	Formatter
	Further Customizations

	Summary

	Chapter 13: Advanced Topics
	Creating an Xtext project from an
Ecore model
	Defining the Ecore model
	Creating the Xtext project
	Fixing the StandaloneSetup
	Tweaking the Ecore model
	Derived State
	Adding new rules to the language

	Switching to an imported Ecore model
	Generating EMF classes during the build
	Customizing the EMF Java classes

	Xcore
	Creating the Xcore project
	Creating the Xtext project from an existing Xcore model
	Modifying the Xcore model

	Extending Xbase
	Overriding a rule in an Xtext grammar
	Customizing the type system
	Testing the type computer
	Customizing the validator
	Customizing the compiler
	Using the type system in the compiler
	Testing the compiled code
	Improving code generation
	Smoke tests

	Summary

	Chapter 14: Conclusions
	Bibliography
	Index

