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Preface
The goal of almost every software developer is to create code that is free from defects and 
works as intended. To help ensure this goal is met we spend a significant amount of time 
testing the code that we have written. As software grows in size and complexity the likelihood 
of defects being introduced increases. Naturally, we have to increase our efforts in testing to 
help accommodate the increased risk.

When I first began writing software I would test my applications by manually running through 
a series of steps on a deployed application. I would add items to my cart, I would remove 
them again, I would manually check to make sure taxes and shipping costs were calculated 
correctly. I spent a lot of time looking at as much functionality as I could think of. Commonly,  
I would miss some less obvious pieces of functionality and small bugs would slowly creep into 
the code as the software aged and my memory of the intricate details of how it worked faded.

Fortunately, I was introduced to the concept of automated testing fairly early on in my career. 
Automated testing, specifically automated unit testing is a powerful tool in any programmer's 
arsenal. It allows us to have an easily repeatable way to check and make sure the software we 
write is working the way we intend. It provides future maintainers of the code with the ability 
to have confidence that they can change functionality and not be worried that they will regress 
the code back to old errors. It gives us freedom as software developers to focus more time on 
moving our software forward instead of living in fear that any change we make will cause the 
system to break.

There are many tools to help you write effective unit tests quickly. In PHP, the leading tool is 
PHPUnit. In this book, we are going to learn how you can use PHPUnit in your project to create 
a test suite that can give you an increased level of confidence in the software you are writing.

What this book covers
Installing PHPUnit (Simple) will teach you how to install PHPUnit using the PEAR package 
manager. You will also learn about some alternative ways to install PHPUnit.

Writing your first test (Simple) will help you create a basic test and learn about the common 
phases of a unit test written in PHPUnit.
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Running tests (Simple) will show you how to run your tests using the command line tool and 
gain some insight into the various options the tool gives you.

Configuring PHPUnit (Simple) will show you how to move the configuration of PHPUnit from the 
command line to configuration files that can easily be shared as a part of your project.

Adding PHPUnit to your project (Simple) will teach you the steps necessary to integrate unit 
tests into your project.

Generating tests from code (Advanced) will show you how the PHPUnit's Skeleton Generator 
can be utilized to generate tests from existing code. You will even see how you can generate 
code stubs from tests for true test-driven development.

Using test fixtures (Simple) will teach you how to use shared fixtures to reduce code 
duplication and to reduce the code necessary to set up new tests.

Using data providers (Intermediate) will show you how data providers can be leveraged to 
rapidly create test cases that validate a variety of calls using separate data points.

Using test dependencies (Advanced) will show you how you can isolate failed tests by using 
a consumer-producer pattern inside your test cases. This will allow you to spend less time 
determining which piece of functionality caused your test to fail.

Using mock objects (Simple) will teach you how to leverage mock objects to keep the unit of 
code being tested small.

Testing abstract classes (Intermediate) will show you how PHPUnit's mock functionality can be 
used to test abstract classes.

Testing traits (Intermediate) will teach you how you can use PHPUnit to test traits in a very 
simple yet dynamic way.

Testing exceptions and errors (Intermediate) will show you how you can ensure that the proper 
errors and exceptions are being thrown from code at the correct time. It is just as important to 
know that your application fails properly as it is to know it works properly.

Testing output (Intermediate) will teach you how you can leverage PHPUnit's output buffering 
features to ensure your code is outputting text correctly to your end users.

Testing protected and private methods (Intermediate) will teach you a sound strategy for 
testing private and protected methods.

Testing database interaction (Advanced) will show you how PHPUnit can be used to ensure 
your application is working properly with your database.

Viewing code coverage (Advanced) will teach you how PHPUnit's code coverage reporting  
can give you clues on where both the well tested and the not-so-well tested code resides in  
your system.
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What you need for this book
The examples in this book were written using PHP 5.3.24 and PHPUnit 3.7. All code samples 
were verified against a Linux box with Ubuntu 12.04 LTS.

Who this book is for
This book is written for anyone who has an interest in unit testing but doesn't necessarily 
know where to start in integrating it with their project. It will provide useful tips and insights 
into how PHPUnit can be used with your projects and it should give you enough information  
to whet your appetite for the various features offered by PHPUnit.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds  
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The auto_discover setting tells PEAR that any time 
a package from a new channel is requested, it should automatically register that channel."

A block of code is set as follows:

{
    "require-dev": {
        "phpunit/phpunit": "3.7.*" 
   }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines  
or items are set in bold:

<php>
  <includePath>src</includePath>

  <const name="DB_DSN" value="sqlite:data/game-test.db" />

</php>

Any command-line input or output is written as follows:

sudo pear config-set auto_discover 1

sudo pear install pear.phpunit.de/PHPUnit

New terms and important words are shown in bold. Words that you see on the screen,  
in menus or dialog boxes for example, appear in the text like this: "clicking the Next button 
moves you to the next screen."



Preface

4

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing  
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you  
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes  
do happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration and help us improve subsequent versions of this book. If you find 
any errata, please report them by visiting http://www.packtpub.com/submit-errata, 
selecting your book, clicking on the errata submission form link, and entering the details of 
your errata. Once your errata are verified, your submission will be accepted and the errata will 
be uploaded on our website, or added to any list of existing errata, under the Errata section 
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.
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Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with  
any aspect of the book, and we will do our best to address it.





Instant Hands-on 
Testing with PHPUnit 

How-to

Welcome to Instant Hands-on Testing with PHPUnit How-to. PHPUnit is one of the most  
widely used unit testing frameworks for PHP. It gives developers all the tools necessary  
to write easy-to-maintain tests. It also gives developers the ability to easily run those tests.  
This book will give you the knowledge necessary to use these tools in your PHP projects. 

We will be going through the process of installing PHPUnit, writing some simple tests, 
integrating it with a new project, as well as looking into some of the more advanced 
functionality that PHPUnit is capable of.

Installing PHPUnit (Simple)
The first step to understanding how to test with PHPUnit is to understand how to make it 
available in our environment. In this recipe, we will install PHPUnit using the PHP Extension 
and Application Repository (PEAR) package manager. While PEAR has been available to 
PHP developers for some time, new packaging frameworks such as Composer have become 
increasingly more common. We will also cover these additional packaging methods.

How to do it...
Execute the following commands in a shell:

sudo pear config-set auto_discover 1

sudo pear install pear.phpunit.de/PHPUnit
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How it works...
Installing via PEAR will give you access to PHPUnit across all projects in your environment. 
PHPUnit uses its own PEAR server for distribution. These are called channels. By default, 
PEAR is only aware of its own channel. The auto_discover setting tells PEAR that any time 
a package from a new channel is requested, it should automatically register that channel. 
Otherwise, each new channel would have to be added explicitly using pear channel-
discover. Not only does PHPUnit itself have its own channel, but some of its dependencies 
are on other custom channels. This is why we use pear config-set to enable auto_
discover. Because we are using auto_discover, we only need to run pear install to 
complete the installation. 

There's more...
The standard PEAR installation of PHPUnit should provide everything you need to start writing 
tests. PEAR is a convenient way to install PHPUnit at the environment level. You may find that 
installing PHPUnit using a dependency manager called Composer works better for your needs. 

Installing PHPUnit using Composer
It is becoming more and more common in the PHP world to bundle everything that you need to 
run and develop an application at the application level. Composer is a dependency manager 
for PHP that works well in handling this concept. To understand how Composer works and 
how you can integrate it into your project, read the Getting Started guide on their website at 
http://getcomposer.org. Once you have Composer integrated into your site, you can add 
the following package to your composer.json file:

{
    "require-dev": {
        "phpunit/phpunit": "3.7.*" 
   }
}

This will set up PHPUnit as a development requirement for your package. This works well as 
you typically don't need your end users to run your tests. Also, you should always double check 
the PHPUnit page on packagist https://packagist.org/packages/phpunit/phpunit 
to see what the latest version is. Please note that the remaining examples in this book make 
use of the PEAR installed version of PHPUnit. 

Installing PHPUnit on older versions of PHP
Currently, the latest version of PHPUnit is 3.7. This version requires PHP 5.3.3 or higher. If you 
find yourself using an older version of PHPUnit, due to a bug in PEAR you may have an issue 
attempting to install PHPUnit.



Instant Hands-on Testing with PHPUnit How-to

9

Duplicate package channel://pear.phpunit.de/File_Iterator-1.3.3 found
Duplicate package channel://pear.phpunit.de/File_Iterator-1.3.2 found
install failed

If you see these errors then you need to explicitly tell PEAR to install these packages in 
addition to the PHPUnit package. If you see this error with File_Iterator, you will likely  
see the same error with Text_Template as well.

sudo pear install pear.phpunit.de/File_Iterator pear.phpunit.de/Text_
Template pear.phpunit.de/PHPUnit

This will provide PEAR the information that it needs to be able to install all of the  
appropriate packages. If you are using a newer version of PHP (5.3.3 or higher) you  
shouldn't have this problem. 

Writing your first test (Simple)
One of the primary goals of PHPUnit is to make it easy to write tests. The easier it is to write 
tests, the more likely it is that tests will be written. In this recipe, we will discuss the basic 
parts of a test and how to implement each of those parts in PHPUnit. 

Getting ready...
Each test in our system will consist of four parts: the fixture, the test, the verification, and the 
tear down. The fixture sets up the unit that you are testing to have the necessary state for the 
rest of the test. The test then exercises the system, typically by calling a single method. When 
verifying the test you are just checking to see if the results of our method are what you expected 
them to be. The tear down step is actually very rarely needed in PHP as memory management is 
handled for you. Occasionally, you may need to close files, delete data, or manage other external 
resources. The tear down part of a test is the appropriate place to do this work. 

How to do it...
We will begin by testing the Card class unit.

1.	 The following code defines that class and should be put in Card.php:
<?php
class Card
{
  private $number;
  private $suit;
  public function __construct($number, $suit)
  {
    $this->number = $number;
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    $this->suit = $suit;
  }
  public function getNumber()
  {
    return $this->number;
  }
  public function getSuit()
  {
    return $this->suit;
  }
  public function isInMatchingSet(Card $card)
  {
    return ($this->getNumber() == $card->getNumber());
  }
}

2.	 The following code defines a test for this unit and should be put in CardTest.php:

<?php
require 'Card.php';
class CardTest extends PHPUnit_Framework_TestCase
{
  public function testGetNumber()
  {
    $card = new Card('4', 'spades');
    $actualNumber = $card->getNumber();
    $this->assertEquals(4, $actualNumber, 'Number should be <4>');
  }
  public function testGetSuit()
  {
    $card = new Card('4', 'spades');
    $actualSuit = $card->getSuit();
    $this->assertEquals('spades', $actualSuit, 'Suit should be 
<spades>');
  }
  public function testIsInMatchingSet()
  {
    $card = new Card('4', 'spades');
    $matchingCard = new Card('4', 'hearts');
    $this->assertTrue($card->isInMatchingSet($matchingCard),
        '<4 of Spades> should match <4 of Hearts>');
  }
  public function testIsNotInMatchingSet()
  {
    $card = new Card('4', 'spades');
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    $matchingCard = new Card('5', 'hearts');
    $this->assertFalse($card->isInMatchingSet($matchingCard),
        '<4 of Spades> should not match <5 of Hearts>');
  }
}

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works...
The CardTest class extends the PHPUnit_Framework_TestCase class to create our first 
unit test. The PHPUnit_Framework_TestCase class is what makes this a test. It takes care 
of all of the low-level tasks of testing for us so that we can just focus on writing the tests in an 
easy and concise manner.

In each of our tests you can see that we first create our fixture: one or more instances of our 
Card classes. Next, we call the method that we are testing. Finally, we utilize PHPUnit's assert 
methods to verify the results of the tested methods.

We always pass a message as the final argument to our assert functions. This will be 
displayed by PHPUnit should any of our tests fail due to these assertions. It can be very 
important as your test suite gets larger and as time passes to have a good description of our 
failures so that we clearly understand the expected behavior and what broke. Not only will this 
provide us a reminder of how the test works, it could also be invaluable to anyone else that 
works on our code in the future.

The other important thing to note is the require "Card.php" line. Your test will already 
have access to any PHPUnit framework classes and functions; however, you must include 
the code you are testing yourself. If this line is not present, when the test is run you will get 
an error because PHPUnit doesn't know about the Card class. In a later recipe we will see a 
much easier way to include the code.

There's more...
Even though these are all simple tests, we are beginning to see some of the simplicity of 
PHPUnit. One of the most important things that we need to know to effectively use PHPUnit is 
the basic assert methods it supplies. The ability to perform basic value checking is available, 
but there are also more complicated assertions possible on arrays, objects, and even XML. 
Have a look at http://www.phpunit.de/manual/current/en/writing-tests-for-
phpunit.html#writing-tests-for-phpunit.assertions to see all of the assertion 
methods you have access to. 
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Class names
It is a common practice in PHPUnit to name your test case class after the class it is 
responsible for testing. We are using that method here. The CardTest class is testing  
the Card class. Naming your test case classes in this fashion makes your tests easier to  
find and also makes it easier to understand what class a test case is responsible for covering.

Running tests (Simple)
Now that we know how to write tests it is time to learn how to run them. We will run our tests 
using the phpunit script. It provides very easy to understand output that shows you whether 
or not your tests have passed or failed. It also provides a wealth of very useful command line 
options. We will go over the essential options in this recipe.

How to do it...
1.	 Execute the following command from your test project:

$ phpunit CardTest.php

2.	 You should see the following result:

How it works...
The simplest form of PHPUnit is to pass the filename of the test you want to run as the  
only parameter. This will cause PHPUnit to load its framework, then it will load your test  
and execute each method in the test case you specified.
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There's more...
You can also pass a directory to the phpunit script. If you do this, PHPUnit will scan that 
directory, along with any child directories. Any file with a name in the *Test.php format will 
then be scanned. Any class found in that file that extends PHPUnit_Framework_TestCase 
will be executed as a test. So if we had, instead, run the following command we would see the 
exact same output:

$ phpunit .

This command would find the CardTest.php file. After scanning that file it would find the 
CardTest class and proceed to execute it as a test case.

This functionality, in addition to an intelligent directory structure for your code and tests, can 
yield a very easy way for you to run small groups of tests at a time. This is something that can 
be helpful when making small, localized changes to a large code base.

Command line options
The previous example is a very simple. However, there are several command line options 
that you can use to produce more details about the tests, modify the output of the test, or to 
specify exactly which tests to run. If you run phpunit -h, you will see a list of the available 
options. While you should spend some time looking at all of these options, you can begin by 
learning how to use those shown as follows:.

--colors
This option makes it obvious very quickly via a color bar whether or not your tests passed  
or failed. An example of what this looks like can be seen in the following screenshot:

--stop-on-error and --stop-on-failure 
These options will halt the test execution if one of your tests fails or has an error. If you have a 
large test suite and you don't want to run through the full suite when a test fails, these options 
can be very helpful.
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--debug
This will print the name of each test as it is being run. This can be very useful if there are 
severe issues causing PHPUnit to crash.

--strict 
This will enable some additional checks to make sure you don't have any potential issues with 
your tests. For instance, it will report an error if you have defined a test case with no tests, or if 
a test outputs any text.

Configuring PHPUnit (Simple)
PHPUnit has a variety of command line options. Once we have identified a set of command 
line options that work well, we will quickly get tired of typing them into a command line. 
Thankfully, PHPUnit offers an XML configuration file. 

This configuration file provides the ability to set any of the command line options. It can also 
be used to set up various aspects of your test environment such as defining variables, setting 
the include path, setting other PHP configuration options, and more.

How to do it...
1.	 The following XML code should be placed in phpunit.xml:

<phpunit
    colors="true"
    strict="true"
    verbose="true"
>
  <testsuites>
    <testsuite name="Go Fish Test Suite">
      <file>CardTest.php</file>
    </testsuite>
  </testsuites>
</phpunit>

2.	 Then we can run the following command:
$ phpunit

3.	 We will see that our test case has been run in the colors mode.
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How it works...
We are no longer telling the phpunit script which test case to run. When we utilize a 
configuration file we are able to use that file to modify the behavior of PHPUnit. This allows  
us to get rid of the command line options.

When the phpunit script runs, it will look for a file in the current directory called phpunit.
xml. If this file exists, it will be loaded as a configuration file. You can explicitly specify the 
configuration file using the following command:

phpunit –c phpunit.xml

In our test file we have enabled the colors, strict, and verbose flags. These are all attributes  
of the root <phpunit> element. Using the <testsuites> element we also define which  
test cases will be run.

The <testsuites> element will contain one or more <testsuite> elements. The 
<testsuite> element should always have a name attribute that gives a short description 
of the test suite. The <testsuite> element will finally contain one or more <file> or 
<directory> elements, which define files and directories containing test cases that should 
be run. You can also specify any number of <exclude> elements that will contain a path that 
will be ignored when searching for test cases.

There's more...
In our example we are using a single <file> element to load our CardTest.php file.  
We could just as easily use <directory>. The following <testsuite> element highlights 
the difference:

<testsuite name="Go Fish Test Suite">
  <directory>.</directory>
</testsuite>

When specifying directories it should be kept in mind that by default, only files in that directory 
and any child directories with the pattern *Test.php will be loaded. You can change this 
behavior using the suffix attribute of the <directory> element. So we could also use the 
following configuration to specify this explicitly:

<testsuite name="Go Fish Test Suite">
  <directory suffix="Test.php">.</directory>
</testsuite>
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Additional configurations
There are many other configuration options available in PHPUnit. Some of them we will cover 
in later recipes. If you would like to explore all of the options you have at your disposal you 
should view the PHPUnit documentation: http://www.phpunit.de/manual/current/
en/appendixes.configuration.html.

Using phpunit.xml.dist
As you continue building a test suite you may find yourself using the phpunit.xml file to 
handle environment configurations or other types of configurations that may not always be 
necessary for some developers. Instead of providing a phpunit.xml file, you can provide a 
phpunit.xml.dist file. PHPUnit will attempt to use this file if a phpunit.xml file is not 
found in the current directory. This allows you to package a default configuration in phpunit.
xml.dist while letting people easily override it by providing their own phpunit.xml file.

Adding PHPUnit to your project (Simple)
So far we have worked through some very simple examples involving just a single file that we 
are testing. In reality, most projects include many different classes and should include many 
different tests. One of the keys to a successful test strategy for any project is organization of 
these classes and tests.

Getting ready...
A common strategy for test organizations is separating tests from source code using the 
directory structure of the projects. A very easy way to do this is by placing a src and test 
directory at the root of your project. The src directory would contain all of the code required 
to run your program. Then the test directory can contain code that is required to test your 
program. Within these two directories you can have nearly identical file layouts with the sole 
exception being the Test suffix on the test case class and the Test.php suffix on the file.

We will now go through an example of how this type of structure can be set up and utilized  
in your project.

How to do it…
1.	 In your project, move your files into the following structure:
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2.	 Then, create a test-bootstrap.php file with the following content:
<?php

spl_autoload_register(function ($className) {
  $classPath = str_replace(
    array('_', '\\'), 
    DIRECTORY_SEPARATOR, 
    $className
  ) . '.php';
  require $classPath;
});

3.	 Next, modify your phpunit.xml file to contain the following code:
<phpunit
    bootstrap="test-bootstrap.php"
    colors="false"
    strict="true"
    verbose="true"
>
  <testsuites>
    <testsuite name="Go Fish Test Suite">
      <directory suffix="Test.php">test</directory>
    </testsuite>
  </testsuites>
  <php>
    <includePath>src</includePath>
  </php>
</phpunit>

4.	 Finally, remove the require statement that is in test/CardTest.php.
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How it works…
Here we are introduced to another feature in PHPUnit: the bootstrap file. The bootstrap file is 
run by phpunit prior to running any tests. This makes it a very convenient place to set up our 
environment as a whole for testability. This could be anything from setting configurations to 
setting up an autoloader. We have used it for the latter.

In our test-bootstrap.php file we have added a call to spl_autoload_register() to 
look for any files in our include_path where the path is the same as the class name after all 
underscores and namespace separators are replaced with a DIRECTORY_SEPARATOR constant 
and the .php file extension is added. This is a subset of the PSR-0 standard: https://
github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md.

Once our bootstrap file is created we must make PHPUnit aware of the file. To do this you can 
use the bootstrap attribute of the <phpunit> element. We also need to set the include 
path. You can see we have done that using the <php> and <includePath> elements.

With all of this set up, we can now remove the require statements from our test and 
everything will continue to run normally.

This helps us further meet the goal of making it easy to write tests. We no longer have to 
maintain file dependencies ourselves. It is all handled for us by virtue of our autoloader  
and bootstrap. So adding a test is really just a simple matter of creating the test case.

There's more...
Some parts of this recipe should not necessarily be followed verbatim. For instance, there is 
really little reason to roll your own autoloader. You, most likely, already have an autoloader 
defined for your project. If you don't have one defined there are several libraries already 
built that all handle the PSR-0 standard. One such library is the Symfony2 ClassLoader 
Component: http://symfony.com/doc/current/components/class_loader.html. 
If you are using Composer then you can also take advantage of its autoloader: http://
getcomposer.org/doc/01-basic-usage.md#autoloading.

Generating tests from code (Advanced)
When you are writing tests for untested legacy code or you do not employ a test-driven 
development methodology you will frequently find yourself needing to create test cases 
for already existing classes. PHPUnit has built-in capability to create skeletons for existing 
classes. This functionality can help you build up your test suite very quickly.

Using this functionality to test legacy code can be very effective. It will create several tests  
that are marked as incomplete which can be used to help you determine how far away you  
are from having coverage in all of your class methods.
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Getting ready
The skeleton functionality is an add-on that must be installed to PHPUnit. It can be installed 
via PEAR using the phpunit/PHPUnit_SkeletonGenerator package.

In order for the preceding command to work you do need to make sure the auto_discover 
configuration is set to 1. If you get errors about unrecognized channels you can enable  
auto_discover with the sudo pear config-set auto_discover 1 command.

If you are using Composer in your project, it is worth noting that there is not a composer 
package for the Skeleton Generator. You will have to install it manually.

How to do it...
1.	 Run phpunit-skelgen --test -- Player src/Player.php PlayerTest 

test/PlayerTest.php in the project folder.

2.	 Open the test/PlayerTest.php file. You will see the following code in that file:
<?php
/**
 * Generated by PHPUnit_SkeletonGenerator 1.2.0 on 2013-01-01 at 
23:02:55.
 */
class PlayerTest extends PHPUnit_Framework_TestCase
{
    /**
     * @var Player
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     */
    protected $object;

    /**
     * Sets up the fixture, for example, opens a network 
connection.
     * This method is called before a test is executed.
     */
    protected function setUp()
    {
        $this->object = new Player;
    }

    /**
     * Tears down the fixture, for example, closes a network 
connection.
     * This method is called after a test is executed.
     */
    protected function tearDown()
    {
    }

    /**
     * @covers Player::getName
     * @todo   Implement testGetName().
     */
    public function testGetName()
    {
        // Remove the following lines when you implement this 
test.
        $this->markTestIncomplete(
          'This test has not been implemented yet.'
        );
    }

    /**
     * @covers Player::drawCard
     * @todo   Implement testDrawCard().
     */
    public function testDrawCard()
    {
        // Remove the following lines when you implement this 
test.
        $this->markTestIncomplete(
          'This test has not been implemented yet.'
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        );
    }
    //...Rest of tests
}

How it works...
The phpunit-skelgen command takes up to four parameters. The format of the command 
is phpunit-skelgen --test -- <Class Name> <Class File Path> <Test 
Class Name> <Test Class File Path>. The class names should be fully qualified 
class names including the namespace. There are variants of this command that you can use 
that will look for the file based on the name; however, being as explicit with this command as 
possible will give you better, more predictable results.

One thing that you will notice is that the skeleton does not properly invoke your constructor. 
You have to handle this piece of the test case manually. Once that is done you will see that 
all of the tests return Incomplete as the status. As you fill out the tests they will change from 
incomplete tests to passing tests.

There's more...
The PHPUnit Skeleton Generator is a very powerful command. So far we have barely scratched 
the surface of how you can use it. When you combine it with PHPDoc annotations you can 
generate some of the actual test code as opposed to incomplete stubs. You can also use the 
PHPUnit Skeleton Generator to assist in test-driven development.

www.allitebooks.com

http://www.allitebooks.org
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Using @assert to generate additional code
You can give the generator hints as to what test code should be created using the @assert 
annotation. These annotations should be added directly to the code that you will be testing. 
The format of the annotation is @assert (arg1, arg2, …, argn) operation 
result. The operation can be any logical comparison such as ==, !=, <, or > as well as the 
throws string. The logical comparisons are obvious in their use. The == operation is the 
equivalent to the PHPUnit assertEquals() method. The throws operator is equivalent to 
the @expectedException annotation.

You can see this in action by adding the following comment to the isInMatchingSet() 
method in src/Card.php:

  /**
   * Returns true if the given card is in the same set
   * @param Card $card
   * @return bool
   * @assert (new Card(3, 'h'), new Card(3, 's')) == true
   * @assert (new Card(4, 'h'), new Card(3, 's')) == false
   */
  public function isInMatchingSet(Card $card)

When you run the phpunit-skelgen --test -- Card src/Card.php CardTest2 
test/CardTest2.php command and look at the generated test/CardTest2.php file you 
will now see the following test method:

    /**
     * Generated from @assert (new Card(3, 'h'), new Card(3, 's')) == 
true.
     *
     * @covers Card::isInMatchingSet
     */
    public function testIsInMatchingSet()
    {
        $this->assertTrue(
          $this->object->isInMatchingSet(new Card(3, 'h'), new Card(3, 
's'))
        );
    }

    /**
     * Generated from @assert (new Card(4, 'h'), new Card(3, 's')) == 
false.
     *
     * @covers Card::isInMatchingSet
     */
    public function testIsInMatchingSet2()
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    {
        $this->assertFalse(
          $this->object->isInMatchingSet(new Card(4, 'h'), new Card(3, 
's'))
        );
    }

You'll notice that for each @assert annotation, a corresponding test method was created.

Using the Skeleton Generator for test-driven development
The Skeleton Generator can also be used when employing a test-driven development 
methodology. The examples so far have been focused on creating tests based on written code. 
This is contradictory to the test-driven development methodology. However, you can create 
code from tests just as easily as you can create tests from code. When you run phpunit-
skelgen --class – CardTest test/CardTest.php from the project directory you 
will see that it creates a new Card class in src/Card.php. It even stubs the methods that it 
detects based on the test methods you wrote.

<?php
/**
 * Generated by PHPUnit_SkeletonGenerator 1.2.0 on 2013-02-11 at 
00:12:00.
 */
class Card
{
    /**
     * @todo Implement getNumber().
     */
    public function getNumber()
    {
        // Remove the following line when you implement this method.
        throw new RuntimeException('Not yet implemented.');
    }

    /**
     * @todo Implement getSuit().
     */
    public function getSuit()
    {
        // Remove the following line when you implement this method.
        throw new RuntimeException('Not yet implemented.');
    }

    /**
     * @todo Implement isInMatchingSet().
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     */
    public function isInMatchingSet()
    {
        // Remove the following line when you implement this method.
        throw new RuntimeException('Not yet implemented.');
    }
}

Using test fixtures (Simple)
As you begin writing tests you'll find that many of them, especially ones inside the same  
test case class, need to run the same code to set up the object that you are running tests 
against. This code is part of what is commonly called a fixture. Many test methods require 
the same fixture. PHPUnit allows you to support shared fixtures using the setUp() and 
tearDown() methods.

You have undoubtedly seen these methods implemented in some of our examples already.  
We will now go into further detail of how these fixtures work and what types of things you can 
do with them.

How to do it...
Open tests/CardTest.php and add a new setUp() method and use the $card property 
to hold the Card fixture.

<?php
class CardTest extends PHPUnit_Framework_TestCase
{
  private $card;
  public function setUp()
  {
    $this->card = new Card('4', 'spades');
  }
  public function testGetNumber()
  {
    $actualNumber = $this->card->getNumber();
    $this->assertEquals(4, $actualNumber, 'Number should be <4>');
  }
  public function testGetSuit()
  {
    $actualSuit = $this->card->getSuit();
    $this->assertEquals('spades', $actualSuit, 'Suit should be 
<spades>');
  }
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  public function testIsInMatchingSet()
  {
    $matchingCard = new Card('4', 'hearts');
    $this->assertTrue($this->card->isInMatchingSet($matchingCard),
        '<4 of Spades> should match <4 of Hearts>');
  }
  public function testIsNotInMatchingSet()
  {
    $matchingCard = new Card('5', 'hearts');
    $this->assertFalse($this->card->isInMatchingSet($matchingCard),
        '<4 of Spades> should not match <5 of Hearts>');
  }
}

How it works...
You'll notice the biggest change in this method is the addition of the setUp() method. 
The setUp() method is run immediately before any test method in the test case. So when 
testGetNumber() is run, the PHPUnit framework will first execute setUp() on the same 
object. setUp() then initializes $this|card with a new Card object. $this|card is then 
used in the test to validate that the number is returned properly. Using setUp() in this way 
makes your tests much easier to maintain. If the signature of the Card class's constructor 
is changed, you will only have one place in this file to reflect that change as opposed to four 
separate places. You will save even more time as you add more and more tests to a single test 
case class.

It should also be noted that a new instance of CardTest is created each time a test method 
is executed. Only the code in this case is being shared. The objects that setUp() creates are 
not shared across tests. We will talk about how to share resources across tests shortly.

There is also a tearDown() method. It can be used to remove any resource you created 
inside your setUp() method. If you find yourself opening files, or sockets, or setting up 
other resources then you will need to use tearDown() to close those resources, delete file 
contents, or otherwise tear down your resources. This becomes very important to help keep 
your test suite from consuming too many resources. There is nothing quite like running out of 
inodes when you are running a large test suite!

There's more...
As we mentioned a moment ago, PHPUnit has the facility to share resources across execution 
of multiple tests. This is generally considered bad practice. One of the primary rules of 
creating tests is that tests should be independent from each other so that you can isolate  
and locate the code causing test failures more easily.
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However, there are times when the physical resources required to create a fixture 
become large enough to outweigh the negatives of sharing this fixture across multiple 
tests. When such cases arise PHPUnit provides two methods that you can override: 
setUpBeforeClass() and tearDownAfterClass(). These are expected to be static 
methods. setUpBeforeClass() will be called prior to any tests or setUp() calls being made 
on a given class. tearDownAfterClass() will be called once all tests have been run and the 
final tearDown() call has been made. If you override these methods to create new objects 
or resources you would need to make sure that you set these values on static members of the 
test case class. Also, even if you are dealing only with objects, the tearDownAfterClass() 
is incredibly important to implement. If you do not implement it then any object created in 
setUpBeforeClass() and saved to static variables will remain in memory until all tests in 
your test suite have run.

Using data providers (Intermediate)
Data providers are a great way to test many different variants of a single method call quickly. 
When you have a method that is responsible for applying an algorithm to the method 
arguments and come up with a predictable result then data providers are a great option.

How to do it...
Modify the contents of test/CardTest.php to the following:

<?php
class CardTest extends PHPUnit_Framework_TestCase
{
  private $card;
  public function setUp()
  {
    $this->card = new Card('4', 'spades');
  }
  public function testGetNumber()
  {
    $actualNumber = $this->card->getNumber();
    $this->assertEquals(4, $actualNumber, 'Number should be <4>');
  }
  public function testGetSuit()
  {
    $actualSuit = $this->card->getSuit();
    $this->assertEquals('spades', $actualSuit, 'Suit should be 
<spades>');
  }
  public function matchingCardDataProvider()
  {
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    return array(
      array(new Card('4', 'hearts'), true, 'should match'),
      array(new Card('5', 'hearts'), false, 'should not match')
    );
  }

  /**
   * @dataProvider matchingCardDataProvider
   */
  public function testIsInMatchingSet(Card $matchingCard, $expected, 
$msg)
  {
    $this->assertEquals($expected, $this->card->isInMatchingSet($matc
hingCard),
        "<{$this->card->getNumber()} of {$this->card->getSuit()}> 
{$msg} "
        . "<{$matchingCard->getNumber()} of {$matchingCard-
>getSuit()}>");
  }
}

How it works...
The new matchingCardDataProvider() method is our data provider. It should return an 
array containing multiple arrays of arguments to pass into a test method. The method does 
need to be public as it actually gets called from outside the test case. Also, the method does 
not have to be static, as you do not have reliable access to any variable you should treat the 
method as though it were static.

You then need to assign the data provider to one of your test methods. This is done using 
the @dataProvider annotation. In this example, the annotation is assigned to the 
testIsInMatchingSet() method. You will notice that this method has three parameters. 
This is exactly the same number of items there are in each sub-array returned  
by matchingCardDataProvider().

The three parameters in this example are the arguments provided for isInMatchingSet(), 
an expected value, as well as part of the assertion failure message. When using data 
providers you can use the Don't Repeat Yourself (DRY) principal very effectively to reduce the 
amount of code you have to write for each test. However, this does need to be balanced with 
readability. If you reduce the amount of code that has to be written, but someone else can't 
understand what the test is doing then the effectiveness and maintainability of the test is 
actually reduced.
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Identifying test failures
You may be wondering how to identify which data set failed while using the data providers. 
Fortunately, PHPUnit takes care of this for you. Modify the matchingCardDataProvider() 
method to return a row that will force the test to fail.

public function matchingCardDataProvider()
{
  return array(
    array(new Card('4', 'hearts'), true, 'should match'),
    array(new Card('5', 'hearts'), false, 'should not match'),
    array(new Card('4', 'clubs'), false, 'should not match')
  );
}

Then, run the unit test suite and you will see the following:

As you can see it tells you the index of the data set along with the actual parameters passed 
as a part of that data set.

This can be improved even further by providing keys to the array that your data provider 
returns. Try using the following data provider:

public function matchingCardDataProvider()
{
  return array(
    '4 of Hearts' => array(new Card('4', 'hearts'), true, 'should 
match'),
    '5 of Hearts' => array(new Card('5', 'hearts'), false, 'should not 
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match'),
    '4 of Clubs' => array(new Card('4', 'clubs'), false, 'should not 
match')
  );
}

Run the tests again to see the following output:

As you can see, you can utilize data providers to not only consolidate your code, but you can 
also make it very easy to isolate the data set you have problems with.

Using test dependencies (Advanced)
When you begin writing tests for one of your classes you may notice that when one aspect of 
functionality for your class breaks, many tests fail. Quite often a method of a class will have 
some preconditions that must be true for it to behave properly in a given situation. A classic 
example of this is a stack. If you cannot construct a stack properly then any further tests 
against that stack are most likely going to fail.

You can use PHPUnit's test dependency feature to help with this. When you indicate  
that one test is dependent on another test, PHPUnit will skip the dependent test whenever  
its dependencies do not successfully pass. Test dependencies also allow you to enable 
producer-consumer relationships into your test suites. One test case will "produce" the  
input for another test case to "consume".

We will take a look at how test dependencies can work by writing a test for our 
CardCollection class that looks at how cards are added to the deck.
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How to do it...
Place the following code to the test/CardCollection.php file:

<?php
class CardCollectionTest extends PHPUnit_Framework_TestCase
{
  private $cardCollection;

  public function setUp()
  {
    $this->cardCollection = new CardCollection();
  }

  public function testCountOnEmpty()
  {
    $this->assertEquals(0, $this->cardCollection->count());
  }

  /**
   * @depends testCountOnEmpty
   */
  public function testAddCard()
  {
    $this->cardCollection->addCard(new Card('A', 'Spades'));
    $this->cardCollection->addCard(new Card('2', 'Spades'));

    $this->assertEquals(2, $this->cardCollection->count());

    return $this->cardCollection;
  }

  /**
   * @depends testAddCard
   */
  public function testGetTopCard(CardCollection $cardCollection)
  {
    $card = $cardCollection->getTopCard();

    $this->assertEquals(new Card('2', 'Spades'), $card);
  }
}
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How it works...
In your new file you have two test methods using a @depends annotation. This is the 
annotation that enables PHPUnit's test dependency functionality. This annotation, essentially, 
tells PHPUnit that you do not want to run the following test unless the test referenced in the 
@depends annotation has passed. If this test has not passed then the following test will be 
skipped. If for some reason the CardCollection::count() method was not running 
properly and caused the testCountOnEmpty() test to fail then testAddCard() would be 
skipped. This can be easily seen by breaking the testCountOnEmpty() test on purpose by 
inserting $this|fail('testing @depends') in the test and rerunning your tests.

Another interesting aspect of the @depends annotation is the producer-consumer aspect of 
it. Whenever you mark a test with the @depends annotation the return value from the test 
specified in the annotation will be provided as the argument to the test being annotated. This is 
what is happening in the testGetTopCard() method. The testAddCard() method returns 
the card collection being tested. This value then persists for any test that depends on this 
method. As soon as we annotated testGetTopCard() with @depends testGetTopCard, 
PHPUnit is triggered to pass the populated card collection as the first parameter.

This does a couple things for you. It doesn't bother to try and pull the top card if it appears 
that addCard() is not working. It also prevents you from having to repeat the code necessary 
to populate your card collection.
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Another thing to note is that the @depends annotations always reference a test above the 
annotation. The @depends annotation never influences the order of tests. Tests will always be 
run from the top of the file to the bottom of the file. If the @depends annotation references a 
method below the annotation it will simply skip the test as the dependency has not yet passed.

Multiple test dependencies
You can add multiple @depends annotations to a single test. PHPUnit will then check 
to ensure that all of the tests specified have passed before running a given test. If the 
dependencies also return values, they will all be accessible as arguments in the order  
they are specified. The following code shows how this works:

<?php
class DependencyTest extends PHPUnit_Framework_TestCase
{

  public function test1()
  {
    $this->assertTrue(true);
    return 1;
  }

  public function test2()
  {
    $this->assertTrue(true);
    return 2;
  }

  public function test3()
  {
    $this->assertTrue(true);
    return 3;
  }

  /**
   * @depends test1
   * @depends test2
   * @depends test3
   */
  public function testDependencies($arg1, $arg2, $arg3)
  {
    $this->assertEquals(1, $arg1);
    $this->assertEquals(2, $arg2);
    $this->assertEquals(3, $arg3);
  }
}
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Multiple dependent tests
You can also have the same test referenced by @depends multiple times. You do need to be 
very careful when doing this. Copies are not made of any objects returned. So if you modify 
the object in any way in the first dependent test, those modifications will also be present in 
the second dependent test. This can be seen in the following code:

<?php
class DependencyTest extends PHPUnit_Framework_TestCase
{

  public function testCreateStdClass()
  {
    $obj = new stdClass();
    $obj->foo = 'bar';
    $this->assertTrue(true);
    return $obj;
  }

  /**
   * @depends testCreateStdClass
   */
  public function testDependency1($obj)
  {
    $this->assertEquals('bar', $obj->foo);
    $obj->foo = 'notbar';
  }

  /**
   * @depends testCreateStdClass
   */
  public function testDependency2($obj)
  {
    $this->assertEquals('notbar', $obj->foo);
  }
}

Using mock objects (Simple)
When writing unit tests you should always strive to isolate the code that you are testing as 
much as possible. This can be difficult at times. It is very common for methods in a class to 
interact with other classes. This interaction means that executing the method you are testing 
will result in you not only testing that method but you will also, in a sense, be testing all of 
the methods on external objects that this method calls. Ideally, you would only want to test 
the interaction with these methods. You would not want the testing to reach into the external 
method itself. To help solve this problem the concept of a mock object was created.
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Mock objects are lightweight implementations or extensions of interfaces and objects that 
implement the public interface in a controlled way. When creating a mock object you can 
specify that any of that object's public or protected methods return a specific value. You can 
also set expectations as to how a method of that object will be called. This allows you to keep 
your tests focused on the specific class or method you want to test.

PHPUnit has an entire mocking library built directly into the framework. In recent years, some 
alternative mocking libraries such as Phake and Mockery have also been created.

How to do it...
Create the following test case in test/PlayerTest.php:

<?php
class PlayerTest extends PHPUnit_Framework_TestCase
{
  private $player;
  private $hand;

  public function setUp()
  {
    $this->hand = $this->getMock('CardCollection');
    $this->player = new Player('John Smith', $this->hand);
  }

  public function testDrawCard()
  {
    $deck = $this->getMock('CardCollection');
    $deck->expects($this->once())
        ->method('moveTopCardTo')
        ->with($this->identicalTo($this->hand));

    $this->player->drawCard($deck);
  }

  public function testTakeCardFromPlayer()
  {
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    $otherHand = $this->getMock('CardCollection');
    $otherPlayer = $this->getMock('Player', array(), array('Jane 
Smith', $otherHand));
    $card = $this->getMock('Card', array(), array('A', 'Spades'));

    $otherPlayer->expects($this->once())
        ->method('getCard')
        ->with($this->equalTo(4))
        ->will($this->returnValue($card));

    $otherPlayer->expects($this->once())
        ->method('getHand')
        ->will($this->returnValue($otherHand));

    $this->hand->expects($this->once())
        ->method('addCard')
        ->with($this->identicalTo($card));

    $otherHand->expects($this->once())
        ->method('removeCard')
        ->with($this->identicalTo($card));

    $this->assertTrue($this->player->takeCards($otherPlayer, 4));
  }
}

How it works...
The getMock() method is used to create a mock. The first parameter passed to this method 
is the name of the class or interface you are mocking. This method will inspect the class 
or interface you pass to it and will either extend it (if it is a class) or implement it (if it is an 
interface.) If no other parameters are given, any method that is not declared as private, final, 
or static will be overridden to simply return null. You can also pass an array of methods in the 
mocked class that you wish to override. This allows for creating partial mocks.
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A couple of the getMock() calls in the example also pass an array of values as the third 
parameter. These values are used to construct the mock object. When mock objects for 
classes are created, the original constructor of that class is called by default. If you do not 
pass the parameters you would like to use to the constructor, you will get an error similar to 
the one shown as follows:

If your tests do not need to utilize the values in the constructor then you can prevent the  
mock object from calling the original constructor. This can be accomplished by setting the  
fifth parameter of getMock() to false.

The testTakeCardFromPlayer() method in the preceding example could be modified to 
create its mocks as shown next and the test will continue to run with no problem. You should 
prevent constructor calls whenever possible.

public function testTakeCardFromPlayer()
{
  $otherHand = $this->getMock('CardCollection');
  $otherPlayer = $this->getMock('Player', array(), array(), '', 
false);
  $card = $this->getMock('Card', array(), array(), '', false);
    
  // Continue method...
}
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You may be wondering now what that fourth parameter is for. The fourth parameter of 
getMock() allows you to specify the name for the new mock class. This is not something that 
is typically necessary. If you need to skip the constructor and do not want to create a custom 
name for the new mock class you can simply pass an empty string.

Once the mock is created you will typically need to either stub a method or create 
expectations for methods on that mock. In testDrawCard() we just needed to ensure 
that the moveTopCardTo() method was being called with the appropriate arguments. If 
you want to set an expectation such as this you call the expects() method on your mock. 
The expects() method takes an invocation matcher as its argument. The best way to think 
about invocation matchers is as a counter of when or how often a method should be called. 
The PHPUnit_Framework_TestCase class has several methods that can be passed to 
expects() such as any(), never(), atLeastOnce(), once(), exactly(), and at(). 
All of these methods with the exception of at() are used to indicate the number of times 
you are expecting the method being mocked to be a call. So if you specify once() then the 
method you are calling can only be called once. If it is not called or is called multiple times 
then your expectation will not be met and your test will generate a failure similar to the 
following screenshot:

Once you have set your expectation you must specify the method you are setting the 
expectation on. This is done by calling the method() method on the result of expects(). 
The only parameter of this method is the name of your mock object's method that you want  
to set expectations on.
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The final step in defining an expectation on a mock is to set the expected parameters. This 
is done by calling the with() method. You can see the with() method being called with 
a single argument in the testDrawCard() method. You will pass as many arguments to 
with() as you would see passed to the method you are mocking. By default PHPUnit will 
attempt to verify that the argument passed to with() is equal to the argument passed to 
the mocked method. You can also use any of PHPUnit's constraints to check for other aspects 
of each argument. For instance, in testTakeCardFromPlayer() you will see that the 
identicalTo() method is being used so we can validate the exact instance of an object. 
Any assertions that are defined in PHPUnit will also have a constraint counterpart that can be 
used when mocking objects.

If you want to control the return value for the method that you are mocking you can use the 
will() method in addition to the with() method. The will() method takes a single 
parameter that allows you to specify what will be returned from the method. This is done using 
one of PHPUnit's stub methods. The most common method and the one that is used in the 
example is returnValue(). This allows you to specify the specific value that the method 
should return. 

There's more...
Mock objects can be used for much more than simple stubbing and verifications.  
Now that you are aware of the basics we can discuss some other common uses of mock 
objects. You can find thorough documentation on PHPUnit's mock object functionality at 
http://phpunit.de/manual/current/en/test-doubles.html.

Thoughts on partial mocks
You should avoid partial mocks whenever possible. They tend to contribute to hard-to-maintain 
tests as you will often find yourself having to adjust the methods being mocked. A common 
use of partial mocks is to prevent a protected method from executing in the class you are 
testing. This usually indicates that you have one class doing too much. That protected method 
would likely be better served as a method in a separate class that you can then create a full 
mock for. Another use for partial mocks is to mock abstract classes. This is actually a fairly 
good use of partial mocks; however, there is a better way to handle this that will keep your 
tests easy to maintain. We will discuss this later.

Ignoring parameters on method expectations
Occasionally, you won't really care about what or how many parameters were used to call a 
method. When this is the case you can use the withAnyParameters() method instead of 
with(). This will essentially match any call to the given method.
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Stubbing exceptions
When you find yourself writing tests for exception handling, you will find it necessary to stub  
a method to throw an exception. This can be done using PHPUnit's throwException() 
method. This is very useful in helping to make sure you are handling exceptions in third-party 
code (or even your own code) gracefully. It takes an instantiated exception as its only argument.

public function testThrowException()
{
  $card = $this->getMock('Card', array(), array(), '', false);

  $card->expects($this->any())
      ->method('getNumber')
      ->will($this->throwException(new RuntimeException('Test 
Exception')));

  // verify that the exception above is thrown.
  $this->setExpectedException('RuntimeException', 'Test Exception');
  $card->getNumber();
}

Stubbing multiple return values
Occasionally, you will need a method to return one of many values. There are a few ways this 
can be handled. The first way is with a return value map. A return value map specifies a list 
of arrays that contains a value for every parameter passed to the mocked method and an 
additional value at the end for the return value. If a set of parameters do not exist in the map 
then null is returned. You will notice we are using the any() matcher as we know the method 
is going to be called multiple times.

public function testReturnValueMap()
{
  $calculator = $this->getMock('TestCalculator');

  $valueMap = array(
    array(1, 2, 3),
    array(2, 4, 6),
    array(1, 4, 5)
  );

  $calculator->expects($this->any())
      ->method('add')
      ->will($this->returnValueMap($valueMap));

  // Test Return Values
  $this->assertEquals(3, $calculator->add(1, 2));
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  $this->assertEquals(6, $calculator->add(2, 4));
  $this->assertEquals(5, $calculator->add(1, 4));
  $this->assertNull($calculator->add(1,3));
}

If the order of a specific set of calls is well defined, then you can use the 
onConsecutiveCalls() method. This method accepts any number of arguments and  
will return each one in order for every call made to the mocked method. If you do not have  
as many arguments as there are method calls, then it will begin returning null after there are 
no more arguments left to return. 

This is a very effective way to test code utilizing an iterator-like interface. For instance,  
given code such as the following:

while (!$this->game->isOver())
{
  // ...
}

You can guarantee that the loop is executed twice using the following mock definition:

$mock->expects($this->any())
    ->method('isOver')
    ->will($this->onConsecutiveCalls(false, false, true));

Stubbing with callbacks
Perhaps the most flexible thing you can do when creating a stub is using a callback. This allows 
you to define an anonymous function to generate a return value. While this can get complicated, 
it does give you the ability to simplify tests if you use it wisely.

If the addCard() method was responsible for returning the current size of the collection after 
the card was added, and we tested a method that relied on that behavior, one way we could 
implement it is using a callback.

public function testReturnCallback()
{
  $deck = $this->getMock('CardCollection');

  $deck->expects($this->any())
      ->method('addCard')
      ->will($this->returnCallback(function (Card $card) {
        static $collectionSize = 0;
        $collectionSize++;
        return $collectionSize;
      }));
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  // Test Return Values
  $this->assertEquals(1, $deck->addCard(new Card('A', 'Hearts')));
  $this->assertEquals(2, $deck->addCard(new Card('2', 'Hearts')));
  $this->assertEquals(3, $deck->addCard(new Card('3', 'Hearts')));
}

Using mock builders
In our examples so far we have used PHPUnit's original mock functionality. PHPUnit 3.5 
introduced a concept called MockBuilder. The purpose of MockBuilder is to clean 
up the instantiation of mock objects. As we have already discussed, the parameters of 
getMock() can get very confusing. You can use the mock builder to try and make your tests 
more readable. Each of the various arguments we specified for getMock() are represented 
by separate methods on the builder. For instance, the ability to disable the constructor 
can instead be enabled by calling disableOriginalConstructor() on your builder. 
An example of how testTakeCardFromPlayer() could benefit from this feature when 
creating mocks can be seen as follows:

public function testTakeCardFromPlayer()
{
  $otherHand = $this->getMock('CardCollection');
  $otherPlayer = $this->getMockBuilder('Player')
      ->disableOriginalConstructor()
      ->getMock();
  $card = $this->getMockBuilder('Card')
      ->disableOriginalConstructor()
      ->getMock();
  // ...
}

Using alternative mock frameworks
While PHPUnit's mock framework provides a significant amount of functionality there are other 
libraries that can be used in conjunction with PHPUnit that provide a more robust feature set. 
In many cases, despite this robustness, the libraries are also easier to use.

Phake
Phake is an alternative mocking framework to PHPUnit's built-in mocking framework. The 
primary motive behind its creation was to present an alternative to the concept of expectations 
that PHPUnit utilizes. It, instead, treats mock object expectations as assertions that you execute 
after your test code has run, utilizing Phake's verification framework. An example of how 
PlayerTest can be rewritten using Phake is shown as follows:

<?php
class PhakePlayerTest extends PHPUnit_Framework_TestCase
{
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  private $player;
  
  /**
   * @Mock CardCollection
   */
  private $hand;

  public function setUp()
  {
    Phake::initAnnotations($this);
    $this->player = new Player('John Smith', $this->hand);
  }

  public function testDrawCard()
  {
    $deck = Phake::mock('CardCollection');
    $this->player->drawCard($deck);
    Phake::verify($deck)
        ->moveTopCardTo($this->identicalTo($this->hand));
  }

  public function testTakeCardFromPlayer()
  {
    $otherHand = Phake::mock('CardCollection');
    $otherPlayer = Phake::mock('Player');
    $card = Phake::mock('Card');

    Phake::when($otherPlayer)
        ->getCard(Phake::anyParameters())->thenReturn($card);
    Phake::when($otherPlayer)
        ->getHand()->thenReturn($otherHand);

    $this->assertTrue($this->player->takeCards($otherPlayer, 4));
    
    Phake::verify($this->hand)
        ->addCard($this->identicalTo($card));
    Phake::verify($otherHand)
        ->removeCard($this->identicalTo($card));
  }
}

An exhaustive discussion of Phake is outside the scope of this book. However, you can learn 
more about Phake at https://github.com/mlively/Phake.
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Mockery
Another alternative mock object framework is Mockery. It is similar in concept to PHPUnit's 
own mock framework but makes some adjustments to its API to make what is being done 
by the code more clear to the readers. An example of PlayerTest written with Mockery is 
shown as follows:

<?php
class MockeryPlayerTest extends PHPUnit_Framework_TestCase
{
  private $player;
  private $hand;

  public function setUp()
  {
    $this->hand = \Mockery::mock('CardCollection');
    $this->player = new Player('John Smith', $this->hand);
  }

  public function testDrawCard()
  {
    $deck = \Mockery::mock('CardCollection');
    $deck->shouldRecieve('moveTopCardTo')
        ->with($this->identicalTo($this->hand));

    $this->player->drawCard($deck);
  }

  public function testTakeCardFromPlayer()
  {
    $otherHand = \Mockery::mock('CardCollection');
    $otherPlayer = \Mockery::mock('Player');
    $card = \Mockery::mock('Card');

    $otherPlayer->shouldReceive('getCard')
        ->with(4)
        ->andReturn($card);

    $otherPlayer->shouldReceive('getHand')
        ->andReturn($otherHand);

    $this->hand->shouldReceive('addCard')
        ->with($this->identicalTo($card));

    $otherHand->shouldReceive('removeCard')
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        ->with($this->identicalTo($card));

    $this->assertTrue($this->player->takeCards($otherPlayer, 4));
  }
}

For more information about Mockery see https://github.com/padraic/mockery.

Testing abstract classes (Intermediate)
When we were discussing mock objects the concept of partial mocks was introduced. One 
common use of partial mocks is to test abstract classes. Abstract classes can't be tested 
directly as by definition they cannot be instantiated. You can always create an extension of 
the abstract class just for testing. However, PHPUnit provides functionality to very easily mock 
abstract classes so that only the abstract methods get mocked. All other functions  
will execute normally.

How to do it...
In src/Player.php is a Player class shown as follows:

<?php
abstract class Player
{
  // ...

  public function requestCard()
  {
    $cardNumber = $this->chooseCardNumber();

    if (!$this->hasCard($cardNumber))
    {
      throw new RuntimeException('Invalid card chosen by player');
    }

    return $cardNumber;
  }

  abstract protected function chooseCardNumber();

  // ...
}
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The corresponding test can be placed in test/PlayerTest.php to test the abstract nature 
of the class.

<?php
class PlayerTest extends PHPUnit_Framework_TestCase
{
private $player;
  private $hand;

  public function setUp()
  {
    $this->hand = new CardCollection();
    $this->hand->addCard(new Card('A', 'Spades'));
    $this->player = $this->getMockForAbstractClass('Player', 
array('John Smith', $this->hand));
  }

  public function testRequestCardCallsChooseCardNumber()
  {
    $this->player->expects($this->once())
      ->method('chooseCardNumber')
      ->will($this->returnValue('A'));

    $this->assertEquals('A', $this->player->requestCard());
  }
}

How it works...
The PHPUnit method getMockForAbstractClass() can be used to generate a partial 
mock where only the abstract methods of a given class are overridden. The argument list 
for getMockForAbstractClass() is similar to the argument list for getMock(). The big 
difference is that the list of methods to mock is moved from being the second parameter to 
being the last parameter. By default getMockForAbstractClass() will mock only the 
abstract methods of the class. If you find yourself needing to override this functionality then 
you should just use getMock() instead.

In this example, the Player class is being mocked with a player name and a 
CardCollection object is being passed to the Player instance's constructor. 
The testRequestCardCallsChooseCardNumber() method is assuring that the 
Player::chooseCardNumber() method is called as a part of Player::requestCard() 
and is then ensuring that the value returned by chooseCardNumber() is subsequently 
returned by requestCard().
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You could use getMock() for this instead. The setUp() method could be rewritten to use 
getMock() to set up the partial mock.

public function setUp()
{
  $this->hand = new CardCollection();
  $this->hand->addCard(new Card('A', 'Spades'));
  $this->player = $this->getMock('Player', array('chooseCardNumber'), 
array('John Smith', $this->hand));
}

The advantage of using getMockForAbstractClass() is that you do not have to add to 
the mocked method list (the second parameter of getMock()) every time you add a new 
abstract method to the class. It also keeps the test significantly more concise.

Abstract classes in Phake
Phake also provides a function that assists in testing abstract classes. 
Phake::partialMock() works in a similar fashion to the PHPUnit counterpart.

<?php
class PhakePlayerTest extends PHPUnit_Framework_TestCase
{
private $player;
  private $hand;

  public function setUp()
  {
    $this->hand = new CardCollection();
    $this->hand->addCard(new Card('A', 'Spades'));
    $this->player = Phake::partialMock('Player', 'John Smith', $this-
>hand);
  }

  public function testRequestCardCallsChooseCardNumber()
  {
    Phake::when($this->player)->chooseCardNumber()->thenReturn('A');

    $this->assertEquals('A', $this->player->requestCard());

    Phake::verify($this->player)->chooseCardNumber();
  }
}
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The Phake::partialMock() method accepts the class name as the first parameter. The 
remaining parameters will be used in the constructor of the mock object. This method works 
in mostly the same way as getMockForAbstractClass(). It creates a mock that will call 
the original method for any non-abstract method. 

Testing traits (Intermediate)
Traits are a new concept introduced in PHP 5.4. Similar to Abstract classes they cannot be 
instantiated directly. You can always create a test class that uses a particular trait to test the 
functionality in that trait. However, PHPUnit has built-in functionality to dynamically create 
classes that use traits. This allows for simple testing of traits.

How to do it...
Consider a modified version of the CardCollection class that is, instead, represented  
as a trait.

<?php

trait CardCollectionTrait
{
  //...
  public function count()
  {
    return count($this->cards);
  }
  //...
}

You can create a test similar to what was created earlier for the CardCollection class.

<?php
class CardCollectionTraitTest extends PHPUnit_Framework_TestCase
{
  private $cardCollection;

  public function setUp()
  {
    $this->cardCollection = $this->getObjectForTrait('CardCollectionT
rait');
  }

  public function testCountOnEmpty()
  {
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    $this->assertEquals(0, $this->cardCollection->count());
  }
  //...
}

How it works...
Similar to how PHPUnit can be used to generate concrete implementations of abstract 
classes, it can also be used to generate a user of a given trait. The PHPUnit_Framework_
TestCase::getObjectForTrait() method will generate and instantiate a class that  
uses the trait you pass as the first argument. You can then test the trait as you would test any  
other class.

Testing exceptions and errors 
(Intermediate)

A negative test is a test that is created to show error conditions or exceptions from the system 
under test. Negative tests can be easy to ignore. However, it is not only important to make 
sure your code works the way it is supposed to but it is also important to know that it also fails 
the way it is supposed to.

Fortunately, PHPUnit provides very easy to use functionality to help ensure that your code  
is throwing errors and exceptions at the appropriate time.

How to do it...
This functionality can be shown through some negative tests for the following code:

<?php
abstract class Player
{
  // ...

  public function requestCard()
  {
    $cardNumber = $this->chooseCardNumber();

    if (!$this->hasCard($cardNumber))
    {
      throw new RuntimeException('Invalid card chosen by player');
    }

    return $cardNumber;
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  }

  // ...
}

To properly test that the exception is being thrown we can write the following test:

<?php
class PlayerTest extends PHPUnit_Framework_TestCase
{
  public function testRequestCardThrowsOnInvalidCard()
  {
    $this->player->expects($this->once())
        ->method('chooseCardNumber')
        ->will($this->returnValue('2'));

    $this->setExpectedException('RuntimeException', 'Invalid card 
chosen by player');
    $this->player->requestCard();
  }
}

How it works...
You can test that your code throws an exception using the setExpectedException() 
method. This tells PHPUnit to make sure that a specified exception is thrown before the test is 
finished. It takes the fully qualified class name of the exception as the first parameter. You can 
specify an optional second and third parameter with the expected message and code for the 
exception. If either of these parameters are not specified then the message and code will not 
be checked. 

In this test, you are setting up the player class to choose a card number that does not 
currently exist in the hand. When this occurs a RuntimeException should be thrown  
with the message Invalid card chosen by player when Player::requestCard() 
 is called. In the event that the error doesn't get thrown the test will fail.

There's more...
PHPUnit also allows you to specify expected exceptions using annotations.

/**
 * @expectedException RuntimeException
 * @expectedExceptionMessage Invalid card chosen by player
 */
public function testRequestCardThrowsOnInvalidCardUsingAnnotation()
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{
  $this->player->expects($this->once())
      ->method('chooseCardNumber')
      ->will($this->returnValue('2'));

  $this->player->requestCard();
}

Instead of using the setExpectedException() method you can use the  
@expectedException annotation. The @expectedException annotation  
accepts the fully qualified class name of the exception that should be thrown.  
The @expectedExceptionMessage annotation accepts the message that should  
be set on the exception. There is also an @expectedExceptionCode annotation that  
can be used to set an exception code if necessary.

Testing output (Intermediate)
While PHP started out as a web-based scripting language, over the years it has become more 
and more common for command line scripts to be created as well. One of the common pieces 
of functionality for these scripts is the output of text to the command line. While one could 
make the argument that testing the output falls outside of the realm of unit testing, it does 
not fall outside of the realm of PHPUnit's functionality.

PHPUnit makes it very simple to capture and validate text that has been output to the 
command line.

How to do it...
The following code echoes text to the command line.

<?php
class CliFormatter
{
  // ...
  public function announcePlayerHand(Player $player)
  {
    echo "Current Hand: ", $this->getCards($player->getHand()), 
"\n\n";
  }
  // ...
}
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This code can be tested to ensure it outputs what you would expect with the following  
code below:

<?php
class CliFormatterTest extends PHPUnit_Framework_TestCase
{
  private $formatter;

  public function setUp()
  {
    $this->formatter = new CliFormatter();
  }

  public function testAnnouncePlayerHand()
  {
    $cards = new CardCollection();
    $cards->addCard(new Card('A', 'Spades'));
    $cards->addCard(new Card('2', 'Spades'));

    $player = $this->getMock('HumanPlayer', array(), array(), '', 
false);
    $player->expects($this->once())
      ->method('getHand')
      ->will($this->returnValue($cards));

    $this->expectOutputString("Current Hand: AS 2S \n\n");
    $this->formatter->announcePlayerHand($player);
  }
}

How it works...
The expectOutputString() method can be used to determine if your code is 
outputting what you expect to the command line. PHPUnit uses PHP's output buffering 
functionality to capture anything that is sent to the script's stdout command. The 
expectOutputString() method will compare the string you pass to it to the buffer  
at the end of the test. If the values do not match, PHPUnit will fail that test.

You can also match the output with a regular expression using expectedOutputRegex(). 
We could rewrite the expectedOutputString() call as follows:

$this->expectOutputRegex('/^Current Hand: AS 2S\s+$/');
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This is a convenient way to help get rid of the sensitivity to white spaces that 
expectedOutputString() has. A better way to handle a white space in your output 
is to use setOutputCallback(). This method can be used to manipulate the output 
before it is checked against the expectations set by expectedOutputRegex() or 
expectedOutputString(). One of these manipulations could be to trim all whitespace:

public function testAnnouncePlayerHandCallback()
{
  $cards = new CardCollection();
  $cards->addCard(new Card('A', 'Spades'));
  $cards->addCard(new Card('2', 'Spades'));

  $player = $this->getMock('HumanPlayer', array(), array(), '', 
false);
  $player->expects($this->once())
      ->method('getHand')
      ->will($this->returnValue($cards));

  $this->expectOutputString("Current Hand: AS 2S");
  $this->setOutputCallback(function ($output) {
    return trim($output);
  });
  $this->formatter->announcePlayerHand($player);
}

There's more...
When PHPUnit is running in the strict mode it will emit an error whenever the test writes an 
output to the screen. To prevent this from happening you simply need to turn off the strict 
mode in the XML configuration and discontinue the use of the --strict command line flag 
when running the test suite.

Testing protected and private methods 
(Intermediate)

A common question of those that are getting started with unit testing is, how are protected and 
private methods tested? Protected and private methods are not uncommon and the desire 
to test the code in them should be natural. The confusion that arises from how to test these 
methods is created at least in part by the thought that they must be tested independently.
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In the book Pragmatic Unit Testing, Dave Thomas and Andy Hunt had this to say:

In general, you don't want to break any encapsulation for the sake of testing  
(or as mom used to say, "don't expose your privates!"). Most of the time, you  
should be able to test a class by exercising its public methods. If there is significant 
functionality that is hidden behind private or protected access, that might be a 
warning sign that there's another class in there struggling to get out.

Using the public interface of your class is by far the best way to test protected and private 
methods. If you find yourself unable to do this, PHPUnit and PHP itself offer solutions to test 
these methods directly.

How to do it...
The following code in the CardCollection class is used to add a card to the collection:

<?php
class CardCollection implements IteratorAggregate
{
  // ...
  public function addCard(Card $card)
  {
    array_push($this->cards, $card);
  }
  // ...
}

The following test can be used to ensure the object state is modified accordingly:

<?php
class CardCollectionTest extends PHPUnit_Framework_TestCase
{
  // ...
  public function testAddCardAffectAttribute()
  {
    $card = new Card('A', 'Spades');
    $this->cardCollection->addCard($card);
    $this->assertAttributeEquals(array($card), 'cards', $this-
>cardCollection);
  }
  // ...
}



Instant Hands-on Testing with PHPUnit How-to

54

How it works...
This test shows how you can inspect the private or protected state of a given object.  
PHPUnit has a series of attribute assertions that you can use to test the value of any attribute 
on a class even if it has protected or private visibility. Whenever possible you should use 
the public interface of an object to test this; however, in the event that it is not possible, the 
attribute assertions can come in very handy. The assertAttributeEquals() method 
is similar to its non-attribute counterpart assertEquals(). However, instead of passing 
the value you are testing, you pass the name of the attribute you want to test as the second 
parameter and the object that attribute is set on as the third parameter. As always, the 
expected value is passed in as the first parameter.

PHPUnit contains attribute equivalents for the standard set of assertions. You can compare 
values, check contents of arrays, compare array counts, and so on. Anything you would 
typically do with a variable in a unit test can also be accomplished in attributes using the 
attribute assertions.

Private and protected methods
PHPUnit doesn't provide the same functionality above for private and protected methods. 
However, if you are using PHP 5.3.2 or higher you can use reflection to alter the visibility  
of the method you are trying to test.

In CliFormatter there is a private method, getCard(), that is used to format a given  
card into a readable string.

<?php
class CliFormatter
{
  // ...
  private function getCard(Card $card)
  {
    return $card->getNumber() . substr($card->getSuit(), 0, 1);
  }
  // ...
}

Using reflection we can expose this method and invoke it as a part of a test.

<?php
class CliFormatterTest extends PHPUnit_Framework_TestCase
{
  // ...
  public function testGetCard()
  {
    $method = new ReflectionMethod('CliFormatter', 'getCard');
    $method->setAccessible(true);
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    $card = new Card('A', 'Spades');
    $this->assertEquals('AS', $method->invoke($this->formatter, 
$card));
  }
  // ...
}

The ReflectionMethod::setAccessible() method can be used to allow a method to be 
invoked. However, you must invoke that method using the ReflectionMethod::invoke() 
method. If we attempted to call $this|formatter|getCard() directly then it would fail. 
This does keep us from having to clean up the accessibility. Your client code will continue to 
work as you originally wrote it. You don't have to worry about the method continuing to  
be accessible.

Testing database interaction (Advanced)
A large part of many applications written in PHP revolve around database interaction. While 
it largely falls outside the realm of the official definition of unit testing, testing database 
interaction is very important. If the integration between the code of your application and the 
database that stores your application's data is important then it should be tested. This is 
another case where you can use PHPUnit to do more than simple unit tests.

There are a few different options for testing database interaction with PHPUnit. PHPUnit has 
an extension that you can load that is based on the Java DBUnit library. There is also a newer 
package called Machinist that takes a different but, in most cases, a much simpler approach 
to database testing. You can find out more information on Machinist at https://github.
com/stephans/phpmachinist.

Database testing is centered on making sure that you are inserting, deleting, and updating 
data in your database properly and making sure your application is pulling the appropriate 
data out of the database. You are able to test cases where you are modifying the database by 
comparing the contents of a database to an expected result set. You are able to test queries 
against the database by comparing the output of various queries to an expected result 
set. You will often need to have data in the database at the beginning of your test for this 
functionality to work properly.

Getting ready
The database extension for PHPUnit comes as a separate PEAR package. In order to run the 
tests in the following examples you will need to install this extension. You can do so with the 
following command:

sudo pear install pear.phpunit.de/DbUnit
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The examples will be based on a SQLite install. So, make sure you have the SQLite  
extension and client installed. The method of installing this depends on your operating  
system and distribution. The examples in this recipe are going to be based on the following 
schema definition:

CREATE TABLE game (
  id INTEGER PRIMARY KEY AUTOINCREMENT,
  date_created DATETIME,
  current_player_id INTEGER
);

CREATE TABLE player (
  id INTEGER PRIMARY KEY AUTOINCREMENT,
  game_id INTEGER,
  name VARCHAR,
  hand VARCHAR
);

The schema will be loaded into the data/game-test.db file.

How to do it...
1.	 Place the following code in src/SqliteManager.php.

<?php
class SqliteManager {
  private $sqliteConnection;

  public function __construct(PDO $sqliteConnection)
  {
    $this->sqliteConnection = $sqliteConnection;
  }

  public function updateGame($gameId, $currentPlayerName)
  {
    $gameUpdateQuery = "
      UPDATE game
      SET current_player_id = (
        SELECT id
        FROM player
        WHERE
          game_id = ?
          AND name = ?
        )
      WHERE id = ?
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     ";

    $stm = $this->sqliteConnection->prepare($gameUpdateQuery);
    $stm->execute(array($gameId, $currentPlayerName, $gameId));
  }
  // ...
}

2.	 Update your configuration in phpunit.xml.dist to include the highlighted line.
<phpunit
    bootstrap="test-bootstrap.php"
    colors="false"
    strict="true"
>
  <!-- other content -->
  <php>
    <includePath>src</includePath>
   <const name="DB_DSN" value="sqlite:data/game-test.db" />
  </php>
  <!-- other content -->
</phpunit>

3.	 Create the following file in test/BaseDatabaseTest.php.
<?php

abstract class BaseDatabaseTest extends PHPUnit_Extensions_
Database_TestCase
{
  protected static $testPdo;

  protected static $systemPdo;

  public static function setUpBeforeClass()
  {
    self::$testPdo = new PDO(DB_DSN);
    self::$testPdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_
EXCEPTION);
    self::$systemPdo = new PDO(DB_DSN);
    self::$systemPdo->setAttribute(PDO::ATTR_ERRMODE, 
PDO::ERRMODE_EXCEPTION);
  }
  
  public static function tearDownAfterClass()
  {
    self::$testPdo = null;
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    self::$systemPdo = null;
  }

  protected function getConnection()
  {
    return $this->createDefaultDBConnection(self::$testPdo);
  }
}

4.	 Create your PHPUnit test in test/SqliteManagerTest.php.
<?php
class SqliteManagerTest extends BaseDatabaseTest
{
  private $sqliteManager;

  public function setUp()
  {
    parent::setUp();

    $this->sqliteManager = new SqliteManager(self::$systemPdo);
  }

  /**
   * @group db
   */
  public function testUpdateGame()
  {
    $this->sqliteManager->updateGame(1, 'Player2');

    $expectedDataSet = $this->createXMLDataSet(__DIR__ . '/
expected/SqliteManagerTestUpdateGame.xml');
    $this->assertDataSetsEqual($expectedDataSet, $this-
>getConnection()->createDataSet(array('game')));
  }

  // More tests …

  protected function getDataSet()
  {
    return $this->createXMLDataSet(__DIR__ . '/fixtures/
SqliteManagerTest.xml');
  }
}
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5.	 Create an XML data set fixture in test/fixtures/SqliteManagerTest.xml.
<?xml version="1.0" ?>
<dataset>
  <table name="game">
    <column>id</column>
    <column>date_created</column>
    <column>current_player_id</column>
    <row>
      <value>1</value>
      <value>2013-03-01 00:00:00</value>
      <value>1</value>
    </row>
  </table>
  <table name="player">
    <column>id</column>
    <column>game_id</column>
    <column>name</column>
    <column>hand</column>
    <row>
      <value>1</value>
      <value>1</value>
      <value>Player1</value>
      <value>A Hearts,2 Clubs,3 Diamonds,4 Spades,5 Hearts</value>
    </row>
    <row>
      <value>2</value>
      <value>1</value>
      <value>Player2</value>
      <value>6 Hearts,7 Clubs,8 Diamonds,9 Spades,10 Hearts</
value>
    </row>
  </table>
</dataset>

6.	 Create an XML data set expectation in test/expected/
SqliteManagerTestUpdateGame.xml.

<?xml version="1.0" ?>
<dataset>
  <table name="game">
    <column>id</column>
    <column>date_created</column>
    <column>current_player_id</column>
    <row>
      <value>1</value>
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      <value>2013-03-01 00:00:00</value>
      <value>2</value>
    </row>
  </table>
</dataset>

How it works...
There are a lot of moving parts involved with database testing. You have to set up your 
connection to the database, create the fixtures for the database, and create the expected 
data that you will compare the database against. There are many ways that these steps can 
be done. The preceding files show how this can be done for almost any scenario.

The first change that you need to make is to allow the database that you are using to be 
configurable. This isn't absolutely necessary, but it will make future changes significantly 
easier should you ever decide to alter your data source. Earlier we discussed PHPUnit 
configuration and discovered the power you have in the phpunit.xml file. One of the  
items in the PHP environment that can be configured from here are PHP constants.

Here we used the <const /> element to define the DB_DSN constant to point to our test 
SQLite database. Constants are a great way to configure test cases. They are easy to access 
from within the test and they can be very simple to override when using the phpunit.xml.
dist model. You just redefine them in a new phpunit.xml file or in an alternate config file.

Once you have defined your connection information you should create a base database test 
case that sets up your connections for you. This will provide a place for the global database 
test configuration. This class should be used for any kind of convenience method to help 
you reduce code duplication in your tests. For this example, we are just using this class 
to set up our database connections. There were two database PDO connections defined: 
BaseDatabaseTest::$testPdo and BaseDatabaseTest::$systemPdo. You don't 
have to define two different connections for tests. However, it is recommended that you do so 
to isolate the database used by the system under testing from the database used to run the 
test. This helps to ensure that you aren't polluting any kind of connection-based data such as 
the result of MySQL's LAST_INSERT_ID() function. This can also be very important when 
testing transactions. If you have code that uses transactions to ensure data integrity but it 
does not properly commit the transaction and you use the same connection to load the data 
for assertions that was used in the actual test, everything will pass just fine. In that case, it is 
not until you use a separate testing connection that cannot see unclosed transactions that 
you will realize the data was never committed.

It is important to note that the setUpBeforeClass() method was used to set up the 
connections. This can save a significant amount of time as the database connection will only 
need to be established once per database test case class as opposed to once per method. 
This does not strictly adhere to the principal of isolating your tests from each other as much as 
possible, but the speed benefit of reusing a connection almost always outweighs the isolation 
benefit. If setUpBeforeClass() is used to establish your database connections, you must 
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use tearDownAfterClass(). This is necessary because the PDO connections are being 
assigned to class statics. These will never fall out of scope by themselves, which is necessary 
for PDO connections to close. To ensure this does not happen, the tearDownAfterClass() 
method is used to set the connections to null.

Once the PDO connections are established the getConnection() method is used  
to wrap your PDO connection into DBUnit's connection format. The value returned from 
getConnection() will be used to set up your data fixtures as well as to pull data to  
validate again at the end of your tests.

With the BaseDatabaseTest test case, each of our test cases can be specifically focused 
on the unique system targeted for testing. In this example, the system being tested is the 
SqliteManager class. Each test case that focuses on database interaction will require 
a small amount of data to be present in the database at the beginning of each test. The 
getDataSet() method can be used to identify this initial data set, which will be populated  
in your database at the beginning of each test.

There are several formats that can be used to define the data set. Each of these formats has 
a method in PHPUnit_Extensions_Database_TestCase to allow you to easily instantiate 
the data set. In this example, createXMLDataSet() is used. It takes a path to an XML file 
as its only parameter. It is good practice to keep these files all in a single directory relative to 
the PHPUnit test case class. This makes it very easy to understand which files go with which 
tests without having to look at code. You can see the SqliteManagerTestUpdateGame.
xml being loaded as our data set fixture.

The SqliteManagerTestUpdateGame.xml file uses the standard XML format for 
PHPUnit's database extension. The structure of this format is pretty simple. The root element 
<dataset> will contain one or more <table> elements. The <table> element has a name 
attribute that defines the name of the table. It will then have one or more <column> elements 
that will define the columns in each table. Finally, there will be one or more <row> elements 
each containing a number of <value> elements equal to the number of columns defined 
for that table. To define a null value in any one of the columns you can instead use an empty 
<null /> element.

A very common mistake in creating database tests happens when the setUp() method  
is overwritten. In this test case, it was overwritten to instantiate the SqliteManager class.  
It is important to ensure the parent is called whenever this method is overwritten.  
If parent::setUp() method is not called, then your initial data set will never be loaded. 
Unfortunately, there is not a great indication in the test that this is what happened.
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Now is a good time to go through the life cycle of a database test. When a database test is 
run, at the time that setUp() is run, getConnection() is called. The connection returned 
is then used to delete all data in the tables specified by the getDataSet() method. Then 
the data set itself is reinserted. At that point the individual test is run. Finally, the tear down 
methods are invoked. So in this example, during setUp() the tables defined in the data 
set are game and player. Both of these tables will be completely deleted. Then the three 
rows specified in the data set will be inserted. Then the test itself will be run. The test in 
testUpdateGame() is very simple. It just invokes the SqliteManager::updateGame() 
method and then validates the content in the database.

When testing functionality that updates your data you will need to validate the resultant data 
in the database. To establish your expected data set you can use createXMLDataSet() 
just like you used it in getDataSet(). You will be passing in a different data set than what 
was used in getDataSet(). In this example, the SqliteManagerTestUpdateGame.xml 
data set was used. If part of your test is to ensure that nothing in your data was changed you 
can just as easily re-use the data set returned by getDataSet(). To keep your data sets 
organized, I would recommend you keep your fixture data sets separate from your expected 
data sets. One exception of course is those cases where you re-use your fixture as your 
expectation. This will help you keep your test cases organized as your suite grows.

The assertDataSetsEqual() can be used to compare the actual data in your 
database with the expected data set. Your expected data set should be passed as the first 
parameter. The actual data set can be retrieved directly from the connection returned by 
getConnection(). The connection object has a createDataSet() method that will create 
a data set containing all of the rows in all of the tables in the database. You can narrow the 
data set down to the tables that you are concerned with by specifying an array of table names 
as the first argument to createDataSet().

When one of your database tests fail, PHPUnit does its best to format the failure in an easily 
readable format. If we broke the previous test by failing to execute the update query, the test 
would fail as shown in the following screenshot:
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The table containing the differences will be printed out with the data contained. If there are 
multiple tables involved you will see the differences in all of the tables. This can be a lot of 
information if there are large data sets involved. This is one really good reason to keep the 
size of your data sets as small as possible for expectations.
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There's more...
Only the surface of database testing has been scratched with this example. There are many 
other functions and features available to help make this testing easier for you. We will cover 
a few of the these functions now but I would encourage you to take a look at PHPUnit's 
online database testing chapter to get more details about database testing: http://www.
phpunit.de/manual/3.7/en/database.html.

Alternate data sets
You have seen how you can use PHPUnit's XML format to define your data set; however,  
there are several other data set formats that you will find useful.

Flat XML data set
There are several other data set formats that can be used for your fixtures other than the 
standard XML format. You can also use a simpler (though less flexible) flat XML format where 
a single element defines a single row. The name of each element corresponds to the name 
of the table the row will be inserted in and the attribute names correspond to column names. 
The SqliteManagerTest.xml file could be rewritten using the flat format shown as follows:

<?xml version="1.0" ?>
<dataset>
  <game 
      id="1" 
      date_created="2013-03-01 00:00:00" 
      current_player_id="1" 
      />
  <player 
      id="1" 
      game_id="1" 
      name="Player1" 
      hand="A Hearts,2 Clubs,3 Diamonds,4 Spades,5 Hearts" 
      />
  <player 
      id="2" 
      game_id="1" 
      name="Player2" 
      hand="6 Hearts,7 Clubs,8 Diamonds,9 Spades,10 Hearts" 
      />
</dataset>

This format is much more concise but you lose the flexibility to specify things such as null 
values. If you want to use this format, instead of using the createXMLDataSet()method 
you can use createFlatXMLDataSet().
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MySQL XML data set
The MySQL XML data set can be very useful if you are using the MySQL database engine.  
This data set type allows you to use mysqldump to generate data sets. The key is using the 
--xml argument for mysqldump.

mysqldump --xml -t -u [username] --password=[password] [database] > /
path/to/file.xml

You can then pass the path of the resultant file to the createMySQLXMLDataSet() method 
to convert this file to a PHPUnit data set.

$this->createMySQLXMLDataSet('/path/to/file.xml');

YAML data set
The last data set we will talk about here is the YAML data set. This can provide a nice 
compromise of the conciseness of the flat XML data set with the flexibility of the standard  
XML data set. The SqliteManagerTest.xml data set can be redefined as a YAML data  
set as follows:

game:
  -
    id: 1
    date_created: "2013-03-01 00:00:00"
    current_player_id: 1

player:
  -
    id: 1
    game_id: 1
    name: Player1
    hand: A Hearts,2 Clubs,3 Diamonds,4 Spades,5 Hearts
  -
    id: 2
    game_id: 1
    name: Player2
    hand: 6 Hearts,7 Clubs,8 Diamonds,9 Spades,10 Hearts

The convenience of this format over the flat XML format is that you can specify a null by simply 
excluding the value just as you would in a typical YAML file. The unfortunate part of YAML is 
that there is no convenience method to create a data set in this format. You must instantiate 
it directly.

protected function getDataSet()
{
  return new PHPUnit_Extensions_Database_DataSet_YamlDataSet(
      __DIR__ . '/fixtures/SqliteManagerTestYaml.yaml'
  );
}
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Validating your data with queries
Sometimes it can be somewhat tedious to create expected data sets for full tables. For 
instance, you may have a lot of columns that aren't germane to the application but are just 
used for book keeping such as creation time or modified time types of columns. If you would 
like to assert against a portion of your data, a great strategy can be to use a query to generate 
the actual data set.

The database connection object returned by getConnection() has a 
createQueryTable() method that can be used to create a table object based on the result 
of a select query. When using this method to validate the results of your table you will have 
to use the assertTablesEqual() method instead of assertDataSetsEqual(). The 
createQueryTable() method takes two parameters. The first parameter is the name you 
want to use for the table. This name should match the name of the table in your expected 
data set. The second parameter is the query to populate the table.

The testUpdateGame() method could be rewritten to take advantage of query tables.

public function testUpdateGame()
{
  $this->sqliteManager->updateGame(1, 'Player2');

  $expectedDataSet = $this->createXMLDataSet(__DIR__ . '/expected/
SqliteManagerTestUpdateGame.xml');
  $actualTable = $this->getConnection()->createQueryTable("game", 
"SELECT * FROM game");
  $this->assertTablesEqual($expectedDataSet->getTable('game'), 
$actualTable);
}

Viewing code coverage (Advanced)
We have gone over a lot of PHPUnit functionality and how to use this functionality to build a 
test suite. Once you have a test suite created it is good to understand how effective your unit 
tests are. One way you can measure the effectiveness of your tests is by seeing how much 
of your code is actually under test. This is commonly referred to as your test suite's code 
coverage. PHPUnit has very useful reporting tools to help measure and monitor this coverage.

Getting ready
To generate code coverage reports you must have XDebug installed. This can typically be 
accomplished using your operating system's packaging system. 
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How to do it...
Make the following modifications to the phpunit.xml.dist file as shown by the highlighted 
lines of code:

<phpunit
    bootstrap="test-bootstrap.php"
    colors="false"
    strict="true"
>
  <!-- other content -->
  <logging>
    <log type="coverage-html" target="build/html-coverage" 
charset="UTF-8" highlight="true" />
  </logging>
  <filter>
    <whitelist processUncoveredFilesFromWhitelist="true">
      <directory suffix=".php">src</directory>
    </whitelist>
  </filter>
</phpunit>

Now any test runs will also generate an HTML code coverage report for your code.

How it works...
There are a couple of new PHPUnit configuration options presented here. The first and more 
important one is done via the <logging> and child <log> element. We are instructing 
PHPUnit to use the coverage-HTML logger type. You must specify a target attribute. This 
can be either a relative or absolute path to a directory that the HTML will be written to. If the 
directory does not already exist, it will be created. You can also specify the charset attribute 
that should be used to generate the HTML as well as whether or not the PHP source code will 
have syntax highlighting.

The second configuration you can use is the <filter> element. This is used 
to specify a white list, a black list, or both of files that you want to be included 
in your code coverage report. Generally, you should use a white list with the 
processUncoveredFilesFromWhitelist attribute set to true. This will make sure 
that all files in that directory are included in the coverage report. Otherwise, only files that 
are actually loaded will be added to the report. This means you run the risk of files that have 
0 percent coverage falling off of the coverage report completely. This will give you a false 
confidence in the coverage of your tests.
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The contents of your white list should be the code for the system you are testing. Usually, 
there is not much value to your testing to be gained by including the third-party code or 
the test code itself. These filters can be used to ensure this third party and test code is not 
considered in your coverage reports.

The <whitelist> element can include one or more of the <directory> and <file> 
elements. These elements contain absolute or relative paths to the directory or file that 
should be included. The <directory> element also accepts a suffix attribute to further filter 
the contents by the contained files' suffix. In our case, we used .php. In addition to these two 
elements, you can also include an <exclude> element. This element also takes one or more 
<directory> or <file> elements. This can be used if there are specific files or directories 
that are in white listed directories but should be excluded. It should be noted that you can use 
wildcards (*) in any of these elements.

If for some reason you would prefer to use a black list, then you simply need to use the 
<blacklist> element instead. There are no attributes for <blacklist> and you would  
use the same child elements as you would use with <whitelist>.

Now, when the phpunit command is run, an HTML version of the coverage report will be 
written to book/build/html-coverage/index.html.

This displays all of the files in our src directory along with a summary of the test coverage 
in that file. There are three different types of code coverage that are broken down for the 
directory as a whole as well as each individual file. 

The line coverage is the first measurement. It is a percentage of the executable lines of code 
that are executed by the test suite. The function or method coverage is the percentage of 
methods or functions in the file/directory that have full code coverage. Full code coverage 
means that every executable line in the method or function has been executed at least once. 
The final metric, classes and traits coverage, is the percentage of classes or traits in a file or 
directory that have full code coverage.

From this view you can drill into your directories. This would show a view similar to what you've 
already seen. If you click on a file however, you start seeing some very useful information.

This view presents a summary of the coverage of a specific file. It will include a count of the 
classes in the file as well as how many of those classes have full coverage. It will then break 
down each method or function in the file and report whether or not that function has full 
coverage, and how many lines in each method is covered.

Each method also gives a Change Risk Anti-Patterns (CRAP) index. CRAP is a good metric for 
identifying methods that are hesitant to change. It is a function that ascertains the complexity 
of a method and the amount of coverage the method currently has. All other things equal, the 
more complex a method the higher is its CRAP index. The index is lowered as you create more 
tests that cover more of a method. 
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There is no hard-and-fast method for determining the optimal CRAP index. So I will leave the 
details for that debate to other books and papers. I prefer to see methods with CRAP indexes 
less than 10.

Once you get below the summary table you will see a syntax highlighted rendering of the 
source code for the file. Each executable line will be highlighted either in red or green. If it is 
red, that means it is not covered by any tests in your suite. If it is green, that means the line is 
covered by one or more tests. If you hover over a green line, it will show a list of all the tests 
that cover that specific line. You may occasionally see lines highlighted yellow. These are dead 
lines. This means that due to the structure of the code, the yellow highlighted line could never 
possibly be executed. This is usually because of a return statement somewhere other than the 
end of your method or function.

PHPUnit also provides a dashboard view of your project at book/build/html-coverage/
index.dashboard.html.

This dashboard provides four interesting pieces of information. The class coverage distribution 
shows you how many classes in the system fall within a specified range of code coverage. 
In an ideal project only the right-most bar would have any size. That would mean that all of 
your classes have full code coverage. This project is problematic as you can see that a large 
number of classes have absolutely no coverage.

The second section is a scatter plot of the class complexity. The Y-axis measures complexity 
and the X-axis measures code coverage. The ideal code has lots of coverage and little 
complexity, so the ideal location for your plots is going to be in the lower-right corner of this 
graph. The worst possible location for any plot is the upper-left corner. If you see a plot in that 
area, you can find the class that is the culprit by hovering over the plot.

The third section shows your top project risks. This gives you a more comprehensible view  
of what you see in the class complexity chart. You can use it to identify where your testing  
effort should be focused. The classes here are determined by using the CRAP index we  
already covered.

The final section is the least tested methods section. This gives you an overview of the 
methods with the least amount of testing focus. This drills down even further on areas that 
can be improved in your test cases.

There is a wealth of information that can be a great help in improving an existing test suite's 
coverage. It can also go great lengths in keeping the quality of an already good test suite high.
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