
www.allitebooks.com

http://www.allitebooks.org

Instant OpenCV Starter

Get started with OpenCV using practical, hands-on projects

Jayneil Dalal

Sohil Patel

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.packtpub.com/authors/profiles/jayneil-dalal
http://www.allitebooks.org

Instant OpenCV Starter

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: May 2013

Production Reference: 1170513

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-881-2

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits
Authors

Jayneil Dalal

Sohil Patel

Reviewers

David Millán Escrivá

Sagar Patel

Acquisition Editor

Usha Iyer

Commissioning Editor

Sharvari Tawde

Technical Editor

Vrinda Nitesh Bhosale

Project Coordinator

Esha Thakker

Proofreader

Paul Hindle

Graphics

Abhinash Sahu

Production Coordinator

Prachali Bhiwandkar

Cover Work

Prachali Bhiwandkar

Cover Image

Conidon Miranda

www.allitebooks.com

http://www.packtpub.com/authors/profiles/jayneil-dalal
http://www.allitebooks.org

About the Authors
Jayneil Dalal is an Embedded Linux Engineer/Technical Writer who loves to explore
different open source technologies, and he has been a key member of the PandaBoard.org
and Beagleboard.org projects at Texas Instruments. He has been selected to give a talk at
Linuxfest Northwest 2013 and OSCON 2013. He has previously presented at Linuxcon North
America 2012, Drodicon 2012 in Berlin, Southeast Linuxfest 2012, Indiana Linuxfest 2012,
Northwest Linuxfest 2012, Scipy 2011, and Opensource bridge 2012. Jayneil can be reached
at jayneil.dalal@gmail.com.

I would like to thank my family members, Harish, Atul, Deena, and Nayshil,
for encouraging me to write this book. Finally, I would like to acknowledge
my co-author Sohil Patel's immense hardwork and dedication that made this
book a reality.

Sohil Patel is a Computer Vision Engineer and FOSS advocate who loves to explore different
open source technologies. His areas of interest include Python, Computer Vision, Augmented
Reality, Linux, HCI, Pandaboard, and other open source hardware platforms. He is currently
working at Azoi, which is a startup based in India.

I would like to thank my family members, Sanjay, Hema, and Hetvi, for
encouraging me to write this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers
David Millán Escrivá was 8 years old when he wrote his first program on an 8086 PC with
Basic language, which enabled the 2D plotting of basic equations. This was only the beginning of
his computer development relationship, and he has since created many applications and games.

In 2005, he finished his studies in IT through the Universitat Politécnica de Valencia with honors
in human-computer interaction supported by computer vision with OpenCV (v0.96). He wrote a
final project based on this subject and published it on HCI Spanish congress.

He also participated in Blender source code, an open source 3D-software project, and worked
in his first commercial movie, Plumiferos – Aventuras Voladoras, as a Computer Graphics
Software Developer.

David now has more than 10 years of experience in IT, with more than 7 years experience in
computer vision, computer graphics, and pattern recognition working on different projects
and startups and applying his knowledge of computer vision, optical character recognition,
and Augmented Reality.

He is the author of DamilesBlog (http://blog.damiles.com), where he publishes research
articles and tutorials about OpenCV, computer vision in general, and Optical Character Recognition
algorithms. He is also the co-author of Mastering OpenCV with Practical Computer Vision Projects.
He has also reviewed the following Packt books:

ÊÊ GnuPlot Cookbook, Lee Phillips

ÊÊ OpenCV Computer Vision with Python, Joseph Howse

I thank my wife, Izaskun, and my daughter, Eider, for their patience and
support. Love you.

www.allitebooks.com

http://www.allitebooks.org

Sagar Patel is pursuing a Bachelors degree in Electronics and Communication Engineering from
Nirma University, India. His main areas of interest include Digital Sound Processing, Augmented
Reality, Artificial Intelligence, and Machine Vision. His research is on the bionics based project The
Third Eye, which has been approved by Idea Lab. As far as physics is concerned, he loves to explore
the idea of the Theory of Relativity. He believes that, "Thousands of miles of long journey begin
with a single step, and that step begins with a tiny thought".

I am thankful to the authors, Jayneil Dalal and Sohil Patel, for giving me the
opportunity to review this book. I would like to specially thank my parents
and my grandfather for giving me the motivation. I am also thankful to Packt
Publishing for providing the direction to the reviewing process.

www.allitebooks.com

http://www.allitebooks.org

www.packtpub.com

Support files, eBooks, discount offers and more
You might want to visit www.packtpub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.packtpub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

www.allitebooks.com

mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.allitebooks.org

packtlib.packtpub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ÊÊ Fully searchable across every book published by Packt

ÊÊ Copy and paste, print and bookmark content

ÊÊ On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.packtpub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

TM

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Instant OpenCV Starter	 1

So, what is OpenCV?	 3
Installation	 4

OpenCV installation procedure for Linux	 4
Approach 1	 4
Approach 2	 4

OpenCV uninstallation procedure for Linux	 11
OpenCV installation procedure for Windows	 12

Step 1 – installing the dependencies	 12
Step 2 – installing OpenCV	 12
Step 3 – configuring OpenCV with Code::Blocks	 12

And that's it	 15
Quick start – OpenCV fundamentals	 16

Task 1 – image basics	 17
Greyscale	 17
Color/RGB	 18

Task 2 – reading and displaying an image	 19
Code	 19
Code explanation	 19
Output	 21

Task 3 – resizing and saving an image	 21
Code	 21
Code explanation	 22
Output	 23

Top 5 features you need to know about	 24
Pixel manipulation	 24

Task	 24
Algorithm	 24
Code	 25
Code explanation	 26
Output	 28

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Image conversions	 28
Task	 28
Code	 28
Code explanation	 29
Output	 30

Image steganography	 30
Part 1 – encode	 31
Code explanation	 32
Part 2 – Decode	 34
Code explanation	 35

Edge detection	 36
Task	 36
Code	 37
Code explanation	 37
Output	 38

Real-time video processing via webcam	 39
Task	 39
Algorithm	 39
Code	 39
Code explanation	 40
Output	 40

People and places you should get to know	 41
Official sites	 41
Tutorials/cheat sheets/answers	 41
Community	 41
Twitter	 41

Instant OpenCV Starter

Welcome to Instant OpenCV Starter. This book has been specifically created to
provide you with all the information that you need to set up OpenCV. You will
learn the basics of OpenCV, get started with building your first program, and
discover some tips and tricks for using OpenCV.

This book contains the following sections:

So, what is OpenCV? find out what OpenCV actually is, what you can do with it,
and why it's so great.

Installation learn how to download and install OpenCV with minimum fuss and
then set it up so that you can use it as soon as possible.

Quick start – OpenCV fundamentals this section will show you how to perform a
few of the basic tasks in OpenCV as well as how to write your first program.

Top 5 features you need to know about here you will learn how to perform image
conversions and pixel manipulations.

People and places you should get to know every open source project is centered
around a community. This section provides you with many useful links to the
OpenCV project page and forums.

3

Instant OpenCV Starter

So, what is OpenCV?
OpenCV is the world's most popular open source computer vision library, with more than 500
optimized algorithms for image and video analysis. In the digital age of image and video sharing,
the need for computer vision is at an all-time high. Take a look around you, and you will see that
computer vision is being implemented everywhere. It's in cars to assist drivers with parking in
tight spots; most manufacturers ship laptops these days with facial recognition software for
additional security; even Facebook and Google+ use it to identify individual persons in the large
photo albums we upload so that we don't have to tag each person multiple times in every single
photograph. The list is endless. This is where OpenCV comes in to the picture. You can use the
wide range of image and video algorithms provided by the OpenCV library for your particular
computer vision application. It saves time and energy by providing you a tested, well-known
reference platform to start so that you don't end up writing everything from scratch.

OpenCV is distributed with a BSD license, which means that you can make a commercial
application without revealing your source code. But, there are a few algorithms, despite being
provided with complete source code inside OpenCV, that are patented.

OpenCV has C++, C, Python, and Java interfaces, and it supports Windows, Linux, Mac OS,
iOS, and Android. OpenCV was designed for computational efficiency and with a strong focus
on real-time applications. Written in optimized C/C++, the library can take advantage of
multicore processing.

The URL of the project's website is as follows:

http://opencv.org/

4

Instant OpenCV Starter

Installation
This section will cover the installation procedure for OpenCV in Windows as well as Linux. Newer
versions of the OpenCV library are released periodically. For the purpose of this book, the 2.4.2
version has been the reference. Also, we will be using the open source Code::Blocks Integrated
Development Environment (IDE) for writing all our codes. More information about this can be
found at http://www.codeblocks.org/.

OpenCV installation procedure for Linux
We have used Ubuntu 12.04 LTS for this installation. Before you install OpenCV, you will need
to check that you have all of the required elements, listed as follows:

ÊÊ Disk space: 300 MB free (min). You will require more free space to store your
teaching materials.

ÊÊ Memory: 256 MB (min); 1 GB (recommended).

Approach 1
If you are not interested in installing the latest version of OpenCV, you can install it from the
Ubuntu software repositories by running the following command in the terminal (by pressing
Ctrl + Alt + T):

sudo apt-get install libopencv-dev

Approach 2
Use this approach if you want the latest version of OpenCV. In this approach, OpenCV will be
built from source and you will have to install the dependencies prior to that.

Step 1 – updating the system
Make sure that your system is updated. To update your system, run the following commands in
the terminal:

sudo apt-get update

sudo apt-get upgrade

Step 2 – installing the dependencies
OpenCV is a library, and it needs various other components to function properly. So, the various
other dependencies that we would need to install first are as follows:

ÊÊ Essentials: These are the libraries and tools required by OpenCV. Use the following
command to install essentials:

sudo apt-get install build-essential checkinstall cmake pkg-config
yasm

5

Instant OpenCV Starter

ÊÊ Image I/O: These are libraries for reading and writing various image types. If you do not
install them, then the versions supplied by OpenCV will be used.

sudo apt-get install libtiff4-dev libjpeg-dev libjasper-dev

ÊÊ Video I/O: You need some or all of these packages to add video capturing/encoding/
decoding capabilities to the highgui module.

sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev
libdc1394-22-dev libxine-dev libgstreamer0.10-dev libgstreamer-
plugins-base0.10-dev libv4l-dev

ÊÊ Python: These are packages needed to build the Python wrappers.

sudo apt-get install python-dev python-numpy

ÊÊ Other dependencies:

sudo apt-get install checkinstall gir1.2-gst-plugins-base-0.10
gir1.2-gstreamer-0.10 libgstreamer-plugins-base0.10-dev
libgstreamer0.10-dev libslang2-dev libxine-dev libxine1-bin
libxml2-dev

ÊÊ Other third-party libraries: Install Intel TBB to enable parallel code in OpenCV.

sudo apt-get install libtbb-dev

ÊÊ GUI: You can optionally install QT instead of the default GTK and later enable it in
the configuration.

sudo apt-get install libgtk2.0-dev libqt4-dev

Step 3 - configuring OpenCV Version 2.4.2
1.	 Download OpenCV from the following URL:

http://downloads.sourceforge.net/project/opencvlibrary/opencv-
unix/2.4.2/OpenCV-2.4.2.tar.bz2

2.	 Extract the downloaded file to your home folder and navigate to the extracted folder
using the terminal.

6

Instant OpenCV Starter

3.	 Make a sub folder and name it build. Navigate to this folder using the terminal and
run the following command:

sudo apt-get install cmake-gui

cmake-gui

4.	 Provide the source folder and in the binary folder option, provide the build folder path.

5.	 Click on Configure.

6.	 Now check the checkboxes to include those functionalities and click on Configure again
to update.

7

Instant OpenCV Starter

7.	 Once you are sure, click on Generate.

Step 4 – compiling OpenCV
Run the following command:

make

8

Instant OpenCV Starter

The above compilation process can take some time depending on your system configuration. It
took approximately about 10 minutes on our Intel i7 laptop, while it took a bit more than an hour
on our Intel i3 laptop. The following screenshot shows the output after the successful completion
of the process.

Step 5 – installing OpenCV
Run the following command:

sudo make install

The above installation process can take some time depending on your system configuration. It
took approximately about 2 minutes on our Intel i7 laptop, while it took around 15 to 20 minutes
on our Intel i3 laptop. The following screenshot shows the output after the successful completion
of the process.

9

Instant OpenCV Starter

Step 6 – configuring Linux
1.	 Edit /etc/ld.so.conf.d/opencv.conf and add /usr/local/lib to it:

sudo gedit /etc/ld.so.conf.d/opencv.conf

sudo ldconfig

2.	 Edit the bash.rc file and add the following to it:

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig

export PKG_CONFIG_PATH

sudo gedit /etc/bash.bashrc

Now, log out of the system or restart it.

10

Instant OpenCV Starter

Step 7 – configuring OpenCV with Code::Blocks
1.	 Install Code::Blocks IDE from the Ubuntu Software Center.

2.	 Start Code::Blocks IDE.

3.	 Create a new project by clicking on the Create a New Project tab.

4.	 Select Console application from Projects:

5.	 Select the language as C++ and click on Next.

6.	 Give a name to your project and click on Next.

7.	 Make sure you are using GNU GCC Compiler. Click on Finish.

8.	 Find your project under the Projects tab of the Management view. To use OpenCV in
your project the following preconfigurations are required:

i.	 Go to Build options by right-clicking on your project.

ii.	 Jump to the Other options tab in Compiler settings.

iii.	 Add 'pkg-config --cflags opencv' in the blank space.

11

Instant OpenCV Starter

iv.	 Jump to the Linker settings tab.

v.	 Add 'pkg-config --libs opencv' in the blank space under Other
linker options.

To compile your code from the command line using gcc, use the following
command:
g++ 'pkg-config --cflags --libs opencv' -o main main.cpp

OpenCV uninstallation procedure for Linux
1.	 Go to the build folder (inside the OpenCV folder).

2.	 Now run the following command in the terminal:

sudo make uninstall

3.	 Delete the entire OpenCV folder.

12

Instant OpenCV Starter

4.	 Run the following command in the terminal, to delete every file containing opencv in
its name:

sudo find / -name "*opencv*" -exec rm -i {} \;

5.	 Edit the opencv.conf file under /etc/ld.so.conf.d and remove /usr/local/
lib from it:

sudo gedit /etc/ld.so.conf.d/opencv.conf

sudo ldconfig

6.	 Edit the bash.rc file and remove the following lines from it:

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export PKG_CONFIG_PATH
sudo gedit /etc/bash.bashrc

7.	 To make sure you have been successful, check the following paths:

°° /usr/local/bin

°° /usr/local/lib

OpenCV installation procedure for Windows
To install OpenCV in Windows, follow the steps mentioned in the next sections.

Step 1 – installing the dependencies
1.	 Download MinGW from http://sourceforge.net/projects/mingw/files/ and

install it in the c drive.

2.	 Download and install Path Editor from http://www.redfernplace.com/software-
projects/patheditor/.

Step 2 – installing OpenCV
Download the latest version of OpenCV from the following link and run the executable file:

http://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.2/

Make sure that you are installing OpenCV in your c drive.

Step 3 – configuring OpenCV with Code::Blocks
1.	 Download and install Code::Blocks from the following link:

http://www.codeblocks.org/downloads/26

13

Instant OpenCV Starter

2.	 Run Path Editor and click on Add Directory, and then include all the following locations
one by one and click on Save to Registry.

°° C:\MinGW\bin

°° C:\MinGW

°° C:\opencv\build\x86\mingw\lib

°° C:\opencv\build\x86\mingw\bin

°° C:\opencv\build\common\tbb\ia32\mingw

Add the path of the bin folder for MinGW and OpenCV.

3.	 Start Code::Blocks IDE.

4.	 Create a new project by clicking on the Create a New Project tab.

5.	 Select Console application from Projects, as shown in the first screenshot in
Step 7 – configuring OpenCV with Code::Blocks discussed earlier.

6.	 Select the language as C++ and click on Next.

7.	 Give a suitable name to your project and click on Next.

8.	 Make sure that you are using GNU GCC Compiler and click on Finish.

14

Instant OpenCV Starter

9.	 Find your project under the Projects tab of the Management view.

10.	 To use OpenCV in your project, the following preconfigurations are required:

i.	 Go to the Settings | Compiler option.

ii.	 Open the Search Directories tab and choose the compiler option.

iii.	 Add the following paths by clicking on the Add button:

°° C:\opencv\build\include\opencv

°° C:\opencv\build\include

Set the path of the include folders from the installed OpenCV folder.

11.	 Jump to the Linker tab under Search Directories and add the following path by clicking
on the Add button:

C:\opencv\build\x86\mingw\lib

15

Instant OpenCV Starter

Set the path of the library files from the installed OpenCV folder.

12.	 Go to the Linker Settings tab and click on the Add button in the lower-left corner. Browse
to c:\opencv\build\x86\mingw\lib and include all the available libraries.

13.	 Click on the OK button to save your settings.

And that's it
By this point, you should have a working installation of OpenCV on your machine. Feel free to
play around and discover more about it.

16

Instant OpenCV Starter

Quick start – OpenCV fundamentals
In this section we will be covering the fundamentals of image processing and help you write your
first program in OpenCV by performing a few trivial tasks. All the examples throughout the book
have been written in the C++ programming language.

The OpenCV library has a modular structure, and the following diagram depicts the different
modules available in it:

core

highgui

video

OpenCV

gpu

imgproc

features2d objdetect

calib3D

A brief description of all the modules is as follows:

Module Feature

Core A compact module defining basic data structures, including the
dense multidimensional array Mat and the basic functions used
by all other modules.

Imgproc An image processing module that includes linear and non-linear
image filtering, geometrical image transformations (resizing,
affine and perspective warping, generic table-based remapping),
color space conversion, histograms, and so on.

Video A video analysis module that includes motion estimation,
background subtraction, and object tracking algorithms.

Calib3d Basic multiple-view geometry algorithms, single and
stereo camera calibration, object pose estimation, stereo
correspondence algorithms, and elements of 3D reconstruction.

Features2d Salient feature detectors, descriptors, and descriptor matchers.

Objdetect Detection of objects and instances of the predefined classes; for
example, faces, eyes, mugs, people, cars, and so on.

Highgui An easy-to-use interface for video capturing, image and video
codecs, as well as simple UI capabilities.

Gpu GPU-accelerated algorithms from different OpenCV modules.

17

Instant OpenCV Starter

Task 1 – image basics
When trying to recreate the physical world around us in digital format via a camera, for
example, the computer just sees the image in the form of a code that just contains the numbers
1 and 0. A digital image is nothing but a collection of pixels (picture elements) which are then
stored in matrices in OpenCV for further manipulation. In the matrices, each element contains
information about a particular pixel in the image. The pixel value decides how bright or what
color that pixel should be. Based on this, we can classify images as:

ÊÊ Greyscale

ÊÊ Color/RGB

Greyscale
Here the pixel value can range from 0 to 255 and hence we can see the various shades of gray
as shown in the following diagram. Here, 0 represents black and 255 represents white:

143 143 143 154 150 150 147 153

147 148 149 142 148 147 153 151 150

144 146 145 148 146 145 151 150 152

144 149 141 145 143 144 149 151 149

144 142 149 148 146 148 147 149 149

141 148 146 144 145 145 152 146 148

140 146 145 142 145 142 148 147 147

138 142 141 147 142 143 145 141 145

137 144 139 145 149 145 144 143 146

144

18

Instant OpenCV Starter

A special case of grayscale is the binary image or black and white image. Here every pixel is
either black or white, as shown in the following diagram:

0 0 0 255

0 0 0 0

0 0 0

0 0

0 0

0

0 0

0 0

0

0 255 255 255 255

255 255 255 255 255

255 255 255 255 255

255 255 255 255 255 255

255 255 255 255

255 255 255

255255

255

255 255 255 255 255 255 255 255

255 255 255 255 255 255

255255255255255

255 255 255 255 255

255255255

255

255

Color/RGB
Red, Blue, and Green are the primary colors and upon mixing them in various different
proportions, we can get new colors. A pixel in a color image has three separate channels— one
each for Red, Blue, and Green. The value ranges from 0 to 255 for each channel, as shown in
the following diagram:

19

Instant OpenCV Starter

Task 2 – reading and displaying an image
We are now going to write a very simple and basic program using the OpenCV library to read and
display an image. This will help you understand the basics.

Code
A simple program to read and display an image is as follows:

// opencv header files
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/core/core.hpp"
// namespaces declaration
using namespace cv;
using namespace std;
// create a variable to store the image
Mat image;
int main(int argc, char** argv)
{
// open the image and store it in the 'image' variable
// Replace the path with where you have downloaded the image
image=imread("<path to image">/lena.jpg");
// create a window to display the image
namedWindow("Display window", CV_WINDOW_AUTOSIZE);
// display the image in the window created
imshow("Display window", image);
// wait for a keystroke
waitKey(0);
return 0;
}

Code explanation
Now let us understand how the code works. Short comments have also been included in the
code itself to increase the readability.

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/core/core.hpp"

The preceding two header files will be a part of almost every program we write using the
OpenCV library. As explained earlier, the highgui header is used for window creation,
management, and so on, while the core header is used to access the Mat data structure
in OpenCV.

using namespace cv;
using namespace std;

www.allitebooks.com

http://www.allitebooks.org

20

Instant OpenCV Starter

The preceding two lines declare the required namespaces for this code so that we don't have to
use the :: (scope resolution) operator every time for accessing the functions.

Mat image;

With the above command, we have just created a variable image of the datatype Mat that is
frequently used in OpenCV to store images.

image=imread("<path to image">/lena.jpg");

In the previous command, we opened the image lena.jpg and stored it in the image variable.
Replace <path to image> in the preceding command with the location of that picture on
your PC.

namedWindow("Display window", CV_WINDOW_AUTOSIZE);

We now need a window to display our image. So, we use the above function to do the same. This
function takes two parameters, out of which the first one is the name of the window. In our case,
we would like to name our window Display Window. The second parameter is optional, but it
resizes the window based on the size of the image so that the image is not cropped.

imshow("Display window", image);

Finally, we are ready to display our image in the window we just created by using the preceding
function. This function takes two parameters out of which the first one is the window name in
which the image has to be displayed. In our case, obviously, that will be Display Window. The
second parameter is the image variable containing the image that we want to display. In our
case, it's the image variable.

waitKey(0);

Last but not least, it is advised that you use the preceding function in most of the codes that
you write using the OpenCV library. If we don't write this code, the image will be displayed for
a fraction of a second and the program will be immediately terminated. It happens so fast that
you will not be able to see the image. What this function does essentially is that it waits for a
keystroke from the user and hence it delays the termination of the program. The delay here is
in milliseconds.

21

Instant OpenCV Starter

Output
The image can be displayed as follows:

Task 3 – resizing and saving an image
We are now going to write a very simple and basic program using the OpenCV library to resize
and save an image.

Code
The following code helps you to resize a given image:

// opencv header files
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/core/core.hpp"
// namespaces declaration
using namespace std;
using namespace cv;
int main(int argc, char** argv)

22

Instant OpenCV Starter

{
 // create variables to store the images
 Mat org, resized,saved;
 // open the image and store it in the 'org' variable
 // Replace the path with where you have downloaded the image
 org=imread("<path to image>/lena.png");
 //Create a window to display the image
 namedWindow("Original Image",CV_WINDOW_AUTOSIZE);
 //display the image
 imshow("Original Image",org);
 //resize the image
 resize(org,resized,Size(),0.5,0.5,INTER_LINEAR);
 namedWindow("Resized Image",CV_WINDOW_AUTOSIZE);
 imshow("Resized Image",resized);
 //save the image
 //Replace <path> with your desired location
 imwrite("<path>/saved.png",resized;
 namedWindow("Image saved",CV_WINDOW_AUTOSIZE);
 saved=imread("<path to image>/saved.png");
 imshow("Image saved",saved);
 //wait for a keystroke
 waitKey(0);
 return 0;
}

Code explanation
Since most of the code in the above program is similar to the one in the Image conversions
section, only the new functions/concepts will be explained in this case.

#include "opencv2/imgproc/imgproc.hpp"

Imgproc is another useful header that gives us access to the various transformations, color
conversions, filters, histograms, and so on.

Mat org, resized;

We have now created two variables, org and resized, to store the original and resized
images respectively.

resize(org,resized,Size(),0.5,0.5,INTER_LINEAR);

23

Instant OpenCV Starter

We have used the preceding function to resize the image. The preceding function takes
six parameters, out of which the first one is the variable containing the source image to be
modified. The second one is the variable to store the resized image. The third parameter is
the output image size. In this case we have not specified this, but we have instead used the
Size() function, which will automatically calculate it based on the values of the fourth and
fifth parameters. The fourth and fifth parameters are the scale factors along the horizontal and
vertical axes respectively. The sixth parameter is for choosing the type of interpolation method.
We have used the bilinear interpolation, which is the default method.

imwrite("<path>/saved.png",final);

Finally, using the preceding function, you can save an image to a particular location on our PC.
The function takes two parameters, out of which the first one is the location where you want to
store the image and the second is the variable in which the image is stored. This function is very
useful when you want to perform multiple operations on an image and save the image on your
PC for future reference. Replace <path> in the preceding function with your desired location.

Output
Resizing can be demonstrated through the following output:

24

Instant OpenCV Starter

Top 5 features you need to know about
Let us do a quick recap of the things we have learnt and done so far. We have had a brief
overview of OpenCV and performed a few trivial tasks such as reading, displaying, and
saving an image. Now, we will gradually step it up a notch and learn a few useful and
more advanced features, such as pixel manipulation and image conversion.

From here onwards, remaining parts of the code will not be published in the book, but the
entire codes can be downloaded from the Packt Publishing website.

Pixel manipulation
If you look closely, you will notice that all the codes that we have executed so far perform
operations on the image as a whole, and not its individual constituent elements, called pixels.
There could be many applications where individual pixel manipulation could be useful. For
example, you went on a trip to India and took a lot of pictures at various exotic locations. After
returning from the trip, you had more than three thousand pictures with your digital camera.
Suddenly, you want that beautiful picture you took of the desert. Now, you could flip through all
the three thousand images and hope to find the picture or, you could use OpenCV to help you
out. Since you know the color of the sand in the desert, you can write an OpenCV program to
search for pictures with similar backgrounds by comparing each pixel value in the picture to the
color of the desert sand. This will narrow down your search just to a couple of pictures!

So, we will now see how we can perform pixel manipulation in OpenCV.

Task
Given a grayscale or a color image, perform pixel manipulation.

Algorithm
The algorithm is quite similar for grayscale and color images. Let us first understand the
algorithm in regards to a grayscale image.

Grayscale
Our program would compare the values of each and every pixel in the image to a predetermined
threshold value and then, based on a preset logic, change the existing value of the selected
pixels in the image to another desired value. So, for example, let us assume that the threshold
value is 100 and our preset logic is designed such that every pixel value that is greater than the
threshold value should be made white in the image. Now our program would compare each pixel
value in the image to the threshold value, and whichever pixel satisfies the preset logic criteria
would be turned white and no change will be made to the remaining pixels.

25

Instant OpenCV Starter

Color
The logic extends similarly to a color image, but there is a slight modification. Unlike the
grayscale image, a pixel in a color image has three components, which are red, green, and blue.
It is the combination of the values of these three individual components which decides the
resulting color in the image at that pixel. Each of these three components has values ranging
from 0 to 255, where 0 would represent black and 255 would represent white. So, we have to
take into consideration the values of all three components. Our program in this case would first
obtain the value of the three components, compute the average value (let us call it the average
pixel value), and then use this value to compare with the predetermined threshold value. Then,
based on the preset logic, it would change the existing value of the three components for
selected pixels in the image to another desired value. So, for example, let us assume that the
threshold value is 100 and our preset logic is designed such that every average pixel with a value
that is greater than the threshold value should be made white in the image. Now, our program
would first obtain the values of the RGB (short for RED, GREEN, and BLUE) components of the
pixel and then compute the average value. So, this newly computed average value will represent
the pixel value and reduce our burden, as we don't have to deal with three separate values. Now
our program would compare the average pixel value of each pixel in the image to the threshold
value and whichever pixels satisfy the preset logic criteria would be turned white and no change
will be made to the remaining pixels.

Code
To perform a pixel manipulation, we will use the following code:

void thresholding(Mat &aImage, uchar aThreshValue)
{
 int numberRows = aImage.rows; // Number of Rows in Image(Height)
 int numberCols = aImage.cols; // Number of Cols in Image(Width)
 for(int j = 0; j < numberRows; j++)
 for(int i = 0; i < numberCols; i++)
 {
 if (aImage.channels() == 1)
 {
	 // grayscale image
 // Get the value of each pixel
 uchar tValue = aImage.at<uchar>(j,i);
 if(tValue > aThreshValue)
 { // If the pixel value is greater than the threshold value then
make it WHITE
 aImage.at<uchar>(j,i)= 255;
 }
 }
 else if (aImage.channels() == 3)
 {// color image

26

Instant OpenCV Starter

 // Sum of RGB components of the pixel
 int tSum = aImage.at<Vec3b>(j,i)[0] + aImage.at<Vec3b>(j,i)[1]
+ aImage.at<Vec3b>(j,i)[2];
 uchar averageValue = static_cast<uchar>(tSum/3);
 if(averageValue > aThreshValue)
 { // If the average value of RGB components of the pixel is
greater than the threshold value then make the components WHITE
 aImage.at<Vec3b>(j,i)[0]= 255; // Blue component of the
pixel
 aImage.at<Vec3b>(j,i)[1]= 255; // Green component of the
pixel
 aImage.at<Vec3b>(j,i)[2]= 255; // Red component of the
pixel
 }
 }
 }
}

Code explanation
Now let us understand the working of the program.

void thresholding(Mat &aImage, uchar aThreshValue)

This is our function that will perform the pixel manipulation. It accepts two arguments:
aImage and aThreshValue. The aImage argument is the matrix containing the image
on which we want to perform the pixel manipulation while aThreshValue is the variable
that contains the threshold value. Note that uchar in OpenCV is an 8-bit unsigned integer.

int numberRows = aImage.rows; // Number of Rows in Image(Height)
int numberCols = aImage.cols; // Number of Cols in Image(Width)

Here, numberRows and numberCols will store the height (rows) and width (columns) of the
image respectively.

if (aImage.channels() == 1)

Now, we will check whether the given image is a grayscale image or not. As we discussed earlier,
grayscale images only have one channel—only one component that represents the value of each
pixel in the image.

uchar tValue = aImage.at<uchar>(j,i);

27

Instant OpenCV Starter

tValue is an 8-bit unsigned integer that will store the value of the pixel at the point (j, i) in
the image.

if(tValue > aThreshValue)
 aImage.at<uchar>(j,i)= 255;

Here, we will check whether the value of a particular pixel is greater than the threshold value
or not. If a particular pixel value satisfies the above preset logic, its value is greater than the
threshold value, so we will change that pixel to white (255).

else if (aImage.channels() == 3)

Here, we check whether the given image is a color image or not. As we discussed earlier, color
images have three channels (three components), which are red, green, and blue.

int tSum = aImage.at<Vec3b>(j,i)[0] + aImage.at<Vec3b>(j,i)[1] +
aImage.at<Vec3b>(j,i)[2];

tSum will store the arithmetic sum of the RGB components of the pixel at the point (j, i)
in the image. Also, Vec3b is a template class for storing numerical vectors. Here, the numbers
[0], [1], [2] are used to access the blue, green, and red components respectively.

uchar averageValue = static_cast<uchar>(tSum/3);

We now calculate the average value of the pixels.

if(averageValue > aThreshValue)
 { // If the average value of RGB components of the pixel is
greater than the 		 threshold value then make it white
 aImage.at<Vec3b>(j,i)[0]= 255; // Blue component of the
pixel
 aImage.at<Vec3b>(j,i)[1]= 255; // Green component of the
pixel
 aImage.at<Vec3b>(j,i)[2]= 255; // Red component of the
pixel
 }

Here, we will check whether the average value of each pixel is greater than the threshold value
or not. If a particular pixel value satisfies the preset logic, its value is greater than the threshold
value, so we will change the value of all the components of that pixel to white (255). We also
would like to point out that OpenCV also has its own built in threshold function but we have
created our own in this case for the sake of simplicity.

28

Instant OpenCV Starter

Output
The following output shows pixel manipulation:

Image conversions
Image conversion is another very powerful tool, which is very essential to learn. There could be
various scenarios where dealing with grayscale images compared to color images is much easier.
For example, lets say that we wanted to write a program that would detect whether a particular
object such as a square or rectangle is present in a given image or not. Here, we are concerned
with the shape of the object and not its color. So, converting the image to grayscale from color
will reduce a lot of computations for us, as we only have to work with one channel.

Task
Given a color image, convert it to a grayscale image.

Code
Use the following code to convert a color image into a grayscale image:

// opencv header files
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"

29

Instant OpenCV Starter

// namespaces declaration
using namespace cv;
using namespace std;
// create a variable to store the image
Mat image;
Mat gray;

int main(int argc, char** argv)
{
// open the image and store it in the 'image' variable
// Replace the path with where you have downloaded the image
image=imread("<Path to Image>/RGB.png");
// create single channel image to store output grayscale image
gray.create(image.rows, image.cols, CV_8UC1);
// convert RGB image to GrayScale
cvtColor(image, gray, CV_BGR2GRAY);
// create a window to display the image
namedWindow("Color Image", CV_WINDOW_AUTOSIZE);
namedWindow("GrayScale Image", CV_WINDOW_AUTOSIZE);
// display the image in the window created
imshow("Color Image", image);
imshow("GrayScale Image", gray);
// wait for a keystroke
waitKey(0);
return 0;
}

Code explanation
The code is quite similar to the ones we have looked at before. So, only the portions that need
further explanation have been discussed in the following.

gray.create(image.rows, image.cols, CV_8UC1);

The preceding function is used to create a matrix with a single channel to store the resulting
grayscale image.

cvtColor(image, gray, CV_BGR2GRAY);

This OpenCV function performs various image conversions. In this case, it converts a given color
image to grayscale. The function takes three arguments. The first one is the matrix containing the
source image (the image that we want to convert), while the second one is the matrix in which we
want to store the converted image. The third argument specifies the type of conversion that we
want perform and in our case, it is CV_BGR2GRAY. We can also use the above function to convert
an image from a given color space model like RGB to other models such as HSV and CIELAB.

30

Instant OpenCV Starter

Output
The following output shows the comparison between the original color image and the grayscale
image that we created:

What good is learning a technology when you don't do some awesome, real-life application
based projects on it? So, now we will do three awesome projects that will hopefully highlight
the importance and the various possible usages of OpenCV.

Image steganography
This is a very interesting technology that is being used for the wrong reasons in the world
today. It is used in drug smuggling, trafficking, terrorism, and so on. Let us first understand this
technique. For example, let's say you have a treasure map that leads to the hidden treasures
of King Asoka the Great! Due to the sensitive and secretive nature of the information, you
cannot just pass it on to someone without the wrong people getting their hands on it. You could
send the image of the treasure map via e-mail but there are always hackers who could hack
your account and obtain it. Meeting that person face to face is also risky. Here is where image
steganography can help you out. What if you could send the image of the treasure map hidden
inside the image of a house or a cat? This is exactly what image steganography is! Modern
research has led to many advanced forms of image steganography that are heavily encrypted
and not easily detectable.

So, now let us understand how to write an OpenCV code to perform the above operation.

For better understanding this process has been split into two parts.

31

Instant OpenCV Starter

Part 1 – encode
This is the first part of the program.

Task
Hide a given image in another image using image steganography.

Algorithm
Think of a number, for example, 126. We can say that the most important digit in this number
is 1 which is in the hundredth place. It carries maximum weightage compared to the other
digits 2 and 6. Even if the other digits were dropped, it still conveys the information that it is a
number greater than or equal to 100. The same cannot be said if the digit 1 was dropped and the
remaining were retained. The same reasoning can be extended to computer data. If you have an
8-bit integer, the first bit on the left-hand side is called the Most Significant Bit (MSB) while the
last bit on the right is called the Least Significant Bit (LSB). The priority/weightage decreases as
we go from left to right (from MSB to LSB). So, if we store an 8-bit image in OpenCV, each pixel
in the image is represented by an 8-bit integer and the most valuable information about the
pixel is in the MSB of that pixel. Now, let us call the image that we want to hide (hidden image)
and the image in which the hidden image will be stored (front image). So, the hidden image will
be hidden inside the front image! We can store the MSB of the pixels of the hidden image in the
LSB of the front image. This provision does not disrupt the information content of either of the
images. Image steganography can lead to a loss of a lot of information. Therefore, in our case,
we have stored the first four bits (starting from the MSB) of each pixel in the hidden image in
the last four bits (ending at the LSB) of each pixel in the front image.

Code
We use the following code to hide a given image in another image:

void steganographMyImage(Mat& aFrontImage, Mat& aHiddenImage, Mat&
aStegedImage)
{
 // check for size and type of both the given images
 if(aFrontImage.type() != aHiddenImage.type() || aFrontImage.size()
!= aHiddenImage.size())
 {
 printf("Given Image types are different \n");
 return;
 }
 int numberRows = aFrontImage.rows; // Number of Rows in
Image(Height)
 int numberCols = aFrontImage.cols; // Number of Cols in
Image(Width)
 // create output Image
 aStegedImage.create(numberRows, numberCols, aFrontImage.type());

32

Instant OpenCV Starter

 Mat tFront_image, tHidden_image;

 Mat front_mask(numberRows, numberCols, aFrontImage.type(),
Scalar(0xF0, 0xF0, 0xF0));
 Mat hidden_mask(numberRows, numberCols, aFrontImage.type(),
Scalar(0xF0, 0xF0, 0xF0));

 bitwise_and(aFrontImage, front_mask, tFront_image);
 bitwise_and(aHiddenImage, hidden_mask, tHidden_image);

 for(int j = 0; j < numberRows; j++)
 for(int i = 0; i < numberCols; i++){
 tHidden_image.at<Vec3b>(j,i)[0] = tHidden_image.
at<Vec3b>(j,i)[0] >> 4;
 tHidden_image.at<Vec3b>(j,i)[1] = tHidden_image.
at<Vec3b>(j,i)[1] >> 4;
 tHidden_image.at<Vec3b>(j,i)[2] = tHidden_image.
at<Vec3b>(j,i)[2] >> 4;
 }

 bitwise_or(tFront_image, tHidden_image, aStegedImage);

}

Code explanation
The function which will perform the image steganography is as follows:

void steganographMyImage(Mat& aFrontImage, Mat& aHiddenImage, Mat&
aStegedImage)

This function takes three parameters. The first one is the matrix containing the image in which
we want to hide out desired image. The second argument is the matrix containing the image
that we want to hide and the third and last argument is the matrix which will store the resulting
steganograph image.

 if(aFrontImage.type() != aHiddenImage.type() || aFrontImage.size() !=
 aHiddenImage.size())

This code has been written for the case when both the front image and hidden image are of the
same size for the sake of easier understanding and simplicity. Here, we will check whether both
the images have the same type (bit size, that is, 8 bit, 16 bit, and so on) and size. If they are not
equal in either size or type, we terminate the execution of our function.

aStegedImage.create(numberRows, numberCols, aFrontImage.type());

33

Instant OpenCV Starter

With the help of the above function, we make sure that the attributes (columns, rows, and type) of
the aStegedImage matrix which will store the steganograph image are the same as that of the
aFrontImage matrix which contains the carrier image in which we will hide our desired image.

Mat front_mask(numberRows, numberCols, aFrontImage.type(),
Scalar(0xF0, 0xF0, 0xF0));
Mat hidden_mask(numberRows, numberCols, aFrontImage.type(),
Scalar(0xF0, 0xF0, 0xF0));

The above functions create a matrix with the specified number of rows, columns, and type, and
even initializes each element with the provided value. In our case, we have first created a matrix,
front_mask with rows, columns, and type the same as that of the aFrontImage matrix. We
then initialized all the matrix elements with the value 0xF0 or 11110000 in binary. Why three
times? It is because this is a color image, so it has three channels or three components. We then
perform a similar operation to the matrix hidden_mask.

 bitwise_and(aFrontImage, front_mask, tFront_image);
 bitwise_and(aHiddenImage, hidden_mask, tHidden_image);

The above functions perform bitwise ANDing of two matrices and store the result in a third
matrix. In our case, we have first performed the bitwise ANDing of the aFrontImage and
front_mask matrices, and stored it in the tFront_image matrix. So, what have we achieved
with this operation? Well, now the resulting tFront_image matrix contains only the first four
important bits of each pixel in aFrontImage. The remaining four bits are zero padded. The
second line performs a similar operation as the first one.

 tHidden_image.at<Vec3b>(j,i)[0] = tHidden_image.at<Vec3b>(j,i)[0] >>
4;
 tHidden_image.at<Vec3b>(j,i)[1] = tHidden_image.at<Vec3b>(j,i)[1] >>
4;
 tHidden_image.at<Vec3b>(j,i)[2] = tHidden_image.at<Vec3b>(j,i)[2] >>
4;

The preceding functions right-shift the pixel components of the tHidden_image matrix by 4 bits,
and hence the first four bits are zero padded.

 bitwise_or(tFront_image, tHidden_image, aStegedImage);

Finally, we perform the bitwise addition of the tFront_image and tHidden_image matrices
to obtain aStegedImage, which is our steganograph image.

34

Instant OpenCV Starter

Output
The output showing image steganography is as follows:

Part 2 – Decode
This is the second part of the program.

Task
Obtain the original image from the steganograph image.

Algorithm
The algorithm here is quite similar to the one we used previously in the case of performing
image steganography. Here we already have the steganograph image and we need to obtain the
hidden image and carrier image (the image in which the hidden image is hidden) from it. So, we
need to reverse engineer the algorithm we had used earlier. In the given steganograph image,
we know that the first four bits of the pixel represent the first four bits of the carrier image. The
remaining four bits represent the first four bits of the hidden image. So, we have to separate
these bits and store them in their corresponding images.

Code
Use the following code to retrieve the original image from a steganograph image:

void getOriginalImages(Mat& aStegedImage, Mat& aFrontImage, Mat&
aHiddenImage)
{
 int numberRows = aStegedImage.rows; // Number of Rows in
Image(Height)

35

Instant OpenCV Starter

 int numberCols = aStegedImage.cols; // Number of Cols in
Image(Width)

 aFrontImage.create(numberRows, numberCols, aStegedImage.type());
 aHiddenImage.create(numberRows, numberCols, aStegedImage.type());

 Mat tFront_image, tHidden_image;

 Mat front_mask(numberRows, numberCols, aStegedImage.type(),
Scalar(0xF0, 0xF0, 0xF0));
 Mat hidden_mask(numberRows, numberCols, aStegedImage.type(),
Scalar(0x0F, 0x0F, 0x0F));

 bitwise_and(aStegedImage, front_mask, aFrontImage);
 bitwise_and(aStegedImage, hidden_mask, aHiddenImage);

 for(int j = 0; j < numberRows; j++)
 for(int i = 0; i < numberCols; i++){
 aHiddenImage.at<Vec3b>(j,i)[0] = aHiddenImage.
at<Vec3b>(j,i)[0] << 4;
 aHiddenImage.at<Vec3b>(j,i)[1] = aHiddenImage.
at<Vec3b>(j,i)[1] << 4;
 aHiddenImage.at<Vec3b>(j,i)[2] = aHiddenImage.
at<Vec3b>(j,i)[2] << 4;
 }

}

Code explanation
Since the code is quite similar to the one which performs the actual steganograph, only the
portions which were different and need explanation have been discussed here.

void getOriginalImages(Mat& aStegedImage, Mat& aFrontImage, Mat&
aHiddenImage)

This is our function which will help us obtain the carrier image and the hidden image from the
steganograph image and it takes three arguments. The first argument is the matrix that contains
the steganograph image. The second one is the matrix containing the image in which we have
hidden our desired image. The third argument is the matrix containing the image that is desired
or hidden.

Mat front_mask(numberRows, numberCols, aStegedImage.type(),
Scalar(0xF0, 0xF0, 0xF0));

36

Instant OpenCV Starter

Unlike in the previous case, here we initialize each element of the front_mask matrix
with the value 0x0F or 11110000 in binary. Why? Because we want the first four bits of the
steganograph image as they correspond to the first four bits of the carrier image.

aHiddenImage.at<Vec3b>(j,i)[0] = aHiddenImage.at<Vec3b>(j,i)[0] << 4;
aHiddenImage.at<Vec3b>(j,i)[1] = aHiddenImage.at<Vec3b>(j,i)[1] << 4;
aHiddenImage.at<Vec3b>(j,i)[2] = aHiddenImage.at<Vec3b>(j,i)[2] << 4;

The preceding functions left-shift the pixel components of aHidden_image by 4 bits, because
the first four bits are zero padded and the actual information is stored in the last 4 bits.

Output
The following screenshot shows the original image when retrieved from the steganograph image:

Edge detection
Edge detection is another very important technique used a lot in computer vision. We have
seen a very interesting application of this in real life. A biscuit manufacturing company has to
manufacture thousands of biscuits daily and maintain the standard and quality; it cannot afford
to have workers check each and every biscuit to make sure that each one is rectangular in shape.
There will of course be defective pieces. So, the company uses edge detection and robotics to
filter out and remove the defective pieces from the main lot.

Task
For a given image, detect the edges/boundaries in it.

37

Instant OpenCV Starter

Code
The following code will detect the edges or boundaries in a given image:

int main(int argc, char** argv)
{

 // create a variable to store the image
 Mat image, gray, edge, cedge;
 // Threshold value for canny edge detection
 int edgeThresh = 10;

 // open the image and store it in the 'image' variable
 // Replace the path with where you have downloaded the image
 image=imread("<Path to Image>/RGB.png");

 // create single channel image to store output gray image
 gray.create(image.rows, image.cols, CV_8UC1);
 // convert RGB image to GrayScale
 cvtColor(image, gray, CV_BGR2GRAY);
 // create image to store final edge detected image.
 cedge.create(gray.size(), gray.type());

 // Run the edge detector on grayscale
 Canny(gray, edge, edgeThresh, edgeThresh*3, 3);
 cedge = Scalar::all(0);

 image.copyTo(cedge, edge);

 namedWindow("Output Image", CV_WINDOW_AUTOSIZE);
 // display the image in the window created
 imshow("Output Image", cedge);
 waitKey(0);
 return 0;
}

Code explanation
The code here is quite similar to the ones we have looked at before. So, only the portions that
need further explanation have been discussed, as follows:

 Canny(gray edge, edgeThresh, edgeThresh*3, 3);

38

Instant OpenCV Starter

We have used the Canny function in OpenCV to implement the Canny algorithm for edge
detection. This function accepts usually five parameters, but the last one is optional. The
first parameter is the matrix containing the source image while the second is the matrix in
which we want to store the resulting output. The third and fourth parameters are threshold
1 and threshold 2 respectively. The smallest value between threshold1 and threshold2
is used for edge linking. The largest value is used to find the initial segments of strong edges.
It is usually recommended to make the value of threshold2 three times the value of
threshold1. The fourth parameter is the aperture size for the Sobel operator, and it is
also known as the kernel size.

cedge = Scalar::all(0);

This is to make sure that all the elements of the cedge matrix are initialized with the value 0
and not any other random value.

image.copyTo(cedge, edge);

The preceding function copies one matrix to another. So, we have basically copied the image
contained in the edge matrix to the cedge matrix.

Output
The following output shows the edges and boundaries in a given image:

39

Instant OpenCV Starter

Real-time video processing via webcam
Video processing is a very important technique used these days by the police to find or locate
suspects after a crime. Next time you visit a small shop in your neighborhood, don't be surprised
to see CCTV cameras installed inside it. This is to help small shop owners catch shoplifters. Next,
just to get a brief idea of video processing, we will do a very trivial task.

Task
Convert the real-time color video feed from your webcam to grayscale and display it in a window.

Algorithm
A video is nothing but a sequence/collection of frames/images. So, to process it, we can split it
into its constituent frames and perform the desired operations on those frames.

Code
The following code converts a colored image into a grayscale image:

int main(int argc, char** argv)
{
 Mat Image;
 Mat gray;
 char key = 0;

 // open the default camera
 VideoCapture capture(0);

 // check for failure
 if (!capture.isOpened()) {
 printf("Failed to open a video device or video file!\n");
 return 1;
 }
 // Set Capture device properties.
 capture.set(CV_CAP_PROP_FRAME_WIDTH, 640);
 capture.set(CV_CAP_PROP_FRAME_HEIGHT, 480);

 namedWindow("Camera Video", CV_WINDOW_AUTOSIZE);
 namedWindow("Processed Video", CV_WINDOW_AUTOSIZE);

 while(key != 'q')
 {
 // get a new frame from camera
 capture >> Image;

 cvtColor(Image, gray, CV_BGR2GRAY);

www.allitebooks.com

http://www.allitebooks.org

40

Instant OpenCV Starter

 imshow("Camera Video",Image);
 imshow("Processed Video", gray);

 key = waitKey(25);
 }
 return 0;
}

Code explanation
Since the code is quite similar to the ones we have studied earlier, only the portions which were
different and need explanation have been discussed here.

VideoCapture capture(0);

The above line of code opens the default camera on your computer. VideoCapture is a class in
OpenCV which provides a C++ video capturing API.

if (!capture.isOpened())

This checks for failure—the case where no camera interface could be opened on the computer.

capture.set(CV_CAP_PROP_FRAME_WIDTH, 640);
capture.set(CV_CAP_PROP_FRAME_HEIGHT, 480);

The above lines of code set the capture device properties. To know the other properties of the
videoCapture class refer to the reference document of this class.

capture >> Image;

This gets a new frame of the camera and stores it in the Image matrix.

Output
The following output shows the comparison between a colored and a grayscale image:

41

Instant OpenCV Starter

People and places you should get to know
If you need help with OpenCV, here are some people and places that will prove invaluable.

Official sites
ÊÊ OpenCV home page: www.opencv.org

ÊÊ OpenCV documentation: http://docs.opencv.org/

ÊÊ OpenCV user guide: http://docs.opencv.org/doc/user_guide/user_guide.html

Tutorials/cheat sheets/answers
ÊÊ Offical OpenCV tutorials: http://docs.opencv.org/doc/tutorials/tutorials.html

ÊÊ OpenCV cheat sheet: http://docs.opencv.org/trunk/opencv_cheatsheet.pdf

ÊÊ OpenCV answers: http://answers.opencv.org/questions/

Community
ÊÊ OpenCV Yahoo group: http://tech.groups.yahoo.com/group/OpenCV/

ÊÊ OpenCV Google Plus group: https://plus.google.com/
communities/106558044109618648316

Twitter
ÊÊ Official OpenCV Twitter page: https://twitter.com/opencvlibrary

ÊÊ For more open source information, follow Packt at
http://twitter.com/#!/packtopensource

Thank you for buying
Instant OpenCV Starter

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering OpenCV with Practical
Computer Vision Projects
ISBN: 978-1-84951-782-9 Paperback: 340 pages

Step-by-step tutorials to solve common real-world
computer vision problems for desktop or mobile, from
augmented reality and number plate recognition to face
recognition and 3D head tracking

1.	 Allows anyone with basic OpenCV experience to
rapidly obtain skills in many computer vision topics,
for research or commercial use

2.	 Each chapter is a separate project covering a
computer vision problem, written by a professional
with proven experience on that topic

3.	 All projects include a step-by-step tutorial and full
source-code, using the C++ interface of OpenCV

OpenCV 2 Computer Vision
Application Programming Cookbook
ISBN: 978-1-84951-324-1 Paperback: 304 pages

Over 50 recipes to master this ibrary of programming
functions for real-time computer vision

1.	 Teaches you how to program computer vision
applications in C++ using the different features of
the OpenCV library

2.	 Demonstrates the important structures and
functions of OpenCV in detail with complete
working examples

3.	 Describes fundamental concepts in computer vision
and image processing

Please check www.PacktPub.com for information on our titles

Processing 2: Creative Programming
Cookbook
ISBN: 978-1-84951-794-2 Paperback: 306 pages

Over 80 recipes for creating native mobile applications
specifically for iPhone and Andriod smartphones - no
Objective-C or Java required

1.	 Explore the Processing language with a broad
range of practical recipes for computational art and
graphics

2.	 Wide coverage of topics including interactive art,
computer vision, visualization, drawing in 3D, and
much more with Processing

3.	 Create interactive art installations and learn to
export your artwork for print, screen, Internet, and
mobile devices

Learning SciPy for Numerical and
Scientific Computing
ISBN: 978-1-78216-162-2 Paperback: 150 pages

A practical tutorial that guarantees fast, accurate, and
easy-to-code solutions to your numerical and scientific
computing problems with the power of SciPy and Python

1.	 Perform complex operations with large
matrices, including eigenvalue problems, matrix
decompositions, or solution to large systems of
equations

2.	 Step-by-step examples to easily implement
statistical analysis and data mining that rivals in
performance any of the costly specialized software
suites

3.	 Plenty of examples of state-of-the-art research
problems from all disciplines of science, that prove
how simple, yet effective, is to provide solutions
based on SciPy

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.packtpub.com
	packtlib.packtpub.com
	Table of Contents
	Instant OpenCV Starter
	So, what is OpenCV?
	Installation
	OpenCV installation procedure for Linux
	Approach 1
	Approach 2

	OpenCV uninstallation procedure for Linux
	OpenCV installation procedure for Windows
	Step 1 – installing the dependencies
	Step 2 – installing OpenCV
	Step 3 – configuring OpenCV with Code::Blocks

	And that's it

	Quick start – OpenCV fundamentals
	Task 1 – image basics
	Greyscale
	Color/RGB

	Task 2 – reading and displaying an image
	Code
	Code explanation
	Output

	Task 3 – resizing and saving an image
	Code
	Code explanation
	Output

	Top 5 features you need to know about
	Pixel manipulation
	Task
	Algorithm
	Code
	Code explanation
	Output

	Image conversions
	Task
	Code
	Code explanation
	Output

	Image steganography
	Part 1 – encode
	Code explanation
	Part 2 – Decode
	Code explanation

	Edge detection
	Task
	Code
	Code explanation
	Output

	Real-time video processing via webcam
	Task
	Algorithm
	Code
	Code explanation
	Output

	People and places you should get to know
	Official sites
	Tutorials/cheat sheets/answers
	Community
	Twitter

