
www.allitebooks.com

http://www.allitebooks.org

N o S t a r c h p r e S S
e a r ly a c c e S S p r o g r a m :

F e e d b a c k w e l c o m e !

Welcome to the Early Access edition of the as yet unpublished Invent Your
Own Computer Games with Python by Al Sweigart! As a prepublication title, this
book may be incomplete and some chapters may not have been proofread.

Our goal is always to make the best books possible, and we look forward
to hearing your thoughts. If you have any comments or questions, email us
at earlyaccess@nostarch.com. If you have specific feedback for us, please
include the page number, book title, and edition date in your note, and
we’ll be sure to review it. We appreciate your help and support!

We’ll email you as new chapters become available. In the meantime,
enjoy!

www.allitebooks.com

mailto:earlyaccess%40nostarch.com?subject=Invent%20Your%20Own%20Computer%20Games%20with%20Python%20Feedback%209/9/16
http://www.allitebooks.org

I N v e N t y o u r o w N c o m p u t e r
g a m e S w I t h p y t h o N

a l S w e I g a r t
Early Access edition, 9/9/16

Copyright © 2016 by Al Sweigart.

ISBN-10: 1-59327-795-4
ISBN-13: 978-1-59327-795-6

Publisher: William Pollock
Production Editor: Laurel Chun
Cover Illustration: Josh Ellingson
Developmental Editor: Jan Cash
Technical Reviewer: Ari Lacenski
Copyeditor: Rachel Monaghan

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

B r i e f C o n t e n t s
Chapter 1: The Interactive Shell .1

Chapter 2: Writing Programs . 11

Chapter 3: Guess the Number . 21

Chapter 4: Jokes . 39

Chapter 5: Dragon Realm

Chapter 6: Using the Debugger

Chapter 7: Flow Charts

Chapter 8: Hangman

Chapter 9: Extending Hangman

Chapter 10: Tic Tac Toe

Chapter 11: Bagels

Chapter 12: Cartesian Coordinates

Chapter 13: Sonar

Chapter 14: Caesar Cipher

Chapter 15: Reversi

Chapter 16: AI Simulation

Chapter 17: Using Pygame and Graphics

Chapter 18: Animating Graphics

Chapter 19: Collision Detection and Input

Chapter 20: Sounds and Images

Chapter 21: Dodger

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

1
T h e I n T e r a c T I v e S h e l l

Before you can make games, you need to
learn a few basic programming concepts.

You’ll start in this chapter by learning how
to use Python’s interactive shell.

TopIcS cov e r e d In T hIS ch a p T e r

•	 Operators

•	 Integers	and	floating-point	numbers

•	 Expressions

•	 Values

•	 Evaluating	expressions

•	 Storing	values	in	variables

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

www.allitebooks.com

http://www.allitebooks.org

2 Chapter 1

Some Simple Math
Open IDLE by following the steps in the Introduction. First you’ll use Python
to solve some simple math problems. The interactive shell can work just like
a calculator. Type 2 + 2 into the interactive shell at the >>> prompt and press
enter. (On some keyboards, this key is return.) Figure 1-1 shows how this
math problem looks in the interactive shell—notice how it responds with
the number 4.

Figure 1-1: Entering 2 + 2 into the interactive shell

This math problem is a simple programming instruction. The plus sign
(+) tells the computer to add the numbers 2 and 2. The computer does this
on the next line and responds with the number 4. Table 1-1 lists the other
math symbols available in Python.

Table 1-1: Math	Operators

Operator Operation

+ Addition
- Subtraction
* Multiplication
/ Division

The minus sign (-) subtracts numbers, the asterisk (*) multiplies numbers,
and the slash (/) divides numbers. When used in this way, +, -, *, and / are
called operators. Operators tell Python what to do with the numbers sur-
rounding them.

Integers and Floating-Point Numbers
Integers (or ints for short) are whole numbers such as 4, 99, and 0. Floating-
point numbers (or floats for short) are fractions or numbers with decimal
points like 3.5, 42.1, and 5.0. In Python, 5 is an integer, but 5.0 is a float.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

www.allitebooks.com

http://www.allitebooks.org

The Interactive Shell 3

These numbers are called values. (Later we will learn about other kinds of
values besides numbers.) In the math problem you just typed, 2 and 2 are
integer values.

Expressions
The math problem 2 + 2 is an example of
an expression. As Figure 1-2 shows, expres-
sions are made up of values (the numbers)
connected by operators (the math signs)
that produce a new value the code can use.
Computers can solve millions of expressions
in seconds.

Try entering some of these expressions
into the interactive shell, pressing enter after
each one:

>>> 2+2+2+2+2
10
>>> 8*6
48
>>> 10-5+6
11
>>> 2 + 2
4

These expressions all look like regular math equations, but notice all
the spaces in the 2 + 2 example. In Python, you can add any number
of spaces between the values and operators. However, you must always start
instructions at the beginning of the line (with no spaces) when entering
them into the interactive shell.

Evaluating Expressions
When a computer solves the expression 10 + 5 and returns the value 15, it
has evaluated the expression. Evaluating an expression reduces the expression to
a single value, just like solving a math problem reduces the problem to a single
number: the answer. For example, the expressions 10 + 5 and 10 + 3 + 2 both
evaluate to 15.

When Python evaluates an expression, it follows an order of operations
just like in mathematics. There are just a few rules:

•	 Parts of the expression inside parentheses are evaluated first.

•	 Multiplication and division are done before addition and subtraction.

•	 The evaluation is performed left to right.

expression

operator

valuevalue 2 + 2}

Figure 1-2: An expression
is made up of values and
operators.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

www.allitebooks.com

http://www.allitebooks.org

4 Chapter 1

The expression 1 + 2 * 3 + 4 evaluates to 11, not 13, because 2 * 3 is
evaluated first. If the expression were (1 + 2) * (3 + 4) it would evaluate to
21, because the (1 + 2) and (3 + 4) inside parentheses are evaluated before
multiplication.

Expressions can be of any size, but they will always evaluate to a single
value. Even single values are expressions. For example, the expression 15
evaluates to the value 15. The expression 8 * 3 / 2 + 2 + 7 - 9 will evaluate
down to the value 12.0 through the following steps:

8 * 3 / 2 + 2 + 7 - 9

24 / 2 + 2 + 7 - 9

12.0 + 2 + 7 - 9

14.0 + 7 - 9

21.0 - 9

12.0

Even though the computer is performing all of these steps, you don’t
see that in the interactive shell. The interactive shell just shows you the
result:

>>> 8 * 3 / 2 + 2 + 7 - 9
12.0

Notice that the / division operator evaluates to a float value, as in 24 / 2
evaluating to 12.0. Math operations with even one float value also evaluate
to float values, so 12.0 + 2 evaluates to 14.0.

Syntax Errors
If you enter 5 + into the interactive shell, you’ll get the following error
message:

>>> 5 +
SyntaxError: invalid syntax

This error happened because 5 + isn’t an expression. Expressions have
values connected by operators, and the + operator expects a value before
and after it. An error message appears when an expected value is missing.

SyntaxError means Python doesn’t understand the instruction because
you typed it incorrectly. Computer programming isn’t just about giving
the computer instructions to follow, but also knowing how to give it those
instructions correctly.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

www.allitebooks.com

http://www.allitebooks.org

The Interactive Shell 5

Don’t worry about making mistakes, though. Errors won’t damage your
computer. Just retype the instruction correctly into the interactive shell at
the next >>> prompt.

Storing Values in Variables
When an expression evaluates to a value, you can use that value later by
storing it in a variable. Think of variables as a box that can hold a value.

An assignment statement will store a value inside a variable. Type a name
for the variable, followed by the equal sign (=), which is called the assign-
ment operator, and then the value to store in the variable. For example, enter
spam = 15 into the interactive shell:

>>> spam = 15
>>>

The spam variable’s box now stores the value 15, as shown in Figure 1-3.

Figure 1-3: Variables are like boxes that
can hold values.

When you press enter you won’t see anything in response. In Python,
you know the instruction was successful if no error message appears. The
>>> prompt will appear so you can enter the next instruction.

Unlike expressions, statements are instructions that do not evaluate to
any value. This is why there’s no value displayed on the next line in the
interactive shell after spam = 15. If you’re confused about which instructions
are expressions and which are statements, remember that expressions evalu-
ate to a single value. Any other kind of instruction is a statement.

Variables store values, not expressions. For example, consider the
expressions in the statements spam = 10 + 5 and spam = 10 + 7 - 2. They both
evaluate to 15. The end result is the same: both assignment statements store
the value 15 in the variable spam.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

6 Chapter 1

A good variable name describes the data it contains. Imagine that you
moved to a new house and labeled all of your moving boxes as “Stuff.” You’d
never find anything! The variable names spam, eggs, and bacon are generic
names used for the examples in this book.

The first time a variable is used in an assignment statement, Python will
create that variable. To check what value is in a variable, enter the variable
name into the interactive shell:

>>> spam = 15
>>> spam
15

The expression spam evaluates to the value inside the spam variable: 15.
You can also use variables in expressions. Try entering the following in

the interactive shell:

>>> spam = 15
>>> spam + 5
20

You set the value of the variable spam to 15, so typing spam + 5 is like typ-
ing the expression 15 + 5. Here are the steps of spam + 5 being evaluated:

spam + 5

15 + 5

20

You cannot use a variable before an assignment statement creates it. If
you try to, Python will give you a NameError because no such variable by that
name exists yet. Mistyping the variable name also causes this error:

>>> spam = 15
>>> spma
Traceback (most recent call last):
 File "<pyshell#8>", line 1, in <module>
 spma
NameError: name 'spma' is not defined

The error appeared because there’s a spam variable but no spma variable.
You can change the value stored in a variable by entering another

assignment statement. For example, enter the following into the interactive
shell:

>>> spam = 15
>>> spam + 5
20
>>> spam = 3
>>> spam + 5
8

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

The Interactive Shell 7

When you first enter spam + 5, the expression evaluates to 20 because
you stored 15 inside spam. However, when you enter spam = 3, the value 15 in
the variable’s box is replaced, or overwritten, with the value 3 since the vari-
able can hold only one value at a time. Now when you enter spam + 5, the
expression evaluates to 8 because the value of spam is now 3. Overwriting is
like taking a value out of the variable’s box to put a new value in, as shown
in Figure 1-4.

Figure 1-4: The 15 value in spam being overwritten by the 3 value.

You can even use the value in the spam variable to assign a new value
to spam:

>>> spam = 15
>>> spam = spam + 5
20

The assignment statement spam = spam + 5 is like saying, “the new value
of the spam variable will be the current value of spam plus five.” To keep
increasing the value in spam by 5 several times, enter the following into the
interactive shell:

>>> spam = 15
>>> spam = spam + 5
>>> spam = spam + 5
>>> spam = spam + 5
>>> spam
30

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

8 Chapter 1

In this example, you assign spam a value of 15 in the first statement. In
the next statement, you add 5 to the value of spam and assign spam the new
value spam + 5, which evaluates to 20. When you do this three times, spam
evaluates to 30.

So far we’ve only looked at one variable, but you can create as many
variables as you need in your programs. For example, let’s assign different
values to two variables named eggs and bacon, like so:

>>> bacon = 10
>>> eggs = 15

Now the bacon variable has 10 inside it, and the eggs variable has 15
inside it. Each variable is its own box with its own value, as shown in
Figure 1-5.

Figure 1-5: The bacon and eggs variables each store values.

Enter spam = bacon + eggs into the interactive shell, then check the new
value of spam:

>>> bacon = 10
>>> eggs = 15
>>> spam = bacon + eggs
>>> spam
25

The value in spam is now 25. When you add bacon and eggs you are adding
their values, which are 10 and 15, respectively. Variables contain values, not
expressions, so the spam variable was assigned the value 25, not the expres-
sion bacon + eggs. After the spam = bacon + eggs assignment statement, chang-
ing bacon or eggs does not affect spam.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

The Interactive Shell 9

Summary
In this chapter, you learned the basics of writing Python instructions.
Because computers don’t have common sense and only understand specific
instructions, Python needs you to tell it exactly what to do.

Expressions are values (such as 2 or 5) combined with operators (such
as + or -). Python can evaluate expressions—that is, reduce the expression
to a single value. You can store values inside of variables so that your pro-
gram can remember those values and use them later.

There are a few other types of operators and values in Python. In the
next chapter, you’ll go over some more basic concepts and write your first
program. You’ll learn about working with text in expressions. Python isn’t
limited to just numbers; it’s more than a calculator!

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

2
W r I T I n g p r o g r a m S

That’s enough math for now. Now let’s see
what Python can do with text. Almost all

programs display text to the user, and the
user enters text into your programs through

the keyboard. In this chapter you’ll make your first
program, which does both of these things. You’ll
learn how to store text in variables, combine text, and
display text on the screen. The program you’ll cre-
ate displays the greeting Hello world! and asks for the
user’s name.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

12 Chapter 2

Strings
In Python, text values are called strings. String values can be used just like
integer or float values. You can store strings in variables. In code, string val-
ues start and end with a single quote, '. Enter this code into the interactive
shell:

>>> spam = 'hello'

The single quotes tell Python where the string begins and ends. They
are not part of the string value’s text. Now if you enter spam into the interac-
tive shell, you’ll see the contents of the spam variable. Remember, Python
evaluates variables as the value stored inside the variable. In this case, this
is the string 'hello':

>>> spam = 'hello'
>>> spam
'hello'

Strings can have any keyboard character in them and can be as long as
you want. These are all examples of strings:

'hello'
'Hi there!'
'KITTENS'
'7 apples, 14 oranges, 3 lemons'
'Anything not pertaining to elephants is irrelephant.'
'A long time ago, in a galaxy far, far away...'
'O*&#wY%*&OCfsdYO*&gfC%YO*&%3yc8r2'

TopIcS cov e r e d In T hIS ch a p T e r

•	 Strings

•	 String	concatenation

•	 Data	types	(such	as	strings	or	integers)

•	 Using	the	file	editor	to	write	programs

•	 Saving	and	running	programs	in	IDLE

•	 Flow	of	execution

•	 Comments

•	 The	print()	function

•	 The	input()	function

•	 Case	sensitivity

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Writing Programs 13

String Concatenation
You can combine string values with operators to make expressions, just like
you did with integer and float values. When you combine two strings with
the + operator, it’s called string concatenation. Enter 'Hello' + 'World!' into
the interactive shell:

>>> 'Hello' + 'World!'
'HelloWorld!'

The expression evaluates to a single string value, 'HelloWorld!'. There is
no space between the words because there was no space in either of the two
concatenated strings, unlike in this example:

>>> 'Hello ' + 'World!'
'Hello World!'

The + operator works differently on string and integer values because
they are different data types. All values have a data type. The data type of the
value 'Hello' is a string. The data type of the value 5 is an integer. The data
type tells Python what operators should do when evaluating expressions. The
+ operator concatenates string values, but adds integer and float values.

Writing Programs in IDLE’s File Editor
Until now, you’ve been typing instructions into IDLE’s interactive shell one
at a time. When you write programs, though, you enter several instructions
and have them run all at once, which is what you’ll do next. It’s time to
write your first program!

In addition to the interpreter, IDLE has another part called the file edi-
tor. To open it, click the File menu at the top of the interactive shell. Then
select New File if you are using OS X. A blank window will appear for you to
type your program’s code into, as shown in Figure 2-1.

Figure 2-1: The file editor (left) and the interactive shell (right)

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

14 Chapter 2

The two windows look similar, but just remember this: the interactive
shell will have the >>> prompt. The file editor will not.

Creating the Hello World Program
It’s traditional for programmers to make their first program display Hello
world! on the screen. You’ll create your own Hello World program now.

When you enter your pro-
gram, remember not to enter
the numbers at the left side of
the code. They’re there so this
book can refer to the code by
line number. The bottom-right
corner of the file editor will tell
you where the blinking cursor is
so you can check which line of
code you are on. Figure 2-2 shows
that the cursor is on line 1 and
column 0.

Figure 2-2: The bottom-right of the file
editor tells you what line the cursor is on.

Enter the following text into the new file editor window. This is the pro-
gram’s source code. It contains the instructions Python will follow when the
program is run.

 hello.py 1. # This program says hello and asks for my name.
2. print('Hello world!')
3. print('What is your name?')
4. myName = input()
5. print('It is good to meet you, ' + myName)

IDLE will write different types of instructions with different colors.
After you’re done typing the code, the window should look like Figure 2-3.

Make sure you’re using
Python 3, not Python 2!

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Writing Programs 15

Figure 2-3: The file editor will look like this after you enter your code.

Check to make sure your IDLE window looks the same.

Saving Your Program
Once you’ve entered your source code, save it by clicking File 4 Save As.
Or press ctrl-S to save with a keyboard shortcut. Figure 2-4 shows the Save
As window that will open. Enter hello.py in the File name text field and then
click Save.

Figure 2-4: Saving the program

You should save your programs often while you write them. That way,
if the computer crashes or you accidentally exit from IDLE, you won’t lose
much work.

Opening the Programs You’ve Saved
To load your previously saved program, click File 4 Open. Select the hello.
py file in the window that appears and click the Open button. Your saved
hello.py program will open in the file editor.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

16 Chapter 2

Now it’s time to run the program. Click File 4 Run Module. Or just
press F5 from the file editor (fn-5 on OS X). Your program will run in the
interactive shell.

Enter your name when the program asks for it. This will look like
Figure 2-5.

Figure 2-5: The interactive shell after you run hello.py

When you type your name and press enter, the program will greet you
by name. Congratulations! You have written your first program and are now
a computer programmer. Press F5 again to run the program a second time
and enter another name.

If you got an error, compare your code to this book’s code with the
online diff tool at http://invpy.com/diff/. Copy and paste your code from the
file editor into the web page and click the Compare button. This tool will
highlight any differences between your code and the code in this book, as
shown in Figure 2-6.

While coding, if you get a NameError that looks like this:

Hello world!
What is your name?
Albert
Traceback (most recent call last):
 File “C:/Python26/test1.py”, line 4, in <module>
 myName = input()
 File “<string>”, line 1, in <module>
NameError: name ‘Albert’ is not defined

That means you are using Python 2 instead of Python 3. Install a ver-
sion of Python 3 from https://python.org/download/. Rerun the program with
Python 3.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Writing Programs 17

Figure 2-6: The diff tool at http://invpy.com/diff/

How the Hello World Program Works
Each line of code is an instruction interpreted by Python. These instruc-
tions make up the program. A computer program’s instructions are like the
steps in a recipe. Python completes each instruction in order, beginning
from the top of the program and moving downward.

The step where Python is currently working in the program is called
the execution. When the program starts, the execution is at the first instruc-
tion. After executing the instruction, Python moves down to the next
instruction.

Let’s look at each line of code to see what it’s doing. We’ll begin with
line number 1.

Comments
The first line of the Hello World program is a comment.

1. # This program says hello and asks for my name.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

18 Chapter 2

Any text following a hash mark (#) is a comment. Comments are the
programmer’s notes about what the code does; they are not written for
Python, but for you, the programmer. Python ignores comments when it
runs a program. Programmers usually put a comment at the top of their
code to give their program a title. The comment in the Hello World pro-
gram tells you that the program says hello and asks you your name.

Functions
A function is kind of like a mini-program inside your program that contains
several instructions for Python to execute. The great thing about functions
is that you only need to know what they do, not how they do it. Python
provides some built-in functions already. We use print() and input() in the
Hello World program.

A function call is an instruction that tells Python to run the code inside a
function. For example, your program calls the print() function to display a
string on the screen. The print() function takes the string you type between
the parentheses as input and displays that text on the screen.

The print() Function

Lines 2 and 3 of the Hello World program are calls to print():

2. print('Hello world!')
3. print('What is your name?')

A value between the parentheses in a function call is an argument. The
argument on line 2’s print() function call is 'Hello world!', and the argu-
ment on line 3’s print() function call is 'What is your name?'. This is called
passing the argument to the function.

The input() Function

Line 4 is an assignment statement with a variable, myName, and a function
call, input().

4. myName = input()

When input() is called, the program waits for the user to enter text.
The text string that the user enters becomes the value that the function call
evaluates to. Function calls can be used in expressions anywhere a value
can be used.

The value that the function call evaluates to is called the return value.
(In fact, “the value a function call returns” means the same thing as “the
value a function call evaluates to.”) In this case, the return value of the
input() function is the string that the user entered: their name. If the user

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Writing Programs 19

enters Albert, the input() function call evaluates to the string 'Albert'. The
evaluation looks like this:

myName = input()

myName = 'Albert'

This is how the string value 'Albert' gets stored in the myName variable.

Expressions in Function Calls

The last line in the Hello World program is another print() function call.

5. print('It is good to meet you, ' + myName)

The expression 'It is good to meet you, ' + myName is between the paren-
theses of print(). Because arguments are always single values, Python will
first evaluate this expression and then pass that value as the argument. If
'Albert' is stored in myName, the evaluation looks like this:

print('It is good to meet you, ' + myName)

print('It is good to meet you, ' + 'Albert')

print('It is good to meet you, Albert')

This is how the program greets the user by name.

The End of the Program
Once the program executes the last line, it terminates or exits. This means
the program stops running. Python forgets all of the values stored in vari-
ables, including the string stored in myName. If you run the program again
and enter a different name, the program will think that is your name.

Hello world!
What is your name?
Carolyn
It is good to meet you, Carolyn

Remember, the computer does exactly what you program it to do.
Computers are dumb and just follow the instructions you give them exactly.
The computer doesn’t care if you type in your name, someone else’s name,
or something silly. Type in anything you want. The computer will treat it the
same way:

Hello world!
What is your name?
poop
It is good to meet you, poop

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Variable Names
Giving variables descriptive names makes it easier to understand what a pro-
gram does. You could have called the myName variable abrahamLincoln or nAmE,
and Python would have run the program just the same. But those names
don’t really tell you much about what information the variable might hold.
As Chapter 2 discussed, if you were moving to a new house and you labeled
every moving box Stuff, that wouldn’t be helpful at all! This book’s interac-
tive shell examples use variable names like spam, eggs, ham, and bacon because
the variable names in these examples don’t matter. However, this book’s
programs all use descriptive names, and so should your programs.

Variable names are case-sensitive, which means the same variable name
in a different case is considered a different variable. So spam, SPAM, Spam, and
sPAM are four different variables in Python. They each contain their own
separate values. It’s a bad idea to have differently cased variables in your
program. Use descriptive names for your variables instead.

Variable names are usually lowercase. If there’s more than one word in
the variable name, it’s a good idea to capitalize each word after the first. For
example, the variable name whatIHadForBreakfastThisMorning is much easier
to read than whatihadforbreakfastthismorning. Capitalizing your variables this
way is called camel case (because it resembles the humps on a camel’s back),
and it makes your code more readable. Programmers also prefer using
shorter variable names to make code easier to understand: breakfast or
foodThisMorning is more readable than whatIHadForBreakfastThisMorning. These
are conventions—optional but standard ways of doing things in Python
programming.

Summary
Once you understand how to use strings and functions, you can start mak-
ing programs that interact with users. This is important because text is the
main way the user and the computer will communicate with each other.
The user enters text through the keyboard with the input() function, and
the computer will display text on the screen with the print() function.

Strings are just values of a new data type. All values have a data type,
and the data type of a value will affect how the + operator functions.

Functions are used to carry out complicated instructions in your pro-
gram. Python has many built-in functions that you’ll learn about in this
book. Function calls can be used in expressions anywhere a value is used.

The instruction or step in your program where Python is currently
working is called the execution. In Chapter 3, you’ll learn more about mak-
ing the execution move in ways other than just straight down the program.
Once you learn this, you’ll be ready to create games!

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

3
g u e S S T h e n u m b e r

In this chapter, you’re going to make a
Guess the Number game. The computer

will think of a secret number from 1 to 20
and ask the user to guess it. After each guess

the computer will tell the user if the number is too
high or too low. The user wins if they can guess the
number within six tries.

This is a good game to code because it covers many programming
concepts in a short program. You’ll learn how to convert values to different
data types, and when you would need to do this. Since this program is a
game, from now on we’ll call the user the player.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

22 Chapter 3

Sample Run of Guess the Number
Here’s what the Guess the Number program looks like to the player when
it’s run. The player’s input is marked in bold.

Hello! What is your name?
Albert
Well, Albert, I am thinking of a number between 1 and 20.
Take a guess.
10
Your guess is too high.
Take a guess.
2
Your guess is too low.
Take a guess.
4
Good job, Albert! You guessed my number in 3 guesses!

Source Code for Guess the Number
Open a new file editor window by
clicking File4New File. In the
blank window that appears, enter
the source code and save it as
guess.py. Then run the program

TopIcS cov e r e d In T hIS ch a p T e r

•	 import	statements

•	 Modules

•	 The	randint()	function

•	 for	statements

•	 Conditions

•	 Blocks

•	 The	str(),	int(),	and	float()	functions

•	 Booleans

•	 Comparison	operators

•	 The	difference	between	=	and	==

•	 if	statements

•	 The	break	keyword

Make sure you’re using
Python 3, not Python 2!

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Guess the Number 23

by pressing F5. When you enter this code into the file editor, be sure to
pay attention to the spacing at the front of the lines. Some lines need to be
indented four or even eight spaces.

If you get errors after entering this code, compare the code you typed
to the book’s code with the online diff tool at http://invpy.com/diff/guess/.

 guess.py 1. # This is a Guess the Number game.
 2. import random
 3.
 4. guessesTaken = 0
 5.
 6. print('Hello! What is your name?')
 7. myName = input()
 8.
 9. number = random.randint(1, 20)
10. print('Well, ' + myName + ', I am thinking of a number between 1 and 20.')
11.
12. for i in range(6):
13. print('Take a guess.') # four spaces in front of "print"
14. guess = input()
15. guess = int(guess)
16.
17. if guess < number:
18. print('Your guess is too low.') # eight spaces in front of "print"
19.
20. if guess > number:
21. print('Your guess is too high.')
22.
23. if guess == number:
24. break
25.
26. if guess == number:
27. guessesTaken = str(guessesTaken)
28. print('Good job, ' + myName + '! You guessed my number in ' +
guessesTaken + ' guesses!')
29.
30. if guess != number:
31. number = str(number)
32. print('Nope. The number I was thinking of was ' + number + '.')

Importing the random Module
Let’s take a look at the first two lines of this program.

1. # This is a Guess the Number game.
2. import random

The first line is a comment, which you saw in Chapter 2. Remember
that Python will ignore everything after the # character. The comment here
just reminds us what this program does.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

24 Chapter 3

The second line is an import statement. Remember, statements are
instructions that perform some action but don’t evaluate to a value like
expressions do. You’ve already seen the assignment statement, which store a
value in a variable.

While Python includes many built-in functions, some functions are
written in separate programs called modules. You can use these functions by
importing their modules into your program with an import statement.

Line 2 imports the random module so that the program can call the rand-
int() function. This function will come up with a random number for the
player to guess.

Now that you’ve imported the random module, you need to set up some
variables to store values your program will use later.

Line 4 creates a new variable named guessesTaken.

4. guessesTaken = 0

You’ll store the number of guesses the player has made in this variable.
Since the player hasn’t made any guesses at this point in the program, store
the integer 0 here.

6. print('Hello! What is your name?')
7. myName = input()

Lines 6 and 7 are the same as the lines in the Hello World program in
Chapter 2. Programmers often reuse code from their other programs to
save themselves work.

Line 6 is a function call to print(). Remember that a function is like a
mini-program inside your program. When your program calls a function,
it runs this mini-program. The code inside print() displays the string argu-
ment you passed it on the screen.

Line 7 lets the player enter their name and stores it in the myName vari-
able. Remember, the string might not really be the player’s name; it’s just
whatever string the player typed. Computers are dumb and just follow their
instructions no matter what.

Generating Random Numbers with the
random.randint() Function

Now that your other variables are set up, you can use the random module’s
function to set the computer’s secret number.

9. number = random.randint(1, 20)

Line 9 calls a new function named randint() and stores the return value
in number. Remember, function calls can be part of expressions because they
evaluate to a value.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

www.allitebooks.com

http://www.allitebooks.org

Guess the Number 25

The randint() function is provided by the random module, so you must
call it with random.randint() (don’t forget the period!) to tell Python that the
function randint() is in the random module.

randint() will return a random integer between (and including) the two
integer arguments you pass it. Line 9 passes 1 and 20, separated by commas,
between the parentheses that follow the function name. The random inte-
ger that randint() returns is stored in a variable named number—this is the
secret number the player is trying to guess.

Just for a moment, go back to the interactive shell and enter import ran-
dom to import the random module. Then enter random.randint(1, 20) to see
what the function call evaluates to. It will return an integer between 1 and
20. Repeat the code again and the function call will return a different inte-
ger. The randint() function returns a random integer each time, just as roll-
ing a die will result in a random number each time. For example, enter the
following into the interactive shell. The results you get when you call the
randint() function will probably be different (it is random, after all!).

>>> import random
>>> random.randint(1, 20)
12
>>> random.randint(1, 20)
18
>>> random.randint(1, 20)
3
>>> random.randint(1, 20)
18
>>> random.randint(1, 20)
7

You can also try different ranges of numbers by changing the argu-
ments. For example, enter random.randint(1, 4) to get only integers between
1 and 4 (including both 1 and 4). Or try random.randint(1000, 2000) to get
integers between 1000 and 2000.

Enter this code in the interactive shell and see what numbers you get:

>>> random.randint(1, 4)
3
>>> random.randint(1000, 2000)
1294

You can change the game’s code slightly to make the game behave dif-
ferently. Try changing lines 9 and 10 from these lines:

 9. number = random.randint(1, 20)
10. print('Well, ' + name + ', I am thinking of a number between 1 and 20.')

. . . to these lines:

 9. number = random.randint(1, 100)
10. print('Well, ' + name + ', I am thinking of a number between 1 and 100.')

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

26 Chapter 3

Now the computer will think of an integer between 1 and 100 instead of
1 and 20. Changing line 9 will change the range of the random number, but
remember to also change line 10 so that the game tells the player the new
range instead of the old one.

You can use the randint() function whenever you want to add random-
ness to your games. You’ll use randomness in many games. (Think of how
many board games use dice.)

Welcoming the Player
After the computer assigns number a random integer, it greets the player:

10. print('Well, ' + myName + ', I am thinking of a number between 1 and 20.')

On line 10 print() welcomes the player by name, and tells them that the
computer is thinking of a random number.

At first glance, it may look like there’s more than one string argument
in line 10, but examine the line carefully. The + operators between the
three strings concatenate them into one string. And that one string is the
argument passed to print(). If you look closely, you’ll see that the commas
are inside the quotes and part of the strings themselves.

Flow Control Statements
In previous chapters, the program execution started at the top instruction
in the program and moved straight down, executing each instruction in
order. But with the for, if, else, and break statements, you can make the exe-
cution loop or skip instructions based on conditions. These kinds of state-
ments are flow control statements, since they change the flow of the program
execution as it moves around your program.

Using Loops to Repeat Code
Line 12 is a for statement, which indicates the beginning of a for loop.

12. for i in range(6):

Loops let you execute code over and over again. Line 12 will repeat its
code six times. A for statement begins with the for keyword, followed by a
new variable name, the in keyword, a call to the range() function that speci-
fies the number of loops it should do, and a colon. Let’s go over a few addi-
tional concepts so that you can work with loops.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Guess the Number 27

Grouping with Blocks
Several lines of code can be grouped together in a block. Every line in a
block of code begins with at least the number of spaces as the first line in
the block. You can tell where a block begins and ends by looking at the
number of spaces at the front of the lines. This is the line’s indentation.

Python programmers typically use four additional spaces of indentation
to begin a block. Any following line that’s indented by that same amount
is part of the block. The block ends when there’s a line of code with the
same indentation as before the block started. There can also be blocks within
other blocks. Figure 3-1 shows a code diagram with the blocks outlined and
numbered.

12. while guessesTaken < 6

13. ••••print('Take a guess.')

14. ••••guess = input()

15. ••••guess = int(guess)

16.

17. ••••guessesTaken = guessesTaken + 1

18.

19. ••••if guess < number:

20. ••••••••print('Your guess is too low.')

21.

22. ••••if guess > number:

23. ••••••••print('Your guess is too high.')

24 if guess == number

�

�

�

Figure 3-1: An example of blocks and their indentation.
The black dots represent spaces.

In Figure 3-1, line 12 has no indentation and isn’t inside any block.
Line 13 has an indentation of four spaces. Since this line is indented more
than the previous line, a new block starts here. Every line following this one
with the same amount of indentation or more is considered part of block .
If Python encounters another line with less indentation than the block’s
first line, the block has ended. Blank lines are ignored.

Line 20 has an indentation of eight spaces, which starts block  is inside
the first block.

Line 22 only has four spaces. Because the indentation has decreased,
you know that line 20’s block has ended. Line 20 is the only line in block .
Line 22 has four spaces, so you know it’s in block .

Line 23 increases the indentation to eight spaces, so another new block
within a block has started: block .

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

28 Chapter 3

Looping with for Statements
The for statement marks the beginning of a loop. Loops execute the same
code repeatedly. When the execution reaches a for statement, it enters
the block that follows the for statement. After running all the code in this
block, the execution moves back to the top of the block to run the code all
over again.

Enter the following into the interactive shell:

>>> for i in range(3):
 print('Hello! i is set to', i)

Hello! i is set to 0
Hello! i is set to 1
Hello! i is set to 2

Notice that after you typed for i in range(3): and pressed enter, the
interactive shell didn’t show another >>> prompt because it was expecting
you to type a block of code. After you type print('Hello! i is set to', i')
and press enter, you have to press enter again to insert a blank line. This
blank line tells the interactive shell you are done with the block. (This
applies only to the interactive shell. When writing .py files in the file editor,
you don’t need to insert a blank line.)

Let’s look at the for loop on line 12:

12. for i in range(6):
13. print('Take a guess.') # four spaces in front of "print"
14. guess = input()
15. guess = int(guess)
16.
17. if guess < number:
18. print('Your guess is too low.') # eight spaces in front of "print"
19.
20. if guess > number:
21. print('Your guess is too high.')
22.
23. if guess == number:
24. break
25.
26. if guess == number:

In Guess the Number, the for block begins at the for statement on line
12, and the first line after the for block is line 26.

A for statement always has a colon (:) after the condition. Statements
that end with a colon expect a new block on the next line. This is illustrated
in Figure 3-2.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Guess the Number 29

12. for i in range(6):

13. print('Take a guess.') # four spaces in front of "print"

14. guess = input()

15. guess = int(guess)

16.

17. if guess < number:

18. print('Your guess is too low.') # eight spaces in front of "print"

19.

20. if guess > number:

21. print('Your guess is too high.')

22.

23. if guess == number:

24. break

25.

26. if guess == number:

The execution loops six times.

Figure 3-2: The for loop’s condition

Figure 3-2 shows how the execution flows. The execution will enter the
for block at line 13 and keep going down. Once the program reaches the
end of the for block, instead of going down to the next line, the execution
loops back up to the start of the for block at line 13. It does this six times
because of the range(6) function call in the for statement. Each time the
execution goes through the loop is called an iteration.

Think of the for statement as saying, “Execute the code in the following
block a certain number of times.”

Getting the Player’s Guess
Lines 13 and 14 ask the player to guess what the secret number is and lets
them enter their guess:

13. print('Take a guess.') # Four spaces in front of "print"
14. guess = input()

That number the player enters is stored in a variable named guess.

Converting Values with the int(), float(), and str() Functions
Line 15 calls a new function called int().

15. guess = int(guess)

The int() function takes one argument and returns the argument’s
value as an integer.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

30 Chapter 3

Enter the following into the interactive shell to see how the int() func-
tion works:

>>> int('42')
42

The int('42') call will return the integer value 42.

>>> 3 + int('2')
5

The 3 + int('2') line shows an expression that uses the return value of
int() as part of an expression. It evaluates to the integer value 5:

3 + int('2')

3 + 2

5

Even though you can pass a string to int(), you cannot pass it just any
string. Passing 'forty-two' to int() will result in an error.:

>>> int('forty-two')
Traceback (most recent call last):
 File "<pyshell#5>", line 1, in <module>
int('forty-two')
ValueError: invalid literal for int() with base 10: 'forty-two'

The string you pass to int() must be made of numbers.
In Guess the Number, we get the players number using the input()

function. Remember, the input() function always returns a string of text
the player entered. If the player types 5, the input() function will return
the string value '5', not the integer value 5. But we’ll need to compare the
player’s number with an integer later, and Python cannot use the < and >
comparison operators to compare a string and an integer value:

>>> 4 < '5'
Traceback (most recent call last):
 File "<pyshell#0>", line 1, in <module>
 4 < '5'
TypeError: unorderable types: int() < str()

We need to convert the string into an integer.

14. guess = input()
15. guess = int(guess)

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Guess the Number 31

On line 14, we assign the guess variable to the string value of whatever
number the player typed. Line 15 overwrites the string value in guess with
the integer value returned by int().The code int(guess) returns a new inte-
ger value based on the string it was provided, and guess = assigns that new
value to guess. This lets the code later in the program compare whether
guess is greater than, less than, or equal to the secret number in the number
variable.

The float() and str() functions will similarly return float and string ver-
sions of the arguments passed to them. Enter the following into the interac-
tive shell:

>>> float('42')
42.0
>>> float(42)
42.0

When the string '42' or the integer 42 is passed to float(), the float 42.0
is returned.

Now try using the str() function:

>>> str(42)
'42'
>>> str(42.0)
'42.0'

When the integer 42 is passed to str(), the string '42' is returned. But
when the float 42.0 is passed to str(), the string '42.0' is returned.

Using the int(), float(), and str() functions, you can take a value of one
data type and return it as a value of a different data type.

The Boolean Data Type
Every value in Python belongs to one data type. The data types that have
been introduced so far are integers, floats, strings, and now Booleans. The
Boolean data type has only two values: True or False. Boolean values must be
entered with a capital T or F and the rest of the value’s name in lowercase.

Boolean values can be stored in variables just like the other data types:

>>> spam = True
>>> eggs = False

In this example, you set spam to True and eggs to False. Remember not to
type true or false with all lowercase letters.

You will use Boolean values (called bools for short) with comparison
operators to form conditions. We’ll cover comparison operators first and
then go over conditions.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

32 Chapter 3

Comparison Operators
Comparison operators compare two values and evaluate to a True or False
Boolean value. Table 3-1 lists all of the comparison operators.

Table 3-1: Comparison	Operators

Operator sign Operator name

< Less	than
> Greater	than
<= Less	than	or	equal	to
>= Greater	than	or	equal	to
== Equal	to
!= Not	equal	to

You’ve already read about the +, -, *, and / math operators. Like any opera-
tor, comparison operators combine with values to form expressions such as
guessesTaken < 6.

Line 17 of the Guess the Number program uses the less than compari-
son operator:

17. if guess < number:

We’ll discuss if statements in more detail shortly; for now, let’s just look
at the expression that follows the if keyword (the guess < number part). This
expression contains two values (the value in the variables guess and number)
connected by an operator (the <, or less than sign).

Checking for True or False with Conditions
A condition is an expression that combines two values with a comparison
operator (such as < or >) and evaluates to a Boolean value. A condition is
just another name for an expression that evaluates to True or False. One
place we use conditions is in if statements.

For example, the condition guess < number on line 17 asks, “Is the value
stored in guessesTaken less than the value stored in number?” If so, then the
condition evaluates to True. If not, the condition evaluates to False.

Say that guess stores the integer 10 and number stores the integer 16.
Because 10 is less than 16, this condition evaluates to the Boolean value of
True. The evaluation would look like this:

guess < number

10 < 16

True

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Guess the Number 33

Experimenting with Booleans, Comparison Operators, and Conditions
Enter the following expressions in the interactive shell to see their Boolean
results:

>>> 0 < 6
True
>>> 6 < 0
False

The condition 0 < 6 returns the Boolean value True because the number
0 is less than the number 6. But because 6 isn’t less than 0, the condition 6 <
0 evaluates to False.

Notice that 10 < 10 evaluates to False because the number 10 isn’t
smaller than the number 10:

>>> 10 < 10
False

The values are the same. If Alice were the same height as Bob, you
wouldn’t say that Alice is taller than Bob or that Alice is shorter than Bob.
Both of those statements would be false.

Now enter these expressions into the interactive shell:

>>> 10 == 10
True
>>> 10 == 11
False
>>> 11 == 10
False
>>> 10 != 10
False

In this example, 10 is equal to 10, so 10 == 10 evaluates to True. But 10 is
not equal to 11, so 10 == 11 is False. Even if the order is flipped, 11 is still not
equal to 10, so 11 == 10 is False. Finally, 10 is equal to 10, so 10 != 10 is False.

You can also evaluate string expressions with comparison operators:

>>> 'Hello' == 'Hello'
True
>>> 'Goodbye' != 'Hello'
True
>>> 'Hello' == 'HELLO'
False

'Hello' is equal to 'Hello', so 'Hello' == 'Hello' is True. 'Goodbye' is not
equal to 'Hello', so 'Goodbye' != 'Hello' is also True.

Notice that the last line evaluates to False. Capital and lowercase letters
are not the same in Python, so 'Hello' is not equal to 'HELLO'.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

34 Chapter 3

String and integer values will never be equal to each other. For example,
enter the following into the interactive shell:

>>> 42 == 'Hello'
False
>>> 42 != '42'
True

In the first example, 42 is an integer and 'Hello' is a string, so the values
are not equal and the expression evaluates to False. In the second example,
the string '42' is still not an integer, so the expression “the integer 42 is not
equal to the string '42'” evaluates to True.

The Difference Between = and ==
Try not to confuse the assignment operator = and the equal to comparison
operator ==. The equal sign, =, is used in assignment statements to store a
value to a variable, whereas the double equal sign, ==, is used in expressions
to see whether two values are equal. It’s easy to accidentally use one when
you mean to use the other.

It might help to remember that the equal to comparison operator ==
has two characters in it, just as the not equal to comparison operator != has
two characters in it.

The bool() Function
Like the str() and int() functions, the bool() function returns a Boolean
value of the value passed to it. Enter the following into the interactive shell:

>>> bool('')
False
>>> bool('any nonempty string')
True

Python considers some non-Boolean values to be truthy or falsey. An
empty string or the integer 0 are considered falsey while all other strings
and integers are truthy. When an empty string is passed to bool(), the
Boolean False is returned. When any nonempty string is passed to bool(),
the Boolean True is returned.

if Statements
Line 17 is an if statement:

17. if guess < number:
18. print('Your guess is too low.') # eight spaces in front of
"print"

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Guess the Number 35

The code block following the if statement will run if the if statement’s
condition evaluates to True. If the condition is False, the code in the if block
is skipped. Using if statements, you can make the program run certain
code only when you want it to.

Line 17 checks whether the player’s guess is less than the computer’s
secret number. If so, then the execution moves inside the if block on line
18 and prints a message telling the player their guess was too low.

Line 20 checks whether the player’s guess is greater than the secret
number:

20. if guess > number:
21. print('Your guess is too high.')

If this condition is True, then the print() function call tells the player
that their guess is too high.

Leaving Loops Early with the break Statement
The if statement on line 23 checks if the number the player guessed is
equal to the secret number. If it is, the program runs the break statement on
line 24.

23. if guess == number:
24. break

A break statement tells the execution to jump immediately out of the for
block to the first line after the end of the for block. The break statement is
found only inside loops, such as in a for block.

Checking If the Player Won
The for block ends at the next line of code with no indentation, which is
line 26:

26. if guess == number:

The execution leaves the for block either because it has looped six
times (when the player runs out of guesses) or because the break statement
on line 24 has executed (when the player guesses the number correctly).

Line 26 checks whether the player guessed correctly. If so, the execu-
tion enters the if block at line 27:

27. guessesTaken = str(guessesTaken)
28. print('Good job, ' + myName + '! You guessed my number in ' +
guessesTaken + ' guesses!')

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

36 Chapter 3

Lines 27 and 28 execute only if the condition in the if statement on
line 26 was True (that is, if the player correctly guessed the computer’s
number).

Line 27 calls the str() function, which returns the string form of guess-
esTaken. Line 28 concatenates strings to tell the player they have won and
how many guesses it took. Only string values can concatenate to other
strings. This is why line 27 had to change guessesTaken to the string form.
Otherwise, trying to concatenate a string to an integer would cause Python
to display an error.

Checking If the Player Lost
If the player runs out of guesses, the execution will go to this line of code:

30. if guess != number:

Line 30 uses the not equal to comparison operator != to check if the
player’s last guess is not equal to the secret number. If this condition evalu-
ates to True, the execution moves into the if block on line 31.

Lines 31 and 32 are inside the if block, and execute only if the condi-
tion on line 30 is True.

31. number = str(number)
32. print('Nope. The number I was thinking of was ' + number + '.')

In this block, the program tells the player what the secret number was.
This requires concatenating strings, but number stores an integer value. Line
31 overwrites number with a string so that it can be concatenated to the 'Nope.
The number I was thinking of was ' and '.' strings on line 32.

At this point, the execution has reached the end of the code, and the
program terminates. Congratulations! You’ve just programmed your first
real game!

You can adjust the game’s difficulty by changing the number of guesses
the player gets. To give the player only four guesses, change the code on
line 12:

12. for i in range(6):

. . . to this line:

12. for i in range(4):

By passing 4 to range(), you ensure that the code inside the loop runs
only four times instead of six. This makes the game much more difficult. To
make the game easier, pass a larger integer to the range() function call. This
will cause the loop to run a few more times and accept more guesses from the
player.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Guess the Number 37

Summary
Programming is just the action of writing code for programs—that is, creat-
ing programs that can be executed by a computer.

When you see someone using a computer program (for example, play-
ing your Guess the Number game), all you see is some text appearing on
the screen. The program decides what exact text to display on the screen
(the program’s output) based on its instructions and on the text that the
player typed on the keyboard (the program’s input). A program is just a col-
lection of instructions that act on the user’s input.

There are a few different kinds of instructions:

•	 Expressions are values connected by operators. Expressions are all
evaluated down to a single value. For example, 2 + 2 evaluates to 4 or
'Hello' + ' ' + 'World' evaluates to 'Hello World'. When expressions are
next to the if and for keywords, you can also call them conditions.

•	 Assignment statements store values in variables so you can remember
the values later in the program.

•	 The if, for, and break statements are flow control statements that can
make the execution skip instructions, loop over instructions, or break
out of loops. Function calls also change the flow of execution by jump-
ing to the instructions inside of a function.

•	 The print() and input() functions display text on the screen and get
text from the keyboard. Instructions that deal with the input and output
of the program are called I/O (pronounced “eye oh”).

That’s it—just those four things. Of course, there are many details
about those four types of instructions. In later chapters, you’ll learn about
more data types and operators, more flow control statements, and many
other functions that come with Python. There are also different types of
I/O beyond text, such as input from the mouse and sound and graphics
output.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

4
J o k e S

This chapter’s program tells a few jokes
to the user, and demonstrates more

advanced ways to use strings with the
print() function.

TopIcS cov e r e d In T hIS ch a p T e r

•	 Escape	characters

•	 Using	single	quotes	and	double	quotes	for	strings

•	 Using	print()’s	end	keyword	parameter	to	skip	newlines

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

40 Chapter 4

Making the Most of print()
Most of the games in this book will have simple text for input and output.
The input is typed on the keyboard by the user, and the output is the text
displayed on the screen. You’ve already learned how to display simple text
output with the print() function. Not let’s take a deeper look at how strings
and print() work in Python.

Sample Run of Jokes
Here’s what the user sees when they run the Jokes program:

What do you get when you cross a snowman with a vampire?
Frostbite!
What do dentists call an astronaut's cavity?
A black hole!
Knock knock.
Who's there?
Interrupting cow.
Interrupting cow wh-MOO!

Source Code of Jokes
Open a new file editor window by
clicking File4New Window. In
the blank window that appears,
enter the source code and save it
as jokes.py. Then run the program
by pressing F5.

If you get errors after enter-
ing this code, compare the code
you typed to the book’s code
with the online diff tool at http://
invpy.com/diff/jokes/.

 jokes.py 1. print('What do you get when you cross a snowman with a vampire?')
 2. input()
 3. print('Frostbite!')
 4. print()
 5. print('What do dentists call an astronaut\'s cavity?')
 6. input()
 7. print('A black hole!')
 8. print()
 9. print('Knock knock.')
10. input()
11. print("Who's there?")
12. input()
13. print('Interrupting cow.')

Make sure you’re using
Python 3, not Python 2!

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Jokes 41

14. input()
15. print('Interrupting cow wh', end='')
16. print('-MOO!')

How the Code Works
Let’s start by looking at the first four lines of code:

 1. print('What do you get when you cross a snowman with a vampire?')
 2. input()
 3. print('Frostbite!')
 4. print()

Lines 1 and 3 use the print() function call to ask and give the answer to
the first joke. You don’t want the user to immediately read the joke’s punch-
line, so there’s a call to the input() function after the first print() instance.
The user will read the joke, press enter, and then read the punchline.

The user can still type in a string and press enter, but this returned
string isn’t being stored in any variable. The program will just forget about
it and move to the next line of code.

The last print() function call doesn’t have a string argument. This tells
the program to just print a blank line. Blank lines are useful to keep the
text from looking crowded.

Escape Characters
Lines 5–8 print the question and answer to the next joke:

 5. print('What do dentists call an astronaut\'s cavity?')
 6. input()
 7. print('A black hole!')
 8. print()

On line 5, there’s a backslash right before the single quote: \'. (Note
that \ is a backslash, and / is a forward slash.) This backslash tells you that
the letter right after it is an escape character. An escape character lets you
print special characters that are difficult or impossible to enter into the
source code, such as the single quote in a string value that begins and ends
with single quotes.

In this case, if we didn’t include the backslash, the single quote in
astronaut\'s would be interpreted as the end of the string. But this quote
needs to be part of the string. The escaped single quote tells Python that it
should include the single quote in the string.

But what if you actually want to display a backslash?

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

42 Chapter 4

Switch from your jokes.py program to the interactive shell and enter this
print() statement:

>>> print('They flew away in a green\teal helicopter.')
They flew away in a green eal helicopter.

This instruction wouldn’t print a backslash because the t in teal was
interpreted as an escape character since it came after a backslash. The \t
simulates pressing tab on your keyboard.

This line will give you the correct output:

>>> print('They flew away in a green\\teal helicopter.')
They flew away in a green\teal helicopter.

This way the \\ is a backslash character, and there is no \t to interpret
as tab.

Table 4-1 is a list of some escape characters in Python, including \n,
which is the newline escape character that you have used before.

Table 4-1: Escape	Characters

Escape character What is actually printed

\\ Backslash	(\)
\' Single	quote	(')
\" Double	quote	(")
\n Newline
\t tab

There are a few more escape characters in Python, but these are the
characters you will most likely need for creating games.

Single Quotes and Double Quotes
While we’re still in the interactive shell, let’s take a closer look at quotes.
Strings don’t always have to be between single quotes in Python. You can
also put them between double quotes. These two lines print the same thing:

>>> print('Hello world')
Hello world
>>> print("Hello world")
Hello world

But you cannot mix quotes. This line will give you an error because it
uses both quote types at once:

>>> print('Hello world")
SyntaxError: EOL while scanning single-quoted string

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

Jokes 43

I like to use single quotes so I don’t have to hold down shift to type
them. They’re easier to type, and Python doesn’t care either way.

Also, note that just as you need the \' to have a single quote in a string
surrounded by single quotes, you need the \" to have a double quote in a
string surrounded by double quotes. Look at this example:

>>> print('I asked to borrow Abe\'s car for a week. He said, "Sure."')
I asked to borrow Abe's car for a week. He said, "Sure."

You use single quotes to surround the string, so you need to add a
backslash before the single quote in Abe\'s. But the double quotes in "Sure."
don’t need backslashes. The Python interpreter is smart enough to know
that if a string starts with one type of quote, the other type of quote doesn’t
mean the string is ending.

Now check out another example:

>>> print("She said, \"I can't believe you let them borrow your car.\"")
She said, "I can't believe you let them borrow your car."

The string is surrounded in double quotes, so you need to add back-
slashes for all of the double quotes within the string. You don’t need to
escape the single quote in can't.

To summarize, in the single-quote strings you don’t need to escape
double quotes but do need to escape single quotes, and in the double-quote
strings you don’t need to escape single quotes but do need to escape double
quotes.

print()’s end Keyword Parameter
Now let’s go back to jokes.py and take a look at lines 9–12:

 9. print('Knock knock.')
10. input()
11. print("Who's there?")
12. input()
13. print('Interrupting cow.')
14. input()
15. print('Interrupting cow wh', end='')
16. print('-MOO!')

Did you notice the second argument in line 15’s print() function?
Normally, print() adds a newline character to the end of the string it prints.
This is why a blank print() function will just print a newline. But print() can
optionally have a second parameter: end.

An argument is the value passed in a function call. The blank string
passed to print() is called a keyword argument. The end in end='' is called a
keyword parameter. It has a specific name, and to pass a keyword argument
for this keyword parameter you must type end= before it.

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

44 Chapter 4

When we run this section of code, the output is:

Knock knock.
Who's there?
Interrupting cow.
Interrupting cow wh-MOO!

Because we passed a blank string to the end parameter, the print() func-
tion will add a blank string instead of adding a newline. This is why '-MOO!'
appears next to the previous line, instead of on its own line. There was no
newline after the 'Interrupting cow wh' string was printed.

Summary
This chapter explores the different ways you can use the print() function.
Escape characters are used for characters that are difficult to type into the
code with the keyboard. If you want to use special characters in a string,
you must use a backslash escape character, \, followed by another letter for
the special character. For example, \n would be a newline. If your special
character is a backslash itself, you would use \\.

print() automatically appends a newline character to the end of a
string. Most of the time, this is a helpful shortcut. But sometimes you don’t
want a newline character. To change this, you can pass a blank string as
the keyword argument for print()’s end keyword parameter. For example,
to print spam to the screen without a newline character, you would call
print('spam', end='').

Invent Your Own Computer Games with Python (Early Access), © 2016 by Al Sweigart

www.allitebooks.com

http://www.allitebooks.org

	Chapter 1: The Interactive Shell
	Chapter 2: Writing Programs
	Chapter 3: Guess the Number
	4
	Chapter 4: Jokes
	Blank Page

