
www.allitebooks.com

http://www.allitebooks.org

Irresistible APIs
DESIGNING WEB APIS

THAT DEVELOPERS WILL LOVE

KIRSTEN L. HUNTER

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Lesley Trites
20 Baldwin Road Technical development editor: Nick Watts
PO Box 761 Copyeditor: Elizabeth Welch
Shelter Island, NY 11964 Proofreader: Corbin Collins

Technical proofreader: David Fombella Pombal
Typesetter: Dottie Marsico
Illustrator: Viseslav Radovic

Cover designer: Leslie Haimes

ISBN 9781617292552
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16
www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org

brief contents

PART 1 UNDERSTANDING WEB APIS.. 1

1 ■ What makes an API irresistible? 3
2 ■ Working with web APIs 27
3 ■ API First 49
4 ■ Web services explained 64

PART 2 DESIGNING WEB APIS..87

5 ■ Guiding principles for API design 89
6 ■ Defining the value for your API 114
7 ■ Creating your schema model 135
8 ■ Design-driven development 160
9 ■ Empowering your developers 183
iii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents
foreword xi
preface xiii
acknowledgments xv
about this book xvi
about the cover illustration xviii

PART 1 UNDERSTANDING WEB APIS1

1 What makes an API irresistible? 3
1.1 Integrating social APIs into web content 4
1.2 What is a web API? 7

Do you need an API? 10 ■ Choosing REST APIs 10
JSON 10

1.3 Developer experience 11
Versioning 12 ■ Marketing to developers 12

1.4 Common pitfalls of organic APIs 13
Lack of vision 13 ■ Prioritizing the developer experience 14
Bad API design 15

1.5 API creation process 16
Determine your business value 17 ■ Choose your
metrics 17 ■ Define your use cases 18 ■ Design your API 19
v

www.allitebooks.com

http://www.allitebooks.org

CONTENTSvi
Industry standards 22 ■ Design-driven
development 24 ■ Support your developers 25

1.6 Summary 26

2 Working with web APIs 27
2.1 HTTP basics 28

HTTP request 28 ■ HTTP response 29 ■ HTTP
interactions 30

2.2 The Toppings API 30
2.3 Designing the API 32
2.4 Using a web API 34

Browser 34 ■ Command line (curl) 36 ■ HTTP
sniffers 38

2.5 Interaction between the API and client 40
2.6 Install your own API and front end 45

Installing the system via Docker 45 ■ Installing the
system via Git 46 ■ Exploring the code 47

2.7 Summary 48

3 API First 49
3.1 Why choose API First? 50

APIs as side products 50 ■ API First model 52

3.2 Code consistency 53
3.3 Functional equality 54
3.4 Increased productivity 55
3.5 Internal/external access 56
3.6 Case studies 58

API as the main product 58 ■ Mobile First 59
Refactoring for API First 59 ■ API First strategic
direction 61

3.7 Summary 62

4 Web services explained 64
4.1 HTTP fundamentals 65

Addressability 65 ■ Status codes 66 ■ Body 68
 HTTP verbs 68 ■ Headers 73 ■ Parameters 75
HTTP overview summary 77
www.allitebooks.com

http://www.allitebooks.org

CONTENTS vii
4.2 REST web services explained 77
4.3 Exploring your API by inspecting HTTP traffic 77

Setting up Chrome for HTTP inspection 78

4.4 Web services best practices 82
Using the right status codes 82 ■ Methods and idempotency 83
Nouns vs. verbs 83

4.5 Troubleshooting web API interactions 83
Tools for API inspection 84 ■ Error handling 84
Defensive coding 84

4.6 Summary 85

PART 2 DESIGNING WEB APIS 87

5 Guiding principles for API design 89
5.1 Don’t surprise your users 90

Flickr API example 91 ■ Don’t make me think 94

5.2 Focus on use cases 95
Use case: mobile 96 ■ Use case: application integration 97

5.3 Copy successful APIs 101
5.4 REST is not always best 104

Expand and include related resources 104 ■ Create a query
language 105 ■ Create a comprehensive data transfer
scheme 106 ■ Create a separate batching system 108
RESTful decisions 109

5.5 Focus on the developer experience 109
Communication and consistency are critical 109
Documentation should tell a story 111

5.6 Summary 113

6 Defining the value for your API 114
6.1 Business goals 115

Monetization 115 ■ Usage 118 ■ Partner retention 120
Market dominance 122

6.2 Metrics 124
Poor metrics 124 ■ Monetization 124 ■ Usage 126
Partner retention 126 ■ Market dominance 126
www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
6.3 Use cases 127
Mobile 127 ■ Monetization 128 ■ Usage 130
Customer/partner retention 133

6.4 Summary 134

7 Creating your schema model 135
7.1 What is a schema model? 136
7.2 What does the API need to do? 136

Top-level resources 137 ■ API resource methods 137

7.3 RAML 138
Getting started 139 ■ Step 1: adding resources 141
Step 2: adding the methods 141 ■ Step 3: query parameters 142
Step 4: adding mock data 143 ■ Step 5: adding mock data—
GET 143 ■ Step 6: adding mock data—POST 144 ■ Step 7:
GET response format 146 ■ Step 8: PUT response format 147
Step 9: DELETE 147 ■ Step 10: searching 148 ■ Support tools
for RAML 149

7.4 OpenAPI (previously Swagger) 149
Information about your API 150 ■ Step 1: API top-level resource
methods: GET 151 ■ Step 2: API top-level resource methods—
POST 153 ■ Step 3: API subresource methods—GET, PUT,
DELETE 155 ■ OpenAPI tools and resources 158

7.5 Summary 158

8 Design-driven development 160
8.1 Development strategies for your API 160

Waterfall development 161 ■ Agile/test-first development 162
Behavior-driven development 164 ■ Design-driven
development 164 ■ Code-first development 165
Why does project management matter? 165

8.2 Project management for APIs 166
Functional specification 166 ■ Schema model 168

8.3 Road-testing your API 169
Creating a mock server API 169 ■ Acceptance tests and use
cases 176

8.4 Planning development 178
8.5 Development sprints 179
8.6 Summary 182
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
9 Empowering your developers 183
9.1 Pillars of developer experience 184
9.2 Communicating with your developers 185

Failures of communication 185 ■ Strong communication 186
Advantages to strong and consistent communication 187

9.3 Documenting your API 189
Reference documentation 190 ■ Workflows 192
Tutorials 193

9.4 Building blocks 196
Sample code 197 ■ Reference applications 199
Tools and techniques 200

9.5 Developer support 203
Interactive 204 ■ Noninteractive 206

9.6 Summary 206

index 207
www.allitebooks.com

http://www.allitebooks.org

foreword
Building an irresistible API doesn’t only make good business sense—it also makes
developers happy and productive rather than grumpy and frustrated. I’m very happy
to see Kirsten write this book, which explains how to build well-engineered APIs and
explores what makes a developer actively want to use that API.

 I’ll begin with a story. It’s September 2008, and Netflix is running a “hack day.”
This is a day on which anyone at Netflix can build anything they want. It starts at noon
one day and finishes at noon the next. You can work through the night if you need to.
The Netflix API team was about to release the initial version of a public API for Netflix
and had scheduled the hack day as a way to get extra testing time before the release.
The Apple iPhone had been released earlier that year, and the first software developer
toolkit for the iPhone had been released that summer. I was a manager at Netflix at
that time, but I had started to build an iPhone app in my spare time and decided to
build the first ever Netflix mobile app for the hack day.

 The odds weren’t looking good. I barely knew the Objective-C language that
iPhone apps are written in, and no one else at Netflix had ever used it. The authenti-
cation protocol was new and buggy, and I had to improvise some iPhone code to con-
nect to Netflix. I recruited an engineer to help. We spent several hours understanding
and debugging the OAuth security protocol. Finally, I got the iPhone to connect suc-
cessfully and started trying to make sense of the responses from API queries. The API
was based on an XML-based standard called AtomPub, and generating the requests
was awkward. Parsing them was even more awkward. It was really intended to be used
from a web browser, not to support a mobile app. After a late night of coding and a lot
of grumbling, I finally had a working prototype. In the afternoon, we all showed our
hacks to a panel of judges, and I won a prize. I put it on the App Store, and it was the
xi

FOREWORDxii
first public Netflix mobile app. It wasn’t until 2010 that Netflix released official iPad
and iPhone apps.

 Netflix created a developer program around the public API, and Kirsten was one of
the engineers hired to help run the program. In 2010 we both attended an iPad Dev
Camp, run like an extended public hack day, and worked together on a Netflix-related
iPad app. We were using the Netflix API despite its shortcomings, and I think there
was a missed opportunity. Ultimately, the public API was a failure for Netflix, and the
company shut it down. Kirsten tells the rest of this story in chapter 1 of this book.

 I learned a lot from this experience—and from Kirsten herself. In 2016 this is a
very important topic. Many companies need an API to do business. Many are even
actively competing with other companies that have alternative APIs. In the past, soft-
ware products were bought as prebuilt packages and were hand configured. Today
software is often chosen by rummaging around on GitHub, trying to figure out which
project has the most developer traction, and installation and deployment is auto-
mated via APIs. The lack of friction in web service and open source–based business
models is there to be exploited by the viral spread of irresistible APIs.

 Thank you, Kirsten, for this contribution to making the world a better place.

ADRIAN COCKCROFT

TECHNOLOGY FELLOW

AT BATTERY VENTURES

preface
From the time I started working with REST APIs at Socialtext in 2005, I’ve been fasci-
nated by web services platforms. At Socialtext, we created a solid, consistent REST API,
but it was only truly usable by our own team because the developer experience was
immature. The documentation didn’t have great tutorials, and our outreach was lim-
ited. I learned to love the idea of a platform built on a solid protocol like HTTP and
the extensibility of REST APIs.

 Ever since getting struck by the bug, I’ve been an enthusiastic advocate for the
design and usability of web APIs. I’ve spent many a weekend creating mashups with
Twitter, Facebook, Freebase (RIP), LinkedIn, Netflix, and tens of other web services.
As I used these APIs, I started to develop an overall definition for platforms with irre-
sistible APIs—platforms that offered amazing developer experiences. I came to realize
that an irresistible API needs more than excellent, consistent interfaces. It’s hard to
succeed without great documentation, fantastic sample code, and an enthusiastic sup-
port structure.

 As I worked in the industry, I was repeatedly employed in great positions to sup-
port developers and understand their needs. I came to realize that great developers
who are trying to implement integrations with APIs don’t automatically understand
web services, so I integrated this information into my ideas about irresistible APIs:
don’t make assumptions about what your developers know. I started speaking at con-
ferences and writing articles to help client developers understand and create amazing
applications using web APIs.

 I realized that educating the API creators was a more efficient way to improve the
industry, and I began by speaking at the API Strategy and Practice conferences about
developer experience to the companies developing and providing APIs. I started
xiii

PREFACExiv
meeting and brainstorming with individuals in the API industry about best practices
for web APIs. Over time I worked on ideas around creating APIs: treating your API as a
first-class product, rather than shunting it off to the side of your main application.
Despite the importance and visibility of web services, many companies hadn’t given
any thought to designing for use cases and business value.

 After integrating the lessons I’d learned, I started proposing a talk on “Irresistible
APIs,” covering the entire spectrum of what I’d learned on the topic. Manning
approached me to write a book with the information, and I jumped at the chance to
share my ideas with people and companies across the globe. We are now on the cusp
of a new stage of maturity for web services, and I hope my book can help move the
industry in the right direction so that the use and integration of APIs will be easy for
developers and profitable for companies.

 I chose Node.js for this book because it’s the most straightforward language for
creating web platforms. I have also created a GitHub repository with multiple lan-
guage examples, listed in the “About the code” section.

 I hope you enjoy reading the book as much as I did writing it. Go forth and be
excellent to your developers!

acknowledgments
First of all, thanks to Chris Dent and Matt Liggett for teaching me about REST APIs lo
these 10 years ago. I’d never have gotten inspired to wave this flag if I hadn’t been
infected with their enthusiasm. Kin Lane, Steve Willmott, and Mike Admunsen, rock
stars of the API industry, have helped me develop and advocate for best practices in
the platform world. I’d also like to thank all the developer customers who have
inspired me to make APIs more usable and friendly.

 My appreciation also goes out to reviewers Heather Tooill, James Higginbotham,
Jason Harmon, Manoj Agarwal, Adrian Cockcroft, Robert Walsh, Stephen Byrne, Joel
Kotarski, Nickie Buckner, Kumar Unnikrishnan, Lourens Steyn, Karsten Strobaek,
Marco Imperatore, Satadru Roy, Andrew Meredith, Aseem Anand, Chad Johnston,
and all the MEAP purchasers for helping me to make the book the best it can be. My
thanks go out to Michael Coury and my cats, Orange and Blue, for their help and
patience while I spent weekends with my face buried in my computer. And a huge
debt of gratitude is owed to Michael Aglietti and Corey Scobie and the whole team at
Akamai for their support while I created the book.

 Thanks also to the Manning team for all their support and guidance throughout
the process of writing this, my first book. And of course, huge appreciation goes out to
Adrian Cockcroft for his guidance early in my career and for writing my foreword.
xv

about this book
Irresistible APIs provides all the information needed to plan and manage creation of a
REST API. The book starts out with basic information about the technologies involved
in web APIs—specifically REST APIs—to help make sure that readers have a great basic
understanding of API functionality. Industry best practices are covered, informing the
reader about how to think about creating a new platform. The book then describes a
comprehensive process for planning, designing, and managing development of web
APIs, from business value through developer support.

Who should read this book

This book is intended to be accessible to anyone interested on the topic of creating
APIs—spanning from an individual developer or technical lead, through product and
project managers, and up to executives directing engineering organizations. With that
in mind, here are some thoughts on qualifications: the reader should understand, at
least at a rudimentary level, the processes surrounding software development—plan-
ning, development, testing, and releasing. The reader should be able to follow some-
what technical discussions about software process, including the associated
vocabulary. There are chapters that are introductions to specific topics and technolo-
gies. Where this occurs, there will be links out to the best supplemental material.

How this book is organized

The first part of the book covers the technologies and best practices for API creation
and design. Topics include a discussion of the overall goals and ideals for an excellent
API program and the notion of developer experience, the main focus for any web plat-
xvi

ABOUT THIS BOOK xvii
form that is successful and engaging. A high-level description of the technologies and
techniques used for web APIs is presented, as well as best practices for excellent APIs.

 Part 2 features an overall strategy for API design and creation. Topics include the
steps you need to follow before starting API creation. This covers determining busi-
ness value, creating powerful metrics, and understanding use cases. Once these details
are covered, the book moves on to techniques for designing, developing and support-
ing your web services to ensure they begin and remain as A-list destinations for your
customers.

About the code

Code samples are provided in Node.js, and a Docker image is additionally provided
for working with the API code directly. Examples of JSON and HTTP are provided to
help understand these fundamental concepts. Developer-level understanding of code
is not needed in order to understand the concepts in the book.

 The code repository is at https://github.com/synedra/irresistible.

Author Online

Purchase of Irresistible APIs includes free access to a private web forum run by Manning
Publications, where you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum and sub-
scribe to it, point your web browser at www.manning.com/books/irresistible-apis. This
page provides information on how to get on the forum once you are registered, what
kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the Author Online remains voluntary (and
unpaid). We suggest you try asking the author some challenging questions, lest her
interest stray! The Author Online forum and the archives of previous discussions will
be accessible from the publisher’s website as long as the book is in print.

About the author
Kirsten Hunter is a passionate advocate for the development community. Her techni-
cal interests range from graph databases to cloud services, and her 10 years of experi-
ence using, supporting, and evangelizing REST APIs have given her a unique
perspective on developer success. In her copious free time she’s a gamer, fantasy
reader, and all around rabble-rouser. Code samples, recipes, and philosophical mus-
ings can be found on her website at www.princesspolymath.com.

www.princesspolymath.com
https://github.com/synedra/irresistible
www.manning.com/books/irresistible-apis

about the cover illustration
The figure on the cover of Irresistible APIs is captioned “The Conservatory Student."
The illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-
volume compendium of regional dress customs published in France. Each illustration
is finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds
us vividly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book cov-
ers based on the rich diversity of regional life of two centuries ago, brought back to
life by Maréchal’s pictures.
xviii

Part 1

Understanding web APIs

This part covers the basic technologies involved in web APIs to help readers
understand the context of this type of platform. Starting with a discussion of
what makes an API irresistible, the chapters in part 1 drill down into the user
experience for APIs, the ideal API infrastructure (API First), and an explanation
of the technologies used for web APIs.

What makes an
API irresistible?
An API is an interface into a computer system—an application programming inter-
face. Historically APIs started out as highly coupled interfaces between computer
systems. Web APIs, which are much freer and less tied together, have been evolving
for quite some time, but recently developers have seen a huge explosion in the web
APIs available to them. Many of these APIs were developed without the end user (in
this case, a developer using the API) in mind, resulting in a frustrating developer
experience and a less successful web API.

 An irresistible API is straightforward to use, well documented, and well supported,
and the supported use cases are communicated and demonstrated well. Using your
API should be a joyful and engaging experience, not a slog through a frustrating
and never-ending series of challenges.

This chapter covers
 Defining a web API and what it can do

 Ensuring a great developer experience

 Avoiding common pitfalls
3

4 CHAPTER 1 What makes an API irresistible?
 This book will help you understand how to create web APIs that are loved by devel-
opers, that are engaging and purposeful, and that will experience success. It also dis-
cusses the factors you should consider to determine whether you should have a
platform at all. The guidelines included in this book are meaningful for any kind of
web API, no matter the technology or audience.

 When you’ve finished reading the book, you’ll have a strong understanding of the
process needed to create excellent web APIs—APIs that enchant customer engineers
and extend the platform’s reach naturally as those developers share their experiences
with their colleagues. Although many different types of APIs are in use in the industry,
each with its own advantages, this book focuses on the development of RESTful web
APIs. Web APIs decouple the functionality of the server from the client’s logic and fea-
tures, encouraging client developers to use the data in whatever way works best for their
application. Non-web APIs that tie the server and the client together tightly work to
implement specific integrations between the client and the server. For instance, SQL, an
interface language tied into many databases, represents an API, but the interaction is
focused on specific actions. Exposing the data in a more free-form way wouldn’t work
for many of the uses people have for databases or other closely coupled systems.

 In addition, you’ll develop a good basic understanding of the technologies
involved in creating a RESTful API. REST stands for Representational State Transfer
and refers to APIs that are resource based—where the clients interact with the servers
by requesting things rather than actions. The creation of web APIs is technologically
simple: a skilled developer can use Flask, Django, Ruby on Rails, or Node.js to put
together a basic REST API in a few minutes. Without a clear plan, design, and goal,
that API is unlikely to be excellent, usable, or successful. How you use those technolo-
gies makes all the difference between a successful, irresistible API and one that lies fal-
low in the ecosystem with no users. The book is made for you, whether you’re a
product manager, technical lead, engineering manager, API developer, or even a
developer who wants to assess APIs you’ve created or ones you’re looking to use.

 This chapter is focused on helping you understand the overall ecosystem of web
APIs—what the terms mean, what things you want to accomplish (and avoid!) in creat-
ing your own API, and how to decide whether you need an API.

1.1 Integrating social APIs into web content
You likely use products that are incorporating APIs all the time. The share button you
see on news sites and blogs uses the APIs for those social sites, like Twitter, Facebook,
or LinkedIn. If you can “Sign in with Twitter,” the site you’re visiting is using Twitter’s
API to identify you. This makes for a much better user experience, because you don’t
need to remember more usernames and passwords and you can jump right into enjoy-
ing the system. Figure 1.1 demonstrates a website displaying several share buttons,
enabling the reader to add the page to their feed in the social network. Figure 1.2
shows how an API can propagate changes to the clients so they can update their appli-
cation’s guidelines.

5Integrating social APIs into web content
Figure 1.1 A blog incorporating a Twitter feed as well as API functionality for sharing to multiple social networks.
A widget provides buttons for each of the social networks—Google+, Twitter, LinkedIn, and Facebook—and this
widget incorporates that network’s API into the site in a manner that’s easy to implement.

Mobile
application Monitoring

application Website

EmailSMS notification

Figure 1.2 Example API interactions with a
monitoring application. When the monitoring
application detects a change, it can
propagate it to a website, mobile application,
SMS notification, or email.

6 CHAPTER 1 What makes an API irresistible?
A RESTful API is a platform that exposes data as resources on which to operate. For
instance, a contact records management application might make it possible for you to
interact with users, contacts, and locations. Each of these would be exposed as a
resource, or object, you can interact with, whether reading or writing changes. When
you create a well-designed RESTful API, developer users can create applications com-
monly referred to as mashups. A mashup combines multiple APIs together to create a
new user experience (see figure 1.3).

 As you can see, in figure 1.3 I created a mashup using Freebase (think of this as a
database of the world’s information), Amazon, and Netflix. The mashup allows users
to find books that have been made into movies and then buy the book at Amazon or
add it to their Netflix queue. I used information from Freebase to add genre informa-
tion for the movies so users can browse around and find the movies that interest them
most. This is a simple example of mashing up three different APIs to create a new way
for users to explore a data space. Frequently, websites or applications are also leverag-
ing the APIs of social networks for logins, sharing, and showing your user feed.

 This is a great place to emphasize one of the main concepts of this book. The
developer experience for your customers is the most important factor in the success of
your API. If you’re trying to encourage creativity and engagement with a larger com-
munity, or inspire developers to help you reimagine your main product via the APIs,
REST might be your best bet. On the other hand, if your API needs action-based meth-
ods that do a small number of things in a specific manner, you may well want to make
a non-REST API, using SOAP (Simple Object Access Protocol) or another technology
designed for more tightly coupled clients and servers. Either way, the most important
things to take into account are what your customers want and how you want them to
use your API. Remember, developers are people too.

User request
List of
movies

Get
Amazon ID Amazon

Freebase

Render
page

Adaptations mashup

ISBN
Amazon ID

Get Amazon ID for ISBNidentifier

The page is rendered with
all collected data: movie,
book, genre, Amazon ID,
Netflix ID, ...

Search Freebase for movies

made from books. As a

response we can get movie

name, book name, genre,

ISBN, Netflix ID, ...

Figure 1.3 This chart describes an adaptations mashup using Freebase, Amazon, and
Netflix. The user is presented with a grid of book-based movies matching a specific genre,
and for each of the movies, the user is given the opportunity to watch the movie on Netflix
or purchase the book on Amazon. This is an example of a mashup combining multiple APIs
to create an integrated experience for the user.

7What is a web API?
1.2 What is a web API?
The term API has been used for most of the history of computing to refer to the inter-
faces between computer systems, or between different programs on an existing sys-
tem. Frequently these systems were peers, where neither of the systems was specifically
a server or a client. For instance, a mail server might have used a database to store
information, but the systems were inherently designed together, tightly coupled to
work together seamlessly. More recently the term has been expanded to include web
APIs, systems where a client—which could be anything from a web browser to a mobile
application—contacts a web server and operates on the data on that server. The main
difference here is that the developers who are writing the clients aren’t the same as
the developers writing the interface—the system is truly decoupled.

 To understand the idea of a web API, it’s useful to understand the protocol—the
way the systems talk to each other. Think about the switchboard phone system from
days long past. Your phone only knew how to do two things: connect to the switch-
board and make noise. If you wanted to call your Aunt Mae, you’d pick up the hand-
set and make noise with the ringer. After the operator answered, you’d give her Aunt
Mae’s phone number, and she would cause Aunt Mae’s phone to make noise itself,
and then she’d connect up your two phone lines. In this case, you contacted the
switchboard (acting in this case as the “server”) and gave a specific identifier to the
operator, and that person connected your phones. The protocol for this was well
known, and the users of the telephone were able to interact with each other long
before auto-switching was technically possible. Figure 1.4 shows how an API interacts
with front-end clients and the back-end server.

 Similarly, HTTP is a well-known protocol used to drive the web traffic browsers gen-
erate. A web API is a system where clients use a defined interface to interact with a web
server via the HTTP protocol; this can be an internal or an external system. To under-
stand how this works in the context of a browser, when you type an address into the
browser’s address bar, you’re asking that browser to retrieve a unique resource, like
reaching a phone number. The browser asks the server for the information associated
with that identifier, and it’s returned and formatted for you to view in the window.
Web API clients make similar calls to read and write to the system, but the responses
are formatted for programs to process instead of for browsers to display. One of the
best-known APIs is Twitter, whose APIs are open to third-party developers, allowing
those developers to create applications that integrate directly with Twitter. I discuss
HTTP in detail in chapter 4.

Back-end
Server

Web
Server

Clients

Partner
Integrations

HTTP Transact
ions

Third-Party
Applications

Website

MobileAPI

Figure 1.4 The basic interactions with
an API are direct connections with the
back-end server or servers, and a well-
defined interaction with clients on the
front end. This allows for countless front-
end applications, whether mobile,
website desktop, or system integrations,
without changes to the back-end servers.

8 CHAPTER 1 What makes an API irresistible?
Once you’re using a protocol, it’s important to have a well-described format for the
messages that are sent through that protocol. What does a request look like? What
response can be expected? To help you understand what needs to be communicated
via the transactions between client and server, the requests and responses being sent
over HTTP, I’ll bring these questions back into the real world. To support the needs of
a computer system, a RESTful web API must support creating, reading, updating, and
deleting items on the platform. Figure 1.5 describes how a web API works, comparing
it to a real-world resource (an iced tea ordered at a coffee shop).

 To understand how this works, think about what it looks like when you order a
drink at a coffee shop (figure 1.6).

CONVERSATIONS
Unique names for things
Iced Tea

Create, Read, Update and Delete (CRUD)
Order, Get order back, Change order, Cancel order

Substitutions and changes
Unsweetened, Extra Ice

Context -
For here or to go?

••

•

•

•

Figure 1.5 This example shows
how common terms map to API
concepts. Resources are unique
names, the methods are easy to
understand, and options and context
allow the client to express specific
concepts via the API transaction.

Customer

Order tea

Add options
Extra Ice

Unsweetened

Returns info
Iced Tea
Extra Ice
Unsweetened

Deletes order

Creates order
Iced Tea

Update order
Iced Tea
Extra Ice

Unsweetened

Ask about
order

Forgot my
wallet!

Interaction Cashier
POST Iced Tea (create)

Acknowledgment

PUT Iced Tea (update)
Acknowledgment

GET Iced Tea (read)

Acknowledgment

DELETE Iced Tea (delete)

Requests

Figure 1.6 A customer interaction at a coffee shop. Though this diagram seems
complicated, realize that the interaction represents exchanges you’ve had multiple
times with service providers. An acknowledgment can be as simple as a nod from
the cashier, and each of the requests made by the customer is a simple request.

9What is a web API?
When you request an iced tea, you’ve created a new item: an order. Adding options to
this order, such as extra ice, updates that item. When you ask the cashier to tell you
what you’ve ordered, you’ve performed a read of that item. And if you’ve accidentally
left your wallet at home and have to cancel the order, that item is deleted. More com-
plex factors are involved in the system, but this is the essence of a web API transaction.

 You’ll find several advantages to using a RESTful web API, which exposes the data
in the system as objects for interactions between the client application and the plat-
form. When two systems are tightly tied together at a deep level, it’s hard to make a
change on either side without breaking the other. This reduces productivity and cre-
ates a vulnerability to unexpected behavior, especially when the applications become
out of sync. Writing code where the systems are separated by a documented interface
protects both from unexpected changes. It’s easier to test an API and easier to docu-
ment the interface while protecting your internal methods from unexpected use.

 So, what kinds of things can an API enable for you? We’ll dive deeper into business
goals later in the book. Grasping the various ways that you can leverage an API also
depends on an understanding of what can be done with an API (see figure 1.7).

Figure 1.7 demonstrates a small number of the types of integrations that are possible
with web APIs. Mobile devices are the main driving force between APIs; in almost all
cases, the need for an API is driven by the requirement to have a responsive mobile
application. Mobile is an almost universal use case for companies developing APIs. For
this reason, it’s frequently the main use case. Allowing your customer developers to
integrate their system with your platform saves you the development resources needed
to create custom implementations for each separate partner.

Fitbit Withings

Runkeeper

MyFitnessPal

Netflix

Figure 1.7 This diagram shows multiple systems integrated together. On the
left, you can see Fitbit, MyFitnessPal, and Withings feeding into the
Runkeeper system, which can aggregate all of your fitness data in one place.
The picture on the right shows Netflix and all of the various types of devices
it has integrated with, cementing its leadership in the video industry.

10 CHAPTER 1 What makes an API irresistible?

o
nam
1.2.1 Do you need an API?

One of the first questions you’ll want to answer is whether you have to create a web
API at all. Creating an API without any purpose is destined to fail, as with any other
product. This question should be clear once you go through the process of determin-
ing the business value for your API. Whether you’re trying to improve engagement,
support a mobile strategy, or integrate with other systems, an API takes time and
resources to create correctly.

APIs can improve velocity, engage partners, and enable mobile devices, but if your
business does not (and will not) need these things, a web API may not be right for you.
But it’s still worth going through the exercise to determine at what point an API may
be needed.

1.2.2 Choosing REST APIs

When deciding whether to use REST for your API, take into account your customers’
needs and the systems you have to interface with. Over the last several years, REST-style
APIs have become the most popular type of web API. The main difference between
previous API structures and REST is that REST APIs are designed around the idea of
“nouns” in the system instead of “verbs.”

REST APIs are designed to encourage creativity and innovation by allowing devel-
oper consumers to decide how to use the data available. As with open source, this
openness can cause concern for large enterprise companies that are focused on pro-
tecting their proprietary information, but security and privacy can be retained in both
open and internal RESTful APIs when mindfully designed. Another term for an API of
this sort is platform, describing the underlying system as a foundation for developers to
use to build their integration or application.

1.2.3 JSON

The most popular response format for a REST API is currently JavaScript Object Nota-
tion (JSON), which is an efficient way to represent data passed between the server and
the client.

{
 "glossary": {
 "title": "example glossary",
 "GlossDiv": {
 "title": "S",
 "GlossList": {
 "GlossEntry": {
 "ID": "SGML",
 "SortAs": "SGML",
 "GlossTerm": "Standard Generalized Markup Language",
 "Acronym": "SGML",
 "Abbrev": "ISO 8879:1986",
 "GlossDef": {

Listing 1.1 JSON sample

The top-level item of a JSON
item is usually an object
(designated with curly braces).Objects

within
bjects are

e :value. These objects can be objects contained
within the main object. Nesting of
objects is supported at every level.

11Developer experience
 "para": "A meta-markup language, used to create
 markup languages such as DocBook.",
 "GlossSeeAlso": ["GML", "XML"]
 },
 "GlossSee": "markup"
 }
 }
 }
 }
}

The JSON format is compact and easy to transmit on a slow network. For this reason,
it’s manageable on devices with questionable network connectivity (such as mobile
devices). Interpreted languages such as JavaScript, PHP, Perl, and Python work with
JSON quite easily —in fact, the objects look familiar to developers working in those lan-
guages, which is one reason it has become so popular. At this point, if you’re creating
a new API and must choose one format, you’ll likely want to use JSON. Adding a second
output type adds more overhead and duplication, so unless your customers explicitly
require some other format (such as XML) for some reason, it’s best to stick with one.
Choosing to support two different formats will incur a reasonably large amount of
technical debt—creating the need to do extra work as you develop your product,
because you have to double your use case testing and increase development time.

1.3 Developer experience
The experience of the developers using your API is the most critical factor in the suc-
cess of your APIs. An API that’s open to external developers and that has a poor devel-
oper experience may well drive third-party developers to your competitors. You must
create even an internal API with developer experience in mind. Creating internal APIs
without excellent documentation and tutorials will result in a huge support burden as
your consumers struggle to write their implementation and flounder without under-
standing how best to use your APIs.

 A great developer experience begins with understanding your goals for your API
and communicating those to the developers you want to engage. The more informa-
tion you can share with them, the better able they will be to decide whether they want
to use your APIs. Remember, when a developer comes to use your API, whether it be
an internal, partner, or open API, that developer is giving you the only thing he or she
can never get more of: time. Demonstrating that you recognize this is critical to devel-
oping a trusting and mutually beneficial relationship with those users.

 Once you’ve determined the business value, metrics, and use cases for your API,
communicate this information to your developers. A trusting relationship can most
easily be accomplished by practicing transparency wherever you can. As you work
through each section in this book, consider carefully whether you have a strong reason
not to share information about your business values, metrics, and use cases with your
developers. If not, share it! You may not think that developers will want to understand
your business value or use cases, but giving them this information communicates to
www.allitebooks.com

http://www.allitebooks.org

12 CHAPTER 1 What makes an API irresistible?
them clearly that you’re serious about your API. Allowing your customers to view your
design documents before the API is complete gives you the opportunity to get valuable
feedback during the development process. Telling developers exactly how you’re
going to measure the success of your API—whether it’s user engagement, number of
end users, or some other factor—gives them the opportunity to work on your team,
improving those metrics you’ve identified as critical to the success of the API.

 Providing tools, example code, and tutorials is also crucial to the developer experi-
ence. Twilio, a company that provides APIs for voice calls and SMS messages, has a goal
that any developer entering its site should be able to make a successful call from its
system within five minutes. Having this kind of exercise available grabs your potential
developers and engages them in your system. Although they may have only planned to
browse your site for 5–10 minutes, making that call will encourage them to invest
more time in understanding what they can do.

1.3.1 Versioning

Versioning is one of the hardest facets of API management. It may seem like a newly cre-
ated API can be “pretty decent,” assuming that you can fix it up later. Unfortunately,
the choice of which version to use is in the hands of developers—developers you likely
don’t control. Once developers have made an integration or application with your sys-
tem, they’re not likely to be motivated to move to a new, incompatible version unless
there’s new functionality that’s critical to them. You need to take your first version seri-
ously, knowing that you may be supporting that version for a long time.

 Compatible versions that don’t change or delete existing functionality are gener-
ally well received, but as soon as you need to make a change that breaks existing
implementations, you’re going to be facing resistance from your developer commu-
nity, especially if you deprecate a version that they’ve stuck with. Even if you give them
a long warning period to migrate, they may not want to redo the work they’ve done.
On the flip side, maintaining older versions creates duplicate code and requires that
you make fixes to the earlier code as well as the existing code. Troubleshooting and
support become much more difficult when you have developers on multiple versions.
This means that your first version needs to be a solid contender, something you intend
to use for a long time. The website model of releasing a new version every week or two
doesn’t work for an API. Although the API does provide a decoupled world, developers
will still rely on the version they started with, so you need to be aware of the price of
new versions.

1.3.2 Marketing to developers

Finally, make sure that your marketing is targeted appropriately to developers. A
developer will have one main question when coming to your portal: “Why do I care?”
This usually can be broken down into “What can I do?” and “How do I do X ?” Unfor-
tunately, documentation is frequently stuck in the realm of “What does each piece
do?” which doesn’t meet the needs of these questions. Developers don’t tend to be
inspired by pretty pictures or taglines—they want to play with toys. Give them example

13Common pitfalls of organic APIs
code and applications, the building blocks they need to get started making magic with
your platform.

 All of these ideas will be revisited throughout the book—developer experience
should drive most of the decisions you make. (The specific topic of developer support
is covered in more detail in chapter 9.) Following these guidelines will help you to
avoid some of the commonly encountered problems with the first generation of APIs.

1.4 Common pitfalls of organic APIs
Though it may seem as if APIs are a new thing, REST APIs have been out in the world
for over 10 years. At this point the industry is moving from innovators who are blazing
the trail to more stable and mindful API creators who can leverage the learnings of
previous platforms. This means that you have the advantage of learning from the mis-
takes made by the first APIs, which were created without a view toward how the APIs
would be used and measured. Twitter, Netflix, and Flickr have well-known APIs that
are very heavily used, but you may not realize that tens of thousands of APIs have been
created, and as APIs become more common, that number will rise into the hundreds
of thousands. Many of these APIs have been left by the wayside, and even more are
struggling to achieve success in a relatively crowded marketplace. Distinguishing your
platform from your competitors by having a usable API with a fantastic developer
experience will help you rise to the top of the stack.

 I’m going to discuss a few specific examples that illustrate common mistakes made
by platform companies. Remember that the APIs I’m using as examples have attained
success in the long run, but the early stumbles cost them money, resources, and credi-
bility, and in some cases have prevented them from making design changes to
improve their API.

1.4.1 Lack of vision

When the Netflix API was first released, it was open to the developer community at
large. The goal of this product was to “let a thousand flowers bloom,” to enable third-
party developers to create amazing applications that would bring in new subscribers
and make money for the applications while increasing Netflix’s subscriber base. Guid-
ance for developers on how to use the API was minimal and focused on what the API
did rather than providing tutorials and use cases. Developers were attracted to the
platform and created many applications, but the revenue benefit never occurred.
Because the company’s goal for the API was unfocused, developers didn’t know what
the company wanted them to accomplish with the API. As a result, many clients
re-created the functionality of Netflix’s website without adding new functionality. Net-
flix employed a large team to support the open API and encouraged developers to
jump in with both feet and create applications and integrations into the system. But a
somewhat restrictive Terms of Use, limiting the way that third-party developers could
integrate with the system, muted the innovation they were hoping for. The main issues
in this case were that Netflix required attribution, disallowed the ability to combine
information with other vendors, and, most critically, required that advertisements
were not associated with Netflix content.

14 CHAPTER 1 What makes an API irresistible?
 Through partner use of its APIs—using the APIs to integrate Netflix into various
video devices—Netflix discovered that the API was an excellent way to establish market
dominance by creating efficient integrations into devices (such as the Xbox, Blu-ray
players, and smart TVs) and partner products (such as Windows). This business deci-
sion was a great one for Netflix, but its API was now focused on a specific market seg-
ment. The existence of third-party developers, though, meant Netflix needed to
continue to use resources to enable and support alternative use cases. This turned out
to be a costly use of resources, for little business value. As time went on, Netflix
focused the API more on the device market and less on the open version of the API.
Support for open developers declined, new features were offered only to partners and
device manufacturers, and the open API was eventually decommissioned entirely.

 This is an excellent example of an innovator creating a product that had a strong
negative developer experience but that turned out to have an excellent value for the
business. That business value wasn’t defined at the beginning—communication with
developers encouraged them to innovate and create, and those developers trusted
that the resource would continue to be available to them. This situation soured many
developers on platforms in general, because they had spent a great deal of time and
money implementing applications that eventually failed entirely.

1.4.2 Prioritizing the developer experience

Twitter started with a single web page where you typed your message, and you could
follow people or send messages—that was the extent of the features. There was no
image management, no lists, and none of the other features social systems feature
now. Developers loved the API; though the developer experience was a little awkward
at first, it was easy to imagine what you could do with such a system. Many Twitter fea-
tures were initially created by external developers as part of their products, and Twit-
ter adopted the new features because users liked them. This was a decent setup,
although developers were somewhat unhappy with the feeling that their ideas were
being “stolen” by Twitter.

 Eventually, that situation changed for the worse. Twitter rewrote its Terms of Use
so that developers couldn’t create applications that competed directly with its prod-
uct, and existing applications of that type needed to be killed. This meant that when
Twitter adopted a new feature, any existing applications that relied on that feature to
distinguish themselves from Twitter could no longer exist. Twitter wanted users to
integrate sharing and social media into their own applications rather than creating
applications based directly on Twitter. Unfortunately, because this message wasn’t
shared until after several missteps, the developer community was, by and large, quite
unhappy with Twitter, and the company’s credibility suffered as a result. Luckily, with
its enormous user base, Twitter wasn’t seriously affected by the fallout.

 Twitter eventually realized that there were aspects of its API that were costing it
time and resources without being used by the majority of its developer customers. For
instance, all of Twitter’s calls could be retrieved using JSON or XML—a more expan-
sive structure preferred by some customers. The XML version, though, was used by

15Common pitfalls of organic APIs
fewer than 5 percent of the developers, so Twitter created a new incompatible version,
which refined the API into something matching more closely with what most of its
developers were using. As I mentioned, the creation of backward-incompatible ver-
sion changes has a high cost. Twitter took a long time to “sunset” the older API, and
many developers remained unhappy as a result of this change.

 As an innovator, Twitter was bound to experience some growing pains as it devel-
oped its API. At this point, it has one of the best developer portals around, with excel-
lent tutorials, support in the form of forums, and a well-documented API that’s
straightforward and consistent. If Twitter had known at the beginning what it’s since
learned about how users would use the platform—or had another API on which it
could model its platform—it would’ve been able to create the right API at the start.
On the other hand, Twitter learned valuable lessons from the developers, watching
them use the API and seeing what they did. Sometimes you need to break the rules to
figure out the right answer—but knowing what the right plan is can help you avoid
unnecessary mistakes and help you achieve the success you want.

1.4.3 Bad API design

Flickr, one of the first photo-sharing services, was also one of the first APIs. Although it
was attempting to create a RESTful API, instead it created an API that worked with
actions instead of objects (verbs instead of nouns). Flickr has since made improve-
ments in its API, but many developers had already implemented the old API, so it was
difficult for them to create a new, better version. The original design choices are help-
ful examples to understand some of the problems that come with a lack of under-
standing of the basic technology to create RESTful APIs.

 To help you see this, I’ll describe an example of the non-RESTful choices made by
Flickr. To delete a photo from Flickr, a consumer must make a request to the
delete_photo resource related to the photo in question. Originally, this photo would
be deleted by sending a GET request to the delete_photo resource. The RESTful way
to make a change to the server is to use the appropriate HTTP verb Flickr—in this
case, DELETE is the right way to delete a resource, where GET should be used only to
read the existing value of a resource. The distinction may seem minor, but when you
break these rules you create a situation where your API behaves in an unexpected way
for the developers consuming that API. As with designing for the end users of a prod-
uct, you don’t want to create a situation where the behavior of the system is a surprise
to the developer.

REST
DELETE /photos/1234

Flickr
GET /photos/1234/delete_photo

The specifics of this are covered in chapter 4, but for now I’ll point out some issues
with the Flickr implementation.

16 CHAPTER 1 What makes an API irresistible?
 First, in REST APIs, a request using the GET method should never change the data
on the server. One reason why this is important is that if your API doesn’t follow this
rule, a web crawler or other automated system could accidentally change or delete all
the items in your system. Since the development of strong authentication, this has
become less of an issue, but it’s important to realize that this rule is known by most
application and website developers, so making this kind of design choice creates a sit-
uation where the behavior of the API is not what the developer expects. HTTP pro-
vides a set of “verbs” that are well defined. In this case, there is a DELETE method that
deletes the resource from the system, so that’s the right way to accomplish this task—a
DELETE on the resource rather than a GET to the action.

 Another problem here is that by exposing actions instead of objects, developers
are constrained in their use of the API. Exposing nouns instead of verbs means that a
developer is free to imagine new and creative uses for that data. Additionally, opera-
tions on the same object are at the same address, which matches much better with
object-oriented design and helps enforce consistency in the developer’s experience. If
a particular API object doesn’t support a particular method (like DELETE), the system
can send back an error code that’s consistent with the HTTP specification, and the
developer will know how to handle that error.

 It may not seem terribly important to follow the REST specification for your API.
It’s your system; you can choose how to implement it. But remember that your devel-
oper customers may be familiar with how REST APIs tend to work, and whenever you
change the way things work, they may well get confused or make incorrect assump-
tions. Wherever possible, follow the general principles laid out in chapter 4. The more
similar your API is to other existing APIs, the better the developer experience will be.
Once you’ve worked through these prerequisites, you’re ready to create your API.

1.5 API creation process
Chapter 7 is where it all comes together; you’ll learn the steps you need in order to
create a successful and engaging web API. These steps, as shown in figure 1.8, include:

 Determining your business value
 Choosing your metrics
 Defining your use cases
 Designing your API and creating a schema model

Many times it’s tempting to skip the steps I’m covering in this book, but like your main
product, your web API should be a first-class citizen, with the same effort given to
designing, implementing, and supporting your platform as you give to your website or

API creation process

Business
value

Use
cases

API design
&

schema
model

Metrics

Figure 1.8 The process must contain all of
these factors in order to be successful. Treat
your platform like a first-class product and watch
it thrive.

17API creation process
application. Treating your API like a real product will help you immensely in getting
your platform right the first time.

1.5.1 Determine your business value

Many of the first platform products had vague goals. Third-party developers experi-
enced a world where they had to struggle to understand what the company wanted
them to do with the API, and even worse, the platforms they were relying on under-
went drastic changes or were deprecated altogether. This could have been avoided
had they clearly determined their business goals from the outset.

 When thinking about business value, think of the elevator pitch so commonly tar-
geted by new startups. If you get in the elevator with the CEO of your company and he
asks why you have an API, you need to be able to succinctly answer the question in a
way that convinces him that it’s a valuable product. “Developer engagement” or “API
use” is not a great goal. You need a tangible goal related to the larger business such as
“Increase user engagement,” “Establish industry leadership,” “Move activity off the
main product to the API,” or “Engage and retain partners.” Monetization is a nice aim,
but unless your API is your main product, you need to see it as a supporting product,
enhancing the value of your product.

 Another compelling reason to have a great handle on your business value is
resource contention. Your company can only afford to pay a certain number of engi-
neers, and usually those engineers are divided into revenue-producing products and
support engineers. An API is an awkward sort of product—a great API can exist that
doesn’t add directly to the bottom line. If you can’t consistently and succinctly explain
why your API is valuable to the company, and how it’s supporting and enhancing the
existing revenue-producing products, your API may well suffer. When the leaders of
the company don’t understand the value of an API, it may be relegated to the back
burner to get updated “when the engineers have time,” or worse yet, decommissioned
entirely.

 As you go through this book, keep thinking about what you want to accomplish
with your API, and what you want your developers to do, so you can mindfully create
your API to achieve success.

1.5.2 Choose your metrics

Whatever the business value of your platform, your CEO is going to want to know
whether you’re achieving it, and getting buy-in from other teams is much easier if you
can demonstrate how your API is doing. You need this information so you can quickly
evaluate the API you’re creating, or the effectiveness of changes you make. Figure 1.9
demonstrates some common business values and the metrics you can use to track your
progress toward achieving these goals.

 Frequently you’ll see API metrics such as “Number of developer keys in use” or
“Number of applications developed,” but that’s an internal type of metric, unlikely to
be meaningful to the business value of the platform itself. Developers have to get keys

18 CHAPTER 1 What makes an API irresistible?
in order to try out your system, and 90% of those keys may be completely inactive and
meaningless. Instead, wouldn’t it be great to know which actions your platform is pro-
viding for your customers? Or how many users are interacting via the API? Or how
many times a day users interact with your system? Or how many of your partners have
created integrations into their systems? Increasing engagement with your system is a
great goal and relatively easy to measure, though you need to make sure that the
actions that are happening are good for your business. Try to think about how your
API is enhancing the goals of the company as a whole rather than determining how
many people have begun to integrate with your system.

1.5.3 Define your use cases

Once you’ve identified your business value and how you’re going to measure it, it’s
time to figure out what use cases you want to support. Your main product is frequently
a great use case to target, whether it’s the entire product or a subset. For instance, if
there’s a sharing component to your API, you may want to highlight and improve
engagement for that feature through your platform. Thinking of your main product
in terms of API features that might be useful is an effective way to start thinking about
what use cases you want to support.

 If you want to engage mobile developers—and you probably do, because people
spend an inordinate amount of time on their smartphones and have become condi-
tioned to expect an excellent user experience on the smaller screen—you need to
understand the needs of mobile developers and address them. This use case is impor-
tant enough that I strongly suggest you consider it even if mobile isn’t in your immedi-
ate future. This use case will have a strong effect on choices you make when designing
your system. Mobile developers need the API to be performant and robust, and they
aren’t likely to use an API that can’t deliver all the information they need from the sys-
tem for a single screen in one call—ideally, with all the relevant information and no
extra data. Your user could walk into a tunnel or elevator and lose connectivity, and
the developer will want the application to be quick and robust enough to handle these

Usage Partner
Retention

• • Dashboard
 Integrations
• • API Use vs.
 Main Product
 Use

• • User Updates
• • Visitor
 Statistics

• • Social/Sharing
 Activity
• • Dashboard
 Integrations

Product
Integration

Figure 1.9 These are examples of different business values with
the associated metrics. The most important concept to
understand is that you want to have a business value that’s
meaningful to people outside of the API team, and metrics should
support that value in a way that’s meaningful to your overall
organization or company.

19API creation process
cases. Unless the API is designed with these developers as a use case, it’s easy to create
an API that’s not usable for mobile cases.

 Partner integration is also a strong candidate for use cases. When designing an API,
partner engagement is frequently a great business goal; these partnerships bring in
consistent and reliable income, and you want to make it as easy as possible for part-
ners to integrate your API into the systems they use. If your main product is a service
they rely on, you may expose the metrics on those systems so they can integrate with
your dashboard. If you have a social or communication element, they may want to dis-
play news streams within their employee portals. Whatever the case, these use cases
are important to evaluate. Partner engagement is generally a key goal for the com-
pany, and supporting that will make your product central to that end.

1.5.4 Design your API

Developers are generally champing at the bit to create the API as soon as the topic
comes up. Their aversion to taking the time to create designs stems from the fact that
web APIs, and in particular REST APIs, are easy to implement, and it’s hard to dampen
their enthusiasm for the idea of creating a product they can code so quickly. Figure 1.10
shows what an organically grown API looks like when several different APIs are created
separately, without any eye to consistency.

 Unfortunately, APIs that are created without a deliberate design frequently end up
looking a little bit like a potato you left in the garage for a couple of months, with
sprouts coming out at weird angles, completely unrelated to each other, unattractive,
with no clear goal or consistency. I frequently refer to the created APIs as the Wild
Wild REST, because it’s so easy to create a system that’s functionally complete but
unusable. Back-end architects tend to think of development in terms of reliability,
scalability, and efficiency. But a web API is a form of user interface, so it’s critical that
you take the time to define how the API will be used and what it should look like, and
defer prototyping or development until this task is complete.

 The process of designing an API can be challenging unless you have some kind of
system available to describe what the API will look like when it’s done. Unlike earlier
API structures, REST doesn’t require any documentation about what an API does or
how to use it. Historically this has meant that REST APIs are created without an explicit

Reporting API
Sharing API

Search API

Back-end
System

Administration
API

Figure 1.10 Organically grown APIs are unrelated to
each other. This results in duplicate (and sometimes
inconsistent) code, different interfaces to the same
information, and extra work for the consumers of the
various APIs to implement integrations with applications.

20 CHAPTER 1 What makes an API irresistible?
overall design, but that creates a variety of issues. First, the product manager for the
API is generally the person most knowledgeable about the use cases for the API itself,
but if no tangible description can be discussed, those product managers may be
unable to weigh in on the appropriateness of the proposed API.

 The answer to this problem lies in schema modeling systems. These products allow
you to describe the interface for the API before any development starts. Deliberate
design before starting development encourages open communication and prevents
the frustration of duplicating development work and misunderstood requirements.
When a model is created and used to drive the development process, use cases can be
closely mapped to specific sets of endpoints (each named API resource is referred to
as an endpoint), and work can be prioritized in a meaningful manner. The API can be
reviewed to make sure that the endpoints are consistent and that there aren’t any
obvious holes or feature mismatches. A mock server can be deployed for customers or
tests to determine if the use cases will be easy, and tests and example clients can use
this structured documentation to stay current with new API functions and features.

 Modeling schemas for REST APIs isn’t necessarily an easy task; making sure that dif-
ferent products are presenting the same information in the same way is something
that takes time and work. For instance, an endpoint associated with accounting and
reporting might present a “user” and his or her accounting information differently
than the document management system, which would show ownership and editorial
information. This process helps you to avoid those clashes during development and
meet your deadlines with a minimum of difficulty. Back-end systems usually keep all
this information segregated, but when designing an API you should think of your data
as items within a cohesive system rather than distinctive items within separate systems.
This is one of the main guidelines that is frequently missed when API design is left to
back-end architects, who are generally focused on scalability, performance, and preci-
sion as opposed to usability. Your API design should include a human-readable defini-
tion for each endpoint; the methods, fields, and formatting for the response; and any
other metadata that’s important within your system.

 Chapter 7 discusses modeling schemas, and we’ll explore two of the three main
schema modeling languages: RAML and OpenAPI (previously Swagger). Each of them
uses Markdown or JSON to define the behavior of API endpoints, and they all enable
communication, documentation, and testing. Each one is an open standard, but each
is championed by the company that originally created it, and if you’re using one of
the associated systems for API management, design, or documentation, you’ll be best
served by using the matching modeling language. What follows here are examples of
the schema modeling languages to give you an idea of what information is maintained
in each one. Figure 1.11 describes a Blueprint schema model.

 Apiary is a company that provides API design tooling and support. Blueprint, the
schema modeling language championed by Apiary, uses Markdown. This system
focuses on the entire development cycle as described in this book. In addition to pro-
viding a structured language to describe the API, Apiary makes it easy to run a mock

21API creation process
server and allow customers to comment on upcoming API changes. Apiary provides
intuitive design tooling to make it easy for anyone to describe the API, and has a
handy starter template to play around with when you’re getting started.

 Figure 1.12 demonstrates a schema modeled in OpenAPI (previously known as
Swagger), one of the most popular and vibrant schema modeling languages. This is
the only schema modeling language using JSON rather than Markdown, and it addi-
tionally supports YAML, a third markup language (YAML stands for Yet Another

Figure 1.11 Blueprint definition for a simple “notes” API. Blueprint uses Markdown for the formatting,
and as you can see this is a human-readable document. As long as someone understands the basics of
HTTP interactions, they’ll be able to parse this document—which means that your product manager,
customers, and the other development teams you interact with will be able to understand your API long
before you even start coding.

Figure 1.12 OpenAPI sample
markup. Unlike Blueprint, OpenAPI
(previously Swagger) supports JSON
and YAML as its markup languages
and features the ability to include
abstractions for objects in the
system (such as a “user” or a
“contact”), which encourages
readers to consider the resources of
the API in an object-oriented way.

22 CHAPTER 1 What makes an API irresistible?
Markup Language). The functionality of this system matches that of the other two,
but there aren’t any easy tools you can use to create OpenAPI documents, and no
readily apparent templates to help you get started. This leads to a much steeper learn-
ing curve for new users and can discourage you from using the system.

 Finally, figure 1.13 shows an example of a RAML schema model. MuleSoft is an API
management system, and RAML is its schema modeling language. This language is
designed to encourage reuse of best practices among API providers. Additionally, the lan-
guage and tooling are designed to make API discovery and exploration easier. As with
Apiary, templates and tooling are provided by MuleSoft to soften the learning curve.

None of these options is necessarily better than the others, and they each have differ-
ent features and focus. Chapter 7 walks through two of the main schema modeling
languages, RAML and OpenAPI. Whatever system you use, having a schema model will
create an artifact representing the design choices you have made for your API.

1.5.5 Industry standards

As you design your API, one thing to keep in mind is that an open API, unlike a web-
site or application, will be public once released. You won’t be able to hide the schema
from your competitors. This is not a problem—many companies believe that the
model for their API is their competitive advantage, but those companies are wrong.
The data you’re presenting and the algorithms you use to make it more engaging are
the things that separate your API from the other companies in your industry. The

Figure 1.13 RAML from MuleSoft. RAML supports Markdown, as Blueprint does, but
the schema that’s created is more expressive than Blueprint. Additionally, like the
OpenAPI framework, they support abstract objects more natively than Blueprint,
making it easier to implement and maintain consistent APIs across a complex system.

23API creation process
strong notion that your API should be secret until released has resulted in a huge dis-
parity in schemas between companies in the same industry. This has created a situa-
tion where developers have to work much harder than they should to integrate similar
APIs together to create a better client, because each API requires that they start anew
with the development, and the task of combining data that’s structured differently
falls to the developer.

 If you think of your API as a public interface, it becomes obvious that you should
strive to learn from other companies in your industry and work toward best practices
with them. This approach will help the entire API ecosystem to mature much more
rapidly and will encourage more developers to try out your API. If you consider an
industry such as fitness, for example, it’s easy to see that body weight and number of
steps per day are items that are quite simple. Creating different ways to access, man-
age, and interact with those items between Fitbit and Runkeeper increases the diffi-
culty that a developer will encounter in integrating these systems.

 Figure 1.14 introduces the concept of API Commons, where organizations can
upload their schema models for re-use by other API producers. This sort of functional-
ity will help the API industry to move toward best practices, improving the experience
for developers using those APIs.

Figure 1.14 API Commons was designed for companies to define and store their schema models so that
other companies with similar APIs can leverage these existing schemas when building their own APIs.
This allows the developers consuming these APIs to interact with similar systems, rather than needing
to translate between numerous different representations of the same object.

24 CHAPTER 1 What makes an API irresistible?
In keeping with this idea, API Commons was created as a place to store and share
design schemas. The idea of this project is that companies with design schemas can
check them into a shared repository, and other companies and organizations can use
shared schemas to bootstrap their own schemas. Figure 1.15 illustrates the use of API
Commons to create a new API by using other organizations’ APIs as a basis.

 A company could choose to use the “user” definition as described by Twitter, along
with the “weight” model used by Withings and the “steps” description used by Fitbit, to
create an application monitoring weight loss. In fact, several integrations already use
these types of information, and normalizing the API interaction would make it signifi-
cantly easier for developers to create these applications.

 This approach has several advantages. Companies considering releasing a new plat-
form can look to see what others in their industry have done. Web APIs with similar
purposes can migrate to a compatible structure, easing the learning curve for develop-
ers looking to create integrations. Finally, as more and more companies place their
schemas into the system, best practices will evolve, and newer APIs can present a more
consistent interface and improve the developer experience. Without this kind of sys-
tem, the evolution of APIs into a mature ecosystem will be a long and painful process.

1.5.6 Design-driven development

When you’re developing a full application, you need to deploy the entire application
at the same time, and new versions should be as complete as possible, because updat-
ing applications puts a burden on the user. On the other end of the spectrum are web-
sites. A website can push out a new version on a daily basis, and broken functionality
can generally be fixed quickly. New features can be added or removed as needed, and
users don’t need to do anything in order to take advantage of the newer version (on
the other hand, users rarely have the option to go back to an earlier version if they’re
not happy with the new one).

APIs live somewhere in the middle of this spectrum. As mentioned earlier, breaking
changes—changes that cause existing implementations to break—are expensive in
terms of time, resources, and credibility, but new functionality can be added within an
existing version. Although an application would need to “upgrade” in order to grab
those new features, a well-designed API can add new functionality or new information
within the existing data structure without breaking developers’ existing applications.

Fitness API Fitbit

Twi�er

Withings

Steps

User

Weight

Number of steps

User data

Get weight
parameter

Figure 1.15 Building an API from other
companies’ schemas can allow you to use
the schemas generated by different API
providers when designing your own API,
while still making it easy for developers who
have already implemented these other APIs
to integrate with your platform.

25API creation process
 For this reason, it’s possible to create a targeted API and then build on it. Figure
out the most important use case—for instance, mobile—and figure out what the mini-
mum viable product (MVP) would be for that use case. (An MVP is a product that
would perform the base functions for the product without any extra bells and whis-
tles.) Perhaps you only want people to be able to look at your product line or see the
activity feed of their friends. Make sure you know what the API will need to do in order
to support this use case and develop your API for that. APIs lend themselves quite well
to an agile development process, where short iterations allow for frequent review of
changes and additions in order to stay on track.

 Frequently, when design isn’t determined ahead of time, the resulting product
doesn’t meet the use cases of the customers. This issue can be caught during testing or
review of the API, but even when that happens you have to send the product back to
development to try again. Nobody—not developers, marketers, or management—
likes missed deadlines, so making sure that the requirements are well understood
helps make sure that the development work is targeted exactly where it should be.

 Because you’ll have created a schema model for your API, it will be easy to make
sure that there’s documentation for each endpoint and tests that ensure that the
coded product meets the expected behavior. Additionally, the existence of use cases
makes it easy to test the integrated product to make sure that those use cases are, in
fact, easy. A design-first methodology brings much of the contention to the front of
the process and allows for much more streamlined development.

1.5.7 Support your developers

In a book focused on optimizing the developer experience for your API consumers,
I’d be remiss not to discuss the support piece of your API. Sometimes APIs are released
without a solid support system in place, which can cause a great deal of frustration
within your developer community.

 Rather than think of the developers in your community as interlopers whom you
have to deal with, consider them valued partners and support them as such. Devel-
oper support includes a developer portal that includes documentation, example code,
and a well-communicated process for finding help. Your documentation should
include your use cases, presented as tutorials, your business value, and the metrics
you’re planning to use. Providing this information will make it possible for your devel-
oper users to help you succeed. The first step to a great developer experience is the
trust developers feel when you demonstrate that you’re committed to success for the
API and for them as well.

 Engaging developers means performing a lot of the support work up front.
Although consumers of mainstream products respond well to illustrations and catch-
phrases, developers want to get started right away. They like building blocks to play
with, in the form of example code. When the developer can make an API call in the
shortest possible amount of time, it creates engagement and interest and is invaluable
for the success of your platform.

26 CHAPTER 1 What makes an API irresistible?
 The best portal to study for developer experience is Twitter. The company has put
a great deal of effort into making sure that its got clear documentation and excellent
tutorials. Twitter also makes sure that in the community there’s a huge amount of sam-
ple code that developers can leverage in order to write their own applications.

 Another great example is Twilio. It has a goal of making it possible for any new
developer to be able to make a call to its API in less than five minutes. Although this
isn’t possible for every API, it’s a great goal to strive for when creating your “getting
started” documentation.

1.6 Summary
This chapter has covered the topic of creating APIs at an extremely high level. At this
point you should understand what an API is and what you can do with one. I shared
some cautionary tales to explain why a deliberate design process is so critical. The top-
ics covered in this first chapter were as follows:

 What is a web API? A web API is distinct from other API systems in that it’s
designed to decouple the systems from each other, allowing for new and differ-
ent integrations.

 What can a web API do? A web API can add an interface to your system—an inte-
gration point that your internal customers, partner developers, and external
third-party engineers can use to integrate your system with theirs, using well-
known and mature technology.

 Developer experience is the most important facet of this process. Focusing
on the usability of the platform you’re creating will lead to a more successful
product.

 Most common pitfalls occur because a part of the first-class API process outlined
in this chapter is skipped. If there are no use cases, there’s no way to check and
make sure that the resulting API meets the originally stated goals.

Chapter 2 walks you through a “live” API, which you can interact with as a client and
see how it works. Advanced developers will have the opportunity to install the system
themselves, but everyone will have the chance to see what the interface looks like for a
basic REST web API.

Working with web APIs
The next few chapters cover the server-client interaction in detail, but this chapter
helps you understand the concepts with a simple example of an API and sample
application. Most basic API examples use a to-do list, but that’s kind of overused. I
decided to go a different way: I’ve selected a list application with pizza toppings.
Note that this particular application is simple by design; the goal is to show you how
to interact with the API, and how an application interacts with an API. If this were a
production application it would have a full pizza, or pizzas, and the database
wouldn’t be shared, but for the goals here I’ve taken out as much complexity as
possible to make the basic principles clear.

 Looking at an API is interesting, but it doesn’t necessarily help you to understand
how it can drive an application. Additionally, performing actions such as create and
delete in a browser is challenging, so in addition to the API I’ve included a simple

This chapter covers
 Structure of a simple API

 Ways to inspect calls to an API

 Interaction between an API and a client
application

 Deployment of the sample API and application on
your system
27

28 CHAPTER 2 Working with web APIs
application using this API with JavaScript. This application exercises all the functional-
ity in the API so you can see how an application interacts with a web API.

 To get an idea of how this works in practice, I’ve created a basic API using Node.js,
a JavaScript-based web server framework. (You can learn more about this framework
at www.nodejs.org.) The API supports all the needed actions to represent a complete
system: create, read, update, and delete. The first task will be to explore the API in a
browser using the read functionality.

 This application runs on a web host at www.irresistibleapis.com/demo. You can
check out the application there and follow along with the concepts in this chapter. If
you’re a developer and want to explore the code more intimately, use the exercises at
the end of the chapter to get the example running on your own system, including
both the Node.js application and the HTML/JavaScript web application. Section 2.6
also describes the various moving parts to this API and application so you can play with
it as you like.

2.1 HTTP basics
To understand the transactions between the client and the server in API interactions,
you’ll need a basic grasp of how HTTP works. Chapter 4 covers this topic in more
detail, but for now I’ll give you some high-level information about the protocol.

 You’re probably most familiar with HTTP as the way web browsers get information
from web servers. An HTTP transaction is composed of a request from the client to the
server (like a browser asking for a web page), and a response from the server back to
the client (the web page from the server, for a browser). First, I’ll describe the ele-
ments in an HTTP request. You’re familiar with the URL, the address that you type into
the address box on a browser, but that address is only one portion of the information
sent from your browser to the server in order to process a web request.

2.1.1 HTTP request

Figure 2.1 illustrates the elements that make up an HTTP request, along with exam-
ples of how these sections are used. The HTTP request is usually sent with headers, set-
ting the context for the transaction. An HTTP request always has a method; methods
are the verbs of the HTTP protocol. To understand what your browser does, imagine
that you’re visiting my main website. Here are the pieces of the request that are sent
by your browser:

 Headers: Accept: text/html—This tells the server that the browser wants to get an
HTML-formatted page back. It’s the most readable format for humans, so it
makes sense that your browser would request it.

 Method: GET—This is the read method in HTTP and is generally the method
used by browsers when reading web pages.

 URL: http://irresistibleapis.com—This is the only piece you indicated for the
browser.

 Body: none—A GET request doesn’t need a body, because you’re not changing
anything on the server—you’re reading what’s there.

http://irresistibleapis.com

29HTTP basics
All the actions of CRUD (create, read, update, and delete) are represented by meth-
ods within HTTP:

 Create: POST
 Read: GET
 Update: PUT
 Delete: DELETE

The URL is the unique identifier for the resource. It’s like any other URL on the inter-
net, except in this case it’s used to describe the resource in an application system. If
parameters are needed for the request, such as a keyword for search, they’re included
in the parameters of the request. To see how parameters would look, here’s an exam-
ple search request:

http://www.example.com/api/v1.0/search?keyword=flintstone&sort=alphabetical

In this example, the resource being called is http://www.example.com/api/
v1.0/search. The question mark and everything following it are parameters giving
more information about what the client wants in the response. A body section is only
sent for create (POST) and update (PUT) transactions.

 Next, I’ll describe the sections of an HTTP response.

2.1.2 HTTP response

Figure 2.2 shows the elements of a typical HTTP server response. The server is likely to
send back several headers giving information about the system and the response. All
requests have a method, and all responses have a status code. These status codes are
described in more detail in chapter 4, but for now it’s sufficient to know that 2XX
means that the request was successful, 3XX is a redirect to another location, 4XX is an

Headers • Accept (content type)
• Authentication

• PUT
• POST
• DELETE
• GET

Method

• For PUT and POST operationsBody

• Address for the resource
• Optional ParametersURL

Figure 2.1 An HTTP request will
always have a method and will be sent
to a specific URL, or resource.
Depending on the specific call,
headers may be sent to specify
information about the request. If the
call is designed to write new
information to the system, a body will
be sent to convey that information.

http://www.example.com/api/v1.0/search
http://www.example.com/api/v1.0/search

30 CHAPTER 2 Working with web APIs
error in the request from the client, and 5XX means the server had a problem. In the
earlier example, calling my website, the server would’ve responded with the following:

 Status code: 200—Everything worked correctly.
 Headers:

– Content-Type: text/html—as requested by the client
– Date: <date of response>
– Content-Length: <size of response>

 Body—The content of the page. This is what you see if you “view source” within
the browser—the HTML page that tells the browser how to render the page and
what content to display.

2.1.3 HTTP interactions

Every HTTP transaction between a client and server is composed of a request, sent
from the client to the server, and a response, sent from the server back to the client.
There’s no higher level interaction; each request/response is stateless and starts again
from scratch. To help you understand this better, I’ll move on to a discussion of a spe-
cific API.

2.2 The Toppings API
Many different styles of API are available, but the one I’m going to be using and talk-
ing most about here is a Representational State Transfer (REST)-style API, the most
common type of web API.

 As discussed in chapter 1, REST APIs are designed to work with each resource as a
noun. A specific resource within a system has a unique identifier, which is a URL, like
the ones you visit in the browser. This URL identifies the resource in the system and is
designed to be understandable when viewed. For example, with a REST API you could
view the list of existing toppings with the following request:

http://irresistibleapis.com/api/v1.0/toppings

Status
Code

• 2XX (OK)
• 3XX (Redirect)
• 4XX (Client Error)
• 5XX (Server Error)

• Content-Type
• Date
• Content-Length

• Content of result for GET operations

Headers

Body

Figure 2.2 A response will always
have a status code, and a well-
designed platform will send headers
to provide information about the
response (such as size or the content
type). For most requests, a body will
be sent back from the server to
provide information about the current
status of the resource.

31The Toppings API
These are the actual URLs, retrieved with a GET (read) operation. If you put the pre-
ceding URL in a browser, you’ll see the results displayed in figure 2.3.

 You can visit this URL in your browser right now and get the information about a
single topping or a list of toppings. Figure 2.3 shows what this call will look like in a
web browser. Go ahead and try both of these calls in your own web browser to see how
easy it is to retrieve information from this kind of service. Again, this is like any other
web request, only formatted for a computer to work with.

 Now, to view a single topping, you’d take the id field from the list you retrieved
and append it to the URL. Basically, you’re saying, “Give me the toppings list” and
then, “but just the one with the ID of 1.” Almost all APIs work this way. The parent level
is a list of items, and adding an ID will retrieve a single member of the list.

 http://irresistibleapis.com/api/v1.0/toppings/1

The same resource is accessed to update, view, or delete a particular item, using differ-
ent HTTP methods (as described in section 2.1) to tell the server what you want to do.
You can add new items by sending a POST to the list itself (so in the earlier case, the
/toppings endpoint would be used to add a new topping). This type of API encour-
ages engagement and innovation by the developers, and consistency across multiple
API providers makes it easier to get up and going writing clients.

Figure 2.3 Example result of a web call in a browser. The response is JSON, a common markup
language for web APIs. As you can see, the formatting makes it easy to understand the content of the
response.
www.allitebooks.com

http://www.allitebooks.org

32 CHAPTER 2 Working with web APIs
2.3 Designing the API
To go through the steps, imagine an online website for a pizza parlor. Users are having
trouble interfacing with the pizza ordering system and want to be able to customize
their pizzas. The company wants to increase customer satisfaction. This represents the
business value for this platform. Figure 2.4 illustrates each call to the system and how
it would be formatted.

To provide this, they need to create a system that consistently allows users to pick dif-
ferent pizza toppings and keep them in a list (use case). The company decides to mea-
sure success by determining the increase in people finishing up started orders
(measurements). Fortunately for this example, it’s relatively easy to figure out how an
API can meet these needs.

 Because I’m creating a resource-based API, each request will be a unique URL
describing one piece of the back-end structure with a method describing what the cli-
ent wants to do with that resource. In this case, I have only two different types of
resources: individual toppings and lists of toppings. Individual topping resources such
as /api/v1.0/toppings/1 are used for viewing, editing, and deleting a single topping.
The list resource /api/v1.0/toppings is used for viewing all toppings or for adding a
new topping to the list. Table 2.1 shows each call to the API and a description of what
it does.

Client

Ask for
toppings list

Create new
topping
Pineapple

Update existing
topping

Delete existing
topping

Get existing
topping

GET/toppings
(read)

POST/toppings
(create)
Pineapple

PUT/toppings/:id
(update)

GET/toppings/:id
(read)

Pepperoni

DELETE/toppings/:id
(delete)

Returns list
of toppings

Creates new
topping

Pineapple
ID:3

Updates topping

Deletes topping

Returns topping

Pepperoni
Ham

Toppings List

Individual toppings

Platform

Figure 2.4 This diagram represents the complete set of interactions with the API system. The
GET request reads the current value of the resource, whether it’s a list or an individual item.
POST is only allowed at the list level, and creates a new resource in the system. PUT updates
and DELETE deletes an existing resource. All four of the needed methods, Create, Read,
Update, and Delete, are represented in this diagram.

33Designing the API
And that’s it. The platform features create, read, update, and delete operations avail-
able to you by combining the HTTP methods with the URLs for your resources. But
what do you get when you make these calls? When you GET the resource for a single
topping, you get information about that topping. Try this now in your browser:
http://irresistibleapis.com/api/v1.0/toppings/1.

GET /api/v1.0/toppings/1
{
 "topping": {
 "id": 1,
 "title": "Pepperoni"
 }
}

This response is represented in JavaScript Object Notation (JSON), a formatting syn-
tax first described in chapter 1. JSON is covered in more detail in chapter 4, but for
now you can see how the data is structured. (If you want more information about
JSON, you can find it at http://json.org.) The curly braces indicate an object, which is
a group of pairings of names and values. What’s represented here is a JSON structure
describing a single object—a “topping,” which has an ID of 1 and a title of Pepperoni.
This is the same resource address a client can access to view, delete, or update an exist-
ing topping. This means that the URL for the single topping is the toppings list of
http://irresistibleapis.com/api/v1.0/toppings followed by the ID of the topping from
within this structure—so it’s http://irresistibleapis.com/api/v1.0/toppings/1.

 If you GET the resource for the list of toppings directly, the returned information
includes a list instead of a single object. Call this URL in your browser to see the list:
http://irresistibleapis.com/api/v1.0/toppings.

GET /api/v1.0/toppings
{
 "toppings": [
 {

Table 2.1 API calls

API call Description

GET /api/v1.0/toppings List current toppings

GET /api/v1.0/toppings/1 View a single topping

POST /api/v1.0/toppings Create a new topping

PUT /api/v1.0/toppings/1 Update an existing topping

DELETE /api/v1.0/toppings/1 Delete an existing topping

Listing 2.1 Retrieving a single topping

Listing 2.2 Retrieving a list of all toppings

Curly braces indicate an object.

Curly braces indicate dictionaries.
Square braces indicate lists.

http://irresistibleapis.com/api/v1.0/toppings/1
http://json.org
http://irresistibleapis.com/api/v1.0/toppings
http://irresistibleapis.com/api/v1.0/toppings/1
http://irresistibleapis.com/api/v1.0/toppings

34 CHAPTER 2 Working with web APIs
 "id": 1,
 "title": "Pepperoni"
 },
 {
 "id": 2,
 "title": "Pineapple"
 }
]
}

In this case, because the request was for a list of objects, square brackets demonstrate
that the returned object contains a list of toppings. Each individual topping looks the
same as listing 2.1. Again, this is how information is represented in JSON. To under-
stand these calls and responses, remember that an object (with keys and values) is rep-
resented by curly braces, and a list (an unnamed collection of items) is represented
with square brackets. In some programming languages these are referred to as hashes
and arrays.

 Both of these calls can be made from a standard web browser. If other people have
added items to the list, you’ll see those included in the list view as well; this is a live call
into the API system and returns the appropriate information. In this case, the API is
generated by node. If you’re a developer who’s interested in learning more about the
back end of the system, Exercise 3 at the end of the chapter will give you information
about how to run this system on your own, as well as the application running on top of
the API.

 This simple API interaction gives you the opportunity to start understanding some
of the topics covered in chapter 4.

2.4 Using a web API
You can interact with this API in various ways, as you’ll learn in this section. Feel free to
try any or all of these approaches to see how the interaction works.

2.4.1 Browser

A browser can make GET calls to specific resources easily. Note that this is easy in the
case of my demo API because there’s no authentication to worry about. The challenge
is that the browser doesn’t have any way to easily update, delete, or create new items.
Using the developer tools or web inspector in your browser can give you more infor-
mation about the call as well.

 For instance, the Chrome web browser has developer tools that allow you to
inspect the traffic it’s processing. Figure 2.5 shows what these tools look like in the
browser. I’ll break down what you’re seeing here in terms of what I described earlier.
Note that the Chrome tools are showing the request and response combined together
in the tab.

35Using a web API
For the request:

 Headers—Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/

webp;*/*;q=0.8—This is the list of accepted formats for this browser request, in
order of preference. Because it includes */* (meaning “any content type”) late
in the list, the browser will accept any type of response and do the best it can
with it. Many other headers are shown in figure 2.5. Take a look at them and
run the same request on your system to see how they change and what stays the
same in each request/response transaction.

 Method—GET
 URL—http://irresistibleapis.com/api/v1.0/toppings
 Request body—none
 Status code—200 OK

Figure 2.5 The Chrome browser makes it possible to see information about the request and response headers,
the body of the request or response, and other useful information about the transaction. Although browsers aren’t
designed to send PUT or DELETE responses, the information provided here can go a long way in helping you to
understand the interactions with the platform.

http://irresistibleapis.com/api/v1.0/toppings

36 CHAPTER 2 Working with web APIs
2.4.2 Command line (curl)

If you’re comfortable with the command line, you can use the curl command to make
calls to the API as well. This tool is fairly straightforward and makes it possible to inter-
act with the API more completely, using all the available methods rather than limiting
transactions to read operations as the browser does. curl is native on UNIX-based sys-
tems such as Linux and Macintosh, and you can install it easily for Windows from
http://curl.haxx.se/download.html.

 Let’s take a quick tour through the API using curl. By default, curl uses GET
(read), but you can specify other methods on the command line, as shown in the fol-
lowing examples. Remember that your responses may be different if other people
have been changing things; go ahead and work with what you get. Don’t be shy—this
API is for this book, and you can’t break anything important. The best way to under-
stand this type of system is to work with it yourself.

 First, let’s use curl to look at a single topping. Lines beginning with a dollar sign
indicate a command-line call. The other information is the information returned by
the server itself.

$ curl http://irresistibleapis.com/api/v1.0/toppings/1
{
 "topping": {
 "id": 1,
 "title": "Pepperoni"
 }
}

That seems pretty reasonable. I’d eat a pizza with pepperoni on it. Let’s list all the top-
pings and see what else is on the pizza. Remember that the list for the toppings is at
the parent level, or /api/v1.0/toppings.

$ curl http://irresistibleapis.com/api/v1.0/toppings
{
 "toppings": [
 {
 "id": 1,
 "title": "Pepperoni"
 },
 {
 "id": 2,
 "title": "Pineapple"
 },
 {
 "id": 3,
 "title": "Pickles"
 }
]
}

Listing 2.3 GET /api/v1.0/toppings/1

Listing 2.4 GET /api/v1.0/toppings

http://curl.haxx.se/download.html

37Using a web API
Wait, what? Pickles? That’s kind of gross. Let’s delete that one. The id for it is 3, so the
correct path to operate on is /api/v1.0/toppings/3.

curl -i -X DELETE http://irresistibleapis.com/api/v1.0/toppings/3
{
 "result": true
}

The response here says we succeeded. To be sure, let’s pull a list of toppings again.

$ curl http://irresistibleapis.com/api/v1.0/toppings

{
 "toppings": [
 {
 "id": 1,
 "title": "Pepperoni"
 },
 {
 "id": 2,
 "title": "Pineapple"
 }
]
}

Okay, that’s much better. But our pizza has pepperoni and pineapple, and I’d much
prefer ham with my pineapple. Let’s go ahead and change that first one to make the
pizza how I want it. To update an existing item, the command needs to send a PUT to
the resource with the new information required.

$ curl -i -H "Content-Type: application/json" -X PUT -d '{"title":"Ham"}'
http://irresistibleapis.com/api/v1.0/toppings/1

{
 "topping": {
 "id": 1,
 "title": "Ham"
 }
}

Nice, now the pizza is looking pretty good. But as far as I’m concerned the pizza is
merely a vehicle to get cheese in my mouth, so I’ll add some extra cheese to go with
the Hawaiian pizza I’ve built.

Listing 2.5 DELETE /api/v1.0/toppings/3

Listing 2.6 GET /api/v1.0/toppings

Listing 2.7 PUT /api/v1.0/toppings/1

38 CHAPTER 2 Working with web APIs
$ curl -H "Content-Type: application/json" -X POST -d '{"title":"Extra extra
 cheese"}' http://irresistibleapis.com/api/v1.0/toppings
{
 "topping": {
 "id": 3,
 "title": "Extra extra cheese"
 }
}

Let’s do one final check to make sure that the pizza looks good.

$ curl http://irresistibleapis.com/api/v1.0/toppings

{
 "toppings": [
 {
 "id": 1,
 "title": "Ham"
 },
 {
 "id": 2,
 "title": "Pineapple"
 },
 {
 "id": 3,
 "title": "Extra extra cheese"
 }
]
}

Awesome! Now the pizza is just right.
 Note that with curl you can also pass -i for slightly more chatty information, or –v

for a much larger dose of verbose output. If you’re having fun and you’d like to try
those now, feel free. The extra details you’ll see are HTTP transaction details, which
are described in chapter 4.

2.4.3 HTTP sniffers

Browsers have become good at showing information about the calls they’re making,
but this is of limited use for a couple of reasons. As I mentioned earlier, a browser is
only capable of sending a read request, which restricts the actions you’re able to
explore. When you submit a form, it creates a create (POST) request, but you can’t
arbitrarily call these operations in your browser.

HTTP sniffers are tools that allow you to explore all the HTTP traffic your system
processes. HTTP sniffers watch and report on the network traffic your system is gener-
ating, whether it comes from a browser, an application, or a raw command-line call.

Listing 2.8 POST /api/v1.0/toppings/1

Listing 2.9 GET /api/v1.0/toppings

39Using a web API
With these tools, you can see the entirety of the HTTP request and response, and this
allows you to debug what’s happening if you’re running into issues.

 If you’re using a Mac, HTTPScoop (www.tuffcode.com) is a friendly choice. It’s easy
to set up and use, and the output is clear and complete. The downside to this tool is
that it can’t monitor secure transactions (HTTPS calls), and so it’s not going to work
with any API requiring secure calls. For the purposes of this book, though, you’ll only
be accessing a nonsecure API (the demo API), so HTTPScoop is a fine choice—it
would be my first choice for any Mac users wanting a reasonably intuitive experience.
The license cost is $15, but you can try it for two weeks for free.

 Figure 2.6 shows an example of the windows in HTTPScoop. For this chapter, I’ll
focus on the main screen listing all calls and the Request/Response tab. Later in the
book you’ll learn about headers, status codes, and other HTTP details so you can
understand how they all interact together. For now, though, consider the request to
be a simple request and response, and don’t worry about particular details if you’re
not already familiar with HTTP.

 For Windows users, the best choice out there is Fiddler, which you can find at
www.telerik.com/fiddler. For Windows, Mac, and Linux, there’s a slightly more com-
plicated choice in Charles (www.charlesproxy.com). If you’re quite advanced in your
network administration skills, you can try out Wireshark from www.wireshark.org.
Wireshark is available and free for every major platform and sniffs all kinds of traffic,
not only web/HTTP traffic, but the interface is complex, and it can be difficult to
understand what you’re seeing.

Figure 2.6 This is an example of a call being inspected by HTTPScoop. On this basic landing page, you
can see the Request URL, representing the resource. The content type of the response, status code, and
response size are also provided.

www.charlesproxy.com

40 CHAPTER 2 Working with web APIs
EXERCISE 1 Watch the traffic in an HTTP sniffer as you go through the exer-
cises from this chapter. Use the curl calls to access the API directly and see
what the calls look like. For more verbosity with curl, you can use –v in your
command and see more information about the call from the client side. Com-
pare the information in the sniffer to what curl sends and see if you can find
patterns. Which debugging method gives the best information? Which one is
easier for you to use?

EXERCISE 2 Make a deliberately incorrect call. Call /api/v1.0/toppings
/100—there’s not likely 100 toppings on the pizza, so this is a bad call. What
kind of output did you get from curl –v? What did the HTTP sniffer show?
The status code tells you how the system responded, which should give you
the information you need to figure out what the issue is.

2.5 Interaction between the API and client
Seeing these GET calls to the API is somewhat interesting, but unfortunately you can’t
see the POST, PUT, or DELETE calls using a browser. curl isn’t intuitive for exploring a
system. Without some kind of application using the API, it’s difficult to explore and
visualize the elegance and simplicity of this kind of interface.

 Keeping in line with the simple API, I’ve created a simple application to exercise
the API, creating a list of toppings for your virtual pizza. Again, for a real application
there would be a full pizza and a method to place the order, but this application is
deliberately as simple as possible so it’s easy to understand how it works.

 I’ll go through the same sequence I did in the last section. Here’s our starting
pizza, with pepperoni, pineapple, and pickles. Loading the initial page causes an API
call to be generated, and we get the current list of toppings from the system.

 First, take a look at the JSON representation returned when the API is called
directly at /api/v1.0/toppings, shown in figure 2.7. Figure 2.8 shows how the appli-
cation looks when this API call is made on the back end.

Figure 2.7 Here you see a representation of the API
toppings list in JSON, the markup language used by the
platform. As described, the curly braces indicate an
object, or dictionary, and the square brackets represent
an array, or list of objects.

41Interaction between the API and client
Now take a look at the main application at http://irresistibleapis.com/demo. With
the JSON data, the simple application can build the front page. Some of the items are
static—they don’t change. The top half of the page, for instance, is always the same,
with the title of the display and a button to add new toppings. The bottom half,
though, is created based on the information retrieved from the API. Each topping is
listed, and the ID of the topping is used to create an appropriate button to act on that
specific item. The user has no need to understand the relationship between the ID
and the name of the topping, but the IDs are used programmatically to set up the
page to be functionally correct. Note how the information in the API in figure 2.4
directly maps to what’s shown in the application in figure 2.5. The buttons on this
page map directly to the other API calls, as shown in table 2.2.

As we walk through the API actions, use the HTTP sniffer of your choice to watch the
traffic as the interactions happen. Note that because this system is live, other people
may have added, deleted, or edited the toppings, and they may not match. Feel free to
use the buttons to adjust the toppings to match or follow along with your own favorite
toppings (Jalapeños? Sun dried tomatoes? Legos?).

 The first action in the previous example was removing the pickles from the pizza,
and clicking Delete on this page for the Pickles entry will do that. This button knows
which ID to operate on because it was embedded in the page when the listing was
rendered.

Table 2.2 The mapping between the API calls and application functions

API call Application function

GET /api/v1.0/toppings Main application page

GET /api/v1.0/toppings/1 View button on main page

POST /api/v1.0/toppings “Add new topping”

DELETE /api/v1.0/toppings/1 Delete button on either page

Figure 2.8 The application view for the
toppings list shows the same information, as
shown in figure 2.4. This screen is created by
calling the toppings list and creating the HTML
based on the returned information. If the list
changes on the server, both figure 2.4 and
figure 2.5 would change, with both showing the
same information in different ways.

http://irresistibleapis.com/demo

42 CHAPTER 2 Working with web APIs
Clicking the Delete button will make the DELETE call and then make a call to the API
to re-render the list of toppings with the deleted topping gone. If you’re using an
HTTP sniffer or have configured your browser to show you web traffic, you can see this
call happening from your system. Figure 2.9 shows what it looks like in HTTPScoop.

 As you can see, the application pulled a few different framework files and then got
the full listing for the main page. When I clicked Delete, the application sent a DELETE
request to the API server and then requested a new list of toppings. All the requests
were successful, so the main page refreshed to show the new list. Figure 2.10 shows the
list after I deleted the offending pickles from the toppings list.

 To edit an existing topping, in this case to change Pepperoni to Ham, click the View
button. Doing so makes the read call for the specific item and allows you to edit the
title. Using this technique to edit the Pepperoni to Ham and then clicking Save causes
a PUT to happen exactly as in the original example. Watch your HTTP sniffer or browser
traffic to see how this progression works. Figure 2.11 shows what the Edit page looks
like for a particular topping—in this case I changed the title from Pepperoni to Ham.

Figure 2.9 This HTTPScoop screen shows a list of all the calls made by the system. In this case,
you can see the DELETE method is called to remove the /toppings/2 resource from the system,
and it was successful, as indicated by the 2XX response in the code column.

Figure 2.10 Once the topping has been
deleted from the system, the HTML
representation of the toppings list no longer
shows the deleted topping. If the platform call
is made (to /toppings) you’ll see that the
change is reflected in the JSON representation
as well.

43Interaction between the API and client
When this change is PUT to the API, it will change the item’s title from Pepperoni to
Ham, updating the database to reflect the change permanently.

 The PUT request, viewed in HTTPScoop, shows the request and response (see fig-
ure 2.12).

As with the associated curl request earlier, the debugging demonstrates that the cli-
ent sends a request including the new information for the requested item. A PUT
request replaces information for an existing item in the system. In the response, the
server returns a response showing the new values for the resource. This returned
object matches the object that was PUT to the system. Without HTTPScoop, this seems
a little magical, but you should be seeing a pattern by this point; these common oper-
ations are direct mappings to system calls on the back end of the application.

Figure 2.11 The Edit a Topping screen allows you to change the title of an
existing resource.

Figure 2.12 When you change the title of an existing resource, the information is sent to the server,
and it sends back the new representation of that item. In this case, the object is quite simple; the
title is the only field that can be changed. This is a simple demonstration of how an update works
on an API platform.

44 CHAPTER 2 Working with web APIs
Again, once the topping is edited, the application redisplays the main page, now with
Ham and Pineapple (figure 2.13).

 What’s left then? Now I need to add my extra cheese to the pizza, because it’s my
favorite sort of thing. Clicking the Add New Topping button on the main page gives
me a page for adding a new topping, as shown in figure 2.14. Remember, adding a
new item to the list is a POST action, and that’s what will happen on the back end. Fig-
ure 2.15 shows what the API transaction looks like when this POST is sent.

Figure 2.13 The list of toppings now includes
Ham and Pineapple; the Pickles have been
deleted (thank heavens), and the Pepperoni has
been changed to Ham using an update. Again, if
you made a call to the /toppings resource
you’d see the changes shown in the JSON
representation as well.

Figure 2.14 The Add a Topping screen is designed to add new toppings to the
system. As mentioned earlier, a create action is generally represented by a POST
operation, and that’s what the system will do in this case.

Figure 2.15 HTTPScoop POST request/response. The only field needed to create a new topping
is the title, and it’s set to Extra extra cheese (yum!). The response shows the ID and title—
the entire representation—of the newly added item.

45Install your own API and front end
This example demonstrates again the difference between PUT, which updates a spe-
cific existing item, and POST, which creates a new item by adding it to the specified list.
After adding this new topping to the system, the application again requests the list of
toppings, which brings the web page back once again to the main page. This com-
pletes the circuit using an application to exercise the back-end API. The single page
running this application is quite straightforward, because all the logic and actions are
happening on the back end using the API.

 Now that you’ve had the opportunity to view some specific traffic, take time to play
with the example application with the various HTTP inspection methods. Because this
sample application runs in your browser, you have the option of using developer tools
in your browser to watch the traffic or an HTTP sniffer for this exploration. For the
exercises in this book, you’ll want to use an HTTP sniffer, so pick the one you’re most
comfortable with and start familiarizing yourself with its use.

2.6 Install your own API and front end
This optional section is designed specifically for developers who want to understand
more completely the back-end functionality of the API and sample application. You
can use a Docker container to run the system quickly on your own system or download
the code from my GitHub repository. I’ll walk through the steps to install and use the
Docker container first and then give more general instructions for grabbing the code
from GitHub to run on your own system.

2.6.1 Installing the system via Docker

Docker is extremely simple to install on Linux systems and quite easy on Mac OS X
and Windows systems as well. Installing the Docker container is simple once you’ve
got the Docker system set up. Using this container allows you to separate the code and
processes from the main processes on your system while avoiding the memory and
space-management issues of more heavyweight virtual machine systems. The Docker
installers for installation on Windows and Macintosh are at www.docker.com/toolbox.

 If you’re an advanced user running Windows and already have virtualization work-
ing via VBox or another virtualization system, you need to be aware that Docker relies
on VirtualBox, which may conflict with your existing setup. Additionally, boot2docker
requires that virtualization be available on your system, which infrequently requires
changes to the BIOS. Also, virtualization is only available on 64-bit systems. If your sys-
tem is a 32-bit system, you’ll need to install the code directly from GitHub.

Advanced Example Note
If you’re a developer and want to install your own copy of this system, follow the
instructions in section 2.6 to do so. Otherwise, skip to section 2.7 for a summary of
this chapter.

46 CHAPTER 2 Working with web APIs
 Once you’ve installed Docker using the instructions at the Docker website, you’re
ready to pull and run the container.

 On Linux, issue this command (on one line):

% sudo docker run -p 80:3000 synedra/irresistible

That binds your system’s port 80 to the Docker container on port 3000.
 On systems using boot2docker (Windows or Mac OS X), the command is as follows

(root access isn’t needed because of the nature of docker-machine):

% docker run -p 80:3000 synedra/irresistible

The application automatically runs in the Docker container. When using
boot2docker, the Docker engine assigns a separate IP address for Docker containers.
In order to determine the IP address of your Docker container, issue the command
docker-machine ip default. Once you’ve done that, you can access the system at
http://<docker-ip/. Because the server is running on port 80, the default web port,
the browser will find the web server on that port.

 If you’d like to start the container and explore the code, you can do so with the fol-
lowing command, which won’t start the node server:

% docker run -i -t synedra/irresistible /bin/bash

You’ll now be root in a shell within the container. Accessing the system in this way
allows you to look at the code and figure out how all the pieces are working together.
The application itself is composed of the toppings.js file, and the front-end web server
is run from the static/index.html file. The previous command will allow you to access
the application directly without cross-domain issues. You can read more about Docker
port forwarding at https://docs.docker.com/userguide/dockerlinks/.

 If you’re running Docker directly on Linux, you can access the system directly at
http://localhost. If you already have a web service running on the default port, you
can assign a different port in the docker run command.

2.6.2 Installing the system via Git

If you prefer to run the applications on your own system rather than using the Docker
container, you need to have Git and Node.js installed on your system. The commands
needed to pull the repository to your system and install and run node are as follows:

% git clone https://github.com/synedra/irresistible
% cd irresistible/
% curl -sL https://deb.nodesource.com/setup | bash - && apt-get
 install -yq nodejs build-essential
% npm install -g npm
% npm config set registry http://registry.npmjs.org/
% npm install -g express@2.5.1
% npm install express
% npm install
% node toppings.js

https://docs.docker.com/userguide/dockerlinks/

47Install your own API and front end
From there you can access the system at http://localhost:3000 (or port 3000 on
whichever server you’re using). Node.js runs on port 3000 by default, so if you want to
expose the system on the standard port (80), you’ll want to run a separate server on
the front end—something like Nginx or Apache—and then create a reverse proxy
back to the node server. For security reasons it’s best not to use root to run a bare web
service, and you can’t access the standard ports as a regular user. This is one of the
advantages to using the Docker system—because it’s isolated from the rest of your sys-
tem at its own IP address, it’s safe to run the front-end server on port 80.

2.6.3 Exploring the code

As you’re running the system and exploring it, you’ll see the logs for the system show
up in the terminal window where you started up the web server. Using an HTTP sniffer,
you can watch the API traffic your system is generating as described in section 2.3.
Once you’ve started a web browser at http://docker_ip_address/, not only will you be
able to see the traffic in an HTTP sniffer, but you’ll start seeing server entries in the ter-
minal window that you started.

 The logs show you all the traffic—both front-end calls to / and the back-end
requests to the API. This combined log data makes it easy to see how the systems are
interacting.

 If you used the Docker setup, you were placed directly into the /opt/webapp
directory. The Git instructions will put you in the same directory: the webapp subdi-
rectory of the repository. Table 2.3 shows a listing of the files in the program directory
along with a description of what each one does.

The toppings.js file is used to run the node web server. When you type node toppings.js,
the application looks for the index.html file in the static directory and serves it up.

 The application uses Bootstrap, a single-page application framework that makes
your simple applications look pretty. The formatting pieces are mostly contained
within the Bootstrap framework, and overrides are made within the index.html file.
This is all to explain what the id and style attributes are for each <div> on the page.
In this case, it’s using the main-single-template for the outside wrapper, and the
inside is a main-single container. This function will present the table of items for the
page to render.

 The $.get function makes the call to /api/v1.0/toppings, at which point the
back end returns a list of toppings, and this function is called to render the page.

Table 2.3 Files included in the program directory

Filename Description

Procfile Used if you want to deploy this to Heroku

Toppings.js The main program for the system

static/index.html A simple single-page application that exercises the API

48 CHAPTER 2 Working with web APIs
EXERCISE 3 Play around with the page, see how each piece works, and try to
see if you can make the application go directly to the Edit page from the top-
pings list instead of the View page.

2.7 Summary
At this point you’ve either played directly with my hosted service or set up your own.
This chapter covered the following concepts:

 The structure of a simple web API system includes the required actions for a
complete platform: create, read, update, and delete.

 A basic HTTP transaction includes a clearly defined request and response, creat-
ing a foundation for web APIs.

 From HTTP sniffers to Chrome Developer Tools, the ability to monitor the traf-
fic makes it much easier to understand what’s happening between the systems.

 RESTful API ideals define the endpoints as nouns, and not verbs. Between these
ideas and the HTTP transactions they work with, the web API system is complete.

Now that you have an understanding of the various moving pieces in a simple API, you
can begin thinking about your own API at a higher level: how to architect the entire
system to use the simple pieces I discussed here to build a fantastic API system. This
chapter was about the bottom up, and how the cogs and wheels work together to
make things work. The next chapter will help you to learn how to think top down:
what are the goals for your API system and how can you meet them most efficiently?

API First
When you’re setting up an API, the vision for the entire platform is quite impor-
tant, from determining the business value through structure and design decisions.
I’m going to step back for a moment from the practical description of APIs in order
to talk about an overarching model that is generally superior to the old model of
creating APIs in parallel with the main product.

 Previous models for product lines with multiple different interfaces, such as
mobile or integration, were created so that each of the integration points available
for the different client use cases were built independently. This generally led to
unfortunate consequences—APIs that were creating code already written for the
main product, APIs that were perennially behind in features and functions, and a
great deal of technical debt because each change to the system needed to be pulled
into each type of client.

This chapter covers
 Code consistency

 Feature equality

 Increased velocity

 External/open versus internal

 Examples of API First development
49

50 CHAPTER 3 API First
API First does what it says. Instead of product first, the API First model describes a
model where the back end interfaces only with the API, and all products—the main
front-end website, mobile integrations, and other integrations—interface with the API
itself.

3.1 Why choose API First?
API First makes a lot of sense for any company. As soon as you have more than one
product, you should have a layer to protect the clients from changes on the server.
Your website and mobile application should both be able to get information from the
system. A well-documented interface into the system, crafted with specific use cases in
mind, allows you the freedom to change things around on the back end, as long as the
interface doesn’t change. You can switch out the database, add scaling, or refactor
your back end entirely as long as you adhere to the documented interface. Integrated
testing is easier, and the main products running on the API will, by their nature, test
the integrity of the system on a regular basis through the daily use of that platform.

 To understand why API First is a good idea, you first have to understand what the
existing model looks like. Various architecture models are available that support web
API platforms, but many existing APIs are created using a pattern where the API
accesses the back end directly in parallel with the main product. This means that if
you want to make new products, you have to either write more systems that access the
back end or extend the API so that it supports both alternative products. Additionally,
an API is frequently considered to be an “extra, nice to have” product rather than an
important member of the product ecosystem. This attitude creates problems because
companies are frequently focused on revenue-producing products; if there’s no
understood value for the API, it will likely suffer from a lack of needed resources.

3.1.1 APIs as side products

Figure 3.1 shows an example of the “usual” setup for APIs. As you can see, the API is
separate from the main product, and even if all secondary products, such as mobile or
partner integrations, run off of the API, a mismatch can exist between the features and
functionality available in the main product and API-driven products. For instance, the
main product may get a new activity feed, but because that coding is happening within
the main product, it doesn’t appear in the API (or as an extension in the mobile appli-
cation or partner integrations). Keeping everything entirely consistent—from features
and object structure—is theoretically doable, but it’s a lot more work than restructur-
ing the infrastructure to treat the API as a piece of core technology for the system. The
back-end system is the critical component for both the APIs and the main product,
and separating out the clients in this way makes it harder to triage and fix problems
that might occur in the product or the API. Keeping everything in the same pipeline—
from back end, through the API, to the product lines, including the main web prod-
uct, the mobile clients, and APIs for partner integration—helps ensure consistency
and reliability, and as your product grows, it makes scaling much easier.

51Why choose API First?
Once you’ve established how you want your users to interact with your system, it’s best
to support that everywhere. Imagine that a company has a product for creating and
updating contact information for users; we’ll call it Addresser. Addresser’s main prod-
uct is a website where users can view their contacts and information, and there’s also a
mobile application to interact with the back end. The website makes a specific call to
the back end and gets the result formatted exactly as it’s requested. The mobile appli-
cation, on the other hand, makes a call to the API, which provides the information in
a different format. Figure 3.2 demonstrates this case, where the main product commu-
nicates directly with the back-end system and is likely to retrieve data in a different way
as a result. When the back-end system team adds a new “Location” field feature, and
the Addresser website starts using it, it doesn’t show up in the API, nor in the mobile
application, until an engineer has time to add it, doubling the amount of work neces-
sary to keep the products consistent and increasing the likelihood of bugs in one
product or the other one. This means that there will likely be a lag between the addi-
tion of this field to the main product and availability within the API. There’s a lot of
technical debt incurred when you have multiple systems trying to reproduce a single
interface; this setup means that duplicate work is needed in order to maintain feature
consistency. In this case, the mobile app wouldn’t allow or see locations, resulting in
developer dissatisfaction and customer confusion and irritation.

Main
Product

IntegrationMobile

API

Back-end System

Figure 3.1 This is an API that was set up as many of the
first platforms were created: the main product interacts
directly with the back-end system, leaving the APIs as
second-class citizens in the product hierarchy. Any new
changes or features in the main product have to be
duplicated in the API, resulting in feature inconsistency
and incompatible resource representation.

Database
First Name, Last Name, Full Name, Email, Company

Main Product
First Name,

Email, Company

Reporting Systems
First Name, Last Name,

Email, Company

API
First Name, Last Name,

Full Name, Email, Company

Mobile
Full Name,

Email

Partner Integrations
First Name, Last Name,

Email, Company

Social Integrations
First Name, Last Name,

Email

Figure 3.2 When an API is one of
many different interfaces into the
back end, the representation of a
simple item (such as a user) can be
different in many ways. Additionally, if
the back end (in this case, the
database) is changed to add more
information, the interactions with
each of the client systems will need to
be changed, as will the clients of the
API itself. This creates a large amount
of technical debt because any change
to the system has to be duplicated in
several different places.

52 CHAPTER 3 API First
When you have multiple teams creating products without a shared vision, you also
tend to have poor communication between those teams. The Addresser mobile team
has no reason to interact with the main website team in order to help the back-end
team create APIs that work for both products. This can lead to bug fixes in one code
base but not in the other, or inconsistencies between the items available from the sys-
tem, depending on which interface is being used.

3.1.2 API First model

What, then, would this system look like if it were designed API First? Figure 3.3 shows
an API First model. The website and the mobile device get their information from the
same API interface. This ensures that these resources will be consistent across the
entire product line. Note that just because an API resource is available within the sys-
tem, you don’t have to expose it to the entire world—you can decide which of the API
resources is internal, partner only, or open to anyone. It’s still a great idea to have
your API ready because when a major partner asks for access to some specific
resources to support a use case, you have it ready to go. In the case of Addresser, the
API may be designed to send users and contacts via the API to partners and client
developers. At some point, there might be a location-based activity feed that a partner
wants to create, but in order to create this feed they need to access the locations for
the user’s contacts. In the API First model, this API is available because it’s being used
by the website and the mobile application. You can make the decision to expose it to
the partner wanting to create new and exciting functionality for your customers.

API First also encourages communication between your back-end team and each of
the client engineering teams. Understanding use cases at a high level helps you create
APIs that are easy to implement for the use cases you understand up front, and more
likely to support future use cases that come up. Once you’re creating the API as a
larger team, you’ll find many places where different teams offer complementary
resources, adding to a more well-structured system.

Main Product

AP
I

Ba
ck

-e
nd

 S
yst

em

Mobile Device

Integrations

Figure 3.3 In an API First model, the
back end only interacts with the API,
which in turn drives the main product
and all other implementations—the
main product, mobile device, and other
integrations. This reduces the need for
duplicate code and allows each client
to focus on exactly the pieces it needs.

53Code consistency
3.2 Code consistency
When you have two separate systems doing the same thing, you create a world with
duplicate code. In the case of Addresser, the user object would be needed for the
main product, but this resource would also be required for interactions with the API.
If the queries to the back-end system might use different fields or connected data, the
end products will not be consistent with each other—a common reason for user dis-
satisfaction with the company as a whole.

 When your code base diverges in this way, you start creating technical debt for your
company, regardless of who is in charge of writing the APIs. Two testing systems are
needed, and when a bug is found in the main product it’s not necessarily fixed in the
API—and vice versa. As you build more and more systems tied directly to the back end
(for instance, you might have internal systems that access the databases for reporting),
you create more dependency on that specific server implementation. If you share
some code but not all of it between the different systems, changes to that implementa-
tion can break products unexpectedly. Additionally, when code is written in a highly
coupled way (where dissimilar systems rely closely on other systems for convenience in
coding), your system is highly interdependent and vulnerable to failure.

 This issue has repercussions on the developer experience side as well. In a world
where each project uses the back-end system individually, systems are likely to have dif-
ferent interfaces and represent resources differently, resulting in frustration for the
developers and end users. Back-end systems are usually designed to meet specific
needs, and unless the API is designed for a consistent developer experience across all
interfaces, the developer may have to spend an inordinate amount of time trying to
figure out what’s available and how the application can retrieve it from the platform.

Figure 3.4 shows system interactions when each client (including the API) accesses the
back end through its own interface.

 As you can see, each of the clients grabs and uses a representation of a user, but
each sends a slightly different request to the system. The API layer exposes the entire
data structure, but the main product and the reporting systems grab only what they
need. Because of this divergence, testing a change to the database requires working
with each of the teams to ensure that nothing has broken, which requires the server

Where does API First not work?
Putting an API layer between your systems can hinder performance for highly scaled
systems, such as a stock trading system, where the interfaces need to be completely
secure, fast, and incredibly performant. There are going to be situations where it’s
necessary to couple the systems tightly to enhance performance. Many clients—
whether they be main products, reporting, or administration applications—prioritize
performance as secondary to consistency and reliability, and running all of your prod-
ucts’ code through the same interface will speed development and reduce errors.

54 CHAPTER 3 API First
team to track all the clients. In my years at major technical companies, this has been a
serious issue; when one group owns a system and another group decides to leverage it
directly, without an agreed-upon interface, client systems break when server systems
change. For instance, if a developer discovers an undocumented method on the
employee database to access employee data information in order to create an applica-
tion for contact management, that application is vulnerable to changes because they
didn’t work with the originating group to make sure their use case was understood.

 An API won’t fix all the issues your production process may have, but it can make it
easier to write code and architect changes with the right frame of mind. Once you’ve
made the decision to attempt the API First approach, the focus moves from trying to
maintain consistency across different product and code bases to designing, creating,
and maintaining a strongly tested and well-designed shared interface. Decoupled
code of this sort—code that doesn’t rely directly on the bare interface of the other sys-
tem—protects both sides from unexpected changes.

 How can you create this kind of model? The API needs to have a well-documented
and well-understood interface, and calls to the back end should be completely pro-
tected from client access through any other means. This process does take more
mindful consideration up front but has huge advantages, as you’ll learn in the follow-
ing sections.

3.3 Functional equality
In the API First description, I mentioned a contacts application called Addresser. A
common problem created by a model of this sort is where the main product gets a
new feature in January but the API has to wait, sometimes for months, for the engi-
neering resources needed to provide the same functionality. This issue can be
avoided, but it’s rarely the case that a company wants to delay the release of its main
product for something that’s considered “extra.” Until the engineering organization
determines that the API is a first-class product, this delay will exist, and in many cases

Back-end Data Store

APIReporting
System

Mobile
Client

Integration
Client

Main
Website

Figure 3.4 When different
implementations are maintained for
different clients, the user experience
is different—and if, for instance, the
reporting system adds new
functionality to include the company
for a specific user, the API would need
to add it. In this system, the mobile
and integration clients would need to
add it as well.

55Increased productivity
the team who understands the new functionality is moved along to new projects
before the API is created, resulting in an API created months later, if at all, by an engi-
neer who isn’t as familiar with the goals of the functionality change as the original
team. The result is a poorly designed API.

 If the API is integral to the main product, though, it’s updated, tested, and
deployed as part of the main change. It’s ready to use and tested by the main product,
and when you want to expose it to your other applications and developers, whether
internal or external, it’s ready to go. Having features available to release allows you to
enable partner integrations quickly—trust me, your premium partners will want the
functionality as soon as they see it—and open it up to your internal and external
developer partners for use as you see fit.

 Even if the API is ultimately used only by the engineering team for the main prod-
uct, this approach still encourages consistency in the product’s representation of
resources and will help your product developers create integrations and applications
easily. API First also allows the back-end engineering team to change the back-end
database or server system without impacting the developers; the interface is docu-
mented and understood. Because the clients are going through this layer of abstrac-
tion, the engineering team knows exactly what they need to support with any changes
to the back-end system. You’ve already documented the interface, so when your com-
pany decides to add new products, the available resources are ready and well docu-
mented. New clients wanting to use the API can work from the schema model to make
sure that the use cases they want to implement are easy and efficient.

3.4 Increased productivity
It’s somewhat counterintuitive that adding an extra layer to your system could reduce
the amount of overall work that your engineers have to do—but remember that once
you have the design for the interface defined and engineering teams start using it,
they can share client libraries and other tools for interacting with your stable API inter-
face. Although it’s possible to write modular and decoupled code without this extra
layer, it’s much more difficult to do so well. Without a guiding vision, each develop-
ment organization will determine exactly what they need to meet their goals, and so
the clients will diverge rather than converge. API First means that you need resources
assigned to make sure that your APIs will work to support your main product(s) easily
and that your interfaces will be consistent. The goal is not to hamstring your devel-
oper partners by reducing their access to the data, but to make sure that they’re get-
ting what they need from a single source.

 Once your developers are using the API to feed their products—whether internal
reporting systems or third-party applications—they’ll no longer need to write the
duplicate code to access your back-end system. Each client will have access to new
resources as they become available, and you can expose them to different classes of
developers (internal, partner, external) as needed.

56 CHAPTER 3 API First
 Running all your applications through the API may also reduce the need for multi-
ple representations of the same object (for instance, First Name, Last Name, and Full
Name). But having two different representations available is also of value; if the users
of a client application prefer one representation over another, it’s simple for the cli-
ent to switch to using that representation.

 The quality of your system will also be improved. When you have a single interface
through which all of your data flows, you can test it more easily and consistently.
Changes to the platform can be run through unit tests (as all code should be) as well
as integration tests based on the use cases that you support. In fact, you can use the
use cases for your system—including the main product, reporting systems, and inte-
grations—as the guiding models for the API you create, and those use cases can also
drive the testing you do against the system.

 Although your back-end engineers may not appreciate the extra work up front,
they’ll start to realize that it’s saving them time and effort. Your developer partners
will thank you for the feature consistency they enjoy—where they are given access to
everything that makes sense, rather than the features you’ve had a chance to imple-
ment in the API. If you make a decision to hold back features for only internal devel-
opment, you can communicate it to your external development community so they
understand that there’s a business case preventing the access—and if they can provide
you with a use case you want to support, you can revisit the decision. If the data is not
available through the API, making that decision comes with much more overhead, and
the inconsistency will stifle the enthusiasm and creativity of your developer users.

3.5 Internal/external access
On the flip side of open and transparent access to data is the gripping terror that
enterprise companies experience when they consider opening all their data to the
entire universe. The open API ecosystem started out this way, with open APIs making it
possible for third-party developers to access the system and make changes or view peo-
ple’s information. This was a visible aspect of web APIs, and it caused some inaccurate
assumptions about restricting access based on the application and/or user accessing
the system. Large or heavily security-conscious companies were concerned that having
an open API would expose their proprietary data without any control or restriction.
The easiest way to dispel those assumptions is to understand how API management
can allow companies to control access to specific functions. Figure 3.5 illustrates an
OAuth request, one of the options for API authentication and authorization.

 The authentication and authorization systems such as OAuth that have been devel-
oped for APIs make it relatively easy to define which pieces of an API are open to inter-
nal developers, as opposed to partner or external developers. Along with
authentication and authorization, these mechanisms make it possible to know which
developers, and which users, are accessing the API in which ways—a huge help when
trying to debug problems.

57Internal/external access
Authentication and authorization mechanisms give you total control over which peo-
ple can access your system. Depending on how your data is structured and the types of
information you want to keep back from the public APIs, you can decide to expose dif-
ferent fields for each type of data. In fact, this is one way in which an API abstraction
layer makes it easier to provide system access to your partners without having to allow
them direct access to your company’s critical data systems. Adding an authentication
system on a well-designed internal API to expose certain elements to customers and
partners is much less work than creating a new interface from scratch for them.

 That’s not to say that it’s a bad idea to expose information to the open developer
ecosystem. Third-party developers can help by previewing new API resources, giving
you feedback on what works, and validating those use cases for you to make sure they
work as you expect. This is a type of “free” testing for your APIs, and if there’s not a
business case for holding back API functionality, you should definitely expose it. If
writing to the system is something that the company is concerned about, allowing
open developers read access to the resources can help you by exposing issues with
your API that you hadn’t previously considered. Take advantage of this potential; when
you treat your developers as partners, they’re usually willing to work with a beta or
release-candidate version of your system in order to get a leg up on their competitors.

 One other consideration when planning for your API is that even if your API is inter-
nal only, you want to create it with the same care as you would for an API that you might
eventually expose to the world. There are a few reasons for this. First, you might

Client

APIs

OAuth
Authorization
Server

Application
Credentials

Application
Credentials

User
Credentials

User
Credentials

Key
Secret

Key
Secret

Key
Secret

Key
Secret

The authorization server compares
the signature it created with the
one received from the client.

Figure 3.5 In an OAuth request, the client and server both know the application and user keys, but
they also have “shared secrets” at the application and user levels. The request is built using the non-
secret data, and the encryption is done using the shared secrets. The client creates the request and
signs it with the shared secret, sending it to the server. The server takes the request and also signs
the request, and then compares the signature it created with the one sent by the client. If they
match, then the client passes the authentication check and the request is allowed to proceed.

58 CHAPTER 3 API First
eventually want to open up that API, and if it hasn’t been crafted for a fantastic devel-
oper experience, you’ll either have to suffer the consequences of a poorly designed API
or start again to create a new API that duplicates the effort of the previous one. Second,
and more important, it’s a terrible idea to assume that because your customers are
internal you don’t have to create a great experience for them. When developers are
forced to use an unusable system, it creates a huge support burden—when these devel-
opers can’t walk away, they’ll keep at you about the things that are causing them trou-
ble. When designing your API, think about who will be using it (internal, external,
partners). Authentication and authorization are less important when you’re behind
the firewall, but it’s still much easier to triage issues when you can track down exactly
who is doing what with the platform.

API First will provide your platform organization with the same advantages no mat-
ter who the customers of that API will be. Consistent and decoupled code will reduce
bugs and regressions. Feature equality will make it easier to allow potential customers
to integrate with your system—without scrambling to catch up after the need is clear.
API First improves the quality and velocity of the code that’s written, allowing your
developers to focus on new functionality while spending less time chasing down issues.

3.6 Case studies
Although API First can seem like an excellent idea in theory, I’ve consistently heard
engineers, managers, and executives say that they couldn’t possibly implement this
type of system for their company. It’s true that adding an additional layer to your infra-
structure creates more work up front, but the advantages can far outweigh the down-
side. For further context, this section talks about some case studies to demonstrate
how companies have moved to this model, or started with it, and the results they’ve
enjoyed as a result.

3.6.1 API as the main product

Twilio is a successful company that provides telephony services via API (see figure 3.6).
For instance, if you want to add SMS or other phone capabilities to your application,
you’d need to integrate Twilio using its APIs, and your development time would be
reduced substantially. Telephony is something that’s hard, and Twilio is a great exam-
ple of a company that’s making significant money by simplifying hard (but important)
functionality.

 Twilio’s only real product is the API, and they charge for usage based on how much
a developer uses. When the company started out, the APIs it had were restricted to the
basic product, but as developer partners increasingly started using the platform in a
more complex way, Twilio realized that it would do well to create APIs for the configu-
ration, billing, and other website functionality that supported its main product. It still
has some back-end systems that don’t expose APIs, but anything that’s available for
developers to do with the system is available via API as well.

59Case studies
An important note here that we’ll revisit in chapter 9: Twilio is widely considered the
industry leader when it comes to developer support; it has a team of evangelists who
attend hundreds of hackathons each year to help developers become familiar with its
platform. Twilio has a strong commitment to developer support, even encouraging its
evangelists to help developers work on code that isn’t related directly to Twilio. It has
a goal of providing documentation and resources so that new developers can make
their first successful API call within five minutes. One of the major advantages to hav-
ing a team of evangelists of this sort is that they’re constantly getting feedback directly
from developers that they can funnel back to the development team.

3.6.2 Mobile First

Instagram, a photo application, was initially created as a mobile application. The most
efficient back end for the company to use was a web API, and Instagram created one
for use only by its mobile applications. After several months, users started to request a
website and integrations with other systems, but the Instagram team didn’t have the
resources or time to implement these things. Frustrated by the lack of access, some
third-party developers reverse-engineered the system to create an API, which encour-
aged Instagram to open up its own API system to developers. But since it had started
out API First, adding API management and authentication around the platform was
relatively quick and easy, and the developers then had what they needed in order to
create the products they were looking for.

3.6.3 Refactoring for API First

Etsy is a major online crafting marketplace, with over $1 billion in gross merchandise
sales revenue in 2013 alone. In 2014 it decided to change to an API First model in one
go. The previous API was a big success, allowing third-party developers to integrate
with the system and meeting the needs of buyers and sellers. Unfortunately, the system
was a mirror of the back-end database, not crafted toward specific use cases, and not
efficient to use or maintain. Mobile application developers were frustrated that they
had to make multiple calls to render a single screen—an antipattern that makes
mobile applications fragile and nonperformant (users tend to walk into elevators or

Twilio
Platform External

(Client)
APIs

Internal
APIs
Only

Billing
Configurations

Voice
SMS

Transcriptions
Video Figure 3.6 Twilio’s system, with APIs for both

internal and external functionality. Although Twilio
uses its billing and configuration APIs only
internally, the discipline it exercises in making
sure that everything it does uses the same API
system helps to ensure that the system is
consistent and robust.

60 CHAPTER 3 API First
drive into tunnels, and it’s important that the application can get the information it
needs efficiently).

 Etsy refactored its back end and APIs to support the new scheme and created
strongly RESTful APIs on which it rebuilt its main products. To support its mobile cli-
ents and other clients who needed a slightly different setup, the company created a
batching system called BeSpoke, where it could identify resources as bundles of other
resources. Moving this complexity to the server meant that Etsy could better support
all of its developers and keep track of how the resources were being used, and it could
run concurrent requests for these bundled responses, which improved the efficiency
even more. The business logic was maintained in the system at the API level, so
authentication and visibility were consistent no matter where a user was interfacing
with the system.

 This ambitious undertaking had the outcomes Etsy was hoping for: increased
velocity and consistency across resources and products. Its previous system had grown
organically over time as the company grew, so taking this opportunity to refactor the
system gave Etsy the ability to improve the responsiveness, scalability, and consistency
of its system. There were unexpected benefits to this change as well. Etsy noticed that
the communication between its development groups improved noticeably; the mobile
team and website team were engaged with each other in defining customer experi-
ence and what was needed from the API. Etsy even had an unexpected bonus in that
the activity artist feed—one of the products it hadn’t targeted with the change—was
able to go from an asynchronous call of several seconds to a subsecond call. This
change meant that Etsy was able to move from regularly refreshing the resource
offline to returning the information on demand when users requested it, reducing
the resource need and providing a better, more accurate user experience.

 As a second example, 3scale is an API management company, providing a platform
with tools for companies to manage and administer its APIs (see figure 3.7). It should
be no surprise to learn that all internal and external processes—indeed, all of the sys-
tems used by the company—run on web APIs. Anything customers can do with the
product can be done through the API, because those products are running directly
from the same platform.

 When 3scale started, the company was looking to solve the problem of managing
the traffic flow on APIs to ensure it was safe, scalable, and accessible. Steve Willmott,
the CEO and cofounder of 3scale, has often said that his goal is for everyone to be able
to have an API.

 To start, the solution was to separate traffic delivery from management: deploy the
management dashboards, analytics, and policy management in the cloud and provide
code plug-ins in many languages (Java, Ruby, and Python, and more). Each of these
clients hit a set of APIs on 3scale’s cloud platform. Using the plug-ins, customers could
deploy the functionality in their own applications. These plug-ins evolved quickly, and
the API mediated all the calls, capturing stats and becoming the backbone of the ser-
vice. Later 3scale added extensions for web proxies like Varnish and Nginx so these

61Case studies
could become fully fledged, high-performance traffic gateways, all communicating
with the APIs.

 The first versions of 3scale’s dashboards didn’t come with APIs. Given that it was
capturing analytics data and had customers consistently asking for complex configura-
tions, it became clear that the only way to meet these needs was to add APIs across all
functionalities. In one of the major version changes in 2010, 3scale developed com-
prehensive APIs for every part of the platform alongside all of the user interfaces,
switching those interfaces to run on top of the APIs—truly API First. Since then, the
API and product have always been updated in parallel.

 3scale is in a competitive market, and running its business on APIs in this way has
allowed the company to enable many more customer use cases than would have other-
wise been possible. Today, many customers use 3scale as a platform underneath other
systems that add further functionality. The traffic management API architecture also
means that today 3scale can apply management to APIs delivered across all sorts of sys-
tems—from content delivery networks to a customer’s own homegrown web server
layer.

3.6.4 API First strategic direction

Akamai is a company providing content delivery services for companies looking to
add reliability and scalability to their web properties. Akamai’s business model for
APIs is slightly different than the other companies discussed here: rather than deal
directly with the customers who are consuming the content, Akamai works with
administrators who configure, maintain, and update their properties (websites) using
Akamai’s tools. The nature of this system is such that a great deal of the internet runs
on Akamai servers, so any change to the access or configuration controls needs to be
controlled carefully.

BEFORE NOW

APIs for ...

Everything in
the system

API Management
Dashboard

Analytics

Policy Management

Custom Integrations

Configuration

Custom Analytics

Back-end Engines

APIs for ...

Figure 3.7 3scale’s evolution from
standard implementation to API First
moved it from a system where most of
the customer visible functions were
available via the platform to a system
where each function within their
system worked via the same API
platform. Again, this made 3scale’s
system more robust and made it easier
to expose new functionality to users as
requirements dictated.

62 CHAPTER 3 API First
 Historically, Akamai had many APIs for customers to use for reporting and configu-
ration, but these APIs were inconsistent in authentication and interaction. Customers
who wanted to integrate with these systems were required to learn a new model every
time they integrated with a new API, and support, maintenance, and improvement
were inconsistent and frustrating.

 In 2012, the company made a decision to move all of the configuration and prod-
uct behavior to an API First model using a single API system called EdgeGrid. Because
of the need to protect stability and security, Akamai couldn’t make a sudden refactor
happen without potentially compromising its critical systems. Thirty percent of inter-
net traffic comes off an Akamai server, so any errors or issues could cause serious
repercussions for both the internet and the company itself.

 Akamai was committed to making the change to API First in the best and most effi-
cient way possible, so the decision was made to move to API First as a strategic direc-
tion: put the self-service portal and other products in front of the API and make those
APIs available, where appropriate, to partners and customers. As new products were
created or existing products updated, web APIs were created. An API architecture
team assisted the product teams in creating APIs that were consistent with those of the
other teams.

 Akamai had an aggressive goal for bringing its system in line with this model: while
keeping in mind the sensitivity of the existing system, the company aims to get most of
the work done within the course of a couple of years. Given that most of the systems
have been in place for many years, reimagining the components and rebuilding them
based on the current and predicted usage takes time. An important thing to realize in
this case is that when you’re asking multiple business units or teams to come together
and work as a larger team, you need guidance, vision, and support from both the
high-level executives (the refactor won’t generate new revenue on its own) and from
an architecture team who can review the new APIs as they’re created to make sure
they’re in line with the goals of the overall platform strategy.

3.7 Summary
In this chapter, you learned about the concept of API First, the advantages it can bring
to your company, and how to choose the right level of privacy. We explored case stud-
ies of companies who have made the decision to implement their system in this way.

 This chapter covered the following topics:

 The API First design methodology moves the web APIs in front of the back-end
servers so that all products, APIs, and integrations are running off the same
system.

 Without API First, API code that duplicates the main product code must be writ-
ten and maintained, leading to reduced performance and inconsistent behav-
ior in the system.

 When an API is a side addition to the product, new features given to the main
product will lag behind on the API side until required. They should be created

63Summary
at the same time, with the same goals and vision—or, ideally, they should be the
same thing.

 Removing the duplicate code and having strong communication between the
teams, as well as strongly defined interaction points between systems, make it
much easier for your platform developers to release new features or changes.

 Just because an API has some open aspects doesn’t mean that you have to open
everything up to the world. Creating a solid and consistent platform that meets
your internal needs is a valid goal on its own—and if you do want to expose the
information externally, you can do so with some additional security mecha-
nisms to protect sensitive data.

 Etsy is the best example for companies who have gone API First from a more
monolithic model. Moving to API First improved its velocity, increased cross-
team communication, and improved sections of its product that it hadn’t even
targeted.

The next chapter gives you a solid introduction to web APIs—from the HTTP frame-
work behind them to descriptions of how REST APIs work with that framework to cre-
ate functionality.

Web services explained
Now that you’re familiar with what APIs do and have some overall idea about the
strategy, let’s dive deeper into the technical aspects of HTTP and REST so that you
understand how these systems work together. Knowing these details will also help
you when you want to troubleshoot or understand how the interactions are work-
ing between a client and server.

 Note that in order to grasp how HTTP matters in the API context, you need to
know the protocol and practices from the point of view of the consumers—your
developer partners. So while you’re working to make a great API, understanding
the interactions between client-server transactions from the point of view of a devel-
oper who is consuming the service is illuminating. This chapter is designed to give
you a view of the user side of HTTP so that you can determine how the pieces fit
together in an API. This chapter will provide an understanding of how APIs work,
which is necessary to build APIs people love.

This chapter covers
 HTTP fundamentals

 REST web services

 HTTP traffic

 Web API best practices

 Troubleshooting
64

65HTTP fundamentals
4.1 HTTP fundamentals
An API can be any kind of transaction between two computer systems, but this chapter
focuses on REST APIs specifically. Although REST APIs don’t have to use HTTP, this
common protocol has all of the fundamental pieces needed to build a REST API, and
so almost all REST APIs use HTTP as the transaction protocol (the layer underlying the
REST API). First, we’ll drill down on HTTP more deeply than we did in chapter 2, and
then we’ll explore the specifics of how the interactions work.

 As mentioned in chapter 2, HTTP is the method browsers use to communicate with
web servers. When you click a web link or type an address in a URL bar, your browser
sends an HTTP request to the server, and the server sends back an HTTP response (see
figure 4.1).

Several concepts are inherent in the HTTP protocol:

 Addressability
 Status codes
 Body
 HTTP verbs
 Headers
 Parameters

4.1.1 Addressability

One requirement for any system is a way to express exactly what you want to operate
on. When you enter a web address into the URL bar of your browser, you’re indicating
the unique identifier for a specific item—in this case, a page on the internet. Every
HTTP request must have an identifier; this address is called a uniform resource indicator
(URI) in this case. Table 4.1 shows examples of addresses. In each address, there’s a
server component and a path component.

Request

Response

Headers
 Accept
 Authorization
 Language
Parameters
 Options
 Sort
 Search
Body
 New Item

Headers
 Content Type
 Language
Body
 Response Content
Status Code

Client Server

Figure 4.1 HTTP transaction between a
client (application) and server (platform).
The HTTP request will always be sent to a
specific URL defining the resource; most
requests will also have headers to add
context to the request, along with
parameters to refine the item itself. If the
request is an update or create action, a
body will be sent as well. The HTTP
response always has a status code
indicating the success or failure of the
exchange, as well as headers describing
the type and size of the content.

66 CHAPTER 4 Web services explained
The unique identifier of a resource (or page) is the combination of the server name
and the path. This format ensures that each request addresses a specific item on the
internet.

4.1.2 Status codes

As every request must have an address, every response comes back from the server
with a status code indicating the success or failure of the action requested. The HTTP
status code system is fairly straightforward. The simplest explanations of the groups
are shown in table 4.2.

Each status code group represented in table 4.3 expresses a broad meaning, and
examples are given of what types of errors you might encounter in that group.

Table 4.1 URLs broken out by server and path

URL Server Path

http://www.google.com/ www.google.com / <
This is the base of the website,
the top page.

http://gmail.com/ gmail.com /

http://irresistibleapis.com/demo/ irresistibleapis.com /demo/

Table 4.2 HTTP status code groups

Status code group General description

5XX We (the server) messed up

4XX You (the client) messed up

3XX Ask that guy over there

2XX Cool!

Table 4.3 HTTP status codes and specific examples

Status code Meaning Examples

5XX Server error 500 Server Error

4XX User error 401 Authentication failure
403 Authorization failure
404 Resource not found

67HTTP fundamentals
5XX errors (status codes between 500 and 599) mean that the server itself encoun-
tered an error. When writing your API, you must give good, strong error messages with
the appropriate status codes. If developers encounter server errors intermittently on a
particular resource when developing a client for an API, they may be able to retry the
request, but you’ll want to watch and log the number of errors and other status codes
in your system. Otherwise, this is likely an error the API provider (in this case, you) will
need to fix in the system. Table 4.4 describes the specific client error codes used in
HTTP transactions.

Authorization is the next step. Once the system knows who you are, it can determine
what you’re allowed to see and do in the system. As indicated in table 4.4, the 403 sta-
tus code indicates that the system has determined that the user doesn’t have permis-
sion to execute the specified request. Again, when returning a 403 status code, there
should be an additional message describing the problem.

 Almost everyone is familiar with the 404 status code, the code that’s returned when
a particular page doesn’t exist. In addition to the well-known client error status codes
listed in table 4.4, a huge number of 4XX errors are out there—for missing or unex-
pected parameters, headers, or incorrect data formatting. There’s even a 418 status

3XX Redirect 301 Resource moved permanently
302 Resource moved temporarily

2XX Success 200 OK
201 Created
203 Object marked for deletion

Table 4.4 HTTP 4XX status codes

Status code Meaning Description

400 Malformed request Frequently a problem with parameter formatting or miss-
ing headers.

401 Authentication error The system doesn’t know who the request is from.
Authentication is like a driver’s license, showing who you
are. Authentication signature errors or invalid credentials
can cause this.

403 Authorization error The system knows who you are but you don’t have per-
mission for the action you’re requesting.

404 Page not found The resource doesn’t exist.

405 Method not allowed Frequently a PUT when it needs a POST, or vice versa.
Check the documentation carefully for the correct HTTP
method.

Table 4.3 HTTP status codes and specific examples (continued)

Status code Meaning Examples

68 CHAPTER 4 Web services explained
code put in by the W3C Standards Body for an April Fool’s joke in 1998 (see figure 4.2);
the W3C wrote a coffeepot protocol, and 418 was the error “I’m a teapot.” It’s a shame
that people say that standards bodies have no sense of humor.

4.1.3 Body

When content is associated with a request or response, this data is sent as the body of
the request or response. For requests, this is generally the case for create and update
options (POST and PUT). The body gives the server the information it needs to create
or update the resource specified by the client. Whether this is JSON text describing
the new or updated object or an image file, the body is where the “meat” of the write
operation will be placed.

 In the case of a read operation (GET), the request doesn’t need to have any data
associated with it. In this case, the response will have a body with the content of the
resource that was requested by the client.

4.1.4 HTTP verbs

Each individual request from the client to the server needs to indicate the action it
wants the server to take. To create a fully functional system, it needs to be able to cre-
ate, read, update, and delete (CRUD), as shown in figure 4.3.

 The way this works can seem somewhat abstract, so I’ll expand the example that
was briefly given in the first chapter. I will order an iced tea from Starbucks, with the
requisite additions and modifications I want in order to make it exactly how I want it
(figure 4.4).

Coffeepot?

No!
• 418 I’m a teapot

Request Response

418 Status Code

Figure 4.2 418 status code exchange demonstrating a somewhat silly interaction
with the coffeepot protocol as defined by the W3C. Note, though, that it’s similar to
the other transactions we’ve seen; the client sends a request for a particular
resource, and the platform responds with a status code indicating the answer—in this
example, a response that the object isn’t the expected coffeepot, but rather a teapot.

69HTTP fundamentals
In the example in table 4.5, the list of orders is at the address /orders, and each indi-
vidual order is at the address /orders/<number>.

Table 4.5 Iced tea transaction, translated into a set of HTTP transactions

Action
System

call
HTTP verb
address

Request body
Successful response code

Response body

Order
iced
tea

Add order
to system

POST
/orders/

{
 "name" : "iced tea",
 "size" : "trenta"
}

201 Created
Location: /orders/1

Figure 4.3 Actions and their
associated HTTP methods. To perform
all the needed actions for a complete
platform, CRUD must be supported.
HTTP contains methods for each of
these actions, making it a great
framework on which to build an API.

HTTP Actions

Create POST

Read GET

Update PUT

Delete DELETE

Methods

Customer Iced Tea
Ok!

Extra ice, unsweetened

Got it!

What was the order?
Iced tea, unsweetened,
extra ice

Oh no! I forgot my wallet!
I’ll cancel the order!

Cashier

Figure 4.4 This is a human version of the programmatic transaction that follows. The interaction
between the people demonstrates exactly how transactions work. As you can see, all the requests
and responses between the client and the server map directly to an easy-to-understand interaction
between people.

70 CHAPTER 4 Web services explained
Going through each of these steps in order will help you understand how the various
resources work together to create a story. As I discuss each piece, I’ll describe exactly
what each is doing within the system.

 First, I place the order with the cashier (table 4.6). “I want a Trenta iced tea.” In
HTTP parlance, this would be a create action, indicated with the verb POST. Now, if I
were to request this multiple times, the system (in this case, the cashier at Starbucks,
using the cash register) would create a new item each time I made the request. If I
asked for this 15 times, 15 iced teas could be ordered (imagine that the cashier is as
patient and accepting as a computer system might be). POST is the only HTTP verb that
should reasonably be expected to create new items. All the other methods should
work on already existing (and specifically identified by the URI) elements. The server
response in the case of an HTTP POST usually includes the location of the newly cre-
ated object.

Update
order

Update
existing
order item

PUT
/orders/1

{
 "name": "iced tea" ,
 "size" : "trenta",
 "options": [
 "extra ice",
 "unsweetened"]
}

204 No Content
or
200 Success

Check
order

Read order
from
system

GET
/orders/1

200 Success
{
 "name": "iced tea" ,
 "size" : "trenta",
 "options": [
 "extra ice",

"unsweetened"]

}

Cancel
order

Delete
order from
system

DELETE
/orders/1

202 Item Marked for Deletion
or
204 No Content

Table 4.6 Place order

Action
System

call
HTTP verb
address

Request body
Successful response code

Response body

Order
iced
tea

Add order
to system

POST
/orders/

{
 "name" : "iced tea",
 "size" : "trenta"
}

201 Created
Location: /orders/1

Table 4.5 Iced tea transaction, translated into a set of HTTP transactions (continued)

Action
System

call
HTTP verb
address

Request body
Successful response code

Response body

71HTTP fundamentals
The next thing I do is specify how I want the iced tea (table 4.7). “Extra ice, unsweet-
ened.” To do this with HTTP you’d use PUT, the verb that’s used to update an existing
object in the database. The address used for this action is the one that was retrieved
from the POST operation before. The Location information indicates that further
operations on this specific order need to use the address returned by the create
action. As you can see in table 4.7, the body content for this request includes the
entire ordered item, including the information in the originally created order as well
as the information you want to add. Sending the update with the body, as shown in
table 4.7, will update the system’s version of your order to add the two new options.
Note that sending an object that only had your changes (and not the original con-
tent) wouldn’t update the object correctly. PUT is a full update on the item; you need
to build the entire object and PUT it to the system rather than try to make changes
piecemeal. Another HTTP method, PATCH, can be used in this way, but most API serv-
ers don’t implement it, and using that kind of system requires a deep understanding
of the data model.

The main difference between PUT and POST is idempotency. This rule says that a PUT
transaction must be the same even if you send it to the server 10 times, or 100, or even
a million times. Imagine that you’re standing in that Starbucks repeating the phrase
“Extra ice, unsweetened” 15 times. Unlike with the earlier POST, you’d be setting
options for the same iced tea, and no matter how many times you made the request,
the outcome would be the same (although the cashier might look at you somewhat
crossly after the first few times). The system itself wouldn’t change anything after the
first request, and no extra changes would occur to your iced tea order beyond the first
request you send.

 That covers create and update. The next two verbs are more straightforward. Back
to the Starbucks example, I want to check and make sure the cashier has heard me
correctly. “Can you please read that back to me?” The cashier responds, “A Trenta iced
tea, extra ice, unsweetened.” In the HTTP world, this is a read operation, represented
by the HTTP verb GET (table 4.8). This operation retrieves the server’s current repre-
sentation of the order in question. This representation matches the version sent by

Table 4.7 Update order

Action
System

call
HTTP verb
address

Request body
Successful response code

Response body

Update
order

Update
existing
order item

PUT
/orders/1

{
 "name": "iced tea" ,
 "size" : "trenta",
 "options": [
 "extra ice",
 "unsweetened"]
}

204 No Content
or
200 Success

72 CHAPTER 4 Web services explained
the update operation. No body content is sent with the request because the client isn’t
trying to change anything but is retrieving the current object from the server.

Create, read, update . . . that leaves delete (see table 4.9). The HTTP verb for this is
DELETE (note that all HTTP verbs are sent as all capitals in request transactions). To
finish this transaction, imagine that I’ve left my wallet at home and must cancel the
order. For an HTTP client-server transaction, this would be done by sending a DELETE
to the item’s unique identifying address. No body content is sent because there’s no
new information the server needs in order to perform the deletion. Sending the verb
DELETE along with the specific address for the resource tells the server everything it
needs to know to perform the requested action. Additionally, there will be no
response body. Everything happens without content being passed around.

With POST, GET, PUT, and DELETE, HTTP has verbs available to cover each piece of a full
client-server transaction.

 Figure 4.5 pulls the address, request information, and status together and demon-
strates how the verbs, status codes, and addresses work for specific types of actions. For
each of the verbs, an address is used to indicate where to look for the item, or
resource, being accessed, whether it’s an object or a list of objects. The verb along
with this address combine to indicate what action should be taken with that item.
Finally, the Status Code line shows the status code for a successful action.

Table 4.8 Check order

Action
System

call
HTTP verb
address

Request body
Successful response code

Response body

Check
order

Read order
from
system

GET
/orders/1

200 Success
{
 "name": "iced tea" ,
 "size" : "trenta",
 "options": [
 "extra ice",

"unsweetened"]
}

Table 4.9 Cancel order

Action
System

call
HTTP verb
address

Request body
Successful response code

Response body

Cancel
order

Delete order
from system

DELETE
/orders/1

202 Item Marked for Deletion
or
204 No Content

73HTTP fundamentals
4.1.5 Headers

So far I’ve covered the address for an item, the verb for a request, and the status code
in the response. For a simple transaction, this is enough to understand what’s happen-
ing. HTTP contains headers, additional elements providing additional context for a
request, and parameters, separate options for the request.

 There are different ways to send options with a request (headers and parameters),
and it’s not obvious which kind of information should go where. Headers are used
for context about the entire transaction, as opposed to a single request-response mes-
sage. In some cases, headers or parameters can both be used for the same kind of
information.

 To make this clearer, let’s go back to my iced tea example. When I walk into a Star-
bucks in Barcelona, Spain, the cashier may greet me in English or Spanish. Depend-
ing on how I respond, the rest of the conversation will be in the language I choose. In
this case, I (representing the client) expressed my preference for English by speaking
in English, and the cashier will respond in kind if possible. When you indicate to your
browser what your preferred language is, it will send a header along with requests to

POST
• Address: List of items
• Request: Create a new item
• Status Code: 201 Created

GET

DELETE

PUT

• Address: Specific item
• Request: Get the item from the system
• Status Code: 200 OK

• Address: Specific item
• Request: Update the item
• Status Code: 204 No Content

• Address: Specific item
• Request: Delete the item
• Status Code: 202 Content marked for deletion

Figure 4.5 HTTP verbs and their components. Each HTTP request must always have a method
along with the resource: the address for the specific item as well as an action to be taken for
that item. Note that the Success status code listed for each of the methods is slightly different
but still follows the pattern of 2XX, indicating success.

74 CHAPTER 4 Web services explained
indicate this preference to the server. If the server is able to provide the response in
the requested language, that’s what it should do.

 Headers, then, are for context about the entire transaction. Common items passed
in a request via headers include language preference, response format preference,
authorization information, and compression preference. Table 4.10 shows common
headers for requests, with a description of how each one is processed by the server to
determine what response to send back.

The response also includes headers, which generally specify the content type (the
formatting used for the response), the language used, or the size of the request.
Table 4.11 gives examples of common response headers along with what they indicate
to the client.

Table 4.10 Common request headers

Header Example value Meaning

Accept Text/html, application/json The client’s preferred format for the response body.
Browsers tend to prefer text/html, which is a
human-friendly format. Applications using an API are
likely to request JSON, which is structured in a
machine-parseable way. This can be a list, and if so,
the list is parsed in priority order: the first entry is the
most desired format, all the way down to the last one
(which frequently uses */* to indicate “whatever
might be left”).

Accept-
Language

en-US The preferred written language for the response. This
is most often used by browsers indicating the lan-
guage the user has specified as a preference.

User-Agent Mozilla/5.0 This header tells the server what kind of client is mak-
ing the request. This is an important header because
sometimes responses or JavaScript actions are per-
formed differently for different browsers. This is used
less frequently for this purpose by API clients, but it’s
a friendly practice to send a consistent user-agent for
the server to use when determining how to send the
information back.

Content-
Length

<size of the content body> When sending a PUT or POST, this can be sent so the
server can verify that the request body wasn’t trun-
cated on the way to the server.

Content-Type application/json When a content body is sent, the client can indicate
to the server what the format is for that content in
order to help the server respond to the request
correctly.

75HTTP fundamentals
4.1.6 Parameters

Parameters are frequently used in HTTP requests to filter responses or give additional
information about the request. They’re used most frequently with GET (read) opera-
tions to specify exactly what’s wanted from the server. Parameters are added to the
address. They’re separated from the address with a question mark (?), and each key-
value pair is separated by an equals sign (=); pairs are separated from each other using
the ampersand (&).

 Table 4.12 demonstrates different ways the request could have been made to get
information about the order in question using filters and other specifiers.

Table 4.11 Common response headers

Header Example value Meaning

Content-Type application/json As with the request, when the content body is
sent back to the client, the Content-Type is gen-
erally set to help the client know how best to
process the request. Note that this is tied
somewhat indirectly to the Accept header sent
by the client. The server will generally do its
best to send the first type of content from the
list sent by the client but may not always provide
the first choice.

Access-
Control-Allow
Headers

Content-Type, Authorization, Accept This restricts the headers that a client can use
for the request to a particular resource.

Access-
Control-Allow-
Methods

GET, PUT, POST, DELETE, OPTIONS What HTTP methods are allowed for this
resource?

Access-
Control-Allow-
Origin

*
or
http://www.example.com

This restricts the locations that can refer
requests to the resource.

Table 4.12 Using parameters to specify details of read requests

Action
System

call
HTTP verb
address

Successful response code
Response body

Get
order
list,
only
Trenta
iced
teas

Retrieve list
with a filter

GET
/orders?name=iced%20tea&size=trenta

[
 {
 "id" : 1,
 "name": "iced tea" ,
 "size" : "trenta",
 "options": [
 "extra ice",
 "unsweetened"]
 }
]

76 CHAPTER 4 Web services explained
These two examples are somewhat different ways of understanding how parameters
can be used in a request. The first example demonstrates the use of parameters to fil-
ter which items are retrieved from a list. As described earlier, the /orders/ resource is
a list of all of the orders in the system. So a GET call to /orders/ would return all
orders currently within the system. In this case, I’m only interested in iced tea orders,
so I add a filter on the call to indicate that I only want items with “iced tea” as the
name that are size trenta. Note that it’s not necessary for the key names to match the
variables within the object itself, but it can be handy for keeping track of what’s being
requested.

 You probably noticed that this request has the question mark to separate out the
parameters (sometimes called a query string) from the resource address, and that the
two key-value pairs are separated from each other using the & character. You may have
also noticed that iced tea became iced%20tea. Certain characters such as the space
character need to be escaped in this way in order for a web server to process them cor-
rectly. In most cases your browser does this for you, but when a developer creates a cli-
ent, it’s important to remember to run the requests through an encoder to make sure
that the server gets the right information.

 The return value on this initial request also shows a difference with the original
GET to the specific order. Instead of returning an object (indicated by key-value pairs
encased in curly braces {}), this request returns an array (indicated by a list encased
in brackets []). That’s because you’re requesting a list, and the server is returning a
list with one item in it. A list response should always be in the format of a list, even if
there’s only one item within that list. This consistency makes it easier for developers to
work with the responses whether there are zero, one, or many elements in the
response.

 The second example shows how to ask for specific information about a single
known item. The request is to the same single order used before, but in this case spe-
cific information about that order is being requested. Neither this nor the previous
example will “magically” work, but it’s a great way for an API/web service provider to
provide developers with more ways to get exactly what they need from the system with-
out getting extra, unneeded information. Trimming the response in this way is often

Get
options
and
size for
the
order

Retrieve
order with a
filter speci-
fying which
pieces to
return

GET
/orders/1?fields=options,size

{
 "size" : "trenta",
 "options": [
 "extra ice",
 "unsweetened"]
}

Table 4.12 Using parameters to specify details of read requests (continued)

Action
System

call
HTTP verb
address

Successful response code
Response body

77Exploring your API by inspecting HTTP traffic
useful for clients like mobile applications where the bandwidth is quite restricted and
the application needs to get information as quickly as possible. In this case, the client
is asking for the specific order numbered “1,” but only the size and options for that
order. The response is smaller than the full order in the original example and has
exactly what the client wants for their purpose.

4.1.7 HTTP overview summary

This overview of HTTP isn’t complete or exhaustive but should give you enough infor-
mation to move forward with the rest of the concepts for web APIs. If you’re interested
in more detailed information about HTTP and how it works, you can find many
resources on the web and in print.

4.2 REST web services explained
Now that you’ve got an idea how HTTP works, it should be much easier to understand
the mechanics of the API you worked with in chapter 2. REST-style APIs (and many
other similar web APIs) are effective when designed and built around HTTP. The
HTTP verbs match exactly to the create, read, update, and delete (CRUD) actions
needed. The existing error framework is more than sufficient for a strong framework.

 There are some best practices for REST web services built on HTTP. For instance,
the URI (web address) for a resource must be unique for each item. This is the item’s
unique identifier and is used for any action on that item. Because only POST transac-
tions should add new items to the system, POST is generally used for create operations
in REST by operating directly on a list resource rather than a single object. When you
create a new object in the system, you send a POST to a list of items. If you look back at
the pizza toppings example, you’ll see that when new objects were created, that was
done with a POST to the list of toppings, whereas update actions were done using PUT
to the specific topping.

REST seems like a difficult and abstract way to describe a system, but if you take the
HTTP fundamentals described and use them in a direct way, you’re most of the way to
creating a good REST API. As illustrated in the Starbucks example, the HTTP protocol
supports all the needed methods for a complete transaction set. REST utilizes these
methods to create interactions that are straightforward, consistent, and predictable.

 As I discuss pitfalls and best practices, you’ll learn to avoid the most common mis-
takes made when people are implementing REST-style APIs.

4.3 Exploring your API by inspecting HTTP traffic
In chapter 2, you were introduced to some ways to inspect HTTP traffic. Understand-
ing how your developers will interact with your system is a critical component of API
success, so you need to test your system as if you were one of the developers trying to
use it. Inspecting API traffic is also helpful when creating support documentation or
helping developers. Watching traffic using a sniffer is quite useful when trying to
debug complex API calls, but for the purposes of understanding how HTTP traffic

78 CHAPTER 4 Web services explained
works in general, using a browser is a fine choice. For this discussion, you’ll put
together the information in section 3.1 with web calls. I suggest using Chrome or a
similar browser with HTTP traffic inspection. To start, I discuss how to get Chrome set
up correctly to give you the information you need, and then we’ll explore how it
applies more completely to the example application discussed in chapter 2.

4.3.1 Setting up Chrome for HTTP inspection

To set up Chrome for HTTP inspection, you first need to enable the Developer Tools.
If you don’t have one already, get a copy of Chrome to use on your system. One major
advantage to Chrome in this case is that it’s available for all major operating systems
and works consistently across each of them. To download Chrome, go to
www.google.com/chrome/ and get the appropriate version for your system.

 After you’ve got Chrome up and running, the first thing to do is go to my website:
www.irresistibleapis.com/demo. Figure 4.6 shows what it looks like in Chrome.

Now that you have the basic tool up and running, you need to configure it to give you
the information needed in order to inspect the traffic it’s processing. Find the Devel-
oper Tools in the menu, as shown in figure 4.7.

 Once you’ve opened the Developer Tools, you need to tell Chrome that you want
to be able to see network traffic (this parameter adds overhead to the requests, so it’s
disabled by default). To do that, click the Network button in the Developer Tools at
the bottom of the page. Figure 4.8 shows what this will look like in your browser.

Figure 4.6 Go to irresistibleapis.com/demo to see the main HTML page. Remember
that on the back end, this page is calling the /toppings endpoint in the API.

www.google.com/chrome/
www.irresistibleapis.com/demo

79Exploring your API by inspecting HTTP traffic
Figure 4.7 Once you’ve started the website in Chrome, you can activate the C Developer Tools
using the path View > Developer > Developer Tools.

Figure 4.8 Now that you’ve opened the Developer Tools, switch to the Network tab to get to the
information you want to see.

80 CHAPTER 4 Web services explained
Once on the Network tab, you need to check Preserve Log. Normally, Chrome throws
away old network traffic as it goes in order to keep the memory footprint low, but in
this case, that’s the information you want. Figure 4.9 shows where this checkbox is.

Now Chrome is set up to show you what you want to see about the website you’re
browsing. The log in the Developer Tools is particularly useful, because you can see
both the website page and the API interactions (because they’re calls sent directly by
the browser itself). Note that in most cases you won’t be able to use a browser to
debug or inspect traffic to an API because most APIs require complex authentication,
but because this API doesn’t have any authentication and is open to browsers, it’s an
excellent learning tool for this situation.

 Reload the page you were on (www.irresistibleapis.com/demo or your local
API/app server if you set one up in chapter 2). The Developer Tools section should
now show you all the resources you’re accessing and give you the opportunity to
inspect them individually. Reload the page so that the elements will show up in the
Developer Tools section. I’ll start with the most basic piece—you’ve seen it before—
and then I’ll work up to the more complex pieces in the stack. All the elements used to
build the page, such as the base page, the CSS, and any JavaScript, are displayed in the
list. The first thing you want to view is the toppings call, the direct call to the back-end
API. This will cause the network log to display both the front-end page and the back-
end REST API calls. Figure 4.10 shows how to select this call from the Developer Tools.

 Initially, the Network tab will likely show you the headers, as mentioned earlier.
Check out the headers and compare them to the table of request and response head-
ers so you can understand how the headers interact in this live call. This is the traffic
that’s flowing into and through the browser. Click the Response tab to see what the
response content body looks like, as shown in figure 4.11.

Figure 4.9 Change the settings to activate Preserve Log so that the HTTP traffic will stay in the queue
for inspection.

81Exploring your API by inspecting HTTP traffic
What you see is that the main page at http://irresistibleapis.com/demo is making a
back-end call to the API displayed in chapter 2. You can see here that as part of build-
ing this page, the HTML page is pulling information from the resource for the list of

Figure 4.10 As calls are made through the browser, they each show up in a separate line in the
Network Log section of the Chrome Developer Tools. To get to where you can understand the
interactions, select the toppings resource in the network log.

Figure 4.11 Once the toppings resource is selected, you’ll be able to see information about the call
in the right-hand column, including the response body, request, and response headers. Explore the
various tabs on the right side to learn more about how the pieces work together.
www.allitebooks.com

http://irresistibleapis.com/demo
http://www.allitebooks.org

82 CHAPTER 4 Web services explained
toppings, in this case /api/v1.0/toppings, as you saw in chapter 2. So now, the JSON
being returned from the back-end API is being used to build the HTML page so that
you can interact with the individual actions: CREATE (Add new topping), GET (View
topping), DELETE (Delete), UPDATE (View, and then change). This application directly
interacts with the API described in chapter 2. It’s no coincidence that the JSON being
returned matches exactly what the web page shows. Try adding and deleting items in
the system and watch how the JSON from the API changes; the page itself isn’t making
the changes—it’s making the calls directly to the back-end system.

4.4 Web services best practices
When developing a web API, then, it’s important to follow guidelines that keep your
platform in line with the HTTP standard, and with the guidelines set forth in the REST
philosophy discussed in section 4.2. Your resources should be nouns, not verbs (so
/orders/ instead of /create_order). REST best practices dictate that you should con-
form to the HTTP status and error codes and work hard to achieve and maintain consis-
tency, making your API as usable as possible for the developers using your system.

 Use cases are critically important even at the beginning of your design process, so
think carefully about them. For instance, if you want to support mobile applications
(ever) with your platform, you need to realize that mobile developers have different
issues than standard web developers. The bandwidth is smaller, and mobile devices
are unreliable in terms of keeping their connection up (the user can ride a train into
a tunnel or enter an elevator, and the network connection can be dropped). You need
to provide these people with a single call per page so that their applications can be
performant and successful.

 This may seem out of line with the idea of single nouns for resources as suggested
by the REST philosophy, but realistically what you need is the system that will work best
for the developers trying to use your system. Try to make your system as similar to the
industry standards as you can, but when those standards clash with use cases critical to
your developers, you need to flex in the right direction so the things you want them to
do are easy and straightforward (and reliable, and scalable).

4.4.1 Using the right status codes

As discussed previously, HTTP status codes are quite flexible and able to handle most
issues encountered during a client-server transaction: server errors (5XX), client
errors (4XX), redirects (3XX), and successful transactions (2XX). Think quite care-
fully about how you plan to return information to the client indicating that an issue
has happened. When returning 4XX and 5XX error codes, you can still return a body
with a message indicating how the transaction failed. Was it a bad signature or a mis-
matched parameter, or was the request too large? Ideally you should make your system
so talkative that anyone using it can tell immediately what’s happened to make the
request fail. Without this, there’s an enormous support burden; any time client devel-
opers run into an error, they can’t figure out what the underlying problem is, even
though in most cases the problem is something they could fix if they understood the

83Troubleshooting web API interactions
issue. Give your developers the chance to succeed without having to tap your support
resources. They’ll be happier, and you’ll spend less time and money trying to hand-
hold your customers through an awkward interface.

4.4.2 Methods and idempotency

Earlier I touched on the notion of idempotency, the idea that when sending a GET,
DELETE, or PUT to the system, the effect should be the same whether the command is
sent one or many times. When working with web developers, you should follow certain
expectations about HTTP method behaviors. For instance, developers who are accus-
tomed to working with well-designed web APIs may get confused if they find an API
where a GET (read) command can be used to delete items in the database. This restric-
tion was initially designed to avoid having web crawlers accidentally delete all the
items in your system, but even now, with authentication in front of most systems,
developers use the type of call into the system as an indication of whether the call
itself can be destructive or change the state of the server. Follow the guidelines—a GET
is for reading only and shouldn’t be extended to perform other operations.

 There are situations where the exact correct method can’t be used consistently.
For instance, Flash was originally unable to handle anything other than POST and GET,
and as a result it was necessary to overload those two methods so that they could sup-
port faux DELETE and PUT operations. Many API vendors found ways to work around
this, most of them settling on ways to extend POST to perform other write operations
(using headers to indicate the desired action).

 In any case, as much as possible you want to follow the existing patterns out in the
API ecosystem. The less you can surprise your developers, and the fewer times they
have to learn a new pattern for your API, the more likely they’ll be to use the system
the way you expect them to. This leads to happier developers, better street cred, and
most important, a much smaller support load.

4.4.3 Nouns vs. verbs

As with the methods discussed earlier, it’s critically important to use nouns for objects
in a web service system. Although SOAP APIs used methods, we’re focusing on REST-
style APIs. In this case, we’re not using a GET to /create_order; we’re using a POST to
/orders. The format of this call communicates to the developer that this is a system-
changing call and that they’re adding something new to the system. If a crawler did
get out of hand with its GET calls, there’s no way that it would accidentally change
something within the system.

4.5 Troubleshooting web API interactions
One major advantage of a web API over one that’s more tightly coupled is that the
HTTP base of the API is easy to trace, making it much more efficient to determine
what the transaction looks like—both request and response—and troubleshoot issues
that might arise for clients of the platform. There are various ways of examining this
traffic to triage issues or speed up development.

84 CHAPTER 4 Web services explained
4.5.1 Tools for API inspection

Various tools are available for testing API and browser traffic. They’ll show the head-
ers, content, and values for requests and responses. HTTP sniffers like HTTPScoop and
Fiddler can be used to determine how the traffic is faring in the journey between your
client and server. These tools are covered in more detail in chapter 2, and you should
definitely select one to use when working with web APIs, whether you’re creating or
consuming them.

4.5.2 Error handling

When you’re developing an API, one of the best ways to make it irresistible is to make
your error handling clear, consistent, and easy to follow. Choose the right status codes
for the problems your server is encountering so that the client knows what to do, but
even more important is to make sure the error messages that are coming back are
clear. An authentication error can happen because the wrong keys are used, because
the signature is generated incorrectly, or because it’s passed to the server in the wrong
way. The more information you can give to developers about how and why the com-
mand failed, the more likely they’ll be able to figure out how to solve the problem.
This is one case where having sample code that handles the errors can help demon-
strate to the developers exactly how to handle specific problems that occur.

4.5.3 Defensive coding

Many developers are accustomed to a world where they own the entire stack of code.
When this is the case, assumptions can be made about the stability of particular inter-
faces, with a strong reliance on unit tests to make sure each component works cor-
rectly and on integration tests to make sure that interfaces are in sync. But when the
stack is fully owned by a development team, they can avoid strict coding standards
where each item used in a system is carefully inspected to make sure it didn’t change.

 Although irresistible APIs are not likely to change unexpectedly, sometimes errors
or changes do occur. Make sure that your sample code demonstrates how to handle
specific status codes. Demonstrate checking that items exist in the object before using
them. Write your documentation in a way that shows the best approach to interact
with the resources. I’ve seen many cases where a developer using an API made the
assumption that a resource would always be identical, and when it changed, their
application broke. For web applications, that’s annoying, but with mobile developers
it can take weeks to push a new change through the application system for the mobile
device, so it’s critically important that they don’t have incorrect expectations.

 Encouraging and teaching your partner developers that they need to avoid assum-
ing the system will always be up and running and identical to the day before will lead
to a happier world. Web APIs usually have other systems behind them, and the larger
the stack, the more possibilities there are for unexpected problems.

85Summary
4.6 Summary
In this chapter, you’ve been exposed to some of the internals of HTTP, which should
help you understand the underpinnings of REST APIs. I’ve shared some of the down-
sides to rushing through your development and given you some ideas to contemplate
in terms of making items accessible and clear to your developers. Topics covered in
this chapter include the following:

 HTTP fundamentals provide a closer look at the formats and sections of
requests and responses. Understanding these fundamentals makes it much eas-
ier to follow the action in an HTTP sniffer and learn about the structure of the
platform as a whole.

 A deeper explanation of REST fundamentals includes examples of REST APIs for
context and demonstrates how you can leverage the HTTP protocol to easily
create clean and functional web APIs.

 Inspecting HTTP traffic gives various ways to look at the traffic between the cli-
ent and the server to understand the underlying transactions for a system.

 Web API best practices help you to avoid many of the common pitfalls encoun-
tered when creating an API without a well-thought-out plan. Taking the time to
explore and understand other APIs will help you to guide and create a fantastic
API product.

 Sometimes technical interactions don’t work as expected, so a discussion of
some common error causes and solutions gives you the tools you need to suc-
ceed, along with information on preventing these issues in your own web API.

The next chapter walks you through some guiding principles for creating APIs that are
useful and successful in the real world. Topics include use cases, compact responses,
consistency, social integration, and versioning.

Part 2

Designing web APIs

Diving more deeply into methods and choices for designing and imple-
menting great APIs, the chapters in part 2 help the reader create an API with an
excellent developer experience. After discussing some guiding principles to
help keep your mind-set focused on the developer experience, these chapters
cover the process of API creation. The chapters look at the process of determin-
ing business value and metrics and designing the API deliberately using schema
modeling. Once you’ve completely designed your API, the remaining chapters
guide you to the right path to drive your development. Finally, the chapters in
part 2 discuss the process of empowering your developers.

Guiding principles
for API design
The technical aspects of REST APIs are only part of the puzzle. This chapter and the
next few focus on the process of creating an API that’s not only functional but also
delightful and usable.

 Before I get to the meat of the process, I want to give you some advice to keep in
mind during the process. This is definitely not a checklist; even when you’ve
already done one of these things, you need to continue doing it. Think of it as
learning to drive a car—even though you’ve checked your blind spot once, you
need to continue doing so as you move forward. Similarly, this chapter is designed
to help you create a mind-set while you go through the API design and develop-
ment process that will help you make the right decisions to achieve success. I dis-
cuss the guiding principles of API creation and ideas to keep at the front of your
mind while going through the steps to create your API.

This chapter covers
 API design principles for successful APIs

 Cautionary notes on design antipatterns

 API examples highlighting these principles
89

90 CHAPTER 5 Guiding principles for API design
 The guiding principles in this chapter are as follows:

 Don’t surprise your users.
 Focus on use cases.
 Copy successful APIs.
 REST is not always best.
 Focus on the developer experience, not the architecture:

– Communication and consistency are critical.
– Documentation should tell a story.

Following these principles will give you a great head start on building an API that’s not
only irresistible for your customer developers, but fun to develop and easy to support.

5.1 Don’t surprise your users
First off, always remember that developers are people too. In fact, in the case of your
API, developers are your customers, even if they’re in the same company using inter-
nal APIs. In the case of an API, your customer and partner developers should be
treated with the same respect and consideration given to users of your revenue-
producing products, even when the API doesn’t itself provide revenue for your organi-
zation. APIs that don’t produce money directly can enhance the products that end
users do pay for—your main website, the mobile applications, or integrations—and
make those products more compelling.

 When designing an API, you’ll frequently encounter situations where it’d be easier
to develop the API by cutting corners or moving away from standards. Using POST for
all write actions, including updates and deletes, would be easier for the API develop-
ment staff, but would also create more work and confusion for the developer custom-
ers of the API. Any decision of this type should be made to ease the burden on your
customers even if it takes extra work on the development side. In short, put your cus-
tomers ahead of your API development team, and make sure the experience is as
smooth as possible. Whether you decide to use different verbs than usual for your
methods, use nonstandard response and request formats, or organize your schema in
a nonintuitive way, you should carefully consider the experience of the developers
using the API. It’s often tempting to try to focus on scalability and performance, but
the basic truth of this is that if you don’t focus on usability, you’re not going to create
a usable API, and nobody is going to use it—at which point scalability and perfor-
mance aren’t going to matter to anyone.

 Any time you go off the beaten path, you create a “surprise” for your users, and
they have to adapt their normal development style to suit the changes you’ve made.
This design choice can result in a support burden in a couple of ways. First, users may
be confused about how they’re supposed to use your nonstandard system and need
assistance in learning how to work with it. Second, and even more important, using a
nonstandard approach creates a situation where developers are quite likely to use the
API in a way you don’t expect or support as they try to figure out the right way to inter-
act with your system. Sticking with the standard interaction model wherever possible

91Don’t surprise your users
means that you and your users share the context of what that interaction should look
like, whereas using a different approach means that the user is starting at square one
and likely to make unexpected choices resulting in errors, or worse, code that works
in one version and doesn’t work in the next because they misunderstood the logic
behind your API. In any case where you’re considering extra work for your team versus
ease of use for your developer customers, you should always perform the extra work
on your side to reduce the support burden and increase developer engagement.

5.1.1 Flickr API example

An example of a company that didn’t follow REST best practices is Flickr. When it cre-
ated its web API, Flickr described it as RESTful (the company has since changed the
description to REST-like). Rather than exposing data as objects, staying within the usual
guidelines of REST, Flickr exposed methods (see table 5.1). Flickr’s choice to make
method-based calls limits the types of actions that can happen with the items in their
system. The left column in table 5.1 shows what a method-based API looks like. Instead
of operating on specific items within the system, each call is a command to do a spe-
cific thing. When compared to the RESTful calls on the right-hand side, the Flickr calls
are much more difficult to understand as a complete system.

Flickr took a SOAP API—an API focused on actions, not resources—and tried to make
it work in a more REST-like way, without the changes to the structure needed to make
it work appropriately. That meant the API didn’t have a contract to tell developers how
they were supposed to interact with the system—and no objects.

 The Flickr API accepts only two methods: GET and POST. This means that it supports
clients who are using limited frameworks, but it also means that a developer with the
full methods available has to think carefully about which method to use for a call.
Additionally, the URL isn’t used to describe the resource being accessed; rather, a
method is called, and all calls are made to the same URL.

 For instance, this is the easiest call in the Flickr API:

https://api.flickr.com/services/rest/?method=flickr.test.echo&name=value

Table 5.1 Flickr calls and RESTful calls

Flickr call RESTful call

GET /services/rest/?method=flickr
.activity.userPhotos

GET /services/rest/activity/
userPhotos

POST /services/rest/?method=flickr
.favorites.add

POST/services/rest/favorites

POST /services/rest/?method=flickr
.favorites.remove

DELETE /services/rest/favorites/:id

POST /services/rest/?method=flickr
.galleries.editPhoto

PUT/services/rest/galleries/photo/:id

92 CHAPTER 5 Guiding principles for API design
This call is clearly not a REST call (even though it has rest right in the path). The
“method” is the biggest clue that this system is working with verbs (methods) and not
nouns (resources). But most developers can work with this, even though most librar-
ies designed to work with REST expect a different URL for each specific resource.

 Deleting a photo should be a DELETE to the photo resource, but instead Flickr uses
the following call:

https://api.flickr.com/services/rest/?method=flickr.photos.delete&photo_id=
value

To call this, a POST must be made (which in the usual case would create a new
resource). Once again a method is specified for the deletion, and the photo_id,
which should be part of the URL as a resource, is instead specified as a parameter.

 The error codes used are also nonstandard and aren’t passed back in the usual
way. Figure 5.1 shows the list of error codes sent back for API calls that fail.

Instead of using HTTP status codes, as is the usual pattern, Flickr is using an antipat-
tern where a failed call returns a 2XX status code (indicating success) and then
includes the error as part of the response. Using the photosets.delete method
within the API Explorer yields the response shown in figure 5.2.

Figure 5.1 As with the resources and methods described in this figure, using inconsistent
error codes means developers have to hunt through documentation to learn what the errors
mean. Using the standard HTTP status codes helps alleviate this problem and saves times
for your client developers.

93Don’t surprise your users
Again, when faced with this situation developers are unable to use the standard HTTP
libraries, with their usual error handling, to write their code. The libraries designed to
work with the Flickr API handle these methods, but when interacting with multiple
APIs, the developer has to have special code targeted at the Flickr API.

 All of Flickr’s methods follow this pattern. It’s a good thing that once you start
working with its API you can get the hang of it and work through the issues caused by
trying to get existing REST consumer libraries to work with a nonstandard setup. I
know many developers who have decided not to use this API because of its poor design
and implementation, who use other photo services because they trust an API more
when it behaves as they expect. Flickr hasn’t changed its API, probably at least in part
because switching to a true REST system would require a complete overhaul of the API,
which would break existing clients. This situation is a shame, because Flickr is one of
the most popular photo-sharing applications out there, but the API it has makes it
challenging to recommend Flickr as a good platform on which to build.

 In learning from this example, when designing your API you want to stick to stan-
dards wherever possible, both the explicitly described standards and the best practices
for API services. Don’t stray from the path unless you must do so, and strive for consis-
tency across your API endpoints in terms of organization, layout, behavior, and status
codes.

Figure 5.2 Even using the API Explorer for Flickr, you can see that there’s no standard
HTTP status code (although this API is using HTTP) and that the message format doesn’t
follow any standard industry pattern.

94 CHAPTER 5 Guiding principles for API design
5.1.2 Don’t make me think

One of the mottoes for excellent web design is Don’t make me think. This concept can be
applied directly to API design as well. The flip side of not surprising your users is pre-
senting your information in a clear and consumable way. Don’t make your users think.
Make sure that your API behaves as they expect wherever possible. In particular, don’t
expose your back-end database schema as the API, because it’s highly unlikely to be the
right structure for end-user developers. You need to create an API that’s optimized to
be an excellent interface to the front-end developer and avoid making decisions for
back-end development that reduce this usability. Use cases are one great way to make
sure you know which actions and workflows should be easy and fast. APIs that are cre-
ated organically tend to end up being quite unusable, and developers attempting to
integrate the API get frustrated or give up.

 This is particularly true when you’re developing external web APIs for your organi-
zation, but it’s also true for internal systems. Remember that those internal APIs may
well become external APIs, and they should be designed and developed so that they
can easily be opened up to external users, consistent with the APIs you currently have
externally. A huge part of the developer experience with an API is trust; developers
have to trust that the system is reliable and that you’ve created an API mindfully and
skillfully. It may not seem like a big deal if your server sends responses that are non-
standard or formatted incorrectly. It’s easier to develop systems that use methods
rather than objects even when you’ve defined your API as RESTful. But this type of mis-
take will make your users suspicious that you threw together the system; they won’t
know if you’re going to “fix” it later, requiring them to change the code consuming
the API, or if you’re going to make other decisions that are nonstandard. They may
even wonder if your poorly designed API will be deprecated because it doesn’t have
the focus to thrive.

 Sometimes it’s necessary to make exceptions, because your system needs to process
information in a different way, or because some of your targeted users are working
with platforms that can’t interface in the usual way. For instance, in the past there
were frameworks such as Flash that weren’t able to send methods other than GET and
POST, so in this case, an API designer who was targeting these users would need to
make sure there was still a way to support these frameworks as clients. In such cases,
most API developers chose to create headers to define exactly what the correct
method was, and they documented it well. Because this was a common problem across
APIs for this subset of users, a consistent method of working around it was extremely
helpful for the client developers.

 In a more general sense, when you need to move away from standards in order to
support the needs of your system or users, how can you overcome the issues we’re dis-
cussing? You can avoid many of these problems with the judicious use of documenta-
tion, communication, and sample code. You need to tell the users exactly what to
expect and how to use the system, and provide them with as many examples of suc-
cessful interaction as possible. It’s important to create excellent documentation for

95Focus on use cases
any API, but when your API behaves differently than others, it’s vital to provide extra
documentation that helps the user understand the context correctly, above and
beyond the normal documentation and example code required to get your users
pointed in the right direction for using your system.

 One temptation is to cover up these eccentricities by providing client libraries that
mask the unusual interface. These libraries are frequently referred to as software devel-
opment kits (SDKs). SDKs go only so far in “fixing” the problem, because you’re requiring
that users rely on these libraries in order to use your system, and if they step beyond the
libraries, they’ll discover those oddities you were trying to cover up. When you’ve built
SDKs for various languages to work with your API, you’ve added a great deal of technical
debt: every time the API changes, all SDKs need to change as well. Additionally, creating
heavy SDKs adds an unnecessary layer of abstraction between your client developers and
the API itself. This makes it more difficult to triage problems—there’s one more point
of potential failure. You’ve created a black box around something that shouldn’t be
opaque. In general, if your API requires an SDK more complicated than an authentica-
tion library, your API needs work.

EXERCISE 1 Look for additional APIs that don’t follow standard rules. If you
needed to develop an API that required nonstandard practices, how could
you make it easier for your customer developers to use and implement?

5.2 Focus on use cases
If you take nothing else away from this chapter, understanding the value of use cases is
the key to creating an API that’s successful and engaging. Without use cases to define
the actions that should be easy in your API, it’s far too easy to create an API that’s tech-
nically sound but difficult to use. For instance, if you have a social application and you
want users to be able to write to their activity stream, you should define the steps
developers would need to follow and make sure that workflow flows smoothly for cli-
ents using the API. A use case is a set of steps describing the experience that an end
user wants—a story-based workflow, if you will.

 Use cases are vital throughout the process of creating an API. Once you’ve defined
the business value you want to address with the API and how you’re going to measure
success, the resulting use cases drive the rest of the process. During the process of
defining your API using a modeling language, make sure you can see how each piece
works together to support each required use case. In the case of a social application,
for instance, you’d need to make sure that the login/authentication system works
seamlessly with the activity—and that reading back the activity stream is similarly easy.
When developing your API, this focus gives you the opportunity to release sections of
your API incrementally, guiding you to releases that enable specific use cases. Once
the API has been released, you can create tutorials based on the use cases, and com-
municate clearly to developers what kinds of clients you want them to make.

 Assuming you already have a product, that’s a fantastic use case to consider. You
already know what the user experience should be and how the pieces tie together.

96 CHAPTER 5 Guiding principles for API design
Creating a use case supporting your product can sometimes be unnecessarily com-
plex, so break down the functionality into smaller standalone pieces that make sense,
which can be combined together to build the full functionality (or whatever function-
ality you want the API to support). Going through the exercise of breaking down your
main product into individual use cases is a powerful way to discover what kinds of
functionality your developers might need to leverage.

 In the agile world, use cases are like user stories. “As an X, I want to Y, so that I can
Z.” A use case generally lists the steps a user should be able to follow to create a
desired outcome.

5.2.1 Use case: mobile

One use case that’s important to consider is mobile (see figure 5.3). Mobile develop-
ers have needs that will have a huge impact on the behavior of your API.

For a mobile application, the use case will almost certainly include:

 Logging in with the platform
 Avoiding unexpected application crashes
 Ensuring a quick response time

To support this kind of application, the platform must support the following devel-
oper needs:

 Single call per mobile screen
 Minimal data size
 Ability to explicitly specify which sections of data are needed

Mobile Interface
Single Call

Goals

Login
Performant API
Exact and Complete
 Response

Customers
Connections
Activity
Explicit definition

Minimal Data Size
Exact Response

Response PlatformMobile

Figure 5.3 In a mobile interface, the main goals include logging in and user authentication,
a performant and efficient platform, and an exact and complete response. The illustration
on the right demonstrates what an ideal mobile/platform interaction looks like.

97Focus on use cases
Creating a system that supports mobile developers adds a lot of extra work on the API
development side, but it’s likely unavoidable. Although it may be tempting to avoid
this use case at the start, eventually your system will almost certainly need to support
these users, and if your system hasn’t been designed with this use case in mind, you
may find yourself in a situation where you can’t reasonably add this functionality. Here
are the reasons for these requirements:

 Mobile devices have limited bandwidth.
 Mobile users frequently lose connectivity by walking into an elevator or driving

into a tunnel (or hiking in the woods).
 Most mobile devices don’t do parallel processing well, so a platform requiring

several calls to obtain the information for a screen generates a poorly perform-
ing application.

If your API doesn’t support this use case because it’s hard to create, mobile developers
will either work around the limitation or choose a different organization’s API that
supports their needs more completely and clearly. When they work around your sys-
tem by, for instance, creating a caching server of their own, or scraping your website
to avoid interacting with the API, there’s a strong possibility that their system will get
out of sync with your platform, creating a poor user experience. Although this seems
like it’s the mobile developer’s problem, it’ll come back to you because users tend to
look to the main platform owner as the owner of this kind of problem.

5.2.2 Use case: application integration

Whatever kind of system you have, one of the most valuable use cases it can provide
for you and your customers—or partners—is the ability to integrate your data into the
developer’s systems, and vice versa. Whether this is a shared login experience such as
the ones provided by Twitter, GitHub, LinkedIn, and others, or a stream of activity
that can be aggregated into a larger activity stream within their application, this kind
of integration is an important use case to consider. If you don’t plan for this up front,
it may be difficult to present this information in a way that’s easily used by your con-
sumers. Remember, you should build all APIs as if they’re likely to become external
APIs at some point. Even if they don’t, the consistency will improve the overall quality
of your system, reducing your support burden at the same time.

TWITTER EXAMPLE

The first company we’ll focus on is Twitter, because the functionality of this system is
widely understood (see figure 5.4).

 The most basic use cases for Twitter are adding to and reading from the activity
stream, which could be done with a standalone application or as an integration with
another product such as an online magazine or separate social system. For this, an
agile user story might be, “As a Twitter user, I want to be able to post updates and view
my message stream so that I can share information and keep up with updates from the

98 CHAPTER 5 Guiding principles for API design
people I follow.” The use case could be expressed slightly differently. Viewing the
action stream of the agile user story, a development-focused API use case could be the
following:

 Log in with the platform.
 Post a message to the user’s stream.
 Read the user’s message stream to display the new content in context.

To support this use case, the platform must make it easy and fast to perform these
actions. The documentation should include sample code showing how to make these
calls in order so that it’s easy and clear to developers. This sample code needs to be
written by a developer or developer advocate and should include all potential client
types: a native mobile application, a website application integrating with multiple fac-
ets of Twitter, or a website wanting to add the ability to share content on Twitter. Addi-
tionally, a narrative should be written by the technical team within the documentation
describing the workflow for this interaction.

 Twitter has also added new functionality based on use cases requested by its third-
party developers. For instance, polling the API can be extremely expensive for a client
and the server; making a request frequently is inefficient, and users don’t understand
why their updates don’t appear immediately (see figure 5.5). To support this need,
Twitter created streaming resources to which clients could “subscribe,” letting them
know when an update has happened.

Request

Update

Acknowledgment

Authentication

Request

Response
Activity Feed

Twi�erClient

POST
UPDATE

Log In

REQUEST
FEED

CREATE
ENTRY

AUTHENTICATE
USER

GENERATE
 FEED

Figure 5.4 The interaction between a client and Twitter can include multiple types
of interactions. The initial request and response is usually logging in, or client
authentication. From that point, a client can either add new updates to the system
or read the current feed of updates in the system. Each of these transactions works
the same way: a request is sent from the client, and the server processes the request
and sends a response back to the client.

99Focus on use cases
Twitter is also an example of a platform where a particular use case was initially sup-
ported, but usage of the system indicated that it wasn’t necessary. The API originally
gave developers a choice between XML-formatted data and JSON-formatted data.
Reviewing the usage of their API, the company discovered that fewer than 5% of cli-
ents were using the XML-formatted data, so it removed that option from the system
and used its engineering resources for other, more popular features.

 As a company, Twitter has generally been responsive to use cases requested by
developers. Although it initially focused on one product without consideration for
how it would be used to integrate with other systems, it quickly moved to a use case
model to make it easy to target development and new features toward integration, as
this became a large part of the reason for Twitter’s success. The hundreds of millions
of users are definitely a compelling reason to use the API, but many of those users are
participating in the system because of the large number of places they can leverage a
connection to Twitter. As a company, it focuses quite heavily on developer experience,
which makes it possible for them to support the vast number of application and inte-
gration clients out in the ecosystem.

NETFLIX EXAMPLE

Netflix is an example of an API that follows use cases well. Although the Netflix API was
originally designed for third-party developers, it has evolved to be targeted to devices
such as consoles, television sets, and DVD players. These devices tend to have a large
amount of bandwidth available in order to support streaming of movies or TV shows,
but the end users are fairly impatient, and the device developers want to be able to
grab all the information they need to display the information quickly (see figure 5.6).

Polling Stream

Client

Open
stream

Response
when changed

Client Server Server

Response

Request
feed

Constant polling
Never truly synchronized
Extra work for client and server

5 min

Figure 5.5 When waiting for changes from a platform, a client can continue asking the
server whether there’s been any change, but this is expensive in terms of time and
resources on the client and server side both. A subscription model, where the client
“subscribes” to receive updates from the system, is much more efficient.

100 CHAPTER 5 Guiding principles for API design
Here’s what this use case looks like:

 Retrieve all information about a movie and related items in a single call
 Respond quickly to requests for this information (some devices, such as mobile

devices, do have bandwidth limitations)
 Easily navigate to similar content

To support this, Netflix created a highly performant REST-based platform with the
ability to expand similar information inline in a single call. A device can request infor-
mation about a movie, including data about cast members, directors, genres, and sim-
ilar movies. In addition, Netflix uses hypermedia within the calls to make it possible to
programmatically find similar information dynamically within a call, so that subse-
quent calls can follow the chain to the related data a user wants to see. Adding infor-
mation inline means that the payload is larger, but it’s the client’s decision as to
whether to expand the information out to include more information or stick with the
smaller, more basic default call.

 Netflix has another specific challenge: many of the devices using the API are set in
stone. Some TVs and DVD players, for instance, never update the firmware, so their
use of the platform never changes. This has caused problems when Netflix wanted to
add new functionality. In response, it encouraged devices to move to a system where
the application itself was a shell into which the functionality could be injected. In this
way, it became possible to add new functionality even when the system itself remained
unchanged. Nevertheless, there are still old Blu-ray players out there that are chug-
ging along using the old interface and will continue to do so on into the future.

 When the API was designed, Netflix didn’t know which way the usage was going to
guide it. It targeted several use cases including these devices. When it turned out that
their business model led them largely to devices as clients, it was relatively simple to con-
tinue tuning the platform to that use case, and the company didn’t need to re-create the
system from scratch.

Request Information

Response
• All requested resources
 Movie
 Cast
 Genre
• Related Information Links
 Director
 Producer

Netflix

Cached (fast)
Response

Person

Person

Client

Movie
Screen

Movie
Person
Genre

Figure 5.6 Common API interaction between Netflix and a client device or application

101Copy successful APIs
5.3 Copy successful APIs
Once you understand how you want people using your APIs, copying from other exist-
ing APIs is often a good idea. Chapter 1 briefly described the API Commons, a project
designed to facilitate the sharing of API schemas between companies, where a new API
can choose to implement some or part of existing APIs. This project is evolving slowly,
as many existing API providers feel as if they’ll be giving away their competitive advan-
tage if they share the schema behind their API. This is an unfortunate choice by API
producers, based on the unfounded fear of giving up a competitive advantage. The
theory is that any information related to your company’s intellectual property and
plans must be held close to the chest, lest other people get the jump on you. Remem-
ber that once your API is released, the schema can be determined by using the API
itself. The advantage for your API should be in the quality of the data, the algorithms
crafting the responses, and the integration with your presumably excellent product.

 Using someone else’s API as a starting point is relatively easy even without a
schema—a blueprint or definition of the API in a more easily understandable format—
but starting from an API definition can help you see which of the resources in the col-
lection will work for you. For instance, if you’re creating a new API based around fit-
ness, you’ll want your API to include resources for weight, steps, and calories burned.
If a well-known API like Fitbit has placed its schema in the Commons, adding those
items to your schema so that they’re compatible for clients who want to implement
both APIs would be simple. An API in the API Commons indicates that the organiza-
tion owning that platform has explicitly invited others to use its API definition as a
springboard for design. There’s a huge upside to placing your schema in the Com-
mons—and little downside. All schemas in this system have a Creative Commons
license, so you can leverage them without fear of legal ramifications.

 When you’re creating a new API, you want to reduce the learning curve as much as
possible for your users. Looking at schemas for existing APIs can help you create a sys-
tem that can be integrated with other APIs quickly and painlessly. If your “User” model
matches exactly with the schema of a complementary platform, a developer can tie
those resources together with minimum effort. All fitness trackers keep track of the
steps a user takes daily. If you’re creating a platform for a system like this, with many
existing models out there, pick one of the most successful platforms and model your
system after it.

 When organizations share design resources in this way, it speeds the process of
arriving at the best practices for a specific industry or API type. Without a system like
the API Commons, each platform is designed in an echo chamber, without learning
from the experience of other existing systems. Because there are so many existing APIs
in the ecosystem already, new APIs need to excel at creating APIs that make sense in
the context of other platforms already being used by developers. Remember that hav-
ing a schema isn’t the end of the design phase—it’s the beginning of the next stage in
the process. If your development isn’t guided by the schema you’ve created, the
schema isn’t doing its job.

102 CHAPTER 5 Guiding principles for API design
API Commons, as of this writing, is relatively new. This means that organizations
choosing to share their schema models in this way are creating a de facto standard
describing the best practices for creating APIs using the resources they define. By shar-
ing their model, they can help create a world where their API is easy to integrate with
similar APIs, without changing their schema themselves.

 How does the Commons work? An API is designed using a schema modeling sys-
tem, or an existing API with no existing schema model can use a modeling language to
describe the API. For this purpose, any of the existing schema modeling languages is
fine to use—Swagger, RAML, Blueprint, or any other format that may be created.
These modeling languages are covered in depth in chapter 7, but for now, know that
there are several formats to describe what an API will do before it has been developed.

 Once the schema has been modeled, an API Commons manifest is created, follow-
ing the format shown in figure 5.7.

This relatively simple format allows the API owner to describe the schema that they
used for their platform. As you can see, this document describes the API, an icon to
use for the definition, and the format used for the API definition (or schema model).
The resulting information is used to add the schema to the API Commons index,
which is shown on the API Commons website (see figure 5.8).

 Although it’s not necessary to use the same definition language as the platform(s)
you’re using as the basis for your API, doing so reduces the amount of work needed to
create your own schema if you stick with the language used by the base platform.
Chapter 7 discusses each of the schema modeling languages so that you can under-
stand the pros and cons of each. For now, it’s sufficient to know that they all have the
functionality needed to model an API, even if it’s quite complex.

 The API Commons also supports versioning, so when your schema model is based
on an API in the Commons, you can specify exactly which pieces you’re using from
several different APIs. The definitions are stored in GitHub so there’s history avail-
able—which means versioning is possible.

Figure 5.7 Manifest format for API Commons

103Copy successful APIs
Imagine you had a social event application and wanted to make an API so developers
could create integrations with other systems and applications to improve your user
experience. You could define this by choosing a People API from one API Commons
definition (or schema), the Video API from YouTube, and the Events API from Google
Calendar—each at the specific version you’re using. By doing this, you make it possi-
ble for developers to explore your API even more quickly. Although no tools exist for
building API consoles or data explorers out of the data in the Commons, these tools
will no doubt become available as more APIs are included.

 All that said, remember the Flickr example from earlier: you want to carefully eval-
uate the APIs you’re considering using to make sure you feel they’ll support the best
developer experience possible. There’s no reason you can’t look at all the models out
there, decide they’re not going to work, and create your own—but the very exercise of
looking through existing models should help quite a bit when creating your own API
schema.

EXERCISE 2 Look through the API Commons at www.apicommons.org. Imag-
ine that you are making a contact management system. Which of these APIs
would you use to bootstrap your API model? Are they sufficient for your
needs, or would you need to create a slightly different version—or another
version entirely—for the system you’re making? What APIs would you like to
see represented in the Commons? Reach out to the API providers you’d like
to see there and ask them to participate.

Figure 5.8 API Commons top-level definitions

104 CHAPTER 5 Guiding principles for API design
5.4 REST is not always best
You’ve probably noticed that rather than always describe the web APIs I’m discussing
as REST APIs, I tend to soften the description. REST-based is an excellent way of
describing most successful web APIs. For various reasons, such as the mobile case
described earlier, you’ll probably need to move away from the strict REST philosophy
in order to best serve the needs of your users. Remember, the usability of your API is
of paramount importance. Your users need an API that will meet their goals easily and
efficiently, so follow the best practices listed here but remember the number one pri-
ority is usability.

 The first guiding principle, Don’t surprise your users, seems to indicate that you
shouldn’t move away from this philosophy, but you may remember that I’ve indicated,
multiple times, that you shouldn’t move away from existing best practices unless you
have a good reason. Anytime there’s a conflict between strict REST and making a use
case easy, you should always err on the side of usability for all the use cases you’re
working with. Again, though, don’t make the mistake of creating an API that’s awe-
some for a single use case but useless for any others.

 I discussed one use case you’re likely to encounter that will make you move away
from the model of a single resource per call: mobile. There are various ways to sup-
port the mobile use case, but none of them is particularly RESTful. That’s because
mobile applications need to be able to make a single call per screen, even if that
screen demonstrates multiple types of resources. But if you don’t implement some-
thing to enable your mobile developers to create a performant application, you’re
going to create heartache for them, and for yourself.

5.4.1 Expand and include related resources

One way to approach this problem is to do what Netflix did: allow developers to spec-
ify whether they want to expand related resources inline with the call. Figure 5.9
shows the difference in calls when requesting a movie plus related information in a
strict REST API versus an expandable resource API.

Strict REST Expanded API

Client
Director

Cast

Movie

Genres

Client
Director

Cast

Movie

Genres

Figure 5.9 Strict REST versus API with expansion

105REST is not always best
In this case, the strict REST system requires that the client make four calls to show the
movie with some related information. Because a mobile device isn’t likely to have par-
allel processes, that means each call must complete before the next call can be made.
If the mobile phone user walks into an elevator or tunnel, causing a call to fail, that
call must be made again until it succeeds. This results in a nonperformant application
in one of the places where people are least patient (mobile users expect quick
responses from requests on their phones). Even if the calls all succeed, the time
needed to wait for all the responses will result in a poorly performing application.

 With the expanded API, though, the call is made to the movie, requesting expan-
sion for the three other items desired for the page. It’s a single call to the API instead
of four separate calls, and though it might still fail, one retry on one call will still result
in a more responsive experience for the mobile user than if all of the calls to the strict
REST API had succeeded.

 In addition to supporting expansion, Netflix uses hypermedia within results—
which are covered in chapter 6 when we discuss business value and decisions, and in
chapter 7 during the discussion about schema modeling—to help developers discover
what related information can be expanded when making calls. Including this informa-
tion makes it much easier for developers to understand the capabilities they have
when using an API.

5.4.2 Create a query language

To solve the same problem, LinkedIn went with a slightly different approach. Its data
structure is much more complicated than Netflix’s, so a simple expansion wasn’t likely
to cover the needs of all its developers. Instead, LinkedIn created a query language to
make it possible for developers to explicitly express what they wanted to see, what
related information they wanted, and which fields they wanted within all the resources
(figure 5.10).

 The LinkedIn API was designed to encourage developers to explicitly specify
exactly which fields they want in every single call, so the default representation of each
resource was a minimal list with few fields included.

 Here’s an example of what you could request with a single request to the API:

 User’s information
 User’s contacts

– School attended
 Name of school
 City of school

– Organizations
– Shared contacts

 Name

This query language made it possible to say that you wanted all of a user’s informa-
tion, contacts, and the name and city of the last school each contact attended. The
downside of this system was that the learning curve was somewhat steep. Because the

106 CHAPTER 5 Guiding principles for API design
resources aren’t RESTful—in order to get a reasonable representation of an object,
the developer needs to specify more fields than the default—users of the API must
learn how to determine which fields are available, how to access them, and what the
restrictions are for use within the system. The LinkedIn API addressed this issue by
spending time and resources creating example code and documentation describing
how to make common requests. The consistency across the various endpoints made it
easier to learn once a developer had made a single successful call to the system.

 Unfortunately, due to business decisions, neither of these APIs is currently avail-
able for the public to use or test. But the general idea of creating query languages to
allow client developers to express precisely what information they need, and in what
format, is a good design model.

5.4.3 Create a comprehensive data transfer scheme

Freebase (recently deprecated) was a system not many people were familiar with. It
was, in my opinion, the best web API out there. Freebase was a structured, user-edit-
able, graph database. It included information from Wikipedia, MusicBrainz, and mul-
tiple other sources. It represented items as nodes (things) and edges (links). In this
case, it wasn’t a REST API at all. All queries hit the same endpoint, and users created an
object expressing exactly what they wanted to know, receiving back exactly that object.
Because Freebase was a graph database, extremely complex queries took only 50 milli-
seconds to return.

 Here’s an example of a Freebase Metabase Query Language (MGL) request. As you
can see, it’s in JSON format, which was the language used by Freebase.

Complex LinkedIn Request

Shared Contacts
Name
ID

ID

School: Name
City

Organizations
Name

ID
Contacts: NameUser: Name

ID

Figure 5.10 Complex LinkedIn request:
specific attributes for particular fields

107REST is not always best
[{
 "type": "/film/actor",
 "ns0:type": "/film/producer",
 "/people/person/religion": "Scientology",
 "/people/person/height_meters<=": 2,
 "/people/person/spouse_s": [{
 "spouse": [{
 "name": null,
 "/people/person/religion": "Scientology",
 "type": "/film/actor"
 }]
 }]
}]

The request in listing 5.1 is asking for people who are film producers and film actors,
and who are Scientologists less than 2 meters tall. Additionally, it wants to know about
any Scientologists this person has married.

 The response from the system (in the following listing) is a similar JSON object,
containing the things that were requested.

{
 "result": [
 {
 "/people/person/religion": "Scientology",
 "ns0:type": "/film/producer",
 "/people/person/spouse_s": [
 {
 "spouse": [
 {
 "name": "Katie Holmes",
 "/people/person/religion": "Scientology",
 "type": "/film/actor"
 },
 {
 "name": "Tom Cruise",
 "/people/person/religion": "Scientology",
 "type": "/film/actor"
 }
]
 },
…

The response had other groupings, but this is the one I was looking for, and the
response was almost immediate. For most systems, this kind of complex query would
be time consuming, but even if I had asked for the films they had in common, or the
name of their daughter, the response would still be almost immediate.

Listing 5.1 Freebase MGL: searching for Tom Cruise and Katie Holmes

Listing 5.2 Freebase response

108 CHAPTER 5 Guiding principles for API design
 Although a graph database may not be the right back end for you, this example
should show you that there are different extremes in requests to web APIs. The main
constraint you should follow is that it’s easy for your users to implement your use
cases.

5.4.4 Create a separate batching system

When the developers at Etsy refactored their API, they wanted to stick with strict REST
representations for their resources but understood that this wouldn’t work for third-
party developers creating mobile applications. For this reason, they created a system
called BeSpoke, which batches commands and uses a separate address (figure 5.11).

Etsy’s goal was to create endpoints that were combinations of calls to its APIs. The
company made the decision that it wanted to own the specific structure of each of
these endpoints. If a client developer needs a new batched endpoint, they must
request help from Etsy to get it implemented.

 The batched-up calls are run in parallel wherever possible (sometimes the
response for one changes the request for the next) and those calls are bundled up
into a single response that heads back to the client. In this way, a mobile application
can ask for information about sellers, their activity list, and the current things they
have up for sale.

 This system meets both of the company’s requirements: it has a solid REST API, but
it has built a separate system that allows its client developers to quickly request larger
amounts of data as needed.

BeSpoke
Before A�er

1

2

3

4

Client
Activity

Item

User

Rating

Mobile
Endpoint Activity

Item

User

Rating

Client

Synchronous / Serial Batched on server first

Figure 5.11 Etsy reworked its platform to be API First and strongly RESTful and
decided to address the issue of mobile integration using the BeSpoke system,
which batches calls together on the server end and sends back the aggregated
information to the caller.

109Focus on the developer experience
5.4.5 RESTful decisions

It should now be clear that although it’s important for your system to behave as pre-
dictably as possible, you need to make sure that your system is usable. If that can’t hap-
pen within the context of strict REST (or whatever other model you’re using), then
you need to step to the side and find something that does work.

 It’s vital in these cases that you communicate clearly to your customers exactly how
your system does work so they can get up to speed as quickly as possible. If you use a
separate system like BeSpoke, make sure that mobile developers can find their way to
that information easily so they don’t try to implement their application using the bare
REST API.

5.5 Focus on the developer experience
I’ve said many times that you need to focus on the developer and use cases during
design, development, and documentation, but your API still won’t be successful if you
don’t pay close attention to the developer experience once you’ve released it. From the
developer portal to the support you provide when people are struggling, everything you
do for your users after you release the API is as important as the work you did to create it.

 Developer experience for an existing API covers several different realms. Reference
documentation should be solid and consistent across all of your API endpoints. It
should be easy to get a list of endpoints for a particular API without searching through
documentation. One of the advantages of using a modeling language is that these sys-
tems are designed to help you create automatic reference documentation for your API.

 Developer experience, including documentation, is the heart and soul of a success-
ful API. Chapter 9 explores this topic in depth.

5.5.1 Communication and consistency are critical

Throughout the process outlined in the following chapters, I want you to think criti-
cally about which pieces of information you want to share with your users. It’s always
best to assume you’ll be sharing everything. Sharing your business value with your cus-
tomers helps them to better understand what kind of clients they should build that
will help your API to remain successful—and that will help them stay successful as well,
because they’re supporting your financial reason for having the API. Giving them the
metrics you’re using helps too; adding this to the context of the business value means
the users have a great idea of what looks like success for your API, and they’ll strive to
help you with that, because it means they have a stronger position for their particular
client or clients.

 The use cases you create should be turned directly into tutorials for your client
developers, to give them working code with an understandable story to follow. Sharing
your schema model (even when the API is under construction) opens up the ability to
have conversations with your customers about how the design meets their use cases.
And they can use the blueprint to identify potential error cases they should handle
and understand better how to implement their code most efficiently. Too often the

110 CHAPTER 5 Guiding principles for API design
client developers are seen as intruders into the system, and API providers try to hide
away their business choices from those developers—but treating these developers as
partners means telling them everything you can.

 Whenever you make a decision, whether it’s in line with everyone else or a new
path you’re blazing, it’s vital to communicate with your users. Too often developers
are kept in the dark about important decisions being made by the platform organiza-
tion, which leads to frustration and mistrust. When you treat your developer clients as
partners, keeping them in the loop wherever possible, you’ll find that they’re forgiv-
ing, helpful, and as interested in your success as you’re interested in theirs.

 It’s tempting to treat these people as competitors because they’re implementing
functionality that may compete directly with your main product. But providing a dif-
ferent user experience for a subset of users is sometimes exactly what your user base
needs to feel more excitement about the whole organization. If you’re willing to let
developers use your system, then you should be willing to be transparent with them
wherever possible.

 Sometimes you can’t share the business reason for decisions you need to make. In
those cases, it’s still important to tell your client developers that there has been a
change and that it was made because of an underlying business decision. If you don’t
tell them this, they’re likely to think the decision was arbitrary and can be changed, or
will feel slighted by the decision. As a company, Google has always been transparent
with the developers utilizing its APIs. It does get a lot of flak for the choices it makes,
but developers using its system can be assured that it will give notice before the API is
changed drastically or deprecated.

 Relying on a platform for functionality within your application or website is a
frightening prospect for anyone. Reaching out to your customers to keep them in the
loop when changes are made is one of the best ways to build trust within the devel-
oper community. Remember, these developers are giving you their time and skills to
integrate your system into theirs, and you need to treat them with respect.

 These guiding principles are important to keep in mind while building your API,
but the most critical thing in implementing your API is consistency. Your API needs to
be consistent in terms of resource formatting, status codes, formats, and any other
design choices you make. If a developer gets a user by drilling down through an orga-
nizational group, that user should be identical to the user when found via a search.
Status codes for users should behave the same way as status codes for locations. If you
choose to use an expansion or query method to allow for more complex queries, it
needs to be implemented consistently throughout the API. Your documentation
should also be consistent across the system. It’s likely that different teams will be
building different parts of your API, so you may need a guiding team to help each
group create resources and documentation that speak directly to the use cases and
flow naturally from one section to another. Consistency can be a challenge, but as
with everything else, when you have a choice between extra effort for the developers
of the API and the consumers of the API, you should always make the experience as
easy as possible for the users of the API.

111Focus on the developer experience
5.5.2 Documentation should tell a story

When developers are initially exploring your platform, the questions they’re likely to
ask are “What can I do with this?” and “How do I do something?” Unfortunately, most
documentation for APIs focuses on “How does this work?” That’s a question that gen-
erally doesn’t come until after the developer is already engaged with the platform.
The pretty example in figure 5.12 demonstrates what most API resource documenta-
tion looks like.

 The problem with this type of documentation is that there’s no story or context for
developers to use to understand why they should care about this API. Sometimes the
thought is that if a developer finds her way to the API, she already knows what she wants
to do with it, but it’s not a good idea to make that assumption for several reasons.

 First, developers who are new to your system and find it through spelunking on the
web may well not know what they want to do with the API. Making the assumption that
they do know means that developers who aren’t already familiar with the data space
and why they want to use it will likely give up and leave. This seems like it would per-
tain only to external or open APIs, but for developers starting out with your API, you

Figure 5.12 This diagram shows what reference documentation can look like in a system that has been
designed by modeling a schema. The documentation you see here, which is dynamic and allows for
exploration, is created entirely from an OpenAPI specification.

112 CHAPTER 5 Guiding principles for API design
need at least a “Getting Started” story, or they’re more likely to fumble around trying
to figure out what to do.

 Second, tutorials that read like stories tell your users a tale about how you expect
them to use the platform. When developers can get started with an existing example
of a flow through the system, they can more easily create applications that use the API
in a way that’s supported. If you leave developers to try to find something that works
without guiding them, they’re more likely to work around the functionality that you
want them to use. It may seem like all you’re doing with use cases and story-based tuto-
rials is teaching people how to do specific things with your platform, but that’s not
true. Particularly when you provide some structure to the stories you’re providing, as
the client developers work through them they gain a greater understanding of how
your system works and are more likely to have their creativity sparked by the examples
you’ve given.

 Third, stories help users to better understand how the different parts of your sys-
tem interact together so they can be successful more quickly. I’ve seen many cases of
developers who cobble together a mashup between different resources to create a par-
ticular function, when that data is available directly from another resource. It may
seem obvious to you how your data is structured, but without that context developers
will do the best they can.

 Fourth, and most important, developers love to get up and running quickly. Tak-
ing the time to provide them with documentation that helps them solve their problem
effectively communicates to them that you value their time. It shouldn’t be an arduous
chore to figure out how to combine your resources to create a meaningful application
or integration. Don’t make them reinvent the wheel. Give them examples of success-
ful stories they can use to inspire their own ideas. These developers are your partners,
so treat them with the consideration they deserve, and they’ll reward you by creating
awesome applications with your API.

 It’s challenging to find examples of story-type documentation in the wild, but at
the least many API providers have started providing a “Getting Started” story to help
developers make the critical first call to become engaged in your API. As the creator of
an API, challenge yourself and your documentation writers to create documentation
that helps users make the first call in the minimum amount of time.

 Here are some questions that your documentation should answer in a “Getting
Started” guide:

 Do you require authentication?
 How does a developer quickly get the pieces he needs to make the authentica-

tion work?
 What does an example call look like?
 How can a developer make a call to the system using a common library or on

her own?

Don’t assume that your developers already know anything about using your API. If
you’re worried about scaring developers away by seeming condescending, don’t.

113Summary
They’re more likely to be grateful that you took the time to guide them to a successful
call, and trust me, many of your users won’t be familiar with systems like yours and will
be happy to see documentation that guides them through the process of making a call
and teaches them what they can do with the API. There are many, many skilled devel-
opers out there who haven’t ever interacted with a web API before; this has been
clearly demonstrated to me by the enormous number of people who attend my “REST
Demystified” talk at conferences. Great developers are not all client developers . . . yet.
Help them get there.

 Once you’ve started making documentation that’s story-based, don’t stop there.
Give some use cases to your developers to show what kinds of things are possible given
the way your system works. Spark their creativity with ideas.

 Remember that new users want to know what they can do with the system and how
they’d do that. It should be as straightforward as possible to find this information in
the front of your documentation. A new user doesn’t know where to look, so the most
obvious call to action needs to be a button leading developers to the documentation
they need to figure out the answers to these questions.

5.6 Summary
Even before you start creating an API, you need to get into the mind-set of the people
who will be using your system. All of these guiding principles will help you to put your-
self in the shoes of the people you want to succeed. Keep these principles in mind as
you work through the process of creating your API, and the system you build will be
more compelling, successful, and easy to use.

 This chapter covered several guiding principles for creating a successful API:

 Don’t surprise your users. Be mindful of the decisions you make and make sure to
communicate your intent clearly and consistently. Arbitrary decisions made in a
rush frequently come back to bite you when those decisions lead to developer
confusion.

 Focus on use cases. If you can’t describe what you want developers to do with your
API, they won’t know what you’re expecting, and you won’t have any guiding
vision to drive the development of the API.

 Copy successful APIs. Stand on the shoulders of giants. There’s no shame in crib-
bing from a successful API to make the experience of the application develop-
ers that much more consistent and easy.

 REST is not always best. Although the focus of this book is on REST APIs, it’s
important to keep a critical eye on the development to make sure that idealism
isn’t trumping usability.

 Focus on the developer experience. Again, this is the focus of chapter 9, but it’s worth
reiterating here that a great developer experience is the number one way to
ensure success for your API.

The next chapter covers the process of determining business value, establishing met-
rics, and designing use cases for your API.

Defining the value
for your API
Designing an API should always start with the process of determining business value
and how you’ll measure it, followed by determining use cases to make sure you can
build your design and strategy with confidence. Doing this for a web API brings it
into line with other company products and helps you to both communicate your
goals and success to your executive team and make sure your API is staying on track
to success. Having these goals and metrics in place will also help you verify that the
API is moving in the right direction, so you can determine whether you need to
“pivot” your goals, metrics, or use cases to more directly match how client develop-
ers are using the API product.

This chapter covers
 Business goals

 Metrics

 Use cases
114

115Business goals
6.1 Business goals
Understanding and communicating the API’s business value to your company, includ-
ing goals to measure success, is critical. This is the information you’re going to com-
municate to the executives and other teams at your company, helping them
understand why you have an API for your company. A product that can’t demonstrate
success to the executive team is at serious risk of losing the resources needed to drive
it. The ability to track and communicate the goals and strategy for the API and how it
will contribute to the company’s bottom line will keep your product on track. A solid
grasp of the business value will additionally help guide your design and development
and make sure you end up with an API that meets the need you’re trying to address.
Without a clear vision for the API, you’ll end up with a process that feels like herding
cats, where you try to create a cohesive strategy on the fly. Take the time to figure out
exactly what you want to get out of the API before you start working on the next steps.
The easiest way to do this is to determine what your company is striving to accomplish
in general and decide what web API business value would best support these goals.

 Common goals for successful APIs vary widely. This chapter discusses several exist-
ing models, but asking, “What’s the API going to add to my company’s success?” will
help guide you to the correct type of goal for your product. The values I discuss in this
chapter cover monetization, usage, partner retention, and market dominance.

6.1.1 Monetization

Monetization is the most common business value that people attempt to accomplish.
When the API is the main or only product for the company, this is an obvious necessity.
In other cases, this is not an appropriate goal for the API. The reason is that it’s quite
challenging to drive usage of your API when it is competing with the goals of the main
product. When an API is supporting the main product, it’s important to make sure
that the goals for the API are complementary to that product. In that case, your API
will suffer from a lack of uptake if developers need to contend with money issues with
the API. Ensure that the API encourages those client developers to create applications
that strengthen the core value of your company’s main product or add new ways for
users to interact with the system. When your API is not your main income stream, find
ways to add to the company’s success without adding friction to the adoption of your
API with a monetary cost.

 Twilio is a company where the API is its main product, and a great example of a
company where monetization is the main goal of the platform. It’s made difficult tele-
phony interactions simple for developers, and in return its customers (client develop-
ers) pay Twilio for usage. The whole company is designed to support the web API
platform, and it’s been successful as a result.

 Marketing at Twilio is based on driving usage to the API. An army of developer
evangelists works in the marketing organization and is constantly attending hackath-
ons, helping developers integrate phone or SMS services into their applications. By
providing the ability to integrate easily with telephony services, yielding a huge value

116 CHAPTER 6 Defining the value for your API
for many application users, developers are motivated to pay money for the services
they receive from Twilio.

 Monetization for Twilio is directly tied to the developer usage of their API. Each
call to the API costs a small amount, so an application using Twilio as part of its stack
will provide Twilio with income relative to the success of the application. In this way,
Twilio gets a small part of the income generated by each developer for a part of the
functionality of the developer’s application itself.

 Its developer portal is one of the best in the industry (see figure 6.1), because
developers are their direct customers, and in order to thrive they must support those
customers well.

Figure 6.1 Twilio has a strong developer portal. All portals should have API documentation as a quick
link, but many other items are required to make a great portal. Articles about the system can help
developers understand the underlying technology, such as the Security section here. Most important,
the Getting Started section includes guides and libraries to help developers get going quickly, keeping
the Twilio five-minutes-to-first-call goal in mind.

117Business goals
Twilio has a strong focus on making the developer experience easy, striving to make
sure that a developer who visits its site can make a successful call to the API within five
minutes—an aggressive goal that helps ensure that developers don’t get frustrated
and give up on the API quickly. Twilio is also quite determined to retain its place as the
dominant player in the SMS API industry. When your business case is tied so closely to
revenue for the company, it’s not that difficult to generate support from the executive
team. But don’t despair if this isn’t your business value—I talk through various other
models throughout the chapter.

 Twilio’s model for its API is currently represented by figure 6.2. As time goes for-
ward, it’s added new features into the system. But the interaction for the client devel-
opers remains the same. That makes the platform increasingly valuable for those
application creators.

In figure 6.2, it becomes clear that Twilio has set up the system to be a single interface
to each of the telephony systems. In this way, developers never need to interact directly
with the systems themselves and can leave all that heavy lifting to Twilio. Because the
functionality provided is time-consuming to implement for a single application,
Twilio’s offering is generally considered by developers to be well worth the cost.

 Monetization, then, is a valid business goal. In this case, it’s not hard to explain to
your executives or other teams why you have an API. But if your API is an enhancement
to your main product, it’s easy to fall into the trap of expecting your API to directly gen-
erate revenue. Without a strong business case around the API, you’re not likely to gen-
erate enough revenue to justify the resources needed to create and maintain the API—

Messaging
SMS/MMS
IP Messaging

Voice
Calls
Recording
Conference Video

Client
developer

ApplicationTwilio
Charges

Twilio API

Figure 6.2 Twilio’s API interacts with
services in the messaging, voice, and video
space. Each of these functions works
directly with the same API, making it easy for
developers to integrate multiple segments
into applications. The API is like a central
routing station, moving requests from the
client developer’s application into the
correct part of the Twilio API portal.

118 CHAPTER 6 Defining the value for your API
and these are the APIs most likely to be deprecated in favor of other, more profitable
products. When your API is an add-on product, strongly consider one of the other busi-
ness value choices, and see if one of them is more appropriate to your overall business
strategy.

6.1.2 Usage

Sometimes the goal of the API is to drive usage, or how many times the end user inter-
acts with your system. These users probably won’t spend all their time in your applica-
tion, but if you have a product with an activity feed or other stream of information—if
you have any type of social-based application—encouraging users to write to your sys-
tem will drive interest and increase platform functionality for all your users, including
the ones who don’t actively share information within your system. Providing a means
for other applications to write activity into this stream will increase the perceived value
of your system for your end users. Most social systems rely on advertisements to gener-
ate revenue, so the more compelling and engaging the activity stream is, the more
eyes they’ll be able to sell to advertisers, and the more money they’ll bring in.

 Twitter, LinkedIn, and Facebook are excellent examples of this type of product.
Each of these systems relies heavily on content generated by users in order to create
interest and engagement. Making it easy for a user to share interesting content with
their network—and extended network—encourages people to contribute meaningful
content to your ecosystem. If users are reading articles they enjoy on a news site or
blog, it should be simple for them to share that information with everyone in their
network and add that content to the ecosystem for your product. Figure 6.3 shows a
blog post from my blog with sharing buttons for major networks, allowing people to
share my page among their social networks.

 As you have probably noticed, these sharing icons are everywhere throughout the
web. Social systems want to drive the addition of fresh content into their platform to
add value for their users, and content owners want to encourage people to read the
information they’ve posted. The use of these buttons drives new and relevant informa-
tion to users’ information streams, increasing the value of a social platform. This
interaction is generally a widget that uses the web API to provide the functionality. In
this case, the ability to add the ability to share content back to Twitter (or other social
systems) is extended to content owners, such as bloggers (as demonstrated earlier)
and news websites. When you’re designing an API for usage in this way, it’s important
to make it easy for end users to add content into your system to keep it lively and
engaging.

 Twitter makes money largely from advertising and selling data about the informa-
tion in their system. In order for the advertising to be compelling to users, Twitter can
use the activity stream to better understand each customer’s interests. Additionally,
constant generation of new content ensures that the data remains germane to the
partners who consume it. Its APIs are focused on engaging new users and keeping its
existing users active and involved in the ecosystem.

119Business goals
LinkedIn had a complicated API, but it has since been throttled back, largely due to
the determination of business value and the excessive cost of providing the majority of
its APIs to third-party developers as well as partners. LinkedIn’s success is largely
driven by revenue from advertising and recruiting. This revenue is increased by the
number of users in the system and how often they interact with the system. LinkedIn
wanted to bring new users into the system, engage existing users as frequently as possi-
ble, and make it easy for recruiters to find qualified candidates. Because of this they’ve
recently focused on a few API-related offerings for developers and content providers.
For instance, allowing developers to enable their users to sign in with LinkedIn gives
them the opportunity to manage the user identity for those applications, staying at the
front of the users’ minds. The sharing widgets, built on a back-end web API, provide
content providers with the ability to allow readers to share interesting content within
the LinkedIn ecosystem.

 Facebook continues to offer several different API products (see figure 6.4). It has
always wanted to drive usage of applications to its system, encourage the development
of third-party games and applications that use the Facebook system, and generally
drive up the percentage of time users spend connected to its system.

Figure 6.3 Blog using a widget that creates and drives sharing icons for the main social
platforms. Because each platform has a well-understood, well-described, and consistent API,
developers can easily create integrations into these social platforms, and blog owners can plug
in widgets with this functionality in a few minutes.

120 CHAPTER 6 Defining the value for your API
Facebook has an SDK system for developers to use to integrate their games or other
applications into the system, encouraging users to interact with Facebook more fre-
quently as they play with these applications. Facebook additionally provides an API to
add monetization to games, allowing users to purchase items for use within the game by
interacting with Facebook directly. The combination of these two interfaces has helped
Facebook become the most successful game platform among the social networks.

 The Facebook graph web API allows application developers to integrate Facebook’s
social data, including friend and demographic information, into their applications
once the user has approved this access for the application. Any time you’re asked to
check with Facebook and give permission for an application to access your own data,
this developer is using the Facebook graph API to bring your information into an
external website or application.

 In short, usage is a strong driving force for social media. These three companies
aren’t the only ones that derive value from a strong, relevant stream of new informa-
tion. Any company wanting to increase the amount of information created for its sys-
tem can consider whether this type of business value makes sense for its platform.
Note that in many cases this functionality is extended via a plug-in or widget, but these
features are driven by web APIs and are consistent with the general purposes of other
REST-style APIs, even though they’re wrapped in handy packages for website creators
to use. In these cases, the widgets and plug-ins are the customers of the API itself, but
their existence is reliant on the existence of a strong, healthy platform.

6.1.3 Partner retention

One of the strongest business values for an API is partner retention. When your com-
pany has a solid relationship with another company, it helps create a strong revenue
stream on which to build your other income. Losing these partnerships can create

Social Graph API
Atlas API
Ads API

APIs

Social Plug-ins

Like, Share and Send
Comments
Embedded Content

Games with
Facebook

Facebook
Login

Facebook
System

Figure 6.4 Facebook’s multitude of
API offerings show the vast number of
integration points it has created into its
system. The most basic social platform
integration—sharing widgets—is quite
easy to use, but the Facebook platform
includes complex integrations into the
social graph (how people are related),
monetization for games, and a game
platform that provides much of the
needed functionality for creating
Facebook games.

121Business goals
unstable revenue streams, causing problems for your company. To help avoid this
problem, create an API that focuses on usability targeted at the use cases your partners
may want. This could include automation within your system or integration of your
reporting with their own dashboards. Partners who have already spent the time to
integrate your systems into their own products or applications are less likely to move
to a competitor, particularly if your API is in fact a first-class product and you keep new
features in parity with your main product.

FEDEX

FedEx is in a highly competitive market, but it was the first to create a strong API sys-
tem for logistics, shipping, and tracking. It has enabled many small companies to
become competitive by reducing the need to create extensive infrastructure to market
and deliver their product.

 For example, the flower delivery company FTD has historically been a major domi-
nating force in flower delivery. It provided nationwide flower delivery to customers by
partnering with local small delivery shops, which could bring flowers to people in
their area. This allowed them to hold a virtual monopoly in the industry, as local
flower shops didn’t have any way to attract customers in their area as easily as FTD
could, and had no way to deliver flowers in other areas without arranging for shipping
manually (see figure 6.5).

 By integrating with FedEx, though, smaller companies have been able to enter this
previously closed market (see figure 6.6). Customers of these client developers have a

Nationwide
Flower Delivery

Flower
delivery company

FTD
Partnered with
local florists

Virtual Monopoly
in the Industry

Figure 6.5 Before the FedEx platform became readily available, FTD
enjoyed a virtual monopoly in the flower-sending industry for nonlocal
deliveries. It worked with local florists (and was able to impose strict
guidelines and pricing) and made it easy for consumers to send flowers
anywhere in the country. But the system wasn’t set up so that the best
florists were successful; FTD made it so that partnering with FTD was
an important business decision for florists.

122 CHAPTER 6 Defining the value for your API
better way to track their packages without reaching out to either the application
owner or FedEx, and the partners can focus on the core business case without becom-
ing experts in the shipping industry. Once this integration is done, it’s a lot of work
for a company to switch entirely to a competitor, which cements FedEx’s place in the
industry. In this way, FedEx has created a situation where it’s likely to retain partners
who are integrated deeply with their reliable API and who have improved their own
processes as a result. It would be quite difficult for another shipping company to
entice one of their partners to switch to its service, because that would require proving
that the new service was good enough to cause a shift in experience for their custom-
ers and a significant amount of development time to change the integration.

6.1.4 Market dominance

Market dominance is different from partner integration in that the goal is for the com-
pany with the API to become the leader in its industry, rather than enabling its custom-
ers and partners to succeed in theirs. Having a focused, agile API makes it easier to
establish your dominance in your market and maintain this status into the future.

NETFLIX

Netflix is an example of a company that has established market dominance in the
video-streaming industry based on the use of its API by different consumer video
devices. It has innovated and changed its API to remain the most dominant system in
the movie-watching industry—from integrations with partners that make DVD players,
to online movie rating and ticketing services. Netflix’s main business value is dominat-
ing its industry by enabling integration with devices within this space to increase its
user base and provide value to its existing users.

FedEx's API
Delivery
company
FedEx for Shipping

Simplified
National Delivery

Figure 6.6 Once FedEx provided a platform for local florists to use, it
was no longer necessary to partner with a large company such as FTD
in order to receive and process floral deliveries remotely. Now that
there are ways for local companies to deliver their specific products
with a minimum of effort, the competition is focused around the value
of the products and not partnerships with specific companies.

123Business goals
 Netflix tuned its API to make it highly usable for devices such as consoles, DVD
players, televisions, tablets, and smartphones. It removed the parts of the API that
weren’t important for these partners or germane to their current system—such as the
DVD queue and search APIs—leaving a tightly tuned set of APIs that it offers to these
device companies. Netflix restricts its partners to platforms that will reach tens of
thousands of its own subscription users. In addition, the products provided by Netflix
itself, including its phone, tablet, and desktop computer applications, use the same
APIs they provide to these device manufacturers. Everything is highly optimized to
allow users to have a high-quality browsing and viewing experience, whatever platform
they’re using (see figure 6.7).

Netflix has been so successful in this space that creating a movie site or new video-
enabled device without direct Netflix integration places a potential video-viewing prod-
uct at a disadvantage. The reach and established base of the Netflix API is so strong
that all new entrants to the space are compelled to integrate with Netflix, and existing
vendors are highly unlikely to remove or replace Netflix in existing products. This is
not to say that these device companies won’t add other video-streaming services, but
excluding Netflix reduces the value of a product in a significant way. Device manufac-
turers and movie sites are motivated to partner with Netflix and to continue doing so
to maintain their own place in their specific industries. The synergy between Netflix
and device manufacturers enhances both of their places in their relative industries.

Netflix
client

Netflix
client

API

Movie data

Ratings

Similar movies

...

Netflix

Netflix System
client

Figure 6.7 Netflix is an excellent example of how an API can streamline a user’s
experience. The API itself provides basic search and information about movies,
including people and genres associated with them. The company additionally
provides a movie player on most major platforms, which is integrated with the
Netflix platform via the API, so a user can always find and learn about movies
before watching them. The API makes it possible for other devices and
applications to do the same thing so that users’ experience is consistent across
all the applications they use.

124 CHAPTER 6 Defining the value for your API
6.2 Metrics
Once you’ve determined what your business value is and what you’re trying to achieve
with the product, it should be relatively easy to determine how to measure the success
of your platform in this area. Frequently, companies are tempted to create metrics
demonstrating the reach of the API without demonstrating how it’s adding to the bot-
tom line. Metrics such as “number of developers who have signed up for the API pro-
gram” and even “number of calls to the API” aren’t going to be compelling to the
executive team. Although API usage statistics, including applications and users, can
show that the system is growing to be able to provide the value desired by the com-
pany, the most meaningful metrics are those that demonstrate how the platform is
contributing directly to the established business value.

6.2.1 Poor metrics

For any API, the most common initial choice made in creating and tracking metrics is
to track the number of developers who have signed up for an account within the sys-
tem (see figure 6.8).

In the case of these metrics, the analysis will not help you translate the activity into the
business value you’ve already determined. It would seem that the number of calls is a
good thing to track, and it’s a fine internal metric for the API team. But when commu-
nicating with other groups outside of the development team for the API, your business
goals need to be broken down into metrics that are more meaningful in the context of
your value proposition.

 A member of your executive team may initially be interested in the general usage
of your API, but in the medium and long term they’ll want to see how the API is con-
tributing to the bottom line of the company. An API that’s not showing success in
other areas is costing money for the company with no obvious path to creating suc-
cess, so you need to share metrics that demonstrate how the API is improving success
for the entire organization or face the chance that your API will be deprioritized by
the company.

6.2.2 Monetization

When the API is your main platform, you can easily measure success by looking at the
revenue generated by that product. In many cases, though, you can target growth for
your product by watching related analytics to determine how well your system is scal-
ing and helping you fill the pipeline for future success. In the case of a company like

Weak Metrics
• Number of developer keys
• Number of calls

Figure 6.8 When determining the success of your
API, the simplest things to measure are the number of
developer keys and/or number of calls. Without
measuring the types of calls or number of end users,
these pieces of data aren’t at all indicative that the
API is creating value for your company.

125Metrics
Twilio, for instance, it probably wants to figure out which metrics speak most clearly to
its platform’s ability to continue growing. Figure 6.9 demonstrates how a company like
Twilio can effectively measure performance and progress.

 Even for a company where the main product is the platform, the easiest things to
measure are of limited use to the company in terms of projecting growth and revenue.
Measuring the number of people who have signed up or the number of calls per
month (which includes a significant number of “free trial” calls) won’t help the com-
pany become more successful over time. Focusing on the exact items that can improve
the business value you identified is tricky, but worthwhile.

 The easiest data to measure in Twilio’s case would be revenue-per-employee, as
there’s only one product to consider. Yet this doesn’t help plan for the future or use
metrics to measure not only past and present success but future revenue. Revenue-
per-customer would be better (because it would include newer customers), but is still
too indirect to help identify what needs to happen to drive future improvements.

 Because Twilio is striving to be the market leader, introducing new developers to
the system is important. But many times developers may not use Twilio beyond their
initial introduction to the system, usually at a hackathon or conference. These devel-
opers don’t contribute to the bottom line of the company. How, then, could Twilio
measure success?

 Twilio provides all new developers with a decent-sized allotment of money for their
initial calls. So, are developers who recharge their accounts from their own money
more likely to go on to continue using the API into the future? If so, the number of
developers who convert to paying customers could be a good thing to track.

 The company is also interested in increasing the volume for existing applications.
The army of developer evangelists is an awesome way to drum up awareness and inter-
est in the platform, but real money is made with customers who create a steady stream
of revenue over the long term. This being the case, the number of high-revenue custom-
ers—customers over a certain volume of calls per month—is something that’s impor-
tant to keep track of.

Strong Metrics
(Twilio)

• Revenue per employee
• Trial accounts converted to
 paying customers
• High volume accounts

Figure 6.9 As a system with an API as its main
product, Twilio can easily measure things that
demonstrate API success. It can measure standard
company metrics like revenue per employee,
because all of its revenue comes through the API.
Additionally, it can measure things about the
accounts such as the number of conversions to
paying accounts and the number of accounts with a
high and consistent volume of calls.

126 CHAPTER 6 Defining the value for your API
6.2.3 Usage

When determining metrics for usage, a company needs to dig a little deeper to deter-
mine the measures and statistics that will be meaningful for the company itself. If the
goal is to increase usage, that’s a relatively easy measure. But you might extend this a
little to capture your goals.

 Do you want to measure writes to the API as a percentage of overall updates to your
system? Is signing in with the social system valuable to your company? This gives you
identity management for your users, keeping them connected to your system even
when they’re not directly interacting with it. Figure 6.10 lists a few ways you could
measure the performance of a platform that’s heavily directed at increasing usage
within the system.

6.2.4 Partner retention

This business value is more difficult to measure than the previous two choices. How
do you measure the success of a platform that’s aimed at maintaining partnerships
with your customers? The overall effect on your bottom line will be adding stability
and growth to the number of customers using your main product. The value here
could be derived from the number of customers using the system who continue to use
it for a set amount of time into the future. You could measure the percentage of appli-
cations that are still active 3, 6, or 12 months into the future and determine how suc-
cessfully you’re retaining those valuable partnerships.

 Using FedEx as an example, the company is in a highly competitive industry. UPS
and the USPS, as well as countless smaller shipping and logistics organizations, com-
pete directly with FedEx to achieve and retain the status of primary shipment com-
pany for their customers. The ability to integrate the shipping, tracking, and logistics
information into customers’ applications with a minimum of fuss is quite important.

6.2.5 Market dominance

When working toward market dominance, you want to measure the reach of your
platform and your position in the marketplace relative to your competitors. This type
of metric is much more in line with the metrics frequently considered important by
businesses.

Strong Metrics
(Social Platforms)

• Platform writes as an overall
 percentage of system updates
• Sign-in activity
• Number of writes per application

Figure 6.10 Social platforms have a specific set of
goals; increasing the amount of activity in the system
and the frequency of interactions by users both
indicate a healthy ecosystem. When determining
strong metrics for your social application, think
carefully about what kind of metrics will indicate that
users are more closely tied to your system (frequency
of interaction) or providing new interesting content
(frequency of writes).

127Use cases
 Netflix is a great example of this type of measurement. As the DVD business waned,
it became critically important to establish a position of dominance in the market, and
several other competitors were entering the space at the same time. Netflix started
early on this strategy, partnering with video device and game console manufacturers
to make sure their users could watch Netflix on whatever screen they were near.

 To measure the success of this strategy, Netflix might track the number of devices it
appears on compared to the devices’ relative position in electronics sales. Netflix is
selling a service, so the amount of time a user spends watching movies increases the
value proposition for that user. It could also measure the number of hours users are
watching movies on its devices.

6.3 Use cases
In chapter 5, I mentioned use cases as something critical to the success of an API. In
this section, I describe how you can map your business goals to your design and devel-
opment phases. Once you’ve determined your business metrics and how you’ll mea-
sure them, it’s time to think of use cases that will help guide you to increase those
metrics in the way that’s meaningful for your platform and that will support your busi-
ness goal. Don’t be shy during this part of the process; think about exactly the kind of
use cases you want to support and make those workflows as easy as possible.

6.3.1 Mobile

Although this isn’t one of the business goals I mentioned, mobile is a use case that
almost every API designer should consider. It’s one feature that’s hard to add after the
fact, so you need to design with the mobile developer in mind so you don’t end up
having to refactor your code even before the platform is released.

 Mobile is a tricky case (see figure 6.11). As I’ve said, developers who are creating
mobile applications need to be able to make minimal calls for the system. Back-end
calls to your platform must be quick and efficient. The more calls the end users can
make, the more revenue your system will generate.

Auth

Server

PlatformClient
Request

Response
Complete Information

Auth Credentials
Request URL

Figure 6.11 Basic mobile interaction.
Without focusing on the specific information in
the call, an initial call from the client to the
platform will include authentication
information and specifics about the resource
being requested. On the platform side, the
authentication data will be processed by the
auth segment of the platform, and if the
credentials are authenticated (who is it?) and
authorized (can they do the action?), the
request is passed through to the platform, and
a response is sent back to the client.

128 CHAPTER 6 Defining the value for your API
For each of the actions in your system, it should be extremely simple, in a single call,
to do the following:

 Authenticate or verify credentials for the user
 Make a complete call to your system, returning exactly the data needed by the

application
 Provide the ability to gather all information for a screen, or accept all the infor-

mation needed for an action, in a single call
Mobile, more than most other use cases, requires mindful development and sometimes
requires additional work to make it successful. But mobile usage is one of the main uses
for an API, so it’s worth your while to make these calls as easy as possible. Remember, any
time you’re faced with a decision to improve usability or reduce development use on
your side, the right call is almost always to make your system easier to use.

6.3.2 Monetization

When your API is your main product, monetization must be the business goal for your
platform. You can achieve this in various ways: usage-based, subscriptions, or other
mechanisms. The trick is to make sure that the client developers get enough per-
ceived value out of your platform to justify the expense.

TWILIO

In the case of monetization, it’s critical to make it extremely easy for people to interact
with the platform in whatever way makes sense. You want people making as many calls
as possible, so you want to make it easy for your customers to make calls from mobile,
desktop, or sharing applications. Ideally you’d support all these use cases, with easy-to-
use interfaces that support all user models for your direct customers, the developers.

 As an example, Twilio supports (among other things) sharing out to multiple
friends using SMS, sending voice messages, creating conference calls, and handling
video. Twilio’s main value to customers is that it makes telephony easy. If you have ever
tried to create a system for interacting with a telephone network, you know how diffi-
cult and time-consuming it can be, and when application developers are working on
their own, it’s nearly impossible to get a contract with those systems for top-tier service
and support.

 Here are some example use cases for a telephony application of this type: using
easy authentication, performing quick single-call interaction, sending SMS messages
to multiple friends or a group, sending a voice message to users, or creating a group
conference call. Although it’s clear that sending information to users could use push
notifications, SMS and voice are two modes that are much more immediate than push
notifications to grab their attention. It becomes easy to use SMS as an immediate chat
channel for a group of people, to grab people’s attention when they’re near someone
they know, or to seamlessly alert users that someone who shares their interests is
nearby. These would be great supplements for a social/dating system. Twilio also
makes it easy for people to opt out of these interactions easily, so the client developers
don’t have to worry about that aspect of this interaction.

129Use cases
SENDGRID

SendGrid is another company that makes hard things easy (see figure 6.12). Most
companies need to use email to interact with their users—sending out alerts when
important events have happened, initiating a user verification or password reset, or
sending announcements about activity within the system. SendGrid is designed to
manage all aspects of sending mail. It has white-listing and prescreens all customers to
make sure the system is clean and not sent to junk mailboxes. The scalability is baked
into the system, freeing customers from needing to be concerned with email growth.
All transactions are as secure as possible. Metrics are strong and targeted at transac-
tional email and marketing campaigns. SendGrid has demonstrated its value for com-
panies like Foursquare and Ladders, both successful companies that started out
having their engineering team attempt to manage the high volume of email required
by their business model. SendGrid has made it extremely simple to manage the email
that your company needs to send and track. In this case, the use case is making mail
simple and quick for their users.

The APIs provide the ability to get real-time event data such as bounces, clicks, and
spam reports. SendGrid provides several different interaction models for its customers
so that they can use whichever protocol works for them, whether it be SMTP (Simple
Mail Transaction Protocol, a standard email protocol for the web) or the web API. Sev-
eral different functions exist within the APIs designed to support marketing or trans-
actional use cases, or to integrate more deeply with the system.

 SendGrid realized that email is frequently something that needs to be triggered by
an application action or system event, so it made automating transactions with web-
hooks (a relatively simple system) possible, as well as providing the ability for develop-
ers to integrate deeply into their own system to support their own needs.

User

Email

Emails

Easy
interaction

Bounces

Clicks

Spam

Reports

SendGrid Figure 6.12 The SendGrid platform is
like a central routing station for email
interaction. It can schedule and
structure outgoing emails to provide
for tracking clicks, bounces, and spam
filtering. The user interaction with the
system is simple and straightforward.

130 CHAPTER 6 Defining the value for your API
CONTEXT.IO
Context.io also works with email, but instead of focusing on sending emails, enables
access to information in your users’ inboxes as if they were databases (see figure 6.13).

 It supports queries on the mailbox and allows you to query by keyword, user, or
thread. Additionally, it will POST back to your server information about actions in the
inbox, allowing you to configure actions that can trigger webhooks to do whatever you
want. Again, in this use case, the company is working to make something that’s chal-
lenging easy for anyone wanting to analyze the data in a user’s mailbox to create valu-
able metrics, track and report specific actions, and work with email the way users tend
to do: by thread.

 Monetization is a great business case when a company is striving to make difficult
things easy for developers. Any time someone can offload a needed functionality to
another company that provides useful actions for the money, it’s going to be a great
value for companies wanting to focus on their core competencies rather than expand
their engineering team to re-implement functionality that can be purchased else-
where. In all of these cases, the monetization metrics of “calls per user” or “growth
over time” are easy to understand when the success of the company is tied to making
critical functionality easier and more reliable.

6.3.3 Usage

Usage tends to be a business value well suited to social applications. There are many
such systems; Twitter is the most obvious, with Facebook and Tumblr also providing
interactive functionality for millions of users. Whichever system you’re working with,
there are two critical actions you want to be able to support with simple interfaces:
writing to and reading from the stream. Each system features other interactive actions
that are tied to the specific goals of the company. In this section, as I discuss each of
the companies that are focused on social interaction, I’ll discuss their main use cases
as examples.

Mailbox

Context .io

Search
Reads
Contents

Update
Changes

Filter
Sort

Format
Report

Figure 6.13 Context.io creates a database out of an email box. The
contents of the email box are read, and functions are exposed for
searching, filtering, sorting, and formatting that data. Additionally,
when changes are made in the data by Context.io to add tagging or
other additional information, Context.io writes these changes back to
the originating email box.

131Use cases
TWITTER

Twitter, for instance, doesn’t provide complex profile data, games, or other interactive
applications. Writing to the activity stream is the most valuable interaction a user can
provide for the system’s business. To encourage application developers to write status
updates to the system, Twitter implemented the items shown in figure 6.14.

 Twitter doesn’t charge for this service, which encourages application developers
to help Twitter users to add new content to the data stream, keeping it fresh and
interesting.

 In addition to writing to the system, Twitter wants to add even more value by mak-
ing it easy for client developers to enable Twitter’s users to read from the system and
track things of interest to them. Users can retrieve information in a few different ways,
all easy to do via the API so application developers can match the ideal activity stream
with the use case they have for their own application.

 The main type of read access client developers can offer to their users is status, or
timelines. Users can see their home timeline, which is what they see first when logging
into the Twitter application itself. In addition, they can see another user’s status, men-
tions, or retweets. All of these are individual resources within the application, and
quite easy to access. Application developers can also provide their users with the abil-
ity to read and write direct messages.

 There are some more complicated interfaces in the Twitter system. Search is neces-
sarily somewhat more complex. The application needs to create a query to communi-
cate exactly what type of search is being made, and building this query is more
complex than the retrieval of a single, well-defined piece of data from the system.

Case Studies
Bleacher Report
Tweets as content discovery and editorial strategy

Citymapper
Finding the Destination with Twi�er

Hilton
Hilton excels at providing superior experiences for
its guests using Twi�er

RegalCinemas
Adding Social Movie Recommendations with Twi�er

...

Figure 6.14 Twitter has examples to help
understand how use cases are mapped to API
functions. For each of the examples listed
here, the interaction point provides benefits for
both Twitter and the end user. Great APIs will
always create this kind of mapping—if an API
improves the end-user experience as well as
improving the system itself, it’s most likely to
become successful and well used.

132 CHAPTER 6 Defining the value for your API
Similarly, an application can access the streaming API to watch for new posts that
match a particular query.

 In fact, because Twitter runs completely on its own API system, client developers
can provide virtually all of the Twitter functionality to offer users within their own
application.

FACEBOOK

Facebook has a much more complicated system to offer to users, but the first and
most popular is the Wall, which provides the activity stream for client developers to
integrate into their application. Writes and reads work much as they do for Twitter,
and searches are available as well. There are widgets for reading from and writing to
the activity stream.

 But Facebook’s system is much more complex than Twitter’s. Although Twitter
encourages application developers to create applications outside of the system and
post updates inside Twitter, the sharing of game or application activities is discour-
aged. Facebook encourages application developers to create games or other applica-
tions designed to run within the Facebook ecosystem and write to users’ walls so that
other users are encouraged to play. Facebook even provides a system allowing applica-
tion developers to charge users for game enhancements.

 The widgets offered by Facebook allow for much easier implementation of certain
types of functionality, particularly social interaction. Facebook even makes it easy to
add Comments, Likes, and Shares to your own web pages with the installation of a sim-
ple plug-in on your site. By simplifying its API even further for these types of actions,
Facebook makes it extremely simple for content providers to leverage the Facebook
system to enhance their websites without writing any code.

 Although I don’t tend to like SDKs for simple REST APIs, I do appreciate the SDKs
provided by Facebook. These tools are designed for a few things:

 Assist developers in creating applications that can be accessed and played out-
side of Facebook

 Allow developers to use Facebook to make the games or other applications
more social

 Allow developers to leverage the money-making functionality Facebook offers
to developers

In short, Facebook provides several types of APIs for integration. Simple widgets allow
content providers to integrate social sharing and conversation around their content
without writing any code. The REST APIs, including the Graph API, allow developers to
leverage the complex Facebook social graph for use within their applications. SDKs
assist developers in creating applications that can utilize the monetization and social
interaction from Facebook in applications residing on other platforms.

TUMBLR

Tumblr is a super simple blogging platform, allowing users to post media, such as
video or photos, thoughts, or replies to other posts. Many application developers have

133Use cases
found new and interesting ways to utilize the functionality provided by the Tumblr sys-
tem. The simple API makes the system quite interesting; several applications use the
system to create their own blogging or photo-sharing application on top of the Tum-
blr platform. Tumblr can be considered, at its heart, a sharing platform for users.

 Tumblr has gone even further than other social applications in simplifying authen-
tication. Just as much of the content is available without logging in on Tumblr, certain
items can be accessed without any authentication in the API. For instance, getting the
avatar for a user can be accomplished by a bare call to the avatar endpoint for that
user, without any credentials at all. Many of the calls can be made with a simple call,
identifying only the application making the call, but not the specific user retrieving
the information. Making these calls simple means that an application could be cre-
ated that never requires a login by the end user. This system is designed not only to be
easy for users to interact with directly, but to encourage applications to provide simple
access as well.

 The simplicity of this system, both via the web interface and the API for developers
to integrate with their application, reduces the friction in adding content or including
it alongside other activity streams.

6.3.4 Customer/partner retention

Partner retention can be one of the most valuable goals of a company’s platform. If
you can make it valuable for partners to continue using your system once they’ve inte-
grated—and difficult to replicate that information with other systems—you’re adding
friction to the process of integrating with your system. This retention can be created
in multiple ways; I’ll mention a couple of different examples so you can have an idea
of what kinds of things will make partners think twice about jumping to a different
platform.

UNIQUE CONTENT

When you have a specific type of functionality that’s unique to your platform, it
becomes a compelling reason for partners to integrate with you and also creates some
reluctance for them to remove that functionality. An example of this is LinkedIn. This
business-focused social platform provides several pieces of valuable functionality avail-
able only to partners.

 Flipboard largely uses the LinkedIn functionality to get users’ activity and their
news stream from LinkedIn, which has one of the best user-targeted article ecosystems
out there. Removing LinkedIn from the application would lower users’ satisfaction
with the system, so Flipboard is unlikely to want to leave the system. Additionally,
though multiple news-focused systems are out there, few of them provide the user-
centric newsfeeds available via LinkedIn.

 Hootsuite is a social system that schedules and batches updates to various social sys-
tems, including LinkedIn, Twitter, and Facebook. The main use case for Hootsuite is
business, and its pricing structure is designed to help companies manage their social
media strategies. If Hootsuite were to remove this dominant business-focused social
platform from its application, a great deal of its value to users would be eliminated.

134 CHAPTER 6 Defining the value for your API
AUTOMATION/INTEGRATION

Many companies provide services for their partners and customers. As time has gone
on, more and more companies are providing Software as a Service, Platform as a Ser-
vice, and Hosting as a Service. No matter what service is being provided, the configu-
ration, metrics, and automation for the system is critical to a healthy relationship
between the provider and the customer.

 Amazon and Rackspace provide various hosting platforms. Akamai provides con-
tent-delivery services for companies wanting to improve their web performance. All of
these, as well as many other hosting platforms, have APIs for their customers to use to
integrate configuration and reporting with their own systems. This provides customers
with the ability to track data from the service into dashboards they have for their own
functionality, automation for alerts and events, and the ability to integrate frequent
actions into their own systems. For instance, Akamai allows customers to add cache
purge functionality to their content management systems.

 When you’re providing a service for your customers, frequently you can encourage
them to integrate your administrative functions into their own systems. This integra-
tion generally requires development resources from the customer, and as a result the
customer won’t be inclined to redo this work to move to a new provider. Those APIs
must be reliable, scalable, and usable. This is a case where moving to an API First sys-
tem works in your favor, because those administrative functions will be available to
your customers, to integrate at whatever level works best for them.

6.4 Summary
To wrap up this chapter, I want to point out that these items are critical to creating a
healthy, successful API. Without knowing what your business goals are, without know-
ing what metrics you’re going to track, and without setting up strong use cases to drive
those metrics and value, your API is not likely to make it. These items are required
when creating any other product for your company, and your API is no different. The
process for working through these steps is as follows:

 Determining your business goals—This is critical for any product, and an API is no
exception. Determine how your API product will contribute to the success of
your company.

 Defining your metrics—Once you’ve determined the business value, spend some
time considering how you could measure the activity of the API to provide
meaningful insight into the progress toward the business goal.

 Creating meaningful use cases—Now that you know how to measure the success of
your API, it’s time to create use cases that support those values and metrics.

The next chapter covers the process of modeling the schema for your application.
We’ll explore two of the main schema modeling languages, OpenAPI and RAML, and
talk about ways to approach the modeling based on the use cases you’ve created. We’ll
also discuss the value of schema modeling for improving the clarity of your conversa-
tions with customers and other teams, and I’ll use these schemas as a basis for guiding
your development strategy in future parts of the process.

Creating your
schema model
At this point, you should have a good idea why you have an API and what it needs to
accomplish to be successful. You have a business value as your foundation, metrics
to support them, and use cases to make sure you can meet your customers’ needs
and understand what you want your client developers to be able to do.

 This chapter moves to the next stage—modeling the schema for your API and
creating a design document that can be shared with other teams, customers, or
executives. This document should help you find a development path that gives you
the best chance to succeed with your API. This schema model is a contract between
your organization and the clients who will be using it.

 With a schema model, you can utilize design-driven development to ensure that
the developed API matches the schema—and so meets your use cases. You can cre-
ate a mock service that will allow customers or testers to create test clients against

This chapter covers
 Understanding schema modeling basics

 Creating a RAML schema model

 Creating an OpenAPI schema model
135

136 CHAPTER 7 Creating your schema model
your eventual API before any code is written. You can use this schema model to run
tests or create code for your API developers to use. The schema model is a powerful
tool when creating successful, engaging, and irresistible APIs.

 I’ll show you two different modeling systems for creating schemas, using two differ-
ent markup languages. Some people choose their framework for schema modeling
based on the markup language, because they prefer the readability of one over the
other. All the frameworks I discuss in this chapter are excellent, usable, and well
defined. The choice of framework can be based on anything, as long as it supports
your desired workflow.

 We’ll go through the top two schema modeling systems, and you’ll learn how to
model a basic API that’s an extension of the demo API you saw earlier. We’ll discuss
some of the tools each system provides to ease into the development, make sure it fol-
lows the right path, and leverage the model to test your API and make sure it’s meet-
ing your needs. Here are the two most popular schema modeling systems and the
markup languages they use:

 RESTful API Modeling Language (RAML), which supports Markdown
 OpenAPI format (previously Swagger), which supports JSON and YAML

7.1 What is a schema model?
A schema model is a contract describing what the API is, how it works, and what the end-
points are going to be. Think of it as a map of the API, a user-readable description of
each endpoint, which can be used to discuss the API before any code is written. Like a
functional specification, this document describes how the API will behave. Creating
this model before starting development helps you ensure that the API you create will
meet the needs described by the use cases you’ve identified.

 With a schema model, you can ensure that everyone has a shared understanding of
what the API will do and how each resource will be represented when the API is com-
plete. Each of the schema modeling languages has tools available to automate testing
or code creation based on the schema model you’ve created. But even without this
functionality, the schema model helps you have a solid understanding of the API
before a single line of code is written.

7.2 What does the API need to do?
Before starting with the schema modeling sections for each of the modeling lan-
guages, let’s go over the needs we have for the resulting API. It will be the same as the
example API in chapter 2, with some extensions to finish off the functionality. Remem-
ber that a resource is a single object or list within the system. It’s the “noun” you’ll be
working with.

137What does the API need to do?
7.2.1 Top-level resources

First, let’s start defining the resources within your specification. This is where you’ll
use the use cases defined in chapter 6 (see figure 7.1).

For the purposes of my PizzaToppings API, these would be the use cases, or activities,
you want to support:

 Creating new toppings
 Getting a list of all toppings, including matching a particular string
 Deleting and updating specific toppings
 Creating a named pizza; only one per user
 Listing pizzas
 Adding toppings to a pizza
 Viewing the pizza
 Deleting the pizza for the specific user

Note that this is an extension of the current functionality of the code in the repository.

7.2.2 API resource methods

As you may remember, four main HTTP methods are used for web APIs:

 GET—Retrieve the representation of the object or list
 PUT—Replace (update) the object
 POST—Create a new entry at the top level
 DELETE—Delete an object from the system

Figure 7.1 The actions for the
PizzaToppings API need to support
CRUD—create, read, update, and delete.
At the list level, the only two actions are
to create a new item and read the list.
For an individual topping, you can read
the item information, update the item, or
delete a specific item.

138 CHAPTER 7 Creating your schema model
For the PizzaTopping example API, you’ll want client developers to be able to work at
the collection level. Obviously, you’ll want them to be able to GET a list of the toppings
or pizzas currently in the system. They need to be able to POST a new object to the list.
But you don’t want them to be able to PUT a new representation of the whole list;
many people are using this list, and you want everyone’s items to remain. Similarly,
you don’t want developers DELETE-ing your list; it ruins the fun of playing with the
API. The resources /toppings and /pizzas will need to accept GET and POST only.

 It’s important to be able to GET the information about a single topping or pizza. If
a topping needs to be updated, it makes sense to allow a user to PUT a new description.
Using PUT on the /pizzas resource allows you to add new toppings to the pizza for the
particular user. POST doesn’t make sense at the item level; new items should be added
to the top-level resource list. DELETE, though, is fine for both a topping and a pizza.

 In summary, the resources and their methods will be as follows:

 /pizzas

– GET—Get a list of pizzas (also accept a search string)
– POST—Add a new pizza to the list

 /pizzas/{pizzaid}

– GET—Get a representation of a pizza
– PUT—Update an existing pizza
– DELETE—Delete a pizza from the list

 /toppings

– GET—Get a list of toppings
– POST—Add a new topping to the list

 /toppings/{toppingid}

– GET—Get a representation of a topping
– PUT—Update an existing topping
– DELETE—Delete a topping from the list

7.3 RAML
Now that you have the basics of a general schema, we’ll look at the specifics of two of
the main schema modeling frameworks, starting with RAML. The specification for
RAML, from the working group guiding its path, is as follows:

The RESTful API Modeling Language (RAML) is a concise, expressive language for
describing RESTful APIs. Built on broadly used standards such as YAML and JSON,
RAML is a non-proprietary, vendor-neutral open spec.

RAML was created around the notion of design-first development. Although all of the
specification languages can be used this way, RAML was designed this way from the
outset. It makes it easy to create a code development life cycle that supports the devel-
opment of APIs that meet your business goals and use cases. The documentation
makes it easy to get started, so let’s begin with this example.

139RAML
 The RAML website (http://raml.org) has good documentation, including strategies,
best practices, and practical instruction. You’ll find a basic tutorial for the RAML lan-
guage itself at http://raml.org/docs.html. This tutorial will guide you through using
the API Designer to conceptualize your API and write the schema model in RAML.
It assumes that you know the basics of how REST APIs work, which are covered in
chapter 4. The markup language used by RAML is Markdown, which may look familiar.
Markdown is the markup language used on GitHub in README files and other docu-
mentation. Using a Markdown document means that when the document is displayed
in GitHub, the formatting is nice and clear. If you want to grab the model and follow
along, it’s available on GitHub at https://github.com/synedra/irresistible/blob/
master/schema_models/raml/raml.md and you can import it into the editor by sign-
ing up for MuleSoft’s Anypoint portal at https://anypoint.mulesoft.com/apiplatform/.
Click Add an API and paste the Markdown information into the API Designer.

7.3.1 Getting started

To get started with the RAML API Designer, you’ll first need to create a (free) account
on the Anypoint system, where MuleSoft maintains its RAML specific tools:

 Sign up for Anypoint at https://anypoint.mulesoft.com/apiplatform/.
 From the API Administration board, select Add New API to open the screen in

figure 7.2.

Figure 7.2 When you want to add a new API into Anypoint, the only required
fields are the API name and Version name. The API endpoint is handy to have
in your schema, and I suggest you make the description reasonably clear.

http://raml.org
http://raml.org/docs.html
https://github.com/synedra/irresistible/blob/master/schema_models/raml/raml.md
https://github.com/synedra/irresistible/blob/master/schema_models/raml/raml.md
https://anypoint.mulesoft.com/apiplatform/
https://anypoint.mulesoft.com/apiplatform/

140 CHAPTER 7 Creating your schema model
When you fill out the descriptions and fields, keep them the same as the ones in fig-
ure 7.2. These fields will be automatically populated when creating your RAML API
schema model, so it’s important that they match so you can follow along. Click Add
and then click Define API in API Designer to see the beginnings of the API model
you’ve created.

 Figure 7.3 shows what the top of the RAML schema model looks like. Here are the
included sections at the root of your document. The entire root section is described
in the RAML specification’s “Root of the Document” section at http://raml.org/
spec.html. Refer to this specification with any questions you have as you move through
building the document.

 #%RAML 0.8 (required)—The first line is required, and it indicates which
markup language you will be using. Other modeling languages are compatible
with RAML, and if you were to use one of them, you’d specify it here. Note that
this is formatted as a comment, and any other comments in the document will
start with the same #% markup.

 Title (required)—This tells a reader what the API is designed to do.
 baseUri (required after implementation)—This will be the base URL for each of your

API calls, so be sure it makes sense for all of the endpoints that will be used by
your API. For instance, if your API will have users and pages, you wouldn’t want
to create an API baseUri like http://users.api.com. The baseUri must be the
same for all of the endpoints. This is required once you’ve implemented your
API, so that wherever people encounter the schema model they’ll know exactly
where the API exists.

 version (required when version is part of the baseUri)—When the version is included
as part of the baseUri, the specification is tied to the specified version on this
line. If you haven’t chosen to implement versioning, you don’t need to include
this in your model.

This being the case, we need to have only two top-level resources: toppings and pizzas.
 At the bottom of the editor is a section with hints as to what you want to add to the

model (see figure 7.4).

Figure 7.3 The information you put into the Add API form
turns up at the top of your new specification. Note that you
can change these values later. For instance, if you wanted to
switch v1 to v1.1 at a future point, the only place you’d
need to change it is here, in the schema.

http://raml.org/spec.html
http://raml.org/spec.html

141RAML
7.3.2 Step 1: adding resources

The first things you want to add are
resources. As mentioned earlier, in
order to support the API use cases, you
need four different resources, which you
can add to the schema model using the
New Resource selection in the toolbar.
Note that there’s nothing magical about
adding items in this way, but it can help
guide you through the process of creat-
ing your schema model. Figure 7.5
shows what these resources will look like.

7.3.3 Step 2: adding the methods

Now that you’ve defined the resources and where they’ll be served, you’re going to
step up the model by indicating which methods will work on each of the endpoints.
Don’t be concerned if this seems confusing; the rest of the schema model will help you
further refine the contract indicated by the schema model. Figure 7.6 shows how the
different endpoints will be combined with actions to create the interface for the API.

Figure 7.4 The Anypoint RAML editor features a bottom toolbar for adding sections to the schema
model. This toolbar is context-sensitive; it will only offer appropriate sections based on where you
are currently in the schema.

Figure 7.6 Because you know what
actions will be available at each level,
you can add the methods and their
descriptions to the schema model. This
matches with the information listed
earlier; at the list level (/toppings and
/pizzas) you can GET the list or POST
a new item. At the individual item level
(/toppings/:id or /pizzas/:id)
you can GET the item, PUT an update, or
DELETE the item entirely.

Figure 7.5 At this point you’ve added all of the
resources for this schema. They are listed with a
displayname, but none of the requests or
responses is represented yet. This is a skeleton of
the schema model you’re building.

142 CHAPTER 7 Creating your schema model
EXERCISE 1 For the /toppings and /toppings/toppingid resources, add
the correct methods for the resource. Don’t overthink this, and take the
opportunity to become more comfortable moving around in the editor.
When you’re finished, there should be methods and descriptions for all four
of the resources in the API. You now have a contract indicating what end-
points will be exposed in your API, and what methods those resources will
accept. Great start!

7.3.4 Step 3: query parameters

I mentioned that one of the use cases is to limit the lists of toppings and pizzas by a
string match. To do that, you need to add query parameter information to the specifi-
cation to indicate that these options will be accepted for the associated method. Use
the buttons at the bottom or the auto-complete in the editor to get your parameter
ready to go. For brevity, you’ll name this query parameter q, so

 http://api.irresistibleapis.com/v1/pizzas?q=Maui

will return a list of all pizzas matching the string "Maui".
 Each of the query parameters needs to be defined so that the consumer knows

what to pass and other information about the query string.
 Next you need to add attributes for each of the query parameters. This is where

you provide information about what the query parameter is intended for, so that read-
ers of the specification or the eventual developers can understand what the parameter
should do (see figure 7.7).

 As you can see, the query parameters are quite straightforward. The query parame-
ter isn’t required because a bare request to the resource will return a list of all pizzas
in the system, but if a user wants to narrow the search to a particular string, the API

Figure 7.7 Now that you’ve added the specific actions, it’s time to
break them out and add specifics on how the requests and responses
will work for them. The GET for the lists is a little bit more
complicated than the GETs for the individual items will be, because
you’re allowing the caller to search for a specific string.

143RAML
will make this possible on the server side. Sometimes, this kind of behavior is expected
to be handled on the client side, but this is a design decision that can be made while
the schema model is being created—a big advantage of doing the modeling up front
is to find and answer these questions.

EXERCISE 2 For the /toppings resource, add the query parameter and
define the guidelines for its behavior. Use pepper as the example in the
schema, which will match pepper, pepperocini, or pepperoni.

Now the specification for the API indicates that the lists for toppings and pizzas must
allow the user to search for specific items containing the indicated string. It’s great
that you understand how the queries will work, but someone reading the specification
will now understand exactly how those queries are expected to behave. Making the
model complete is the best way to ensure that what you want is what’s created, and cus-
tomers who review the document understand exactly how the API will work.

7.3.5 Step 4: adding mock data

To complete this basic API specification, you need to add one more type of data, and
this is a very important one: you need to add information showing what the request
should have (for PUT and POST requests) and what the possible responses will look like
from the server.

 Although all of the schema modeling languages provide for a shortcut in these
specifications—a way to define pieces of the requests and responses to be reused
later—in this example you’re going to do the exercise longhand so that the meaning
of this section is easy to follow. The specification mentioned earlier has all the infor-
mation you need to incorporate the shortcuts and references.

7.3.6 Step 5: adding mock data—GET

As in chapter 2, the requests and responses will be in JSON. To start, I’ll show you how
to represent the information for the /toppings list. The following extract demon-
strates how to add the correct information for the GET at the top-level resource level
(the lists of items). Additionally, a description is added to help set the context for
what the endpoint is designed to do. You’ll no doubt notice in these examples that
I’m minimizing the sections you aren’t currently working with to reduce the visual
noise as you walk through the process.

 Figure 7.8 looks similar to what was created in chapter 2 for the demo application,
but now you can start to see a pattern, a method to the API schema. As you build the
specification, it should become clearer how this will help you describe the purpose
and behavior of your platform.

EXERCISE 3 Extend the /toppings resource to add the 200 response to
/toppings. Remember that this is an array of toppings, not of pizzas.

144 CHAPTER 7 Creating your schema model
As this is a sample API, there won't be any errors returned from the top-level list.
They’ll always return an array (even if it’s completely empty). For a production API,
you’d have error messages, which will be demonstrated in the POST section later.

7.3.7 Step 6: adding mock data—POST

To finish off the top-level resources, you need to add the POST responses. Included in
that, you’ll want to add information about what the body of a POST request should
look like. Remember, this is the command to add a new item to the list, so you’ll be
sending the information needed to create a new item. Because we want to require the
application to allow only a single pizza per user, the pizza id must be passed along
with the rest of the definition of the pizza. Neither pizzas nor toppings allow for dupli-
cates, so the API must check the name to make sure there isn’t already an object of the
same name.

 The following example shows you how to create a response for a successful POST to
add a pizza to the pizza list. The correct HTTP response code for a created object is
201, so that’s what you’ll use. A 201 response should always include information about
where the resulting object can be found, and the specification will indicate this as
location. Note that in the case where there’s already a pizza with the same name or
id, you’ll use an HTTP status code of 409, which indicates that the request failed
because of a conflict—in this case, the conflict is that there’s already a pizza with the
same name, or a pizza that shares the id. Again, so that you can keep our simple API
simple, you’re going to suggest that the API implementer expect an IP address as the
id for a pizza (where toppings will get a new, unique number) so there’s no chance of
id collision.

Figure 7.8 The 200 (successful) response to
the request for /toppings shows how the API
will respond to a successful call. Because this
is a JSON object, the top level is designated by
curly braces, and the toppings item in the
response is a list of the toppings in the system.
The status pieces (success and status)
reside outside of the list, as meta-information
about the response.

145RAML
You’ll also see the POST responses for the pizzas. Note that the use case is to allow only
one pizza per user, so the application will need to pass an id with the pizza. Now, there
are two different things that could cause a conflict, but the 409 HTTP response will be
sent in both cases, so you’ll update the message. The message example can be the
same, and the API can return different messages when the id or name is duplicated, or
you can return a single message indicating that one or the other is incorrect. In this
case, you’ll use a single message, but a comment line will indicate that the message
could be id or name. Figure 7.9 shows what an entry looks like when the request will
have content going with the request to the server.

 Now you're done with the GET and POST requests and responses for pizzas. The
pizzas resource is ready to rock! Now you need to get the toppings finished; then we
can move on to the subresources.

EXERCISE 4 As you complete this exercise, remember that even though the
topping list itself returns an array, the item being posted is a single object—
the new topping to add to the list.

REQUESTS AND RESPONSES: SUBRESOURCES

Now that the top-level resources have been defined, including the responses for GET
and POST, you need to define the responses and request bodies for the subresources.
To start, you’ll add the GET responses to the specification for both individual pizza and
topping resources.

Figure 7.9 The POST method at the list level (in this case, /pizzas) is
described here. Because this is a write action, a body is associated with the
request, and an example of that is displayed under example. A successful
creation will result in a 201 response, with no body, and the 409 response
is given if there’s already a pizza with the same name or id.

146 CHAPTER 7 Creating your schema model
 Lest you get lost in the details as we get lower down into the specification, remem-
ber that the type of URL you’re calling might look like this:

http://api.irresistibleapis.com/v1/toppings/4

This would retrieve the topping with the id of 4 in the database. You can see that the
return value of 200 for the status code is the same as the 200 response for the parent
resource, but the subresource returns only one item, whereas the parent resource
returned an array of resources.

 In addition, you need to add in the error codes for the individual items, a single
pizza or topping. What sort of things could cause an error for a GET? There’s only one
error condition we need to handle for this sample API when retrieving a single
resource: if the resource doesn’t exist. The top-level resources don’t have this problem
because the API doesn’t allow a client to DELETE one of the lists, so they’ll always exist
in the system, even when they’re empty. The HTTP status code for a missing page is a
404. You may have seen this error when browsing websites, when a page is missing or
has been moved without leaving a forwarding address. This is exactly the same situa-
tion. The resource doesn’t exist, so the API response, an HTTP response, uses the same
status code as a web server does when a page isn’t where you’re looking.

7.3.8 Step 7: GET response format

The next step on the list is to describe the response format for the queries. To start
with, you will update the document to add a GET response for pizzas. Figure 7.10 shows
you how you would reference the entire list of pizzas, along with their names and the
toppings on those pizzas.

Figure 7.10 As you created an example
request body for the POST section, you’ll need
to include an example response for GET
requests. The information shown here is for the
/pizzas/:id resource, which returns
information for the single pizza being
requested. Although a 404 response isn’t
necessary in a schema model (it always
represents a missing item), it’s included here
for completeness.

147RAML
7.3.9 Step 8: PUT response format

The PUT method is available for both the pizza and topping resources. Remember,
though, this is only for the single items and not for the top-level lists. Note that the
PUT responses run the whole gamut and include almost all the response codes you’ve
seen already. The 204 status code for PUT means that the object was updated as
requested and returns no other information. The 204 is appropriate for the PUT
because the item will be exactly what was sent and the location is already known to the
client—otherwise, the client wouldn’t have had an address to send the PUT. This is
illustrated in figure 7.11.

Wow, that’s pretty cool, right? A reader can clearly see exactly what the object to be
PUT should look like and exactly what all the response codes will look like.

7.3.10 Step 9: DELETE

Now that you’ve built up almost all the resource request and response items, it’s time
to deal with the final method the system will accept: DELETE. The two items that can be
deleted are subresources:

 /toppings/{toppingid}—Delete a single topping from the system
 /pizzas/{pizzaid}—Delete a pizza from the system

Figure 7.11 The PUT entry for an existing pizza (at /pizzas/:id) has
an example request body and multiple potential responses. 204 indicates
that the pizza was updated successfully, and the 4XX responses give
descriptive error messages so that the caller knows what went wrong.

148 CHAPTER 7 Creating your schema model
For each, you’ll add entries for DELETE to each subresource. DELETE is fairly simple; on
success, it returns a 204 HTTP success code, indicating that there’s no response body
to send. The main failure this type of resource can encounter is a 404, indicating that
the indicated resource doesn’t exist (see figure 7.12).

There’s a design decision to be made here. If a pizza has a topping, should the user be
able to DELETE that topping? Let’s consider three scenarios. This decision could be
made at development time, but if you want the behavior to work a certain way, the
specification is the place to indicate that. The potential paths to take are

 Go ahead and delete the topping from the system and remove it from any piz-
zas that contain it (unexpected behavior).

 Reject the request to delete the topping, listing the pizzas that have the topping
(this requires that the client application make the calls to delete the topping
from each pizza explicitly).

 Allow for a parameter to allow the client to have a “safe” or “all” mode for
removing toppings. The safe mode would fail if a pizza has the topping. The all
mode would remove the topping everywhere it exists (all).

The third option would be the friendliest one, but for the purposes of this demonstration
you’ll implement the second option. Delete the topping from the system only if it doesn’t
already exist on a pizza. If the topping does exist on pizzas, the system should return a
helpful error message indicating that some number of pizzas contains the topping.

7.3.11 Step 10: searching

Because you’ll be implementing this option, it’s a good idea to provide a way for the
client to search for a specific topping on a pizza. The example that follows adds a new
query parameter to search the list of pizzas for any pizza containing the topping (see
figure 7.13).

Figure 7.12 The final method for the /pizzas/:id resource is a
DELETE, to remove a specific pizza from the list. In this case, no body
is required for the request or a successful response—either the pizza
exists and is deleted, or it doesn’t exist and a 404 response is sent.

149OpenAPI (previously Swagger)
EXERCISE 4 In this exercise, take the information you changed about the
pizza resource and bring it down into the topping API endpoint. Note that
you don’t need to change the query string to search for toppings on pizzas,
because the toppings resource doesn’t need that functionality.

You now have a complete specification for the next version of the PizzaTopping API.
The complete file with all the changes can be found at https://github.com/synedra
/irresistible/blob/master/schema_models/raml/raml.md.

7.3.12 Support tools for RAML

MuleSoft maintains some open source tools that can extend and improve your experi-
ence with a RAML specification. You used the API Designer that helps you design your
schema from the ground up. An API Console graphical user interface is available that
displays the structure and patterns and creates interactive documentation. The API
Notebook provides a way to use JavaScript to test and explore APIs and create Mark-
down versions of the API to share on GitHub. You’ll find hundreds of additional RAML
tools at GitHub and on the raml.org website, which can help you create and leverage
the schemas you build.

7.4 OpenAPI (previously Swagger)
Now that you’ve seen an API modeled in RAML, I’ll walk you through the same exam-
ple in the OpenAPI framework. OpenAPI was one of the earliest schema modeling
frameworks available, and it has gone through a few revisions. Version 2.0 is the most
recent one as of this writing. During the development of the various versions, they’ve

Figure 7.13 The queryParameters section allows you to add
different optional (or required) parameters to the GET request. In this
case, there’s a q variable that indicates that the caller wants to search
for a particular string in the pizza name (like "Maui"), and the topping
variable requests a list of pizzas with a particular topping on them, using
the topping id number rather than the name.

https://github.com/synedra/irresistible/blob/master/schema_models/raml/raml.md
https://github.com/synedra/irresistible/blob/master/schema_models/raml/raml.md

150 CHAPTER 7 Creating your schema model
incorporated many of the best practices uncovered by the other two languages, and
OpenAPI remains one of the innovative frameworks available.

 OpenAPI supports both JSON and YAML for its schema markup. (YAML stands for
Yet Another Markup Language, and is a generic specification language.) You’ll be
using the Swagger Editor to create the OpenAPI version of the PizzaToppings API
schema model.

 The full model for this schema can be found at https://github.com/synedra/
irresistible/blob/master/schema_models/swagger/swagger.yaml on GitHub, if you’d
prefer to follow along as I build it here. You can also import the YAML file from
GitHub into the Swagger Editor and follow along in that way.

7.4.1 Information about your API

As with RAML, the first thing you’ll need to do is open up the OpenAPI editor at
http://editor.swagger.io. This editor is nice in that it builds a UI of the documentation
on the right-hand side while you’re creating the model on the left. The beginning of
the file is, once again, the high-level metadata about the API you’re designing. Figure
7.14 shows what the top of the file should look like.

Figure 7.14 For the OpenAPI (previously Swagger) model, the metadata is
slightly different. More of the information can be added at the top of the model,
such as the content-type for requests and responses, the base path (separate
from the hostname), and what schemes it accepts (http or https, or both).

https://github.com/synedra/irresistible/blob/master/schema_models/swagger/swagger.yamlon
https://github.com/synedra/irresistible/blob/master/schema_models/swagger/swagger.yamlon
http://editor.swagger.io

151OpenAPI (previously Swagger)
The root resource in OpenAPI requires some different information than I previously
used. I’ve included information to make the two models similar in meaning. If you’re
curious about other items in the OpenAPI model, you can read the specification at
http://swagger.io/specification/. Because I’ve already defined the use cases (in sec-
tion 7.1.1), I’ll use the same endpoints developed for the RAML specification. The spe-
cific pieces of the root section shown in figure 7.14 are as follows:

 swagger (required)—This is the version of OpenAPI you’re using. Because I’m
following the OpenAPI 2.0 specification, that’s what’s placed here.

 info (required)—A block of information related to the API description, with the
following required fields:
– title (required)—This represents the title of your API, which in this case will

be PizzaToppings API.
– version (required)—This is the version of your application (not the version of

OpenAPI you’re using).
 host (optional)—The host only, not the scheme (http://) or a path. If the host

isn’t included, the system hosting the documentation is implied.
 basepath (optional) —The base path for all API endpoints. This should start with

a /. If not included, it will be expected that the API is served directly under the
host’s root.

 schemes (optional)—The scheme (such as http://) that describes how the API
can be accessed. If not included, it will be set to the same scheme used to access
the documentation.

 consumes/produces (optional)—These parameters indicate the content-type
sent for responses and accepted in requests. Placing these at the top level
means that it’s not necessary to list them for each resource.

 paths (required)—This is a list of the paths that will be served by the API. This is
a part of the main OpenAPI object, and the methods, parameters, and behav-
iors for these paths will be included in the objects for each endpoint. Because
you already know what these endpoints are from the previous section, I’ve
included them here to start out.

The steps for the OpenAPI standard are slightly different than in RAML, and I’ll cover
this process at a much faster pace because you’ve already seen the sections in action in
this chapter. For this reason, the steps will be different in the OpenAPI example.

7.4.2 Step 1: API top-level resource methods—GET

The paths for the endpoints have already been defined, so the next item on the list is
to describe the methods for each of the objects. In OpenAPI, a great number of items
can be included in this section, but I’ll constrain the definitions to what was specified
in the earlier RAML document. The first method to add is GET for the first resource,
pizzas/ (see figure 7.15).

http://swagger.io/specification/

152 CHAPTER 7 Creating your schema model
As you can see, all the information needed for the 200 HTTP status response is still
nested within the resources object, under the pizzas/ resource. The Markdown
shown earlier is similar to the RAML version, but it’s articulated in a very different way.

 As you build the model, the documentation is built in the right-hand window. This
can help you make sure that your schema is being presented exactly the way you want
it to. Figure 7.16 shows what that window looks like for the GET call to the pizzas/
resource.

EXERCISE 5 For the toppings/ resource, add the GET response based on the
previous example and the RAML examples from earlier in the chapter. Remem-
ber that the topping only has name and id; there are no toppings on a topping!
If you want to see the full example, check it out on GitHub at https://github
.com/synedra/irresistible/blob/master/schema_models/swagger/swagger.yaml.

Figure 7.15 The formatting for the GET behavior is different than in the RAML document, but comparing
them side by side you can see that the included information is the same. The structure is called out more
explicitly (defining where there are arrays, objects, or strings), and this more explicit model is preferred
by many people.

https://github.com/synedra/irresistible/blob/master/schema_models/swagger/swagger.yaml
https://github.com/synedra/irresistible/blob/master/schema_models/swagger/swagger.yaml

153OpenAPI (previously Swagger)
7.4.3 Step 2: API top-level resource methods—POST

The next task will be to add a POST request/response to the top-level resources
(pizzas/ and toppings/). As you saw earlier, this is the method for adding a new
subresource to the lists represented by these top-level resources: adding a new pizza
to the list of pizzas, or adding a new topping to its associated list. Figure 7.17 demon-
strates what the POST request and response should look like. Note that although this
editor doesn’t provide helper tags as in the MuleSoft API Designer, there is autocom-
pletion, and the auto-generated documentation makes it easy to see if you’re on the
right track.

Figure 7.16 As you build the schema model in the Swagger Editor, the documentation will auto-
generate on the right-hand side of the page. Again, the description and output are at a higher level than
a specific example, so it’s easier to understand the structure. But you lose the ease of reading that
comes with an explicit example.

154 CHAPTER 7 Creating your schema model
Again, as you’re building the schema you can see the documentation for the POST
method being built in the right-hand column. Figure 7.18 shows the specific docu-
mentation for the POST method on /pizzas.

 The POST section, as with GET, has the responses nested underneath the informa-
tion needed to make the call. As you follow along, think about how much information
you’re gleaning about the API from this model, and how you could use it to describe
the functionality.

Figure 7.17 The POST request, with all of the definitions for the pieces, ends up being much more
verbose than the RAML example. Still, the request and responses reflect exactly the same information,
so whichever one feels easier for you is likely to be the best choice for your schema models.

155OpenAPI (previously Swagger)
EXERCISE 6 For the toppings/ resource, add the POST response based on the
previous example and the RAML examples from earlier in the chapter. If you
want to see the full example, check it out on GitHub at https://github
.com/synedra/irresistible/blob/master/schema_models/swagger/swagger.yaml.

7.4.4 Step 3: API subresource methods—GET, PUT, DELETE

Reviewing the methods needed for the individual toppings/{toppingid} and pizzas
/{pizzaid} resources, these endpoints will accept GET to obtain information about a
single subresource, PUT to update a particular item, and DELETE to remove the top-
ping or pizza.

 As demonstrated in figure 7.19, subresource responses for a GET are almost identi-
cal to the responses for the top-level resources. An error can occur, though, if the
requested pizza ID doesn’t exist. This resource would look similar to this as a URL:

http://api.irresistibleapis.com/pizzas/2

Figure 7.18 The POST documentation includes the body required in the request (again, only PUT
and POST require bodies in the request). Under the responses you can see the successful Pizza
Created response as well as the error (duplicate pizza name or id found).

https://github.com/synedra/irresistible/blob/master/schema_models/swagger/swagger.yaml
https://github.com/synedra/irresistible/blob/master/schema_models/swagger/swagger.yaml

156 CHAPTER 7 Creating your schema model
Following the same pattern as before, the next thing to add is the write operation,
shown in figure 7.20. In this case, again you’ll use PUT. Because you’re accessing a
single resource, it’s not appropriate to POST a new item to a single item. Instead, PUT
will be used to update the resource itself, perhaps adding a new topping or chang-
ing the name.

 Again, for PUT you’re returning a 204 when the system is successful in updating the
item, and a 404 if there’s no item at that location.

Figure 7.19 The subresource GET description is also more verbose in the OpenAPI format, though it more
explicitly documents the types and names of each of the values within the object.

157OpenAPI (previously Swagger)
The next task is adding the DELETE response for a particular resource (see figure 7.21).
Again, the resource being requested has a specific ID, so it’s possible that a DELETE
would encounter a missing item. The responses necessary here are 204 with no body to
indicate success and a 404 to indicate that the item wasn’t found.

 Okay, that’s pretty awesome. The responses for the DELETE are almost identical to
the PUT request. Next you have one more exercise:

EXERCISE 7 For the toppings/ resource, add the POST response based on the
previous example and the RAML examples from earlier in the chapter. If you want
to see the full example, check it out on GitHub at https://github.com/synedra
/irresistible/blob/master/schema_models/swagger/swagger.yaml.

Figure 7.20 Note that the OpenAPI description includes pizzaid as a parameter, even though
it’s part of the path (/pizzas/:pizzaid). This is one of the differences between this
framework and RAML; having it as a specific parameter means that it can be explicitly defined as
a string that is required. There’s no functional difference, but you may prefer one over the other
when reading through the schema.

https://github.com/synedra/irresistible/blob/master/schema_models/swagger/swagger.yaml
https://github.com/synedra/irresistible/blob/master/schema_models/swagger/swagger.yaml

158 CHAPTER 7 Creating your schema model
At this point, your Open API schema model is complete. The final document can
be found at https://github.com/synedra/irresistible/blob/master/schema_models
/swagger/swagger.yaml.

7.4.5 OpenAPI tools and resources

As with RAML, OpenAPI has many tools and resources available for your use with Swag-
ger schema models. The OpenAPI framework is supported by SmartBear, an API test-
ing company. This being the case, many of the tools provided focus on testing,
consistency, and the ability to create starter code (stubs, which expose the endpoints
for the API, giving the developer the opportunity to work on the back-end functional-
ity with the exposed endpoints already defined).

7.5 Summary
In this chapter, I’ve covered two of the most common schema modeling languages.
Whichever you pick, remember that any schema model is one of the most powerful
tools you can have in guiding the development of your API to meet the use cases
you’ve identified. Both of the models have excellent editing toolsets, as well as a com-
prehensive ecosystem of open source tools.

 OpenAPI has a very strong schema modeling language for defining exactly
what’s expected of the system—very useful for testing and creating coding stubs
for a set of APIs.

 RAML is designed to support a design-first development flow and focuses on
consistency.

Figure 7.21 DELETE is quite simple: it can be even more streamlined, as the 204 and
404 responses are the standard responses for a DELETE. It’s all right to assume
standard responses, and include the responses that are different from the norm, or have
specific error messages included.

https://github.com/synedra/irresistible/blob/master/schema_models/swagger/swagger.yaml
https://github.com/synedra/irresistible/blob/master/schema_models/swagger/swagger.yaml

159Summary
Each of the schema modeling languages can be used for any of the use cases listed
here. I suggest that you take the time to explore the editor and toolsets for these lan-
guages to determine which one works best for you. Remember that your goal is to cre-
ate a contract between the development team and its customers, including other
teams, customers, and project managers.

 The next chapter talks about using a schema model to drive design-driven develop-
ment. It covers the code stubs that can be created by the schema modeling toolsets
and how to make sure that the contract is being met by the resulting API.

Design-driven development
With a schema model and a good sense of the use cases you want to support, you’re
finally ready to go through the process of developing the API. The development of
the API requires that you continue to leverage the work done in the previous chap-
ters so that the API you create emerges as a solid product.

 After reading this chapter, you’ll have an entire system for the development of
your API, with several checkpoints throughout to help you make sure you’re still on
track to building the API you’ve envisioned.

8.1 Development strategies for your API
Several kinds of code development strategies exist out in the wild today, each pro-
viding a new mind-set for creating success for your software. This applies equally to
API development strategies as well. In fact, because APIs need to be flexible and
adapt to the needs of customers, it’s even more important to pick the right kind of

This chapter covers
 Different development strategies

 Road-testing your API

 Planning development

 Development sprints
160

161Development strategies for your API
development strategy for your API. Long-term API development projects without
checkpoints are likely to drift from the needs of the customers rather than react in a
meaningful way to new use cases or requirements.

 Note that these approaches aren’t identical in scope. They’re presented here less
as hard-and-fast rule sets, and more as a buffet of options, where you can pick the
pieces that make the most sense for your needs. A blended model is often a great
choice, as long as you identify the outcomes that you’re most concerned with.

8.1.1 Waterfall development

Before the emergence of the newer models, software development was generally done
by writing a complete functional specification (usually focused on functionality rather
than usability), and each piece was built—hopefully with some unit tests, followed by
human testing of the specified functionality. When the entire monolith was ready to
be deployed, it was released to the world. This process is known in the industry as the
waterfall model (figure 8.1). With the waterfall method, any given project or product
can take months or even years to see the light of day. This type of project management
doesn’t focus on iterative improvement or checkpoints or dividing the work into func-
tional chunks. Few opportunities arise for asking whether the project is on the right
track or for adjusting the vision during the process.

 There are a few downsides to this approach. The tests are written after the code,
which makes them much more likely to miss edge cases or validate functionality that
isn’t right. Writing a test after you write the code generally turns into an examination
of the code, figuring out what the hooks are into the code, and making sure that it
behaves exactly as it already does. This is okay for future regression testing (did I

Verification

Maintenance

• So�wareImplementation

• So�ware architectureDesign

• Product requirements documentRequirements

Figure 8.1 In the waterfall development methodology, each step in the process is
completely finished before the next section begins. The entire cycle from start to finish
can take months, or even years, without any built-in review or reflection in the system.
This doesn’t mean that waterfall development never has this kind of adjustment, but it
isn’t inherent in the system.

162 CHAPTER 8 Design-driven development
break something that used to work?) but not good for identifying places where the
engineer hasn’t implemented the functionality properly. The lack of intermediate cus-
tomer checkpoints to validate the implementation of specific modules or features
almost invariably leads to required changes at the end of the road. At the present
time, there are several other development methodologies that address the downsides
of this more historical approach.

8.1.2 Agile/test-first development

The first leap forward in development strategies was the introduction of test-first
development, which became popular during the 1990s when the industry experi-
enced the emergence of agile as a new overall product methodology (see figure 8.2).

One common method of implementing agile development integrates scrum and kanban:

 The term scrum refers to the agile methods of sprints, including planning, task
assignment, daily standups, and review/retrospective.

 Kanban is a complementary idea, which, in an agile context, describes how to
place those tasks on a board (frequently with sticky notes) for moving through

Scrum Task Board
Stories To Do In Progress Testing Done

Figure 8.2 The agile scrum board looks fairly arbitrary and temporary by design. A
sticky note or small pinned paper can easily be moved around, from the Stories
waiting for attention, into the To Do column, through the additional columns, to
Done. There’s nothing keeping a task from moving backward when the situation
demands it, from Testing back to In Progress, because something didn’t work
correctly, or from To Do back to Stories when other priorities emerge. This agility
is at the base of the “agile” project management method.

163Development strategies for your API
various stages of completeness for tasks: Backlog, To Do, In Progress, Verifica-
tion, and Done.

 At the beginning of any development, the team and customers create user sto-
ries, which are use cases. A fully fleshed-out story would be “As a user, I want to
be able to list my contacts, so I can find my friends,” and would ideally contain
hard requirements for what Done means. These requirements are termed accep-
tance criteria.

 As a scrum practice the team has daily standups, designed to be 15 minutes or
less, to facilitate collaboration throughout the team.

 Using scrum, development is done in sprints. A sprint is a relatively short period
of time—sometimes a week or two, but no more than a month. When kanban is
implemented, the team uses a kanban board with tasks, stories, and swim lanes,
designed to help visualize the productivity of the team (figure 8.3).

If you’re interested in the agile methodology, you can find many books and websites
devoted to the topic, including http://agilemethodology.org, which points to various
other resources. The concepts of agile are relatively easy to understand at a high level,
but they can be challenging to implement. I recommend you do some research if
you’re interested in the topic, so you can hit the ground running with the process with
minimal hiccups.

Focus on completition of the
contract as defined by the test

TEST-FIRST DEVELOPMENT

Tes
ts

suc
cee

d

Focus on alignment of

5’

5

4

3

2

1

the design with known needs

The code quality
satisfies

Some tests
fail

REFACTORING

Iterate

The test succeeds

The tes
t fails

The tes
t fails

The test
succeeds

(Re)write
the test

Check if
the test fails

Write only
enough code

Update the
failing tests

Correct
regressions

Check if
all the tests

succeed

Refactor
some code

Figure 8.3 When tests are written before the code is written, the expected behavior is expressed before an
implementation can emerge, and the resulting code is much more likely to behave as expected. Tests are a great
way for a team to communicate what they expect the functions to do within the system. For each test, only enough
code is written to make the test pass, and then the entire test suite is run to make sure that everything still works
as expected. This is repeated until all the tests succeed and the programming work for the project is done.

http://agilemethodology.org

164 CHAPTER 8 Design-driven development
8.1.3 Behavior-driven development

Behavior-driven development (BDD) is an extension of test-driven development
(TDD). In BDD (figure 8.4), additional software tests represent the acceptance crite-
ria, so the developer now has two sets of tests to work against, and the overall use case
is much clearer for any given subset of the code. For each acceptance test, there must
be a workflow, which is tested based on the story itself.

With BDD, the overarching focus is on making the acceptance criteria real and help-
ing developers to keep track of the main goal for the software in question.

8.1.4 Design-driven development

Design-driven development (DDD) adds a design layer on top of the test-first develop-
ment and BDD stack for the goal of designing consistent interfaces, whether from
other software sections or for the users’ use. The design layer is covered by the process
outlined in this book. After defining the use cases, the schema model (in the case of a
web API) is outlined, which makes it easy to create test cases based on the design goals.
In fact, many open source testing frameworks can import a schema model and create
appropriate tests for the software.

 To learn more about these testing frameworks, take a look at the following post by
Kin Lane, “the API Evangelist,” covering automatic client code generators. The post
can be found at http://apievangelist.com/2015/06/06/comparison-of-automatic-
code-generation-tools-for-swagger/. Here’s the list of client code generators for
OpenAPI:

Write a failing
feature test

n cycles

BDD

TDD

Make the
test pass

Refactor

Write a
failing test

Figure 8.4 The BDD cycle incorporates TDD into a larger cycle of behavior-driven,
or use case–driven, tests. These integration tests express what the system as a
whole needs to do, which helps keep holes from developing between individual
units of the product.

http://apievangelist.com/2015/06/06/comparison-of-automatic-api-code-generation-tools-for-swagger/
http://apievangelist.com/2015/06/06/comparison-of-automatic-api-code-generation-tools-for-swagger/

165Development strategies for your API
 Swagger.io is the official host for the open source Swagger CodeGen project.
 REST United uses a customized version of the Swagger CodeGen project and

performs better than the official branch.
 Restlet Studio uses Swagger CodeGen for Objective-C but has its own CodeGen

engine for Android and Java.
 APIMATIC has its own CodeGen engine for all languages.

A client designed to hit each of the endpoints as specified in the schema can perform
valuable tests to make sure that your design is being implemented exactly as described
in the schema model. Unfortunately, the current client code generators still need
some work in creating foolproof code that compiles each time. When you’re using the
generators, regardless of the language you’re using, it’s best to expect that you’ll need
to spend a small amount of time getting it ready for prime-time.

 Using these code generators is one advantage to design-driven development. The
overarching goal of this type of project management is to make sure that the design of
your API happens first and is the driving vision used to guide development. Like test-
first development and behavior-driven development, design-first development carries
a mind-set where the code is created to match a specific, defined specification—in this
case, the schema model.

8.1.5 Code-first development

For completeness, I’m going to give you an idea what code-first development looks
like. Note that many APIs that have already been created have been done in this way—
developers are told to create a (single) API or set of endpoints, and they add code on
top of the back-end system to meet this deliverable.

 The problem with this approach should be obvious—because the API isn’t consid-
ered to be a complete, first-class citizen in the product ecosystem for your organiza-
tion, it’s developed backward. No specification is needed to create an API, and the
technical challenge is minimal. But when APIs are created in this way, they tend to be
inconsistent with the main product and among the endpoints, and frequently the
code needs to be rewritten later to meet the goals of the customers. Worse yet, a
poorly planned API rollout means that there is an API that customers are using that
can’t easily be deprecated in the future.

 A web API isn’t a subproduct for the main product, and the action of adding new
functionality, endpoints, and features requires the same amount of planning as teams
commit to planning other software projects.

8.1.6 Why does project management matter?

Project management is a critical aspect to the success of any software engineering
endeavor—indeed, for any product, whether software or something more tangible.
In 2009, a software statistical company called the Standish Group, found at
www.standishgroup.com/news/index, did a study on software project outcomes in
the United States. This was before the upsurge in popularity for agile development

www.standishgroup.com/news/index

166 CHAPTER 8 Design-driven development
models. In this study, 24% of the projects failed outright, and 44% were challenged,
either falling behind or meeting unexpected challenges. Thirty-two percent of the
projects succeeded. Although there was no direct mapping of project methodologies,
this kind of outcome exposes the issues we were having with project management at
the time. The waterfall method created too many opportunities for failure, and with-
out regular iterations and check-ins, those failures could snowball into something
untenable before the issue was discovered.

 When developing APIs, you must be able to meet new requirements, work with
your clients during development, and verify that development is creating the right
APIs. When you’re creating a system for which you own the entire stack, some assump-
tions can be made about what the system will do. But a web API is an interface to your
system for different organizations to use, not merely your own, and as such it’s subject
to many different opinions and requirements. For this reason, the project manage-
ment methodology you choose is critically important.

8.2 Project management for APIs
To achieve the best possible result with the process outlined in this book, you’ll find a
design-driven methodology makes the most sense. Using agile methodologies where
they work for you is a fantastic idea, but it’s not required. In the design-driven meth-
odology (figure 8.5), the steps are in a slightly different order than with the waterfall
method.

 First, you’ll create your functional specification document. In parallel or shortly
after, the schema model is created with use cases. Before developing, you create accep-
tance criteria for developers to work against along with the unit tests. Only then do
you start with development. Instead of developing the entire system at once, you can
parallelize and have different engineers working on different use cases so that they
can deploy the API. In this section, I break out each of these actions so you can see
how they flow together into a strong deployment process.

8.2.1 Functional specification

We haven’t discussed the functional specification explicitly yet, but your organization
likely has a functional specification standard for software projects. If you don’t, your
product managers need to create a document that, at the least, answers the following
questions:

1 What problem is the project solving?
2 What is the business value?
3 What are the metrics and use cases?
4 What resources are needed or available?
5 What does “done” look like?
6 What could go wrong?

167Project management for APIs
Obviously, a more complete functional specification will be a more powerful design
and vision document, but a basic document covering these points will help the devel-
opers and other stakeholders understand the goals of the project. This may seem obvi-
ous, but so many people have created their APIs as side-coding features rather than
unique products that this part of the process—the functional specification—is fre-
quently skipped entirely.

 Most of these factors probably look similar to the concepts described previously in
the book, so I won’t belabor the points other than pointing out that this is the right
place and time to figure out those factors. I’ll cover the others in more detail so they
make sense in context.

 First, what problem is the project solving? In plain English, describe exactly what’s
happening that needs to be addressed. Keeping this information with the functional
specification helps to avoid the “drift” that tends to happen once the project is under
way and folks start focusing on implementation details. Help to make sure that every
time the functional specification is referenced, the overriding goal of the project is
front and center.

 What does “done” look like? This question is quite important: What things will be
true when the work is done? In development projects far and wide, there are situations
where developers don’t understand what’s required in order to be finished with a pro-
ject, and the features creep in during development. This is bad for the productivity of

Creation of the
Functional

Specification

Schema Model
(Design

Document)

Acceptance Criteria
and Unit Tests

Development
Iterations

Figure 8.5 Ideally, API project management includes the development of a functional
specification in parallel with the schema model. Only once these two documents have been
completed should the acceptance criteria be written and unit tests developed. After all of this
infrastructure is in place, the development iterations can begin. Although this seems like a huge
amount of work up front, it reduces the amount of development time significantly—and more
importantly, it reduces the chances of incorrect work that would need to be redone.

168 CHAPTER 8 Design-driven development
your development resources, and it also makes it difficult to follow strong coding prac-
tices while creating the product. If there’s a moving target, people are more likely to
patch in changes rather than do the feature holistically from the beginning. Make sure
that the acceptance criteria—the things that are necessary for the product to com-
plete—are described completely and correctly, and that all stakeholders on both sides
(product team and customers) are in agreement about what those criteria are.

 What could go wrong? This is one concept that’s frequently missed in feature
specifications, but one that I strongly suggest you adopt. You won’t be able to identify
every possible challenge that the project may encounter, but if you’re relying on
another team for some functionality, then you have a requirement that’s outside your
control. Identifying this on the functional specification helps in two ways: it shines a
light on this requirement, and it also gives you the ability to include that team in
communication about the needed functionality, when you need it, and why it’s
important to your project.

 Every time you’re planning a project, it’s tempting to bound the specification as
closely as possible to the ideal path, without taking the time to consider what issues
could delay or sidetrack the project. The real world is messier than this. As you find
new challenges, or meet new goals—or as your customers add new features to the
requirements, as they’ll almost certainly do—update that functional specification so
that it remains the one true narrative description of what the finished project will do.

 Take caution when making functional specifications that are focused too heavily
on architecture. The architecture of an API is less interesting than the developer expe-
rience expressed by the interaction model, resource schema, and workflows that are
made possible via the project.

8.2.2 Schema model

I’ve talked a great deal about how to create a schema model. To sum up the informa-
tion from chapter 7, a schema model helps your team ensure that the API is consistent
across all the endpoints and can be used as an artifact or design document to spark
discussion with internal and external team members before the coding is done. A
schema model, like a functional specification, should be kept up to date if changes
occur to the implementation, requirements, or acceptance tests.

 Which format you choose for your schema modeling is up to you. All the versions
I’ve covered, along with any new upcoming modeling languages, will work for any API.
The schema is for your benefit, so whichever of the languages works best for you is the
right one to use.

 Once you’ve created both the schema model and the functional specification, it
should be quite easy for anyone reviewing those documents to understand the pur-
pose, goals, and plan for the project itself.

169Road-testing your API
8.3 Road-testing your API
Before you kick off development, it’s a great idea to create a mock server using the
schema model to help you validate your plan with your customers, whether internal or
external. Whether you review the server with your customers before you start coding
or in parallel with the development activity, having the opportunity to have those con-
versations to validate your model and functional specification with your customers can
save you a lot of time and resources as you avoid direction changes nearer to comple-
tion. Depending on the development methodology you choose, you may have check-
points throughout the development cycle where the direction can be tweaked or the
vision revisited. Don’t miss out on this valuable chance to gain insight on the validity
of your API plan. If changes need to occur, those changes should be prioritized in the
context of other requirements for the project. The customer can then determine
whether the change is needed in the context of the project as a whole.

8.3.1 Creating a mock server API

Creating a mock server is easy with any of the schema modeling languages. Each of
the companies that owns or maintains a particular schema modeling system provides
open source tools designed to help create a mock server. If your enterprise IT depart-
ment doesn’t support external servers, you can always use one of the lightweight cloud
hosting providers, such as Heroku or DigitalOcean, to bring up a mock server that
your customers can access from outside of your network. After discussing the basic
principles of creating and working with mock servers, I’ll add an exercise for folks
who want to set up a mock server visible in the cloud.

 The easiest place to observe this difference is on the main irresistibleapis.com web-
site. The “live” version of the demo is the interface you worked with in chapter 2. It’s a
basic API that doesn’t have the pizza functionality, only toppings.

 The link to that original view is at http://irresistibleapis.com/demo. The API is
running right underneath the functionality, and you can still add new toppings,
remove them, and rename them, all using the fundamental API I described first.

 OpenAPI makes it relatively easy to create a mock server. I’ve implemented it on
the same server at http://irresistibleapis.com:8080/docs. This is the documentation
section of the mock server. As you can see, it appears that all the endpoints are work-
ing correctly, and they are, insofar as you’re expecting the canned response from the
mock server. Before I give you the tools you need to get this mock server running on
your own, I’ll show you how to tell the difference between the two. Figure 8.6 shows
the /toppings endpoint within the extra context of Chrome Developer Tools.

 As you work with the page demonstrated here, changes you make will change
things within the system. This is a live API and changes to the data are kept. This is a
direct HTTP call to the toppings API:

http://irresistibleapis.com/api/v1.0/toppings

http://irresistibleapis.com/demo
http://irresistibleapis.com:8080/docs

170 CHAPTER 8 Design-driven development
If you work with the live server interface—the “All Toppings Active API” page in fig-
ure 8.7—changes will happen to the toppings as you create them, rename them, and
delete them.

Figure 8.6 The original toppings from chapter 2. As you probably
recall, the page itself is making a call back to the /toppings endpoint
and processing the returned JSON to create this user interface. To see
this in practice, use the Chrome browser and watch the network traffic
to see how the JSON relates to the resulting HTML page.

Figure 8.7 This live server response represents what you’ll see in the Chrome Network
tab when the initial user interface page in figure 8.10 is generated. The CSS and HTML
pages are used to create the single-page application based on the back-end API response.

171Road-testing your API
With a mock server you’ll get a similar API interface to the system, but your interfaces
with the system won’t change values within the system. The mock server is designed to
help you look at how the endpoints will work such that you can create sample clients
to test against the eventual live API. Figure 8.8 shows how this mock server behaves,
similarly to a live call to the API itself.

 A mock server is a service that contains static data and provides endpoints for you
to work with. A mock service can be challenging to understand compared to a simple
API, but having one helps a great deal when validating the model you’ve created.
Using OpenAPI gives a couple of pieces of functionality for exploring the Mock API.
First, you can get to the /api-docs endpoint, which will show the JSON version of the
schema model (see figure 8.9).

 Besides this simple view into the schema model, there’s an excellent way to browse
through the Mock API. On the same server you’ll find http://irresistibleapis.com
:8080/docs, an interactive method for exploring the API endpoints represented on
the system.

Figure 8.8 This looks exactly the same as the live response, but it’s the OpenAPI mock
server responding with the information from the schema model. Responses from a mock
server won’t change (so if you delete a topping it will still appear). Nonetheless, these
servers are an excellent way to create a prototype or demo application to test and make
sure the schema will support your use cases.

http://irresistibleapis.com:8080/docs
http://irresistibleapis.com:8080/docs

172 CHAPTER 8 Design-driven development
Although discussing the API with your customers before bringing the development
resources online (or while they’re working) is a great idea, you also get another fantas-
tic advantage to having a mock server. Armed with your use cases, you can create all
the needed workflows to support those stories and write client code that implements
each of the use cases to ensure that the use cases you started with will be easy and
straightforward (see figure 8.10).

 As a quick exercise, go ahead and click GET for the /toppings/ resource. Note
what the values are; they’ll always be the same in this mock server. Figure 8.11 shows
exactly what the mock server will return.

Figure 8.9 In this case, the mock server is running on port 8080 on the localhost, as you can see from the
host entry. The schema model here is the same one created in chapter 7 and should in fact meet all the use
cases identified in that chapter.

173Road-testing your API
Figure 8.10 When running a mock server using the OpenAPI tools, you also get an interactive
console to explore the endpoints and see how they work. This functionality is also available for the
live server when it’s created. When you’re sharing the schema model with other developers or
customers, sometimes it’s helpful to give them a visual way to explore the platform.

Figure 8.11 This call to http://irresistibleapis.com:8080/
v1/toppings/ is accessing the mock server and is returning
exactly what the schema model indicates. Again, if you make a
call to add a new topping, update a topping, or delete one, this
call won’t change, because there’s no live service on the back
end but only a static model.

http://irresistibleapis.com:8080/v1/toppings/
http://irresistibleapis.com:8080/v1/toppings/

174 CHAPTER 8 Design-driven development
You can see this exact call in a much nicer format at http://irresistibleapis
.com:8080/docs/#!/Default/toppingsGet. Figure 8.12 demonstrates this view.

 This interactive documentation browser allows you to see quite clearly how the
HTTP interactions work with the system. Although write interactions won’t change val-
ues in the system, understanding how the requests and responses work is quite power-
ful. Moving down the page to the POST for toppings, you can get a better idea of what
I mean about the mock server. POSTing a new topping or DELETE-ing a topping will
have no effect on the values the GET responses provide.

ADVANCED

The previous section certainly demonstrates the differences between a live API server
and a mocked-up one. But I’m going to take a little time here to walk through the pro-
cess of getting your own mock server visible from the public cloud, so you can use it to
work with your customers and hone your eventual API into perfection.

Figure 8.12 Along with the interactive console for exploring the APIs, there’s also interactive
documentation created by the OpenAPI system. This is the same documentation you’ll be able to
provide to your users when the API itself is live—which is one of the reasons to make sure that the
API itself stays in sync with the schema model.

http://irresistibleapis.com:8080/docs/#!/Default/toppingsGet
http://irresistibleapis.com:8080/docs/#!/Default/toppingsGet

175Road-testing your API
HOSTING PROVIDER: HEROKU

I’ve chosen Heroku as the best server for this strategy because the interaction with the
system is quite simple, and you get some bonus adorable haiku names for your ser-
vices. The code you need to work with is already in the code you’ve pulled down
before, but I’ll start the process anew to make sure everyone has the same experience
(see figure 8.13).

1 Get a Heroku login. The most basic level of use, which is what you’ll be using, is
free.

2 Install the Heroku toolbelt from https://toolbelt.heroku.com.

Figure 8.13 The process for pushing your model and server to Heroku is relatively straightforward,
and it gets easier after the first time. All you’ll need to do is edit the files and push them back out
to Heroku. In this case, the server infinite-basin-6068.herokuapp.com was created, and now the
documentation and mock server are available on the internet to share with other people.

https://toolbelt.heroku.com

176 CHAPTER 8 Design-driven development
3 At the command line, type your Heroku login followed by this:

git clone http://github.com/synedra/swagger_irresistible_mock
cd swagger_irresistible_mock
heroku create
git push heroku master

The Procfile at the base of the repository clone tells the Heroku server what to do
when the code is pushed up:

web: node index.js

At this point, you’ll have a new service, available from anywhere, where you can dem-
onstrate the API via the mocked-up version. Whether you run this locally or separately,
it will be an excellent tool for your use in moving forward with development. Heroku
provides you with a haiku-server-name, which is unique for your use. The process in
the command line works fairly simply.

 In this example, if you want to view the interactive documentation, do so by access-
ing https://infinite-basin-6068.herokuapp.com/docs/.

8.3.2 Acceptance tests and use cases

When discussing testing, many developers consider unit tests—tests that determine a
specific module or code set is working as written. Unit tests are important to ensure
that the cogs in the wheel are working correctly. But unit tests don’t cover all the test-
ing that you need to do for your API. Acceptance criteria are critical to verify that
you’re making the use cases as easy as designed and not getting off track.

 I mentioned acceptance criteria earlier, and now I’ll walk through the process of
creating acceptance criteria, what the goals are, and how to implement them. I’ll use
the standard agile methodology in building up these tests.

 A user story in agile methodology is a description of one of the things that needs to
be enabled by the project. These stories are generally created to follow this template:

 As a <type of user>
 . . . I want to be able to <perform an action>
 . . . so that I can <create an outcome>.

Figure 8.14 shows an example of a user story for the pizza toppings API.

Story: Add pineapple to the system

As a pizza eater...
 I want to be able to add pineapple ...
 So I can customize my pizza

Figure 8.14 The standard agile storyboard
format is easier to understand with an example. It
can often feel forced, but having all three sections
of the story makes it much easier to ensure that
the requirement is well defined, and there’s a
shared understanding of what needs to happen in
order for the story to be done.

https://infinite-basin-6068.herokuapp.com/docs/

177Road-testing your API
Once the user story is created, you can turn it into a testing scenario—the second step
on the way to creating a good code test to make sure you’ve got the right behavior.
The difference between the user story and the testing scenario is that the latter will
describe specific actions and their outcomes, to solidify exactly what’s needed to vali-
date that the code covers the user story.

 In this case, there are a couple of pieces of information you’ll want to include.
First, a new topping needs to be added to the system, to make it available to be subse-
quently added to a pizza. The steps are listed, including the action taken by the user
and the subsequent test to make sure that it happened correctly.

Scenario: Add pineapple to the system

 Given the pizza topping doesn’t exist
 And I add a new topping to the system
 The list of toppings should include the new topping

This is a different way to express the goals from earlier, in a measurable and precise
manner. Some user stories might end up with multiple scenarios. Don’t feel con-
strained to create one scenario per user story, but each one should have at least a sin-
gle scenario.

 From here, you can create an acceptance test case. An acceptance test case is differ-
ent from a unit test case in that the behavior and workflow of the user case is tested,
rather than the exact behavior of specific functions within the code. This is not to say
that there’s no place for unit tests, but as you can see from the workflow listed in fig-
ure 8.14, the acceptance tests that we’re creating live outside of the realm of the unit
tests. They’re an overarching test to make sure that the set of functionality that was
created—which should also meet the goals of the unit tests—combine to meet the
needs of the user story being considered here.

 The acceptance test will look similar to the following scenario:

Acceptance test case: Add pineapple to the system

 Get a list of pizza toppings in the system
 Verify that the new topping doesn’t exist
 Add a new topping to the system
 Get the list of pizza toppings
 Verify that the new topping has been added

I realize this seems simplistic, but remember that tests aren’t supposed to be compli-
cated or difficult; they need to verify that the use case you’ve selected is easy, straight-
forward, and functional when the user tries to do it. It may be that you want to verify
that the previous case works when the topping exists in the system already, so you’d
create an acceptance test case similar to the case where there’s a specific topping (in
this case pineapple) already in your toppings list:

178 CHAPTER 8 Design-driven development
Acceptance test case: Add pineapple to the pizza

 Get a list of pizza toppings in the system
 Verify that the new topping does add a new topping to the system
 Verify that an error is returned with a developer-friendly message

The goal of the acceptance tests is to follow the workflow that developers will use to
interact with your system, to make it simple for them to be able to do the things you
expect and want them to do. When you have these acceptance tests, you can use them
as the basis of tutorials you can include in your documentation to help guide develop-
ers through the workflow as you expect it to happen. This helps reduce frustration in
your customer developers, but even more, it helps you to avoid the case where your
developers try to find other ways to create the same result. It’s best to do everything you
can to keep your customer developers on the same page as you are when they’re imple-
menting the use cases you’ve identified, and the easiest way to do that is to make sure
that you’ve communicated clearly how you expect specific actions to be implemented.

8.4 Planning development
Once you’ve decided on your development model, you can move on to planning how
your development will proceed. For this book, I’ll encourage you to use a behavior-
driven development model, enhanced to add design-driven development. For API
development, where third-party and external users will be interacting with your sys-
tem, it’s critical that you do everything you can to make sure that you’ve covered the
use cases you want to support, and that the interface is as intuitive and complete as
possible. This being the case, you likely want to break down the user stories into what
you need for a minimum viable product and work from there.

 For the system I’m describing here, it may be that you want to support a few use
cases to start. Perhaps you only want to have full functionality for the toppings, similar
to the beginning API described in chapter 2. This could be your initial release, and
that would be fine. Different endpoints or sets of endpoints can be released at differ-
ent times, and as long as you have an overarching design for your API, it’s reasonable
to release different parts of the system.

 Here’s the list of use cases described in chapter 7 while I was building all the
schema models:

 Creating new toppings
 Getting a list of all toppings, including matching a particular string
 Deleting and updating specific toppings
 Creating a named pizza—only one per user
 Listing pizzas
 Adding toppings to a pizza
 Viewing the pizza
 Deleting the pizza for the specific user

179Development sprints
For development planning, perhaps the toppings functionality is sufficient for the first
release. You may not want to release it externally, but for this case perhaps you want to
front-load the list of toppings so that when the pizza functionality is available there will
be lots of toppings to choose from. Similarly, you want to make sure that the function-
ality works well for your internal and external customers. If you create a subset of your
minimum viable product as a subset of endpoints, you can always allow some custom-
ers to interact with it and make sure that the interaction methodology that you’ve
selected is easy for them to use and the API works well from their point of view. Target-
ing a subset of endpoints also makes it possible for you to split the team into two sub-
teams, one working on each set of endpoints. Knowing that you have a schema model
can give you confidence that the two teams won’t diverge while creating the API. This
may not seem super critical for an API that’s as simple as this one, but imagine much
more complicated APIs and you’ll start to see the advantages. For this API you may want
to develop in serial—toppings, then pizzas—and release them as a single customer

 Think of Twitter, for example. Twitter has APIs for user information, for a user’s
feed and lists, searches, and live streams. It adds new functionality regularly based on
what users are looking for, making it possible for their own products and third-party
clients to keep up with customer demand. It’d be quite difficult for them to keep up
with the various use cases in a waterfall manner, with a monolith—they need to be
agile and adapt to the social media requirements, so they can break down releases
into subsets and create and integrate the new functionality as soon as it’s ready. The
only time they’ve needed to make a large and overarching release is when they
changed the underlying system for their APIs—and this will be true for nearly any API
vendor. If it turns out you need to streamline the overall system, you may have to make
a large release and it may frustrate your developers. Keep up that constant communi-
cation and work with them to make it as easy as possible.

8.5 Development sprints
Returning to the scrum section of the agile project management philosophy, the
development is done in sprints. Each sprint can be whatever length makes sense for
your team. Common sprint lengths are one to two weeks. These time lengths are ideal
for many development goals because a week or two is long enough to address several
user stories and come back together at the end to make sure that the overall develop-
ment is on track.

PLANNING

The first task during an agile sprint is the planning session (see figure 8.15).
 During this time, most teams work with a board like figure 8.15—the scrum task

planning board. The stories are selected from the left-hand (backlog) column and are
placed into the swim lanes (the horizontal rows across the board). Each swim lane
may be a particular type of task (development, documentation, or QA), and each will
start in the To Do section of the board to start the sprint.

180 CHAPTER 8 Design-driven development
Determining how many of the tasks will make it into the sprint is done by an estima-
tion system. With agile development, I’ve seen many different ways to do estimation,
but most commonly I’ve seen teams choose to work with increments of half a day. It
might take three days to write the listing function for the toppings, whereas imple-
menting the delete functionality may only take a half day or so. One of the things I
admire about most agile teams is that the process of estimation is much more reason-
able than what happens with waterfall planning, because things are viewed in a man-
ageable timeframe and it’s easier to see where expectations are unreasonable.
Engineers are expected to be doing other things throughout the week, and the
amount of time they have for active development is drawn from what’s left (for
instance, an engineer might have meetings to attend, support tasks to attend to, or a
large volume of email to respond to). The goal of the estimates is not to “race” or
force people to extend themselves to achieve heroic ends; the goal of the estimates is
to honestly determine what things can happen in the correct amount of time so that
the team can meet deadlines appropriately and be aware when a delivery has been
overpromised.

 One other strategy that can be quite helpful when estimating is to aim to make
sure that no task is more than a day long. If a task is longer than one day, it can likely
be broken down into smaller subtasks, which may allow for more parallelization, or at
least quicker movement into the verification stage.

Story To Do In Process To Verify Done

As a user, I... Code the...

Code the... Code the... Code the...

Code the...

Code the...

Code the...

Code the...

Code the...

Code the...

Test the...

Test the...

Test the...

Test the... Test the...

Test the...

Test the...

Test the... Test the...

Test the...

9
3

8

2

2

4

2

37

9 6

6

4

6
4

2

6 4

24

8

Code the...

8 points

5 points

As a user, I...

Figure 8.15 A scrum planning board generally has the same columns: a Story column for
backlogged stories and tasks in the To Do column. As tasks get assigned or selected by
team members, they’re put into the In Process state. Once they’re ready, they’re Verified
by a different team member, and finally they’re moved to Done.

181Development sprints
STANDUPS

As the development progresses through the sprint, the team meets, ideally daily, in a
short meeting called a stand-up. You may have heard about stand-ups in the past, and
in fact they’re one of the things many people truly hate about the agile process, so I’m
going to go back to the original intent of these meetings. First of all, the reason it’s
called a stand-up is that everyone, whether the team is local or remote, should be
physically standing up during the meeting. This helps retain the sense of a quick ses-
sion to touch base on the project. The goal of the stand-up is to verify that everyone is
on track with his or her tasks and to make sure there are no blockers. It’s not an over-
all status meeting, and it should take no longer than 15 minutes, even for a large
team. Any blockers that are identified should be taken to smaller meetings outside of
the stand-up, and the entire process should be less interruptive to the developer’s day
than a conversation around a water cooler. One way to understand the general com-
munication is to consider 3 P’s: progress, plans, and problems. What did I do yester-
day? What am I planning to do today? What might go wrong?

KANBAN “SWIM LANES”
During the development of the product, each task, which has a clearly defined defini-
tion of Done, starts in the To Do column before it’s assigned to an engineer or pair of
engineers, at which point it is In Process. Once the developer(s) believe that the func-
tionality is complete, the task moves to To Verify, at which point, ideally, another engi-
neer or engineers verifies that the functionality works as expected and the task moves
into the Done column. Note that depending on the requirements your team has for
completion, this may indicate that the code is done, the tests are done, and/or the
documentation is done. These requirements need to be clear and measurable, so that
the handoff is clean and developers can move to the next task without having to come
back to polish up their work. This is accomplished by having clear “definitions of
done” at each step as well as for the final product. In the case of the behavior-driven
development process I’m discussing, making sure that the acceptance tests pass, to the
best of the developer’s ability, is part of making sure things are ready for testing.

 The testing phase is generally done by a separate engineer, who should take the
unit tests and acceptance tests and verify that the code, documentation, and tests as
written are correct when compared to the original goals of the story in question.

 As engineers are freed up throughout the sprint, they take new items from the To
Do column and start working on them until the sprint finishes. If one of their com-
pleted tasks fails verification, the task moves back to To Do and an engineer (likely the
same one) is responsible for fixing the issues and moving it back to the testing phase.
In the extremely unlikely event that some extra time rears its head, the developer can
bring it up during the stand-up so the team can pull in another story from the backlog.

RETROSPECTIVE

The retrospective is one of the things that many engineering teams try to skip over. It’s
uncomfortable thinking of something that feels like it might be a blame-fest. But the
goal of the retrospective in an agile team is not to blame people for failures, but to

182 CHAPTER 8 Design-driven development
identify areas for improvement in the process. Are your estimates less accurate than
you’d hoped? Why? Are you getting held up by dependencies on other teams? How
can you manage these issues better in the future? An ideal agile sprint would finish
exactly the right amount of work in the expected time, but that almost never happens.
The retrospective is one of the most valuable exercises in the agile toolkit, so it’s
important to move past the discomfort and see it for what it is: an opportunity for the
team as a whole to see where the planning and expectations matched—or didn’t—
with the outcome of the sprint. Ideally your retrospective should take place before the
planning session for the next sprint so you can see what needs adjusting and put it
into practice right away, before it fades back out of your memory.

 This is also the ideal time to discuss items that didn’t meet the customer’s expecta-
tions when they were released, and determine how to better express those expecta-
tions going forward. Don’t fear the retrospective; the goal is to reduce the anxiety and
uncertainty of the team going forward, so that work doesn’t need to be redone and
engineers are given the necessary amount of time to get their work done. Additionally,
the retrospective is an opportunity for the team to congratulate each other for the
work that was done well.

8.6 Summary
This chapter covered various elements of software development methodologies, with
an eye toward making sure that your API is successful as soon as you’re ready to deploy
it. The chapter explored the following topics:

 Different project-management strategies include waterfall, agile, design-driven
development, and behavior-driven development. Waterfall is the “old way” of
doing development and can be generally understood as a system where you
define an entire project and then move through the sections of the product
without significant refactoring, pivoting, or other adjustments to your workflow.
Agile is a newer method in which the work is broken down into smaller sprints,
and the progress toward the higher-level project is reviewed and discussed regu-
larly throughout the development phase. Both design-driven and behavior-
driven development add to this agile process by adding use cases and strong
tests to validate that the project is moving in the right direction to end up with
the right product to meet the requirements.

 Road-testing your API via a sprint review involves checking in with customers,
shareholders, product managers, and client developers to make sure that the
API being developed will meet the needs as described by the product’s specifica-
tion and schema model.

 Planning development sprints using use cases to determine which parts of your
API should be created helps you design and deploy valuable sections of your API
as quickly as possible.

 With development sprints, when you focus on short iterations for your develop-
ment execution, you can identify issues or make adjustments quickly, reducing
the need for refactoring your code at a later time.

Empowering
your developers
Once your API is ready to be released into the wild, you may think you’re in the
home stretch. But the success or failure of your API will hinge much more on the
developer experience you provide than on any specific technical choice you’ve
made. Developer support sometimes takes a back seat to new development pro-
jects, but in the case of an API, where you’re working with developers outside of
your team, it’s critical that you create an experience that truly shines.

 After reading this chapter, you’ll have an entire system for the development of
your API, with several checkpoints throughout to help you make sure you’re still on
track to building the API you’ve envisioned.

This chapter covers
 Pillars of developer experience

 Clear communication

 Documentation

 Building blocks

 Support
183

184 CHAPTER 9 Empowering your developers
9.1 Pillars of developer experience
When your team thinks about developer experience, it may be tempting to pay less
attention to internal APIs that other employees are required to use than you would to
an external API for use by external developers. This is a fallacy: anyone who’s going to
use your API needs excellent support. I’ll help you understand the value of spending
time and resources getting this most important piece perfect. Providing the right
experience for your developers works for you in multiple ways. The trade-off always
comes down to cost and speed for your team as opposed to goodwill among your cus-
tomers. Figure 9.1 shows the pillars of API support required to create a great customer
experience. I cover these in more detail throughout the chapter; this quick overview is
to help you understand how the pieces fit together to create a fantastic developer
experience for all of your client developers.

 For external APIs, it’s clear that you need to make sure your developer customers
understand the API, can use it successfully, and don’t get stuck. You want to ensure
that they understand how the API should be used through use cases and comprehend
the guidelines for working with the APIs. Guiding your customers through an excel-
lent developer experience—outlined in this chapter—will create happy and successful
developer customers. But that’s not the only advantage to your team. Those customers
will help other customers to be successful. They’ll be able to get started and extend
their applications with minimal help. Seeing that the developer experience is a prior-
ity will encourage new developers to give the system a try.

 For internal developers, who may be required to use your system, it is still critical
to provide a fantastic user experience. If developers are forced to use a system they

Communication Building Blocks SupportDocumentation

Reference
Documentation

Workflows

Tutorials

Sample Code

Reference
Applications

Tools and
Techniques

Service Level
Agreement

Forums

Overall Vision

Business Values

Metrics

Figure 9.1 The four pillars of API support are communication, documentation, building
blocks, and support. Every one of these pillars improves your client developers’ understanding
of the platform, and with that understanding comes engagement and integration.

185Communicating with your developers
struggle with, they may try to work around it, implement inefficient and unsupported
workflows, and generally create a support burden for your team.

 This chapter covers the steps required to create a phenomenal developer experi-
ence. It may be tempting to cut corners or skip some of the pieces. I strongly encour-
age you to reconsider the costs this can create in extra support and developer
confusion. Some of these items align more closely with an internal or external API, but
in reality they’re all important in both cases.

9.2 Communicating with your developers
In general, companies and organizations want to keep their vision and strategy close
to the chest. Revealing this sort of information outside of your development organiza-
tion feels like a vulnerable choice, but it’s critical for a new platform, or an existing
platform, to provide as much context around the API program as possible. I’m not
talking about reference documentation, tutorials, and example code. For this high-
level communication I’m referring to things like the overall vision, business values,
and metrics.

9.2.1 Failures of communication

I’ve worked at two different companies, Netflix and LinkedIn, where information
about the business goals for the API weren’t shared. Additionally, I’ve spent a great
deal of time studying the trials and successes of Twitter. In the first two cases, poor
communication, combined with a lack of overall vision for the platform, contributed
to the eventual demise of, or serious deadening of, the API program. Twitter was more
successful because the reach of its API was so strong it could weather the storms it
encountered.

NETFLIX

At Netflix, there was no real understood business value. The company wanted to have
an API because it was the new path to integration with applications, and put out the
API hoping for the best. The information shared with developers was sanitized and
designed to present a friendly, nonthreatening face. Part of this was designed to “let a
thousand flowers bloom,” the thought being that with little guidance on how the API
was designed to be used, the developers would stretch and create new and unex-
pected uses for the API, and revenue would sprout fully formed from the uses of the
platform. But what happened over time was that these thousand flowers didn’t bloom.
The company decided that the third-party developers using the API weren’t providing
value to the company. The company did discover, as I mentioned earlier, that the API
was extremely valuable in the world of device integration, so the API didn’t go away.

 But the third-party developers weren’t creating revenue for the company, so the
decision was made to phase out the API. This decision made sense from a business
standpoint, and it was certainly the right decision. Netflix even went through the trou-
ble to phase out the open API gradually. This was not communicated to the developer
community, though. The support was pulled back drastically, the forums lay fallow,

186 CHAPTER 9 Empowering your developers
and no answers were given. The developers who were relying on the platform to
power their applications didn’t have any way to know about the new direction. Few
missives were sent out to help developers plan for the eventual sunset of the platform.
As a result, a number of developers got short shrift, and Netflix got a poor reputation
among third-party developers.

LINKEDIN
LinkedIn was another company without a strong plan for the API going in. Although
the developers working on the platform were talented and motivated and created an
excellent platform, there were many detractors within the company. The sales team
believed strongly that the API was being used to scrape the company’s database and
didn’t want to have a search API available for developers. The API was maintained with
all the functionality, including search, but without strong executive support. After a
couple of years the platform was put on hold, and the engineers were distributed to
the other engineering teams. None of this information was given to third-party devel-
opers using the API, who were left to deal with a slowly contracting set of APIs available
to them. Business partners with close contractual ties to LinkedIn were given access to
the original APIs, but this excluded third-party developers, an action that fomented a
lot of discontent among the developer community.

TWITTER

Twitter started out without a great plan for its API. It began with a single page to input
the 140-character messages and soon after had an API available for third parties to use.
Third-party applications flourished as this simple social network blossomed. There
were some serious hiccups as the company pivoted to address different use cases, and
even, in some cases, copied new functionality from the third-party developers to add
into its platform. This was a great example of how the terms of use need to be strong
and firm in order for there to be a shared understanding between the company and
the developers. Twitter hadn’t necessarily originally planned to copy functionality
from the developers, but it also hadn’t explicitly expressed it as a possibility in the
terms of use (it wasn’t against the terms of use but wasn’t included in them either).

 Twitter didn’t do a good job of keeping developers informed about the changes in
its strategy, leaving a plethora of dissatisfied developers. Their developer base is
incredibly strong and so Twitter weathered the problems. Twitter has become much
better recently at sharing their company direction, with blog posts and press releases
and presentations at their conferences.

9.2.2 Strong communication

Whenever you have an open platform, communicating openly with your developers is
critical to the success of your APIs as a whole. Although sometimes the message may be
unpopular, your customers—the developers using your platform—are likely to trust
you to give them notice when something significant is going to change.

 Google is a great example of this kind of communication. It has a multitude of
APIs, which cover everything from mapping to calendar functionality. Some products

187Communicating with your developers
in this pipeline don’t succeed, and Google makes the decision to sunset the APIs in
order to place its resources on other, more promising products. Developers who work
with Google APIs can have confidence that they’ll be informed via email, blog posts,
and documentation updates as soon as the priority for the API changes within Google.
Google has met with a great deal of animosity over the choices it’s made in retiring old
APIs, but treating its developers like adults who can understand business decisions
gives Google a good reputation as a strong communicator in the API industry.

9.2.3 Advantages to strong and consistent communication

To provide your developers with good information about your platform, you need to
fully understand your business value and metrics. It may seem odd to share your orga-
nization’s vision information with developers, but the truth is, many of them do care
deeply about why your company has an API, what you’re trying to accomplish, and
whether it’s a high priority for your company. There aren’t a lot of companies who
have nailed this piece of the developer experience puzzle, but in my 10 years of work-
ing with APIs, I’ve found that the more clearly the company communicates with the
developers, the more the developers become strong advocates for, and successful
users of, the platform.

 For example, imagine that you have a social network application. Your application
runs on a platform—because you’ve decided to go with API First as a strategy—and
you’re looking to drive usage of your existing users and attract new users to your sys-
tem. Your goal is to increase the amount of interaction with the system by 20 % over
two years. You plan to measure the success of the platform using a few different
metrics:

 Number of users reading or writing via the API

 Usage through the API versus through the main product
 Number of applications interacting via the API

 Number of new users coming through via third-party applications

To communicate this with your customer developers, the information has to be clearly
available for them to read. The wording must be clear and approachable and make it
easy for the developers to understand why you have the API and what you’re hoping to
accomplish with your platform. When putting together the message, try to avoid flat
and generic text, or “sales-speak,” which talks abstractly about the platform without
specific examples and goals:

We have an API because we want to increase integration with our system for third-party
applications. We have made it possible to access the users, messages, and contacts.

This message has a lot of eye-glazing information without a good feel for the meat of
the message. The first sentence can be said of every platform created, ever. APIs are
always created in order to increase integration with the system. Additionally, all the
access methods for the API are given equal importance, and there’s no feel for what it
is that the company wants to accomplish with the platform. No examples are given

188 CHAPTER 9 Empowering your developers
about what the API could be used for. If developers don’t already know what they want
to do with your platform, they won’t suddenly have a flash of inspiration from the
given phrase.

 A more effective message would have a strong message about what the API was cre-
ated to do, and what the company wants to accomplish with it. This is that 10-second
elevator pitch discussed earlier, where you have a limited amount of time to express to
the reader exactly why you have an API. Here are some examples you could use as a
starting place for describing the purpose of your API:

 We created a platform so developers could find more ways for users to interact
with our application. We’re measuring our success by enumerating the applica-
tions with consistent, heavy usage of the type we desire—whether that’s reading
or writing. Our main goal with this API is to allow users to interact in whatever
way makes the most sense for them.

 Our API was designed to help extend the reach of our application into other
online activities. Along with the REST API, we’re creating widgets to enable
“sharing” or “liking” of online content.

 This web API was developed to increase the amount of content created by our
users in our system. Our goal is to have unique content be 20% API-driven by
the end of the year. We’ll be watching the write performance of the API com-
pared to the growth of the system in order to check its success.

Obviously the wording you use will be different, and the information will be more
extensive. Feel free to take the time to expand on the information and make it more
compelling and engaging. Avoid sales-speak at the abstract level and instead tell devel-
opers why you’ve created the system. Think of them as partners, because that’s what
they are: partner developers. The more they know about the point of your API, the
more likely they are to create applications that dovetail nicely into your ecosystem,
creating the user experiences you’re trying to provide.

 Once you’ve established why you have an API, you need to talk about what the API
can do—but not in a flat, reference documentation way. Although reference docu-
mentation is indeed important, your documentation can’t stop there, because devel-
opers outside your organization may not have enough context to understand how
they can use these APIs to good effect. Describe a couple of use cases and what the
workflow would look like. This description doesn’t need to be as detailed as a tutorial
would be (although these examples will likely also be in the tutorials you provide
later). You need to explain what the use cases are and provide a high-level description
of how tasks would be accomplished using the APIs you’re providing.

 Here are a couple of examples of the kind of information that should be included
on the page describing your overall API strategy:

189Documenting your API
 We’re looking forward to seeing developers create innovative interfaces into
the system so that there are numerous ways for users to interact with the plat-
form. Here are some examples:
– Using the “user” API, you can get customized information about users, such

as their full name and photo, in order to provide a personalized interface.
Pulling the most popular shared information from their personal network,
you could then allow them to share the information, comment on it, or save
it to a favorites list.

– If your system has actions associated with it—such as fitness goals, blog posts,
calendar events, or game results—you can post this information to the user’s
timeline using the status API.

– When the user is interacting with different content throughout your applica-
tion, you can integrate related information from the timeline—or write new
information to the timeline based on what users discover via your application.

 We’ve created several widgets and REST endpoints to enable developers to
make it possible for users to share content they’ve found elsewhere with their
personal network on the system. Here are a few ways this could be used:
– The simple widget can be placed on any web page anywhere on the internet

with a simple copy-paste of the JavaScript code. Alternately, the code can be
generated with the page in order to automate adding share buttons to the
pages. These widgets are updated frequently to add more functionality, such
as tagging, grouping, and commenting on the content. The widgets can be
set up to show how many users have shared the information.

– While users are reading through a different interface for data, such as a mag-
azine or news highlight application, that application can use one of the REST
endpoints to allow for sharing an originating page to their network, friends,
or to the larger network.

– You can create a custom widget for sharing information that shows which of
your users’ friends have shared the information, what comments they’ve
made on the content, or even which friends might be most interested in see-
ing a particular page.

These types of examples, on the landing page or close to it, make it far more interest-
ing for developers to interact with your system. When you can engage them quickly
and get their creative juices flowing, you’ll have bought yourself some time to help
them get up and running with the system. If you’re able to show small example appli-
cations performing the tasks you list in the overall API system, so much the better.

9.3 Documenting your API
The second pillar of developer experience is documentation (see figure 9.2). Docu-
mentation covers a wide range of different methods to help developers understand
the platform, work with it, and succeed in integrating the API into their own system.

190 CHAPTER 9 Empowering your developers
The types of documentation you need to have are as follows:

 Reference documentation—“What does it do?” This is the documentation you’re
probably expecting to need. You’ll be answering more specific questions such as
“What does each endpoint of the platform do?” “How does a developer call it?”
and “What is the expected response to a call?”

 Workflows—“How do I do something with the platform?” This type of documen-
tation tells a developer how to achieve specific tasks using the platform.

 Tutorials—“How can I get started?” These tutorials should take your specific tar-
geted use cases and create step-by-step guides for developers to follow in order to
get started using the system, or achieve common, simple tasks. Usually the tuto-
rials you should include are the most important items from the workflow list.

9.3.1 Reference documentation

Reference documentation is the “standard” documentation you’ve likely seen for APIs:
a list or other way to see each of the endpoints for the platform along with a basic
description of what each endpoint does. This documentation is frequently done
poorly, with only a skeletal description that’s difficult for outsiders to understand.
Even though the reference documentation isn’t going to cover all your needs, doing a
great job on it is vital. When developers can’t figure out how to interact with an end-
point, or with the system itself, they get frustrated quickly and your support load
increases dramatically.

Reference
Documentation

Endpoint
Documentation

System Guides

Complete
Requests/Responses

Based on
Use Cases

Clear and
Complete Steps

Tie Tutorials
Together

TutorialsWorkflows

Guide for Each
Endpoint

Simple Tasks

Figure 9.2 Documentation takes many forms, and it’s critical to understand that
reference documentation—what each endpoint does, and what the requests/responses
look like—is only the beginning. Developers need to understand workflows for
complicated chains of requests, and tutorials and guides are also critical to helping
them understand the entire system more clearly.

191Documenting your API
 This section explores how you can create effective reference documentation and
the advantages of each approach.

BARE MINIMUM

At a bare minimum, reference documentation must have the following:

 A catalog of endpoints to find the resource a developer is seeking
 Clear instructions on interacting with the system itself:

– Header information
– Authentication
– Error codes
– Any other general information a developer will need to make a successful call

 For each endpoint, the following is required:
– The exact endpoint for the call
– How to make a successful request
– What a response will look like

Building this kind of documentation takes more time compared to much of the API
documentation out in the world, but without all these items, you’re leaving out infor-
mation that’s needed in order to figure out how to use the system. Honestly, it’s fre-
quently difficult to impose a requirement on developers to create excellent
documentation. To provide this bare minimum of documentation, you can help your
developers or technical writers by creating templates so that they can see exactly
what’s expected and required for each endpoint. It doesn’t matter how you create this
documentation or how you present it as long as it’s understandable without any addi-
tional context.

PROVIDING OPPORTUNITIES TO EXPLORE THE API
Once your reference documentation has the basic necessities, strongly consider pro-
viding a method for exploring the API. This can be done in various ways:

 All the major schema modeling frameworks provide documentation that
includes all the bare minimum requirements listed earlier along with the ability
to interactively explore the endpoints without writing code and making live
calls. For reference, the schema modeling frameworks I covered earlier were
RAML and OpenAPI.

 There are some independent systems, like I/O Docs, that allow you to docu-
ment your API and provide interactive exploration without using a formal mod-
eling system.

 Companies like Apigee include an interactive exploration console as part of
their API management offerings. The console provided by Apigee allows for
simple authentication and makes live calls against the database for the user.

 If you choose to use hypermedia, you can provide a simple tool that uses those
references to find related information, creating a different method for explor-
ing the API.

192 CHAPTER 9 Empowering your developers
Whatever path you choose, providing this kind of exploration tool will

 Help your developers answer questions about which endpoint they want to use
 Show them what a successful call looks like to a particular endpoint
 Build a strong mental model of what your overall platform looks like

When your basic reference documentation implements an exploration tool for your
customer developers, it improves your developers’ experience immeasurably and
reduces your support burden.

 All platform providers have to have some basic reference documentation available,
and frequently their documentation doesn’t even reach my bare minimum require-
ments. Keep in mind that you want your API to stand out for positive reasons: you want
it to be easy for people to figure out which endpoint to use for a particular purpose,
and you want developers to have confidence that they can use other endpoints, know-
ing that the documentation will give them a solid understanding.

9.3.2 Workflows

Now that we’ve covered the question of what each endpoint does and how the devel-
oper should work with it, it’s time to answer the question of “How do I do something
with your platform?” This question is rarely answered with a single endpoint; most
endpoints need to be used together to create a meaningful integration into the plat-
form. Enter workflows, the best way to answer this question for your developers.

 A workflow describes, briefly, the steps needed to use a particular endpoint to
retrieve information (see figure 9.3). It’s frequently the case that one endpoint isn’t
usable without first calling other APIs to retrieve parameters to pass to that endpoint.

Ge�ing a Billing Report

• ACCOUNT_NUMBER

• PROPERTY_ID

• PRODUCT_ID

Use PROPERTY_ID
and PRODUCT_ID

to get Report

Use PROPERTY_ID
and ACOUNT_ID

to get PRODUCT_ID

Use ACCOUNT_ID
to get

PROPERTY_ID

Get Accounts
and Groups

Figure 9.3 Getting an Akamai Billing Usage report from scratch can be somewhat
daunting. You need to call three different API endpoints to get specific information in
order to make the final call. Creating sample code or documenting workflows can
help users get past this type of challenge with minimal frustration.

193Documenting your API
Here’s an example of a workflow similar to many instances I’ve seen in the past:

Goal: Get a billing usage file for all products for an account

 Call one endpoint to retrieve the ACCOUNT_NUMBER.
 Using the ACCOUNT_NUMBER, call another endpoint to retrieve the PROPERTY_ID.
 Using both of these parameters, call a third endpoint to find out which PRODUCTs

were active during a particular time period.
 Finally, call the billing endpoint using all of the previous pieces of information.

This workflow isn’t particularly complicated. It’s flowchart information describing
how to use the API to retrieve information, but without this kind of additional infor-
mation, it can be extremely confusing for customers who aren’t sure where they
should be getting these required parameters from.

 Note that there’s a goal at the top. Each of your workflows should describe, in nar-
rative form, exactly what the goal is for the workflow you’re including. It may, and prob-
ably will, seem painfully obvious to you and silly to include this information, but include
it anyway. Your developers will thank you for the ability to scan through the workflows
and find exactly the one they want, using the goals at the top of your examples.

 Although your tutorials can be focused on the main use cases for the API, you need
workflows for every set of endpoints to make sure that developers don’t flounder
around looking for the information they need. Even if the information they need isn’t
in the API, tell them that. It’s never a bad idea to add more helpful documentation for
someone who’s trying to use your system.

 Workflows are the cornerstone of your platform, demonstrating the various ways
users can interact with the system. These workflows must be easy, straightforward, and
understandable. This is a good time to talk about usability testing. As an industry,
we’ve done an increasingly good job of testing the usability of systems we create. But
the same can’t be said for API developer interfaces. When you’re pretty sure that
you’ve got the workflows covered, it’s a great idea to get people outside your group to
try to work with each of the APIs you have, following the reference documentation
and workflows that you’ve provided.

9.3.3 Tutorials

When my current company wanted to redo its developer portal, we reached out to the
current developers and asked them what they’d like to see on the site. The over-
whelming majority of the respondents replied that the thing they needed most was a
Getting Started section to work through. Creating and adding this tutorial to the sys-
tem increased the number of developers working with our system significantly, and we
spent far less time answering simple questions from new developers.

 Tutorials are one of the best ways to help developers ramp up on knowledge about
your platform. In addition, creating these tutorials based on your most important use
cases gives you an opportunity to help your developers understand how you want
them to interact with the API.

194 CHAPTER 9 Empowering your developers
 Before I demonstrate how to write an excellent tutorial, here are some guidelines
for creating these guides:

 Do not assume any specific level of knowledge for the readers.
 Have someone with excellent writing skills write the steps if at all possible. The

tutorial will need to be more narrative than the reference documentation or
workflows.

 If you choose to provide the tutorial in both text and video form, make sure
that both stand alone as excellent narratives. Don’t slight one in favor of the
other; developers learn in different ways and you want to make sure the experi-
ence is great either way.

 Break down the steps into separate pages. Give each step a beginning (goal),
middle (technical content), and end.

 Provide sample code that follows the tutorial so that developers can follow
along without cutting/pasting or retyping code, allowing them to move more
quickly and focus on understanding what’s happening in the step. In terms of
language to use, it’s great if you can provide different programming languages,
but if not, be considerate of students who might not be familiar with the pro-
gramming language you choose.

 At the end of each step, give the student a virtual high five for having accom-
plished the task.

 Tie related tutorials together in a Choose Your Own Adventure presentation to
encourage developers to work through multiple tutorials in a row and get a
good, deep understanding of the system.

When creating a Getting Started tutorial it’s quite important to realize that this tuto-
rial aims at developers who are not at all familiar with your system. Everything you can
do to make this more accessible for your readers is helpful. My experience with the
tutorial we’ve made, which is now quite well received and meets most developers’
needs, was this:

 I started out with a simple Python code sample (shown later in this chapter),
and we made step-by-step instructions for how to implement it.

 The authentication steps turned out to be difficult for developers to follow, so I
added a new script to simplify the integration of authentication information
into their system for use by the sample code.

 We discovered that on Windows boxes, the SSL implementation in Python doesn’t
work in versuib 2.7 (except in Cygwin), or in Python 3.3, so I had to come up with
another way for Windows users to work through the Getting Started tutorial.

 I created a Docker container (as I did for this book) so that the developers
could pull the container onto their system and follow along with the examples,
and also use the other sample code in the repository.

The acceptance tests created in chapter 8 are a great place to get outlines for your
tutorials. One of the examples from that chapter was as follows:

195Documenting your API
Acceptance test case: Add new pizza topping

 Get a list of pizza toppings in the system
 Verify that the new topping doesn’t exist
 Add a new topping to the system
 Get the list of pizza toppings
 Verify that the new topping has been added

GETTING STARTED: INTRODUCTION

To get started on a tutorial, you’ll want to write a short introduction to it. Restating
the acceptance test in this section is an excellent idea, because it gives the developer
the opportunity to know which steps are included. Start out with a summary of what
task the tutorial is modeling for the student.

In this tutorial, you will be adding a new pizza topping to the system. To do this, it’s
critical that the system is checked to verify that the topping isn’t already there.
Additionally, you will check the topping list after adding it to make sure that the topping
has been added correctly. The samples will be created in Python, but the code is quite well
commented and runs as written. Rather than focus on the code itself, focus on the
concepts in the tutorial.

This simple introduction helps to add context for developers. They’ll understand
what they’ll be doing, and it should make it quite simple to follow the instructions.

INDIVIDUAL STEPS

Each step should be presented on its own page, although you can combine two
related steps into a single step that’s slightly more complicated. For this example, I’ll
merge “Get a list of toppings” and “Check to make sure that the topping doesn’t
exist.” This example will be in Python, but I’ll comment the code clearly. The reason I
use Python for my example code and tutorials is that it’s the easiest language to read if
you don’t know the language yourself. It reads similarly to English, and when you’re
creating code samples for tutorials or other learning, you can increase the readability
with code comments and clearly defined variable names.

Sample tutorial step one: get a list of toppings
For the first step, you’ll be getting a list of current toppings from the system. To
retrieve this list, you need to send a GET request to the toppings (linked to the refer-
ence documentation) endpoint:

GET /api/v1.0/toppings

This code will return a JSON array of toppings that you can work with:

{u'toppings':
 [
 {u'id': 1, u'title': u'pepperoni'},
 {u'id': 2, u'title': u'peppers'}
]
 }

196 CHAPTER 9 Empowering your developers
In this example:

 I gave an exact example for what comes back from an API call.
 The code sample is simple and straightforward.
 I didn’t use any fancy functions or abstract concepts, and I added a healthy

number of code comments.

At the end of each step, congratulate the student for having accomplished the task in
question. And after all the steps, summarize the task again and how it was accom-
plished. Then point students to other tutorials they might want to move forward with
to continue their exploration of the system.

9.4 Building blocks
As I’ve mentioned, marketing to developers is not like marketing to other people. As
developers, we like to see examples of things and be given building blocks to work with.
Most developers I’ve met would rather stick a fork in their own eye than read through

(continued)
Once you have the list, you can check to make sure that the topping in question
doesn’t yet exist. The following Python code can be found at http://toppings
.com/code_samples. The code works with Python 2.7. Minor changes are needed for
Python 3.3, and that code is available in the repository as well.

#! /usr/bin/python

Create a variable to hold the topping name
topping_to_check = "Sun-dried Tomatoes"
topping_in_list = False

import urlparse as parse
import requests

Create an HTTP session for making requests
session = requests.Session()

Make the HTTP request to the toppings endpoint
toppings_result =
 session.get("http://www.irresistibleapis.com/api/v1.0/toppings")

Transform the result from JSON into an object for the "toppings" item
toppings_list = toppings_result.json()["toppings"]

Iterate over the topping list to check for the specific topping
for topping in toppings_list:
 if topping["title"] == topping_to_check:
 topping_in_list = False

if topping_in_list:
 print "In List"
else:
 print "Not in List"

197Building blocks
a PowerPoint presentation or sit through an abstract “Buzzword Bingo” meeting with-
out any hands-on content. You can choose among several different ways to provide a
coder with pieces to build from, or show them how something works from the code
side rather than showing pictures to describe the overall effect. Detailed, hands-on toys
that allow developers to build working models are the best way to reach them.

9.4.1 Sample code

One of the first things that developers will seek out once they’ve learned what they
want to do with your system, or even while they’re exploring, is sample code that lets
them get started using the system right away. It’s important to provide an easy way for
them to learn about the authentication system for your platform, but it’s equally
important to give them some building blocks to start working directly with the system
as quickly and efficiently as possible.

AUTHENTICATION LIBRARIES

When a developer starts working with your system, the number one difficulty encoun-
tered is generally related to authentication and authorization. Providing supported
libraries in as many programming libraries as possible is critical to making sure that
clients written for your platform use the authentication mechanism in a reasonable
way. Most authentication systems require knowledge of both encryption and the HTTP
protocol. Cryptographic signing algorithms are complicated to create, and it’s easy to
make mistakes when creating a signing library. Leaving this task to your developers,
who aren’t likely experts in this field, creates unnecessary work for them, as well as a
strong likelihood that there are some incorrect assumptions in their code.

 When providing a signing library, you also need to include a great README file to
help your developers implement the code—code guidance that makes it simple to
integrate the code into their client. The Akamai platform has many signing libraries
available in the GitHub repository that follow these guidelines at www.github.com
/akamai-open.

 Besides this requirement, it’s quite helpful to provide sample code for most, if not
all, of the endpoints in your platform. The next section discusses how to create useful
sample code and provide it in a form and location that’s useful for your customer
developers.

REFERENCE IMPLEMENTATIONS AND CODE SAMPLES

Working examples for the endpoints, workflows, and integration possibilities make it
quick and easy for a developer to see how to interact with different endpoints. Even if
you don’t have code for each endpoint, the more code you have available, the better.
You can run reports on your API to see which APIs are called the most by your custom-
ers and be guided by that knowledge when making your sample code. Additionally,
when meeting with or training your customers, be sure to make a note of the func-
tions the customers are most excited about. Even if they’re asking for something a bit
more complicated, providing sample code for that use case helps you serve that cus-
tomer as well as other customers.

www.github.com/akamai-open
www.github.com/akamai-open

198 CHAPTER 9 Empowering your developers
 Great sample code does the following:

 Demonstrates one of the workflows you included in the documentation
 Avoids any tricky mapping or abstract functions
 Provides debugging output so that the user can see what the conversation

between server and client includes
 Is consistent across all the examples in terms of error handling, debugging, and

verbose output

An example of good sample code is found in the following listing, which is used by
Akamai as part of the Getting Started tutorials. It includes the use of an authentica-
tion mechanism and an example set of calls to the diagnostic tools endpoint. The
code itself does something simple—calling the standard network utility dig, but even
this makes for a great Getting Started guide, as most engineers are familiar with this
utility, so the only thing they’re focused on is the interaction with the system.

#! /usr/bin/env python
Very basic script demonstrating diagnostic tools functionality
#
import requests, logging, json, sys
from http_calls import EdgeGridHttpCaller
from random import randint
from akamai.edgegrid import EdgeGridAuth
from config import EdgeGridConfig
import urllib
session = requests.Session()
debug = False
verbose = False
section_name = "default"

If all parameters are set already, use them. Otherwise
use the configuration from the ~/.edgerc file
config = EdgeGridConfig({},section_name)

Allow for command line or configuration file inclusion
of "verbose" and "debug"
if hasattr(config, "debug") and config.debug:
 debug = True

if hasattr(config, "verbose") and config.verbose:
 verbose = True

Set the config options
This is the standard method for all of our signing
libraries in every language – set the authentication
for a standard HTTP library using the client_token,
client_secret and access_token
session.auth = EdgeGridAuth(
 client_token=config.client_token,
 client_secret=config.client_secret,
 access_token=config.access_token
)

Listing 9.1 Basic API sample code

199Building blocks
if hasattr(config, 'headers'):
 session.headers.update(config.headers)

Set the baseurl based on the 'host' information in the
configuration file
baseurl = '%s://%s/' % ('https', config.host)
httpCaller = EdgeGridHttpCaller(session, debug,verbose, baseurl)

Request locations that support the diagnostic-tools
print
print ("Requesting locations that support the diagnostic-tools API.\n")

location_result = httpCaller.getResult('/diagnostic-tools/v1/locations')

Choose the first location for the diagnostic_tools call
location = location_result['locations'][0]
print ("We will make our call from " + location + "\n")

Request the dig information for {OPEN} Developer Site
dig_parameters = { "hostname":"developer.akamai.com.", "location":location,

"queryType":"A" }

dig_result = httpCaller.getResult("/diagnostic-tools/v1/dig",dig_parameters)

Display the results from dig
print (dig_result['dig']['result'])

This example demonstrates several useful patterns. It’s clearly demonstrating a fairly
simple workflow:

 Request the locations from the platform
 Select a location from the list
 Make a dig call using this location

Without sample code and a workflow example, developers were getting confused
about where to get the location information in order to make the dig request. There
are two requests to the system:

GET /diagnostic-tools/v1/locations
GET /diagnostic-tools/v1/dig?\
hostname=developer.akamai.com&queryType=A&location=Schiphol%2C+Netherlands

In this case, the example shows how to make a call with and without extra parameters,
in the code language being used.

 Note that in the case of Akamai, we’ve created the diagnostic-tools script in six
different languages, and we have a goal of including all the languages we have librar-
ies for. The more examples you can provide that are meaningful to the most custom-
ers, the more success they’ll have without needing direct handholding from you.

9.4.2 Reference applications

Sample code is generally about a simple workflow—figuring out how to get specific
information from an API endpoint. To create a meaningful application, many of these
will need to be combined together. Providing a couple of sample applications that are

200 CHAPTER 9 Empowering your developers
more functional is a great way to help developers see how to work with complicated
data from the API. If you check the GitHub repository for Akamai, you’ll find a few
application examples using Node.js. In fact, one of the examples was documented in
seven separate blog posts on the forum so that users could work through the example
from start to finish and run it on their own system to browse through the information
it provided.

9.4.3 Tools and techniques

An excellent teaching/guiding set of tools and techniques should be available to help
your developers learn about the whole set of APIs provided by your team. As different
people learn in different ways, so too do different people like to explore and under-
stand topics in their own direction. Provide tools and techniques that help each user
learn about your system in the way that makes the most sense to that individual.

USING API CONSOLES TO UNDERSTAND CALLS

Earlier, in section 9.3.1, I provided a short description of API consoles. For an exam-
ple, take a look at figure 9.4, a screenshot of the Apigee console for the Twitter API.
This is a great example of using a console to look inside a successful request to the
API. I’ve set up the tool to use OAuth authentication, which represents synedra on
twitter—hence, synedra-twitter. Any calls I make to the system will happen on
behalf of this user. Below that section is an area where you can pick out which API you
want to call using the console.

Figure 9.4 The Apigee console for exploring the Twitter API lists the most
common endpoints in the Twitter API, making it easy to understand the
breadth of information available via the platform. The authentication can be
activated to use your Twitter identity, using OAuth, so that the API
responses are exactly what you see when accessing Twitter directly.

201Building blocks
As an example, I’ll select the /statuses/home_timeline.json option. Figure 9.5
shows the result of this query. The screenshot doesn’t show the response headers
(although if you scroll up they’re there), nor does it show the entirety of a request. I
encourage you to play with this console yourself at https://dev.twitter.com/rest
/tools/console.

 The Apigee console is available on its website. You can build your own Apigee-to-go
console to embed in your developer documentation. A generic console is also offered
at https://apigee.com/console/others.

Figure 9.6 demonstrates how the Apigee generic console can be used to access the
Irresistible API. As you can see, if it’s a simple enough API, it’s easy to fit everything in
one screenshot.

 A couple of other consoles available—in fact, all the schema modeling languages I
discussed—make it simple to create mini-consoles for all the calls. The difference
between a schema model–based example call and a console call is that the console is
making the request directly to the API, whereas the schema model will only return
exactly what appears in the document. Both are valuable, but it’s worth considering
whether you should add the console to the toolboxes of your users in order to pro-
vide that extra dose of confidence live calls make. In addition, providing examples of

Figure 9.5 For the Twitter API, there are example calls for the majority of the Twitter endpoints.
Selecting one of these demonstrates what the request and authentication look like, and how the
response is formatted.

https://dev.twitter.com/rest/tools/console
https://dev.twitter.com/rest/tools/console
https://apigee.com/console/others

202 CHAPTER 9 Empowering your developers
successful calls can help developers debug their calls themselves, by showing what the
exact request path, body, and headers should be to get the desired response.

COMMAND-LINE UTILITIES

Consoles are great, but the utility is pretty much bounded in the web page. It’s not
possible to interact with the input/output without copying and pasting. If a developer
can successfully make the call from the command line, it becomes much easier to grab
the result and stick it in a file or process it with a local script. There are two main com-
mand-line utilities for making HTTP calls:

 curl—The curl command is the old standby. Most developers and system
administrators are familiar with the curl command as a way to request web
pages. It can, and does, get used to scrape web pages and is quite useful for
grabbing HTML files in order to process them. But it’s not tuned for API use,
and the output formatting makes it difficult to visually parse the response for a
request to a JSON-formatted REST API call. Additionally, creating a custom
authorization module is not straightforward, and so companies frequently
“wrap” curl to include the authentication in the calls (which means the creden-
tials are likely to be passed on the command line).

 HTTPie—HTTPie was recently written as a command-line alternative, and it’s
strongly tied to API calls. JSON responses are formatted well, with color coding
and indentation. Writing an authentication plug-in is relatively easy, and
because of this several HTTPie authentication plug-ins are available. It’s open
source, free, and definitely worth including in the documentation as an easy
way to interact with the API from the command line.

Figure 9.6 The Apigee generic console can be used to call the /toppings resource from irresistibleapis.com,
making it possible to see all of the request and response information in an easy-to-read format. This enables you,
or your users, to easily explore and understand the various endpoints.

203Developer support
OTHER TOOLS

Several places in the book have pointed to different tools and techniques you might
well want to share with your developers. Remember, the more information you pro-
vide to them about ways to interact with the system, the more likely they are to
become engaged, productive members of your community.

 HTTP sniffers—These tools make it possible to watch the traffic as it flows to and
from your personal device. They are great, but some of these tools (such as
HTTPScoop) can only view HTTP traffic, which locks out any debugging of traf-
fic. Those that do provide a proxy answer to sniffing HTTPS (Charles, Fiddler)
are sometimes still not able to see the traffic if the API engine has been set up to
disallow proxy calls.

 Code debugging—Teach your developers how to inject error handling and HTTP
debugging into their code. All your code samples should support this by
default. More information is almost always better, and it means that your devel-
opers will ask more meaningful questions.

 Building clients from schema models—Each of the schema modeling systems I’ve
discussed have open source tools available to allow your developers to bootstrap
a simple client so they can work from there to build exactly what they want.
When you don’t have sample code for a particular endpoint, make it easy for
your developers to leverage the base API design document to get where they’re
going as easily as possible.

There’s no specific list of tools you should provide guides for or make available to
your developers. Listen to your partner developers to understand where their pain
points are in getting started, working with your simple APIs, or integrating your more
complex APIs. Then find ways—even odd, unconventional ways—to help the develop-
ers succeed at what they’re trying to achieve.

9.5 Developer support
The final pillar of developer experience is developer support. As with the other pil-
lars, I’m going to tell you that it’s critically important to the success of your API. It’s
arguably the most important piece because your developers will only need help of this
type when they’re stuck and frustrated. If you don’t provide excellent support, you
can encounter various challenges:

 Developers could get frustrated and give up on using the API. They may come
up with different, inefficient, or unsupported answers to their problems.

 Although slighting any facet of the developer experience can make developers
grumpy, failing to respond to a specific blocker can create a great deal of loud,
negative sentiment for your team among the developers.

 Taking the time to listen to the challenges that your users have can help you
improve the experience for future developers by making answers excellent and
making sure they’re findable within your portal.

204 CHAPTER 9 Empowering your developers
In short, it’s extremely important to have a plan for how you’re going to actively sup-
port your developers before your API gets deployed.

 Some companies have the resources to provide support around the clock—and
APIs that need that level of attention. But most APIs, in particular when they start out,
can get by on much less support. The better you’ve done with the earlier items in this
chapter—with communication, documentation, and tools and techniques—the less
support you’ll need to do.

 What is important, though, is that your developers know what kind of turnaround
they can expect for questions they ask. It’s best to try to get back to developers with
questions within a business day. Your developer portal needs to be organized well so
that the information they’re seeking is easy to find.

 There are two different areas of support to consider. The first is interactive sup-
port, such as a forum, help desk, or email alias, where developers can ask specific
questions and receive answers from your team. Based on the interactions you have,
you can, over time, build up a noninteractive repository of blog or forum posts, or cre-
ate a FAQ, to help future developers find the answers they need quickly.

9.5.1 Interactive

Interactive support is generally the mainstay of your developer support program. This
is the system you implement in order to handle the questions from developers and the
answers you provide.

SUPPORT MODELS

You can use many different mechanisms to handle this type of support, and each has
its advantages and disadvantages:

 Email alias—This is the most common support methodology that companies
implement, and it’s a tempting proposition. It’s free, customers know how to
use it, and it doesn’t take any time to set up. But an email support queue has
several problems:
– There’s no archive but individual email archives.
– You aren’t building a knowledge base out of the interactions you have with

your customers.
– If someone leaves the company, all the interactions that person had will

evaporate.
– There’s no way to find similar questions/answers to add more appropriate

assistance.
 Help desk application—This is a great option for many companies that want to

give users a personalized feel while building up a knowledge base, but the sys-
tem is somewhat closed to visitors and won’t necessarily help them find infor-
mation that they need.

 Forum—This is the most time-intensive, but it creates a knowledge base as it
goes along, so that customers and visitors can type a question into the search
box and find appropriate previous threads. Additionally, this system supports

205Developer support
posts with tutorials or overarching posts about the system, allowing you to cover
frequently asked questions in a deliberate way.

Selecting the correct model for you will take time, and you may go through a few dif-
ferent options before you land on the one that works best for you.

EFFICIENT INTERACTION

As you run through different interactions, you’ll probably encounter many developers
who don’t ask questions efficiently. It’s critical to set context when providing docu-
mentation, and it’s important for developers to give you the right context when
they’re asking for help. The experience when the context isn’t set looks a lot like this:

Q: This is broken. Help.
A: What is broken?
Q: The cookbook endpoint.
A: What happened?
Q: It didn’t return all the books.
A: What were you doing at the time?
Q: Trying to get a list of 1999 cookbooks.
A: What did you expect to get?
Q: A list of all of the 1999 and later cookbooks.
A: That’s not how it works.

Okay, that’s a little drawn out, but I’ve seen so many conversations that go through
these cycles, and seriously, there’s little that’s more frustrating for any human than
having to keep iterating on a problem that’s not working. Teach your developers to
ask questions well. If they don’t, give them the pattern so they get it on the second iter-
ation. It looks like this:

 I did X.
 I expected Y to happen.
 To my dismay, Z happened instead.

You may argue that the second section isn’t needed, but trust me, it is. So many “bro-
ken” things are “broken expectations.” Note that this is still a bug in your product, but
it’s a documentation bug. You set their expectations incorrectly. To illuminate the
types of problems you might see, here’s an example:

 I jumped off a cliff.
 I expected to sprout wings and fly.
 To my dismay, I plunged to my death instead.

See there? It’s not a bug in gravity. The problem was with the expectation. If they’d
said, “I jumped off a cliff and plunged to my death!” you’d be hard-pressed to under-
stand why this was an unexpected result. Help your customers to give you good, com-
plete questions so that you can answer their question and quell their frustration with
one or two interactions instead of dragging both of you through the mud.

206 CHAPTER 9 Empowering your developers
9.5.2 Noninteractive

As you answer questions that users have, you’ll likely experience clumps of questions
related to particular issues, which is your signal that it’s time to create some noninter-
active information. Yes, when a conversation happens in your forum (or other sys-
tem), there’s an archive of that information, but sometimes you need to start at a
higher level and walk people through the solution step by step. In those cases you’ll
want to create static content so that when people search on a particular topic, they
find a fully fleshed-out answer to the question.

 Here are some examples of topics that I’ve written blog posts to clarify:
 Purge—Several different APIs at Akamai allow customers to purge the content

from the edge (cache) systems. But how they interact, which one is current, and
how to plan for the future is not at all clear. I wrote a post clarifying what a new
integration should do and how.

 Tutorial—We created a set of seven blog posts within the forum system explain-
ing how to create a sample application around one of our more complicated
API systems.

 Context—We wrote a few different posts explaining how our system worked and
what users should expect when working with it.

9.6 Summary
This chapter explored the following:

 Pillars of developer experience—You learned the essential factors for ensuring that
your developers achieve success easily and quickly.

 Clear communication and a discussion of the various types of information to share with
your developers—Consistent, clear, and transparent messages about your business
value, metrics, and expected use cases are critical to creating a great developer
experience.

 Documentation—Although reference documentation is vital, it’s not the only
type of documentation needed for your API clients to thrive. Even more essen-
tial is information on what can be done with your API and tutorials to guide
developers through the process of accomplishing those tasks.

 Building blocks—Developers respond enthusiastically to sample code and appli-
cations—examples to help them get started quickly and effectively. Additionally,
libraries to abstract difficult tasks such as authentication can smooth out the
trickier tasks on your platform.

 Support—Providing a consistent method of asking questions, finding answers,
and learning new information about the system is equally important to the other
pillars. Whichever method you choose, whether it be a forum, email, or some
other mechanism, the most important piece of support is making sure that your
customers understand where to get help and what kind of response time to
expect.

index
Symbols

? character 29, 75–76
[] (square brackets) 34, 40,

76
{ } (curly braces) 33, 40, 76,

144
/ characters 35
& character 75–76
= character 75
$ character 36
$.get function 47

Numerics

200 HTTP status response
message 67, 70, 143,
152

201 Created message 67, 69
202 Item Marked for Deletion

message 70
203 Object marked for dele-

tion message 67
204 response message 70, 147
301 Resource moved perma-

nently message 67
302 Resource moved tempo-

rarily message 67
400 Malformed request

message 67
401 Authentication failure

message 66–67
403 Authorization failure

message 66–67
404 Page not found

message 66–67
405 Method not allowed

message 67

409 HTTP response message
145

500 Server Error message 66

A

abstract functions 198
Accept header 74
acceptance criteria 163
acceptance tests, mock server

API 176–178
Accept-Language header 74
Access-Control-Allow Headers

header 75
Access-Control-Allow-Methods

header 75
Access-Control-Allow-Origin

header 75
activity stream 118, 131–132
Add API form 140
Add New API option 139
addressability, HTTP 65–66
agile scrum board 162
agile sprint 179, 182
agile/test-first development

162–163
Akamai 61–62, 134
Akamai Billing Usage report

192
all mode 148
Amazon 134
ampersand character 75–76
antipatterns 59
Anypoint portal, MuleSoft

139
API Administration board 139
API authorization 56

API business value 114–134
business goals 115–123

customer/partner
retention 120–122

market dominance
122–123

monetization 115–118
usage 118–120

metrics 124–127
customer/partner

retention 126
market dominance

126–127
monetization 124–125
poor metrics 124
usage 126

use cases 127–134
customer/partner

retention 133–134
mobile 127–128
monetization 128–130
usage 130–133

API calls, mapping 41
API Commons 23–24, 101–

103
API Console interface 149
API consoles 200–202
API definition 102
API design principles 89–113

avoiding strict REST
philosophy 104–109

creating comprehensive
data transfer
scheme 106–108

creating query
language 105–106

creating separate batch-
ing system 108
207

208 INDEX
API design principles, avoiding
strict REST philosophy
(continued)

expanding and including
related resources
104–105

avoiding surprises for users
90–95

copying successful APIs
101–103

focusing on developer
experience 109–113

communication and
consistency 109–110

documentation 111–113
focusing on use cases 95–100

application integration use
cases 97–100

mobile use case 96–97
API endpoints 20, 151
API First 49–63

case studies 58–63
API as main product

58–59
mobile First 59
refactoring for API

First 59–61
strategic direction 61–63

code consistency 53–54
example of 52
functional equality 54–55
increased productivity 55–56
internal and external access

56–58
overview 49
reasons for using 50–52
setup 50–52
troubleshooting 53–54

API inspection, tools for 84
Apiary 20, 22
api-docs endpoint 171
Apigee 191
application functions 41
arrays 34
authentication 56–57, 59–60,

62, 197
authorization 56–58
autocompletion 153
auto-generated documentation

153

B

back-end systems 20, 50–51, 53,
55

basepath 151
baseUri 140
batched-up calls 108
batching system 60
BDD (behavior-driven

development) 164
BeSpoke 60, 108–109
best practices, web services

82–83
methods and idempotency

83
nouns vs. verbs 83
using right status codes

82–83
blockers 181
blogs 119
Blueprint schema model 20
body content 28, 68, 71–72
boot2docker 45
building blocks for developers

196–203
reference applications

199–200
sample code 197–199

authentication libraries
197

reference implementations
and code samples
197–199

tools and techniques
200–203

API consoles 200–202
command-line utilities 202

business goals 115–123
customer/partner retention

120–122
market dominance 122–123
monetization 115–118
usage 118–120

business values 11, 17–18, 114–
134

metrics 124–127
customer/partner

retention 126
market dominance

126–127
monetization 124–125
poor metrics 124
usage 126

use cases 127–134
customer/partner

retention 133–134
mobile 127–128
monetization 128–130
usage 130–133

C

cache purge 134
case studies, API First 58–63

API as main product 58–59
mobile First 59
refactoring for API First

59–61
strategic direction 61–63

Charles proxy application 39
checkpoints 160–162, 169
Chrome Network tab 170
Chrome, setting up for HTTP

inspection 78–82
client code generators 164
client types 98
code consistency 53–54
code debugging 203
code refactoring 127
code-first development 165
CodeGen engine 165
command line, Heroku 176
command-line call 36
command-line utilities 202
communication 185–189

failures of 185–186
LinkedIn 186
Netflix 185–186
Twitter 186

strong and consistent
186–189

consumes parameter 151
content-delivery services 134
Content-Length header 74
Content-Type header 74–75
Context.io, monetization use

case 130
CRUD (create, read, update,

and delete) 29, 32–33,
68, 77, 137

cryptographic signing
algorithms 197

curl command 36–38, 40, 43,
202

curly braces 33, 40, 76, 144
customer/partner retention

as business goal 120–122
metrics for 126
use cases 133–134

automation/integration
134

unique content 133

209INDEX
D

DDD (design-driven develop-
ment. See DDD

DDD (design-driven
development) 160,
164–182

development planning
178–179

development sprints
179–182

kanban 181
planning 179–180
retrospective 181–182
standups 181

development strategies
160–166

agile/test-first
development 162–163

behavior-driven
development 164

code-first development
165

design-driven development
164–165

waterfall development
161–162

project management
166–168

functional specification
166–168

importance of 165–166
schema model 168

road-testing 169–178
debugging 198, 203
decoupled code 55
defensive coding 84–85
DELETE method

OpenAPI schema model
155–158

RAML schema model
147–148

delete_photo resource 15
design layer 164
design principles 89–113

avoiding strict REST
philosophy 104–109

creating comprehensive
data transfer scheme
106–108

creating query language
105–106

creating separate batching
system 108

expanding and including
related resources
104–105

avoiding surprises for users
90–95

copying successful APIs
101–103

focusing on developer
experience 109–113

communication and
consistency 109–110

documentation 111–113
focusing on use cases 95–100

application integration use
cases 97–100

mobile use case 96–97
design-driven development

24–25
designing API 32–34
developer empowerment

183–206
building blocks 196–203

reference applications
199–200

sample code 197–199
tools and techniques

200–203
communication 185–189

failures of 185–186
strong and consistent

186–189
documentation 189–196

reference documentation
190–192

tutorials 193–196
workflows 192–193

overview 184–185
support 203–206

interactive 204–205
noninteractive 206

developer experience 109–113
communication and

consistency 109–110
documentation 111–113
pillars of 184–185
See also developer empower-

ment
developer keys 124
Developer Tools section,

Chrome 80
developers

marketing to 12–13
supporting 25–26

development sprints 179–182
kanban 181

planning 179–180
retrospective 181–182
standups 181

development strategies
160–166

agile/test-first development
162–163

behavior-driven development
164

code-first development 165
design-driven development

164–165
waterfall development

161–162
diagnostic-tools script 199
dig utility 198–199
DigitalOcean 169
<div> tag 47
Docker container 194
Docker, installing system via

45–46
documentation 109, 111, 189–

196
reference documentation

190–192
minimum requirements

for 191
providing opportunities to

explore API 191–192
tutorials 193–196
workflows 192–193

documenting workflows 192
dollar sign character 36

E

EdgeGrid 62
edges 106
email alias 204
email interaction 129
endpoints 78, 109, 141, 151,

178
equals sign character 75
error handling 84, 198
estimates 180, 182
Etsy 60, 63, 108
Events API 103
expandable API 104
external access, API First 56, 58

F

Facebook 118–120, 130, 132–
133

210 INDEX
FedEx, customer/partner
retention 121–122

Fiddler 39, 84
filtering data 130
Fitbit 9, 23–24, 101
Flickr API 15, 91–93
Flipboard 133
formatting data 130
forums 204
fragile applications 59
free trial calls 125
Freebase 106
FTD 121–122
functional equality, API First

54–55
functional specification

166–168

G

generators 165
GET method

OpenAPI schema model
151–152, 155–158

RAML schema model
adding mock data

143–144
response format 146

Getting Started tutorial 194
Git, installing system via 46–47
GitHub 97, 102, 139
Google Calendar 103
graph web API, Facebook 120

H

hackathons 59
hashes 34
headers 28, 73–74
help desk application 204
Heroku 169, 175–176
high-revenue customers 125
Hootsuite 133
host entry 151, 172
hosting platforms 134
hosting providers, mock server

API 175–176
HTTP 28–30, 65–77

addressability 65–66
body 68
headers 73–74
interactions 30
parameters 75–77
protocols 7, 197

requests 28–29
responses 29–30
sniffers 38, 40, 203
status codes 66–68
verbs 68–72

HTTPie 202
HTTPScoop 39, 42–44, 84

I

-i flag 38
id attribute 47
idempotency 71, 83
index.html file 46–47
industry standards 22–24
inefficient workflows 185
info block 151
initial calls 127
Instagram API 59
integrating systems 9
interaction points 131
interactive support 204
internal access, API First 56–58
Irresistible API 201

J

JSON (JavaScript Object
Notation) 10–11, 33

K

kanban 162–163, 181
key-value pairs 76

L

LinkedIn 97, 105–106, 118–119,
133, 186

links 106
lists 34
Location information 71

M

management 166–168
functional specification

166–168
importance of 165–166
schema model 168

mapping API calls 41
mapping cases 131
mapping terms 8

Markdown 20–22, 136, 139,
149, 152

market dominance
as business goal 122–123
metrics for 126–127

marketing to developers 12–13
mashups 6
measuring calls 124
methods

HTTP 33, 45
idempotency and 83
overview 28

metrics 124–127
choosing 17–18
for customer/partner

retention 126
for market dominance

126–127
for monetization 124–125
for usage 126
poor 124

MGL (Metabase Query
Language) 106

minimum viable product.
See MVP

mobile devices 97, 100
mobile First 59
mobile interfaces 96
mobile use case 127–128
Mock API 171
mock server 169, 171–175
modeling languages 136, 140,

143, 158–159
modeling schemas 20
models 135–159

defined 136
determining needs for result-

ing API 136–138
resource methods

137–138
top-level resources 137

OpenAPI 149–159
subresource methods

155–158
tools and resources for

158–159
top-level resource methods

151–154
RAML 138–149

adding methods 141–142
adding mock data

143–146
adding resources 141
DELETE method 147–148
GET response format 146

211INDEX
models, RAML (continued)
PUT response format 147
query parameters 142–143
searching 148–149
support tools for 149

modular code 55
monetization 130

as business goal 115–118
metrics for 124–125
use cases 128–130

Context.io 130
SendGrid 129
Twilio 128

MuleSoft 22, 139, 149, 153
multiple representations,

reducing 56
MusicBrainz 106
MVP (minimum viable

product) 25

N

native mobile application 98
Netflix API 13–14

application integration
99–100

failures of communication
185–186

market dominance, as busi-
ness goal 122–123

Network button, Chrome 78
Network tab, Chrome 80, 170
Nginx 60
Node.js 28, 46–47
nodes 106
nonperformant applications

59
nonsecure APIs 39
nouns, vs. verbs 83

O

OAuth 56–57, 200
objects 34
OpenAPI schema model

149–159
subresource methods

155–158
tools and resources for

158–159
top-level resource methods

GET 151–152
POST 153–154

organically grown APIs 19

P

parameters 65, 67, 73, 75–77
partnerships 19, 120
PATCH method 71
paths 151
peers 7
People API 103
photo_id 92
photosets.delete method 92
PizzaToppings API 137, 150–

151
platform providers 192
platforms. See web APIs
plug-ins 60
portals 116
POST method

OpenAPI schema model
153–154

RAML schema model 144
Preserve Log option, Chrome

80
Procfile 176
produces parameter 151
productivity, increasing 55–56
project management 166–168

functional specification
166–168

importance of 165–166
schema model 168

protocols
HTTP 7, 28, 65, 197
transaction 65
web API 7

PUT method
OpenAPI schema model

155–158
RAML schema model 147

Q

query string 76
query support 130
queryParameters section 149
question mark character 29,

75–76
quick links 116

R

Rackspace 134
RAML (RESTful API Modeling

Language) schema
model 138–149

adding methods 141–142

adding mock data 143–144
adding resources 141
DELETE method 147–148
GET response format 146
PUT response format 147
query parameters 142–143
searching 148–149
support tools for 149

read operation 31, 68, 71, 75
README file 139, 197
redirect status codes 67
reducing multiple

representations 56
refactoring code 127
refactoring for API First 59–61
reference documentation

190–192
minimum requirements for

191
providing opportunities to

explore API 191–192
reference implementations

197–199
regression testing 161
representations, reducing

multiple 56
request headers 74
Request/Response tab 39
resources object 152
resources, RAML schema

model 141
response headers 75
Response tab, Chrome 80
REST (Representational State

Transfer)
avoiding strict REST

philosophy 104–109
creating comprehensive

data transfer scheme
106–108

creating query language
105–106

creating separate batching
system 108

expanding and including
related resources
104–105

overview 30
web services for 77

restricting access 56
retrospective 181–182
road-testing, creating mock

server API 169–176
acceptance tests 176–178
advanced 174

212 INDEX
road-testing, creating mock
server API (continued)

hosting providers 175–176
use cases 176–178

Root of the Document section,
RAML 140

Runkeeper 9, 23

S

safe mode 148
sales-speak 187
sample code 192
schema models 135–168, 203

defined 136
determining needs for result-

ing API 136–138
resource methods

137–138
top-level resources 137

OpenAPI 149–159
subresource methods

155–158
tools and resources for

158–159
top-level resource methods

151–154
RAML 138–149

adding methods 141
adding mock data 143–144
adding resources 141
DELETE method 147–148
GET response format 146
PUT response format 147
query parameters 142–143
searching 148–149
support tools for 149

scrum 162
SDKs (software development

kits) 95, 120
secure transactions 39
SendGrid, monetization use

case 129
server error codes 66
sharing icons and widgets

119–120
signing library 197
single-call interaction 128
SmartBear 158
SMS API industry 117
SOAP (Simple Object Access

Protocol) 6, 91
social platforms 126
software tests 164
sorting data 130

sprints
kanban 181
planning 179–180
retrospective 181–182
standups 181

square brackets 34, 40, 76
standard documentation 190
Standish Group 165
standups 181
static data 171
status codes 29, 39, 66, 73, 82–

83
stories 112
strategies 160–166

agile/test-first development
162–163

behavior-driven development
164

code-first development 165
design-driven development

164–165
waterfall development

161–162
streamlining 123
strict REST system 105
style attribute 47
subresources

OpenAPI schema model
155–158

RAML schema model
145–146

success status codes 67
support for developers 183,

203–206
building blocks 196–203

reference applications
199–200

sample code 197–199
tools and techniques

200–203
communication 185–189

advantages to strong and
consistent 187–189

failures of 185–186
strong 186–187

documentation 189–196
reference documentation

190–192
tutorials 193–196
workflows 192–193

interactive 204–205
noninteractive 206
overview 184–185

Swagger. See OpenAPI schema
model

system integrations 9

T

tagging data 130
telephony applications 128
term mapping 8
testing phase 181
testing, mock server API

169–176
acceptance tests 176–178
advanced 174
hosting providers 175–176
use cases 176–178

third-party applications 186
third-party developers 56, 59
title field 151
toppings API 30–31
transaction protocol 65
tricky mapping 198
troubleshooting web API

interactions 83–85
defensive coding 84–85
error handling 84
tools for API inspection 84

TTD (test-driven development)
164

Tumblr, usage use case 132–133
tutorials 112, 190, 193–196
Twilio 58–59, 115–117, 125, 128
Twitter API 14–15

application integration
97–99

failures of communication
186

usage use case 131–132

U

unit tests 176
unsupported workflows 185
URI (uniform resource

indicator) 65
URL (uniform resource

locator) 28–30, 65
URL paths 66
usage

as business goal 118–120
metrics for 126
use cases 130–133

Facebook 132
Tumblr 132–133
Twitter 131–132

use cases 95–100, 127–134
application integration 97–

100
Netflix example 99–100
Twitter example 97–99

213INDEX
use cases (continued)
customer/partner retention

133–134
automation/integration

134
unique content 133

defining 18–19
mobile 96–97, 127–128
mock server API 176–178
monetization 128–130

Context.io 130
SendGrid 129
Twilio 128

usage 130–133
Facebook 132
Tumblr 132–133
Twitter 131–132

user error codes 66
user story 176
User-Agent header 74

V

–v flag 38
validating functionality 161
Varnish 60
VBox 45
verbose output 198
verbs

HTTP 68–72
vs. nouns 83

version field 151
versioning 12
Video API 103
VirtualBox 45

W

waterfall development 161–162
web API business value

114–134
business goals 115–123

customer/partner
retention 120–122

market dominance
122–123

monetization 115–118
usage 118–120

metrics 124–127
customer/partner

retention 126
market dominance

126–127

monetization 124–125
poor metrics 124
usage 126

use cases 127–134
customer/partner

retention 133–134
mobile 127–128
monetization 128–130
usage 130–133

web API design principles
89–113

avoiding strict REST
philosophy 104–109

creating comprehensive
data transfer
scheme 106–108

creating query language
105–106

creating separate batching
system 108

expanding and including
related resources
104–105

avoiding surprises for users
90–95

copying successful APIs
101–103

focusing on developer
experience 109–113

communication and
consistency 109–110

documentation 111–113
focusing on use cases 95–100

application integration use
cases 97–100

mobile use case 96–97
web APIs

common pitfalls of 13–16
bad design 15–16
lack of vision 13
prioritizing developer

experience 14–15
creation process 16–26

choosing metrics 17–18
defining use cases 18–19
design 19–22
design-driven development

24–25
determining business value

17
industry standards 22–24
supporting developers

25–26

deciding whether needed 10
developer experience using

11–13
marketing to developers

12–13
versioning 12

installling 45–48
integrating into web content

APIs 4–6
interaction between client

and 40–45
JSON and 10–11
REST APIs, choosing 10
using 34–39

browser 34–35
curl command 36–38
HTTP sniffers 38–39

web browser, Chrome 34
web services 64–85

best practices 82–83
methods and idempotency

83
nouns vs. verbs 83
using right status codes

82–83
HTTP fundamentals 65–77

addressability 65–66
body 68
headers 73–74
parameters 75–77
status codes 66–68
verbs 68–72

HTTP traffic 77–82
REST web services 77
troubleshooting web API

interactions 83–85
defensive coding 84–85
error handling 84
tools for API inspection 84

webapp subdirectory 47
webhooks 129–130
website application 98
weight model, Withings 24
widgets 119–120, 132
Wikipedia 106
Wireshark 39
workflows 190, 192–193

Y

YAML (Yet Another Markup
Language) 22, 150

YouTube 103

For ordering information go to www.manning.com

Amazon Web Services in Action
by Michael Wittig and Andreas Wittig

ISBN: 9781617292880
424 pages, $49.99
September 2015

Secrets of the JavaScript Ninja,
Second Edition
by John Resig, Bear Bibeault, and Josip Maras

ISBN: 9781617292859
464 pages, $44.99
August 2016

Elastic Leadership
Growing self-organizing teams
by Roy Osherove

ISBN: 9781617293085
325 pages, $39.99
October 2016

Kanban in Action
by Marcus Hammarberg and Joakim Sundén

ISBN: 9781617291050
360 pages, $44.99
February 2014

RELATED MANNING TITLES

https://www.manning.com/books/amazon-web-services-in-action
https://www.manning.com/books/amazon-web-services-in-action
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/elastic-leadership
https://www.manning.com/books/elastic-leadership
https://www.manning.com/books/kanban-in-action
https://www.manning.com/books/kanban-in-action

	Irresistible APIs
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	About the code
	Author Online
	About the author

	about the cover illustration
	Part 1 Understanding web APIs
	1 What makes an API irresistible?
	1.1 Integrating social APIs into web content
	1.2 What is a web API?
	1.2.1 Do you need an API?
	1.2.2 Choosing REST APIs
	1.2.3 JSON

	1.3 Developer experience
	1.3.1 Versioning
	1.3.2 Marketing to developers

	1.4 Common pitfalls of organic APIs
	1.4.1 Lack of vision
	1.4.2 Prioritizing the developer experience
	1.4.3 Bad API design

	1.5 API creation process
	1.5.1 Determine your business value
	1.5.2 Choose your metrics
	1.5.3 Define your use cases
	1.5.4 Design your API
	1.5.5 Industry standards
	1.5.6 Design-driven development
	1.5.7 Support your developers

	1.6 Summary

	2 Working with web APIs
	2.1 HTTP basics
	2.1.1 HTTP request
	2.1.2 HTTP response
	2.1.3 HTTP interactions

	2.2 The Toppings API
	2.3 Designing the API
	2.4 Using a web API
	2.4.1 Browser
	2.4.2 Command line (curl)
	2.4.3 HTTP sniffers

	2.5 Interaction between the API and client
	2.6 Install your own API and front end
	2.6.1 Installing the system via Docker
	2.6.2 Installing the system via Git
	2.6.3 Exploring the code

	2.7 Summary

	3 API First
	3.1 Why choose API First?
	3.1.1 APIs as side products
	3.1.2 API First model

	3.2 Code consistency
	3.3 Functional equality
	3.4 Increased productivity
	3.5 Internal/external access
	3.6 Case studies
	3.6.1 API as the main product
	3.6.2 Mobile First
	3.6.3 Refactoring for API First
	3.6.4 API First strategic direction

	3.7 Summary

	4 Web services explained
	4.1 HTTP fundamentals
	4.1.1 Addressability
	4.1.2 Status codes
	4.1.3 Body
	4.1.4 HTTP verbs
	4.1.5 Headers
	4.1.6 Parameters
	4.1.7 HTTP overview summary

	4.2 REST web services explained
	4.3 Exploring your API by inspecting HTTP traffic
	4.3.1 Setting up Chrome for HTTP inspection

	4.4 Web services best practices
	4.4.1 Using the right status codes
	4.4.2 Methods and idempotency
	4.4.3 Nouns vs. verbs

	4.5 Troubleshooting web API interactions
	4.5.1 Tools for API inspection
	4.5.2 Error handling
	4.5.3 Defensive coding

	4.6 Summary

	Part 2 Designing web APIs
	5 Guiding principles for API design
	5.1 Don’t surprise your users
	5.1.1 Flickr API example
	5.1.2 Don’t make me think

	5.2 Focus on use cases
	5.2.1 Use case: mobile
	5.2.2 Use case: application integration

	5.3 Copy successful APIs
	5.4 REST is not always best
	5.4.1 Expand and include related resources
	5.4.2 Create a query language
	5.4.3 Create a comprehensive data transfer scheme
	5.4.4 Create a separate batching system
	5.4.5 RESTful decisions

	5.5 Focus on the developer experience
	5.5.1 Communication and consistency are critical
	5.5.2 Documentation should tell a story

	5.6 Summary

	6 Defining the value for your API
	6.1 Business goals
	6.1.1 Monetization
	6.1.2 Usage
	6.1.3 Partner retention
	6.1.4 Market dominance

	6.2 Metrics
	6.2.1 Poor metrics
	6.2.2 Monetization
	6.2.3 Usage
	6.2.4 Partner retention
	6.2.5 Market dominance

	6.3 Use cases
	6.3.1 Mobile
	6.3.2 Monetization
	6.3.3 Usage
	6.3.4 Customer/partner retention

	6.4 Summary

	7 Creating your schema model
	7.1 What is a schema model?
	7.2 What does the API need to do?
	7.2.1 Top-level resources
	7.2.2 API resource methods

	7.3 RAML
	7.3.1 Getting started
	7.3.2 Step 1: adding resources
	7.3.3 Step 2: adding the methods
	7.3.4 Step 3: query parameters
	7.3.5 Step 4: adding mock data
	7.3.6 Step 5: adding mock data—GET
	7.3.7 Step 6: adding mock data—POST
	7.3.8 Step 7: GET response format
	7.3.9 Step 8: PUT response format
	7.3.10 Step 9: DELETE
	7.3.11 Step 10: searching
	7.3.12 Support tools for RAML

	7.4 OpenAPI (previously Swagger)
	7.4.1 Information about your API
	7.4.2 Step 1: API top-level resource methods—GET
	7.4.3 Step 2: API top-level resource methods—POST
	7.4.4 Step 3: API subresource methods—GET, PUT, DELETE
	7.4.5 OpenAPI tools and resources

	7.5 Summary

	8 Design-driven development
	8.1 Development strategies for your API
	8.1.1 Waterfall development
	8.1.2 Agile/test-first development
	8.1.3 Behavior-driven development
	8.1.4 Design-driven development
	8.1.5 Code-first development
	8.1.6 Why does project management matter?

	8.2 Project management for APIs
	8.2.1 Functional specification
	8.2.2 Schema model

	8.3 Road-testing your API
	8.3.1 Creating a mock server API
	8.3.2 Acceptance tests and use cases

	8.4 Planning development
	8.5 Development sprints
	8.6 Summary

	9 Empowering your developers
	9.1 Pillars of developer experience
	9.2 Communicating with your developers
	9.2.1 Failures of communication
	9.2.2 Strong communication
	9.2.3 Advantages to strong and consistent communication

	9.3 Documenting your API
	9.3.1 Reference documentation
	9.3.2 Workflows
	9.3.3 Tutorials

	9.4 Building blocks
	9.4.1 Sample code
	9.4.2 Reference applications
	9.4.3 Tools and techniques

	9.5 Developer support
	9.5.1 Interactive
	9.5.2 Noninteractive

	9.6 Summary

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

