
ffi rs.indd 11/03/2014 Page i

JavaScript® and jQuery®
for Data Analysis and Visualization

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 11/03/2014 Page iii

JavaScript® and jQuery®
for Data Analysis and Visualization

Jon J. Raasch
Graham Murray

Vadim Ogievetsky
Joseph Lowery

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 11/03/2014 Page iv

JavaScript® and jQuery® for Data Analysis and Visualization

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-84706-0
ISBN: 978-1-118-84721-3 (ebk)
ISBN: 978-1-118-84722-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://book-
support.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014946685

Trademarks: Wiley, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks or regis-
tered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries, and may not be
used without written permission. JavaScript is a registered trademark of Oracle America, Inc. jQuery is a registered trade-
mark of jQuery Foundation, Inc. All other trademarks are the property of their respective owners. John Wiley & Sons,
Inc., is not associated with any product or vendor mentioned in this book.

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 11/03/2014 Page v

To Ally and Kaiya. You brighten all my days.

—Graham Murray

For Annie

—Vadim Ogievetsky

To Whic, Granger, Charisma, Surley, Two-Gun, FEM,

and especially Rafe. See you soon, guys.

—Joseph Lowery

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 11/03/2014 Page vi

EXECUTIVE EDITOR
Robert Elliott

PROJECT EDITOR
Charlotte Kughen

TECHNICAL EDITOR
Ambrose Little

PRODUCTION EDITOR
Christine Mugnolo

COPY EDITOR
Nancy Rapoport

PRODUCTION MANAGER
Kathleen Wisor

MANAGER OF CONTENT DEVELOPMENT
AND ASSEMBLY
Mary Beth Wakefi eld

MARKETING DIRECTOR
David Mayhew

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY & STRATEGY
DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Patrick Redmond

PROOFREADER
Josh Chase, Word One New York

INDEXER
Robert Swanson

COVER DESIGNER
Wiley

COVER IMAGE
© iStock.com/Henrik5000

CREDITS

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 11/03/2014 Page vii

ABOUT THE AUTHORS

JON J. RAASCH is a freelance web developer specializing in web apps for desktop and mobile
devices. A user-experience junkie, he builds HTML5 and JavaScript apps that focus on the users at
every touch point.

Jon is the author of several John Wiley & Sons books, including JavaScript Programming: Pushing
the Limits, Smashing WebKit, and Smashing Mobile Web Development. A perfectionist when it
comes to best practices, you can fi nd him building the modern web in his pajamas.

Follow Jon on Twitter @jonraasch and check out his website http:// jonraasch.com. He’s cur-
rently based in Portland, OR.

GRAHAM MURRAY is a software architect specializing in building UI development tools. At pres-
ent, he works at Infragistics, where he builds data visualization UI controls for desktop, web, and
mobile. He is passionate about many programming languages, and he builds source-to-source
compilers between them. As a kid, he found some BASIC code in the back of a magazine and hasn’t
stopped programming since.

VADIM OGIEVETSKY is a developer at Metamarkets, where he uses D3 on top of AngularJS to build
interactive data-driven applications that scale. Prior to working at Metamarkets, Vadim was part
of the Stanford Data Visualization group, where he contributed to Protovis and D3. Vadim is an
avid promoter of D3 and web-based data visualization; he has guest lectured on D3 at UC Berkeley,
Harvard, and Stanford as well as at other universities, meetups, and corporations.

JOSEPH LOWERY currently builds websites, creates online courses for Lynda.com and other sites,
writes fi ction, and hangs in Brooklyn. His books about the Web and web-building tools are interna-
tional bestsellers, having sold more than 400,000 copies worldwide in nine different languages.

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 11/03/2014 Page ix

ACKNOWLEDGMENTS

 I WOULD LIKE TO THANK his co-authors for all their work putting this book together. I’d also like
to thank the editors and the rest of the team at Wiley for their support throughout the project. Also,
thanks to Martin for the technical proofread.

—Jon J. Raasch

I CAN’T THANK MY WIFE Allison and daughter Kaiya enough for not getting too fed up with me
as I was half present while working on this book. It hasn’t been an easy time with all the random
adversity that cropped up while I was writing. Thanks for always sticking by me and letting me steal
a little time for this book, especially when time has been such a precious commodity. My parents,
Chris and Tony, provided some very timely babysitting on many occasions, and ignited my love for
computers in the fi rst place by letting me use them so much. My in-laws, Diane and Alan were so
gracious and put up with us for so long as we were displaced from our house twice while I was writ-
ing this book. Thanks to Ambrose Little for the great edits and suggestions, and for encouraging me
to do this in the fi rst place, Thanks also to Jason Beres and Bill Hazard for insisting I take this on
when I was feeling trepidation. I’d like to thank Robert Elliott and everyone at Wiley. I’d like to give
a special thanks to everyone editing the book, especially Charlotte and Nancy, for being so helpful
and patient and for helping me turn my esoteric prose into something people might actually enjoy to
read. My co-authors Jon, Vadim, and Joe provided some great advice on additional content to cover.
Thanks everyone!

—Graham Murray

I WOULD LIKE TO THANK Jeffrey Heer, Mike Bostock, and the Stanford Visualization Group
for igniting my love of JavaScript and web technologies. Thank you also to my advisor, Terry
Winograd, for steering me into the direction of SVG. Special thanks are also in order to Eric
Tschetter, Ofi r Oss, Sébastien Fragnaud, Young Kim, and Annie Albagli for reading my fi rst drafts
and to Charlotte Kughen, Ambrose Little, and the rest of the Wiley team for their editorial support.

—Vadim Ogievetsky

SPECIAL THANKS TO Bob Elliott and all the great folks at Wiley for giving me an opportunity to
contribute to this book.

—Joseph Lowery

www.allitebooks.com

http://www.allitebooks.org

ftoc.indd 11/03/2014 Page xi

CONTENTS

INTRODUCTION xix

PART I: THE BEAUTY OF NUMBERS MADE VISIBLE

CHAPTER 1: THE WORLD OF DATA VISUALIZATION 3

Bringing Numbers to Life 4
Acquiring the Data 4
Visualizing the Data 4
Simultaneous Acquisition and Visualization 6

Applications of Data Visualization 7
Uses in the Public Sector 7
Business-to-Business and Intrabusiness Uses 8
Business-to-Consumer Uses 8

Web Professionals: In the Thick of It 9
Control of Presentation 9

What Tech Brings to the Table 11
Faster and Better JavaScript Processing 12
Rise of HTML5 12
Lowering the Implementation Bar 13

Summary 14

CHAPTER 2: WORKING WITH THE ESSENTIALS OF ANALYSIS 17

Key Analytic Concepts 18
Mean Versus Median 18
Standard Deviation 19

Working with Sampled Data 20
Standard Deviation Variation 20
Per Capita Calculations 21
Margin of Error 21

Detecting Patterns with Data Mining 22
Projecting Future Trends 23
Summary 25

CHAPTER 3: BUILDING A VISUALIZATION FOUNDATION 27

Exploring the Visual Data Spectrum 28
Charting Primitives 28

www.allitebooks.com

http://www.allitebooks.org

xii

CONTENTS

ftoc.indd 11/03/2014 Page xii

Exploring Advanced Visualizations 40
Candlestick Chart 42
Bubble Chart 42
Surface Charts 44
Map Charts 46
Infographics 46

Making Use of the HTML5 Canvas 49
Integrating SVG 52
Summary 54

PART II: WORKING WITH JAVASCRIPT FOR ANALYSIS

CHAPTER 4: INTEGRATING EXISTING DATA 57

Reading Data from Standard Text Files 58
Working Asynchronously 58
Reading CSV Files 59

Incorporating XML Data 61
Understanding the XML Format 61
Getting XML Data 62
Styling with XSLT 63

Displaying JSON Content 66
Understanding JSON Syntax 66
Reading JSON Data 67
Asynchronous JSON 68

Summary 71

CHAPTER 5: ACQUIRING DATA INTERACTIVELY 73

Using HTML5 Form Controls 73
Introducing HTML5 Input Types 74
Form Widgets and Data Formatting 74

Maximizing Mobile Forms 75
Using Contextual Keyboards 76
Styling Mobile Forms for Usability 77
Form Widgets for Mobile 77

Summary 77

CHAPTER 6: VALIDATING YOUR DATA 79

Server-Side Versus Client-Side Validation 80
Native HTML5 Validation 81

Native Versus JavaScript Validation 81
Getting Started with HTML5 Validation 82

www.allitebooks.com

http://www.allitebooks.org

xiii

CONTENTS

ftoc.indd 11/03/2014 Page xiii

HTML5 Validation for Numbers 82
Required Fields and Max Length 82
Custom HTML5 Validation Rules 83
Custom HTML5 Validation Messages 83
h5Validate Polyfi ll 84

jQuery Validation Engine 85
Getting Started with jQuery Validation Engine 85
Validators 86
Error Messages 90

Summary 91

CHAPTER 7: EXAMINING AND SORTING DATA TABLES 93

Outputting Basic Table Data 94
Building a Table 94
Using Semantic Table Markup 96
Labeling Your Table 101
Confi guring the Columns 102

Assuring Maximum Readability 105
Styling Your Table 106
Increasing Readability 108
Adding Dynamic Highlighting 114

Including Computations 116
Using JavaScript for Calculations 120
Populating the Table 123

Using the DataTables Library 125
Making Pretty Tables with DataTables 126
Sorting with DataTables 128
Using Calculated Columns with DataTables 130

Relating a Data Table to a Chart 133
Mashing Visualizations Together 133

Summary 144

CHAPTER 8: STATISTICAL ANALYSIS ON THE
CLIENT SIDE 145

Statistical Analysis with jStat 146
Getting Started with jStat 146
Stat 101 147

Rendering Probability Distributions with Flot 149
Getting Started with Flot 149
Rendering the Normal Curve 151

Summary 153

www.allitebooks.com

http://www.allitebooks.org

xiv

CONTENTS

ftoc.indd 11/03/2014 Page xiv

PART III: VISUALIZING DATA PROGRAMMATICALLY

CHAPTER 9: EXPLORING CHARTING TOOLS 157

Creating HTML5 Canvas Charts 158
HTML5 Canvas Basics 158
Linear Interpolation 159
A Simple Column Chart 160
Implementing Axes 176
Adding Animation 183

Starting with Google Charts 194
Google Charts API Basics 195
A Basic Bar Chart 195
A Basic Pie Chart 197
Working with Chart Animations 198

Summary 201

CHAPTER 10: BUILDING CUSTOM CHARTS WITH RAPHAËL

203

Introducing Raphaël 204
SVG Versus Canvas Charts 204
Getting Started with Raphaël 204
Drawing Paths 205
Importing Custom Shapes into Raphaël 206
Animating Raphaël Graphics 208
Handling Mouse Events with Raphaël 208

Working with gRaphaël 209
Creating Pie Charts 209
Creating Line Charts 211
Creating Bar and Column Charts 213

Extending Raphaël to Create Custom Charts 216
Setting Up with Common Patterns 216
Drawing an Arc 217
Massaging Data into Usable Values 221
Adding Mouse Interactivity 225
Labeling the Data 227
Wrapping Up 229

Summary 232

CHAPTER 11: INTRODUCING D3 233

Getting Started 235
DOM and SVG 236
.select 237

xv

CONTENTS

ftoc.indd 11/03/2014 Page xv

 .selectAll 238
.data() (Also Known As Data Joining) 239
Key Functions 249
.transition() 250
Object Constancy 253
Nested Selections 255

D3 Helper Functions 257
Drawing Lines 257
Scales 258

D3 Helper Layouts 260
Summary 264

CHAPTER 12: INCORPORATING SYMBOLS 265

Working with SVG Symbols with D3 266
Creating a D3 Line Chart 266
Adding Symbols to the Line 271
Making the Symbols Interactive 273

Canvas Symbols with Ignite UI igDataChart 276
Creating a Line Chart with Ignite UI igDataChart 277
Adding Symbols to the Chart 281
Creating a Bubble Chart 284

Summary 289

CHAPTER 13: MAPPING GLOBAL, REGIONAL, AND LOCAL DATA 291

Working with Google Maps 292
The Basics of Mapping Visualizations 292
The Google Maps API v3 294

Customizing Maps with Iconography 297
Displaying a Map Marker 297
Preparing Data to Plot on a Map 299
Plotting Point Data Using Markers 303
Plotting an Additional Statistic Using Marker Area 307
Displaying Data Density with Heat Maps 310

Plotting Data on Choropleth Maps 314
Obtaining Geometry to Plot on a Map 314
Converting Geometry for Display Using Topojson 315
Rendering Map Geometry Using D3 316
Displaying Statistics Using a Choropleth Map 319

Summary 326

xvi

CONTENTS

ftoc.indd 11/03/2014 Page xvi

CHAPTER 14: CHARTING TIME SERIES WITH
IGNITE UI IGDATACHART 327

Working with Stocks 328
The Basics of Stock Data 328
Obtaining Some Stock Data 329
Candlesticks and OHLC Visualizations 329

Implementing Ignite UI igDataChart 331
Obtaining Ignite UI 332
Implementing a Stock Chart Using igDataChart 333
Adding a Zoom Bar to the Chart 342
Adding a Synchronized Chart 344
Working with Technical Analysis Tools 347

Plotting Real-Time Data 348
Creating a Node Push Data Service 349
Receiving Updates in the Client 353
Exploring Update Rendering Techniques 359

Plotting Massive Data 361
Summary 366

PART IV: INTERACTIVE ANALYSIS AND VISUALIZATION PROJECTS

CHAPTER 15: BUILDING AN INTERCONNECTED DASHBOARD 371

The U.S. Census API 372
Rendering Charts 373

Sex Chart 373
Race Chart 375
Household Size Chart 377
Household Tenure Chart 378
Age by Sex Chart 379
Population History Chart 384

Creating the Dashboard 386
Basic Markup and Styling 386
Responsive Layer 389

Connecting Components with Backbone 390
Establishing Models and Collections 391
Converting the Chart Markup to a JavaScript Template 392
Creating the State Drop-down Menu 394
Rendering State Changes 396

Next Steps 410
Rerendering on Resize 411
Other Improvements 411

Summary 411

xvii

CONTENTS

ftoc.indd 11/03/2014 Page xvii

CHAPTER 16: D3 IN PRACTICE 413

Making D3 Look Perfect 414
Inline Styles Versus CSS 414
Margin 414
Ordering 415
Pointer Events 416
Crisp Edges 416

Working with Axes 417
Working with the Voronoi Map 421

A Basic Voronoi Map 421
Voronoi Point Picking 424

Making Reusable Visualizations 427
Summary 434

INDEX 435

fl ast.indd 11/04/2014 Page xix

 INTRODUCTION

WHEN IT COMES TO THE WEB, you may have heard the expression “Content is king.” Coined by
Bill Gates in the 1990s, this oft-repeated mantra stresses the importance of information above all
else. Think about it: The average user doesn’t visit your site to admire a beautiful design or cool ani-
mation—she goes there for content. In that sense, everything we do as web professionals—whether
it’s design, development, or marketing—has a single goal: conveying information to the user.

And what better source of information is there than raw data? That said, raw data by itself is noth-
ing more than static noise. Data visualization allows us to bridge that gap, turning raw data into
meaningful content.

At this point, you’ve probably gathered that data visualization is a lot more than fl ashy widgets to
impress your boss. Although this book does cover some impressive tools—such as the comprehen-
sive D3 library—the focus at all points is on the information. At a minimum, data visualization
conveys this information to the user. But you’re going to go deeper than that. That’s because data
visualization is capable of so much more; in addition to conveying information, data visualization
analyzes information to provide meaningful insights.

Good data visualization doesn’t just aggregate data into more digestible chunks. Good data visual-
ization leads users to powerful conclusions. It shows rather than tells, and in our experience there
is no better way to get your point across. There’s just no substitute for leading users to a conclusion
they can then draw for themselves.

WHAT’S IN THIS BOOK

JavaScript and jQuery for Data Analysis and Visualization starts off in Part I with a broad discus-
sion of data visualization. It discusses the current state of data visualization and its general goals,
and then it covers some of the basic tenets of analysis. Part I closes with an overview of some of the
technical foundation that you need to understand the rest of the book, such as the basics of HTML5
canvas and SVG.

Part II takes you into the realm of data analysis and acquisition. It discusses techniques for pulling
data from a server and even covers how to combine stored data with form data from the user. Next,
it covers data validation as well as techniques for displaying tabular data. Part II wraps up with a
discussion of client-side analysis tools, providing a robust statistical analysis toolkit that’s based in
JavaScript.

Part III explores actual data visualization tools, and in all likelihood it’s going to be your favor-
ite part of this book. You’ll start off by running through basic charting solutions such as Google
Charts. From that point, the book gets into more complex charting options—covering how to build
custom solutions with Raphaël as well as how to use the D3 library. Finally, you learn all about
more specifi c data-visualization applications, such as geographic and stock data.

xx

INTRODUCTION

fl ast.indd 11/04/2014 Page xx

Last but not least, Part IV consolidates everything you learned in Parts I through III with a couple
of real-world examples. You fi rst see how to build an interconnected dashboard that renders U.S.
Census data using Google Charts and then you see how to use D3 in production to create reusable
visualizations.

WHO THIS BOOK IS FOR

This book is geared toward web developers with a basic understanding of front-end development.
Although you don’t need to have advanced skills in this realm, you should have at least a beginner’s
level of knowledge of JavaScript and jQuery. Beyond that, we make no assumptions of your skill
level. We cover data visualization tools from the ground up, as well as some of their underlying tech-
nologies. Whenever possible, we point you to external resources to further support your knowledge
in these areas. That way, we can cover the basics quickly and move on to the more and impressive
parts of data visualization.

By the end of the book, you’ll have advanced knowledge of a variety of data visualization tools and
techniques. This book will provide you with a comprehensive toolkit to handle all your visualization
needs.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, a number of conventions
are used throughout the book.

WARNING Warnings hold important, not-to-be-forgotten information that is
directly relevant to the surrounding text.

NOTE Notes indicate notes, tips, hints, tricks, or and asides to the current
discussion.

As for styles in the text:

We highlight new terms and important words when we introduce them.

We show fi lenames, URLs, and code within the text like so: persistence.properties.

xxi

INTRODUCTION

fl ast.indd 11/04/2014 Page xxi

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that's particularly important in the present context
or to show changes from a previous code snippet.

COMPANION WEBSITE

To complement the content in this book, we’ve also created a companion website at www.wrox.com/
go/javascriptandjqueryanalysis. This website provides a variety of useful resources, such
as downloads of all the code examples in the book. It’s a useful place to turn if you get stuck at
any point.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be grateful for your feedback. By sending in errata you may save
another reader hours of frustration, and at the same time you can help provide even higher quality
information.

To fi nd the errata page for this book, go to http://www.wrox.com and locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On
this page you can view all errata that has been submitted for this book and posted by Wrox editors.
A complete book list including links to each book’s errata is also available at www.wrox.com
/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact
/techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

xxii

INTRODUCTION

fl ast.indd 11/04/2014 Page xxii

At http://p2p.wrox.com you can fi nd a number of different forums to help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join and any optional information you want to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P but to post
your own messages, you must join.

 After you join, you can post new messages and respond to messages other users post. You can
read messages at any time on the web. If you want to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, read the P2P FAQs for answers to questions
about how the forum software works as well as many common questions specifi c to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

c01.indd 11/03/2014 Page 1

PART I
The Beauty of Numbers Made
Visible

 ▸ CHAPTER 1: The World of Data Visualization

 ▸ CHAPTER 2: Working with the Essentials of Analysis

 ▸ CHAPTER 3: Building a Visualization Foundation

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

c01.indd 11/03/2014 Page 3

The World of Data Visualization
WHAT’S IN THIS CHAPTER

 ➤ Overview of chart design options

 ➤ Comparison of different business applications for data visualization

 ➤ Rundown of technological advancements that have made data
visualization what it is today

When thinking about data visualization, it’s hard to resist the comparison to natural meta-
morphosis. Consider raw data as the caterpillar: functional, multi-faceted, able to get from
here to there, but a little ungainly and really appreciated only by a select few. After data is
transformed via visualization, it becomes the butterfl y: sleek, agile, and highly recognizable
to the point of inspiring and evoking an emotional response. The world of data visualization
is an ecosystem unto itself, constantly spawning new nodes of details that—under the proper
nourishing conditions—evolve into relatable depictions that consolidate concepts into an
understandable, and hopefully compelling, form.

And where does the web professional fi t in this metaphor? Why, they are the spinners and
caretakers of the cocoon that transforms raw numbers into meaningful representation, of
course. Putting the linguistic paraphrasing aside, web designers and developers are a vital
component in visualizing data. Naturally, the current and evolving technological landscape
has made this role possible—and increasingly effi cient.

Overall, JavaScript and jQuery for Data Analysis and Visualization serves as a practical fi eld
guide to the robust world of data visualization, from the acquisition and nurturing of data to
its transfi guration into the optimal visual format. This chapter is intended to provide an over-
view of the present environment, highlighting its capabilities and limitations and discussing
how you, the web professional, are a key player in visualizing data.

1

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

4 ❘ CHAPTER 1 THE WORLD OF DATA VISUALIZATION

c01.indd 11/03/2014 Page 4

BRINGING NUMBERS TO LIFE

Appreciating numeric data can be a challenge. Data visualization with relational graphics and
evocative imagery helps make raw data meaningful. But before you can transform the data into a
meaningful representation, you have to get it fi rst.

Acquiring the Data
The data sphere is enormous and growing dramatically, if not exponentially, every day. Data is
streaming in from everywhere—and when you consider that the Mars Rover, Curiosity, continually
sends its data fi ndings back to Earth, you understand that “everywhere” is no exaggeration.

With the tremendous amount of data already available, its acquisition is often just a matter of
logistics. If the information is in a non-digital form—that is, written records—it will need to be
transcribed into the proper format. Should the desired data be accessible digitally, it may need to be
converted from its current structure to one compatible with the display or visualization application.

When your information is in the proper format, you next need to ensure it is exactly the data you
need and nothing more. The wealth of data available today makes targeting your data selection,
typically through a process known as fi ltering, pretty much a requirement in all situations. Even
when organizations fi ne-tune their data input from the beginning, changes in the sample or desired
output over time will force a fi ltering adjustment.

Why is it so important to restrict your data stream? One clear reason is processing effi ciency.
Working with an overload of unnecessary information increases application execution time—which
corresponds directly to increased bandwidth and, thus, costs. Additionally, fi ltering makes raw data
more meaningful. Focused information is easier to analyze and also more easily digested by end users.

Visualizing the Data
In a sense, the most diffi cult aspect of data visualization is deciding exactly how the information
should be depicted. The web designer must select the optimum representation that communicates
the data in the clearest, most desired manner with the highest degree of impact. More importantly,
the representation should be a discovery tool that leads the user to meaningful insights. Here’s an
incomplete list of available formats:

 ➤ Area chart

 ➤ Bar chart

 ➤ Bubble chart

 ➤ Candlestick chart

 ➤ Column chart

 ➤ Donut chart

 ➤ Flow chart

 ➤ Funnel chart

Bringing Numbers to Life ❘ 5

c01.indd 11/03/2014 Page 5

 ➤ Gauge chart

 ➤ Geographic chart

 ➤ Heat map

 ➤ Hierarchical edge bundling

 ➤ Infographics

 ➤ Line chart

 ➤ Marimekko chart

 ➤ Network node map

 ➤ OLHC (Open-high-low-close) chart

We’ve really just scratched the surface with ways data can be presented. Most of these formats can
be shown in either 2D or 3D. You can include interactive elements and animation to add dimensions
to the data. But be careful to balance these bells and whistles with meaningful data. No amount of
eye candy is worth compromising the representation of information.

NOTE It’s important to realize that a key factor in visualization is intent. Raw
data on almost every subject can be interpreted in any number of ways. What
message is intended to be communicated should be among the fi rst decisions
made when beginning the process of representing data visually.

There are other primary options to consider as well. Do you expose the underlying data or not?
If so, are the numbers always visible or are they visible only when some interaction occurs, such
as when the viewer’s mouse hovers over a data point? Is the initial visualization all there, or does
the online version allow the user to drill down for more details? Is animation used to represent a
dynamic change? Is there other interactivity available, such as horizontal scrolling along a timeline
or zooming into it?

 ➤ Org Chart

 ➤ Pareto chart

 ➤ Pie chart

 ➤ Polar chart

 ➤ Scatter chart

 ➤ Sparkline chart

 ➤ Timelines

 ➤ Tree Maps

 ➤ Word cloud

6 ❘ CHAPTER 1 THE WORLD OF DATA VISUALIZATION

c01.indd 11/03/2014 Page 6

Then, of course, there is styling. With simple bar and pie charts, you’ll not only need to decide
which colors represent which elements, but also the size, color, style, and font to be applied for
labels and legends, if any—yet another choice. Many such selections will be governed by other
factors, such as the creating organization’s branding or in-house standards; however, just as many
will have no such foundation to work from, and the designer’s vision will become paramount.

Moving beyond the basics of charting primitives, the visualization designer can choose to include
graphics. Not only can background images frame a presentation—both literally and thematically—
but symbols can be used as data points, like logos pinned in a map of third-quarter sales. An entire
fi eld of data visualization—infographics—is devoted to the combination of information and visual
imagery.

The truth is that the web professional’s current options for depicting data are a bounty of riches.
Although the possibilities may appear to be overwhelming, it’s up to the visualization designer to
identify the optimum representation and bring it into reality.

Simultaneous Acquisition and Visualization
The world of data visualization doesn’t just consume existing data: New data is constantly being
added to the stores, even in real time. Information can be collected directly through an HTML form
on a website and incorporated into the representation programmatically. One of the most common
examples of this is an online poll, such as the one shown in Figure 1-1. After a site visitor has chosen
his or her desired response and clicked Vote, the current relative standing of all entries, including the
one just entered, is displayed.

Source: www.dailykos.com/story/2014/08/18/1322337/-Cheers-and-Jeers-Monday

FIGURE 1-1: Some polls allow the user to instantly see the current results.

Collecting live data has a number of challenges, but the recent advances made by the widespread
acceptance of HTML5 have ameliorated many of them. When combined with a few key JavaScript

http://www.dailykos.com/story/2014/08/18/1322337/-Cheers-and-Jeers-Monday

Applications of Data Visualization ❘ 7

c01.indd 11/03/2014 Page 7

libraries, it is now possible to use advanced form elements, such as slider controls, across the full
spectrum of modern browsers.

Acquiring the data in real time is just the fi rst step. The web developer is also responsible for
validating and standardizing the data. Validation is critical in two ways: fi rst, to ensure that
all required information is supplied, and second, to verify that the data is in the proper format.
Naturally, if you’re trying to fi nd out where your clientele is based, you can’t if the requested postal
code is left blank. Likewise, if the postal code is in the wrong format, such as a four-digit entry for
a U.S. address, the data is worthless. Both of these issues can be corrected by proper validation,
whether handled on the client-side with JavaScript, server-side via PHP or another server language,
or some combination of the two.

Standardized data is just as important and typically applies to time and date details. There
are numerous ways to enter a date: March 10, 2011 could be 03/10/11, 10/03/11, or 11/03/10
depending on whether you’re in the United States, Australia, or China, respectively. To make
sure the intended date is collected correctly, the entered information will need to be standardized
to a format the visualization application recognizes before it is saved. Read Chapter 6 for more
information about data validation.

APPLICATIONS OF DATA VISUALIZATION

So there’s all this wonderful data out there, just waiting to be brought to life by this almost magical
transformative process. But why should it? The question really is cui bono? Who benefi ts? In a sense,
the answer is everyone. Whenever information is made clearer and more understandable, it’s better
for all. But the web professional doesn’t get paid by “everyone,” so let’s narrow the scope and focus
on the key groups who stand the most to gain from data visualization.

Uses in the Public Sector
Groups in the public sector include all levels of government (those in it and those trying to get in it),
as well as police, military, transportation agencies, and educational and healthcare facilities. Just a
few folks, right? Oh, and let’s add philanthropy and philanthropic projects, a.k.a. charities, into the
mix, just for fun.

All these organizations have a key interest in discovering what is happening (the data) and then
conveying that information internally to others in their own group and/or externally to the
broader public (the visual). Many such efforts are mandated and essential to the organization’s
existence. Take, for example, the U.S. census. The data is collected on a massive scale every 10
years—by law—and then impacts multiple facets of American life such as state and regional
funding and, of course, congressional representation. The U.S. Census Bureau maintains a treasure
trove of the aggregate data, now visually accessible to everyone through its online presence at
www.census.gov. Not only are there government-sanctioned representations of the collected
census information, like the map in Figure 1-2, but the site also makes APIs available
(api.census.gov) for public web developer access.

http://www.census.gov

8 ❘ CHAPTER 1 THE WORLD OF DATA VISUALIZATION

c01.indd 11/03/2014 Page 8

FIGURE 1-2: You’ll need to request a no-charge digital key to access the APIs from api.census.gov.

Business-to-Business and Intrabusiness Uses
If the business of business is business, how do you do business? Mostly through marketing,
whether you’re a vendor targeting another company or one department lobbying internally for
increased resources. And the heart of marketing is persuasion—which is often bolstered, if not
solely accomplished, by making your case through the compelling presentation of data.

As with the public sector, many such presentations are required. Look through any annual report
to see the latest encapsulation of the company’s standing, graphically depicted in quickly graspable
charts. Today, creating an online report is standard practice. Similar data visualizations are under-
taken daily in department and division meetings to plot sales progress, reveal public reaction to
products, and adjust business direction.

There are signifi cant data visualization opportunities for the web designer within the business-to-
business arena. Most of this type of work, like other website or intranet work, will be handled by an
internal team. Cultivating such skills would defi nitely add value to any web professional’s resume.

Additionally, a wide variety of data visualizations are used internally within organizations. These
tools help businesses grapple with and understand their own data.

Business-to-Consumer Uses
Obviously, marketing plays as big a role in the business-to-consumer realm as it does in business to
business, if not more. Sharp, effective advertising, as well as other forms of marketing, are pretty

Web Professionals: In the Thick of It ❘ 9

c01.indd 11/03/2014 Page 9

much required for a company’s message to cut through the omnipresent media noise. Often a clearly
defi ned representation of data can make the difference.

Although there are plenty of uses for pie charts, stock charts and other fundamental data repre-
sentations in business-to-consumer communications, infographics are seen far more frequently.
Infographics combine data and information in a visually engaging manner. Sometimes, the data
is represented straightforwardly, such as the percentage values shown in the infographic from
HealthIT.gov (see Figure 1-3), or more graphically, as shown in the infographic from the CDC
(see Figure 1-4).

Infographics is a tremendously rich area with an almost endless range of possibilities; because of the
openness of the format, it can be a designer’s playground. To learn more about creating this particular
type of data visualization, see Chapter 16.

WEB PROFESSIONALS: IN THE THICK OF IT

As noted in this chapter’s introduction, web professionals are at the heart of data visualization.
Consider that it fi rst takes someone with web savvy to access and translate the data into a usable
form. Then, if the data collection is to be ongoing, one or more forms have to be set up correctly
online to make sure the needed data is acquired, valid, and—where necessary—standardized.
Finally, someone with a working knowledge of browser-compatible languages must create the visual
display of the data so that it can be viewed on the Internet.

Control of Presentation
Web professionals—across the spectrum of their functionality—are responsible for this growing
sphere of communication. Let’s break down the process from their perspective:

 ➤ A web developer with server-side skills is needed to handle the back-end processing of data to
make it accessible.

 ➤ A JavaScript coder is responsible for fi ltering, sorting, and manipulating the data to prepare it
for representation. This role could also be handled server-side or in combination with client-
side technology.

 ➤ An HTML coder builds any required forms to allow interactive data addition, often with
JavaScript libraries for validation.

 ➤ One or more web designers create the look-and-feel of all data-related pages, including
styling the output of the visualized data.

 ➤ A web coder, leveraging his or her own knowledge of JavaScript, combined with core frame-
works and data visualization libraries, displays the data in a representational format.

Although all the described tasks could possibly be fulfi lled by a single individual, it’s just as likely
that these tasks are handled by a group working closely together. Whether it’s done by one (very
busy) person or a networked team spread around the world, the important take-away is that web
professionals own the data visualization process from top to bottom.

10 ❘ CHAPTER 1 THE WORLD OF DATA VISUALIZATION

c01.indd 11/03/2014 Page 10

FIGURE 1-3: The icons in this infographic graphically reinforce the numeric percentages.

What Tech Brings to the Table ❘ 11

c01.indd 11/03/2014 Page 11

FIGURE 1-4: Infographics are adept at combining highlighted key terms, such as “urban areas” and
“heat-related illnesses” with numeric data, as shown in this infographic from the CDC.

TIP Curious as to what other web professionals have been doing in the fi eld of
data visualization? There are a number of sites online that provide a bevy of
examples. One of the best that we’ve found is at http://visualizing.org/,
which not only has compelling galleries but also a robust community dedicated
to data and design.

WHAT TECH BRINGS TO THE TABLE

Web professionals are dependent on robust web software to accomplish any aspect of their work,
but the need for power tools is particularly vital to properly handle data visualization. Recent years
have witnessed a sea change in online technology that has greatly expanded the possibilities for
representing data. Although there are many contributing factors, the following discussion focuses
on three key ones:

 ➤ Faster, more effi cient JavaScript engines in browsers

 ➤ The rapid proliferation of HTML5 compatible browsers

 ➤ The increased availability of JavaScript frameworks and libraries

12 ❘ CHAPTER 1 THE WORLD OF DATA VISUALIZATION

c01.indd 11/03/2014 Page 12

Faster and Better JavaScript Processing
For the last several years, browser makers have identifi ed JavaScript processing as a key battle-
ground and have pursued faster JavaScript engines with great vigor. The bar graph in Figure 1-5
compares runs of the SunSpider benchmark, created and maintained by WebKit.org, for older
browsers (Internet Explorer 7 and Safari 3) against the latest—as of this writing—browsers,
Internet Explorer 10 and Safari 6. In this chart, smaller is better, and you can see there has been
a radical shift in browser effi ciency. The values for the earlier browser versions come from a June
2008 article that appeared on ZDNet (http://www.zdnet.com/blog/hardware/sunspider-
javascript-benchmark-and-acid-3-compatibility-charts-firefox-3-0-rc-3-and-opera-

9-50-added/2090); we ran the benchmarks on the newer browsers ourselves.

FIGURE 1-5: The lesser values indicate faster and more desirable processing times by JavaScript engines.

The increase in JavaScript processing functionality has had a direct effect on the realm of data
visualization, in both the analysis and the rendering phase. The JavaScript engine handles raw
numeric computations as well as on-screen drawing, either directly or in conjunction with the hard-
ware renderer. This combination greatly increases the viability of direct browser data visualization,
without resorting to a third-party plug-in, like Adobe Flash.

Rise of HTML5
A faster engine isn’t much good without fuel to run it—luckily, a load of high-octane HTML5 was
delivered just in time. The roots of HTML5 can be traced back to 2004 and the Web Hypertext
Application Technology (WHAT) Working Group—but adoption was glacially slow. At one point, the
W3C had actually slated the web language for fi nal recommendation status in 2022! The introduction
of smartphones, most notably Apple’s iPhone, changed all that. The device’s embrace of HTML5 in

What Tech Brings to the Table ❘ 13

c01.indd 11/03/2014 Page 13

lieu of Flash triggered a feature adoption race among all major browsers, with HTML5 becoming the
current standard for mobile devices.

Why is HTML5 so important to data visualization? First, let me clarify that this latest version of the
web’s primary language brings along two closely knit partners: CSS3 and advanced JavaScript APIs.
The enhanced capabilities brought by these three related technologies have truly revolutionized web
design and development overall. The following are a few key features that have been especially benefi cial
for data visualization:

 ➤ The <canvas> tag: Include a seemingly blank <canvas> element on your HTML5 page and
suddenly you have access to the full palette of graphics—including primitives (such as circles
and rectangles), plotted points with connected lines, gradients, text, imported images, and
much more—all drawn by JavaScript, live. What’s more, you have the option to make what-
ever you put on your canvas interactive, capable of being changed by the user (see Figure 1-6).

 ➤ SVG: Although we’ve had limited SVG support for some time, its usage has greatly expanded
with HTML5. This canvas alternative also enables you to create rich graphics on the web.

 ➤ Web fonts: After being limited to a handful of system fonts common to PC and Mac, web
designers everywhere were hungry for the possibilities brought by browser support for web
fonts. Now, designers can use an ever-growing family of decorative and other font faces to
give the impact their infographics and other data visualizations need—while remaining search
engine compatible and screen reader friendly.

 ➤ Advanced form elements: Because we were sick and tired of working with the extremely lim-
ited set of form elements, this one was pretty high on our personal wish list. HTML5 brings
a great number of new input types (such as email, tel, and url) that makes it much easier
for users to correctly enter the proper data, especially on mobile devices. In addition, new
form controls such as the range slider bring an enhanced user experience into play. Browser
support for these elements is not quite at the same level as some of the other HTML5 fea-
tures, but it does seem to get better with each version release.

TIP Perhaps the best resource for checking whether HTML5 specifi cs can be
incorporated into a web page is http://caniuse.com/. This site tracks each of
the HTML5, CSS, and JavaScript API features and their current (as well as past
and future) browser version support. We consider Can I Use an essential stop in
the planning stage of any new site or application.

Lowering the Implementation Bar
To complete our car metaphor, let’s agree that we have now have a powerful vehicle (our highly
effi cient JavaScript engine) and a super fuel (widely supported HTML5). Does anyone know
how to drive this thing? Thanks to the popularity and ease of use of JavaScript-related libraries,
specifi cally those written in jQuery, the answer for an increasing number of web professionals is
a resounding “Yes!”

www.allitebooks.com

http://www.allitebooks.org

14 ❘ CHAPTER 1 THE WORLD OF DATA VISUALIZATION

c01.indd 11/03/2014 Page 14

FIGURE 1-6: HTML5 brings support for advanced functionality such as the <canvas> tag, which opens the
door to interactive charting among many other data visualization benefi ts.

It’s true that anyone with suffi cient JavaScript know-how could manage the requisite data acquisition,
conversion, and rendering required in the data visualization life cycle. However, armed with core
jQuery and targeted libraries, such a process becomes much more effi cient and successful.

In fact, if there is a single raison d’etre for this book, it’s the existence and proliferation of these
JavaScript libraries that will be leveraged throughout this title. In addition to making it easier to
bring the real-world data numbers to life in the fi rst place, most sophisticated JavaScript libraries
also make it much more straightforward to modify controlling parameters and even the data itself,
all on the fl y. This added degree of fl exibility strengthens the case for taking advantage of code
libraries such as Google Charts, D3, Raphaël and jqPlot to name just a few covered in this book and
available right now to be put to work.

SUMMARY

D ata visualization is the process of acquiring data, analyzing it, and displaying the result-
ing information in a graphical fashion. The entire procedure itself can run the gamut from the
extremely straightforward, such as creating a pie chart from values in a spreadsheet, to the
exceedingly complex, as when building a sophisticated infographic distilling reams of census
and geographic data. When thinking about the world of data visualization, keep these key
points in mind:

Summary ❘ 15

c01.indd 11/03/2014 Page 15

 ➤ Visualizing data makes it easier for a wider audience to quickly grasp the relative nature of
selected data.

 ➤ There are a tremendous number of options when it comes to deciding which form of
representation your information should take. The job of the visualization designer is to
realize the optimum choices for communicating the data’s message.

 ➤ Data can be collected and displayed visually in real time through the use of HTML forms and
JavaScript coding.

 ➤ The primary creators of data visualizations are the public sector and the business-to-business,
intrabusiness, and business-to-consumer markets.

 ➤ Advances in browser JavaScript processing, HTML5 browser support, and the proliferation
of related JavaScript libraries lay the technological foundation for data visualization.

c02.indd 11/03/2014 Page 17

Working with the Essentials of
Analysis

WHAT’S IN THIS CHAPTER

 ➤ Basic analytic concepts

 ➤ Key mathematical terms commonly applied when evaluating data

 ➤ Techniques for uncovering patterns within the information

 ➤ Strategies for forecasting future trends

The current Google defi nition of analysis is a perfect fi t when applied to data visualization:

Detailed examination of the elements or structure of something, typically as
a basis for discussion or interpretation.

You know the expression, “Can’t see the forest for the trees”? When you analyze data with
visualization in mind, you potentially are looking at both the forest and the trees. The individ-
ual data points are, of course, extremely important, but so is the overall pattern they form: the
structure referenced in the Google defi nition. Moreover, the whole purpose of analyzing data
for visualization is to discuss, interpret, and understand—to paint a picture with the numbers
and not by the numbers.

This chapter covers the basic tenets of analysis in order to lay a foundation for the material
ahead. It starts by defi ning a few of the key mathematical terms commonly applied when eval-
uating data. Next, the chapter discusses techniques frequently used to uncover patterns within
the information and strategies for forecasting future trends based on the data.

2

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

18 ❘ CHAPTER 2 WORKING WITH THE ESSENTIALS OF ANALYSIS

c02.indd 11/03/2014 Page 18

KEY ANALYTIC CONCEPTS

At its heart, most data is number based. For every text-focused explication that starts with “One
side feels this way and another side feels that way,” the next question is inevitably numeric: “How
many are on each side?” Such simplifi ed headcounts are rarely the full scope of a data visualization
project and it is often necessary to bring more sophisticated numeric analysis into play. This section
explores the more frequently applied concepts.

Mean Versus Median
One of the most common statistical tasks is to determine the average—or mean—of a particular set
of numbers. The mean is the sum of all the considered values divided by the total number of those
values. Let’s say you have sales fi gures for seven different parts of the country, shown in Table 2-1.

TABLE 2-1: Sample Sales by Region

REGION SALES

Northeast $100,000

Southeast $75,000

Midwest $125,000

Mid-Atlantic $125,000

Southwest $75,000

Northwest $100,000

California $400,000

All the dollar amounts added together equal $1,000,000. Divide the total by 7—the total number
of values—to arrive at the mean: $142,857. Although this is signifi cant in terms of sales as a whole,
it doesn’t really indicate the more typical fi gure for most of the regions. The signifi cantly higher
amount from California skews the results. Quite often when someone asks for the average, what
they are really asking for is the median.

The median is the midpoint in a series of values: quite literally, the middle. Let’s list regional sales in
descending order, from highest to lowest (see Table 2-2).

TABLE 2-2: Sample Sales by Region, Descending Order

REGION SALES

California $400,000

Midwest $125,000

Key Analytic Concepts ❘ 19

c02.indd 11/03/2014 Page 19

REGION SALES

Mid-Atlantic $125,000

Northeast $100,000

Northwest $100,000

Southeast $75,000

Southwest $75,000

The median sales fi gure (the Northeast region’s $100,000) is actually much closer to what most of
the other areas are bringing in. To quantify variance in the data—like that shown in the preceding
example—statisticians rely on a concept called standard deviation.

Standard Deviation
Standard deviation measures the distribution of numbers from the average or mean of any given
sample set. The higher the deviation, the more spread out the data. Knowing the standard deviation
allows you to determine, and thus potentially map, which values lie outside the norm.

Following are the steps for calculating the standard deviation:

 1. Determine the mean of the values set.

 2. Subtract the mean from each value.

 3. Square the results. Cleverly, this is called the squared differences.

 4. Find the mean for all the squared differences.

 5. Get the square root of the just-calculated mean. The result is the standard deviation.

Let’s run our previous data set through these steps to identify its standard deviation.

 1. The mean, as calculated before, is 142,857.

 2. Subtract the mean from the values to get the following results:

REGION SALES MEAN DIFFERENCE

Northeast 100,000 142,857 –42,857

Southeast 75,000 142,857 –67,857

Midwest 125,000 142,857 –17,857

Mid-Atlantic 125,000 142,857 –17,857

Southwest 75,000 142,857 –67,857

Northwest 100,000 142,857 –42,857

California 400,000 142,857 257,143

20 ❘ CHAPTER 2 WORKING WITH THE ESSENTIALS OF ANALYSIS

c02.indd 11/03/2014 Page 20

 3. To handle the negative values properly, square the results:

REGION DIFFERENCE SQUARED DIFFERENCE

Northeast –42,857 1,836,734,694

Southeast –67,857 4,604,591,837

Midwest –17,857 318,877,551

Mid-Atlantic –17,857 318,877,551

Southwest –67,857 4,604,591,837

Northwest –42,857 1,836,734,694

California 257,143 66,122,448,980

 4. Add all the squared values together to get 79,642,857,143; divide by 7 (the number of
values) and you have 11,377,551,020.

 5. Calculate the square root of that value to fi nd that 106,665 is the standard deviation.

When you know the standard deviation from the mean, you can say which fi gures might be abnor-
mally high or abnormally low. The range runs from 36,191 (the mean minus the standard deviation)
to 249,522 (the mean plus the standard deviation). The California sales fi gure of $400,000 is out-
side the norm by slightly more than $150,000.

To demonstrate how values can change the standard deviation, try recalculating it after dropping
the California sales to $150,000—a fi gure much more in line with the other regions. With that
modifi cation, the standard deviation is 44,031, indicating a much narrower variance range from
98,825 to 186,888.

WORKING WITH SAMPLED DATA

Statisticians aren’t always able to access all the data as we were with the regional sales information
referenced earlier in this chapter. Polls, for example, almost always refl ect the input of just a por-
tion—or sample—of the targeted population. To account for the difference, three separate concepts
are applied: a variation on the standard deviation formula, the per capita calculation for taking into
account the relative size of the data population, and the margin of error.

Standard Deviation Variation
There’s a very simple modifi cation to the standard deviation formula that is incorporated when
working with sampled data. Called Bessel’s Correction, this change modifi es a single value. Rather
than divide the sum of the squared differences by the total number of values, the sum is divided by
the number of values less one. This seemingly minor change has a signifi cant impact statisticians
believe represents the standard deviation more accurately when working with a subset of the entire
data set rather than the complete order.

Working with Sampled Data ❘ 21

c02.indd 11/03/2014 Page 21

Assume that the previously discussed sales data was from a global sales force and thus the data
is only a portion rather than the entirety. In this situation, the sum of the squared differences
(79,642,857,143) would be divided by 6 rather than 7, which results in 13,273,809,523 as opposed
to 11,377,551,020—a difference of almost 2 trillion. Taking the square root of this value results in a
new standard deviation of 115,212 versus 106,665.

Per Capita Calculations
Looking at raw numbers without taking any other factors into consideration can lead to inaccurate
conclusions. One enhancement is to bring the size of the population of a sampled region into play.
This type of calculation is called per capita, Latin for “each head.”

To apply the per capita value, you divide the given number attributed to an area by the population of
that area. Typically, this results in a very small decimal, which makes it diffi cult to completely com-
prehend. To make the result easier to grasp, it is often multiplied by a larger value, such as 100,000,
which would then be described as per 100,000 people.

To better understand this concept, compare two of the sales regions that each brought in $75,000:
the Southeast and the Southwest. According to the U.S. 2010 census, the population of the
Southeast is 78,320,977, whereas the Southwest’s population is 38,030,918. If you divide the sales
fi gure for each by their respective population and then multiply that by 100,000, you get the results
shown in Table 2-3.

TABLE 2-3: Regional Sales per Capita

REGION SALES POPULATION PER CAPITA PER 100,000

Southeast 75,000 78,320,977 0.000957598 95.8

Southwest 75,000 38,030,918 0.00197208 197.2

When the per capita calculation is fi gured in, the perceptive difference is quite signifi cant.
Essentially, the Southwest market sales were better than the Southeast by better than 2-to-1. Such
framing of the data would be critical information for any organization making decisions about
future spending based on current data.

Margin of Error
If you’re not sampling the entire population on any given subject, your data is likely to be somewhat
imprecise. This impreciseness is known as the margin of error. The term is frequently used with
political polls where you might encounter a note that it contains a “margin of error of plus or minus
3.5%” or something similar. This percentage value is very easy to calculate and, wondrously, works
regardless of the overall population’s size.

To fi nd the margin of error, simply divide 1 by the square root of the number of samples. For
example, let’s say you surveyed a neighborhood about a household cleaning product. If 1,500 people
answered your questions, the resulting margin of error would be 2.58 percent. Here’s how the math
breaks down:

22 ❘ CHAPTER 2 WORKING WITH THE ESSENTIALS OF ANALYSIS

c02.indd 11/03/2014 Page 22

 1. Find the square root of your sample size. The square root of 1,500 is close to 38.729.

 2. Divide 1 by that square root value. One divided by 38.729 is around 0.0258.

 3. Multiply the decimal value by 100 to fi nd the percentage. In this case, the fi nal percentage
would be 2.58 percent.

The larger your sample, the smaller the margin of error—stands to reason, right? So if the sample
size doubles to 3,000, the margin of error would be 1.82 percent. Note that the percentage value for
double the survey size is not half the margin of error for 1,500; the correlation is proportional, but
not on a 1-to-1 ratio.

Because this calculation is true regardless of the overall population size—your sampled audience
could be in New York or in Montana—it has wide application. Naturally, there are many other
factors that could come into play, but the margin of error is unaffected.

DETECTING PATTERNS WITH DATA MINING

Data visualizations are often used in support of illustrating one or more perceived patterns in tar-
geted information. Another term for identifying these patterns and their relationship to each other
is data mining. The most common data-mining tool is a relational database that contains multiple
forms of information, such as transactional data, environmental information, and demographics.

Data mining incorporates a number of techniques for recognizing relationships between various bits
of information details. The following are the key techniques:

 ➤ Associations: The Association technique is often applied to transactions, where a consumer
purchases two or more items at the same time. The textbook example—albeit a fi ctional
one—is of a supermarket chain discovering that men frequently buy beer when they pur-
chased diapers on Thursdays. This association between the seemingly disparate products
enables the retailer to make key decisions, like those involving product placement or pricing.
Of course, any association data should be taken with a grain of salt because correlation does
not imply causation.

 ➤ Classifi cations: Classifi cation separates data records into predefi ned groups or classes accord-
ing to existing or predictive criteria. For example, let’s say you’re classifying online customers
according to whether they would buy a new car every other year. Using relational, compara-
tive data—identifying other factors that correlated with previous consumers who bought an
automobile every two years—you could classify new entries in the database accordingly.

 ➤ Decision trees: A decision tree follows a logic fl ow dictated by choices and circumstances. In
practice, the decision tree resembles a fl ow chart, like the one shown in Figure 2-1. Decision
trees are often used in conjunction with classifi cations.

 ➤ Clusters: Clustering looks at existing attributes or values and groups entries with similarities.
The clustering technique lends itself to more of an exploratory approach than classifi cation
because you don’t have to predetermine the associated groups. However, this data mining
method can also identify members of specifi c market segments.

Projecting Future Trends ❘ 23

c02.indd 11/03/2014 Page 23

 ➤ Sequential patterning: By examining the sequential order in which actions are taken, you can
determine the action likely to be taken next. Sequential patterning is a foundation of trend
analysis, and timelines are often incorporated for related data visualization.

Activity Participation

Rainy

Lecture Museum Game Hike

Sunny

FIGURE 2-1: In a decision tree, environmental factors, such as the weather, along with personal
choices, can impact the fi nal decision equally.

These various techniques can be applied separately or in combination with one another.

PROJECTING FUTURE TRENDS

The prediction of future actions based on current behavior is a cornerstone of data visualization.
Much projection is based on regression analysis. The simplest regression analysis depends on two
variables interconnected in a causal relationship. The fi rst variable is considered independent and the
second, dependent. Let’s say you’re looking at how long a dog attends a behavioral school and the
number of times the dog chews up the furniture. As you analyze the data, you discover that there
is a correlation between the length of the dog’s training (the independent variable) and its behavior
(the dependent variable): The longer the pet stays in the training, the less furniture destruction.
Table 2-4 shows the raw data.

TABLE 2-4: Data for Regression Analysis

DAYS TRAINING CHEWING INCIDENTS

5 8

10 5

15 6

20 3

25 4

30 2

24 ❘ CHAPTER 2 WORKING WITH THE ESSENTIALS OF ANALYSIS

c02.indd 11/03/2014 Page 24

NOTE Some statisticians refer to the independent and dependent variables in
regression analysis as exogenous and endogenous, respectively. Exogenous refers
to something that was developed from external factors, whereas endogenous is
defi ned as having an internal cause or origin.

To get a better sense of how regression analysis works, Figure 2-2 shows the basic points plotted on
a graph. As you can see, the points are slightly scattered across the grid. Because it involves only two
variables, this type of projection is referred to as simple linear regression.

FIGURE 2-2: The number of days training (the independent variable) is shown in the X axis and the number
of dog bites (the dependent variable) in the Y.

To clarify the data trend direction, a regression analysis formula is applied that plots a straight line
to encapsulate the point distribution (see Figure 2-3). This trend line provides insight to the scattered
point distribution—it’s a great example of how data visualizations can be used for discovery and
understanding.

Of course, there won’t always be a one-to-one relationship. It’s axiomatic that correlation isn’t cau-
sation. There are often other factors in the mix. However, narrowing the outside variables—such as
limiting the study to one breed—increases the predictive possibilities.

Summary ❘ 25

c02.indd 11/03/2014 Page 25

FIGURE 2-3: When a linear progression formula is applied to the data, a straight trend line is indicated.

REFERENCE The actual mathematics of regression analysis and other concepts
covered in this chapter are outside the scope of this book. However, there are
numerous online and offl ine tools to handle the heavy arithmetic lifting. To learn
more about these tools and the techniques for using them, see Chapter 8.

SUMMARY

 The analysis of data is an integral aspect of its visualization. A wide range of mathematical and sta-
tistical techniques are available to examine both the individual informational components and their
overall structure. Here are a few important points regarding the basics of data analysis:

 ➤ For the most part, data analysis is a numbers game and a core understanding of key math-
ematical concepts is necessary.

 ➤ The mean of a series of numbers is found by dividing the sum of the values by their number.

 ➤ The midpoint in a set of values is referred to as the median.

26 ❘ CHAPTER 2 WORKING WITH THE ESSENTIALS OF ANALYSIS

c02.indd 11/03/2014 Page 26

 ➤ To fi nd the average distribution of your data, calculate its standard deviation.

 ➤ Special considerations—including a variation in the standard deviation, per capita calcula-
tions, and margin of error—must be kept in mind when analyzing data from a sample of a
given population versus the entire population.

 ➤ Various techniques in data mining can be used to uncover current and predictive patterns.
These techniques include associations, classifi cations, decision trees, clusters, and sequential
patterning.

 ➤ Regression analysis looks at independent and dependent variables to determine trendlines of
future behavior.

c03.indd 11/06/2014 Page 27

Building a Visualization
Foundation

WHAT’S IN THIS CHAPTER

 ➤ Getting to know charting primitives, including point, bar, and pie
charts

 ➤ Understanding specialized charts, including candlestick, bubble,
and surface charts

 ➤ Examining the underlying technology for these charts, such as
HTML5 and SVG

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/javascriptandjqueryanalysis on the Download Code
tab. The code is in the chapter 04 download and individually named according
to the names throughout the chapter.

After you have your data in hand, the big question is how to present it. Before you can
make the choice that best communicates your message, you need a thorough grasp of
what’s possible—in the universe of visualization options as well as in the technology to
create them online.

This chapter lays the groundwork for both realms. First, it takes a look at visualizations from
the most basic (point, bar, and pie charts among others) to the more specialized (bubble and
candlestick charts). Then it examines some of the underlying technology for displaying these
visualizations online, primarily HTML5 and SVG.

3

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

28 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 28

EXPLORING THE VISUAL DATA SPECTRUM

Trying to choose the right representation for your data is like being a child and walking into a
toy store for the fi rst time. There are just so many shiny, attractive options from which to choose.
Whether you go with basic building blocks, such as a pie or bar chart, or opt for a more sophisti-
cated conveyance, such as a timeline-based infographic, depends on many factors. To ensure you’re
making the correct selection, it’s important you understand the full range of choices available to
you. This section examines a wide range of data visualization possibilities from the simple to the
robust.

Charting Primitives
Graphic artists refer to core elements such as lines, rectangles, and ovals as drawing primitives.
We borrowed that concept, applied it to data visualizations, and christened it charting primitives.
Included in this collection are the most familiar members of the visualizations family: plotted
points, line charts, bar charts, pie charts, and area charts.

Even though these visualization types are the most basic, there is a thriving set of variations for
each one. Although many options are design-oriented—such as 2D versus 3D—others are crucial
for representing sophisticated data in a meaningful way.

Data Points
The data point is perhaps the most basic of the charting primitives. A data point is a single element
plotted on a graph, typically via the X and Y axes. For this reason, data point charts are also known
as XY charts. Moreover, because they can appear as dots scattered across the plane (see Figure 3-1),
you may often see them referred to as scatter charts.

FIGURE 3-1: Data points plotted according to their X and Y values.

Exploring the Visual Data Spectrum ❘ 29

c03.indd 11/06/2014 Page 29

NOTE It’s important to note that data points require two numeric values to be
plotted, unlike some other types of charts that may combine one number with a
category such as 3rd Quarter Revenue.

Plotted data points are used to illustrate the interconnection between two different sets of data; this
interconnection is referred to as the correlation. If the data points on the graph appear to be random,
without a discernable pattern, there is said to be no correlation. Positive correlation occurs when the
values generally increase together. The correlation is considered negative when one value goes down
while the other goes up. If there is a one-to-one correspondence in either case, the correlation is
considered perfect.

REFERENCE If there is a strong correlation in one direction or the other,
calculated lines are often drawn for emphasis or to indicate trends. This
technique is used in regression analysis, which is covered in Chapter 2.

Line Charts
When you connect two data points with a continuous line, you create the fi rst segment in a line
chart. Line charts are among the most common and form the basis for other types of charts: area,
stacked line, and curve fi t (also known as smooth line) among others. A single data series is rendered
as one line moving from point to point, as shown in Figure 3-2.

FIGURE 3-2: In line charts, markers are often used to highlight the data points on the grid.

30 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 30

Often used to depict data points over time, line charts of suffi cient breadth can effectively become
trend lines, although they are not necessarily predictive. Stock price charting frequently incorporates
line charts, which can be depicted in numerous ways, including a day-to-day change and a percentage
change from the median over a set period (see Figure 3-3).

Source: Chart courtesy of StockCharts.com

FIGURE 3-3: Stock prices, like these percentage variations for Apple, Inc. over a period of 200 days,
provide ample material for a line chart.

NOTE Although it is possible to present line charts in 3D, we don’t fi nd the 3D
perspective in line charts as effective as in other charting elements, such as a bar
or pie chart. That’s because the 3D perspective can actually obscure the values.
Regardless of your stylistic preferences, you should never compromise the infor-
mation in your charts.

Exploring the Visual Data Spectrum ❘ 31

c03.indd 11/06/2014 Page 31

Variations in color, weight (or thickness), and type of line—solid, dotted, dashed, and so forth—by
themselves or in combination with each other, can be used to depict different data series. Figure 3-4
shows such a line chart with fi ve data series, varied by line color and placement. Another technique
is to apply different markers, identifying the data points; markers can be a variety of shapes, such as
circles, squares, or diamonds, or even different graphics.

Source: Chart courtesy of StockCharts.com

FIGURE 3-4: When comparing data sets with the same unit of measure, as with this seasonality chart of
Amazon stock prices over 5 years, line charts can be shown one above the other.

To clarify a data point in a line segment, the exact information can be displayed when the user hovers
his or her cursor over a point on the line or taps the point on a mobile device screen.

Stacked line charts, as the term suggests, essentially display one line chart data set above one or
more others, but unlike the example shown in Figure 3-4, they typically include the different Y-axis
scales. This layout allows for varying units of measure. You could, for example, stack one chart of

32 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 32

profi t data, another of the percentage of market share, and a third of number of employees over the
same time range. All three have different measurement units, yet by offering the visual comparison
brought by a stacked line chart, patterns emerge and trends can be identifi ed (see Figure 3-5).

Source: http://www.performance-ideas.com/2012/03/27/stacked-line-charts/

FIGURE 3-5: This example of a stacked line chart by Christoph Papenfuss compares revenue, margin, and
overhead over the same timeframe.

Most often, the lines are drawn straight from one point to another. However, some line charts
incorporate arcing lines for a more curved, smooth appearance, like those shown in a bell curve.
The lines in these types of charts (see Figure 3-6) are said to be curved or spline line charts.

Polynomial or other mathematical functions—such as quadratic, exponential, or periodic—are
applied to the points to smooth the line. A consideration to keep in mind when converting a straight
line chart to a curved line chart is that applying any sort of mathematical curving function introduces
an approximation of data rather than the precise data itself. However, in some instances, this
approximation may be acceptable and even desirable.

http://www.performance-ideas.com/2012/03/27/stacked-line-charts

Exploring the Visual Data Spectrum ❘ 33

c03.indd 11/06/2014 Page 33

FIGURE 3-6: The smoothness of a curved line chart is achieved through the application of a mathematical
function to draw the line.

Bar Charts
Bar charts use one or more proportionately sized rectangular elements to represent specifi c data
values. The rectangles are presented either horizontally or vertically; if the latter, the bars may be
referred to as columns. Frequently, multiple bars are placed side-by-side to illustrate relative
differences, and the impact of the chart relies on this comparison (see Figure 3-7).

FIGURE 3-7: Bar charts are great for at-a-glance comparisons, such as this one that shows a big spike in
Austrian coffee drinking in 2012.

34 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 34

In a bar chart, one axis sets the categories being considered; these categories may be date related,
such as a series of months or quarters; locations, such as states or sales offi ces; or other relevant
groupings. The opposing axis shows a series of values in a single unit of measure, most often in an
ascending, bottom-to-top, arrangement. The scale of measurement varies, but often starts at zero
and extends to a number at or slightly above the highest value entry.

In addition to the simple bar graph, there are two other distinct types of bar charts: grouped
and stacked. As the name implies, a grouped bar chart places bars representing related members
of a subcategory adjacent to each other—grouped, if you will—beside other similar collections
of bars, as shown in Figure 3-8.

FIGURE 3-8: A grouped bar chart can add another perspective to the data; here you see that Austrians
drink much more coffee year-to-year than other European countries.

Stacked bar charts work with subgroups as well, but instead of presenting each cluster as its own
individual bar, the subgroups are placed on top of each other to represent a cumulative total value.
The subgroups are differentiated in some manner, such as varying colors or patterns, each of which
is identifi ed with a legend.

All manner of bar charts lend themselves very well to 3D styling. The illusion of depth is heightened
by the perspective angle of the viewer relative to the charting elements combined with the rotation,
pitch, and yaw of the three-dimensional space itself around the X, Y, and Z axes, respectively. There
are so many variations possible when working with 3D bar charts that it can be diffi cult to decide
which one is most fi tting. The bar chart shown in Figure 3-10—as simple as it is—went through
numerous iterations before being fi nalized in order to convey the basic information, as well as create
the desired impact.

www.allitebooks.com

http://www.allitebooks.org

Exploring the Visual Data Spectrum ❘ 35

c03.indd 11/06/2014 Page 35

FIGURE 3-9: Stacked bar charts, like this column version, show aggregate totals as well as individual levels.

FIGURE 3-10: 3D bar charts typically incorporate shadows and shading to render the three-dimensional
imagery in a 2D medium.

NOTE There are numerous shape variations for bar charts, including cylinders,
cones, and pyramids. Some specifi c constructions, like pyramids, may at fi rst
glance appear to work exceedingly well with stacked bar graphs. However, the
representation of the data can be misleading because although the height of the
element is used to depict the value, the varied volume of the object conveys a
different impression. For example, the pyramid chart shown in Figure 3-11
indicates that the top level is 26.76 percent of the total, and the bottom is 23.32
percent. Although the top slice of the pyramid is appropriately a bit taller than
the lowest level, volumetrically the bottom is many times larger. For bar charts
such as these, labeling is critical.

36 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 36

Source: WWW.ADVSOFTENG.COM/GALLERY_PYRAMID.HTML
FIGURE 3-11: Pyramid and other alternative bar chart shapes can be compelling visually but must be
labeled properly to avoid data misinterpretation.

Pie Charts
A pie chart is a circular graph composed of separate portions of the circle—a.k.a. sectors—to
represent relative data sizes of the overall sample, or, in other words, the entire pie. Whereas the
data series in a bar chart are open ended and do not need to match any particular total, by their
very nature the data series percentages in a pie chart must equal 100 percent. Pie charts like the one
shown in Figure 3-12 are great for showing simple relationships between various data segments.

FIGURE 3-12: When labeled with data values, a pie chart gives you the hard numbers as well as the visual
percentage.

Exploring the Visual Data Spectrum ❘ 37

c03.indd 11/06/2014 Page 37

The proportionate size of the sectors or pie slices are determined formulaically where the data value
is divided by the total of all values and then multiplied by 100 to fi nd the percentage of the total.
That percentage is then multiplied by 360, the number of degrees in a circle, to get the size of the arc
for each sector in degrees. For example, consider the following data points.

NORTH SOUTH EAST WEST TOTAL

Data 200 125 175 150 650

The total for all values is 650. Dividing the value of each segment by the total provides that seg-
ment’s percentage (see Table 3-1).

TABLE 3-1: Percentage of Pie Chart Data

NORTH SOUTH EAST WEST TOTAL

Data 200 125 175 150 650

Percentage (Data / Total Data) 30.8% 19.2% 27.9% 23.1% 100%

Multiplying the percentages by 360 results in the degrees for each data point, as shown in Table 3-2.

TABLE 3-2: Degrees of Pie Chart Data

NORTH SOUTH EAST WEST TOTAL

Data 200 125 175 150 650

Percentage (Data / Total Data) 30.8% 19.2% 27.9% 23.1% 100%

Degree (Percentage × 360) 111° 69° 97° 83° 360°

As you can see, the total for all degrees is equal to 360, a complete circle. Pie charts frequently dis-
play both the raw data and the calculated percentages, either all the time or when the user hovers
over or taps a particular slice, as shown in Figure 3-13.

To emphasize a particular data point, the associated pie slice is moved slightly from the center
or exploded. The exploded pie chart is particularly effective in 3D (see Figure 3-14). As with bar
charts, 3D pie charts can be tilted in any orientation and are typically rendered with shading and
shadows.

Occasionally, it is helpful to drill down further into a particular pie segment to provide more detail.
One technique for accomplishing this is to create a “pie of pie” type chart, where the percentage
values of the entire child pie equal the value of the parent slice, as shown in Figure 3-15.

38 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 38

FIGURE 3-13: The underlying data is available for this pie chart interactively.

Source: FusionCharts

FIGURE 3-14: Explode one or more slices of a pie chart—whether 2D or 3D—to highlight them.

Other types of circular charts include donut charts, which can be used to represent multiple series
of data. The chart in Figure 3-16, for example, shows a series of countries and their related sales
percentages with the total in the middle of the donut.

Another type of circular chart, the polar area diagram, equates the data values to the distance from
the center of the circle rather than the percentage degrees of the standard pie chart. Such graphs are
often used by meteorologists to chart wind speeds from varying directions in what is referred to as a
wind rose like the one shown in Figure 3-17.

Exploring the Visual Data Spectrum ❘ 39

c03.indd 11/06/2014 Page 39

FIGURE 3-15: The pie-of-pie approach breaks a sector out for more detail rather than creating a series of
smaller slices.

http://commons.wikimedia.org/wiki/File:2012_US_House_Donut_Graph.jpg

FIGURE 3-16: The donut chart uses multiple rings to display a range of related data.

Area Charts
An area chart is, essentially, a line chart where the area between the line and the chart bottom are
fi lled in with a pattern or solid color, as shown in Figure 3-18. Emphasizing the area brings focus to
the overall volume indicated by the data.

40 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 40

Source: Natural Resources Conservation Service, USDA.

FIGURE 3-17: In this polar chart, the wind coming from the northwest is clearly the strongest.

Area charts really come into their own when multiple data series are displayed, either as a side-by-
side comparison or overlapping regions. When separate data sets overlap, consider using semi-trans-
parent colors so that all data is visible (see Figure 3-19).

When cumulative data is important, another approach is to stack the area charts, one on top of the
other. Similar to stacked bar charts, stacked area charts show relative data values for numerous data
sets, typically over a date range as well as displaying the total. For example, Figure 3-20 shows the
number of cars, motorcycles, and bicycles involved in traffi c incidents from 1999 to 2012. Because
of the nature of the stacked area chart, it is immediately apparent that the overall incidents declined,
mostly because of the drop in motorcycles accidents, whereas both bicycle and automobiles (after
2001) stayed relatively the same.

Exploring Advanced Visualizations
Beyond charting primitives lies a vast and expansive fi eld of visualizations. At fi rst glance, some of
these more exotic options may seem like so much eye-candy, but the possibilities covered in this
section are purpose driven rather than merely decorative. A candlestick chart, for example, is not

Exploring the Visual Data Spectrum ❘ 41

c03.indd 11/06/2014 Page 41

just a fancy bar chart with different iconography; the candlestick shapes are typically used to plot
the high and low points of specifi ed stock prices as well as their open and closing prices. You’ll fi nd
similar need-based foundations in all the chart types covered in this section, including candlestick,
bubble, surface, map, and infographics.

FIGURE 3-18: The simplest area chart depicts a single set of data points.

FIGURE 3-19: Combine multiple data sets with overlapping area charts.

42 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 42

http://commons.wikimedia.org/wiki/File:Rareearth_production.svg

FIGURE 3-20: Stacked area charts enable you to quickly grasp overall trends as well as specifi c data set
changes.

Candlestick Chart
Candlestick charts can convey a great deal of information in a very compact package. A complete
candlestick chart combines aspects of both line and bar charts and is generally used in tracking
stocks, commodities, and similar exchange items over a range of time.

The primary element is really only a literal candlestick if you consider the old saying “burning the
candle at both ends” to be a real possibility. The various elements of the candlestick are derived
from four different values, each related to a trading price:

 ➤ High: The top of the upper candlestick wick or shadow

 ➤ Close: The bottom of the upper shadow and the top of the candle or body

 ➤ Open: The top of the lower shadow and the bottom of the body

 ➤ Low: The bottom of the lower shadow

Each candlestick displays a data set of values at a specifi c point in time and complete candlestick
charts comprise many such elements as you can see in Figure 3-21. What’s really great about candle-
stick charts is the depth of the information that is conveyed. In addition to tracking the movement
of prices over a given period, the length of the candle body indicates the relative pressure in either
selling or buying. An additional convention is added to indicate the direction of the pressure: If the
body is hollow, the close is greater than the open and buying is more prevalent, whereas if the body
is fi lled with a color, the closing price is less than the opening and selling is predominant.

Bubble Chart
Bubble charts add an extra dimension to the standard data point chart. A single bubble in a bubble chart
utilizes three values: one for each axis that determines position on the graph and a third value, indicated
by the bubble’s size, which could represent any other relevant value. For example, in Figure 3-22 the

http://commons.wikimedia.org/wiki/File:Rareearth_production.svg

Exploring the Visual Data Spectrum ❘ 43

c03.indd 11/06/2014 Page 43

bubbles are mapped according to life expectancy (X axis) and fertility rate (Y axis) while their size is
derived from the population of the countries. Bubble charts like this can help illustrate “apple-to-apple”
comparisons; in this example, you can see that although Great Britain and Germany have about the same
population size and life expectancy, the fertility rate in the UK is much higher.

FIGURE 3-21: Candlestick charts convey both detailed data, such as opening and closing stock prices, as
well as general trends.

FIGURE 3-22: Bubble charts allow for three data values per element.

44 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 44

The chart shown in Figure 3-22 also demonstrates one of the issues with bubble charts. See the data
point below the USA and GBR? Well, maybe you can and maybe you can’t. The much smaller circle
with the initials DNK is for Denmark. If the third value is relatively too small—as is the case here in
Denmark’s population—it may not be noticeable. The problem is exacerbated when the third value
is zero or negative. Be sure to review all of your data carefully to ensure that all values are fully
represented before opting for the bubble chart.

Surface Charts
Whereas many charts use 3D graphics for visual fl are, the surface chart is, by its very defi nition,
three dimensional. Similar to bubble charts, surface charts allow you to convey data in three dimen-
sions, for instance Figure 3-23 uses a surface chart to show rainfall distribution across both latitude
and longitude.

Source: HTTP://DEDICATEDEXCEL.COM/AN-OVERVIEW-OF-CHARTS-IN-EXCEL-2010/

FIGURE 3-23: Surface maps show three dimensions of data.

Another factor that distinguishes surface charts from other chart types is the use of color. Typically,
with line and bar graphs, color is used to identify data sets across one or more axes. With a surface
chart, separate colors are used to represent a range of data as it maps to the three axes (X, Y, and Z)
as shown in Figure 3-24.

Instead of 2D and 3D options, the surface chart can be displayed with solid, color-fi lled regions or
as a wireframe. Wireframes are useful when plotting a great deal of data and it’s essential to render
results quickly and illustrate the data point more clearly. However, because color is such a critical
differentiator in surface charts, the lack of a solid colored area in a surface wireframe makes them
somewhat diffi cult to read. A good compromise is to overlay a standard surface map with a grid-like
wireframe.

Exploring the Visual Data Spectrum ❘ 45

c03.indd 11/06/2014 Page 45

Source: DPlot Graph Software

FIGURE 3-24: Surface maps use color to identify a range of data, as shown by the legend on the right of
the fi gure.

Source: Gigawiz

FIGURE 3-25: Combine solid and wireframe surface charts to get a fi ner degree of data visualization with
the easy readability of color ranges.

46 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 46

Map Charts
Surface charts may appear to be terrain-like, but data visualization offers actual topographic
alternatives when needed. In this context, a map chart combines the rendering of a geographic
area with selected data, which may be represented as highlighted regions with or without
custom markers. The maps themselves can be as detailed as necessary—up to and including being
depicted with satellite photography—or they can be rendered as one-color outlines, like the one
in Figure 3-26.

FIGURE 3-26: This map chart shows city locations and populations.

Another type of map chart is the geomap or geochart. Map charts used actual mapping data, which
is overlaid with data-driven markers; typically, you can zoom into and scroll around a map chart,
just as you could an online map. A geomap, on the other hand, is typically not scrollable and has
only limited zoomability. Geomaps also can incorporate bubble-type markers, where the size of the
marker is related to a data set. It is possible, however, to include interactivity to reveal data point
details on both types of map charts (see Figure 3-27).

Infographics
Like the word itself, an infographic combines information and graphics. In a sense, the term could
be applied to any kind of chart, but it has come to encompass a much broader range of conveying
knowledge through design. Infographics appeal to the aspect of people that learns visually to both
impart relevant information and persuade observers of the inherent message. They range from the
simplest USA Today front-page graphic on what’s happening to densely detailed posters published
by the U.S. government (see Figure 3-28) and everything in between—and beyond.

Exploring the Visual Data Spectrum ❘ 47

c03.indd 11/06/2014 Page 47

FIGURE 3-27: Map charts can reference the globe while highlighting targeted countries.

FIGURE 3-28: This excerpt from an infographic on veterans published by the U.S. Census bureau combines
iconography, bar charts, and detailed information.

48 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 48

NOTE Whether imparting serious or frivolous information, infographics are
a designer’s playground. It’s no wonder that there are many online sites that
highlight infographics. You can fi nd amazing, inspirational examples at Visual.ly
(http://visual.ly), Daily Infographic (http://dailyinfographic.com), and
Cool Infographics (http://www.coolinfographics.com).

Edward Tufte—affectionately known as ET—is one of the champions of infographics in the modern
era. In his book Visual Display of Qualitative Information (Graphics Press, 2001), he outlines a
number of key principles of infographics, including the following:

 ➤ Show your data. The data itself is critical to an infographic.

 ➤ Engender thought on the infographic’s subject. The goal is to keep the focus on the substance
rather than on the prettiness of the graphics or the methodology.

 ➤ Keep true to your data. Distorting information to make a specifi c point undercuts the very
nature of data.

 ➤ Encourage comparisons. Numerous data visualizations, such as bar charts, create easy-to-
grasp correlations and should be incorporated where possible.

You can see many of these principles in the work of government agencies, such as the infographic
from the Jet Propulsion Laboratory shown in Figure 3-29.

Source: NASA

FIGURE 3-29: This infographic from NASA’s JPL provides proportional planets with key details about the
atmospheres of neighboring planets.

Making Use of the HTML5 Canvas ❘ 49

c03.indd 11/06/2014 Page 49

MAKING USE OF THE HTML5 CANVAS

Canvas is one of the most innovative and impactful elements of the HTML5 language, especially in
regard to data visualization. With the <canvas> tag, a designer creates a reserved open-ended area
on the web page to contain programmatically created graphics at run-time. HTML5 canvas imagery
is powered by a robust JavaScript API—the vast majority of which enjoys a healthy degree of cross-
browser support currently and can be put to use immediately.

The fi rst step in working with <canvas> is to include the tag in the <body> section of your HTML
page. You only need to include three attributes: ID, width, and height. Should this tag not be
supported by a browser, you can display an alternative. Any content—whether an alternative image
or text message—can be inserted between the opening and closing <canvas> tags. Here’s a complete
<canvas> tag listing:

<canvas id="chart1" width="600" height="400">

</canvas>

At this stage, nothing would be displayed on the page in this reserved space, assuming the browser
supported the HTML5 <canvas> tag. It’s quite literally a blank canvas. To draw on the canvas, it
needs to be “primed” or initialized with JavaScript. Typically, you do this by placing the necessary
JavaScript function in the <head> and calling it when the document is ready. The following are the
basic steps for initializing the canvas:

 1. Create a variable to hold the canvas object, as identifi ed by its ID.

 2. Check to see if the canvas API getContext() method (and thus, the <canvas> tag) is
supported.

 3. If so, create a variable and apply the getContext() method for the targeted canvas object.

In practice, the code looks like this:

<script type="text/javascript">
 function drawCanvas(){
 var theChart = document.getElementById('chart1');
 if (theChart.getContext){
 var theContext = theChart.getContext('2d');
 }
 }
</script>

50 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 50

NOTE In their development of the canvas specifi cation, the W3C indicated that
the canvas context value initially defi ned was two-dimensional or “2d”. This
action was taken with the thought of possibility extending the specifi cation
to include a “3d” context. Although that extension has not really taken hold, a
viable replacement, WebGL, has. WebGL libraries specifi cally for data
visualization, such as the one from InCharts3D (http://incharts3d.com/) are
beginning to emerge.

After the context of the canvas is defi ned, all drawing calls reference this variable with the canvas
area treated as coordinate space. The declared width and height attributes of the <canvas> tag
determine the number of pixels available in the grid. In this example:

<canvas id="chart1" width="600" height="400">

There are 600 pixels in the X axis and 400 in the Y. The grid origin (0,0) is, by default, placed
in the upper-left corner of the canvas. Armed with this information, a primitive canvas object—a
fi lled rectangle—can be drawn with the fillRect() function. This function takes four arguments:
x, y, width, and height. The fi rst two values identify the upper-left corner of the rectangle, whereas
the latter two, obviously, supply the dimensions; all values are specifi ed in pixels. For example, to
draw a simple fi lled rectangle 100 pixels wide by 200 tall, where the upper-left corner starts at
50 pixels from the left edge of the canvas and 200 from the top edge, the basic function would look
like this:

fillRect(50,200,100,200)

The output in Figure 3-30 shows the start of a basic bar chart.

FIGURE 3-30: With canvas, you can begin to programmatically create bar charts using the rectangle
drawing primitive.

Here’s the complete HTML page code for drawing the fi rst rectangle. We’ve added some basic CSS
styling and a tad more HTML to center and outline the canvas.

<!doctype html>
<html>
<head>

http://incharts3d.com

Making Use of the HTML5 Canvas ❘ 51

c03.indd 11/06/2014 Page 51

<meta charset="UTF-8">
<title>Canvas Example 1</title>
<script type="text/javascript">
 function drawCanvas(){
 var theChart = document.getElementById('chart1');
 if (theChart.getContext){
 var theContext = theChart.getContext('2d');
 theContext.fillRect(50,200,100,200);
 }
 }
</script>
<style>
 #outerWrapper {
 width: 800px;
 margin: 1em auto;
 }
 canvas {
 border: 1px solid #000;
 }
</style>
</head>

<body onload="drawCanvas();">
<div id="outerWrapper">
 <canvas id="chart1" width="600" height="400">

 </canvas>
</div>
</body>
</html>

NOTE Note that in this simple example, the JavaScript onload() function is
used in the <body> tag to call the previously defi ned drawCanvas() function. In
a production scenario, you’d be more likely to use the DOMContentLoaded() or
jQuery document.ready() function to trigger drawCanvas().

The canvas API is fairly robust and you can programmatically perform many different illustrating
operations. Here’s a partial list of what’s possible:

 ➤ Rectangles, both solid and outlined

 ➤ Points of any dimension

 ➤ Connected straight lines

 ➤ Arcs

 ➤ Circles and ovals, both solid and outlined

 ➤ Text, with specifi ed font, size, and color

 ➤ Import images

 ➤ Complete color control, including alpha transparency

52 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 52

 ➤ Gradients of any color combination, linear or radial

 ➤ Shadows of any object or text

 ➤ Patterns of any object, repeated in a specifi ed direction

In addition to the basic drawing options listed here, canvas objects can be scaled, rotated, and
moved (or translated) anywhere on—or off—the canvas. These features can be applied to create
animated canvas graphics, such as zooming timelines, all under programmer or user control.

Finally, it’s worth noting that canvas typically provides better performance than other drawing
alternatives. When you combine that with the plethora of styling options, it’s no wonder that many
charting plug-ins—such as ChartJS, RGraph, FusionCharts, and Flot—offer <canvas> tag–based
output.

INTEGRATING SVG

SVG, short for Scalable Vector Graphics, is a useful alternative to HTML5 canvas. Like canvas,
SVG enables run-time graphics in a format supported by most modern browsers. Unlike the pixel-
based canvas, SVG is, as the name plainly states, vector based. Vectors are resolution independent—
which means they do not degrade in quality if rescaled or magnifi ed—and often result in a smaller
fi le size than rasterized graphics.

SVG has been a W3C-approved specifi cation since 2003 and, consequently, enjoys rich tool support,
notably Adobe Illustrator and the open-source Inkscape. When a fi le has been exported as SVG, it
can be integrated into a web page with the basic tag, like this:

REFERENCE There are some dedicated and enthusiastic supporters of SVG. For
a great visual sampler, visit SVG Wow (http://svg-wow.org).

SVG can also be created as an XML fi le or placed inline in an HTML page. The code requires the
use of an XML namespace as well as a particular syntax. Unlike canvas, you don’t need JavaScript
to create graphics programmatically, although an SVG DOM component is available. Rather, the
drawing instructions are detailed in the XML. For example, the following code creates a blue circle
in the middle of an area 400 pixels square:

<svg height="400" xmlns="http://www.w3.org/2000/svg">
 <circle id="circle1" cx="400" cy="200" r="50" fill="blue" />
</svg>

After the SVG area is defi ned (complete with namespace declaration), the <circle> tag includes
attributes for cx, cy, r, and fill—the center-x, center-y, radius, and fi ll color, respectively. You can
see the result in Figure 3-31.

Integrating SVG ❘ 53

c03.indd 11/06/2014 Page 53

FIGURE 3-31: This SVG was drawn using XML in the markup.

In addition to offering the same core drawing capabilities as canvas, like rectangles, ovals, lines,
polygons, text, gradients, and so forth, SVG also includes a number of fi lters to provide special
effects. Some of the possibilities of SVG effects include the following:

 ➤ Blend

 ➤ Offset

 ➤ Gaussian blur

 ➤ Color matrix

 ➤ Composite

 ➤ Convolve matrix

 ➤ Diffuse lighting

 ➤ Specular lighting

 ➤ Tiling

 ➤ Turbulence

NOTE SVG fi lters are compatible with the latest round of browsers but would
not be a good choice if you needed to support older versions.

SVG fi lters can be combined. Figure 3-32, for example, shows a combination of blending, offset,
and Gaussian blur to add a drop shadow to the previously drawn blue circle.

FIGURE 3-32: Four different fi lters were combined to create the drop shadow of this SVG drawn circle.

54 ❘ CHAPTER 3 BUILDING A VISUALIZATION FOUNDATION

c03.indd 11/06/2014 Page 54

With the scalable vector graphics capability and inherent small size, SVG is an extremely viable medium
for data visualization. On the pro side, SVGs are DOM accessible, meaning that you can reference and
adjust the values in an SVG, in turn seeing those changes refl ected on the screen. On the con side, this
DOM accessibility comes at the cost of performance; SVG typically performs worse than canvas.

REFERENCE Numerous online tools, including the Google Charts API and
Raphaël, support SVG. For a closer look at each, see Chapters 9 and 10.

SUMMARY

 When it comes to data visualization, there are a ton of options, both in fi nal rendered output and
the underlying technology used to get there. Here are a few things to keep in mind when considering
the possibilities:

 ➤ There are numerous basic charts—or charting primitives—to choose from, most of which
include many variations.

 ➤ Primarily used to chart stock prices, candlestick charts contain a wealth of details, including
opening, closing, high, and low prices.

 ➤ One axis of a bar chart is presented as a single unit of measure, whether numeric, currency,
or time-based.

 ➤ Grouped bar charts compare one collection of bars in related subcategories to other collec-
tions; stacked bar charts show a combined value.

 ➤ To show percentages with multiple data series, use several rings in a donut chart.

 ➤ When rendering more than one data set in an area chart, be sure to choose semi-transparent
colors for the fi ll color to enable all data to be viewed.

 ➤ Both bubble and surface charts relay three dimensional data.

 ➤ Integrated map visualizations can range from photo-realistic to simple outlined regions or
borders.

 ➤ Infographics combine detailed information with related graphics and often incorporate a
variety of different charting types.

 ➤ HTML5 canvas and SVG are two effective tools for drawing graphics in the browser, each
with different pros and cons.

c04.indd 11/03/2014 Page 55

Part II: Working with JavaScript
for Analysis

 ▸ CHAPTER 4: Integrating Existing Data

 ▸ CHAPTER 5: Acquiring Data Interactively

 ▸ CHAPTER 6: Validating Your Data

 ▸ CHAPTER 7: Examining and Sorting Data Tables

 ▸ CHAPTER 8: Statistical Analysis on the Client Side

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

c04.indd 11/03/2014 Page 57

Integrating Existing Data
WHAT’S IN THIS CHAPTER

 ➤ The basics of working asynchronously

 ➤ Techniques for working with different data formats (CSV, XML and
JSON)

 ➤ Shortcuts for styling structured data

 ➤ Example of rendering external JSON data as a chart

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/javascriptandjqueryanalysis on the Download Code
tab. The code is in the chapter 04 download and individually named according
to the names throughout the chapter.

The lion’s share of the data visualist’s work involves rendering existing data. Data can be
stored in many different formats—plain text, CSV, XML, JSON, and others—but as long as it
is in a digital format, chances are there are JavaScript and other server-side routines to access
the information for representation. Naturally, some circumstances, such as building a complex
infographic, require that you incorporate data manually. However, wherever possible, it’s a
good idea to keep content (the data) separate from presentation (the charting) as demonstrated
throughout this chapter. Not only does this methodology make it a breeze to make updates,
but it also opens the door to enhanced accessibility and data transparency.

4

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

58 ❘ CHAPTER 4 INTEGRATING EXISTING DATA

c04.indd 11/03/2014 Page 58

READING DATA FROM STANDARD TEXT FILES

Data is often stored in a plain text fi le. To be clear, “plain” or “standard” text refers to fi les such as
.txt fi les that contain no extraneous coding or meta information. This section examines techniques
for reading plain text fi les one line at a time as well as importing and parsing the ubiquitous CSV
format.

Working Asynchronously
There are numerous methods for reading data from a text fi le, but in the online world it’s a good
idea to handle this task asynchronously. Most JavaScript libraries incorporate some form of Ajax
(Asynchronous JavaScript and XML). Using Ajax makes it possible for you to read text fi les without
refreshing the page. Ajax not only provides performance benefi ts but also helps you to build single-
page apps (SPAs).

Take a look at a basic text fi le (which is on the companion website as sample.txt), composed of
several lines of data, like this:

Line one
Line two
Line three
Line four

After you’ve included the jQuery library, you can use the get() method to pull in the data.
Following is some basic code that reads the text fi le and outputs what it fi nds in a JavaScript alert
(shown in Figure 4-1):

jQuery.get('sample.txt', function(theData) {
 alert(theData);
});

FIGURE 4-1: No additional parsing is needed when outputting the get() method to a console device, such
as an alert dialog box.

The alert_data.html fi le is on the companion website.

The get() method is shorthand for the jQuery.ajax method and, as such, is fairly robust. Not only
can the get() method pass a URL and a callback, you can also send additional data to the server,
get the status of the request, and more. To learn more about the get() API, visit the jQuery docs:
http://api.jquery.com/jquery.get/.

http://api.jquery.com/jquery.get

Reading Data from Standard Text Files ❘ 59

c04.indd 11/03/2014 Page 59

Reading CSV Files
Although it is possible to store and retrieve basic, unstructured data from a text fi le, it’s far more
common to work with CSV fi les. A CSV fi le consists of data where each line is a record and each
record can contain a number of data columns. The values in each data column are, typically, sepa-
rated by commas—hence the acronym for Comma Separated Values. The most basic CSV fi le looks
like this:

one,two,three
four,five,six

The values in a CSV sometimes contain commas themselves, and when that’s true, the values must
be enclosed or delimited, usually with single or double quotes. The separator and delimiter charac-
ters are fl exible, but must be taken into account when the fi le is parsed.

NOTE The standard for CSV fi les is maintained by the Internet Engineering
Task Force (IETF). You can fi nd it online at http://tools.ietf.org/html/
rfc4180.

Parsing can be quite challenging, depending on the variables of the particular text fi le. Luckily, pro-
grammer Evan Plaice developed a code library that handles all the heavy lifting. The library, called
jquery-csv, is available at https://code.google.com/p/jquery-csv.

The jquery-csv library offers a nice range of functionality, including a variety of methods to parse
CSVs as well as settings for separators, delimiters, and so on. Using the library’s toObjects()
method you can parse CSV data and quickly present it as an HTML table. First include a reference
to the library in your web page:

<script src="http://jquery-csv.googlecode.com/git/src/jquery.csv.js"></script>

Next, set up your HTML <body> with a table, specifying an ID that jQuery can work with:

<div class="result">
 <table id="theResult" border="1"></table>
</div>

With jquery-csv’s help, parsing the data is very straightforward. But before you get started, it’s a
good idea to establish the groundwork for building the table markup:

function createTable(data) {
 var html = '';

 if(data[0].constructor === Object) {
 // build the table header
 html += '<tr>\r\n';
 for(var item in data[0]) {

60 ❘ CHAPTER 4 INTEGRATING EXISTING DATA

c04.indd 11/03/2014 Page 60

 html += '<th>' + item + '</th>\r\n';
 }
 html += '</tr>\r\n';

 // build the table rows
 for(var row in data) {
 html += '<tr>\r\n';
 for(var item in data[row]) {
 html += '<td>' + data[row][item] + '</td>\r\n';
 }
 html += '</tr>\r\n';
 }
 }
 return html;
}

This custom createTable() function fi rst loops through the fi rst row of data to pull the column
names for the CSV and output those in the table. Next it loops through each row, building the rest
of the table markup in the process. It uses for-in loops to keep the function fl exible enough to work
with any number of headers. Pay attention to the use of data[row][item]—it drills into the two-
dimensional array to grab the current row and item.

With the createTable() function complete, you’re ready to import and parse the CSV data using
the jQuery get() method you saw earlier:

$(document).ready(function() {
 $.get('stores.csv', function(theData) {
 var data = $.csv.toObjects(theData);
 var theHtml = createTable(data);
 $('#theResult').html(theHtml);
 });
});

Here the csv.toObjects() method converts the CSV data to an object named data, which is then
passed to the createTable() function. Then, that markup is injected into the DOM using jQuery’s
html() function. Figure 4-2 shows the unstyled table—with all the data dynamically inserted from
a CSV fi le.

FIGURE 4-2: Data from CSV fi les are commonly presented in table format.

Incorporating XML Data ❘ 61

c04.indd 11/03/2014 Page 61

The full code for this example is in the read_csv_into_array.html fi le on the companion website.

NOTE The jquery-csv documentation also includes examples for importing CSV
fi les to use the jQuery plotting library, Flot (http://jquery-csv.googlecode.
com/git/examples/flot.html), and the Google Visualization API (http://
jquery-csv.googlecode.com/git/examples/google-visualization.html).

INCORPORATING XML DATA

XML, short for Extensible Markup Language, is often used for storing data of all kinds. This tag-
based language is extremely fl exible. In fact, there is only one set element, <?xml?>, and everything
else is custom-fi tted to the fi le needs.

Understanding the XML Format
XML relies on nested tags to create its structure. After the opening <?xml?> tag, typically a root
node is established that encompasses all the other content. In the following examples, <sales> is the
root node, followed by data for two regions:

<?xml version="1.0" encoding="UTF-8"?>
 <sales>
 <region>
 <territory>Northeast</territory>
 <employees>150</employees>
 <year>
 <date>2013</date>
 <amount>115000</amount>
 </year>
 </region>
 <region>
 <territory>Southeast</territory>
 <employees>125</employees>
 <year>
 <date>2013</date>
 <amount>95000</amount>
 </year>
 </region>
 </sales>

You can fi nd t he example_data.xml fi le on the companion website.

Notice that there’s a strong resemblance to HTML. Both have a common ancestor, Standard
General Markup Language (SGML), and there have been several XML-based versions for HTML.

62 ❘ CHAPTER 4 INTEGRATING EXISTING DATA

c04.indd 11/03/2014 Page 62

In general, XML is much stricter in terms of format, which makes working with the data it contains
that much easier because XML follows a very tight set of rules.

XML elements can also contain attributes. For example, you could restructure the preceding exam-
ple so that the <year> tag is an attribute of region:

<?xml version="1.0" encoding="UTF-8"?>
 <sales>
 <region year="2013">
 <territory>Northeast</territory>
 <employees>150</employees>
 <amount>115,000</amount>
 </region>
 <region year="2013">
 <territory>Southeast</territory>
 <employees>125</employees>
 <amount>95,000</amount>
 </region>
 </sales>

Getting XML Data
You can pull data from an XML fi le into an HTML page in a number of ways, and jQuery’s built-
in functionality makes the process very straightforward. With the ajax() method, you can get any
XML fi le and send the data to a custom parser function:

$.ajax({
 type: "GET",
 url: "regional_sales.xml",
 dataType: "xml",
 success: xmlParser
 });

To understand how to apply the parser function—here called xmlParser—you need to know the
basic structure of the XML fi le. The fi le used in this example follows:

<?xml version="1.0" encoding="UTF-8"?>
<sales>
 <region year="2013">
 <territory>Northeast</territory>
 <employees>150</employees>
 <amount>115,000</amount>
 </region>
 <region year="2013">
 <territory>Southeast</territory>
 <employees>125</employees>
 <amount>95,000</amount>
 </region>
 <region year="2013">
 <territory>Midwest</territory>
 <employees>225</employees>
 <amount>195,000</amount>

Incorporating XML Data ❘ 63

c04.indd 11/03/2014 Page 63

 </region>
 <region year="2013">
 <territory>West</territory>
 <employees>325</employees>
 <amount>265,000</amount>
 </region>
</sales>

Given this data—to extract the territory, the number of employees, and the sales amount values—
the custom parser needs to loop through each <region> node. First, target these nodes in the XML
using jQuery’s find() function:

$(xml).find('region').each(function () {
}

Within this each() loop, you can assign the values of the XML to variables, and use those variables
to build the markup. Then, you can append that markup to the DOM, as shown in the complete
xmlParser() function here:

function xmlParser(xml) {
 $(xml).find('region').each(function () {
 var theTerritory = $(this).find('territory').text();
 var numEmployees = $(this).find('employees').text();
 var theAmount = $(this).find('amount').text();
 $('#sales').append('<tr><td>' + theTerritory + '</td><td>' + numEmployees + '</
td><td>$' + theAmount + '</td></tr>');
 });
}

You can fi nd the import_xml.html fi le on the companion website.

After this particular example is executed, it outputs a table (see Figure 4-3).

FIGURE 4-3: jQuery includes a built-in XML engine for retrieving and parsing data fi les.

Styling with XSLT
After you import XML data, it can simply be styled with CSS. However, building up JavaScript
strings may not be the most effi cient way to incorporate XML, especially if you have a lot of
data spread all over the page. One alternative is to use XSLT (Extensible Stylesheet Language

64 ❘ CHAPTER 4 INTEGRATING EXISTING DATA

c04.indd 11/03/2014 Page 64

Transformations). As you might suspect from the full name, XSLT does more than style content; it
transforms it.

The workfl ow for incorporating XSLT methodology is somewhat different from what you might be
used to:

 1. Create an XML data fi le.

 2. Add a link to the XSLT stylesheet in the XML data fi le.

 3. Wrap HTML with XML and XSL tags.

 4. Incorporate XSL tags in HTML.

 5. Browse the XML fi le.

In essence, you’re mapping the data to an HTML template. An example is provided here so you can
see how it works. The example re-creates the table with XML data, but via XSLT.

Starting with a well-formed XML data fi le, insert an <?xml-stylesheet?> tag to link the XSLT fi le
after the opening <?xml?> element:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="import_xml.xslt"?>

Then, open an HTML fi le that contains the page layout and insert the opening XML declaration:

<?xml version="1.0" encoding="UTF-8"?>

Wrap the balance of the code in an <xsl:stylesheet > tag pair with the proper XSL namespace:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
...
</xsl:stylesheet>

Insert an <xsl:output > element that sets the doctype to HTML, which is all that’s needed for an
HTML5 document:

<xsl:output method="html" encoding="utf-8" indent="yes" />

Place an <xsl:template > tag pair around the rest of the HTML content and set the match attri-
bute to the site root of the data:

<xsl:template match="/">
...
</xsl:template>

At this stage, the top of the document should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html" encoding="utf-8" indent="yes" />
 <xsl:template match="/">
 <html>

Incorporating XML Data ❘ 65

c04.indd 11/03/2014 Page 65

and the closing should look like this:

 </html>
 </xsl:template>
</xsl:stylesheet>

Finally, save the fi le with an .xslt extension.

Now, you’re ready to insert the necessary code for mapping the XML data to the page. The example
scenario has a <table> element set up, complete with a header row. All data is contained in
the table rows that follow. To loop through this data, use the <xsl:for-each> tag that targets the
repeating node with the select attribute:

<xsl:for-each select="sales/region">
 <tr>
 ...
 </tr>
</xsl:for-each>

NOTE Note that the path to the desired node is given, not just the node name
itself. This functionality is courtesy of a technology related to XSL called XPath.
XPath, like XML and XSLT, is a W3C recommendation and well-supported in
all modern browsers.

Within the <xsl:for-each> loop, the XML data values are called with a <xsl:value-of> tag,
again using the select attribute. For example, to get the content of the XML <territory> node, the
code would be

<xsl:value-of select="territory"/>

In this scenario, the entire table code, looping through all three XML data values, would be

<table id="sales">
 <tr>
 <th>Territory</th>
 <th>Employees</th>
 <th>Sales</th>
 </tr>
 <xsl:for-each select="sales/region">
 <tr>
 <td><xsl:value-of select="territory"/></td>
 <td><xsl:value-of select="employees"/></td>
 <td>$<xsl:value-of select="amount"/></td>
 </tr>
 </xsl:for-each>
</table>

66 ❘ CHAPTER 4 INTEGRATING EXISTING DATA

c04.indd 11/03/2014 Page 66

You can fi nd the import_xml_xslt.html and ch04_regional_sales_xslt.xml fi les on the com-
panion website.

The resulting table, shown in Figure 4-4, is essentially the same as the table developed in the previ-
ous example by importing XML data directly via jQuery.

FIGURE 4-4: Use XSLT methodology when developing more complex documents with XML data.

Keep in mind that you need to send the XML fi le to the browser for viewing, not the XSLT fi le. It is
the transformed XML data that is rendered.

DISPLAYING JSON CONTENT

XML is extremely fl exible and quite functional, but it can be a bit heavy syntactically. Fortunately
you have another option, JSON, which is designed to improve loading and processing time on the
web. JSON is an abbreviation for JavaScript Object Notation and, although it is JavaScript-based,
it is actually language- and platform-independent. That said, the JSON format is identical to that of
JavaScript objects, which makes it quite easy to work with on the front end.

JSON enjoys widespread browser support and is frequently the primary, if not exclusive, data lan-
guage option for visualization plug-ins. This section provides an overview of the JSON syntax and
techniques for incorporating JSON data into your web pages.

Understanding JSON Syntax
JSON data is built on name/value pairs—a colon separates each key from its value, and commas
separate each data pair. For example,

{
"region": "Northeast",
"employees":150,
"amount":"115,000"
}

Note that all keys and strings are enclosed in double quotes. All the data, which is collectively
known as a JSON object, is contained within curly braces. You can also nest arrays and objects

Displaying JSON Content ❘ 67

c04.indd 11/03/2014 Page 67

within the JSON values using square brackets or curly braces respectively. Here’s an example that
expresses the previous XML data as JSON:

{
 "sales": {
 "region": [
 {
 "territory": "Northeast",
 "employees": "150",
 "amount": "115,000"
 },
 {
 "territory": "Southeast",
 "employees": "125",
 "amount": "95,000"
 },
 {
 "territory": "West",
 "employees": "325",
 "amount": "265,000"
 }
]
 }
}

You can fi nd the regional_sales.json fi le on the companion website.

NOTE If you’re not sure whether your JSON data is properly structured, you
can validate it online at http://jsonlint.com.

Reading JSON Data
Because JSON is formatted similarly to JavaScript, you can read it directly. For example, consider
the data put into an object variable, as shown here:

var jsonObj = { "sales": [
{"region": "Northeast", "employees":150, "amount":"115,000"},
 {"region": "Southeast", "employees":125, "amount":"95,000"},
 {"region": "West", "employees":325, "amount":"265,000"}
]
};

You can now drill into any value you need in this object. For example, to display the sales amount of
the Southeast in an alert, as shown in Figure 4-5, use the following code:

var theAmount = jsonObj.sales[1].amount;
alert(theAmount);

68 ❘ CHAPTER 4 INTEGRATING EXISTING DATA

c04.indd 11/03/2014 Page 68

You can fi nd the json_eval.html fi le on the companion website.

FIGURE 4-5: You can access JSON values directly if you know the structure and desired key.

NOTE jQuery includes a version of JSON.parse(): the parseJSON() func-
tion, which is useful for backwards compatibility. If incorporated into a jQuery
script, parseJSON() is used only when the browser viewing the page does not
support the native function; otherwise, the native JSON.parse() is used.

Another approach is to put the JSON data in a string and then put the parsed string into an object
using the JSON.parse() method:

var jsonData = '{"regions":[' +
'{"territory":"Northeast","employees":"150","amount":"115,000" },' +
'{"territory":"Southeast","employees":"125","amount":"95,000" },' +
'{"territory":"Midwest","employees":"225","amount":"195,000" },' +
'{"territory":"West","employees":"325","amount":"265,000" }]}';

jsonObj = JSON.parse(jsonData);

This code produces the same jsonObj as the previous example.

Asynchronous JSON
Although you can include JSON inline on the page, it is more common to deal with external JSON
resources that you access asynchronously. This process is a bit different—you can use jQuery’s
getJSON() function to automatically parse the data. The getJSON() function takes two parameters:
the path to the fi le and a callback function.

$.getJSON("regional_sales.json", function(data) {
});

Displaying JSON Content ❘ 69

c04.indd 11/03/2014 Page 69

Next, you can use the jQuery each() function to loop through the data:

$.each(data.sales.region,function (k,v) {
});

Here the each() loop provides both the key (k) and value (v) from the JSON. To get the value of a
key, JavaScript dot notation is applied:

var theTerritory = v.territory;
var numEmployees = v.employees;
var theAmount = v.amount;

After you have your content, you’re ready to build the HTML and insert it in the page with the
jQuery append() function. Here’s the complete code block:

$.getJSON("regional_sales.json", function(data) {
 $.each(data.sales.region,function (k,v) {
 var theTerritory = v.territory;
 var numEmployees = v.employees;
 var theAmount = v.amount;
 });
});

You can fi nd the import_json.html fi le on the companion website.

This code displays a table of data (see Figure 4-6), but the data could easily be in any other confi gu-
ration. For example, with a little bit of additional coding, courtesy of the HTML5 <canvas> tag,
you could create a bar chart from the same data fi le, as shown in Figure 4-7.

FIGURE 4-6: jQuery’s getJSON() function reads JSON data from a fi le and automatically parses it.

You can fi nd the ch04_import_json_chart.html fi le on the companion website.

The canvas representation of this data starts with a simple <canvas> element:

<canvas id="chart1" width="600" height="400"></canvas>

70 ❘ CHAPTER 4 INTEGRATING EXISTING DATA

c04.indd 11/03/2014 Page 70

FIGURE 4-7: JSON and the JavaScript-driven graphics of the <canvas> tag are a natural fi t.

Next, the following JavaScript imports the data and draws the chart in canvas:

$(document).ready(function() {
 var theChart = document.getElementById('chart1');
 var chartHeight = 400;
 var theWidth = 75;
 var theSpace = 100;
 var theX = 0;
 var theY = 0;
 var theFills = ['orange','blue','red','green'];
 var i = 0;

 if (theChart.getContext){
 var theContext = theChart.getContext('2d');
 $.getJSON("regional_sales.json", function(data) {
 $.each(data.sales.region,function (k,v) {
 var theTerritory = v.territory;
 var theHeight = parseInt(v.amount.replace(/,/g, ''))/1000;
 theY = chartHeight - theHeight;
 theX = theX + theSpace;
 theContext.fillStyle = theFills[i];
 theContext.fillRect(theX,theY,theWidth,theHeight);
 theContext.fillStyle = 'black';
 theContext.font = '12pt Arial';
 theContext.fillText(theTerritory,theX, theY-20);
 ++i;
 });
 });
 }
});

Summary ❘ 71

c04.indd 11/03/2014 Page 71

Later in the book you dive deeper into canvas and SVG representations, so this chapter doesn’t
include a detailed discussion of this example. Basically, the script starts by defi ning a few settings
and setting the context for the canvas element. Next it pulls in the JSON data and uses that to con-
struct the visualization in canvas. theContext.fillStyle sets the color for each bar, and the bars
are then drawn using theContext.fillRect(). Finally, a label is applied to each bar in the chart
using theContext.fillText().

SUMMARY

After you’ve collected your data, you need techniques to retrieve it. There are a great many data
formats, and the methodology for reading each vary wildly. Here are a few key thoughts to keep in
mind when approaching this task:

 ➤ Ajax is frequently used in modern web apps to load data asynchronously. JavaScript libraries
provide useful Ajax APIs—for instance jQuery’s get().

 ➤ The jquery-csv library provides useful tools for parsing CSV fi les.

 ➤ XML is a highly structured format, widely used to store data for both online and offl ine busi-
nesses. You can use XSLT to transform the data into an HTML template and browse the
data fi le itself.

 ➤ JSON is a lightweight format that pairs well with online processing. You can read data
retrieved from a JSON fi le with the jQuery getJSON() function.

 ➤ Because JSON is JavaScript based, it works nicely with a variety of visualization options.

c05.indd 11/03/2014 Page 73

Acquiring Data Interactively
WHAT’S IN THIS CHAPTER

 ➤ Techniques to improve the usability of forms for a better user
experience and improved conversion rate

 ➤ HTML5 form controls—interactive widgets that reduce data
segmentation

 ➤ Mobile form best practices—contextual keyboards, mobile styling,
and mobile form widgets.

Most data visualizations leverage existing data on the server or from some external application
programming interface (API). However, there are times you want to incorporate data directly
from the user into your charts. This chapter explores some best practices for harvesting data
from web forms, which can then be used for data visualization. With these techniques, you can
create a sustainable data ecosystem, which crowd-sources and displays data autonomously.

USING HTML5 FORM CONTROLS

The widespread adoption of HTML5 forms has revolutionized the way we build forms on the
web. Instead of having to rely on plug-ins or user interface (UI) libraries, you can now create
rich interactive forms using native HTML5 elements. Skipping the third-party plug-ins does
more than improve performance; these native elements are also more reliable. You can count
on them to be supported by browsers both today and into the distant future.

5

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

74 ❘ CHAPTER 5 ACQUIRING DATA INTERACTIVELY

c05.indd 11/03/2014 Page 74

Introducing HTML5 Input Types
Back in the days of HTML4, developers had only a handful of input types, such as

<input type="text">
<input type="password">
<input type="checkbox">
<input type="radio">

HTML5 adds a variety of new types to this list: email, url, number, and date, to name a few.
These inputs indicate a more specifi c type of data for the form, which has a variety of important
usability and functionality implications:

 ➤ Input types build special widgets, such as a calendar widget or color picker.

 ➤ On mobile devices, input types provide a more optimized keyboard, such as a numeric
keypad for phone numbers (read more about this later this chapter).

 ➤ When the user clicks or taps Submit, HTML5 form validation leverages these input types to
verify the data types—for instance, testing a properly formed e-mail address (more about this
in Chapter 6).

Best of all, you don’t have to worry about backward compatibility when it comes to HTML5 input
types. Older browsers default to a standard text input if they don’t understand the HTML5 input
type. Although that might not provide the richer functionality you’ve intended, it still provides a
form that is completely usable across the board.

NOTE Special input types are also great for future-proofi ng. Although it’s
diffi cult to foresee how browsers will leverage these input types in the future,
indicating a specifi c data type will utilize any enhancements moving forward.

Form Widgets and Data Formatting
On the surface, HTML5 form widgets create an elegant form experience for the user. But beyond
usability, these widgets have important implications for the data in your app. Namely, they ensure
that the data the user enters is properly formatted before reaching the logic of your app.

For example, you could allow users to enter dates manually in a standard text input. But this could
yield any number of results, such as the following:

 ➤ February 4, 1986

 ➤ 4 Feb 1986

 ➤ 02-04-86

 ➤ 4/2/86

 ➤ 2 / 4 / 1986

Maximizing Mobile Forms ❘ 75

c05.indd 11/03/2014 Page 75

As you can see, open-ended text input can quickly cause data segmentation according to the user’s
region and preferences (and this is by no means an exhaustive list).

However, if you use the HTML5 calendar widget, it ensures that the data entered by the user
remains properly formatted behind the scenes. In these cases, the widget always returns the date in
the format 1986-02-04.

That said, support for form widgets can be somewhat limited, even among some A-list browsers. As
discussed earlier, if the browser doesn’t support the particular form widget, it reverts to a standard
text input (with all the data segmentation headaches attached). So make sure to include JavaScript
polyfi lls to fi ll any gaps in the browser widgets.

Polyfi lls mimic native browser features for backward compatibility, and there are a variety of options
for HTML5 forms. In particular, the html5forms polyfi ll handles a wide range of HTML5 form
features. (You can read more at http://www.useragentman.com/blog/2010/07/27/creating-
cross-browser-html5-forms-now-using-modernizr-webforms2-and-html5widgets-2/.)

MAXIMIZING MOBILE FORMS

HTML5 also introduces a number of elements that have special implications for mobile devices.
Namely, there are a number of input elements that provide a special contextual keyboard depending
on the type of data you are requesting. For instance, when asking a user for her e-mail address, you
can display a more targeted keyboard that includes default buttons for the @ symbol and dot, as
shown in Figure 5-1.

FIGURE 5-1: E-mail inputs on iOS display this unique keyboard.

76 ❘ CHAPTER 5 ACQUIRING DATA INTERACTIVELY

c05.indd 11/03/2014 Page 76

Although it may seem somewhat trivial, maximizing these contextual keyboards is extremely
important for usability. Phone keyboards are notoriously cumbersome, so any improvements to the
experience will be met with higher conversion rates.

Using Contextual Keyboards
Fortunately, leveraging contextual keyboards couldn’t be easier. Simply set the type attribute of an
input element like so:

<input type="email" placeholder="Email">

Here, the email input type produces the keyboard shown in Figure 5-1 (or a similar keyboard on a
non-iOS device).

Besides e-mail inputs, there is also a special keyboard for phone numbers, as shown in Figure 5-2.
Similarly, you can leverage this keyboard by setting the input type to tel:

<input type="tel" placeholder="Phone number">

FIGURE 5-2: A contextual keyboard for phone number inputs on iOS.

NOTE There are also contextual keyboards for url and number data types.

Summary ❘ 77

c05.indd 11/03/2014 Page 77

Styling Mobile Forms for Usability
Functionality aside, you can improve the usability of your form by following some simple styling
rules. Mainly, it’s a good idea to ensure the form is both readable and tappable on the tiny mobile
interface.

In general, mobile form designs are “chunkier,” using larger input boxes to make it easier to tap in
the intended fi eld, even if the user “fat-fi ngers” it. So make sure to add some extra padding to all
your input fi elds, and also increase the font size a bit so it’s not only more legible but also larger on
the touchscreen.

When it comes to mobile usability, upping the size of your form fi elds is one of the lowest hanging
fruits. But this is just the tip of the iceberg for mobile form optimization. If you’d like to learn more,
try out LukeW’s classic book Web Form Design (Rosenfeld Media, 2008), as well as his blog,
www.lukew.com.

Form Widgets for Mobile
In addition to the native HTML5 form widgets, there are also a number of third-party plug-ins
for forms, many of which are geared specifi cally to mobile devices. Some are designed to bridge
the gaps between desktop and mobile browsers whereas others are built to extend existing mobile
paradigms. There are a variety of options out there; in particular, jQuery Mobile provides some
quality form widgets for mobile (visit http://api.jquerymobile.com/category/widgets/ for
more information).

SUMMARY

 In this chapter you learned techniques for using forms to acquire data from the user.

First, you learned how to leverage HTML5 form controls to create interactive widgets and reduce
data segmentation. You then explored mobile form optimization techniques, using the same
HTML5 form controls to call contextual keyboards, which streamline user input on mobile devices.
You also learned some basics about mobile form styling and mobile form widgets.

In the next chapter, you dive deeper into HTML5 data types, leveraging them for validation and
better data formatting.

c06.indd 11/03/2014 Page 79

Validating Your Data
WHAT’S IN THIS CHAPTER

 ➤ Native HTML5 validation techniques

 ➤ jQuery Validation Engine

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/javascriptandjqueryanalysis on the Download Code
tab. The code is in the chapter 06 download and individually named according
to the names throughout the chapter.

Form validation is especially important when using that form data for visualization. That’s
because malformed data can quickly derail a chart or table. For instance, if your chart shows
aggregated data across different dates, this data formatting had better be consistent. If one
user enters February 4, 1986 and the other enters 2-4-86, you had better fi gure out some
way to align these values before displaying them. In general, the easiest way to do this is to
validate the data before you ever store it.

In this chapter you explore the differences between server-side and client-side validation and
then discover a variety of client-side techniques. You fi rst look at native HTML5 validation
approaches. Those leverage semantic tags to validate fi elds against various data types and
validation rules.

Next, you learn about jQuery Validation Engine, which provides more feature-rich validation.
You learn how to use its basic regex validators, as well as more complex rules for numbers and
dates. Then you see how to set up intricate relationships between the various fi elds in your form.

By the end of this chapter, you’ll have a robust toolkit for form validation and understand both
lightweight and fully featured solutions to suit your needs.

6

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

80 ❘ CHAPTER 6 VALIDATING YOUR DATA

c06.indd 11/03/2014 Page 80

 SERVER-SIDE VERSUS CLIENT-SIDE VALIDATION

In the early days of the web, form validation was performed exclusively on the server side. That
approach worked well until developers began to focus on how they could improve this fl ow—it
turns out form optimization is extremely important for business goals. For example, an e-commerce
company can see substantial returns by improving their checkout forms.

Eventually, client-side validation techniques gained popularity because they allow developers to
streamline the error-handling process, providing meaningful cues to the user as he fi lls out the form.

Whereas server-side validation must be performed after form submission, client-side validation
enables you to display errors the moment they occur. This approach typically produces higher con-
version rates because it avoids bombarding the user with a number of errors after he submits the
form to the server.

Additionally, the user doesn’t have to track down the source of an error—it will always be the fi eld
she just entered. Finally, it avoids certain nuisances caused by security issues from the back end, for
instance when the server makes you re-enter your password rather than injecting it in the markup.

To get an idea of how client-side validation works, take a look at the comparison in Figure 6-1.

FIGURE 6-1: Compare the grouped error messages from the server (left) with the dynamic inline error mes-
sages from the client (right).

Client-side validation provides faster feedback to the user, which in turns allows him to fi ll out the
form faster. Additionally, it provides the user with more confi dence that the form is going to go
through successfully. Both of these improvements lead to lower abandonment rates, which means
more users are buying your product, signing up for your newsletter, or completing whatever action
you want them to take.

However, client-side validation comes with some notable drawbacks. Namely, any validation done
in the browser is incredibly insecure. A hacker can easily override client-side validation or simply
disable JavaScript. So whenever you validate on the client, make sure to double-check any mission-
critical fi elds on the server after the form is submitted.

Native HTML5 Validation ❘ 81

c06.indd 11/03/2014 Page 81

NATIVE HTML5 VALIDATION

These days, there are a number of approaches to client-side validation. Prior to HTML5, developers
relied exclusively on third-party plug-ins and extensions to handle validation. Typically built on top
of a library like jQuery, these solutions use JavaScript to validate form content and display inline
error messages as needed.

However, in recent years, this validation has gone native with HTML5. Although less customizable
than its JavaScript counterparts, native validation provides a variety of advantages such as
performance gains and accessibility improvements.

Native Versus JavaScript Validation
In general, it’s a good idea to use native tools whenever possible—it just doesn’t make sense to
reinvent the wheel without a good reason. This wisdom also applies to HTML5 validation, which
has certain advantages over alternatives such as jQuery plug-ins:

 ➤ Native validation is lightweight. Because it is implemented at the browser level, the user
doesn’t have to download external scripts to handle validation. That lightens page load and
in turn improves performance.

 ➤ Native validation is consistent. Many sites use HTML5 validation, so the user is undoubtedly
already familiar with the visual language of the validation user interface (UI). That’s an
affordance that allows users to more easily discern validation messages.

 ➤ Native validation is localized. With native validation, the browser automatically translates
error messages into the user’s language.

As you can see, native HTML5 validation is an attractive alternative to external scripts and plug-
ins. However, JavaScript validation provides its own set of advantages:

 ➤ JavaScript validation is feature-rich. Although HTML5 handles the majority of validation
situations with ease, it will never be as robust as a validation library. Depending on your
needs, you might want something more.

 ➤ JavaScript validation is theme-able. Although HTML5 provides consistently themed
messages that the user can recognize immediately, these might or might not work with the
visual direction of your site. Styling native validation messages is limited at best, so if you
need a distinctly different look and feel, you have to skip HTML5.

 ➤ JavaScript validation is compatible with older browsers. Although HTML5 validation works
excellently in all modern browsers, some older browsers are left out, namely IE8 and older
versions. If supporting these browsers is a priority, you have to turn to JavaScript solutions,
either across the board, or as a polyfi ll for non-HTML5 browsers.

 ➤ JavaScript validation is customizable. HTML5 provides automated messages for errors that
are localized to the user’s region, but these messages are more diffi cult to customize. So if
you’re not happy with the generic error messages, you might be better off using JavaScript
validation.

82 ❘ CHAPTER 6 VALIDATING YOUR DATA

c06.indd 11/03/2014 Page 82

Getting Started with HTML5 Validation
Chapter 6 covers how to use HTML5 input types to provide richer form controls and a better
mobile experience. It turns out that these special input types also have profound implications for
form validation.

For example, let’s say you have an email input:

<input type="email">

When the user submits this form, the browser automatically checks against the email data type for
proper formatting (@ symbol). Any improperly formatted address triggers an error, as you can see in
Figure 6-2.

FIGURE 6-2: This email input has triggered an error in Chrome.

HTML5 validates data types other than email, too. For example, if you have a url input, the
browser checks for a properly formatted URL.

HTML5 Validation for Numbers
Whereas email and url validation are pretty basic, the number and range inputs provide more
intricate control over validation rules. Chapter 5 described how to use these numeric inputs with
min, max, and step values:

<input type="number" min="0" max="10" step="0.5">

Here the number fi eld is restricted between 0 and 10, with 0.5 in between each value. On the
surface, these values affect the desktop UI: It starts at zero and then counts up by 0.5 until it hits 10.
But HTML5 validation also leverages these attributes, as shown in Figure 6-3.

FIGURE 6-3: A value outside of the min and max bounds triggers an error for this number fi eld.

Required Fields and Max Length
Beyond special input types, there are a number of additional validation options you can set directly
in the markup. One particularly useful option is the required attribute:

<input type="text" required>

Native HTML5 Validation ❘ 83

c06.indd 11/03/2014 Page 83

Here the required attribute indicates that the fi eld must be fi lled. Failing to do so triggers the error
shown in Figure 6-4.

FIGURE 6-4: All required fi elds must be fi lled in order to submit this form.

NOTE Keep in mind that basic validation isn’t enough to make a fi eld required.
For example, if a user leaves an email input blank, the form will still submit
successfully. Blank fi elds are not matched against the given rule.

Additionally you can set the max length for any fi eld:

<input type="text" maxlength="5">

However, with maxlength, there isn’t even an error message because most browsers don’t let you
type any extra characters.

Custom HTML5 Validation Rules
You can also set up custom HTML5 validation rules. These rules use regular expressions (regex) to
validate content and then display any errors to the user.

To set up custom rules, simply insert regex directly in the markup:

<input type="text" pattern="[a-zA-Z]+">

When the user submits the form, this fi eld is checked against the regex [a-zA-Z]+, which accepts
letter values only (no numbers, no spaces, and so on). If the user enters invalid data, a generic error
message is triggered, as shown in Figure 6-5.

FIGURE 6-5: This generic error message displays if the string fails regex validation.

Custom HTML5 Validation Messages
If you’re unhappy with the generic validation messages, either for custom regex rules or the standard
fi elds, you can customize these as well. To do so, you need to leverage JavaScript and the
setCustomValidity() application programing interface (API):

84 ❘ CHAPTER 6 VALIDATING YOUR DATA

c06.indd 11/03/2014 Page 84

<input type="text" pattern="[a-zA-Z]+"
 oninvalid="setCustomValidity('Please enter only letters.')">

On unsuccessful form submission, this fi eld triggers the given error text, as shown in Figure 6-6.

FIGURE 6-6: An error triggers a custom validation message in HTML5.

However, this solution is fairly hacky and leaves a lot to be desired. First off, the same error message
displays regardless of the source of the error. For instance, if you use a pattern and a required, the
same message displays for both issues.

Additionally, these hardcoded messages are not localized to the user’s language. That might not
seem like the biggest problem, but it is if you are mixing hardcoded messages with defaults. As you
can see in Figure 6-7, that can lead to a very inconsistent experience. On the left of Figure 6-7, the
browser translates the message according to the language setting (in this case Spanish). On the right,
a hardcoded message in the same form appears in English.

FIGURE 6-7: Custom validation messages don’t mix well with localized content.

h5Validate Polyfi ll
Although HTML5 validation is an excellent option in most browsers, there are still a handful of
users working with IE8 and other non-HTML5 browsers. You’ll have to decide for yourself whether
it’s a priority to support client-side validation for these users. Fortunately, if you do decide to
provide fallbacks, there are out-of-the-box solutions that bridge the gaps between older browsers
and HTML5.

Namely, the h5Validate polyfi ll provides an easy path to supporting HTML5-style validation in all
browsers. This polyfi ll attempts to mimic native functionality, leveraging the same attributes in the
markup as HTML5. That way, you can effortlessly support these features without having to rewrite
too much code.

jQuery Validation Engine ❘ 85

c06.indd 11/03/2014 Page 85

To get started, download the code from github: https://github.com/dilvie/h5Validate/blob/
master/jquery.h5validate.js. Using the polyfi ll is a piece of cake; simply include the script at
the end of your document.

However, it’s not a good idea to use this polyfi ll across the board. Most browsers support native
validation, and there’s no sense in reinventing the wheel—or even making these users download the
script. You should take steps to ensure that this script loads only where it’s needed.

One option is to use feature detection and a JavaScript loader to load the script only when it’s
needed. Alternatively, you can also use an IE conditional (although it’s a bit sloppier):

<!--[if lt IE 9]>
<script src="js/jquery.h5validate.js"></script>
<![endif]-->

This conditional targets only IE8 and earlier versions, so it misses older versions of other browsers.
That isn’t a huge concern, though, because market shares for those older browsers are typically
very tiny.

JQUERY VALIDATION ENGINE

A quick Internet search turns up a variety of plug-ins for form validation. As with any third-party
offerings, these plug-ins can be hit or miss, so it’s important to choose the right one. One of the
best options available is jQuery Validation Engine, which is available at https://github.com/
posabsolute/jQuery-Validation-Engine.

jQuery Validation Engine is a robust validation suite that provides a more feature-rich alternative to
native HTML5 validation. Depending on your use case, these features may justify the added weight
of an extra script.

Getting Started with jQuery Validation Engine
Although it leverages different attributes than HTML5 validation, the jQuery Validation Engine is
markup-driven:

<input type="text" data-validation-engine="validate[required,custom[email]]">

Here, data-validation-engine defi nes the functionality for this fi eld. First, validate[] indicates
that this fi eld should be validated. Then the validation rules are defi ned in this array—this
particular fi eld is a required fi eld that must validate against an email regex.

Finally, instantiate the validation engine on your form element:

$(".my-form").validationEngine();

Now, as you can see in Figure 6-8, malformed data trigger error messages.

NOTE Although the plug-in supports theming, there is only one offi cial theme at
this time.

86 ❘ CHAPTER 6 VALIDATING YOUR DATA

c06.indd 11/03/2014 Page 86

FIGURE 6-8: This error message was generated by the jQuery Validation Engine. (If you don’t like the
appearance, you can retheme the library.)

Validators
The main reason to use jQuery Validation Engine is the variety of validation rules that you can
leverage right out of the box. Ranging from simple regex rules to validate an e-mail address to
complex date ranges and conditionals, these validators provide more feature-rich controls than
native alternatives. And if you need additional rules, the library provides tools to defi ne your own.

Regex Validators
jQuery Validation Engine offers a number of predefi ned regex rules to cover a variety of common
validation use cases. You saw one of these validators in the previous section: custom[email], which
checks against an email regex. Following the same pattern, you can also set up URL validation:

<input type="text" data-validation-engine="validate[custom[url]]">

Or establish phone number validation:

<input type="text" data-validation-engine="validate[custom[phone]]">

Beyond these examples, you can also validate numbers, ISO dates, alphanumeric strings, and more.
You can read about all the custom regexes jQuery Validation Engine supports in the documentation:
http://posabsolute.github.io/jQuery-Validation-Engine/#custom-regex. And if you still
need more, you can add your own regex rules to the translation fi le (for example, jquery.
validationEngine-en.js).

WARNING Be careful when validating a phone number because this regex is
“relaxed,” meaning it allows a variety of phone number formats. That’s a pretty
wide fi eld with all the international formats, so you might need to add addi-
tional validation rules.

Number Validators
You already learned how to use regex validators such as custom[number] and custom[integer] to
validate the data type of a fi eld. But jQuery Validation Engine provides some additional non-regex
validators such as min[] and max[]:

<input type="text"
 data-validation-engine="validate[custom[number],min[0],max[10]]">

This example uses both the min[] and max[] validators, establishing a rule that the number must be
between 0 and 10.

http://posabsolute.github.io/jQuery-Validation-Engine/#custom-regex

jQuery Validation Engine ❘ 87

c06.indd 11/03/2014 Page 87

NOTE Beyond min[] and max[] there are a handful of tools you can use in
more specifi c cases. For example, the creditCard validator verifi es that an
integer could theoretically be a credit card number. Of course, it doesn’t verify
with the bank that a particular card exists or that it has any available credit.

Date Validators
jQuery Validation Engine also provides some useful date validation rules. These complement the
custom[date] regex you learned about earlier, which verifi es that the string follows ISO date
format: YYYY-MM-DD. For example, you can use these additional controls to verify that an ISO date
is not only valid, but also in the past:

<input type="text" data-validation-engine="validate[custom[date],past[NOW]]">

Here the past[] validator takes the NOW parameter to check this fi eld against the current date (as provided
by the browser). As you can see in Figure 6-9, this fi eld triggers an error if the date isn’t in the past.

FIGURE 6-9: This fi eld won’t validate because the date isn’t in the past.

Similarly, you can also check whether a date is in the future:

<input type="text" data-validation-engine="validate[custom[date],future[NOW]]">

Additionally, you can use your own ISO string with past[] and future[]. For instance, to check
that a user was born before 1995, you could either ask them who MC Hammer is or use the
following:

<input type="text" data-validation-engine=
 "validate[custom[date],past[1995-01-01]]">

Additionally, if you’d like to use a date picker, you can use jQuery Validation Engine in conjunction
with the HTML5 form element <input type="date">, which you learned about earlier. However,
to avoid any collisions between HTML5 and jQuery validation, make sure to add the novalidate
attribute to your form element:

<form novalidate>
<input type="date" data-validation-engine="validate[custom[date],past[NOW]]">
</form>

Conditional Validators
One of the most powerful use cases for jQuery Validation Engine is the variety of conditional
validation rules. These validators don’t just check a single fi eld; rather, they allow you to establish
more complex relationships between different fi elds in your form.

A simple example is validating that the Password and Confi rm password fi elds match:

www.allitebooks.com

http://www.allitebooks.org

88 ❘ CHAPTER 6 VALIDATING YOUR DATA

c06.indd 11/03/2014 Page 88

<input type="password" name="my-password">
<input type="password" name="confirm-password"
 data-validation-engine="validate[equals[my-password]]">

As you can see, the second fi eld uses the equals[] validator to match the fi eld named
my-password. Now if the two fi elds don’t match, it throws the error message shown in
Figure 6-10. (You fi nd out how to customize the text of error messages later in this chapter.)

FIGURE 6-10: These passwords don’t match.

Beyond simple matching, you can also compare dates across fi elds using the past[] and future[]
validators with which you’re already familiar. For example, let’s say you want to validate the dates
for a hotel booking. You want to make sure the end date falls after the start date:

<input type="text" name="start-date"
 data-validation-engine="validate[future[NOW]]">
<input type="text" name="end-date"
 data-validation-engine="validate[future[start-date]]">

Here, the script fi rst checks that the start date is in the future (after all, you wouldn’t want to book
a hotel for yesterday). Then the end date validates against the start date, producing the error in
Figure 6-11 if it isn’t in the future.

FIGURE 6-11: The end date is before the start date, which triggers an error.

Beyond these examples, there are also validators that set up required relationships between groups
of fi elds, verify the number of checkboxes a user has checked, and more. Take a look at the
documentation: http://posabsolute.github.io/jQuery-Validation-Engine/#validators.

Writing Custom Rules
You can also defi ne your own validators for jQuery Validation Engine, both on the client side and
even on the server.

Client Side
To create a validation rule on the client side, fi rst create a function that returns an error message on
failure:

function checkFruit(field, rules, i, options){
 var fruits = ["apple", "banana", "pear", "orange"];

 if (fruits.indexOf(field) == -1) {

jQuery Validation Engine ❘ 89

c06.indd 11/03/2014 Page 89

 return "Must be a piece of fruit";
 }
}

This function checks if the fi eld value is in an array of fruit names, returning an error message if it is
not. Next, pass a reference to this function into your validation rules using funcCall[]:

<input type="text" data-validation-engine="validate[funcCall[checkFruit]]">

Now, if the user enters a value in this fi eld that isn’t in the fruit array, it produces the error shown in
Figure 6-12.

FIGURE 6-12: Pizza isn’t a fruit.

Server Side
With jQuery Validation Engine, you can even establish validation rules that hit a restful API on the
server. This ability can be extremely useful in a variety of situations—for example, checking if a
username already exists on the system.

First, add an Ajax rule to the translation fi le (for example, jquery.validationEngine-en.js):

"ajaxUsername": {
 "url": "my-api-url",
 "extraDataDynamic": ['#my-username'],
 "alertText": "* This username is already taken",
 "alertTextOk": "All good!",
 "alertTextLoad": "* Validating, please wait"
},

This rule defi nes a few parameters for the Ajax call, such as the URL for the API, the form data to
pass in, and various messages. Pay careful attention to extraDataDynamic—that’s a list of ID
references for the fi elds you want to pass to your API.

Next, reference this rule as a validator in the markup:

<input type="text" id="my-username"
data-validation-engine="validate[ajax[ajaxUsername]]">

Now jQuery Validation Engine automatically checks this fi eld against the server. This chapter
doesn’t get into any server-side code here, but your API should return JSON in the following format:

["my-username", false, "No dice"]

In this case, these values represent the following:

 ➤ "my-username" is the ID reference for the given fi eld (which enables you to return a nested
array if you are validating multiple fi elds).

 ➤ false is a Boolean value for whether the validation passes. In this case it fails.

 ➤ "No dice" is an optional error message that overwrites the messaging established in the
translation fi le.

90 ❘ CHAPTER 6 VALIDATING YOUR DATA

c06.indd 11/03/2014 Page 90

To learn more about the ajax[] validator, see this tutorial: www.position-absolute.com/
articles/using-form-ajax-validation-with-the-jquery-validation-engine-plugin/.

NOTE Even though the ajax[] validator hits the server-side, that call is
originally from the client, and as such you should have similar security concerns
as with any client-side validation. Namely, make sure that you double check any
crucial validation using traditional server-side techniques to thwart hackers and
browser errors.

Error Messages
jQuery Validation Engine also provides a few ways to customize error messaging, from overwriting
default messages to additional language packs. These tools provide signifi cantly more control over
error messaging than native HTML5 alternatives.

Modifying Error Messages
You can override the default messaging in jQuery Validation Engine by setting the data-
errormessage attribute:

<input type="text" data-validation-engine="validate[required,custom[email]]"
 data-errormessage="This is a custom error message">

You can see this custom message in Figure 6-13.

FIGURE 6-13: The default error message for this fi eld has been overwritten.

Earlier, you learned how overwriting native HTML5 validation messages can be problematic
because different errors trigger the same messaging. Fortunately, that isn’t as much of a problem in
jQuery Validation Engine because you can hook into a few additional error message attributes:

<input type="email" data-validation-engine="validate[required,custom[email]]"
 data-errormessage-value-missing="Email is required!"
 data-errormessage-custom-error="Let me give you a hint: someone@nowhere.com"
 data-errormessage="This is the fall-back error message.">

Here, the script uses data-errormessage-value-missing for problems with the required valida-
tion, and data-errormessage-custom-error for problems with any custom regexes. Any other
errors default to the message in data-errormessage.

Summary ❘ 91

c06.indd 11/03/2014 Page 91

Localization
HTML5 automatically translates error messages into the user’s language for native validation.
Fortunately, jQuery Validation Engine also provides some linguistic support—simply include the
appropriate locale fi le on the page. For example, to use English, you’d write the following:

<script src="js/jquery.validationEngine-en.js"></script>
<script src="js/jquery.validationEngine.js"></script>

The multi-language support in jQuery Validation Engine is useful; however, localization in native
validation is still better for two reasons:

 ➤ jQuery Validation Engine provides support for dozens of languages, but browsers support
signifi cantly more (two to three times as many depending on the browser).

 ➤ While jQuery Validation Engine allows the developer to hard-code a language, native valida-
tion localizes to the user’s language automatically. However, hard-coding the language can
also be a good thing if you’re worried about consistency with the other copy on your site.

SUMMARY

 In this chapter, you learned a variety of form validation techniques. You fi rst learned how to
leverage native HTML5 validation to verify various data types, set the bounds for number values,
and defi ne your own regex rules.

Next, you learned how to use jQuery Validation Engine for more robust validation support. You
explored the basic regex validators as well as simple validators to constrain number values and
dates. Then you leveraged conditional validators to establish more complex relationships between
the fi elds in your form. Finally, you learned how to create your own validators, both on the client
and the server, as well as how to customize the messaging.

c07.indd 11/03/2014 Page 93

Examining and Sorting Data
Tables

WHAT’S IN THIS CHAPTER

 ➤ Learning the Anatomy of an HTML table

 ➤ Styling an HTML table with CSS

 ➤ Learning about semantic markup

 ➤ Using JavaScript and jQuery to dynamically style and edit tables

 ➤ Using the DataTables jQuery plug-in to make dynamic tables easy

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/javascriptandjqueryanalysis on the Download Code
tab. The code is in the chapter 07 download and individually named according
to the names throughout the chapter.

Although charts, maps, and other graphically rich representations might be the fi rst things
that come to mind when you consider the term data visualization, a primary workhorse for
displaying and analyzing data has always been the data table. Furthermore, a well-designed
chart might represent a concise way to tell a story about your data to most users, but it can
present a diffi cult obstacle to the visually impaired. Thankfully, a properly marked-up data
table can carry enough unambiguous meaning that a specially designed piece of software
known as a screen reader can convert the visual matrix of data into easy-to-digest text-to-
speech or Braille content.

7

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

94 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 94

Data tables represent an interesting lowest common denominator in terms of in-browser data
visualization. Not only can you mark them up for maximum readability and accessibility but every
commonly used browser has at least a basic ability to display data tables, even if you
intentionally disable extraneous features. Given this, you can apply a design strategy to begin with
this base level of support and then to progressively enable more advanced features if the current
user agent supports them. In this way, all users have some access to your content, but the users
with more capable browsers receive an enhanced view. This strategy is usually referred to as
progressive enhancement.

OUTPUTTING BASIC TABLE DATA

In Chapter 4, you saw several techniques for using JavaScript to load data asynchronously down-
loaded from web servers and build HTML tables dynamically on the client. These strategies are
useful and powerful, but they have the distinct problem that if the user’s browser does not support
JavaScript, or if the user has intentionally confi gured the browser to not execute JavaScript, then
you are not able to present them with any data. Meanwhile, if the data table is a static part of the
page or is injected into the page by logic on the server side, then it is observable even by base-level
user agents or user agents with deliberately constrained capabilities.

Building a Table
In HTML, you use the <table> element to render data in tabular format. When you think of a
table, visually, you assume that it contains both rows and columns that intersect in a grid, but when
you describe a table in HTML markup, it is surprisingly row-oriented. You describe each row
contained in the table and all the cells contained in each row, whereas information about the
columns contained in the table is mostly inferred (that is, unless you decide to describe information
about the columns more explicitly, as discussed later in this chapter). In fact, there is a great deal of
inference going on in how browsers interpret a table element, so you must be careful if you want to
build a maximally accessible table.

NOTE The <table> element can also be used for layout purposes; it was
actually quite often used for this purpose in the early web. This practice has
fallen out of favor, for most scenarios, since the introduction of Cascading Style
Sheets (CSS). In general, you should check if there is a simpler and cleaner way
to achieve your goals using CSS (there generally is) before resorting to using a
table for layout purposes.

Each row of the <table> is expressed as a <tr> (table row) element, and each cell within the row is
indicated by a <td> (table data) element.

Repurposing the sales data discussed in Chapter 2 and converting it into an HTML table, you get
the markup shown in Listing 7-1.

Outputting Basic Table Data ❘ 95

c07.indd 11/03/2014 Page 95

LISTING 7-1

<!DOCTYPE html>
<html>
<head>
<title>Simple Table</title>
</head>
<body>

<table>
 <tr>
 <td>Region</td>
 <td>Sales</td>
 <td>Mean</td>
 </tr>

 <tr>
 <td>Northeast</td>
 <td>$100,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <td>Southeast</td>
 <td>$75,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <td>Midwest</td>
 <td>$125,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <td>Mid-Atlantic</td>
 <td>$125,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <td>Southwest</td>
 <td>$75,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <td>Northwest</td>
 <td>$100,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <td>California</td>
 <td>$400,000</td>
 <td>$142,857</td>
 </tr>
</table>

</body>
</html>

96 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 96

The code in Listing 7-1 results in the table displayed in Figure 7-1. You can fi nd the
MostSimpleTable.html fi le on the companion website.

FIGURE 7-1: This table is very basic.

Notice that the table displayed in Figure 7-1 is not very attractive. This can actually be considered to
be “by design.” Why? Modern HTML provides good separation of semantic markup from
presentation, so, ideally, your markup should describe only the content of your page, and your CSS
defi nes the presentation aspects. Because we have not added any CSS rules that target the elements
of the data table in this example, you should not be especially surprised that its
presentation is currently a bit lackluster.

NOTE Early versions of HTML muddied the waters when it came to
separation of content and presentation. For example, the tag enabled
you to apply a font of your selection to a section of text. Now, however, you
would use CSS to defi ne this sort of presentation property. The tag and a
few other presentation-related element types were deprecated in HTML version
4.01 and removed, fi nally, in HTML5. This provides additional evidence that
HTML should solely defi ne content and semantics, whereas presentation should
be delegated to CSS.

You see how to improve the styling of the table later in this chapter, but fi rst, consider another issue
with this table. The semantics of the table content are very unclear. There is an implication that the
fi rst (top) row contains cells that represent the headers for the columns below each of them. There
is also an implication that the fi rst cell in each row describes the subsequent row content. These are
mere inferences, however, and although it may be easy for someone who’s looking at this table to
draw these inferences, it is not necessarily straightforward for a piece of software (a software agent)
or a visually impaired person to do so. Furthermore, when using CSS selectors to style the content
of this table, there is no simple way for the styling rules to distinguish between the different types of
cells present.

Using Semantic Table Markup
You can solve the problems with the table shown in Figure 7-1 by better defi ning the semantics,
or meaning, of each piece of markup in the table. If the cells in the fi rst row are meant to be the

Outputting Basic Table Data ❘ 97

c07.indd 11/03/2014 Page 97

headers of the columns that they top, then you can make this explicit by utilizing the <th> element
rather than the <td> element.

<tr>
 <th>Region</th>
 <th>Sales</th>
 <th>Mean</th>
</tr>

Now it is clear and unambiguous that you are providing table headers, and not simply another row
of data. You can see in Figure 7-2 that changing these cells to be table headers has actually made a
small visual difference in the output. Despite the content and presentation separation principles you
want to strive for, the browsers do have some presentation defaults associated with some semantic
markup elements. In the case of table headers, they default to being bold and centered in their cells,
but you can, of course, redefi ne how table headers are presented using CSS.

You can fi nd the SimpleTable.html fi le on the companion website.

FIGURE 7-2: Semantic table header elements make a small difference in the output.

Surprisingly, table headers are valid when placed anywhere in the table, but it is important to use
them only in places where they make sense contextually and to think about how a screen reader
might process a table’s content to read it aloud. For example, applying the <th> element simply
because you want values to be bolded and centered is a poor use of the element.

In the regional sales table from the example, it would actually make sense to treat each region name
as a header for the row, which is perfectly valid markup:

<tr>
 <th>Northeast</th>
 <td>$100,000</td>
 <td>$142,857</td>
</tr>

But now you’ve constructed a scenario where you have two different sets of headers, and it isn’t
necessarily obvious which table cells are associated with which headers. It is recommended you resolve
these ambiguities by adding scope attributes to the header elements. If you amend your header to read

<th scope="row">Northeast</th>

it will make no difference from the standpoint of default presentation, but you’ve now made it clear
to screen readers (and your CSS selectors, as you see later) that every cell in the same row with that
header is owned by that header. Similarly, you can amend the column headers to read

98 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 98

<th scope="col">Region</th>
<th scope="col">Sales</th>
<th scope="col">Mean</th>

which ensures that every cell in the same column with such a header is owned by that header. So, for
example, when you come to the cell in the table that reads $400,000, a screen reader or other soft-
ware agent would know, unambiguously, that this value is owned by the column header Sales and
also the row header California.

NOTE It’s worth noting that it is not only screen readers and CSS selectors that
can benefi t from enriching the semantic content of a table. A web crawler for a
search engine might be able to use the extra meaning provided to improve the
indexing of the content, or your browser might be able to more effectively break
up a table between pages when printing when given a greater understanding of
the table’s anatomy.

There are other pieces of semantic markup that can be applied to parts of the table to clarify
the intent of the table designer. Although replacing the <td> elements in the fi rst row with <th>
removed a lot of ambiguity from the table layout, you can be much more clear about the different
sections of the table by splitting the content into three semantic sub elements—<thead>, <tbody>,
and <tfoot>—as shown in Listing 7-2.

LISTING 7-2

<!DOCTYPE html>
<html>
<head>
<title>Table With Semantic Markup</title>
</head>
<body>

<table>
 <thead>
 <tr>
 <th scope="col">Region</th>
 <th scope="col">Sales</th>
 <th scope="col">Mean</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th scope="row">Sum</th>
 <td>$1,000,000</td>
 <td></td>
 </tr>
 </tfoot>
 <tbody>
 <tr>

Outputting Basic Table Data ❘ 99

c07.indd 11/03/2014 Page 99

 <th scope="row">Northeast</th>
 <td>$100,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Southeast</th>
 <td>$75,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Midwest</th>
 <td>$125,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Mid-Atlantic</th>
 <td>$125,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Southwest</th>
 <td>$75,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Northwest</th>
 <td>$100,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">California</th>
 <td>$400,000</td>
 <td>$142,857</td>
 </tr>
 </tbody>
</table>

</body>
</html>

Now it is as clear as possible that the table is composed of a header section, a body section, and a
footer section.

NOTE Although the footer appears last in presentation order on the page, by
default, in the markup it must actually appear before the body of the table. This
may have something to do with the fact that if you were spooling a very long
table to a printer and want to print the footer at the base of every page, you
wouldn’t want to have to parse through all the table markup, in advance, to fi nd
the footer content.

100 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 100

When you view the results of our new table in Figure 7-3, you’ll notice that the only difference from
Figure 7-2 is that the cell contents of the fi rst column, which you’ve marked as row headers, are now
bold and centered. <thead>, <tbody>, and <tfoot> have acted as pure semantic markup, and have
not caused any change in the presentation of the table.

You can fi nd the TableWithSemanticMarkup.html fi le on the companion website.

FIGURE 7-3: This table has both row and column headers.

Although there are no apparent built-in presentation differences, some browsers do utilize the extra
context that you’ve provided in interesting ways. For example, some browsers, when printing, repeat
the header section and/or the footer section on each page so that whoever reads the output does not
have to refer to the fi rst page to identify the columns. Later in the chapter you see how to apply some
rather complex styling to these various sections of the table, but for now, apply some simple CSS
rules, if only to clarify the table’s anatomy. Add the following code to the <head> section of the page:

<style type="text/css">
 thead { color: orange; }
 tbody { color: gray; }
 tfoot { color: red; }
</style>

As you can see in Figure 7-4, the table looks exactly the same as Figure 7-3 except for the fact that
everything in the header area of the table uses an orange text color, everything in the footer area of
the table uses a red text color, and all other text is gray.

You can fi nd the TableWithSemanticMarkupAndCSS.html fi le on the companion website.

FIGURE 7-4: In this table, some CSS styling rules have been used to target the semantic markup of the
table.

Outputting Basic Table Data ❘ 101

c07.indd 11/03/2014 Page 101

Labeling Your Table
When providing a table of data to the user, it is important to provide a title or label so the user has
suffi cient context to understand the data and see how it’s related to the rest of the content being
provided. In an accessible table, a title is even more important as the user may not have sight cues to
relate the table content with surrounding aspects of the page.

To add a title to your table, you can introduce the <caption> element to the table:

<table>
 <caption>Sales By Region</caption>
 <!-- ... -->
</table>

By default the title is presented at the top of the table, although you can confi gure the placement
with CSS (see the caption-side property). A title does more than provide an explanation of your
table content; most accessibility-oriented user agents specifi cally look for this caption to better
explain the table’s context.

If there is anything unusual about the structure of the table, it might be worth trying to
provide some extra detail in the caption to attempt to make the content more digestible.
However, it is preferable to simply reduce the complexity of the table. If the table is complex
enough to need a paragraph describing its content, then it might not be the most effective way
to visualize the data.

NOTE The table element used to have a summary attribute. This attribute
had no visual presentation on the page, but it provided additional context
that was consumable by screen readers. This attribute has been removed in
HTML5, however. It’s possible that the attribute has been removed because
useful information about a table should be accessible to all users, and not just
to screen readers.

You can see a table with a caption displayed in Figure 7-5.

FIGURE 7-5: A descriptive caption has been added to the table.

102 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 102

Confi guring the Columns
Thus far, you’ve created rows and headers, which have only implicitly defi ned the number of columns
that the table contains. Is there anything that can be said more explicitly about the columns, though?
The answer is yes, but don’t get too excited, yet. There are limitations to the markup that can directly
target a table column.

If you catalog the things you might want to do to a column of data in the table, some of the fi rst
actions that come to mind are

 ➤ Setting the font and color of all the cell content in the column

 ➤ Setting the text alignment of all the cell content in the column

 ➤ Setting the background color of the entire column

Fortunately there is an element called <col> that enables you to describe some styles that target an
entire column. Unfortunately, only the third item in the preceding list is directly achievable using
<col>. Listing 7-3 shows how you would use some <col> elements to style the contents of some of
the columns in your table.

LISTING 7-3

<!DOCTYPE html>
<html>
<head>
<title>Table With Caption and Column Settings</title>

<style type="text/css">
 .col-header { background-color: gray; }
 .col-amount { background-color: orange; }
</style>
</head>
<body>

<table>
 <caption>Sales By Region</caption>
 <colgroup>
 <col class="col-header">
 <col class="col-amount">
 <col class="col-mean">
 </colgroup>
 <thead>
 <tr>
 <th scope="col">Region</th>
 <th scope="col">Sales</th>
 <th scope="col">Mean</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th scope="row">Sum</th>
 <td>$1,000,000</td>
 <td></td>

Outputting Basic Table Data ❘ 103

c07.indd 11/03/2014 Page 103

 </tr>
 </tfoot>
 <tbody>
 <tr>
 <th scope="row">Northeast</th>
 <td>$100,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Southeast</th>
 <td>$75,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Midwest</th>
 <td>$125,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Mid-Atlantic</th>
 <td>$125,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Southwest</th>
 <td>$75,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Northwest</th>
 <td>$100,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">California</th>
 <td>$400,000</td>
 <td>$142,857</td>
 </tr>
 </tbody>

</table>

</body>
</html>

In Listing 7-3, you have two new additions to help confi gure your columns. The fi rst is this:

<style type="text/css">
 .col-header { background-color: gray; }
 .col-amount { background-color: orange; }
</style>

In that code, there are two CSS classes defi ned that you assign to the column that contains the row
headers and the column that contains the sales amounts, respectively. In both cases they are defi ning
a background-color, which happens to be one of the few legal values that you can assign to a
column. To assign these classes to their respective columns, the following confi guration is used:

104 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 104

<colgroup>
 <col class="col-header">
 <col class="col-amount">
 <col class="col-mean">
</colgroup>

Here, fi rst, the <colgroup> element is used to indicate that you are defi ning some attributes for a
group of columns in the table, and then each individual column’s attributes are defi ned in the child
<col> elements. In this case, a CSS class is being assigned to each column. The result is that the
background of the header column is set to gray, and the background of the amount column is set to
orange. You can see the result in Figure 7-6.

You can fi nd the CaptionAndColumnSettings.html fi le on the companion website.

FIGURE 7-6: In this table, some of the settings of the columns have been explicitly confi gured.

Your natural inclination after getting the preceding example working would probably be to try to
right-align the content of the cells in the number columns like this:

<style type="text/css">
 .col-amount { text-align: right; }
 .col-mean { text-align: right; }
</style>

However, you will fi nd that this does not actually work. The table cells are not really seen as being
Document Object Model (DOM) children of the column, so they don’t actually inherit most CSS
properties that would normally be inherited in this fashion. In the end, there are only a few valid
properties for you to set this way. Nevertheless, right-aligning columns is something that you will
want to do, so later in this chapter you see a strategy for this that does work.

NOTE If you look at an application programming interface (API) guide for
<col>, you might see lots of interesting properties that can be set at the column
level, such as align. However, some of these were never widely supported, and
most of these attributes have been removed in HTML5. Later in the chapter, you
fi nd out about some of the recommended alternatives.

Assuring Maximum Readability ❘ 105

c07.indd 11/03/2014 Page 105

ASSURING MAXIMUM READABILITY

As mentioned in the introduction of this chapter, one of the nice things about data tables is that
you can apply the strategy of progressive enhancement. In other words, you start with a table that
almost all browsers, not to mention screen readers and other software agents, can present, and then
you progressively layer on various enhancements that some user agents may support; browsers that
don’t support the enhancements gracefully react by omitting them. Not every user agent supports
every enhancement that you might introduce, but, if you are careful, you should end up with a
maximally enhanced table for every scenario.

Most of what you’ve done so far in this chapter should be presentable to user agents that support
HTML4 and later. A few HTML5 attributes have been described that would work on non-HTML5
browsers as long as you provide a polyfi ll.

NOTE A polyfi ll is a piece of code that helps you emulate some functionality
that’s not natively supported in some of your target browsers. For HTML5, many
new elements have been added that don’t necessarily have specifi c presentation
defaults, but they help to enhance the semantic content of the page. It’s useful to
be able to depend on these elements being available regardless of whether the
target user agent supports HTML5, hence the prevalence of HTML5 polyfi lls
that are available.

The current state of your data table as of Figure 7-5 is that it’s serviceable but not very good-
looking. It’s a bit diffi cult to read, to boot. You can improve these aspects of the table through
some judiciously applied CSS and JavaScript. Some of your target platforms will not be able to
take advantage of some of these features, but any features you attempt to use that aren’t supported
should silently be ignored.

Here are some of the issues that it would be good to address in the current table:

 ➤ There are no visible divisions between the cells.

 ➤ There are no large visual distinctions other than font weight between the headers and the
normal cells.

 ➤ The numeric columns would look better right aligned.

 ➤ It can be diffi cult for the eye to travel along a row of the table without slipping to
an adjacent row.

106 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 106

Styling Your Table
Now it’s time to pretty things up a bit using the code shown in Listing 7-4.

LISTING 7-4

<!DOCTYPE html>
<html>
<head>
<title>Table With Styled Semantic Markup</title>

<style type="text/css">
/* Remove excess interstitial borders and padding
establish an outer border */
table {
 border-collapse: collapse;
 border: 1px solid #4C4C4C;
}
/* Add a dotted border around both header cells
and normal cells */
th, td {
 border: 1px dotted #707070;
}
/* Add some padding around the header content
removing the cramped spacing. Make the background
color of the headers green. */
th {
 background: #C2F0C2;
 padding: 5px;
}
/* Darken the green background for just the column
headers so that they use a different green than the
row headers. The fact that the column headers are
within a thead element helps to discriminate them
from the row headers. */
thead th {
 background: #9BC09B;
}
/* Set the background behind the caption to a dark
gray and the caption text to white. */
caption {
 background: #4C4C4C;
 padding: 5px;
 color: white;
}
/* This sets a solid bottom border to just the column
headers. This is achieved by using an attribute selector
to select just the th elements with scope set to col. */
th[scope=col] {
 border-bottom: 2px solid #707070;
}
/* This sets a solid right border to just the row headers.
This is achieved by using an attribute selector to

Assuring Maximum Readability ❘ 107

c07.indd 11/03/2014 Page 107

select just the th elements with scope set to row. It
also left aligns these headers */
th[scope=row] {
 border-right: 2px solid #707070;
 text-align: left;
}
/* This right aligns all the normal cell content and
adds some padding to them */
td {
 text-align: right;
 padding: 5px;
}
/* This sets a different background to just the row
header that resides in the footer row. */
tfoot th {
 background: #BBBBD1;
}
/* This sets a different background to just the
normal cells that reside in the footer row. */
tfoot td {
 background: #CFCFDF;
 color: #8D1919;
}

</style>
</head>
<body>

<table>
 <caption>Sales By Region</caption>
 <colgroup>
 <col class="col-header">
 <col class="col-amount">
 <col class="col-mean">
 </colgroup>
 <thead>
 <tr>
 <th scope="col">Region</th>
 <th scope="col">Sales</th>
 <th scope="col">Mean</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th scope="row">Sum</th>
 <td>$1,000,000</td>
 <td></td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <th scope="row">Northeast</th>
 <td>$100,000</td>
 <td>$142,857</td>
 </tr> continues

108 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 108

 <tr>
 <th scope="row">Southeast</th>
 <td>$75,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Midwest</th>
 <td>$125,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Mid-Atlantic</th>
 <td>$125,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Southwest</th>
 <td>$75,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Northwest</th>
 <td>$100,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">California</th>
 <td>$400,000</td>
 <td>$142,857</td>
 </tr>
 </tbody>

</table>

</body>
</html>

You can see the result of Listing 7-4 in Figure 7-7.

You can fi nd the TableStyling.html fi le on the companion website.

The table in Figure 7-7 looks much better than earlier versions, doesn’t it? The comments in Listing
7-4 explain what each individual styling rule accomplishes. Note how the use of the appropriate
semantic HTML elements aided in discriminating between the various types of header rows and
normal cells so that they could be styled differently.

Increasing Readability
With the styling in place, you’ve already improved the readability of the table remarkably, but there
is still more that you can do. Most tables are rendered with horizontal lines between the rows. These
lines help the eye track between cells in the same row and make it harder for the eye to slip from one
row to another. Another trick that is often used to help the eye scan a table row is to use alternating

LISTING 7-4 (continued)

Assuring Maximum Readability ❘ 109

c07.indd 11/03/2014 Page 109

row highlights. For example, a table might have a repeating pattern of a light background followed
by a dark background. Conventional wisdom declares that this should make it harder for the eye
to slip from one row to an adjacent one due to the visual disparity between them. Here’s how you
would add some additional styling rules to achieve this:

tbody tr:nth-child(odd) {
 background: #DBDBDB;
}

FIGURE 7-7: More comprehensive CSS styling rules have been applied to the table.

This rule is a bit dense, so it helps to break it down; sometimes it helps to deconstruct complicated
selectors if you read them from right to left. The nth-child(odd) bit is saying to select only odd
children (every other child). Then, proceeding a step further to the left, tr:nth-child(odd) is the
instruction to select all odd children if they are <tr> elements. Take a further step to the left, and
tbody tr:nth-child(odd) is selecting odd children if they are <tr> elements and they are
contained within a <tbody> element. You can see the results of this in Figure 7-8.

You can fi nd the TableAlternateRowStyling.html fi le on the companion website.

FIGURE 7-8: Now the table has alternating row highlights.

110 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 110

The CSS required to create alternating row highlights actually turns out to be really concise. The
downside, however, is that nth-child is actually a CSS level 3 selector, so it is only available in the
most modern browsers. Older browsers just ignore the rule, so this rule still safely and gracefully
degrades if someone tries to view it on a noncompliant browser.

If you drop some of the concision, you can support alternating highlights on older browsers also.
One way of approaching this is to manually add a class to all the odd rows of the table and then
select on that class directly in order to highlight the odd rows. If you were generating the table using
some code on the server, this method would be relatively straightforward. You could just make sure
to emit class="odd" for every other row in the markup generated for the table.

However, there is a distinct downside to approaching this problem in this way. If you were to use
some client-side code to change the sorting of the rows, you would also need to reassign all the
classes based on the new row order.

Another approach is to use jQuery to manipulate the rows to implement the alternating row
highlights, as shown in Listing 7-5. One of the benefi ts of jQuery is that it can help you emulate
some more modern browser features on older browsers.

LISTING 7-5

<!DOCTYPE html>
<html>
<head>
<title>Table With Alternating Row Highlight</title>

<script src="jquery/jquery-1.11.1.min.js"></script>

<style type="text/css">
table {
 border-collapse: collapse;
 border: 1px solid #4C4C4C;
}
th, td {
 border: 1px dotted #707070;
}
th {
 background: #C2F0C2;
 padding: 5px;
}
thead th {
 background: #9BC09B;
}
caption {
 background: #4C4C4C;
 padding: 5px;
 color: white;
}
th[scope=col] {
 border-bottom: 2px solid #707070;
}

Assuring Maximum Readability ❘ 111

c07.indd 11/03/2014 Page 111

th[scope=row] {
 border-right: 2px solid #707070;
 text-align: left;
}
td {
 padding: 5px;
}
tfoot th {
 background: #BBBBD1;
}
tfoot td {
 background: #CFCFDF;
 color: #8D1919;
}
.row-odd {
 background: #DBDBDB;
}
.row-odd th {
 background: #A2D0A2;
}
.cell-number {
 text-align: right;
}
</style>

<script type="text/javascript">
 function usCurrencyToFloat(currency) {
 currency = currency.replace(/\$/g, '');
 currency = currency.replace(/,/g, '');
 return parseFloat(currency);
 }

 $(function () {
 $("tbody").find("tr:odd").addClass("row-odd");
 $("tbody").find("td").filter(function (index) {
 return !isNaN(usCurrencyToFloat($(this).text()));
 }).addClass("cell-number");
 });
</script>

</head>
<body>

<table>
 <caption>Sales By Region</caption>
 <colgroup>
 <col class="col-header">
 <col class="col-amount">
 <col class="col-mean">
 </colgroup>
 <thead>
 <tr>
 <th scope="col">Region</th>
 <th scope="col">Sales</th>
 <th scope="col">Mean</th> continues

112 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 112

 </tr>
 </thead>
 <tfoot>
 <tr>
 <th scope="row">Sum</th>
 <td>$1,000,000</td>
 <td></td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <th scope="row">Northeast</th>
 <td>$100,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Southeast</th>
 <td>$75,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Midwest</th>
 <td>$125,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Mid-Atlantic</th>
 <td>$125,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Southwest</th>
 <td>$75,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Northwest</th>
 <td>$100,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">California</th>
 <td>$400,000</td>
 <td>$142,857</td>
 </tr>
 </tbody>

</table>

</body>
</html>

You can see the result of Listing 7-5 in Figure 7-9.

You can fi nd the TableAlternateRowStylingJQuery.html fi le on the companion website.

LISTING 7-5 (continued)

Assuring Maximum Readability ❘ 113

c07.indd 11/03/2014 Page 113

FIGURE 7-9: The alternating row highlights in this table were implemented with jQuery.

Review the new aspects of this sample, starting with the following:

<script src="jquery/jquery-1.11.1.min.js"></script>

This line of code references jQuery, assuming it has been downloaded to a subfolder called jQuery,
as it is in the code download from the companion site. It could also be loaded through its CDN
server. For more information on using the jQuery CDN server see http://jquery.com
/download/. You should, of course, review jQuery’s license terms before use.

The following is the next new bit of CSS:

.row-odd {
 background: #DBDBDB;
}

This defi nes a CSS style rule that targets any element that has the class row-odd. You use jQuery to
make sure that the odd rows have this class assigned. This rule assigns a different background color
to the odd rows so that the background color alternates as you achieved earlier through the
nth-child selector.

Next is the following rule, which targets only <th> elements that are in odd rows, coloring their
background a darker version of the row header color.

.row-odd th {
 background: #A2D0A2;
}

And then you have this:

.cell-number {
 text-align: right;
}

This rule assumes that you’ll later use jQuery to assign a class called cell-number to any cell that
appears to contain a number, in order that they all be right-aligned.

The following is the fi rst actual JavaScript you’ll employ to manipulate the table:

114 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 114

<script type="text/javascript">
 function usCurrencyToFloat(currency) {
 currency = currency.replace(/\$/g, '');
 currency = currency.replace(/,/g, '');
 return parseFloat(currency);
 }

 $(function () {
 $("tbody").find("tr:odd").addClass("row-odd");
 $("tbody").find("td").filter(function (index) {
 return !isNaN(usCurrencyToFloat($(this).text()));
 }).addClass("cell-number");
 });
</script>

It’s pretty concise and straightforward, but here’s the breakdown. The fi rst bit:

 function usCurrencyToFloat(currency) {
 currency = currency.replace(/\$/g, '');
 currency = currency.replace(/,/g, '');
 return parseFloat(currency);
 }

attempts, through pretty brute force means, to convert the currency strings in the table cells into fl oating
point numbers. This is done in order to attempt to identify which cells contain numbers, so that the style
defi ned earlier can right-align only the number cells. This is accomplished through removing any dollar
sign characters and commas from the string, and then parsing the result as a fl oating point number. If
the string happens to still not be a valid number then parseFloat returns NaN (Not a number).

Next,

 $(function () {
 $("tbody").find("tr:odd").addClass("row-odd");
 $("tbody").find("td").filter(function (index) {
 return !isNaN(usCurrencyToFloat($(this).text()));
 }).addClass("cell-number");
 });

uses jQuery to invoke some code when the DOM is ready. In the ready callback, it invokes:

$("tbody").find("tr:odd").addClass("row-odd");

which uses jQuery to fi nd just the odd rows from within the body of the table and adds the class
row-odd to them. Then it calls

 $("tbody").find("td").filter(function (index) {
 return !isNaN(usCurrencyToFloat($(this).text()));
 }).addClass("cell-number");

which fi nds only cells for which the usCurrencyToFloat function (discussed earlier in this chapter)
returns a valid number, and to those cells it adds the class cell-number. As previously discussed,
this should ensure that all number columns end up right-aligned.

Adding Dynamic Highlighting
Although the rows are far easier to scan now, there is still more you can do to make this table more
readable. You can help the user single out a row and/or a column by coloring it differently than all

Assuring Maximum Readability ❘ 115

c07.indd 11/03/2014 Page 115

the others. A good solution for this is to highlight whichever row and/or column is currently under
the mouse cursor. You can implement this using jQuery. To achieve this, you would add these styles:

td.highlight {
 background: #FF944D;
}

th.highlight {
 background: #B26836;
}

This code is anticipating that you’ll use jQuery to add a class called highlight to any cells and
headers that are in the same row or column as the user’s mouse cursor.

You would then add the following code to the ready callback from the previous listing:

$(document.body).on("mouseover", "td, th", function () {
 var index = $(this).index(),
 row = $(this).parent(),
 trs = $("tr");

 row.children().addClass("highlight");
 for (var i = 0; i < trs.length; i++) {
 trs.eq(i)
 .children()
 .eq(index)
 .addClass("highlight");
 }
});

$(document.body).on("mouseout", "td, th", function () {
 var index = $(this).index(),
 row = $(this).parent(),
 trs = $("tr");

 row.children().removeClass("highlight");
 for (var i = 0; i < trs.length; i++) {
 trs.eq(i)
 .children()
 .eq(index)
 .removeClass("highlight");
 }
});

With $(document.body).on("mouseover", "td, th", function () { you are listening for
the mouseover event to fi re for any table cell or table header on the page. var index = $(this).
index() gets the index of the cell, within the table row, that the mouse is directly over. row =
$(this).parent() gets the row that contains this cell. trs = $("tr") gets all table rows. Again,
if you have multiple tables on the page, you have to do something a bit more complicated. You’d
want to fi nd the closest containing table element for the hovered cell and fi nd only elements within
that table.

Given these variables, you can add the highlight class to all cells in the current row with row.
children().addClass("highlight") and then loop through all the rows and highlight all the
cells that are in the same column as the hovered cell:

116 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 116

for (var i = 0; i < trs.length; i++) {
 trs.eq(i)
 .children()
 .eq(index)
 .addClass("highlight");
}

Here, .eq(index) is fi ltering the set of children to just those equaling the current column index.

NOTE jQuery uses a functional programming style. Most methods operate on
the current selection. So when you execute trs.eq(i).children().eq(index).
addClass("highlight"), the selection starts as all the table rows, is fi ltered
down to just the current row, drills to become the children of that row, and is
fi ltered to just the cell from the column with the provided index; then the
“highlight” class is applied to the whole selection, which is just the cell from
the hovered column, in this case.

Following this method, the same is done for mouseout, except the highlight class is being removed
from all the previously highlighted cells rather than it being added. Given all this, you end up with
something like Figure 7-10, which shows the result of hovering over a cell in the table.

You can fi nd the TableRowAndColumnHighlights.html fi le on the companion website.

FIGURE 7-10: The hovered row and column are dynamically highlighted.

INCLUDING COMPUTATIONS

Now that you’ve built a table, made it accessible, and improved its readability with CSS and
JavaScript, it’s time to see what else can be done to further enhance it with JavaScript. If you think
back to when you initially used the data from this table in Chapter 2, you performed some further
analysis on the data. This section describes how to perform the same analysis in JavaScript and
explains how to automatically add it to the table in the process. Listing 7-6 is the new script block:

Including Computations ❘ 117

c07.indd 11/03/2014 Page 117

LISTING 7-6

<script type="text/javascript">
 function usCurrencyToFloat(currency) {
 currency = currency.replace(/\$/g, '');
 currency = currency.replace(/,/g, '');
 return parseFloat(currency);
 }

 function floatToUSCurrency(value) {
 var numString = value.toFixed(2),
 parts = numString.split('.'),
 outParts = [],
 beforeDecimal = "0",
 afterDecimal = "00",
 currSegment;

 beforeDecimal = parts[0];
 afterDecimal = parts[1];

 while (beforeDecimal.length > 3) {
 currSegment = beforeDecimal.substring(
 beforeDecimal.length - 3,
 beforeDecimal.length);
 beforeDecimal = beforeDecimal.substring(
 0,
 beforeDecimal.length - 3);
 outParts.unshift(currSegment);
 }
 if (beforeDecimal.length > 0) {
 outParts.unshift(beforeDecimal);
 }

 return '$' + outParts.join(',') + '.' + afterDecimal;
 }

 function populateCalculatedColumn(
 tableSelector,
 toPopulateIndex,
 toPopulateHeader,
 calculation,
 parse,
 toString) {
 var columns = [],
 rows = $(tableSelector).find("tbody").find("tr"),
 headers, tableInfo = {},
 headerRow = $(tableSelector).find("thead").find("tr"),
 newColumn, header,
 footerRow = $(tableSelector).find("tfoot").find("tr");

 rows.each(function (index, row) {
 $(this).children().each(function (index, cell) {
 var currColumn;
 if ((columns.length - 1) < index) { continues

118 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 118

 columns.push([]);
 }
 currColumn = columns[index];
 currColumn.push(parse($(this).text()));
 });
 });

 tableInfo.columns = columns;

 headers = headerRow.find("th");
 headers.each(function (index, header) {
 tableInfo[$(this).text()] = columns[index];
 });

 newColumn = calculation(tableInfo);

 rows.each(function (index, row) {
 var thisRow = $(this),
 row;
 while ((thisRow.children().length - 1) < toPopulateIndex) {
 thisRow.append($("<td></td>"));
 }
 cell = thisRow.children().eq(toPopulateIndex);
 cell.text(toString(newColumn[index]));
 });

 while ((headerRow.children().length - 1) < toPopulateIndex) {
 headerRow.append($("<th scope='col'></th>"));
 }
 header = headerRow.children().eq(toPopulateIndex);
 header.text(toPopulateHeader);

 while ((footerRow.children().length - 1) < toPopulateIndex) {
 footerRow.append($("<td></td>"));
 }
 if (newColumn.length > rows.length) {
 footerRow.children.eq(toPopulateIndex).text(
 toString(newColumn[rows.length]));
 }
 }

 $(function () {
 $(document.body).on("mouseover", "td, th", function () {
 var index = $(this).index(),
 row = $(this).parent(),
 trs = $("tr"), i;

 row.children().addClass("highlight");
 for (var i = 0; i < trs.length; i++) {
 trs.eq(i)
 .children()
 .eq(index)
 .addClass("highlight");
 }
 });

LISTING 7-6 (continued)

Including Computations ❘ 119

c07.indd 11/03/2014 Page 119

 $(document.body).on("mouseout", "td, th", function () {
 var index = $(this).index(),
 row = $(this).parent(),
 trs = $("tr"), i;

 row.children().removeClass("highlight");
 for (var i = 0; i < trs.length; i++) {
 trs.eq(i)
 .children()
 .eq(index)
 .removeClass("highlight");
 }
 });

 populateCalculatedColumn(
 "table",
 2,
 "Mean",
 function (tableInfo) {
 var sum = 0, mean, newColumn = [];
 for (var i = 0; i < tableInfo.Sales.length; i++) {
 sum += tableInfo.Sales[i];
 }
 mean = sum / tableInfo.Sales.length;
 for (var i = 0; i < tableInfo.Sales.length; i++) {
 newColumn.push(mean);
 }
 return newColumn;
 },
 usCurrencyToFloat,
 floatToUSCurrency);

 populateCalculatedColumn(
 "table",
 3,
 "Difference",
 function (tableInfo) {
 var newColumn = [];
 for (var i = 0; i < tableInfo.Sales.length; i++) {
 newColumn.push(
 tableInfo.Sales[i] - tableInfo.Mean[i]
);
 }
 return newColumn;
 },
 usCurrencyToFloat,
 floatToUSCurrency);

 populateCalculatedColumn(
 "table",
 4,
 "Squared Difference",
 function (tableInfo) {
 var newColumn = []; continues

120 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 120

 for (var i = 0; i < tableInfo.Sales.length; i++) {
 newColumn.push(
 tableInfo.Difference[i] *
 tableInfo.Difference[i]
);
 }
 return newColumn;
 },
 usCurrencyToFloat,
 floatToUSCurrency);

 $("tbody").find("tr:odd").addClass("row-odd");
 $("tbody").find("td").filter(function (index) {
 return !isNaN(usCurrencyToFloat($(this).text()));
 }).addClass("cell-number");
 });
</script>

The output is shown in Figure 7-11.

You can fi nd the TableWithCalculatedColumns.html fi le on the companion website.

FIGURE 7-11: This table has dynamically calculated columns.

With the new code incorporated, you can now see two additional columns: Difference and Squared
Difference. These were calculated by the JavaScript in the preceding code, which you examine
shortly. Additionally, since the beginning of this chapter, you’ve used static values for the Mean
column, but now this column is also dynamically calculated.

Using JavaScript for Calculations
Now, it’s time to break down how the dynamically calculated columns shown in Figure 7-11 are
produced.

function usCurrencyToFloat(currency) {
 currency = currency.replace(/\$/g, '');
 currency = currency.replace(/,/g, '');

LISTING 7-6 (continued)

Including Computations ❘ 121

c07.indd 11/03/2014 Page 121

 return parseFloat(currency);
}

You might recall that this method was discussed earlier in the chapter. It’s being used here to make it
possible to manipulate the currency values in the table, and perform calculations based upon them.

function floatToUSCurrency(value) {
 var numString = value.toFixed(2),
 parts = numString.split('.'),
 outParts = [],
 beforeDecimal = "0",
 afterDecimal = "00",
 currSegment;

 beforeDecimal = parts[0];
 afterDecimal = parts[1];

 while (beforeDecimal.length > 3) {
 currSegment = beforeDecimal.substring(
 beforeDecimal.length - 3,
 beforeDecimal.length);
 beforeDecimal = beforeDecimal.substring(
 0,
 beforeDecimal.length - 3);
 outParts.unshift(currSegment);
 }
 if (beforeDecimal.length > 0) {
 outParts.unshift(beforeDecimal);
 }

 return '$' + outParts.join(',') + '.' + afterDecimal;
}

This, like the conversion from a US currency string to a fl oating point number, is a rather brute
force conversion back to a US currency string from a fl oating point number. There are more
concise ways to achieve this, but this way strives to be pretty straightforward. It basically just adds
the comma separators back into the number and then prepends the dollar sign again.

Now turn your attention to the main function that dynamically populates the columns for the table:
populateCalculatedColumn. The parameters of the function are the following:

 ➤ tableSelector is a jQuery selector that you can use to indicate which table should have the
column added.

 ➤ toPopulateIndex indicates the column index at which to add the new column in the table.

 ➤ toPopulateHeader indicates the desired text of the new header to top the column in the table.

 ➤ calculation takes a function that allows you to perform a custom calculation to determine
the content of each cell in the new table column.

 ➤ parse takes a function that converts the values in any source columns into values that can be
referenced in the calculation.

 ➤ toString takes a function that renders a fl oating point value into the fi nal text you expect to
see in the column cells.

122 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 122

Now that we’ve discussed the parameters, let’s dive into the body of the method.

var columns = [],
rows = $(tableSelector).find("tbody").find("tr"),
headers, tableInfo = {},
headerRow = $(tableSelector).find("thead").find("tr"),
newColumn, header,
footerRow = $(tableSelector).find("tfoot").find("tr");

At the top, you are defi ning some useful variables to use later in the function, including arrays to
hold information about the existing columns and headers in the table. Also, the various elements of
the table are then located using jQuery selectors. Each of the selectors, such as $(tableSelector).
find("tbody").find("tr"), fi rst fi nds the table based on the tableSelector parameter and then
fi nds various sub-elements within that table using the jQuery find function.

rows.each(function (index, row) {
 $(this).children().each(function (index, cell) {
 var currColumn;
 if ((columns.length - 1) < index) {
 columns.push([]); // need to add a new column
 }
 currColumn = columns[index];
 // add the value for this cell to its column
 currColumn.push(parse($(this).text()));
 });
});

Here, for each row, the parse function (which was passed in as a parameter) is used to collect the
value of every cell in each column into a collection of columns for you to reference when calculating
column values later.

tableInfo.columns = columns;

headers = headerRow.find("th");
headers.each(function (index, header) {
 tableInfo[$(this).text()] = columns[index];
});

In this code, the columns, with associated cell values, are stored such that they can be referenced
from the calculation function. Then, to make it easier to reference various columns from the
calculation function, it loops through the headers in the header row and stores each column via
its header name also.

newColumn = calculation(tableInfo);

rows.each(function (index, row) {
 var thisRow = $(this);
 while ((thisRow.children().length - 1) < toPopulateIndex) {
 thisRow.append($("<td></td>"));
 }
 cell = thisRow.children().eq(toPopulateIndex);
 cell.text(toString(newColumn[index]));
});

Including Computations ❘ 123

c07.indd 11/03/2014 Page 123

Next, the calculation function (which was passed in) is called on the column information that
you’ve collected, which produces a new column (an array of values) that need to be added to the
table. To add these to the table, you loop over each of the existing rows in the table and add cells to
the current row until there are enough cells to accommodate the new column value. Then the correct
cell in the current row is located and the calculated content is added as text content for the cell by
means of calling the toString function (which was passed in as a parameter).

while ((headerRow.children().length - 1) < toPopulateIndex) {
 headerRow.append($("<th scope='col'></th>"));
}
header = headerRow.children().eq(toPopulateIndex);
header.text(toPopulateHeader);

This logic should look familiar because it’s essentially the same logic that you just used to ensure
that there was a cell to hold the new column data and then to populate the cell. In this case,
however, you are ensuring that there is a header column to hold the new header value for the
dynamically calculated column and then providing the new header text (which was passed in as a
parameter) as the text of the header.

while ((footerRow.children().length - 1) < toPopulateIndex) {
 footerRow.append($("<td></td>"));
}
if (newColumn.length > rows.length) {
 footerRow.children.eq(toPopulateIndex).text(
 toString(newColumn[rows.length]));
}

Finally, this adds a new cell to the footer row, if an appropriate value was returned from the
calculation function.

Quite a lot of code, huh? Thankfully, there are plenty of libraries out there, both open source and
commercial, to accomplish these sorts of things for you. As you can see, however, it isn’t too
complicated to do it from scratch!

Populating the Table
Now it’s time to actually populate the table, so you’ll be calling the populateCalculatedColumn
function a few times. First, you can dynamically create the Mean column, which was a static part of
the table until this point:

populateCalculatedColumn(
 "table",
 2,
 "Mean",
 function (tableInfo) {
 var sum = 0, mean, newColumn = [];
 for (var i = 0; i < tableInfo.Sales.length; i++) {
 sum += tableInfo.Sales[i];
 }
 mean = sum / tableInfo.Sales.length;
 for (var i = 0; i < tableInfo.Sales.length; i++) {

124 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 124

 newColumn.push(mean);
 }
 return newColumn;
 },
 usCurrencyToFloat,
 floatToUSCurrency);

Here, you are targeting all table elements on the page (normally you’d probably use an ID or a class
name here; there is only one table on the page, in this instance). This is indicating that the new
column should be inserted at index 2 and that it should be headed with the text “Mean”. Then,
the calculation function is provided, which loops through the Sales column data and divides by the
number of entries, which, you might recall from Chapter 2, is how you calculate the mean value.
Then, this mean value is returned for every row of the new column. Finally, the functions
usCurrencyToFloat and floatToUSCurrency are provided so that values can be read out of the
existing columns or rendered into the new column being created.

Next, a column is created that holds the difference between each row’s sales value and each row’s
mean value and is inserted at index 3:

populateCalculatedColumn(
 "table",
 3,
 "Difference",
 function (tableInfo) {
 var newColumn = [];
 for (var i = 0; i < tableInfo.Sales.length; i++) {
 newColumn.push(
 tableInfo.Sales[i] - tableInfo.Mean[i]
);
 }
 return newColumn;
 },
 usCurrencyToFloat,
 floatToUSCurrency);

And fi nally the last column is inserted at column index 4 with a calculation that squares each row’s
Difference value, again, as discussed in Chapter 2:

populateCalculatedColumn(
 "table",
 4,
 "Squared Difference",
 function (tableInfo) {
 var newColumn = [];
 for (var i = 0; i < tableInfo.Sales.length; i++) {
 newColumn.push(
 tableInfo.Difference[i] *
 tableInfo.Difference[i]
);
 }
 return newColumn;
 },
 usCurrencyToFloat,
 floatToUSCurrency);

Using the DataTables Library ❘ 125

c07.indd 11/03/2014 Page 125

As a result of your jQuery wizardry, the table has three additional columns that weren’t present
when the table was delivered from the server.

NOTE Keep in mind that this sort of operation can lessen the requirement in
terms of the upfront analysis that is performed on the data before it is sent to the
client, but this sort of strategy can decrease the reach of your table. Any browser
that does not have JavaScript enabled will not be able to view these additional
columns. This includes many screen reader programs, which can deliberately
avoid running scripts. Calculated columns can be extremely useful, however, if
you want the user to be able to select extra ad hoc calculations to apply to the
data on the client.

USING THE DATATABLES LIBRARY

You just managed some pretty impressive table manipulation with only jQuery and a bit of elbow
grease to assist you, but there are also mature libraries available to do much more elaborate things
to help you visualize tabular data. In this section, you use one such library to accomplish some of
what you’ve already accomplished through other means earlier in the chapter. This time, though,
there is far less logic for you to write and maintain yourself (which can be a very important thing
when working with JavaScript!).

NOTE JavaScript is a very fl exible and fun-to-use language, but it lacks some
features that make it an easy language to use for maintaining large code bases.
If you need to maintain a lot of JavaScript code, it’s best to have a good strat-
egy laid out. One good strategy is to use static analysis tools, such as JSLint or
JSHint, to warn you of issues well before your code gets executed. Another valid
strategy is to try to minimize the JavaScript code that you have to maintain.
Using jQuery helps you a lot in this regard, but there are lots of other libraries
that can assist for other scenarios, not to mention lots of plug-ins for jQuery
that extend its abilities in various ways.

The open source library you’ll be using in this section is called DataTables (www.datatables.net/).
In the code listings and companion code for this chapter, the assumption is that you have
downloaded the DataTables plug-in to a subfolder called datatables. This is the arrangement you
will fi nd if you download the code from the companion site. As with jQuery you could alternatively
load the code from a CDN.

NOTE There are many advantages to loading JavaScript resources from a CDN,
but one of them is that if your users have already visited another site that loaded that
resource from the same URL, that resource is already cached on the users’ systems,
which saves you bandwidth and also saves the user time when loading the page.

126 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 126

Making Pretty Tables with DataTables
The fi rst thing you can try to do is to use DataTables to perform the same sort of progressive
enhancement on the static <table> element that you’ve been targeting for this whole chapter
(see Listing 7-7).

LISTING 7-7

<!DOCTYPE html>
<html>
<head>
<title>Table With DataTables</title>

<link rel="stylesheet" type="text/css"
href="datatables/media/css/jquery.dataTables_themeroller.css">
<link rel="stylesheet" type="text/css"
href="jquery-ui-1.11.1/jquery-ui.css">
<script type="text/javascript"
src="jquery/jquery-1.11.1.min.js"></script>
<script type="text/javascript"
src="jquery-ui-1.11.1/jquery-ui.min.js"></script>
<script type="text/javascript"
src="datatables/media/js/jquery.dataTables.min.js">
</script>

<script type="text/javascript">
 $(function () {
 $("#salesByRegion").dataTable({
 bJQueryUI: true
 });
 });
</script>

</head>
<body>

<table id="salesByRegion">
 <caption>Sales By Region</caption>
 <colgroup>
 <col class="col-header">
 <col class="col-amount">
 <col class="col-mean">
 </colgroup>
 <thead>
 <tr>
 <th scope="col">Region</th>
 <th scope="col">Sales</th>
 <th scope="col">Mean</th>
 </tr>
 </thead>

Using the DataTables Library ❘ 127

c07.indd 11/03/2014 Page 127

 <tfoot>
 <tr>
 <th scope="row">Sum</th>
 <td>$1,000,000</td>
 <td></td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <th scope="row">Northeast</th>
 <td>$100,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Southeast</th>
 <td>$75,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Midwest</th>
 <td>$125,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Mid-Atlantic</th>
 <td>$125,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Southwest</th>
 <td>$75,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">Northwest</th>
 <td>$100,000</td>
 <td>$142,857</td>
 </tr>
 <tr>
 <th scope="row">California</th>
 <td>$400,000</td>
 <td>$142,857</td>
 </tr>
 </tbody>

</table>

</body>
</html>

Listing 7-7 produces the output in Figure 7-12.

You can fi nd the TableUsingDataTables.html fi le on the companion website.

128 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 128

FIGURE 7-12: The table has been enhanced with the DataTables API.

So, let’s take a closer look:

$(function () {
 $("#salesByRegion").dataTable({
 bJQueryUI: true
 });
});

That’s a lot less JavaScript code, huh? So what did it achieve? You get a lot of styling, data paging,
dynamic fi ltering, alternating row highlights, sorting headers, and so on. And all you had to do to
achieve this was to target the table by ID and invoke the DataTable library on it. Very cool! Also, you still
started with an accessible table that users that don’t have the ability to run JavaScript logic can consume.

In the preceding code snippet, bJQueryUI: true is indicating that the DataTables library should
apply the appropriate classes to the various table elements such that you can style the table with
jQuery ThemeRoller themes. The DataTables API, rather curiously, uses some form of Hungarian
notation to identify the types of its options, so the lowercase B indicates that bJQueryUI is a
Boolean option. One of the CSS fi les loaded at the top of Listing 7-7 is the jQuery UI smoothness
theme. By merit of this option, you get some pretty slick styling applied to all the table elements.

NOTE Notice in Figure 7-12 that the table caption looks rather unstyled.
Unfortunately, it doesn’t seem like DataTables attempts to mesh this with the
other styled elements by default. In order to blend it in better with the other
elements, you could experiment with applying the same CSS classes to the
<caption> as are applied to other parts of the table by DataTables.

Sorting with DataTables
When running the sample from the preceding section, you’ll fi nd that, among other things, you can
click the column headers to change the sort order of the rows based on the values in that column,

Using the DataTables Library ❘ 129

c07.indd 11/03/2014 Page 129

much like you can in software such as Microsoft Excel. With some additional confi guration, you
can also specify the initial sort order of the rows, using the following code:

$(function () {
 $("#salesByRegion").dataTable({
 bJQueryUI: true,
 aaSorting: [[1, "desc"], [0, "desc"]]
 });
});

Here, the new option you are specifying is aaSorting. Again the Hungarian notation is at play here,
so aaSorting indicates the expected type is an array of arrays. [[1, "desc"], [0, "desc"]]
indicates that you fi rst want the table to be sorted by the column with index 1 descending, and then
by the column with index 0 descending. This produces the output shown in Figure 7-13.

You can fi nd the TableUsingDataTablesSorting.html fi le on the companion website.

FIGURE 7-13: DataTables has been used to provide an initial sort for an HTML table.

Something you’ll notice, however, when sorting these columns by clicking the headers, or
pre-sorting the columns, as in Figure 7-13, is that the numbers aren’t quite sorted by value, but
rather as strings. DataTables is capable of performing a numeric style sort, but you need to help it
parse the numbers from strings to fl oating points, like so:

$(function () {
 function usCurrencyToFloat(currency) {
 currency = currency.replace(/\$/g, '');
 currency = currency.replace(/,/g, '');
 return parseFloat(currency);
 }

 jQuery.fn.dataTableExt.oSort['us-currency-asc'] = function(x,y) {
 var fx = usCurrencyToFloat(x),
 fy = usCurrencyToFloat(y);

 if (fx < fy) {
 return -1;

130 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 130

 }
 if (fx > fy) {
 return 1;
 }

 return 0;
 };

 jQuery.fn.dataTableExt.oSort['us-currency-desc'] = function(x,y) {
 var fx = usCurrencyToFloat(x),
 fy = usCurrencyToFloat(y);

 if (fx < fy) {
 return 1;
 }
 if (fx > fy) {
 return -1;
 }

 return 0;
 };

 $("#salesByRegion").dataTable({
 bJQueryUI: true,
 aaSorting: [[1, "desc"], [0, "desc"]],
 aoColumns: [
 null,
 { sType: "us-currency" },
 { sType: "us-currency" }]
 });
});

Here you are defi ning how the column type us-currency will be sorted in both an ascending and
descending fashion. Then the types of the second and third columns can be changed to us-currency
causing them to be sorted based on numeric value rather than by string value (which is the default).

Using Calculated Columns with DataTables
One of the trickier things you accomplished in the previous section was to use jQuery to dynamically
add some new columns into the table. DataTables also has some facilities to enable this, but with far
less code. You can change the table initialization to read

$(function () {
 $("#salesByRegion").dataTable({
 bJQueryUI: true,
 aaSorting: [[3, "desc"], [1, "desc"]],
 aoColumnDefs: [
 {
 mRender: function (data, type, row) {
 var difference =
 usCurrencyToFloat(row[1]) - usCurrencyToFloat(row[2]);

Using the DataTables Library ❘ 131

c07.indd 11/03/2014 Page 131

 return floatToUSCurrency(difference);
 },
 aTargets: [3]
 }]
 });
 });

This adds the aoColumnDefs option (an array of objects that defi ne some new columns), specifying
that your single render function is targeting the column in the table with index 3. The render method
calculates the difference between the column at index 2 (the mean value) and the column at index 1
(the sales value) just as you did with the code from the earlier portion of this chapter. This function
also uses your two old friends: usCurrencyToFloat and floatToUSCurrency. Notice, too, that you
are leaving an empty column to render these values into:

<table id="salesByRegion">
 <caption>Sales By Region</caption>
 <colgroup>
 <col class="col-header">
 <col class="col-amount">
 <col class="col-mean">
 </colgroup>
 <thead>
 <tr>
 <th scope="col">Region</th>
 <th scope="col">Sales</th>
 <th scope="col">Mean</th>
 <th scope="col">Difference</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th scope="row">Sum</th>
 <td>$1,000,000</td>
 <td></td>
 <td></td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <th scope="row">Northeast</th>
 <td>$100,000</td>
 <td>$142,857</td>
 <td></td>
 </tr>
 <tr>
 <th scope="row">Southeast</th>
 <td>$75,000</td>
 <td>$142,857</td>
 <td></td>
 </tr>
 <tr>

132 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 132

 <th scope="row">Midwest</th>
 <td>$125,000</td>
 <td>$142,857</td>
 <td></td>
 </tr>
 <tr>
 <th scope="row">Mid-Atlantic</th>
 <td>$125,000</td>
 <td>$142,857</td>
 <td></td>
 </tr>
 <tr>
 <th scope="row">Southwest</th>
 <td>$75,000</td>
 <td>$142,857</td>
 <td></td>
 </tr>
 <tr>
 <th scope="row">Northwest</th>
 <td>$100,000</td>
 <td>$142,857</td>
 <td></td>
 </tr>
 <tr>
 <th scope="row">California</th>
 <td>$400,000</td>
 <td>$142,857</td>
 <td></td>
 </tr>
 </tbody>

</table>

You can see the result of the column generation in Figure 7-14.

You can fi nd the TableUsingDataTablesCalculated.html fi le on the companion website.

FIGURE 7-14: DataTables calculates columns at runtime.

Relating a Data Table to a Chart ❘ 133

c07.indd 11/03/2014 Page 133

RELATING A DATA TABLE TO A CHART

To wrap up this chapter, you’re going to take progressive enhancement to the extreme by taking the
same data and presenting an interactive and editable data table with a linked chart displaying the
same data. The charting component depends on HTML5 in order to do its sophisticated client-side
rendering and represents one additional enhancement that can be made to presenting the data for
supporting user agents.

For the last part of this chapter you switch to using the IgniteUI igGrid and igDataChart from
Infragistics. These components are not free, but they also reduce some very complex interactive
scenarios to simple turnkey confi guration. The purpose of this chapter is not to discuss the
confi guration of chart components, which comes later in this book, so that topic is touched upon
only lightly here. The idea, rather, is to focus on how the data tables from this chapter might be
correlated with other related visualizations bound to the same data.

First, you should sign up for the trial version of IgniteUI. You can fi nd more information about how
to do this at http://www.igniteui.com. Additionally, Chapter 14 discusses both IgniteUI and the
igDataChart in more detail. For the next code you use the IgniteUI Trial, which you have down-
loaded or is included with the download for this chapter from the companion website. Information
about loading the trial version of IgniteUI can also be found at http://www.igniteui.com.

Mashing Visualizations Together
For this example, you are loading the same data as before into both an interactive data table and
also an interactive chart. The data table is now editable, additionally, and editing the sales amount
for a row causes both the mean column in the table to be updated as well as the linked chart’s
visuals to react. Selecting a column in the chart causes the appropriate row in the data table to be
selected and vice versa.

LISTING 7-8

<!DOCTYPE html>
<html>
<head>
<title>Table Row and Column Highlights</title>
 <script type='text/javascript'
 src='jquery/jquery-1.11.1.min.js'></script>
 <script type="text/javascript"
 src="jquery-ui-1.11.1/jquery-ui.js"></script>
 <script type='text/javascript'
 src="IgniteUI/js/infragistics.core.js"></script>
 <script type='text/javascript'
 src="IgniteUI/js/infragistics.dv.js"></script>
 <link rel="stylesheet"
href="IgniteUI/css/themes/infragistics/infragistics.theme.css">
 <link rel="stylesheet"
href="IgniteUI/css/structure/modules/infragistics.ui.shared.css">
 <link rel="stylesheet"
href="IgniteUI/css/structure/modules/infragistics.ui.chart.css"> continues

134 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 134

 <script type='text/javascript'
 src="IgniteUI/js/infragistics.lob.js"></script>
 <link rel="stylesheet" type="text/css"
href="IgniteUI/css/structure/modules/infragistics.ui.grid.css">

 <style>
 #chart1
 {
 margin: 10px;
 float: left;
 }
 #legend1
 {
 margin: 10px;
 float: left;
 }
 #salesByRegion_container
 {
 clear: both;
 }
 #salesByRegion
 {
 margin: 10px;
 max-width: 500px;
 }
 </style>

<script type="text/javascript">
 var data = [{ "Region": "Northeast", "Sales": 100000,
 "Mean": 142857.14 },
 { "Region": "Southeast", "Sales": 75000, "Mean": 142857.14 },
 { "Region": "Midwest", "Sales": 125000, "Mean": 142857.14 },
 { "Region": "Mid-Atlantic", "Sales": 125000, "Mean": 142857.14 },
 { "Region": "Southwest", "Sales": 75000, "Mean": 142857.14 },
 { "Region": "Northwest", "Sales": 100000, "Mean": 142857.14 },
 { "Region": "California", "Sales": 400000, "Mean": 142857.14 }];

 var currSelectedIndex = -1;

 var rowLookup = {};
 data.map(function (item,index) {
 rowLookup[item.Region] = index;
 });

 $(function () {
 $("#chart1").igDataChart({
 width: "500px",
 height: "300px",
 dataSource: data,
 animateSeriesWhenAxisRangeChanges: true,
 axes: [{
 name: "xAxis",
 type: "categoryX",
 label: "Region",

LISTING 7-8 (continued)

Relating a Data Table to a Chart ❘ 135

c07.indd 11/03/2014 Page 135

 interval: 1,
 labelAngle: 45
 }, {
 name: "yAxis",
 type: "numericY"
 }],
 series: [{
 name: "Sales",
 type: "column",
 xAxis: "xAxis",
 yAxis: "yAxis",
 title: "Sales",
 showTooltip: true,
 valueMemberPath: "Sales",
 isTransitionInEnabled: true,
 isHighlightingEnabled: true,
 isCustomCategoryStyleAllowed: true,
 transitionDuration: 1000
 }, {
 name: "Mean",
 type: "column",
 xAxis: "xAxis",
 yAxis: "yAxis",
 title: "Mean",
 showTooltip: true,
 valueMemberPath: "Mean",
 isTransitionInEnabled: true,
 isHighlightingEnabled: true,
 isCustomCategoryStyleAllowed: true,
 transitionDuration: 1000
 }],
 legend: { element: "legend1" },
 assigningCategoryStyle: function (evt, ui) {
 if (currSelectedIndex >= ui.startIndex &&
 currSelectedIndex <= ui.endIndex) {
 ui.fill = "#FFB84D";
 }
 },
 seriesMouseLeftButtonUp: function (evt, ui) {
 var index = rowLookup[ui.item.Region];
 currSelectedIndex = index;
 updateSelectedIndex(true);
 }
 });

 var updateMeans = function () {
 var count = data.length;
 var sum = 0;
 data.map(function (item) { sum += item.Sales });
 var mean = sum / count;
 data.map(function (item) { item.Mean = mean });
 $("#salesByRegion").igGrid("dataBind");
 $("#chart1").igDataChart("notifyClearItems", data);
 };

 var updateSelectedIndex = function (fromChart) {

continues

136 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 136

 if (fromChart) {
 var rows = $("#salesByRegion").igGrid("rows");
 var key = data[currSelectedIndex].Region;
 var index = -1;
 $(rows).each(function(i, ele) {
 if ($(ele).attr("data-id") == key) {
 index = i;
 }
 });
 $('#salesByRegion').igGridSelection(
 'selectRow', index);
 }
 $("#chart1").igDataChart("notifyVisualPropertiesChanged",
 "Sales");
 $("#chart1").igDataChart("notifyVisualPropertiesChanged",
 "Mean");
 }

 $("#salesByRegion").igGrid({
 autoCommit: true,
 dataSource: data,
 autoGenerateColumns: false,
 primaryKey: "Region",
 columns: [
 { headerText: "Region",
 key: "Region",
 dataType: "string" },
 { headerText: "Sales",
 key: "Sales",
 dataType: "number",
 format: "currency" },
 { headerText: "Mean",
 key: "Mean",
 dataType: "number",
 format: "currency" }
],
 features: [
 {
 name : 'Sorting',
 type: "local"
 },
 {
 name: "Resizing"
 },
 {
 name: "ColumnMoving",
 columnMovingDialogContainment: "window"
 },
 {
 name: 'Updating',
 enableAddRow: false,
 enableDeleteRow: false,
 editRowEnded: function (evt, ui) {
 updateMeans();

LISTING 7-8 (continued)

Relating a Data Table to a Chart ❘ 137

c07.indd 11/03/2014 Page 137

 },
 columnSettings: [{
 columnKey: "Region",
 editorOptions: {readOnly: true}
 },{
 columnKey: "Mean",
 editorOptions: {readOnly: true}
 }]
 },
 {
 name: "Selection",
 mode: 'row',
 rowSelectionChanged: function (evt, ui) {
 currSelectedIndex = rowLookup[ui.row.id];
 updateSelectedIndex(false);
 }
 }
]
 });

 });

</script>

</head>
<body>

<div id="chart1"></div>
<div id="legend1"></div>
<table id="salesByRegion"></table>

</body>
</html>

Diving into Listing 7-8, fi rst you have some CSS:

<style>
 #chart1
 {
 margin: 10px;
 float: left;
 }
 #legend1
 {
 margin: 10px;
 float: left;
 }
 #salesByRegion_container
 {
 clear: both;
 }
 #salesByRegion
 {
 margin: 10px;
 max-width: 500px;
 }
</style>

138 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 138

This ensures that the chart and the legend appear next to each other, and the data table appears
beneath. Following that, you have

var data = [{ "Region": "Northeast", "Sales": 100000,
"Mean": 142857.14 },
{ "Region": "Southeast", "Sales": 75000, "Mean": 142857.14 },
{ "Region": "Midwest", "Sales": 125000, "Mean": 142857.14 },
{ "Region": "Mid-Atlantic", "Sales": 125000, "Mean": 142857.14 },
{ "Region": "Southwest", "Sales": 75000, "Mean": 142857.14 },
{ "Region": "Northwest", "Sales": 100000, "Mean": 142857.14 },
{ "Region": "California", "Sales": 400000, "Mean": 142857.14 }];

var currSelectedIndex = -1;

var rowLookup = {};
data.map(function (item,index) {
 rowLookup[item.Region] = index;
});

Here you are starting with the data in JSON format rather than from a <table> to show another
mechanism for table creation and to ease binding the data against multiple visualizations. You are
also building a hashtable to aid looking up the data indexes based on the region name.

$(function () {
 $("#chart1").igDataChart({
 width: "500px",
 height: "300px",
 dataSource: data,
 animateSeriesWhenAxisRangeChanges: true,
 axes: [{
 name: "xAxis",
 type: "categoryX",
 label: "Region",
 interval: 1,
 labelAngle: 45
 }, {
 name: "yAxis",
 type: "numericY"
 }],
 series: [{
 name: "Sales",
 type: "column",
 xAxis: "xAxis",
 yAxis: "yAxis",
 title: "Sales",
 showTooltip: true,
 valueMemberPath: "Sales",
 isTransitionInEnabled: true,
 isHighlightingEnabled: true,
 isCustomCategoryStyleAllowed: true,
 transitionDuration: 1000
 }, {
 name: "Mean",
 type: "column",
 xAxis: "xAxis",

Relating a Data Table to a Chart ❘ 139

c07.indd 11/03/2014 Page 139

 yAxis: "yAxis",
 title: "Mean",
 showTooltip: true,
 valueMemberPath: "Mean",
 isTransitionInEnabled: true,
 isHighlightingEnabled: true,
 isCustomCategoryStyleAllowed: true,
 transitionDuration: 1000
 }],
 legend: { element: "legend1" },
 assigningCategoryStyle: function (evt, ui) {
 if (currSelectedIndex >= ui.startIndex &&
 currSelectedIndex <= ui.endIndex) {
 ui.fill = "#FFB84D";
 }
 },
 seriesMouseLeftButtonUp: function (evt, ui) {
 var index = rowLookup[ui.item.Region];
 currSelectedIndex = index;
 updateSelectedIndex(true);
 }
 });

Here you are declaring an igDataChart that is bound against the preceding data. It has two column
series that are bound to the sales data and the mean data respectively. Those column series are set
to transition into view in an animated fashion, and are also set to animate subsequent data changes
that will be coming from the igGrid. The assigningCategoryStyle event has been handled in
order that the series can color the currently selected items with an orange color. Finally, the
seriesMouseLeftButtonUp event is handled so that when items in the series are clicked the selected
item in the igGrid can also be changed.

Skipping over the update methods for now, you have the declaration of the igGrid:

$("#salesByRegion").igGrid({
 autoCommit: true,
 dataSource: data,
 autoGenerateColumns: false,
 primaryKey: "Region",
 columns: [
 { headerText: "Region",
 key: "Region",
 dataType: "string" },
 { headerText: "Sales",
 key: "Sales",
 dataType: "number",
 format: "currency" },
 { headerText: "Mean",
 key: "Mean",
 dataType: "number",
 format: "currency" }
],
 features: [
 {
 name : 'Sorting',

140 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 140

 type: "local"
 },
 {
 name: "Resizing"
 },
 {
 name: "ColumnMoving",
 columnMovingDialogContainment: "window"
 },
 {
 name: 'Updating',
 enableAddRow: false,
 enableDeleteRow: false,
 editRowEnded: function (evt, ui) {
 updateMeans();
 },
 columnSettings: [{
 columnKey: "Region",
 editorOptions: {readOnly: true}
 },{
 columnKey: "Mean",
 editorOptions: {readOnly: true}
 }]
 },
 {
 name: "Selection",
 mode: 'row',
 rowSelectionChanged: function (evt, ui) {
 currSelectedIndex = rowLookup[ui.row.id];
 updateSelectedIndex(false);
 }
 }
]
});

This defi nes an igGrid against the same data as the preceding chart defi nition. It is set to
automatically commit changes because you want the chart to update its content immediately when
you fi nish editing a row in the table. autoGenerateColumns is set to false so that you can specify
the data type and formatting for each of the columns manually, and the primary key for the data
items is identifi ed as being the Region property. The primary key is important so that rows can be
discriminated from each other to support various features of the igGrid. Following that, various
features are turned on for the igGrid:

{
 name : 'Sorting',
 type: "local"
},
{
 name: "Resizing"
},
{
 name: "ColumnMoving",
 columnMovingDialogContainment: "window"
},

Relating a Data Table to a Chart ❘ 141

c07.indd 11/03/2014 Page 141

This code enables the sorting feature of the igGrid and indicates that the sorting should be performed
locally in the browser (rather than remotely). It also turns on the column resizing feature in the
igGrid, and, fi nally, it also enables the user to drag the columns to reorder them.

{
 name: 'Updating',
 enableAddRow: false,
 enableDeleteRow: false,
 editRowEnded: function (evt, ui) {
 updateMeans();
 },
 columnSettings: [{
 columnKey: "Region",
 editorOptions: {readOnly: true}
 },{
 columnKey: "Mean",
 editorOptions: {readOnly: true}
 }]
},

This turns on the updating feature for the igGrid. The ability to add and remove rows is hidden
because this is not needed for this scenario, and the Region and Mean columns are marked as being
read only. This is because the Mean column is auto-calculated based on the Sales column, and the
Region column is the primary key and should remain constant. The editRowEnded event is handled
in order to call the updateMeans method which updates the Mean column based on the new Sales
fi gures and propagates all the data to the chart.

{
 name: "Selection",
 mode: 'row',
 rowSelectionChanged: function (evt, ui) {
 currSelectedIndex = rowLookup[ui.row.id];
 updateSelectedIndex(false);
 }
}

This turns on the selection feature for the grid and ensures that entire rows are selected, rather
than just cells. The rowSelectionChanged event is handled, so that the current selected index can
be tracked and the updateSelectedIndex function is called to propagate the selection change to
the chart.

var updateMeans = function () {
 var count = data.length;
 var sum = 0;
 data.map(function (item) { sum += item.Sales });
 var mean = sum / count;
 data.map(function (item) { item.Mean = mean });
 $("#salesByRegion").igGrid("dataBind");
 $("#chart1").igDataChart("notifyClearItems", data);
};

The updateMeans function calculates the new mean value based on the updated sales data and sets
it back into the data array. It then rebinds the igGrid, and notifi es the igDataChart that all of the
items’ values have changed.

142 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 142

var updateSelectedIndex = function (fromChart) {
 if (fromChart) {
 var rows = $("#salesByRegion").igGrid("rows");
 var key = data[currSelectedIndex].Region;
 var index = -1;
 $(rows).each(function(i, ele) {
 if ($(ele).attr("data-id") == key) {
 index = i;
 }
 });
 $('#salesByRegion').igGridSelection('selectRow', index);
 }
 $("#chart1").igDataChart("notifyVisualPropertiesChanged", "Sales");
 $("#chart1").igDataChart("notifyVisualPropertiesChanged", "Mean");
}

The updateSelectedIndex function loops through the visible rows in the igGrid and fi nds the
index of the row that matches the primary key for the selected data item and asks the igGrid to
select that row. Then it notifi es the chart to invalidate the visuals of the two contained series so that
the selection change can be shown. You can see the results of this in Figure 7-15.

FIGURE 7-15: This shows the same data using two separate data visualizations.

Relating a Data Table to a Chart ❘ 143

c07.indd 11/03/2014 Page 143

Pretty cool, huh? Notice that when you click the columns in the top chart, it selects the
appropriate rows in the data table below. Correspondingly, when you select rows in the bottom
data table it highlights the appropriate columns in the upper chart. When you click again on the
selected row it enters edit mode and you are able to change the sales value for that region. When
you select done, or press enter, not only do the values in the mean column update, but the columns
in the upper chart also animate to the corresponding new positions. You can see the edit mode
experience in Figure 7-16.

FIGURE 7-16: This shows the edit mode experience in the igGrid and the corresponding highlighted col-
umn in the igDataChart.

Finally, see how you can click the columns to change the sort order of the data rows in the table,
and that you can drag the columns to reorder them. Pretty complex behavior for not a lot of
code, huh?

The igGrid component has many other interesting features, such as the ability to fi lter the displayed
data on the fl y, or to maintain good performance even with large amounts of data loaded. You can
fi nd more information about its available features at http://igniteui.com/grid/overview.

http://igniteui.com/grid/overview

144 ❘ CHAPTER 7 EXAMINING AND SORTING DATA TABLES

c07.indd 11/03/2014 Page 144

SUMMARY

 Data tables provide an important data visualization technique. They can provide data in a very
concise format and, with the correct design decisions, can be accessible to a very wide audience.
In this chapter you learned how to

 ➤ Format a basic table using HTML

 ➤ Enhance the semantic content with markup to aid accessibility and styling

 ➤ Make a table more accessible to screen readers

 ➤ Caption a table to provide context for the data

 ➤ Style a table with CSS

 ➤ Style a table with JavaScript

 ➤ Create alternating row highlights for a table using CSS and JavaScript

 ➤ Highlight the hovered row or column in a table

 ➤ Generate calculated columns with JavaScript

 ➤ Use the DataTables library to enhance an HTML table

 ➤ Use the DataTables library to sort columns

 ➤ Use the DataTables library to generate calculated columns

 ➤ Use IgniteUI igGrid and igDataChart to present multiple linked, interactive views of the
same data.

c08.indd 11/03/2014 Page 145

Statistical Analysis on the
Client Side

WHAT’S IN THIS CHAPTER

 ➤ Basic statistics concepts

 ➤ Statistical analysis with the jStat library

 ➤ Charting probability distributions with Flot

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/javascriptandjqueryanalysis on the Download Code
tab. The code is in the chapter 08 download and individually named according
to the names throughout the chapter.

This chapter introduces jStat, a client-side statistical analysis library. With jStat, you learn
how to compute basic values, such as the mean and standard deviation, and then how to lever-
age these values to create probability distributions. This chapter explores some rudimentary
statistics but focuses mostly on how to use these tools.

This chapter also introduces the jQuery charting plug-in Flot, which is designed for plotting
coordinate data. With Flot, you interface with jStat’s probability distributions to render statis-
tical charts like the normal curve.

By the end of this chapter, you’ll have a handy toolkit for not only statistical analysis but also
for rendering that data on the client side.

8

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

146 ❘ CHAPTER 8 STATISTICAL ANALYSIS ON THE CLIENT SIDE

c08.indd 11/03/2014 Page 146

STATISTICAL ANALYSIS WITH JSTAT

jStat is a statistical analysis library that you can use on the client side. It isn’t as robust as server-side
statistics tools such as MATLAB or R, but it does provide similar features. With jStat, you can cal-
culate everything from basic means and standard deviations to more complex probability distribu-
tions, such as the normal curve shown in Figure 8-1.

You can download and contribute to the jStat project on Github: http://jstat.github.io/.

FIGURE 8-1: The normal curve is a useful probability distribution.

Getting Started with jStat
jStat primarily works with vectors and matrices. Vectors are arrays of values—for example,
[1,2,3,4]—whereas matrices are tables of values—such as [[1,2],[3,4],[5,6]]. For example,
one student’s test scores could be expressed as a vector, and the whole class’s test scores could be
expressed as a matrix.

To get started, fi rst defi ne a vector:

var myVector = [3, 6, 1, 9, 7, 5, 3, 2, 2, 1];

You can then use jStat to calculate the sum:

jStat(myVector).sum();
// returns 39

Statistical Analysis with jStat ❘ 147

c08.indd 11/03/2014 Page 147

or the mean and standard deviation:

jStat(myVector).mean();
// returns 3.9

jStat(myVector).stdev();
// returns 2.5865034312755126

NOTE The mean is the average of the values. For example, the mean of [1,2]
is 1.5.

The standard deviation indicates the amount of fl uctuation in a data set. For
instance, the vectors [4,5,6] and [0,5,10] both have a mean of 5, but the
latter has a much higher standard deviation.

You can also perform similar operations across matrices. For example:

var myMatrix = [[2, 5, 8], [6, 1, 4]];

jStat(myMatrix).sum();
// returns [8, 6, 12]

Here, jStat calculates the values using each column in the matrix, for example, the sum of the fi rst
values, second values, and third values: [(2+6), (5+1), (8+4)] => [8, 6, 12].

Likewise, you can calculate the mean:

jStat(myMatrix).mean();
// returns [4, 3, 6]

or the min and the max:

jStat(myMatrix).min();
// returns [2, 1, 4]

jStat(myMatrix).max();
// returns [6, 5, 8]

You can fi nd this example in the Chapter 08 folder on the companion website. It’s named jstat-
basics.html.

Stat 101
Although jStat handles a variety of tasks, its primary purpose is statistical analysis. To this end, the
library provides a number of tools for computing probability distributions such as beta, gamma,
normal, log-normal, and chi-square.

This chapter doesn’t talk too much about statistics, but it is useful if you understand simple concepts
such as normal distribution, PDF, and CDF.

148 ❘ CHAPTER 8 STATISTICAL ANALYSIS ON THE CLIENT SIDE

c08.indd 11/03/2014 Page 148

Normal Distribution Basics
Assuming that the values in your vector are normally distributed (for example, randomly fl uctuating
around a center point), a normal distribution becomes a useful way to model the system and predict
various outcomes. With this particular type of distribution there tend to be a large number of values
surrounding the center point, and fewer values as you move further away. Thus the normal distribu-
tion produces the classic bell curve shown in Figure 8-2.

FIGURE 8-2: A normal distribution has the classic bell curve.

This distribution helps predict the likelihood of a given value in the system, which is why the y-val-
ues around the center point are higher than those further away. These y-values represent the PDF, or
“probability density function,” you saw earlier.

It can also be useful to assess the CDF or “cumulative distribution function.” Unlike the PDF, which
represents the probability of just a single value, the CDF represents the probability of all values up to
that value. When thinking graphically, the CDF is the area underneath the PDF curve, as shown in
Figure 8-3.

FIGURE 8-3: The shaded area is the CDF of a normal distribution up to point z.

Normal Distributions in Real Life
Normal distributions are all around us; one common example is human heights. The average height
of adult males in the United States is 176.3 cm, with a standard deviation of around 7 cm. If you
plug these values into jStat, you can get the PDF and CDF for a given height:

jStat.normal(176.3, 7).pdf(178);
// returns 0.05533561870891004

jStat.normal(176.3, 7).cdf(178);
// returns 0.5959419666157191

Rendering Probability Distributions with Flot ❘ 149

c08.indd 11/03/2014 Page 149

Here, jStat.normal() accepts two arguments—the mean and standard deviation. That creates a
normal distribution, which is then used to calculate the pdf() and cdf() for a given value: 178 cm.

Thus, if you’re a man from the United States, there’s a 5.5 percent probability that you’re 178 cm
tall (PDF), and a 59.6 percent probability that you’re 178 cm tall or shorter (CDF). Of course, if you
are from the United States, there’s also a pretty high probability that you don’t know what 178 cm
means—it’s about 5'10".

RENDERING PROBABILITY DISTRIBUTIONS WITH FLOT

Although computing discrete probabilities for different values is useful, there are also times that you
want to render the entire probability distribution graphically. Fortunately, jStat has all the function-
ality you need to massage the data and export it to a charting tool such as Flot.

Getting Started with Flot
Flot is a simple jQuery charting solution that is particularly good at plotting lines from coordinates.
After you’ve downloaded the plug-in from http://www.flotcharts.org/, you need to defi ne a
wrapper with dimensions in your document:

<div id="flot" style="width: 500px; height: 300px"></div>

Next, pass a reference to this wrapper, along with a set of coordinates, into Flot’s plot() applica-
tion programming interface (API):

$('#flot').plot([[[0,0], [1,2], [2,6], [3,5], [4,0]]]);

Here, the plot() API renders the line graph shown in Figure 8-4.

FIGURE 8-4: This basic line graph was rendered in Flot.

150 ❘ CHAPTER 8 STATISTICAL ANALYSIS ON THE CLIENT SIDE

c08.indd 11/03/2014 Page 150

You may have noticed that the array of coordinates is itself contained in an array. That allows you
to render multiple lines, as shown in Figure 8-5:

$('#flot').plot([
 [[0,0], [1,2], [2,6], [3,5], [4,0]],
 [[0,7], [1,6], [2,1], [3,2], [4,6]]
]);

FIGURE 8-5: Flot renders multiple lines with ease.

There are a number of options you can set for Flot. For instance, you can render the bar chart as
shown in Figure 8-6:

$('#flot').plot([[[0,7], [1,6], [2,1], [3,2], [4,6]]], {
 lines: { show: false },
 bars: { show: true }
 });

FIGURE 8-6: You can render a bar chart in Flot.

Rendering Probability Distributions with Flot ❘ 151

c08.indd 11/03/2014 Page 151

Or you can render a point chart, changing the colors of the dots, as shown in Figure 8-7:

$('#flot').plot([[[0,7], [1,6], [2,1], [3,2], [4,6]]], {
 lines: { show: false },
 points: { show: true },
 colors: ['#F0F']
});

FIGURE 8-7: This point chart was rendered in Flot.

You can fi nd this example in the Chapter 08 folder on the companion website. It’s named flot-
basics.html.

Rendering the Normal Curve
Now that you understand the Flot basics, you can get started with rendering probability distribu-
tions. Take another look at the normal distribution for adult male heights in the United States:

var myNormal = jStat.normal(176.3, 7);

Here, jStat creates a normal distribution based on a mean of 176.3 cm and a standard deviation of
7 cm. You already know how to compute a given PDF and CDF using myNormal.pdf() and myNor-
mal.cdf(). The next step is to create a sequence of these values that can be rendered as a chart.
Luckily, jStat has a utility method for this exact purpose—the seq() API:

var normalPdf = jStat.seq(160, 192, 100, function(x) {
 // return as coordinates
 return [x, myNormal.pdf(x)];
});

As you can see, seq() accepts a few arguments:

 ➤ 160 is the bottom bound for the sequence.

 ➤ 192 is the top bound.

 ➤ 100 is the number of values between 160 and 192.

152 ❘ CHAPTER 8 STATISTICAL ANALYSIS ON THE CLIENT SIDE

c08.indd 11/03/2014 Page 152

Lastly, the callback massages the data into the format you want to use for the sequence. In this case,
a set of coordinates establishes the normal value for each point in the sequence. For instance, the
start of this particular sequence is

[
 [160, 0.00378779534905057],
 [160.32323232323233, 0.004213283430410283],
 [160.64646464646464, 0.004676584972725774]
 ...
]

Now that you’ve created a sequence, the only thing left is passing those coordinates to Flot:

$('#flot').plot([normalPdf]);

As you can see in Figure 8-8, this code renders the familiar normal curve.

FIGURE 8-8: This normal distribution of heights was rendered with Flot.

Similarly, you can also render a visualization of the CDF for this distribution:

// create a coordinate sequence for CDF
var normalCdf = jStat.seq(160, 192, 100, function(x) {
 return [x, myNormal.cdf(x)];
});

// render it
$('#flot').plot([normalCdf]);

That renders the CDF chart in Figure 8-9.

You can fi nd this example in the Chapter 08 folder on the companion website. It’s named jstat-
and-flot.html.

Summary ❘ 153

c08.indd 11/03/2014 Page 153

The normal distribution is only the tip of the iceberg when it comes to jStat. The library provides a
variety of additional analysis tools and probability distributions. To learn more, visit the jStat docu-
mentation at http://jstat.github.io/.

FIGURE 8-9: Flot has been used to render the CDF of the normal distribution.

NOTE As an exercise, try using Flot to render another probability distribution,
such as a beta distribution.

SUMMARY

 In this chapter, you discovered the client-side statistics library jStat. You fi rst fi gured out how to
compute basic values such as mean and standard deviation. Next, you learned about normal distri-
butions and how both the probability density function (PDF) and cumulative distribution function
(CDF) relate to the normal curve.

You then explored Flot, the jQuery charting plug-in that builds visualizations from coordinate data.
After learning the basics of line, bar, and point charts, you combined Flot with jStat to render the
normal curve as well as its CDF.

This chapter is the last that covers data acquisition and manipulation. In the coming chapters, you
leverage these data skills to build highly interactive charts. Now that you have a fi rm foundation
in data structures, it’s time to dig in and discover fun charting tools you can use to impress your
audience.

c09.indd 11/03/2014 Page 155

 PART III
Visualizing Data
Programmatically

 ▸ CHAPTER 9: Exploring Charting Tools

 ▸ CHAPTER 10: Building Custom Charts with Raphaël

 ▸ CHAPTER 11: Introducing D3

 ▸ CHAPTER 12: Incorporating Symbols

 ▸ CHAPTER 13: Mapping Global, Regional, and Local Data

 ▸ CHAPTER 14: Charting Time Series with IgniteUI igDataChart

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

c09.indd 11/03/2014 Page 157

Exploring Charting Tools
WHAT’S IN THIS CHAPTER

 ➤ Building a chart using the HTML5 canvas element from the ground up

 ➤ Learning the basics of linear interpolation and how it relates to practically everything
in charting

 ➤ Using key frame animation and easing functions to create pleasing transitions in a chart

 ➤ Using the Google Charts API to make everything easier

 ➤ Displaying bar, line, and pie visualizations using the Google Charts API.

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/javascriptandjqueryanalysis on the Download Code
tab. The code is in the chapter 09 download and individually named according
to the names throughout the chapter.

Chapter 3, “Building a Visualization Foundation,” covers the breadth of charting visualizations,
which can be used to tell the desired story with your data. This chapter takes a deep dive into
how to actually implement these visualizations.

Building charting visualizations can be a daunting task, even with high-quality charting tools
making things as simple as possible. This is because charting application programming interfaces
(APIs) need to be quite complex in order to grant you the fl exibility to achieve all the scenarios
that might be important to you. As with anything complicated, the best strategy for understanding
something is to break things down, understand all the smaller moving parts, and then put things
together again.

9

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

158 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 158

To facilitate this, you start this chapter by building a chart from scratch! Don’t worry—it’s not quite
as scary as it sounds. You will be jumping into the deep end of the pool, but you’ll come out a strong
swimmer. The custom chart you are building doesn’t do everything that a full charting API can
accomplish (it would take a full book to lead you through doing that!), but it helps to show how all
the parts of a chart interact with each other.

Beyond that, you are building some interesting animation features into your chart that even some
fully functional charting APIs don’t support, and you are learning how to do some very interesting
things with the HTML5 Canvas at the same time.

Later in the chapter, you implement similar scenarios using the Google Charts API, which is a
high-level and polished API for creating charting visualizations. You will fi nd that all the scenarios
that this chapter investigates take considerably less code and are easier to quickly understand when
using the Google Charts API, so if you are looking for “easy mode” you could skip directly to that
section of the chapter. However, you might also notice that the Google Chart’s versions are less
dynamic and don’t help you to understand some of the underlying concepts in play.

CREATING HTML5 CANVAS CHARTS

This chapter focuses on the most-used core charting scenarios, including bar, column, line, area,
and pie. These visualizations are, far and away, the most used types. First, let’s build a basic column
chart from scratch! Following that, you can successively layer on features such as axes, animation,
and data changes. To render your chart, you use the HTML5 canvas element.

HTML5 Canvas Basics
There is a primer on the HTML5 canvas in the section “Making Use of the HTML5 Canvas” in
Chapter 3 of this book. It may be helpful to you to read that section before reading this chapter.

The canvas is a new feature that was added to the HTML standard in HTML5. It provides a basic
2D rendering API, which you can use from JavaScript, for rendering vector graphics and text into a
bitmap and displaying that within an HTML page. Prior to the advent of the canvas, it was not so
easy to achieve this style of dynamic rendering. Your options were to

 ➤ Use a plug-in to render the content such as Java, Flash, Silverlight, Scalable Vector Graphics
(SVG) (for browsers that did not support it natively), and so on

 ➤ Render the content as an image on the server and serve as a static fi le

 ➤ Try to “fake” the required graphics using Document Object Model (DOM) elements and
Cascading Style Sheets (CSS)

Given the prevalence of Flash on desktop machines, that option has been rather popular for charting
in the browser. However, given the rejection of the plug-in model from the mobile web, it is no longer a
viable option for a website that is designed for extremely broad consumption. Static images are
undesirable because they lack any client-side dynamic nature and increase the burden on the server if
they need to be generated on demand. Lastly, trying to fake charting graphics using DOM and CSS
would be broadly accessible, but is needlessly complicated and rife with limitations to be circumvented.

Creating HTML5 Canvas Charts ❘ 159

c09.indd 11/03/2014 Page 159

Luckily, all modern browser versions support both the HTML5 canvas element and the SVG element.
Without these, it would be very diffi cult to create dynamic charting visualizations in browsers while
eschewing plug-ins. SVG is discussed in detail in Chapters 10 and 11 whereas the fi rst part of this
chapter focuses on the canvas element.

Why would you want to use canvas in preference to SVG? Why would you want to use SVG in
preference to canvas? The answer is somewhat complicated, but it boils down to “it depends,” or
“use a bit of both.” SVGs strengths are the following:

 ➤ It is scalable without losing fi delity. (The S in SVG stands for scalable, after all.) This is especially
important for the modern web as device screens have increasingly high dots per inch (DPI)
metrics. Scalable graphics can, usually, automagically take advantage of a higher DPI screen.

 ➤ Because SVG is DOM based, you can inspect its layout at runtime in a DOM inspector.

 ➤ You can apply styling with CSS.

 ➤ You can attach event handlers to graphical elements.

 ➤ Most vector graphics editors export to static SVG fi les.

 ➤ It performs better than canvas when the size of the element is large.

 ➤ Interacting with it is declarative. You are interested in defi ning the outcome, not the low-level
means by which it is achieved.

Meanwhile, the strengths of the canvas element are these:

 ➤ It performs better than SVG when there are lots of graphical elements that need to be rendered
or when rendering is progressive/additive.

 ➤ It is very lightweight in that it does not have required memory and processing overhead
associated with each graphical element.

 ➤ It allows for per-pixel manipulation of the output, allowing for scenarios that would not be
practical using the graphics primitives provided to you via SVG.

 ➤ The API surface is small compared to SVG. It is easy to learn and has implementations with
very consistent performance and behavioral semantics across different browser environments.

 ➤ Interacting with it is very explicit and imperative. You are interested in taking control of the
outcome, and the means by which is it is achieved.

Linear Interpolation
Before you dive into writing a chart from scratch, it helps if you’re familiar with the style of calculation
that you will fi nd all throughout charting (and graphics programming in general). So pervasive is it that
many graphics systems provide built-in and optimized functions to perform it (usually named lerp).
That calculation is called linear interpolation. The basic idea of linear interpolation is to connect a line
between two points. Let’s say you want to connect a line between points x0, y0 and x1, y1. You can
vary the value of x between x0 and x1, and calculate the corresponding y value as

y = y0 + (y1 - y0) * (x - x0) / (x1 - x2)

160 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 160

A useful way to think of (x - x0) / (x1 - x2) is that it resolves to a value between 0 and 1
depending on how far x is between x0 and x1. It acts as a weighting that you can multiply by the y
range (y1 - y0) so that when the weighting is 0 then y = y0 and by the time the weighting is
1 then y = y1. Linear interpolations are useful for connecting points with line segments, but that’s
not all you use them for. They are also very useful for blending. If you want a linear animated blend
between two values based on a time value that varies between 0 and 1, you can express it with the
following equation, where p is the time value, start is the start value to blend from, and end is
the end value to blend to:

v = start + p * (end - start)

How does this relate to the fi rst linear interpolation equation? Well, imagine that the x axis
represents time, and the y values represent the in-between values of the blend. The x movement can
be simplifi ed to be a parameter p that varies from 0 to 1, as you saw before. These equations are all
over this chapter, so it’s good to start with a solid grounding in them.

A Simple Column Chart
Column and bar charts let you compare values of discrete categories using either the width or height
of a set of rectangles. Figure 9-1 shows a bar chart rendered using the Google Charts API, and
Figure 9-2 shows a bar chart using the Google Charts API, for example.

FIGURE 9-1: A column chart rendered with the Google Charts API helps compare values
between categories.

Listing 9-1 fi rst shows you how to create a simple column visualization from scratch using the
HTML5 canvas.

Creating HTML5 Canvas Charts ❘ 161

c09.indd 11/03/2014 Page 161

FIGURE 9-2: A bar chart rendered with the Google Charts API displays the same information as the column
chart but is oriented differently.

LISTING 9-1

var data = [
 { "name": "Shoes", "Q1": 40, "Q2": 25 },
 { "name": "Hats", "Q1": 50, "Q2": 40 },
 { "name": "Coats", "Q1": 35, "Q2": 45 },
 { "name": "Scarves", "Q1": 20, "Q2": 15 }
];

var palette = [
 "rgba(143, 39, 26, 1)",
 "rgba(13, 113, 125, 1)",
 "rgba(72, 176, 19, 1)"
];

var ChartElement = function (chart) {
 this._chart = chart;
 this._color = "rgba(80, 80, 80, 1)";
};
ChartElement.prototype._validate = function () {
 if (this._chart._data === null ||
 isNaN(this._chart._minValue) ||
 isNaN(this._chart._maxValue)) {
 return false;
 }
 return true;
};

continues

162 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 162

ChartElement.prototype._update = function () {
 this._chart.update();
}
ChartElement.prototype.color = function (col) {
 this._color = col;
 this._update();
 return this;
};
ChartElement.prototype.chart = function () {
 return this._chart;
};

var ColumnSeries = function (chart) {
 ChartElement.call(this, chart);
 this._valueAccessor = null;
 this._color = "rgba(255, 0, 0, 1)";
};
ColumnSeries.prototype = Object.create(ChartElement.prototype);
ColumnSeries.prototype._validate = function () {
 if (this._valueAccessor === null) {
 return false;
 }
 return ChartElement.prototype._validate.call(this);
};
ColumnSeries.prototype._render = function (ctx) {
 if (!this._validate()) {
 return;
 }

 var currWidth, currHeight,
 currX, currY,
 currColor, i;

 var data = this._chart._data;
 var f = {};
 f.xPositions = [];
 f.yPositions = [];
 f.widths = [];
 f.heights = [];
 currColor = this._color;

 var index = this._index;
 var width = this._chart.seriesWidth();
 var halfWidth = width / 2.0;
 var offset = this._chart.offset(index);
 var zeroPosition = this._chart.scaleY(0);
 var val, scaledX, scaledY;

 for (i = 0; i < data.length; i++) {
 val = this._valueAccessor(data[i]);
 scaledY = this._chart.scaleY(val);
 scaledX = this._chart.scaleX(i);

 f.xPositions.push(scaledX + offset - halfWidth);

LISTING 9-1 (continued)

Creating HTML5 Canvas Charts ❘ 163

c09.indd 11/03/2014 Page 163

 f.yPositions.push(Math.min(scaledY, zeroPosition));
 f.widths.push(width);
 f.heights.push(Math.abs(scaledY - zeroPosition));
 }

 for (var i = 0; i < f.widths.length; i++) {
 currX = f.xPositions[i];
 currY = f.yPositions[i];
 currWidth = f.widths[i];
 currHeight = f.heights[i];

 ctx.fillStyle = currColor;
 ctx.fillRect(
 currX, currY,
 currWidth, currHeight);
 }
};
ColumnSeries.prototype.valueAccessor = function (accessor) {
 this._valueAccessor = accessor;
 this._update();
 return this;
};

var Chart = function (targetId) {
 this._canvas = document.getElementById(targetId);
 this._ctx = this._canvas.getContext("2d");
 this._ctx.font = "14pt Verdana";

 this._data = null;

 this._totalWidth = this._canvas.width;
 this._totalHeight = this._canvas.height;
 this._leftMargin = 50;
 this._rightMargin = 50;
 this._topMargin = 50;
 this._bottomMargin = 50;

 this._minValue = NaN;
 this._maxValue = NaN;

 this._series = [];

 this._gap = 0.25;

 this._calculatePlotArea();
};
Chart.prototype.column = function () {
 var c = new ColumnSeries(this);
 this._series.push(c);
 c._index = this._series.length - 1;
 this.update();
 return c;
};
Chart.prototype.minValue = function (val) {
 this._minValue = val;
 this.update();

continues

164 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 164

 return this;
};
Chart.prototype.maxValue = function (val) {
 this._maxValue = val;
 this.update();
 return this;
};
Chart.prototype._calculatePlotArea = function () {
 var left = this._leftMargin;
 var top = this._topMargin;
 var width = this._totalWidth -
 (this._leftMargin + this._rightMargin);
 var height = this._totalHeight -
 (this._topMargin + this._bottomMargin);

 this._plotLeft = left;
 this._plotTop = top;
 this._plotWidth = width;
 this._plotHeight = height;
};
Chart.prototype._render = function () {
 var ctx = this._ctx;
 ctx.clearRect(0, 0, this._totalWidth, this._totalHeight);
 ctx.fillStyle = "rgba(240,240,240,1)";
 ctx.fillRect(0, 0, this._totalWidth, this._totalHeight);

 for (var i = 0; i < this._series.length; i++) {
 this._series[i]._render(ctx);
 }
};
Chart.prototype.update = function () {
 this._render();
 return this;
};
Chart.prototype.data = function (data) {
 this._data = data;
 this.update();
 return this;
};
Chart.prototype.scaleY = function (val) {
 var p = (val - this._minValue) /
 (this._maxValue - this._minValue);
 p = 1.0 - p;
 return this._plotTop + p * this._plotHeight;
};
Chart.prototype.offset = function (seriesIndex) {
 var fullWidth = this._plotWidth / this._data.length;
 var start = this._gap / 2.0 * fullWidth;
 var span = seriesIndex * this.seriesWidth();
 span += this.seriesWidth() / 2.0;
 var offset = start + span;
 return offset;
};
Chart.prototype.scaleX = function (val) {
 var p = val / this._data.length;

LISTING 9-1 (continued)

Creating HTML5 Canvas Charts ❘ 165

c09.indd 11/03/2014 Page 165

 return this._plotLeft + p * this._plotWidth;
};
Chart.prototype.seriesWidth = function () {
 var fullWidth = this._plotWidth / this._data.length;
 var actualWidth = fullWidth * (1.0 - this._gap);
 actualWidth /= this._series.length;
 return actualWidth;
};

var chart = new Chart("chart")
 .minValue(0)
 .maxValue(60)
 .data(data);

chart.column()
 .color(palette[0])
 .valueAccessor(function (item) {
 return item.Q1;
 });

chart.column()
 .color(palette[1])
 .valueAccessor(function (item) {
 return item.Q2;
 });

That puts all the JavaScript in place in order to display the visualization. To render that in a web
page, though, you need the other bits and pieces. Here is the CSS to use:

#chart {
 width: 700px;
 height: 500px;
}

And this is the HTML to use:

<!DOCTYPE html>
<html>
<head>
 <title>Basic Canvas Chart</title>

 <link rel="stylesheet" href="BasicCanvasChart.css">
</head>
<body>
 <canvas id="chart"
 width="700"
 height="500">
 </canvas>

 <script type="text/javascript" src="BasicCanvasChart.js">
 </script>
</body>
</html>

Most of the canvas code in this chapter uses this exact HTML, only with a different CSS and
JavaScript reference, so the markup/styling snippets aren’t listed for each example. The full fi les

166 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 166

are available on the companion website for this book. Listing 9-1 produces the results displayed in
Figure 9-3, and the code is in the fi le BasicCanvasChart.js/html/css on the companion website.

FIGURE 9-3: This shows a column chart built from scratch using the HTML5 canvas.

Okay, let’s break down all the components of Listing 9-1 before making things more complicated.
The code starts with this:

var data = [
 { "name": "Shoes", "Q1": 40, "Q2": 25 },
 { "name": "Hats", "Q1": 50, "Q2": 40 },
 { "name": "Coats", "Q1": 35, "Q2": 45 },
 { "name": "Scarves", "Q1": 20, "Q2": 15 }
];

This code just defi nes the data that is used in the column chart. It contains four categories—Shoes,
Hats, Coats, and Scarves—and it contains two values for each of those categories: Q1 and Q2.
The goal is to map each of those sets of values to a different column series plotted over the same
categories.

A column chart plots data against a continuous numeric axis and a discrete category axis, as
opposed to some other chart types—such as scatter charts—that plot the data against two
continuous numeric axes.

var palette = [
 "rgba(143, 39, 26, 1)",
 "rgba(13, 113, 125, 1)",
 "rgba(72, 176, 19, 1)"
];

This code defi nes a palette to be used to defi ne the colors for the various series added to the chart.
The HTML5 canvas supports CSS color strings, so an array of them will suffi ce to act as a palette.

var ChartElement = function (chart) {
 this._chart = chart;

Creating HTML5 Canvas Charts ❘ 167

c09.indd 11/03/2014 Page 167

 this._color = "rgba(80, 80, 80, 1)";
};
ChartElement.prototype._validate = function () {
 if (this._chart._data === null ||
 isNaN(this._chart._minValue) ||
 isNaN(this._chart._maxValue)) {
 return false;
 }
 return true;
};
ChartElement.prototype._update = function () {
 this._chart.update();
}
ChartElement.prototype.color = function (col) {
 this._color = col;
 this._update();
 return this;
};
ChartElement.prototype.chart = function () {
 return this._chart;
};

NOTE The code in this chapter uses JavaScript classical inheritance techniques.
The domain concepts in charting are naturally hierarchical, so they lend
themselves to representation using inheritance for code reuse.

The preceding code defi nes a base class for all of the various elements in the chart. The various
series and axis types will inherit from this class. Currently, this supports the ability to store the
desired color for the series, holds a reference to the containing chart, and can be asked to validate or
update its visual output.

NOTE Here, I’m using the convention that a property on an object with a
preceding underscore character in the name is held to not be part of the public
interface of the class. This clues in consumers of the API as to which portions
they can safely interact with and which they can’t.

A chart series is an element of a chart that is bound to a particular data set. Most charting APIs use
the terminology series to speak of this element. Figure 9-4 shows a screenshot of the chart with the
plot area (which contains two column series) emphasized with a dark background.

var ColumnSeries = function (chart) {
 ChartElement.call(this, chart);
 this._valueAccessor = null;
 this._color = "rgba(255, 0, 0, 1)";
};
ColumnSeries.prototype = Object.create(ChartElement.prototype);

168 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 168

FIGURE 9-4: Here, the plot area portion of the chart is emphasized with a dark background to delineate it
from the rest of the chart.

This code defi nes a constructor for the ColumnSeries class and causes it to inherit from the
ChartElement class. The constructor calls the base constructor, initializes the value of the _
valueAccessor property to null, and assigns a default color to the series (red).
The _valueAccessor expects to be provided a function that can be used to extract values for
the series from each data item.

ColumnSeries.prototype._validate = function () {
 if (this._valueAccessor === null) {
 return false;
 }
 return ChartElement.prototype._validate.call(this);
};

Next, the _validate function is defi ned for the ColumnSeries. This should return true when the
series has everything that it needs to render. The series must have a _valueAccessor so that it
can extract the values that it needs from the data items. Other validation is provided by the base
implementation of this function on the ChartElement class.

ColumnSeries.prototype._render = function (ctx) {
 if (!this._validate()) {
 return;
 }

 var currWidth, currHeight,
 currX, currY,
 currColor, i;

 var data = this._chart._data;
 var f = {};
 f.xPositions = [];
 f.yPositions = [];

Creating HTML5 Canvas Charts ❘ 169

c09.indd 11/03/2014 Page 169

 f.widths = [];
 f.heights = [];

This code begins to defi ne the _render function for the ColumnSeries class. If the series is not
currently valid, it will abort. Some useful variables are defi ned, it fetches the data from the chart
and then creates an object called f (this stands for frame, as you will see later) that will hold the
calculated values for rendering the columns into the canvas.

currColor = this._color;

var index = this._index;
var width = this._chart.seriesWidth();
var halfWidth = width / 2.0;
var offset = this._chart.offset(index);

Here, you gather the CSS color string which will be used to fi ll the columns. Following that, the
current index of the series within the chart is acquired. This is populated by the chart when
the series is created. this._chart.seriesWidth() asks the chart how wide the current series
should be. The chart should be able to examine how many series are present to partition the plot
space accordingly. The chart is also queried for how much to offset the current series within the
grouping of series. Refer to Figure 9-3 to see how each category has a distinct cluster of columns
centered around it. The offset indicates how far from the start of that category the center of this
series’ column should be placed. The chart object knows the total number of series present, so the
chart will decide this for you.

To see what is meant by the offset, fi rst examine Figure 9-5, which has a black line at the start of
each category along the x axis.

FIGURE 9-5: Some guidelines indicate where the categories on the x axis begin.

Now examine Figure 9-6 to see black lines through the center of all the columns in the fi rst column
series contained in the chart. The distance between these black lines and the starts of the categories
should all be the same, and they are equal to the offset queried from the chart.

170 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 170

FIGURE 9-6: The guidelines on this chart indicate where the center of each item is for the fi rst series.

var zeroPosition = this._chart.scaleY(0);
var val, scaledX, scaledY;

This code asks the chart to scale the number 0 into the y-coordinate space of the plot area.
Generally, when rendering a column series, the columns move up from 0 if their values are positive
and descend down from 0 if their values are negative. Thus, it’s important to know the y-coordinate
position in the plot area that represents the 0 line of the axis. Following this, some variables are
defi ned to store the current data value, and the x-y coordinates of the top middle of the current
column (or bottom middle if its value is negative).

for (i = 0; i < data.length; i++) {
 val = this._valueAccessor(data[i]);
 scaledY = this._chart.scaleY(val);
 scaledX = this._chart.scaleX(i);

 f.xPositions.push(scaledX + offset - halfWidth);
 f.yPositions.push(Math.min(scaledY, zeroPosition));
 f.widths.push(width);
 f.heights.push(Math.abs(scaledY - zeroPosition));
}

This loop calculates the positions and width and heights of the columns. First it calls the
_valueAccessor on the current data item. Then it asks the chart to scale the current value into
the y-coordinate system of the plot area and stores that in scaledY. Then it asks the chart for the
start of the category at index i and stores that in scaledX. The start of the category is not where
the column is located, though, as shown in Figures 9-5 and 9-6. You add the offset to the start
of the category to fi nd where the center of the column should be for the current category. You want
the position of the top left of the column, however, so next you subtract half of the column width
from the value and store that as the x position of the column.

For the y position of the column, the column will either extend up from the 0 line or descend from
it, so the minimum of scaledY and zeroPosition should represent the top of the column.

Creating HTML5 Canvas Charts ❘ 171

c09.indd 11/03/2014 Page 171

NOTE Why is the minimum y value at top of the column? In most 2D rendering
APIs the coordinate origin is the top left of the screen, and the y coordinates increase
as you move down the screen. Because of this, the tops of the columns have lower y
values than the bottoms of the columns.

All the columns have the same width, which was provided by the chart at the beginning of the function.
The height of each column is the distance between the scaledY value and the zeroPosition value.
Math.abs is used to ensure that the column height is positive regardless of whether the column extends
up or down from the zeroPosition.

 ctx.fillStyle = currColor;
 for (var i = 0; i < f.widths.length; i++) {
 currX = f.xPositions[i];
 currY = f.yPositions[i];
 currWidth = f.widths[i];
 currHeight = f.heights[i];

 ctx.fillRect(
 currX, currY,
 currWidth, currHeight);
 }
};

Finally, provided the values calculated in the previous loop, you can render all the columns as
rectangles into the HTML5 canvas 2D context, which was passed into the function. First
ctx.fillStyle = currColor sets the fi ll color that will be used for the column to the current
color of the series; then fillRect is called on the canvas context to render a rectangle into the
canvas providing its top, left, width, and height.

ColumnSeries.prototype.valueAccessor = function (accessor) {
 this._valueAccessor = accessor;
 this._update();
 return this;
};

This function allows for the _valueAccessor to be set on the series.

var Chart = function (targetId) {
 this._canvas = document.getElementById(targetId);
 this._ctx = this._canvas.getContext("2d");
 this._ctx.font = "14pt Verdana";

 this._data = null;

 this._totalWidth = this._canvas.width;
 this._totalHeight = this._canvas.height;
 this._leftMargin = 50;
 this._rightMargin = 50;
 this._topMargin = 50;
 this._bottomMargin = 50;

172 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 172

 this._minValue = NaN;
 this._maxValue = NaN;

 this._series = [];

 this._gap = 0.25;

 this._calculatePlotArea();
};

This code block defi nes a constructor for the Chart class. You provide an element ID to the
constructor to indicate which canvas element the Chart should inhabit. This element is found in the
document, and getContext("2d") obtains a 2D rendering context from the located canvas element.

NOTE What is the signifi cance of getContext("2d")? Why not just use
getContext()? Well, the canvas element is also used as a container for
3D graphics using WebGL, in which case you call getContext("webgl").

The constructor also defi nes initial values for other properties of the chart. Properties
defi ned include

 ➤ _totalWidth: The total width of the chart

 ➤ _totalHeight: The total height of the chart

 ➤ _leftMargin: The left margin around the plot area

 ➤ _topMargin: The top margin around the plot area

 ➤ _rightMargin: The right margin around the plot area

 ➤ _bottomMargin: The bottom margin around the plot area

 ➤ _minValue: The minimum value of the y axis

 ➤ _maxValue: The maximum value of the y axis

 ➤ _series: The series that are added to the chart

 ➤ _gap: The proportion of each category on the x axis that is devoted to white space

Last, _calculatePlotArea is called to decide the plot area dimensions.

Chart.prototype.column = function () {
 var c = new ColumnSeries(this);
 this._series.push(c);
 c._index = this._series.length - 1;
 this.update();
 return c;
};

This function causes a new ColumnSeries to be created, and adds it to the chart’s _series array. It
also populates the _index on the series, and causes it to update.

Creating HTML5 Canvas Charts ❘ 173

c09.indd 11/03/2014 Page 173

Chart.prototype.minValue = function (val) {
 this._minValue = val;
 this.update();
 return this;
};
Chart.prototype.maxValue = function (val) {
 this._maxValue = val;
 this.update();
 return this;
};

These functions allow for the minimum and maximum values of the y axis to be set on the chart.

NOTE This chart implementation delegates most of the range management and
scaling logic to the chart because the axes are built-in and not very customizable.
In a more complete implementation, scaling and range management is more
naturally the concern of the axes.

Chart.prototype._calculatePlotArea = function () {
 var left = this._leftMargin;
 var top = this._topMargin;
 var width = this._totalWidth -
 (this._leftMargin + this._rightMargin);
 var height = this._totalHeight -
 (this._topMargin + this._bottomMargin);

 this._plotLeft = left;
 this._plotTop = top;
 this._plotWidth = width;
 this._plotHeight = height;
};

This function determines the viable rectangle for plotting series content within the chart. The goal is
that there is suffi cient space to render the axis labels within the marginal area.

Chart.prototype._render = function () {
 var ctx = this._ctx;
 ctx.clearRect(0, 0, this._totalWidth, this._totalHeight);
 ctx.fillStyle = "rgba(240,240,240,1)";
 ctx.fillRect(0, 0, this._totalWidth, this._totalHeight);

 for (var i = 0; i < this._series.length; i++) {
 this._series[i]._render(ctx);
 }
};

This function implements the main render pass for the chart. Here, you perform these steps:

 1. Retrieve the canvas 2D context from where it is stored on the chart.

 2. Clear any existing content in the canvas.

174 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 174

 3. Set the fi ll color to a gray color.

 4. Fill the background of the canvas to the gray color.

 5. For each series in the chart, ask the series to render itself into the canvas context. The render
code for the ColumnSeries was discussed earlier.

NOTE As opposed to a retained mode system, such as SVG, the canvas element
is an immediate mode rendering interface. There is no “undo,” and you aren’t
building a tree of displayed objects. Each time you want to update the content
displayed, you will be clearing the content of the canvas and then re-rendering
all the content that you want to be displayed. This is in stark contrast to SVG,
where you would make some manipulations to the existing SVG DOM tree, and
SVG would update the visual to accommodate. As discussed earlier in the
chapter, these differences in interaction have various pros and cons.

Chart.prototype.update = function () {
 this._render();
 return this;
};

This function is called whenever something has changed that invalidates the current look of the
chart. Right now, you are just having it immediately re-render the chart content, but this gets
adjusted when animation is introduced later.

Chart.prototype.data = function (data) {
 this._data = data;
 this.update();
 return this;
};

This function allows for data to be assigned to the chart. It stores the data in a property on the
chart and then invalidates the current chart visual.

Chart.prototype.scaleY = function (val) {
 var p = (val - this._minValue) /
 (this._maxValue - this._minValue);
 p = 1.0 - p;
 return this._plotTop + p * this._plotHeight;
};

This function should have some very familiar-looking math, if you think back to the discussion on
linear interpolation at the beginning of the chapter. Here you are using linear interpolation to map
from the values along the numeric axis, which range from _minValue to _maxValue, into the y-pixel
space of the plot area that ranges from _plotTop to (_plotTop + _plotHeight). p represents how
far along the numeric axis val is. Because p is a value between 0 and 1, p = 1.0 - p will invert
it. After the inversion, p is used as a weighting to determine the associated position within the plot
area. Why the inversion? Conventional screen coordinates (used by the canvas) increase from top to
bottom, rather than chart coordinates which should increase from bottom to top (at least, usually).

Creating HTML5 Canvas Charts ❘ 175

c09.indd 11/03/2014 Page 175

Chart.prototype.scaleX = function (val) {
 var p = val / this._data.length;
 return this._plotLeft + p * this._plotWidth;
};

scaleX is a very similar idea to scaleY. It’s a linear interpolation that is used to map the index of
a category into the pixel space of the plot area. The resulting position should be the start of the
category for an index.

Chart.prototype.seriesWidth = function () {
 var fullWidth = this._plotWidth / this._data.length;
 var actualWidth = fullWidth * (1.0 - this._gap);
 actualWidth /= this._series.length;
 return actualWidth;
};

This function calculates how wide an individual series should be in the chart. This is done by
dividing the available plot area width by the number of items, reducing this space by the _gap
setting, so some space is left between the clusters for each category and then dividing by the number
of series present in the chart.

Chart.prototype.offset = function (seriesIndex) {
 var fullWidth = this._plotWidth / this._data.length;
 var start = this._gap / 2.0 * fullWidth;
 var span = seriesIndex * this.seriesWidth();
 span += this.seriesWidth() / 2.0;
 var offset = start + span;
 return offset;
};

offset, as you saw before, should calculate how far from the beginning of a category the visual for
a series should be placed, based on its index. This is achieved by fi rst fi nding the start position of the
cluster by taking the _gap into account. Then seriesWidth() is added for each series that precedes
the series in question, and half of seriesWidth() is added to get an offset that equates to the center
of the space reserved for the series.

Provided all this, you can proceed to actually create an instance of the chart:

var chart = new Chart("chart")
 .minValue(0)
 .maxValue(60)
 .data(data);

chart.column()
 .color(palette[0])
 .valueAccessor(function (item) {
 return item.Q1;
 });

chart.column()
 .color(palette[1])
 .valueAccessor(function (item) {
 return item.Q2;
 });

176 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 176

This code performs the following:

 ➤ Creates a chart with a y axis that has a minimum value of 0 and a maximum value of 60 and
assigns it some data

 ➤ Adds a column series to the chart that uses the fi rst color in the palette as its color and gets
its values from the Q1 property of the items in the data array

 ➤ Adds a second column series to the chart that uses the second color in the palette as its color
and gets its values from the Q2 property of the items in the data array

Implementing Axes
The chart you’ve built so far performs the work of axes, but does not actually render any labels
to tell you what the scales of the axes are! An axis is a chart element that displays the values
along an edge of a chart. Figure 9-7 emphasizes the axis areas of the chart where the scale labels
are displayed.

FIGURE 9-7: This shows where the chart axes are by darkening the background behind them.

Also, after the axes are in place, you’ll start to make the chart animate, so, to prepare for that, you
reorganize a few other things. The style of animation used is called key frame animation. Basically,
if you can encapsulate everything that represents the render state of a series or axis into a frame class
and drive the rendering from this frame, then later you’ll be able to display a smooth transition by
generating linearly interpolated frames between a starting frame and an ending frame. So, to start:

var KeyFrame = function () {
 this.xPositions = [];
 this.yPositions = [];
};
KeyFrame.prototype.clear = function () {
 this.xPositions.length = 0;
 this.yPositions.length = 0;

Creating HTML5 Canvas Charts ❘ 177

c09.indd 11/03/2014 Page 177

};

var ColumnsKeyFrame = function () {
 KeyFrame.call(this);
 this.widths = [];
 this.heights = [];
};
ColumnsKeyFrame.prototype = Object.create(KeyFrame.prototype);
ColumnsKeyFrame.prototype.addColumn = function (
 x, y,
 width, height) {

 this.xPositions.push(x);
 this.yPositions.push(y);
 this.widths.push(width);
 this.heights.push(height);

 return this;
};
ColumnsKeyFrame.prototype.clear = function () {
 KeyFrame.prototype.clear.call(this);
 this.widths.length = 0;
 this.heights.length = 0;
};

This column’s key frame should look familiar to you. Basically, you’ve moved all the rendering data
that was being calculated as local variables in the ColumnSeries’ _render function to this frame
class for storage.

var AxisKeyFrame = function () {
 KeyFrame.call(this);
 this.labelTexts = [];
};
AxisKeyFrame.prototype = Object.create(KeyFrame.prototype);
AxisKeyFrame.prototype.addLabel = function (
 x, y,
 text) {

 this.xPositions.push(x);
 this.yPositions.push(y);
 this.labelTexts.push(text);

 return this;
};
AxisKeyFrame.prototype.clear = function () {
 KeyFrame.prototype.clear.call(this);
 this.labelTexts.length = 0;
};

Your axis visuals will consist of labels, arranged along the plot area, indicating the scale of the axis.
To this effect, the AxisKeyFrame class stores much the same data as the ColumnsKeyFrame, but
stores a text value for the label rather than width and height information.

if (!window.queueFrame) {
 if (window.requestAnimationFrame) {

178 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 178

 window.queueFrame = window.requestAnimationFrame;
 } else if (window.webkitRequestAnimationFrame) {
 window.queueFrame = window.webkitRequestAnimationFrame;
 } else if (window.mozRequestAnimationFrame) {
 window.queueFrame = window.mozRequestAnimationFrame;
 } else {
 window.queueFrame = function (callback) {
 window.setTimeout(1000.0 / 60.0, callback);
 };
 }
}

As part of the change to using key frames for rendering the chart, you switch to using the
requestAnimationFrame for scheduling the rendering of the chart. requestAnimationFrame, if
available, provides more reliable timer callbacks than setTimeout or setInterval, making for
smoother animations. requestAnimationFrame is not available in some browsers, however, so
the preceding code checks for it and gracefully degrades to using setTimeout to animate if it is
unavailable.

ChartElement.prototype._update = function () {
 if (!this._validate()) {
 return;
 }
 if (this._chart._data === null) {
 return;
 }
 this._updateFrames();
 this._chart.dirty();
};
ChartElement.prototype._updateFrames = function () {
 this._updateFrame(this._displayFrame);
};

Next, you edit some functions on the ChartElement class. Before, when a series needed to be
updated, it would just call update on the containing chart, causing an immediate re-render.
Now, the _update function calls _updateFrames, which in turn makes sure that the key frame
for the element is updated. Then, it tells the chart that it is dirty, and needs to be re-rendered at
the earliest opportunity. These changes tie into the animation support you’ll be adding, but have
another nice side effect. Before, if you changed many different settings, an immediate
re-render was forced after each change. Now, instead, you will mark that a re-render is needed,
but it will happen at some time later, after the current interaction has yielded. In this way,
renders of the chart are batched and deferred. The deferral mechanism is discussed later in
this section.

var ColumnSeries = function (chart) {
 ChartElement.call(this, chart);
 this._displayFrame = new ColumnsKeyFrame();
 this._valueAccessor = null;
 this._color = "rgba(255, 0, 0, 1)";
};

In the preceding code, the constructor of the ColumnSeries is altered to construct an instance of the
ColumnsKeyFrame for use later.

Creating HTML5 Canvas Charts ❘ 179

c09.indd 11/03/2014 Page 179

ColumnSeries.prototype._render = function (ctx) {
 var f = this._displayFrame;
 var currWidth, currHeight,
 currX, currY;
 ctx.fillStyle = this._color;
 for (var i = 0; i < f.widths.length; i++) {
 currX = f.xPositions[i];
 currY = f.yPositions[i];
 currWidth = f.widths[i];
 currHeight = f.heights[i];

 ctx.fillRect(
 currX, currY,
 currWidth, currHeight);
 }
};

The _render function, which previously had been deciding what to render and then rendering it,
now just renders the information stored in the _displayFrame.

ColumnSeries.prototype._updateFrame = function (frame) {
 var data = this._chart._data;
 var index = this._index;

 var width = this._chart.seriesWidth();
 var halfWidth = width / 2.0;
 var offset = this._chart.offset(index);
 var zeroPosition = this._chart.scaleY(0);
 var val, scaledX, scaledY;

 frame.clear();

 for (var i = 0; i < data.length; i++) {
 val = this._valueAccessor(data[i]);

 scaledY = this._chart.scaleY(val);
 scaledX = this._chart.scaleX(i);

 frame.addColumn(
 scaledX + offset - halfWidth,
 Math.min(scaledY, zeroPosition),
 width,
 Math.abs(scaledY - zeroPosition));
 }
};

The _updateFrame function contains the logic that used to be in the top half of the _render
function, except rather than storing the information about what needs to be rendered in local
variables, it populates the key frame that was passed in as a parameter.

var CategoryAxis = function (chart) {
 ChartElement.call(this, chart);
 this._displayFrame = new AxisKeyFrame();
 this._labelAccessor = null;
};

180 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 180

CategoryAxis.prototype = Object.create(ChartElement.prototype);
CategoryAxis.prototype._validate = function () {
 if (this._labelAccessor === null) {
 return false;
 }
 return ChartElement.prototype._validate.call(this);
};
CategoryAxis.prototype._render = function (ctx) {
 var f = this._displayFrame;
 var currText,
 currX, currY;
 ctx.fillStyle = this._color;
 for (var i = 0; i < f.xPositions.length; i++) {
 currX = f.xPositions[i];
 currY = f.yPositions[i];
 currText = f.labelTexts[i];

 var width = ctx.measureText(currText).width;

 ctx.fillText(
 currText,
 currX - width / 2.0,
 currY);
 }
};
CategoryAxis.prototype.labelAccessor = function (accessor) {
 this._labelAccessor = accessor;
 this._update();
 return this;
};
CategoryAxis.prototype._updateFrame = function (frame) {
 var data = this._chart._data;

 var scaledX, nextScaled, label, pos;

 frame.clear();

 for (var i = 0; i < data.length; i++) {
 label = this._labelAccessor(data[i]);

 scaledX = this._chart.scaleX(i);
 nextScaled = this._chart.scaleX(i + 1);

 pos = (scaledX + nextScaled) / 2.0;

 frame.addLabel(
 pos,
 this._chart._totalHeight - 20,
 label);
 }
};

The defi nition of the CategoryAxis follows basically the same pattern as the ColumnSeries, but
we’ve highlighted some of the interesting differences in the preceding code.

Creating HTML5 Canvas Charts ❘ 181

c09.indd 11/03/2014 Page 181

var width = ctx.measureText(currText).width;

In order to fi nd the left position of some text so that it is centered around a point, you need to know
how wide that text is. You can ask the canvas context to measure a string with the current font and
tell you how wide that text would be when rendered.

CategoryAxis.prototype.labelAccessor = function (accessor) {
 this._labelAccessor = accessor;
 this._update();
 return this;
};

labelAccessor is analogous to valueAccessor on the ColumnSeries. Here, though, you are
allowing for a function to be provided that fetches label text from the items of the data array.

label = this._labelAccessor(data[i]);

scaledX = this._chart.scaleX(i);
nextScaled = this._chart.scaleX(i + 1);

pos = (scaledX + nextScaled) / 2.0;

As the CategoryAxis key frame is being populated, you fetch the label value using
the _labelAccessor and then determine the x position of the label by fi nding the midpoint
between the start of the current category and the start of the next category.

var NumericAxis = function (chart) {
 ChartElement.call(this, chart);
 this._displayFrame = new AxisKeyFrame();
};
NumericAxis.prototype = Object.create(ChartElement.prototype);
NumericAxis.prototype._render = function (ctx) {
 var f = this._displayFrame;
 var currText,
 currX, currY;
 ctx.fillStyle = this._color;
 for (var i = 0; i < f.xPositions.length; i++) {
 currX = f.xPositions[i];
 currY = f.yPositions[i];
 currText = f.labelTexts[i];

 ctx.textBaseline = "middle";
 ctx.fillText(
 currText,
 currX,
 currY);
 }
};
NumericAxis.prototype._updateFrame = function (frame) {
 var min = this._chart._minValue;
 var max = this._chart._maxValue;
 var interval = (max - min) / 6.0;
 var label, scaledY;

 frame.clear();
 for (var i = min; i <= max; i += interval) {

182 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 182

 label = i.toString();

 scaledY = this._chart.scaleY(i);

 frame.addLabel(
 15,
 scaledY,
 label);
 }
};

The NumericAxis is roughly the same idea as the CategoryAxis. We’ve again highlighted some of
the interesting differences, though.

ctx.textBaseline = "middle";

When rendering the y-axis labels, you want them to be centered vertically around their location.
Thankfully you can tell the canvas to set the text baseline to "middle" to achieve this.

var min = this._chart._minValue;
var max = this._chart._maxValue;
var interval = (max - min) / 6.0;

This calculates a very basic auto interval for the axis. This splits the space into six sections, which
results in seven labels being rendered. This is simple, but a bit naïve. It can easily result in lots of
decimal points in the labels!

for (var i = min; i <= max; i += interval) {
 label = i.toString();

Provided a minimum, maximum, and interval, you can loop over the values and convert them into
string labels for display.

this._xAxis = new CategoryAxis(this);
this._yAxis = new NumericAxis(this);
this._isDirty = false;

You add these lines to the Chart’s constructor because this chart will be hard coded to use one
CategoryAxis and one NumericAxis, and the chart starts with its dirty fl ag set to false, indicating
it does not need to render yet.

Chart.prototype.xAxis = function () {
 return this._xAxis;
};

You add the xAxis function to the chart so that you can access the chart’s x axis to modify its
settings.

Chart.prototype.dirty = function () {
 if (this._isDirty) {
 return;
 }
 this._isDirty = true;
 var self = this;
 window.queueFrame(function () {

Creating HTML5 Canvas Charts ❘ 183

c09.indd 11/03/2014 Page 183

 self._render();
 });
};

This is another new function for the chart that is called by the chart or its elements when they want
to indicate that the chart needs to be re-rendered. It calls the requestAnimationFrame API to
request that the _render function of the chart gets called at the earliest opportunity.

Chart.prototype._render = function () {
 var ctx = this._ctx;
 ctx.clearRect(0, 0, this._totalWidth, this._totalHeight);
 ctx.fillStyle = "rgba(240,240,240,1)";
 ctx.fillRect(0, 0, this._totalWidth, this._totalHeight);

 this._xAxis._render(ctx);
 this._yAxis._render(ctx);
 for (var i = 0; i < this._series.length; i++) {
 this._series[i]._render(ctx);
 }
};

The chart’s _render function now calls the _render functions of the two axes in addition to the
series.

Chart.prototype.update = function () {
 this._xAxis._update();
 this._yAxis._update();
 for (var i = 0; i < this._series.length; i++) {
 this._series[i]._update();
 }
 return this;
};

The chart’s update function calls the _update functions of all the elements.

chart.xAxis()
 .labelAccessor(function (item) {
 return item.name;
 });

For the fi nal piece, you need to tell the x axis how to retrieve the category labels from the data items
when constructing the chart. With the axes incorporated, the chart looks like Figure 9-8, and you
can access the fi les CanvasChartWithAxes.js/html/css on the companion website.

Adding Animation
Many of the changes enacted for adding columns to the chart were sneakily preparing you for
animating the contents of the chart. You achieve the animation at a high level by having the series
and the axes create a new target frame when their settings or data is changed and then perform
a linear interpolation (yep, your old friend) between the values of the previous key frame and the
next key frame.

184 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 184

FIGURE 9-8: A chart with axes, which was built from scratch using the HTML5 canvas.

KeyFrame.prototype.interpolateThings = function (
 p, target, previous, next, doInterpolate, getFallbackValue) {
 var minCount = Math.min(previous.length, next.length);
 var maxCount = Math.max(previous.length, next.length);
 var i = 0, prevLen = previous.length,
 nextLen = next.length, fallBack = getFallbackValue();
 var lastPrev = prevLen > 0 ? previous[prevLen - 1] : fallBack;
 var lastNext = nextLen > 0 ? next[nextLen - 1] : fallBack;

 for (i = 0; i < maxCount; i++) {
 if (i < minCount) {
 target[i] = doInterpolate(p, previous[i], next[i]);
 }
 else if (i < previous.length) {
 target[i] = doInterpolate(p, previous[i], lastNext);
 }
 else if (i < next.length) {
 target[i] = doInterpolate(p, lastPrev, next[i]);
 }
 }

 target.length = maxCount;
};
KeyFrame.prototype.interpolateNumbers = function (
 p, target, previous, next) {
 this.interpolateThings(p, target, previous, next,
 function (p, prev, next) {
 return prev + p * (next - prev);
 },
 function () {
 return 0;
 });
};

Creating HTML5 Canvas Charts ❘ 185

c09.indd 11/03/2014 Page 185

KeyFrame.prototype.interpolate = function (p, previous, next) {
 this.interpolateNumbers(p,
 this.xPositions,
 previous.xPositions,
 next.xPositions);
 this.interpolateNumbers(p,
 this.yPositions,
 previous.yPositions,
 next.yPositions);
};

The preceding code defi nes the interpolateThings function to aid in interpolating arrays of
entities that should be interpolated based on the animation progress (which will range from
0 to 1). When one array has fewer items than another, either the last item is used to interpolate with
the overfl ow values, or, if one of the arrays is empty, a default value is used in the interpolation. The
interpolateNumbers function uses the interpolateThings function to defi ne how to interpolate
two arrays of numbers. Finally the base interpolate function is defi ned for KeyFrame, which
interpolates the x positions and the y positions for the KeyFrame.

ColumnsKeyFrame.prototype.interpolate = function (p, previous, next) {
 KeyFrame.prototype.interpolate.call(this, p, previous, next);
 this.interpolateNumbers(
 p,
 this.widths,
 previous.widths, next.widths);
 this.interpolateNumbers(
 p,
 this.heights,
 previous.heights, next.heights);
};

An interpolate function is added to the ColumnsKeyFrame, which interpolates the widths and
heights of the columns.

AxisKeyFrame.prototype.interpolate = function (p, previous, next) {
 KeyFrame.prototype.interpolate.call(this, p, previous, next);

 this.interpolateThings(p,
 this.labelTexts,
 previous.labelTexts,
 next.labelTexts,
 function (p, previous, next) {
 return next;
 },
 function () {
 return "";
 });
};

As with the ColumnsKeyFrame, the main interpolation work is done in the base interpolate
method, which interpolates the x and y position arrays. This method just ensures that when you
interpolate the text of a label it returns the next label value rather than trying to animate the value
of the label.

186 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 186

Next there are some changes to ChartElement:

var ChartElement = function (chart) {
 this._chart = chart;
 this._color = new Color(1, 80, 80, 80);
 this._animationProgress = -1;
 this._animationStartTime = null;
 this._transitionDuration = 1000;
 this._displayFrame = null;
 this._previousFrame = null;
 this._nextFrame = null;
};

Some new properties are added:

 ➤ _animationProgress: Tracks the current progress of the running animation.

 ➤ _animationStartTime: Tracks the start time of the current animation.

 ➤ _transitionDuration: The settable duration for the animations that get played in
milliseconds.

 ➤ _displayFrame: The current displaying frame for the chart element. During an animation,
this will be an interpolated frame between the _previousFrame and the _nextFrame. This is
always the frame that gets rendered.

 ➤ _previousFrame: The previous key frame that was rendered.

 ➤ _nextFrame: The next key frame that is the goal of the current animation.

ChartElement.prototype.transitionDuration = function (val) {
 this._transitionDuration = val;
 return this;
};

This code allows for the duration of the animations to be changed.

ChartElement.prototype._startAnimation = function () {
 this._animationProgress = 0;
 this._animationStartTime = window.getHighResTime();
 this._chart.ensureTicking();
};
ChartElement.prototype._isAnimating = function () {
 return this._animationProgress != -1;
};

These functions allow for an animation to be started for the chart element and to determine if an
animation is currently running for that element. The chart actually manages ensuring that this
element’s _tickAnimation function gets called as the animation frames are generated, so the
element just asks the chart to _ensureTicking and tracks the start time of the current animation.

ChartElement.prototype._tickAnimation = function (time) {
 if (!this._isAnimating()) {
 return false;
 }
 var elapsed = time - this._animationStartTime;

Creating HTML5 Canvas Charts ❘ 187

c09.indd 11/03/2014 Page 187

 var finishing = false;

 if (elapsed >= this._transitionDuration) {
 elapsed = this._transitionDuration;
 this._updateFrame(this._previousFrame);
 finishing = true;
 }

 this._animationProgress = elapsed / this._transitionDuration;
 this._animationProgressUpdated();

 if (finishing) {
 this._animationProgress = -1;
 return false;
 }

 return true;
};

_tickAnimation compares the current time to the start time in order to see if the animation
is over, or to calculate the current progress based on the desired duration of the animation. In so
doing, the _animationProgress property is updated with a value between 0 and 1 that represents
the progress of the current animation, which will be the weighting for the blending,
and _animationProgressUpdated is called.

ChartElement.prototype._animationProgressUpdated = function () {
 this._displayFrame.interpolate(
 this._animationProgress,
 this._previousFrame,
 this._nextFrame);
};

_animationProgressUpdated is the main driver for the interpolation you’ve been defi ning. Each
time the animation ticks it will use the current progress to update the _displayFrame to contain
values that are an interpolation between the previous key frame and the next key frame. To facilitate
this arrangement the _updateFrames method is also modifi ed:

ChartElement.prototype._updateFrames = function () {
 var swap = this._previousFrame;

 this._startAnimation();
 this._previousFrame = this._displayFrame;
 this._displayFrame = swap;

 this._updateFrame(this._nextFrame);
};

_updateFrames is called when a new target frame needs to be generated for the element. To
facilitate this, the current _displayFrame becomes the _previousFrame, and a new _nextFrame is
generated. When the animation starts ticking, it generates a new _displayFrame that contains the
interpolated values between the two. Each successive tick of the animation updates _displayFrame
again, shifting it farther away from _previousFrame and closer to _nextFrame.

All of the chart element types need to construct their previous and next frames in their constructors:

188 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 188

var CategoryAxis = function (chart) {
 ChartElement.call(this, chart);
 this._displayFrame = new AxisKeyFrame();
 this._previousFrame = new AxisKeyFrame();
 this._nextFrame = new AxisKeyFrame();
 this._labelAccessor = null;
};
var NumericAxis = function (chart) {
 ChartElement.call(this, chart);
 this._displayFrame = new AxisKeyFrame();
 this._previousFrame = new AxisKeyFrame();
 this._nextFrame = new AxisKeyFrame();
};
var ColumnSeries = function (chart) {
 ChartElement.call(this, chart);
 this._displayFrame = new ColumnsKeyFrame();
 this._previousFrame = new ColumnsKeyFrame();
 this._nextFrame = new ColumnsKeyFrame();
 this._valueAccessor = null;
 this._color = new Color(1, 255, 0, 0);
};

Finally, the main animation driver is added to the chart:

Chart.prototype.ensureTicking = function () {
 var self = this;
 if (this._isTicking) {
 return;
 }
 this._isTicking = true;
 window.queueFrame(function () {
 self.animationTick();
 });
};
Chart.prototype.animationTick = function () {
 var time = window.getHighResTime();
 var self = this;
 var stillAnimating = false;
 if (this._xAxis._tickAnimation(time)) {
 stillAnimating = true;
 }
 if (this._yAxis._tickAnimation(time)) {
 stillAnimating = true;
 }

 for (var i = 0; i < this._series.length; i++) {
 if (this._series[i]._tickAnimation(time)) {
 stillAnimating = true;
 }
 }

 this._render();

 if (stillAnimating) {
 window.queueFrame(function () {

Creating HTML5 Canvas Charts ❘ 189

c09.indd 11/03/2014 Page 189

 self.animationTick();
 });
 } else {
 this._isTicking = false;
 }
};

ensureTicking bootstraps things by queuing an animation frame, which calls the animationTick
method. animationTick calls _tickAnimation on all of the chart elements, calls the
main _render method of the chart to render it out to the canvas, and fi nally, if any of the elements
were still in progress, requests a new animation frame that will re-call animationTick when the
new frame is ready.

With all this in place, you can load the chart and see it animate into place. Figure 9-9 shows the
chart in mid animation, and you can fi nd the code in the fi les CanvasChartAnimation.js/html
/css on the companion website.

FIGURE 9-9: A column chart animates into view, rendered using the HTML5 canvas.

Why does everything animate in from the corner, though? The fi rst time the chart renders, there is
no previous frame state for any of the elements. The interpolation you defi ned used 0 for any initial
numeric state, so everything is animating in from point 0,0. It would be more optimal if the columns
were already in position and only their heights were animated. You can achieve that by defi ning an
initial previous frame to use for the chart elements.

KeyFrame.prototype._isEmptyFrame = function () {
 return this.xPositions.length === 0;
};

First, it helps to be able to detect if you are animating from an unpopulated frame.

ChartElement.prototype._animationProgressUpdated = function () {
 var displayFrame = this._displayFrame;
 var previousFrame = this._previousFrame;
 var nextFrame = this._nextFrame;
 var actualProgress = this._easing(this._animationProgress);

 if (previousFrame._isEmptyFrame() &&
 this._populateDefaultFrame) {
 this._populateDefaultFrame(previousFrame, nextFrame);

190 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 190

 }

 displayFrame.interpolate(
 actualProgress,
 previousFrame,
 nextFrame);
};

Then, if the previous frame is an empty frame, a chart element can generate a default frame rather
than animating from the empty frame. You may also notice the addition of the _easing call in this
code. You can read more about that later in this chapter.

CategoryAxis.prototype._populateDefaultFrame = function (
 frame, nextFrame) {
 for (var i = 0; i < nextFrame.xPositions.length; i++) {
 frame.xPositions[i] = 0;
 frame.yPositions[i] = this._chart._totalHeight - 20;
 }
};

CategoryAxis provides an implementation of _populateDefaultFrame that starts all of the labels
underneath the plot area, but on the left side of the chart. This way they should animate in from the
left rather than the top left.

NumericAxis.prototype._populateDefaultFrame = function (
 frame, nextFrame) {
 for (var i = 0; i < nextFrame.xPositions.length; i++) {
 frame.xPositions[i] = nextFrame.xPositions[i];
 frame.yPositions[i] = this._chart._plotTop + this._chart._plotHeight;
 }
};

NumericAxis provides a similar implementation, except it animates the labels in from the bottom of
the chart.

ColumnSeries.prototype._populateDefaultFrame = function (
 frame, nextFrame) {
 for (var i = 0; i < nextFrame.xPositions.length; i++) {
 frame.xPositions[i] = nextFrame.xPositions[i];
 frame.yPositions[i] = this._chart._plotTop +
 this._chart._plotHeight;
 frame.widths[i] = nextFrame.widths[i];
 frame.heights[i] = 0;
 }
};

Finally, ColumnSeries provides an implementation that starts the columns in their eventual
x-positions, but with a collapsed height and an adjusted top position.

Now, if you run the code you get a much cleaner animation where the columns animate in from
the bottom of the chart and the labels slide into place from the bottom left. You can see the
results in Figure 9-10, which shows the chart mid animation, and you can fi nd the code in the fi le
CanvasChartAnimationWithStartingFrame.js/html/css on the companion website.

Creating HTML5 Canvas Charts ❘ 191

c09.indd 11/03/2014 Page 191

FIGURE 9-10: This shows an animating column chart with starting frames, built from scratch using the
HTML5 canvas.

So what was that easing call about?

var easing = {};
easing.toIn = function (f, t) {
 return f(t * 2.0) / 2.0;
};
easing.toOut = function (f, t) {
 t = 1 - t;
 return (1.0 - f(t * 2.0)) / 2.0 + 0.5;
};
easing.cubicIn = function (t) {
 return t * t * t;
};
easing.cubicInOut = function (t) {
 if (t < 0.5) {
 return easing.toIn(easing.cubicIn, t);
 } else {
 return easing.toOut(easing.cubicIn, t);
 }
};

var ChartElement = function (chart) {
 this._chart = chart;
 this._color = new Color(1, 80, 80, 80);
 this._animationProgress = -1;
 this._animationStartTime = null;
 this._transitionDuration = 1000;
 this._displayFrame = null;
 this._previousFrame = null;
 this._nextFrame = null;
 this._easing = easing.cubicInOut;
};

An easing function adjusts the speed with which an animation progresses. It can make motion look
more natural for the beginning and/or the end to play at different speeds compared to the middle

192 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 192

portion. Your animation, so far, has left progress moving at a linear rate. The idea of the preceding
code is to use a piecewise cubic function to bend the linear relationship between time and progress into
a different shape, specifi cally one that accelerates and decelerates at the beginning and end. Figure 9-11
shows the linear relationship between time and progress you used for the previous sample, and
Figure 9-12 shows the piecewise cubic relationship between time and progress that will be used now.

FIGURE 9-11: A linear relation between time and progress creates a steadily progressing animation with
no speed changes.

FIGURE 9-12: A piecewise cubic relationship between time and progress creates an animation that speeds
up and slows down over time.

Creating HTML5 Canvas Charts ❘ 193

c09.indd 11/03/2014 Page 193

Finally, now that all the animation groundwork is in place, you get some really neat effects if you
modify the data of the column series with a button on the page.

var data2 = [
 { "name": "Shoes", "Q1": 20, "Q2": 35 },
 { "name": "Hats", "Q1": 30, "Q2": 40 },
 { "name": "Coats", "Q1": 45, "Q2": 25 },
 { "name": "Scarves", "Q1": 10, "Q2": 25 }
];

First, you need a second set of data.

var initialData = true;
var button = document.getElementById("changeData");
button.onclick = function () {
 if (initialData) {
 chart.data(data2);
 initialData = false;
 } else {
 chart.data(data);
 initialData = true;
 }
};

Then all you need to do to animate the change is call data to toggle back and forth between the
original data and the new data when a button is pressed. You can see the chart mid
animation between the two data sets in Figure 9-13, and you can fi nd the code in the fi les
CanvasChartAnimationWithDataUpdate.js/html/css on the companion website.

FIGURE 9-13: A column chart animating between data sets, in order to show how the data changes over
time.

Things get even more interesting if you have different amounts of data items in the sets you are
toggling between:

194 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/13/2014 Page 194

var data = [
 { "name": "Shoes", "Q1": 40, "Q2": 25 },
 { "name": "Hats", "Q1": 50, "Q2": 40 },
 { "name": "Coats", "Q1": 35, "Q2": 45 },
 { "name": "Scarves", "Q1": 20, "Q2": 15 }
];

var data2 = [
 { "name": "Shoes", "Q1": 20, "Q2": 35 },
 { "name": "Hats", "Q1": 30, "Q2": 40 },
 { "name": "Coats", "Q1": 45, "Q2": 25 },
 { "name": "Scarves", "Q1": 10, "Q2": 25 },
 { "name": "Socks", "Q1": 55, "Q2": 15 },
 { "name": "Sweaters", "Q1": 50, "Q2": 35 }
];

Figure 9-14 shows the chart in the midst of animating new data items into place, and the code is
in the fi les CanvasChartAnimationLine.js/html/css on the companion website. These fi les also
show an implementation of line series.

FIGURE 9-14: The custom Canvas chart you are building animates between two data sets to show new data
being introduced over time.

STARTING WITH GOOGLE CHARTS

We hope your plunge into the deep-end of building charting tools from scratch has given you a good
low-level understanding of how visualizations are put together.

Building your own tools from scratch, or using low-level visualization APIs such as D3, can grant
you a great deal of fl exibility, but the lack of high-level abstractions and simplifi cations can truly
hamper productivity. Thankfully, the charting API landscape is diverse and there are products to use

Starting with Google Charts ❘ 195

c09.indd 11/03/2014 Page 195

from all along the complexity spectrum. One constrained and high-level product, which is
correspondingly simple to use, is the Google Charts API.

Google Charts API Basics
To use the Google Charts API, you set up a data table instance, with rows corresponding to
individual items in a data series and columns corresponding to a set of categories, or some number
of data series plotted for those categories. First up, you see how much less code it is to put together a
bar chart compared to building your column chart from scratch earlier.

A Basic Bar Chart
All of the following code for the Google Charts API uses this CSS:

#chart {
 width: 500px;
 height: 500px;
}

This just defi nes the size of the container for the chart, using CSS. And here’s the HTML:

<!DOCTYPE html>
<html>
<head>
 <title>Google Charts API Basic Bar Chart</title>

 <script type="text/javascript" src="https://www.google.com/jsapi">
 </script>
 <script type="text/javascript">
 google.load('visualization', '1',
 { packages: ['corechart'] });
 </script>

 <script type="text/javascript"
 src="847060_ch13_GoogleChartsAPIBarChart.js">
 </script>
 <link rel="stylesheet"
 href="847060_ch13_GoogleChartsAPIBarChart.css">
</head>
<body>
 <div id="chart"></div>
</body>
</html>

In this code, you are referencing the Google Visualization API scripts and requesting that the
corechart package be downloaded. Like many JavaScript APIs, Google Charts is modular so that
you can select only the features you want in order to save bandwidth and load pages faster. The
<div> is what holds the chart, and that’s what you targeted with the CSS rule just before.

function renderChart() {
 var data = google.visualization.arrayToDataTable([
 ['product', 'Sales'],
 ['Shoes', 40],

196 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 196

 ['Hats', 50],
 ['Coats', 35],
 ['Scarves', 20]
]);

 var options = {
 title : "Product Sales",
 hAxis: { title: "Sales" },
 vAxis: { title: "Products" }
 };

 var chart = new google.visualization.BarChart(
 document.getElementById("chart"));
 chart.draw(data, options);
}
google.setOnLoadCallback(renderChart);

That’s not much code, huh? First, you create a data table with two columns. The types of the columns
(string and number) are determined automatically. When you request a chart to be rendered, Google
Charts tries to do the intelligent thing with them. Next, some options are provided, which basically
just assigns some titles to the axes and the chart itself. Last, a google.visualization.BarChart
is created, targeting the <div> with the ID chart, and the chart is drawn, providing the data and
the options.

All of that is gathered into a function so that you can call

google.setOnLoadCallback(renderChart);

This ensures that you don’t try to render the chart before the correct JavaScript resources have
been downloaded or before the page DOM is ready. You can see the result in Figure 9-15. The
GoogleChartsAPIBarChart.js/html/css fi les are on the companion website.

FIGURE 9-15: This bar chart was created with the Google Charts API.

Starting with Google Charts ❘ 197

c09.indd 11/03/2014 Page 197

A Basic Pie Chart
Having seen how much the Google Charts API simplifi es displaying a bar chart, you can move on to
pie charts, which are another popular chart type. Actually, it turns out to be a complete non-issue.
Just change the chart initialization line to

var chart = new google.visualization.PieChart(
 document.getElementById("chart"));

and delete the titles for the axes (you don’t have any, anymore):

var options = {
 title : "Product Sales"
};

You can see the result in Figure 9-16, and you can fi nd the GoogleChartsAPIPieChart.js/html
/css fi les on the companion website.

FIGURE 9-16: This pie chart was created with the Google Charts API.

Also, take a moment to notice all the interesting ancillary features that the Google Charts API bundles
in for you, for free. When you run the sample, do you notice how you can select slices by clicking
them? Do you notice the hover effects when your cursor is over a slice? Okay, now it’s time for a
neat trick that would be extremely diffi cult to pull off if you had written this pie chart from scratch.
Change the options block to.

var options = {
 title : "Product Sales",
 is3D: true
};

198 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 198

Now the chart is in faux 3D! Check it out in Figure 9-17. The GoogleChartsAPIPieChart3D.js
/html/css fi les are on the companion website. Keep in mind, though, that 3D rarely adds any new
information to a visualization you are trying to build, but it can, often, make a visualization harder
to interpret. It’s a good idea, when considering adding 3D elements to a visualization, to evaluate
whether they are actually adding extra information, or whether the addition is purely aesthetic. If
the latter, it may be better to use some restraint.

FIGURE 9-17: A simple setting has transformed a pie chart into a faux 3D pie chart.

Working with Chart Animations
Earlier in this chapter, you saw how powerful and fl exible animations could be when building them
from scratch. But they also take a lot of code and effort to enable. Now check out how you would
achieve a similar effect using the Google Charts API:

function renderChart() {
 var data = google.visualization.arrayToDataTable([
 ['product', 'Sales', { role: 'annotation' }],
 ['Shoes', 0, "40"],
 ['Hats', 0, "50"],
 ['Coats', 0, "35"],
 ['Scarves', 0, "20"]
]);

 var options = {
 title : "Product Sales",
 hAxis: { title: "Sales", viewWindow: { min: 0, max: 55 } },
 vAxis: { title: "Products" },
 animation: {
 duration: 1000,
 easing: 'inAndOut',
 }
 };
 var button = document.getElementById('changeData');

 var initialAnimationPlayed = false;
 var chart = new google.visualization.BarChart(
 document.getElementById("chart"));

Starting with Google Charts ❘ 199

c09.indd 11/03/2014 Page 199

 google.visualization.events.addListener(chart, 'ready',
 function() {
 if (!initialAnimationPlayed) {
 initialAnimationPlayed = true;
 data.setValue(0, 1, 40);
 data.setValue(1, 1, 50);
 data.setValue(2, 1, 35);
 data.setValue(3, 1, 20);
 chart.draw(data, options);
 } else {
 button.disabled = false;
 }
 });

 chart.draw(data, options);

 var firstData = true;
 button.onclick = function () {
 if (!firstData) {
 firstData = !firstData;
 data.setValue(0, 1, 40);
 data.setValue(1, 1, 50);
 data.setValue(2, 1, 35);
 data.setValue(3, 1, 20);

 data.setValue(0, 2, "40");
 data.setValue(1, 2, "50");
 data.setValue(2, 2, "35");
 data.setValue(3, 2, "20");
 } else {
 firstData = !firstData;
 data.setValue(0, 1, 25);
 data.setValue(1, 1, 40);
 data.setValue(2, 1, 45);
 data.setValue(3, 1, 15);

 data.setValue(0, 2, "25");
 data.setValue(1, 2, "40");
 data.setValue(2, 2, "45");
 data.setValue(3, 2, "15");
 }
 button.disabled = true;
 chart.draw(data, options);
 };

}

google.setOnLoadCallback(renderChart);

The key differences here are

 ➤ You start with the data values at 0.

 ➤ You enable animation for the chart and specify an animation duration and an animation-
easing function.

200 ❘ CHAPTER 9 EXPLORING CHARTING TOOLS

c09.indd 11/03/2014 Page 200

 ➤ You create a click handler for a button that makes updates to the data table and redraws
the chart.

 ➤ It’s important to only make changes to the chart when it is “ready.”

This still could have been simpler, actually. Many charting APIs offer a facility to transition in the
initial data values without needing to explicitly default the data to 0, but, at the time of this writing,
Google Charts API doesn’t seem to support this. Also, it’s a bit cumbersome to avoid interacting
with the chart when it isn’t ready to receive commands.

You can see the animated bar chart after the data change has completed in Figure 9-18, which you
can fi nd in the GoogleChartsAPIBarChartAnimated.js/html/css fi les on the companion website.

FIGURE 9-18: This animated bar chart was created using the Google Charts API.

You’ll fi nd also that if you substitute LineChart or AreaChart for BarChart everything should
work fi ne for those charting types with no additional confi guration other than retitling the axes.
This is the power of working with a high-level charting API.

The GoogleChartsAPISelectType.js/html/css fi les on the companion website show you how to
build a page that easily lets you swap between the main category charting types without animation.
You can see the line chart in Figure 9-19.

Summary ❘ 201

c09.indd 11/03/2014 Page 201

FIGURE 9-19: This line chart was created using Google Charts API.

SUMMARY

 You accomplished an awful lot this chapter. You learned:

 ➤ Some of the basics of plotting data in a chart

 ➤ How the HTML5 canvas differs from SVG, Flash, and other graphics tools

 ➤ How to use linear interpolation to map coordinates or blend changes over time

 ➤ How to use the HTML5 canvas and key frames to render and animate data in a page

 ➤ How to use the HTML5 canvas to render dynamic column charts

 ➤ How to use the HTML5 canvas to show changes to data over time

 ➤ How to use the Google Charts API to render a bar chart, a pie chart, and a 3D pie chart

 ➤ How to use the Google Charts API to animate a bar chart

c10.indd 11/03/2014 Page 203

Building Custom Charts with
Raphaël

WHAT’S IN THIS CHAPTER

 ➤ The SVG library Raphaël

 ➤ gRaphaël, a charting plug-in for Raphaël

 ➤ An example of how to extend Raphaël to create a custom donut
chart

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/javascriptandjqueryanalysis on the Download Code
tab. The code is in the chapter 10 download and individually named according
to the names throughout the chapter.

As developers, we’re fortunate to have a variety of excellent charting solutions at our fi ngertips.
Nine times out of ten, these libraries and plug-ins provide all the functionality our apps need.

But what about those times you want something more? In these cases, you have two options:
Write something from scratch or extend an existing script. Although reinventing the wheel can
be tempting, it’s usually best to save time and start with an already-built project.

This chapter fi rst introduces the SVG library Raphaël, which provides an excellent foundation
for creating custom graphics. You then explore gRaphaël, a charting plug-in for Raphaël that
you can use to create simple visualizations such as pie charts and bar graphs.

Finally, you learn how to extend Raphaël, leveraging its utilities as a starting point for your
own custom visuals. You follow a practical example of creating a donut chart plug-in as you
pick up concepts you can use to create charts of any type.

10

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

http://www.wrox.com/go/javascriptandjqueryanalysis

204 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 204

INTRODUCING RAPHAËL

Raphaël is a handy JavaScript library for drawing, manipulating, and animating vector graphics.
It offers a variety of APIs that standardize and simplify SVG code. This library provides all the
building blocks you need to create rich, interactive graphics on the web.

SVG Versus Canvas Charts
Modern web graphics fall into two main categories: SVG and canvas. When you’re working with a
charting library, this distinction is largely behind the scenes. But there are a few notable differences
that are worth considering before you choose a charting solution.

This chapter focuses on SVG charts because they can be easier to customize. Graphics rendered in
SVG are easy to manipulate, whereas those rendered in canvas are more static. For example, if you
render a circle in SVG, you can resize it, recolor it, move its vertices, add a click handler, and so
on. On the other hand, canvas uses static rendering, so if you want to alter the circle, you need to
redraw it completely. Although it’s not terribly daunting to redraw canvas with the help of a library,
it does make it harder to extend an existing library. That’s because the logic for rendering canvas is
more abstract and obfuscated, whereas SVGs exist plainly in the DOM.

However, this DOM accessibility isn’t a free lunch—in general SVG underperforms canvas alternatives.
But don’t worry, these performance differences are covered in more detail in Chapter 12.

Getting Started with Raphaël
After downloading the library from http://raphaeljs.com/ and including it on the page, the next
step is creating a wrapper element for your SVG:

<div id="my-svg"></div>

Next, you need to create a drawing canvas that Raphaël can use to add SVGs. In Raphaël, that’s
called the “paper,” which you can assign to your wrapper element:

var paper = Raphael(document.getElementById('my-svg'), 500, 300);

This code creates a drawing canvas with the wrapper using a width of 500px and a height of 300px.
Now you can add any shapes you want:

var rect = paper.rect(50, 25, 200, 150);
rect.attr('fill', '#00F');

var circle = paper.circle(300, 200, 100);
circle.attr('fill', '#F00');
circle.attr('stroke-width', 0);

Here Raphaël’s rect() API draws a rectangle that is 200px wide and 150px tall. It places that
rectangle at the coordinates (50, 25) within the drawing canvas and then colors it blue (#00F).

Next, the script draws a circle with a radius of 100px that is centered on (300, 200). It colors it red
(#F00) and removes the default stroke by setting its width to zero. Because the circle is drawn
second, it renders on top of the rectangle, as you can see in Figure 10-1.

http://raphaeljs.com

Introducing Raphaël ❘ 205

c10.indd 11/03/2014 Page 205

FIGURE 10-1: This rectangle and circle are drawn with Raphaël.

You can fi nd this example in the Chapter 10 folder on the companion website. It’s named
raphael-basics.html.

NOTE If you’d prefer to include Raphaël from a CDN, you can use cdnjs:
http://cdnjs.com/libraries/raphael.

Drawing Paths
If you need anything more than simple shapes, you can draw them yourself using coordinates and
paths. For example:

var triangle = paper.path('M250,50 L100,250 L400,250 L250,50');

This line uses the path() API to draw a line based on coordinates. Although the path string here
might seem daunting, it’s actually fairly straightforward:

 1. M250,50 starts the path at coordinates (250,50).

 2. L100,250 draws a line from the starting point to (100,250).

 3. L400,250 draws a line from that vertex to point (400,250).

 4. L250,50 draws a line back to the starting point, closing the shape.

When all these paths are drawn together, it renders the triangle shown in Figure 10-2.

FIGURE 10-2: This triangle was drawn with Raphaël’s path() API.

http://cdnjs.com/libraries/raphael

206 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 206

Next, the path string can be simplifi ed a bit:

var triangle = paper.path('M250,50 L100,250 L400,250 Z');

Here, the last command in the string was replaced with Z—a shorthand to close the path at the
starting point.

NOTE To learn more about SVG path strings, visit
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths.

Importing Custom Shapes into Raphaël
You can also use Raphaël to draw a variety of curves from simple arcs to complex Beziers. However,
manually generating the path strings for complex curves can be challenging. Luckily there are tools
you can use to generate Raphaël code for curves of any type.

One option is to export an SVG directly from Adobe Illustrator, using SaveDocsAsSVG, a script
bundled with Illustrator. Shown in Figure 10-3, this tool allows you to export vectored graphics as
SVG code.

FIGURE 10-3: Adobe Illustrator allows you to export SVGs.

After you save the SVG, simply open it in a text editor and look for the path string. For example,
your code might look something like the output for this simple curve:

<?xml version="1.0" encoding="iso-8859-1"?>
<!-- Generator: Adobe Illustrator 16.0.4, SVG Export Plug-In . SVG Version: 6.00
 Build 0) -->
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg"

https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd
http://www.w3.org/2000/svg

Introducing Raphaël ❘ 207

c10.indd 11/03/2014 Page 207

 xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
 width="600px" height="400px" viewBox="0 0 600 400"
 style="enable-background:new 0 0 600 400;" xml:space="preserve">
<path style="fill:none;stroke:#000000;stroke-width:2.1155;stroke-miterlimit:10;"
 d="M251.742,85.146 C75.453,48.476,100.839,430.671,309.565,250.152"/>
</svg>

I’ve highlighted the important piece here, M251.742,85.146 C75.453,48.476,100.839,430.671,
309.565,250.152. You can now take this string to use with Raphaël’s path() API:

paper.path('M251.742,85.146 C75.453,48.476,100.839,430.671,309.565,250.152');

As shown in Figure 10-4, Raphaël now renders the same curve.

FIGURE 10-4: The SVG from Illustrator is now rendered with Raphaël.

This technique works great when you want to cherry pick a curve or two. But if you need to import
a complete graphic, the SVG code can become signifi cantly more complicated. In these cases it’s
better to turn to a conversion tool like Ready Set Raphael, which is shown in Figure 10-5 and is
available at at www.readysetraphael.com/. Simply upload the exported SVG to this converter, and
it outputs the Raphaël code you need.

FIGURE 10-5: Ready Set Raphaël converts SVGs to Raphaël code.

http://www.w3.org/1999/xlink
http://www.readysetraphael.com

208 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 208

Animating Raphaël Graphics
One of the best parts about Raphaël is its robust animation support, which allows you to render
a variety of animations with minimal effort. For example, you can animate the triangle you drew
earlier:

var triangle = paper.path('M250,50 L100,250 L400,250 Z');
triangle.animate({transform: 'r 360'}, 4000, 'bounce');

This rotates the triangle 360 degrees (r 360), which occurs over a period of 4000 milliseconds,
using the bounce easing method. If you run this script in the browser then you see the triangle
rotate, with a fl amboyant bounce effect. If you’d like something a little more subdued, try a different
easing method, such as < to ease in, > to ease out, or <> to ease in and out.

You can add any number of transformations to the transform string. For example, to shrink and
rotate the triangle, you’d write:

triangle.animate({transform: 'r 360 s 0.2'}, 4000, '<>');

This uses a scale transformation to shrink the triangle to 20 percent of its original size (while also
rotating).

Beyond basic transformations, you can also animate a variety of styling options and even the individual
vertices of your shapes. To learn more, visit the Raphaël docs at http://raphaeljs.com
/reference.html#Element.animate.

Handling Mouse Events with Raphaël
One of the best parts of working with SVG is how easy it is to assign mouse events. Because you
can interface directly with the shapes in the SVG, it becomes trivial to assign any event listeners you
need:

triangle.node.onclick = function() {
 triangle.attr('fill', 'red');
};

This script fi rst grabs the DOM reference to the triangle shape in Raphaël and then assigns the
onclick listener. The example uses the basic onclick handler for simplicity, but feel free to use a
jQuery event handler or another more robust listener if you’d like.

However, if you run this script in the browser, it might not have the result you expect. Because the
triangle is just a thin path, it is extremely diffi cult to click; SVG mouse events target the shape itself,
so in this case you have to click an extremely thin line to trigger the handler. To get around this,
simply set a background color for the triangle:

triangle.attr('fill', 'white');

triangle.node.onclick = function() {
 triangle.attr('fill', 'red');
};

Alternatively, if you need a truly transparent triangle, you can use RGBa:

http://raphaeljs.com

Working with gRaphaël ❘ 209

c10.indd 11/03/2014 Page 209

triangle.attr('fill', 'rgba(0,0,0,0)');

triangle.node.onclick = function() {
 triangle.attr('fill', 'rgba(255,0,0,1)');
};

Here the triangle starts completely transparent, rgba(0,0,0,0), and then changes to opaque red,
rgba(255,0,0,1).

TIP Don’t use transparency unless it’s necessary. Opaque colors tend to render
and perform better in SVG.

WORKING WITH gRAPHAËL

There are many charting options for Raphaël, notably gRaphaël, an offi cial release from Sencha
Labs, the owners of Raphaël. gRaphaël can render a variety of common visualizations such as pie
charts, line graphs, and bar charts.

gRaphaël provides a simple starting point for creating your own custom charts. If you need rich
functionality out of the box, you’ll be better off with a more robust charting solution such as D3, as
covered in chapters 11 and 16 of this book. But if you’re looking for something simple and easy to
extend, gRaphaël is an excellent choice.

First download the script from http://g.raphaeljs.com/ and include the core as well as
whichever chart modules you need. Next, reference a DOM element to instantiate the SVG paper:

var paper = Raphael(document.getElementById('my-chart'), 500, 300);

You can fi nd the examples from this section in the Chapter 10 folder on the companion website. It’s
named graphael-charts.html.

NOTE If you’d prefer to include gRaphaël from a CDN, consider using cdnjs:
http://cdnjs.com/libraries/graphael.

Creating Pie Charts
When you’ve made sure you’re including raphael.js, g.raphael.js, and g.pie.js, you can
render a pie chart with a single line of code:

paper.piechart(250, 150, 120, [80, 55, 32, 21, 9, 5, 2]);

As shown in Figure 10-6, this creates a pie chart centered at (250,150), with a radius of 120px, and
showing the values in the array.

http://g.raphaeljs.com
http://cdnjs.com/libraries/graphael

210 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 210

FIGURE 10-6: gRaphaël renders a basic pie chart.

Chances are you’ll also want to label the slices of this pie. To do so, you need to dig into the last
argument of the piechart() API:

paper.piechart(250, 150, 120, [80, 55, 32, 21, 9, 5, 2], {
 legend: [
 'croissants',
 'bagels',
 'doughnuts',
 'muffins',
 'danishes',
 'scones',
 'coffee cakes'
]
});

Passing in the legend array creates a labeled legend for the pie chart, as you can see in Figure 10-7.

FIGURE 10-7: A legend has been added to the pie chart.

You can use this same option object to tweak the colors of the chart, set up links for the various
slices, and more. To learn more about the piechart() API, visit http://g.raphaeljs.com/
reference.html#Paper.piechart.

http://g.raphaeljs.com

Working with gRaphaël ❘ 211

c10.indd 11/03/2014 Page 211

Creating Line Charts
After you’ve included g.line.js, you can also render line graphs with ease:

var xVals = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50],
 yVals = [46, 75, 91, 64, 82, 41, 53, 47, 73, 76, 62];

paper.linechart(0, 0, 500, 300, xVals, yVals);

In this code, a line chart is drawn between (0,0) and (500,300) using the provided xVals and yVals.
That code renders the line graph shown in Figure 10-8.

FIGURE 10-8: gRaphaël’s basic line chart.

If you need multiple lines, you can pass in additional sets of y values:

var xVals = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50],
 yVals = [46, 75, 91, 64, 82, 41, 53, 47, 73, 76, 62],
 yVals2 = [71, 51, 55, 40, 62, 66, 42, 81, 84, 57, 73];

paper.linechart(0, 0, 500, 300, xVals, [yVals, yVals2]);

Here, the second set of y values creates a second line that you can see in Figure 10-9.

FIGURE 10-9: gRaphaël’s line charts allow multiple lines.

212 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 212

You can then establish the x and y axis by passing the axis option:

paper.linechart(20, 0, 500, 280, xVals, [yVals, yVals2],
 {axis: '0 0 1 1'});

Here the axis array displays axes in TRBL (top right bottom left) order, so in this case the script ren-
ders the axes on the bottom and left sides of the chart, as you can see in Figure 10-10.

FIGURE 10-10: Setting the axis option creates x and y axes.

However, you may have noticed that the axes are labeled a bit oddly—for instance, look at the num-
ber of steps on the x-axis.. Unfortunately, adjusting the labels is a bit complicated—you have to set
the axis step value like so:

paper.linechart(20, 0, 500, 280, xVals, [yVals, yVals2],
 {axis: '0 0 1 1', axisxstep: 10});

Here, axisxstep defi nes the number of steps to show on the x axis. However, the option is a bit
counterintuitive because the value of 10 actually renders 11 steps, as shown in Figure 10-11.

FIGURE 10-11: The x-axis has been relabeled with more useful steps.

Finally, gRaphaël provides a handful of options you can use to alter the visualization. For example,
to shade the chart like the area chart in Figure 10-12, simply pass the shade option:

Working with gRaphaël ❘ 213

c10.indd 11/03/2014 Page 213

paper.linechart(20, 0, 500, 280, xVals, [yVals, yVals2],
 {axis: '0 0 1 1', axisxstep: 10, shade: true});

FIGURE 10-12: The shade option allows you to render area charts.

Alternatively, you can create a curved graph like the one in Figure 10-13:

 paper.linechart(20, 0, 500, 280, xVals, [yVals, yVals2],
 {axis: '0 0 1 1', axisxstep: 10, shade: true,
 smooth: true, symbol: 'circle'});

Here, smooth renders the curved lines and symbol renders the points along the line.

FIGURE 10-13: The smooth option creates curved lines.

These are just a few of the options available to the linechart() API. To learn about more possibilities,
visit http://g.raphaeljs.com/reference.html#Paper.linechart.

Creating Bar and Column Charts
gRaphaël also provides some bar chart support, although to be honest the functionality is quite
limited. To get started, include the gRaphaël core as well as g.bar.js. The barchart() API works

http://g.raphaeljs.com/reference.html#Paper.linechart

214 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 214

fairly similarly to linechart(); the main difference is that you only pass in a single set of values as
opposed to (x,y) pairs:

var vals = [46, 75, 91, 64, 82, 41, 53, 47, 73, 76, 62];

paper.barchart(0, 0, 500, 300, [vals]);

The preceding code renders the column chart shown in Figure 10-14.

 FIGURE 10-14: gRaphaël renders a basic column chart.

Pay careful attention to the values because they are passed as an array contained in an array. That
allows you to render multiple sets of bars:

var vals = [46, 75, 91, 64, 82, 41, 53, 47, 73, 76, 62],
 vals2 = [71, 51, 55, 40, 62, 66, 42, 81, 84, 57, 73];

paper.barchart(0, 0, 500, 300, [vals, vals2]);

As shown in Figure 10-15, this renders the two values side by side.

FIGURE 10-15: Adding a second data set creates a clustered column chart.

Unfortunately, labeling gRaphaël’s bar chart can be a challenge because there is no native axis sup-
port. That said, you can use some of Raphaël’s utilities to create your own labels. To get started,
take a look at this simple gRaphaël plug-in:

Working with gRaphaël ❘ 215

c10.indd 11/03/2014 Page 215

Raphael.fn.labelBarChart = function(x_start, y_start, width, labels, textAttr) {
 var paper = this;

 // offset x_start and width for bar chart gutters
 x_start += 10;
 width -= 20;

 var labelWidth = width / labels.length;

 // offset x_start to center under each column
 x_start += labelWidth / 2;

 for (var i = 0, len = labels.length; i < len; i++) {
 paper.text(x_start + (i * labelWidth), y_start, labels[i]).attr
 (textAttr);
 }
};

Don’t worry too much about the nuts and bolts of this script. The important piece is the call to
paper.text(). This API renders text in the SVG according to a variety of parameters.

Next, to use this script, simply pass the labels you want to use:

var labels = ['Col 1', 'Col 2', 'Col 3', 'Col 4', 'Col 5', 'Col 6', 'Col 7',
 'Col 8'];

paper.labelBarChart(0, 290, 500, labels, {'font-size': 14});

Here, the labelBarChart() API creates labels starting at (0, 290), with a width of 290, the result of
which you can see in Figure 10-16.

FIGURE 10-16: A bar chart using a custom label plug-in.

That takes care of labeling the different data sets. Labeling the y-axis, on the other hand, is
more complex. As an exercise, follow the labelBarChart() plug-in example to create a plug-in
to label the axis.

216 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 216

EXTENDING RAPHAËL TO CREATE CUSTOM CHARTS

One of the best parts of working with Raphaël and gRaphaël is how lightweight and extensible the
libraries are. Each provides an excellent jumping off point for creating your own custom charts.

You’ve already gotten a glimpse of extending Raphaël with the labelBarChart() plug-in earlier in
this chapter. In this section, you fi nd out how to use a variety of the utility functions in Raphaël to
build the donut chart shown in Figure 10-17.

FIGURE 10-17: This custom donut chart plug-in extends Raphaël.

You create the donut chart as a versatile plug-in with a variety of options. By the end of this example,
you’ll be able to use these concepts to create any chart you need.

You can fi nd this example in the Chapter 10 folder on the companion website. It’s named
custom-donut-chart.html.

Setting Up with Common Patterns
To get started, extend the Raphaël core and create a new plug-in for donut charts:

Raphael.fn.donutChart = function (cx, cy, r, values, options) {
 // ...
}

This new function accepts a variety of arguments you need to position and render the chart:

 ➤ X and Y coordinates of the center point

 ➤ Radius for the chart

 ➤ Values to display

 ➤ Miscellaneous options

Next, store a few variables for later:

Raphael.fn.donutChart = function (cx, cy, r, values, options) {
 var paper = this,
 chart = this.set(),

Extending Raphaël to Create Custom Charts ❘ 217

c10.indd 11/03/2014 Page 217

 rad = Math.PI / 180;

 return chart;
};

Here, the script renames this to paper for easy access to the SVG canvas and then stores a
reference to the set(), or group of shapes in the SVG. Additionally, it caches the value of a single
radian—that’ll come in handy later when you do a little trigonometry (don’t worry; it isn’t too
painful). Finally, the script returns the set of shapes in the SVG to allow for easy access and
chainability with other APIs.

The next step is setting up a framework for the plug-in options. Besides the main settings for the
chart position and values, the plug-in accepts an argument for a general set of options. These
secondary options should have smart defaults so that the user can ignore the settings unless they’re
needed:

Raphael.fn.donutChart = function (cx, cy, r, values, options) {
 var paper = this,
 chart = this.set(),
 rad = Math.PI / 180;

 // define options
 var o = options || {};
 o.width = o.width || r * .15;

 return chart;
};

This snippet establishes a basic option for the width of the donut chart (which defaults to 15 percent
the size of the radius). As you develop the script, you’ll add more options.

Drawing an Arc
Before getting into any data processing, start with the visuals. When it comes to donut charts, the
basic graphical building block is an arc, like the one shown in Figure 10-18.

FIGURE 10-18: Donut charts are made up of arcs like this one.

To draw these arcs, you need to create a reusable function that positions and draws each of the
curves. Fortunately, you already have all the information you need from the settings; you just have
to use some basic math and trigonometry:

218 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 218

function draw_arc(startAngle, endAngle) {
 // get the coordinates
 var x1 = cx + r * Math.cos(-startAngle * rad),
 y1 = cy + r * Math.sin(-startAngle * rad),
 x2 = cx + r * Math.cos(-endAngle * rad),
 y2 = cy + r * Math.sin(-endAngle * rad);

 // draw the arc
 return paper.path(
 ["M", x1, y1,
 "A", r, r, 0, +(endAngle - startAngle > 180), 0, x2, y2
]
);
}

This function takes the angles for the arc and determines the coordinates for the start and end
points of the shape. If you don’t understand the trigonometry, don’t worry too much. Basically, you
need to multiply the radius by the cosine and sine of the angle to get the x and y offsets respectively.
Add these to the center coordinates and you have the coordinates for your arc.

TIP If you’d like to learn more about circle trigonometry, visit
www.mathsisfun.com/sine-cosine-tangent.html. Despite the URL, we make
no promises that math is fun.

The next step is drawing the arc with the same path() API you used earlier this chapter. Here, the
script creates a standard SVG path string from the data. The path starts at (x1,y1) and then draws
an arc with radius r to (x2,y2).

If you hardcode values for cx, cy, and r, and pass in a startAngle and endAngle, you should see
something like Figure 10-19.

FIGURE 10-19: This arc is drawn using basic trig.

Although you could stop right here and just widen the stroke for each arc, you’re going to draw an
entire outline. Drawing the whole shape provides more versatility—for example, enabling you to add
a stroke to the shape itself. But it also adds some complexity because you need to draw a second arc
inside the fi rst, and add that to the original shape:

http://www.mathsisfun.com/sine-cosine-tangent.html

Extending Raphaël to Create Custom Charts ❘ 219

c10.indd 11/03/2014 Page 219

// interior radius
var rin = r - o.width;

// draw arc
function draw_arc(startAngle, endAngle) {
 // get the coordinates
 var x1 = cx + r * Math.cos(-startAngle * rad),
 y1 = cy + r * Math.sin(-startAngle * rad),
 x2 = cx + r * Math.cos(-endAngle * rad),
 y2 = cy + r * Math.sin(-endAngle * rad),

 xin1 = cx + rin * Math.cos(-startAngle * rad),
 yin1 = cy + rin * Math.sin(-startAngle * rad),
 xin2 = cx + rin * Math.cos(-endAngle * rad),
 yin2 = cy + rin * Math.sin(-endAngle * rad);

 // draw the arc
 return paper.path(
 ["M", xin1, yin1,
 "L", x1, y1,
 "A", r, r, 0, +(endAngle - startAngle > 180), 0, x2, y2,
 "L", xin2, yin2,
 "A", rin, rin, 0, +(endAngle - startAngle > 180), 1, xin1, yin1, "z"]
);
}

Here, the script fi rst calculates the interior radius (rin) using the radius and the width option you
established earlier. Next, it uses the same trigonometry technique to determine the start and end
coordinates of the interior arc ((xin1,yin1) and (xin2,yin2)).

Then, the path string gets a little more complicated:

 1. It starts at the interior start point.

 2. It draws a line to the exterior start point.

 3. It traces an arc to the exterior end point.

 4. It draws a line to the interior end point.

 5. It closes the shape by drawing an arc back to the interior start point.

Last but not least, you color these shapes. But rather than hardcode color values, it’s better to keep
things open ended. A good approach is to add a general style option that you can populate as needed
with fi ll colors, stroke settings, and so on.

function draw_arc(startAngle, endAngle, styleOpts) {
 // get the coordinates
 var x1 = cx + r * Math.cos(-startAngle * rad),
 y1 = cy + r * Math.sin(-startAngle * rad),
 x2 = cx + r * Math.cos(-endAngle * rad),
 y2 = cy + r * Math.sin(-endAngle * rad),

 xin1 = cx + rin * Math.cos(-startAngle * rad),
 yin1 = cy + rin * Math.sin(-startAngle * rad),

220 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 220

 xin2 = cx + rin * Math.cos(-endAngle * rad),
 yin2 = cy + rin * Math.sin(-endAngle * rad);

 // draw the arc
 return paper.path(
 ["M", xin1, yin1,
 "L", x1, y1,
 "A", r, r, 0, +(endAngle - startAngle > 180), 0, x2, y2,
 "L", xin2, yin2,
 "A", rin, rin, 0, +(endAngle - startAngle > 180), 1, xin1, yin1, "z"]
).attr(styleOpts);
}

Here the function allows you to pass a general styleOpts value with any styling information you
need. Finally, let’s take a look at usage:

Raphael.fn.donutChart = function (cx, cy, r, values, options) {
 var paper = this,
 chart = this.set(),
 rad = Math.PI / 180;

 // define options
 var o = options || {};
 o.width = o.width || r * .15;

 // interior radius
 var rin = r - o.width;

 // draw arc
 function draw_arc(startAngle, endAngle, styleOpts) {
 // get the coordinates
 var x1 = cx + r * Math.cos(-startAngle * rad),
 y1 = cy + r * Math.sin(-startAngle * rad),
 x2 = cx + r * Math.cos(-endAngle * rad),
 y2 = cy + r * Math.sin(-endAngle * rad),

 xin1 = cx + rin * Math.cos(-startAngle * rad),
 yin1 = cy + rin * Math.sin(-startAngle * rad),
 xin2 = cx + rin * Math.cos(-endAngle * rad),
 yin2 = cy + rin * Math.sin(-endAngle * rad);

 // draw the arc
 return paper.path(
 ["M", xin1, yin1,
 "L", x1, y1,
 "A", r, r, 0, +(endAngle - startAngle > 180), 0, x2, y2,
 "L", xin2, yin2,
 "A", rin, rin, 0, +(endAngle - startAngle > 180), 1, xin1, yin1, "z"]
).attr(styleOpts);
 }

 draw_arc(0, 240, { fill: '#f0f', stroke: 0 });

 return chart;
};

Extending Raphaël to Create Custom Charts ❘ 221

c10.indd 11/03/2014 Page 221

var paper = Raphael(document.getElementById('donut-chart'), 250, 250);

paper.donutChart(125, 125, 100, [], { width: 20 });

This example renders the arc shown in Figure 10-20, with a pink fi ll color and no stroke.

FIGURE 10-20: This arc is styled with Raphaël.

Now you’ve established the basic building blocks for the donut chart graphic. In the coming sections
you see how to convert your data into values you can render with this versatile function.

Massaging Data into Usable Values
With the arc function in place, the next step is creating usable values. When it comes to the data in
donut charts, they act a lot like pie charts: The only information that matters is percentages. Thus,
to render this chart, you have to take a few steps:

 1. Fetch the total of all values.

 2. Determine the percentage for an individual value.

 3. Render that percentage as an angle with the draw_arc() function.

 4. Start the next arc at the angle where the prior arc stopped.

The fi rst step is really straightforward. Simply loop through the values array you set up earlier to
fetch the total:

var total = 0;

for (var i = 0, max = values.length; i < max; i++) {
 total += values[i];
}

Alternatively, if you aren’t worried about backward compatibility for older browsers, you can use
the newer Array.reduce() method:

var total = values.reduce();

Next, you need to process and render each individual value. Start with a function that determines
what percentage of the donut to render:

var angle = 0;

function build_segment(j) {
 var value = values[j],

222 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 222

 angleplus = 360 * value / total;

 var arc = draw_arc(angle, angle + angleplus);

 angle += angleplus;
}

// build each segment of the chart
for (i = 0; i < max; i++) {
 build_segment(i);
}

As you can see, the build_segment() function starts by calculating the percentage of the full circle
that the segment should occupy. Then it leverages the draw_arc() function to render an arc from
the starting angle to the ending point. Finally, it increments the angle value to set the starting point
for the next segment in the loop.

Next, run the script with a random data set:

paper.donutChart(125, 125, 100, [120, 45, 20, 5]);

As you can see in Figure 10-21, that script renders the donut chart, but it only renders as outlines.
That’s because you still need to set the color values.

FIGURE 10-21: This screenshot shows the initial donut chart rendering.

Rather than hardcode, you can set the colors up in a way that can be customized:

if (typeof o.colors == 'undefined') {
 for (var i = 0, max = values.length; i < max; i++) {
 o.colors.push(Raphael.hsb(i / 10, .75, 1));
 }
}

In the preceding code, the colors are set up using the same options object you used earlier for the
chart width. That way, the developer can set the colors if she wants. Alternatively, if the user doesn’t
set any values, the script uses the Raphaël utility function hsb() to create unique colors for each
value in the chart. That’s a nifty technique that uses the hue to space colors out evenly around the
color wheel.

Finally, apply each color in the build_segment() loop:

function build_segment(j) {
 var value = values[j],

Extending Raphaël to Create Custom Charts ❘ 223

c10.indd 11/03/2014 Page 223

 angleplus = 360 * value / total,
 styleOpts = {
 fill: o.colors[j]
 };

 var arc = draw_arc(angle, angle + angleplus, styleOpts);

 angle += angleplus;
}

Now the script renders the colorful chart shown in Figure 10-22.

FIGURE 10-22: The donut chart has been rendered in color.

Finally, add some customization options for the stroke:

o.strokeWidth = o.strokeWidth || 0;
o.strokeColor = o.strokeColor || '#000';

and apply them to each segment:

function build_segment(j) {
 var value = values[j],
 angleplus = 360 * value / total,
 styleOpts = {
 fill: o.colors[j]
 };

 if (o.strokeWidth) {
 styleOpts.stroke = o.strokeColor;
 styleOpts['stroke-width'] = o.strokeWidth;
 }
 else {
 styleOpts.stroke = 'none';
 }

 var arc = draw_arc(angle, angle + angleplus, styleOpts);

 angle += angleplus;
}

Here, the stroke is applied if it exists. But as you can see in Figure 10-23, the script now defaults to
using no stroke.

224 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 224

FIGURE 10-23: The chart now defaults to strokeless.

Now the plug-in is rendering the chart at its most basic level. Here’s the script so far:

Raphael.fn.donutChart = function (cx, cy, r, values, options) {
 var paper = this,
 chart = this.set(),
 rad = Math.PI / 180;

 // define options
 var o = options || {};
 o.width = o.width || r * .15;
 o.strokeWidth = o.strokeWidth || 0;
 o.strokeColor = o.strokeColor || '#000';

 // create colors if not set
 if (typeof o.colors == 'undefined') {
 o.colors = [];

 for (var i = 0, max = values.length; i < max; i++) {
 o.colors.push(Raphael.hsb(i / 10, .75, 1));
 }
 }

 // interior radius
 var rin = r - o.width;

 // draw arc
 function draw_arc(startAngle, endAngle, styleOpts) {
 // get the coordinates
 var x1 = cx + r * Math.cos(-startAngle * rad),
 y1 = cy + r * Math.sin(-startAngle * rad),
 x2 = cx + r * Math.cos(-endAngle * rad),
 y2 = cy + r * Math.sin(-endAngle * rad),

 xin1 = cx + rin * Math.cos(-startAngle * rad),
 yin1 = cy + rin * Math.sin(-startAngle * rad),
 xin2 = cx + rin * Math.cos(-endAngle * rad),
 yin2 = cy + rin * Math.sin(-endAngle * rad);

 // draw the arc
 return paper.path(
 ["M", xin1, yin1,

Extending Raphaël to Create Custom Charts ❘ 225

c10.indd 11/03/2014 Page 225

 "L", x1, y1,
 "A", r, r, 0, +(endAngle - startAngle > 180), 0, x2, y2,
 "L", xin2, yin2,
 "A", rin, rin, 0, +(endAngle - startAngle > 180), 1, xin1, yin1, "z"]
).attr(styleOpts);
 }

 // process each segment of the arc and render
 function build_segment(j) {
 var value = values[j],
 angleplus = 360 * value / total,
 styleOpts = {
 fill: o.colors[j]
 };

 if (o.strokeWidth) {
 styleOpts.stroke = o.strokeColor;
 styleOpts['stroke-width'] = o.strokeWidth;
 }
 else {
 styleOpts.stroke = 'none';
 }

 var arc = draw_arc(angle, angle + angleplus, styleOpts);

 angle += angleplus;
 }

 var angle = 0,
 total = 0;

 // fetch total
 for (var i = 0, max = values.length; i < max; i++) {
 total += values[i];
 }

 // build each segment of the chart
 for (i = 0; i < max; i++) {
 build_segment(i);
 }

 return chart;
};

Adding Mouse Interactivity
Now that the script renders the chart, the next step is to add interactivity. Fortunately, setting up a
click handler is pretty easy with the SVG event listeners. First, create an option the developer can
use for click handlers:

o.onclick = o.onclick || function() {};

and then apply the handler in the build_segment() function:

function build_segment(j) {
 var value = values[j],

226 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 226

 angleplus = 360 * value / total,
 styleOpts = {
 fill: o.colors[j]
 };

 if (o.strokeWidth) {
 styleOpts.stroke = o.strokeColor;
 styleOpts['stroke-width'] = o.strokeWidth;
 }
 else {
 styleOpts.stroke = 'none';
 }

 var arc = draw_arc(angle, angle + angleplus, styleOpts);

 arc.click(function() {
 o.onclick(j);
 });

 angle += angleplus;
}

As you can see, the script applies a simple click handler to the arc that is returned from the
draw_arc() function. Next, add handlers for mouseover and mouseout:

o.onmouseover = o.onmouseover || function() {};
o.onmouseout = o.onmouseout || function() {};

Now apply the handler:

arc.mouseover(function () {
 o.onmouseover(j);
}).mouseout(function () {
 o.onmouseout(j);
});

Finally, add some visual fl are and animate the segments on mouseover:

arc.mouseover(function () {
 arc.stop().animate({transform: 's' + o.animationScale + ' ' + o.animationScale +
 ' ' + cx + " " + cy}, o.animationDuration, o.animationEasing);

 o.onmouseover(j);
}).mouseout(function () {
 arc.stop().animate({transform: ""}, o.animationDuration, o.animationEasing);

 o.onmouseout(j);
});

As you can see, the script leverages Raphaël’s animate() API to adjust the scale of the segments on
mouseover. It starts by stopping any queued animations with stop(), and then goes into a trans-
form animation. Of course, you also need to set up defaults for the animation options:

o.animationDuration = o.animationDuration || 300;
o.animationScale = o.animationScale || 1.1;
o.animationEasing = o.animationEasing || 'backOut';

Extending Raphaël to Create Custom Charts ❘ 227

c10.indd 11/03/2014 Page 227

Finally, make sure that the plug-in returns the full set of SVG shapes. If you remember, when you
fi rst set up the script, you cached a set of SVG shapes:

var chart = this.set();

Keep this list fresh by pushing each new arc to the set at the end of the build_segment() function:

chart.push(arc);

Labeling the Data
Last but not least, you need to label the chart using Raphaël’s text() API. First set up some options
with smart defaults:

o.labels = o.labels || [];
o.labelOffsetX = o.labelOffsetX || 50;
o.labelOffsetY = o.labelOffsetY || 30;

Here, the labels option allows the user to pass an array of text labels, and labelOffsetX and
labelOffsetY control how far away to render the labels from the chart.

Next, in the build_segment() loop, determine which label to include and where:

// create labels if they exist
if (o.labels[j] !== 'undefined') {
 var halfAngle = angle + (angleplus / 2),
 label = draw_label(o.labels[j], halfAngle);
}

In this snippet, the script fi rst centers the label by calculating the halfway point of the arc. Then
it passes this angle along with the text for the label to the draw_label() function. That function
looks like this:

function draw_label(label, angle) {
 var labelX = cx + (r + o.labelOffsetX) * Math.cos(-angle * rad),
 labelY = cy + (r + o.labelOffsetY) * Math.sin(-angle * rad),
 txt = paper.text(labelX, labelY, label);

 return txt;
}

Here, the script uses more trigonometry to calculate the coordinates for the label. These are adjusted
by the values in the offset settings and then passed into Raphaël’s text() API along with the text
for the label. Finally, make sure to pass in your labels:

paper.donutChart(200, 200, 100, [120, 45, 20, 5], {
 labels: [
 'tacos',
 'pizzas',
 'burgers',
 'salads'
]
});

The result is shown in Figure 10-24. As you can see, the styling of these labels leaves something to
be desired.

228 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 228

FIGURE 10-24: Custom labels have been added to the donut chart.

Finalize the script by adding some basic styling settings, and make sure to color each label to match
its segment:

function draw_label(label, angle, styleOpts) {
 var style = {};

 style.fill = styleOpts.fill || '#000';
 style['font-size'] = styleOpts['font-size'] || 20;

 var labelX = cx + (r + o.labelOffsetX) * Math.cos(-angle * rad),
 labelY = cy + (r + o.labelOffsetY) * Math.sin(-angle * rad),
 txt = paper.text(labelX, labelY, label).attr(style);

 return txt;
}

That adds a styleOpts argument to the script, with some basic defaults for the color and font size.
Next, pass the color in the build_segment() loop:

if (o.labels[j] !== 'undefined') {
 var halfAngle = angle + (angleplus / 2),
 label = draw_label(o.labels[j], halfAngle, {
 fill: o.colors[j]
 });
}

Now the labels are looking much better, as you can see in Figure 10-25.

Last but not least, make sure to add this label to the main chart object so the labels get returned
along with the other shapes in this SVG:

if (typeof label != 'undefined') chart.push(label);

Extending Raphaël to Create Custom Charts ❘ 229

c10.indd 11/03/2014 Page 229

FIGURE 10-25: After styling the labels, the donut chart is complete.

Wrapping Up
Finally, have one last look at the plug-in—this time with the code all put together:

Raphael.fn.donutChart = function (cx, cy, r, values, options) {
 var paper = this,
 chart = this.set(),
 rad = Math.PI / 180;

 // define options
 var o = options || {};
 o.width = o.width || r * .15;
 o.strokeWidth = o.strokeWidth || 0;
 o.strokeColor = o.strokeColor || '#000';

 o.onclick = o.onclick || function() {};
 o.onmouseover = o.onmouseover || function() {};
 o.onmouseout = o.onmouseout || function() {};

 o.animationDuration = o.animationDuration || 300;
 o.animationScale = o.animationScale || 1.1;
 o.animationEasing = o.animationEasing || 'backOut';

 o.labels = o.labels || [];
 o.labelOffsetX = o.labelOffsetX || 50;
 o.labelOffsetY = o.labelOffsetY || 30;

 // create colors if not set
 if (typeof o.colors == 'undefined') {
 o.colors = [];

 for (var i = 0, max = values.length; i < max; i++) {
 o.colors.push(Raphael.hsb(i / 10, .75, 1));
 }
 }

230 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 230

 // interior radius
 var rin = r - o.width;

 // draw arc
 function draw_arc(startAngle, endAngle, styleOpts) {
 // get the coordinates
 var x1 = cx + r * Math.cos(-startAngle * rad),
 y1 = cy + r * Math.sin(-startAngle * rad),
 x2 = cx + r * Math.cos(-endAngle * rad),
 y2 = cy + r * Math.sin(-endAngle * rad),

 xin1 = cx + rin * Math.cos(-startAngle * rad),
 yin1 = cy + rin * Math.sin(-startAngle * rad),
 xin2 = cx + rin * Math.cos(-endAngle * rad),
 yin2 = cy + rin * Math.sin(-endAngle * rad);

 // draw the arc
 return paper.path(
 ["M", xin1, yin1,
 "L", x1, y1,
 "A", r, r, 0, +(endAngle - startAngle > 180), 0, x2, y2,
 "L", xin2, yin2,
 "A", rin, rin, 0, +(endAngle - startAngle > 180), 1, xin1, yin1, "z"]
).attr(styleOpts);
 }

 // add label at given angle
 function draw_label(label, angle, styleOpts) {
 var style = {};

 style.fill = styleOpts.fill || '#000';
 style['font-size'] = styleOpts['font-size'] || 20;

 var labelX = cx + (r + o.labelOffsetX) * Math.cos(-angle * rad),
 labelY = cy + (r + o.labelOffsetY) * Math.sin(-angle * rad),
 txt = paper.text(labelX, labelY, label).attr(style);

 return txt;
 }

 // process each segment of the arc and render
 function build_segment(j) {
 var value = values[j],
 angleplus = 360 * value / total,
 styleOpts = {
 fill: o.colors[j]
 };

 if (o.strokeWidth) {
 styleOpts.stroke = o.strokeColor;
 styleOpts['stroke-width'] = o.strokeWidth;
 }
 else {
 styleOpts.stroke = 'none';
 }

Extending Raphaël to Create Custom Charts ❘ 231

c10.indd 11/03/2014 Page 231

 // draw the arc
 var arc = draw_arc(angle, angle + angleplus, styleOpts);

 // create labels if they exist
 if (o.labels[j] !== 'undefined') {
 var halfAngle = angle + (angleplus / 2),
 label = draw_label(o.labels[j], halfAngle, {
 fill: o.colors[j]
 });
 }

 // mouse event handlers
 arc.click(function() {
 o.onclick(j);
 });

 arc.mouseover(function () {
 arc.stop().animate({transform: 's' + o.animationScale + ' ' +
 o.animationScale + ' ' + cx + " " + cy}, o.animationDuration,
 o.animationEasing);

 o.onmouseover(j);
 }).mouseout(function () {
 arc.stop().animate({transform: ""}, o.animationDuration, o.animationEasing);

 o.onmouseout(j);
 });

 angle += angleplus;

 chart.push(arc);

 if (typeof label != 'undefined') chart.push(label);
 }

 var angle = 0,
 total = 0;

 // fetch total
 for (var i = 0, max = values.length; i < max; i++) {
 total += values[i];
 }

 // build each segment of the chart
 for (i = 0; i < max; i++) {
 build_segment(i);
 }

 return chart;
};

var paper = Raphael(document.getElementById('donut-chart'), 400, 400);

paper.donutChart(200, 200, 100, [120, 45, 20, 5], {

232 ❘ CHAPTER 10 BUILDING CUSTOM CHARTS WITH RAPHAËL

c10.indd 11/03/2014 Page 232

 labels: [
 'tacos',
 'pizzas',
 'burgers',
 'salads'
]
});

To recap:

 1. The script starts by creating an options framework with smart defaults.

 2. It defi nes its fi rst core function, draw_arc(), which renders each segment of the donut chart
using basic trigonometry and Raphaël’s path() API.

 3. The second core function, draw_label(), renders each label at the appropriate location
using Raphaël’s text() API.

 4. The third core function, build_segment(), fi rst massages the data into a usable format and
then passes the refi ned data to draw_arc() and draw_label(). Then it applies mouse event
listeners, both for a general click event and also to animate the segments on mouseover.

 5. The script calculates the total and initiates the build_segment() loop to render the chart.

As shown in Figure 10-25, the script is rendering the donut chart nicely, but there’s still room for
improvement. Mainly you could add more options to make the plug-in more versatile. As an exer-
cise, try adding customizable settings for the following:

 ➤ Altering the startAngle of the chart

 ➤ Rendering the segments clockwise or counterclockwise

 ➤ Creating a loading animation that expands the donut when it fi rst appears on the screen

SUMMARY

 This chapter explained how to use the SVG library Raphaël to render custom charts. You started by
getting familiar with the basics of Raphaël: drawing basic shapes and adding animation and mouse
event listeners. You also learned techniques for importing your own vector graphics to use with the
library.

Next you were introduced to gRaphaël, a simple charting library for Raphaël. With gRaphaël,
you explored rendering a variety of different visualizations, from pie charts to line graphs and bar
graphs.

Finally, you followed a practical example to create a donut chart plug-in for Raphaël. In this plug-in,
you leveraged your knowledge of Raphaël along with basic trigonometry to render a custom graphic.

In the coming chapters, you discover more charting solutions, including the highly interactive D3, as
well as various mapping and time series libraries.

c11.indd 11/03/2014 Page 233

Introducing D3
 WHAT’S IN THIS CHAPTER

 ➤ Getting started with D3

 ➤ Creating, manipulating, and destroying data-driven elements

 ➤ Working with D3 transitions

 ➤ Dealing with visually complex, nested data structures.

 ➤ Exploring D3’s toolkit of functions for simplifying common tasks.

 ➤ Building a fi le system visualization using a built-in D3 layout.

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/javascriptandjqueryanalysis on the Download Code
tab. The code is in the chapter 11 download and individually named according
to the names throughout the chapter.

D3 is a JavaScript library for general purpose visualization. D3 possesses a powerful selection
model for declaratively describing how data should be mapped to the visual elements. It comes
bundled with a vast variety of helper functions that can be leveraged when building visualizations
and is easily extensible to support custom functionality.

Unlike some other visualization libraries, D3 does not offer any prepackaged “standard”
visualizations (bar chart, pie chart, and so on), although you can create your own. If you are
only interested in standard quick visualizations then you should check out some of the libraries
written on top of D3, such as NVD3 (http://nvd3.org/) and C3.js (http://c3js.org/).

On the surface, D3 appears to be similar to jQuery with regard to selecting and manipulating
existing elements on the page. D3 adds a mechanism for adding or removing elements to match
a dataset, which makes it particularly apt for data visualization.

11

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

234 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 234

The true power (and joy) of using D3 comes from the ability to take a data set and turn it into a
fully customized interactive visualization by assigning visual elements to data items and leveraging
the vast suite of built-in helper functions.

Imagine looking at a dataset of all U.S. hospitals that list the name, city, state, owner, and location
for each facility. See Figure 11-1 for an example of what some rows for the dataset would look like.

FIGURE 11-1: This table shows the fi rst fi ve rows of the hospital data set.

You could be interested in the distribution of hospitals by state visualized as a bar chart, as shown
in Figure 11-2. Alternatively you could grab a geo JSON representation of the United States from
the census bureau, pick one of D3’s geo-projection functions, and plot every hospital on a map. You
could then use a Voronoi layout (discussed in Chapter 16) to visualize each hospital’s catchment area
as shown in Figure 11-3. These examples, with fully annotated source code, can be found in the
us-hospitals directory in the Chapter 11 code examples on the companion website.

FIGURE 11-2: This bar chart shows the distribution of hospitals by state.

This chapter dives into D3’s core concepts: element selections, data joining, and transitions. The D3
community has experienced meteoric growth, and there is no shortage of examples, tutorials, and
how-tos online. The aim here is to give you a good framework for understanding any D3 visualization
that you might encounter in the wild and give you the ability to remix them or create your own.

Getting Started ❘ 235

c11.indd 11/03/2014 Page 235

FIGURE 11-3: This geo-visualization shows U.S. hospitals with their areas of infl uence.

 GETTING STARTED

The following is the basic structure of the HTML that would house a D3 visualization. (You can
fi nd this fi le in the blank/index.html directory for Chapter 11 on the companion website.)

<!DOCTYPE html>
<html>
 <head>
 <meta charset='utf-8'>
 <script src="../d3/d3.js" charset="utf-8"></script>
 <link rel="stylesheet" href="../common.css">
 <link rel="stylesheet" href="style.css">
 <title>My visualization</title>
 </head>
 <body>
 <script src="script.js"></script>
 </body>
</html>

The examples in this chapter use a local copy of D3 so that they may function offl ine, but a hosted
version is also available. To get the latest release in your project, copy this snippet into the <head>
part of the document:

<script src="http://d3js.org/d3.v3.min.js" charset="utf-8"></script>

Alternatively, you can play around with D3 by using an online web development playground such
as http://jsfiddle.net/. You simply need to select D3 in the sidebar as a library to load and
start playing.

236 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 236

DOM and SVG
D3 acts on elements within the page. It can manipulate any element that implements the Document
Object Model (DOM) interface. This includes HTML elements (like <div> and <table>) and SVG
elements.

SVG stands for Scalable Vector Graphics, and is a standard that can create visuals out of vector
primitives such as lines and circles. SVG is a good choice for visualization because it is based on a
DOM, allowing its elements to have events and to be manipulated with D3 selections. SVG can also
be scaled to any size without degradation of quality. Figure 11-4 shows a very simple SVG element
containing four rectangles.

FIGURE 11-4: Shown here is a representation of an SVG element as presented in the Google Chrome
inspector panel.

Because SVG maintains a scene graph of the visual elements displayed, there is some overhead
ascribed per element. A visualization that involves hundreds of thousands of elements might be
more appropriately implemented using the HTML5 Canvas component. Canvas acts as a simple
bitmap container to put you in charge of interpreting the locations of mouse events and coordi-
nate systems.

In this chapter the focus is on applying D3 to create SVG graphics, as it is the most common
medium for the task.

Unlike some other visualization tools (such as http://raphaeljs.com/) D3 expects you to know
and understand the underlying technology into which your visualization is going to be rendered
(be it SVG or HTML). As such, it is recommended that you have a reference book at hand to be able
to look up the correct usage of different elements. One good SVG reference is SVG Essentials by
J. David Eisenberg and Amelia Bellamy-Royds (O’Reilly Media, 2014).

It should also be noted that modern browsers come with powerful debugging tools that enable
you to see the structure of the document in them. This is a great way to familiarize yourself with
SVG (and HTML) as you can always examine the structure of any SVG-based visualization you
will fi nd online or in this chapter. Right-click any element and select Inspect Element to see the
internal structure of the page. Figure 11-5 shows the Inspect Element menu for the visualization in
Figure 11-3.

Getting Started ❘ 237

c11.indd 11/03/2014 Page 237

 FIGURE 11-5: The single most useful tool for web development is the inspector console.

.select
The principal data structure in D3 is the selection. Selections represent sets of elements and provide
operators that can be applied to the selected elements. These operators wrap the element’s DOM
interface, setting attributes (attr), inline styles (style), and text content (text). Operator values are
specifi ed either as constants or functions; the latter are evaluated for each element.

The selection.select(selector) function uses a CSS selector string to fi nd the fi rst element
within the selection that matches the selector. It then constructs a new selection containing the
found element. Calling d3.select(selector) runs over the entire document.

Start with a document containing an SVG with a single rectangle. In reality, you would rarely start
from this state, but bear with it for now:

<svg>
 <rect x="150" y="100" width="60" height="123"></rect>
</svg>

Now perform a simple selection:

var svg = d3.select("svg")

svg.select("rect")
 .attr("width", 100)
 .attr("height", 100)
 .style("fill", "steelblue")
 .style("stroke-width", 3)
 .style("stroke", "#FFC000")

The result is a square, as shown in Figure 11-6. (You can fi nd this fi le in the select/script.js
directory in the Chapter 11 code examples on the companion website.)

The preceding code selects the <svg> element in the page and stores it in a variable called svg. It
then selects the <rect> element within svg and modifi es its attributes and styles. For brevity, the
attr and style operations are chained together because each returns the selection.

238 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 238

FIGURE 11-6: This rectangle had its attributes modifi ed to become a square.

 .selectAll
Although .select is an invaluable tool, your visualization will rarely be composed of a single element.
.selectAll works like .select but selects all elements that match. The elements in the selection
created by .selectAll can be manipulated concurrently using the attr and style operators.

These operators can receive two types of input:

 ➤ They can receive a value (.attr("x", 0)) and apply that value to all the elements.

 ➤ They can receive a function (.attr("y", function(d, i) { return i * 70 + 30 }))
that will “run” once per element to compute an element-specifi c value for the attribute. The
fi rst parameter to this function, commonly labeled d, represents the data associated to the
element (which is examined in the next section), and the second parameter, commonly
labeled i, represents the index of the element in the DOM.

Start with a document containing an SVG with several rectangles:

<svg>
 <rect x="150" y="100" width="60" height="123"></rect>
 <rect x="80" y="10" width="20" height="50"></rect>
 <rect x="30" y="130" width="60" height="23"></rect>
</svg>

Now perform a simple selectAll (refer to the /selectAll/script.js directory in the Chapter 11
code on the companion website):

var svg = d3.select("svg")
svg.selectAll("rect")
 .attr("x", 0)
 .attr("y", function(d, i) { return i * 70 + 30 })
 .attr("width", function(d, i) { return i * 50 + 100 })
 .attr("height", 20)
 .style("fill", "steelblue")

As you can see, in Figure 11-7, the three rectangles have been repositioned to resemble a bar chart
(albeit a bar chart that is not representing any kind of data).

Getting Started ❘ 239

c11.indd 11/03/2014 Page 239

The <svg> is selected like before. After all the <rect>s in the SVG are selected, you apply a series of
attributes and styles to all of them.

FIGURE 11-7: The three rectangles have been rearranged.

Notice these lines of code:

 .attr("y", function(d, i) { return i * 70 + 30 })
 .attr("width", function(d, i) { return i * 50 + 100 })

Instead of a value, you provide the attr operator with a function that will be evaluated for every
element in the selection. By using the index, you specifi ed different y and width attributes for every
element making the bars appear similar to a bar chart. The actual formulas used to size the bars
(i * 70 + 30) in this example are arbitrary; soon you fi nd out how to connect this to real data.

D3 always interprets the argument provided to the operands as a function so writing this:

 .style("fill", "steelblue")

is simply shorthand for this:

 .style("fill", function() {
 return "steelblue"
 })

 .data() (Also Known As Data Joining)
Now that you have seen the basics of how to select elements and assign their attributes declaratively,
it’s time to dive into the heart of D3: joining data to visual elements.

The selection.data operator binds an array of data to the elements of the selection. The fi rst
argument is the data to be bound— specifi ed as an array of arbitrary values (such as numbers,
strings, or objects). By default the members of the data array are joined to the elements by their
index. This behavior can be modifi ed by supplying a key function, which is covered later in the
“Key Functions” section.

240 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 240

When data is joined with a selection of elements, three new selections are created:

 ➤ Elements that already represent data but might need to be updated (update)

 ➤ Data that has no element representing it yet (enter)

 ➤ Elements that no longer have data to represent (exit)

The D3 terms “enter” and “exit” originate from the metaphor of directions in theatrical scripts.
Metaphorically the datum is an actor, and the elements are costumes. When an actor enters the
stage he needs to put on a costume, which is what the audience sees. Similarly, when an actor exits
the stage he disappears as far as the audience is concerned.

Let’s examine these new selections one-by-one.

 Update
The new selection returned by the .data function is the update selection. It represents the elements
in the original selection, which were associated with a datum from the provided array. (You can fi nd
the following code in the data-update/script.js fi le for Chapter 11 on the companion website.)

var svg = d3.select("svg")

var selection = svg.selectAll("rect")
 .data([170, 20, 73])

selection
 .attr("x", 0)
 .attr("y", function(d, i) { return i * 70 + 30 })
 .attr("width", function(d) { return d })
 .attr("height", 20)
 .style("fill", "steelblue")

By adding data to the selection with the .data([170, 20, 73]) call, you are associating the data
to the three rectangles that already exist on the page. If there was some data already associated with
the elements from a previous data join it would be replaced at this point.

After the data is joined to the elements, you can use the .attr and .style operators to update the
visual properties of the elements based on the data. The width of every rectangle in the example
represents the number associated with that element because the width attribute is specifi ed as
function of the data: .attr("width", function(d) { return d }).

The result of this operation is shown in Figure 11-8

Getting Started ❘ 241

c11.indd 11/03/2014 Page 241

 FIGURE 11-8: The three rectangles that were bound to data and sized accordingly.

Enter
In the previous example there were, conveniently, exactly as many data points as rectangles on the
screen. Had there been more data points, they would not have found a rectangle to represent them
and would have not been visible. Those points need to “enter” the scene by creating new elements
to represent them. (The following code is in the data-enter/script.js fi le in the Chapter 11 code
download on the companion website.)

var svg = d3.select("svg")

var selection = svg.selectAll("rect")
 .data([170, 20, 73, 50])

selection
 .attr("x", 0)
 .attr("y", function(d, i) { return i * 70 + 30 })
 .attr("width", function(d) { return d })
 .attr("height", 20)
 .style("fill", "steelblue")

selection.enter().append("rect")
 .attr("x", 200)
 .attr("y", 100)
 .attr("width", 30)
 .attr("height", 30)
 .style("fill", "red")

By adding more data than there are elements you are forcing the unmatched datum (50 in this case)
to be placed in the enter selection (accessible with selection.enter()).

NOTE Because selections contain elements, the return value of the .enter()
function is actually a pseudo-selection as it contains placeholders where the
elements will be added. It only becomes a selection when .append is called on
it. As a result .enter().append(...) are always called one after the other. The
new elements created by the .append are attached as children of the element of
the parent selection; in this case it is the svg element.

242 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 242

 As shown in Figure 11-9 the extra datum is now represented by the square off to the side, although
it is probably not the fi nal result you want. It would be better if the new element followed the same
display rules as the existing elements. To achieve that, you could copy the declarative statements

 .attr("x", 0)
 .attr("y", function(d, i) { return i * 70 + 30 })
 .attr("width", function(d) { return d })
 .attr("height", 20)
 .style("fill", "steelblue")

to the enter selection, but because this is such a common use case and repeating code is a bad idea,
D3 provides a shortcut:

var svg = d3.select("svg")

var selection = svg.selectAll("rect")
 .data([170, 20, 73, 50])

selection.enter().append("rect")

selection
 .attr("x", 0)
 .attr("y", function(d, i) { return i * 70 + 30 })
 .attr("width", function(d) { return d })
 .attr("height", 20)
 .style("fill", "steelblue")

Look in the data-enter-shortcut/script.js fi le in the Chapter 11 download for this code.

FIGURE 11-9: The extra datum has been added, but it needs to be restyled.

Figure 11-10 shows the new element positioned and styled by the declarations on the update
selection.

By calling .enter().append() you are telling D3 that you want new data elements to be added
to the visualization. Doing this before making any updates ensures that the same changes will be
applied to both existing (matched by the initial selection) and new elements (created with .enter().
append()). If for some reason you wanted to apply some changes to the existing elements and not to
the new elements you would have to make your updates before calling .enter().append(). This is
highly unusual, so make sure you know why you are doing it.

Getting Started ❘ 243

c11.indd 11/03/2014 Page 243

FIGURE 11-10: The new element matches the existing elements.

All previous examples start with an existing svg element within which some number of rectangles
are arbitrarily positioned. The purpose of these examples is to showcase selections, and they aren’t
realistic. In practice, you will likely start from a blank container (probably an HTML <div>)
within some page. The fi rst step would then be to append an SVG and start creating elements
from scratch.

Applying the previously presented logic to an example without an existing SVG, you get the following,
which you can fi nd in the data-enter-blank/script.js fi le on the companion website:

var svg = d3.select("body").append("svg")

var selection = svg.selectAll("rect")
 .data([170, 20, 73, 50])

selection.enter().append("rect")

selection
 .attr("x", 0)
 .attr("y", function(d, i) { return i * 70 + 30 })
 .attr("width", function(d) { return d })
 .attr("height", 20)
 .style("fill", "steelblue")

Because there is no <svg> to start with, you had to fi rst append it to the visualization container
(which in this case is just the <body> element) with d3.select("body").append("svg").
Otherwise, the code is nearly identical to the previous example:

 ➤ Start off by selecting all the <rect> elements (of which there are none).

 ➤ Compute the data join.

 ➤ Put all four data points into the enter selection, which you position and style.

Figure 11-11 shows the bars (and the containing SVG) being created.

244 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 244

FIGURE 11-11: The bars and the containing SVG are created.

The following is a common pattern that you should be aware of when you browse D3 examples.
This code is in the data-enter-pattern/script.js fi le of the Chapter 11 code downloads.

var someData = [170, 20, 73, 50]
var svg = d3.select("body").append("svg")

svg.selectAll(".bar").data(someData)
 .enter().append("rect")
 .attr("class", "bar")
 .attr("x", 0)
 .attr("y", function(d, i) { return i * 70 + 30 })
 .attr("width", function(d) { return d })
 .attr("height", 20)
 .style("fill", "steelblue")

This code pattern is often used when the elements are added only once to a container that is known
to be blank. This pattern would produce the same result as Figure 11-6. There is nothing in this
code that you have not seen before, but it tends to trip up people who are new to D3.

Because the <svg> element was just created, it must be empty. As a result, calling

svg.selectAll(".bar").data(someData)

is guaranteed to produce an empty update selection that places all the elements into the enter selection.
This allows you to ignore the update selection by not assigning it to a variable; instead, you go straight
to .enter() to append all of the elements.

Even though the code uses .selectAll(".bar"), because there are no elements yet, it will match
nothing and create an empty selection. This means you could technically select anything with
the same result; in general you should selectAll using the same selectors that you apply in the
append. It should also be noted that although .select(".bar")would also create an empty
selection, the data join only works on a selection created with a selectAll. The reasons for this are
of little consequence.

Getting Started ❘ 245

c11.indd 11/03/2014 Page 245

 Exit
The opposite of having more data than visible elements is having too many elements that must then
be removed from the screen. The elements that could not be matched to data are placed into the exit
selection and can be instantaneously removed by calling .remove() on that selection.

If you only ever add elements to an empty container based to data that will not change, you won’t
encounter a meaningful exit selection. If, however, the displayed data changes from user interaction
or with the passage of time then you will likely need to remove the elements that are no longer
represented by any data after an update.

 Enter/Update/Exit
The following general dynamic example (which is on the companion website as data-general/
script.js) puts these elements together:

var svg = d3.select("body").append("svg")

function updateBars(barData) {
 var selection = svg.selectAll(".bar")
 .data(barData)

 selection.enter().append("rect")
 .attr("class", "bar")
 .attr("x", 0)
 .attr("height", 20)
 .style("fill", "steelblue")

 selection
 .attr("y", function(d, i) { return i * 70 + 30 })
 .attr("width", function(d) { return d })

 selection.exit().remove()
}

updateBars([170, 20, 73]) // step 1

updateBars([34, 100]) // step 2

updateBars([100, 34, 150, 160]) // step 3

The example starts with an empty page and appends an <svg> element.

The general enter/update/exit code is wrapped in a function updateBars that can be called repeatedly
to update the bars on the screen with the contents of barData.

For clarity and effi ciency, you declare all the properties that will never change during the lifetime of
the bar on the enter selection and never restate them in the update. In the update selection, you restate
the data-driven properties for the updating elements as well as for the freshly created elements added
from the enter selection.

As shown in Figure 11-12, in Step 1, three bars are created. Step 2 causes the removal of one bar and
an update of the two remaining bars. Step 3 tries to represent four data points, causing two bars to
be entered.

246 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 246

 FIGURE 11-12: Three steps take you from a blank initial state to bars for four data points.

It should be noted that, since D3 always leaves the selection in a consistent state, the previous
example did not need to create a new selection on every function run. The example could have
instead reused the previous selection with the initial selection being the only one that needed to
be created:

var svg = d3.select("body").append("svg")

var selection = svg.selectAll(".bar")

function updateBars(barData) {
 var selection = selection.data(barData)

 selection.enter().append("rect")
 .attr("class", "bar")
 .attr("x", 0)
 .attr("height", 20)
 .style("fill", "steelblue")

 selection
 .attr("y", function(d, i) { return i * 70 + 30 })

Getting Started ❘ 247

c11.indd 11/03/2014 Page 247

 .attr("width", function(d) { return d })

 selection.exit().remove()
}

The selection reference would still need to be updated after every .data() call as it creates a
new selection. This would be a more effi cient than the original example but would only work if the
container selection (svg in this case) isn’t being dynamically updated.

A More Complex Example
This section provides a slightly more complex example to illustrate some more interesting facets of
working with enter/update/exit.

The example develops a top trend viewer. Imagine that there is some application programming
interface (API) that can provide an updating top ranking for a given trend. The data provided by
this API might look something like this:

var trends1 = [
 { trend: 'Cats', score: 1.0 },
 { trend: 'Dogs', score: 0.8 },
 { trend: 'Fish', score: 0.4 },
 { trend: 'Ants', score: 0.3 },
 { trend: 'Koalas', score: 0.2 }
]

var trends2 = [
 { trend: 'Dogs', score: 1.0 },
 { trend: 'Cats', score: 0.9 },
 { trend: 'Koalas', score: 0.5 },
 { trend: 'Frogs', score: 0.3 },
 { trend: 'Bats', score: 0.2 }
]

// Koalas to the Max!
var trends3 = [
 { trend: 'Koalas', score: 1.0 },
 { trend: 'Dogs', score: 0.8 },
 { trend: 'Cats', score: 0.6 },
 { trend: 'Goats', score: 0.3 },
 { trend: 'Frogs', score: 0.2 }
]

You can fi nd the preceding code and the next code block in the trends-no-join/data.js fi le in the
Chapter 11 download.

This data is composed of an array of trends that each have a trend and a score representing the
relative popularity of the trend at a given time. Note that the score of the trend can change from
update to update.

var svg = d3.select("body").append("svg")

function updateTrends(trendData) {
 var selection = svg.selectAll("g.trend")
 .data(trendData)

248 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 248

 // enter
 var enterSelection = selection.enter().append("g")
 .attr("class", "trend")

 enterSelection.append("text")
 .attr("class", "trend-label")
 .attr("text-anchor", "end")
 .attr("dx", "-0.5em")
 .attr("dy", "1em")
 .attr("x", 100)

 enterSelection.append("rect")
 .attr("class", "score")
 .attr("x", 100)
 .attr("height", 20)

 // update
 selection
 .attr("transform", function(d, i) {
 return "translate(0," + (i * 30 + 20) + ")"
 })

 selection.select(".trend-label")
 .text(function(d) { return d.trend })

 selection.select(".score")
 .attr("width", function(d) { return d.score * 90 })

 // exit
 selection.exit().remove()
}

updateTrends(trends1)

updateTrends(trends2)

updateTrends(trends3)

This example showcases some important details:

 ➤ Unlike HTML, where nearly every element can contain other elements in SVG, only the g ele-
ment (g stands for group) can act as a container. Each g element defi nes its own coordinate sys-
tem. Finally, g elements cannot be positioned with x, y attributes; they can only be transformed
with the transform attribute.

 ➤ After elements are appended to the pseudo-selection returned by .enter(), you get a regular
selection (assigned to enterSelection) to which you can append more elements.
enterSelection.append("text") adds a single <text> element to every entered g and
returns a selection of those text elements, allowing you to confi gure them. Note that this exam-
ple would not work if all the appends were simply chained to each other because every append
returns a new selection (it would put the <rect> elements into the <text> elements, which is
invalid). The solution is to save a reference to enterSelection and append twice on it.

Getting Started ❘ 249

c11.indd 11/03/2014 Page 249

 ➤ The text position is fi ne tuned using dx and dy attributes. Those are added by the renderer to
the x and y attributes respectively and can be specifi ed relative to the text font size (with the
em unit). Setting .attr("dy", "1em") effectively lowers the text by one line height.

 ➤ In the update selection, which comprises g.trend elements, you can select the trend labels
using selection.select(".trend-label") to apply the updated trend name to them. The
datum bound to the trend labels is inherited from its container by default.

The output of this example is shown in Figure 11-13.

 FIGURE 11-13: These steps show the trend bars at three points in time.

Key Functions
The fi nal (and most important) aspect of D3’s data join principle is the key function. This
section examines how to specify which data points map to which visual elements and why it is
so important.

The key function can be provided as the second argument to the .data() function and should map
a given datum to a string (key) that will be used to identify the element. The key function will be
run both on the data bound to the elements in the existing selection and the new data given to the
.data() function. Any elements whose key matches a data key is placed in the update selection.

You can improve the previous example with a small tweak. The code for the following example is in
the trends-join/script.js in the Chapter 11 download.

var svg = d3.select("body").append("svg")

function updateTrends(trendData) {
 var selection = svg.selectAll("g.trend")
 .data(trendData, function(d) { return d.trend })

 // enter
 var enterSelection = selection.enter().append("g")
 .attr("class", "trend")

 enterSelection.append("text")
 .attr("class", "trend-label")
 .attr("text-anchor", "end")
 .attr("dx", "-0.5em")
 .attr("dy", "1em")

250 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 250

 .attr("x", 100)
 .text(function(d) { return d.trend })

 enterSelection.append("rect")
 .attr("class", "score")
 .attr("x", 100)
 .attr("height", 20)

 // update
 Selection
 .attr("transform", function(d, i) {
 return "translate(0," + (i * 30 + 20) + ")"
 })

 selection.select(".score")
 .attr("width", function(d) { return d.score * 90 })

 // exit
 selection.exit().remove()
}

updateTrends(trends1)

updateTrends(trends2)

updateTrends(trends3)

The changes are very subtle (and invisible, refer to Figure 11-13) but their effect is profound.

By default, the join is done using the index of the datum. Writing .data(trendData) is
equivalent to writing .data(trendData, function(d, i) { return String(i) }). This means
that the fi rst <g> element would have bound to the Cats trend in Step 1, the Dogs trend in Step 2,
and the Koalas trend in Step 3. As a result, the text of the <text> element needed to be continuously
updated.

In the updated example, the data join is done according to the trend property of the data
(function(d) { return d.trend }). Thus the fi rst <g> element stays bound to the Cats trend
forever. You utilize this by setting the text of the <text> element only once, when creating the
elements.

It is very important to defi ne the key function in a way that represents the essence of the data. This
is helpful for not having to update labels. Most of all, though, this is critical to getting element
transitions to look accurate.

 .transition()
The ability to show transitions is a huge advantage of dynamic media—such as the web—over static
media.

Getting Started ❘ 251

c11.indd 11/03/2014 Page 251

Transitions are often used in one of the following contexts:

 ➤ To visualize data changing over time: One way to represent time in the data is to vary the
visual elements with time. This is typically called animation.

 ➤ To preserve object constancy within a visualization: When the positions of the visual
elements change based on user interaction, having the elements smoothly transition makes it
easier for the viewer to track the change. An example of this would be if, in a bar chart, the
user could change the order of the bars.

 ➤ To preserve object constancy between visualizations: When the visualization can trans-morph
into a different visualization it is particularly helpful for the individual elements to transition
into their new shape.

 ➤ To add visual fl are to the visualization: Transitions can add polish to a visualization and, if
used with discretion, can make it appear more refi ned.

For a detailed analysis of the merits of different kinds of transitions, refer to “Animated Transitions
in Statistical Data Graphics” by Jeff Heer and George Robertson, which you can fi nd at http://
vis.stanford.edu/papers/animated-transitions.

D3 is incredibly powerful at expressing transitions with a high degree of customization, which
makes it a great choice for dynamic visualizations.

 A Basic Transition
Try applying some transitions to a single circle (see the transition-basic/script.js fi le in the
code download for Chapter 11):

var svg = d3.select("body").append("svg")

svg.append("circle")
 .attr("cx", 20)
 .attr("cy", 20)
 .attr("r", 10)
 .style("fill", "gray")
 .transition()
 .delay(300)
 .duration(700)
 .attr("cx", 150)
 .attr("cy", 100)
 .attr("r", 40)
 .style("fill", "#FFC000")
 .transition()
 .duration(1000)
 .attr("cx", 130)
 .attr("cy", 250)
 .attr("r", 20)
 .style("fill", "red")
 .attr("opacity", 1)
 .transition()
 .duration(1000)
 .attr("opacity", 0)
 .remove()

252 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 252

NOTE The general convention of D3 code is to add indentation every time the
return value is a new selection.

The snapshots of this transition at key points are shown in Figure 11-14. To get the full experience,
you should run this example yourself; it’s in the transition-basic/index.html fi le.

FIGURE 11-14: The circle animation is shown in three snapshots.

There are some important features demonstrated in this example that highlight the immense power
and expressibility of the D3 API.

For simplicity, you append a single gray circle like so:

svg.append("circle")
 .attr("cx", 20)
 .attr("cy", 20)
 .attr("r", 10)
 .style("fill", "gray")

By calling .transition() on this single element selection, you create a new type of selection called
the transition selection (hence the indentation). The transition selection behaves like a regular
selection except that the properties defi ned on it refer to the end state of the transition as opposed to
setting the immediate state.

 .delay(300)
 .duration(700)
 .attr("cx", 150)
 .attr("cy", 100)
 .attr("r", 40)
 .style("fill", "#6")

You can also specify how long the transition will take (700ms in this case) and how long it will
delay before starting (300ms). You defi ne the end state and let D3 take care of the rest. Notice that
despite using a named color "gray" in the starting state and a hex color "#FFC000" in the ending
state, D3 is able to interpolate between them.

Getting Started ❘ 253

c11.indd 11/03/2014 Page 253

But wait, there’s more!

 .transition()
 .duration(1000)
 .attr("cx", 130)
 .attr("cy", 250)
 .attr("r", 20)
 .style("fill", "red")
 .attr("opacity", 1)

Simple transitions can be chained to form complex multistage transitions. Each transition in the
chain starts after the previous one is fi nished.

Notice the tag on an explicit declaration for .attr("opacity", 1) (opacity is 1 by default). This
prepares your trusty circle for its grand fi nale:

 .transition()
 .duration(1000)
 .attr("opacity", 0)

You declare one fi nal transition where you tell the circle to fade out over the course of one second.
You needed to set opacity to 1 explicitly fi rst because D3 cannot interpolate an attribute that is not
defi ned (even if there is an implicit default). Finally, you call .remove() on the last transition selection.
This tells D3 to remove all the elements in the selection when the transition completes.

This circle existed for a total of three seconds and yet it has taught us so much.

 Object Constancy
Now that you have seen how easy it is to transition the elements of a selection, you can revisit the trends
example to see how transitions can enhance the visualization. A primary application of transitions is
to maintain object constancy between the trends, allowing the viewer’s eye to easily follow how trends
change their rank. You can also add a nice fade in/out effect for arriving and departing trends for a bit
of artistic fl ourish. (Refer to the trends-transition/script.js fi le.)

var svg = d3.select("body").append("svg")

function updateTrends(trendData) {
 var selection = svg.selectAll("g.trend")
 .data(trendData, function(d) { return d.trend })

 // enter
 var enterSelection = selection.enter().append("g")
 .attr("class", "trend")
 .attr("opacity", 0)
 .attr("transform", function(d, i) {
 return "translate(0," + (i * 30 + 20) + ")"
 })

 enterSelection.append("text")
 .attr("class", "trend-label")
 .attr("text-anchor", "end")
 .attr("dx", "-0.5em")
 .attr("dy", "1em")
 .attr("x", 100)
 .text(function(d) { return d.trend })

254 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 254

 enterSelection.append("rect")
 .attr("class", "score")
 .attr("x", 100)
 .attr("height", 20)
 .attr("width", 0)

 // update
 Selection
 .transition()
 .delay(1200)
 .duration(1200)
 .attr("opacity", 1)
 .attr("transform", function(d, i) {
 return "translate(0," + (i * 30 + 20) + ")"
 })

 selection.select(".score")
 .transition()
 .duration(1200)
 .attr("width", function(d) { return d.score * 90 })

 // exit
 selection.exit()
 .transition()
 .ease("cubic-out")
 .duration(1200)
 .attr("transform", function(d, i) {
 return "translate(200," + (i * 30 + 20) + ")"
 })
 .attr("opacity", 0)
 .remove()
}

updateTrends(trends1)

setTimeout(function() {
 updateTrends(trends2)
}, 4000)

setTimeout(function() {
 updateTrends(trends3)
}, 8000)

This example really needs to be seen in action to be fully understood. Please run it yourself using the
trends-transition/step3.html fi le.

Examine the enter, update, and exit parts of this transition individually:

 ➤ The entering <g> elements have their opacity set to 0, making them invisible. Their initial
position is set using the same logical mapping as what they will later transition to when they
join the update selection.

 ➤ The update selection is transitioned over a period of 1200ms (with a 1200ms delay to let the
exit transition fi nish). The end-state opacity is set to 1 to get the elements joining in from

Getting Started ❘ 255

c11.indd 11/03/2014 Page 255

the enter selection to fade in (this has no effect on the elements that were already on the
screen as their opacity was already 1). The transform is updated to refl ect the new position
given the (potentially new) rank of the trend.

 ➤ The exiting <g> elements, whose trends are no longer in the top fi ve, are transitioned 200px
to the right and faded out. They use the cubic-out easing function to make the transition
look more natural. After the transition is fi nished, they are removed.

This example clearly shows the importance of defi ning the key function correctly. Without it, these
transitions would not look right as the same fi ve elements would simply be recycled to represent the
new trends. There would never be a non-empty exit selection and thus no place to specify how the
no-longer-top-fi ve trends bid their farewell.

An interesting behavior to note is that because the elements in the exit selection were, by defi nition,
not joined with a new data they end up keeping their (old) bound data value until they are removed.
Any operand modifi cation on the exit selection will act on the last data bound to that element.

The key function should never translate two distinct data objects into the same key. Doing so would
lead to undefi ned behavior and strange errors. You need not worry about overlapping keys if you are
not defi ning a key function because the default key function is to key a datum by its index.

 Nested Selections
The fi nal point of awesomeness about selections is that they can be nested, allowing you to effec-
tively represent nested data structures that occur so often in data visualization.

Consider the following data structure representing a 4x4 matrix:

var matrixData = [
 [9.4, 2.8, 2.3, 6.3],
 [5.3, 6.3, 7.7, 4.7],
 [6.1, 7.3, 7.9, 0.8],
 [1.2, 2.6, 7.3, 2.6]
]

It is an array representing the rows where each row is, itself, an array representing the cells of the
matrix. Say you wanted to visualize this by rendering the numbers in a grid; you could break down the
visualization into two conceptual parts: rendering an array of numbers into a row and rendering the
array of rows to form a grid. These two steps can be tackled independently by making use of nested
selections. First you can create a selection of rows and associate the data for individual rows with each
row element. Because a row element contains other elements in it (for numbers) you must use a group
element (<g>) because it is the only SVG container element. Next within each row group you create a
selection of elements that represent the individual numbers. Because each number will be represented
as a circle and some text, those can also be grouped together.

var svg = d3.select("body").append("svg")

// First selection (rows)
var rowSelection = svg.selectAll("g.row").data(matrixData)

rowSelection.exit().remove()

256 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 256

rowSelection.enter().append("g")
 .attr("class", "row")
 .attr("transform", function(d, i) {
 return "translate(0," + (i * 45 + 30) + ")"
 })

// Second selection (cells)
var cellSelection = rowSelection
 .selectAll("g.cell").data(function(d) { return d })

cellSelection.exit().remove()

var enterCellSelection = cellSelection.enter().append("g")
 .attr("class", "cell")
 .attr("transform", function(d, i) {
 return "translate(" + (i * 45 + 30) + ",0)"
 })

// Fill in the cells
enterCellSelection.append("circle")
 .attr("r", function(d) { return Math.sqrt(d * 140 / Math.PI) })

enterCellSelection.append("text")
 .attr("text-anchor", "middle")
 .attr("dy", "0.35em")
 .text(function(d) { return "[" + d + "]" })

You can fi nd the preceding code in the nested-simple/script.js fi le in the Chapter 11 download.

You create a selection of g.row and associate matrixData with it. Because matrixData is an array
of arrays, the data element being associated with each g.row is itself an array. Note that in the
example the steps are rearranged, with exit fi rst for better readability.

Next, you use the nested capabilities of D3 selections to create a selection within each g.row
element. All examples shown previously had only one element (usually the SVG container) in the
selection on which you performed a data join. In contrast, the second data join in this example is
performed on a selection that already has four elements (g.row) in it, each with its own data. In
this data join, .selectAll("g.cell").data(function(d) { return d }), the fi rst argument to
the data operator is a function that defi nes the data to be used in the join within each of the row
groups. The trivial function supplied simply returns the row array, causing D3 to create an element
for each number in the row (within each row). You use a group (g.cell) to represent each number
within the row so that both the text and circle elements appear in the same place.

Finally, you fi ll each g.cell with a circle (circle) and a label (text). At this point the data associated
with each g.cell element is the corresponding number of the matrix so calling

enterCellSelection.append("circle")
 .attr("r", function(d) { return Math.sqrt(d * 140 / Math.PI) })

creates a circle and sets its radius in such a way as to make its area equal to d * 140. You can see the
resulting bubble matrix in Figure 11-15.

D3 Helper Functions ❘ 257

c11.indd 11/03/2014 Page 257

 FIGURE 11-15: The result is a bubble matrix.

D3 HELPER FUNCTIONS

The big advantage of D3 is that, after you understand the data join principle and transitions
described earlier in this chapter, you are set; other visualization toolkits typically have under-the-
covers “magic” that makes is very easy to start using them but hard to understand what is actually
going on behind the scenes. In D3 you get the powerful data joins and transitions, the rest you need
to provide yourself. Helpfully D3 comes packed with many independent, self-contained function
generators that can be of use in a number of scenarios to simplify the task of creating complex
visualizations. Most D3 helper functions can be used in contexts completely outside of D3 as they
have nothing D3 specifi c about them.

This section examines some of the most popular helper functions.

 Drawing Lines
Line charts are a staple of visualization. Unfortunately, drawing lines in SVG is a pain, as shown
here (see the helper-line-raw/script.js fi le in the code downloads):

var svg = d3.select("body").append("svg")

svg.append("path")
 .style("fill", "none")
 .style("stroke", "black")
 .style("stroke-width", 2)
 .attr("d", "M10,10L100,100L100,200L150,50L200,75")

To draw a line, you need to set the d attribute of a <path> element to a string of M (move) and L
(line) commands. D3 has a helper function so that you never have to deal with these crazy strings
yourself (see the helper-line/script.js fi le in the Chapter 11 code download):

var points = [
 { x: 10, y: 10 },
 { x: 100, y: 100 },
 { x: 100, y: 200 },
 { x: 150, y: 50 },
 { x: 200, y: 75 }
]

258 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 258

var lineFn = d3.svg.line()
 .x(function(d) { return d.x })
 .y(function(d) { return d.y })

var svg = d3.select("body").append("svg")

console.log(lineFn(points))
// => "M10,10L100,100L100,200L150,50L200,75"

svg.append("path")
 .style("fill", "none")
 .style("stroke", "black")
 .style("stroke-width", 2)
 .attr("d", lineFn(points))

Calling d3.svg.line() returns a function that, when called on an array of data, produces an SVG
path string. This function lives within the d3.svg namespace to indicate that it is SVG specifi c. The
results of both of these examples are identical (see Figure 11-16).

FIGURE 11-16: A path element drawing a polyline

D3’s API style makes heavy use of function chaining. The d3.svg.line() helper can be confi gured
to correctly extract the x and y coordinates from the data by using the .x(...) and .y(...) setter
methods respectively:

 .x(function(d) { return d.x })
 .y(function(d) { return d.y })

The preceding code tells the line helper to use d.x and d.y as the coordinates of the points.

 Scales
A scale is a function that maps from an input domain to an output range. Scales fi nd their way into
nearly every visualization as you often need to do a transformation to convert data values to pixel sizes.

D3 provides a number of different scales to suit different types of data:

 ➤ Quantitative scales are used for continuous input domains, such as numbers.

 ➤ Time scales are quantitative scales specifi cally tuned to time data.

 ➤ Ordinal scales work on discrete input domains, such as names or categories.

D3 Helper Functions ❘ 259

c11.indd 11/03/2014 Page 259

In the previous bar chart–based examples, the bars were always horizontal. Because of the location
of the origin in the SVG coordinate system, horizontal bar charts are simpler to describe compared
to the more traditional vertical bar charts.

You can create a vertical bar chart with the help of two scales. You can fi nd the following code in
the helper-scales/script.js fi le.

var svg = d3.select("body").append("svg")

function updateGdpBars(gdpData, width, height) {
 var countries = gdpData.map(function(d) { return d.country })
 var xScale = d3.scale.ordinal()
 .domain(countries)
 .rangeBands([0, width], 0.2)

 var maxGdp = d3.max(gdpData, function(d) { return d.gdp })
 var yScale = d3.scale.linear()
 .domain([0, maxGdp])
 .range([height - 20, 20])

 var selection = svg.selectAll(".bar")
 .data(gdpData)

 selection.enter().append("rect")
 .attr("class", "bar")
 .style("fill", "steelblue")

 Selection
 .attr("x", function(d) { return xScale(d.country) })
 .attr("y", function(d) { return yScale(d.gdp) })
 .attr("width", xScale.rangeBand())
 .attr("height", function(d) {
 return Math.abs(yScale(d.gdp) - yScale(0))
 })

 selection.exit().remove()
}

var UN_2012_GDP = [
 { country: "United States", gdp: 16244600 },
 { country: "China", gdp: 8358400 },
 { country: "Japan", gdp: 5960180 },
 { country: "Germany", gdp: 3425956 },
 { country: "France", gdp: 2611221 },
 { country: "United Kingdom", gdp: 2471600 }
]

updateGdpBars(UN_2012_GDP, 600, 300)

The example shown in Figure 11-17 is much closer to what you might encounter in the wild.

You create two scales, xScale and yScale, for the x and y axes respectively.

var countries = gdpData.map(function(d) { return d.country })
var xScale = d3.scale.ordinal()
 .domain(countries)
 .rangeBands([0, width], 0.2)

260 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 260

FIGURE 11-17: The bars have been redrawn with a vertical orientation.

The input domain of the xScale is the list of countries (countries). Because this is an ordered list
of discrete values, you use the d3.scale.ordinal() scale. You ask the scale to map these values
onto a range of [0, width], splitting them into equal bands with 20 percent of the space used as a
gap. Later, you will access the width of a single bar using the xScale.rangeBand() method.

var maxGdp = d3.max(gdpData, function(d) { return d.gdp })
var yScale = d3.scale.linear()
 .domain([0, maxGdp])
 .range([height - 20, 20])

For the y axis you use a d3.scale.linear() scale. This scale creates a simple linear function of the
form y = m*x + c for some m and c. You use another helper function, d3.max, to fi nd the
maximum gdp within the data.

In many D3 examples, the x and y scales are stored in variables called x and y. This sometimes trips
up beginners as people are used to variables x and y being numeric (as opposed to functions).

You position the bars as needed using

selection
 .attr("x", function(d) { return xScale(d.country) })
 .attr("y", function(d) { return yScale(d.gdp) })
 .attr("width", xScale.rangeBand())
 .attr("height", function(d) {
 return Math.abs(yScale(d.gdp) - yScale(0))
 })

The x and y attributes are determined by using the scales directly. The width is determined from the
band size conveniently provided by the ordinal scale. You compute the height by subtracting the
value of the scale at the given data value from the scale value at zero.

 D3 HELPER LAYOUTS

Another type of helper function provided by D3 is layouts. Unlike the helper functions discussed
previously, which help you map data to attribute values, layouts work on the data, augmenting it
with more information.

D3 Helper Layouts ❘ 261

c11.indd 11/03/2014 Page 261

A treemap is a popular visualization that recursively subdivides area into rectangles sized according
to some data attribute. You can easily create treemaps with the aid of the d3.layout.treemap()
layout, which does all the complex computations for you.

Treemaps were introduced by Ben Shneiderman in 1991. You can read more about them at http://
www.cs.umd.edu/hcil/treemap-history/.

You can see how the treemap layout can be used in practice by applying it to the problem it was
originally designed to solve: visualizing the fi le sizes/hierarchy on a disk drive. You apply the
treemap layout to the fi le structure within the example folder for this chapter.

var FILE_DATA = {
 "name": "examples",
 "content": [
 {
 "name": "blank",
 "content": [
 {
 "name": "index.html",
 "size": 320
 }
]
 },
 {
 "name": "data-enter",
 "content": [
 {
 "name": "after.html",
 "size": 512
 },
 {
 "name": "before.html",
 "size": 475
 },
 {
 "name": "script.js",
 "size": 404
 }
]
 }
 ...lots of data omitted...
]
}

This is the data to be used in this example. As you can see, it is hierarchical as it describes a fi le
system. (Refer to the layout-treemap/script.js fi le in the code downloads.)

var svg = d3.select("body").append("svg")

function updateTreemap(fileData, width, height) {
 var treemap = d3.layout.treemap()
 .size([width, height])
 .children(function(d) { return d.content })
 .value(function(d) { return d.size })

 var nodeData = treemap.nodes(fileData)

262 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 262

 var color = d3.scale.category20c()

 var selection = svg.selectAll("g.node")
 .data(nodeData)

 // Exit
 selection.exit().remove()

 // Enter
 enterSelection = selection.enter().append("g")
 .attr("class", "node")

 enterSelection.append('rect')

 enterSelection.append('text')
 .attr('dx', '0.2em')
 .attr('dy', '1em')

 // Update
 selection
 .attr("transform", function(d) { return "translate(" + d.x + "," + d.y + ")" })

 selection.select('rect')
 .attr("width", function(d) { return d.dx })
 .attr("height", function(d) { return d.dy })
 .style("stroke", 'black')
 .style("fill", function(d) { return d.children ? color(d.name) : 'none' })

 selection.select('text')
 .text(function(d) {
 if (d.children || d.dx < 50 || d.dy < 10) return null
 return d.name
 })
}

updateTreemap(FILE_DATA, 700, 400)

Start off by declaring the layout:

var treemap = d3.layout.treemap()
 .size([width, height])
 .children(function(d) { return d.content })
 .value(function(d) { return d.size })

You set the container dimensions (size), the child node accessor (children), and the value function
(value). These tell the layout how to traverse the hierarchy of the data.

Each layout, by convention, provides a nodes and a links function for generating the nodes that
correspond to the data and the links that represent their interconnections.

var nodeData = treemap.nodes(fileData)

For the treemap, you are only interested in the nodes. You run the data through the nodes function
and get back a fl at array representing the rectangles of the treemap with lots of useful metadata
attached.

D3 Helper Layouts ❘ 263

c11.indd 11/03/2014 Page 263

Here is what an element of nodeData looks like:

{
 name: "data-general"
 area: 15716.360529688169
 children: Array[8]
 content: Array[8]
 depth: 1
 x: 174
 y: 202
 dx: 170
 dy: 92
 parent: Object
 value: 1971
}

As you can see, all the original values are preserved, but extra metadata for positioning (x, y, dx,
and dy) is added.

You now perform the regular data join onto the new nodeData.

selection
 .attr("transform", function(d) { return "translate(" + d.x + "," + d.y + ")" })

selection.select('rect')
 .attr("width", function(d) { return d.dx })
 .attr("height", function(d) { return d.dy })

You position the container group and size the rectangles using the metadata generated by the layout
function.

The resulting treemap is shown in Figure 11-18.

FIGURE 11-18: This treemap visualizes the fi les in this chapter scaled by fi le size.

264 ❘ CHAPTER 11 INTRODUCING D3

c11.indd 11/03/2014 Page 264

SUMMARY

This chapter introduced D3 and showcased the core principles that make it up:

 ➤ You saw how to select elements and create new elements using D3.

 ➤ You found out how to position and style elements using the .attr and .style functions.

 ➤ You learned D3’s core principle of joining data to elements and the resulting enter, update,
and exit selections.

 ➤ You saw how transitions work and how they can be chained together.

 ➤ You discovered how to fi ne-tune the joining and maintain constancy by providing a join key
function.

 ➤ You learned about nesting selections within selections as a means of representing nested data
structures.

 ➤ You were introduced to the different types of helper functions provided by D3 that aid in
creating visualizations:

 ➤ You learned about scales that help you transform values from the data to pixels.

 ➤ You found out about layouts that reshape your data to make it easier to work with.

c12.indd 11/03/2014 Page 265

Incorporating Symbols
WHAT’S IN THIS CHAPTER

 ➤ Learning how symbols can benefi t charting

 ➤ Leveraging D3 to render symbols using SVG

 ➤ Making symbols react to the proximity of the mouse

 ➤ Animating changes to symbols.

 ➤ Using the Ignite UI igDataChart to automagically plot symbols

 ➤ Displaying metrics on a symbol with bubble charts

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/javascriptandjqueryanalysis on the Download Code
tab. The code is in the chapter 12 download and individually named according
to the names throughout the chapter.

Chapters 9 through 11 cover some of the mechanics of various chart types using D3, Raphaël,
and the Google Charts API. A large focus of these chapters was on charting types where each
discrete data value was represented by a separate visual element. This chapter explores charting
types, such as line and area, that provide an interpolated shape that connects all the data points.
When dealing with such an interpolated shape, it can be useful to use a symbol, or marker, to
indicate exactly where the underlying data values occur in the x-y space of the plot area.

You can use symbols for more than delineating the exact location of data values in an
interpolated shape. In fact, some chart types consist only of symbols, such as a scatter chart or
a bubble chart. Or, you might want to use a custom symbol to indicate the location of an event
on a time series chart, for example.

12

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

266 ❘ CHAPTER 12 INCORPORATING SYMBOLS

c12.indd 11/03/2014 Page 266

So, this chapter explains the mechanics of displaying symbols in charts. You start by using D3 to
construct and display symbols at a very low level. This not only allows for studying the basics of
how a symbol is implemented in visualization application programming interfaces (APIs), but it
also gives you the tools to build ad-hoc marker scenarios in Scalable Vector Graphics (SVG) using
the D3 API.

NOTE Although most of this book is designed so that you can digest the chap-
ters individually, and potentially out of sequence, it’s highly recommended that
you read Chapter 11 before you read this chapter. For brevity, I’ll assume you’ve
already absorbed some of the details of D3 because revisiting the basics would be
rather redundant and would make this chapter considerably longer.

Later in the chapter, you see how markers can be represented in a comparatively high-level API that
can do a lot of the footwork for you. In Chapter 9, you used the Google Charts API for this
purpose, but for variety this chapter investigates a different API. Also, at the time of this writing,
the Google Charts API seems to have rather limited facilities to display and customize symbols.

WORKING WITH SVG SYMBOLS WITH D3

Recall from Chapter 11 that D3 is a very powerful tool for creating very dynamic visualizations.
It’s especially good at helping you to create ad-hoc visualizations that don’t quite fi t with what most
charting APIs anticipated you would want to do with your data. Because of its low-level nature, D3
is also a good instructional tool as you begin to explore a new charting concept. If you aren’t so
interested in the mechanics of how to implement symbols in a chart, and don’t have the need to step
outside the bounds of what high-level charting APIs will do for you, feel free to skip ahead to the
“Creating a Line Chart with Ignite UI igDataChart” section of this chapter where you fi nd out how
to use a much higher-level API that handles all the low-level details automatically.

Creating a D3 Line Chart
In Chapter 11, you created lots of different visualizations using D3, but line charts were only
touched upon briefl y. Listing 12-1 creates a line chart.

LISTING 12-1

var data = [
 { "product": "Shoes", "amount": 40 },
 { "product": "Hats", "amount": 50 },
 { "product": "Coats", "amount": 35 },
 { "product": "Scarves", "amount": 20 }
];
var data2 = [
 { "product": "Shoes", "amount": 25 },

Working with SVG Symbols with D3 ❘ 267

c12.indd 11/03/2014 Page 267

 { "product": "Hats", "amount": 40 },
 { "product": "Coats", "amount": 45 },
 { "product": "Scarves", "amount": 15 }
];
var currentData = data;

var chartTotalWidth = 500;
var chartTotalHeight = 500;
var margin = {
 left: 100,
 right: 50,
 top : 20,
 bottom: 40
};
var width = chartTotalWidth - margin.left - margin.right;
var height = chartTotalHeight - margin.top - margin.bottom;
var main = d3.select("body").append("svg")
 .attr("width", chartTotalWidth)
 .attr("height", chartTotalHeight)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

var xScale = d3.scale.ordinal()
 .rangePoints([0, width], 0.4)
 .domain(data.map(function (d) { return d.product; }));

var yScale = d3.scale.linear()
 .range([height, 0])
 .domain([0, d3.max(data, function (d) { return d.amount; })]);

var xAxis = d3.svg.axis()
 .scale(xScale)
 .orient("bottom")
 .outerTickSize(0);

var yAxis = d3.svg.axis()
 .scale(yScale)
 .orient("left");

main.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + height + ")")
 .call(xAxis);

main.append("g")
 .attr("class", "y axis")
 .call(yAxis);

var updateLine = function () {
 var lineBuilder = d3.svg.line()
 .x(function (d) {
 return xScale(d.product);
 })
 .y(function (d) {

continues

268 ❘ CHAPTER 12 INCORPORATING SYMBOLS

c12.indd 11/03/2014 Page 268

 return yScale(d.amount);
 })
 .interpolate("linear");

 var line = main.selectAll(".line")
 .data([currentData]);

 line
 .enter().append("path")
 .attr("class", "line")
 .attr("d", function (d) {
 return lineBuilder(d);
 });

 line
 .transition()
 .duration(1000)
 .attr("d", function (d) {
 return lineBuilder(d);
 });
};

updateLine();

d3.select("body").append("input")
 .attr("type", "button")
 .attr("value", "click")
 .on("click", function () {
 if (currentData === data) {
 currentData = data2;
 } else {
 currentData = data;
 }
 updateLine();
 });

The JavaScript in Listing 12-1 depends on this HTML:

<!DOCTYPE html>
<html>
<head>
 <title>Basic Line Chart With Axes</title>

 <script src="d3/d3.min.js" charset="utf-8"></script>

 <link rel="stylesheet" href="D3BasicLineChartWithAxes.css">
</head>
<body>
 <script type="text/javascript" src="D3BasicLineChartWithAxes.js">
 </script>
</body>
</html>

LISTING 12-1 (continued)

Working with SVG Symbols with D3 ❘ 269

c12.indd 11/03/2014 Page 269

And this CSS:

.line {
 stroke: #4DDB94;
 fill: transparent;
 stroke-width: 3px;
}
.y.axis path {
 display: none;
}
.axis {
 font: 20px Verdana;
 fill: #444444;
}
.axis path,
.axis line {
 fill: none;
 stroke: #999999;
 shape-rendering: crispEdges;
}

The CSS and HTML for the D3 samples in this chapter are all roughly similar, so there’s no further
discussion of them in this chapter. You can fi nd them on the companion website.

Listing 12-1 produces a line chart like the one shown in Figure 12-1. You can fi nd the
D3BasicLineChartWithAxes.js/html/css fi les on the companion website.

FIGURE 12-1: This shows a line chart using D3.

Most of the preceding code is similar to the examples in Chapter 11 when you were visualizing data
using columns. The main difference is that now you are generating a single shape that is a linear

270 ❘ CHAPTER 12 INCORPORATING SYMBOLS

c12.indd 11/03/2014 Page 270

interpolation between all the discrete data points rather than a separate shape per data point. Now,
let’s drill into how that is done:

var lineBuilder = d3.svg.line()
 .x(function (d) {
 return xScale(d.product);
 })
 .y(function (d) {
 return yScale(d.amount);
 })
 .interpolate("linear");

This code is creating a line builder that will turn a set of x-y positions into some linearly interpo-
lated path geometry (straight lines that connect all the points). Functions declaring how to fetch the
x and y values are assigned. These call the x and y scales in order to map the incoming data into the
coordinate system of the plot area. Finally, you set the interpolation mode to linear, which declares
that the line builder should use straight lines between the data points. There are many other options
you can provide here, however, such as basis which will use a B-spline (a smoothed mathematical
function over the data points) to connect all the points. When you call this builder on the incoming
data, it generates some path data that you can assign to the d attribute on a <path> element.

var line = main.selectAll(".line")
 .data([currentData]);

line
 .enter().append("path")
 .attr("class", "line")
 .attr("d", function (d) {
 return lineBuilder(d);
 });

In the preceding snippet, a data join is done on a selection containing all the elements that use the
line class. This is similar to how you would construct a bar or column chart, however, rather than
passing in the array of data points to the join, this is passing in a one-element array where the one
element is the subarray with your data. This is because you want there to be just one line produced
for the data, but this line needs to refer to the full array of data to be visualized.

Next, a path is appended to represent all the data, and the lineBuilder is called to produce the
path geometry for the input data.

To add some neat animations, you are also declaring what should occur when the updateLine
method is called successively on new data:

line
 .transition()
 .duration(1000)
 .attr("d", function (d) {
 return lineBuilder(d);
 });

Working with SVG Symbols with D3 ❘ 271

c12.indd 11/03/2014 Page 271

This code basically regenerates the line geometry and assigns it within the context of a transition
animation.

NOTE You might fi nd it a bit surprising that you don’t need to do anything
more complicated to animate the shape of the line between different confi gu-
rations. It is straightforward, here because the line geometry being generated
has the same number of control points every time the data is updated, and the
sequence of commands in the path geometry remains constant. In this case,
every command is a “line to” command. Because this is such a straightforward
geometry, it is suffi cient that D3 matches by index, then interpolates, all of the
fl oating-point numbers in the two path geometries and produces a “tween”
geometry that blends between the two. If the number of control points varied
or, worse, the commands used varied, you would probably need to use a custom
interpolator.

Adding Symbols to the Line
Now that you have a line displayed, it’s time to move on to marking it up with some symbols.
Fortunately, much like the way D3 provides some builders/generators for things like arcs and lines, it
also provides a confi gurable builder for symbol geometry:

var symbol = main.selectAll(".symbol")
 .data(currentData);

var symbolBuilder = d3.svg.symbol()
 .type("circle")
 .size(180);

When you were rendering the line portion of the chart, you joined the data so as to produce one
visual that incorporated all the data points, but in the case of the symbols, the scenario is more like
when you were creating the column visuals in Chapter 11. The symbols all have the class symbol
applied to them, and each is associated with a single data item.

Next, d3.svg.symbol() creates a symbol geometry builder. You declare that you want circle shapes
for each symbol and provide a desired size. Like most operators in D3, these actions could just as
easily be functions that use the contextual data to drive the shape or the size of the symbols.

NOTE One common charting scenario for which you would probably want to
data-drive the size or shape of a marker is a bubble chart. Bubble charts usually
map a third value (beyond what is mapped to x and y) to the area of the chart’s
symbols. Sometimes a fourth value (or the third doubled up) is also mapped to
the color selected for the symbols. Mapping four separate values into one chart
series can be a bit much to easily digest, however.

272 ❘ CHAPTER 12 INCORPORATING SYMBOLS

c12.indd 11/03/2014 Page 272

symbol
 .enter().append("path")
 .attr("class", "symbol")
 .attr("transform", function (d) {
 return "translate(" + xScale(d.product) +
 "," + yScale(d.amount) + ")";
 })
 .attr("d", function (d) {
 return symbolBuilder(d);
 });

This snippet is adding a path for each data item and marking it with the class symbol. The symbol
builder generates the geometry for each symbol centered around the coordinate origin, so you
generate a translate transform based on scaling the current category and amount into the plot
area’s coordinate system. After the coordinate origin has been placed at the center of where you
want to render the marker, the symbol geometry builder is called on the data item in order to get the
geometry data to assign to the d attribute of the <path>.

symbol
 .transition()
 .duration(1000)
 .attr("transform", function (d) {
 return "translate(" + xScale(d.product) +
 "," + yScale(d.amount) + ")";
 });

Finally, just as the line was animated, it would be great if the symbols would animate to new posi-
tions when new data is introduced. So, for the update selection, you start a transition, apply a
duration, and animate a change to the translate transform to the new target position for each
symbol.

You can see the resulting symbols applied to the line chart in Figure 12-2, and you can fi nd the
D3BasicLineChartWithAxesAndSymbols.html/css/js fi les on the companion website.

FIGURE 12-2: Symbols have been applied to a line chart using D3.

Working with SVG Symbols with D3 ❘ 273

c12.indd 11/03/2014 Page 273

Making the Symbols Interactive
Another useful aspect of introducing symbols to a line chart is that they give you a way to annotate
or highlight individual data values within the line. With no symbols, if you want to highlight a line,
the easiest thing to do is to highlight the entire line. After introducing symbols, however, you can
highlight an individual symbol to bring a particular data value into focus. The following code shows
you how you would highlight the symbol currently under the mouse:

symbol
 .enter().append("path")
 .attr("class", "symbol")
 .attr("fill", "#4DDB94")
 .attr("transform", function (d) {
 return "translate(" + xScale(d.product) + "," + yScale(d.amount) + ")";
 })
 .attr("d", function (d) {
 return symbolBuilder(d);
 })
 .on("mouseenter", function() {
 d3.select(this).transition()
 .duration(300)
 .attr("fill", "#f2ed96")
 .attr("transform", function (d) {
 return "translate(" + xScale(d.product) + "," +
 yScale(d.amount) + ")";
 });
 })
 .on("mouseleave", function () {
 d3.select(this).transition()
 .duration(300)
 .attr("fill", "#4DDB94")
 .attr("transform", function (d) {
 return "translate(" + xScale(d.product) + "," +
 yScale(d.amount) + ")";
 });
 });

The differences here are that you’ve pulled the default fi ll color out of the CSS and are using D3 to
apply it, and you’ve attached a mouse enter and a mouse leave handler to the symbol paths so that
you can enact changes as the symbols are hovered over. In each handler, d3.select(this).tran-
sition() selects the hovered node and starts a transition. The transition either applies the highlight
color or sets the color back to the default depending on whether the mouse is entering or leaving the
symbol.

You may be wondering why both the transform and the color are being animated in the handler.
This is actually to deal with a situation in which you hover over a symbol while a data change tran-
sition is being applied. In D3, only one transition can be running at a time for an element (though
more than one can be queued). As a result, if you hover over a node during a data transition, it will
essentially cancel the translation animation that is occurring. To resolve this, you repeat the target
translate transform in this transition in addition to the fi ll color change.

You can see the result of hovering the mouse over one of the symbols in Figure 12-3. You can fi nd
the D3BasicLineChartWithAxesAndSymbolsHover.js/html/css fi les on the companion website.

274 ❘ CHAPTER 12 INCORPORATING SYMBOLS

c12.indd 11/03/2014 Page 274

FIGURE 12-3: This shows the effect of hovering over an interactive symbol in your D3 line chart.

There is a discoverability issue here, however. Consumers of the visualization may not even realize
that they can hover over the markers to highlight the specifi c data. You can take it a bit further, and,
instead of hovering over a marker to highlight it, you can always highlight the closest symbol to the
user’s cursor.

The fi rst change is to insert a rectangle into the background of the plot area, like so:

var bg = main.append("rect")
 .attr("fill", "#FFFFFF")
 .attr("width", width)
 .attr("height", height);

Creating this rectangle is done because your plot area has a transparent backing by default and most
SVG implementations seem to not catch mouse events on transparent backgrounds. As a result, you
need a background to get constant mouse move updates as the user moves the mouse cursor around
the plot area.

var getClosestProduct = function (mouse) {
 var minDist = NaN;
 var minIndex = -1;
 for (var i = 0; i < xScale.domain().length; i++) {
 var position = xScale(xScale.domain()[i]);
 var dist = Math.abs(position - mouse[0]);
 if (isNaN(minDist)) {
 minDist = dist;
 minIndex = i;
 } else {
 if (dist < minDist) {
 minDist = dist;

Working with SVG Symbols with D3 ❘ 275

c12.indd 11/03/2014 Page 275

 minIndex = i;
 }
 }
 }

 return xScale.domain()[minIndex];
};

This method helps fi nd the category value that is closest to the current x position of the mouse. It
does this by looping through all the categories, mapping each into the coordinate system of the plot
area (the range), and measuring the x distance to the mouse cursor. The minimum distance category
is found and returned.

var previousProduct = null;
main.on("mousemove", function () {
 console.log("here");
 var mouse = d3.mouse(this);
 var closestProduct = getClosestProduct(mouse);

 if (closestProduct != previousProduct) {
 previousProduct = closestProduct;
 var symbol = main.selectAll(".symbol");

 symbol
 .transition()
 .duration(300)
 .attr("fill", function (d) {
 if (d.product == closestProduct) {
 return "#f2ed96";
 }
 return "#4DDB94";
 })
 .attr("transform", function (d) {
 var trans = "translate(" + xScale(d.product) + "," +
 yScale(d.amount) + ")";
 if (d.product == closestProduct) {
 return trans + " scale(2,2)";
 }
 return trans;
 });
 }
});

Given this mousemove handler, you listen to the mouse position changes even on the plot area back-
ground. For every move, you determine the current closest category to the cursor. Then, given the
category you want to highlight, you apply a transition to all the symbols and modify the color and
render scale of just the symbol that has the data value for the closest category.

You can see the result of hovering near to one of the symbols in Figure 12-4. You can fi nd the
D3BasicLineChartWithAxesAndSymbolsHoverClosest.js/html/css fi les on the companion website.

276 ❘ CHAPTER 12 INCORPORATING SYMBOLS

c12.indd 11/03/2014 Page 276

FIGURE 12-4: The closest symbol to the cursor is highlighted.

CANVAS SYMBOLS WITH IGNITE UI IGDATACHART

Now that you’ve been exposed to some of the basics of adding symbols to charts and making them
interactive, it’s time to look at a much higher-level charting API to see what more complex built-in
(but more constrained) behaviors you can take advantage of.

Chapter 9 focuses on the Google Charts API, but at the time of this writing, that API didn’t have
very fl exible confi guration when it came to symbols/markers. Consequently, the latter part of this
chapter focuses on the Ignite UI igDataChart by Infragistics (http://www.igniteui.com). The
igDataChart is not a free component, but you can fi nd a trial of it at https://igniteui.com/
download. After you have signed up, there are also some CDN links for the trial version that are
published on the download page, or you can download the trial. This chapter assumes you have
extracted Ignite UI into a subfolder called IgniteUI.

The igDataChart is a desktop-grade charting component that focuses on performance, high
volumes of data, ease of use, and breadth of features. There are so many features, in fact, that it is
split between many different JavaScript fi les in order to reduce load times.

NOTE For simplicity, the samples in this chapter will load a combined
JavaScript fi le that contains all the data visualization tools that Ignite UI offers,
but for production scenarios it’s better to load only the subset of features
required. Custom downloads for just the feature sets desired can be obtained
from http://igniteui.com/download.

Canvas Symbols with Ignite UI igDataChart ❘ 277

c12.indd 11/03/2014 Page 277

Creating a Line Chart with Ignite UI igDataChart
A lot less code is required to represent the preceding D3 symbol scenario using the igDataChart. The
fi rst code snippet shows the HTML:

<!DOCTYPE html>
<html>
<head>
 <title>Area Chart</title>

 <script src="jquery/jquery-1.11.1.min.js"></script>
 <script src="jquery-ui-1.11.1/jquery-ui.min.js"></script>

 <link rel="stylesheet" href="IgniteUI/css/themes/infragistics/~CA
infragistics.theme.css" />
 <link rel="stylesheet"
href="IgniteUI/css/structure/infragistics.css" />
 <link rel="stylesheet" href="IgniteUI/css/structure/modules/~CA
infragistics.ui.chart.css" />
 <script src="IgniteUI/js/infragistics.core.js"></script>
 <script src="IgniteUI/js/infragistics.dv.js"></script>

 <link rel="stylesheet"
 href="IgniteUIChartArea.css" />
</head>
<body>
 <div id="chart"></div>
 <div id="legend"></div>

 <script type="text/javascript" src="IgniteUIChartArea.js">
 </script>

</body>
</html>

The preceding code assumes that the Ignite UI trial was extracted into a subfolder called IgniteUI.
Also, the download from the companion site contains the trial of Ignite UI in the appropriate
location. The HTML content will be roughly the same for the remaining code in the chapter, so this
chapter doesn’t refer to it again, but the full listings are available in the companion media for the
chapter. The same is true for the CSS, which follows:

#chart
{
 width: 500px;
 height: 500px;
 float: left;
}
#legend
{
 float: left;
}

278 ❘ CHAPTER 12 INCORPORATING SYMBOLS

c12.indd 11/03/2014 Page 278

The CSS classes here apply to the elements that contain the chart and its legend. They defi ne some
sizing and layout. The following is the actual code that defi nes the chart:

$(function () {
 var data = [
 { "product": "Shoes", "amount": 40 },
 { "product": "Hats", "amount": 50 },
 { "product": "Coats", "amount": 35 },
 { "product": "Scarves", "amount": 20 }
];
 var data2 = [
 { "product": "Shoes", "amount": 25 },
 { "product": "Hats", "amount": 40 },
 { "product": "Coats", "amount": 45 },
 { "product": "Scarves", "amount": 15 }
];

 $("#chart").igDataChart({
 dataSource: data,
 title: "Product Sales",
 subtitle: "Sales in various product categories over time",
 rightMargin: 30,
 legend: { element: "legend" },
 axes: [{
 type: "categoryX",
 name: "xAxis",
 label: "product",
 labelExtent: 40
 }, {
 type: "numericY",
 name: "yAxis",
 title: "Sales",
 minimumValue: 0,
 strip: "rgba(230,230,230,.4)",
 maximumValue: 60,
 labelExtent: 40
 }],
 series: [{
 name: "productSales",
 type: "area",
 xAxis: "xAxis",
 yAxis: "yAxis",
 valueMemberPath: "amount",
 showTooltip: true,
 isTransitionInEnabled: true,
 isHighlightingEnabled: true,
 transitionInDuration: 1000,
 title: "Q1"
 }, {
 name: "productSales2",
 dataSource: data2,
 type: "area",
 xAxis: "xAxis",

Canvas Symbols with Ignite UI igDataChart ❘ 279

c12.indd 11/03/2014 Page 279

 yAxis: "yAxis",
 valueMemberPath: "amount",
 showTooltip: true,
 isTransitionInEnabled: true,
 isHighlightingEnabled: true,
 transitionInDuration: 1000,
 title: "Q2"
 }, {
 name: "itemToolTips",
 type: "itemToolTipLayer",
 transitionDuration: 300
 }]
 });
});

This code produces the area chart that’s shown in Figure 12-5. (You can fi nd the
IgniteUIChartArea.js/html/css fi les on the companion website.) It may not even be appropriate
to refer to the preceding as code because it’s basically just some JavaScript objects that represent
the data to plot in a chart, and some additional JavaScript objects that store the confi guration for
the chart.

FIGURE 12-5: This area chart was created using the Ignite UI igDataChart.

You’ll notice some interesting things if you run the sample in a browser:

 ➤ The chart has some nice-looking built-in titles for itself and its axes.

 ➤ The series animate into view in an aesthetically pleasing way.

280 ❘ CHAPTER 12 INCORPORATING SYMBOLS

c12.indd 11/03/2014 Page 280

 ➤ Some automatically formatted tooltips display when you hover over the data, and the
tooltips are shown simultaneously for each data series.

 ➤ When you hover over a series, you get a glow highlight.

 ➤ The axes have tick and gridline visuals and alternating color strips.

 ➤ There is a separate legend component that displays the title for the series and has a color
swatch to correlate items with the series in the chart.

It would have taken a rather large amount of code in D3 to build all of these features, and a lot
of these behaviors are much more complex and customizable than they appear at fi rst blush. D3’s
strengths stem from its low-level nature and its ability to tackle out-of-the-box ad-hoc scenarios,
but high-level APIs such as igDataChart can massively simplify things if your story fi ts within their
constraints. Luckily, igDataChart is very confi gurable and fl exible so a wide range of scenarios can
be represented.

Here’s a breakdown of some of the settings used in the confi guration for the preceding example:

 ➤ dataSource assigns the data to the chart. All the axes and series in the chart inherit this data
source unless they have one specifi ed locally.

 ➤ title assigns the chart-level title or series-level title. The chart title is displayed above the
chart, and the series titles are displayed in the legend or in the tooltips.

 ➤ subtitle is a smaller title line that is displayed under the main title for the chart.

 ➤ legend specifi es some suboptions for the legend for the chart. Here you point out which ele-
ment, using a selector, should accept the legend content.

 ➤ axes specifi es the axes that you are associating with the chart. These can be positioned on
the top, bottom, left, or right of the chart, and you can add as many as you want. When you
add a series to the chart, you just need to indicate which axes it uses.

 ➤ type specifi es the axis type that is being added. In this case, we are adding a category (ordi-
nal) axis and a numeric axis to map the values into the plot area. There is also a type option
for the series that specifi es which series type is being added. There are a lot of available series
types. You can fi nd some of the available types at http://help.infragistics.com/Doc/
jQuery/2014.1/CLR4.0?page=igDataChart_Series_Types.html, but that page doesn’t
even touch on all the fi nancial indicators and annotation layers available.

 ➤ label specifi es which property holds the label to use for the category labels.

 ➤ labelExtent specifi es the amount of space to reserve for the axis labels for an axis. If you
leave this unspecifi ed, the chart calculates this automatically, but if you modify the data or
zoom level, the label areas update dynamically, so often it’s best to fi x this value.

 ➤ minimumValue/maximumValue specifi es the minimum and maximum of the axis range.
Otherwise, the axis ranges are also automatically calculated by default.

 ➤ strip specifi es alternating color strips for an axis.

 ➤ series specifi es the series being added to the chart.

 ➤ name adds identifi ers for axes and series.

Canvas Symbols with Ignite UI igDataChart ❘ 281

c12.indd 11/03/2014 Page 281

 ➤ xAxis/yAxis identify which axes a series will use to map its values by name.

 ➤ valueMemberPath indicates which property the series will fetch values from.

 ➤ showTooltip indicates that a tooltip should be shown when the series is hovered.

 ➤ isTransitionInEnabled/isHighlightingEnabled turns on the transition effect and the
highlighting effect for a series.

 ➤ transitionInDuration specifi es how long, in milliseconds, a transition should take.

All that amounts to is that you are adding a category axis and a numeric axis to the chart, two area
series for the two data sets to be displayed, and an item tooltip layer that displays the simultaneous
item tooltips. If this layer were omitted, you would get non-simultaneous tooltips depending on which
series you were currently over.

That’s all okay, but this chapter is about symbols, so where are they?

Adding Symbols to the Chart
Adding symbols to a chart with igDataChart is dead simple. You can either select a symbol shape
that you want, or you can select automatic, which means that each series that has the automatic
setting attempts to select a unique symbol shape (until they run out). Here’s how:

markerType: "automatic",

That’s it. You would just add that to the options for each series. If you want to select a particular
marker, you use a string such as circle or triangle. You can see the result in Figure 12-6, and you
can fi nd the IgniteUIChartAreaWithSymbols.js/html/css fi les on the companion website.

FIGURE 12-6: This area chart with symbols was created using igDataChart.

282 ❘ CHAPTER 12 INCORPORATING SYMBOLS

c12.indd 11/03/2014 Page 282

Notice that there are some other interesting behaviors that have come into play now, too. When you
hover over a series, not only is the main series shape highlighted, but the closest data marker is also
highlighted, as you achieved earlier with D3.

It’s not just line or area charts that support markers; if you change the type of the series to
type column, you’ll see that the columns also have markers. Figure 12-7 shows the result. The
IgniteUIChartColumnWithSymbols.js/html/css fi les are on the companion website.

FIGURE 12-7: This shows a column chart with symbols.

Symbols aren’t only for delineating where the actual data values are in a chart, though; you can use
them as an additional channel for information. Here’s how you would turn the markers in the col-
umn chart from the preceding example into some textual markers that display each column’s value
directly above it:

var markerFont = "18px Verdana";
 var measureSpan = $("M");
 measureSpan.css("font", markerFont);
 measureSpan.css("visibility", "hidden");
 $("body").append(measureSpan);
 var approxFontHeight = parseFloat(measureSpan.prop("offsetHeight"));
 measureSpan.remove();
 var markerTextMargin = 2.5;

 var textualMarker = {
 measure: function (measureInfo) {
 var cont = measureInfo.context;

Canvas Symbols with Ignite UI igDataChart ❘ 283

c12.indd 11/03/2014 Page 283

 cont.font = markerFont;
 var data = measureInfo.data;
 var name = "null";
 if (data.item() !== null) {
 name = data.item().amount.toString();
 }
 var height = approxFontHeight + markerTextMargin * 2.0;
 var width = cont.measureText(name).width + markerTextMargin * 2.0;
 measureInfo.width = width;
 measureInfo.height = height;
 },
 render: function (renderInfo) {
 var ctx = renderInfo.context;
 ctx.font = markerFont;
 if (renderInfo.isHitTestRender) {
 ctx.fillStyle = renderInfo.data.actualItemBrush().fill();
 } else {
 ctx.fillStyle = "black";
 }

 var data = renderInfo.data;
 if (data.item() === null) {
 return;
 }
 var name = data.item().amount.toString();
 var halfWidth = renderInfo.availableWidth / 2.0;
 var halfHeight = renderInfo.availableHeight / 2.0;
 var x = renderInfo.xPosition - halfWidth;

 var y = renderInfo.yPosition - (halfHeight * 2.0);
 if (y < 0) {
 y += (halfHeight * 4.0);
 }

 if (renderInfo.isHitTestRender) {
 ctx.fillRect(x, y, renderInfo.availableWidth,
 renderInfo.availableHeight);
 } else {
 ctx.globalAlpha = 0.5;
 ctx.fillStyle = renderInfo.data.actualItemBrush().fill();
 ctx.fillRect(x, y, renderInfo.availableWidth,
 renderInfo.availableHeight);
 ctx.fillStyle = renderInfo.data.outline().fill();
 ctx.strokeRect(x, y, renderInfo.availableWidth,
 renderInfo.availableHeight);
 ctx.globalAlpha = 1;

 ctx.fillStyle = "black";
 ctx.textBaseline = "top";
 ctx.fillText(name, x + markerTextMargin, y + markerTextMargin);
 }
 }
 };

284 ❘ CHAPTER 12 INCORPORATING SYMBOLS

c12.indd 11/03/2014 Page 284

You would then assign this textualMarker variable to the series using markerTemplate:
textualMarker. igDataChart uses the HTML5 canvas for rendering (as opposed to SVG like D3).
The preceding code lets you step in and issue commands to the canvas to render some custom
symbol content when required. You have access to the data that would be in context for a symbol,
and the colors that the chart would have used, and you are responsible for rendering content in the
provided context. The code just renders some text in a rectangle to produce the result shown in
Figure 12-8. You can fi nd the IgniteUIChartColumnWithTextSymbols.js/html/css fi les on the
companion website.

FIGURE 12-8: This column chart includes textual symbols.

Creating a Bubble Chart
Some chart series are entirely composed of symbols, such as the one you can create with the
following code:

$(function () {
 $.ajax({
 type: "GET",
 url: "Food_Display_Table.xml",
 dataType: "xml",
 success: loadXml
 });

 var data = [];

 function loadXml(xmlData) {

Canvas Symbols with Ignite UI igDataChart ❘ 285

c12.indd 11/03/2014 Page 285

 $(xmlData).find("Food_Display_Row")
 .each(function () {
 var row = $(this);
 var displayName = row.find("Display_Name").text();
 var saturatedFat = parseFloat(row.find("Saturated_Fats").text());
 var calories = parseFloat(row.find("Calories").text());
 var milk = parseFloat(row.find("Milk").text());
 data.push({
 displayName: displayName,
 saturatedFat: saturatedFat,
 calories: calories,
 milk: milk
 });
 });

 data.sort(function (v1, v2) {
 if (v1.milk < v2.milk) {
 return -1;
 }
 if (v1.milk > v2.milk) {
 return 1;
 }
 return 0;
 });
 console.log("records loaded: " + data.length);
 renderChart();
 }

 function renderChart() {
 $("#chart").igDataChart({
 dataSource: data,
 title: "Saturated Fat vs. Calories",
 subtitle: "Amounts of saturated fat vs. calories
 in common foods. Data: Data.gov",
 horizontalZoomable: true,
 verticalZoomable: true,
 axes: [{
 type: "numericX",
 name: "xAxis",
 title: "Saturated Fat",
 strip: "rgba(230,230,230,.4)"
 }, {
 type: "numericY",
 name: "yAxis",
 title: "Calories",
 strip: "rgba(230,230,230,.4)"
 }],
 series: [{
 name: "saturatedFatVsCalories",
 type: "bubble",
 xAxis: "xAxis",
 yAxis: "yAxis",
 xMemberPath: "saturatedFat",
 yMemberPath: "calories",
 radiusMemberPath: "milk",

286 ❘ CHAPTER 12 INCORPORATING SYMBOLS

c12.indd 11/03/2014 Page 286

 fillMemberPath: "milk",
 labelMemberPath: "displayName",
 showTooltip: true,
 tooltipTemplate: "tooltipTemplate",
 title: "Saturated Fat Vs. Calories",
 maximumMarkers: 3000,
 radiusScale: {
 minimumValue: 10,
 maximumValue: 25
 },
 fillScale: {
 type: "value",
 brushes: ["red", "orange", "yellow"]
 }

 }]
 });
 }

});

For this code, you need to snag some data from the http://data.gov website. http://catalog.
data.gov/dataset/mypyramid-food-raw-data-f9ed6 has some data, including calories and
saturated fat content, for many different common food types. Using the strategies described in
Chapter 4, you can load the fi le using an AJAX call and put its contents in data. Then, provided
with two numeric axes, rather than the category and numeric axis combo you were using before,
you are able to load a type: "bubble" series.

NOTE When attempting to run the previous sample, if you did not load it via a
web server you may have run into some interesting issues. Most browsers block
AJAX requests if they are targeted at the local fi le system. If you are running IIS
or Apache on your machine, you can resolve the issue by placing the fi les from
this chapter someplace that you can serve them via IIS/Apache and access them
from a http://localhost address. Alternatively, if you have Python installed,
you can navigate to the directory that contains the fi les for this chapter and run
the command python -m SimpleHTTPServer; then you should be able to access
the fi les via: http://localhost:8000/.

A bubble series enables its symbols to carry more than just x-y position data. Additionally, you can
convey at least two additional values by mapping them to the size and color of the symbols. This is
done by specifying the fillMemberPath and the radiusMemberPath to indicate which properties
should be used to map to those attributes. radiusScale and fillScale further customize the look

Canvas Symbols with Ignite UI igDataChart ❘ 287

c12.indd 11/12/2014 Page 287

customize the look of the symbols so that the chart looks like the one shown in Figure 12-9. The
IgniteUIBubbleChart.js/html/css fi les are on the companion website.

Data source: HTTP://CATALOG.DATA.GOV/DATASET/MYPYRAMID-FOOD-RAW-DATA-F9ED6

FIGURE 12-9: This bubble chart was created using igDataChart.

Notice also that zooming has been turned on for the chart:

horizontalZoomable: true,
verticalZoomable: true,

In Figures 12-10 and 12-11, you can see how you can zoom into the bubble chart to drill down into
the dense areas and perceive the fi ne detail. Every series in igDataChart supports zooming and pan-
ning in this manner. Also note, that it is not just an optical zoom that is occurring here, as the level
of detail changes as more data points are revealed or hidden.

Although features such as these are possible, with enough code, using low-level visualization APIs
such as D3, they certainly aren’t as simple to enable as setting a few properties to true, as with the
igDataChart. The strength of products such as Ignite UI is that they can turn very complex scenarios
into turnkey solutions.

288 ❘ CHAPTER 12 INCORPORATING SYMBOLS

c12.indd 11/03/2014 Page 288

Data source: HTTP://CATALOG.DATA.GOV/DATASET/MYPYRAMID-FOOD-RAW-DATA-F9ED6

FIGURE 12-10: This shows zooming into a bubble chart.

Data source: HTTP://CATALOG.DATA.GOV/DATASET/MYPYRAMID-FOOD-RAW-DATA-F9ED6

FIGURE 12-11: The bubble chart has been zoomed.

Summary ❘ 289

c12.indd 11/03/2014 Page 289

SUMMARY

 Now you’ve learned all about adding symbols to charts. Symbols help to annotate individual items
in your data and present their location to the consumer of the visualization. Also, as you saw, some
charting types consist entirely of symbols. In this chapter, you

 ➤ Created a line chart using D3 and added symbols to it

 ➤ Made these symbols more dynamic and made them respond to mouse interaction

 ➤ Created an area series using the Ignite UI igDataChart charting API.

 ➤ Added symbols to the igDataChart Area series

 ➤ Added symbols to a column chart in igDataChart and turned these markers into textual
markers

 ➤ Created a bubble chart using igDataChart

c13.indd 11/03/2014 Page 291

Mapping Global, Regional,
and Local Data

WHAT’S IN THIS CHAPTER

 ➤ Learning how to plot an interactive map on a web page using the
Google Maps API

 ➤ Plotting markers at desired locations on a map

 ➤ Plotting point clouds of data on a map

 ➤ Displaying density information on a map using a heat map

 ➤ Turning publically available vector map geometry into GeoJSON

 ➤ Plotting GeoJSON as SVG using D3 and TopoJSON

 ➤ Using D3 to display animated choropleth maps

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/javascriptandjqueryanalysis on the Download Code
tab. The code is in the chapter 13 download and individually named according
to the names throughout the chapter.

This chapter is all about visualizing data on maps. It starts with visualizing data that has some
form of associated geographic position as markers on a map and then moves on to conveying
statistical information about geographic regions by varying their color through what is known
as choropleth mapping.

If you’ve used the Internet at all in the past decade, chances are you’ve used the Google Maps
web application at some point. It enables you to search for points of interest, fi nd directions
between one place and another, and to smoothly zoom and pan around the map to examine
things. Fortunately, Google also released an application programming interface (API) that

13

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

292 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 292

enables you to build web applications that plot various data over the Google Maps tile images and
allow this data to be navigable using the same mechanisms as the Google Maps application.

You’ve already used the D3 JavaScript API in some of the preceding chapters—mostly in the context
of charts—but D3 also provides mechanisms for plotting map geometry. In the latter part of this
chapter, you use D3 to plot dynamic geometry on a map to convey statistical information about
various regions.

The data or geometry you might want to plot on a map can be very large and unwieldy.
Furthermore, the APIs you use may have practical limitations in terms of plotting dynamic imagery
in an online, interactive fashion (as opposed to doing offl ine rendering ahead of time). Thus, you
have to process the data used in this chapter in various ways to ready it for display on a map. There
are countless programming languages you could use to preprocess the data for this purpose, but as
this is a book on using JavaScript to present visualizations, here, you also use JavaScript to process
the data via the Node.js platform.

WORKING WITH GOOGLE MAPS
At the time of this writing, you can freely use the Google Maps API as long as your website is free
to use and is publically accessible, but be sure to review all the terms of use of the Google Maps
API before you proceed with using it in a production website. If your website is not free to use, or
is not publically accessible, Google also provides a Google Maps for Business products. Your fi rst
step, after reviewing the terms of use of the API, should be to sign up for a Google Maps API key.
Although not technically required (none of the code samples in this chapter include an API key, and
they function without it, as of the time of writing), Google recommends that you use an API key
so that you, and they, can track your usage. Thus empowered, you can stay within the quotas they
place on the free level of usage for the service. You can obtain an API key here:

https://developers.google.com/maps/documentation/javascript/tutorial#api_key

After you’ve obtained your API key, make sure that, when you try to use any of the code in this
chapter, you include your API key in the script URL for the Google Maps API scripts:

<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?key=KEY&sensor=false">
</script>

In the preceding code, KEY is the API key that you obtained from Google.

The Basics of Mapping Visualizations
Maps of the earth are an attempt to take the 3D geography of the planet, which is roughly an oblate
spheroid, and show it on the 2D Cartesian plane of a sheet of paper. If you want to describe a point
on the 3D spheroid of the earth, one popular way is to use latitude, longitude, and elevation values,
which represent the angular and radial displacements from the origin point of the spheroid. The
origin point is conventionally decided to be the intersection of the equator of the earth and the
Prime Meridian, which divides the western and eastern hemispheres of the earth.

Over the years, cartographers have defi ned various projections, or mathematical formulas, that map
from the coordinate system over this spheroid, into a 2D Cartesian coordinate system that you can
easily display on a sheet of paper or computer screen.

Working with Google Maps ❘ 293

c13.indd 11/03/2014 Page 293

Your data, when it has a geographic context, will likely be expressed in terms of geographic coordi-
nates (latitude, longitude, and, optionally, elevation) and the mapping tools that you are using will
help you take the values and express them in the 2D Cartesian space of the computer screen.

Sometimes you’ll be able to select from the many different projections that have been conceived for
mapping geometry between these spaces, but sometimes this choice will be dictated for you by the
tool in use. The primary use case for the Google Maps API is to plot data over the map tile imagery
that Google Maps provides and helps you navigate. These tiles are rendered using a modifi ed version
of the Mercator map projection, so when you request that data be plotted over them, you present the
data using geographic coordinates, which the Google Maps API applies this projection to in order
to map them into 2D Cartesian coordinates over the map.

Thanks to the Google Maps API, you don’t often need to think about the fact that your geographic
coordinates are not already Cartesian values because the API deals with the transformation into
the Cartesian plane, but you will sometimes need to remember that map projections have dis-
torted the actual geometry being plotted. In Figure 13-1 (which you can fi nd in companion fi les
GoogleMapsProjectionDistortion.html/css/js), I’ve asked the Google Maps API to plot a set
of randomly placed circles on the map. These circles all have exactly the same radius in geographic
coordinates, but you can see how the projection distorts their shape in the Cartesian plane when
they are plotted in different places over the map.

FIGURE 13-1: This is an example of map projection distortion.

294 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 294

The Google Maps API v3
First, you start by getting a basic map to display, using the API, before you try to plot data over it.
The following is the HTML markup:

<!DOCTYPE html>
<html>
<head>
 <title>Basic Map</title>

 <script src="https://maps.googleapis.com/maps/api/js?v=3.exp&sensor=false">
</script>

 <link rel="stylesheet" href="GoogleMapsBasic.css">

 <script type="text/javascript" src="GoogleMapsBasic.js">
 </script>
</head>
<body>
 <div id="map"></div>
</body>
</html>

The maps script reference is where you would introduce your API key, as previously alluded to. The
main content of the page is a <div> that will hold the map created by the Google Maps API. Most
HTML markup for the Google Maps API code in this chapter looks exactly the same, except it
loads different JavaScript, so this is the only time it’s covered.

Similarly, all the Google Maps API code for this chapter uses roughly the same CSS, which essen-
tially makes the map take all the available space of the page:

html, body, #map {
 margin: 0;
 padding: 0;
 height: 100%
}

Listing 13-1 is the actual code that displays the map.

LISTING 13-1

var map;
var statueOfLiberty = new google.maps.LatLng(40.6897445, -74.0451452);

var options = {
 zoom: 12,
 center: statueOfLiberty
};

function createMap() {

Working with Google Maps ❘ 295

c13.indd 11/03/2014 Page 295

 var mapElement = document.getElementById("map");
 map = new google.maps.Map(mapElement, options);
}

google.maps.event.addDomListener(window, 'load', createMap);

The idea here is to center the map view on the Statue of Liberty monument at a specifi ed zoom level.
Let’s break things down before adding any additional complexity.

var map;
var statueOfLiberty = new google.maps.LatLng(40.6897445, -74.0451452);

This creates a variable that holds the map, so that it can be interacted with after initial creation and
creates a latitude and longitude pair that represents the geographic position of the Statue of Liberty
monument. An easy way to discover these coordinates is to search for a point of interest in the
Google Maps application. For example, if you search for “Statue of Liberty” in Google Maps and
look at the returned Uniform Resource Identifi er (URI) in the address box after you select it from
the search results, you see:

https://www.google.com/maps/place/Statue+of+Liberty+National+Monument/@40.689757,-
74.0451453,17z/data=!3m1!4b1!4m2!3m1!1s0x89c25090129c363d:0x40c6a5770d25022b

After the @ sign, you see two coordinates that represent the position of the point of interest. This
technique isn’t guaranteed to always work, as Google might change the structure of this URI, but,
as of the time of this writing, this represents an easy ad hoc way to obtain some coordinates. For
a more resilient method, you could look into using the Google Maps Geocoding API for looking
up the coordinates of a point of interest or fi nding the closest point of interest to some geographic
coordinates:

https://developers.google.com/maps/documentation/geocoding/
var options = {
 zoom: 12,
 center: statueOfLiberty
};

The preceding code defi nes the creation options of the map. It declares that the map should start
centered around the statue at zoom level 12.

NOTE The Google Maps image tiles are a tree of tiles. At the top level, you have
four tiles, and each level you descend, one tile is subdivided into four sub-tiles.
The zoom level represents how deep in this tile tree you are currently display-
ing images from. Each tile level introduces progressively more resolution to the
map imagery. This is actually the same way that most map tile providers work.
For example, if you investigate the OpenStreetMap API, you fi nd that the tile
level and tile coordinates are a human readable part of the resource path you
are requesting from the server. For example, http://b.tile.openstreetmap.
org/5/7/12.png represents a tile from zoom level 5 with x tile coordinate 7 and
y tile coordinate 12.

296 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 296

function createMap() {
 var mapElement = document.getElementById("map");
 map = new google.maps.Map(mapElement, options);
}

The preceding function creates the map when the DOM is ready to receive it. It locates the DOM
element that you want to add the map to and then instantiates the map with the options that indi-
cate it should center on the Statue of Liberty at zoom level 12.

google.maps.event.addDomListener(window, 'load', createMap);

Finally, this line waits until the window is loaded to call the preceding code and thus creates the
map. Not too complicated yet, right? You can see the results in Figure 13-2, and you can fi nd the
GoogleMapsBasic.html/css/js fi les on the companion website.

FIGURE 13-2: A basic map is displayed using Google Maps.

Customizing Maps with Iconography ❘ 297

c13.indd 11/03/2014 Page 297

The code might have been simple, but the results are very complex. You can zoom and pan and do
many things that you can do with the full Google Maps web application, except, with this code, you
can embed the experience in your own web application. This book, however, is about visualizing
data, so where is the data?

CUSTOMIZING MAPS WITH ICONOGRAPHY

One of the most straightforward ways to visualize data on a map is to position icons (or symbols/
markers) over the surface. Google Maps API uses the term markers, so this chapter uses that term to
describe how you render point data on your maps.

If you consider most of the maps that you interact with often, one of the most common visualiza-
tion types that you see is markers. And those markers are usually indicating the locations of various
points of interest. When you visit a shopping mall, for instance, and look at a directory, markers
indicate the locations of the restrooms and elevators, and textual markers indicate where the various
shops are located. When you are looking up the location of the restaurant that you are going to for
dinner, using its website, there is a pushpin marker indicating its location on a map. In fact, often-
times it is the Google Maps API that is used when you use a restaurant’s location fi nder page.

Displaying a Map Marker
So, how do you display a marker using the Google Maps API? It turns out this is extremely
simple to do, which is not especially surprising given that it is one of the primary use cases for
the API. Given Listing 13-1, you can add the following to the createMap function after the map
instantiation:

statueMarker = new google.maps.Marker({
 position: statueOfLiberty,
 map: map,
 title: "Statue of Liberty"
});

Here you instantiate a marker, providing the position of the Statue of Liberty monument, indicate
that it should be rendered on the map you just created, and provide it the title “Statue of Liberty.”
The title will be shown in the tooltip when the user hovers over the marker on the map. Figure 13-3
shows the results of the code; you can fi nd the GoogleMapsBasicMarker.html/css/js fi les on the
companion website.

298 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 298

FIGURE 13-3: The Statue of Liberty monument has been called out with a marker.

Notice that the default marker style for Google Maps API is the now-familiar Google Maps stylized
pushpin, but there are many ways to customize the look and feel of this marker. For example, you
can assign various vector imagery to the marker, rather than using the default look:

statueMarker = new google.maps.Marker({
 position: statueOfLiberty,
 map: map,
 icon: {
 path: google.maps.SymbolPath.CIRCLE,
 scale: 12,
 strokeColor: 'red',
 strokeWeight: 5
 },
 title: "Statue of Liberty"
});

You see how this looks in Figure 13-4, and the GoogleMapsBasicMarkerVector.html/css/js fi les
is on the companion website. This is just a single point of data, though. What if you want to plot a
point cloud over the map?

Customizing Maps with Iconography ❘ 299

c13.indd 11/03/2014 Page 299

FIGURE 13-4: The marker on this map is a circle icon.

Preparing Data to Plot on a Map
With the markers in the Google Maps API you are dynamically rendering content interactively, and
there is an overhead associated with each piece of retained geometry you add to the map. As such,
there are practical limits to the number of markers that you can display, especially if you want to
target low-power devices such as smartphones and tablets, which generally don’t have as much
oomph to their CPUs or as much spare memory (graphics or otherwise) to go around as desktop and
laptop computers.

There are various strategies you can use to make it easier to render a large point cloud as markers on
a map, but the one covered fi rst is culling the number of displayed markers down to a more manage-
able limit. This helps to avoid overtaxing the system during rendering.

First, however, you need to fi nd an interesting data set to display on the map. A good source of pub-
lic domain data is the www.data.gov website. Most of the data sets have unrestricted usage, and
they are nicely cataloged and searchable by data type. Because the goal is to use JavaScript to dis-
play the data over the map, you can make your life much easier by fi nding a data set that is already

300 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 300

expressed as JSON. In fact, there is an extended grammar of JSON called GeoJSON that standard-
izes how to convey geographic data and geometry in JSON format.

NOTE Although it’s especially simple to use, GeoJSON can have some down-
sides when it comes to sending geographic data over a network connection. If
you want high-precision geographic positions, this usually means high-precision
fl oating-point numbers, and when these numbers are serialized as text in a
JSON fi le, they can take up quite a few text characters per number. When this
is combined with highly detailed geometry, or large point clouds, the size of
a GeoJSON fi le can grow very quickly. There are mechanisms to avoid this.
One solution, which comes up later in this chapter, is to use TopoJSON, which
is a modifi cation to the spec that allows for quantized coordinates and topol-
ogy sharing, in order to reduce the amount of space all the coordinates take up
(among other things). Another strategy is to send binary packed fl oating points
over the wire rather than focusing on human readable string values (which is one
of the main attractions to using JSON).

Browsing around data.gov, I ran into this data set, which was already in GeoJSON format:
http://catalog.data.gov/dataset/public-library-survey-pls-2011. This represents all the
libraries that responded to the Public Library Survey for 2011. There are more than 9,000 items in
this data source, though, so it would be quite a load on the system to render them all, which might
result in sluggish performance. To combat this, you create a subset of the data to only the libraries
in one state. To do this, as alluded to earlier, you use Node.js.

Node.js is an application platform for running applications written in JavaScript. It leverages
Google’s V8 JavaScript engine to effi ciently run programs at native-like speeds. There are many
interesting reasons you might want to leverage Node.js, including writing simple non-blocking web
services, but, here, you leverage it simply to not have to use a separate language to cull down the
library data. First, use the following steps:

 1. Navigate to http://nodejs.org/.

 2. Install Node.js for your platform.

 3. Create a folder on your computer and unzip the public library data into it.

 4. In that same folder, create a text fi le called process.js, and open it in a text editor.

Then, add the code in Listing 13-2 to the fi le you created.

LISTING 13-2

var fs = require("fs");

fs.readFile("pupld11b.geojson", function (err, data) {
 if (err) {

Customizing Maps with Iconography ❘ 301

c13.indd 11/03/2014 Page 301

 console.log("Error: " + err);
 return;
 }

 var content = JSON.parse(data);

 var features = [];
 var newCollection = {
 "type": "FeatureCollection",
 "features": features
 };
 var currFeature;

 var count = 0;
 if (content.features && content.features.length) {
 for (var i = 0; i < content.features.length; i++) {
 currFeature = content.features[i];
 if (currFeature !== null &&
 currFeature.properties !== null &&
 currFeature.properties.STABR) {
 if (currFeature.properties.STABR === "NJ") {
 features.push(currFeature);
 count++;
 }
 }
 }
 }

 var output = JSON.stringify(newCollection);
 fs.writeFile("pupld11b_subset.geojson",
 output, function (err) {
 if (err) {
 console.log("Error: " + err);
 return;
 }

 console.log("done, wrote " + count + " features.");
 });
});

Let’s break down Listing 13-2. First you have

var fs = require("fs");

which loads the Node.js fi le system module so that you can read and write fi les from disk.
Immediately following is this line:

fs.readFile("pupld11b.geojson", function (err, data) {

Most of the APIs available for the Node.js platform are designed to be fully asynchronous, to avoid
blocking the main event loops of the system. As such, input/output (IO) operations, like this one,
involve providing a callback that will be invoked when the operation has completed. In the previous
code, you are requesting that the GeoJSON fi le that you downloaded, with the library information,
should be read into a string.

302 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 302

if (err) {
 console.log("Error: " + err);
 return;
}

var content = JSON.parse(data);

var features = [];
var newCollection = {
 "type": "FeatureCollection",
 "features": features
};
var currFeature;

If an error occurs during the fi le load, the preceding code prints it to the console and then aborts.
Otherwise, it parses the GeoJSON into a JavaScript object and then preps a new output array that
holds the subset of the data.

var count = 0;
if (content.features && content.features.length) {
 for (var i = 0; i < content.features.length; i++) {
 currFeature = content.features[i];
 if (currFeature !== null &&
 currFeature.properties !== null &&
 currFeature.properties.STABR) {
 if (currFeature.properties.STABR === "NJ") {
 features.push(currFeature);
 count++;
 }
 }
 }
}

With this code, you loop over the input collection and shift values into the subset if the STABR prop-
erty is equal to NJ. Thus, features should only contain libraries within the state of New Jersey.

var output = JSON.stringify(newCollection);
fs.writeFile("pupld11b_subset.geojson", output, function (err) {
 if (err) {
 console.log("Error: " + err);
 return;
 }

 console.log("done, wrote " + count + " features.");
});

Finally, you serialize the subset collection back out to JSON and write it out to a new fi le called
pupld11b_subset.geojson. Alternatively, an error prints out if it’s unable to write the new fi le.

To run the resulting logic, you should start a Node.js command prompt. Because the strategy to
achieve this varies depending on the platform on which you are running Node.js, please refer to

Customizing Maps with Iconography ❘ 303

c13.indd 11/03/2014 Page 303

the Node.js documentation for more information. On Windows, I run a shortcut that was installed
along with Node.js that creates a command prompt and ensures that Node.js is accessible to use
therein. Given a command prompt, you should navigate to the folder in which you placed process
.js and the input GeoJSON data. Then you can run the following command:

node process.js

which should result in the file pupld11b_subset.geojson being created. You can see an example
of running this command on Windows in Figure 13-5. File pupld11b.geojson, process.js is on
the companion website.

FIGURE 13-5: This shows using Node.js to cull down a GeoJSON fi le.

Plotting Point Data Using Markers
Given the subset of the GeoJSON fi le, you can proceed to plot it on the map.

$(function () {
 $.ajax({
 type: "GET",
 url: "pupld11b_subset.geojson",
 dataType: "json",
 success: createMap
 });
});

As you can see, jQuery is used to get the GeoJSON fi le and parse it.

304 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 304

NOTE If you are loading the HTML fi le off your local disk, rather than running
a local web server and using an HTTP URL, some browsers, such as Google
Chrome, give you security errors. Chrome is trying to keep malicious websites
from accessing fi les on your local disk with this restriction. Other browsers
allow the access as long as you don’t try to leave the directory from which
the page is loaded. To avoid these issues, you might want to host the pages for
the rest of this chapter on a local web server and access them through http://
localhost; alternatively, you could use Mozilla Firefox to load them, which, as
of the time of writing, does not have the same restriction.

When the fi le is successfully parsed, the createMap function is called.

var map;
var markers = [];
var njView = new google.maps.LatLng(40.3637892, -74.3553047);

var options = {
 zoom: 8,
 center: njView
};

Similar to how you centered the view around the Statue of Liberty earlier, this centers the view over
the state of New Jersey.

function createMap(data) {
 var mapElement = document.getElementById("map");
 var currentFeature, geometry, libraryName;
 map = new google.maps.Map(mapElement, options);

 for (var i = 0; i < data.features.length; i++) {
 currentFeature = data.features[i];

 if (!currentFeature.geometry) {
 continue;
 }
 geometry = currentFeature.geometry;

 libraryName = "Unknown";
 if (currentFeature.properties) {
 libraryName = currentFeature.properties.LIBNAME;
 }

 markers.push(new google.maps.Marker({
 position: new google.maps.LatLng(
 geometry.coordinates[1],
 geometry.coordinates[0]),
 map: map,
 title: libraryName
 }));
 }
}

Customizing Maps with Iconography ❘ 305

c13.indd 11/03/2014 Page 305

In the preceding code, the following things happen:

 ➤ The map is instantiated, as before.

 ➤ You loop through all the features in the GeoJSON fi le.

 ➤ For each feature, the geometry of the feature is extracted, which is a latitude and longitude
pair, in this case.

 ➤ For each feature, a marker is added to the map, which is centered on the feature point, and
the marker title is set to the associated name of the library.

You can see the result of this in Figure 13-6; GoogleMapsManyMarkers.html/css/js are the fi les
on the companion website.

Source for library data: HTTP://CATALOG.DATA.GOV/DATASET/PUBLIC-LIBRARY-SURVEY-PLS-2011

FIGURE 13-6: These markers plot the public libraries in New Jersey.

Also notice that you can hover over the markers with your mouse and (eventually) see a tooltip that
contains the name of the library in question. At the initial zoom level, all of the markers are clus-
tered together and occlude each other, but you can zoom in for greater detail and the markers begin
to resolve into more dispersed entities. Figure 13-7 shows what the map looks like and an example
of a tooltip.

306 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 306

Source for library data: HTTP://CATALOG.DATA.GOV/DATASET/PUBLIC-LIBRARY-SURVEY-PLS-2011

FIGURE 13-7: The map from Figure 13-6 has been zoomed in.

NOTE Rendering an individual marker for each and every data point is simple
to implement, but it is not a very satisfactory strategy as the number of points
to visualize increases. As the point count rises, performance issues start to
crop up in the tools you are using, and the data simply gets harder to analyze
as it increasingly occludes itself. A smarter way of going about rendering larger
amounts of point data on a map includes clustering clumps of neighboring mark-
ers into a single marker that represents the group, and then splitting apart the
grouped marker as the map zooms in further on that area. Another valid strategy
would be to switch to using a heat map to visualize the data, which is discussed
in the “Displaying Data Density with Heat Maps” section of this chapter.

So far, you’ve only dealt with simple icons that delineate a latitude/longitude location on the map,
but with a little tweaking, the markers can convey extra channels of data to your user. If you think
back to Chapter 12 and bubble charts, you can anticipate the next move.

Customizing Maps with Iconography ❘ 307

c13.indd 11/03/2014 Page 307

Plotting an Additional Statistic Using Marker Area
When plotting markers, especially circular ones, you can use the size of the marker to convey
another data channel to the consumer of a visualization. If you examine the GeoJSON fi le you
loaded for the previous scenario, you see that there are many extra properties associated with each
library that you may choose to visualize above and beyond the library’s location.

An interesting statistic that jumps out is the number of visits to each library. Mapping this value to
the size of the markers should make their size proportional to the traffi c to an individual library,
which is a pretty natural usage for relative marker sizes. The following is an altered version of the
createMap function, which, instead of creating Marker objects, creates Circle objects and associ-
ates them with the map:

function createMap(data) {
 var mapElement = document.getElementById("map");
 var currentFeature, geometry, libraryName, visits,
 minVisits, maxVisits, area, radius, i;
 map = new google.maps.Map(mapElement, options);

 for (i = 0; i < data.features.length; i++) {
 currentFeature = data.features[i];
 visits = currentFeature.properties.VISITS;

 if (i === 0) {
 minVisits = visits;
 maxVisits = visits;
 } else {
 minVisits = Math.min(minVisits, visits);
 maxVisits = Math.max(maxVisits, visits);
 }
 }

 for (i = 0; i < data.features.length; i++) {
 currentFeature = data.features[i];

 if (!currentFeature.geometry) {
 continue;
 }
 geometry = currentFeature.geometry;
 visits = currentFeature.properties.VISITS;

 libraryName = "Unknown";
 if (currentFeature.properties) {
 libraryName = currentFeature.properties.LIBNAME;
 }

 area = (visits - minVisits) / (maxVisits - minVisits)
 * 500000000 + 100000;
 radius = Math.sqrt(area / Math.PI);

 circles.push(new google.maps.Circle({

308 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 308

 center: new google.maps.LatLng(
 geometry.coordinates[1],
 geometry.coordinates[0]),
 map: map,
 radius: radius,
 fillOpacity: .7,
 strokeOpacity: .7,
 strokeWeight: 2,
 title: libraryName,
 visits: currentFeature.properties.VISITS,
 fillColor: '#0066FF',
 strokeColor: '#0047B2'
 }));

 google.maps.event.addListener(circles[i],'mouseover',onMouseOver);

 google.maps.event.addListener(circles[i], 'mouseout', onMouseOut);

 }

 function onMouseOver() {
 map.getDiv().setAttribute('title',this.get('title') + ": " +
 this.get('visits'));
 }

 function onMouseOut() {
 map.getDiv().removeAttribute('title');
 }
}

Let’s examine the new and interesting parts of the code. First you have

for (i = 0; i < data.features.length; i++) {
 currentFeature = data.features[i];
 visits = currentFeature.properties.VISITS;

 if (i === 0) {
 minVisits = visits;
 maxVisits = visits;
 } else {
 minVisits = Math.min(minVisits, visits);
 maxVisits = Math.max(maxVisits, visits);
 }
}

which is just trying to gather the minimum and maximum number of visits in order to help establish
the domain of the values that you are trying to map onto the size range of the markers.

visits = currentFeature.properties.VISITS;

In the preceding code, you extract the VISITS property from each item, to reference it in deciding
the size of the marker. The Google Maps API is going to expect a radius value (in meters) to defi ne
the size of the circles. It’s actually much more appropriate to map the VISITS value to area, rather

Customizing Maps with Iconography ❘ 309

c13.indd 11/03/2014 Page 309

than radius, so you can use a bit of math to convert from the area of a circle to the
appropriate radius.

area = (visits - minVisits) / (maxVisits - minVisits)
* 500000000 + 100000;
radius = Math.sqrt(area / Math.PI);

This maps from the input domain (the visits) to the output range (the area of the circles). If you are
wondering why the numbers are so large, this is because the Circle object expects radius to be
specifi ed in meters, so the area of the circle is in square meters. So if you want the circles to be vis-
ible from far away, the area has to be very large. This is also why the circles get larger as you zoom
in rather than remaining a constant size. They have a fi xed geographical area, rather than a fi xed
pixel area.

circles.push(new google.maps.Circle({
 center: new google.maps.LatLng(
 geometry.coordinates[1],
 geometry.coordinates[0]),
 map: map,
 radius: radius,
 fillOpacity: .7,
 strokeOpacity: .7,
 strokeWeight: 2,
 title: libraryName,
 visits: currentFeature.properties.VISITS,
 fillColor: '#0066FF',
 strokeColor: '#0047B2'
}));

This instantiates a Circle that

 ➤ Is centered at the position of the library

 ➤ Is associated with the map you created

 ➤ Has the radius you previously calculated

 ➤ Has 70 percent opacity

 ➤ Has a two-pixel-wide stroke

 ➤ Has a title and associated number of visits, which you’ll refer to later

 ➤ Has shades of blue for fi ll and stroke colors

google.maps.event.addListener(circles[i],'mouseover',onMouseOver);

google.maps.event.addListener(circles[i], 'mouseout', onMouseOut);

function onMouseOver() {
 map.getDiv().setAttribute('title',this.get('title') + ": " +
 this.get('visits'));
}

function onMouseOut() {
 map.getDiv().removeAttribute('title');
}

310 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/14/2014 Page 310

Finally, these event handlers change the title attribute of the map container as the Circle
elements are hovered to approximate a tooltip that displays the name of the library and the
number of visits. You can see the result of all this work in Figure 13-8, and you can fi nd the
GoogleMapsManyCircleMarkers.html/css/js fi les on the companion website.

Source for library data: HTTP://CATALOG.DATA.GOV/DATASET/PUBLIC-LIBRARY-SURVEY-PLS-2011

FIGURE 13-8: This shows Google Maps with bubble markers displaying library visits.

Displaying Data Density with Heat Maps
Notice that even though you culled down the number of points displayed when using markers or
circles to display the library locations, there was still a lot of occlusion because some regions boast a
large number of libraries. The problem with the occlusion is that, even when using semi-transparent
circles, it can be diffi cult for the eye to judge the density of points at various positions without any
color differentiation. As a result, 3 or 4 libraries very close together can end up looking identical to
300 libraries very close together.

So, if the density of data points plotted over geographic space is an important part of the story you
are trying to tell with the data, it can be desirable to make it as clear as possible what the data den-
sity is at each position on the map. One way to achieve this is with a heat map, which interpolates
between two or more colors so that pixels over the map are colored with a more “hot” color the

Customizing Maps with Iconography ❘ 311

c13.indd 11/14/2014 Page 311

denser the data points are at that location. A heat map generally renders color around a data point
for some confi gurable radius, and everywhere that the pixels intersect with pixels from other data
points, their “heat” is increased, resulting in a hotter color.

Luckily, given what you’ve built so far, it’s actually extremely easy to switch to rendering the library
locations using a heat map with the Google Maps API, as shown in Listing 13-3.

LISTING 13-3

var map;
var njView = new google.maps.LatLng(40.3637892, -74.3553047);

var options = {
 zoom: 8,
 center: njView
};

function createMap(data) {
 var mapElement = document.getElementById("map");
 var geometry, points, heatmap, heatData;
 map = new google.maps.Map(mapElement, options);

 heatData = [];
 for (var i = 0; i < data.features.length; i++) {
 geometry = data.features[i].geometry;
 heatData.push(new google.maps.LatLng(
 geometry.coordinates[1],
 geometry.coordinates[0]));
 }

 points = new google.maps.MVCArray(heatData);

 heatmap = new google.maps.visualization.HeatmapLayer({
 data: points,
 radius: 20
 });

 heatmap.setMap(map);
}

$(function () {
 $.ajax({
 type: "GET",
 url: "pupld11b_subset.geojson",
 dataType: "json",
 success: createMap
 });
});

The new and signifi cant section in Listing 13-3 has been highlighted. If you run the code, you
should see the same results as those shown in Figure 13-9 (this fi gure is the GoogleMapsHeatMap
.js/html/css fi les are on the companion website). The code itself is extremely similar to what

312 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/14/2014 Page 312

you’ve done already with markers and circles. The main differences are that the HeatmapLayer
expects an MVCArray of point data. Note also that you can confi gure the radius of the heat map dur-
ing construction. Some other values you can confi gure on the heat map include opacity, gradient,
maxIntensity, and dissipating.

Source for library Data: HTTP://CATALOG.DATA.GOV/DATASET/PUBLIC-LIBRARY-SURVEY-PLS-2011

FIGURE 13-9: This shows a heat map of New Jersey library density using the Google Maps API.

This is great, but it’s a bit lacking in comparison to the circles example from earlier in the chapter.
The circles example was showing more than just the locations of the libraries in that it was also
plotting a statistical value associated with each library represented using circle area. Now, with the
heat map, you are showing the density of the points in a much clearer fashion, but, data-wise, you’ve
gone back to only conveying the location of the libraries. With a small tweak, however, you can
reintroduce a data value into the mix and use it to weight the various points so that they contribute
more or less heat to the heat map.

heatData = [];
for (var i = 0; i < data.features.length; i++) {
 geometry = data.features[i].geometry;
 weighted = {};
 visits = data.features[i].properties.VISITS;
 weighted.location = new google.maps.LatLng(

Customizing Maps with Iconography ❘ 313

c13.indd 11/03/2014 Page 313

 geometry.coordinates[1],
 geometry.coordinates[0]);
 weighted.weight = visits;
 heatData.push(weighted);
}

The preceding code has made the small adjustment to create some objects that contain a LatLng
position and a weight, which is mapped to VISITS, as before. This results in some heat map
output where the hottest areas indicate where the most library visits are occurring, as shown in
Figure 13-10.

Source for library data: HTTP://CATALOG.DATA.GOV/DATASET/PUBLIC-LIBRARY-SURVEY-PLS-2011

FIGURE 13-10: This weighted heat map shows visits to libraries in New Jersey using the Google Maps API.

A heat map can make it much more possible to render a large point cloud over a map without losing
any information due to occlusion, but, as the point count rises, heat maps can be a bit expensive—in
terms of both CPU and memory—to render interactively. Because of these performance realities,
depending on the speed of your computer, or device, you might notice some slowdown when run-
ning either of the preceding examples. A common strategy to mitigate this cost is to do some up-
front, server-side processing of the data to make it easier to display the content interactively. In the
case of the Google Maps API, if you set up your data in a Google Fusion Table, you can display an

314 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 314

optimized heat map with many more points than you can feasibly use with the HeatmapLayer. This
does, however, require you to defi ne the data you want to pull into the heat map ahead of time.

Switching to showing a density surface rather than individually resolved objects has helped provide a
way to show more data on the map, and in a less information-lossy way, than you can easily do with
markers. It is not the only strategy that you have available to you, however.

PLOTTING DATA ON CHOROPLETH MAPS

Throughout the previous sections, you saw some of the limitations in visualizing large amounts of
point data on a map. Heat maps were discussed as a solution, but there is another strategy for con-
veying large amounts of data in a map visualization. If your statistics are fi rst aggregated by region,
you can color the various regions of a map to convey a channel of information to the visualization
consumer. In this section, you see how to build such a visualization.

First, you fi nd out how to acquire some region geometry so that it can be rendered to the screen and
dynamically colored. Then you see how to convert this geometry into a format that makes it easier
to consume in a browser. Finally, you use D3 to render the regional geometry and create apply a
color scale to the result.

Obtaining Geometry to Plot on a Map
When working with the Google Maps API, most geometry you were displaying was in the form of
images downloaded from the server. Tile imagery is great in that it requires very little processing
power to render on the client, which is especially important on low-power mobile devices, but this
isn’t really conducive to dynamically coloring the map geometry, or knowing, for example, which
piece of geometry the mouse is over.

In order to make things more dynamic, you can acquire some geometry, in the form of vector graph-
ics data, to render on the client. Public government data comes to the rescue again here. The United
States Census Bureau, among other government entities, publishes many Esri shapefi les containing
geometry for various regional boundaries.

NOTE An Esri shapefi le is a vector graphics fi le format for storing geospatial
vector geometry. It was created by Esri, and has been prevalent for long enough
that there is a vast library of shapefi les to choose from when visualizing map
data, not to mention many tools for displaying, editing, and managing them.
Another benefi t of shapefi les is that they are an effi cient binary format for trans-
ferring vast amounts of geometry without wasted space. Some browser-based
mapping products can even load them directly rather than needing to convert
to GeoJSON or another JavaScript-based format fi rst: www.igniteui.com/
map/geo-shapes-series. Another interesting aspect of shapefi les is that they
actually consist of a set of several different related fi les and oftentimes there is
a paired database fi le that offers data that can be correlated with each group of
displayed geometry.

Plotting Data on Choropleth Maps ❘ 315

c13.indd 11/03/2014 Page 315

At www.census.gov/geo/maps-data/data/cbf/cbf_state.html, you can fi nd a set of shape-
fi les that have variously detailed versions of the state boundary geometries for the United States of
America. For the purposes of this visualization, only the least-detailed are required: www2.census.
gov/geo/tiger/GENZ2010/gz_2010_us_040_00_20m.zip. D3 won’t directly load the shapefi le, so
you have to start by converting it to GeoJSON.

Actually, one of the creators of D3 came to the conclusion that GeoJSON had a few inadequacies,
so he created a set of extensions to the format called TopoJSON, along with a tool for converting
shapefi les to TopoJSON format. The advantage of TopoJSON is that it goes beyond defi ning geom-
etry and delineates the shared topology of the geometries in the fi le and helps compress GeoJSON,
which is quite a verbose format, by using various quantization tricks.

There is a common problem when dealing with geospatial geometry in that if you are dealing with
a fi le that has too much detail to be effi ciently rendered, it can help to reduce the number of points
in the polygons or polylines that make it up. Most geospatial fi le formats would store two separate
closed polygons for the states of New Jersey and Pennsylvania, which directly abut each other. As
such, their shared border would be contained twice in the two separate polygons, and a straight-
forward polygon simplifi cation routine, which would simplify one polygon at a time, would not
necessarily simplify the shared border the same way both times. This can, unfortunately, create gaps
along the abutting borders.

Converting Geometry for Display Using Topojson
TopoJSON addresses this issue and saves some space by making sure that shared borders are only
stored once in the fi le. Provided a fi le in TopoJSON format, D3 can convert it back to GeoJSON on
the client, and then render it to the page. The tool provided for converting shapefi les to TopoJSON
uses Node.js. Good thing you already have it installed, huh?

Before installing TopoJSON, you also need to have Python installed. You can install Python from
www.python.org/. At the time of this writing, you want the 2.x version rather than the 3.x version
of Python, as the 3.x version is not compatible for these purposes. After you have Python installed,
if you are using Windows, you might need to add it to your path environment variable. When that is
complete, from a node command prompt you should be able to run

npm install -g topojson

You should see a lot of output stream past, as in Figure 13-11.

If you have errors during the installation, make sure that Python is installed and confi gured to be in
your path, and make sure that node is in context for your command prompt (there is a shortcut for
this for Windows, or you could make sure Node.js is in your path environment variable).

After TopoJSON is installed, you should be able to go to the folder where you extracted the shape-
fi le and run this command line:

topojson -p STATE -p NAME -o states.json gz_2010_us_040_00_20m.shp

This loads the shapefi le and converts it to TopoJSON in an output fi le called states.json. It also
makes sure that two properties, STATE and NAME, are extracted from the accompanying database

316 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 316

and injected as properties in the TopoJSON for each shape. Given this states.json fi le, you should
be able to get a basic map rendered. You should see output similar to Figure 13-12.

FIGURE 13-11: This shows installing TopoJSON using npm

FIGURE 13-12: A shapefi le is converted to TopoJSON.

Rendering Map Geometry Using D3
First of all, much like earlier in this chapter, you are about to load a JavaScript fi le off the local disk
using AJAX, so remember the caveat from earlier in the chapter. As such, unless you are loading the

Plotting Data on Choropleth Maps ❘ 317

c13.indd 11/03/2014 Page 317

page from a local web server, I’d either recommend using Firefox, which does not, at the time of this
writing, block this interaction. Listing 13-4 shows how to load the TopoJSON geometry into D3.

LISTING 13-4

var mapWidth = 900;
var mapHeight = 500;

var main = d3
 .select("body")
 .append("svg")
 .attr("width", mapWidth)
 .attr("height", mapHeight);

d3.json("states.json", function (error, states) {
 var statesFeature = topojson.feature(
 states,
 states.objects.gz_2010_us_040_00_20m);

 var path = d3.geo
 .path();

 main
 .selectAll(".state")
 .data(statesFeature.features)
 .enter().append("path")
 .attr("class", "state")
 .attr("d", path);
});

This requires the HTML defi ned as such:

<!DOCTYPE html>
<html>
<head>
 <title>D3 Basic Map</title>

 <link rel="stylesheet" href="D3Map.css">
</head>
<body>
 <script src="d3/d3.min.js"></script>
 <script src="topojson/topojson.js"></script>
 <script type="text/javascript" src="D3Map.js"></script>
</body>
</html>

The code produces the image in Figure 13-13, which are the D3Map.html/css/js fi les on the com-
panion website.

318 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 318

Geometry source: HTTP://WWW.CENSUS.GOV/GEO/MAPS-DATA/DATA/CBF/CBF_STATE.HTML

FIGURE 13-13: This is the result of loading geometry in D3 using TopoJSON.

Listing 13-4 decides a width and height for the map and then creates an <svg> element with this
size to hold the various map visuals. If you aren’t familiar with D3 yet, review Chapter 11 for more
detail on some of the mechanics.

Next you have

d3.json("states.json", function (error, states) {

This causes D3 to load states.json as a JSON fi le, and, when ready, invoke the callback function
you are providing with the hydrated JavaScript object. Provided the JavaScript object containing the
geometry data:

var statesFeature = topojson.feature(
 states,
 states.objects.gz_2010_us_040_00_20m);

this code asks TopoJSON to extract the GeoJSON features from the input TopoJSON fi le. These
features are used to generate the path geometry to display the shapes on the map.

var path = d3.geo
 .path();

This creates a geographic path builder that interprets the GeoJSON feature data and converts it into
SVG path data, when you perform the data join, to create the shapes for the states:

main
.selectAll(".state")
.data(statesFeature.features)
.enter().append("path")
.attr("class", "state")
.attr("d", path);

Plotting Data on Choropleth Maps ❘ 319

c13.indd 11/03/2014 Page 319

The previous code performs the data join. You select all elements that have the state class.
Remember that there are none of these the fi rst time this code executes, but this declaratively lays
out the expectation of where those elements should be, which helps D3 to know how to group the
data items being joined and identifi es to which parent any new elements should be added to.

Next, you operate on the enter set and append a <path> for each state feature; these paths are then
marked with the class state, and then the path builder is assigned to transform the feature data
into SVG path geometry. As shown in Figure 13-13, this provides a map of the United States where
all the individual state polygons have the same color. That color comes from the CSS fi le and the
rule for the state class:

.state {
 fill: #5daecc;
 stroke: #225467;
}

Displaying Statistics Using a Choropleth Map
Now that you have some polygons displayed for all the separate states, it’s time to display an inter-
esting statistic mapped to the polygon color, which is also known as a choropleth map.

The U.S. Department of Agriculture provides some Microsoft Excel fi les that provide various farm-
ing statistics broken down by state. I found this by browsing http://data.gov, but the actual link
to the data’s page is http://www.ers.usda.gov/data-products/agricultural-productivity-
in-the-us.aspx. The fi le you will use is at

http://www.ers.usda.gov/datafiles/Agricultural_Productivity_in_the_US/
StateLevel_Tables_Relative_Level_Indices_and_Growth_19602004Outputs/table03
.xls

which has interesting information about the total farm output for each state broken down by year.
The easiest thing to do to get this data loaded is to save that .xls fi le as a .csv fi le and then pull out
any extraneous rows except for the header row (with the titles for each column) and the actual data
for each year. You can see what I mean in Figure 13-14.

FIGURE 13-14: This shows the layout of the farm output CSV fi le.

320 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 320

On the companion website, the fi le is farmoutput.csv. D3 has no problems loading CSV fi les,
but you have a bit of a challenge to overcome here in that the data in this CSV fi le has abbreviated
names for each state, whereas the STATE property in your GeoJSON fi le has only full names. To deal
with this, you can construct, or download from the companion website, a CSV fi le that maps back
and forth between the full state names and their abbreviations. This fi le helps correlate items in the
TopoJSON fi le with items in the farm output CSV fi le. You can see what this CSV fi le should look
like in Figure 13-15, and you can fi nd it as stateabbreviations.csv on the companion website.

FIGURE 13-15: This is what the layout of the state abbreviations CSV fi le looks like.

The following code snippet assumes you have both these CSV fi les:

var mapWidth = 900;
var mapHeight = 500;

var main = d3
 .select("body")
 .append("svg")
 .attr("width", mapWidth)
 .attr("height", mapHeight);

First, you have this familiar code, which creates the SVG element

var colors = ['#D0E5F2', '#729EBA',
 '#487896', '#2F6180',
 '#143D57', '#08293D'];

Plotting Data on Choropleth Maps ❘ 321

c13.indd 11/03/2014 Page 321

var currentYear = 2004;
var firstYear = 0;
var data = [];
var currentData;
var currentMap;
var statesFeature;

In the preceding code, some useful variables are defi ned for use later. You allow for the current year
to be changed with a <select> box. So you store both a matrix of all the years’ data, and a separate
variable holds just the currently selected year’s data. colors represents an aesthetically pleasing set
of colors to use as a color scale with a discrete range of outputs.

d3.json("states.json", function (error, states) {
 d3.csv("farmoutput.csv", function (error, farmoutput) {
 d3.csv("stateabbreviations.csv", function (error,
 stateAbbreviations) {

The reason for the three-level deep nesting is to chain the callbacks so that you end up with all three
fi les loaded before proceeding to render the map. To refresh, the fi les are

 ➤ states.json: The TopoJSON fi le you created by converting the Esri shape fi le earlier.

 ➤ farmoutput.csv: The CSV fi le containing all the farm output state per state per year.

 ➤ stateabbreviations.csv: A mapping between the short state abbreviations and the long
name of the states. This helps mash up the two data sources.

Now, you can move on to loading the map:

statesFeature = topojson.feature(
 states,
 states.objects.gz_2010_us_040_00_20m);

This part is unchanged from the previous code, and is, again, converting the TopoJSON input back
into GeoJSON features.

var i, j, currItem;

var abbreviationsMap = {};

var allAbbrev = [];
for (i = 0; i < stateAbbreviations.length; i++) {
 abbreviationsMap[stateAbbreviations[i].Abbreviation] =
 stateAbbreviations[i].Name;
 allAbbrev.push(stateAbbreviations[i].Abbreviation);
}

In the preceding snippet a map (dictionary/hashtable) is built that maps between the abbrevi-
ated state names and the full state names, based on the input CSV fi le. Notice D3 handled
parsing the CSV for you, and from within this callback it just looks like a JavaScript object:
stateAbbreviations.

322 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 322

Next, you transform the farm output data a bit. The input is a CSV where every state has a column,
but it is much easier to consume this data from D3 if the values for each state are an array of values
where each item in the array has the state name and output value. Also, you need the state names to
be the full names because that is what you need to match against in the GeoJSON.

for (i = 0; i < farmoutput.length; i++) {
 var year = farmoutput[i];
 var yearNumber = parseInt(year.Year, 10);
 if (i === 0) {
 firstYear = yearNumber;
 }
 currItem = {};
 currItem.year = yearNumber;
 currItem.states = [];
 for (j = 0; j < allAbbrev.length; j++) {
 currItem.states.push({
 name: abbreviationsMap[allAbbrev[j]],
 value: parseFloat(year[allAbbrev[j]])
 });
 }
 data.push(currItem);
}

While performing that transformation, the value of the fi rst year in the data (assuming an ascending
sort) is captured to help fi nd the index of the current year later on.

Up to this point in your D3 adventures, you’ve often been using D3 to manipulate SVG elements, but
D3 is just as capable at manipulating the HTML Document Object Model (DOM) also. To select the
current year’s data being displayed, it would help to have an HTML <select> element populated
with all the valid years that there are data for, and to react to the selection changing. Here’s how
you would accomplish that using D3:

var select = d3.select("select");

select
.selectAll("option")
.data(data)
.enter()
.append("option")
.attr("value", function (d) { return d.year; })
.text(function (d) { return d.year; })
.attr("selected", function (d) {
 if (d.year == currentYear) {
 return "selected";
 }
 return null;
});

select.on("change", function () {
 currentYear = this.value;
 renderMap();
});

Plotting Data on Choropleth Maps ❘ 323

c13.indd 11/03/2014 Page 323

Following the familiar pattern, you fi rst select the existing <select> element by type and then select
all the child <option> elements (in potentia, as they won’t exist the fi rst time), join them with the
data (which holds an element for each year), and operate on the enter set. For each placeholder in
the enter set (the fi rst time, there will be one per year), append an <option> element and then con-
fi gure its value and text based on the current year on the contextual data item. Select the option if
and only if its year is equal to the current year. Lastly, this binds a change handler that switches the
current year variable and re-renders the map.

Pretty neat, huh? Not a lick of SVG, and you are using the same transformational techniques to con-
cisely operate on DOM objects. To fi nish up your nested callback you have the following:

 renderMap();

 d3.select("body")
 .append("div")
 .text(
"Source: http://www.ers.usda.gov/data-products/~CA
agricultural-productivity-in-the-us.aspx");
 });
 });
});

This renders the map for the fi rst time and appends a source line describing where the data came
from. So that just leaves rendering the colors on the map. To render the map, use the following:

function renderMap() {
 var index = currentYear - firstYear;
 var i;

 currentData = data[index];
 currentMap = {};
 for (i = 0; i < currentData.states.length; i++) {
 currentMap[currentData.states[i].name] =
 currentData.states[i].value;
 }

 var path = d3.geo
 .path();

 var max = d3.max(currentData.states, function (d) {
 return d.value;
 });
 var min = d3.min(currentData.states, function (d) {
 return d.value;
 });

In this code, you do the following:

 1. Figure out the index into the data collection based on the current selected year and the fi rst
year you recorded earlier.

 2. Obtain the row for the current year based on the index.

324 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 324

 3. Build a hashtable to effi ciently retrieve the farm output value from a state name.

 4. Create a geographic path builder.

 5. Determine the maximum farm output value for the current row.

 6. Determine the minimum farm output value for the current row.

Next, you prepare more precursors to rendering the content:

var tooltip = d3.select("body")
.append("div")
.attr("class", "tooltip")
.style("position", "absolute")
.style("z-index", 500)
.style("visibility", "hidden");

var colorScale = d3.scale.quantize()
.domain([min, max])
.range(colors);

var states = main
.selectAll(".state")
.data(statesFeature.features);

In the preceding code, you do the following:

 1. Defi ne an initially hidden tooltip (which is just a styled <div> set to be absolutely
positioned).

 2. Defi ne a color scale as a quantized scale that maps from the linear input domain of the farm
output values to a discrete output range.

 3. Select all elements in the SVG element with the class state and join some data against them,
storing the update set in states

Now to render the actual content:

states
.enter().append("path")
.attr("class", "state")
.attr("d", path)
.on("mouseenter", function () {
 tooltip.style("visibility", "visible");
})
.on("mouseleave", function () {
 tooltip.style("visibility", "hidden");
})
.on("mousemove", function (d) {
 tooltip.style("top", (d3.event.pageY + 10) + "px")
 .style("left", (d3.event.pageX + 15) + "px")
 .text(d.properties.NAME + ": " + currentMap[d.properties.NAME]);
});

Plotting Data on Choropleth Maps ❘ 325

c13.indd 11/03/2014 Page 325

For the enter set, you append a path for each placeholder. You assign the geographic path builder
to operate on the GeoJSON feature and produce SVG path data to get assigned to the d attribute on
the SVG path. Also, three handlers are bound to toggle the visibility of the tooltip <div> and shift it
close to the user’s mouse cursor. The state name and farm output value are displayed as the tooltip
content.

 states
 .transition()
 .duration(1000)
 .delay(function (d) {
 return (path.bounds(d)[0][0] / mapWidth) * 2000;
 })
 .style("stroke", "#FF6600")
 .style("stroke-width", "2")
 .style("fill", function (d) {
 return colorScale(currentMap[d.properties.NAME]);
 })
 .transition()
 .duration(500)
 .style("stroke", "#29658A")
 .style("stroke-width", "1");
}

And last, but certainly not least, you declare how the update set is handled, which

 1. Starts a transition for each element with a 1-second duration.

 2. Injects a delay in the start to each element’s transition proportional to how far to the
right the bounds of the element begin. This helps to create an animation that sweeps across
the map from left to right, which is aesthetically pleasing and helps the consumer of the visu-
alization’s eye to scan across and notice the changes as they occur.

 3. Animates each element’s stroke color toward orange during the transition, and temporarily
increases the stroke thickness. This has an effect of a glow sweeping across the states during
the animation.

 4. Animates the fi ll color toward the color value from the color scale based on the value for the
current state for the newly selected year.

 5. Chains an additional animation at the end, which returns the stroke color and thickness to
normal.

If you run the sample (D3MapChoropleth.html/css/js) from the companion website, you see a
really pleasant sweeping animation as you change between separate years from the selector. It’s quite
a complex piece of animation to not be driven by very much code! You can see the results in Figure
13-16, which was snapped while an animation was in progress.

326 ❘ CHAPTER 13 MAPPING GLOBAL, REGIONAL, AND LOCAL DATA

c13.indd 11/03/2014 Page 326

Data source: HTTP://WWW.ERS.USDA.GOV/DATA-PRODUCTS/AGRICULTURAL-PRODUCTIVITY-IN-THE-US.ASPX

FIGURE 13-16: This animated choropleth map was created using D3.

SUMMARY

 This chapter offered some useful strategies and tools for visualizing data on maps. It also addressed
some of the interesting challenges that come up when dealing with the sheer quantity of geometry
and data involved when designing map visualizations. In this chapter you

 ➤ Learned how to host components from the Google Maps API in your web applications

 ➤ Controlled the initial focus and zoom level of the map

 ➤ Placed markers on the geographic positions you wanted to visualize

 ➤ Varied the size of markers to convey extra statistics over the map

 ➤ Learned some of the challenges of having too many markers to visualize

 ➤ Learned how to use a heat map to illuminate data density or to convey a statistic

 ➤ Considered using choropleth maps as an alternative to displaying individual data values

 ➤ Learned how to prepare map geometry for display using D3

 ➤ Plotted a choropleth map using D3

 ➤ Animated transitions over your choropleth map

c14.indd 10/28/2014 Page 327

Charting Time Series with Ignite
UI igDataChart

WHAT’S IN THIS CHAPTER

 ➤ The basics of working with fi nancial data

 ➤ Using the Ignite UI igDataChart to visualize stock data

 ➤ Navigating fi nancial data with a zoom bar

 ➤ Exploring fi nancial data using overlays and indicators

 ➤ Updating data in real time in a chart

 ➤ Using Node.js and Socket.IO to push data to the browser

 ➤ Plotting extreme amounts of data using the Ignite UI igDataChart

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/javascriptandjqueryanalysis on the Download Code
tab. The code is in the chapter 14 download and individually named according
to the names throughout the chapter.

This chapter introduces you to plotting time series data on a chart. One of the biggest calls for
plotting time series data in the software engineering world is to present stock data for analysis.
So, the fi rst part of this chapter shows you how to acquire and plot stock data on a chart.

Next, you move on to plotting real-time updates into a time series. Real-time updates in a
browser using only JavaScript, you say? Surely impossible. Not at all. Not only are real-time
updates possible using pure JavaScript, but they are getting easier and easier to implement as
newer browser revisions start to support technologies such as WebSockets.

14

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

328 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 328

To plot the stock data and the real-time data for this chapter, you use the Infragistics Ignite UI
igDataChart. As shown elsewhere in this book, there are plenty of charting components available
for use with JavaScript (including free options) but igDataChart stands apart in terms of the amount
of data volume it can display without pre-processing and the frequency of real-time updates it can
handle, so it is most appropriate for this chapter. You might remember that igDataChart is discussed
briefl y in Chapter 12. This chapter retreads a few areas covered there, in case you are reading out
of sequence, but you might fi nd it easier to fi rst read and understand the concepts from that chapter
before proceeding.

At the end of this chapter, you take charting time series to the limit and plot some massive data on
igDataChart. You also discover a strategy for loading massive amounts of data from the server using
minimal amounts of bandwidth.

WORKING WITH STOCKS

This isn’t a book on how to analyze stock data or how to use technical analysis techniques to make
trading decisions, so this chapter focuses solely on the mechanics of how to display stock data in
a chart. The examples in this section use some open stock data from Quandl (www.quandl.com/)
because it is unencumbered by any usage constraints. Keep in mind that this data was produced in
a user-driven wiki environment, but it suits the purposes of this chapter fi ne because you are simply
learning the concepts of plotting this type of content.

The Basics of Stock Data
Data for plotting on stock charts generally consists of fi ve values per data item: Open, High, Low,
Close, and Volume. Depending on the visualization you are trying for, you might be using a differ-
ent subset of these values. Here is the signifi cance of each of these values:

 ➤ Open: This represents the opening price for a stock over a given period of time.

 ➤ High: This represents the high price of a stock over a given period of time.

 ➤ Low: This represents the low price of a stock over a given period of time.

 ➤ Close: This represents the close price of a stock over a given period of time.

 ➤ Volume: The volume (amount) of shares of a stock traded over a given period of time.

The main visualizations you implement in this chapter are OHLC and candlestick, which use Open,
High, Low, and Close. Volume is optionally incorporated into a visualization if it is very important
to show the trade volatility over time. OHLC and candlestick visualizations usually don’t attempt to
directly convey trade volume (there are some extended versions that do, though) and instead usually
depend on a synchronized plot to show volume, if desired. This synchronized plot is usually a sec-
ond chart aligned under the fi rst chart so that the two charts can be compared time-wise with each
other.

Working with Stocks ❘ 329

c14.indd 10/28/2014 Page 329

Conventionally, a stock time series is displayed from left to right with the earlier prices leftmost and
the most recent prices rightmost. You could consider the time axis to be a linear axis (rather than
a category axis) because it’s representing time, which is a linear scale. But, in practice, most stock
data is recorded at a fi xed interval, and most stock visualizations contain no data for weekends and
should not necessarily display a gap where the data is missing. These aspects add up to it often being
more natural to plot stock data on a category axis, where the date value for each item represents the
discrete category of that item. If these terms are unfamiliar to you, please review Chapter 9 as they
are discussed in more detail there.

A category axis is less appropriate for a time series when your data arrives at a non-fi xed interval
and you want to show large gaps or large interpolated stretches on the axis where there are no data
values present. The data that you’ll be visualizing in this chapter does not really fi t with those sce-
narios, though, so this chapter will be focusing exclusively on plotting time series on category axes.

Obtaining Some Stock Data
Before you start plotting stock data on charts, it would help to have some! Quandl is a useful web-
site that provides data, along with application programming interfaces (APIs) that use REST calls to
access that data. They also run an initiative called Quandl Open Data that strives to provide user-
created and unencumbered open data for use in all manner of applications. You can fi nd the direc-
tory of available data at www.quandl.com/search/*?page=1&source_ids=4922. The examples in
this chapter use some historical Apple Inc. stock data from

www.quandl.com/WIKI/AAPL-Apple-Inc-AAPL-Prices-Dividends-Splits-and-Trading-
Volume

One of the neat aspects of Quandl is that you can use that page to fi lter and sort the data and then
retrieve a URL that enables you to pull that data as JSON into a web application through an AJAX
request to Quandl, or, alternatively, download it and deploy it, as a static fi le, on your web server.
Here, you’ll do the latter by downloading this link:

www.quandl.com/api/v1/datasets/WIKI/AAPL.json?&trim_start=1984-09-07&trim_
end=1994-09-07&sort_order=asc

That link was arrived at by selecting a date fi lter using the date pickers and then clicking the
Download button. This should result in a fi le called AAPL.json, which you should place in the same
directory as the examples to follow. This fi le is also available on the companion website as AAPL.
json.

Candlesticks and OHLC Visualizations
Before you jump into the implementation of some stock visualizations, it’s a good idea to review
the anatomy of candlestick and OHLC visualizations. Both visualizations convey roughly the same
information, but they are quite different aesthetically. First, examine a candlestick visualization up
close in Figure 14-1 (the IgniteUIFinancialChart.js/html/css fi le is on the companion website).

330 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 330

NOTE When you load some of the code samples in this chapter, you may notice
an error, or not see the sample load at all. This is because the data is being
loaded via an AJAX request, and if you load the fi les from your local fi le system,
many browsers reject the request as unsafe. You do not run into this scenario
in a production environment because the site and the data will be loaded from
the same domain, over HTTP. If you skip ahead to the section “Implementing a
Stock Chart Using Ignite UI igDataChart” in this chapter you see a solution dis-
cussed for running these samples in a development environment.

Data source: WWW.QUANDL.COM/API/V1/DATASETS/WIKI/AAPL.
JSON?&TRIM_START=1984-09-07&TRIM_END=1994-09-07&SORT_ORDER=ASC

FIGURE 14-1: This shows a candlestick visualization, close up.

A candlestick is made up of a rectangular body and a thin wick (or shadow) that extends from its
top and bottom. The top and bottom of the rectangular body represent the open and close prices;
the top wick position and the bottom wick position represent the high value and the low value,
respectively. Now, the high value is always greater than the low value, so the top wick is always
mapped to the high value. For open and close, however, open may be higher, or close may be higher,
depending on whether prices ended up higher or lower compared to the previous time period.

The simple geometry of the candlestick cannot alone disambiguate whether the price ended higher
or lower at the end of the period, so this is usually encoded in the color of the candlestick. One color
is used if close is greater than open and another color is used if close is less than open. Alternatively,
the candlestick may be fi lled or left unfi lled to represent which direction the prices moved.

Implementing Ignite UI igDataChart ❘ 331

c14.indd 10/28/2014 Page 331

OHLC visualizations, on the other hand, can unambiguously indicate which portion of the visual
maps to the open price and which portion maps to the close price. You can see a close-up of this
visualization in Figure 14-2 (which is on the companion website as IgniteUIFinancialChartOHLC.
js/html/css). If you load the sample, it starts zoomed out, but you can zoom in by clicking and
dragging a rectangle on the area you want to zoom to or by rolling the mouse wheel. If you have a
computer with a touchscreen (or a tablet) you can even pinch/spread to zoom in and out.

Data source: WWW.QUANDL.COM/API/V1/DATASETS/WIKI/AAPL.
JSON?&TRIM_START=1984-09-07&TRIM_END=1994-09-07&SORT_ORDER=ASC

FIGURE 14-2: This shows an OHLC visualization, close up.

The top and bottom of the central line in an OHLC bar means the same thing as in the candlestick
visualization, but rather than having a rectangular body that can’t unambiguously convey the direc-
tion of the price movement over that period, the OHLC bar uses a left-oriented tick for the open
price, and a right-oriented tick for the close price over that period. Often, however, the OHLC bar is
nevertheless colored to indicate the direction of the movement.

IMPLEMENTING IGNITE UI IGDATACHART

As mentioned earlier, this chapter uses the Infragistics Ignite UI igDataChart component. The essen-
tials of the examples in this chapter may be possible to implement using other components, but these
scenarios perform especially well using igDataChart, so you may run into performance issues when
using a component that hasn’t been designed to express these volumes of data or these frequencies of
real-time updates.

332 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 332

The igDataChart component uses the HTML5 <canvas> element to do its rendering; it’s espe-
cially good at pumping out lots of 2D visuals with minimal overhead and high-frequency updates.
Furthermore, the chart was designed from the ground up to manage the complexities of displaying
millions of data points for you, without requiring you to simplify your data. This makes it possible
for you to present large amounts of data to the user and enables them to zoom and pan through it
to discover interesting insights at various levels of detail. These capabilities are especially important
when you’re dealing with time series data. You will often want to be zoomed out so that you can
observe the overall shape of the data, but then you’ll want to drill down to a specifi c area to resolve
fi ne detail.

Making complex things simple comes at a cost, however, and thus igDataChart is not a free com-
ponent, so please see www.igniteui.com or www.infragistics.com for details and to sign up for
the trial version before running the examples in this chapter. The examples in this chapter point at
the trial for Ignite UI, extracted in the IgniteUI subfolder; you will notice a watermark that is put in
place by the trial version. The watermark is removed if you use a licensed version of the product.

Obtaining Ignite UI
If you visit www.igniteui.com/download, you will fi nd information about how to download and
install Ignite UI, and also the CDN links that you can alternatively use for the examples for this
chapter. After you’ve downloaded the trial, you can extract the js and css folders from the Ignite
UI install; and copy these to the IgniteUI subfolder where you have put the code for this chapter.

The Ignite UI links used in this chapter load the full Ignite UI trial product, which contains a lot of
functionality. In a production scenario, you would want to load just the features you need. If you
peruse the download section of the Ignite UI site, you see a download tool (www.igniteui.com/
download) that enables you to select only the features you need, and the site serves up a combined
and minifi ed version of the requested features.

Alternatively, you can accomplish specifi c feature loading via the igLoader from http://igniteui.
com/loader/overview.

NOTE When optimizing the load times for JavaScript, there are many impor-
tant factors, but some of the most important are script size, number of separate
fi les, and the number of different hosts being downloaded from. For production
scenarios, loading code for just the features that you need, and loading mini-
fi ed code—which has had all the unnecessary space and characters squeezed
out of it—helps a lot. The number of discrete fi les downloaded, however, can
be just as important. There is signifi cant overhead for each round trip to fetch
an individual fi le, so increasing the number of fi les can negatively affect the load
time for your page, whereas decreasing the number of fi les loaded, conversely,
can positively affect load times. So, when possible, it can be very benefi cial for
JavaScript resources to be packed into a combined fi le rather than every module
being served separately.

Implementing Ignite UI igDataChart ❘ 333

c14.indd 10/28/2014 Page 333

Implementing a Stock Chart Using igDataChart
You have your data, and you have a charting component to use to render it, so now it’s time to move
on to getting things done. First, Listing 14-1 shows how the HTML would look, and the snippet
that follows shows how the CSS would look.

LISTING 14-1

<!DOCTYPE html>
<html>
<head>
 <title>Financial Chart</title>

 <script src="jquery/jquery-1.11.1.min.js"></script>
 <script src="jquery-ui-1.11.1/jquery-ui.min.js"></script>

 <link rel="stylesheet" href="IgniteUI/css/themes/infragistics/↵
infragistics.theme.css" />
 <link rel="stylesheet" href="IgniteUI/css/structure/infragistics.css" />
 <link rel="stylesheet" href="IgniteUI/css/structure/modules/↵
infragistics.ui.chart.css" />
 <script src="IgniteUI/js/infragistics.core.js"></script>
 <script src="IgniteUI/js/infragistics.dv.js"></script>

 <link rel="stylesheet" href="IgniteUIFinancialChart.css" />
</head>
<body>
 <div id="chart"></div>
 <div id="legend"></div>

 <script
 src="IgniteUIFinancialChart.js">
 </script>

</body>
</html>

And here’s the CSS:

#chart
{
 float: left;
}
#legend
{
 float: left;
}

Most of the examples in this chapter use very similar HTML and CSS, so only the deltas from the
preceding code will be discussed from here in. Listing 14-1 and the CSS code create a container to

334 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 334

store the chart and its legend, and fl oats them both left so that the legend appears to the right of the
chart unless there isn’t suffi cient space to display it. In that case, the legend gets wrapped below the
chart.

NOTE This is just one example of how to arrange the chart and legend con-
tainers. You could, alternatively, fl oat the legend over the chart surface, or put
it anywhere else in the Document Object Model (DOM). You could even, for
example, put it in a collapsible container. The legend is treated as a separate wid-
get to give you this kind of layout fl exibility.

Given the preceding markup and CSS, Listing 14-2 is the JavaScript to render the fi nancial data into
a candlestick chart.

LISTING 14-2

$(function () {
 $.ajax({
 type: "GET",
 url: "AAPL.json",
 dataType: "json",
 success: renderChart,
 error: function (xhr, textStatus, errorThrown) {
 console.log(errorThrown +
 ". Loading from a file:// uri won't work in some browsers");
 }
 });

 function renderChart(data) {
 var columnNames = data.column_names;
 var transformed = data.data.map(function (item) {
 var newItem = {};
 for (var i = 0; i < columnNames.length; i++) {
 newItem[columnNames[i]] = item[i];
 }
 return newItem;
 });

 var chartOptions = {
 dataSource: transformed,
 width: "700px",
 height: "500px",
 title: "AAPL Historical Prices",
 subtitle: "Data: Quandl Open Data",
 horizontalZoomable: true,
 verticalZoomable: true,
 rightMargin: 30,
 legend: { element: "legend" },
 axes: [{

Implementing Ignite UI igDataChart ❘ 335

c14.indd 10/28/2014 Page 335

 type: "categoryX",
 name: "xAxis",
 label: "Date",
 labelExtent: 60
 }, {
 type: "numericY",
 name: "yAxis",
 title: "Price"
 }],
 series: [{
 name: "aapl",
 type: "financial",
 xAxis: "xAxis",
 yAxis: "yAxis",
 openMemberPath: "Open",
 highMemberPath: "High",
 lowMemberPath: "Low",
 closeMemberPath: "Close",
 showTooltip: true,
 isTransitionInEnabled: true,
 isHighlightingEnabled: true,
 transitionInDuration: 1000,
 title: "AAPL",
 resolution: 8
 }, {
 name: "itemToolTips",
 type: "itemToolTipLayer",
 useInterpolation: false,
 transitionDuration: 300
 }]
 };

 $("#chart").igDataChart(chartOptions);

 }
});

This should give you the result shown in Figure 14-3, and you can fi nd the Ch16_
IgniteUIFinancialChart.js/html/css fi le on the companion website. Also, you should notice
some really neat interactivity features when you run the sample live:

 ➤ Hovering over a candlestick highlights it.

 ➤ A tooltip follows your cursor and displays the prices that are closest to the cursor. This
punches down to the closest real data value that can’t even be easily discerned from the initial
zoom level.

 ➤ There is more data in the chart than can readily be seen at the initial zoom level. The time
periods represented by the candlesticks are dynamically adjusted as you zoom in and out.

 ➤ You can zoom in and out by rolling your mouse wheel, clicking and dragging a rectangle,
hitting the Page Up and Page Down keys, or pinching and spreading if you are using a touch
device. As you zoom in, further extra detail that wasn’t initially visible is resolved, and
though there is lots of data in the chart, everything stays buttery smooth.

336 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 336

 ➤ When zoomed in, you can hold the Shift button and click and drag over the chart surface to
pan around the view.

 ➤ You can also use the arrow keys to pan when the chart is focused.

 ➤ When you fi rst load the page, there is a pleasant animation to transition the candlesticks into
view.

 ➤ At zoom levels that would cause the axis labels to collide, they instead automatically stagger
their heights to avoid colliding. Pretty neat, huh?

Data source: WWW.QUANDL.COM/API/V1/DATASETS/WIKI/AAPL.
JSON?&TRIM_START=1984-09-07&TRIM_END=1994-09-07&SORT_ORDER=ASC

FIGURE 14-3: This candlestick chart was created using the Ignite UI igDataChart.

To break down what’s going on in this example, fi rst you have

$.ajax({
 type: "GET",
 url: "AAPL.json",
 dataType: "json",
 success: renderChart,
 error: function (xhr, textStatus, errorThrown) {
 console.log(errorThrown +
 ". Loading from a file:// uri won't work in some browsers");
 }
});

Implementing Ignite UI igDataChart ❘ 337

c14.indd 10/28/2014 Page 337

which is using jQuery to do an AJAX GET of the AAPL.json fi le that you downloaded earlier from
Quandl. type: "GET" indicates that this is an HTTP GET operation, and dataType: "json" warns
jQuery to expect the returned data type to be a JSON document.

Did you see an error in the console when you fi rst tried to run the code? Chances are you were try-
ing to load the page from a file:/// URL, and some of the browsers throw a security exception
when you try to do this. This isn’t a problem in production—when you will be loading the fi les from
a web server—but some of the browsers are trying to make extra sure that rogue websites cannot
load fi les from your local fi le system in an unauthorized fashion. To work around this, you can often
tell your browser, via the command line, to suppress this error while you are debugging the code for
your page.

Another way of going about this, however, is to host the fi les in a local web server when loading
them. If you have Apache or IIS installed, you could go that route, but if you came to this chapter
directly after reading Chapter 13, then you already have Python and Node installed, and have some
quicker methods available to you. For example, if you open a command prompt and change the
directory to the one that that holds the fi les for this chapter, you can run the following command:

python -m SimpleHTTPServer 8080

This command starts a Python module that serves pages from that directory on port 8080. So, for
example, you should be able to load the previous example using this URL:

http://localhost:8080/IgniteUIFinancialChart.html

And if you were receiving an error before, now it should load properly. Later in this chapter, you see
how to do a similar thing with a Node.js module.

NOTE The Python method in the preceding code is as simple as can possibly be,
but it seems to have some stability issues in some scenarios. If you encounter any
trouble with pages loading reliably, refer to the Node.js + express method used in
the latter stages of this chapter.

The error handler in the previous code was what rendered an error into the console if you tried to
load this page from a fi le URL. If there is no error with the request, jQuery calls the success handler,
where you have provided a function called renderChart, which is the next topic of discussion.

function renderChart(data) {
 var columnNames = data.column_names;
 var transformed = data.data.map(function (item) {
 var newItem = {};
 for (var i = 0; i < columnNames.length; i++) {
 newItem[columnNames[i]] = item[i];
 }
 return newItem;
 });

338 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 338

The preceding code is the fi rst part of a function that renders the chart based on the contents of the
downloaded JSON fi le. An examination of the JSON fi le shows that the top-level object has a prop-
erty called column_names and then an array called data that has a set of subarrays that represent
each row. To ease the loading and binding of this data, it’s better that each row had some named
properties rather than indexed cells, so the preceding code uses Array.map to iterate over the data
array and transform each row into an object that contains properties for each named column.

var chartOptions = {
 dataSource: transformed,
 width: "700px",
 height: "500px",
 title: "AAPL Historical Prices",
 subtitle: "Data: Quandl Open Data",
 horizontalZoomable: true,
 verticalZoomable: true,
 rightMargin: 30,

The preceding code includes the options that are directed at the chart as a whole, rather than its
axes or series. This code specifi es

 ➤ dataSource: This expects an array (among other options) that you set to the transformed
data received from AAPL.json. Here, the data is set at the chart level, but it is possible to set
separate collections of data at the axis and series levels.

 ➤ width: The pixel width of the chart. It’s also possible to use percent values here to size the
chart to its containing elements.

 ➤ height: The pixel height of the chart. It’s also possible to use percent values here to size
the chart to its containing elements. Remember that if you do this, you might need to set the
height of the html and body elements to 100 percent if there is no intervening element with
an actual size specifi ed.

 ➤ title: The title of the chart will be displayed above the plot area.

 ➤ subtitle: The subtitle of the chart will be displayed below the title in a smaller font.

 ➤ horizontalZoomable: Indicates that the chart should be zoomable in the horizontal
direction.

 ➤ verticalZoomable: Indicates that the chart should be zoomable in the vertical direction.

 ➤ rightMargin: Leaves some dead area to the right of the chart to make sure there is enough
spillover room for the x-axis labels. Some space is left automatically, but when dealing with
longer x-axis labels, it can help to provide a larger fi gure here.

The next line

legend: { element: "legend" },

indicates that the chart should use an element with ID "legend" as the container for its legend.
Multiple charts can share the same legend, or individual chart series can split themselves among
multiple legends.

Implementing Ignite UI igDataChart ❘ 339

c14.indd 10/28/2014 Page 339

axes: [{
 type: "categoryX",
 name: "xAxis",
 label: "Date",
 labelExtent: 60
}, {
 type: "numericY",
 name: "yAxis",
 title: "Price"
}],

The preceding code snippet defi nes the two axes for the chart. As discussed earlier, for stock data, it
can make more sense to plot the time data on a category axis, rather than a linear axis. A category x
axis is defi ned here, and it displays the Date properties of all the data items as the labels on the axis.
labelExtent increases the size of the axis labels area here, so the labels have room to switch to a
staggered view if they start colliding. If this step isn’t performed, the labels are automatically short-
ened with the ellipsis character when they begin to collide.

A numeric y axis with standard settings is also created to map the price values into the plot area.

Now it’s time to defi ne the series that will display the candlesticks:

series: [{
 name: "aapl",
 type: "financial",
 xAxis: "xAxis",
 yAxis: "yAxis",
 openMemberPath: "Open",
 highMemberPath: "High",
 lowMemberPath: "Low",
 closeMemberPath: "Close",
 showTooltip: true,
 isTransitionInEnabled: true,
 isHighlightingEnabled: true,
 transitionInDuration: 1000,
 title: "AAPL",
 resolution: 8

This code defi nes the following:

 ➤ name: This is a unique identifi er that you are required to assign to a series.

 ➤ type: This indicates the type of series to render. In this case, you want to render a fi nancial
series (which can render as candlesticks or OHLC bars).

 ➤ xAxis: Points to, by name, the x axis to use for this series.

 ➤ yAxis: Points to, by name, the y axis to use for this series.

 ➤ openMemberPath: Indicates the property on the data items from which to fetch the
opening price.

 ➤ highMemberPath: Indicates the property on the data items from which to fetch the
high price.

340 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 340

 ➤ lowMemberPath: Indicates the property on the data items from which to fetch the low price.

 ➤ closeMemberPath: Indicates the property on the data items from which to fetch the
closing price.

 ➤ showTooltip: Indicates that a tooltip should be displayed for this series. If no tooltipTem-
plate is specifi ed, an automatic selection of values is displayed as the tooltip.

 ➤ isTransitionInEnabled: Indicates that the series should be animated into view.

 ➤ transitionInDuration: Specifi es the number of milliseconds over which the transition in
animation should stretch.

 ➤ title: Provides a value that can be used in the legend and the tooltips to identify the
current series.

 ➤ resolution: Controls how aggressively the series coalesces data. The meaning that this has
for the fi nancial series, in this instance, is that it coalesces the price data so that no candle-
sticks thinner than approximately 8 pixels wide are displayed. As you zoom in, more candle-
sticks are visible until you reach a point where each individual value in the source array has
an individual candlestick. You can increase and decrease this value in order to adjust how
aggressively this coalescing is performed.

}, {
 name: "itemToolTips",
 type: "itemToolTipLayer",
 useInterpolation: false,
 transitionDuration: 300
 }]
};

Finally, the preceding code creates a layer where fl oating tooltips annotate the values closest to the
mouse cursor, in the x direction. If this weren’t specifi ed you would still get tooltips, but only when
you were directly over the visuals for the series. The following things are defi ned:

 ➤ name: Indicates the unique identifi er for the tooltip layer

 ➤ type: Specifi es that this series is an item tooltip layer

 ➤ useInterpolation: Indicates that the tooltips should snap to the closest values rather than
picking an interpolated position between the two closest values

 ➤ transitionDuration: Indicates how long it should take the tooltips to animate from one
annotated item to the next

Finally, the container with the ID chart is transformed into an igDataChart with the options
you defi ned:

$("#chart").igDataChart(chartOptions);

 }
});

As with the last time you interacted with igDataChart, in Chapter 12, very little code is actually
required to achieve the desired effect. Instead, there are lots of declarative options that indicate the

Implementing Ignite UI igDataChart ❘ 341

c14.indd 10/28/2014 Page 341

precise behaviors you want from all the pieces of the chart. These straightforward options add up to
some very complex behaviors when you load the page and interact with the chart.

Now that you have some candlesticks displayed, how would you change to an OHLC bar visualiza-
tion? The answer is extremely simple. All you need to do is add the highlighted line to the defi nition
of the fi nancial series:

series: [{
 name: "aapl",
 type: "financial",
 displayType: "ohlc",
 xAxis: "xAxis",
 yAxis: "yAxis",
 openMemberPath: "Open",
 highMemberPath: "High",
 lowMemberPath: "Low",
 closeMemberPath: "Close",
 showTooltip: true,
 isTransitionInEnabled: true,
 isHighlightingEnabled: true,
 transitionInDuration: 1000,
 title: "AAPL",
 resolution: 8

You can see the results in Figure 14-4, and the fi le is on the companion website as
IgniteUIFinancialChartOHLC.js/html/css.

Data source: WWW.QUANDL.COM/API/V1/DATASETS/WIKI/AAPL.
JSON?&TRIM_START=1984-09-07&TRIM_END=1994-09-07&SORT_ORDER=ASC

FIGURE 14-4: This shows an OHLC chart using the Ignite UI igDataChart.

342 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 342

Adding a Zoom Bar to the Chart
If you compare the results from Listing 14-2 to what you get if you were to, say, view some stock
data on Yahoo! Finance, you have achieved some interesting dynamic effects that aren’t represented
in Yahoo! Finance, but there are also some things you are missing. Fortunately, these are not espe-
cially tricky to add with Ignite UI.

Ignite UI provides a component called igZoombar, which acts as a date range selector that enables
you to pan a time series chart as well as change the zoom level. To add it, all you need to do is create
it, and make sure it is positioned under the plot area, based on the size you picked for the chart:

$("#zoom").igZoombar({
 width: "660px",
 target: "#chart",
 zoomWindowMinWidth: 1.2
});
$("#zoom").css("margin-left", "24px");

This code creates the zoom bar, and targets it at the upper stock price chart. This causes the zoom
bar to create a clone of the chart visualization, at default zoom level, to act as a thumbnail to guide
you around the overall shape of the time series. This code adjusts the width and the left margin to
position the zoom bar under the main chart.

By default, the cloned thumbnail chart has most of the visual settings of the main chart, but, in this
instance, it would actually be preferable to display a simpler visual in the thumbnail rather than an
exact copy. Also, while the zoom bar fi lters out some aspects of the top chart’s settings that you’d
likely not want to see in the thumbnail (axis gridlines, for example), it doesn’t necessarily adjust the
settings exactly as you’d like, so the zoom bar gives you access to the cloned chart in order to tweak
additional settings:

$("#zoom").igZoombar("clone").igDataChart({
 subtitle: null,
 rightMargin: 0,
 axes: [{ name: "xAxis", interval: NaN }],
 series: [{
 name: "aapl", remove: true
 }, {
 name: "close",
 type: "area",
 xAxis: "xAxis",
 yAxis: "yAxis",
 valueMemberPath: "Close"
 }]
});

Implementing Ignite UI igDataChart ❘ 343

c14.indd 10/28/2014 Page 343

The preceding code fi lters out a few properties that the zoom clone currently doesn’t automatically
fi lter from the top chart and then removes the fi nancial series and replaces it with a simple area
series bound to the close property of the data items.

The closing price is largely considered to be the most important aspect of a stock price to watch. So
when displaying a simple thumbnail, mapped to just one value, it makes the most sense as a value to
display. Another option is to display the typical price, which is generally calculated as the average of
the high, low, and close prices for the given period.

The last thing you need to do is to add an element that holds the zoom bar visual to the HTML:

<div id="chart"></div>
<div id="legend"></div>
<div id="zoom"></div>

And to amend the CSS such that the zoom bar doesn’t try to fl oat left with the chart and legend:

#chart
{
 width: 700px;
 height: 500px;
 float: left;
}
#legend
{
 float: left;
}
#zoom
{
 clear: left;
}

The code changes produce the results in Figure 14-5, and you can fi nd the IgniteUIFinancial
ChartZoombar.js/html/css fi le on the companion website. Notice how you can drag the range
of the zoom bar to pan through time and examine various values. You can also grab the handles
on either edge of the range to resize the range and change the zoom level of the chart.

344 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 344

Data source: WWW.QUANDL.COM/API/V1/DATASETS/WIKI/AAPL.
JSON?&TRIM_START=1984-09-07&TRIM_END=1994-09-07&SORT_ORDER=ASC

FIGURE 14-5: This fi nancial chart includes a zoom bar to adjust the viewable area.

Adding a Synchronized Chart
Another aspect of Yahoo! Finance that you might want to emulate is the synchronized chart of the
trade volume that is plotted underneath the price chart. Ignite UI also makes this exceedingly sim-
ple. The basic strategy is to create a second chart underneath the fi rst and then put both the charts
in the same syncChannel. When two charts are in the same syncChannel, not only do zoom inter-
actions from one chart get replayed on others in the same syncChannel, but additionally the cursor
position is synchronized between the charts so that annotations such as the item tooltips show for
all synced charts simultaneously.

$("#volumeChart").igDataChart({
 dataSource: transformed,
 width: "700px",
 height: "150px",
 horizontalZoomable: true,
 syncChannel: "channel1",
 rightMargin: 30,
 legend: { element: "legend" },
 axes: [{

Implementing Ignite UI igDataChart ❘ 345

c14.indd 10/28/2014 Page 345

 type: "categoryX",
 name: "xAxis",
 label: "Date",
 labelExtent: 60,
 labelVisibility: "collapsed"
 }, {
 type: "numericY",
 name: "yAxis",
 title: "Volume",
 labelExtent: 60,
 formatLabel: function (v) {
 if (v > 1000000) {
 v /= 1000000;
 return v + "M";
 }
 if (v > 1000) {
 v /= 1000;
 return v + "K";
 }

 return v.toString();
 }
 }],
 series: [{
 name: "aaplVolume",
 type: "area",
 xAxis: "xAxis",
 yAxis: "yAxis",
 brush: "#7C932F",
 outline: "#556420",
 valueMemberPath: "Volume",
 showTooltip: true,
 isTransitionInEnabled: true,
 isHighlightingEnabled: true,
 transitionInDuration: 1000,
 title: "AAPL Volume",
 }, {
 name: "itemToolTips",
 type: "itemToolTipLayer",
 useInterpolation: false,
 transitionDuration: 300
 }]
});

The preceding code defi nes a second chart that sits below the chart you defi ned before. You also
need to add the following line to the top chart:

syncChannel: "channel1",

In addition, you would need to add an element to hold the second chart to the page:

<div id="chart"></div>
<div id="legend"></div>
<div id="volumeChart"></div>
<div id="zoom"></div>

346 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 11/14/2014 Page 346

and you should move the clear: left to the volumeChart CSS rule:

#volumeChart {
 clear: left;
}

In the volumeChart options, the settings are mostly the same as the fi nancial chart, but some of the
differences have been highlighted and the results are as follows:

 ➤ The category x-axis labels have been collapsed. This is because they would be the same as the
labels in the upper chart, and they really only need to be displayed in one location.

 ➤ A formatLabel function has been added to the y axis for this lower chart. The volume of
trades is very high, so in order to reduce the length of the labels, this function shortens and
adds a unit specifi er if the labels are over certain amounts.

 ➤ The type of the series used is area.

 ➤ A different brush and outline are set to distinguish this series from the price chart.

 ➤ The area series is mapped to the Volume property of the data items.

 ➤ An item tooltip layer is also added to the lower chart, so that as the mouse cursor is moved
over either chart, you see the item tooltips for the closest data values in both charts.

You can see the result of this in Figure 14-6, and you can fi nd the IgniteUIFinancialChart
ZoombarAndVolume.js/html/css fi le on the companion website.

Data source: WWW.QUANDL.COM/API/V1/DATASETS/WIKI/AAPL.
JSON?&TRIM_START=1984-09-07&TRIM_END=1994-09-07&SORT_ORDER=ASC

FIGURE 14-6: A volume chart is synchronized with a price chart.

Implementing Ignite UI igDataChart ❘ 347

c14.indd 10/28/2014 Page 347

Working with Technical Analysis Tools
As mentioned at the beginning of the chapter, this is not a book on doing technical analysis for
stock data, and the chapter doesn’t go into this in much detail. It is worth knowing, however, that
Ignite UI has a lot of built-in technical indicators and overlays that can help you make sense of stock
price plots and try to eke out information that might help with trading decisions.

The following code provides an example of how you would add some price channels to the previous
example. Just add this code before the candlestick or OHLC series in the chart:

series: [{
 name: "aaplPriceChannel",
 type: "priceChannelOverlay",
 xAxis: "xAxis",
 yAxis: "yAxis",
 openMemberPath: "Open",
 highMemberPath: "High",
 lowMemberPath: "Low",
 closeMemberPath: "Close",
 volumeMemberPath: "Volume",
 isTransitionInEnabled: true,
 isHighlightingEnabled: true,
 transitionInDuration: 1000,
 title: "AAPL Price Channels"

Price channels plot the highest of highs and the lowest of lows for a given back period at each
given point on the chart. This can give you a good idea when the stock is having some quick up
or down movement, because if it moves fast enough it will “break” from the channel. How the
prices move within the channel can indicate interesting things to an analyst. You can see the
results of adding this price channel series in Figure 14-7. (The fi le on the companion website is
IgniteUIFinancialChartPriceChannels.js/html/css.)

348 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 348

Data source: WWW.QUANDL.COM/API/V1/DATASETS/WIKI/AAPL.
JSON?&TRIM_START=1984-09-07&TRIM_END=1994-09-07&SORT_ORDER=ASC

FIGURE 14-7: This shows adding price channels to the stock chart.

NOTE You can see some of the other technical analysis tools available in Ignite
UI at http://www.igniteui.com/data-chart/financial-indicators.

PLOTTING REAL-TIME DATA

So everything you’ve seen so far is all very neat, if analyzing fi nancial data is something that inter-
ests you. In case it isn’t, this section explores another aspect of plotting time series. Everything up
to this point in this chapter has been pretty static. The interactions with the chart have been pretty
dynamic, but the data itself has not been. So, now it’s time for some dynamic data.

For dynamic data, you build a web service that pushes the current CPU and memory usage from the
server down to the browser client. In the client, you dynamically update some chart series to display
the real-time data streaming down from the server. If you think about it, the following examples
have some true real-world applicability because it is often necessary to monitor the performance of a
remote machine.

Plotting Real-Time Data ❘ 349

c14.indd 10/28/2014 Page 349

Creating a Node Push Data Service
If you followed along through Chapter 13, then you already have Node.js installed. Otherwise,
please follow the instructions in Chapter 13 to install Node.js, and then return here because you use
Node.js to create the push data service.

Socket.IO is a really neat client/server JavaScript library that lets you set up a WebSockets con-
nection between the browser and the server. The especially neat part is that, because there are not
many browser versions that support WebSockets yet, if they are not available for a particular client,
Socket.IO gracefully falls back on another technology, such as Flash or HTTP long polling, in order
to emulate the WebSockets behavior. These fallbacks do not necessarily provide a perfect emulation
performance-wise, but should be suffi cient for you to rely on the basic functionality. If you have ever
used SignalR, the idea is roughly the same as with that framework.

NOTE HTTP is not a full duplex communication channel. The web server
cannot send unsolicited information to the client. It can only respond to direct
requests for resources from the client. This makes it diffi cult to push data from
the server to the client to, say, implement a notifi cation system. There are vari-
ous strategies that one can use to try to emulate true bidirectional communi-
cation over the HTTP protocol, such as HTTP long polling. These strategies,
although very clever, are somewhat ineffi cient and, unfortunately, introduce
latency into the communication channel. WebSockets details how the client
and server can agree, using a HTTP-based handshake, to subsequently sidestep
HTTP and open a true full duplex (bidirectional simultaneous) communication
channel. This is done in order to enable truly effi cient low-latency communica-
tion and is very important for real-time communication and gaming.

So, you use Node.js and Socket.IO to open a WebSockets connection, or some approximation
thereto, between the server and the client browsers, and on an interval the server broadcasts perfor-
mance data down to the client. To do this, create a fi le called cpuLoadServer.js or grab the one
from the companion website. Fill in the contents of Listing 14-3.

LISTING 14-3

var express = require("express");
var application = express();
var server = require("http").createServer(application);
var io = require("socket.io").listen(server);
var os = require("os");
var osUtils = require("os-utils");
var interval = -1;
var currCPU = 0;

application.use(express.static(__dirname));

server.listen(8080); continues

350 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 350

io.sockets.on('connection', function () {
 if (interval < 0) {
 interval = setInterval(function () {
 var freeMem = os.freemem();
 var totalMem = os.totalmem();
 io.sockets.emit("cpuUpdate", {
 cpuUsage: currCPU * 100.0,
 freeMem: freeMem,
 totalMem: totalMem,
 usedMem: totalMem - freeMem
 });
 }, 100);
 }
});

function updateCPU() {
 setTimeout(function () {
 osUtils.cpuUsage(function (value) {
 currCPU = value;

 updateCPU();
 });
 }, 0);
}
updateCPU();

Not much code huh? Let’s dig into it a bit.

var express = require("express");
var application = express();
var server = require("http").createServer(application);
var io = require("socket.io").listen(server);
var os = require("os");
var osUtils = require("os-utils");
var interval = -1;
var currCPU = 0;

Here you are asking Node.js to load various modules. You are loading the module for express,
which builds on the web serving facilities of Node.js and provides some web application middleware
behaviors. The main use for it here is to allow for the static HTML, CSS, and JavaScript fi les to be
loaded when you request the client pieces in the browser. Next, the http module is loaded and a
server is created. The server delegates to the express application to process its requests.

From there, you load the Socket.IO module and assign it to listen on the HTTP server you cre-
ated. In this way, you’ve chained a lot of disparate frameworks together to handle various types of
requests. Express handles serving static fi les down to the client, and Socket.IO handles serving up

LISTING 14-3 (continued)

Plotting Real-Time Data ❘ 351

c14.indd 10/28/2014 Page 351

the client-side script that it needs to function (which you see when you get to the client piece of this)
and also responds to the socket handshaking and messages sent back and forth using its protocols.

NOTE When we refer to handshaking here, we’re referring to the process of
Socket.IO negotiating between the client and the server over HTTP and discov-
ering which protocol the client and server are able to support. The primary goal
is that the connection should be established using WebSockets, which provides a
nice low-latency channel for sending two-way information back and forth to the
client. If the server or client doesn’t support this, however, Socket.IO attempts
to fall back on successively distant approximations of this ideal. When the con-
nection has been established, messages can be sent in either direction along the
socket channel. In this instance, you are mostly concerned with pushing data
down to the client.

In the previous snippet, you are loading the os and os-utils modules. The os module is distributed
with Node.js, whereas os-utils represents some neat downloadable utilities that sit on top of the
os module to normalize and process some of the info for you.

All the pieces you need to set up the server are hooked up, so now you can proceed to making it
actually do something:

application.use(express.static(__dirname));

server.listen(8080);

Here you tell express to serve up static content from the current directory so that when you request
the client fi le later, it—and its referenced fi les—will be downloadable from this directory to the cli-
ent browser. Normally you would create a subdirectory here, perhaps called public, and serve static
fi les from there so that the Node.js code running on the server wouldn’t also be downloadable. For
simplicity’s sake, though, here you keep everything in the same folder.

You also tell the HTTP server to listen on port 8080 for requests. This is why, later on, you provide
port 8080 in your requests for the client page.

io.sockets.on('connection', function () {
 if (interval < 0) {
 interval = setInterval(function () {
 var freeMem = os.freemem();
 var totalMem = os.totalmem();
 io.sockets.emit("cpuUpdate", {
 cpuUsage: currCPU * 100.0,
 freeMem: freeMem,
 totalMem: totalMem,
 usedMem: totalMem - freeMem
 });
 }, 100);
 }
});

352 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 352

The preceding code defi nes what happens when a Socket.IO connection request is received from
a client. When this occurs, unless you are already doing so, you start emitting CPU and memory
information, every 100ms, as a JSON object, to all connected sockets.

NOTE There is no logic anywhere here to tear down this interval later. For pro-
duction logic, you’d want to listen for connections to be torn down and, when
no sockets are left connected, cancel the broadcast interval. This example, how-
ever, is more focused on the mechanics of updating the charts than taking a deep
dive into Socket.io mechanics. Also note that although a high-frequency broad-
cast will work well over localhost, it might not scale well to wide area network
(WAN) scenarios or having lots of clients connected. But, again, the focus here is
on chart updates, not necessarily Socket.io performance semantics and tuning.

The broadcasting code you just used was relying on a currCPU reading to broadcast to the clients.
So, fi nally, this is how that is achieved:

function updateCPU() {
 setTimeout(function () {
 osUtils.cpuUsage(function (value) {
 currCPU = value;

 updateCPU();
 });
 }, 0);
}
updateCPU();
console.log("computer performance server running");

The os-utils module needs to average some values over the space of a second to get a CPU utili-
zation reading. As such, it requires a callback function to call when it has fi nished determining an
average value. This code basically continually runs that method and waits for the callback to be
invoked, storing the result where it can be broadcast on the next interval.

To be able to run any of this logic, you have to download some of the Node.js modules that aren’t
included by default. First navigate to the directory containing cpuLoadServer.js and the static
fi les, and then run the following:

npm install express

Provided you have Node.js installed, and confi gured in your path, or in context for your command
prompt, you should be able to run the preceding command to install the express module.

npm install socket.io

Similarly, this causes the Socket.IO module to be downloaded and installed.

npm install os-utils

Plotting Real-Time Data ❘ 353

c14.indd 10/28/2014 Page 353

And, fi nally, after you have run the preceding command and downloaded the os-utils module, you
should be able to run the server:

node cpuLoadServer.js

You can see what it looks like for the server to be running in Figure 14-8; the cpuLoadServer.js
fi le is on the companion website. As a side note, you now have a simple way to serve static fi les out
of the current directory, much like you were achieving with Python earlier in the chapter.

FIGURE 14-8: This shows running the real-time computer performance server.

Receiving Updates in the Client
With some Node.js wrangling you’ve managed to create a pretty succinct server that broadcasts
CPU and memory updates to clients, but how do you display those results? With the power of
Socket.IO and the Ignite UI igDataChart this is exceedingly simple, as shown in Listing 14-4.

LISTING 14-4

$(function () {
 var cpuData = [];

 function toDisplayCPU(v) {
 return v.toFixed(2);
 }

 function toDisplayMem(v) {
 if (v >= (1024 * 1024 * 1024)) {
 v /= (1024 * 1024 * 1024);
 return v.toFixed(2) + "GB";
 }

continues

354 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 354

 if (v >= (1024 * 1024)) {
 v /= (1024 * 1024);
 return v.toFixed(2) + "MB";
 }

 if (v >= (1024)) {
 v /= (1024);
 return v.toFixed(2) + "KB";
 }

 return v;
 }

 function renderChart() {
 var chartOptions = {
 dataSource: cpuData,
 width: "700px",
 height: "500px",
 title: "System Performance",
 subtitle: "CPU utilization over time until present",
 horizontalZoomable: true,
 verticalZoomable: true,
 rightMargin: 30,
 legend: { element: "legend" },
 axes: [{
 type: "categoryX",
 name: "xAxis",
 label: "displayTime",
 labelAngle: 45
 }, {
 type: "numericY",
 name: "yAxis",
 title: "CPU Utilization",
 minimumValue: 0,
 maximumValue: 100,
 formatLabel: toDisplayCPU
 }, {
 type: "numericY",
 name: "yAxisMemory",
 title: "Memory Utilization",
 labelLocation: "outsideRight",
 minimumValue: 0,
 maximumValue: 8 * 1024 * 1024 * 1024,
 interval: 1024 * 1024 * 1024,
 formatLabel: toDisplayMem,
 majorStroke: "transparent"
 }],
 series: [{
 name: "cpu",
 type: "line",
 xAxis: "xAxis",

LISTING 14-4 (continued)

Plotting Real-Time Data ❘ 355

c14.indd 10/28/2014 Page 355

 yAxis: "yAxis",
 valueMemberPath: "cpuUsage",
 showTooltip: true,
 tooltipTemplate:
 "<div>CPU: ${item.displayCPU}</div>",
 title: "CPU Utilization"
 }, {
 name: "mem",
 type: "line",
 xAxis: "xAxis",
 yAxis: "yAxisMemory",
 valueMemberPath: "usedMem",
 showTooltip: true,
 tooltipTemplate:
 "<div>Memory: ${item.displayMem}</div>",
 title: "Memory Utilization"
 }, {
 name: "itemToolTips",
 type: "itemToolTipLayer",
 useInterpolation: false,
 transitionDuration: 300
 }]
 };

 $("#chart").igDataChart(chartOptions);

 }

 renderChart();

 var socket = io.connect("http://localhost:8080");

 socket.on("cpuUpdate", function (update) {
 var currTime = new Date();
 var displayString = currTime.toLocaleTimeString();
 update.displayCPU = toDisplayCPU(update.cpuUsage);
 update.displayMem = toDisplayMem(update.usedMem);
 update.displayTime = displayString;
 cpuData.push(update);
 $("#chart").igDataChart("notifyInsertItem",
 cpuData, cpuData.length - 1, update);
 });
});

If you save this as IgniteUICPULoadChart.js or grab the fi le from the companion website, along
with the HTML and CSS for this example, and provided the Node.js server is running, you should
be able to visit the following site:

http://localhost:8080/IgniteUICPULoadChart.html

As a result you should see the chart updating in real time. There are two series displayed: one plot-
ting CPU utilization over time and one plotting memory utilization over time. Figure 14-9 shows the
result of letting this run for a while (IgniteUICPULoadChart.js/html/css is the fi le on the com-
panion website).

356 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 356

FIGURE 14-9: This shows real-time performance data in the Ignite UI igDataChart using Socket.IO.

But how is this accomplished? You start with the following:

var cpuData = [];

function toDisplayCPU(v) {
 return v.toFixed(2);
}

function toDisplayMem(v) {
 if (v >= (1024 * 1024 * 1024)) {
 v /= (1024 * 1024 * 1024);
 return v.toFixed(2) + "GB";
 }

 if (v >= (1024 * 1024)) {
 v /= (1024 * 1024);
 return v.toFixed(2) + "MB";
 }

 if (v >= (1024)) {
 v /= (1024);
 return v.toFixed(2) + "KB";
 }

 return v;
}

Plotting Real-Time Data ❘ 357

c14.indd 10/28/2014 Page 357

An empty array, cpuData, is defi ned to hold the real-time data as it is pushed from the server. Two
functions are defi ned that will help to convert the raw numeric values from the server into nice dis-
play values for use in the axes of the chart and in the tooltips.

function renderChart() {
 var chartOptions = {
 dataSource: cpuData,
 width: "700px",
 height: "500px",
 title: "System Performance",
 subtitle: "CPU utilization over time until present",
 horizontalZoomable: true,
 verticalZoomable: true,
 rightMargin: 30,
 legend: { element: "legend" },
 axes: [{
 type: "categoryX",
 name: "xAxis",
 label: "displayTime",
 labelAngle: 45
 }, {
 type: "numericY",
 name: "yAxis",
 title: "CPU Utilization",
 minimumValue: 0,
 maximumValue: 100,
 formatLabel: toDisplayCPU
 }, {
 type: "numericY",
 name: "yAxisMemory",
 title: "Memory Utilization",
 labelLocation: "outsideRight",
 minimumValue: 0,
 maximumValue: 8 * 1024 * 1024 * 1024,
 interval: 1024 * 1024 * 1024,
 formatLabel: toDisplayMem,
 majorStroke: "transparent"
 }],
 series: [{
 name: "cpu",
 type: "line",
 xAxis: "xAxis",
 yAxis: "yAxis",
 valueMemberPath: "cpuUsage",
 showTooltip: true,
 tooltipTemplate:
 "<div>CPU: ${item.displayCPU}</div>",
 title: "CPU Utilization"
 }, {
 name: "mem",
 type: "line",
 xAxis: "xAxis",
 yAxis: "yAxisMemory",
 valueMemberPath: "usedMem",

358 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 358

 showTooltip: true,
 tooltipTemplate:
 "<div>Memory: ${item.displayMem}</div>",
 title: "Memory Utilization"
 }, {
 name: "itemToolTips",
 type: "itemToolTipLayer",
 useInterpolation: false,
 transitionDuration: 300
 }]
 };

 $("#chart").igDataChart(chartOptions);

}

renderChart();

The renderChart function is pretty much the same as when you were dealing with fi nancial data.
The signifi cant differences have been highlighted, though. The differences boil down to a different
strategy for displaying the long x-axis label values, and making sure that some nice looking format-
ting is used on the large memory utilization numbers to make them more palatable. If you stopped
here, this would provide you a static chart, much like the fi nancial chart before (albeit with no
actual data), but it would not respond to any updates from the server. So let’s continue.

var socket = io.connect("http://localhost:8080");

socket.on("cpuUpdate", function (update) {
 var currTime = new Date();
 var displayString = currTime.toLocaleTimeString();
 update.displayCPU = toDisplayCPU(update.cpuUsage);
 update.displayMem = toDisplayMem(update.usedMem);
 update.displayTime = displayString;
 cpuData.push(update);
 $("#chart").igDataChart("notifyInsertItem",
 cpuData, cpuData.length - 1, update);
});

The preceding snippet is the heart and soul of the real-time update. First you connect to the Socket.IO
server on port 8080. Note, you would use a different value for the URL here for deploying to a pro-
duction server with a real DNS name.

Next, you defi ne that when a "cpuUpdate" message is received on the socket, you would like to

 ➤ Examine the associated JavaScript object that was received and create some human-readable
strings for easy use in the tooltips

 ➤ Create a human-readable time string for use in the axis labels and the tooltips

 ➤ Add the data to the array being displayed in the chart with cpuData.push(update);

 ➤ Notify the chart that you have modifi ed an associated data array by adding a value to the
end: $("#chart").igDataChart("notifyInsertItem", cpuData, cpuData.length -
1, update);

Plotting Real-Time Data ❘ 359

c14.indd 10/28/2014 Page 359

JavaScript doesn’t have a built-in observable array type for automatically notifying consumers
of data changes, so this is why it is necessary to notify the chart that one of its arrays has been
modifi ed. Given that notifi cation, igDataChart handles all the necessary update work for you.
Alternatively, if you use a framework such as Knockout.js, igDataChart is capable of listening for
updates on the observable array types provided and managing these updates for you. Note, however,
that some of these frameworks add some additional processing overhead, so the optimal perfor-
mance scenario might be to invoke the notifi cation methods on the chart directly.

The last thing required is to make sure that the HTML page references the Socket.IO client library.
Notice that you don’t actually have this fi le on disk in the directory that Node.js is serving fi les
from; the Socket.IO server is managing serving up this script reference dynamically when asked:

<script src="/socket.io/socket.io.js"></script>

To see the kind of astonishing update performance you can get out of this combination of Socket.IO
and igDataChart, try editing cpuLoadServer.js and changing the broadcast interval from 100ms
to 10ms:

io.sockets.on('connection', function () {
 if (interval < 0) {
 interval = setInterval(function () {
 var freeMem = os.freemem();
 var totalMem = os.totalmem();
 io.sockets.emit("cpuUpdate", {
 cpuUsage: currCPU * 100.0,
 freeMem: freeMem,
 totalMem: totalMem,
 usedMem: totalMem - freeMem
 });
 }, 10);
 }
});

Now, quit your server and restart it. The updates should be coming in really quickly now. Pretty
neat, huh?

Exploring Update Rendering Techniques
The previous example continues to add new data points to the end of the series perpetually.
Although the igDataChart can gracefully display more than a million points interactively, you still
might want to employ some strategies to roll out old data that is no longer interesting. To end this
chapter, here’s a quick peek at a few strategies:

socket.on("cpuUpdate", function (update) {
 var currTime = new Date();
 var displayString = currTime.toLocaleTimeString();
 update.displayCPU = toDisplayCPU(update.cpuUsage);
 update.displayMem = toDisplayMem(update.usedMem);
 update.displayTime = displayString;
 cpuData.push(update);
 $("#chart").igDataChart("notifyInsertItem",
 cpuData, cpuData.length - 1, update);

360 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 360

 if (cpuData.length > 1000) {
 var oldItem = cpuData.shift();
 $("#chart").igDataChart("notifyRemoveItem",
 cpuData, 0, oldItem);
 }
});

This variant on the socket message handler from the previous example achieves a sliding window
effect where, after the maximum number of points is displayed, it begins removing the oldest
points as new ones are added. The result is that the data appears to slide through the view from
right to left. This is achieved by notifying the chart not just of the additions to the data at the end
of the array but also of the removals at the beginning of the array. There’s no need to worry about
the chart rendering twice from the two notifi cations; it’s smart enough to wait until your modifi ca-
tion is done before updating the visuals. You can see the result on the companion website in the
IgniteUICPULoadChartSlidingWindow.js/html/css fi le.

var cpuData = [];
for (var i = 0; i < 1000; i++) {
 cpuData.push({
 displayTime: new Date().toLocaleTimeString(),
 usedMem: NaN,
 cpuUsage: NaN
 });
}
var insertionPoint = 0;

Another strategy is to change the defi nition of the array to look like the preceding code, where you
start with 1000 data points defi ned with no initial values. Then, combine that with this:

socket.on("cpuUpdate", function (update) {
 var currTime = new Date();
 var displayString = currTime.toLocaleTimeString();
 update.displayCPU = toDisplayCPU(update.cpuUsage);
 update.displayMem = toDisplayMem(update.usedMem);
 update.displayTime = displayString;
 cpuData[insertionPoint] = update;

 $("#chart").igDataChart("notifySetItem",
 cpuData, insertionPoint, update);

 for (var i = insertionPoint + 1;
 i < Math.min(insertionPoint + 21, 1000);
 i++) {
 cpuData[i] = {
 displayTime: new Date().toLocaleTimeString(),
 usedMem: NaN,
 cpuUsage: NaN
 };
 $("#chart").igDataChart("notifySetItem",
 cpuData, i, cpuData[i]);
 }

 insertionPoint++;

Plotting Massive Data ❘ 361

c14.indd 10/28/2014 Page 361

 if (insertionPoint > 999) {
 insertionPoint = 0;
 }
 });

which creates an updating style reminiscent of an EKG machine. The number of points in the
series remains static, and when the updates reach the right edge of the chart they wrap back
around to the left edge and begin overwriting the oldest content. An extra tweak empties some
values ahead of the most recent value to make it more apparent where the most recent values
are, at a glance. You can see a snapshot of this behavior in Figure 14-10, and you can fi nd the
IgniteUICPULoadChartEKGStyle.js/html/css fi le on the companion website.

FIGURE 14-10: This real-time updating chart includes EKG-style wrapping.

PLOTTING MASSIVE DATA

To wrap up this chapter, you use the igDataChart to plot massive amounts of data in the browser.
Would you believe us if we told you that you could plot one million data points in a JavaScript
chart? No? Well, next, you do just that. In fact, plotting that amount of data will prove less of a
challenge than transmitting the data, over the wire, to the client.

JSON is pretty wonderful. It’s human readable, and there is good support for deserializing it in any
decent JavaScript engine, but it does have a bit of a verbosity problem. It is nowhere near as verbose
as XML, but is still much more verbose than a packed binary format.

362 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 362

Browsers have not traditionally been very good at processing binary data in JavaScript, but recent
versions have begun to improve upon this through the advent of the ArrayBuffer API. Your strat-
egy to load mass amounts of data is to encode a packed binary fi le containing one million single-
precision fl oating-point numbers, using Node.js. Provided that fi le, you load it into an ArrayBuffer
using an XmlHTTPRequest and then use a DataView to extract the fl oating-point numbers back into
an array on the client side. This data can then be loaded into the chart.

First, you start with the data creation as shown in Listing 14-5.

LISTING 14-5

var fs = require("fs");
var numItems = 1000000;
var buf = new Buffer(numItems * 4);

var currValue = 1000.0;

for (var i = 0; i < numItems; i++) {
 currValue += -2.0 + Math.random() * 4.0;
 buf.writeFloatLE(currValue, i * 4);
}

fs.writeFile("data.bin", buf, function (err) {
 if (err) {
 console.log("Error writing file: " + err);
 }
 console.log("file written.");
});

This creates a Node.js Buffer that is large enough to store one million single-precision fl oating-point
numbers. A single-precision fl oating-point number is generally encoded using 4 bytes, so the buffer
needs to be 4 million bytes long. Provided such a buffer, the code in Listing 14-5 calls writeFloatLE
for each data point to write each fl oat value, using little endian byte ordering, into the buffer. Given
this fi lled buffer, Node.js’s fs.writeFile function, which you used earlier in this chapter, can write
this buffer to disk as the contents of a fi le. This produces a fi le called data.bin, which contains the
one million data points.

If you create a fi le called createMassData.js and fi ll it with the contents of Listing 14-5, you
should be able to navigate to the directory containing this fi le and run this command from a Node.js
command prompt (on the companion website, the fi le is createMassData.js):

node createMassData.js

As a result, you should end up with an output fi le called data.bin, which should be 3,907KB in
size. This is large, but is nowhere near as large as the data would be if it were encoded as JSON. For
comparison, Listing 14-6 contains code that creates the same data but is encoded as a JSON array.

LISTING 14-6

var fs = require("fs");
var numItems = 1000000;

Plotting Massive Data ❘ 363

c14.indd 10/28/2014 Page 363

var data = [];
var outputObject = {};

var currValue = 1000.0;
for (var i = 0; i < numItems; i++) {
 currValue += -2.0 + Math.random() * 4.0;
 data.push(currValue);
}
outputObject.data = data;

fs.writeFile("data.json", JSON.stringify(outputObject), function (err) {
 if (err) {
 console.log("Error writing file: " + err);
 }
 console.log("file written.");
});

Running that code results in a fi le called data.json, which has the same content as data.bin but
is encoded as JSON. The resulting size of the fi le is 18,166KB. That’s just over 4.5 times larger than
the binary encoded version! If you gzip compress the fi les, then their sizes are reduced as follows:

 ➤ data.bin.gz: 3,253KB

 ➤ data.json.gz: 7,067KB

The plaintext JSON fi le, predictably, benefi ted far more from the compression, but the compressed
binary fi le is still much smaller than the compressed JSON equivalent. You can see, however, that
the feasibility of slinging so much JSON around in web applications, as we do today, hangs largely
on the fact that it compresses reasonably well, and that web servers and browsers can generally
seamlessly gzip compress/decompress fi les without adding too much additional processing overhead
to a request. When you are dealing with mass data, however, every byte counts.

Given the binary fi le with the one million data points, the remaining challenge is how to pull that
down into the browser and load it into a chart. Modern browsers have some APIs to help deal
with downloading and processing data at the raw level, but some of it is so new that some of the
major high-level JavaScript libraries don’t have especially good support for it yet, so you’ll be using
XmlHTTPRequest directly to pull down the data.

Next you defi ne the actual chart as shown in Listing 14-7.

LISTING 14-7

$(function () {

 function renderChart(data) {
 $("#chart").igDataChart({
 dataSource: data,
 width: "700px",
 height: "500px",
 horizontalZoomable: true,
 verticalZoomable: true,

continues

364 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 364

 axes: [{
 name: "xAxis",
 label: "label",
 type: "categoryX",
 labelAngle: 45
 }, {
 name: "yAxis",
 type: "numericY"
 }],
 series: [{
 name: "line",
 xAxis: "xAxis",
 yAxis: "yAxis",
 type: "line",
 showTooltip: true,
 valueMemberPath: "value",
 isHighlightingEnabled: true,
 isTransitionInEnabled: true
 }],
 });
 };

 var xhr = new XMLHttpRequest();
 xhr.onload = function () {
 if (xhr.status == 200) {
 var arrayBuffer = xhr.response;

 var dataView = new DataView(arrayBuffer);
 var numItems = arrayBuffer.byteLength / 4;

 var data = [];
 for (var i = 0; i < numItems; i++) {
 data.push({
 label: "Item " + i.toString(),
 value: dataView.getFloat32(i * 4, true)
 });
 }

 renderChart(data);
 }
 };

 xhr.open("GET", "data.bin");
 xhr.responseType = "arraybuffer";
 xhr.send(null);
});

The actual creation of the chart is nothing new—if you’ve read the rest of this chapter. No special
settings are required to load this quantity of data into an igDataChart series, so let’s break down
just the highlighted section of Listing 14-7. For starters you have:

var xhr = new XMLHttpRequest();

LISTING 14-7 (continued)

Plotting Massive Data ❘ 365

c14.indd 10/28/2014 Page 365

This creates a new XMLHttpRequest, which is the backbone of every AJAX request. If you are used
to using $.ajax and its kin in jQuery, they are eventually, under the covers, dealing with this API.
Next, you defi ne the callback function that will get invoked when the request completes:

var xhr = new XMLHttpRequest();
xhr.onload = function () {
 if (xhr.status == 200) {
 var arrayBuffer = xhr.response;

Here, provided that the response is OK (HTTP code 200), you extract it for processing. Provided the
response to the request, which should be an ArrayBuffer, you extract the data from it:

var dataView = new DataView(arrayBuffer);
var numItems = arrayBuffer.byteLength / 4;

var data = [];
for (var i = 0; i < numItems; i++) {
 data.push({
 label: "Item " + i.toString(),
 value: dataView.getFloat32(i * 4, true)
 });
}

First, you create a DataView over the ArrayBuffer, which will assist in extracting the fl oating-point
values from the binary data response. Because each single-precision fl oating-point is 4 bytes, and
they make up the entire fi le, you divide by 4 to get the number of items. Then you loop over all of
the items and extract each in turn from the array buffer.

dataView.getFloat32(i * 4, true)

Here, the fi rst parameter is the byte offset into the buffer, which is determined by multiplying the
index times 4 (for the number of bytes in each single-precision fl oating-point number). The second
parameter indicates that the fl oating points will be encoded in little endian fashion, which you
ensured earlier by calling buf.writeFloatLE(currValue, i * 4) rather than buf
.writeFloatBE(currValue, i * 4), when creating the data fi le.

 renderChart(data);
 }
 };

 xhr.open("GET", "data.bin");
 xhr.responseType = "arraybuffer";
 xhr.send(null);
});

Finally, when the data has fi nished being decoded, you render the chart. Having fully set up the
callback that will be called upon successful return of the binary data response, the only thing
remaining is to perform an HTTP get for the fi le data.bin, indicate that the response type should
be an ArrayBuffer, and initiate the asynchronous request. If you run the preceding code, you
should see one million data points loaded into the chart as demonstrated in Figure 14-11 (the
IgniteUIMassData.js/html/css fi le on the companion website).

366 ❘ CHAPTER 14 CHARTING TIME SERIES WITH IGNITE UI IGDATACHART

c14.indd 10/28/2014 Page 366

FIGURE 14-11: This chart displays one million data points in igDataChart.

Notice that you can zoom in with your mouse wheel or by clicking and dragging on the chart. After
you’re zoomed in, you can press Shift and click and drag to pan around. Because igDataChart is
good at processing these extreme amounts of data and helping you visualize them, everything stays
buttery smooth even under these conditions.

SUMMARY

 In this chapter, you learned all about charting time series. One of the most popular time series visu-
alizations is a stock data chart, so you started there, but you ended with some real-time visualiza-
tions of computer performance data. You learned:

 ➤ The anatomy of a candlestick or OHLC chart

 ➤ How to obtain and load fi nancial data using JavaScript

 ➤ How to display fi nancial data in the Ignite UI igDataChart

 ➤ Some of the differences between plotting time series data on a category axis versus a linear
axis

 ➤ How to use a zoom bar to navigate the Ignite UI igDataChart

 ➤ How to plot a synchronized chart to display trade volatility

Summary ❘ 367

c14.indd 10/28/2014 Page 367

 ➤ How to plot technical indicators against your fi nancial data

 ➤ How to create a real-time push update server using Node.js

 ➤ How to render real-time data in the igDataChart

 ➤ Various strategies for managing real-time data in the igDataChart

 ➤ Strategies for displaying massive amounts of data in igDataChart

c15.indd 11/03/2014 Page 369

PART IV
Interactive Analysis and
Visualization Projects

 ▸ CHAPTER 15: Building an Interconnected Dashboard

 ▸ CHAPTER 16: Building Interactive Infographics with D3

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

c15.indd 11/03/2014 Page 371

Building an Interconnected
Dashboard

WHAT’S IN THIS CHAPTER

 ➤ Pulling data from the U.S. Census API

 ➤ Rendering Census data with Google Charts

 ➤ Styling the chart dashboard responsively

 ➤ Connecting the components with Backbone

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/javascriptandjqueryanalysis on the Download Code
tab. The code is in the chapter 15 download and individually named according
to the names throughout the chapter.

With this chapter, you create an interactive dashboard that charts U.S. census data. You start
by exploring the Census API and learn how to overcome its many challenges. Next you render
static charts from this data using Google Charts. You create visualizations for a variety
of data:

 ➤ Demographic data for sex and race

 ➤ Housing data

 ➤ Population growth and age breakdowns

15

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

372 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 372

After creating the charts, you then integrate them into an interconnected dashboard. You start by
styling the dashboard responsively and then integrate form controls to translate user input into
rendered changes on the screen. In the end, you’ll have created a simple Backbone app that renders
complex data.

THE U.S. CENSUS API

In recent years, the U.S. government has been releasing a variety of public APIs for governmental
data. Collected at www.data.gov, these APIs provide a variety of useful data sets. Notably, the
Census API offers a wealth of intricate demographic information about U.S. residents.

To get started with the API, register for an API key at www.census.gov/developers/. After you’re
in the site, you see that there are a variety of different data sets available. For now, take a look at the
Decennial Census Data:

http://www.census.gov/data/developers/data-sets/decennial-census-data.html

A quick word of warning: Working with the Census API can be cumbersome. Rather than using an
intuitive data structure, you have to dig through mountains of XML to fi gure out how to access the
desired data.

For example, say you want to fi gure out simple gender information. The fi rst step is to look in
http://api.census.gov/data/2010/sf1/variables.xml for the key for the data you want. In
this case, you need P0120002 and P0120026, which are aggregated values for the “sex by age” data
for men and women respectively.

Next, include these keys along with your API key in a call to the API:

http://api.census.gov/data/2010/sf1?get=
P0120002,P0120026&for=state:*&key=[your_api_key]

For now, just paste this link in your browser. If your API key is working, you should see this data:

[["P0120002","P0120026","state"],
["2320188","2459548","01"],
["369628","340603","02"],
["3175823","3216194","04"],
["1431637","1484281","05"],
...
["287437","276189","56"],
["1785171","1940618","72"]]

That’s 2010 census data for men and women broken down by state. For instance, the second line,
["2320188","2459548","01"] represents:

 ➤ "2320188": The number of men (P0120002)

 ➤ "2459548": The number of women (P0120026)

 ➤ "01": In Alabama

Rendering Charts ❘ 373

c15.indd 11/03/2014 Page 373

The fi nal value, 01, is the FIPS (Federal Information Processing Standards) state code for Alabama.
Unfortunately, you can’t query the Census API using intuitive strings such as men, women, and
Alabama; instead, you have to use random government codes such as P0120002, P0120026, and 01.

TIP For a list of FIPS state codes, visit http://en.wikipedia.org/wiki/
Federal_Information_Processing_Standard_state_code.

The previous example pulls a list for all states, but you can also specify a given state using the FIPS
state code. For example, to pull the information for only Alabama, you’d call

http://api.census.gov/data/2010/sf1?get=P0120002,P0120026&for=state:01
 &key=[your_api_key].

That returns a much smaller data set:

[["P0120002","P0120026","state"],
["2320188","2459548","01"]]

TIP USA Today provides a more intuitive API for census data at http://devel-
oper.usatoday.com/docs/read/Census. It’s handy for simple data, but not
nearly as powerful as the API from www.census.gov.

RENDERING CHARTS

Now that you have data from the census API, rendering it in a chart will be a piece of cake. To keep
things simple, you’re going use Google Charts and just hardcode the charts for a specifi c state (New
York). Then, later in this chapter you integrate these components into an interactive Backbone app
that works for all 50 states in the United States.

Sex Chart
First, let’s create a chart using the male versus female demographic information you accessed earlier.
To get started, grab the data using jQuery’s ajax() API:

$.ajax({
 url: "http://api.census.gov/data/2010/sf1",
 data: {
 get: "P0120002,P0120026",
 for: "state:36",
 key: "[your API key]"
 },
 success: function(data) {
 console.log(data);
 }
});

374 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 374

This snippet reformats the query to api.census.gov, breaking out the query variables into the data
object. After you’ve entered your API key, you should see the console outputting the sex data you
accessed earlier.

Next, display this data in a chart. First include a wrapper for the chart, the Google JS API, and load
the chart’s API:

<div id="sex-chart"></div>

<script src="https://www.google.com/jsapi"></script>
<script>
google.load("visualization", "1", {packages:["corechart"]});
google.setOnLoadCallback(renderCharts);
</script>

Now, the API calls renderCharts() whenever the chart scripts load. Add the Ajax call to
api.census.gov to this callback, and render the chart:

function renderCharts() {
 $.ajax({
 url: "http://api.census.gov/data/2010/sf1",
 data: {
 get: "P0120002,P0120026",
 for: "state:36",
 key: "[your API key]"
 },
 success: function(data) {
 var processed = [
 ["Sex", "Population"],
 ["Male", ~~data[1][0]],
 ["Female", ~~data[1][1]]
];

 var chartData = google.visualization.arrayToDataTable(processed);

 var options = {
 title: "Sex",
 pieHole: 0.8,
 pieSliceText: "none"
 };

 var chart = new google.visualization.PieChart(
 document.getElementById("sex-chart")
);

 chart.draw(chartData, options);
 }
 });
}

In the success callback, you see a bit of data massaging to convert the raw census data to the format
Google Charts expects. In defi ning the processed variable, you fi rst include an array to name the
columns of the chart and then pass in each row of data. For each row, you simply pull the relevant
value from the Census API data and then convert it to an integer using the ~~ literal.

Rendering Charts ❘ 375

c15.indd 11/13/2014 Page 375

NOTE The ~~ literal is similar to Math.fl oor, except with better performance.

The script next creates an options object for Google Charts, setting some basic options, along with
pieHole to render the donut chart in Figure 15-1.

FIGURE 15-1: This chart shows sex demographics in New York.

You can fi nd this example in the Chapter 15 folder on the companion website. It’s named sex-chart.html.

Race Chart
You can now take a similar approach to create a chart for race demographics. When working with
the Census API, the fi rst step is hunting down just what keys you want to pull from the data set. In
this case, you need to look at the P8. RACE section, in particular P0080003 through P0080009.

Next, you can follow the patterns in the sex chart to render this new chart in the renderCharts()
callback:

$.ajax({
 url: "http://api.census.gov/data/2010/sf1",
 data: {
 get: "P0080003,P0080004,P0080005,P0080006,P0080007,P0080008,P0080009",
 for: "state:36",
 key: "[your API key]"
 },
 success: function(data) {
 var races = [
 "White",
 "Black",
 "American Indian or Alaskan Native",
 "Asian",
 "Native Hawaiian or Pacific Islander",
 "Other",
 "Mixed"
],

376 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 376

 processed = [
 ["Race", "Population"]
];

 // lose the last value (state ID)
 data[1].pop();

 for (i in data[1]) {
 processed.push([
 races[i],
 ~~data[1][i]
]);
 }

 var chartData = google.visualization.arrayToDataTable(processed);

 var options = {
 title: "Race",
 is3D: true
 };

 var chart = new google.visualization.PieChart(
 document.getElementById("race-chart")
);

 chart.draw(chartData, options);
 }
});

Here the code follows the sex chart example for the most part except that it’s dealing with more
values, so it’s a bit easier to loop through these values to create the processed variable. Finally,
instead of a donut chart, this data makes more sense to display as a pie chart, so the pieHole in the
options has been replaced with is3D to render the 3D pie chart in Figure 15-2.

FIGURE 15-2: Race demographics in New York have been charted.

TIP Make sure to include a wrapper for each chart in the markup, as shown in
the example in the Chapter 10 folder on the companion website. It’s named race-
chart.html. Note that it might render differently based on the size of your screen;
Google Charts adds information depending on the size of the chart wrapper.

Rendering Charts ❘ 377

c15.indd 11/03/2014 Page 377

Household Size Chart
Next let’s create a visualization for the information in H13. Household Size, in particular
H0130002 through H0130008:

$.ajax({
 url: "http://api.census.gov/data/2010/sf1",
 data: {
 get: "H0130002,H0130003,H0130004,H0130005,H0130006,H0130007,H0130008",
 for: "state:36",
 key: "[your API key]"
 },
 success: function(data) {
 var processed = [
 ["Household Size", "Households"]
];

 // lose the last value (state ID)
 data[1].pop();

 for (i in data[1]) {
 processed.push([
 (~~i+1) + (i == 6 ? "+" : "") + " Person",
 ~~data[1][i]
]);
 }

 var chartData = google.visualization.arrayToDataTable(processed);

 var options = {
 title: "Household Size",
 is3D: true
 };

 var chart = new google.visualization.PieChart(
 document.getElementById("household-chart")
);

 chart.draw(chartData, options);
 }
});

Here, the script follows the patterns from the race chart almost exactly, with one exception. Rather
than hardcoding the name for each key, it generates them dynamically using the loop index to create
keys like “1 Person,” “2 Person,” and “7+ Person.” That renders the chart in Figure 15-3.

You can fi nd this example in the Chapter 15 folder on the companion website. It’s named
household-chart.html.

378 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 378

FIGURE 15-3: This chart shows household sizes in New York.

Household Tenure Chart
Next you create a chart for household tenure data—that is, the percentage of homes that are owned
versus rented. This chart is again very simple; this time it follows the basic sex chart example, except
with the data in H11. TOTAL POPULATION IN OCCUPIED HOUSING UNITS BY TENURE.

$.ajax({
 url: "http://api.census.gov/data/2010/sf1",
 data: {
 get: "H0110002,H0110003,H0110004",
 for: "state:36",
 key: "[your API key]"
 },
 success: function(data) {
 var processed = [
 ["Tenure", "Housing Units"],
 ["Owned with Mortgage", ~~data[1][0]],
 ["Owned Outright", ~~data[1][1]],
 ["Rented", ~~data[1][2]]
];

 var chartData = google.visualization.arrayToDataTable(processed);

 var options = {
 title: "Housing Tenure",
 pieHole: 0.8,
 pieSliceText: "none"
 };

 var chart = new google.visualization.PieChart(
 document.getElementById("tenure-chart")
);

 chart.draw(chartData, options);
 }
});

Rendering Charts ❘ 379

c15.indd 11/03/2014 Page 379

As you can see, the script simply hardcodes the names for each piece of data and includes the
relevant value. The end result is the donut chart in Figure 15-4.

FIGURE 15-4: This chart shows housing tenure data for New York.

You can fi nd this example in the Chapter 15 folder on the companion website. It’s named
tenure-chart.html.

Age by Sex Chart
So far you’ve been working with small data sets. But now it’s time to think a bit larger and display a
chart showing how the population is dispersed across different ages and genders. For these
purposes, you need to leverage the mammoth P12. Sex By Age data set.

Because you’re going to be grabbing a lot more data (46 values to be exact), start by creating a function
to generate the keys you need:

function build_age_request_string(offset) {
 var out = "";

 for (var i = 0; i < 23; i++) {
 var this_index = ("0" + (i + offset)).slice(-2);

 out += "P01200" + this_index + ",";
 }

 return out;
}

var age_request_keys = build_age_request_string(3) + build_age_request_string(27);

age_request_keys = age_request_keys.slice(0,-1);

Don’t get too hung up on this script; it’s just a quick piece of code to output the 46 keys you need
(P0120003 through P0120025 for men and P0120027 through P0120049 for women).

380 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 380

Next, pass these references into an API call:

$.ajax({
 url: "http://api.census.gov/data/2010/sf1",
 data: {
 get: age_request_keys,
 for: "state:36",
 key: "[your API key]"
 },
 success: function(data) {
 var male_data = data[1].slice(0,23),
 female_data = data[1].slice(23,46);
 }
});

Here the script uses the age_request_keys string you previously generated to pull the data, and
then it slices out the male and female data sets from the result. Next, if you look at the Census API
reference, notice that these age buckets are not all equal. For the most part, they represent a fi ve-
year age range—for example, 5–9 or 10–14—but there are a handful of outliers such as 15–17 and
18–19. In order to build a relevant visualization, it’s important to rectify these differences and create
useful comparisons.

Fortunately, the unusual age groupings can be merged into the standard fi ve-year buckets:

function combine_vals(arr, start, end) {
 var total = 0;

 for (var i = start; i <= end; i++) {
 total += arr[i];
 }

 arr[start] = total;

 arr.splice(start + 1, end - start);

 return arr;
}

function clean_age_range(age_data) {
 // convert all the values to numeric
 for (var i in age_data) {
 age_data[i] = ~~age_data[i];
 }

 // merge values starting with highest (to preserve array keys)

 // merge 65-66 && 67-69
 age_data = combine_vals(age_data, 17, 18);

 // merge 60-61 & 62-64
 age_data = combine_vals(age_data, 15, 16);

 // merge 20, 21 & 22-24
 age_data = combine_vals(age_data, 5, 7);

Rendering Charts ❘ 381

c15.indd 11/03/2014 Page 381

 // merge 15-17 & 18-19
 age_data = combine_vals(age_data, 3, 4);

 return age_data;
}

male_data = clean_age_range(male_data);
female_data = clean_age_range(female_data);

Here the script fi rst defi nes the function combine_vals() for merging array values and then
leverages that in the clean_age_range() function, which manually groups the unusual values.
Next you can further refi ne this data to use with Google Charts:

var processed = [
 ["Age", "Male", "Female"]
];

for (var i = 0, max = male_data.length; i < max; i++) {
 var row = [];

 switch(i) {
 case 0:
 row[0] = "Under 5";
 break;

 default:
 row[0] = (i * 5) + "-" + (i * 5 + 4);
 break;

 case max - 1:
 row[0] = (i * 5) + "+";
 break;
 }

 row[1] = male_data[i];
 row[2] = female_data[i];

 processed.push(row);
}

Here the code simply loops through the age data and outputs a useful name along with the male and
female populations. Finally, pass this information into a Google Charts column chart:

var chartData = google.visualization.arrayToDataTable(processed);

var options = {
 title: "Age"
};

var chart = new google.visualization.ColumnChart(
 document.getElementById("age-chart")
);

chart.draw(chartData, options);

382 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 382

To wrap things up, let’s look at the code all together:

function build_age_request_string(offset) {
 var out = "";

 for (var i = 0; i < 23; i++) {
 var this_index = ("0" + (i + offset)).slice(-2);

 out += "P01200" + this_index + ",";
 }

 return out;
}

var age_request_keys = build_age_request_string(3) + build_age_request_string(27);

age_request_keys = age_request_keys.slice(0,-1);

$.ajax({
 url: "http://api.census.gov/data/2010/sf1",
 data: {
 get: age_request_keys,
 for: "state:36",
 key: "[your API key]"
 },
 success: function(data) {
 var male_data = data[1].slice(0,23),
 female_data = data[1].slice(23,46);

 // merge the dissimilar age ranges

 function combine_vals(arr, start, end) {
 var total = 0;

 for (var i = start; i <= end; i++) {
 total += arr[i];
 }

 arr[start] = total;

 arr.splice(start + 1, end - start);

 return arr;
 }

 function clean_age_range(age_data) {
 // convert all the values to numeric
 for (var i in age_data) {
 age_data[i] = ~~age_data[i];
 }

 // merge values starting with highest (to preserve array keys)

 // merge 65-66 && 67-69
 age_data = combine_vals(age_data, 17, 18);

Rendering Charts ❘ 383

c15.indd 11/03/2014 Page 383

 // merge 60-61 & 62-64
 age_data = combine_vals(age_data, 15, 16);

 // merge 20, 21 & 22-24
 age_data = combine_vals(age_data, 5, 7);

 // merge 15-17 & 18-19
 age_data = combine_vals(age_data, 3, 4);

 return age_data;
 }

 male_data = clean_age_range(male_data);
 female_data = clean_age_range(female_data);

 var processed = [
 ["Age", "Male", "Female"]
];

 for (var i = 0, max = male_data.length; i < max; i++) {
 var row = [];

 switch(i) {
 case 0:
 row[0] = "Under 5";
 break;

 default:
 row[0] = (i * 5) + "-" + (i * 5 + 4);
 break;

 case max - 1:
 row[0] = (i * 5) + "+";
 break;
 }

 row[1] = male_data[i];
 row[2] = female_data[i];

 processed.push(row);
 }

 var chartData = google.visualization.arrayToDataTable(processed);

 var options = {
 title: "Age"
 };

 var chart = new google.visualization.ColumnChart(
 document.getElementById("age-chart")
);

 chart.draw(chartData, options);
 }
});

384 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 384

After this script reformats the data, it creates the column chart in Figure 15-5.

FIGURE 15-5: This chart shows age by sex information for New York.

You can fi nd this example in the Chapter 15 folder on the companion website. It’s named
age-chart.html.

Population History Chart
At this point, you’ve built a number of charts showing various demographic breakdowns. Next, you
can take things in a different direction to display population growth over time. However, to access
this data you’re going to need a different API: the Total Population and Components of Change API
you can read about at

http://www.census.gov/data/developers/data-sets/population-estimates-and-
projections.html

The workfl ow for this API is largely the same:

 1. Create the API call for the data you need.

 2. Request that data with Ajax and reformat.

 3. Display the data in a Google Chart.

Fortunately (or unfortunately), the data set for this API is signifi cantly smaller than that of the
Decennial Census Data, as you can see here: http://api.census.gov/data/2013/pep/natstprc/
variables.html. That makes it much easier to build the API call. For example, to grab population
change data for New York, you can call:

http://api.census.gov/data/2013/pep/natstprc?get=POP,DATE
 &for=state:36&key=your_api_key

Rendering Charts ❘ 385

c15.indd 11/03/2014 Page 385

You can use the same API key you used for decennial data, which returns the following:

[["POP","DATE","state"],
["19378102","1","36"],
["19378105","2","36"],
["19398228","3","36"],
["19502728","4","36"],
["19576125","5","36"],
["19651127","6","36"]]

Each row represents another year of population data, from July 1, 2008 (DATE:1) through July 1,
2013 (DATE:6). Next, access this data from your JS and build a chart:

$.ajax({
 url: "http://api.census.gov/data/2013/pep/natstprc",
 data: {
 get: "POP,DATE",
 for: "state:36",
 key: "[your API key]"
 },
 success: function(data) {
 var processed = [
 ["Year", "Population"]
];

 for (i in data) {
 if (i == 0) continue;
 processed[i] = [~~data[i][1] + 2007, ~~data[i][0]];
 }

 var chartData = google.visualization.arrayToDataTable(processed);

 var options = {
 title: "Population Growth",
 legend: "none"
 };

 var chart = new google.visualization.LineChart(
 document.getElementById("population-chart")
);
 chart.draw(chartData, options);
 }
});

This script loops through the data the API returns, creating a year string from the DATE values and
inserting the population count. It then passes the processed data into Google Charts to render the
line chart in Figure 15-6.

386 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 386

FIGURE 15-6: This chart shows population growth in New York 2008–2013.

You can fi nd this example in the Chapter 15 folder on the companion website. It’s named popula-
tion-chart.html.

CREATING THE DASHBOARD

Now that you’ve rendered charts for a variety of data sets, you can combine them in a dashboard.
For now, you still hardcode the dashboard for New York’s data, but it makes an excellent jumping
off point for the interactive app.

You can fi nd this example in the Chapter 15 folder on the companion website. It’s named respon-
sive-dashboard.html.

Basic Markup and Styling
First, combine the wrappers for each chart in some basic markup:

<div class="census">
 <div class="charts">
 <h1>
 Census Data - New York
 </h1>

 <section class="population">
 <h2>
 Population
 </h2>

 <div id="population-chart" class="chart"></div>
 <div id="age-chart" class="chart"></div>
 </section>

Creating the Dashboard ❘ 387

c15.indd 11/03/2014 Page 387

 <section class="demographics">
 <h2>
 Demographics
 </h2>

 <div id="race-chart" class="chart"></div>
 <div id="sex-chart" class="chart"></div>
 </section>

 <section class="housing">
 <h2>
 Housing
 </h2>

 <div id="household-chart" class="chart"></div>
 <div id="tenure-chart" class="chart"></div>
 </section>
 </div>
</div>

Next, apply some basic CSS:

body {
 font-family: "Gill Sans", "Gill Sans MT", Calibri, sans-serif;
}

h1, h2 {
 font-weight: normal;
}

h2 {
 padding: .5em 1em;
 background: #DDD;
}

.census {
 position: relative;
 overflow: hidden;
}

/* charts */

section {
 overflow: hidden;
}

.chart {
 height: 350px;
}

.demographics .chart, .housing .chart {
 width: 50%;
 float: left;
}

388 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 388

That renders the charts in the dashboard shown in Figure 15-7.

FIGURE 15-7: At this point the script renders the initial dashboard.

Creating the Dashboard ❘ 389

c15.indd 11/13/2014 Page 389

You can fi nd this stylesheet in the Chapter 15 folder on the companion website. It’s named
css/census-charts.css.

Responsive Layer
So far, the dashboard is looking decent on medium-sized devices. Next, you should add a responsive
layer to maximize the screen real estate for both tiny mobile devices and large desktop monitors. To
do so, add some simple media queries to the CSS:

@media all and (min-width: 700px) and (max-width: 1000px) {
 .demographics .chart, .housing .chart {
 width: 50%;
 float: left;
 }
}

@media all and (min-width: 1001px) {
 .population:not(.single) {
 width: 66.6666%;
 float: left;
 }

 .demographics {
 width: 33.3333%;
 float: right;
 }

 .housing {
 clear: both;
 }

 .housing .chart {
 width: 50%;
 float: left;
 }
}

Here, the styles for .demographics .chart, .housing .chart {} have been moved into a block
that displays only on windows between 700 and 1000 pixels. That ensures that smaller windows,
such as those on phones, don’t get the columned layout for these charts and instead display each line
by line.

Additionally, some styles have been added for windows larger than 1000px wide. These new rules
reposition the demographics column next to the population data, with the two housing charts
fl oated underneath. That gives a much more integrated dashboard feel for larger monitors, which
you can see in Figure 15-8.

You can fi nd this stylesheet in the Chapter 15 folder on the companion website. It’s named
css/census-charts.css.

390 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 390

FIGURE 15-8: This screenshot shows the larger layout for the dashboard.

CONNECTING COMPONENTS WITH BACKBONE

Now that you’ve built all the necessary components, it’s time to integrate them into an application. To
provide some structure for this app, you build it on top of Backbone. The Backbone implementation
is fairly lightweight because the app is relatively simple.

The script has to handle three tasks:

 1. Render charts of national data for the app’s home screen.

 2. Create a drop-down menu of states.

 3. Use that drop-down menu to render the charts for a given state using its FIPS code.

Connecting Components with Backbone ❘ 391

c15.indd 11/03/2014 Page 391

You can fi nd this example in the Chapter 15 folder on the companion website. It’s named
css/census-charts.html.

Establishing Models and Collections
To get started, you create some models and collections to work with. First, add a model for general
app settings and variables:

var Census = Backbone.Model.extend({
 defaults: {
 loc: "00",
 loc_str: "United States"
 },

 validate: function(options) {
 if (! options.api_key) {
 return "You must enter your API key from www.census.gov/developers/";
 }
 },

 initialize: function() {
 this.on("invalid", function(e, error) {
 console.log(error);
 });
 }
});

As you can see, the script fi rst defi nes some defaults for the location FIPS code (loc) and the associated
display name (loc_str). Next, it creates a validation function that checks for an API key when the
model initializes. The idea is to pass in your API key when you instantiate the model:

var census = new Census({
 api_key: "[your API key]"
});

Next, add a model for state data, such as the state name and FIPS code:

var States = Backbone.Collection.extend();

var states = new States([
 { name: "United States", fips: "00" },
 { name: "Alabama", fips: "01" },
 { name: "Alaska", fips: "02" },
 { name: "Arizona", fips: "04" },
 { name: "Arkansas", fips: "05" },
 { name: "California", fips: "06" },
 { name: "Colorado", fips: "08" },
 { name: "Connecticut", fips: "09" },
 { name: "Delaware", fips: "10" },
 { name: "District of Columbia", fips: "11" },
 { name: "Florida", fips: "12" },
 { name: "Georgia", fips: "13" },
 { name: "Hawaii", fips: "15" },
 { name: "Idaho", fips: "16" },
 { name: "Illinois", fips: "17" },

392 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 392

 { name: "Indiana", fips: "18" },
 { name: "Iowa", fips: "19" },
 { name: "Kansas", fips: "20" },
 { name: "Kentucky", fips: "21" },
 { name: "Louisiana", fips: "22" },
 { name: "Maine", fips: "23" },
 { name: "Maryland", fips: "24" },
 { name: "Massachusetts", fips: "25" },
 { name: "Michigan", fips: "26" },
 { name: "Minnesota", fips: "27" },
 { name: "Mississippi", fips: "28" },
 { name: "Missouri", fips: "29" },
 { name: "Montana", fips: "30" },
 { name: "Nebraska", fips: "31" },
 { name: "Nevada", fips: "32" },
 { name: "New Hampshire", fips: "33" },
 { name: "New Jersey", fips: "34" },
 { name: "New Mexico", fips: "35" },
 { name: "New York", fips: "36" },
 { name: "North Carolina", fips: "37" },
 { name: "North Dakota", fips: "38" },
 { name: "Ohio", fips: "39" },
 { name: "Oklahoma", fips: "40" },
 { name: "Oregon", fips: "41" },
 { name: "Pennsylvania", fips: "42" },
 { name: "Rhode Island", fips: "44" },
 { name: "South Carolina", fips: "45" },
 { name: "South Dakota", fips: "46" },
 { name: "Tennessee", fips: "47" },
 { name: "Texas", fips: "48" },
 { name: "Utah", fips: "49" },
 { name: "Vermont", fips: "50" },
 { name: "Virginia", fips: "51" },
 { name: "Washington", fips: "53" },
 { name: "West Virginia", fips: "54" },
 { name: "Wisconsin", fips: "55" },
 { name: "Wyoming", fips: "56" }
]);

You’ll use this model for a variety of purposes, such as cross-referencing FIPS codes and display
names.

You can fi nd the JavaScript for this example in the Chapter 15 folder on the companion website. It’s
named js/census-charts.js.

Converting the Chart Markup to a JavaScript Template
Next, convert the chart markup to a JavaScript template:

<script type="template" class="census-tpl">
 <h1>
 Census Data - <%= loc_str %>
 </h1>

Connecting Components with Backbone ❘ 393

c15.indd 11/03/2014 Page 393

 <section class="population">
 <h2>
 Population
 </h2>

 <div id="population-chart" class="chart"></div>

 <div id="age-chart" class="chart"></div>
 </section>

 <section class="demographics">
 <h2>
 Demographics
 </h2>

 <div id="race-chart" class="chart"></div>

 <div id="sex-chart" class="chart"></div>
 </section>

 <section class="housing">
 <h2>
 Housing
 </h2>

 <div id="household-chart" class="chart"></div>

 <div id="tenure-chart" class="chart"></div>
 </section>
</script>

As you can see, the template is mostly static at this point, except for adding the location string to the
<h1>. That’s because Google Charts handles the majority of the visual heavy lifting.

Next, create the initial view for this template in Backbone:

var CensusView = Backbone.View.extend({
 el: ".charts",
 template: _.template($(".census-tpl").text()),

 initialize: function() {
 this.model.on("change", this.render, this);

 google.load("visualization", "1", {packages:["corechart"]});

 google.setOnLoadCallback($.proxy(this.render, this));
 },

 // render the new charts based on this location
 render: function() {
 // render the main template
 var compiled = this.template(this.model.toJSON());
 this.$el.html(compiled);

 renderCharts();

394 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 394

 return this;
 }
});

var censusView = new CensusView({
 model: census,
 collection: states
});

There are a few things going on in this script:

 ➤ The view fi rst binds itself to the .charts node in the Document Object Model (DOM) and
builds an Underscore template from the markup you created earlier.

 ➤ When the view initializes, it establishes a change handler to rerender the charts whenever the
model changes. This will come in handy when you want to switch between states.

 ➤ The Google Chart loaders have been moved into this view because they only affect rendering.

 ➤ The render function regenerates the markup from the template, inserts it into the DOM, and
then calls the renderCharts() script you wrote earlier. Eventually, you’ll move the calls
from that script into your Backbone implementation, but leave it out for now.

 ➤ When instantiating the view, the script passes in both the census model as well as the states
collection you created earlier.

Creating the State Drop-down Menu
Next, in order to make the app dynamic, you’re going to need form controls, in particular a drop-
down menu for states. First create a template for the drop-down menu:

<script type="template" class="state-dropdown-tpl">
 <select name="state" class="state-select">
 <% _.each(states, function(state) {
 %> <option value="<%- state.fips %>"><%- state.name %></option>
 <% }); %>
 </select>
</script>

This template accepts an array of state name–FIPS pairs and displays them as markup. Next, add
the functionality for the drop-down menu to the view:

var CensusView = Backbone.View.extend({
 el: ".charts",
 template: _.template($(".census-tpl").text()),

 initialize: function() {
 this.model.on("change", this.render, this);

 this.buildDropdown();

 google.load("visualization", "1", {packages:["corechart"]});

 google.setOnLoadCallback($.proxy(this.render, this));

Connecting Components with Backbone ❘ 395

c15.indd 11/03/2014 Page 395

 },

 // builds the state dropdown with change listener
 buildDropdown: function() {
 // compile the state dropdown template
 var tpl = _.template($(".state-dropdown-tpl").text()),
 compiled = tpl({
 states: this.collection.toJSON()
 });

 // append to the DOM
 var $dropdown = $(compiled).appendTo(this.$el.parent());

 $dropdown.on("change", $.proxy(function(e) {
 this.model.set({
 loc: $dropdown.val(),
 loc_str: $dropdown.find("option:selected").text()
 });
 }, this));
 },

 // render the new charts based on this location
 render: function() {
 // render the main template
 var compiled = this.template(this.model.toJSON());
 this.$el.html(compiled);

 renderCharts();

 return this;
 },
});

In this code, the buildDropdown() function fi rst compiles the drop-down menu template using the
hard-coded States collection. Next, it binds a change listener to the drop-down menu, which modi-
fi es the Census model with an updated state name and FIPS code. That automatically rerenders the
view because it in turn triggers the change handler on the model.

Finally, add some simple styling for the drop-down menu in your CSS:

.state-select {
 position: absolute;
 top: .8em;
 right: 0;
 font-size: 2em;
}

As you can see in Figure 15-9, the drop-down menu is now rendering at the top of your charts.
However, it still isn’t changing the charts for each state because you haven’t added those hooks to
your renderChart() function.

FIGURE 15-9: The state drop-down menu.

396 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 396

Rendering State Changes
The next step is integrating the code from renderCharts() into the Backbone application. You can
add them one at a time to the view, starting with the population growth chart.

Population Growth Chart
First, create a function in the view to render the population growth chart:

var CensusView = Backbone.View.extend({
 el: ".charts",
 template: _.template($(".census-tpl").text()),

 ...

 render: function() {
 // render the main template
 var compiled = this.template(this.model.toJSON());
 this.$el.html(compiled);

 // create the charts from this markup
 this.renderPopulation();

 return this;
 },

 renderPopulation: function() {
 $.ajax({
 url: "http://api.census.gov/data/2013/pep/natstprc",
 data: {
 get: "POP,DATE",
 for: this.model.get("loc_query"),
 key: this.model.get("api_key")
 },
 success: function(data) {
 var processed = [
 ["Year", "Population"]
];

 for (i in data) {
 if (i == 0) continue;
 processed[i] = [~~data[i][1] + 2007, ~~data[i][0]];
 }

 var chartData = google.visualization.arrayToDataTable(processed);

 var options = {
 title: "Population Growth",
 legend: "none"
 };

 var chart = new google.visualization.LineChart(
 document.getElementById("population-chart")
);

Connecting Components with Backbone ❘ 397

c15.indd 11/03/2014 Page 397

 chart.draw(chartData, options);
 }
 });
 }
});

Here the script is largely the same as before, with one key difference: You’ve added dynamic refer-
ences to the model’s api_key and loc_query values. You should already have the api_key from
when you instantiated the census model, but you still need to do a bit of work to generate the loc_
query string, which helps drive the APIs. Add a bit of code to the model that creates this loc_query
whenever the loc value is modifi ed:

var Census = Backbone.Model.extend({
 defaults: {
 loc: "00",
 loc_str: "United States"
 },

 validate: function(options) {
 if (! options.api_key) {
 return "You must enter your API key from www.census.gov/developers/";
 }
 },

 // creates new location string for API
 buildLocQuery: function() {
 var loc = this.get("loc");
 if (loc === "00") {
 this.set("loc_query", "us");
 }
 else {
 this.set("loc_query", "state:" + loc);
 }
 },

 initialize: function() {
 this.on("invalid", function(e, error) {
 console.log(error);
 });

 this.on("change:loc", this.buildLocQuery, this);

 this.buildLocQuery();
 }
});

This code adds a buildLocQuery() function to the Census model, which creates a query string
from this data, switching between national and state-specifi c data. This function is called both
when the model initializes and also any time the loc value in the model changes. That ensures that
loc_query stays fresh.

Now if you load the script in your browser, you should see the fi rst bit of dynamic behavior. It’s only
rendering the population growth chart so far, but that chart is changing dynamically as you switch
states in the drop-down menu.

398 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 398

National Versus State Data
Next, you can follow the patterns in the population growth chart to establish the other charts.
However, pulling national data for these other charts is a bit more complicated because the Census
API doesn’t aggregate much data nationally. For now, just disable these in the national view by
making some changes to the template:

<script type="template" class="census-tpl">
 <h1>
 Census Data - <%= loc_str %>
 </h1>

 <section class="population<%- (loc === "00" ? " single" : "") %>">
 <h2>
 Population
 </h2>

 <div id="population-chart" class="chart"></div>

 <%
 if (loc !== "00") {
 %>
 <div id="age-chart" class="chart"></div>
 <%
 }
 %>
 </section>

 <%
 if (loc !== "00") {
 %>
 <section class="demographics">
 <h2>
 Demographics
 </h2>

 <div id="race-chart" class="chart"></div>

 <div id="sex-chart" class="chart"></div>
 </section>

 <section class="housing">
 <h2>
 Housing
 </h2>

 <div id="household-chart" class="chart"></div>

 <div id="tenure-chart" class="chart"></div>
 </section>
 <%
 }
 %>
</script>

Connecting Components with Backbone ❘ 399

c15.indd 11/03/2014 Page 399

As you can see, a few hooks have been added to remove the markup for certain charts at the
national level (whenever loc === "00"). Additionally, as you build the other charts, you can add
these hooks to your render function.

Age by Sex Chart
Now add the age by sex chart into your view object:

renderAge: function() {
 // get sex by age

 // build age request string
 function build_age_request_string(offset) {
 var out = "";

 for (var i = 0; i < 23; i++) {
 var this_index = ("0" + (i + offset)).slice(-2);

 out += "P01200" + this_index + ",";
 }

 return out;
 }

 var age_request_keys = build_age_request_string(3) +
 build_age_request_string(27);

 age_request_keys = age_request_keys.slice(0,-1);

 $.ajax({
 url: "http://api.census.gov/data/2010/sf1",
 data: {
 get: age_request_keys,
 for: this.model.get("loc_query"),
 key: this.model.get("api_key")
 },
 success: function(data) {
 var male_data = data[1].slice(0,23),
 female_data = data[1].slice(23,46);

 // merge the dissimilar age ranges

 function combine_vals(arr, start, end) {
 var total = 0;

 for (var i = start; i <= end; i++) {
 total += arr[i];
 }

 arr[start] = total;

 arr.splice(start + 1, end - start);

 return arr;

400 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 400

 }

 function clean_age_range(age_data) {
 // convert all the values to numeric
 for (var i in age_data) {
 age_data[i] = ~~age_data[i];
 }

 // merge values starting with highest (to preserve array keys)

 // merge 65-66 && 67-69
 age_data = combine_vals(age_data, 17, 18);

 // merge 60-61 & 62-64
 age_data = combine_vals(age_data, 15, 16);

 // merge 20, 21 & 22-24
 age_data = combine_vals(age_data, 5, 7);

 // merge 15-17 & 18-19
 age_data = combine_vals(age_data, 3, 4);

 return age_data;
 }

 male_data = clean_age_range(male_data);
 female_data = clean_age_range(female_data);

 var processed = [
 ["Age", "Male", "Female"]
];

 for (var i = 0, max = male_data.length; i < max; i++) {
 var row = [];

 switch(i) {
 case 0:
 row[0] = "Under 5";
 break;

 default:
 row[0] = (i * 5) + "-" + (i * 5 + 4);
 break;

 case max - 1:
 row[0] = (i * 5) + "+";
 break;
 }

 row[1] = male_data[i];
 row[2] = female_data[i];

 processed.push(row);
 }

Connecting Components with Backbone ❘ 401

c15.indd 11/03/2014 Page 401

 var chartData = google.visualization.arrayToDataTable(processed);

 var options = {
 title: "Age"
 };

 var chart = new google.visualization.ColumnChart(
 document.getElementById("age-chart")
);

 chart.draw(chartData, options);
 }
 });
},

Again, the only differences between this script and the one previous are the dynamic references to
the model’s loc_query and api_key values. Next, add this call to the view’s render() function,
making sure to disable it at the national level:

render: function() {
 // render the main template
 var compiled = this.template(this.model.toJSON());
 this.$el.html(compiled);

 // create the charts from this markup
 this.renderPopulation();

 // render the other charts if not the national data
 if (this.model.get("loc") !== "00") {
 this.renderAge();
 }

 return this;
},

Other Charts
As you can see, integrating the chart modules into the Backbone app is pretty straightforward—
simply set up the dynamic loc_query and api_key values in the Ajax calls. Rather than walk
through each of these individually, take a look at the script all together in Listing 15-1.

LISTING 15-1

var Census = Backbone.Model.extend({
 defaults: {
 loc: "00",
 loc_str: "United States"
 },

continues

402 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 402

 validate: function(options) {
 if (! options.api_key) {
 return "You must enter your API key from www.census.gov/developers/";
 }
 },

 // creates new location string for API
 buildLocQuery: function() {
 var loc = this.get("loc");
 if (loc === "00") {
 this.set("loc_query", "us");
 }
 else {
 this.set("loc_query", "state:" + loc);
 }
 },

 initialize: function() {
 this.on("invalid", function(e, error) {
 console.log(error);
 });

 this.on("change:loc", this.buildLocQuery, this);

 this.buildLocQuery();
 }
});

var States = Backbone.Collection.extend();

var states = new States([
 { name: "United States", fips: "00" },
 { name: "Alabama", fips: "01" },
 { name: "Alaska", fips: "02" },
 { name: "Arizona", fips: "04" },
 { name: "Arkansas", fips: "05" },
 { name: "California", fips: "06" },
 { name: "Colorado", fips: "08" },
 { name: "Connecticut", fips: "09" },
 { name: "Delaware", fips: "10" },
 { name: "District of Columbia", fips: "11" },
 { name: "Florida", fips: "12" },
 { name: "Georgia", fips: "13" },
 { name: "Hawaii", fips: "15" },
 { name: "Idaho", fips: "16" },
 { name: "Illinois", fips: "17" },
 { name: "Indiana", fips: "18" },
 { name: "Iowa", fips: "19" },
 { name: "Kansas", fips: "20" },
 { name: "Kentucky", fips: "21" },
 { name: "Louisiana", fips: "22" },
 { name: "Maine", fips: "23" },

LISTING 15-1 (continued)

Connecting Components with Backbone ❘ 403

c15.indd 11/03/2014 Page 403

 { name: "Maryland", fips: "24" },
 { name: "Massachusetts", fips: "25" },
 { name: "Michigan", fips: "26" },
 { name: "Minnesota", fips: "27" },
 { name: "Mississippi", fips: "28" },
 { name: "Missouri", fips: "29" },
 { name: "Montana", fips: "30" },
 { name: "Nebraska", fips: "31" },
 { name: "Nevada", fips: "32" },
 { name: "New Hampshire", fips: "33" },
 { name: "New Jersey", fips: "34" },
 { name: "New Mexico", fips: "35" },
 { name: "New York", fips: "36" },
 { name: "North Carolina", fips: "37" },
 { name: "North Dakota", fips: "38" },
 { name: "Ohio", fips: "39" },
 { name: "Oklahoma", fips: "40" },
 { name: "Oregon", fips: "41" },
 { name: "Pennsylvania", fips: "42" },
 { name: "Rhode Island", fips: "44" },
 { name: "South Carolina", fips: "45" },
 { name: "South Dakota", fips: "46" },
 { name: "Tennessee", fips: "47" },
 { name: "Texas", fips: "48" },
 { name: "Utah", fips: "49" },
 { name: "Vermont", fips: "50" },
 { name: "Virginia", fips: "51" },
 { name: "Washington", fips: "53" },
 { name: "West Virginia", fips: "54" },
 { name: "Wisconsin", fips: "55" },
 { name: "Wyoming", fips: "56" }
]);

var CensusView = Backbone.View.extend({
 el: ".charts",
 template: _.template($(".census-tpl").text()),

 initialize: function() {
 this.model.on("change", this.render, this);

 this.buildDropdown();

 google.load("visualization", "1", {packages:["corechart"]});

 google.setOnLoadCallback($.proxy(this.render, this));

},

 // builds the state dropdown with change listener
 buildDropdown: function() {
 // compile the state dropdown template
 var tpl = _.template($(".state-dropdown-tpl").text()),
 compiled = tpl({
 states: this.collection.toJSON()
 }); continues

404 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 404

 // append to the DOM
 var $dropdown = $(compiled).appendTo(this.$el.parent());

 $dropdown.on("change", $.proxy(function(e) {
 this.model.set({
 loc: $dropdown.val(),
 loc_str: $dropdown.find("option:selected").text()
 });
 }, this));
 },

 // render the new charts based on this location
 render: function() {
 // render the main template
 var compiled = this.template(this.model.toJSON());
 this.$el.html(compiled);

 // create the charts from this markup
 this.renderPopulation();

 // render the other charts if not the national data
 if (this.model.get("loc") !== "00") {
 this.renderAge();
 this.renderRace();
 this.renderSex();
 this.renderHousing();
 this.renderTenure();
 }

 return this;
 },

 renderPopulation: function() {
 $.ajax({
 url: "http://api.census.gov/data/2013/pep/natstprc",
 data: {
 get: "POP,DATE",
 for: this.model.get("loc_query"),
 key: this.model.get("api_key")
 },
 success: function(data) {
 var processed = [
 ["Year", "Population"]
];

 for (i in data) {
 if (i == 0) continue;
 processed[i] = [~~data[i][1] + 2007, ~~data[i][0]];
 }

 var chartData = google.visualization.arrayToDataTable(processed);

LISTING 15-1 (continued)

Connecting Components with Backbone ❘ 405

c15.indd 11/03/2014 Page 405

 var options = {
 title: "Population Growth",
 legend: "none"
 };

 var chart = new google.visualization.LineChart(
 document.getElementById("population-chart")
);
 chart.draw(chartData, options);
 }
 });
 },

 renderAge: function() {
 // get sex by age

 // build age request string
 function build_age_request_string(offset) {
 var out = "";

 for (var i = 0; i < 23; i++) {
 var this_index = ("0" + (i + offset)).slice(-2);

 out += "P01200" + this_index + ",";
 }

 return out;
 }

 var age_request_keys = build_age_request_string(3) +
 build_age_request_string(27);

 age_request_keys = age_request_keys.slice(0,-1);

 $.ajax({
 url: "http://api.census.gov/data/2010/sf1",
 data: {
 get: age_request_keys,
 for: this.model.get("loc_query"),
 key: this.model.get("api_key")
 },
 success: function(data) {
 var male_data = data[1].slice(0,23),
 female_data = data[1].slice(23,46);

 // merge the dissimilar age ranges

 function combine_vals(arr, start, end) {
 var total = 0;

 for (var i = start; i <= end; i++) {
 total += arr[i];
 }
 continues

406 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 406

 arr[start] = total;

 arr.splice(start + 1, end - start);

 return arr;
 }

 function clean_age_range(age_data) {
 // convert all the values to numeric
 for (var i in age_data) {
 age_data[i] = ~~age_data[i];
 }

 // merge values starting with highest (to preserve array keys)

 // merge 65-66 && 67-69
 age_data = combine_vals(age_data, 17, 18);

 // merge 60-61 & 62-64
 age_data = combine_vals(age_data, 15, 16);

 // merge 20, 21 & 22-24
 age_data = combine_vals(age_data, 5, 7);

 // merge 15-17 & 18-19
 age_data = combine_vals(age_data, 3, 4);

 return age_data;
 }

 male_data = clean_age_range(male_data);
 female_data = clean_age_range(female_data);

 var processed = [
 ["Age", "Male", "Female"]
];

 for (var i = 0, max = male_data.length; i < max; i++) {
 var row = [];

 switch(i) {
 case 0:
 row[0] = "Under 5";
 break;

 default:
 row[0] = (i * 5) + "-" + (i * 5 + 4);
 break;

 case max - 1:
 row[0] = (i * 5) + "+";
 break;

LISTING 15-1 (continued)

Connecting Components with Backbone ❘ 407

c15.indd 11/03/2014 Page 407

 }

 row[1] = male_data[i];
 row[2] = female_data[i];

 processed.push(row);
 }

 var chartData = google.visualization.arrayToDataTable(processed);

 var options = {
 title: "Age"
 };

 var chart = new google.visualization.ColumnChart(
 document.getElementById("age-chart")
);

 chart.draw(chartData, options);
 }
 });
 },

 renderRace: function() {
 // get race data
 $.ajax({
 url: "http://api.census.gov/data/2010/sf1",
 data: {
 get: "P0080003,P0080004,P0080005,P0080006,P0080007,P0080008,P0080009",
 for: this.model.get("loc_query"),
 key: this.model.get("api_key")
 },
 success: function(data) {
 var races = [
 "White",
 "Black",
 "American Indian or Alaskan Native",
 "Asian",
 "Native Hawaiian or Pacific Islander",
 "Other",
 "Mixed"
],
 processed = [
 ["Race", "Population"]
];

 // lose the last value (state ID)
 data[1].pop();

 for (i in data[1]) {
 processed.push([
 races[i],
 ~~data[1][i]
]);
 } continues

408 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 408

 var chartData = google.visualization.arrayToDataTable(processed);

 var options = {
 title: "Race",
 is3D: true
 };

 var chart = new google.visualization.PieChart(
 document.getElementById("race-chart")
);

 chart.draw(chartData, options);
 }
 });
 },

 renderSex: function() {
 // get basic sex data
 $.ajax({
 url: "http://api.census.gov/data/2010/sf1",
 data: {
 get: "P0120002,P0120026",
 for: this.model.get("loc_query"),
 key: this.model.get("api_key")
 },
 success: function(data) {
 var processed = [
 ["Sex", "Population"],
 ["Male", ~~data[1][0]],
 ["Female", ~~data[1][1]]
];

 var chartData = google.visualization.arrayToDataTable(processed);

 var options = {
 title: "Sex",
 pieHole: 0.8,
 pieSliceText: "none"
 };

 var chart = new google.visualization.PieChart(
 document.getElementById("sex-chart")
);

 chart.draw(chartData, options);
 }
 });
 },

 renderHousing: function() {
 // get household size

LISTING 15-1 (continued)

Connecting Components with Backbone ❘ 409

c15.indd 11/03/2014 Page 409

 $.ajax({
 url: "http://api.census.gov/data/2010/sf1",
 data: {
 get: "H0130002,H0130003,H0130004,H0130005,H0130006,H0130007,H0130008",
 for: this.model.get("loc_query"),
 key: this.model.get("api_key")
 },
 success: function(data) {
 var processed = [
 ["Household Size", "Households"]
];

 // lose the last value (state ID)
 data[1].pop();

 for (i in data[1]) {
 processed.push([
 (~~i+1) + (i == 6 ? "+" : "") + " Person",
 ~~data[1][i]
]);
 }

 var chartData = google.visualization.arrayToDataTable(processed);

 var options = {
 title: "Household Size",
 is3D: true
 };

 var chart = new google.visualization.PieChart(
 document.getElementById("household-chart")
);

 chart.draw(chartData, options);
 }
 });
 },

 renderTenure: function() {
 // get housing tenure
 $.ajax({
 url: "http://api.census.gov/data/2010/sf1",
 data: {
 get: "H0110002,H0110003,H0110004",
 for: this.model.get("loc_query"),
 key: this.model.get("api_key")
 },
 success: function(data) {
 var processed = [
 ["Tenure", "Housing Units"],
 ["Owned with Mortgage", ~~data[1][0]],
 ["Owned Outright", ~~data[1][1]],
 ["Rented", ~~data[1][2]]
];
 continues

410 ❘ CHAPTER 15 BUILDING AN INTERCONNECTED DASHBOARD

c15.indd 11/03/2014 Page 410

 var chartData = google.visualization.arrayToDataTable(processed);

 var options = {
 title: "Housing Tenure",
 pieHole: 0.8,
 pieSliceText: "none"
 };

 var chart = new google.visualization.PieChart(
 document.getElementById("tenure-chart")
);

 chart.draw(chartData, options);
 }
 });
 }
});

var census = new Census({
 api_key: "ddda45df6ccb8e1e722aca5f142d7db2a032c330"
});

var censusView = new CensusView({
 model: census,
 collection: states
});

Here’s a recap of what happens:

 1. The script creates a Census model to store settings and global variables. This model validates
against the api_key and also creates a dynamic loc_query string that adjusts to match the
loc value.

 2. It then builds a States collection with state names and FIPS codes.

 3. The view initializes, binding a change listener to rerender the templates for any change to the
model, building the drop-down menu, and loading the Google Charts API.

 4. In the render() function, the script recompiles the template and also makes calls to render
the individual charts, depending on whether it is at the national level.

NEXT STEPS

Now the script is dynamically rendering charts for various states. But that’s really just the bare
bones for this application, and there are a number of additional features you can add to the code.

LISTING 15-1 (continued)

Summary ❘ 411

c15.indd 11/03/2014 Page 411

Rerendering on Resize
For instance, you may have noticed that Google doesn’t refresh the charts as you resize the window.
That’s mostly fi ne, but it can cause some visual issues with the responsive layout. Fortunately it’s
easy to add a handler to redraw the charts on resize. Simply add the following to the view’s
initialize() function:

// redraw charts on window resize
var debouncedRender = _.debounce($.proxy(this.render, this), 1000);
$(window).resize(debouncedRender);

While you could have just applied the render() function directly in the resize() callback, it’s
important to use the debounced approach here. The script leverages Underscore’s debounce()
utility function to prevent the render() function from fi ring repeatedly as the user resizes her
window. Instead, it fi res the resize only after a full second of resizing.

TIP The debounced approach is always useful for window.resize() handlers but
is especially so when calling a resource-heavy render such as our Google Charts
implementation.

Other Improvements
Additionally, there are a variety of improvements you can add to this script:

 ➤ Aggregate the state data to show all the charts at the national level.

 ➤ Cache previously visited states in localStorage to avoid unnecessary API calls.

 ➤ Enable routing and history using either hashchange or pushState and Backbone’s
History API.

SUMMARY

 In this chapter, you created an interactive dashboard of U.S. Census data. You learned how to work
through the headaches of the Census API in order to access a wealth of demographic data. You then
massaged this data and displayed it in Google Charts using a responsive layout for the dashboard.

Next you integrated these components into a Backbone app, which dynamically updates the charts
based on user input. Finally, you explored some new directions to take the script.

In the next chapter, you follow another practical charting example, this time leveraging D3 to create
another set of interactive visualizations.

c16.indd 11/03/2014 Page 413

D3 in Practice
WHAT’S IN THIS CHAPTER

 ➤ Styling D3 charts

 ➤ Rendering axes in D3

 ➤ Working with Voronoi maps

 ➤ Creating reusable visualizations

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/javascriptandjqueryanalysis on the Download Code
tab. The code is in the chapter 16 download and individually named according
to the names throughout the chapter.

If you choose to incorporate D3-based charts into your application, you will have to deal with
challenges inherent in general web design:

 ➤ Will the person implementing the visualization also be styling it? If not, you have to
be mindful of the separation of styles and visual logic. You also need to create some
standards around what class names you use.

 ➤ Will visualizations be one-off or will they be reused in many places? Making visualizations
reusable requires more care than making one-off examples. This chapter explores an
example of how to make a reusable visualization.

 ➤ How much control do you have over the data that will be displayed?

Unless you are making a visualization on top of a specifi c data set, you need to make sure your
code works with extreme values.

16

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

414 ❘ CHAPTER 16 D3 IN PRACTICE

c16.indd 11/03/2014 Page 414

 MAKING D3 LOOK PERFECT

This section covers some techniques that come in very handy when working with D3.

 Inline Styles Versus CSS
An SVG (or HTML) element’s appearance can be set in two ways: using a .style() operator that
modifi es the element’s own style or using a CSS selector to assign styles to the element.

It can be tempting to use the .style() operator to declare all the styles—especially because in
D3 it is so easy to operate on entire selections of elements—but this method is not ideal. You should
use the .style() operator when the element’s style is data-driven. Non-data-driven styles are best
placed in a style sheet. Putting data-independent styles into style sheets forces you to assign
meaningful classes to elements and allows non-D3-savvy people to change the styles.

A drawback of placing styles into a style sheet used to be the inability to offer a user an SVG
download of the visualization; this can now be overcome using the SVG Crowbar tool (https:
//nytimes.github.io/svg-crowbar/) developed to work with D3. SVG Crowbar collects all the
relevant styles from the style sheet and bundles them up for a self-contained SVG.

 Margin
Any content rendered outside of the area of the SVG element will not be shown onscreen. This is
problematic if you want to have labels or axes that are positioned outside of the area dedicated
to the visualization itself. To solve this common problem, Mike Bostock introduced the Margin
Convention (http://bl.ocks.org/mbostock/3019563), which is employed in almost every D3
example.

var margin = {top: 20, right: 20, bottom: 20, left: 20}

var width = outerWidth - margin.left - margin.right
var height = outerHeight - margin.top - margin.bottom

var mainContainer = d3.select("body").append("svg")
 .attr("width", outerWidth)
 .attr("height", outerHeight)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")")

The margins are declared as an object. You calculate the effective width and height by subtracting
the margins from the outer dimensions. A <g> element is added to the <svg> and offset by (margin.
left, margin.top); every subsequent element is then appended to this container.

var xScale = d3.scale.linear()
 .range([0, width])

var yScale = d3.scale.linear()
 .range([height, 0])

Any scales can be created using the width and height of the mainContainer.

Making D3 Look Perfect ❘ 415

c16.indd 11/03/2014 Page 415

NOTE The mainContainer variable is commonly given the name svg despite
being a selection of a <g> element.

g elements do not need to be sized with .attr("width", width), and so
on as they have no meaningful boundary; they only perform a coordinate
transformation.

 Ordering
In SVG, the order of the elements within their parent container determines the order in which they
will be rendered onto the screen. Unlike HTML there is no z-index (or equivalent) style to control
the ordering. This can lead to some problems.

Consider the following code to render a bar chart with a label over each bar:

var svg = d3.select("body").append("svg")

function render(barData) {
 // Create the bars
 var rectSelection = svg.selectAll('rect').data(barData)
 rectSelection.enter().append('rect')

 rectSelection
 .attr('x', ...) // Define the rectangles

 rectSelection.exit().remove()

 // Create the labels (on top)
 var textSelection = svg.selectAll('text').data(barData)
 textSelection.enter().append('text')

 textSelection
 .attr('x', ...) // Define the labels

 textSelection.exit().remove()
}

This code seems to work at fi rst, but if render is called again with more data, the new bars will be
on top of the existing labels. This glitch is only seen if the labels ever overlap with bars other than
their own.

The solution is to create separate <g> elements for each logical layer of the visualization:

var svg = d3.select("body").append("svg")

var rectContainer = svg.append('g').attr('class', 'bars')
var labelContainer = svg.append('g').attr('class', 'labels')

function render(barData) {
 // Create the bars
 var rectSelection = rectContainer.selectAll('rect').data(barData)

416 ❘ CHAPTER 16 D3 IN PRACTICE

c16.indd 11/03/2014 Page 416

 rectSelection.enter().append('rect')

 rectSelection
 .attr('x', ...) // Define the rectangles

 rectSelection.exit().remove()

 // Create the labels on a higher 'layer'
 var textSelection = labelContainer.selectAll('text').data(barData)
 textSelection.enter().append('text')

 textSelection
 .attr('x', ...) // Define the labels

 textSelection.exit().remove()
}

Now all labels are always on top of the bars.

One issue that might occur with such a layering approach is that the overlapping labels block mouse
events from reaching the bars. This could prevent a detail-on-demand hover from appearing on a
bar if the cursor is placed on top of a label that is obscuring the bar. This can be solved using the
pointer-events style deceleration examined in the next section.

 Pointer Events
An advantage of making visualizations in SVG (or HTML) over Canvas is that each visual element
can receive its own mouse and touch (collectively known as pointer) events.

By default, the top element at a given pointer location receives pointer events. This occasionally
leads to undesired effects as detailed in the previous section.

Thankfully, elements can be told to ignore all pointer events by setting the pointer-events style
to none (see https://developer.mozilla.org/en-US/docs/Web/CSS/pointer-events for more
information about the other values this style can have). This also speeds up the visualization by
simplifying the internal pointer event resolution process of the renderer.

It is recommended that you turn off pointer events for all elements that do not need them.

 Crisp Edges
The following is another style that deserves a special mention:

line, rect {
 shape-rendering: crispEdges;
}

This declaration tells the SVG renderer to turn off anti-aliasing for that element, which is useful if
you are creating axes-aligned shapes such as vertical/horizontal lines and rectangles. Anti-aliasing
can cause your elements to have blurry edges. If you are dealing with an axis-aligned element then
try setting shape-rendering to crispEdges. You can read more about it here:

https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/shape-rendering

Working with Axes ❘ 417

c16.indd 11/03/2014 Page 417

 WORKING WITH AXES

An informative visualization must have axes that describe the scales used to plot the data on the
screen. Because rendering axes is such a common operation, D3 actually provides a convenient
helper for rendering axes.

Chapter 12 examines two types of helper functions. Simple helpers such as d3.scale.linear()
and d3.svg.line() generate functions that help you render the data. Layout helpers such as
d3.layout.treemap operate on the data and add metadata to it to allow you to render it in novel
ways. The d3.svg.axis() helper does not fall into either of those categories; instead, it draws an
entire visualization for you in the container of your choosing.

Using the axis helper, you can quickly create a scatterplot visualization complete with axis.

For this example, we used a data set of car miles-per-gallon (MPG) ratings. This dataset contains
a subset of the fuel economy data that the EPA makes available on http://fueleconomy.gov. It
contains only models that had a new release every year between 1999 and 2008; this was used as a
proxy for the popularity of the car. The data look like so:

var mpg = [
 {
 "manufacturer": "Audi",
 "model": "a4",
 "displ": 1.8,
 "year": 1999,
 "cyl": 4,
 "city": 18.2,
 "highway": 28.6,
 "drive": "f"
 },
 // ... 233 data points omitted ...
]

You can fi nd the full fi le of the preceding code on the companion website in the examples
/scatterplot-axis/mpg.js fi le.

Examine the relationship between highway and city MPG:

var margin = {top: 20, right: 20, bottom: 30, left: 40}
var width = 700 - margin.left - margin.right
var height = 600 - margin.top - margin.bottom

var xScale = d3.scale.linear()
 .range([0, width])

var yScale = d3.scale.linear()
 .range([height, 0])

var xAxis = d3.svg.axis()
 .orient('bottom')
 .scale(xScale)

var yAxis = d3.svg.axis()

418 ❘ CHAPTER 16 D3 IN PRACTICE

c16.indd 11/03/2014 Page 418

 .orient('left')
 .scale(yScale)

var mainContainer = d3.select('body').append('svg')
 .attr('width', width + margin.left + margin.right)
 .attr('height', height + margin.top + margin.bottom)
 .append('g')
 .attr('transform', 'translate(' + margin.left + ',' + margin.top + ')')

var xAxisContainer = mainContainer.append('g')
 .attr('class', 'x axis')
 .attr('transform', 'translate(0,' + height + ')')

xAxisContainer.append('text')
 .attr('class', 'label')
 .attr('x', width)
 .attr('y', -6)
 .style('text-anchor', 'end')

var yAxisContainer = mainContainer.append('g')
 .attr('class', 'y axis')

yAxisContainer.append('text')
 .attr('class', 'label')
 .attr('transform', 'rotate(-90)')
 .attr('dy', '1.2em')
 .style('text-anchor', 'end')

var pointContainer = mainContainer.append('g')
 .attr('class', 'points')

function renderScatterplot(data, xMetric, yMetric) {
 xScale
 .domain(d3.extent(data, function(d) { return d[xMetric] }))
 .nice()

 yScale
 .domain(d3.extent(data, function(d) { return d[yMetric] }))
 .nice()

 xAxisContainer.call(xAxis)
 xAxisContainer.select('.label').text(xMetric)

 yAxisContainer.call(yAxis)
 yAxisContainer.select('.label').text(yMetric)

 var pointSelection = pointContainer.selectAll('.point').data(data)

 pointSelection.enter().append('circle')
 .attr('class', 'point')
 .attr('r', 2.5)

 pointSelection
 .attr('cx', function(d) { return xScale(d[xMetric]) })
 .attr('cy', function(d) { return yScale(d[yMetric]) })

Working with Axes ❘ 419

c16.indd 11/03/2014 Page 419

 pointSelection.exit().remove()
}

renderScatterplot(mpg, 'highway', 'city')

The preceding code is on the companion website in the examples/scatterplot-axis/script
.js fi le.

At the core, the scatterplot visualization consists of a single data binding to create the .points. The
x and y axes on the chart, however, require a few visual elements to render. The scale ticks—the
human-friendly marks such as 10, 15, 20, and so on—need to be represented using text labels and
little lines. All this is done by the axis helper:

var xScale = d3.scale.linear()
 .range([0, width])

var yScale = d3.scale.linear()
 .range([height, 0])

First you create two scales for the x and y axes. The scales’ range is set to the visualization size and
their domains (the data extent) will be confi gured later.

var xAxis = d3.svg.axis() .orient('bottom')
 .scale(xScale)

var yAxis = d3.svg.axis()
 .orient('left')
 .scale(yScale)

You create two corresponding axis helpers, which are confi gured with the intended orientation and
the scale that they will be operating on. The axis helper draws all the size and tick information from
the scale itself.

var xAxisContainer = mainContainer.append('g')
 .attr('class', 'x axis')
 .attr('transform', 'translate(0,' + height + ')')

xAxisContainer.append('text')
 .attr('class', 'label')
 .attr('x', width)
 .attr('y', -6)
 .style('text-anchor', 'end')

You need to explicitly create and position the <g> element that will contain the scale. A class of
.x.axis is applied, which enables you to apply styles from a style sheet. You also append a text.
label to the container to hold the name of the metric projected onto this axis.

xAxisContainer.call(xAxis)
xAxisContainer.select('.label').text(xMetric)

yAxisContainer.call(yAxis)
yAxisContainer.select('.label').text(yMetric)

420 ❘ CHAPTER 16 D3 IN PRACTICE

c16.indd 11/03/2014 Page 420

Later, when you want to render the axis, all you have to do is .call() the axis function. The D3
.call operator is a convenience method to call the given function with the selection as the
argument and the this object. It is equivalent to xAxis.call(xAxisContainer,
xAxisContainer).

.axis path,

.axis line {
 fill: none;
 stroke: black;
 shape-rendering: crispEdges;
}

You can customize the look and feel of the axis by manipulating the style sheet. In this example,
I set the style of <line>s (the tick markers) and the <path> (the margin) to be black and precisely
aligned on the pixels.

The axes-enabled scatterplot is in Figure 16-1.

 FIGURE 16-1: This scatterplot utilizes the axis helper function.

In effect, the axis helper is a subvisualization, and this section showed you how D3 has neatly
packaged it. Later, you will see how to build on top of this concept and package your own
visualizations in a similar way.

Working with the Voronoi Map ❘ 421

c16.indd 11/03/2014 Page 421

 WORKING WITH THE VORONOI MAP

The Voronoi tessellation, named after Georgy Voronoi, is a method to subdivide a space around a
number of centers. The space is divided into polygons, one for each center, such that each point in
the polygon is closest to that polygons’ center.

D3 is very amenable to extension with beautiful algorithms. Helpfully, D3 comes with a Voronoi
tessellation algorithm, which is used for this section to create a pretty picture and a powerful
selection user interface (UI). This section also describes how best to package D3 helper functions if
you decide to write one.

A Basic Voronoi Map
This example shows how to contract a basic Voronoi map. (See the examples/voronoi-basic/
data.js fi le on the companion website.) Given a list of centers in the following format:

var centers = [
 { x: 0.17059, y: 0.51567 },
 { x: 0.89967, y: 0.59811 },
 // ... 54 data points omitted ...
 { x: 0.74111, y: 0.30413 },
 { x: 0.44484, y: 0.63658 }
]

generate a Voronoi map from these centers and also mark the centers themselves for clarity:

var width = 700
var height = 500

var voronoi = d3.geom.voronoi()
 .x(function(d) { return d.x * width })
 .y(function(d) { return d.y * height })
 .clipExtent([[0, 0], [width, height]])

var svg = d3.select('body').append('svg')
 .attr('width', width)
 .attr('height', height)

var polygonContainer = svg.append('g')

var centerContainer = svg.append('g')

var colors = d3.scale.category20b()

function polygonToString(d) {
 if (!d) return 'M0,0Z' // In case of duplicates
 return 'M' + d.join('L') + 'Z'
}

function render() {
 // Polygons
 var pathSelection = polygonContainer.selectAll('path')
 .data(voronoi(centers))

422 ❘ CHAPTER 16 D3 IN PRACTICE

c16.indd 11/03/2014 Page 422

 pathSelection.enter().append('path')
 .style('stroke', 'white')
 .style('fill', function(d, i) { return colors(i) })

 pathSelection
 .attr('d', polygonToString)

 pathSelection.exit().remove()

 // Centers
 var center Selection = centerContainer.selectAll('circle')
 .data(centers)

 center Selection.enter().append('circle')
 .attr('r', 1.5)

 center Selection
 .attr('cx', function(d) { return d.x * width })
 .attr('cy', function(d) { return d.y * height })

 center Selection.exit().remove()
}

render()

You can fi nd the preceding code in the examples/voronoi-basic/script.js fi le on the
companion website.

As you can see, the code to generate the beautiful visual in Figure 16-2 is hardly more complex than
the code used previously to generate a bar chart. All the hard space division is neatly encapsulated in
the d3.geom.voronoi() helper function.

var voronoi = d3.geom.voronoi()
 .x(function(d) { return d.x * width })
 .y(function(d) { return d.y * height })
 .clipExtent([[0, 0], [width, height]])

As is standard for D3 helper functions, calling d3.geom.voronoi() returns a function that takes an
array of centers and computes the polygons that represent the Voronoi tessellation. In accordance
to the informal D3 standard, the voronoi function can be confi gured using setter/getter methods.
Calling .x(function(d) { return d.x * width }) on voronoi tells the algorithm what function
to use to compute the x coordinate of the center; the return value is the voronoi function itself so
you can keep chaining these setters. Calling voronoi.x() would, conversely, return the current
x coordinate function.

var svg = d3.select('body').append('svg')
 .attr('width', width)
 .attr('height', height)

var polygonContainer = svg.append('g')

var centerContainer = svg.append('g')

var colors = d3.scale.category20b()

Working with the Voronoi Map ❘ 423

c16.indd 11/03/2014 Page 423

 FIGURE 16-2: This Voronoi tessellation shows the centers.

You create an <svg> element and two containers: one for the polygons and one for the center dots.
Finally, you create a categorical color scale. The scale created by d3.scale.category20b() does
not need to be given an explicit domain (although it could). Instead, it just allocates a new color
every time it is given a new value.

function polygonToString(d) {
 if (!d) return 'M0,0Z' // In case of duplicates
 return 'M' + d.join('L') + 'Z'
}

You defi ne polygonToString to convert the arrays of points returned from the voronoi function
into SVG drawing strings. Each polygon is represented as an array of points where a point is an
array of two elements [x,y]. Because arrays are natively converted to strings by comma
concatenation, the expression d.join('L') neatly produces an SVG drawing command. Note that
the Voronoi shape is undefi ned for duplicate centers; you account for that by returning a drawing
string that produces no output in that case.

polygonToString([[1,1], [2,2], [3,0]])
 // =>"M1,1L2,2L3,0Z"

If given duplicate centers, the voronoi function produces an undefined result for all but the fi rst of
the duplicates. You guard against that by adding a fallback to the 'M0,0Z' no-op path.

Finally, you make two selections to create the visual elements: one for the polygons and one for the
center points. The data for the polygons comes from the voronoi function and the data for the
center points are the centers themselves.

424 ❘ CHAPTER 16 D3 IN PRACTICE

c16.indd 11/03/2014 Page 424

 Voronoi Point Picking
The simplest (and arguably the most useful) interaction that a visualization can offer is the ability
for the user to hover over a visual element and get some extra details about the underlying data.

This example covers the ways a hover label could be added to the MGP scatterplot that was built
previously. As with most things in software development, there are several different approaches that
you can take. Several are offered here so you can compare their differences.

Naive Hover
First, consider the naive solution. The simplest way to add a hover behavior is to instrument the
elements with mouseenter and mouseenter handlers to detect the start and end of the hover action.

You can extend the previous scatterplot example to see how it is done. The code is not printed in full
due to its similarity to the previous example. The full listing can be found in the examples
/scatterplot-voronoi/script.js fi le on the companion website.

var hoverContainer = mainContainer.append('g')
 .attr('class', 'hover')

hoverContainer.append('text')
 .style('display', 'none')
 .attr('dx', '0.5em')
 .attr('dy', '0.2em')

You start by adding a container and a text label that will be used to display the hover information.
The label is hidden by default. The actual positioning of the text relative to the origin of the label is
fi ne-tuned using the dy and dx attributes.

function setHover(hover, i) {
 hoverContainer.select('text')
 .style('display', null) .attr('x', xScale(hover[xMetric]))
 .attr('y', yScale(hover[yMetric]))
 .text(hover.manufacturer + ' ' + hover.model + ' (' + hover.year + ')')
}

function dropHover() {
 hoverContainer.select('text')
 .style('display', 'none')
}

The hover can be triggered on any datum. You position the text label using the same scales as you
use for the data, ensuring that it is positioned in the correct place. Alternatively, you could have
extracted the position attributes from the element itself or from the mouse position.

pointSelection.enter().append('circle')
 .attr('class', 'point')
 .attr('r', 2.5)
 .on('mouseenter', setHover)
 .on('mouseleave', dropHover)

Finally, you add two event handlers to every point during creation. The handlers will make the
hover text appear and disappear as the user’s mouse moves in and out of the element boundary.

Working with the Voronoi Map ❘ 425

c16.indd 11/03/2014 Page 425

The hover label, as it would appear when the user hovers over a data point, is shown in Figure 16-3.
Please check out examples/scatterplot-voronoi/index.html on the companion website and
play with the hover behavior. It should become apparent that this hover technique, although very
easy to implement, possesses a critical fl aw: the scatterplot points are too small to be adequate hover
targets. This issue is addressed in the next section.

 FIGURE 16-3: The scatterplot is shown with hover on a data point.

 Voronoi Hover
To address the problem of having a small hover target, you could divide the space into (invisible)
bounded Voronoi sections and have those serve as hover targets. In a sense, you are creating a little
Voronoi halo around each point and assigning the mouse events to it.

You can fi nd the full code in the examples/scatterplot-voronoi folder on the companion website.
Following are the additions needed to create the Voronoi halos:

var voronoi = d3.geom.voronoi()
 .clipExtent([[0, 0], [width, height]])

Create a Voronoi helper:

426 ❘ CHAPTER 16 D3 IN PRACTICE

c16.indd 11/03/2014 Page 426

var haloClipContainer = mainContainer.append('g')
 .attr('class', 'halo-clip')

var haloContainer = mainContainer.append('g')
 .attr('class', 'halo')

Two new containers are required: one to contain the clip paths that prevent the Voronoi polygons
from taking over the entire screen and one for the Voronoi polygons themselves.

var haloClipSelection = haloClipContainer.selectAll('clipPath').data(data)

haloClipSelection.enter().append('clipPath')
 .attr('id', function(d, i) { return 'clip-' + i })
 .append('circle')
 .attr('r', 16)

haloClipSelection.select('circle')
 .attr('cx', function(d) { return xScale(d[xMetric]) })
 .attr('cy', function(d) { return yScale(d[yMetric]) })

haloClipSelection.exit().remove()

For every data point, a <clipPath> element is created with a <circle> positioned on the data point
inside of it. The contents of a <clipPath> element act as a mask for any element with a reference to
its id; a unique id is assigned to each <clipPath> element.

voronoi
 .x(function(d) { return xScale(d[xMetric]) })
 .y(function(d) { return yScale(d[yMetric]) })

haloSelection = haloContainer.selectAll('path').data(voronoi(data))

haloSelection.enter().append('path')
 .attr('clip-path', function(d, i) { return 'url(#clip-' + i +')' })
 .on("mouseover", setHover)
 .on("mouseout", dropHover)

haloSelection
 .attr('d', polygonToString)

haloSelection.exit().remove()

The <path> elements that represent the Voronoi segments are created. Each element is assigned a
corresponding clip path id via the function function(d, i) { return 'url(#clip-' + i +')' }
to constrain them within the clip circle. Finally the setHover and dropHover event handlers are
attached to the halo.

The result of a hover is shown in Figure 16-4. Normally, when using this technique you would not
assign a fi ll or stroke to the hover targets, leaving them invisible so as not to distract from the data.
With some style-sheet tweaks, the hover targets can be made visible. The hover behavior is now
greatly improved. Please try out the example yourself at: examples/scatterplot-voronoi
/index.html.

Making Reusable Visualizations ❘ 427

c16.indd 11/03/2014 Page 427

FIGURE 16-4: The Voronoi map is used as a hover aid.

MAKING REUSABLE VISUALIZATIONS

So far, none of the D3 examples in this chapter and Chapter 11 have been reusable. Every example
starts with a d3.select('body'), which implicitly assumes that the visualization needs to be created
directly on the <body> element. This is not practical for actual visualizations that need to live within
a larger application such as a dashboard.

This section examines the best practices for creating reusable D3 visualizations by packaging up the
scatterplot example used in previous chapters.

The best strategy for packaging a charting function in D3 is to have it work similarly to the helper
function such as d3.scale.linear and d3.svg.axis. Mike Bostock, the creator of D3, wrote up a
short article explaining the merits of this approach; you can fi nd it at http://bost.ocks.org
/mike/chart/.

428 ❘ CHAPTER 16 D3 IN PRACTICE

c16.indd 11/03/2014 Page 428

In this example you call the scatterplot chart like so:

// Create and configure the charts
var highwayCityChart = scatterplot()
 .width(300)
 .height(300)
 .x(function(d) { return d.highway })
 .xLabel('Highway / mpg')
 .y(function(d) { return d.city })
 .yLabel('City / mpg')

var displacementCityChart = scatterplot()
 .width(300)
 .height(300)
 .x(function(d) { return d.displ })
 .xLabel('Displacement / L')
 .y(function(d) { return d.city })
 .yLabel('City / mpg')

// Attach the data to the element that will hold the chart and 'call' it.
d3.select('#chart1').datum(mpg)
 .call(highwayCityChart)

d3.select('#chart2').datum(mpg)
 .call(displacementCityChart)

This code, which you can fi nd in the examples/scatterplot-reuse/script.js fi le on the companion
website, creates two scatterplots depicting the relationship between two different pairs of variables, as
shown in Figure 16-5.

 FIGURE 16-5: Two scatterplots are created with the same reusable component.

The advantages of following this method include

 ➤ A chart can be easily confi gured and reconfi gured using the setter/getter operators.

 ➤ No chart state needs to be maintained by the caller.

Making Reusable Visualizations ❘ 429

c16.indd 11/03/2014 Page 429

 ➤ The instance of a chart is a template that can be applied to any data-bound selection and can
be applied over a selection containing multiple elements fi lling each of them individually.

 ➤ It follows the conventions set by native D3 methods such as d3.svg.axis.

The following code, which is in the examples/scatterplot-reuse/scatterplot.js fi le on the
companion website, shows you how it might actually be implemented:

function scatterplot() {
 var options = {
 width: 700,
 height: 600,
 margin: {top: 20, right: 20, bottom: 30, left: 40},
 xLabel: null,
 yLabel: null,
 x: function(d) { return d[0] },
 y: function(d) { return d[1] }
 }

 var xScale = d3.scale.linear()
 var yScale = d3.scale.linear()

 var xAxis = d3.svg.axis()
 .orient('bottom')
 .scale(xScale)

 var yAxis = d3.svg.axis()
 .orient('left')
 .scale(yScale)

 function render(selection) {
 var margin = options.margin
 var innerWidth = options.width - margin.left - margin.right
 var innerHeight = options.height - margin.top - margin.bottom

 xScale.range([0, innerWidth])
 yScale.range([innerHeight, 0])

 selection.each(function(data) {
 xScale.domain(d3.extent(data, options.x)).nice()
 yScale.domain(d3.extent(data, options.y)).nice()

 // -------------
 var svgContainer = d3.select(this).selectAll('svg.scatterplot').data([data])
 svgContainer.enter().append('svg').attr('class', 'scatterplot')

 svgContainer
 .attr('width', options.width)
 .attr('height', options.height)

 // -------------
 var mainContainer = svgContainer.selectAll('g.main').data([data])
 mainContainer.enter().append('g').attr('class', 'main')

430 ❘ CHAPTER 16 D3 IN PRACTICE

c16.indd 11/03/2014 Page 430

 mainContainer
 .attr('transform', 'translate(' + margin.left + ',' + margin.top + ')')

 // -------------
 var xAxisContainer = mainContainer.selectAll('g.x.axis').data([data])
 xAxisContainer.enter().append('g').attr('class', 'x axis')

 xAxisContainer
 .attr('transform', 'translate(0,' + innerHeight + ')')
 .call(xAxis)

 // -------------
 var xLabelSelection = xAxisContainer.selectAll('text.label').data([data])
 xLabelSelection.enter().append('text').attr('class', 'label')
 .attr('y', -6)
 .style('text-anchor', 'end')

 xLabelSelection
 .attr('x', innerWidth)
 .text(options.xLabel)

 // -------------
 var yAxisContainer = mainContainer.selectAll('g.y.axis').data([data])
 yAxisContainer.enter().append('g').attr('class', 'y axis')

 yAxisContainer
 .call(yAxis)

 // -------------
 var yLabelSelection = yAxisContainer.selectAll('text.label').data([data])
 yLabelSelection.enter().append('text').attr('class', 'label')
 .attr('transform', 'rotate(-90)')
 .attr('dy', '1.2em')

 .style('text-anchor', 'end')

 yLabelSelection
 .text(options.yLabel)

 // -------------
 var pointContainer = mainContainer.selectAll('g.points').data([data])
 pointContainer.enter().append('g').attr('class', 'points')

 // -------------
 var pointSelection = pointContainer.selectAll('.point').data(data)
 pointSelection.enter().append('circle').attr('class', 'point')
 .attr('r', 2.5)

 pointSelection
 .attr('cx', function(d) { return xScale(options.x(d)) })
 .attr('cy', function(d) { return yScale(options.y(d)) })

 pointSelection.exit().remove()
 })
 }

Making Reusable Visualizations ❘ 431

c16.indd 11/03/2014 Page 431

 // Make options configurable
 Object.keys(options).forEach(function(optionName) {
 render[optionName] = function(value) {
 if (!arguments.length) return options[optionName]
 options[optionName] = value
 return render
 }
 })

 return render
}

Let’s break this code down step by step:

var options = {
 width: 700,
 height: 600,
 margin: {top: 20, right: 20, bottom: 30, left: 40},
 xLabel: null,
 yLabel: null,
 x: function(d) { return d[0] },
 y: function(d) { return d[1] }
}

Defi ne all the confi gurable options and give each a meaningful default. The D3 standard is to
express data points as [x, y] pairs; hence function(d) { return d[0] } and function(d) {
return d[1] } are a good default choice for the x and y options.

var xScale = d3.scale.linear()
var yScale = d3.scale.linear()

var xAxis = d3.svg.axis()
 .orient('bottom')
 .scale(xScale)

var yAxis = d3.svg.axis()
 .orient('left')
 .scale(yScale)

Set up the scales and axes that will be used in the rendering:

function render(selection) {
 var margin = options.margin
 var innerWidth = options.width - margin.left - margin.right
 var innerHeight = options.height - margin.top - margin.bottom

 xScale.range([0, innerWidth])
 yScale.range([innerHeight, 0])

 ...
}

432 ❘ CHAPTER 16 D3 IN PRACTICE

c16.indd 11/03/2014 Page 432

Create the render function that will be returned. You expect this function to be used in a selec-
tion.call(...) so the fi rst argument is assumed to be the selection within which to create or
update the scatterplot. At this point, you can inspect the options object to determine the physical
size of the visualization.

selection.each(function(data) {
 xScale.domain(d3.extent(data, options.x)).nice()
 yScale.domain(d3.extent(data, options.y)).nice()

 ...
})

The render function receives a selection that you assume to be bound to the chart’s data. Because
you want your chart to work in the event of a selection containing multiple elements, fi lling each
with its own scatterplot, you need to use the .each method that executes the code for each element
of the selection, setting data accordingly each time.

var svgContainer = d3.select(this).selectAll('svg.scatterplot').data([data])
svgContainer.enter().append('svg').attr('class', 'scatterplot')

svgContainer
 .attr('width', options.width)
 .attr('height', options.height)

One constraint that you have not encountered before is that there is no way to know whether there
already is a chart within this element. You can leverage the D3 selection mechanism to take care of
that. By performing a data bind with an array of one element [data] you guarantee that you will
create at most one <svg> within each selection element. This pattern is followed throughout to
create or update every part of the visualization.

var pointSelection = pointContainer.selectAll('.point').data(data)
pointSelection.enter().append('circle').attr('class', 'point')
 .attr('r', 2.5)

pointSelection
 .attr('cx', function(d) { return xScale(options.x(d)) })
 .attr('cy', function(d) { return yScale(options.y(d)) })

pointSelection.exit().remove()

The points are created or updated as before. You use the x and y getters within options to extract
the x and y dimensions of the data.

Object.keys(options).forEach(function(optionName) {
 render[optionName] = function(value) {
 if (!arguments.length) return options[optionName]
 options[optionName] = value
 return render
 }
})

Making Reusable Visualizations ❘ 433

c16.indd 11/03/2014 Page 433

You take the options and create getter/setter functions for every key in it. When called without a
parameter !arguments.length evaluates to true and the option value is returned. Otherwise, the
parameter is set as the value of the option options[optionName] = value and the render function
is returned, which allows for method chaining. This creates an application programming interface
(API) that is consistent with the built-in D3 helper functions.

return render

The render function is returned to the caller. The render function forms a closure over the
options variable, which allows the render function to refer to the options whenever the function is
called. The chart can now maintain its own parameterization.

svg.scatterplot {
 font: 12px sans-serif;
}

svg.scatterplot .axis path,
svg.scatterplot .axis line {
 fill: none;
 stroke: black;
 shape-rendering: crispEdges;
}

svg.scatterplot .point {
 fill: #F3F3F3;
 stroke: #333333;
}

You can fi nd the preceding code in the examples/scatterplot-reuse/scatterplot.css fi le on
the companion website.

Finally, you should defi ne some default style sheet for the cart. You could have placed all the styles
inline, but that would have made the chart much less amenable to styling by the end user.

This example is purposefully made very simple. In practice, you might want to extend the capabili-
ties of the scatterplot with the following:

 ➤ Ability for the user to defi ne the point size

 ➤ An option to color the dots by a categorical dimension

 ➤ An option to use different symbols to express a categorical dimension (look up the d3.svg.
symbol() helper function)

 ➤ Ability to add transitions to the chart; note that a key function needs to be supplied (See the
“Key Functions” section in Chapter 11)

All of the preceding possibilities are great exercises to hone and test your D3 skills.

434 ❘ CHAPTER 16 D3 IN PRACTICE

c16.indd 11/03/2014 Page 434

SUMMARY

This chapter built on the information in Chapter 11 and showed you some more advanced techniques
for creating great visualizations:

 ➤ You learned the considerations of separating style from visualization logic.

 ➤ You learned about the D3 margin convention that enables you to leave room for other necessities,
such as axes and legends.

 ➤ You learned how groups (<g>) can be used to enforce render ordering in a complex, multi-
element visualization.

 ➤ You learned about some useful yet lesser known CSS properties, such as pointer-events
and crisp-edges, that allow your visualization to look and function at its best.

 ➤ You learned about the D3 helper functions for creating complete axes.

 ➤ You saw how easy it is to build a basic scatterplot chart by utilizing built-in helper functions.

 ➤ You saw how the Voronoi layout can be used to divide the space between a given number
of points.

 ➤ You learned about SVG’s <clipPath> element.

 ➤ You learned how to implement an advanced hover behavior by utilizing the Voronoi layout.

 ➤ You have seen how to convert one-off visualizations into reusable, modular, data-schema-
agnostic components.

435

bindex.indd 11/04/2014 Page 435

Symbols

~~ literal, 374, 375

A

Adobe Illustrator, 52, 206
advanced visualizations, 40–42

bubble chart, 42–44
data-driven markers, 271
igDataChart, 284–288
symbols, 265, 284–288

candlestick chart, 40–41, 42, 328, 329–331
axes, 339
legends, 338
series, 339–340, 341
stock, 333–341
zoom bar, 342–343

infographics, 46–48, 49
map charts, 46, 47
surface charts, 44–45

age by sex chart, 379–384, 399–401
$.ajax, 373, 374, 377, 378, 380, 385
$.ajax, 365
Ajax, 58

getting census data, 374
getting stock data, 336–337
server-side validation, 89–90
XmlHTTPRequest, 364–365

AJAX requests, 286
alternating row highlights, 108–113

CSS, 109–110
jQuery, 110–113

alternative bar charts, 35, 36
analysis, 17

key concepts, 18–20
regression, 23–24
sampled data, 20–22
statistical, 145, 147
technical, 346–348

animate(), 208, 226
“Animated Transitions in Statistical Data

Graphics” (Heer and Robertson), 251
animation

column chart, 183–194
D3 line charts, 270–271
easing function, 191–192
Google Charts API, 198–200
key frame, 176
line chart symbols, 272
Raphaël, 208, 226
SVG, 226

_animationProgressUpdated, 187, 189–190
animationTick, 188–189
anti-aliasing, 416
Apache, 286, 337
append(), 69, 256
.append(), 241
arcs, 217–221
area charts, 39–40, 41

map, 307–310
polar, 38
stacked, 42

ArrayBuffer, 365
ArrayBuffer API, 362
Array.map, 338
Array.reduce(), 221
arrays, joining, 423
assigningCategoryStyle event, 139
associations, 22

INDEX

JavaScript® and jQuery® for Data Analysis and Visualization. Jon J. Raasch, Graham Murray, Vadim Ogievetsky and Joseph Lowery.
© 2015 by John Wiley & Sons Inc. Published 2015 by John Wiley & Sons Inc.

436

asynchronous data retrieval – .call

bindex.indd 11/04/2014 Page 436

asynchronous data retrieval, 58
Asynchronous JavaScript and XML. See Ajax
.attr(), 240, 414, 415
auto intervals, 182
autoGenerateColumns, 140
axes, 166, 176–183

auto intervals, 182
candlestick charts, 339
D3, 417–420
gRaphaël, 212–213
igDataChart, 280
reusable visualizations,

431
AxisKeyFrame, 177, 185
axisxstep, 212

B

Backbone, 390–410
JavaScript template, 392–394
models and collections, 391–392
rendering state changes, 395–401

age by sex chart, 399–401
national versus state data, 398–399
population growth chart, 396–398

state drop-down menu, 394–395
background-color, 103
bar charts, 33–36, 160–161

3D styling, 34
alternative, 35, 36
Flot, 150
Google Charts API, 160, 195–196
gRaphaël, 213–215
horizontal, 259
scales, 259
stacked, 34–35
vertical, 259–260

barchart(), 213–215
basis interpolation, 270
bell curve. See normal distribution
Bellamy-Royds, Amelia, 236
Bessel’s Correction, 20
beta, 147

Bezier curves, 206
binary data, 362

fi le size, 363
unpacking, 365

Bostock, Mike, 414, 427
Braille, 93
broadcast interval, 352
browsers

alternating highlight issues, 110
binary data processing, 362–363
debugging tools, 236
form widget support, 75
HTML5 canvas support, 48, 159
HTML5 support, 13
HTML5 validation, 81–85
JavaScript engines, 12
JSON support, 66, 68
local fi le system restrictions, 286, 304, 330, 337
native validation, 81
progressive enhancement, 94, 105
sorting in, 141
SVG support, 52, 53
WebSockets, 349
XPath support, 65

B-splines, 270
bubble chart, 42–44

data-driven markers, 271
igDataChart, 284–288
symbols, 265, 284–288

Buffer, 362
buildDropdown(), 394–395, 403–404
buildLocQuery(), 397
build_segment(), 221–223, 225, 227, 232

C

C3.js, 233
calculated columns, 130–132
_calculatePlotArea, 172, 173
calculation, 122–123
calendar widget,

75
.call(), 420

437

candlestick chart – charts

bindex.indd 11/04/2014 Page 437

candlestick chart, 40–41, 42, 328, 329–331
axes, 339
legends, 338
series, 339–340, 341
stock, 333–341
zoom bar, 342–343

canvas, 48–52
basics, 158–159
browser support, 48, 159
charts, 158–194
column chart, 160–176
igDataChart, 276–288, 332
JavaScript API, 48–52
strengths, 159
SVG versus, 204
symbols, 276–288

<canvas> tag, 12, 48–52
width and height attributes, 50

<caption> element, 101
<caption-side> property, 101
Cartesian plane, 292–293
cartography, 292–293
Cascading Style Sheets (CSS), 158

alternating row highlights, 109–110
column confi guration, 103–104
D3

inline styles versus, 414
line charts, 269

igDataChart line charts, 277
inline styles versus, 414
media queries, 389
table styling, 96, 97, 100

CategoryAxis, 179–181, 188, 190
CDF. See cumulative distribution function
Census API, 371, 372–373, 398
Census Bureau, U.S., 7, 47, 314
census data

getting, 372–373, 374
rendering charts

age by sex chart, 379–384
household size chart, 377–378
household tenure chart, 378–379
population history chart, 384–386

race chart, 375–376
sex chart, 373–375

chart series, 167
ChartElement, 166–168, 178, 186
charting primitives, 28–40

area charts, 39–40, 41
bar charts, 33–36
data points, 28–29
line charts, 29–33
pie charts, 36–39

ChartJS, 52
charts

area, 39–40, 41
map, 307–310
polar, 38
stacked, 42

bar, 33–36, 160–161
3D styling, 34
alternative, 35, 36
Flot, 150
Google Charts API, 160, 195–196
gRaphaël, 213–215
horizontal, 259
scales, 259
stacked, 34–35
vertical, 259–260

bubble, 42–44
data-driven markers, 271
igDataChart, 284–288
symbols, 265, 284–288

candlestick, 42, 328, 329–331
axes, 339
legends, 338
series, 339–340, 341
stock, 333–341
zoom bar, 342–343

circular
donut, 38, 39
exploded pie charts, 37,

38
pie charts, 36–39
pie of pie charts, 37, 39
polar area diagram, 38

438

chi-square – columns

bindex.indd 11/04/2014 Page 438

column
animating, 183–194
axes, 166, 176–183
column offset, 169–170, 175
column widths and heights, 170–171
constructor, 172, 188
gRaphaël, 213–215
HTML5 canvas, 160–176
igDataChart, 282–284
render pass, 173–174
zeroPosition, 171

donut, 38, 39, 375
arcs, 217–221
Raphaël, 216–232

geochart, 46
HTML5 Canvas, 158–194
line, 29–33

curved, 32, 33, 213
D3, 257–258, 266–276
Flot, 149–150
gRaphaël, 211–213
igDataChart, 277–284
stacked, 31–32

map, 46, 47
OHLC, 328, 329–331
pie, 36–39, 376

exploded, 37, 38
Google Charts API, 197–198
gRaphaël, 209–210
pie of pie, 37, 39

point, 151
relating data tables to, 133–143
scatter, 28

axes, 166
symbols, 265

scatterplot, 417, 428
stock, 333–348
surface, 44–45
synchronized

price channels, 346–348
trade volume, 344–346

thumbnail, 342
chi-square, 147
choropleth mapping, 291, 314–326

converting geometry data, 315–316
data conversion, 320–322
displaying statistics, 319–326
DOM manipulation, 322–323
extracting information, 319–320
getting geometry data for, 314–315
rendering map, 323–325

Circle elements, 309–310
circle trigonometry, 218
circular charts

donut charts, 38, 39, 375
arcs, 217–221
Raphaël, 216–232

exploded pie charts, 37, 38
pie charts, 36–39, 376

exploded, 37, 38
Google Charts API, 197–198
gRaphaël, 209–210
pie of pie, 37, 39

polar area diagram, 38
classical inheritance, 167
classifi cation, 22
click handlers, 226
client-side validation, 80
closing price, 343
clusters, 22
<col> element, 102–104
<colgroup> element,

104
column charts

animating, 183–194
axes, 166, 176–183
column offset, 169–170, 175
column widths and heights, 170–171
constructor, 172, 188
gRaphaël, 213–215
HTML5 canvas, 160–176
igDataChart, 282–284
render pass, 173–174
zeroPosition, 171

columns
calculated, 130–132
confi guring, 102–104
CSS, 103–104

439

ColumnSeries – D3

bindex.indd 11/04/2014 Page 439

DOM structure, 104
ColumnSeries, 167–169, 172, 178, 181, 188, 190
ColumnsKeyFrame, 177, 178, 185
Comma Separated Values. See CSV fi les
concatenation, 423
conditional validators, 87–88
confi gurable options, 431
contextual keyboards, 76
correlation, 29
CPU utilization, 352, 355
cpuData, 356, 357
createMap, 296, 304, 307–308
createTable(), 59–60
crispEdges, 416
CSS. See Cascading Style Sheets
CSS selectors, 237
CSV fi les, 59–61, 320
csv.toObjects(), 60
cumulative distribution function (CDF), 148–149,

152
Curiosity rover, 4
currency formatting, 114, 124
curved line charts, 32, 33, 213
curves, 206

B-splines, 270
curving functions, 32
custom shapes, 206–207

D

D3, 14, 233, 265, 292
.append(), 241
axes, 417–420
.call(), 420
choropleth mapping, 314–326

converting geometry data, 315–316
data conversion, 320–322
DOM manipulation, 322–323
extracting information, 319–320
getting geometry data, 314–315
map geometry, 316–319

rendering map, 323–325
.data(), 239–249

enter, 240–244
enter/update/exit, 245–246
exit, 245
update, 240

data joining, 239–249
data points, 431
datasets, 234
DOM manipulation, 236, 322–323
geo projection, 234
GeoJSON, 315, 318
helper functions, 257–260, 417

APIs, 433
axes, 417, 419
d3.geom.voronoi(), 422
drawing lines, 257–258
scales, 258–260, 419

helper layouts, 260–263
HTML manipulation, 236
key functions, 249–250
line charts, 257–258, 266–271

animation, 270–271
CSS, 269
geometry generation, 271
HTML, 268
interactive symbols, 273–276
styling, 269
symbols, 271–272

map geometry
converting with TopoJSON, 315–316
rendering, 316–319

mapping abbreviations, 320–321
nested selections, 255–256
object constancy, 253–255
packaging charting functions, 427
reusable visualizations, 427–433
.select(), 237
.selectAll(), 238–239
selections, 237
shapefi les, 315

440

bindex.indd 11/04/2014 Page 440

styling, 414–416
crisp edges, 416
inline style versus CSS, 414
line charts, 269
margin, 414
ordering, 415–416
pointer events, 416

SVG manipulation, 236, 243–244
SVG symbols, 266–276
TopoJSON, 315, 318
.transition(), 250–253, 325
transitions, 250–253, 273
tweening, 271
Voronoi map, 421–427

basic, 421–423
point picking, 424–426

web design challenges, 413
d3.csv, 321
d3.geom.voronoi(), 422
d3.json, 321
d3.layout.treemap(), 261–262
d3.scale.category20b(), 423
d3.scale.linear(), 259, 260, 417, 427
d3.scale.ordinal(), 259, 260
d3.select(this).transition, 273
d3.svg.axis(), 417, 427
d3.svg.line(), 258, 270, 417
d3.svg.symbol(), 271
dashboards, 371, 386–390

Backbone implementation, 390–410
age by sex chart, 399–401
JavaScript template, 392–394
models and collections, 391–392
national versus state data, 398–399
population growth chart, 396–398
rendering state changes, 395–401
state drop-down menu, 394–395

markup and styling, 386–389
responsive layer, 389

data
acquiring, 4
census

age by sex chart, 379–384
getting, 372–373, 374
household size chart, 377–378

household tenure chart, 378–379
population history chart, 384–386
race chart, 375–376
sex chart, 373–375

control of, 413
cpu, 356, 357
density, 310–314
existing, 57

CSV fi les, 59–61
standard text fi les, 58–61
XML, 61–66

fi ltering, 4
fuel economy, 417
geographic, 300, 318, 319
HTML5 formatting, 74–75
live, 6–7
massive, 361–366
Node.js for processing, 300–303
from plain text fi les, 58–61
point, 303–306
preparing for plotting on map, 299–303
public domain, 299–300
Quandl Open Data, 329
real-time, 348–361
restricting, 4
sampled, 20–22
serializing, 300, 302
simultaneous acquisition and visualization,

6–7
standardized, 7
stock, 328–329

basics of, 328–329
candlestick and OHLC charts, 329–331
closing price, 343
obtaining, 329
trade volume, 344–346
typical price, 343

table, 94–104
visualizing, 4–6
XML, 61–66, 361

.data(), 239–249, 250
enter, 240–244
enter/update/exit, 245–246
exit, 245
update, 240

d3.csv – .data()

441

data binds – event listeners

bindex.indd 11/04/2014 Page 441

data binds
reusable charts, 432
scatterplot visualizations, 419

data joining, 239–249, 256
geographic data, 319
key functions, 249–250
line charts, 270

data mining, 22–23
data points, 431
data visualization, 3

applications, 7–9
business-to-business, 8
business-to-consumer, 8–9
intrabusiness, 8
public sector, 7

formats, 4–5
on maps, 291, 292–293
mashing together, 133–143
one-off, 413
reusable, 413, 427–433
selecting depictions, 4–6
styling, 413
technology advancements, 11–14
web professional roles, 9, 11

datasets, 234
DataTables, 125–132

calculated columns, 130–132
progressive enhancement, 126–128
sorting, 128–130

DataView, 362, 365
debounce(), 411
debugging tools, 236
Decennial Census Data, 372, 384
decision trees, 22
delimiter characters, 59
demographics

age by sex, 379–384
household size, 377–378
household tenure, 378–379
population history, 384–386
race, 375–376
sex, 373–375

density surface, 314
dependent variables, 24
difference, 120

_displayFrame, 187
Document Object Model (DOM), 158

D3 manipulating, 236, 322–323
table columns, 104

document.ready(), 51
DOM. See Document Object Model
DOMContentLoaded(), 51
donut charts, 38, 39, 375

arcs, 217–221
Raphaël, 216–232

converting data, 221–225
creating plug-in, 216–217
drawing arcs, 217–221
labeling data, 227–228
mouse interactivity, 225–227

donutChart(), 216–217
draw_arc(), 218–220, 222, 224, 232
drawCanvas(), 51
draw_label(), 227, 232
drop-down menus, 394–395
dropHover(), 424
dynamic highlighting, 114–116

E

easing, 191
_easing, 190
easing function, 191–192
Eisenberg, J. David, 236
email input type, 76, 82
endogenous variables, 24
ensureTicking, 188, 189
.enter().append(), 241, 242–243
enterSelection(), 248, 253–254
EPA, 417
error handlers, 337
error messages

client-side, 89
HTML5 validation, 83–84
jQuery Validation Engine, 88–89, 90–91
native versus JavaScript validation, 81
server-side, 89

Esri shapefi le, 314
event listeners, 208

SVG, 225–226

442

bindex.indd 11/04/2014 Page 442

existing data
CSV fi les, 59–61
standard text fi les, 58–61
XML, 61–66

exit(), 254
exogenous variables, 24
exploded pie chart, 37, 38
express, 337
express, 349, 350–351
Extensible Stylesheet Language Transformation

(XSLT), 63–66

F

Federal Information Processing Standards (FIPS),
373

fillRect(), 50
fi ltering, 4
find(), 63, 122
FIPS. See Federal Information Processing

Standards
FIPS state codes, 373, 391
Flash, 158, 349
fl oating-point numbers, binary transmission, 362,

365
Flot, 52, 145, 149–153

bar chart, 150
line chart, 149–150
normal curve rendering, 151–153
point chart, 151

footers, 98, 99
form validation, 79

native versus JavaScript, 81
server-side versus client-side, 80

form widgets, 74–75
mobile, 77

forms
elements, 13
mobile, 75–77

fuel economy data, 417
fueleconomy.gov, 417
function chaining, 258
functional programming, 116
FusionCharts, 52

G

gamma, 147
geo JSON, 234
geochart, 46
geographic data, 300

building paths from, 318
data joining, 319

GeoJSON, 300, 301–303, 314, 315, 318,
320, 321

geomap, 46
geospatial geometry, 315
get(), 58, 62
getContext(), 49
getContext("2d"), 172
getContext("webgl"), 172
Google, 300
Google Charts API, 14, 158, 194–201, 265,

371, 373
animation, 198–200
bar char, 160, 195–196
pie chart, 197–198

Google Chrome, 304
Google Fusion Table, 313
Google JS API, 374
Google Maps, 291

coordinates in URI, 295
tile imagery, 293, 295

Google Maps API
data preparation for plotting,

299–303
heat maps, 310–314

optimization, 313–314
iconography, 297–314
markers, 297–298

area, 307–310
changing style, 298
plotting point data, 303–306

v3, 294–297
working with, 292–297

Google Maps for Business, 292
Google Maps Geocoding API, 295
Google Visualization API, 195
google.setOnLoadCallback(), 196

existing data – google.setOnLoadCallback()

443

google.visualization.AreaChart – igDataChart

bindex.indd 11/04/2014 Page 443

google.visualization.AreaChart, 200
google.visualization.BarChart, 196, 200
google.visualization.LineChart, 200
google.visualization.PieChart, 197
gRaphaël, 209–215

axes, 212–213
axisxstep, 212
bar charts, 213–215
barchart(), 213–215
column charts, 213–215
curved line charts, 213
labelBarChart() plug-in, 215
line charts, 211–213
linechart(), 211–213
pie charts, 209–210
piechart(), 209–210
shade, 212–213
smooth, 213
symbol, 213

gzip, 363

H

h5Validate polyfi ll, 84–85
handshaking, 351
headers, scope attributes, 97
HealthIT.gov, 9, 10
heat maps, 310–314

optimization, 313–314
performance issues, 313
weighted, 312–313

HeatmapLayer,
312

Heer, Jeff, 251
height attribute, 50
horizontal bar charts, 259
household size chart, 377–378
household tenure chart, 378–379
hover behavior, 424–426

naive, 424–425
Voronoi, 425–426

hsb(), 222
HTML, 62

content-presentation separation, 96

D3 manipulating, 236
styling, 414
tables, 94, 96
XSLT mapping to, 64–65

html(), 60
HTML5, 6, 12–13

browser support, 13
canvas, 48–52

basics, 158–159
browser support, 48, 159
charts, 158–194
column chart, 160–176
igDataChart, 332
Ignite UI igDataChart, 276–288
JavaScript API, 48–52
strengths, 159
SVG versus, 204
symbols, 276–288

contextual keyboards, 76
data formatting, 74–75
form controls, 73–75
form widgets, 74–75
input types, 74
mobile forms, 75–77
native form validation, 79, 81–85

custom messages, 83–84
custom rules, 83
h5Validate polyfi ll, 84–85
input types, 82
max length, 82–83
numbers, 82
required fi elds, 82–83

html5forms polyfi ll, 75
HTTP

bi-directional communication, 349
handshaking, 349, 351
long polling, 349

Hungarian notation, 128, 129

I

igDataChart, 133, 276–288, 328
axes, 280
bubble chart, 284–288

444

igDataChart – jQuery

bindex.indd 11/04/2014 Page 444

column chart, 282–284
HTML5 canvas, 276–288, 332
implementing, 331–348
line chart, 277–281

CSS, 277
HTML, 277
settings, 280–281
symbols, 281–284

markers, 282–284
real-time data

client updates, 353–359
update rendering techniques, 359–361

series, 287
stock chart, 333–341
updating chart, 359
zoom bar, 342–343
zooming and panning, 287, 288, 335–336

igDataChart, 139
igGrid, 133
igGrid, 139–143

declaring, 139–140
selection feature, 141
updating feature, 141

Ignite UI, 133
igZoombar, 342
obtaining, 332

igZoombar, 342
IIS, 286, 337
 tags, 52
immediate mode rendering interface, 174
InCharts3D, 50
independent variables, 24
infographics, 46–48, 49
Infragistics, 133, 276, 328,

331
Inkscape, 52
inline styles, 414
input attribute
maxlength, 83
required, 82–83

input types, 74
email, 76, 82
HTML5 validation, 82

numeric, 82
tel, 76
url, 82

Inspect Element, 236
Internet Explorer, 12
interpolate, 185
interpolateNumbers, 184–185
interpolateThings, 184–185
iPhone, 12

J

Java, 158
JavaScript

canvas API, 48–52
classical inheritance, 167
custom HTML5 validation messages, 83–84
faster and better processing, 12
form validation, 81
large code base maintenance, 125
optimizing load time, 332
polyfi lls, 75, 84–85, 105
reading JSON, 67–68
table calculations, 120–123

DataTables, 130–132
templates, 392–394

JavaScript Object Notation. See JSON
Jet Propulsion Laboratory, 48, 49
jqPlot, 14
jQuery, 13–14, 125, 233
$.ajax, 365
Ajax, 58, 336–337
alternating row highlights, 110–113
append(), 69
CDN server, 113
currency formatting, 114
dynamic highlighting, 115–116
each(), 63, 69
event handlers, 208
find(), 63, 122
functional programming style, 116
GeoJSON fi le retrieval, 303
get(), 58, 62

445

jQuery Mobile – lineBuilder

bindex.indd 11/04/2014 Page 445

getJSON(), 68
getting XML data, 62–63
html(), 60
parseJSON(), 68
plug-ins, Flot, 145
selectors, 122

jQuery Mobile, 77
jQuery ThemeRoller, 128
jQuery Validation Engine, 79, 85–91

Ajax calls, 89–90
custom[date], 87
equals[], 88
error messages, 90–91

localization, 91
modifying, 90
server-side validation, 88–89

future[], 87, 88
max[], 86
min[], 86
past[], 87, 88
validate[], 85, 86
validationEngine(), 85
validators, 86–90

client side rules, 88–89
conditional, 87–88
custom rules, 88–90
date, 87
number, 86
regex, 86
server side rules, 89–90

jQuery.ajax, 58
jquery-csv, 59
JSHint, 125
JSLint, 125
JSON, 66–71, 300, 361. See also GeoJSON;

TopoJSON
asynchronous, 68–71
binary fi le size difference from, 363
browser support, 66, 68
compression, 363
reading, 67–68
syntax, 66–67

JSON.parse(), 68

jStat, 145, 146–149
normal curve, 151

jStat.normal(), 148–149, 151
jStat.seq(), 151

K

key frames, 176, 177
key functions, 249–250
KeyFrame, 184–185
Knockout.js, 359

L

labelAccessor, 181
labelBarChart(), 215
labels

gRaphaël bar charts, 214–215
Raphaël donut chart, 227–228
tables, 101

legend, 210
legends, 338
line charts, 29–33

curved, 32, 33, 213
D3, 257–258, 266–271

animation, 270–271
CSS, 269
geometry generation, 271
HTML, 268
interactive symbols, 273–276
symbols, 271–272

Flot, 149–150
gRaphaël, 211–213
igDataChart, 277–281

CSS, 277
HTML, 277
settings, 280–281
symbols, 281–284

stacked, 31–32
linear interpolation, 159–160, 174–175, 176, 183,

269–270
linear relationship, 192
lineBuilder, 270

446

linechart – mouseout event

bindex.indd 11/04/2014 Page 446

linechart(), 211–213
lines, D3 drawing, 257–258
live data, 6–7
local fi le system, 286, 304, 330, 337
localization, jQuery Validation Engine, 90
log-normal, 147
long polling, 349
LukeW, 77

M

map charts, 46, 47
map projection distortion, 293
maps, 295, 306

choropleth, 291, 314–326
converting data, 320–322
converting geometry data, 315–316
displaying statistics, 319–326
extracting information, 319–320
rendering map, 323–325

geomap, 46
geometry for plotting, 314–315
heat, 310–314
markers, 297–298

area, 307–310
changing style, 298
clustering, 306
plotting point data, 303–306

Mercator projections, 293
plotting point data, 303–306
visualization on, 291, 292–293
Voronoi, 421–427

margin, 414
Margin Convention, 414
margin of error, 21–22
markers, 265

bubble charts, 271
column charts, 282–284
data-driven, 271
igDataChart, 282–284
map, 297–298

area, 307–310

changing style, 298
clustering, 306
plotting point data,

303–306
textual, 282–284

markerTemplate:textual

Marker, 284
markerType, 281
massive data, plotting, 361–366
mathematical curving functions, 32
MATLAB, 146
matrices, 146, 147
max, 147
max[], 90
maxlength input attribute, 83
mean, 18–19, 147
media queries, 389
median, 18–19
Mercator map projections, 293
Microsoft Excel, 319
min, 147
min[], 90
mobile forms, 75–77

contextual keyboards, 76
styling for usability, 77
widgets, 77

mouse events
interactive symbols, 273
Raphaël, 208–209
SVG background transparency, 274

mouse interactivity
D3, 273–275
hover behavior, 424–426

naive, 424–425
Voronoi, 425–426

Raphaël, 225–227
mouse move updates, 274–275
mouseenter, 424
mouseleave, 424
mousemove handler, 275
mouseout(), 226
mouseout event, 116

447

mouseover event – population history chart

bindex.indd 11/04/2014 Page 447

mouseover event, 115–116
Mozilla Firefox, 304, 317
multistage transitions, 253
MVCArray, 311, 312

N

naive hover, 424–425
nested selections, 255–256
_nextFrame, 187
nodeData, 262–263
Node.js, 300–303, 315, 337

binary data, 362
Buffer, 362
push data service, 349–353

nodes, 262
non-data-driven styles, 414
normal, 147
normal curve, 146

Flot rendering, 151–153
jStat.normal(), 148–149, 151

normal distribution, 148
npm, 352–353
nth-child, 109
NumericAxis, 181–182,

188, 190
NVD3, 233

O

object constancy, 253–255
offset, 169–170, 175
OHLC chart, 328, 329–331, 341
onclick, 208–209
onload(), 51
onmouseout(), 226
onmouseover(), 226
OpenStreetMap API, 295
ordering, 415–416
ordinal scales, 258
os, 351
os-utils, 351, 352–353

P

panning, 287, 336
paper, 204, 209, 216–217
paper.text(), 215
parseJSON(), 68
parsing, 59
path(), 207, 208, 218, 219, 224–225
paths

building from geographic data, 318
drawing, 205–206
linearly interpolated geometry, 269–270

pattern detection, 22–23
PDF. See probability density function
per capita calculations, 21
PHP, 7
pie charts, 36–39, 376

exploded, 37, 38
Google Charts API, 197–198
gRaphaël, 209–210
pie of pie, 37, 39

pie of pie charts, 37, 39
piecewise cubic relationship, 192
piechart(), 209–210
Plaice, Evan, 59
plain text fi les, 58–61
plot(), 149–151, 152
plotting massive data, 361–366
point chart, Flot, 151
point data, 303–306
pointer events, 416
pointer-events style, 416
polar area diagram, 38
polyfi lls, 75, 105

h5Validate, 84–85
html5forms, 75

polygonToString(), 423
populateCalculatedColumn, 117–118, 119,

121–122, 123
_populateDefaultFrame, 190
population growth chart, 396–397
population history chart, 384–386

448

positive correlation – Robertson

bindex.indd 11/04/2014 Page 448

positive correlation, 29
_previousFrame, 187
price channels, 346–348
Prime Meridian, 292
probability density function (PDF), 148–149
progressive enhancement, 94, 105

DataTables, 126–128
projecting trends, 23–24
pseudo-selection, 241
public domain data, 299–300
Public Library Survey, 300
push data service, 349–353
Python, 286, 315, 337

Q

Quandl, 328, 329
Quandl Open Data, 329
quantitative scales, 258

R

R, 146
race demographics chart, 375–376
Raphaël, 14, 203, 265
animate(), 208, 226
animating, 208
background color, 208
curves, 206
custom charts, 216–232
donut chart, 216–232

converting data, 221–225
creating plug-in, 216–217
drawing arcs, 217–221
labeling data, 227–228
mouse interactivity, 225–227

drawing arcs, 217–221
drawing paths, 205–206
extending, 216–232

build_segment(), 221–223, 225, 227,
232

donutChart(), 216–217
draw_arc(), 218–220, 222, 224, 232
draw_label(), 227, 232

getting started, 204–205
hsb(), 222
importing custom shapes, 206–207
mouse events, 208–209
path(), 207, 208, 218, 219, 224–225
plug-ins, 215, 216–217
rect(), 204
text(), 215, 227–228

readability, tables, 105–116
dynamic highlighting, 114–116
increasing, 108–114
styling, 106–108

real-time data, 348–361
client updates, 353–359
update rendering techniques, 359–361

rect(), 204
regexes

custom HTML5 validation, 83
jQuery Validation Engine, 86

regression analysis, 23–24
.remove(), 253
_render, 169, 173, 179, 183
renderAge(), 405–407
renderChart()

fi nancial data, 337
real-time data, 357–358

renderCharts(), 374
renderHousing(), 408–409
renderMap(), 323
renderPopulation(), 396,

404–405
renderRace(), 407–408
renderSex(), 408
renderTenure(), 409–410
requestAnimationFrame, 178, 183
required input attribute, 82–83
rerendering on resize, 411
resize, 411
resolution, 340
responsive design, 389
retained mode systems, 174
reusable visualizations, 413, 427–433
RGraph, 52
Robertson, George, 251

449

Safari – Socket.IO

bindex.indd 11/04/2014 Page 449

S

Safari, 12
sampled data, 20–22
SaveDocsAsSVG, 206
Scalable Vector Graphics (SVG), 13, 52–54,

158–159, 203
animation, 226
canvas versus, 204
crisp edges, 416
D3 manipulating, 236, 243–244
drawing lines, 257–258
event listeners, 225–226
ordering, 415–416
pointer events, 416
strengths, 159
styling

inline versus CSS, 414
margin, 414

symbols, D3, 266–276
transparency, 209, 274

scale transformation, 208
scales

bar charts, 259
D3 helpers, 258–260, 419
reusable visualizations, 431

scatter charts, 28
axes, 166
symbols, 265

scatterplot visualization, 417–420, 428
Schneiderman, Ben, 261
scope attributes, 97
screen coordinates, 174
screen readers, 93, 98
search engines, semantic content, 98
sectors, 36
select(), 254
.select(), 237, 242–244
.selectAll(), 238–239, 242–244
.selectAll().data(), 256
selection, 237
selection.call(), 432
selection.data(), 239–249
selection.enter(), 241

selections, 237
.data(), 239–249

enter/update/exit, 245–246
exit, 245

.enter(), 240–244
line charts, 270
nested, 255–256
pseudo, 241
reusable visualizations, 432
transition, 252

semantic table markup, 96–100
semantic tags, 79
Sencha Labs, 209
separator characters, 59
seq(), 151
sequential patterning, 23
series, 167

candlesticks, 339–340, 341
igDataChart, 287
price channels, 346–347

seriesMouseLeftButtonUp, 139
seriesWidth(), 169, 175
server-side validation, 80
set(), 217
setCustomValidity(), 83–84
setHover(), 424
setInterval, 178
setTimeout, 178
sex demographics chart, 373–375
SGML. See Standard General Markup Language
shade, 212–213
shadow, 330
shapefi les, 314–316
shape-rendering, 416
shapes, custom, 206–207
SignalR, 349
Silverlight, 158
simple linear regression, 24
single-page apps (SPAs), 58
smooth, 213
socket message handler, 358, 359–360
Socket.IO, 349, 350–352, 353, 358

broadcast interval, 352
connection request, 352

450

bindex.indd 11/04/2014 Page 450

SPAs – tables

handshaking, 351
loading, 359

SPAs. See single-page apps
spline line charts, 32
squared differences, 19, 120
stacked area charts, 42
stacked bar charts, 34–35
stacked line chart, 31–32
standard deviation, 19–20, 147
standard deviation variation, 20–21
Standard General Markup Language (SGML), 62
standardized data, 7
_startAnimation, 186
static images, 158
statistical analysis, 145, 147
stock chart

candlestick chart, 333–341
OHLC bars, 341
price channels, 346–348
synchronized volume chart, 344–346
technical analysis tools, 346–348
zoom bar, 342–344

stock data, 328–329
basics of, 328–329
candlestick and OHLC charts, 329–331
closing price, 343
obtaining, 329
trade volume, 344–346
typical price, 343

stop(), 226
strokeColor, 223
strokeWidth, 223
.style(), 239, 240, 414
styleOpts, 220, 228
styling. See also Cascading Style Sheets; Extensible

Stylesheet Language Transformation
3D bar charts, 34
D3, 414–416

crisp edges, 416

inline style versus CSS, 414
margin, 414
ordering, 415–416
pointer events, 416

HTML, 414
mobile form usability, 77
table readability, 106–108
XML data, 63–66

summary attribute, 101
sums, 146
SunSpider, 12
surface charts, 44–45
SVG. See Scalable Vector Graphics
SVG Crowbar, 414
SVG Essentials (Eisenberg and Bellamy-Royds),

236
symbol, 213
symbols, 265

bubble charts, 265, 284–288
canvas, 276–288
D3

line charts, 271–276
SVG, 266–276

line charts
animating, 272
D3, 271–276
igDataChart, 281–284
interactive, 273–276

scatter charts, 265
syncChannel, 344–345
synchronized charts

price channels, 346–348
trade volume, 344–346

T

<table> tag, 94
tables

building, 94–96

451

<tbody> elements – USA Today

bindex.indd 11/04/2014 Page 451

column confi guration, 102–104
computations, 116–125

DataTables, 130–132
JavaScript calculations, 120–123
populating, 123–125

DataTables, 125–132
calculated columns, 130–132
progressive enhancement, 126–128
sorting, 128–130

footers, 98, 99
headers, 97
HTML, 94, 96
labeling, 101
outputting data, 94–104
presentation, 96, 97
readability, 105–116

dynamic highlighting, 114–116
increasing, 108–114
styling for, 106–108

relating to chart, 133–143
scope attributes, 97
semantic markup, 96–100
sorting with DataTables, 128–130
styling, 96, 97, 100, 106–108

alternating row colors, 108–113
<tbody> elements, 98, 100
<td> element, 94
technical analysis tools, 346–348
tel input type, 76
tessellation, 421, 423
text(), 215, 227–228
text-to-speech, 93
textual markers, 282–284
textualMarker, 284
<tfoot> elements, 98, 100
<th> element, 94, 113
<thead> elements, 98, 100
thumbnail chart, 342
_tickAnimation, 186–187
time scales, 258

toObjects(), 59–60
tooltips, 335, 340
TopoJSON, 300, 317, 321

map geometry conversion, 315–316
mapping abbreviations, 320

Total Population and Components of
Change API, 384

<tr> element, 94
alternating colors, 109

trade volume, 344–346
.transition(), 250–253,

325
transitionDuration, 186
transitions

D3, 250–253, 273
multistage, 253
selections, 252

translate transform,
273

transparency, 209
mouse events, 274
SVG, 209, 274

TRBL order, 212
treemap, 261–263
Tufte, Edward, 48
tweening, 271
typical price, 343

U

Underscore, 394, 411
update rendering techniques, 359–361
_updateFrame, 179–180
_updateFrames, 178, 187
updateLine, 270
updateTrends(), 247–248
url input type, 82
U.S. Department of Agriculture, 319
USA Today, 46, 373

452

V8 Javascript Engine – zooming

bindex.indd 11/04/2014 Page 452

V

V8 Javascript Engine, 300
validate[], 85, 86
_validate, 168
_valueAccessor, 168, 170–171
vectors, 146
vertical bar charts, 259–260
Visual Display of Qualitative Information (Tufte),

48
visualizing.org, 11
Visual.ly, 14
Voronoi, George, 421
Voronoi hover, 425–426
Voronoi layout, 234
Voronoi map, 421–427

basic, 421–423
point picking, 424–426

naive hover, 424–425
Voronoi hover, 425–426

Voronoi tessellation, 421, 423

W

WAN. See wide area network
web crawlers, 98
web design, inherent challenges, 413
web fonts, 13
Web Form Design (LukeW), 77
Web Hypertext Application Technology Working

Group (WHAT), 12
web servers, 286, 337
WebGL, 50, 172

WebKit.org, 12
WebSockets, 327, 349, 351
weighted heat maps, 312–313
WHAT. See Web Hypertext Application

Technology Working Group
wick, 330
wide area network (WAN), 352
width attribute, 50
window.resize(), 411
www.data.gov, 299–300

X

XML data, 61–66, 361
format, 61–62
getting, 62–63
styling with XSLT, 63–66

XmlHTTPRequest, 362, 364–365
xmlParser(), 63
XPath, 65
XSLT. See Extensible Stylesheet Language

Transformation

Y

Yahoo! Finance, 342

Z

ZDNet, 12
zeroPosition, 171
zoom bars, 342–343
zooming, 287, 288, 335–336

	10.1002@9781119209386.ch0.pdf (p.1-18)
	10.1002@9781119209386.ch1.pdf (p.19-32)
	10.1002@9781119209386.ch2.pdf (p.33-42)
	10.1002@9781119209386.ch3.pdf (p.43-70)
	10.1002@9781119209386.ch4.pdf (p.71-86)
	10.1002@9781119209386.ch5.pdf (p.87-91)
	10.1002@9781119209386.ch6.pdf (p.92-104)
	10.1002@9781119209386.ch7.pdf (p.105-156)
	10.1002@9781119209386.ch8.pdf (p.157-165)
	10.1002@9781119209386.ch9.pdf (p.166-211)
	10.1002@9781119209386.ch10.pdf (p.212-241)
	10.1002@9781119209386.ch11.pdf (p.242-273)
	10.1002@9781119209386.ch12.pdf (p.274-298)
	10.1002@9781119209386.ch13.pdf (p.299-334)
	10.1002@9781119209386.ch14.pdf (p.335-375)
	10.1002@9781119209386.ch15.pdf (p.376-417)
	10.1002@9781119209386.ch16.pdf (p.418-439)
	10.1002@9781119209386.ch17.pdf (p.440-457)

