
Lean Python
Learn Just Enough Python to
Build Useful Tools
—
Paul Gerrard

www.allitebooks.com

http://www.allitebooks.org

 Lean Python
 Learn Just Enough Python

to Build Useful Tools

Paul Gerrard

www.allitebooks.com

http://www.allitebooks.org

Lean Python: Learn Just Enough Python to Build Useful Tools

Paul Gerrard
Maidenhead, Berkshire, United Kingdom

ISBN-13 (pbk): 978-1-4842-2384-0 ISBN-13 (electronic): 978-1-4842-2385-7
DOI 10.1007/978-1-4842-2385-7

Library of Congress Control Number: 2016958723

Copyright © 2016 by Paul Gerrard

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Michael Thomas
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Teresa F. Horton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available
to readers at www.apress.com . For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author .. xi

About the Technical Reviewer .. xiii

Preface .. xv

Acknowledgments .. xxiii

 ■Chapter 1: Getting Started .. 1

 ■Chapter 2: Python Objects .. 11

 ■Chapter 3: Program Structure .. 25

 ■Chapter 4: Input and Output ... 35

 ■Chapter 5: Using Modules... 43

 ■Chapter 6: Object Orientation ... 47

 ■Chapter 7: Exception and Error Handling 53

 ■Chapter 8: Testing Your Code .. 57

 ■Chapter 9: Accessing the Web .. 63

 ■Chapter 10: Searching .. 67

 ■Chapter 11: Databases ... 75

 ■Chapter 12: What Next? .. 79

 ■Appendix ... 83

Index .. 85

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author .. xi

About the Technical Reviewer .. xiii

Preface .. xv

Acknowledgments .. xxiii

 ■Chapter 1: Getting Started .. 1

The Python Interpreter .. 1

Interactive Mode ... 1

Command-Line Mode ... 3

Coding, Testing and Debugging Python Programs 3

Comments, Code Blocks, and Indentation ... 4

Variables .. 5

Common Assignment Operations ... 5

Other Assignment Operations ... 6

Python Keywords .. 6

Special Identifi ers ... 7

Python Modules ... 8

Typical Program Structure ... 8

 ■Chapter 2: Python Objects .. 11

Object Types .. 11

Factory Functions .. 11

Numbers .. 12

www.allitebooks.com

http://www.allitebooks.org

vi

■ CONTENTS

Arithmetic Operators .. 12

Conversion Functions ... 13

Boolean Numbers ... 14

Random Numbers ... 14

Sequences: Strings, Lists, and Tuples ... 14
Sequence Storage and Access ... 14

Membership .. 15

Concatenation ... 15

Sequence Elements and Slices .. 16

Sequence Built-In Functions... 16

Strings ... 16
Assignment ... 17

Accessing Substrings ... 17

String Comparison .. 17

Membership (Searching) .. 18

Special Characters and Escaping ... 18

Triple Quotes ... 18

String Formatting ... 19

String Functions ... 19

Lists ... 20
Creating Lists .. 20

Updating Lists ... 21

Indexing .. 21

Sequence Operations and Functions .. 21

Tuples .. 22
Creating Tuples ... 22

Sequence Operations and Functions .. 22

Dictionaries ... 22
Creating a Dictionary .. 23

Updating a Dictionary ... 23

Dictionary Operations ... 23

www.allitebooks.com

http://www.allitebooks.org

vii

■ CONTENTS

 ■Chapter 3: Program Structure .. 25

Decision Making .. 25

The if Statement ... 25

The pass Statement .. 26

Types of Test ... 26

Loops and Iteration .. 27

For Statement ... 28

While Statement ... 28

Break Statement ... 29

Continue Statement .. 29

List Comprehensions .. 30

Using Functions ... 30

What Is a Function? .. 31

Return Values.. 32

Calling a Function ... 32

Named Arguments .. 33

Variable Scope .. 33

 ■Chapter 4: Input and Output ... 35

Displaying Output .. 35

Getting User Input ... 36

Writing and Reading Files ... 37

Opening Files .. 37

Closing Files ... 38

Reading Files .. 38

Writing to Files .. 39

Accessing the File System .. 40

Command-Line Arguments .. 41

www.allitebooks.com

http://www.allitebooks.org

viii

■ CONTENTS

 ■Chapter 5: Using Modules... 43

Importing Code from a Module .. 43

Modules Come from the Python Path ... 43

Creating and Using Your Own Modules ... 44

 ■Chapter 6: Object Orientation ... 47

What Is Object Orientation? ... 47

Creating Objects Using Classes ... 48

 ■Chapter 7: Exception and Error Handling 53

Exceptions and Errors ... 53

 ■Chapter 8: Testing Your Code .. 57

Modularizing Code and Testing It .. 57

Test-Driven Development .. 57

The unittest Framework .. 58

Assertions ... 61

More Complex Test Scenarios ... 61

 ■Chapter 9: Accessing the Web .. 63

 ■Chapter 10: Searching .. 67

Searching for Strings .. 67

More Complex Searches ... 67

Introducing Regular Expressions ... 68

Simple Searches ... 68

Using Special Characters .. 68

Finding Patterns in Text ... 70

Capturing Parentheses .. 72

Finding Links in HTML ... 72

www.allitebooks.com

http://www.allitebooks.org

ix

■ CONTENTS

 ■Chapter 11: Databases ... 75

SQLite .. 75

Database Functions .. 75

Connecting and Loading Data into SQLite ... 76

 ■Chapter 12: What Next? .. 79

Appendices .. 80

References... 80

Python Built-In Exceptions Hierarchy .. 81

 ■Appendix ... 83

Index .. 85

www.allitebooks.com

http://www.allitebooks.org

xi

 About the Author

 Paul Gerrard is a consultant, teacher, author, webmaster, programmer, tester, conference
speaker, rowing coach, and publisher. He has conducted consulting assignments in all
aspects of software testing and quality assurance, specializing in test assurance. He has
presented keynote talks and tutorials at testing conferences across Europe, the United
States, Australia, and South Africa, and he has occasionally won awards for them.

 Educated at the universities of Oxford and Imperial College London, he is a Principal
of Gerrard Consulting Limited, the host of the UK Test Management Forum, and the
Programme Chair for the 2014 EuroSTAR testing conference.

 In 2010 he won the EuroSTAR Testing Excellence Award and in 2013 he won the
inaugural TESTA Lifetime Achievement Award.

 He has been programming since the mid-1970s and loves using the Python
programming language.

www.allitebooks.com

http://www.allitebooks.org

xiii

 About the Technical Reviewer

 Michael Thomas has worked in software development
for more than 20 years as an individual contributor,
team lead, program manager, and vice president of
engineering. Michael has more than 10 years of
experience working with mobile devices. His current
focus is in the medical sector, using mobile devices to
accelerate information transfer between patients and
health care providers.

xv

 Preface

 My first exposure to computer programming was at school nearly 40 years ago. My math
teacher was a fan of computing and he established the first A-Level Computer Science
course in the sixth form college. I didn’t take the CS A-Level, as I was committed to Math,
Physics, and Chemistry. But my math teacher invited all the scientists to do an informal
class in programming, once a week, after hours. It sounded interesting, so I enrolled.

 We were introduced to a programming language called CESIL, 1 CESIL a cut-down
version of an Assembler language 2 with instructions that had more meaningful names
like LOAD, STORE, ADD, and JUMP. We were given green cards on which the instructions
and numbers were printed. Next to each instruction was a small oval shape. Beyond that,
there was a shape for every letter and numeric value.

 Filling in the shapes with a pencil indicated the instructions and data we wanted
to use. To make the “job,” work we topped and tailed our card deck with some standard
instructions on more cards.

 Our card decks were secured with rubber bands and sent off to Manchester
University for processing. A week later, we usually (but not always) got our cards back
together with a printout of the results. If we were lucky, our trivial programs generated
some results. More often, our programs did not work, or did not even compile; that is, the
computer did not understand our stumbling attempts to write meaningful program code.

 I can’t remember what programs I wrote in those days. Probably calculating squares
of integers or factorials or if I was really ambitious, the sine of an angle using Taylor series.
Looping (and more often, infinite looping) was a wonderful feature that had to be taken
advantage of. Doing something that simply could not be done by humans was fascinating
to me.

 The challenge of thinking like the computer and of treating the mysterious machine
in Manchester as an infallible wizard that must be obeyed—or at least communicated
with in its own pedantic, arcane language—sticks in my mind. You could, with some
practice, treat the wizard as your very own tireless slave. Those after-hours classes were
great and I looked forward to them every week.

 Programming was great fun, if you had a certain interest in control, procedure, and
systematic thinking. Nearly 40 years later, I still enjoy battling with code. My programming
language of choice nowadays is Python. 3

 1 Computer Education in Schools Instruction Language (see http://en.wikipedia.org/wiki/
Cesil) . If you are curious, you can download a fully working CESIL interpreter [18].
 2 Assembler is a very low-level language close to actual machine code.
 3 Throughout the book, I use the term Python as shorthand for “the Python programming language.”

http://en.wikipedia.org/wiki/Cesil
http://en.wikipedia.org/wiki/Cesil

■ PREFACE

xvi

 Introducing Python
 The Python programming language was created by Dutchman Guido van Rossum in the
late 1980s [1]. Here is a concise summary of Python from Wikipedia [2]:

 Python is a widely used, general-purpose, high-level programming
language. Its design philosophy emphasizes code readability, and its syntax
allows programmers to express concepts in fewer lines of code than would be
possible in languages such as C. The language provides constructs intended
to enable clear programs on both a small and large scale.

 If you choose to learn Python as your first or your 15th programming language, you
are making an excellent choice.

 Of all the languages I have used (and I think it is about 15, over the years) Python is
my favorite. I can’t say exactly why, and I don’t pretend to be an expert in these matters,
but here are some of the things I like about Python:

• Programs are not cluttered up with braces ({…}) and semicolons (;).

• Python implements structure using indentation (white space)
rather than punctuation.

• The Python keywords are powerful, limited in number, and do
what you expect them to do.

• If you can’t work out a way to do something in your code, there is
always a library somewhere that does it for you.

• You can get an awful lot done with a limited knowledge of the
language’

 It is this last feature that I like the most.

 Lean Python
 I freely admit that I don’t know all the features of this wonderful language by heart. In
that way, I am a less-than-perfect programmer and I beat myself up about it regularly. I
have written about 40,000 lines of Python in the past five years, but I discovered recently
that actually, I only need a distinct subset of the language to get things done. I do use all
the core elements of the language, of course—lists, dictionaries, objects, and so on—but
I don’t (and can’t) memorize all of the standard functions for each element. I haven’t
needed them.

 I’m looking at a list of the functions and methods for sequences. There are 58 listed
in my main Python source book [13]. I have only used 15 of them; I haven’t found a need
for the rest.

 I call this subset Lean Python and it is all you need to know as a beginner and some
way beyond.

■ PREFACE

xvii

 ■ Note Lean Python is not “the best way to write code.” I offer it as a way of learning the
essential aspects of the language without cluttering up your mind with features you might
never use.

 Now, the code I have written with the Lean Python subset of language features
means that on occasion, I have written less optimal code. For example, I discovered only
recently that there is a reverse() function that provides a list in reverse order. Of course
there is, and why wouldn’t there be? Needless to say, I had overlooked this neat feature
and have written code to access list elements in reverse order more than once.

 These things happen to all programmers. In general, we don’t consult the manual
unless we have to, so it’s a good idea, every now and then, to review the standard list of
features for the language to see what might be useful in the future.

 Beyond Lean Python
 There are many excellent resources available that provide more comprehensive content
than this little book. Web sites I would recommend as essential include these:

• python.org . This is the official site for the Python language, and
often the best starting point.

• docs.python.org . This site provides the definitive documentation
of the standard Python libraries.

 There are several excellent sites that offer free, online tutorials. Of course, I also have
my own; visit leanpy.com to access it.

 Regarding books, there are three that sit on a shelf right above my desk at all times:

• Core Python Programming, by Wesley Chun

• The Python Standard Library by Example, by Doug Hellmann

• Python Cookbook, by Alex Martelli, Anna Ravenscroft, and David
Ascher

 There are many other excellent books, and you might find better ones, but these are
the three that I use myself.

 Code Examples in the Book
 In this book, you will see quite a lot of example code. Early on you’ll see some small
code fragments with some narrative text. All code listings are presented in the Courier
New font. The shaded text is the code, the unshaded text to the right provides some
explanation.

■ PREFACE

xviii

 #
 # some comments and code # in here
 #
 myName = 'Paul'
 myAge = 21 # if only

 Some explanation appears on the
right-hand side.

 Later on you’ll see longer listings and whole programs. These appear in the book
as shaded areas. Some listings have line numbers on the left for reference, but the line
numbers are not part of the program code. For example:

 1 def len(seq):
 2 if type(seq) in [list,dict]: # is it a seq?
 3 return -1 # if not, fail!
 4 nelems=0 # length is zero
 5 for elem in seq: # for each elem
 6 nelems+=1 # +1 to length
 7
 8 return nelems # return length

 There are also some examples of interactions with the Python command-line shell.
The shell gives you the >>> prompt . Here’s an example:

 >>> type(23)
 <type 'int'>
 >>> type('some text')
 <type 'str'>
 >>> c=[1,2,'some more text']
 >>> type(c)
 <type 'list'>

 The lines are not numbered. The lines without the >>> prompt are the outputs
printed by the shell.

 ■ Note Use the code fragments in the shaded sections to practice in the interactive
interpreter or run the programs for yourself.

 Target Audience
 This book is aimed at three categories of readers:

• The experienced programmer : If you already know a programming
language, this book gives you a shortcut to understanding the
Python language and some of its design philosophy.

■ PREFACE

xix

• You work in IT and need a programming primer : You might be a
tester who needs to have more informed technical discussions
with programmers. Working through the examples will help you
to appreciate the challenge of good programming.

• First-timer : You want a first book on programming that you can
assimilate quickly to help you decide whether programming is
for you.

 If you require a full-fat, 1,000-page reference book for the Python language, this
book is not for you. If you require a primer, appetizer, or basic reference, this book should
satisfy your needs.

 What This Book Is
 This little book provides a sequential learning guide to a useful and usable subset of the
Python programming language. Its scope and content are deliberately limited and based
on my own experience of using Python to build interactive web sites (using the Web2py
web development framework [3]) and many command-line utilities.

 This book accompanies the one- and two-day programming courses that I created
to help people grasp the basics of a programming language quickly. It isn’t a full language
reference book, but a reference for people in the course and for whom the Lean Python
subset is enough (at least initially).

 What This Book Is Not
 This book is not intended to be a definitive guide to Python.

 Code Comprehension
 The initial motivation for writing this book was to help provide nontechnical (i.e.,
nonprogrammer) testers with an appreciation of programming so they could work more
closely with the professional programmers on their teams. Critical to this is the skill I call
 code comprehension, which is your ability to read and understand program code.

 Like spoken and written languages, it is usually easier to comprehend written
language than write it from scratch. If the book helps you to appreciate and understand
written program code, then the book will have succeeded in its first goal.

 Python Style Guidelines
 One of the most important attributes of code is that it is written to be read by people,
not just computers. The Python community gives this goal a high priority. In your own
company, you might already have programming or Python guidelines; the Python team
have provided some that are widely used [4].

■ PREFACE

xx

 I have tried to follow the guidelines in the sample code and programs. However,
in the pocket book format, there is less horizontal space, so sometimes I have had to
squeeze code a little to fit it on the page. I tend to use mixed case, e.g., addTwoNumbers in
my variable and function names. 4

 Some of my code comments, particularly in the early pages, are there to explain
what, for example, an assignment does. You would not normally expect to see such
“stating the obvious” comments in real code.

 “Pythonistas” take the readability goal seriously, and so should you.
 There is also a set of design principles you might consult. The Zen of Python sets

them out [5]. I’m sure I could have written better examples; if you see an opportunity to
improve readability or design, let me know.

 Structure
 The first seven chapters cover the core features of Python. The later chapters introduce
some key libraries and how you can use them to write useful applications.

 Chapter 1 introduces the interpreter, the basic syntax of the language, the normal
layout, and the conventions of Python. Chapter 2 describes the core Python objects that
you will use and need to understand. Chapter 3 sets out how programs are structured
and controlled using decisions and loops. Chapter 4 tells you how to get data into and out
of your programs with the command line, display, and disk files. Chapter 5 introduces
modules that help you to manage your own code and access the thousands of existing
libraries. Chapter 6 gives you a flavor for object orientation. Objects and classes are the
key building blocks that programmers use. Chapter 7 presents methods for trapping
errors and exceptions to allow your programs to be “under control” whatever happens.

 Chapter 8 describes how you can use the unittest framework to test your code in a
professional manner. Chapter 9 introduces libraries allowing you to create a web client
and download pages from web sites. Chapter 10 presents regular expressions as the
mechanism for more sophisticated searching and pattern-matching. Chapter 11 gives you
techniques for creating and using the SQLite relational database for persistent storage.
Chapter 12 asks “What Next?” and offers some suggestions for further development of
your Python programming skills.

 An Appendix contains references to web sites, books and tools, and the Python
exception hierarchy. An index is included at the end of the book.

 Using Python
 Downloading Python
 All Python downloads can be found at https://www.python.org/downloads/ .

 You need to choose a Python version before you download. There are currently two
versions:

• Version 2 is coming to the end of its life but is still widely used.

• Version 3 has been around for some time; people have been slow
to convert but it is gaining a following.

 4 The guideline suggests lower_case_with_underscores .

http://dx.doi.org/10.1007/978-1-4842-2385-7_1
http://dx.doi.org/10.1007/978-1-4842-2385-7_2
http://dx.doi.org/10.1007/978-1-4842-2385-7_3
http://dx.doi.org/10.1007/978-1-4842-2385-7_4
http://dx.doi.org/10.1007/978-1-4842-2385-7_5
http://dx.doi.org/10.1007/978-1-4842-2385-7_6
http://dx.doi.org/10.1007/978-1-4842-2385-7_7
http://dx.doi.org/10.1007/978-1-4842-2385-7_8
http://dx.doi.org/10.1007/978-1-4842-2385-7_9
http://dx.doi.org/10.1007/978-1-4842-2385-7_10
http://dx.doi.org/10.1007/978-1-4842-2385-7_11
http://dx.doi.org/10.1007/978-1-4842-2385-7_12
https://www.python.org/downloads/

■ PREFACE

xxi

 The example code in this book assumes you are using Version 3. If you use Python
Version 2 you will notice a few differences. You can read a discussion of the two Python
versions in [6].

 Sample Programs Download
 Downloadable sample programs can be found at http://leanpy.com/?page_id=37 .

 All the sample programs have been tested on Windows 8, Ubuntu Linux 13, and my
trusty Raspberry Pi running Linux. If you use a Mac, you should not have problems.

 External Libraries
 A major benefit to using Python is the enormous range of free libraries that are available
for use. The vast majority of these libraries can be found on the PyPI site [7]. When I last
looked, there were 46,554 packaged libraries hosted there.

 Depending on your operating system (Windows, Mac or Linux), there are several
ways of performing installations of Python libraries. The one I find easiest to use is the PIP
installer [19] which works nicely with the PyPI site.

 Editing Your Python Code
 I recommend using either a language-sensitive editor or the editor that comes with your
Python installation.

• On Windows, use the IDLE Integrated Development Environment
(IDE) or perhaps Notepad++.

• On Linux, there is a selection of editors— vi, vim, emacs,
gedit , and so on; I use gedit .

• On OS X, TextMate works fine, but there are other options.

 When you are more experienced, you might upgrade to using an IDE. There
is a list of Python-compatible IDEs available at https://wiki.python.org/moin/
IntegratedDevelopmentEnvironments .

 Feedback, Please!
 I am very keen to receive your feedback and experience to enhance the format and
content of the book. Give me feedback and I’ll acknowledge you in the next edition.

 Any errors or omissions are my fault entirely. Please let me know how I can improve
this book. E-mail me at paul@gerrardconsulting.com with suggestions or errors.

 Downloads, errata, further information, and a reading list can be found on the book’s
web site at leanpy.com .

http://leanpy.com/?page_id=37
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://leanpy.com/

xxiii

 Acknowledgments

 For their helpful feedback, guidance, and encouraging comments, I’d like to thank James
Lyndsay, Corey Goldberg, Simon Knight, Neil Studd, Srinivas Kadiyala, Julian Harty, and
Fahad Ahmed.

xxv

 “Everyone knows that debugging is twice as hard as writing a program
in the fi rst place. So if you’re as clever as you can be when you write it,

how will you ever debug it?”

—Brian W. Kernighan

“Talk is cheap. Show me the code”

—Linus Torvalds

“Programs must be written for people to read, and only incidentally
for machines to execute”

—Abelson/Sussman

“First, solve the problem. Th en, write the code”

—John Johnson

“Sometimes it pays to stay in bed on Monday,
rather than spending the rest of the week debugging Monday’s code”

—Dan Salomon

“Th is project is seriously ahead of schedule”

—Perplexed IT director

“Th e most disastrous thing that you can ever learn is your fi rst
programming language”

—Alan Kay

1© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7_1

 CHAPTER 1

 Getting Started

 The Python Interpreter
 The Python interpreter is a program that reads Python program statements and executes
them immediately (see [8] for full documentation). To use the interpreter, you need
to open a terminal window or command prompt on your workstation. The interpreter
operates in two modes. 1

 Interactive Mode
 You can use the interpreter as an interactive tool. In interactive mode, you run the Python
program and you will see a new prompt, >>> , and you can then enter Python statements
one by one. In Microsoft Windows, you might see something like this:

 C:\Users\Paul>python
 Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC v.1600 32 bit
(Intel)] on win32
 Type "help", "copyright", "credits" or "license" for more information.
 >>> _

 The interpreter executes program statements immediately. Interactive mode is
really useful when you want to experiment or try things out. For example, sometimes you
need to see how a particular function (that you haven’t used before) behaves. On other
occasions, you might need to see exactly what a piece of failing code does in isolation.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-2385-7_1) contains supplementary material, which is available to
authorized users.

 1 There are a number of flags and options you can use with the interpreter, but we won’t need them.

http://dx.doi.org/10.1007/978-1-4842-2385-7_1

CHAPTER 1 ■ GETTING STARTED

2

 The >>> prompt can be used to enter one-line commands or code blocks that define
classes or functions (discussed later). Some example commands are shown here:

 1 >>> dir(print)
 2 ['__call__', '__class__', '__delattr__', '__dir__', '__doc__', '__eq__',

'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__',
'__init__', '__le__', '__lt__', '__module__','__name__','__ne__',
'__new__', '__qualname__', '__reduce__', '__reduce_ex__', '__repr__',
'__self__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__',
'__text_signature__']

 3 >>>
 4 >>> 123.456 + 987.654
 5 1111.11
 6 >>>
 7 >>> 'This'+'is'+'a'+'joined'+'up'+'string.'
 8 'Thisisajoinedupstring.'
 9 >>>
 10 >>> len('Thisisajoinedupstring.')
 11 22

 The dir() command on line 1 lists all the attributes of an object, helpful if you need
to know what you can do with an object type. dir() run without an argument tells you
what modules you have available. dir(print) shows a list of all the built-in methods for
 print() , most of which you’ll never need.

 If you type an expression value, as on line 4, 123.456 + 987.654 the interpreter will
execute the calculation and provide the result. The expression on line 7 joins the strings
of characters into one long string. The len() function on line 10 gives you the length of a
string in characters.

 If you define a new function 2 in interactive mode, the interpreter prompts you to
complete the definition and will treat a blank line as the end of the function.

 1 >>> def addTwoNumbers(a,b):
 2 ... result = a + b
 3 ... return result
 4 ...
 5 >>> addTwoNumbers(3,6)
 6 9
 7 >>>

 Note that when the interpreter expects more code to be supplied in a function, for
example, it prints the ellipsis prompt (...). In the case of function definitions, a blank
line (see line 4 above) completes the function definition.

 We define the function in lines 1 through 3 (note the indentation), and the blank
line 4 ends the definition. We call the function on line 5 and add 6 + 3, and the result is
(correctly) 9.

 2 We cover these later, of course.

CHAPTER 1 ■ GETTING STARTED

3

 One other feature of the interactive interpreter is the help() function. You can use
this to see the documentation of built-in keywords and functions. For example:

 >>> help(open)
 Help on built-in function open in module io:

 open(...)
 open(file, mode='r', buffering=-1, encoding=None, errors=None,
newline=None, closefd=True, opener=None) -> file object

 ... etc. etc.

 ■ Note The Python interactive interpreter is really handy to try things out and explore
features of the language.

 Command-Line Mode
 In command-line mode , the Python program is still run at the command line but you add
the name of a file (that contains your program) to the command:

 python myprogram.py

 The interpreter reads the contents of the file (myprogram.py in this case), scans
and validates the code, compiles the program, and then executes the program. If the
interpreter encounters a fault in the syntax of your program, it will report a compilation
error. If the program fails during execution, you will see a runtime error. If the program
executes successfully, you will see the output(s) of the program.

 You don’t need to worry about how the interpreter does what it does, but you do
need to be familiar with the types of error messages it produces.

 We use command-line mode to execute our programs in files.

 Coding, Testing and Debugging Python Programs
 The normal sequence of steps when creating a new program is as follows:

 1. Create a new .py file that will contain the Python program
(sometimes called source code).

 2. Edit your .py file to create new code (or amend existing code)
and save the file.

 3. Run your program at the command prompt to test it, and
interpret the outcome.

 4. If the program does not work as required, or you need to add
more features, figure out what changes are required and go to
Step 2.

CHAPTER 1 ■ GETTING STARTED

4

 3 Python 3 disallows mixed spaces and tabs, by the way (unlike version 2).

 It’s usually a good idea to document your code with comments. This is part of the
editing process, Step 2. If you need to make changes to a working program, again, you
start at Step 2.

 Writing new programs is often called coding . When your programs don’t work
properly, getting programs to do exactly what you want them to do is often called
 debugging .

 Comments, Code Blocks, and Indentation
 Python, like all programming languages has conventions that we must follow. Some
programming languages use punctuation such as braces ({}) and semicolons (;) to structure
code blocks. Python is somewhat different (and easier on the eye) because it uses white
space and indentation to define code structure. 3 Sometimes code needs a little explanation,
so we use comments to help readers of the code (including you) understand it.

 We introduce indentation and comments with some examples.

 #
 # some text after hashes
 #

 brdr = 2 # thick border

 Any text that appears after a hash character
(#) is ignored by the interpreter and treated
as a comment. We use comments to provide
documentation.

 def my_func(a, b, c):
 d = a + b + c
 ...
 ...

 if this_var==23:
 doThis()
 doThat()
 ...
 else:
 do_other()
 ...

 The colon character (:) denotes the end of
a header line that demarks a code block.
The statements that follow the header line
should be indented.

 Colons are most often used at the end of if ,
 elif , else , while , and for statements, and
function definitions (that start with the def
keyword).

 def addTwoNumbers(a, b):
 "adds two numbers"
 return a + b

 In this example the text in quotes
is a docsctring. This text is what a
 help(addTwoNumbers) command would
display in the interactive interpreter.

 if long_var is True && \
 middle==10 && \
 small_var is False:
 ...
 ...

 The backslash character (\) at the end
of the line indicates that the statement
extends onto the next line. Some very long
statements might extend over several lines.

(continued)

CHAPTER 1 ■ GETTING STARTED

5

 xxxxxxxxxxxxxx:
 xxxxxxxxxxxx
 xxxxxxxxxxxx
 xxxxxxxxxxxx
 xxxxxxxxx:
 xxxxxxxxxxx:
 xxxxxxx
 xxxxxxxxxxx:
 xxxx
 xxxx

 All code blocks are indented once a
header line with a colon appears. All the
statements in that block must have the same
indentation.

 Code blocks can be nested within each
other, with the same rule: All code in a block
has the same indentation.

 Indentation is most often achieved using
four-space increments.

 a = b + c ; p = q + r

 a = b + c
 p = q + r

 The semicolon character (;) can be used to
join multiple statements in a single line. The
first line is equivalent to the two lines that
follow it.

 Variables
 A variable is a named location in the program’s memory that can be used to store some
data. There are some rules for naming variables:

• The first character must be a letter or underscore (_).

• Additional characters may be alphanumeric or underscore.

• Names are case-sensitive.

 Common Assignment Operations
 When you store data in a variable it is called assignment. An assignment statement
places a value or the result of an expression into variable(s). The general format of an
assignment is:

 var = expression

 An expression could be a literal, a calculation, a call to a function, or a combination
of all three. Some expressions generate a list of values; for example:

 var1, var2, var3 = expression

 Here are some more examples:

 >>> # 3 into integer myint
 >>> myint = 3
 >>>
 >>> # a string of characters into a string variable
 >>> text = 'Some text'

CHAPTER 1 ■ GETTING STARTED

6

 >>> # a floating point number
 >>> cost = 3 * 123.45
 >>> # a longer string
 >>> Name = 'Mr' + ' ' + 'Fred' + ' ' + 'Bloggs'
 >>> # a list
 >>> shoppingList = ['ham','eggs','mushrooms']
 >>> # multiple assignment (a=1, b=2, b=3)
 >>> a, b, c = 1, 2, 3

 Other Assignment Operations
 Augmented assignment provides a slightly shorter notation, where a variable has its value
adjusted in some way.

 This assignment Is equivalent to

 x+=1
 x-=23
 x/=6
 x*=2.3

 x = x + 1
 x = x – 23
 x = x / 6
 x = x * 2.3

 Multiple assignment provides a slightly shorter notation, where several variables are
given the same value at once.

 This assignment Is equivalent to

 a = b = c = 1 a = 1
 b = 1
 c = 1

 So-called multuple assignment provides a slightly shorter notation, where several
variables are given their values at once.

 This assignment Explanation

 x, y, z = 99, 100, 'OK'

 p, q, r = myFunc()

 Results in:
 x=99, y= 100, and z='OK'

 If myFunc() returns three values, p , q ,
and r are assigned those three values.

 Python Keywords
 Like all programming languages, in Python, some words have defined meanings and are
reserved for the Python interpreter. You must not use these words as variable names.
Note that they are all lowercase.

CHAPTER 1 ■ GETTING STARTED

7

 and as assert break

 class continue def del

 elif else except exec

 finally for from global

 if import in is

 lambda not or pass

 print raise return try

 while with yield

 There are a large number of built-in names that you must not use, except for their
intended purpose. The cases of True , False , and None are important. The most common
ones are listed here.

 True False None abs

 all any chr dict

 dir eval exit file

 float format input int

 max min next object

 open print quit range

 round set str sum

 tuple type vars zip

 To see a list of these built-ins, list the contents of the __builtins__ module in the
shell like this:

 >>> dir(__builtins__)

 Special Identifiers
 Python also provides some special identifiers that use underscores. Their name will be of
the form:

 _xxx
 __xxx__
 __xxx

CHAPTER 1 ■ GETTING STARTED

8

 4 The only ones you really need to know are the __name__ variable and the __init__() method
called when a new object is created. Don’t start your variable names with an underscore and you’ll
be fine.

 Mostly, you can ignore these. 4 However, one that you might encounter in your
programming is the special system variable:

 __name__

 This variable specifies how the module was called. __name__ contains:

• The name of the module if imported.

• The string '__main__' if executed directly.

 You often see the following code at the bottom of modules. The interpreter loads
your program and runs it if necessary.

 if __name__ == '__main__':
 main()

 Python Modules
 Python code is usually stored in text files that are read by the Python interpreter at
runtime. Often, programs get so large that it makes sense to split them into smaller ones
called modules. One module can be imported into others using the import statement.

 import othermod # makes the code in othermod
 import mymodule # and mymodule available

 Typical Program Structure
 The same program or module structure appears again and again, so you should try and
follow it. In this way, you know what to expect from other programmers and they will
know what to expect from you.

 #!/usr/bin/python Used only in Linux/Unix environments
(tells the shell where to find the Python
program).

 #
 # this module does
 # interesting things like
 # calculate salaries
 #

 Modules should have some explanatory
text describing or documenting their
behavior.

(continued)

CHAPTER 1 ■ GETTING STARTED

9

 from datetime import datetime Module imports come first so their content
can be used later in the module.

 now = datetime.now() Create a global variable that is accessible to
all classes and functions in the module.

 class bookClass(object):
 "Book object"
 def __init__(self,title):
 self.title=title
 return

 Class definitions appear first. Code that
imports this module can then use these
classes.

 def testbook():
 "testing testing..."
 title="How to test Py"
 book=bookClass(title)
 print("Tested the book")

 Functions are defined next. When
imported, functions are accessed as
 module.function() .

 if __name__=='__main__':
 testBook()

 If imported, the module defines classes and
functions. If this module is run, the code
here (e.g., testBook()) is executed.

11© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7_2

 CHAPTER 2

 Python Objects

 Every variable in Python is actually an object. You don’t have to write object-oriented
(OO) code to use Python, but the way Python is constructed encourages an OO
approach. 1

 Object Types
 All variables have a type that can be seen by using the built-in type() function.

 >>> type(23)
 <type 'int'>
 >>> type('some more text')
 <type 'str'>
 >>> c=[1,2,'some more text']
 >>> type(c)
 <type 'list'>

 Other types are 'class' , 'module' , 'function' , 'file' , 'bool' , 'NoneType' , and 'long' .
 The special constants True and False are 'bool' types. The special constant None is

a 'NoneType' .
 To see a textual definition of any object, you can use the str() function; for example,

the variable c can be represented as a string:

 >>> str(c)
 "[1,2,'some text']"

 Factory Functions
 There are a series of functions that create variable types directly. Here are the most
commonly used ones.

 1 We introduce object orientation in Chapter 6 .

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2385-7_6
http://www.allitebooks.org

CHAPTER 2 ■ PYTHON OBJECTS

12

 int(4.0) Creates integer 4

 str(4) Creates string '4'

 list(1, 2, 3, 4) Creates list [1,2,3,4]

 tuple(1, 2, 3, 4) Creates tuple (1,2,3,4)

 dict(one=1, two=2) Creates dictionary {'one':1,'two':2}

 Numbers
 Integer numbers have no realistic limit; you can store and manipulate numbers with
1,000 digits, for example. These are stored as “long” numbers, for example:

 >>> 12345678901234567890
 12345678901234567890

 Real numbers (i.e., those with decimal points) are stored with what is called double-
precision. For example:

 >>>1 / 7.0
 0.14285714285714285

 The actual degree of precision depends on the architecture of the hardware you use.
 Very large or very small real numbers can be described using scientific notation.

 >>> x = 1E20
 >>> x / 7.0
 1.4285714285714285e+19
 >>> int(x/7.0)
 14285714285714285714286592
 >>> y = 1E-20
 >>> y / 7.0
 1.4285714285714285e-21

 Arithmetic Operators
 The four arithmetic operators work as expected.

CHAPTER 2 ■ PYTHON OBJECTS

13

 # Addition
 2 + 3
 2.0 + 3

 # Subtraction
 3 - 2
 3.0 - 2

 # Multiplication
 3 * 2
 3 * 2.0
 3.0 * 2.0

 # Division
 3 / 2
 -6 / 2
 -6 / 4
 3 / 2.0

 # Integer 5
 # Real 5.0 (if one or more operands
 # are real)

 # Integer 1
 # Real 1.0
 # Integer 6

 # Real 6.0
 # Real 6.0

 All divisions produce real numbers
 # 1.5
 # -3.0
 # -1.5
 # 1.3

 Other Operators

 # Modulus
 15 % 4

 # Exponentiation
 4 ** 3
 -4 ** 3

 4 ** -3

 # Real 3.0 (remainder after
 # dividing 15 by 4)

 # Integer 64
 # Integer -64 (the '–' applies to
 # the result)

 # Real 0.015625 (NB negative
 # exponents force operand to real
 # numbers

 Conversion Functions

 int(1.234)
 int(-1.234)
 long(1.234)
 long(-1.234)
 long('1234')
 long('1.234')

 long(float('1.234'))

 float(4)
 float('4.321')

 # Integer 1
 # Integer -1
 # Long 1L
 # Long -1L
 # Long 1234L
 # ** error ** needs 2

 # conversions
 # Long 1L (after two

 # conversions)
 # Real 4.0
 # Real 4.321

CHAPTER 2 ■ PYTHON OBJECTS

14

 Boolean Numbers
 Booleans are actually held as integers but have a value of either True or False .

 bool(23)

 bool(0)
 bool('any text')
 bool('')
 bool([])

 # True - all nonzero integers
False - zero

 # True – any string
 # False – zero length strings
 # False – empty lists

 Random Numbers
 Two random number generators are useful (you need to import the random module).

 import random

 random.randint(a,b)

 random.random()

 # Generates a random integer
 # between a and b inclusive.

 # Generates a random real
 # number between 0.0 and 1.0

 Sequences: Strings, Lists, and Tuples
 So far, we have looked at variables that hold a single value. A sequence is a variable that
holds multiple values as an array. Each element can be addressed by its position in the
sequence as an offset from the first element. The three types of sequence are as follows:

• Strings : A sequence of characters that together form a text string.

• Lists : A sequence of values where each value can be accessed
using an offset from the first entry in the list.

• Tuples : A sequence of values, very much like a list, but the entries
in a tuple are immutable; they cannot be changed.

 We’ll look at the Python features that are common to all sequences and then look at
the three types separately.

 Sequence Storage and Access
 The elements of a sequence are stored as a contiguous series of memory locations.
The first element in the sequence can be accessed at position 0 and the last element at
position n – 1 where n is the number of elements in the sequence (see Figure 2-1).

CHAPTER 2 ■ PYTHON OBJECTS

15

 You can iterate through the elements of a sequence x having n elements starting at
element x[0] and adding +1 each time x[1], x[2] ¼ x[n-1] , and so on. You can also
iterate from the end and subtract 1 each time: x[n-1], x[n-2] ¼ x[0] .

 Membership
 A common check is to determine whether a value exists in a sequence. For example:

 'a' in 'track'
 9 in [1,2,3,4,5,6]

 # True
 # False

 'x' not in 'next'
 'red' not in ['tan','pink']

 # False
 # True

 Concatenation 2
 Two or more sequences can be added together to make longer sequences. The plus sign
(+) is used to concatenate strings, lists, or tuples.

 sequence1 + sequence2 # results in a new sequence
 # that appends sequence2 to
 # sequence1

 'mr'+'joe'+'soap' # 'mrjoesoap'

 Figure 2-1. Storage of elements of a sequence

 2 It is recommended that you use the join() string method to join a list of strings or a tuple, as it is
more efficient. For example:

 >>> '-'.join(('a','b','c','d'))
 'a-b-c-d'

CHAPTER 2 ■ PYTHON OBJECTS

16

 Sequence Elements and Slices
 A sequence is an ordered list of elements, so a single element is identified by its offset
from the first. A slice is a convenient way to select a subset of these elements in sequence,
producing a new sequence. A slice is identified using this notation:

 [startindex:endindex]

 The slice will consist of elements starting as the startindex up to but not including
 endindex .

 Some examples will make it easier to understand:

 mylist=['a','b','c','d','e']

 mylist[0]
 mylist[3]
 mylist[5]
 mylist[-1]
 mylist[1:3]
 mylist[:4]
 mylist[3:]

 # a list with five
 # elements
 # 'a'
 # 'd'
 # results in an error
 # 'e'
 # ['b','c']
 # ['a','b','c']
 # ['d','e']

 Sequences can be nested and elements accessed using multiple indexes, for
example:

 mylist = [1,2,3,['a','b','c'],5]
 mylist[2] # 3
 mylist[3] # ['a','b','c']
 mylist[3][1] # 'b'

 Sequence Built-In Functions

 mylist=[4,5,6,7,1,2,3]
 len(seq)
 len(mylist)

 max(seq)
 max(mylist)
 min(mylist)

 # the length of seq
 # 7
 # maximum value in seq
 # 7
 # 1 – the minimum

 Strings
 A string is a sequence of characters that make up a piece of text. Strings are immutable, but
you can update the value of a string by assigning a new string to the same string variable.

CHAPTER 2 ■ PYTHON OBJECTS

17

 >>> mystr = 'Paddington Station'
 >>> mystr=mystr.upper() # replaces mystr
 >>> mystr
 PADDINGTON STATION

 Assignment
 You can delimit strings with either single (') or double (") quotes, as long as they are
matched. You can embed either quote inside the other.

 >>> text = 'Hello World!'
 >>> longtext = "A longer piece of text"
 >>> print(text)
 Hello World!
 >>>longtext
 'A longer piece of text'
 >>> text = 'Paul said, "Hello World!"'
 >>>print(text)
 Paul said, "Hello World!"

 Accessing Substring s
 You access substrings with slices, of course:

 text='Paul said, "Hi"'
 text[:4]
 text[-4:]
 text[5:9]
 text[0:4] + text[12:14]

 # 'Paul'
 # '"Hi"'
 # 'said'
 # 'PaulHi'

 String Comparison
 Strings can be compared 3 as follows:

 'mcr'>'liv'
 'liv'>'tot'
 'mcr'=='X'
 'X'>'t'

 # True
 # False
 # False
 # False

 3 You can see the ASCII collation sequence at http://www.asciitable.com/ . Space precedes the
numeric characters, which precede the uppercase letters; lowercase letters come last.

http://www.asciitable.com/

CHAPTER 2 ■ PYTHON OBJECTS

18

 Membership (Searching)
 We can check whether a substring is in a string, character by character or using
substrings. The outcome is a Boolean.

 'a' in 'the task'
 'w' in 'the task'
 'as' in 'the task'
 'job' not in 'the task'
 'task' in 'the task'

 # True
 # False
 # True
 # True
 # True

 Special Characters and Escaping
 A string can contain nonprinting and control characters (e.g., tab, newline, and other
special characters) by “ escaping ” them with a backslash (\). Common escape characters
are the following:

 \0 Null character
 \t Horizontal tab
 \n Newline character
 \' Single quote
 \" Double quote
 \\ Backslash

 >>> multiline='Line 1\nLine 2\nLine 3'
 >>> print(multiline)
 Line 1
 Line 2
 Line 3

 Triple Quotes
 Longer pieces of text with embedded newlines can be assigned using the triple quotes
notation; for example:

 >>> multiline="""Line1
 ¼ Line 2
 ¼ Line 3"""
 >>> multiline
 'Line 1\nLine 2\nLine 3'

CHAPTER 2 ■ PYTHON OBJECTS

19

 String Formatting
 The percent (%) operator provides string formatting functionality. This feature has a
structure like this:

 formatstring % (arguments to format)

 formatstring is a string that contains text to be output with embedded conversion
symbols denoted by a percent sign (%). These are the common conversion symbols:

 %c Single character/string of length 1

 %s String

 %d Signed decimal integer

 %f Floating point number

 %% Percent character

 Here are some examples:

 >>> ntoys = 4
 >>> myname='Fred'
 >>> length = 1234.5678
 >>> '%s has %d toys' % (myname,ntoys)
 'Fred has 4 toys'
 >>> 'is %s playing?' % (myname)
 'is Fred playing?'
 >>> 'length= %.2f cm' % length
 'length= 1234.56 cm'
 >>> 'units are %6s meters' % length

 In the preceding examples, the .2 in %.2f indicates the number of decimal places.
The 6 in %6s implies a field width of 6 characters.

 String Functions
 There are a large number of built-in string functions. The most common ones are
illustrated here. Note that these all return a new string; they do not make changes to
strings because strings are immutable.

CHAPTER 2 ■ PYTHON OBJECTS

20

 text = 'This is text'
 nums = '123456'
 # finding text

 text.find('is')
 text.find('your')

 # Validation checks
 text.isalpha()
 text.isdigit()
 nums.isdigit()

 # concatenation
 ''.join((text,nums))
 ' '.join((text,nums))

 # case changing
 text.upper()
 text.lower()

 # splitting string
 text.split(' ')

 # substitution
 text.replace('is','was')

 # stripping
 text.rstrip()
 text.lstrip()
 text.strip()

 # returns 2
 # returns -1

 # all alphas? True

 # all digits? False
 # True

 #'This is text123456'
 #'This is text 123456'

 # 'THIS IS TEXT'
 # 'this is text'

 # list of strings:
#['This','is','text']

 # This was text

 # remove trailing space

 # remove leading space

 # remove trailing and leading spaces

 Lists
 Lists are widely used to store values that are collected and processed in sequence, such as
lines of text read from or written to a text file, or where prepared values are looked up by
their position or offset in the array.

 Creating Lists

 mylist = []
 names=['Tom','Dick','Harry']
 mixedlist = [1,2,3,'four']

 elist = [1,2,3,[4,5,6]]

 # an empty list
 # list of strings
 # list of mixed
 # types
 # embedded list

CHAPTER 2 ■ PYTHON OBJECTS

21

 You can find the length of lists using the len() function. The length is the number
of elements in the list. The last element index of a list mylist would be accessed as
 mylist[len(mylist)-1].

 l = len(names) # 3

 Values in the preceding lists are accessed as shown in the following code fragments.

 names[1]
 mixedlist[0]
 mixedlist[3]
 mixedlist[2:4]
 elist[2]
 elist[3]
 elist[3][1]

 # 'Dick'
 # 1
 # 'four'
 # [3,'four']
 # 3
 # [4,5,6]
 # 5

 If you try to access a nonexistent element in the list, you will get a 'list index out
of range' error.

 Updating Lists
 Use the append() method to add entries to the end of a list. Use the del statement to
delete an entry. For example:

 mylist = []
 mylist.append('Tom')
 mylist.append('Dick')
 mylist.append('Harry')

 # Change an entry
 mylist[1]='Bill'

 # Delete an entry
 del mylist[1]

 # an empty list
 # ['Tom']
 # ['Tom','Dick']
 # ['Tom','Dick','Harry']

 # ['Tom','Bill','Harry']

 # ['Tom','Harry']

 Indexing
 Whereas the membership (in, not in) operators return a Boolean True or False , the
 index() method finds an entry in your list and returns the offset of that entry. If the entry
cannot be found, it returns an error.

 mylist=['Tom','Dick','Harry']
 mylist.index('Dick')
 mylist.index('Henry')

 # 1
 # ValueError: Henry
 # not in list

CHAPTER 2 ■ PYTHON OBJECTS

22

 Sequence Operations and Functions
 The sequence operators—comparisons, slices, membership, and concatenation—all
work the same as they do with strings.

 The sequence functions— len() , max(), min(), sum(), sorted() and
 reversed() —all work as expected.

 Tuples
 Like numbers and strings, tuples are immutable. They are useful for preset lookups or
validators you might reuse.

 Creating Tuples
 To distinguish a tuple from a list, Python uses parentheses () to enclose the entries in a
tuple.

 >>> mynumbers = (1,2,3,4,5,6,7)
 >>> months=('Jan','Feb','Mar','Apr','May','Jun',
 ¼ 'Jul','Aug','Sep','Oct','Nov','Dec')
 >>> mixed = ('a',123,'some text',[1,2,3,'testing'])

 # accessing tuples
 >>> mynumbers[3] # 4
 >>> months[3:6] # ('Apr','May','Jun')
 >>> mixed[2]+' '+mixed[3][3] # 'some text testing'

 You can find the length of tuples using the len() function. The length is the number
of elements in the list.

 If you try to access a nonexistent element in the list, you will get a 'tuple index out
of range' error.

 Sequence Operations and Functions
 The sequence operators—comparisons, slices, membership, and concatenation—all
work as expected. The index() method works exactly as that for lists. The sequence
functions— len() , max() , min() , sum() , sorted() , and reversed() —all work as expected.

 Dictionaries
 If we want our program to remember a collection of values, we can use lists and we can
access the entries using the index to those values. To find the value we want, though, we
must know the offset to that value (or search for it).

 Dictionaries provide a lookup facility based on key/value pairs. The order of the entries
in a dictionary is not defined (in fact, it is somewhat random), but every entry can be retrieved
by using its key. Keys must be unique; there can only be one entry in a dictionary for each key.

CHAPTER 2 ■ PYTHON OBJECTS

23

 Creating a Dictionary
 You can create a dictionary using a set of key/value pairs.

 >>> # days of week – seven key-value pairs
 >>> wdays={'M':'Monday','T':'Tuesday',
 ¼ 'W':'Wednesday','Th':'Thursday',
 ¼ 'F':'Friday','Sa':'Saturday',
 ¼ 'Su':'Sunday'}
 >>> wdays['M']
 'Monday'
 >>> wdays['W']
 'Wednesday'
 >>> wdays['Su']
 'Sunday'

 >>> newdict = {} # empty dictionary

 Updating a Dictionary
 You can update dictionaries using the dict[key] convention.

 >>> newdict = {} # empty dictionary

 >>> newdict['1st'] = 'first entry' # add 1st entry
 >>> newdict['2nd'] = 'second entry'# add 2nd entry
 >>> newdict['1st'] = 'new value' # update 1st entry

 >>> del newdict['2nd'] # delete 2nd entry

 >>> len(newdict) # 1

 Dictionary Operations
 The sequence operators—comparisons, membership, and concatenation—all work as
expected. Here are a few dictionary operations that you might find useful:

 # days of week – seven key/value pairs

 # key existence
 >>> 'Sa' in wdays
 True
 >>> 'Sp' in wdays
 False

CHAPTER 2 ■ PYTHON OBJECTS

24

 # create list of keys
 >>> wdays. keys()
 ['M','T','W','Th','F','Sa','Su']

 # create an iterable list of values
 >>> wdays. values()
 dict_values(['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday',
'Sunday'])

 # look up a key with a default if key not found
 >>> wdays.get('X','Not a day')
 'Not a day'

25© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7_3

 CHAPTER 3

 Program Structure

 Decision Making
 Some simple utilities might be a short list of statements run in order, but a useful
program usually needs to make decisions and choices. The decision making in a program
determines the path that the program takes. Decisions are made by if statements.

 The if Statement
 if statements depend on some form of test or condition. The normal format of an if
statement is shown here:

 if test: # note the colon ':'.
 statement1 # The statements following the
 statement2 # if are indented and executed
 statement3 # if the test is True.

 In this case, the three statements are executed if test is True . Otherwise these
statements are skipped and the interpreter skips to the statement following the code block.

 Often, the False outcome of the test has its own code block, as follows:

 if test: # note the colon ':'.
 DoThis() # DoThis() ... if test=True
 else: # note the colon after 'else'
 DoThat() # DoThat() ... if test=False

 The else: keyword separates the True outcome of the test from the False outcome
of the test and directs the compiler to take the alternate code block: DoThat() .

 So far, we’ve seen a binary decision with only a True and a False outcome. Some
 if statements make a choice from more than two alternatives. In this case, the elif:
keyword separates the different choices and the else: keyword is the final choice if no
other test is met. For example:

 1 If code=='RED':
 2 SoundRedAlert()

CHAPTER 3 ■ PROGRAM STRUCTURE

26

 3 elif code=='AMBER':
 4 GiveWarning()
 5 else:
 6 pass

 ■ Note that the indentation of the if and its corresponding elif and else keywords
must all be the same.

 The pass Statement
 In the preceding example, depending on the value of code , the program makes a choice
to do something, but the third choice was pass . The pass statement is a “do nothing”
statement. The third clause (else) is not strictly necessary, but pass is often useful to
show explicitly what the program is doing (or not doing).

 Types of Test
 The tests that are applied in an if statement can take many forms, but the main patterns
are summarized here.

• Comparisons

 var1 > var2 # greater than
 var1 == var2 # equal to
 var1 != var2 # not equal to

• Sequence (list, tuple, or dictionary) membership

 var in seq
 var not in seq

• Sequence length

 len(x)>0 # sequence has entries?

• Boolean value

 fileopen # fileopen==True?
 not fileopen # fileopen==False?

• Has a value?

 var # not None (or zero or '')

CHAPTER 3 ■ PROGRAM STRUCTURE

27

• Validation

 var.isalpha() # alphanumeric?
 var.isdigit() # is all digits?

• Calculations

 (price*quantity) > 100.0 # cost>100?
 (cost-budget) > 0.0 # overbudget?

 In the case of calculations it is often better to use braces to force the calculations
than to rely on the default operator precedence.

 Some decisions are more complex and require multiple tests to implement. For
example:

 if hungry and foodInFridge and notTooTired:
 cookAMeal()
 else:
 getTakeAway()

 In this case, the and operator joins the three conditions and all must be True for
 cookAMeal() to be executed.

 There are three logical operators— and , or , and not —that can be used to link
decisions.

 Decisions can be nested; that is, they can appear inside the indented code blocks of
other decisions. For example:

 if age>19:
 if carValue>10000:
 if gotConvictions:
 rejectInsuranceApplication()

 Loops and Iteration
 Some features need to perform activities repetitively to process a number of items,
including the following:

• Lists of values.

• Entries in a dictionary.

• Rows of data in a database.

• Lines of text in a disk file.

 These constructs, usually called loops , perform a defined code block repeatedly
on some item of data until some condition or test is met (or not met). These loops are
implemented using for and while statements.

CHAPTER 3 ■ PROGRAM STRUCTURE

28

 For Statement
 The for statement acts as a header statement for a code block that is to be executed until
some condition is met. The for statement operates on an iterable set of elements, often a
sequence.

 >>> theTeam=['Julia','Jane','Tom','Dick','Harry']
 >>> for person in theTeam:
 ... print('%s is in the team' % person)
 Julia is in the team
 Jane is in the team
 Tom is in the team
 Dick is in the team
 Harry is in the team

 The general format is 'for var in seq:' .
 For each iteration through the members of the sequence, the variable var takes the

value of the entry in the list or tuple, or it takes the value of the key in a dictionary.
 Sometimes we don’t want to iterate through a list or dictionary, but we want to

execute a loop a specific number of times. Python provides a useful range() function
that generates an iterable list of specific size for us. It can take three arguments— start ,
 end , and step —that specify the first number, the maximum number, and the increment
between elements in the generated range, respectively. If you provide just one number
argument, it creates a list with that number of integer elements starting with zero.

 >>> range(10)
 range(0,10) # a list of ten elements 0-9
 >>> range(1,10) # default step=1
 range(1,10) # list: [1,2,3,4,5,6,7,8,9]
 >>> range(1,20,3) # steps of 3
 range(1,20,3) # list: [1,4,7,10,13,16,19]

 >>> for i in range(3):
 ... print(i)
 0
 1
 2

 While Statement
 The while statement is similar to the for statement in that it provides a header statement
for a code block to be repeated a number of times. Instead of an iterable set of elements,
the while statement repeats the loop until a test is not met.

 >>> n=4
 >>> while n>0:
 ... print(n)
 ... n-=1

CHAPTER 3 ■ PROGRAM STRUCTURE

29

 4
 3
 2
 1

 Often, the condition to be met is a counter that is decremented in the loop or
a Boolean value the value of which is changed inside the loop, and then the loop is
terminated.

 >>> foundSmith=False
 >>> while not foundSmith:
 ... name=getNextName() # get next person record
 ... if name=='smith': # name is 'smith'?
 foundSmith=True

 Break Statement
 A break statement is used to terminate the current loop and continue to the next
statement after the for or while code block.

 1 while True: # this is an infinite loop
 2 command=input('Enter command:')
 3 if command=='exit': # infinite till user exits
 4 break # skips to line 7
 5 else:
 6 doCommand(command) # execute command
 7 print('bye')

 Continue Statement 1
 A continue statement is used in the code block of a loop to exit from the current code
block and skip to the next iteration of the loop. The while or for loop test is checked as
normal.

 1 while True: # this is an infinite loop
 2 command=input('Enter command:')
 3 if len(command)==0: # no command - try again
 4 continue # goes to next loop (line 1)
 5 elif command=='exit': # user exit
 6 print('Goodbye')
 7 break # skips to line 10
 8 else:
 9 doCommand(command)
 10 print('bye')

 1 In the examples that follow, the doCommand() function needs to be defined, of course.

CHAPTER 3 ■ PROGRAM STRUCTURE

30

 List Comprehensions
 A list comprehension (also known as a listcomp) is a way of dynamically creating a list of
elements in an elegant shorthand. Suppose you wanted to create a list of the squares of
the first ten integers. You could use this code:

 squares=[]
 for i in range(1,11):
 squares.append(i*i)

 Or you could use this:

 squares=[i*i for i in range(1,11)]

 The syntax for listcomps is:

 [expr for element in iterable if condition]

 The if condition can be used to select elements from the iterable. Here are some
examples of this syntax in use:

 # a list of even numbers between 1 and 100
 evens = [i for i in range(1,100) if not i % 2]

 # a list of strings in lines containing 'True'
 trulines = [l for l in lines if l.find('True')>-1]

 Using Functions
 Why Write Functions?
 When you write more complicated programs, you can choose to write them in long,
complicated modules, but complicated modules are harder to write and difficult to
understand. A better approach is to modularize a complicated program into smaller,
simpler, more focused modules and functions .

 The main motivation for splitting large programs into modules and functions is to
better manage the complexity of the process.

• Modularization “divides and conquers” the complexity into
smaller chunks of less complex code, so design is easier.

• Functions that do one thing well are easier to understand and can
be very useful to you and other programmers.

• Functions can often be reused in different parts of a system to
avoid duplicating code.

• If you want to change some behavior, if it’s in a function, you only
need to change code in one place.

• Smaller functions are easier to test, debug, and get working.

CHAPTER 3 ■ PROGRAM STRUCTURE

31

 Importantly, if you choose to use a function written by someone else, you shouldn’t
need to worry too much how it works, but you need to trust it. 2

 What Is a Function?
 A function is a piece of program code that is:

• A self-contained coherent piece of functionality.

• Callable by other programs and modules.

• Passed data using arguments (if required) by the calling module.

• Capable of returning results to its caller (if required).

 You already know about quite a few built-in Python functions. One of these is the
 len() function. We just call len() and pass a sequence as a parameter. We don’t need
to write our own len() function, but suppose we did write one of our own (for lists and
dictionaries only). It might look something like this:

 >>> def lenDictList(seq):
 ... if type(seq) not in [list,dict]: # a seq?
 ... return -1 # no - fail!
 ... nelems=0 # length zero
 ... for elem in seq: # for elem
 ... nelems+=1 # add one
 ...
 ... return nelems # length
 ...

 The header line has a distinct format:

• The keyword def to signify it is a new function.

• A function name lenDictList (that meets the variable naming
rules).

• Braces to enclose the arguments (none, 1 or more).

• A colon to denote the end of the header line.

 The code inside the function is indented. The code uses the arguments in the
function definitions and does not need to define them (they will be passed by the calling
module). Here are some examples:

 >>> l = [1,2,3,4,5]
 >>> d = {1:'one',2:'two',3:'three'}
 >>> lenDictList(l)
 5

 2 All open source or free-to-use libraries come with a health warning, but if you see many references
to a library on programmer web sites and in books, you can be reasonably confident that it works.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ PROGRAM STRUCTURE

32

 >>> lenDictList(d)
 3
 >>> lenDictList(34)
 -1

 Note that the real len() handles any sequence including tuples and strings and does
better error-handling. This is a much oversimplified version.

 Return Values
 The results of the function are returned to the caller using the return statement. In the
preceding example, there is one return value: the length of the list or dictionary provided
or it is –1 if the argument is neither.

 Some functions do not return a result; they simply exit.
 It is for the programmer to choose how to design his or her functions. Here are some

example return statements.

 return
 return True
 return False
 return r1, r2, r3
 return dict(a=v1,b=v2)

 # does not return a value
 # True – perhaps success?
 # False – perhaps a failure?
 # returns three results
 # returns a dictionary

 Calling a Function
 Functions are called by using their name and adding parentheses enclosing the variables
or values to be passed as arguments. You know len() already. The other functions are
invented to illustrate how functions are used.

 >>> count = len(seq) # length of a sequence
 >>>
 >>> # the call below returns three results, the
 >>> # maximum, the minimum, and the average of
 >>> # the numbers in a list
 >>> max, min, average = analyse(numlist)
 >>>
 >>> # the next call provides three parameters
 >>> # and the function calculates a fee
 >>> fee = calculateFee(hours, rate, taxfactor)

 ■ Note The number of variables on the left of the assignment must match the number of
return values provided by the function.

CHAPTER 3 ■ PROGRAM STRUCTURE

33

 Named Arguments
 If a function just has a single argument, then you might not worry what its name is in a
function call. Sometimes, though, not all arguments are required to be provided and they
can take a default value. In this case you don’t have to provide a value for the argument.
If you do name some arguments in the function call, then you must provide the named
arguments after the unnamed arguments. Here is an example:

 def fn(a, b, c=1.0):
 return a*b*c
 fn(1,2,3)
 fn(1,2)
 fn(1,b=2)
 fn(a=1,b=2,c=3)
 fn(1,b=2,3)

 # 1*2*3 = 6
 # 1*2*1 = 2 – c=default 1.0
 # 1*2*1 = 2 – same result
 # 1*2*3 = 6 - as before
 # error! You must provide
 # named args *after* unnamed
 # args

 ■ Note In your code, you must define a function before you can call it. A function call must not
appear earlier in the code than the definition of that function or you will get an “undefined” error.

 Variable Scope
 The variables that are defined and used inside a function are not visible or usable to other
functions or code outside the function. However, if you define a variable in a module and
call a function inside that module, then that variable is available in the called function. If
a variable is defined outside all the functions in a module, the variable is available to all of
the functions in the module. 3 For example:

 sharedvar="I'm sharable" # a var shared by both
 # functions
 def first():
 print(sharedvar) # this is OK
 firstvar='Not shared' # this is unique to first
 return

 def second():
 print(sharedvar) # this is OK
 print(firstvar) # this would fail!
 return

 3 Sometimes it is convenient to create shared variables that save you time and the hassle of adding
them as arguments to the functions in a module. If you use these variables as places to pass data
between functions, though, you might find problems that are hard to diagnose. Treating them as
 readonly variables will reduce the chance of problems that are hard to debug.

35© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7_4

 CHAPTER 4

 Input and Output

 If a program did not produce any output, it wouldn’t be very useful, would it? If a program
did not accept some data that varied from time to time, it would produce the same result
again and again and again, and that wouldn’t be very useful either (after its first run at
least). Most programs, therefore, need to accept some inputs or input data, so that they
can product output data, outputs, or results.

 In this chapter, we cover three important input/output mechanisms:

• Displayed output.

• Getting data from the user through the keyboard.

• Getting input from and writing output to disk files.

 Displaying Output
 You’ve seen the print () function 1 quite a few times already. The most common way
of getting output from a program is to use the print() statement. Print is a function
that takes as its arguments the items to be displayed. Optionally, you can also define a
separator that is placed between the displayed items and a line terminator value that can
replace a newline. The function call looks like this:

 print(arg1,arg2,arg3...,sep=' ',end='\n')

 Here are some examples of the print() function in use.

 >>> boy="Jack"
 >>> girl="Jill"
 >>> print("Hello World!")
 Hello World!
 >>> print(boy,'and',girl,'went up the hill')
 Jack and Jill went up the hill

 1 Note that in Version 2, print was a statement, not a function, so it behaves differently. Print() is a
common Version 3 stumbling block so take a look at https://docs.python.org/3/
whatsnew/3.0.html .

https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html

CHAPTER 4 ■ INPUT AND OUTPUT

36

 It is common to use the string formatting feature.

 >>> print('%d plus %d makes %d' % (3, 7, 10))
 3 plus 7 makes 10

 You can suppress the trailing newline by setting the end argument to an empty string
(or something else).

 >>> #
 >>> # the end= argument defaults to '\n'
 >>> # if you change it, there won't be a newline
 >>> #
 >>> print('one...','two...','three',end='')
 one... two... three>>> # note the >>> prompt

 The string separator defaults to a single space but can be changed or suppressed by
setting it to an empty string.

 >>> #
 >>> # the sep= argument defaults to a space ' '
 >>> # but you can change it, for example...
 >>> #
 >>> print('one...','two...','three',sep='***')
 one...***two...***three

 Getting User Input
 The easiest way to get data into the program is to use the input () 2 function. It takes one
argument, which is the prompt you see displayed on the command line. The function
returns a string value, so if you are asking for numeric or multiple values separated by
commas, you will have to parse and process the text in the code before the data can be used.

 >>> yourName=input('Enter your name: ')
 Enter your name: Paul
 >>> print('Your name is',yourName)
 Your name is Paul

 If you ask the user for an integer number, you should check that the entered text is
valid and can be converted to an integer. To do this, you might do the following:

• Use len(text) to verify that some text has been entered.

• Use the string function text.isdigit() to check the text
represents a number.

 2 In Version 2, Python uses the function raw_input() instead. It works exactly like the input()
function in Version 3.

CHAPTER 4 ■ INPUT AND OUTPUT

37

• Use the int(text) to convert the text to an integer so you can
process it.

 You might have heard of the “garbage-in, garbage-out” concept. If you don’t validate
the data coming into your program, its behavior might be unpredictable or it might fail or
just produce strange results. Don’t forget that hackers can exploit poor input validation to
cause mayhem on Internet sites.

 ■ Note It is your responsibility, as programmer, to ensure that only data that meets your
validation rules is accepted by your program.

 Writing and Reading Files
 At one point or another, you are going to have to read and write text files on disks or other
devices. We look specifically here at text-only files and how you can access them.

 Opening Files
 To access a file on disk you create a file object and you use the open() function to do this.
The format of the open call is:

 fileobj = open(filename,mode)

 The named file would normally be opened in the current directory, but the name can
include a path so it can open any file on any disk and in any directory (local permissions
allowing). The mode tells the interpreter to open the file for reading 'r' , writing 'w' , or
appending 'a' .

 Table 4-1 shows the outcomes of opening existing and nonexistent files with the
three mode values.

 Table 4-1. Opening Files with the Three Mode Values

 Open Mode File Exists File Does Not Exist

 'r' Open for reading No such file or directory error

 'w' Overwritten by empty file and
open for writing

 Open for writing

 'a' Open for appending New empty file created and open
for writing

 ■ Note Be careful when using the write mode; you might overwrite a file containing
valuable data and lose it.

CHAPTER 4 ■ INPUT AND OUTPUT

38

 Here are some examples of how to open files:

 fname='myfile.txt'
 fp = open(fname,'r') # open for reading (must exist)
 fp = open(fname,'w') # creates new file for writing
 fp = open(fname,'a') # opens file for appending

 Closing Files
 Once you have finished reading from or writing to a file, it is a good idea to close it using
the close () function.

 fp = open(fname,'w') # open for writing
 #
 # do some writing, etc.
 #
 fp.close()

 If you don’t explicitly close files, you shouldn’t encounter any major problem, but
it is always best to pair open() and close() functions for the sake of completeness and
tidiness.

 Reading Files
 The standard function to read data from a file is read() . It reads the entire contents of the
file into a string variable. The content can then be split into separate lines delimited by
the newline character ('\n').

 fp = open(fname,'r') # open for reading
 text = fp.read()
 lines=text.split('\n')
 fp.close()

 A more common way to read a file into memory is readlines() , which returns a list
containing each line.

 fp = open(fname,'r') # open for reading
 lines = fp.readlines()
 fp.close()

 Every entry in the lines list just shown will have a newline at its end, so a good way
of cleaning up the readlines() data would be to use a list comprehension:

 lines = [line.rstrip() for line in fp.readlines()]

CHAPTER 4 ■ INPUT AND OUTPUT

39

 If you want to read a file line by line, the best way is to make use of the fact that the
file object itself returns an iterator like this:

 fp = open(fname,'r') # open for reading
 for eachLine in fp:
 #
 # process each line in turn
 #
 print(eachLine,end='') # suppress the extra \n
 fp.close()

 ■ Note Whichever way you read a file, the text that is read contains the trailing newline
character; you must remove it yourself.

 Writing to Files
 The standard function to write data to a file is write() , which works exactly as you would
expect.

 fp.write(textline)

 Note that the write() function does not append a newline to the text before writing.
Here is a simple example:

 fp = open('text.txt','w')
 while True:
 text = input('Enter text (end with blank):')
 if len(text)==0:
 break
 else:
 fp.write(text+'\n')
 fp.close()

 If you didn’t add the trailing '\n' newline in the write statement, all the lines of text
would be merged into a single long string. If you have a list of strings, you can write the list
out as a file in one statement, but you must remember to append a newline to each string
to make the file appear as you expect.

 Here are two ways of writing out a list to a file:

 lines=['line 1','line 2','line 3','line 4']

 # write all lines with no '\n'
 fp.writelines(lines)

CHAPTER 4 ■ INPUT AND OUTPUT

40

 # writes all line with '\n'
 fp.writelines([line+'\n' for line in lines])

 ■ Note The write() and writelines() functions do not append trailing newline (\n)
characters; you must do that yourself.

 Accessing the File System
 There are a number of useful file system functions. They are all available using the os
module, which you must import.

 import os

 # remove a file (deleteme.txt) from disk
 os.unlink('deleteme.txt')
 # rename file on disk (from file.txt to newname.txt)
 os.rename('file.txt','newname.txt')
 # change current/working directory
 os.chdir(newdirectory)
 # create list of files in a directory
 filelist = os.listdir(dirname)
 # obtain current directory
 curdir = os.getcwd()
 # create a directory
 os.mkdir(dirname)
 # remove a directory (requires it to be empty)
 os.rmdir(dirname)

 # in the following examples, we need to use
 # the os.path module
 #
 # does the file/directory exist?
 exists = os.path.exists(path)
 # does path name exist and is it a file?
 isfile = os.path.isfile(filepathname)
 # does path name exist and is it is directory?
 isdir = os.path.isdir(filepath)

CHAPTER 4 ■ INPUT AND OUTPUT

41

 Command-Line Arguments
 The input() function allows you to get input from the user using the keyboard at any
point in your program. Often, though, it is more convenient to the user to provide input
directly after the program name in a command line. Most command-line utilities have
options and data to be used in its process; for example:

 python mycopy.py thisfile.txt thatfile.txt

 This might be a program that makes a copy of one file to another.
 The arguments are captured in the sys.argv list from the sys module. Here is some

code that demonstrates how to capture the command-line arguments (command.py):

 import sys

 nargs=len(sys.argv)
 print('%d argument(s)' % (nargs))
 n=0
 for a in sys.argv:
 print(' arg %d is %s' % (n,a))
 n+=1

 Let’s try running our program with three arguments:

 D:\LeanPython>python command.py arg1 arg2 arg3
 4 argument(s)
 arg 0 is command.py
 arg 1 is arg1
 arg 2 is arg2
 arg 3 is arg3

 Note that the first (element 0) argument is always the name of the program itself.

43© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7_5

 CHAPTER 5

 Using Modules

 Once you have more than a hundred (or several hundred) lines of code in one Python file,
it can be a little messy to manage all the functions and classes in the same place. Splitting
your code over two or more module files that each cover one aspect of the functionality
can simplify matters greatly.

 The features and functions in the standard library (and other libraries that you might
download and use from time to time) are made available to your programs as modules
using the import statement.

 Whether you are using your own home-grown modules or the standard libraries, the
mechanism for including the code is the same.

 Importing Code from a Module
 The import statement has this format:

 import modulename [as name]

 This statement imports the module modulename. The optional 'as name' part allows
you to reference that module with a different name in your code. If this statement works
without error, then all of the functions and classes in that module are available for use.

 Modules Come from the Python Path
 When Python encounters an import modulename statement, it looks for a file called
 modulename.py to load. 1 It doesn’t look just anywhere. Python has an internal variable
called the Python path. You can see what it is by examining the sys.path variable.

 The following interaction shows the path on a Windows machine.

 >>> import sys
 >>> sys.path
 ['', 'C:\\Windows\\SYSTEM32\\python34.zip', 'c:\\Python34\\DLLs',
'c:\\Python34\\lib', 'c:\\Python34', 'c:\\Python34\\lib\\site-packages']
 >>>

 1 The import statement assumes your module files end with '.py' .

CHAPTER 5 ■ USING MODULES

44

 The Python path is a list of directories that is set up by the Python installation
process, but you can also access and change the path to suit your circumstances.

 When you install other libraries (e.g., from PyPI) the path might be updated. If you
keep all your Python code in one place (in the same, current directory), you will never
need to change the Python path. You only need to worry about the Python path if you are
dealing with many modules in different locations.

 Creating and Using Your Own Modules
 Let’s suppose that you have a module with Python code called mod1.py ; the name of the
module in your code will be mod1 . You also have a program file called testmod.py . Let’s
look at some example code in each file.

 This is mod1.py :

 def hello():
 print('hello')

 writtenby='Paul'

 class greeting():
 def morning(self):
 print('Good Morning!')
 def evening(self):
 print('Good Evening!')

 Now, suppose we have a test program mod1test1.py :

 import mod1 as m1

 print(writtenby)

 m1.hello()
 print('written by', m1.writtenby)

 greet = m1.greeting()
 greet.morning()
 greet.evening()

 Now, you can see in line 1 that we have imported mod1 as m1 . This means that
the code in module mod1 is referenced using the m1 prefix. If we had just imported the
module, we would use the prefix mod1 . When we run this code, we get the following result:

 D:\LeanPython\programs>python mod1test1.py
 hello
 written by Paul
 Good Morning!
 Good Evening!

CHAPTER 5 ■ USING MODULES

45

 Let’s look at another test file (mod1test2.py).

 from mod1 import greeting,hello,writtenby

 hello()
 hello.writtenby='xxx'
 print('written by', hello.writtenby)
 print(writtenby)

 greet = greeting()
 greet.morning()
 greet.evening()

 In this case we have imported the function and class using this format:

 from module import function1, function2…

 When we run this code, we get the following result:

 D:\LeanPython\programs>python mod1test2.py
 hello
 written by xxx
 Paul
 Good Morning!
 Good Evening!

 You can see that the import format allows us to drop the prefix for the imported
functions.

 We now import only what we want and we also can name the imported functions
and classes without the prefix. We could also have used the format:

 from module import *

 In this alternative we import all the functions and classes from the module. The
result would have been the same for mod1test2.py ; there would be no need for prefixes.

 When we import from the standard libraries, which often have a large number of
functions and classes, it is more efficient to work this way.

 ■ Note In general, name your imported modules and import only what you need; that is,
avoid "import *" .

47© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7_6

 CHAPTER 6

 Object Orientation 1

 What Is Object Orientation ?
 The professional approach to programming has shifted away from designing systems with
a hierarchy of features defined in functions toward an object-oriented (OO) approach. We
look here at how Python fully supports object orientation.

 In this book, we can only give a flavor of how objects are used. We work through an
example and introduce some of the most basic concepts. We use some OO concepts in
our explanation so you need a basic understanding of OO to work through this section.

 In OO design, systems are composed of collaborating sets of well-defined objects.
Rather than one piece of functionality making use of another function, one object sends a
message to another object to achieve some goal. The message is in effect a function call,
but the function (usually called a method) is associated with the object in question and
the behavior of the method depends on the nature of the object.

 You have already come across objects in many places. In fact, in Python everything is
an object; we just haven’t elaborated on this OO view of the world. For example, a string
has several useful methods:

 newstring = text.upper() # uppercase the string
 newstring = text.lower() # lowercase the string
 newstring = text.split('\n') # split lines

 The string functions return a new variable—the new object—sometimes called an
 instance 2 of the string class. The object (the new string) is the output of the method called
on the original string.

 1 Object orientation is a big topic. You can see an overview of OO programming at
 http://en.wikipedia.org/wiki/Object-oriented_programming .
 2 When you create a new object from a class definition, that object is sometimes called an instance
and the create process called instantiation. We use the word object, though, in our description.

http://en.wikipedia.org/wiki/Object-oriented_programming

CHAPTER 6 ■ OBJECT ORIENTATION

48

 In more complex objects, the object itself has attributes or properties that we can
set and get. 3 We might create a person object, for example. The functions or methods
that a person object allows would include a new or create method as well as various set
methods and get methods; for example:

 fred=customer(name='Fred') # create new customer
 fred.setAge(49) # change age to 49
 fred.gender='Male' # Fred is male
 cdate=fred.getCreateDate() # get the creation date
 age = fred.getAge() # get Fred's age
 del fred # Fred no longer wanted L

 In the preceding example, you can see there were some get and set methods that get
and set Fred’s attributes, like his age and creation date. His age and creation date cannot
be accessed directly except through these simple get and set functions.

 There was one attribute that could be examined directly, though: fred.gender . It
wasn’t a method because there were no parentheses associated when we referenced it.
We can access that attribute directly and we can set it just like any other variable through
an assignment.

 Creating Objects Using Classes
 In our Python code, a new object is defined by referring to a class . In the same way that
we can create an int() , a list() , and str() types, we can define our own more complex
objects using a class definition.

 A class definition is a template for a new object. It defines the mechanism and data
required to create a new instance of that class, its attributes (both private and public), and
the methods that can be used to set and get attributes or change the state of the object.

 Note that we are not recommending this as a perfect implementation of a person
class; it is just an example to illustrate the use of class definitions, object attributes, and
methods.

 The module that defines the person class is people.py :

 1 from datetime import datetime
 2
 3 class person(object):
 4 "Person Class"
 5 def __init__(self,name,age,parent=None):
 6 self.name=name
 7 self.age=age
 8 self.created=datetime.today()
 9 self.parent=parent
 10 self.children=[]

 3 It is a design choice as to whether we hide attributes and make them available only through
methods (private attributes) or expose them to the outside world (public).

CHAPTER 6 ■ OBJECT ORIENTATION

49

 11 print('Created',self.name,'age',self.age)
 12
 13 def setName(self,name):
 14 self.name=name
 15 print('Updated name',self.name)
 16
 17 def setAge(self,age):
 18 self.age=age
 19 print('Updated age',self.age)
 20
 21 def addChild(self,name,age):
 22 child=person(name,age,parent=self)
 23 self.children.append(child)
 24 print(self.name,'added child',child.name)
 25
 26 def listChildren(self):
 27 if len(self.children)>0:
 28 print(self.name,'has children:')
 29 for c in self.children:
 30 print(' ',c.name)
 31 else:
 32 print(self.name,'has no children')
 33
 34 def getChildren(self):
 35 return self.children

• Line 1 imports the datetime and printing modules we’ll need
later.

• Line 3 starts the class definition. We have used the generic object
type, but classes can subclassed and inherit the attributes and
methods of another parent class.

• Lines 5 through 11 creates a new object. Python doesn’t need a
“new” method: When the object is created, Python looks for an
 __init__() method to initialize the object. The arguments passed
through the creation call are used here to initialize the object
attributes. 4

• The two methods in lines 13 through 19 update the object
attribute’s name and age.

 4 Note that the first argument to all of the methods in the class is 'self' , the object itself. This
argument is used internally in the class and is not exposed to the code that calls these methods, as
you'll see in the test that follows. The " self. " attributes are public.

CHAPTER 6 ■ OBJECT ORIENTATION

50

• In lines 21 through 24, the addChild method creates a new
person who is a child of the current person. The children objects
are stored in an attribute children , which is a list of the person
objects for each child.

• In lines 26 through 32, the listChildren method prints out the
names of the children for this person.

• In lines 34 and 35, the getChildren method returns a list
containing the children of this person.

 ■ Note Class methods would not normally print information messages to describe their
behavior. This instrumentation code in the class is there to show what's going on inside.

 We wrote a program that tests the person class called testpeople.py . To show the
output inline, I pasted the code into the interpreter. The embedded comments should
explain what’s going on.

 1 >>> from people import person
 2 >>> #
 3 ... # create a new instance of class person
 4 ... # for Joe Bloggs, age 47
 5 ... #
 6 ... joe=person('Joe Bloggs',47)
 7 Created Joe Bloggs age 47
 8 >>> #
 9 ... # use the age attribute to verify
 10 ... # Joe's age
 11 ... #
 12 ... print("Joe's age is",joe.age)
 13 Joe's age is 47
 14 >>> print("Joe's full name is ",joe.name)
 15 Joe's full name is Joe Bloggs
 16 >>> #
 17 ... # add children Dick and Dora
 18 ... #
 19 ... joe.addChild('Dick',7)
 20 Created Dick age 7
 21 Joe Bloggs added child Dick
 22 >>> joe.addChild('Dora',9)
 23 Created Dora age 9
 24 Joe Bloggs added child Dora
 25 >>> #
 26 ... # use the listChildren method to list them
 27 ... #
 28 ... joe.listChildren()

CHAPTER 6 ■ OBJECT ORIENTATION

51

 29 Joe Bloggs has children:
 30 Dick
 31 Dora
 32 >>> #
 33 ... # get the list variable containing Joe's children
 34 ... #
 35 ... joekids=joe.getChildren()
 36 >>> #
 37 ... # print Joe's details.
 38 ... # NB the vars() function lists the values
 39 ... # of the object attributes
 40 ... #
 41 ... print("** Joe's attributes **")
 42 ** Joe's attributes **
 43 >>> print(vars(joe))
 44 {'age': 47, 'children': [<people.person object at 0x021B25D0>, <people.

person object at 0x021B2610>], 'name': 'Joe Bloggs', 'parent': None,
'created': datetime.datetime(2014, 4, 4, 8, 23, 5, 221000)}

 45 >>> #
 46 ... # print the details of his children
 47 ... # from the list we obtained earlier
 48 ... #
 49 ... print("** Joe's Children **")
 50 ** Joe's Children **
 51 >>> for j in joekids:
 52 ... print(j.name,'attributes')
 53 ... print(vars(j))
 54 ...
 55 Dick attributes
 56 {'age': 7, 'children': [], 'name': 'Dick', 'parent': <people.person

object at 0x021B2590>, 'created': datetime.datetime(2014, 4, 4, 8, 23,
5, 229000)}

 57 Dora attributes
 58 {'age': 9, 'children': [], 'name': 'Dora', 'parent': <people.person

object at 0x021B2590>, 'created': datetime.datetime(2014, 4, 4, 8, 23,
5, 231000)}

 59 >>>

• Line 1 imports the module we need.

• Line 6 creates a person by the name of Joe Bloggs.

• Lines 12 through 15 print Joe Bloggs’s details.

• Lines 19 through 24 add two children to Joe’s record. Note that the
 person class adds new person objects for each child.

• Line 28 calls the joe.listChildren() method to list the details of
Joe’s children.

CHAPTER 6 ■ OBJECT ORIENTATION

52

• Line 35 uses the joe.getChildren() method to obtain a list of
Joe’s children objects.

• Lines 41 through 43 use the vars() function to collect the
attributes of the joe object. You can see all of the variables
defined for the object, including a list of Joe’s children.

• Lines 51 through 53 loop through the joekids list printing the
attributes of the children objects.

 The preceding narrative gives you a flavor of how OO works in the Python language.
OO is a large and complex topic that requires careful explanation. 5

 5 The Python implementation of OO differs in some respects from other languages such as Java, for
example. Python has a rather more “relaxed” attitude to OO, which makes some things easier for the
programmer, but does mean that the programmer needs to be a little more careful in his or her
coding. It is up to you to decide which approach is best.

53© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7_7

 CHAPTER 7

 Exception and Error
Handling

 Exceptions and Errors
 Things can go wrong in your code for many reasons. One reason is that the programmer
has written some code that is faulty. Faults, defects, and bugs are labels we put on aspects
of our program code that are not quite right. Faults occur because we, as programmers,
are not perfect. We are human and are always going to get some things wrong. Early on in
your programming career, you will learn that all is not plain sailing. 1

 Sometimes, you can control the input data and behavior of your programs, but
the sheer number of ways in which your code can be dealt a curveball overwhelms
your ability to deal with them. Out of this challenge came the approach called defensive
programming . 2

 Defensive programming isn’t a timid approach or lackluster attitude. It is a discipline
that tackles the possibility of failure head on. A significant part of this discipline is the
effective implementation of error and exception handling.

 Let’s look at an example. Suppose you had some code that implemented the division
operation such as this:

 quotient = a / b

 What could possibly go wrong? Well the obvious problem occurs if the value of b is
zero. What would we see?

 >>> quotient = 73 / 0.0
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 ZeroDivisionError: float division by zero
 >>>

 1 It could be said you don’t learn by getting things right. You only learn from your mistakes. You are
going to make a lot of mistakes; that’s not the problem. The problem comes if you do not learn from
them. A mantra that you might learn from is, “Fail Fast!” and learn from failure.
 2 See http://en.wikipedia.org/wiki/Defensive_programming .

http://en.wikipedia.org/wiki/Defensive_programming

CHAPTER 7 ■ EXCEPTION AND ERROR HANDLING

54

 The text ZeroDivisionError: float division by zero is what we are interested
in. The Python interpreter raises an error ZeroDivisionError and provides an error
message, albeit a rather terse one.

 If this code fragment was in the middle of a program, the program would fail and
terminate. That’s not of much use to us if we want the program to handle the error and
move on to the next calculation. We use the term error handling or more often, exception
handling , to refer to how we do this.

 Python has many built-in exception types— ZeroDivisionError is just one of them—
and we can trap these occurrences and deal with this in our code. Here’s an example
program division.py :

 1 print('Input two numbers. the first will be divided by the second')
 2
 3 afirst = input('first number:')
 4 first=float(afirst)
 5 asecond = input('second number:')
 6 second = float(asecond)
 7
 8 quotient = first / second
 9 print('Quotient first/second = ',quotient)

 If you run this, enter say, 1 and 2 you get a result of 0.5, no problem. If you enter 1
and 0, you get the ZeroDivisionError message again.

 Here’s a new version of the program, divisionHandled.py.

 1 print('Input two numbers. The first will be divided by the second')
 2
 3 afirst = input('1st number:')
 4 asecond = input('2nd number:')
 5
 6 try:
 7 first=float(afirst)
 8 second = float(asecond)
 9 quotient = first / second
 10 print('Quotient 1st/2nd = ',quotient)
 11 except Exception as diag:
 12 print(diag.__class__.__name__,':',diag)

 In this case, we have enclosed some of the code (the two text-to-float number
conversions and the division) inside a try: clause on line 6. If any code inside the try:
clause raises an error, it is trapped by the except : clause on line 11.

 The except: clause identifies an exception type and optionally, a variable into which
the exception data is stored. Exception is the top-level class for error type so it captures
all errors. In the except code block, the code prints the diag.__class__.__name__
attribute, which names the error type.

CHAPTER 7 ■ EXCEPTION AND ERROR HANDLING

55

 So far, so good. If you play with this program you can try entering poor data, as
shown here.

 D:\LeanPython\programs>python divisionHandled.py
 Input two numbers. The first will be divided by the second
 1st number:
 2nd number:
 ValueError : could not convert string to float:

 D:\LeanPython\programs>python divisionHandled.py
 Input two numbers. The first will be divided by the second
 1st number:1
 2nd number:0
 ZeroDivisionError : float division by zero

 In the first run, the float conversion code fails. We know it is the first conversion by
looking at the code, but an end user who didn’t know the code might get confused. In
general, therefore, it is recommended that:

• We handle particular errors rather than have a catch-all.

• Give each section of code its own exception handler to localize
the error.

 Here is the final version of our fully error-handled code: divisionHandledV2.py .

 1 print('Input two numbers. The first will be divided by the second')
 2
 3 afirst = input('1st number:')
 4 try:
 5 first=float(afirst)
 6 asecond = input('2nd number:')
 7 try:
 8 second = float(asecond)
 9 try:
 10 quotient = first / second
 11 print('Quotient 1st/2nd = ',quotient)
 12 except ZeroDivisionError as diag:
 13 print(diag,': 2nd number must be non-zero')
 14 except ValueError as diag:
 15 print(diag,'2nd number')
 16 except ValueError as diag:
 17 print(diag,'1st number')

CHAPTER 7 ■ EXCEPTION AND ERROR HANDLING

56

 The slightly tricky part is that it is hard to know what error types will occur until you
test for them, so the general approach might be this:

• First, capture all exceptions in places where you expect them to
occur.

• Second, test for all the exceptions you can think of, trigger them,
and make a note where they occur.

• For each exception type you find, create an exception clause
specific to that exception.

 By the way, note that it is possible to trap multiple exception types if you put them in
a tuple; for example:

 except (ValueError, ZeroDivisionError) [as e]:

 The obvious alternative to handling errors that occur is to be more stringent on the
validation of input data. In the preceding example, it might be a better alternative. In
some circumstances, though, the exception cannot be checked for ahead of time because
the data values that cause the exception are the result of intermediate calculations that
might not be easily predicted.

 The range of exception types is large. They cover things like type conversions,
arithmetic, file I/O, database access, dictionary and list element violations, and so on. The
full list is presented in the Appendix.

57© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7_8

 CHAPTER 8

 Testing Your Code

 Modularizing Code and Testing It 1
 So far, we have explained how to make use of the features of Python to create software
that has some purpose and hopefully, value. When you write a little code, the natural
thing to do then is to try it out, or test it.

 The programs I have used to illustrate Python features run without any intervention,
or require some user input via the input() function. As you get better at programming,
you will become more ambitious and create larger programs. Then you realize that
testing becomes more difficult, and more important. Splitting programs into functions
and modules will make testing and debugging easier, as I said earlier.

 Test-Driven Development
 As your programs get bigger and more complicated, the chances of making a mistake
or making a change that has an unwanted side effect increase. Should we run all of our
previous tests every time we make a change then? It would be helpful, but doesn’t the
thought of running the same tests again and again bore you? Of course it might.

 The test-driven development (TDD) approach for programming is gaining
popularity. This is how it works:

• Developers write their (automated) tests first, before they write
code.

• They run their tests and watch them fail, then add or correct code
to make them pass.

• When their tests pass, they look for opportunities to improve the
design of their code. Can you think of why?

 TDD might not always be the best approach, but when it comes to writing larger
programs it is best to modularize your code. When it comes to writing and testing classes
and functions, using a unit test framework to create automated tests makes a lot of sense.

 1 Most programs are split into modules that are separately tested by the programmer. This testing is
usually called unit or component testing.

CHAPTER 8 ■ TESTING YOUR CODE

58

 The unittest Framework
 In this chapter, I provide a brief introduction of how the unittest framework [20] can be
used to test Python modules.

 Suppose we need to write a function that performs simple arithmetic. The function
is passed two numbers and an operator, which could be any of '+' , '-' , '*' , or '/' to
simulate addition, subtraction, multiplication, or division. It is as simple as that. Our
function call might look like this:

 result, msg = calc(12.34, '*', 98.76)

 result would be the outcome of the calculation, or None if an error occurred. msg
would contain a string version of the result or an error message if the calculation fails for
some reason.

 The line of code that called the calc function in this example looks like a test doesn’t
it? It is, except we haven’t checked that the outputs (result and msg) are correct. In this
case we would expect that:

• result would have the value 1218.6984.

• msg would have the value '1218.6984'.

 Here is a possible implementation of the calc function in file calc.py :

 def calc(a, op, b):

 if op not in '+-/*':
 return None, 'Operator must be +-/*'

 try:
 if op=='+':
 result=a+b
 elif op=='-':
 result=a-b
 elif op=='/':
 result=a/b
 else:
 result=a*b
 except Exception as e:
 return None,e.__class__.__name__

 return result,str(result)

 The calc function does very little checking. It does no checking of the numeric
values of the two number arguments a and b . After that, it attempts the calculation but
traps any exceptions that occur, passing the name of the exception back in msg .

CHAPTER 8 ■ TESTING YOUR CODE

59

 Now, to create a set of tests for the calc function, we have created a testcalc.py file
as follows:

 1 import unittest
 2 import calc
 3 #
 4 # define the test class
 5 #
 6 class testCalc(unittest.TestCase):
 7
 8 def testSimpleAdd(self):
 9 result,msg = calc.calc(1,'+',1)
 10 self.assertEqual(result,2.0)
 11
 12 def testLargeProduct(self):
 13 result,msg = calc.calc(123456789.0, '*',987654321.0)
 14 self.assertEqual(result, 1.2193263111263526e+17)
 15
 16 def testDivByZero(self):
 17 result,msg = calc.calc(6,'/',0.0)
 18 self.assertEqual(msg,'ZeroDivisionError')
 19 #
 20 # create the test suite
 21 #
 22 TestSuite = unittest.TestSuite()
 23 #
 24 # add tests to the suite
 25 #
 26 TestSuite.addTest(testCalc("testSimpleAdd"))
 27 TestSuite.addTest(testCalc("testLargeProduct"))
 28 TestSuite.addTest(testCalc("testDivByZero"))
 29 #
 30 # create the test runner
 31 #
 32 runner = unittest.TextTestRunner()
 33 #
 34 # execute the tests
 35 #
 36 runner.run(TestSuite)

• Line 1 imports the unittest module that we will use to test the
 calc function.

• Line 2 imports the calc module (the module to be tested).

• Line 6 defines the class (testCalc) that defines the tests.

CHAPTER 8 ■ TESTING YOUR CODE

60

• Lines 8 through 18 define three tests. The format of each is similar.

• Each test has a unique name (normally test...).

• It calls the function to be tested in some way.

• It performs an assertion to check correctness (we cover
assertions further later).

• Line 22 defines the test suite that will be run.

• Lines 26 through 28 add tests to the test suite (note that we can
create multiple test suites with different selections of test).

• Line 32 defines the test runner.

• Line 36 runs the tests.

 When we run the test we get this:

 D:\LeanPython\programs>python testcalc.py
 ...
 --
 Ran 3 tests in 0.001s

 OK

 The three dots appear as you run the tests, and represent the successful execution of
each test. If a test had failed, we would have seen a Python error message indicating the
exception and line number in the program where the failure occurred.

 All this code just to run a few tests might seem a little excessive. Perhaps it looks a
bit wordy, but there is purpose in each call. Note, however, that once it is set up, if I want
to add a new tests, I create a new test call (e.g., lines 8–10) and add the test to the suite
(e.g., line 26). Once you are set up, therefore, creating large numbers of tests is easy. The
 calc function is a rather simplistic example. More realistic (and complex) classes and
functions sometimes require 20 or 30 or even hundreds of tests.

 ■ Note Programmers who offer their modules as open-source libraries often include a
large suite of tests with their modules. 2

 2 If they don’t, perhaps their modules should be avoided.

CHAPTER 8 ■ TESTING YOUR CODE

61

 Assertions
 The key to good testing is the choice of inputs or stimuli applied to your code
(the function call; e.g., line 9) and the check that is performed on the outcome.
The checks are implemented as assertions . The unittest module provides around
20 different assertion variations. Examples include the following:

• assertEquals. This variation asserts exact equality between two
values (the result and your predicted result).

• assertTrue. Is an expression true?

• assertIn. Is a value in a sequence?

• assertGreaterEqual. Is one value greater than or equal to
another?

 More Complex Test Scenarios
 The unittest framework has many more features. Examples are setup() and teardown()
methods in the TestCase class. These methods are called automatically, just before
and just after each test case, to perform a standard setup (of variables, data, or the
environment) to allow each test to run correctly. The teardown process tidies up after the
test (if necessary).

 ■ Note We have now covered the basic elements of the Python language and explored
the unittest module for testing. Now, let's look at using some popular libraries to do
something useful.

63© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7_9

 CHAPTER 9

 Accessing the Web 1

 Python has standard libraries that enable programmers to write both clients and servers
that both use and implement Internet services such as electronic mail, File Transfer
Protocol (FTP), and, of course, web sites.

 In this chapter we look at how it is possible to use Python to access web sites and
services. Suppose you wanted to download a page from a web site and save the HTML
that was retrieved. The user needs to enter a URL for the site. Perhaps you want to be able
to add a query string to the URL to pass data to the request, and you want to then display
the response or save it to disk.

 You would design your program to work in stages, of course:

 1. Ask the user for a URL.

 2. Ask for the query string to append to the URL.

 3. Ask whether to save to disk.

 The listing of program webtest.py is shown here.

 1 import requests
 2 from urllib.parse import urlparse
 3
 4 url=input('Web url to fetch:')
 5 urlparts=urlparse(url)
 6 if urlparts[0]=='':
 7 url=''.join(('http://',url))
 8
 9 qstring=input('Enter query string:')
 10 if len(qstring)>0:
 11 url='?'.join((url,qstring))
 12
 13 save=input('Save downloaded page to disk [y/n]?')
 14
 15 print('Requesting',url)
 16

 1 Some familiarity with the operation of web servers, browsers, and HTML is assumed in this chapter.

CHAPTER 9 ■ ACCESSING THE WEB

64

 2 Yes, it’s a program, the first that really does something you might actually find useful.

 17 try:
 18 response = requests.get(url)
 19 if save.lower()=='y':
 20 geturl=response.url
 21 urlparts=urlparse(geturl)
 22 netloc=urlparts[1]
 23 if len(netloc)==0:
 24 fname='save.html'
 25 else:
 26 fname='.'.join((netloc,'html'))
 27 print('saving to',fname,'...')
 28 fp=open(fname,'w')
 29 fp.write(response.text)
 30 fp.close()
 31 else:
 32 print(response.text)
 33 except Exception as e:
 34 print(e.__class__.__name__,e)

 Let’s walk through this program. 2

• Lines 1 and 2 import required modules (requests and urlparse).

• Lines 4 through 7 get a URL from the user. If the user doesn’t
include the http:// part of the URL, the program adds the prefix.

• Lines 10 through 12 ask the user for a query string and append it
to the URL with a ? character.

• Lines 14 through 16 ask the user if he or she wants to save the
output to a file, then print the full URL to be requested.

• Lines 18 through 40 do most of the work; any exception is trapped
by lines 34 and 35.

• Line 19 gets the URL and saves the response in response.

• Lines 20 through 31 create a file name based on the URL to the
web site (or uses save.html) and saves the output to that file.

• Line 33 prints the response content to the screen.

 When I ran this program, this is what I saw:

 D:\LeanPython\programs>python webtest.py
 Web url to fetch:uktmf.com
 Enter query string:q=node/5277
 Save downloaded page to disk [y/n]?y

CHAPTER 9 ■ ACCESSING THE WEB

65

 Requesting http://uktmf.com?q=node/5277
 saving to uktmf.com.html ...

 d:\LeanPython\programs>

 The contents of the downloaded page were saved in uktmf.com.html .
 The requests library is very flexible in that you can access the HTTP “post” verb

using requests.post().
 You can provide data to post commands as follows:

 data = {'param1': 'value 1','param2': 'value 2'}
 response = request.post(url,data=data)

 Where web sites or web services require it, you can provide credentials for
authentication and obtain the content as JSON data. You can provide custom headers to
requests and see the headers returned in the response easily, too.

 The requests module can be used to test web sites and web services quite
comprehensively.

67© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7_10

 CHAPTER 10

 Searching

 Searching for Strings
 Searching for text in strings is a common activity and the built-in string function find() is
all you need for simple searches. It returns the position (offset) of the find or –1 if not found.

 >>> txt="The quick brown fox jumps over the lazy dog"
 >>> txt.find('jump')
 20
 >>> txt.find('z')
 37
 >>> txt.find('green')
 -1

 More Complex Searches
 There are often circumstances when the search is not so simple. Rather than a simple
string, we need to look for a pattern and extract the information we really want from the
matched text. Suppose for example, we wanted to extract all the URLs in links on a web
page. Here are some example lines of HTML text from a real web page.

 1 <link rel="alternate" type="application/rss+xml" title="RSS: 40 newest
packages" href="https://pypi.python.org/pypi?:action=packages_rss"/>

 2 <link rel="stylesheet" media="screen" href="/static/styles/screen-
switcher-default.css" type="text/css"/>

 3 Browse packages

 4 PyPI
Tutorial

 There is quite a lot going on in the text here.

• Line 1 refers to an RSS feed.

• Line 2 has an href attribute, but it refers to a Cascading Style
Sheets (CSS) file, not a link.

CHAPTER 10 ■ SEARCHING

68

• Line 3 is a true link but the URL is relative; it doesn’t contain the
web site part of the URL.

• Line 4 is a link to an external site.

 How can we hope to use some software to find the links that we care about? Well, this
is where regular expressions come in.

 Introducing Regular Expressions 1
 Regular expressions 2 are a way of using pattern matching to find the text we are interested
in. Not only are patterns matched, but the re module can extract the data we really want
out of the matched text.

 Many more examples could be written, and in fact there are whole books written
about regular expressions (e.g., [16], [17]). There are many web sites, but the most useful
is probably http://www.regular-expressions.info .

 ■ Note A regex is a string containing both text and special characters that define a
pattern that the re functions can use for matching.

 Simple Searches
 The simplest regex is a text string that you want to find in another string, as shown in
Table 10-1 .

 Table 10-1. Finding a Simple String

 Regex String Matched

 jumps jumps

 The Queen The Queen

 Pqr123 Pqr123

 Using Special Characters
 There are special characters, listed in Table 10-2 , that influence how the match is to be
performed.

 1 The full documentation of the Python re module can be found at https://docs.python.org/3/
library/re.html . Regular expressions are an advanced topic in any programming language.
 2 Often, regular expression is shortened to regex .

http://www.regular-expressions.info/
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

CHAPTER 10 ■ SEARCHING

69

 There are a number of special characters, listed in Table 10-3 , that can be matched, too.

 Table 10-2. Using Special Characters

 Symbols Description Example

 literal Match a literal string Jumps

 re1|re2 Match string re1 OR re2 Yes|No

 . Match any single character (except \n) J.mps

 ̂ Match start of string ̂ The

 $ Match end of string well$

 * Match 0 or more occurrences of preceding regex [A-Z]*

 + Match 1 or more occurrences of preceding regex [A-Z]+

 ? Match 0 or 1 occurrences of preceding regex [a-z0-9]?

 {m,n} Match between m and n occurrences of the
preceding regex (n optional)

 [0-9]{2,4}

 [...] Match any character from character class [aeiou]

 [x-y] Match any character from range [0-9],[A-Za-z]

 [^...] Do not match any character from character class [^aeiou]

 Table 10-3. Searching with Special Characters

 Special Character Description Example

 \d Match any decimal digit BBC\d

 \w Match any alphanumeric character Radio\w+

 \s Match any whitespace character The\sBBC

 Table 10-4 gives some examples of regular expressions and the strings that they
would match.

 Table 10-4. Regular Expressions and Matching Strings

 Regex String(s) Matched

 smith|jones smith, jones

 UNE..O Any two characters between UN and O; e.g., UNESCO, UNEzyO, UNE99O

 ̂ The Any string that starts with The

 end$ Any string that ends with end

 c[aiou]t cat, cit, cot, cut

 [dg][io][gp] dig, dip, dog, dop, gig, gip, gog, gop

 [a-d][e-i] 2 chars a/b/c/d followed by e/f/g/h/i

CHAPTER 10 ■ SEARCHING

70

 ■ Note Regexes can use any combination of text and special characters, so they can look
extremely complicated sometimes. Start simple.

 Finding Patterns in Text
 Finding substrings in text is fine, but often we want to find patterns in text, rather than literal
strings. Suppose we wanted to extract numeric values, phone numbers, or web site URLs
from text. How do we do that? This is where the real power of regular expressions lies.

 Here is an example regex:

 \s[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}[\s]

 Can you guess what it might find? It is a regex for finding e-mail addresses in text. At
first glance, this looks pretty daunting, so let’s break it down into its constituent parts. 3
First, the regex refers only to uppercase letters (to reduce the length of the regex), so this
assumes that the string to be searched has already been uppercased.

 There are six elements to this regex:

 1 \s
 2 [A-Z0-9._%+-]+
 3 @
 4 [A-Z0-9.-]+
 5 \.
 6 [A-Z]{2,4}
 7 [\s\.]

 Leading whitespace
 One or more characters
 @ character
 A-Z , 0-9 .-
 Dot character
 2 to 4 text characters
 Whitespace or full stop

 Obviously, you need to know the rules for the pattern you search for and there are
specific rules for the construction of e-mail addresses.

 Here is the file remail.py .

 1 import re # The RegEx library
 2 #
 3 # our regular expression (to find e-mails)
 4 # and text to search
 5 #
 6 regex = '\s[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}[\s]'
 7 text="""This is some text with x@y.z embedded e-mails
 8 that we'll use as@example.com
 9 some lines have no email addresses

 3 Note that this e-mail finder regex is not perfect. It would not find an address at the start of a string
and it would ignore e-mail addresses with more than four characters in the trailing element
(e.g., '.mobile').

CHAPTER 10 ■ SEARCHING

71

 10 others@have.two valid email@addresses.com
 11 The re module is awonderful@thing."""
 12 print('** Search text ***\n'+text)
 13 print('** Regex ***\n'+regex+'\n***')
 14 #
 15 # uppercase our text
 16 utext=text.upper()
 17 #
 18 # perform a search (any emails found?)
 19 s = re.search(regex,utext)
 20 if s:
 21 print('*** At least one email found "'+s.group()+'"')
 22 #
 23 # now, find all matches
 24 #
 25 m = re.findall(regex,utext)
 26 if m:
 27 for match in m:
 28 print('Match found',match.strip())

• Line 1 imports the modules we need.

• Lines 6 through 13 define the text string to search and the regex
we will use, then print them both.

• Line 16 uppercases the text.

• Lines 19 through 21 perform the simple search for the first (any)
e-mail and print the result. Note that a match contains leading
and trailing whitespace.

• Lines 25 through 28 find all matches in the text and print the
results.

 Note that the regex matches the e-mail address and the whitespace boundaries. In
Line 21 we print the match including the trailing newline, but in line 28 we strip off the
spare characters.

 What do we get when we run this code? Here is the result.

 D:\LeanPython\programs\Python3>python remail.py
 ** Search text ***
 This is some text with x@y.z embedded emails
 that we'll use as@example.com
 some lines have no email addresses
 others@have.two valid email@addresses.com
 The re module is awonderful@thing.
 ** Regex ***
 \s[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}[\s]

CHAPTER 10 ■ SEARCHING

72

 *** At least one email found " AS@EXAMPLE.COM
 "
 Match found AS@EXAMPLE.COM
 Match found OTHERS@HAVE.TWO
 Match found EMAIL@ADDRESSES.COM

 Capturing Parentheses
 One more aspect we should mention is the use of parentheses. They can be searched
for, like any other character, but they can also be used to delineate substrings that are
matched, and the re module can capture these substrings and place them in a list
returned by the search process. These so-called capturing parentheses feature in the
following example and provide the URLs we want to extract from a page of HTML.

 Finding Links in HTML
 The following program downloads a single web page using the urllib library. The text of
the downloaded HTML content is then searched using a complicated regular expression
that extracts text links and provides the URL and the text of the link as seen by the user.

 This program is called regex.py .

 1 import urllib.request
 2 import re # The RegEx library
 3 #
 4 # this code opens a connection to the leanpy.com website
 5 #
 6 response = urllib.request.urlopen('http://leanpy.com')
 7 data1 = str(response.read()) # put response text in data
 8 #
 9 # our regular expression (to find links)
 10 #
 11 regex = '<a\s[^>]*href\s*=\s*\"([^\"]*)\"[^>]*>(.*?)'
 12 #
 13 # compile the regex and perform the match (find all)
 14 #
 15 pm = re.compile(regex)
 16 matches = pm.findall(data1)
 17 #
 18 # matches is a list
 19 # m[0] - the url of the link
 20 # m[1] - text associated with the link
 21 #
 22 for m in matches:
 23 ms=''.join(('Link: "',m[0],'" Text: "',m[1],'"'))
 24 print(ms)

CHAPTER 10 ■ SEARCHING

73

 The output of this program is shown here.

 1 D:\LeanPython\programs>python re.py
 2 200 OK
 3 Link: "http://leanpy.com/" Text: " Lean Python "
 4 Link: "#content" Text: "Skip to content"
 5 Link: "http://leanpy.com/" Text: "Home"
 6 Link: "http://leanpy.com/?page_id=33" Text: "About Lean Python "
 7 Link: "http://leanpy.com/" Text: "<img src="http://leanpy.com/wp-

content/uploads/2014/04/cropped-LeanPythonHeader.jpg" class="header-
image" width="950" height="247" alt="" />"

 8 Link: "http://leanpy.com/?p=1" Text: "The Lean Python Pocketbook"
 9 Link: "http://leanpy.com/?p=1#respond" Text: "<span class="leave-

reply">Leave a reply"
 10 Link: "http://leanpy.com/wp-content/uploads/2014/04/

OnePieceCover1-e1396444631642.jpg" Text: "<img class="wp-image-17
alignleft" alt="OnePieceCover" src="http://leanpy.com/wp-content/
uploads/2014/04/OnePieceCover1-e1396444631642-633x1024.jpg" width="305"
height="491" />"

 11 Link: "http://leanpy.com/?cat=3" Text: " Lean Python Book"
 12 Link: "http://leanpy.com/?tag=book" Text: "Book"
 13 Link: "http://leanpy.com/?p=1" Text: "<time class="entry-date"

datetime="2014-04-02T12:06:06+00:00">April 2, 2014</time>"
 14 Link: "http://leanpy.com/?author=1" Text: "paulg"
 15 Link: "http://leanpy.com/?p=1" Text: "The Lean Python Pocketbook"
 16 Link: "http://leanpy.com/?cat=3" Text: " Lean Python Book"
 17 Link: "http://leanpy.com/wp-login.php?action=register" Text: "Register"
 18 Link: "http://leanpy.com/wp-login.php" Text: "Log in"
 19 Link: "http://leanpy.com/?feed=rss2" Text: "Entries <abbr title="Really

Simple Syndication">RSS</abbr>"
 20 Link: "http://leanpy.com/?feed=comments-rss2" Text: "Comments <abbr

title="Really Simple Syndication">RSS</abbr>"
 21 Link: "http://wordpress.org/" Text: "WordPress.org"
 22 Link: "http://wordpress.org/" Text: "Proudly powered by WordPress"

 You can see that the program identifies all the links, but isn’t yet as smart as we might
like.

• Line 4: This link uses a bookmark to the same page.

• Line 7: The link text is actually an image (do we need to worry
about that?).

 Perhaps you could improve on the regex used, as an exercise.

75© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7_11

 CHAPTER 11

 Databases 1

 Every application makes use of some form of (persistent) storage. We have looked at plain
text files already. In this chapter we consider how a database, in particular a relational
database, can be accessed and used by Python programs.

 Python provides standard functions to access all of the popular databases. There are
many open source and commercial database products and each one has its own adapter
that allows Python to connect to and use data held in it. For our purposes, we use the
SQLite database because it requires no other installed software.

 SQLite
 SQLite is a very lightweight serverless tool. The core Python product includes the SQLite
adapter, allowing us to demonstrate the most important database features. SQLite
behaves in the same way as bigger systems, but has low (near-zero) administrative
overhead. A consequence of this is that SQLite can be used for development or
prototyping and migrating to a more sophisticated database can be done later. For our
purposes, SQLite provides all the features we require.

 Database Functions
 These are the key SQLite database functions we will be using:

 # open (or create) a database file and return
 # the connection
 conn = sqlite3 .connect(filename)

 # executes a SQL statement
 conn.executescript(sql)

 # return a cursor
 cursor = conn.cursor()

 1 This chapter presumes a knowledge of the relational database model and simple Structured Query
Language (SQL) commands.

CHAPTER 11 ■ DATABASES

76

 # execute the SQL query that returns rows of data
 cursor.execute(sql)

 # returns the data as a list of rows
 rows = cursor.fetchall()

 Connecting and Loading Data into SQLite
 Here is an example program that creates a new database, a single table, inserts some data,
performs a query, and attempts to insert a duplicate row (dbcreate.py).

 1 import os
 2 import sqlite3
 3
 4 db_filename='mydatabase.db'
 5 #
 6 # if DB exists - delete it
 7 #
 8 exists = os.path.exists(db_filename)
 9 if exists:
 10 os.unlink(db_filename)
 11 #
 12 # connect to DB (create it if it doesn't exist)
 13 #
 14 conn = sqlite3.connect(db_filename)
 15 #
 16 # create a table
 17 #
 18 schema="""create table person (
 19 id integer primary key autoincrement not null,
 20 name text not null,
 21 dob date,
 22 nationality text,
 23 gender text)
 24 """
 25 conn.executescript(schema)
 26 #
 27 # create some data
 28 #
 29 people="""insert into person (name, dob,nationality,gender)
 30 values ('Fred Bloggs', '1965-12-25','British','Male');
 31 insert into person (name, dob,nationality,gender)
 32 values ('Santa Claus', '968-01-01','Lap','Male');
 33 insert into person (name, dob,nationality,gender)
 34 values ('Tooth Fairy', '1931-03-31','American','Female');
 35 """
 36 conn.executescript(people)

CHAPTER 11 ■ DATABASES

77

 37 #
 38 # execute a query
 39 #
 40 cursor = conn.cursor()
 41 cursor.execute("select id, name, dob,nationality,gender from person")
 42 for row in cursor.fetchall():
 43 id, name, dob,nationality,gender = row
 44 print("%3d %15s %12s %10s %6s" % (id, name, dob,nationality,gender))
 45 #
 46 # attempt to insert a person with no name
 47 #
 48 try:
 49 dupe="insert into person (id, dob,nationality,gender) \
 50 values (1,'1931-03-31','American','Female');"
 51 conn.executescript(dupe)
 52 except Exception as e:
 53 print('Cannot insert record',e.__class__.__name__)

• Lines 1 and 2 import the modules we need.

• Lines 4 through 10 delete an old database file if one exists (be
careful not to use the database created in this program for
anything useful!).

• Line 14 creates the database file.

• In lines 18 through 25, the schema is a set of commands (a SQL
script) that will create a new table.

• Line 26 executes the SQL script to create the new table.

• In lines 29 through 36 a new script is defined that includes the
SQL commands to insert three records in the new table.

• Line 37 executes the script.

• In lines 40 through 44, to execute a query, you need to create a
cursor, then execute the query using that cursor. This establishes
the query content but doesn’t fetch the data. The cursor.
fetchall() provides an iterable list of rows that are assigned to
named variables, which are then printed.

• Lines 48 through 53 set up an insert of a row and the try…except
clauses catch errors on the insert. The insert SQL omits the name
field deliberately to trigger an exception.

 The output from this program is shown hee.

 D:\LeanPython\programs>python dbcreate.py
 1 Fred Bloggs 1965-12-25 British Male
 2 Santa Claus 968-01-01 Lap Male
 3 Tooth Fairy 1931-03-31 American Female
 Cannot insert record IntegrityError

CHAPTER 11 ■ DATABASES

78

 The exception caused by the insert statement on line 52 is triggered because the
 name field is not supplied (and must be not null).

 In the following listing (dbupdate.py), we are passing two arguments to the program
and using those in a SQL update command to change the nationality of a person.

 1 import sqlite3
 2 import sys
 3 #
 4 # arguments from command line
 5 # use: python dbupdate.py 1 Chinese
 6 #
 7 db_filename = 'mydatabase.db'
 8 inid = sys.argv[1]
 9 innat = sys.argv[2]
 10 #
 11 # execute update using command-line arguments
 12 #
 13 conn = sqlite3.connect(db_filename)
 14 cursor = conn.cursor()
 15 query = "update person set nationality = :nat where id = :id"
 16 cursor.execute(query, {'id':inid, 'nat':innat})
 17 #
 18 # list the persons to see changes
 19 #
 20 cursor.execute("select id, name, dob,nationality,gender from person")
 21 for row in cursor.fetchall():
 22 id, name, dob,nationality,gender = row
 23 print("%3d %15s %12s %10s %6s" % (id, name, dob,nationality,gender))

• Lines 8 and 9 get the data from the command line: inid and
 innat .

• Lines 13 through 16 do most of the work. Lines 13 and 14 set up
the cursor. Line 15 is SQL as before, but the values to be used for
the fields in the SQL (id and nat) are parameterized using the
colon notation (: id and : nat). Line 16 executes the query and
provides the actual values of the parameters using a dictionary as
the second argument to the call {'id':inid, 'nat':innat}.

 The output is shown here.

 D:\LeanPython\programs>python dbupdate.py 1 Chinese
 1 Fred Bloggs 1965-12-25 Chinese Male
 2 Santa Claus 968-01-01 Lap Male
 3 Tooth Fairy 1931-03-31 American Female

 The colon notation and dictionary can be used to parameterize any SQL call.

79© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7_12

 CHAPTER 12

 What Next?

 In this little book, I have introduced the core Python features that I use in my own Python
development. If you worked through all the examples, experimented using the interactive
interpreter, and played with the example programs, you will have a pretty good grasp of
the most fundamental elements of this wonderful programming language.

 Other aspects of Python might seem fairly mysterious, though. The sections on
regular expressions, web applications, and SQLite are intended only to whet your appetite
to learn more.

 If, like me, you get the programming bug, there will be no stopping you from
exploring the language and what you can do with it. If you are an experienced
programmer using another language, I hope you appreciate how Python works and
the ease with which you can write code. You might even think of abandoning your old
language in favor of Python. Some of you might have seen enough. Programming, Python,
and all that nonsense might not be for you. You suspected this before and, well, at least
you know for sure now.

 If you do choose to go further, here is some advice:

 1. Buy a good language reference book or familiarize yourself
with the online Python references given in the Appendix.

 2. Explore the PyPI resource. Whatever you want to do in code,
someone else will have created a library that will make your
life much easier. Take advantage of that.

 3. Practice. It is as simple as that. Like spoken language and
many other skills, if you don’t use it you will lose it. If you
aren’t using Python for work this week, then have fun with it
instead.

 If you go further with Python, I know you’ll have fun!

CHAPTER 12 ■ WHAT NEXT?

80

 Appendices
 References
 Web 1
 1. http://www.artima.com/intv/pythonP.html . An interview

with Guido van Rossum, the inventor of Python.

 2. http://en.wikipedia.org/wiki/Python_(programming_
language) . The Wikipedia entry for the Python language.

 3. http://web2py.com . The Web2py web development
framework by Massimo De Pierro.

 4. http://legacy.python.org/dev/peps/pep-0008/ . A (PEP 8)
style guide for Python code.

 5. http://legacy.python.org/dev/peps/pep-0020/ . The Zen
of Python.

 6. https://wiki.python.org/moin/Python2orPython3 . Should
I use Python 2 or Python 3?

 7. https://pypi.python.org/pypi . Python Package Index.

 8. https://docs.python.org/3/using/cmdline.html . Using
the Python command-line environment.

 9. http://www.python.org . The official site for the Python
language.

 10. https://docs.python.org/ . Python standard
documentation.

 11. https://docs.python.org/3/library/index.html . Python
Standard Library.

 12. http://legacy.python.org/dev/peps/pep-0020/ . The Zen
of Python (2014).

 Books
 13. Core Python Programming, Wesley Chun.

 14. The Python Standard Library by Example, Doug Hellmann.

 15. Python Cookbook, Alex Martelli, David Ascher, and Anna
Martelli Ravenscroft.

 1 These URLs worked at the time of publication but are subject to change.

http://www.artima.com/intv/pythonP.html
http://en.wikipedia.org/wiki/Python_(programming_language) >> endobj 1330 0 obj << /BBox [0 0 220.5 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1328 0 obj << /A 1329 0 R /AP << /N 1330 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 510.799011 307.029999 499.936005] /Subtype /Link /Type /Annot >> endobj 1332 0 obj << /BBox [0 0 36 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1331 0 obj << /A 1329 0 R /AP << /N 1332 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 499.015991 122.529999 488.936005] /Subtype /Link /Type /Annot >> endobj 1334 0 obj << /IsMap false /S /URI /URI (http://web2py.com/) >> endobj 1335 0 obj << /BBox [0 0 76.5 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1333 0 obj << /A 1334 0 R /AP << /N 1335 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 482.799011 163.029999 471.936005] /Subtype /Link /Type /Annot >> endobj 1337 0 obj << /IsMap false /S /URI /URI (http://legacy.python.org/dev/peps/pep-0008/) >> endobj 1338 0 obj << /BBox [0 0 193.5 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1336 0 obj << /A 1337 0 R /AP << /N 1338 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 454.799011 280.029999 443.936005] /Subtype /Link /Type /Annot >> endobj 1340 0 obj << /IsMap false /S /URI /URI (http://legacy.python.org/dev/peps/pep-0020/) >> endobj 1339 0 obj << /A 1340 0 R /AP << /N 1338 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 426.799011 280.029999 415.936005] /Subtype /Link /Type /Annot >> endobj 1342 0 obj << /IsMap false /S /URI /URI (https://wiki.python.org/moin/Python2orPython3) >> endobj 1343 0 obj << /BBox [0 0 202.5 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1341 0 obj << /A 1342 0 R /AP << /N 1343 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 398.799011 289.029999 387.936005] /Subtype /Link /Type /Annot >> endobj 1345 0 obj << /IsMap false /S /URI /URI (https://pypi.python.org/pypi) >> endobj 1346 0 obj << /BBox [0 0 126 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1344 0 obj << /A 1345 0 R /AP << /N 1346 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 370.799011 212.529999 359.936005] /Subtype /Link /Type /Annot >> endobj 1348 0 obj << /IsMap false /S /URI /URI (https://docs.python.org/3/using/cmdline.html) >> endobj 1349 0 obj << /BBox [0 0 198 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1347 0 obj << /A 1348 0 R /AP << /N 1349 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 353.799011 284.529999 342.936005] /Subtype /Link /Type /Annot >> endobj 1351 0 obj << /IsMap false /S /URI /URI (http://www.python.org/) >> endobj 1352 0 obj << /BBox [0 0 94.5 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1350 0 obj << /A 1351 0 R /AP << /N 1352 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 325.799011 181.029999 314.936005] /Subtype /Link /Type /Annot >> endobj 1354 0 obj << /IsMap false /S /URI /URI (https://docs.python.org/) >> endobj 1353 0 obj << /A 1354 0 R /AP << /N 73 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 297.799011 194.529999 286.936005] /Subtype /Link /Type /Annot >> endobj 1356 0 obj << /IsMap false /S /URI /URI (https://docs.python.org/3/library/index.html) >> endobj 1355 0 obj << /A 1356 0 R /AP << /N 1349 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 269.799011 284.529999 258.936005] /Subtype /Link /Type /Annot >> endobj 1357 0 obj << /A 1340 0 R /AP << /N 1338 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 241.798996 280.029999 230.936005] /Subtype /Link /Type /Annot >> endobj 1362 0 obj << /Differences [32 /space 40 /parenleft /parenright 43 /plus 45 /hyphen /period /slash /zero 50 /two /three /four 56 /eight 58 /colon 65 /A /B 68 /D /E /F /G 73 /I 75 /K /L /M /N /O /P 82 /R /S /T /U /V /W 90 /Z 95 /underscore 97 /a /b /c /d /e /f /g /h /i 107 /k /l /m /n /o /p 114 /r /s /t /u /v /w /x /y 124 /bar] /Type /Encoding >> endobj 1364 0 obj << /Filter /FlateDecode /Length 12398 /Subtype /Type1C >> streamH��SiTS���I��$������0�L���2X"�!��Qp��f����>@�m�V�X�j�_������j�H��"�E
http://en.wikipedia.org/wiki/Python_(programming_language) >> endobj 1330 0 obj << /BBox [0 0 220.5 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1328 0 obj << /A 1329 0 R /AP << /N 1330 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 510.799011 307.029999 499.936005] /Subtype /Link /Type /Annot >> endobj 1332 0 obj << /BBox [0 0 36 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1331 0 obj << /A 1329 0 R /AP << /N 1332 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 499.015991 122.529999 488.936005] /Subtype /Link /Type /Annot >> endobj 1334 0 obj << /IsMap false /S /URI /URI (http://web2py.com/) >> endobj 1335 0 obj << /BBox [0 0 76.5 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1333 0 obj << /A 1334 0 R /AP << /N 1335 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 482.799011 163.029999 471.936005] /Subtype /Link /Type /Annot >> endobj 1337 0 obj << /IsMap false /S /URI /URI (http://legacy.python.org/dev/peps/pep-0008/) >> endobj 1338 0 obj << /BBox [0 0 193.5 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1336 0 obj << /A 1337 0 R /AP << /N 1338 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 454.799011 280.029999 443.936005] /Subtype /Link /Type /Annot >> endobj 1340 0 obj << /IsMap false /S /URI /URI (http://legacy.python.org/dev/peps/pep-0020/) >> endobj 1339 0 obj << /A 1340 0 R /AP << /N 1338 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 426.799011 280.029999 415.936005] /Subtype /Link /Type /Annot >> endobj 1342 0 obj << /IsMap false /S /URI /URI (https://wiki.python.org/moin/Python2orPython3) >> endobj 1343 0 obj << /BBox [0 0 202.5 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1341 0 obj << /A 1342 0 R /AP << /N 1343 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 398.799011 289.029999 387.936005] /Subtype /Link /Type /Annot >> endobj 1345 0 obj << /IsMap false /S /URI /URI (https://pypi.python.org/pypi) >> endobj 1346 0 obj << /BBox [0 0 126 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1344 0 obj << /A 1345 0 R /AP << /N 1346 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 370.799011 212.529999 359.936005] /Subtype /Link /Type /Annot >> endobj 1348 0 obj << /IsMap false /S /URI /URI (https://docs.python.org/3/using/cmdline.html) >> endobj 1349 0 obj << /BBox [0 0 198 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1347 0 obj << /A 1348 0 R /AP << /N 1349 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 353.799011 284.529999 342.936005] /Subtype /Link /Type /Annot >> endobj 1351 0 obj << /IsMap false /S /URI /URI (http://www.python.org/) >> endobj 1352 0 obj << /BBox [0 0 94.5 1] /Filter /FlateDecode /Length 9 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> streamx�S���!�!endstream endobj 1350 0 obj << /A 1351 0 R /AP << /N 1352 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 325.799011 181.029999 314.936005] /Subtype /Link /Type /Annot >> endobj 1354 0 obj << /IsMap false /S /URI /URI (https://docs.python.org/) >> endobj 1353 0 obj << /A 1354 0 R /AP << /N 73 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 297.799011 194.529999 286.936005] /Subtype /Link /Type /Annot >> endobj 1356 0 obj << /IsMap false /S /URI /URI (https://docs.python.org/3/library/index.html) >> endobj 1355 0 obj << /A 1356 0 R /AP << /N 1349 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 269.799011 284.529999 258.936005] /Subtype /Link /Type /Annot >> endobj 1357 0 obj << /A 1340 0 R /AP << /N 1338 0 R >> /BS 55 0 R /Border [0 0 0] /F 4 /H /N /Rect [86.529999 241.798996 280.029999 230.936005] /Subtype /Link /Type /Annot >> endobj 1362 0 obj << /Differences [32 /space 40 /parenleft /parenright 43 /plus 45 /hyphen /period /slash /zero 50 /two /three /four 56 /eight 58 /colon 65 /A /B 68 /D /E /F /G 73 /I 75 /K /L /M /N /O /P 82 /R /S /T /U /V /W 90 /Z 95 /underscore 97 /a /b /c /d /e /f /g /h /i 107 /k /l /m /n /o /p 114 /r /s /t /u /v /w /x /y 124 /bar] /Type /Encoding >> endobj 1364 0 obj << /Filter /FlateDecode /Length 12398 /Subtype /Type1C >> streamH��SiTS���I��$������0�L���2X"�!��Qp��f����>@�m�V�X�j�_������j�H��"�E
http://web2py.com/
http://legacy.python.org/dev/peps/pep-0008/
http://legacy.python.org/dev/peps/pep-0020/
https://wiki.python.org/moin/Python2orPython3
https://pypi.python.org/pypi
https://docs.python.org/3/using/cmdline.html
http://www.python.org/
https://docs.python.org/
https://docs.python.org/3/library/index.html
http://legacy.python.org/dev/peps/pep-0020/

CHAPTER 12 ■ WHAT NEXT?

81

 16. Mastering Python Regular Expressions, Felix Lopez and Victor
Romero.

 17. Mastering Regular Expressions, Jeffrey Friedl.

 Tools
 18. Visual CESIL: http://www.obelisk.me.uk/cesil/ (2016).

 19. PIP Installer: http://www.pip-installer.org/ (2014).

 20. The Python unittest framework: https://docs.python.
org/3.4/library/unittest.html .

 Python Built-In Exceptions Hierarchy 2
 In Chapter 7 , we described how Python manages exceptions. We introduced a few
exception types there, but here is the full list.

 BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
 +-- StopIteration
 +-- StandardError
 | +-- BufferError
 | +-- ArithmeticError
 | | +-- FloatingPointError
 | | +-- OverflowError
 | | +-- ZeroDivisionError
 | +-- AssertionError
 | +-- AttributeError
 | +-- EnvironmentError
 | | +-- IOError
 | | +-- OSError
 | | +-- WindowsError (Windows)
 | | +-- VMSError (VMS)
 | +-- EOFError
 | +-- ImportError
 | +-- LookupError
 | | +-- IndexError
 | | +-- KeyError
 | +-- MemoryError

 2 Extracted from https://docs.python.org/3/library/exceptions.html .

http://www.obelisk.me.uk/cesil/
http://www.pip-installer.org/
https://docs.python.org/3.4/library/unittest.html
https://docs.python.org/3.4/library/unittest.html
http://dx.doi.org/10.1007/978-1-4842-2385-7_7
https://docs.python.org/3/library/exceptions.html

CHAPTER 12 ■ WHAT NEXT?

82

 | +-- NameError
 | | +-- UnboundLocalError
 | +-- ReferenceError
 | +-- RuntimeError
 | | +-- NotImplementedError
 | +-- SyntaxError
 | | +-- IndentationError
 | | +-- TabError
 | +-- SystemError
 | +-- TypeError
 | +-- ValueError
 | +-- UnicodeError
 | +-- UnicodeDecodeError
 | +-- UnicodeEncodeError
 | +-- UnicodeTranslateError
 +-- Warning
 +-- DeprecationWarning
 +-- PendingDeprecationWarning
 +-- RuntimeWarning
 +-- SyntaxWarning
 +-- UserWarning
 +-- FutureWarning
 +-- ImportWarning
 +-- UnicodeWarning
 +-- BytesWarning

83© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7

 APPENDIX

 Further Information

 Contacting the Author
 Should you have any questions or wish to discuss any of the issues raised in this book,
or perhaps if would like help in improving development or testing in your organization,
please feel free to contact me.

 E-mail: paul@gerrardconsulting.com

 Are You Interested in Training?
 Gerrard Consulting has provided training courses since 1992.

 Learning Python (1- or 2-day course)
 You will learn and understand the basic constructs of Python and some fundamentals of
software design.

 After the course, you will

• Understand how a program can be constructed.

• Appreciate some of the complexities of software and difficulties of
development.

• Be familiar with the concepts of variables, decisions, loops, input,
and output.

• Recognize the structure of a Python program and how to read
code.

• Have some useful text file and web testing utilities.

 Drop me an e-mail at paul@gerrardconsulting.com if you are interested.

APPENDIX ■ FURTHER INFORMATION

84

 Online Training
 There are a host of online resources aimed at helping you get to grips with Python. Just
search for “learn python” or “python tutorial” and you’ll find lots of examples.

 leanpy.com
 Visit the leanpy.com web site. I’m happy to answer questions about the book or Python.

85

 A
 Arithmetic operators , 12
 Assertions , 61
 Assignment , 5, 6

 B
 Backslash (\) , 4
 Booleans , 14
 Break , 29

 C
 Class , 48
 Coding , 4
 Colon character (:) , 4
 Command line arguments , 41
 Command line mode , 3
 Comments , 4
 Continue , 29

 D
 Debugging , 4
 Dictionaries , 22

 E
 Elif , 25
 Else , 25
 Escaping , 18
 Exceptions , 53
 Expression , 5

 F, G, H
 For statement , 28
 formatstring , 19
 Functions , 30

 I, J, K
 If statement , 25
 Import , 43
 Indentation , 2, 4
 Input , 36
 Integer numbers , 12
 Interactive mode , 1

 L
 Lean Python , 73
 List , 14, 20
 List comprehension , 30

 M
 Module , 8, 30
 Multiple assignment , 6

 N
 Named arguments , 33

 O
 Object orientation , 47
 os module , 40

 Index

© Paul Gerrard 2016
P. Gerrard, Lean Python, DOI 10.1007/978-1-4842-2385-7

■ INDEX

86

 P, Q
 Pass , 26
 Print , 35
 Program structure , 8
 PyPi , 79
 Python function

 append() , 21
 bool() , 14
 close() , 38
 connect() , 76
 datetime.now() , 9
 dict() , 11
 dir() , 2
 fi nd() , 20, 67
 fl oat() , 13
 get() , 24
 has_key() , 23
 help() , 3
 index() , 21
 __init__() , 9, 48–49
 input() , 29
 int() , 11
 isalpha() , 20
 isdigit() , 20
 join() , 20
 keys() , 24
 len() , 2, 20, 22, 31–32
 list() , 11
 long() , 13
 lower() , 20
 lstrip() , 20
 max() , 16
 min() , 16
 open() , 3, 37
 os.chdir() , 40
 os.exists() , 40
 os.getcwd() , 40
 os.isdir() , 40
 os.isfi le() , 40
 os.listdir() , 40
 os.mkdir() , 40
 os.rename() , 40
 os.rmdir() , 40
 os.unlink() , 40
 random.randint() , 14
 random.random() , 14
 range() , 28
 read() , 38
 readlines() , 38
 re.compile() , 73
 re.fi ndall() , 70

 re.search() , 70
 reversed() , 22
 rstrip() , 20
 setup() , 61
 sorted() , 22
 split() , 20
 str() , 11
 sum() , 22
 teardown() , 61
 tuple() , 11
 type() , 11
 upper() , 17
 urlopen() , 63
 urlparse() , 63
 values() , 24
 write() , 39
 writelines() , 40

 Python interpreter , 1
 Python keywords , 6

 R
 Random number , 14
 Real numbers , 12
 Regex , 68
 Regular expressions , 68
 ‘requests’ module , 63
 Return , 32

 S
 Semicolon character (;) , 5
 Slice , 16
 SQLite

 connect() , 75
 cursor() , 75
 execute() , 75
 executescript() , 75
 fetchall() , 75

 sqlite3 module , 75
 String , 14, 16

 comparison , 17
 formatting , 19

 Sub-string , 17

 T
 Test-driven development (TDD) , 57
 Triple quotes (''') , 18
 Try…except , 54
 Tuple , 14, 22

■ INDEX

87

 U
 unittest framework , 58
 urllib , 64, 72

 V
 Variable , 5

 W, X, Y, Z
 Web2py , 80
 While statement , 27–28

www.allitebooks.com

http://www.allitebooks.org

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Preface
	Acknowledgments
	Chapter 1: Getting Started
	The Python Interpreter
	Interactive Mode
	Command-Line Mode

	Coding, Testing and Debugging Python Programs
	Comments, Code Blocks, and Indentation
	Variables
	Common Assignment Operations
	Other Assignment Operations
	Python Keywords
	Special Identifiers

	Python Modules
	Typical Program Structure

	Chapter 2: Python Objects
	Object Types
	Factory Functions
	Numbers
	Arithmetic Operators
	Other Operators

	Conversion Functions
	Boolean Numbers
	Random Numbers

	Sequences: Strings, Lists, and Tuples
	Sequence Storage and Access
	Membership
	Concatenation2
	Sequence Elements and Slices
	Sequence Built-In Functions

	Strings
	Assignment
	Accessing Substrings
	String Comparison
	Membership (Searching)
	Special Characters and Escaping
	Triple Quotes
	String Formatting
	String Functions

	Lists
	Creating Lists
	Updating Lists
	Indexing
	Sequence Operations and Functions

	Tuples
	Creating Tuples
	Sequence Operations and Functions

	Dictionaries
	Creating a Dictionary
	Updating a Dictionary
	Dictionary Operations

	Chapter 3: Program Structure
	Decision Making
	The if Statement
	The pass Statement
	Types of Test

	Loops and Iteration
	For Statement
	While Statement
	Break Statement
	Continue Statement1
	List Comprehensions

	Using Functions
	Why Write Functions?
	What Is a Function?
	Return Values
	Calling a Function
	Named Arguments
	Variable Scope

	Chapter 4: Input and Output
	Displaying Output
	Getting User Input
	Writing and Reading Files
	Opening Files
	Closing Files
	Reading Files
	Writing to Files
	Accessing the File System

	Command-Line Arguments

	Chapter 5: Using Modules
	Importing Code from a Module
	Modules Come from the Python Path
	Creating and Using Your Own Modules

	Chapter 6: Object Orientation1
	What Is Object Orientation?
	Creating Objects Using Classes

	Chapter 7: Exception and Error Handling
	Exceptions and Errors

	Chapter 8: Testing Your Code
	Modularizing Code and Testing It1
	Test-Driven Development
	The unittest Framework
	Assertions
	More Complex Test Scenarios

	Chapter 9: Accessing the Web1
	Chapter 10: Searching
	Searching for Strings
	More Complex Searches
	Introducing Regular Expressions1
	Simple Searches
	Using Special Characters
	Finding Patterns in Text
	Capturing Parentheses
	Finding Links in HTML

	Chapter 11: Databases1
	SQLite
	Database Functions

	Connecting and Loading Data into SQLite

	Chapter 12: What Next?
	Appendices
	References
	Web1
	Books
	Tools

	Python Built-In Exceptions Hierarchy2

	Appendix: Further Information
	Contacting the Author
	Are You Interested in Training?
	Learning Python (1- or 2-day course)
	Online Training
	leanpy.com

	Index

