
Learn CakePHP
With Unit Testing
—
Second Edition
—
Rādhārādhya Dāsa

www.allitebooks.com

http://www.allitebooks.org

 Learn CakePHP
 With Unit Testing

 Second Edition

 Rādh ̄ar ̄adhy a Dāsa

www.allitebooks.com

http://www.allitebooks.org

Learn CakePHP: With Unit Testing, Second Edition

Sándor Gömöri
Somogyvamos, Hungary

ISBN-13 (pbk): 978-1-4842-1213-4 ISBN-13 (electronic): 978-1-4842-1212-7
DOI 10.1007/978-1-4842-1212-7

Library of Congress Control Number: 2016949500

Copyright © 2016 by Sándor Gömöri

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Massimo Nardone
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, James Markham, Susan McDermott,
Matthew Moodie, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Michael G. Laraque
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science+Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text
is available to readers at www.apress.com/9781484212134 . For detailed information about how
to locate your book’s source code, go to www.apress.com/source-code/ . Readers can also access
source code at SpringerLink in the Supplementary Material section for each chapter .

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/9781484212134
http://www.apress.com/source-code/
http://www.allitebooks.org

 Call out Gouranga and be happy

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ... xv

About the Technical Reviewer ... xvii

Acknowledgments .. xix

Introduction .. xxi

About the Book ... xxiii

 ■Chapter 1: What Is CakePHP? ... 3

 ■Chapter 2: What Is Unit Testing? .. 9

 ■Chapter 3: Clean Code .. 15

 ■Chapter 4: Test-Driven Development .. 19

 ■Chapter 5: Development Cycle .. 23

 ■Chapter 6: Preparing for Testing .. 29

 ■Chapter 7: Fixtures ... 49

 ■Chapter 8: Model Tests ... 59

 ■Chapter 9: Controller Tests 1 .. 67

 ■Chapter 10: Mocks ... 81

 ■Chapter 11: Controller Tests 2 .. 89

 ■Chapter 12: Test Suites ... 95

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS AT A GLANCE

vi

 ■Chapter 13: Testing from Command Line 99

 ■Chapter 14: Goodies ... 105

 ■Appendix A: References by Chapter ... 111

Index .. 113

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ... xv

About the Technical Reviewer ... xvii

Acknowledgments .. xix

Introduction .. xxi

About the Book ... xxiii

 ■Chapter 1: What Is CakePHP? ... 3

Main Features ... 3

Short Learning Curve .. 4

Convention over Confi guration ... 4

Easy Installation ... 4

MIT Licensing ... 4

Automatic Code Generation .. 4

Built-in Validation ... 5

MVC Architecture .. 5

Clean URLs and Routes... 5

Flexible Caching ... 5

Built-in Localization .. 5

Integrated Unit Testing .. 6

And More .. 6

Summary ... 6

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

 ■Chapter 2: What Is Unit Testing? .. 9

From Manual Testing to Unit Tests .. 9

Arguments ... 9

Argument #1: It’s Impossible to Test All Variations ... 10

Argument #2: Writing Tests Takes Too Much Time .. 10

Argument #3: Writing Tests Is Hard .. 10

Argument #4: I Don’t Need Tests; I Know My Code ... 10

Argument #5: It Is Just a Waste of Time ... 10

Argument #6: The Tests Might Have Their Own Bugs ... 11

Argument #7: Development Breaks Tests ... 11

Why Should We Write Tests? ... 11

Test Functionality.. 11

Refactoring ... 12

Getting Fast Feedback .. 12

Quality Code ... 12

Use the Best of Your Brain .. 12

Save Time and Money ... 13

Summary ... 13

 ■Chapter 3: Clean Code .. 15

How to Write Clean Code ... 15

Comments .. 15

Naming ... 16

Methods .. 16

Code Formatting ... 16

MVC .. 16

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

How Tests Help in Writing Clean Code ... 17

Planning .. 17

Refactoring ... 17

Summary ... 17

 ■Chapter 4: Test-Driven Development .. 19

PHP TDD Tools ... 19

PHPUnit ... 19

Codeception .. 19

SimpleTest .. 19

Atoum ... 20

Selenium ... 20

TDD Development Cycle .. 20

Step #1: Write Test .. 20

Step #2: Write Code .. 20

Step #3: Refactor .. 20

Step #4: Test Again ... 21

Step #5: Write Code for New Features .. 21

Summary ... 21

 ■Chapter 5: Development Cycle .. 23

Agile .. 23

The Agile Manifesto .. 23

12 Principles Behind the Manifesto .. 24

How CakePHP Supports Agile Development ... 24

The Agile Roadmap to Value .. 25

Product Vision ... 25

Product Roadmap ... 25

Release Plan ... 25

Sprint Planning ... 25

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

Daily Meetings .. 25

Sprint Review ... 26

Sprint Retrospective ... 26

Summary ... 26

 ■Chapter 6: Preparing for Testing .. 29

Installing .. 29

Install Webserver .. 29

Install MySQL .. 30

Install PHP .. 30

Post Installation .. 31

Install Composer ... 32

Install CakePHP .. 32

Installing PHPUnit ... 33

Install phpMyAdmin .. 34

Check Your Test Setup .. 34

Preparing ... 35

Set Debug Level .. 35

Set Up Test Database .. 35

Set Up Session Handling .. 42

Create the Default Layout ... 42

CakePHP Models ... 42

CakePHP Controllers ... 44

CakePHP Views ... 44

Baking... 44

Clean It Up .. 46

Let’s Play .. 46

Summary ... 47

 ■ CONTENTS

xi

 ■Chapter 7: Fixtures ... 49

Creating Fixtures ... 49

On the Fly ... 49

Importing the Existing Model Schema .. 53

Loading Fixtures into Your Tests .. 55

Summary ... 57

 ■Chapter 8: Model Tests ... 59

Names of Test Functions ... 61

Assertions ... 61

Fail First .. 61

Passing Test .. 62

Tests and Fat Models .. 63

Test Callbacks ... 63

Summary ... 64

 ■Chapter 9: Controller Tests 1 .. 67

Overview of the Baked Controller .. 67

The Magic Behind Bake ... 72

Creating Controller Tests ... 72

About Integration Tests .. 76

Assertion Methods .. 76

Setting Request Data... 77

Summary ... 78

 ■Chapter 10: Mocks ... 81

Mocking Sessions ... 81

Mocking Model Methods ... 82

Expects Method ... 83

 ■ CONTENTS

xii

A More Complex Mock Example .. 84

Mocking Core PHP Functions .. 85

Summary ... 87

 ■Chapter 11: Controller Tests 2 .. 89

Testing with Authentication ... 89

Testing JSON Response... 91

Summary ... 93

 ■Chapter 12: Test Suites ... 95

Using TestSuite .. 95

Using phpunit.xml ... 96

Summary ... 96

 ■Chapter 13: Testing from Command Line 99

Debug Messages ... 99

Run All Tests .. 99

Run Test Suites .. 99

Run All Tests in a File .. 100

Filtering Test Cases ... 100

Understanding a Failing Test’s Output ... 100

Interrupting Tests .. 103

Summary ... 103

 ■Chapter 14: Goodies ... 105

Code Coverage .. 105

Fixtures Data ... 107

Testing Private Methods .. 107

Testing Views .. 108

Testing Components .. 108

 ■ CONTENTS

xiii

Testing Helpers .. 109

Testing Plugins .. 110

Summary ... 110

 ■Appendix A: References by Chapter ... 111

What Is Unit Testing? ... 111

Clean Code .. 111

Test-Driven Development .. 111

Development Cycle .. 112

Others .. 112

Index .. 113

xv

 About the Author

 Rādhārādhya Dāsa started to code for the Web in plain
HTML while in college in 1998. As the Web evolved, he
turned to PHP, then to JavaScript. With the advent of
mobile technologies, he began to experiment with Java
for Android development.

 He’s a big fan of CakePHP and jQuery frameworks,
open source, and pizza, all of which are essential in his
web development.

xvii

 About the Technical
Reviewer

 Massimo Nardone holds a master of science degree in
computer science from the University of Salerno, Italy.
He has worked as a project manager, software engineer,
research engineer, chief security architect, information
security manager, PCI/SCADA auditor, and senior lead
IT security/cloud/SCADA architect for many years. He
currently works as chief information security office
(CISO) for Cargotec Oyj. He has more than 22 years of
work experience in IT, including security, SCADA,
cloud computing, IT infrastructure, mobile, security,
and World Wide Web technology areas for both national
and international projects. He worked as a visiting

lecturer and supervisor for exercises at the Networking Laboratory of the Helsinki
University of Technology (Aalto University). He has been programming and teaching how
to program with Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for more than
20 years. He holds four international patents (PKI, SIP, SAML, and Proxy areas) and is the
coauthor of Pro Android Games (Apress, 2015).

xix

 Acknowledgments

 I would like to thank you for spending your time reading this book.
 I also should say thank you to the core CakePHP team and everybody else who’s

contributed anything, small or big, to this wonderful framework.
 Finally, special thanks go to Italy for pizza and to Hungary for Túró Rudi—both are

essential for web development.

xxi

 Introduction

 I love to code for the Web, but I don’t like hunting for bugs I’ve made myself. And I hate—
I mean really hate—hunting for bugs made by other people.

 Most of the time, our code depends on other people. We use frameworks, utilities,
and objects created and maintained by others. All thid-party code falls into this category.
As web developers, all of us upgrade our code to implement new features, to fix bugs,
or to make our creations compatible with new server versions. Any upgrades could
introduce new behaviors, new interfaces, and certainly new bugs. Whether you work
alone or as a member of a team, we all depend on one another’s code.

 Writing code is not like writing a letter to grandma. Actually, writing code is not
writing at all. If we spend enough time planning, and if the requirements are clear and
don’t change during development, writing code could be something like writing a letter.
But in reality it’s something else. When we write code, we first write one small part, then
check it, modify it, check it again, write something else connected to the first part, check
that also, check the first part again, and, when it fails, modify it again, check it again, and
on and on. Sound familiar?

 Do you repeatedly push the Refresh button of your favorite browser to check the
output, just because you wrote two lines of code? Are you bored of filling the same form a
hundred times with different inputs to check how it will be processed on the server side?
Are var_dump and debug() your best friends? Does everything work fine in development
but after installation nothing happens? Or worse, are there just a few things not working
in the production environment, but you have no idea why not? Or maybe you just want
to learn a new approach that will give you better, simpler, and more maintainable code.
Maybe you’re looking for something that will help you identify bugs and save time. If so,
keep reading.

xxiii

 About the Book

 I wrote this book for the following audiences: people who have programming skills and
want to improve the quality of their code, people who have heard about unit testing but
are still not clear what it is or how it works, people who love CakePHP and want to take
advantage of what it offers, and people who have spent a lot of time searching for bugs
after a third-party upgrade.

 The examples in this book use CakePHP, but the first half of the book is not
framework- or language-specific. I hope unit testing and the ideas presented in this book
will help you as much as they’ve helped me.

 Why I Wrote This Book
 I started to use CakePHP at version 1.1. The framework is wonderful and improving
nicely, with an open and helpful staff and community. It helped me to became a better
programmer.

 When I started to code, I did everything from scratch. I did not know about
programming patterns, utilities, or libraries. I was able to build middle-size systems
this way.

 After a while, I decided that mixing application logic and presentation logic have
more cons than pros, so I started to use Smarty (http://smarty.net/). Smarty was
a great help. In time, it helped me to see that my best practices were really my worst
practices. I knew I needed something more.

 I realized there are a few features I need in most of my web applications. I started to
think about how I code and, after some time, came up with an extremely simple and dull
framework, without really knowing that frameworks exist.

 That was when I heard about MVC (Model-View-Controller) Pattern. At first, it seemed
like an unnecessary complication in the code, but I wanted to give it a try anyway. When I
tried to understand MVC, I found some information about frameworks. I tried CodeIgniter
(http://ellislab.com/codeigniter), and then CakePHP (http://cakephp.org).

 The first bite of CakePHP was awful, especially because I was (and am) a big fan of
 bake auto-code generation. I thought that the whole framework just saved so much time
and produced a much clearer and more maintainable code.

 But eventually, I would use CakePHP to write an online accounting system. It
was about money, so the code should always work as expected. I spent a lot of time
testing—by clicking links, filling out forms, typing in test data again and again—trying
to understand why the code failed when it failed. But that was OK. That’s how you make
things work.

http://smarty.net/
http://smarty.net/
http://ellislab.com/codeigniter
http://ellislab.com/codeigniter
http://cakephp.org/
http://cakephp.org/

 ■ ABOUT THE BOOK

xxiv

 CakePHP version 1.3 came out, and then Cake 2. I wanted to upgrade, but upgrading
seemed like such a hassle. I was reluctant. I didn’t know how much time I should spend
upgrading, or how many hidden bugs would be in the code. Relying on error messages
when the base framework of a third-party code changes is a nightmare.

 I had heard about unit testing, but I actually didn’t care. A code that’ll test my code?
Silly. But I tried to understand, and I found many articles in support of unit testing. You
can read them for yourself under “Arguments” in Chapter 2 . Finally, I gave them a try, and
they helped. They helped a lot.

 I think many of you have had similar experiences. Let’s try to shorten our learning curve.
 I hope this book will help you, and that my suggestions can save you some time.

 My Development Environment
 I tried to use code examples that are independent of the environment, but, as we all know,
this is impossible. With that in mind, following is my system and the software I’m using:

• Ubuntu 16.04

• PHP 7.0.4

• CakePHP 3.2.8

• PHPUnit 5.3.2

• MySQL 5.0.12

• MySQL Workbench 6.3.4

• PHPStorm 10

• xdebug 2.4.0

 Who This Book Is For
 This book is for novice and intermediate programmers. It assumes that you have a
general understanding of PHP and object-oriented programming (OOP).

 It’s good if you are familiar with CakePHP, especially in later chapters. But even if
you’re not, you will probably still be able to understand most of the principles and codes.

http://dx.doi.org/10.1007/978-1-4842-1212-7_2

 Secrets of the cake industry

3© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_1

 CHAPTER 1

 What Is CakePHP?

 PHPs market share for web sites is more than 80%. 1 Why is it so popular? It’s easy and fast to
learn, available on nearly every web server, and used for popular applications. It has a lot of
wonderful frameworks, such as Zend, 2 Symfony, 3 and, perhaps our favorite, CakePHP.

 The frameworks are different in their approach, complexity, and style. I think
CakePHP stands out, with its short learning curve, concentrating on rapid development.

 Frameworks help you to speed up your development, give you well-organized,
maintainable, and reusable code, and assets for handling security, localization, and more.

 The CakePHP manual 4 (or “cookbook”) states: “CakePHP is a free 5 , open- source 6 ,
 rapid-development 7 framework 8 for PHP 9 .”

 I think CakePHP is most famous for its ten-minute blog tutorial. And, yes, it’s true:
with CakePHP, you can build a working blog in ten minutes! And you can build bigger
web applications just as fast, without sacrificing flexibility.

 Main Features
 Most popular PHP frameworks try to offer solutions to the same problems. So, choosing
one is not easy. Most developers work with one framework and know a bit about a few
others. And certainly, everybody thinks the best is what they use. So, in the following
sections, let’s see why I choose CakePHP.

 1 W 3 (Web Technology Surveys), “Usage statistics and market share for PHP websites,”
 https://w3techs.com/technologies/details/pl-php/all/all , 2009–2016.
 2 http://framework.zend.com/
 3 https://symfony.com/
 4 http://book.cakephp.org
 5 http://en.wikipedia.org/wiki/MIT_License
 6 http://en.wikipedia.org/wiki/Open_source
 7 http://en.wikipedia.org/wiki/Rapid_application_development
 8 http://en.wikipedia.org/wiki/Application_framework
 9 http://www.php.net/

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-1212-7_1) contains supplementary material, which is available to
authorized users.

https://w3techs.com/technologies/details/pl-php/all/all
http://framework.zend.com/
https://symfony.com/
http://book.cakephp.org/
http://en.wikipedia.org/wiki/MIT_License
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Application_framework
http://www.php.net/
http://dx.doi.org/10.1007/978-1-4842-1212-7_1

CHAPTER 1 ■ WHAT IS CAKEPHP?

4

 Short Learning Curve
 CakePHP’s learning curve is short. You can become familiar with the main API methods
in a week and gain deep insight in a month. CakePHP 3 represents a significant change,
and I think it makes the learning curve even shorter.

 Convention over Configuration
 If you follow CakePHP’s conventions practically, you do not have to configure anything at
all, thanks to the framework’s idea of “convention over configuration.” Cake’s conventions
are simple to follow and learn.

 Controller class names are plural, CamelCased, and end in “Controller.” So the
Post’s controller will be PostsController . It will be in the /src/PostsController.
php file . It’s corresponding model file will be at /src/Model/Table/PostsTable.php ,
which will be linked to the posts table in our database. Its view files will be in the /src/
Template/Posts folder.

 Table class names are plural and CamelCased; table names corresponding to CakePHP
models are plural and underscored in English.

 View template files are named after the controller functions they display, in an
underscored form, and they are automatically mapped from URLs.

 If you cannot (or, in some rare case, you do not want) to follow conventions, you can
easily configure everything.

 Easy Installation
 You will see how to install CakePHP in Chapter 6 . Actually, with one line of code, you can
download and install CakePHP. So, installation takes about two seconds or less.

 MIT Licensing 10
 The MIT (Massachusetts Institute of Technology) License is a free software license . It
permits reuse of the code within proprietary and free software also. The MIT License is
also compatible with many copyleft licenses, such as GPL .

 Ruby on Rails , Node.js , jQuery , and many other frameworks are permissible under
the MIT License.

 Automatic Code Generation
 CakePHP has a built-in console shell called bake , by which we can generate a basic
model, controller, and view files. I think it is one of the best tools in rapid development.
By using bake , you can start to have a working skeleton in a very early phase of your

 10 http://en.wikipedia.org/wiki/MIT_License

http://dx.doi.org/10.1007/978-1-4842-1212-7_6
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Free_software_license
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/License_compatibility
https://en.wikipedia.org/wiki/Copyleft
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Ruby_on_Rails
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/JQuery
http://en.wikipedia.org/wiki/MIT_License

CHAPTER 1 ■ WHAT IS CAKEPHP?

5

development. If you follow Cake’s conventions, bake will detect your database tables and
fields and, based on this, will generate code for you—always a good start. You will see
automatic code generation in action in Chapter 6 .

 Built-in Validation 11
 Validating input data is very important. Validation ensures that an application operates
on clean, correct, and useful data. It means that validation can check data from the
security viewpoint—check if it is acceptable, such as if it is within a certain range, in the
right format, and more.

 Models generated by bake have validation rules, and they are a good starting point
from which to become familiar with validation.

 MVC 12 Architecture
 Perhaps MVC (Model-View-Controller) architecture is not an extraordinary feature of
CakePHP, as almost all PHP frameworks follow the same pattern. But as a paradigm, a
way of thinking, it still will help you to create better code.

 Clean URLs and Routes
 Cake helps you to create simple, clean URLs and practically gives you 100% freedom in
manipulating your web application’s URLs. By default, URLs are built up like this:
/controller/method/parameter, so posts/edit/1 will be mapped to PostsController ’s
edit method, and it will get 1 as its only parameter.

 Flexible Caching 13
 CakePHP has six different caching engines built in, such as FileCache, Memcached, Redis,
and others. You can change caching engines any time smoothly, as they have the same
interface. If you want something really special, you can add your own caching system.

 Built-in Localization
 Localization and internationalization can be either a nightmare or something really
simple. Cake provides a really good way to have both without much effort. You just have
to create your translation files in gettext format and use the __() method when you want
to print out something to the screen.

 11 http://en.wikipedia.org/wiki/Data_validation
 12 http://en.wikipedia.org/wiki/Model-view-controller
 13 http://en.wikipedia.org/wiki/Web_cache

http://dx.doi.org/10.1007/978-1-4842-1212-7_6
http://en.wikipedia.org/wiki/Data_validation
http://en.wikipedia.org/wiki/Data_validation
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Web_cache

CHAPTER 1 ■ WHAT IS CAKEPHP?

6

 Integrated Unit Testing
 Perhaps for us, the most important aspect of CakePHP is that it has an integrated unit
testing system. It uses PHPUnit and gives us a few really useful classes and methods for
testing.

 And More
 CakePHP also has an active, friendly, and helpful developer team 14 and community.
Community is very important when you get stuck. The CakePHP community fields tens
of thousands of questions on stack overflow related to CakePHP, has an active Google
mailing group and Google + group, and an online forum. 15

 CakePHP is one of most famous PHP frameworks used by thousands of web sites and
applications and beloved and frequently used by many developers around the world.

 CakePHP makes building web applications simpler, faster, and easier.

 Summary
 In this chapter, you learned about PHP frameworks generally and then took a closer look
at CakePHP and its main features. I went through the main conventions of the framework,
by which we can avoid any configuration issues. From among Cake’s main features, I
emphasized automatic code generation (and, perhaps, integrated unit testing), as this is
the main topic of this book.

 14 http://cakephp.lighthouseapp.com/contributors
 15 http://discourse.cakephp.org/

www.allitebooks.com

http://cakephp.lighthouseapp.com/contributors
http://cakephp.lighthouseapp.com/contributors
http://cakephp.lighthouseapp.com/contributors
http://discourse.cakephp.org/
http://www.allitebooks.org

 Give me your hand, baby

9© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_2

 CHAPTER 2

 What Is Unit Testing?

 Unit testing allows you to test your software in isolation. Normally, unit tests are small,
fast, and test just a short piece of code—a unit—such as a function. A unit test is code
designed to test other code.

 It helps to keep the code short, easy to understand, and easy to read. It helps, too, to
write more maintainable code. As a result, this helps to create software with fewer bugs.
Unit tests automatize the testing process.

 Unit tests alone will not guarantee perfect, bug-free applications, but they help a lot.

 From Manual Testing to Unit Tests
 When you write code, you have to be sure that it will do its job. As I am discussing
testing PHP, beginners should test in the browser. Write the code; open the browser; give
different inputs; and check if the output is what is wanted. Sound familiar? This is called
 manual testing , and with this, we test functionality, not our code.

 The next step is to have a system to automatize testing, so that you do not have to
manually click here and there in the browser in order to check your software. There are
many tools with which to do this. The two main approaches are test-driven development
(TDD) and behavior-driven development (BDD).

 TDD, in short, starts with writing tests before you write your code. This approach
relies on unit tests.

 As unit tests are for small pieces of code, they are easy to write, and your code is
easily covered by them.

 In BDD, tests of any unit should be specified in terms of the desired behavior of the unit.

 Arguments
 There are common arguments against writing unit tests. I want to highlight the
advantages of unit testing, by addressing those arguments and sharing my own
experience with the issues those arguments address. Then, you can try out unit testing for
yourself and make your own decision.

CHAPTER 2 ■ WHAT IS UNIT TESTING?

10

 Argument #1: It’s Impossible to Test All Variations
 Yes, it’s true. You will not be able to test all possible variations. But at least a unit test will
show what variations are covered by your tests. If you can determine that the application
fails because of a variation not covered by the unit test, you just extend the test.

 For example, if I had a test that runs successfully with positive integers, I could
extend the test later for 0, negative integers, or floats, when necessary.

 Argument #2: Writing Tests Takes Too Much Time
 Writing—and maintaining—extra code takes time. That’s obvious. But writing is itself
just one of many time-consuming factors. What are the others? Time spent trying to
understand our own code three or four months after writing it, or time spent trying to
understand someone else’s code. Time spent trying to find the particular piece of code
with the bug. Time spent reviewing our code whenever third-party code is changed.
When we add up the time spent on all these things, it starts to look like unit testing could
save time. Saving time means saving money, but be careful. Unit tests could save time; it’s
not that they definitely will save time. You have to use the tests correctly.

 Learning to use unit tests takes time too. But I think the learning curve is short, and
there will be a return, even the very first time you use them.

 Argument #3: Writing Tests Is Hard
 Writing tests is easy. Writing good tests is hard. But it just takes a little practice.

 There is an exception. Writing tests for spaghetti code, or for functions that do many
things, is hard. So, when you run into difficult tests, you should make sure that this is an
indication that your code requires refactoring.

 Argument #4: I Don’t Need Tests; I Know My Code
 Nearly 99.9% of the time, you do not code alone. We frequently use third-party code. And
we tend to forget, or to change, the way we think about coding, as time passes. Maybe
it seemed clear when we first wrote the code, but after a while, we may have to spend
minutes (or hours) to understand what we did.

 Many times, I write tests for my helper functions consisting of five or six lines. These
functions are much simpler to test when your code sits on different servers, different PHP
versions. It is simpler to test different inputs—even with data that should not be there at
all—such as division by zero.

 Argument #5: It Is Just a Waste of Time
 This argument is given by web developers who start to write unit tests and have argument
#4 in mind. They often say, “I created some unit tests, but when running, they did not find
any bugs at all. I think it was a waste of time.”

CHAPTER 2 ■ WHAT IS UNIT TESTING?

11

 OK, now you have tests. So, you have an asset in hand that can help you to check the
same parts of your code after you make some changes or do some refactoring. At least,
for this, you do not have to go back to manual testing any more. Write more tests, go
back to your code after three months, and check the difference. Writing some code and
maintaining it is two different things. With unit tests, you will not waste as much time on
maintaining the code as without them.

 Argument #6: The Tests Might Have Their Own Bugs
 Yes. Any code might have bugs. But unit tests are short, so it’s easy to write them bug-free.
It’s entirely possible to write tests that pass even when they should fail. Once again, the
solution is practice.

 Never forget: Tests show the presence of errors, not the absence of errors.

 Argument #7: Development Breaks Tests
 As you add layers to your development cycle, you should maintain your tests as well.
When the code changes, the corresponding tests should also change; otherwise, the tests
will fail. But, if you change the code, you’ll know how to change the test.

 Actually, this is one of the advantages to having tests. When I refactor my code, the
test should run successfully. If I change the signature or return value of the code, the test
will fail, or it may run successfully. If it fails, you will see where it can create problems or
bugs in the code. So, it promotes safe changes.

 Why Should We Write Tests?
 Tests significantly shorten testing time, which eventually saves money. Tests help in
writing quality code and are essential assets in refactoring. They will change the way you
think about code.

 Test Functionality
 When we first write a code, we should check that it really does what we want. We all do
this—with or without unit tests. Actually, var_dump and its friends are also tests. They just
don’t fulfill the real purpose of tests.

 After some time, you will definitely have to implement changes in old code, either
because of bugs or just because you want to streamline what you’ve done. In that case,
too, you’ll need something to test whether the code still does what you want. Manual
testing is boring, slow, and ineffective.

 Manual testing is much more time-consuming than any other testing system, at
least if you do it prudently. The same method can be invoked at many places in your
application, and you should test everywhere, to make sure your application is working as
expected. On top of that, you should have a list of possible inputs, such as “I should test it
with negative numbers, zero, letters, special characters.” And perhaps you’ve neglected to
test everything before you deploy to production. No, that never happens!

CHAPTER 2 ■ WHAT IS UNIT TESTING?

12

 Refactoring
 Renaming variables or functions increases readability of code. But you should take care
that renaming does not introduce new bugs or conflicts. The same is true for changing a
method’s signature or return values. Tests are there to help you.

 Sometimes, there are pieces of code that actually don’t have any connection to the
goal of the code or that don’t do anything at all. Obviously, you want to remove such
code, but then you’d have to check that the bulk of the code still works. You can remove
unwanted code snippets safely, if your code is covered by tests, as the tests will fail if you
have removed something useful.

 At other times, you may know that your code is wrong but don’t want to spend the
time to fix it. So, you just leave a comment in the code, such as // TODO: it will break
if $num = 0 . A failing test is much, much more clean.

 There is a famous saying: “If it ain’t broke, don’t fix it.” My hard-written code is
working, what are you talking about? you may ask. Simply put, however, the saying is not
true for software development. Refactoring is a very important part of development. By
successfully refactoring your code, you will end up with the same results as you would
without doing so, but your code will be reusable, maintainable, faster, cleaner, and better
if you do.

 Getting Fast Feedback
 Fast feedback is important. Developers don’t have the time to click every link, push every
button in every possible order, push the browser’s Back button multiple times, fill out
forms with a variety of data (even with malicious data), or deploy new code and wait for
clients’ feedback.

 I think Firebug (https://getfirebug.com) is a good example. I open the HTML tab
and change something, and immediately I’ll see the result in the browser.

 There are other tools, for other languages, that give immediate feedback by actually
running tests after every semicolon or file save. These are extremely powerful development
tools. They are not available in PHP, but, regardless, tests are the best tools for this.

 Quality Code
 Tests run in isolation. So, by running a test, you are verifying a particular piece of code
that does not depend on other pieces. But it is easy to violate the single responsibility
principle. Tests add another viewpoint to our code-writing process. More on this can be
found in Chapter 3 .

 Use the Best of Your Brain
 Under pressure, even the most clever people (yes, even programmers) make stupid
mistakes.

 Have you ever written something like if(3 < 5) ? Never? You will, I promise. There
is a good chance you might break something even with the most trivial code or code
change. Are you always relaxed? Do you always have more than enough time to write your

https://getfirebug.com/
http://dx.doi.org/10.1007/978-1-4842-1212-7_3

CHAPTER 2 ■ WHAT IS UNIT TESTING?

13

code? Is your boss always happy? Are your clients always patient? Do you always have a
clear specification? Do your kids sleep all night? If not, you’ll make stupid mistakes. Tests
help you to check your code in an easy way.

 Save Time and Money
 As I already mentioned, one way or another, you’ll test your code. But you can choose a
way that is more effective. You can choose a way that will let you spend less time fixing
bugs and refactoring and more time actually writing code. Saving time is fun—you can
always spend that time watching the next episode of your favorite TV show—and saving
time saves money.

 Summary
 In this chapter, you learned why we test, what unit testing is, and what the arguments
against it are. From this, you learned that you can save time on maintaining code—as it
can be as foreign after a few months as if it were written by someone else—and how tests
help you to use the best of your brain.

 Our APIs seem to have some communication problems

15© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_3

 CHAPTER 3

 Clean Code

 Who cares about the code? If it runs, then it’s fine. Right? I don’t think so.
 There are several reasons why you should care about code quality.
 First, the quality of your code will determine the quality of the software. If you think

you can have great software with messy code, you’re dreaming. Second, clean code saves
time. You will spend more time reading your code more than you spend writing it. The
other people in your team will also spend a good part of their time reading your code.
And you will spend time reading other people’s code too. Clean code is easy to read,
so clean code saves time. Third, your code is a reflection of yourself. If you don’t value
quality in your code, you won’t get hired. Messy code means you don’t hold yourself, or
your work, to a very high standard. Clients and employers demand quality.

 Clean code is maintainable. It is easy to read and easy to understand. That means it’s
easy to use and easy to change. Clean code is straightforward.

 How to Write Clean Code
 Clean code doesn’t require loads of time. Writing clean code is a habit that requires some
attention during writing and refactoring. Luckily, it’s a habit you can learn.

 Never forget: We write code for machines and for people. People are more
important.

 Here are a few hints for how to write clean code. When you work in a team you
should fix at least these options.

 Comments
 There are people who say that unit testing can be a substitute for comments. There
are others who say “don’t comment—refactor.” Both approaches have their merits, but
comments can be a great help to write better code.

 To learn when and what to comment takes time. I think the best approach is to
view comments as Post-its in our code. So if something is not straightforward or takes
some time to understand, comment it. For example, most of the time, I comment regular
expressions. But don’t forget: you should update your comments on code change.
Otherwise, you can run into misleading or confusing comments.

CHAPTER 3 ■ CLEAN CODE

16

 Using PHPDoc (www.phpdoc.org/) is a best practice and is used by CakePHP’s core.
PHPDoc makes it possible to generate documentation directly from your source code. It
promotes standardized comments for all your classes and methods.

 Naming
 We should name our classes, methods, variables, parameters, etc. Names should be
descriptive and meaningful. “Foo” and “bar” work well in short code examples but can be
very confusing in production code.

 When you are totally immersed in your code, a variable named $lld may be clear,
but wouldn’t $last_login_date be a little bit more readable and easier to understand?

 By its conventions, CakePHP uses underscored names for database tables, field names,
and view files. For class names, it uses CamelCased names. For variable and parameter
names, you can choose any of these; however, just stick to one. So, if you prefer underscored
variable names, underscore all of your variable names, and do not mix in CamelCased names.

 It is best to follow the PHP Standards Recommendations (PSR) (www.php-fig.org/psr).
PSR-1 recommends using CamelCased method names. Using verbs for method names is
a best practice.

 Methods
 Methods should do one, and only one, thing and do it well. This is the single responsibility
principle. This means that methods should be short, which means that they will be easy
to understand. There are developers who recommend a maximum of three lines of code.

 If a function accepts more than two arguments, it is a good candidate for refactoring.
 CakePHP’s ORM is a good example of using method chaining. It can significantly

improve the readability of your code, or it can significantly mess it up. So, please learn
from the good examples.

 Code Formatting
 Historians say the bloodiest battle in history was that of Stalingrad, in 1942. They say this
because they never attended a meeting at which developers try to agree on the code style
that they are going to follow in a new project.

 Thanks to PSR-2, the battle is over, and we have a recommendation to follow.
 Code formatting covers indentation, where to place opening and closing brackets,

where to put new lines, and more.

 MVC
 As MVC (Model–View–Controller) stresses, do not mix model, controller, and view
functionality in the same files or classes. This also helps to keep your code clean.

 Perhaps there are a lot of other things that you can do to ensure clean code, but to
list and introduce all the options here is beyond the scope of this book. You can use clever
tools, such as PHP Mess Detector (https://phpmd.org/), to help you to write clean code.

http://www.phpdoc.org/
http://www.php-fig.org/psr
https://phpmd.org/

CHAPTER 3 ■ CLEAN CODE

17

 How Tests Help in Writing Clean Code
 Even if you use unit tests in your applications, you can still end up with messy code. Unit
testing won’t do the work for you. I’ll cover this topic in more detail in Chapter 4 .

 Planning
 Planning is a very important part of creating great software, but people like me and you
are often too impatient to plan everything down to the last detail. We like to get our hands
dirty as soon as possible. Unfortunately, this kind of coding creates problems. Using unit
tests encourages us to think things over (or plan) during development. If I want to add a
new feature to a web application, I’ll certainly think about how it will function. Without at
least this much planning, I won’t be able to write the code. When it runs, I’m finished—at
least until someone detects a bug. When I write a test, I have to think about the possible
and acceptable inputs, the output, and the return value. Writing tests helps us to think
from a distance, on a more abstract level, and test-driven development (TDD) helps us to
get the best out of it.

 Refactoring
 As long as your test doesn’t fail, you can be sure the code you’ve tested does what it
should. Tests help to check if changes in the code have broken anything. Because unit
tests run in isolation, they help to produce better, simpler code.

 With tests, you do not have to worry about changing a function’s signature or return
values’ type. Tests will show where you have to apply changes for function calls.

 If your tests are not just a few lines, this may be a sign of a broken single
responsibility principle in your code. This is often true if you change your test after
refactoring your code. Remember this, and you will end up with cleaner code.

 Summary
 In this chapter, I introduced the idea and importance of clean code. You learned a few
principles to follow to ensure clean code and why naming or code formatting matters.
Finally, you saw how unit tests can help in writing cleaner code.

http://dx.doi.org/10.1007/978-1-4842-1212-7_4

 Let’s start to play by trying and doing

19© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_4

 CHAPTER 4

 Test-Driven Development

 Developers who depend heavily on unit tests use a technique known as “test-driven
development,” or TDD.

 TDD is a software development process whereby you write tests before you
implement code. So, the tests guide the developer to write the code itself. TDD is a
cyclical process, with 4+1 steps: write tests, write code, refactor, test again, and repeat the
process again.

 PHP TDD Tools
 There are many tools that can be of great help in TDD with PHP.

 PHPUnit
 PHPUnit (https://phpunit.de/) is the de facto standard tool for unit testing and TDD
for PHP. It is integrated into Cake, so you will become familiar with using it soon.

 There are other tools, however, that also have a growing community and provide
support.

 Codeception
 Codeception (http://codeception.com/) has support for writing unit tests, functional
tests, and acceptance tests. It is integrated into a few PHP development frameworks, such
as Zend, Symfony, Laravel, and others.

 SimpleTest
 SimpleTest (http://simpletest.org/) is an easy-to-use framework with SSL, proxies,
and authentication support. Users of JUnit will be familiar with its interface.

https://phpunit.de/
http://codeception.com/
http://simpletest.org/

CHAPTER 4 ■ TEST-DRIVEN DEVELOPMENT

20

 Atoum
 Atoum (https://github.com/atoum) is a relatively new player that uses new PHP
features introduced in PHP version 5.3.

 Selenium
 Selenium (http://www.seleniumhq.org/) is actually more comprehensive than the
previously mentioned tools, as it is a sophisticated, robust system that automates
browsers. With it, a web application as a whole can be tested.

 TDD Development Cycle
 TDD requires a different way of thinking and a different style of coding. Let’s see what
it takes. With CakePHP, the subject at hand, you do not have to start from scratch. Its
framework already includes a lot of great features. So, now we have to concentrate only on
our application development.

 Step #1: Write Test
 Write a unit test for your nonexistent code. As you write the test—and before you actually
write any code—consider all the possible inputs, errors, and outputs. This step adds an
extra, abstract—but important—layer.

 The first time you run your unit test, it will fail. It should fail, because the code you’re
testing doesn’t yet exist.

 By the one-test method, you produce one or more assertions based on possible
inputs or errors.

 Most of the time, I start by writing model tests. I create a test method that calls one
of the corresponding model’s methods (for example, getUserComments()), even if it does
not exist at the moment. I know what to expect as a result, so I make the assertion. That
means that I have to decide the type of the value returned by the method.

 Step #2: Write Code
 Now that you’ve written the test, you can start writing the code. In this step, I create the
model class’s getUserComments() method. When I think it is OK, I simply run the test and
see if it fails or not.

 Your code is ready when all of your tests pass.
 While writing code, perhaps it is best to follow the principles described in Chapter 3 .

 Step #3: Refactor
 Once all your tests pass successfully, you can start to refactor your code, cleaning up
unnecessary variables, function calls, etc.

https://github.com/atoum
http://www.seleniumhq.org/
http://dx.doi.org/10.1007/978-1-4842-1212-7_3

CHAPTER 4 ■ TEST-DRIVEN DEVELOPMENT

21

 This is an important part. While we are considering small code fractions and are in
the right mindset to understand their problems and solutions to them, this is the best
time to rethink solutions and keep them as simple as possible.

 Step #4: Test Again
 Now rerun your tests. If one or more tests doesn’t pass, you have introduced a new
bug during refactoring. If all your tests pass, your code is probably OK. But don’t forget
arguments #1 and #6 from Chapter 2 .

 Step #5: Write Code for New Features
 This step requires that you restart the same process, but with another task. Don’t forget
to thoroughly test this part too. Changes you’ve made anywhere in your code could also
affect this part and vice versa. This means that working on something can initiate a bug or
break a test somewhere else.

 Summary
 In this chapter, you learned what test-driven development is and how it is connected to
unit testing. I listed a few of the main PHP tools that facilitate TDD. Of these, PHPUnit
is the most important to us, as it is integrated into CakePHP. I then went through the
development cycle of TDD, in CakePHP and in general.

http://dx.doi.org/10.1007/978-1-4842-1212-7_2

 The great cycle of life

23© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_5

 CHAPTER 5

 Development Cycle

 There are quite a few development models. In my opinion, choosing the right one can be
an important part of the development process, especially when taste and practice really
differ. There are also different ways to work with web and desktop applications. All of us
have our favorite practices. Let me share mine with you. It is Agile Software Development.

 Agile
 Agile Software Development is a set of software development principles whereby
requirements and solutions result from team collaboration. It promotes adaptive
planning, evolutionary development, early delivery, and continuous improvement, and it
encourages rapid and flexible response to change.

 The Agile Manifesto (http://agilemanifesto.org/) is short and simple.

 The Agile Manifesto
 “We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

 1. Individuals and interactions over processes and tools

 2. Working software over comprehensive documentation

 3. Customer collaboration over contract negotiation

 4. Responding to change over following a plan

 That is, while there is value in the items on the right, we value the items on the left more.”

https://en.wikipedia.org/wiki/Software_development
http://agilemanifesto.org/

CHAPTER 5 ■ DEVELOPMENT CYCLE

24

 12 Principles Behind the Manifesto
 There are 12 principles behind the Agile Manifesto.

 1. The highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

 2. Changing requirements are welcome, even late in
development. Agile processes harness change for the
customer’s competitive advantage.

 3. Working software is delivered frequently, from a couple of
weeks to a couple of months, with a preference toward the
shorter timescale.

 4. Businesspeople and developers must work together daily
throughout the project.

 5. Projects are built by motivated individuals. Give them the
environment and support their needs, and trust them to get
the job done.

 6. The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.

 7. Working software is the primary measure of progress.

 8. Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

 9. Continuous attention to technical excellence and good design
enhances agility.

 10. Simplicity—the art of maximizing the amount of work not
done—is essential.

 11. The best architectures, requirements, and designs emerge
from self-organizing teams.

 12. At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

 How CakePHP Supports Agile Development
 As you can see, some of the preceding principles require a particular mindset, a way of
thinking, and some of them actually require some technical support.

 Baking is a good way to get something viewable in a short time. So it helps to adhere
to principles 1, 4, and 7.

 Thanks to CakePHP’s MVC pattern and the wonderful new ORM introduced in
CakePHP3, late changes are easy at least for models. Even in late phases it is easy to
handle database table or field changes. So it meets principles 2 and 7.

CHAPTER 5 ■ DEVELOPMENT CYCLE

25

 Regular delivery (principle 3) is more likely a habit or a workflow organization
question than a technical matter. Still, because of the two previously mentioned points,
Cake gives us some help to achieve this.

 TDD helps you to adhere to principles 9 and 10.

 The Agile Roadmap to Value
 Any project requires some steps or stages. With Agile, it is the Roadmap to Value that
provides the high-level overview of the project. The roadmap has seven stages.

 Product Vision
 At stage 1, the product owner outlines the product vision: a definition of the project, how
it will serve the user’s (or company’s) goals, and who the target users are.

 An example: For people who want a simple and easy blog, the cakeBlog is a blog
engine that provides minimal features concentrated on blogging. Unlike other engines
with too many features, our software is for real dummies.

 By my estimate, 90–95% of the time, a customer doesn’t really know what he or she
wants. He/She has some idea, but it’s very far from being specific. That’s OK; it’s not a
problem—remember principle 2.

 Product Roadmap
 The product owner creates a product roadmap at stage 2 . It is a high-level view of the
product requirements, with roughly estimated schedules of when these requirements will
be developed.

 Release Plan
 At stage 3, the product owner creates a release plan, what is actually a timetable of
releases of working software. It will have many releases, with the highest priority features
launching first.

 Sprint Planning
 Sprints are iterations in which the software is created. At stage 4, the team plan sprints.
Sprint planning happens at the start of each sprint, where the team decides what
requirements should be included in this sprint.

 Daily Meetings
 During each sprint, the team has daily meetings. This is stage 5 . The meetings are no
more than 15 minutes and concern what was completed yesterday, what will be worked
on today, and any potential roadblocks.

CHAPTER 5 ■ DEVELOPMENT CYCLE

26

 Sprint Review
 At the end of every sprint, the working product created during the sprint is shown. This is
stage 6.

 Sprint Retrospective
 At the end of each sprint retrospective—stage 7—is a meeting during which the team
discusses how the sprint went and ideas for improvements in the next sprint.

 Summary
 In this chapter, I covered Agile Software Development principles and phases. You learned
how CakePHP supports Agile development. Even if you follow other development
methods, CakePHP offers you useful tools for them also.

 Bill felt his training was not complete

www.allitebooks.com

http://www.allitebooks.org

29© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_6

 CHAPTER 6

 Preparing for Testing

 Installing
 To have everything up and running, you have to install a web server, MySQL server, PHP,
CakePHP (http://book.cakephp.org), and PHPUnit (http://phpunit.de). I will go
through all these procedures, using Ubuntu 16.04 as an example. Other systems, such as
MacOS or Windows, and even other Linux systems, have different installation methods.

 We will install everything via Terminal, for which you will require the system’s root
password .

 Install Webserver
 Webserver, or HTTP server, is a software that processes requests from browsers. Its
primary function is to store, deliver, and process web pages. The most widely used is
Apache (https://httpd.apache.org/).

 Open your terminal and issue the following command. This will install the latest
Apache web server into your system, if it is not already installed.

 $ sudo apt-get install apache2

 The result is quite long but should start and finish with something like the following:

 Reading package lists... Done
 Building dependency tree
 Reading state information... Done
 The following package was automatically installed and is no longer required:

 ...

 Processing triggers for libc-bin (2.23-0ubuntu3) ...
 Processing triggers for systemd (229-4ubuntu6) ...
 Processing triggers for ureadahead (0.100.0-19) ...
 Processing triggers for ufw (0.35-0ubuntu2) ...

http://phpunit.de/
http://book.cakephp.org/
http://phpunit.de/
http://phpunit.de/
http://phpunit.de/
https://httpd.apache.org/

CHAPTER 6 ■ PREPARING FOR TESTING

30

 Install MySQL
 MySQL is the most popular open source relational database system for web applications.
If you require some database in which to store your application’s data, MySQL is the
easiest option.

 Open your terminal and issue the following command to install the MySQL server:

 $ sudo apt-get install mysql-server

 This result is also very long, so I cut out the middle.

 Reading package lists...
 Building dependency tree...
 Reading state information...
 The following package was automatically installed and is no longer required:
 libnghttp2-14

 ...

 Preparing to unpack .../mysql-server_5.7.12-0ubuntu1_all.deb ...
 Unpacking mysql-server (5.7.12-0ubuntu1) ...
 Setting up mysql-server (5.7.12-0ubuntu1) ...

 Install PHP
 PHP is a server-side scripting language designed mainly for web development. It is very
popular: more than 80% of web servers are installed with PHP. It is easy to learn, flexible,
and robust, and is perhaps the language behind CakePHP.

 The latest version is PHP 7, which represents the next great leap after PHP 5. PHP 7
introduced scalar type declarations, return type declarations, the null coalescing operator,
spaceship operator, anonymous classes, and many other features.

 PHP should be installed with a few modules, to get everything to work. We will run
PHP as an Apache module and install MySQL, mbstring, intl, and xml modules.

 $ sudo apt-get install php7.0 libapache2-mod-php7.0 php7.0-mysql php7.0-
mbstring php7.0-intl php7.0-xml

 The output result is also shortened.

 Reading package lists...
 Building dependency tree...
 Reading state information...
 The following packages were automatically installed and are no longer
required:
 libjs-excanvas mercurial mercurial-common php-cli-prompt php-composer-semver

 ...

CHAPTER 6 ■ PREPARING FOR TESTING

31

 Creating config file /etc/php/7.0/mods-available/xsl.ini with new version
 Processing triggers for libapache2-mod-php7.0 (7.0.4-7ubuntu2.1) ...

 Post Installation
 We should enable mod_rewrite to get the best of CakePHP routing. As on a development
server, we will install CakePHP into a user directory, so we have to enable and set this up
also.

 Let’s enable userdir first.

 $ sudo a2enmod userdir

 Edit /etc/apache2/mods-enabled/userdir.conf and paste the following code:

 1 <IfModule mod_userdir.c>
 2 UserDir public_html
 3 UserDir disabled root
 4
 5 <Directory /home/*/public_html>
 6 AllowOverride FileInfo AuthConfig Limit Indexes
 7 Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
 8 <Limit GET POST OPTIONS>
 9 Require all granted
 10 </Limit>
 11 <LimitExcept GET POST OPTIONS>
 12 Require all denied
 13 </LimitExcept>
 14 </Directory>
 15 </IfModule>

 The net file to edit is /etc/apache2/mods-available/php7.0.conf . On Ubuntu,
running PHP scripts in the user directory is disabled, so we should enable it. Comment
out the last five lines of the file.

 21 #<IfModule mod_userdir.c>
 22 # <Directory /home/*/public_html>
 23 # php_admin_flag engine Off
 24 # </Directory>
 25 #</IfModule>

 Let’s enable and set up mod_rewrite .

 $ sudo a2enmod rewrite

CHAPTER 6 ■ PREPARING FOR TESTING

32

 To let everything load and work, we should restart Apache.

 $ sudo service apache2 restart

 Install Composer
 Composer is the application-level package manager for PHP and provides a standard
format for managing dependencies of PHP software and required libraries. It is an
essential tool for any PHP development. As Composer is the recommended way of
installing CakePHP, we will install it first.

 Open your terminal and issue the following command to download Composer via
 curl , and install it to the current directory.

 $ curl -s https://getcomposer.org/installer | php

 Install CakePHP
 As an example, we’ll use a blog to familiarize ourselves with CakePHP unit testing. First,
create a new CakePHP project with Composer.

 $ cd ~/public_html
 $ php composer.phar create-project --prefer-dist cakephp/app cakeBlog

 This will create a cakeBlog folder in the current working directory and download the
latest version of cakephp (which is 3.2.8 at the time of writing) and all required packages.

 After install, you should set write permissions to /tmp and /logs folder for the web
server user.

 Composer creates a composer.json and a composer.lock file in the project’s
directory. These files describe the project’s identification data, dependencies, and other
dependency related settings.

 As we enabled the user directory with Apache and PHP, I did this at my home
(/home/rrd) directory’s public_html folder, so I will access my app at
 http://localhost/~ rrd/cakeBlog/ and use this URL in my examples.

 If everything is OK, you should be able to navigate to your install path through your
browser. You’ll see something such as in Figure 6-1 .

CHAPTER 6 ■ PREPARING FOR TESTING

33

 Figure 6-1. My blog after install

 Do not worry about the error message regarding the database connection. I will get
back to that soon.

 Installing PHPUnit
 PHPUnit is the de facto standard for unit testing in PHP. PHPUnit is integrated into CakePHP
for unit testing. Thanks to Composer, it is really simple to install with all of its required
packages. We do not need PHPUnit on the production server, so we will use the --dev option.

 $ cd ~/public_html/cakeBlog
 $ php composer.phar require --dev phpunit/phpunit

CHAPTER 6 ■ PREPARING FOR TESTING

34

 If you use the --dev option, Composer will put this dependency into composer.
json ’s require-dev section. Then, on the production server, you can skip installation of
these dependencies, which are required only for development, by using the following
command:

 $ php composer.phar --no-dev install

 Install phpMyAdmin
 phpMyAdmin is a free and open source tool written in PHP for the administration of MySQL
with the use of a web browser. It can perform various tasks, such as creating, modifying,
or deleting databases, tables, fields, or rows; executing SQL statements; or managing
users and permissions.

 Open your terminal and issue the following command:

 $ sudo apt-get install phpmyadmin

 It will start the installation wizard, which will guide you throughout the installation
process. Choose Apache when you are prompted to choose between Apache and
Lighttpd.

 After a successful install, you should be able to access phpMyAdmin with your browser
at http://localhost/phpmyadmin .

 Check Your Test Setup
 To check if all went well in your app root directory (in my case, public_html/cakeBlog),
run the following command:

 $ vendor/bin/phpunit

 You should see something similar to Figure 6-2 .

 Figure 6-2. PHPUnit first test

CHAPTER 6 ■ PREPARING FOR TESTING

35

 You may receive error messages such as the following:

 Warning Error: SplFileInfo::openFile(/home/rrd/public_html/cakeBlog/tmp/
cache/persistent/myapp_cake_core_translations_cake_en__u_s): failed to open

stream: Permission denied in [/home/rrd/public_html/cakeBlog/vendor/cakephp/

cakephp/src/Cache/Engine/FileEngine.php, line 395]

 This means that you do not have write access to different files in your cake tmp directory,
located at cakeBlog/tmp . For example, on Ubuntu, these files are owned by the www-data
user and its group. You should add yourself to this group, or set yourself as the owner of tmp
recursively. If at any time you get permission errors, check the tmp folder first, as many new
files will have been created here.

 Figure 6-2 shows that the three tests ran successfully with eighteen assertions. These
three tests are automatically generated for PagesController . The corresponding test file
is located at /tests/TestCase/Controller/PagesControllerTest.php . You can take a
look if you want. Soon, I will describe what is in that file. For now, it is enough to know
that green is good. We got a green bar at the end of the tests, so we are good.

 Preparing
 We should set up a few things, so that we can begin unit testing.

 Set Debug Level
 In /config/app.php , your debug level is set to true by default.

 'debug' => filter_var(env('DEBUG', true), FILTER_VALIDATE_BOOLEAN),

 Leave it like this for now. It is not mandatory for unit testing, but error and debug
messages can help as much in testing as in coding.

 Set Up Test Database
 If your application interacts with a database (and most of the apps will), you’ll need a
default and a test database. All your database-related tests will use the test database.

CHAPTER 6 ■ PREPARING FOR TESTING

36

 CakePHP will remove tables from your database at the end of test runs. So DO

NOT use the same database for default and test ; otherwise, you will lose data without any
warning.

 Find the Datasources definition in your /config/app.php file and change at least
the username, password, and database values for your default and test data sources. Let’s
say my default database is cake_blog , its username is rrd , and the password is Gouranga.
My test database is cake_blog_test , with the same username and password.

 app.php

 1 'Datasources' => [
 2 'default' => [
 3 'className' => 'Cake\Database\Connection',
 4 'driver' => 'Cake\Database\Driver\Mysql',
 5 'persistent' => false,
 6 'host' => 'localhost',
 7 //'port' => 'non_standard_port_number',
 8 'username' => 'rrd',
 9 'password' => 'Gouranga',
 10 'database' => 'cake_blog',
 11 'encoding' => 'utf8',
 12 'timezone' => 'UTC',
 13 'flags' => [],
 14 'cacheMetadata' => true,
 15 'log' => false,
 16 'quoteIdentifiers' => false,
 17
 18 //'init' => ['SET GLOBAL innodb_stats_on_metadata = 0'],
 19
 20 'url' => env('DATABASE_URL', null),
 21],
 22
 23 /**
 24 * The test connection is used during the test suite.
 25 */
 26 'test' => [
 27 'className' => 'Cake\Database\Connection',
 28 'driver' => 'Cake\Database\Driver\Mysql',
 29 'persistent' => false,
 30 'host' => 'localhost',
 31 //'port' => 'non_standard_port_number',
 32 'username' => 'rrd',
 33 'password' => 'Gouranga',

CHAPTER 6 ■ PREPARING FOR TESTING

37

 The default data source will be used by your application and the test data source
by the tests. The keys are self-descriptive. They define which class and driver is used to
access the database, the connection type, host and port, the database name, the MySQL
user and password, the character encoding, and so on.

 34 'database' => 'cake_blog_test',
 35 'encoding' => 'utf8',
 36 'timezone' => 'UTC',
 37 'cacheMetadata' => true,
 38 'quoteIdentifiers' => false,
 39 'log' => false,
 40 //'init' => ['SET GLOBAL innodb_stats_on_metadata = 0'],
 41 'url' => env('DATABASE_TEST_URL', null),
 42],
 43],

 For our blog, we want to handle users, who can write posts and comment on their
own and other’s posts. Posts can be tagged and categorized. After some planning, we end
up with the database schema shown on Figure 6-3 .

 Figure 6-3. Database schema

http://book.cakephp.org/

CHAPTER 6 ■ PREPARING FOR TESTING

38

 Open your browser, navigate to localhost/phpmyadmin (http://phpmyadmin.net),
and create both default and test databases. You can do this by selecting database from the
top tabs and then using the create database form. Alternatively, select SQL from the top
tabs and copy and paste.

 Use the following SQL statement to create the two databases and their tables:

 1 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;
 2 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,
 3 FOREIGN_KEY_CHECKS=0;
 4 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='TRADITIONAL';
 5
 6 CREATE SCHEMA IF NOT EXISTS `cake_blog`
 7 DEFAULT CHARACTER SET latin1;

 First, we create the default database, which is cake_blog .

 8 USE `cake_blog`;
 9
 10 -- ---
 11 -- Table `cake_blog`.`users`
 12 -- ---
 13 CREATE TABLE IF NOT EXISTS `cake_blog`.`users` (
 14 `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT ,
 15 `username` VARCHAR(50) NULL DEFAULT NULL ,
 16 `password` VARCHAR(50) NULL DEFAULT NULL ,
 17 `role` VARCHAR(20) NULL DEFAULT NULL ,
 18 `created` DATETIME NULL DEFAULT NULL ,
 19 `modified` DATETIME NULL DEFAULT NULL ,
 20 PRIMARY KEY (`id`))
 21 ENGINE = InnoDB
 22 DEFAULT CHARACTER SET = latin1;
 23

 Then we add the users’ table, which is used for storing our blog’s users.

 24
 25 -- ---
 26 -- Table `cake_blog`.`categories`
 27 -- ---
 28 CREATE TABLE IF NOT EXISTS `cake_blog`.`categories` (
 29 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT ,
 30 `category` VARCHAR(45) NULL ,
 31 PRIMARY KEY (`id`))
 32 ENGINE = InnoDB;
 33

http://phpmyadmin.net/

CHAPTER 6 ■ PREPARING FOR TESTING

39

 Our blog post could be associated with categories, so we create a database table for
categories.

 34
 35 -- ---
 36 -- Table `cake_blog`.`posts`
 37 -- ---
 38 CREATE TABLE IF NOT EXISTS `cake_blog`.`posts` (
 39 `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT ,
 40 `category_id` INT UNSIGNED NOT NULL ,
 41 `user_id` INT(10) UNSIGNED NOT NULL ,
 42 `title` VARCHAR(50) NULL DEFAULT NULL ,
 43 `body` TEXT NULL DEFAULT NULL ,
 44 `created` DATETIME NULL DEFAULT NULL ,
 45 `modified` DATETIME NULL DEFAULT NULL ,
 46 PRIMARY KEY (`id`) ,
 47 INDEX `fk_posts_users` (`user_id` ASC) ,
 48 INDEX `fk_posts_categories1` (`category_id` ASC) ,
 49 CONSTRAINT `fk_posts_users`
 50 FOREIGN KEY (`user_id`)
 51 REFERENCES `cake_blog`.`users` (`id`)
 52 ON DELETE RESTRICT
 53 ON UPDATE RESTRICT,
 54 CONSTRAINT `fk_posts_categories1`
 55 FOREIGN KEY (`category_id`)
 56 REFERENCES `cake_blog`.`categories` (`id`)
 57 ON DELETE RESTRICT
 58 ON UPDATE RESTRICT)
 59 ENGINE = InnoDB
 60 AUTO_INCREMENT = 4
 61 DEFAULT CHARACTER SET = latin1;
 62

 The blog posts also should be stored in a database table. We added indexes for user_
id and category_id fields and foreign keys to these.

 63
 64 -- ---
 65 -- Table `cake_blog`.`tags`
 66 -- ---
 67 CREATE TABLE IF NOT EXISTS `cake_blog`.`tags` (
 68 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT ,
 69 `tag` VARCHAR(45) NULL ,
 70 PRIMARY KEY (`id`))
 71 ENGINE = InnoDB;
 72

CHAPTER 6 ■ PREPARING FOR TESTING

40

 We want to use tagging on our posts, so we need a table for the tags also.

 73
 74 -- ---
 75 -- Table `cake_blog`.`posts_tags`
 76 -- ---
 77 CREATE TABLE IF NOT EXISTS `cake_blog`.`posts_tags` (
 78 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
 79 `post_id` INT(10) UNSIGNED NOT NULL ,
 80 `tag_id` INT UNSIGNED NOT NULL ,
 81 PRIMARY KEY (`id`),
 82 INDEX `fk_posts_has_tags_tags1` (`tag_id` ASC) ,
 83 INDEX `fk_posts_has_tags_posts1` (`post_id` ASC) ,
 84 CONSTRAINT `fk_posts_has_tags_posts1`
 85 FOREIGN KEY (`post_id`)
 86 REFERENCES `cake_blog`.`posts` (`id`)
 87 ON DELETE RESTRICT
 88 ON UPDATE RESTRICT,
 89 CONSTRAINT `fk_posts_has_tags_tags1`
 90 FOREIGN KEY (`tag_id`)
 91 REFERENCES `cake_blog`.`tags` (`id`)
 92 ON DELETE RESTRICT
 93 ON UPDATE RESTRICT)
 94 ENGINE = InnoDB
 95 DEFAULT CHARACTER SET = latin1;
 96

 The next thing is to create the join table between the posts and tags tables.

 97
 98 -- ---
 99 -- Table `cake_blog`.`comments`
 100 -- ---
 101 CREATE TABLE IF NOT EXISTS `cake_blog`.`comments` (
 102 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT ,
 103 `comment` TEXT NULL ,
 104 `user_id` INT(10) UNSIGNED NOT NULL ,
 105 `post_id` INT(10) UNSIGNED NOT NULL ,
 106 PRIMARY KEY (`id`) ,
 107 INDEX `fk_comments_users1` (`user_id` ASC) ,
 108 INDEX `fk_comments_posts1` (`post_id` ASC) ,
 109 CONSTRAINT `fk_comments_users1`
 110 FOREIGN KEY (`user_id`)
 111 REFERENCES `cake_blog`.`users` (`id`)
 112 ON DELETE RESTRICT
 113 ON UPDATE RESTRICT,
 114 CONSTRAINT `fk_comments_posts1`
 115 FOREIGN KEY (`post_id`)

CHAPTER 6 ■ PREPARING FOR TESTING

41

 116 REFERENCES `cake_blog`.`posts` (`id`)
 117 ON DELETE RESTRICT
 118 ON UPDATE RESTRICT)
 119 ENGINE = InnoDB;
 120
 121

 Finally, we create the comments table, on which comments will be stored.

 122
 123 SET SQL_MODE=@OLD_SQL_MODE;
 124 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;
 125 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;
 126

 As the last step, we have to create the test database also. For now, cake_blog_test is
OK without any database table.

 127 CREATE SCHEMA IF NOT EXISTS `cake_blog_test`
 128 DEFAULT CHARACTER SET latin1;

 cake_blog.sql

 If all went as planned, you should see something such as appears in Figure 6-4 .

 Figure 6-4. phpMyAdmin after database creation

CHAPTER 6 ■ PREPARING FOR TESTING

42

 Set Up Session Handling
 Just as we would in real-world middle-size applications, we’ll use CakePHP’s database
session handling for this project.

 CakePHP give us four different ready-to-use session-handling mechanisms.
 The default is php , where session handling is done by PHP in a way php.ini defines.

I normally do not choose this option.
 The second option is cake , whereby session data will be stored in files in the /tmp/

sessions folder. I use this option when the application is really simple and does not use
any database.

 The third option is database , when session data is stored in a database at a table
named sessions. I use this in most cases.

 The last option is cache , whereby sessions are stored in a cache such as APC,
Memcached, or XCache. This option is recommended if you are planning to have an
application with high usage.

 Cake makes it super easy to change session handling at any time. So, as your
application popularity grows, you can switch from database to cache .

 Open your /config/app.php file and change the default value to database for
session handling.

 1 'Session' => [
 2 'defaults' => 'database',
 3],

 The SQL script for database tables for sessions is located at app/config/schema/
sessions.sql . You should add this table to the default database.

 You don’t have to add any database table to your test database. CakePHP’s Test Suite
will do this automatically.

 Create the Default Layout
 Change the default.ctp file at /src/Template/Layout , if you want. This is not required,
but at some point, we’ll want to change CakePHP’s default layout. Why not now?

 CakePHP Models
 Models are the M in MVC. They are the basis of our web application, as they are
responsible for storing, accessing, and manipulating data. CakePHP’s Model class files are
split between Table and Entity objects. Table objects provide access to the collection
of entities stored in a specific table. CakePHP supports MySQL, SQLite, PostgreSQL,
SQLServer, and Oracle.

 Models extend CakePHP’s Model class, so they are equipped with a lot of features out of
the box. They have events such as Model.beforeFind , Model.beforeSave , Model.afterSave ,
and others. They have inherited methods such as find() , get() , save() , and so on.

CHAPTER 6 ■ PREPARING FOR TESTING

43

 Database Queries
 The most widely used model method is find() , which returns a query object.

 1 $query = $posts
 2 ->find()
 3 ->select(['id', 'title'])
 4 ->where(['id <' => 100])
 5 ->order(['created' => 'DESC']);

 As you can see, find() can be chained with other model methods, such as select() ,
 where() , etc. This is a new feature of CakePHP 3’s new object-relational mapping (ORM)
feature, which is really handy and self-descriptive. With this query, we can select id and
 title of posts, whose id s are smaller than 100, and the result set will be ordered by the
 created field. This query will generate something similar to the following SQL statement:

 SELECT id, title FROM posts WHERE id < 100 ORDER BY created DESC;

 Query objects can be modified later, as they actually execute if we call execute() or
iterate over the query or call all() .

 Model Associations
 Relations between database tables are handled by model associations in CakePHP
applications. There are four association types. One-to-one relationships are handled
by the hasOne association, one-to-many relationships by hasMany , many-to-one
relationships by belongsTo , and many-to-many relationships by belongsToMany .

 HasOne Associations

 In our blog database, there is no hasOne association. We can create a profiles database
table and model, and if a user has only one profile, he or she is in a hasOne association
with the profile. In this case, the profile table should have a user_id field for describing
the link between it and the user.

 HasMany Associations

 In our blog database categories, hasMany posts means that a category can have many posts.

 BelongsTo Associations

 This is the other end of a hasOne or hasMany association. So, in the previous examples, a
profile belongsTo a user and a post belongsTo a category.

CHAPTER 6 ■ PREPARING FOR TESTING

44

 BelongsToMany associations

 In our blog database, there is a belongsToMany association between posts and tags,
meaning that a post can have many tags and a tag can be assigned to many posts.

 CakePHP Controllers
 Controllers are the C in MVC. Controllers are the middleware between models and views.
Your controller should handle interpreting the request data. Commonly, a controller is
used to manage the logic for one model.

 Controllers should extend Cake’s Controller class. Controllers provide a number
of methods. These are called actions . By default, each public method in a controller is an
action and is accessible from a URL. An action is responsible for interpreting the request
and creating the response and setting up variables for the view.

 CakePHP Views
 Views are the V in MVC. Views are for presenting the response, mainly meaning to create
an HTML document. A layout is the main container for views. Each controller action
should have its corresponding view file at /src/Template/ folder.

 Let’s see how to create models, controllers, and views automatically.

 Baking
 In my opinion, one of the best features of CakePHP is baking, which is itself worth writing
a book about.

 I will not go into detail here, but bake is a tool for automatically generating basic
code four your blog. With bake , you can automatically generate model, controller, and
template files and many others, such as fixtures, shells, etc.

 Open a terminal, go into your app folder, and start CakePHP’s bake script.

 1 $ cd ~/public_html/cakeBlog/
 2 $ bin/cake bake

 If you see an error message about file permissions, just ignore it. Because the web
server usually runs as a different user than yourself, it has different file permissions. You
can get rid of these error messages by manually emptying your app/tmp/cache folder’s
subfolders or fixing its permissions.

 You’ll see the screen shown in Figure 6-5 .

CHAPTER 6 ■ PREPARING FOR TESTING

45

 Figure 6-5. bake script in action

 Now let’s generate all model table and entity files, corresponding fixtures, and test
files at once. For this, we will use the model all parameters for bake . This will create files
at /src/Model/Entity , /src/Model/Table , /tests/Fixture , and /tests/TestCase/
Model/Table. Bake will generate one file for each database table in each of these folders.

 1 $ bin/cake bake model all

 We can use the same process for our controllers and views. With the following
commands, all controller and view files will be created by bake :

 1 $ bin/cake controller all
 2 $ bin/cake template all

 If you receive an error message such as Error: Cannot generate views for
models with no primary key , it is because of the session model. In this case, bake your
tags and users template manually.

 1 $ bin/cake template tags
 2 $ bin/cake template users

CHAPTER 6 ■ PREPARING FOR TESTING

46

 Clean It Up
 Some files are unnecessary and should be deleted. Bake generates files for sessions and
join tables. As our blog will be very simple, we do not want anything extra with join tables,
so we do not need these files.

• src/Controller/PostsTagsController.php

• src/Controller/SessionsController.php

• src/Model/Entity/Session.php

• src/Model/Table/SessionsTable.php

• tests/TestCase/Controller/SessionsControllerTest.php

• tests/TestCase/Controller/PostsTagsControllerTest.php

• tests/TestCase/Model/Table/SessionsTableTest.php

• tests/Fixture/SessionsFixture.php

 You can bake your models before you add the session table to your database. In this
case, session-related files will not be generated, so you don’t have to delete them.

 You can bake your models, controllers, and views without the all parameter and
then choose your objects one by one. You can also skip the join model, so that nothing
will be generated for PostsTags .

 I think my approach is the fastest of these three options.

 Let’s Play
 Browse to http://localhost/~ rrd/cakeBlog/users . You should see something similar
than Figure 6-6 , and be able to add a user.

 Figure 6-6. Baked Users page

CHAPTER 6 ■ PREPARING FOR TESTING

47

 Figure 6-7. Tests after code generation with bake

 You can add, modify, and delete categories, tags, posts, and comments also. And all
of this code is generated automatically by bake . We did not write a single line of code
yet. Cool, huh?

 Run vendor/bin/phpunit again, to check if all went well. In Figure 6-7 , dots are the
successful test; I ’s are the incomplete ones.

 Do not worry about incomplete tests for now. So, bake generated 43 tests. Of these,
18 are assertions and 40 are incomplete tests.

 It is now time to see what is what here. Let’s start with test data fixtures.

 Summary
 In this chapter, we took a closer look at testing. We installed all the necessary servers,
PHP, and Composer and created our application skeleton, via Composer, and our
databases. You learned how to use the bake script to automatically generate code. We also
set up a session-handling method for our blog.

 Felix always felt he was a little bit different

49© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_7

 CHAPTER 7

 Fixtures

 Most of the time, an application will manipulate data. Users will add new posts and
comments or edit them, admins will create new tags and categories, etc. Fixtures are
sample data generated for test cases. Why do we need them? Playing with application
data is a bad idea. We could accidentally delete or modify data during development.
We could also break database relations. Not a good idea. Fixtures are another layer of
isolation. A smaller and cleaner data set helps to make sure our code returns expected
results and runs fast. Definitely a good idea.

 CakePHP uses the connection named $test in your config/app.php configuration
file. CakePHP creates tables for the fixtures, populates the tables with data, and (after
running test methods) empties the fixture tables and removes fixture tables from the test
database.

 Creating Fixtures
 There are several ways to create fixtures. You should create your fixtures in the /app/
Test/Fixture folder.

 On the Fly
 Because we baked our models, we already have fixture files at /tests/Fixture , such as
 UsersFixture.php . Let’s check what we generated earlier.

 1 <?php
 2 namespace App\Test\Fixture;
 3
 4 use Cake\TestSuite\Fixture\TestFixture;
 5
 6 /**
 7 * UsersFixture
 8 *
 9 */
 10 class UsersFixture extends TestFixture

CHAPTER 7 ■ FIXTURES

50

 11 {
 12
 13 /**
 14 * Fields
 15 *
 16 * @var array
 17 */
 18 // @codingStandardsIgnoreStart
 19 public $fields = [
 20 'id' => [
 21 'type' => 'integer', 'length' => 10, 'unsigned' => true,
 22 'null' => false, 'default' => null, 'comment' => '',
 23 'autoIncrement' => true, 'precision' => null
 24],
 25 'username' => [
 26 'type' => 'string', 'length' => 50, 'null' => true,
 27 'default' => null, 'comment' => '', 'precision' => null,
 28 'fixed' => null
 29],
 30 'password' => [
 31 'type' => 'string', 'length' => 50, 'null' => true,
 32 'default' => null, 'comment' => '', 'precision' => null,
 33 'fixed' => null
 34],
 35 'role' => [
 36 'type' => 'string', 'length' => 20, 'null' => true,
 37 'default' => null, 'comment' => '', 'precision' => null,
 38 'fixed' => null
 39],
 40 'created' => [
 41 'type' => 'datetime', 'length' => null, 'null' => true,
 42 'default' => null, 'comment' => '', 'precision' => null
 43],
 44 'modified' => [
 45 'type' => 'datetime', 'length' => null, 'null' => true,
 46 'default' => null, 'comment' => '', 'precision' => null
 47],
 48 '_constraints' => [
 49 'primary' => [
 50 'type' => 'primary', 'columns' => ['id'], 'length' => []
 51],
 52],
 53 '_options' => [
 54 'engine' => 'InnoDB',
 55 'collation' => 'latin1_swedish_ci'
 56],
 57];

CHAPTER 7 ■ FIXTURES

51

 58 // @codingStandardsIgnoreEnd
 59
 60 /**
 61 * Records
 62 *
 63 * @var array
 64 */
 65 public $records = [
 66 [
 67 'id' => 1,
 68 'username' => 'Lorem ipsum dolor sit amet',
 69 'password' => 'Lorem ipsum dolor sit amet',
 70 'role' => 'Lorem ipsum dolor ',
 71 'created' => '2016-04-24 18:39:32',
 72 'modified' => '2016-04-24 18:39:32'
 73],
 74];
 75 }

 The $fields array describes the table schema for the model Users . It describes all
the fields, their data types and length, default value, and some other values. It also adds
used indexes.

 The $records array contains one sample record, but you can add as many as you
want. Using this approach, you can start writing unit tests before you have anything in
your application’s database—even before you have a database at all. It’s really useful in
the early stages of development to test database structure changes.

 At later development phases, when the database structure is finalized, it is also
essential for testing to have records that will not change.

 When you run a test in which this fixture is imported, Cake will create a Users table
in the test database, with the fields described here, and insert records from the $records
array. The model tests will use this data during testing.

 You can also use dynamic data in your fixtures. For this, just use the init() function.

 1 <?php
 2 namespace App\Test\Fixture;
 3
 4 use Cake\TestSuite\Fixture\TestFixture;
 5
 6 /**
 7 * UsersFixture
 8 *
 9 */
 10 class UsersFixture extends TestFixture
 11 {
 12
 13 /**
 14 * Fields
 15 *

CHAPTER 7 ■ FIXTURES

52

 16 * @var array
 17 */
 18 // @codingStandardsIgnoreStart
 19 public $fields = [
 20 'id' => [
 21 'type' => 'integer', 'length' => 10, 'unsigned' => true,
 22 'null' => false, 'default' => null, 'comment' => '',
 23 'autoIncrement' => true, 'precision' => null
 24],
 25 'username' => [
 26 'type' => 'string', 'length' => 50, 'null' => true,
 27 'default' => null, 'comment' => '', 'precision' => null,
 28 'fixed' => null
 29],
 30 'password' => [
 31 'type' => 'string', 'length' => 50, 'null' => true,
 32 'default' => null, 'comment' => '', 'precision' => null,
 33 'fixed' => null
 34],
 35 'role' => [
 36 'type' => 'string', 'length' => 20, 'null' => true,
 37 'default' => null, 'comment' => '', 'precision' => null,
 38 'fixed' => null
 39],
 40 'created' => [
 41 'type' => 'datetime', 'length' => null, 'null' => true,
 42 'default' => null, 'comment' => '', 'precision' => null
 43],
 44 'modified' => [
 45 'type' => 'datetime', 'length' => null, 'null' => true,
 46 'default' => null, 'comment' => '', 'precision' => null
 47],
 48 '_constraints' => [
 49 'primary' => [
 50 'type' => 'primary', 'columns' => ['id'], 'length' => []
 51],
 52],
 53 '_options' => [
 54 'engine' => 'InnoDB',
 55 'collation' => 'latin1_swedish_ci'
 56],
 57];
 58 // @codingStandardsIgnoreEnd
 59
 60 public function init()
 61 {
 62 $this->records = [
 63 [

CHAPTER 7 ■ FIXTURES

53

 64 'id' => 1,
 65 'username' => 'Lorem ipsum dolor sit amet',
 66 'password' => 'Lorem ipsum dolor sit amet',
 67 'role' => 'Lorem ipsum dolor ',
 68 'created' => date('Y-m-d H:i:s'),
 69 'modified' => date('Y-m-d H:i:s')
 70],
 71];
 72 }
 73 }

 As you can see, the beginning of the file is the same as in the previous example. But
after we create the $fields array, we do not create a $records array, but create it at the
 init() method. We do this because we want to insert dynamic data into created and
modified fields. So, these data will be different on every test run, based on current system
time.

 Importing the Existing Model Schema
 If you’ve already created database models, you can import them to your fixture without
any existing data records. This can be useful in early development stages, when the
database structure tends to change frequently. Without this, all database changes should
be manually changed in fixtures also. It adds some overhead, so at later development
phases, the previous examples will be faster.

 1 <?php
 2 class UsersFixture extends TestFixture {
 3 public $import = ['model' => 'Users'];
 4 }
 5 ?>

 If you have tables but no models, you should use the following code sample. It is
useful when you create plugins or libraries.

 1 <?php
 2 class UsersFixture extends TestFixture {
 3 public $import = ['table' => 'users'];
 4 }
 5 ?>

 Don’t forget to manually add records to your fixtures. As tests should run as fast
as possible, try to have just enough records. Do not forget: Inserting and removing test
records takes time. More records require more time, so add just enough records as is
absolutely necessary. Let’s say somewhere in our application we would like to list all users
whose names start with a given letter. We would have a getUsersByName($ch) method in
our model that will handle this.

CHAPTER 7 ■ FIXTURES

54

 In this scenario, we should have at least three records in our user fixture with
different usernames.

 65 public $records = [
 66 [
 67 'id' => 1,
 68 'username' => 'rrd',
 69 'password' => 'Lorem ipsum dolor sit amet',
 70 'role' => 'Lorem ipsum dolor ',
 71 'created' => '2016-04-24 18:39:32',
 72 'modified' => '2016-04-24 18:39:32'
 73],
 74 [
 75 'id' => 2,
 76 'username' => 'gauranga',
 77 'password' => 'Lorem ipsum dolor sit amet',
 78 'role' => 'Lorem ipsum dolor ',
 79 'created' => '2016-04-24 18:39:32',
 80 'modified' => '2016-04-24 18:39:32'
 81],
 74 [
 75 'id' => 3,
 76 'username' => 'r2d2',
 77 'password' => 'Lorem ipsum dolor sit amet',
 78 'role' => 'Lorem ipsum dolor ',
 79 'created' => '2016-04-24 18:39:32',
 80 'modified' => '2016-04-24 18:39:32'
 81],
 82];

 As we have these three records, we can write tests for getUsersByName($ch) . If $ch is
“g,” we should get record 2; if $ch is “r,” we should get records 1 and 3 and should not get
any records otherwise.

 If you do not like entering records manually, you can import them from an existing
database table, with phpMyAdmin . Just use the export function and choose PHP array as
the format of the export, as shown in Figure 7-1 .

CHAPTER 7 ■ FIXTURES

55

 Figure 7-1. Export records by phpMyAdmin

 This will create an array for you that can be copy-pasted as your $records array. This
makes it easy to have a lot of records, but still try to have as few as you can.

 Loading Fixtures into Your Tests
 Let’s take a look at tests/TestCase/Model/Table/UsersTableTest.php , which is also
generated by bake , as discussed in the previous chapter.

 1 <?php
 2 namespace App\Test\TestCase\Model\Table;
 3

CHAPTER 7 ■ FIXTURES

56

 Namespaces are added at PHP 5.3, as well as a recommended language feature to
use in PHP 7 applications. The simplest definition of a namespace is that it is a way of
encapsulating items.

 4 use App\Model\Table\UsersTable;
 5 use Cake\ORM\TableRegistry;
 6 use Cake\TestSuite\TestCase;
 7

 By the use operator, we import other namespaces.

 8 /**
 9 * App\Model\Table\UsersTable Test Case
 10 */
 11 class UsersTableTest extends TestCase
 12 {
 13

 Model tests extend CakePHP’s TestCase class.

 14 /**
 15 * Test subject
 16 *
 17 * @var \App\Model\Table\UsersTable
 18 */
 19 public $Users;
 20
 21 /**
 22 * Fixtures
 23 *
 24 * @var array
 25 */
 26 public $fixtures = [
 27 'app.users',
 28 'app.comments',
 29 'app.posts',
 30 'app.categories',
 31 'app.tags',
 32 'app.posts_tags'
 33];
 34

 The $fixtures array defines which fixtures should be loaded for our tests. As you
can see, bake imported fixtures related to the User model. For now, get rid of the related
models and keep it simple. Change the code to look like this:

 26 public $fixtures = ['app.users'];

CHAPTER 7 ■ FIXTURES

57

 If you do not have any model queries that will try to retrieve related database tables,
this will suffice. As only those fixtures will be loaded into your test database that are
added here, related database tables will not exist, so trying to query them will create an
error.

 It is always good practice to keep tests simple and load only fixtures that are
absolutely necessary.

 Summary
 In this chapter, you were introduced to the concept of fixtures and learned how to write,
generate, and load them into our tests. One of the most important lessons is to keep
fixtures as short as possible and load only the necessary fixtures into your tests.

 We’re big fans of fat models

59© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_8

 CHAPTER 8

 Model Tests

 OK. I won’t torture you anymore. Let’s write our first unit test.
 Use the following sample code in your UserFixture.php file.

 1 <?php
 2 namespace App\Test\Fixture;
 3
 4 use Cake\TestSuite\Fixture\TestFixture;
 5
 6 class UsersFixture extends TestFixture
 7 {
 8
 9 public $import = ['model' => 'Users'];
 10
 11 public $records = [
 12 [
 13 'id' => 1,
 14 'username' => 'rrd',
 15 'password' => 'Gouranga',
 16 'role' => 'admin',
 17 'created' => '2016-05-01 12:00:00',
 18 'modified' => '2016-05-01 12:00:00'
 19],
 20];
 21 }

 As you can see, it is really simple. We import the Users model and create only one
record, meaning one user.

 Let’s say we want to show who the last registered user is. As we are working with
test-driven development (TDD), first we create the test. Open /tests/TestCase/Model/
Table/UsersTableTest.php and add our first test function to the end of the file.

CHAPTER 8 ■ MODEL TESTS

60

 1 public function testIfWeGetRrdAsLastRegisteredUser()
 2 {
 3 $actual = $this->Users->getLastRegistered();
 4 $expected = 'rrd';
 5 $this->assertEquals($expected, $actual->username);
 6 }

 I should probably explain this a little. But before we get into it, create the model
method itself and run the test.

 Because we’re big fans of fat models, we’ll put this functionality into our Users
model. Open /src/Model/Table/UsersTable.php and add a new function to the end of
the file.

 1 public function getLastRegistered(){
 2 return true;
 3 }

 It’s dumb but exactly what we need at this point. Let’s run it. The result should be
similar to that shown in Figure 8-1 .

 $ cd ~/public_html/cakeBlog
 $ vendor/bin/phpunit --filter testIfWeGetRrdAsLastRegisteredUser tests/
TestCase/Model/Table/UsersTableTest.php

 Figure 8-1. Failed test

CHAPTER 8 ■ MODEL TESTS

61

 Congratulations! You just wrote your first unit test. Let’s explore what happened here
and why we are happy about a failing test.

 You may receive error messages such as the following:

 Warning Error: SplFileInfo::openFile(/home/rrd/public_html/cakeBlog/tmp/
cache/models/myapp_cake_model_default_users): failed to open stream:

Permission denied in [/home/rrd/public_html/cakeBlog/vendor/cakephp/cakephp/

src/Cache/Engine/FileEngine.php, line 395]

 This means you do not have permission to write cache files. Change the permissions and
ownerships of all the files in your /tmp folder .

 Names of Test Functions
 Test function names should start with test .

 Don’t be afraid to use descriptive function names, even if they are long.
They’re a great help. We want to check who was the last registered user, and
from our fixture, we know that should be our only user 'rrd' . So, we used
 testIfWeGetRrdAsLastRegisteredUser for the method name. We should keep in mind
that when we add new users to our fixtures, we should update this test also.

 Assertions
 In test functions, we’ll do something simple: take an expected value and see if our
function’s return value is equal to that value. There are other useful assertion methods,
such as assertTrue , assertFalse , and assertContains . You can see all of them at
PHPUnit API (https://phpunit.de/manual/current/en/appendixes.assertions.
html).

 Fail First
 Do you remember the process of TDD? First, you write a test that fails. We are ready for
that, and it should come as a surprise, as our model method only returns true . So, now
let’s write the correct code.

https://phpunit.de/manual/current/en/appendixes.assertions.html
https://phpunit.de/manual/current/en/appendixes.assertions.html

CHAPTER 8 ■ MODEL TESTS

62

 So, what actually happened in our test?

 1 public function testIfWeGetRrdAsLastRegisteredUser()
 2 {
 3 $actual = $this->Users->getLastRegistered();

 The method will return a User object that will be populated from the test database.

 4 $expected = 'rrd';

 We define the expected value.

 5 $this->assertEquals($expected, $actual->username);
 6 }

 And then do the assertion. If everything is fine, $actual->username should be 'rrd' .
 Take your UsersFixture.php file and add a new record. If the second user’s creation

time was earlier than rrd ’s, your test will pass. If it was created at a later time, your test
will fail. When you’ve finished playing with this, leave your code in such a way that your
test passes. A failing test means something is wrong.

 Our test finished in 798 ms. Tests should run fast. Always keep your eye on
execution time.

 Passing Test
 OK. Our test failed. Now add the actual code to the user model.

 1 public function getLastRegistered()
 2 {
 3 return $this->find()
 4 ->order('created')
 5 ->first();
 6 }

 We requested the last registered user’s data by calling the Users model’s find()
method, ordered the results by created field and returned the first result.

 Rerunning the test should give us a passed tests report with a green bar (Figure 8-2).

 Figure 8-2. Passed test

CHAPTER 8 ■ MODEL TESTS

63

 Tests and Fat Models
 One concept of writing better code is to have fat models and thin controllers.

 This means that the controllers should be really thin, just for a translator layer
between requests and responses. So, the business logic is in models that are frequently
used by controllers.

 Another concept is smaller is better. This means we should have small methods.
There are those who advocate a maximum of three lines per method; others recommend
a maximum ten lines. Short methods are easier to read, understand, maintain, and easy
to test. Longer methods can easily break the single-responsibility principle.

 All these together mean that we will have fat models with many short methods that
are responsible for only one thing. And perhaps you are going to have tests for all your
model methods.

 Tests will help you to identify the bad coding patterns that you follow and cause
problems for you.

 CakePHP follows the Model-View-Controller (MVC) pattern, offers good support,
and helps you to follow along, even if programming patterns are new to you. Let’s say that
we want to have a list of users grouped by the first character of their names. So, something
like A : Amindala, B : Ben Kenobi, Boba Fett, etc. Perhaps we want a list of links, so that if
the user clicks someone’s name, he or she will be redirected to the user’s profile page.

 To meet this requirement, we should query our user table for the usernames, then
set the result available for the view and build up an HTML list.

 The communication with the database should be in our model. All your find() calls
should be in models.

 The controller will check users’ permissions and set variables for the views to display
or flash error messages.

 The view should actually build up the HTML list and links. View should not do
any business logic, only print out output. If you have print (or echo) statements in your
controller or model, you have broken the MVC pattern. At the same time, most of the view
code should be printing only output and not anything else. An exception is calculating
table summaries or averages.

 Test Callbacks
 You may have noticed that some functions are automatically generated by bake . These are
test callbacks. CakePHP’s unit tests have the following callback methods:

• setUp is called before every test method, so this is the best place
to put initialization of generally used objects. You should always
call parent::setUp() .

• tearDown is called after every test method. Don’t forget to call
 parent::tearDown .

 The tearDownAfterClass is called once, after the test methods in a case are started.
This method must be static .

CHAPTER 8 ■ MODEL TESTS

64

 Summary
 In this chapter, we wrote our first unit test. At first, it failed, as we followed TDD. You
learned the main principle of test methods: how assertions work. You also learned about
fat models and the differences between models, controllers, and views. Finally, you
learned about test callbacks.

 Yes, learning by trying and doing is the root of coding

67© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_9

 CHAPTER 9

 Controller Tests 1

 In chapter 7 , you saw that model tests extend TestCase . Controller tests extend
 IntegrationTestCase . Using this as base classes will simulate get , post calls , and check
for response objects.

 Overview of the Baked Controller
 Take a look at the /src/Controllers/PostsController.php file that we generated by
 bake earlier.

 1 <?php
 2 namespace App\Controller;
 3

 All controllers share the same namespace, which is App\Controller .

 4 use App\Controller\AppController;
 5

 With the use operator, we import the App\Controller\AppController namespace.

 6 /**
 7 * Posts Controller
 8 *
 9 * @property \App\Model\Table\PostsTable $Posts
 10 */
 11 class PostsController extends AppController
 12 {
 13

http://dx.doi.org/10.1007/978-1-4842-1212-7_7

CHAPTER 9 ■ CONTROLLER TESTS 1

68

 All controller classes extend the AppController class, which is an extension of
Cake’s Controller class. It ensures that we can use components and have methods for
redirection, etc.

 14 /**
 15 * Index method
 16 *
 17 * @return \Cake\Network\Response|null
 18 */
 19 public function index()
 20 {

 The index method generated by bake is for listing all posts.

 21 $this->paginate = [
 22 'contain' => ['Categories', 'Users']
 23];
 24 $posts = $this->paginate($this->Posts);
 25

 We want to use pagination in our view, to allow the user to paginate, if there are
many posts. We load the associated Categories and Users models to see the post’s
related data.

 26 $this->set(compact('posts'));
 27 $this->set('_serialize', ['posts']);
 28 }
 29

 Then we set the variables for the view. We set only one variable, post, and then set
the _serialize variable, as it may be useful in JSON responses.

 30 /**
 31 * View method
 32 *
 33 * @param string|null $id Post id.
 34 * @return \Cake\Network\Response|null
 35 * @throws \Cake\Datasource\Exception\RecordNotFoundException
 36 * When record not found.
 37 */

CHAPTER 9 ■ CONTROLLER TESTS 1

69

 The view method is for getting only one post, with all associated data, and to set the
 post variable for the view.

 38 public function view($id = null)
 39 {
 40 $post = $this->Posts->get($id, [
 41 'contain' => ['Categories', 'Users', 'Tags', 'Comments']
 42]);
 43
 44 $this->set('post', $post);
 45 $this->set('_serialize', ['post']);
 46 }
 47

 The next method that is generated by bake is add . This method is for adding new
posts.

 48 /**
 49 * Add method
 50 *
 51 * @return \Cake\Network\Response|void Redirects on successful
 52 * add, renders view otherwise.
 53 */
 54 public function add()
 55 {
 56 $post = $this->Posts->newEntity();

 First, we create a new entity object for the new post.

 57 if ($this->request->is('post')) {
 58 $post = $this->Posts->patchEntity(
 59 $post,
 60 $this->request->data
 61);

 If we already received some post data in the request, we load it to the $post entity
object.

 62 if ($this->Posts->save($post)) {
 63 $this->Flash->success(__('The post has been saved.'));
 64 return $this->redirect(['action' => 'index']);
 65 } else {
 66 $this->Flash->error(
 67 __('The post not saved. Please, try again.')
 68);
 69 }
 70 }

CHAPTER 9 ■ CONTROLLER TESTS 1

70

 Next, we try to save the new post and set a success or error message. If the save
operation was successful, we redirect the user to the posts/index URL.

 71 $categories = $this->Posts->Categories
 72 ->find('list', ['limit' => 200]);
 73 $users = $this->Posts->Users->find('list', ['limit' => 200]);
 74 $tags = $this->Posts->Tags->find('list', ['limit' => 200]);
 75 $this->set(compact('post', 'categories', 'users', 'tags'));
 76 $this->set('_serialize', ['post']);
 77 }
 78

 Then we set all the variables for the view.
 The next method generated by bake is edit , for editing previously saved posts.

 79 /**
 80 * Edit method
 81 *
 82 * @param string|null $id Post id.
 83 * @return \Cake\Network\Response|void Redirects
 84 * on successful edit, renders view otherwise.
 85 * @throws \Cake\Network\Exception\NotFoundException
 86 * When record not found.
 87 */
 88 public function edit($id = null)
 89 {
 90 $post = $this->Posts->get($id, [
 91 'contain' => ['Tags']
 92]);

 First, we get the post from the model identified by its id.

 93 if ($this->request->is(['patch', 'post', 'put'])) {
 94 $post = $this->Posts->patchEntity(
 95 $post,
 96 $this->request->data
 97);
 98 if ($this->Posts->save($post)) {
 99 $this->Flash->success(__('The post has been saved.'));
 100 return $this->redirect(['action' => 'index']);
 101 } else {
 102 $this->Flash->error(
 103 __('The post not saved. Please, try again.')
 104);
 105 }
 106 }

CHAPTER 9 ■ CONTROLLER TESTS 1

71

 If we receive post data in the request by HTTP patch , post , or put methods, we try to
save the post.

 107 $categories = $this->Posts->Categories
 108 ->find('list', ['limit' => 200]);
 109 $users = $this->Posts->Users->find('list', ['limit' => 200]);
 110 $tags = $this->Posts->Tags->find('list', ['limit' => 200]);
 111 $this->set(compact('post', 'categories', 'users', 'tags'));
 112 $this->set('_serialize', ['post']);
 113 }
 114

 Then again, as in the previous methods, we set up the variables that will be used in
the corresponding view.

 The last method generated by bake is delete, to remove posts already saved.

 115 /**
 116 * Delete method
 117 *
 118 * @param string|null $id Post id.
 119 * @return \Cake\Network\Response|null Redirects to index.
 120 * @throws \Cake\Datasource\Exception\RecordNotFoundException
 121 * When record not found.
 122 */
 123 public function delete($id = null)
 124 {
 125 $this->request->allowMethod(['post', 'delete']);
 126 $post = $this->Posts->get($id);
 127 if ($this->Posts->delete($post)) {
 128 $this->Flash->success(__('The post has been deleted.'));
 129 } else {
 130 $this->Flash->error(
 131 __('The post not deleted. Please, try again.')
 132);
 133 }
 134 return $this->redirect(['action' => 'index']);
 135 }
 136 }

 The method is straightforward: we delete the post identified by its id and then
redirect the user to posts/index .

CHAPTER 9 ■ CONTROLLER TESTS 1

72

 The Magic Behind Bake
 A lot of clever programming tools were used by the CakePHP team to create a handy tool
like bake . As you can see in the preceding example, it really writes code for us.

 When we bake models, they detect the database field types and, based on that, create
entity and model classes. Entity objects represent a database row, while model objects
represent a database table, with its associations, validation rules, and methods. As models
extend CakePHP’s Table class, they inherit a lot of useful methods. That is how we can
use methods such as get , save , and delete without creating these methods. They are
there as a result of the framework itself.

 When we bake controllers, index , edit , view , and delete methods will be generated,
as these are the most commonly used operations. These methods will use the associated
models.

 Baking also generates views for all the controller methods. So, for the index method,
the index view is generated. In the view, we will access those variables that were set in the
controller.

 As you can see, by inheritance and bake , we got a lot of things out of the oven. There
is, however, one thing that you should keep in your mind. Code generated by bake is
just for getting a working skeleton as fast as possible. It does not handle permissions or
user authentication, so anybody can create and delete things. CakePHP can provide nice
support for these also, but they are not automatically generated by bake .

 Creating Controller Tests
 Having had an overview of the generated controller, let’s create some tests for it. First,
we must create fixtures for our categories, tags, and posts models. Let’s start with the
categories. Chapter 7 provided an overview of fixtures, so the following code sample
should be clear.

 1 <?php
 2 namespace App\Test\Fixture;
 3
 4 use Cake\TestSuite\Fixture\TestFixture;
 5
 6 class CategoriesFixture extends TestFixture
 7 {
 8
 9 public $import = ['model' => 'Categories'];
 10
 11 public $records = [
 12 [
 13 'id' => 1,
 14 'category' => 'Category 1'
 15],

http://dx.doi.org/10.1007/978-1-4842-1212-7_7

CHAPTER 9 ■ CONTROLLER TESTS 1

73

 16 [
 17 'id' => 2,
 18 'category' => 'Category 2'
 19],
 20];
 21 }

 We imported the Categories model into the fixture and created two category records.
This code should be in the /tests/Fixture/CategoriesFixture.php file. The file is
generated by bake . Feel free to modify it, or just create a new one with the content above.

 1 <?php
 2 namespace App\Test\Fixture;
 3
 4 use Cake\TestSuite\Fixture\TestFixture;
 5
 6 class TagsFixture extends TestFixture
 7 {
 8 public $import = ['model' => 'Tags'];
 9
 10 public $records = [
 11 [
 12 'id' => 1,
 13 'tag' => 'Tag 1'
 14],
 15 [
 16 'id' => 2,
 17 'tag' => 'Tag 2'
 18],
 19 [
 20 'id' => 3,
 21 'tag' => 'Tag 3'
 22],
 23];
 24 }

 We should do the same for tags. In this case, we create three tags. It should go to the
 /tests/Fixture/TagsFixture.php file.

 1 <?php
 2 namespace App\Test\Fixture;
 3
 4 use Cake\TestSuite\Fixture\TestFixture;
 5
 6 class PostsFixture extends TestFixture
 7 {
 8 public $import = ['model' => 'Posts'];
 9

CHAPTER 9 ■ CONTROLLER TESTS 1

74

 10 public $records = [
 11 [
 12 'id' => 1,
 13 'category_id' => 1,
 14 'user_id' => 1,
 15 'title' => 'First Post Tilte',
 16 'body' => 'This is the body of the first post...',
 17 'created' => '2016-05-01 13:00:00',
 18 'modified' => '2016-05-01 13:00:00'
 19],
 20];
 21 }

 We should do the same for posts. Right now, one record would be enough. This code
should be in the /tests/Fixture/PostsFixture.php file.

 We have a belongsToMany association between posts and tags, meaning a post can
have many tags, and a tag can be assigned to many posts. For storing this data, we have
created a posts_tags database table in our default data source. As we want to use it now
in tests, we need fixtures for our join tables also.

 1 <?php
 2 namespace App\Test\Fixture;
 3
 4 use Cake\TestSuite\Fixture\TestFixture;
 5
 6 class PostsTagsFixture extends TestFixture
 7 {
 8 public $import = ['model' => 'PostsTags'];
 9
 10 public $records = [
 11 [
 12 'post_id' => 1,
 13 'tag_id' => 1
 14],
 15 [
 16 'post_id' => 1,
 17 'tag_id' => 3
 18],
 19];
 20 }

 You can see that the post with the id 1 has two tags, with id 1 and 3 .
 Now we have all the required fixtures. We already baked /tests/TestCase/

Controller/PostsControllerTest.php , but, just for fun, delete it and create another one
from scratch.

CHAPTER 9 ■ CONTROLLER TESTS 1

75

 Our test case should have its namespace and will use PostsController and
 IntegrationTestCase , so we load them.

 1 <?php
 2 namespace App\Test\TestCase\Controller;
 3
 4 use App\Controller\PostsController;
 5 use Cake\TestSuite\IntegrationTestCase;
 6

 Let’s create our base class.

 7 class PostsControllerTest extends IntegrationTestCase
 8 {
 9

 We load the fixtures into our test case.

 10 public $fixtures = [
 11 'app.posts',
 12 'app.categories',
 13 'app.users',
 14 'app.tags',
 15 'app.posts_tags'
 16];
 17

 We do not load the comments fixture, as we do not use it in any of the tests. Loading it
would be unnecessary and would slow down test running.

 And, finally, create an empty test function just to be loyal to test-driven development
(TDD).

 18 public function testIndex()
 19 {
 20 $this->markTestIncomplete('Not implemented yet.');
 21 }
 22 }

 The method markTestIncomplete is inherited from IntegrationTestCase and is
defined in PHPUnit . It serves a simple purpose, which is not a great surprise: it marks the
test incomplete. The actual test function requires a little more explanation, so we will add
it later.

CHAPTER 9 ■ CONTROLLER TESTS 1

76

 About Integration Tests
 Integration tests allow you to test your application at a higher level. It simulates an HTTP
request sent to your application. Testing your controller will also use all components,
models, and helpers related to the given request.

 The following methods can be used for simulating HTTP requests:

• get() sends a GET request

• post() sends a POST request

• put() sends a PUT request

• delete() sends a DELETE request

• patch() sends a PATCH request

 Assertion Methods
 By using IntegrationTestCase , we gain access to a lot of different assertion methods.
Following are some of the most useful ones:

• $this->assertResponseOk(); checks if we got a 2xx response
code on calling the controller.

• $this->assertResponseSuccess(); checks if we got a 2xx or 3xx
response code on calling the controller.

• $this->assertResponseError(); checks if we got a 4xx response
code on calling the controller.

• $this->assertResponseFailure(); checks if we got a 5xx
response code on calling the controller.

• $this->assertResponseCode(404); checks if the response code
is 404.

• $this->assertRedirectContains('/posts/edit/'); checks a
part of the location header for redirects.

• $this->assertResponseEquals('Call out Gouranga and be
Happy!'); checks if the response content equals the given value.

• $this->assertResponseContains('Gouranga!'); checks if the
response content contains the given value.

• $this->assertResponseNotContains('You are logged in!');
checks if the response content does not contain the given value.

• $this->assertSession(1, 'Auth.User.id'); checks the
 session variable.

CHAPTER 9 ■ CONTROLLER TESTS 1

77

• $this->assertEquals('rrd', $this -> viewVariable('username'));
checks the view variables.

• $this->assertContentType('application/json'); checks the
content types.

 Setting Request Data
 Most of the time, we need data in our controller, to work with what can come from get ,
 post , cookie , or session .

 1 public function testAdd()
 2 {
 3 $data = [
 4 'category_id' => 2,
 5 'user_id' => 1,
 6 'title' => 'Test Post Title',
 7 'body' => 'Test post body with same sample text',
 8 'created' => '2016-05-01 14:00:00',
 9 'modified' => '2016-05-01 14:00:00',
 10 'tags' => [
 11 ['id' => 1],
 12 ['id' => 2],
 13]
 14];
 15 $this->post('/posts/add/', $data);
 16
 17 $this->assertResponseSuccess();
 18

 First, we create a data array to post to the controller. Then we post it at check, if we
received a success response code.

 19 $posts = TableRegistry::get('Posts');
 20 $query = $posts->find()->where(['title' => $data['title']]);
 21 $this->assertEquals(1, $query->count());
 22

 In the previous chapter, we created our post’s fixtures. So, we know that only this new
post has the same title as the data array, so the count should return 1.

 23 $result = $query->toArray();
 24 $poststags = TableRegistry::get('PostsTags');
 25 $query = $poststags->find()->where(['post_id' => $result[0]->id]);
 26 $result = $query->toArray();
 27 $this->assertEquals(1, $result[0]->tag_id);
 28 $this->assertEquals(2, $result[1]->tag_id);
 29 }

CHAPTER 9 ■ CONTROLLER TESTS 1

78

 In the last assertion, we check if this new post has two tags, 1 and 2. (See Figure 9-1 .)

 Figure 9-1. Result of testAdd

 Figure 9-2. Result of testEdit

 Testing GET data is really simple. You just have to add the query string into the get
call’s first parameter. (See Figure 9-2 .)

 1 public function testEdit ()
 2 {
 3 $this->get('/posts/edit/1');
 4 $this->assertResponseOk();
 5 }

 Summary
 This chapter provided an overview of a controller generated by bake . I discussed how
 bake works and what its limitations are. We then created a controller test and introduced
integration testing and controller-specific assertion methods.

 Little pig, little pig, let me in

www.allitebooks.com

http://www.allitebooks.org

81© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_10

 CHAPTER 10

 Mocks

 We often require mocked components, models, objects, or even core PHP functions. You
can create mocks in any of the test functions or, if you require mock objects in all of the
test functions, in the setUp() method.

 Mocks ensure that your tests run faster, without actually having all the required
objects.

 Mocking Sessions
 The IntegrationTestCase class provides a few helper methods to mock request objects,
including sessions, cookies, headers, etc.

 Let’s see an example for session variables. The others work similarly.
 Create the test method first. Change your testIndex() method in the /tests/

TestCase/Controller/CategoriesControllerTest.php file.

 1 public function testIndex()
 2 {
 3 $this->get('/categories');
 4 $this->assertResponseNotContains('Category 2');
 5
 6 $this->session(['isAdmin' => true]);
 7 $this->get('/categories');
 8 $this->assertResponseContains('Category 2');
 9 }

 We defined two assertions. Both call /categories , the first one without defining the
session variable, the second with the session variable. So, the first should not contain
 Category 2 , but the second should. The value Category 2 comes from the fixture that we
created in Chapter 9 .

http://dx.doi.org/10.1007/978-1-4842-1212-7_9

CHAPTER 10 ■ MOCKS

82

 Update your index() method in your /src/Controller/CategoriesController.php file.

 1 public function index()
 2 {
 3 if (!$this->request->session()->read('isAdmin')) {
 4 $this->paginate['limit'] = 1;
 5 }
 6 $categories = $this->paginate($this->Categories);
 7 $this->set(compact('categories'));
 8 $this->set('_serialize', ['categories']);
 9 }
 10

 If you do not have the isAdmin session variable, limit the categories' list to 1. This
example is a little silly, but it shows you how to mock session variables.

 Mocking Model Methods
 Sometimes, you want to mock model methods, to save time or just make things easier. In
test-driven development (TDD), mocking can help you to test even when a method is not
yet written. A mock can give you the required return values, so that you can work on tests
while another team member is working on the method that is mocked. Let’s see a few
examples of how to use mocks.

 Create a new test in the CategoriesTableTest.php file.

 1 public function testDoSomething()
 2 {
 3 $this->assertTrue($this->Categories->doSomething());
 4 }

 Let’s create the tested method itself, in the /src/Model/Table/CategoriesTable.
php file.

 1 public function doSomething()
 2 {
 3 if ($this->slowFunction()) {
 4 return true;
 5 } else {
 6 return false;
 7 }
 8 }
 9
 10 public function slowFunction ()
 11 {
 12 sleep(30);
 13 return true;
 14 }

CHAPTER 10 ■ MOCKS

83

 Again, a silly example, but it shows what we want. The doSomething() method
calls another function that is really slow. If we run the test, it will be successful, but it
needs more than 30 seconds to run. Definitely, we do not want to run it many times. At
 testDoSomething() , we want to test doSomething() , not s lowFunction() . Let’s mock it.

 Perhaps we should test slowFunction() also, but that is another story.

 1 public function testDoSomething ()
 2 {
 3 $model = $this->getMockForModel('Categories', ['slowFunction']);
 4 $model->expects($this->once())
 5 ->method('slowFunction')
 6 ->will($this->returnValue(true));
 7 $this->assertTrue($model->doSomething());
 8 }

 Let me explain what happens here.
 We put the mock directly into the test method, because we need it here only;

otherwise, we can put it into the setUp() method, to make it available to all tests.
 Then we generate the mock object with the getMockForModel() method call.

The first parameter of this method is an alias for the mocked table class. The second
parameter is the array of mocked methods, in our case, only for the slowFunction()
method.

 Then, with the expects() call, we make sure that when the model invokes $this-
>slowFunction() the first time, it should return true . After this, we call $model-
>doSomething() for assertion. It will call the mocked slowFunction() method.

 Expects Method
 The expects method accepts the following parameter values:

• once() will pass if the method is called exactly once.

• never() will fail if the method is ever called.

• any() will pass if the method is called zero or more times.

• at($index) will match at call $index . The index value will be
incremented each time a mock method is called, not just when
the indicated method is called.

• exactly($times) will only pass if the method is called $times
times.

• atLeastOnce() will pass if the method is called more than once.

CHAPTER 10 ■ MOCKS

84

 A More Complex Mock Example
 Mocks can be as simple as in the previous example or more complex, as your test
requires. Keep in mind that too complex mocks will make the test less readable, so a
better practice is to use simpler mocks and have more test methods to test different
situations. Anyway, here is a more complex mock example:

 1 $model = $this->getMockForModel('Categories', ['hasPostsCount']);
 2 $model->expects($this->any())
 3 ->method('hasPostsCount')
 4 ->with($this->logicalOr(5, 10, $this->anything()))
 5 ->will(
 6 $this->returnCallback(
 7 function ($param) {
 8 if ($param == 5) {
 9 return [5, 10, 15];
 10 } elseif ($param == 10) {
 11 return [10, 20, 30];
 12 } else {
 13 return false;
 14 }
 15 }
 16)
 17);
 18 $model->expects($this->any())
 19 ->method('hasPostsCount')
 20 ->will($this->returnValue(null));
 21 $this->assertEquals([5, 10, 15],$model->hasPostsCount(5));
 22 $this->assertEquals([10, 20, 30], $model->hasPostsCount(10));
 23 $this->assertEquals(false, $model->hasPostsCount(1));

 I think this example is straightforward enough. If the model calls

• hasPostsCount(5) , it will return [5, 10, 15]

• hasPostsCount(10) , it will return [10, 20, 30]

• hasPostsCount(any other value), it will return false .

 Remember: We actually do not have the hasPostsCount() method in our
 Categories table class. So, with mocking, we can use methods before we even write
them.

 Check the PHPUnit Manual (www.phpunit.de/manual/3.0/en/api.html) for the
complete list of expects methods.

http://www.phpunit.de/manual/3.0/en/api.html

CHAPTER 10 ■ MOCKS

85

 Mocking Core PHP Functions
 Sometimes, though rarely, we have to mock core PHP functions, for example, to test file
uploads, handling streams, time and date, etc. So, it is useful when the code depends on
something that we do not have with tests.

 Let’s look at an example. In our blog app, we want to build up a CSV import
functionality with which the user can upload tags, as manually creating a lot of them can
be boring.

 Add the following lines to the end of your /tests/TestCase/Model/Table/
TagsTableTest.php file.

 1 public function testProcessFile()
 2 {
 3 $actual = $this->Tags->processFile('noFile');
 4 $this->assertTrue($actual);
 5 }

 Perhaps we should create the processFile method itself. Add the
following to the /src/Model/Table/TagsTable.php file:

 1 public function processFile($file)
 2 {
 3 if (is_uploaded_file($file)) {
 4 //process the file
 5 return true;
 6 }
 7 return false;
 8 }

 This method does not do anything with the file, as file processing is not part of the
discussion topic now. The only interesting part is that we call the is_uploaded_file PHP
core function.

 Let’s run the test.

 vendor/bin/phpunit --filter testProcessFile tests/TestCase/Model/Table/
TagsTableTest.php

 Not a great surprise. The test fails, as we did not upload anything (see Figure 10-1).
And the thing is, we do not want to upload anything at all, as we want to test the file
processing, not the file uploading. So, what we want is for is_uploaded_file to return
 true , despite the fact that we do not upload a file.

CHAPTER 10 ■ MOCKS

86

 PHP namespaces allow us to re-declare or overwrite PHP core functions exclusively
for that namespace, so that we don’t pollute other parts of the code.

 The following solution is just a workaround. Having more namespaces in a single

file is a bad practice.

 Add the following lines to the beginning of your TagsTableTest.php file:

 1 <?php
 2 namespace {
 3 // This allows us to configure the behavior of the "global mock"
 4 $mockIsUploadedFile = false;
 5 }
 6

 At line 4, we create a variable, $mockIsUploadedFile , for the global namespace. We
use this variable to switch between the PHP core is_uploaded_file function and its
corresponding redefined namespace variant.

 7 namespace App\Model\Table {
 8 function is_uploaded_file()
 9 {
 10 global $mockIsUploadedFile;
 11 if ($mockIsUploadedFile === true) {
 12 return true;
 13 } else {
 14 return call_user_func_array(

 Figure 10-1. Failed test of the core PHP function

CHAPTER 10 ■ MOCKS

87

 15 '\is_uploaded_file',
 16 func_get_args()
 17);
 18 }
 19 }
 20 }

 At line 8, we re-declare the is_uploaded_file function for the \App\Model\Table
namespace. If $mockIsUploadedFile is true , we just return true as a mocked result;
otherwise, we call PHP’s core is_uploaded_file function.

 The last thing that we have to do in this file is to replace the original namespace
simple declaration with a curly bracket syntax.

 At line 22, we have the following simple declaration:

 22 namespace App\Test\TestCase\Model\Table;

 This should be changed to curly bracket declaration, as follows:

 22 namespace App\Test\TestCase\Model\Table {

 Perhaps this means that we should add a closing curly bracket at the end of the
file—and indent everything in this namespace one level.

 At this point, our test should run successfully and yield a green bar.

 Summary
 In this chapter, the concept of mocks was introduced. You learned how to mock session
and request data and model methods. An example of mocking a core PHP function was
provided, and you learned when to use it.

 I feel some tension here

89© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_11

 CHAPTER 11

 Controller Tests 2

 Testing with Authentication
 There is a good chance that you will use authentication in your controllers.
Authentication will not be introduced now, so I will not explain the related code in
detail. In our blog, anyone can edit and delete anything, even without being logged in.
Authentication is the way to let the user log in and to distinguish between logged-in and
not-logged-in users. Authorization is the way to handle permissions, such that admins
can edit all posts, but a user can only edit his or her own posts.

 CakePHP provides nice support for handling both authentication and authorization.
 At your /src/Controller/CommentsController.php file you should have the

following code. In short, this code ensures that non-authenticated users cannot access any
comments-related URLs, except index and add, which are accessible without authentication.

 1 public function initialize()
 2 {
 3 parent::initialize();
 4 $this->loadComponent(
 5 'Auth',
 6 [
 7 'loginRedirect' => [
 8 'controller' => 'Users',
 9 'action' => 'login'
 10]
 11]
 12);
 13 }
 14
 15 public function beforeFilter(Event $event)
 16 {
 17 parent::beforeFilter($event);
 18 $this->Auth->allow(['index', 'add']);
 19 }

CHAPTER 11 ■ CONTROLLER TESTS 2

90

 Do not forget to add use Cake\Event\Event; at the beginning of this file, as we use
the Event class in the beforeFilter() method.

 Your browser at http://localhost/~rrd/cakeBlog/comments should show your
comments, if there are any, but http://localhost/~rrd/cakeBlog/comments/view/1
should redirect you to http://localhost/~rrd/cakeBlog/users/login , as we are not
logged in. We did not create login functionality yet.

 Let’s create a test at the /tests/TestCase/Controller/CommentsControllerTest.
php file. The following test should run successfully:

 1 public function testIndex()
 2 {
 3 $this->get('/comments');
 4 $this->assertResponseOk();
 5 }

 Let’s explore a test for a method that requires authentication. As we are not
authenticated, we should be redirected to the login page. We check this by calling the
 assertRedirect() method.

 1 public function testViewUnauthenticated()
 2 {
 3 $this->get('/comments/view/1');
 4 $this->assertRedirect(
 5 [
 6 'controller' => 'Users',
 7 'action' => 'login'
 8]
 9);
 10 }

 You already saw how to mock the session variable, and we precisely need that here,
as login data is stored in session .

 1 public function testViewAuthenticated()
 2 {
 3 $this->session([
 4 'Auth' => [
 5 'User' => [
 6 'id' => 1,
 7 'username' => 'rrd',
 8 'role' => 10
 9]
 10]
 11]);
 12 $this->get('/comments/view/1');
 13 $this->assertResponseOk();
 14 }

 If we are logged in, we should get an OK response and not a redirect.

CHAPTER 11 ■ CONTROLLER TESTS 2

91

 Testing JSON Response
 JSON (JavaScript Object Notation) is a standard format that uses human-readable text to
transmit data objects consisting of attribute-value pairs. JSON is a language-independent
data format. Originally, it was created for JavaScript, but to generate and parse
JSON-format data, is available in many programming languages. The JSON file name
extension is .json .

 Here is a sample JSON string:

 {
 "name": "rrd",
 "isAlive": true,
 "age": 40,
 "phoneNumbers": [
 {
 "type": "home",
 "number": "987 654 3210"
 },
 {
 "type": "mobile",
 "number": "123 456 7890"
 }
],
 "children": [],
 "spouse": "syj"
 }

 A real sample JSON file can be found in your root directory, as composer puts its
 composer.json there.

 Webservices’ Ajax call responses are in JSON or in XML. To test these responses,
we should first add the RequestHandler component to our controller’s initialize()
method, as follows.

 1 $this->loadComponent('RequestHandler');

 We should add the following line to the /config/routes.php file around line 45, to
let it handle the json extension.

 1 Router::extensions(['json']);

CHAPTER 11 ■ CONTROLLER TESTS 2

92

 Let’s create our test method in the CommentsControllerTest.php file.

 1 public function testAdd()
 2 {
 3 $this->configRequest(
 4 [
 5 'headers' => ['Accept' => 'application/json']
 6]
 7);
 8 $data = [
 9 'comment' => 'Call out Gouranga and be happy',
 10 'user_id' => 1,
 11 'post_id' => 1,
 12 'category_id' => 2
 13];
 14 $this->post('/comments/add.json', $data);
 15 $this->assertResponseSuccess();
 16
 17 $expected = [
 18 'comment' => [
 19 'comment' => 'Call out Gouranga and be happy',
 20 'user_id' => 1,
 21 'post_id' => 1,
 22 'category_id' => 2,
 23 'id' => 2
 24],
 25];
 26 $expected = json_encode($expected, JSON_PRETTY_PRINT);
 27 $this->assertEquals($expected, $this->_response->body());
 28 }

 First, we mock the headers, then the post data, and then check the response HTTP
header code and its content.

 In your CommentsController.php file’s add() method, remove (or comment out) the
following line:

 1 return $this->redirect(['action' => 'index']);

 You should have something like the following:

 1 public function add()
 2 {
 3 $comment = $this->Comments->newEntity();
 4 if ($this->request->is('post')) {
 5 $comment = $this->Comments->patchEntity(
 6 $comment,
 7 $this->request->data
 8);

CHAPTER 11 ■ CONTROLLER TESTS 2

93

 9 if ($this->Comments->save($comment)) {
 10 $this->Flash->success(__('The comment has been saved.'));
 11 //return $this->redirect(['action' => 'index']);
 12 } else {
 13 $this->Flash->error(
 14 __('The comment not saved. Please, try again.')
 15);
 16 }
 17 }
 18 $users = $this->Comments->Users->find('list', ['limit' => 200]);
 19 $posts = $this->Comments->Posts->find('list', ['limit' => 200]);
 20 $this->set(compact('comment', 'users', 'posts'));
 21 $this->set('_serialize', ['comment']);
 22 }

 Now our test should run successfully.

 Summary
 In this chapter, you learned how to test the functionality behind authentication by
mocking. Then you saw an example of testing controllers that respond to JSON data in
spite of HTML.

 This suit really suits me

95© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_12

 CHAPTER 12

 Test Suites

 While developing a particular feature, we’ll run certain tests. Before deploying, we should
run all our tests, to make sure we haven’t broken something. This is the point at which
test suites come into the picture.

 Using TestSuite
 TestSuite offers a few methods for easily creating test suites, based on the file system.

 To create a test suite for all model table tests, we should create a file named
 AllModelTableTest.php in /tests/TestCase/ .

 1 <?php
 2 use Cake\TestSuite\TestSuite;
 3
 4 class AllModelTableTest extends TestSuite
 5 {
 6 public static function suite() {
 7 $suite = new TestSuite('All model table tests');
 8 $suite->addTestDirectory(TESTS . 'TestCase/Model/Table');
 9 return $suite;
 10 }
 11 }
 12

 The preceding code groups all test cases found in the /tests/TestCase/Model/
Table folder.

 Now you can run all your model table tests at once.

 $ cd ~/public_html/cakeBlog
 $ vendor/bin/phpunit tests/TestCase/AllModelTableTest.php

 You can create a test suite for all controllers, etc., in the same way.
 If you want to add only a few files, you can use $suite->addTestFile($filename) .

CHAPTER 12 ■ TEST SUITES

96

 You can add directories recursively under /tests/TestCase by $suite->addTestDi
rectoryRecursive(TESTS . 'TestCase'); , so you can run all your tests at once. Do not
forget that simply using vendor/bin/phpunit does the same.

 Using phpunit.xml
 The other option to create test suites is to add them into a /phpunit.xml.dist file. This
file was automatically created when we installed cakephp via composer . By default,
PHPUnit will look for a file named either phpunit.xml or phpunit.xml.dist in the
directory in which you run it, and it will use the values it contains to alter its own
behavior. In the case of CakePHP, this file is in the root directory of our app.

 This XML file describes different settings for our tests. There is a <testsuites>
section wherein you can define new test suites. Let’s add the following lines as a new
child element of the <testsuites> element.

 1 <testsuite name="ExcitingFeature">
 2 <directory>src/Model/Table</directory>
 3 <exclude>src/Model/Table/CommentsTableTest.php</exclude>
 4 <file>tests/TestCase/Controller/CommentsControllerTest.php</file>
 5 </testsuite>

 Our new test suite’s name is ExcitingFeature, because we group those tests that are
related to a new feature in what we are working on.

 There can be multiple <directory> elements. PHPUnit will add all tests in that
directory recursively.

 There can be multiple <exclude> elements. This is not a great surprise, but these files
will be excluded.

 There can be multiple <file> elements also. These files will be added to the test
suite.

 Summary
 I dedicated this short chapter to testing suites. You learned how to group certain tests, by
using the TestSuite object or the phpunit.xml file.

 You need the right tools to do good work

99© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_13

 CHAPTER 13

 Testing from Command Line

 Running tests can be time-consuming, but this doesn’t require any user interaction.
For that reason, tests are ideal targets for automation. CakePHP has a built-in test shell
that we’ve already used in the previous chapters. As was mentioned earlier, testing in
the browser is boring, time-consuming, and not the best option. With unit tests, you
can develop without touching the browser. This one thing can significantly shorten
development time.

 Debug Messages
 Debug messages are written into the console, so you can see them by executing your tests.
So, if you have debug($result); in your code, the output of this call will be available at
the console.

 Run All Tests
 Before deployment, you are going to run all tests, to check that all is correct. The following
command will run all your tests:

 $ cd ~/public_html/cakeBlog
 $ vendor/bin/phpunit

 A middle-size project with good test coverage can take from thirty minutes to two to
three hours to run.

 Run Test Suites
 The next level is to run test suites. This is required when you are working on a feature and
have a test suite for that feature.

CHAPTER 13 ■ TESTING FROM COMMAND LINE

100

 If you used TestSuite , then you are going to run something such as the following:

 $ cd ~/public_html/cakeBlog
 $ vendor/bin/phpunit tests/TestCase/AllModelTableTest.php

 If you defined your test suite in phpunit.xml.dist , you need the following
command:

 $ cd ~/public_html/cakeBlog
 $ vendor/bin/phpunit --testsuite ExcitingFeature

 Run All Tests in a File
 When you want to run all tests in a test file, for example, in your UsersTableTest.php file,
you should run the following command:

 $ cd ~/public_html/cakeBlog
 $ vendor/bin/phpunit tests/TestCase/Model/Table/UsersTableTest.php

 You will use this when you work only on one model. Your models are loosely
coupled, so you only want to check one model.

 Filtering Test Cases
 During development, most of the time, you are going to run only one test on what you are
currently working on. The --filter option serves this purpose.

 $ cd ~/public_html/cakeBlog
 $ vendor/bin/phpunit --filter testDoSomething tests/TestCase/Model/Table/
CategoriesTableTest.php

 Understanding a Failing Test’s Output
 PHPUnit shows the differences between the actual and expected results on assertions.

 We have already created /tests/Fixture/CommentsFixture.php , so this is the time
to change the $records array.

 1 public $records = [
 2 [
 3 'id' => 1,
 4 'comment' => 'This is my first comment.',
 5 'user_id' => 1,
 6 'post_id' => 1

CHAPTER 13 ■ TESTING FROM COMMAND LINE

101

 7],
 8 [
 9 'id' => 2,
 10 'comment' => 'This is an other comment by someone else.',
 11 'user_id' => 2,
 12 'post_id' => 1
 13],
 14 [
 15 'id' => 3,
 16 'comment' => 'Call out Gouranga and be happy',
 17 'user_id' => 1,
 18 'post_id' => 1
 19],
 20];

 So, we have three comments, all of them belonging to the first post. Comments 1 and
3 are created by user 1; comment 2 is created by user 2.

 Add a new test function to /tests/TestCase/Model/Table/CommentsTableTest.
php , as follows:

 1 public function testGetCommentsOfUser()
 2 {
 3 $actual = $this->Comments->getCommentsOfUser(2);
 4 $expected = [
 5 [
 6 'id' => 5,
 7 'comment' => 'This is an other comment by someone else.',
 8 'user_id' => 2,
 9 'post_id' => 2
 10]
 11];
 12 $this->assertEquals(
 13 $expected,
 14 $actual->hydrate(false)->toArray()
 15);
 16 }

 We expect to get the preceding array when we call getCommentsOfUser() method.
 And, finally, create the getCommentsOfUser() method in /src/Model/Table/

CommentsTable.php .

 1 public function getCommentsOfUser($userId)
 2 {
 3 return $this->find()
 4 ->where(['user_id' => $userId]);
 5 }

CHAPTER 13 ■ TESTING FROM COMMAND LINE

102

 The red F indicates that our test failed.
 The next line shows the test’s execution time and the memory used.
 We can see which method of which test file failed, and a message describing the

reason for the failure.
 Then we can see the difference between the expected and the actual result. The

 - sign indicates the expected result; the + sign shows the actual result.
 So, the figure shows that we expected an array that has only one member, which is

another array. This is OK.
 The expected id is 5, but the actual id is 2. The comment and user_id are equal both

in expected and actual arrays, but post_id again differs.
 Then the next line shows the line number of the failed assertion.
 At the end, we can see the summarized report of the run tests.

 It’s now time to test.

 $ cd ~/public_html/cakeBlog
 $ vendor/bin/phpunit --filter testGetCommentsOfUser tests/TestCase/Model/
Table/CommentsTableTest.php

 We will get the following output, shown in Figure 13-1 :

 Figure 13-1. Failing test

CHAPTER 13 ■ TESTING FROM COMMAND LINE

103

 Interrupting Tests
 You can stop running a test at any time at the console, by pressing Ctrl+C. If you do so,
do not forget to check your test database, as database entries can remain there, as you
interrupt test execution before it removes all entries.

 Summary
 In this chapter, you learned how to use information provided by debug , how to run all
tests at once, and how to filter tests. An overview of the test output was provided, and you
learned how to interrupt tests.

 There are other yummies

105© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7_14

 CHAPTER 14

 Goodies

 Code Coverage
 Code coverage helps you to identify code parts that are not covered by tests. Theoretically,
100% coverage is attainable, but most of the time, you will achieve less than that
percentage.

 Generating code coverage is simple, like a piece of cake. We can generate coverage
for all tests, test suites, or only for test files, with the same options described in the
previous chapter.

 $ cd ~/public_html/cakeBlog
 $ vendor/bin/phpunit --coverage-html webroot/coverage tests/TestCase/Model/
Table/UsersTableTest.php

 Now, open your browser and check your app’s coverage/index.html file. In my case,
this is http://localhost/~rrd/cakeBlog/coverage/index.html (Figure 14-1).

 Figure 14-1. Code Coverage index page

CHAPTER 14 ■ GOODIES

106

 If we scroll down, we can see that the processFile() method is partially covered
(Figure 14-4).

 Green lines are covered, red lines are not covered, and white lines are not executable.

 You can see a summary of your code coverage. As we generated only for one model
file, our coverage is very low. You can click Model to view its details. We can see that only
 TagsTable.php has tests (Figure 14-2).

 Figure 14-2. Code coverage for the models

 Figure 14-3. Code coverage for our Tags model

 Figure 14-4. Method code coverage

 Click this to go deeper. At the top of the page, we can see what methods we have,
which of them is covered by tests, and how many lines are covered by tests (Figure 14-3).

CHAPTER 14 ■ GOODIES

107

 Fixtures Data
 Creating fixtures is boring, and automatically generated fixtures are filled with useless
data. We need an easy, and intelligent, solution that can hold table relations with real
data.

 PHPMyAdmin (http://phpmyadmin.net) gives us a way to export table data. Choose
 PHP array as the format and custom for the type. Then you can define how many rows
you want to take from your existing records.

 While PHPMyAdmin is a complete MySQL administration tool with which you can
create, edit, and remove databases, tables, fields, and records, it is not only for exporting
data for fixtures. If you are not familiar with it, it is time to become so. If you’ve made
friends with the Terminal, you can learn to use the MySQL console also.

 Testing Private Methods
 We’ve seen a lot of examples of testing public methods. Testing protected methods is the
same.

 If we try to test a private method, we will get an error message complaining about an
unknown method.

 Let’s create a private method in /src/Model/Table/PostsTable.php :

 1 private function getPostsInCategory($categoryId)
 2 {
 3 return $this->find()
 4 ->where(['category_id' => $categoryId]);
 5 }

 While, again, this is a silly example of a private method, it’s good enough for testing
 private methods.

 Private methods should be instanced as a reflection class, to enable testing. Paste
the following into /tests/TestCase/Model/Table/PostsTableTest.php :

 1 public function testGetPostsInCategory()
 2 {
 3 $class = new ReflectionClass($this->Posts);
 4 $method = $class->getMethod('getPostsInCategory');
 5 $method->setAccessible(true);
 6 $actual = $method->invoke($this->Posts, 1);
 7 $expected = 1;
 8 $this->assertEquals($expected, $actual->toArray()[0]->id);
 9 }

http://phpmyadmin.net/

CHAPTER 14 ■ GOODIES

108

 To get it to work, we should include ReflectionClass at the beginning of this file.

 1 use ReflectionClass;

 Many developers say you shouldn’t test private methods. Instead of getting into the
details of their arguments, I’ll leave it up to you to decide whether or not to test them.

 Testing Views
 Generally, we do not test views, as we do with models and controllers. HTML tends to
change, and most of it is not testable. The best approach is to rely on assertContains ,
if you want to check data in the view. Selenium (http://seleniumhq.org/) is a tool for
testing views.

 Testing Components
 If you created your own component at /src/Controller/Component/YourComponent.php ,
you should put its test file to /tests/TestCase/Controller/Component/
YourComponentTest.php .

 At the setUp() method of your test class, you should mock Cake’s Controller class
and register your component.

 A sample setUp() method is the following:

 1 public function setUp()
 2 {
 3 parent::setUp();
 4 $request = new Request();
 5 $response = new Response();
 6 $this->controller = $this->getMock(
 7 'Cake\Controller\Controller',
 8 null,
 9 [$request, $response]
 10);
 11 $registry = new ComponentRegistry($this->controller);
 12 $this->component = new YourComponent($registry);
 13 }

 At the tearDown() method, we should unset the class variables created by setup() .

 1 public function tearDown()
 2 {
 3 parent::tearDown();
 4 unset($this->component, $this->controller);
 5 }

http://seleniumhq.org/

CHAPTER 14 ■ GOODIES

109

 Let’s say YourComponent manipulates pagination. It has a textToNumber() method
that sets the pagination’s limit to different numbers, based on textual parameters. For
example, if textToNumber('long') is called, the pagination’s limit will be set to 100. In
this case, our test method will look like the following:

 1 public function testTextToNumberLong()
 2 {
 3 $this->component->textToNumber('long');
 4 $this->assertEquals(100, $this->controller->paginate['limit']);
 5 }

 We called the component’s textToNumber() method and then we checked the
controller’s pagination limit value by the assertion.

 Testing Helpers
 Let’s say we have a helper that creates a date string based on a given number of
days passed since the millennium. Paste the following code to /src/View/Helper/
EasyDateHelper.php :

 1 namespace App\View\Helper;
 2
 3 use Cake\View\Helper;
 4
 5 class EasyDateHelper extends Helper
 6 {
 7 public function add($days)
 8 {
 9 return 'D: ' . date('Y-m-d', mktime(0, 0, 0, 1, $days, 2000));
 10 }
 11 }

 The corresponding test file should be /tests/TestCase/View/Helper/
EasyDateHelperTest.php . It is very similar to model tests, except we should call the
helper’s constructor in the setUp() method.

 1 namespace App\Test\TestCase\View\Helper;
 2
 3 use App\View\Helper\EasyDateHelper;
 4 use Cake\TestSuite\TestCase;
 5 use Cake\View\View;
 6
 7 class EasyDateHelperTest extends TestCase
 8 {
 9
 10 public $helper = null;
 11

CHAPTER 14 ■ GOODIES

110

 12 public function setUp()
 13 {
 14 parent::setUp();
 15 $View = new View();
 16 $this->helper = new EasyDateHelper($View);
 17 }
 18
 19 public function testAdd()
 20 {
 21 $this->assertEquals('D: 2000-01-15', $this->helper->add(15));
 22 $this->assertEquals('D: 2000-04-09', $this->helper->add(100));
 23 $this->assertEquals('D: 2002-09-26', $this->helper->add(1000));
 24 }
 25 }

 When you are testing a Helper that uses other helpers, be sure to mock the View
class’s loadHelpers method.

 Testing Plugins
 If you have a plugin called Pizza at /src/plugins , you should have all your tests in the /
src/plugins/Pizza/tests folder, with the same subfolders as in /tests .

 1 namespace Pizza\Test\TestCase\Model\Table;
 2
 3 use Pizza\Model\Table\PizzaSlicesTable;
 4 use Cake\TestSuite\TestCase;
 5
 6 class PizzaSlicesTableTest extends TestCase
 7 {
 8 public $fixtures = ['plugin.pizza.pizza_slices'];
 9
 10 public function testTaste()
 11 {
 12 // Test taste of the pizza slices
 13 }
 14 }

 Summary
 In this chapter, you sampled a few goodies. First, you saw how code coverage can be
generated and used, then you discovered an easy way to generate fixtures. You also
learned how to test private methods, views, components, helpers, and plugins.

 This is the end of my book on CakePHP and unit testing. I hope that you can use
much of the information in this book and that it will help you to become a better web
developer.

111© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7

 APPENDIX A

 References by Chapter

 What Is Unit Testing?
 Contrarian Software Development
 www.contrariansoftware.com/2008/11/unit-testing-
sucks.html

 IPL
 www.ipl.com/pdf/p0828.pdf

 Petri Kainulainen
 www.petrikainulainen.net/programming/unit-testing/
wrong-reasons-not-to-write-unit-tests/

 Weblabor
 http://weblabor.hu/cikkek/php-osztalyok-
egysegtesztelese

 Zen and the Art of TDD
 http://vimeo.com/49092644

 Clean Code
 Clean Code Handbook Software Craftsmanship
 www.amazon.com/Clean-Code-Handbook-Software-
Craftsmanship/dp/0132350882

 Test-Driven Development
 Net tuts+
 http://net.tutsplus.com/sessions/test-driven-php/

 TDD
 www.youtube.com/watch?v=fkrpMLzxWOo

http://www.contrariansoftware.com/2008/11/unit-testing-sucks.html
http://www.contrariansoftware.com/2008/11/unit-testing-sucks.html
http://www.contrariansoftware.com/2008/11/unit-testing-sucks.html
http://www.ipl.com/pdf/p0828.pdf
http://www.ipl.com/pdf/p0828.pdf
http://www.petrikainulainen.net/programming/unit-testing/wrong-reasons-not-to-write-unit-tests/
http://www.petrikainulainen.net/programming/unit-testing/wrong-reasons-not-to-write-unit-tests/
http://www.petrikainulainen.net/programming/unit-testing/wrong-reasons-not-to-write-unit-tests/
http://weblabor.hu/cikkek/php-osztalyok-egysegtesztelese
http://weblabor.hu/cikkek/php-osztalyok-egysegtesztelese
http://vimeo.com/49092644
http://vimeo.com/49092644
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
http://net.tutsplus.com/sessions/test-driven-php/
http://net.tutsplus.com/sessions/test-driven-php/
http://www.youtube.com/watch?v=fkrpMLzxWOo
http://www.youtube.com/watch?v=fkrpMLzxWOo

APPENDIX A ■ REFERENCES BY CHAPTER

112

 Development Cycle
 Software Development Process
 http://en.wikipedia.org/wiki/Software_development_process

 Others
 Webmania
 http://webmania.cc

 Cakephp PHPUnit Testing
 www.youtube.com/watch?v=L-lLSi4lXEY

 Mark Story
 http://mark-story.com/posts/view/getting-familiar-
with-phpunit-mocks

http://en.wikipedia.org/wiki/Software_development_process
http://webmania.cc/
http://www.youtube.com/watch?v=L-lLSi4lXEY
http://mark-story.com/posts/view/getting-familiar-with-phpunit-mocks
http://mark-story.com/posts/view/getting-familiar-with-phpunit-mocks
http://mark-story.com/posts/view/getting-familiar-with-phpunit-mocks

113© Sándor Gömöri 2016
S. Gömöri, Learn CakePHP, DOI 10.1007/978-1-4842-1212-7

 A
 Arguments , 9–11, 13, 16, 21, 108
 Assertions , 20, 35, 47, 61–62, 64, 76–78,

81, 83, 100, 102, 109
 Authentication , 19, 72, 89–90, 93

 B
 Baking , 24, 44–45, 72
 Bugfi x , 13

 C
 Callbacks , 63–64
 Command line , 99–103
 Components , 68, 76, 81, 91, 108–110
 Composer , 30, 32–34, 47, 91, 96
 Conventions , 4–6, 16
 Coverage , 99, 105–106, 110
 CRUD , 4

 D
 Database , 4–5, 16, 24, 30, 33–47, 49, 51,

53–54, 57, 62–63, 72, 74, 103, 107
 Debug , 35, 99, 103
 Design , 9, 24, 30

 E
 Error messages , 33, 35, 44–45, 61, 63,

70, 107
 Expects , 11, 20, 49, 60–62, 83–84, 92,

100–102, 107

 F
 Failed test , 60, 86
 Failing tests , 12, 61–62, 100–102
 Fat model , 58, 60, 63–64
 Filtering , 35, 60, 85, 90, 100, 102–103
 Fixtures , 44–47, 49–57, 59, 61–62, 72–75,

77, 81, 100, 107, 110

 G
 Get , 5, 12, 20, 29–32, 34, 42, 53–54, 60–62,

69–71, 76–78, 81, 83–84, 87, 90,
101–102, 107–108, 112

 H
 http requests , 76

 I
 Installation , 4, 29, 31–32, 34
 Integration tests , 67, 75–76, 78, 81
 Isolation , 9, 12, 17, 49

 J, K, L
 JSON , 32, 34, 68, 77, 91–93

 M
 Maintainable , 3, 9, 12, 15
 Mess detector , 16
 Mocks , 81–87, 90, 92–93, 108, 110, 112
 Model-view-controller (MVC) , 5, 16, 24,

42, 44, 63

 Index

■ INDEX

114

 N, O
 Naming , 16–17

 P
 PHP standards recommendations (PSR) , 16
 PHPUnit , 6, 19, 21, 29, 33–34, 47,

60–61, 75, 84–85, 95–96,
99–100, 102, 105, 112

 phpunit.xml , 96, 100
 Planning , 17, 23, 25, 37, 41–42
 Post , 4–5, 15, 31–32, 37, 39–44, 46–47, 49,

56, 67–78, 84, 89, 92–93, 100–102,
107, 112

 Private methods , 107–108, 110
 PSR . See PHP standards

recommendations (PSR)

 Q
 Quality code , 11–12

 R
 Refactoring , 10–13, 15–17, 19–21
 Request , 29, 44, 62–63, 69–71, 76–78,

81–82, 87, 91–92, 108
 Response , 23, 44, 63, 67–71, 76–78, 81,

90–93, 108

 S
 Save time , 10, 13, 82
 Services , 32
 Session , 42, 45–47, 76–77, 81–82, 87, 90, 111

 T, U
 Test-driven development (TDD) , 9, 17,

19–21, 25, 59, 61, 64, 75, 82, 111
 Test groups , 95

 V, W, X, Y, Z
 Validation , 5, 72

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	About the Book
	Chapter 1: What Is CakePHP?
	Main Features
	Short Learning Curve
	Convention over Configuration
	Easy Installation
	MIT Licensing10
	Automatic Code Generation
	Built-in Validation11
	MVC12 Architecture
	Clean URLs and Routes
	Flexible Caching13
	Built-in Localization
	Integrated Unit Testing
	And More

	Summary

	Chapter 2: What Is Unit Testing?
	From Manual Testing to Unit Tests
	Arguments
	Argument #1: It’s Impossible to Test All Variations
	Argument #2: Writing Tests Takes Too Much Time
	Argument #3: Writing Tests Is Hard
	Argument #4: I Don’t Need Tests; I Know My Code
	Argument #5: It Is Just a Waste of Time
	Argument #6: The Tests Might Have Their Own Bugs
	Argument #7: Development Breaks Tests

	Why Should We Write Tests?
	Test Functionality
	Refactoring
	Getting Fast Feedback
	Quality Code
	Use the Best of Your Brain
	Save Time and Money

	Summary

	Chapter 3: Clean Code
	How to Write Clean Code
	Comments
	Naming
	Methods
	Code Formatting
	MVC

	How Tests Help in Writing Clean Code
	Planning
	Refactoring

	Summary

	Chapter 4: Test-Driven Development
	PHP TDD Tools
	PHPUnit
	Codeception
	SimpleTest
	Atoum
	Selenium

	TDD Development Cycle
	Step #1: Write Test
	Step #2: Write Code
	Step #3: Refactor
	Step #4: Test Again
	Step #5: Write Code for New Features

	Summary

	Chapter 5: Development Cycle
	Agile
	The Agile Manifesto
	12 Principles Behind the Manifesto
	How CakePHP Supports Agile Development

	The Agile Roadmap to Value
	Product Vision
	Product Roadmap
	Release Plan
	Sprint Planning
	Daily Meetings
	Sprint Review
	Sprint Retrospective

	Summary

	Chapter 6: Preparing for Testing
	Installing
	Install Webserver
	Install MySQL
	Install PHP
	Post Installation
	Install Composer
	Install CakePHP
	Installing PHPUnit
	Install phpMyAdmin
	Check Your Test Setup

	Preparing
	Set Debug Level
	Set Up Test Database
	Set Up Session Handling
	Create the Default Layout
	CakePHP Models
	Database Queries
	Model Associations
	HasOne Associations
	HasMany Associations
	BelongsTo Associations
	BelongsToMany associations

	CakePHP Controllers
	CakePHP Views
	Baking
	Clean It Up
	Let’s Play

	Summary

	Chapter 7: Fixtures
	Creating Fixtures
	On the Fly
	Importing the Existing Model Schema

	Loading Fixtures into Your Tests
	Summary

	Chapter 8: Model Tests
	Names of Test Functions
	Assertions
	Fail First
	Passing Test
	Tests and Fat Models
	Test Callbacks
	Summary

	Chapter 9: Controller Tests 1
	Overview of the Baked Controller
	The Magic Behind Bake
	Creating Controller Tests
	About Integration Tests
	Assertion Methods
	Setting Request Data
	Summary

	Chapter 10: Mocks
	Mocking Sessions
	Mocking Model Methods
	Expects Method
	A More Complex Mock Example
	Mocking Core PHP Functions
	Summary

	Chapter 11: Controller Tests 2
	Testing with Authentication
	Testing JSON Response
	Summary

	Chapter 12: Test Suites
	Using TestSuite
	Using phpunit.xml
	Summary

	Chapter 13: Testing from Command Line
	Debug Messages
	Run All Tests
	Run Test Suites
	Run All Tests in a File
	Filtering Test Cases
	Understanding a Failing Test’s Output
	Interrupting Tests
	Summary

	Chapter 14: Goodies
	Code Coverage
	Fixtures Data
	Testing Private Methods
	Testing Views
	Testing Components
	Testing Helpers
	Testing Plugins
	Summary

	References by Chapter
	What Is Unit Testing?
	Clean Code
	Test-Driven Development
	Development Cycle
	Others
	Index

