
www.allitebooks.com

http://www.allitebooks.org

Learning ClojureScript

Master the art of agile single page web application
development with ClojureScript

W. David Jarvis
Rafik Naccache
Allen Rohner

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning ClojureScript

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1290616

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-763-5

www.packtpub.com

www.allitebooks.com

https://www.packtpub.com/
http://www.allitebooks.org

Credits

Authors

W. David Jarvis
Rafik Naccache
Allen Rohner

Copy Editor

Pranjali Chury

Reviewer

Eduard Bondarenko

Project Coordinator

Sanchita Mandal

Commissioning Editor

Veena Pagare

Proofreader

Safis Editing

Acquisition Editor

Kirk D'costa

Indexer

Rekha Nair

Content Development Editor

Samantha Gonsalves

Production Coordinator

Aparna Bhagat

Technical Editor

Abhishek R. Kotian

Cover Work

Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

Foreword
JavaScript is everywhere. The language was originally designed to permit non-
programmers to add dynamic flairs to a new-fangled thing called a webpage. Two decades
after its introduction, JavaScript has grown into a versatile, expressive, and complicated
language—the most recent ECMAScript standard rivals the Java 1.8 language specification
in terms of page count!

Yet in many ways, JavaScript still represents an older way of doing things. Nowadays,
many industrial programmers are finding their way to functional programming. While
JavaScript has some nice functional features, it lags far behind even the most recent decade
of functional programming best practices.

Enter ClojureScript!

First released in 2011, ClojureScript has grown into an essential tool for the discerning
programmer, who would love to tap into the reach offered by JavaScript, while leveraging
some of best designed immutable datastructures and functional APIs in existence.
Importantly, ClojureScript delivers these affordances without getting in the way of tight
integration with the JavaScript host.

You can program webpages, iPhones, Androids, and Node.js, all using the same powerful
Lisp programming model pioneered by John McCarthy so many years ago.

This book will show you how!

David Nolen,

ClojureScript Lead Developer

www.allitebooks.com

http://www.allitebooks.org

ClojureScript has long been reliable for producing high-quality, highly-performant web
applications. At the same time, the ecosystem surrounding the language has grown, both in
terms of developers embracing the language and in the availability of high-quality libraries
and development tools.

Also, ClojureScript's fundamental promise of reach is being proven with new use cases
outside web applications; it's being used for hybrid mobile apps and new, compelling self-
hosted scenarios.

In short, ClojureScript has transitioned from being a novel language taken on by early
adopters to being an important and relied-upon basis for a stack that is here to stay.

It's easy to find enthusiastic community support when developing with ClojureScript. And,
of course, it is tremendous help that ClojureScript is itself extremely similar to Clojure.
However, one area that it lacks in is comprehensive and polished documentation, especially
with respect to the coverage of the slew of pragmatic issues that accompany the
development of real-world applications.

This book fills this gap by providing practical information on how to get set up and
running, how to use the constructs offered by the language—most importantly, how to
effectively use the available tools in day-to-day development—and how to ultimately ship
your app.

We can thank Rafik, David, and Allen for sharing their hard-earned experience with us,
providing a one-stop guide with answers to the gamut of questions you are likely to face
when using ClojureScript. This book is a much-needed and very welcome treatment of the
subject; with it, you can confidently go out and build great ClojureScript apps!

 Mike Fikes,

Author of the Planck ClojureScript REPL

www.allitebooks.com

http://www.allitebooks.org

About the Authors
W. David Jarvis is a software engineer living in San Francisco, California. In his spare time,
he enjoys hiking, gardening, playing pool in dive bars, and overthinking everything. He is
active in the open source Clojure and ClojureScript communities, and software authored by
him has been downloaded over 10,000 times.

David has worked for a number of companies now living or dead, including Aggregate
Knowledge, CircleCI, Standard Treasury, and Airbnb. He is currently responsible for the
build, test, and deployment infrastructure at Airbnb.

The "W" is for "William" (now you know!).

While David has made the unfortunate mistake of exposing his previous scribblings to the
world, this is his first actual book.

I would like to thank my companion, Kate, for her love and infinite patience in allowing this book to
co-opt so many of my weekends. Without her initial support and enthusiasm, I would probably never
have agreed to write the book that you are now reading.

Other debts of gratitude go to Ben Linsay (for inviting me into the technology industry), Allen
Rohner (for introducing me to the joy that is Clojure), Daniel Kimerling (for being a friend in a time
of need) and Keith Ballinger (for his constant wisdom and mentorship). I also owe thanks to my
friends Heather Rivers and Margot Yopes, both of whom have made me a vastly better human being
today than I would have been otherwise. Lastly, I would like to thank my parents and the rest of my
family for providing me with a bottomless well of love and support. I am fortunate beyond words.

Rafik Naccache is a Tunisian experienced software architect and emergent technologies
enthusiast. He earned his bachelors degree in computer science engineering from Tunis
University of Science in 2001. Rafik fell in love with Clojure back in 2012, and he has been
developing it professionally since 2013. He has occupied various positions in telecoms and
banking, and he has launched some innovative internet startups in which he has been able
to deploy Clojure apps. He also founded the Tunisian Clojure users community. He
contributes to Open Source projects, such as Cryogen (h t t p s : / / g i t h u b . c o m / c r y o g e n - p r
o j e c t / c r y o g e n / g r a p h s / c o n t r i b u t o r s), Milestones (h t t p s : / / g i t h u b . c o m / a u t o m a g i
c t o o l s / m i l e s t o n e s), and Scheje (h t t p s : / / g i t h u b . c o m / t u r b o p a p e / s c h e j e). You can
reach him as @turbopape on GitHub and Twitter.

www.allitebooks.com

https://github.com/cryogen-project/cryogen/graphs/contributors
https://github.com/cryogen-project/cryogen/graphs/contributors
https://github.com/automagictools/milestones
https://github.com/automagictools/milestones
https://github.com/turbopape/scheje
http://www.allitebooks.org

First of all, I am grateful to my mom, Safia, and dad, Abdelaziz, for their love and the education that
they generously gave me. It was certainly thanks to the Spectrum ZX that we had back in the eighties
that I grew up as addicted to computers as I am right now, and this was the start of everything.

Warm thanks also go to my in-laws, Aunt Zohra and Uncle Hammadi, who always supported me
and had blind and unconditional faith in whatever work I do, and who really wanted to see this book
published.

I am very thankful to my editors, Samantha Gonsalves and Kirk D'Costa, and reviewers for their
valuable advice and professional guidance towards the accomplishment of this book.

I have also special thoughts for my family, namely Tselma, Soussou, Dah, Hafedh, Zazza, Idriss and
Ismael. I owe you all so much.

However, most of all, I am extremely thankful to my super wife, Khawla, who patiently had to suffer
my moments away writing this book, while keeping her smile on and never complaining. I can say
that this book would probably never have happened if hadn't she been there, along with our little
Fatma Ezzahra and Elyes, casting their light to help brighten my hard journey towards achievement
and success.

Allen Rohner is a software engineer and entrepreneur living in Austin, Texas. He is the
founder of numerous startups. A few, including CircleCI, have even been successful.

Allen has been using Clojure and ClojureScript professionally since 2009, with
commitments in Clojure core and dozens of other open source libraries. He has given
multiple talks at Clojure/West and Clojure/conj.

Currently, Allen is working on a startup called Rasterize (h t t p s : / / r a s t e r i z e . i o), which
helps companies improve conversion rate by optimizing website load times. While Allen
has occasionally had blog posts go to #1 on Hacker News, this is the first 'real' book that he's
collaborated on.

I'd like to thank my wife, Anna, for putting up with me on a daily basis.

www.allitebooks.com

https://rasterize.io
http://www.allitebooks.org

About the Reviewer
Eduard Bondarenko is a software developer living in Kiev, Ukraine. He started
programming using Basic on ZXSpectrum a long time ago. He works professionally in the
web development domain. He has been using Ruby on Rails for many years. Sometime in
2009, he discovered Clojure, and he liked the language a lot. Except for Ruby and Clojure,
he is interested in modern FP languages, machine learning, and logic programming.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://cdp.packtpub.com/endtoendtesting/wp-content/uploads/sites/52/2015/12/image_10_002.png
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Getting Ready for ClojureScript Development 6
Getting familiar with the ClojureScript ecosystem 7

Inside the ClojureScript compiler 7
Working with the ClojureScript REPL 10

Live coding ClojureScript on top of nREPL with Piggieback and Weasel 13
Working with Piggieback 13
Setting up Weasel with PiggieBack for browser live coding 16
ClojureScript REPLs on Node.js with Piggieback 18

Live coding ClojureScript with Figwheel 20
Setting up Figwheel for browser live coding 20
Node.js interactive development workflows with Figwheel 22

Setting integrated development environments for ClojureScript 24
Working on Emacs with Piggieback and Weasel on CIDER 24

Installing CIDER 25
Working with Clojure and ClojureScript REPLs on CIDER 25

Working on Emacs with Figwheel and inf-clojure 30
Installing inf-clojure 30
Configuring inf-clojure to run Figwheel as a Clojure subprocess 30

Summary 34
Chapter 2: ClojureScript Language Fundamentals 35

Understanding ClojureScript functions 36
Functions 36

Multiarity and variadic functions 38
Anonymous functions 39
Side effects 40
Local variables 41

The ClojureScript data structures 42
Scalar types 42

Numbers 42
Strings and characters 44
Nil 45
Boolean values and truthiness 46
Keywords 47
Symbols 48

[ii]

ClojureScript collections 49
Lists 49
Vectors 52

When should I use lists versus vectors? 55
Maps 56

Different types of maps 58
Sets 59
Sequences 61
Laziness 62

Collection protocols 63
Sequential 63
Associative 64
Sorted 65
Counted 66
Reversible 67

Object-oriented programming 67
Protocols 67
Types 68
Records 69
Extending types and protocols 70
Reify 71

Other ClojureScript types 71
Regular expressions 72
Atoms 72

Immutability 74
Advanced destructuring and namespaces 77

Destructuring 77
Namespaces 80

JavaScript interoperability 85
JavaScript collections 85

Arrays 85
JavaScript objects 86
JS interop syntax 87

The Google Closure Compiler and using external JavaScript libraries 88
Referencing external libraries with externs 89
Bundling external libraries 91

Google Closure Compiler compatible code 91
Foreign JavaScript 91

CLJSJS 92
Summary 93

Chapter 3: Advanced ClojureScript Concepts 94

[iii]

Functional programming concepts 94
Loops and iteration 94

Loop and recur functions 95
for 96
dotimes 97
doseq 97

doall 98
Higher-order functions 99

map 100
The filter and remove functions 101
reduce 102

Transducers 103
Control flow 105

if and when 105
if-let and when-let 106

cond and condp 106
case 108
Exception handling 108

Writing macros for ClojureScript 110
read and eval 110
Your first macro 112
Writing more advanced macros 115

Gensyms and local binding in macros 116
Don't repeat yourself! 117

A personal favorite – Threading macros 118
A closing note on macros 120

Concurrent design patterns using core.async 120
JavaScript is event-driven by default 121

Event-driven programming in ClojureScript 122
The Communicating Sequential Processes concurrency model 123

Getting started with core.async 124
Background listeners 127
Errors and core.async 128

Summary 133
Chapter 4: Web Applications Basics with ClojureScript 134

Raw DOM manipulation and events handling 135
Interacting with the browser using the Google Closure Library 140

Dommy – An idiomatic ClojureScript library for the DOM 143
Client-side templating in ClojureScript 147
CSS preprocessors in ClojureScript 154

[iv]

Summary 158
Chapter 5: Building Single Page Applications 159

Understanding Single Page Appliactions 159
The tradeoffs of SPAs 160

Richer UI 160
Easier to deal with client-side data 160
Easier to deal with AJAX 161
Faster client interactions once the page is loaded 162
More development work 162
Legacy browser support is harder 162

Understanding Om 163
Understanding React 163

The React terminology 164
The components of an SPA 165

Setting up 165
What just happened? 165

Child components 167
Items in the Om constructor signature 169

Cursors 169
owner 170
Opts 170
Input 171
Rendering 172

The React diffing algorithm 172
Differences between Om and React 173

Components 173
State models 174
Cursors 174

Determining the size of a component 174
Constructing 175
The local state 176
Life cycle protocols 178

Using third-party JS 181
jQuery listeners 181

AJAX 182
Dependencies 182
The server 183

Transit 183
Ring 184
CORS 185

[v]

Data 186
Routing and HTML5 history 192

pushState 194
Navigation 195

Summary 196
Chapter 6: Building Richer Web Applications 197

Real-time communication with websockets 197
Understanding the websocket protocol 197
Initialization 200
Sending messages 201
Understanding Chord 201

Using Datascript 202
Understanding the Datascript/Datomic data model 202
A basic query 205

Query arguments 205
Schema 206
Understanding db.type/ref 206
Cardinality 206
Pull 208
Finding results 209

Unification 210
Predicate expressions 211
Indexes 212
Differences between Datomic and Datascript 212
Why Datascript? 213

Improving load times 213
ClojureScript modules 213

Preparing for modules 214
Getting started 214
Route definition 216
Loading modules 220
Fixing development mode 224

.cljc and server-side rendering 225
.cljc 225
Schema and input validation 226
Server-side rendering 227

Setting up the project 227
Understanding Foam 231

Summary 232

[vi]

Chapter 7: Going Further with ClojureScript 233
Pattern matching with core.match 233

Configuring our project 234
Getting started with core.match 235

Matching collections 237
Guards and function applications 239

Wrapping up 239
Exploring nested data structures with clojure.zip 239

Example – Replacing values in a tree 240
Example – Removing values from a tree 243
Further possibilities 243

Declaratively solving problems with core.logic 244
Configuring our project 245
Getting started with core.logic 245
Advanced core.logic 248

Going even further 250
Runtime data validation using schema 251

Configuring our project 251
A quick introduction to schema 252

Collection schemas 255
Function schemas 258
Advanced schema validation 259
Schema coercion 261

Summary 263
Chapter 8: Bundling ClojureScript for Production 264

Testing your application with cljs.test 264
Using doo for easier testing configuration 267
Testing fixtures 270
Asynchronous testing 272

Asynchronous fixtures 273
Advanced ClojureScript compilation options 274

Compilation optimization levels 275
Generating modules 276
Targeting a Node.js runtime 277
General configuration recommendations 278

Deploying Clojure and ClojureScript applications in a Docker
container 278

Installing Docker 279
Compiling an Uberjar 280

[vii]

Building a Docker container for our app 284
Summary 288

Index 289

Preface
Welcome to Learning ClojureScript!

ClojureScript is an exciting new language that leverages Clojure's familiar syntax for the
JavaScript runtime. This means that ClojureScript, like JavaScript, is a tool to help you write
software applications that can either run in a client-side (browser) or server-side
environment. This also means that ClojureScript inherits all of the wonderful benefits of
Clojure, including Lisp macros, immutable and high-performance data structures, and
beautiful functional syntax.

This book aims to serve as an introduction to both the core and advanced concepts of
ClojureScript development with the ultimate objective of teaching you how to build single-
page web applications. Whatever your background and prior level of experience with either
Clojure or ClojureScript, it is our hope that this book will prove to be an invaluable aid to
you in learning how to develop ClojureScript programs for the modern web.

We've structured the book in such a way as to take you through on a soft progression.
Beginning with the basics of getting your interactive environment set up, we'll take you all
the way through advanced subjects such as logic programming and designing your
applications to use Om, a ClojureScript wrapper for Facebook's React framework. By the
end of this book, you should have a deep understanding of the complete process of
developing modern single-page web apps with ClojureScript, and you should feel
comfortable writing applications that you know how to configure and deploy in production
environments.

What this book covers
Chapter 1, Getting Ready for ClojureScript Development, covers preparing an interactive
development environment for the browser as well as some basic configuration options.

Chapter 2, ClojureScript Language Fundamentals, describes the basic syntax and building
blocks of the ClojureScript language.

Chapter 3, Advanced ClojureScript Concepts, focuses on idiomatic functional programming,
ClojureScript macros, and concurrent software design.

Chapter 4, Web Applications Basics with ClojureScript, covers working with the DOM, CSS,
and HTML5 elements.

Preface

[2]

Chapter 5, Building Single Page Applications, teaches you how to make web applications
that interact with third-party data providers, such as remote databases, OAuth providers, or
embedded data stores.

Chapter 6, Building Richer Web Applications, covers more advanced topics, such as
WebSockets, routing for single-page applications, and building applications using Om—a
ClojureScript wrapper for React.

Chapter 7, Going Further with ClojureScript, showcases various core and third-party
libraries that provide elegant and unique solutions to problems such as pattern matching,
data validation, and logic solving.

Chapter 8, Bundling ClojureScript for Production, focuses on the tools that are necessary to
properly package your ClojureScript libraries and applications for production usage. This
chapter covers testing, compiler optimizations, and how to containerize your applications.

What you need for this book
In order to be able to run some of the example code in this book, you'll need a computer
that is capable of running at least Java 6, and preferably Java 7 or 8. Oracle maintains a
detailed list of hardware and software requirements for the latest versions of Java online at
h t t p : / / j a v a . c o m / e n / d o w n l o a d / h e l p / s y s r e q . x m l. However, most modern laptop and
desktop computers should be capable of running the latest version of Java without a
problem. You'll also need a browser and an internet connection in order to download the
relevant software and dependencies that are needed. For a browser, we recommend Google
Chrome, but any modern web browser will do just fine.

Who this book is for
This book is for web application developers who want to benefit from the power of
ClojureScript to get an agile and highly-productive development platform that targets
mainly browser JavaScript.

You are not required to be fluent in Clojure, but it will be easier for you if you have a basic
understanding of browser or server-side JavaScript.

http://java.com/en/download/help/sysreq.xml

Preface

[3]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning. Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as
follows: "The def statement tells us that what follows will be a definition."

A block of code is set as follows:

(ns example-code)
cljs.user=> (+ 1 1)
;; => 2

cljs.user=> (* 2 3)
;; => 6

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

(ns example-code)
cljs.user=> (+ 1 1)
;; => 2
cljs.user=> (* 2 3)
;; => 6
cljs.user=> (/ 9 3)
;; => 3

Any command-line input or output is written as follows:

cljs.user=> (map inc [1 2 3 4 5])
;; => (2 3 4 5 6)

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "If we check the page, we
should see our Page rendered! alert logged to the console."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows

mailto:feedback@packtpub.com
https://www.packtpub.com/books/info/packt/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / l e a r n i n
g c l o j u r e s c r i p t / c o d e - e x a m p l e s. We also have other code bundles from our rich catalog
of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check them
out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata
section of that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://github.com/learningclojurescript/code-examples
https://github.com/learningclojurescript/code-examples
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

1
Getting Ready for ClojureScript

Development
ClojureScript's promise is to bring the expressiveness and agility of the Clojure
programming language to JavaScript developers. Having such power at hands means that
teams working on single page applications—and on Node.js services as well—more
productivity and less frustration.

But to be able to take complete advantage of this platform, we must grasp its inner
mechanisms and, sometimes patiently, work our way towards the perfect ClojureScript
live-coding environment. In this chapter, we'll cover the material necessary to achieve this
objective.

We'll begin by studying the ClojureScript ecosystem, focusing on its compiler internals and
talking about the Read-Eval-Print-Loop (REPL) it offers. We'll then present some
alternative building blocks that make it possible to expose interactive ClojureScript
development work-flows through third-party tools. We'll finally leverage all of this
knowledge in order to build full-fledged, integrated, and interactive ClojureScript
development environments. To get started with adopting this approach, we'll discuss the
following:

Getting familiar with the ClojureScript ecosystem
Live coding ClojureScript on top of nREPL with PiggieBack and Weasel
Live coding ClojureScript with Figwheel
Setting up Emacs for ClojureScript development

Getting Ready for ClojureScript Development

[7]

Getting familiar with the ClojureScript
ecosystem
At the heart of the ClojureScript's ecosystem lies the compiler. In this section, we'll gain an
insight into its internals: what is its underlying architecture, how does it work, and how can
its functioning be tweaked in order to allow for leaner ClojureScript development?

Inside the ClojureScript compiler
The ClojureScript compiler is a piece of Clojure software packaged as a JAR along with
Clojure itself, so the package is self-contained and can be manipulated easily. As such, the
ClojureScript compiler requires the JVM for its operation. Currently, as ClojureScript
developers have baked in the compiler, among many other things, an integration mode for
Nashorn, the Java 8 embedded JavaScript engine, they recommend using the same version
of the JVM. But, Java 7 is sufficient for the sole operation of the compiler.

A bootstrapped version of ClojureScript, that is, one that uses pure
ClojureScript for compilation, has recently been released. Cljs-bootstrap
(h t t p s : / / g i t h u b . c o m / s w a n n o d e t t e / c l j s - b o o t s t r a p), at the time of
writing this, is still a work in progress, and offers worse performance than
the JVM mainstream compiler. Besides, bootstrapped ClojureScript does
not allow for the advanced compilation flags that its JVM counterpart
offers.

At its most stripped down definition, the compiler accepts ClojureScript code, that is,
mainly s-expressions obeying some Clojure subset semantics, and emits JavaScript artifacts
that are passed on to the Google Closure Library (h t t p s : / / d e v e l o p e r s . g o o g l e . c o m / c l
o s u r e /) in order to get it “polished”.

The Google Closure Library is a set of JavaScript optimizing tools open sourced by Google,
which it uses to support the development of its JavaScript-rich applications, such as Gmail
or Maps. Using this library has the following benefits:

It abstracts away the effort of managing inconsistencies across the many
JavaScript engines of the market.
It takes advantage of the Google Closure's complete program optimization with
features such as JavaScript minification or dead code elimination.
It exposes the namespace functionality, which is otherwise unavailable in Vanilla
JavaScript. Actually, a ClojureScript namespace maps to a Google Closure
namespace.

https://github.com/swannodette/cljs-bootstrap
https://developers.google.com/closure/
https://developers.google.com/closure/

Getting Ready for ClojureScript Development

[8]

Now, let's see the ClojureScript compiler in action. To understand its fundamentals, we
won't use any build-automation tooling such as Leiningen for the moment, though we'll for
sure need it to construct our tooling later on. Let's begin by downloading the latest release
of the compiler (1.7.48 as of the time of writing):

Throughout this book, we assume that you are working on a POSIX
compatible system, such as Linux or Mac OS X.

Create a new directory for your first project, label it cljs_first_project, and then
download into it the compiler JAR:

 mkdir cljs_first_project; cd cljs_first_project
 wget \
https://github.com/clojure/clojurescript/releases/download/r1.7.48/cljs.jar

Once the compiler JAR is downloaded, you'll need to create a source directory and the path
for your first namespace inside the project folder:

 mkdir -p src/cljs_first_project; cd src/cljs_first_project

Now it's time to write your first ClojureScript namespace, which must conform to the path
we're currently in (note that you should replace the underscores with dashes in the
directory name). Type the following code in a file named core.cljs:

(ns cljs-first-project.core)
(js/alert "Hello world!")

This code just declares a namespace and the only operation that our program does is
showing an alert popup with the familiar “Hello World!” greeting.

Now with the ClojureScript compiler being a Clojure library, we must write some Clojure
code in order to trigger the building of the ClojureScript code we just wrote. Create a
Clojure file at the root of our project (at the same level as the /src directory) and label it
build.clj with the following Clojure code in it:

(require 'cljs.build.api)
(cljs.build.api/build "src" {:output-to "out/main.js"})

Building ClojureScript is a matter of requiring the cljs.build.api namespace and then
launching the build function that takes two arguments. The first argument is where to look
for the ClojureScript source code to build, that is the src directory in our case, and second
one is where to output the result JavaScript; out/main.js as far as this example is
concerned.

Getting Ready for ClojureScript Development

[9]

With this helper Clojure program under our belt, we can launch the ClojureScript
compilation process. It is about launching the embedded Clojure from the JAR we
downloaded and passing to it the build program we just wrote. When we run Clojure this
way, we make sure that the ClojureScript facilities are loaded, especially the
cljs.build.api namespace. To be able to achieve this, we'll have to add the JAR we
downloaded as well as the src directory to the classpath when we invoke Clojure with the
help of the java command:

 java -cp cljs.jar:src clojure.main ./src/build.clj

After you've run this command, you'll notice that an out directory containing our target
main.js file has just been created. In order to launch the output JavaScript artifact, we'll
need an HTML page, which when loaded into our browser will greet us with a popup. On
our HTML page, we must surely load the generated main.js file, but we must also
bootstrap the Google Closure Library by loading the out/goog/base.js script.

Also, note that the main.js file only contains a description of the different namespaces'
dependencies managed by the Google Closure Library and no logic of execution. So, we
must explicitly set an entry point to our program by telling the Google Closure Library to
require a namespace to start with, and that's our cljs_first_project.core namespace
(note how the dashes got transformed to underscores in the HTML page). Here's what the
HTML page, which we'll store under the greet.html file, at the root folder of your project,
looks like:

<html>
 <body>
 <script type="text/javascript" src="out/goog/base.js"></script>
 <script type="text/javascript" src="out/main.js"></script>
 <script type="text/javascript">
 goog.require("cljs_first_project.core");
 </script>
 </body>
</html>

Accessing this page from your browser greets you with a JavaScript alert popup.
Congratulations! You've successfully written and compiled your first ClojureScript
program!

There are more advanced ways to work with the architecture of the build process. For
example, to get rid of all the goog requires in your HTML page, you can tell the compiler in
your Clojure build program which namespace should be set as an entry point, as follows:

(require 'cljs.build.api)
(cljs.build.api/build "src"

Getting Ready for ClojureScript Development

[10]

 {:main 'cljs-first-project.core
 :output-to "out/main.js"})

This lets you strip the necessary script declarations in your greet.html page down to the
following:

<html>
 <body>
 <script type="text/javascript" src="out/main.js"></script>
 </body>
</html>

Another way to optimize the build process is to set the auto-build of your ClojureScript
code on. The compiler can be triggered to be on the watch mode, thus recompiling the
output JavaScript as soon as it observes any changes in the src directory. Set your Clojure
build program to use the watch function instead of build, as shown here:

(require 'cljs.build.api)

(cljs.build.api/watch "src"
 {:main 'first-cljs-project.core
 :output-to "out/main.js"})

We've taken quite a deep dive inside the compiler. But, to be able to keep the promise of
bringing agile development to JavaScript land, ClojureScript ought to offer a REPL to its
users, as any decent lisp would do. Let's discover how ClojureScript addresses this matter
in the next section.

Working with the ClojureScript REPL
ClojureScript comes bundled with REPL support for the browser, Node.js, Rhino, and
Nashorn. The REPL functionality can be triggered through a call to the repl function from
the cljs.repl namespace present in the ClojureScript JAR. Just as we did for the building
process, we must create a REPL launching Clojure program. In this program, we begin by
building our project and then launch the interactive REPL session. Create a repl.clj
Clojure program containing the following listing:

(require 'cljs.repl)
(require 'cljs.build.api)
(require 'cljs.repl.browser)

(cljs.build.api/build "src"
 {:main 'cljs-first-project.core
 :output-to "out/main.js"

Getting Ready for ClojureScript Development

[11]

 :verbose true})

(cljs.repl/repl (cljs.repl.browser/repl-env)
 :watch "src"
 :output-dir "out")

Here, we'll build a REPL with evaluation on the browser, as we've used the
cljs.repl.browser namespace. Note how we set the :watch option, so our REPL
automatically gets fresh versions of the output JavaScript, providing for interactive
ClojureScript code evaluation. The :output-dir directive tells the REPL where to look for
generated artifacts so that they can be loaded into the relevant evaluation environment. As
the interactive evaluation session goes, output of the compilation goes into
out/watch.log, so we can follow along what's going on while the code interacts with the
REPL.

Now, you must set a connection to the REPL inside your ClojureScript program,
core.cljs. Once built, the resulting JavaScript program will stay in tune with the REPL
environment, by pushing to the browser any changes made to the ClojureScript source:

(ns cljs-first-project.core
 (:require [clojure.browser.repl :as repl]))

(defonce conn
 (repl/connect "http://localhost:9000/repl"))

(js/alert "Hello world!")

The connection has been defined with the defonce parameter to make sure that the same
connection is used across the many builds that will occur while the user interacts with the
REPL and triggers a new build per evaluation.

Now, launch the REPL, preferably using the rlwrap command, so the display on the
terminal is properly rendered:

 rlwrap java -cp cljs.jar:src clojure.main repl.clj

Getting Ready for ClojureScript Development

[12]

Be patient while the first build, involving the construction of the connection to the REPL, is
completed. When it completes, you'll see the Waiting for browser to connect message in
your terminal. Once you see this message, point your browser to the HTML page we
prepared before (greet.html) now through http://localhost:9000/greet.html.
Accept the first greeting popup and go back to your terminal; you'll see the following
output:

Watch compilation log available at: out/watch.log
To quit, type: :cljs/quit
cljs.user=>

Type another greeting to see if it gets automatically executed in your browser. Type in your
REPL the following:

cljs.user=> (js/alert "Hello World From REPL!")

You'll see new greetings from the REPL interactively popping up without hitting refresh on
your browser:

So far, were able to come up with a ClojureScript REPL that empowered us to interact with
the browser. But, we are far from having a full-fledged development environment yet; the
terminal through which we are coding is quite limited, and we lack several essential
features such as code completion, syntax coloring, source code exploration, refactoring, or
version control management to name a few. We need a much more complete and fluid
coding experience and that's what we will strive to achieve in the next sections. We'll begin
by exploring the two most promising facilities that permit text editors or integrated
development environments to take advantage from the ClojureScript REPL. Then, we'll
showcase two Emacs setups based on those facilities-one based on CIDER and another one
backed byinf-clojure.

Getting Ready for ClojureScript Development

[13]

Live coding ClojureScript on top of nREPL
with Piggieback and Weasel
Network REPL (nREPL) (h t t p s : / / g i t h u b . c o m / c l o j u r e / t o o l s . n r e p l) is a Clojure
library designed primarily to offer remote Clojure code evaluation. It follows a client-server
architecture in which the server exposes the REPL functionality by responding to client
code evaluation queries. nREPL has been created to offer a means to the makers of
development tools to connect and explore running Clojure environments in a way that is
agnostic to the platform these tools may be running on.

Many prominent Clojure development tools rely on nREPL to implement their
functionality. In fact, CIDER on Emacs or Cursive on Intellij IDEA, the most used tools for
developing Clojure at the time of writing this, both rely on nREPL (CIDER relying more on
nREPL for code introspection than Cursive).

Naturally, ClojureScript also benefits from nREPL.

Piggieback (h t t p s : / / g i t h u b . c o m / c e m e r i c k / p i g g i e b a c k) is an nREPL middleware that
seizes this opportunity. Piggieback hooks into nREPL and changes its operation so it can
evaluate and load ClojureScript code, while being understandable to the vast majority of
existing Clojure tooling. In the next section, we'll take a closer look at Piggieback.

Working with Piggieback
Piggieback changes the nREPL behavior to turn it into a ClojureScript remote evaluation
environment. It does this by functioning as a middleware layer on top of nREPL. Let's see
how to do this using Leiningen.

Leiningen, the Clojure build tool, can be downloaded from h t t p : / / l e i n i
n g e n . o r g / or h t t p s : / / g i t h u b . c o m / t e c h n o m a n c y / l e i n i n g e n. You
can also find detailed instructions and documentation on how to install
and get started with Leiningen on both the sites. We'll be using Leiningen
a lot in this book, so you'll definitely want to install it.

We'll use this project management tool to create a new Clojure project:

 lein new piggieback_project

www.allitebooks.com

https://github.com/clojure/tools.nrepl
https://github.com/cemerick/piggieback
http://leiningen.org/
http://leiningen.org/
https://github.com/technomancy/leiningen
http://www.allitebooks.org

Getting Ready for ClojureScript Development

[14]

Then, we'll have to modify the project.clj file (where project-specific configuration is
kept) in order to turn our project into a ClojureScript one, adding ClojureScript as a
dependency:

(defproject piggieback_project "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/clojurescript "1.8.51"]])7.228"]])

Now, it is time to add Piggieback into the mix. Add its dependencies and its middleware to
the project.clj file:

(defproject piggieback_project "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/clojurescript "1.7.228"]]
 :profiles {:dev {:dependencies [[com.cemerick/piggieback"0.2.1"]
 [org.clojure/tools.nrepl"0.2.10"]]
 :repl-options {:nrepl-middleware
 [cemerick.piggieback/wrap-cljs-repl]}}})

Piggieback is just an entry point to ClojureScript REPLs. Once we hook into our nREPL, we
can operate in the same manner as we did when we were working with the REPL bundled
with the compiler. Once again, we'll need to prepare a ClojureScript namespace that can
define the connection to the REPL, and an HTML page that we can load into our browser.
Create a core.cljs file under the src/piggieback_project folder:

(ns piggieback-project.core
 (:require [clojure.browser.repl :as repl]))
(defonce conn
 (repl/connect "http://localhost:9000/repl"))

Next, copy the greet.html file we wrote previously into the root of your new project.

We can now start an nREPL session. Type the following at the root of your project:

 lein repl

Getting Ready for ClojureScript Development

[15]

In order to launch interactive code evaluation and loading in the browser, we must use
some ClojureScript namespaces as to be able to hook Piggieback into our running nREPL
session. We'll need to build the ClojureScript program we wrote at least once, so first we'll
have to load the compiled JavaScript code to connect to the nREPL. Issue the following
commands at the running REPL prompt:

 user=> (require 'cljs.build.api)
 user=> (cljs.build.api/build "src"
 #_=> {:main 'piggieback-project.core
 #_=> :output-to "out/main.js"
 #_=> :verbose true})
 user=> (require 'cljs.repl.browser)

We are now ready to hand over the code evaluation responsibility to Piggieback. Type the
following:

 user=> (cemerick.piggieback/cljs-repl (cljs.repl.browser/repl-
 env))

You'll see that a JavaScript compilation process has been launched. It is our core.cljs file
being compiled, and constructing a connection to the REPL. This will be our nREPL
session—accessed through the JavaScript artifacts loaded via the greet.html page.

Once this operation has finished, you'll get the Waiting for browser to connect message
that we previously encountered during our interaction with the REPL built by the
ClojureScript compiler. As soon as you point your browser
to http://localhost:9000/greet.html, you'll notice that the prompt has changed; it
now shows the following:

 cljs.user=>_

This means that the nREPL session has started accepting code to be compiled. The compiled
JavaScript will automatically be evaluated on the connected browser. Try to generate
a Hello World! popup from the browser from Piggieback this time:

 cljs.user=> (js/alert "Hello World from Piggieback!")

And your browser says it with a popup, from your nREPL/Piggieback session.

Getting Ready for ClojureScript Development

[16]

We've now seen how we can change the nREPL's behavior so that it is turned into an entry
point to the ClojureScript REPL. Code passed to the REPL executed on into the JavaScript
environment-the browser in our context-via JavaScript files that are regenerated after each
and every operation.

We can make this workflow even leaner by hot loading the JavaScript artifacts into the
browser with websockets. This is what we will see in the next section, with the Weasel
library.

Setting up Weasel with PiggieBack for browser
live coding
Weasel (h t t p s : / / g i t h u b . c o m / t o m j a k u b o w s k i / w e a s e l) sets a up realtime
communication channel using a websocket between a ClojureScript REPL and the
JavaScript evaluation environment. The authors of this library say that choosing websockets
as a means for delivering compiled JavaScript to runtime environments made it possible for
them to profit from a simple and reliable transport. It also empowered them to reach a
much wider range of JavaScript engines, especially those that don't properly support, the
<iframe> tag (the main technology behind the vanilla ClojureScript browser REPL). Let's
now add Weasel on top of the Piggieback-enabled nREPL environment that we've set up in
the previous sections.

Let's first modify the piggieback_project file we worked on earlier to
support Weasel by adding its dependency to the project.clj file:

(defproject piggieback_project "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/clojurescript "1.7.228"]
 [weasel "0.7.0" :exclusions
 [org.clojure/clojurescript]]]
 :profiles {:dev {:dependencies
 [[com.cemerick/piggieback"0.2.1"]
 [org.clojure/tools.nrepl "0.2.10"]]
 :repl-options {:nrepl-middleware
 [cemerick.piggieback/wrap- cljs-repl]}}})

https://github.com/tomjakubowski/weasel

Getting Ready for ClojureScript Development

[17]

Let's modify our ClojureScript code so that it can connect to the websocket opened
by Weasel:

(ns piggieback-project.core
 (:require [weasel.repl :as repl]))
(when-not (repl/alive?)
 (repl/connect "ws://localhost:9001"))

Just like we did in the previous section, we'll need to connect to our nREPL and plug
Piggieback in on top of it, but this time, we'll run it with a Weasel browser. After making
sure that you are at the root of the project folder, type in a terminal:

 lein repl

First, let's compile our ClojureScript source so we have our JavaScript ready to connect to
the format as code websocket. Run the following from your nREPL session:

 user=> (require 'cljs.build.api)
 user=> (cljs.build.api/build "src"
 #_=> {:main 'piggieback-project.core
 #_=> :output-to "out/main.js"
 #_=> :verbose true})

Next, we require the Weasel REPL namespace:

 user=> (require 'weasel.repl.websocket)

We hook Piggieback onto the current session and ask it to use the Weasel websocket as the
REPL environment (we also set the IP address and the port we want our websocket to be
listening to):

 user=> (cemerick.piggieback/cljs-repl
 #_=> (weasel.repl.websocket/repl-env :ip "0.0.0.0" :port
 9001))

After Piggieback is launched, Weasel shows a message to inform us that it is awaiting
incoming connections:

 << waiting for client to connect ...

Open the greet.html file in your browser (you need to open it from the files manager on
your OS, as we are not serving it over HTTP this time!). As soon as the file opens, you see
the following message in your nREPL session:

 << waiting for client to connect ... connected! >>

Getting Ready for ClojureScript Development

[18]

The prompt in your nREPL session should change to the following:

 cljs.user=> _

As usual, let's salute the world and see if our greeting pops up in the browser:

 cljs.user=> (js/alert "Hello World from Weasel!")

Your browser should now emit an alert with a greeting message on it.

Until this point, we have been able to put together a powerful environment for developing
ClojureScript. Thanks to Piggieback being hooked on nREPL, we can benefit from the
integrated development tools that already exist for Clojure. Before we go too much further
on this subject, let's see how we can write ClojureScript programs that target other
JavaScript environments. In the following section, we'll focus on setting up a Piggieback
powered nREPL that evaluates code on the Node.js platform.

ClojureScript REPLs on Node.js with Piggieback
Setting up Node.js REPLs is simpler than targeting the browser. You don't need to set up
connections from the REPL process to the browser with the help of some vanilla JavaScript.
All you have to do is make sure that the source is compiled, and set the REPL target to
Node.js, so that the compiled output is handed over to that evaluation environment for
running.

First, make sure that Node.js is installed. Under piggieback_project, change the
core.cljs file so that it looks like the following:

(ns piggieback-project.core
 (:require [cljs.nodejs :as nodejs]))

(nodejs/enable-util-print!)

(defn -main [& args]
 (println "Hello world from Node.js!"))

(set! *main-cli-fn* -main)

Launch an nREPL session for your project by typing the following:

 lein repl

Getting Ready for ClojureScript Development

[19]

We then require the namespaces necessary for the launch of our Node.js REPL:

 user=>(require 'cljs.build.api)
 user=> (require 'cljs.repl.node)

Now, launch the first build of our ClojureScript core.cljs source:

 user=> (cljs.build.api/build "src"
 #_=> {:main 'piggieback-project.core
 #_=> :output-to "out/main.js"
 #_=> :verbose true})

We can now hook a Piggieback REPL into this running nREPL session. Issue the following
command:

 (cemerick.piggieback/cljs-repl (cljs.repl.node/repl-env))

The nREPL session responds with a message saying that a Node.js REPL has been launched:

 ClojureScript Node.js REPL server listening on 49449

And as usual, the prompt has been changed so as to notify us that we have successfully
launched a ClojureScript REPL on top of our nREPL session:

 cljs.user=> _

At this point, we can implement a program similar to the Node.js “Hello World,” a little
HTTP server that greets the browser that queries it. Type the following in your, now,
ClojureScript-enabled nREPL session (we'll elaborate more on the syntax later on):

 cljs.user=> (def http (js/require "http"))
 cljs.user=> (.listen (.createServer http
 #_=> (fn [req res]
 #_=> (do
 #_=> (.writeHead res
 #_=> 200
 #_=> (js-obj
 #_=> "Content-Type" "text/plain"))
 #_=> (.end res
 #_=> "Hello World from Node.js
 http server!"))))
 #_=> 1337
 #_=> "127.0.0.1")

If you navigate your browser to http://127.0.0.1:1337, you should see the greeting
from your Node.js server.

Getting Ready for ClojureScript Development

[20]

In the next section, we'll elaborate on a new contender in the realm of interactive
ClojureScript coding environments: Figwheel, the new kid on the block that gets you to a
ClojureScript browser REPL quickly.

Live coding ClojureScript with Figwheel
Figwheel (h t t p s : / / g i t h u b . c o m / b h a u m a n / l e i n - f i g w h e e l) is a Leiningen plugin that
builds ClojureScript programs and delivers them to the browser for interactive evaluation.
In contrast with nREPL-based work-flows, Figwheel does not rely on third-party REPLs. It
is a self-contained library with its own ClojureScript REPL that relies on websockets to push
your work to the browser as you edit your ClojureScript code. Figwheel also supports CSS
live reloading in the browser, hence providing for a completely interactive web
development experience. In this next section, we'll use Figwheel to get set up a
ClojureScript live-coding experience on the browser.

Setting up Figwheel for browser live coding
Figwheel comes as a self-contained library that automatically builds and loads the
generated JavaScript into the browser. This means we won't have to manually build the
JavaScript that'll be pushed to the browser in order to establish the connection to the
Figwheel REPL. Everything will be handled for us.

Let's begin by creating a new project that we will use to experiment with Figwheel:

 lein new figwheel-project

We'll now need to change our project.clj file so that our project is aware of the lein-
figwheel plugin:

(defproject figwheel-project "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/clojurescript "1.8.51"]]
 :plugins [[lein-figwheel "0.5.1"]]
 :clean-targets [:target-path "out"]
 :cljsbuild {
 :builds [{:id "dev"
 :source-paths ["src"]
 :figwheel true
 :compiler {:main "figwheel-project.core"}}]})
 :asset-path "js/out"
 :output-to "resources/public/js/main.js"
 :output-dir "resources/public/js/out"}}]})

https://github.com/bhauman/lein-figwheel

Getting Ready for ClojureScript Development

[21]

Create a file named core.cljs under src/figwheel_project/ so we can have a
ClojureScript program that will be built and pushed to the browser. Code changes will be
pushed to the browser automatically later on via this loaded file:

(ns figwheel-project.core)

(js/alert "Hello from Figwheel!")

As before, in order to load the compiled JavaScript that'll connect our browser to the
running Figwheel process we need to have an HTML page. Since we're still compiling
ClojureScript to the main.js file, we must load this file in order to get it evaluated in the
browser. Create a greet.html file that you'll put in the root of your project. This page will
contain the following:

<html>
 <body>
 <script type="text/javascript" src="main.js"></script>
 </body>
</html>

Let's launch Figwheel. Note how this is done as a Leiningen plugin, and how we don't need
to load a specific ClojureScript on top of an nREPL as we did with Piggieback:

 lein figwheel

Your terminal should show a message that states that it is awaiting the client connection:

 Prompt will show when figwheel connects to your application

For this, we are going to simply use the web server that comes embedded within Figwheel.
Provided that we’ve put the previous greet.html in our browser. Open that HTML page
as a regular file under the public/resources folder visit the following URL,
http://localhost:3449/greet.html. As soon as the page loads, you'll see the greeting
we programmed to show in the ClojureScript file, and once you've clicked on the OK
button, you'll notice that the Figwheel invite is now showing a prompt accepting user
requests for ClojureScript evaluation:

 cljs.user=> _

Let's try to evaluate something in the browser. Type the following:

 cljs.user=> (js/alert "Hi from Figwheel Again!")

Getting Ready for ClojureScript Development

[22]

Once again, this new greeting should pop up in your browser!

We've seen how it was easy to set up a browser live-coding session with Figwheel. In the
next section, we'll experiment with Node.js evaluations.

Node.js interactive development workflows with
Figwheel
Figwheel is mainly intended for the browser, and as such, configuring it to connect to
Node.js is a bit trickier than what we just did. Since Figwheel does not rely on the
core ClojureScript REPL or nREPL, and hence, there are some actions that need to be taken
in order to add Node.js support to its default stack.

Getting Figwheel to provide a Node.js REPLs is a matter of preparing a special JavaScript
artifact that, when run with Node.js, will implement a server that connects via websocket to
a running Figwheel session. This server will evaluate the compiled JavaScript from the
Figwheel REPL via the WebSocket connection. Let's implement this.

First create a new Clojure project and name it figwheel_node. Next, prepare the
ClojureScript Node.js script that, once launched, will connect via a WebSocket to the REPL
served by Figwheel:

(ns ^:figwheel-always figwheel-node-repl.core
 (:require [cljs.nodejs :as nodejs]))
(nodejs/enable-util-print!)
(def -main (fn [] nil))
(set! *main-cli-fn* -main)

Next, let's modify our project.clj file to target the Node.js runtime using the relevant
bootstrapping library. We could configure the bootstrapping library ourselves, but instead
we'll use a popular Leiningen plugin, Cljsbuild (h t t p s : / / g i t h u b . c o m / e m e z e s k e / l e i n -
c l j s b u i l d), to automate this process for us. Let's add and configure it by editing your
project.clj as follows:

(defproject figwheel-node "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.7.0"]
 [org.clojure/clojurescript "1.7.122"]]
 :plugins [[lein-cljsbuild "1.1.0"]
 [lein-figwheel "0.4.0"]]
 :clean-targets ^{:protect false} ["out"]
 :cljsbuild {
 :builds [{:id "server-dev"
 :source-paths ["src"]

https://github.com/emezeske/lein-cljsbuild
https://github.com/emezeske/lein-cljsbuild

Getting Ready for ClojureScript Development

[23]

 :figwheel true
 :compiler {:main figwheel-node-repl.core
 :output-to "out/figwheel_node_repl.js"
 :output-dir "out"
 :target :nodejs
 :optimizations :none
 :source-map true}}]}
 :figwheel {})

Note that setting the figwheel-node-repl.core namespace as a main entry point will
ensure that all the necessary imports are added to our compiled output before we execute
any of the program logic via websockets. This way, the script can be painlessly run by
Node.js.

Next, let's install the Node.js websockets client library, ws, so that our script can connect to
the Figwheel session:

 npm install ws

As we've done with the browser setup, launch the Figwheel REPL:

 lein figwheel server-dev

As usual, you will see a prompt telling you that the Figwheel environment is awaiting a
client connection. This time, the client will be the Node.js script we just developed. Launch
it in a different terminal window from the one currently running our Figwheel server:

 node out/figwheel_node_repl.js

At this point, you have two running environments: the Figwheel REPL, which now shows
the cljs.user=> prompt and the Node.js process, which is actively evaluating the
compiled JavaScript that is being pushed to it by Figwheel.

Let's evaluate, on the Figwheel REPL, the HTTP server we used in the previous sections:

 cljs.user=> (def http (js/require "http"))
 cljs.user=> (.listen (.createServer http
 #_=> (fn [req res]
 #_=> (do
 #_=> (.writeHead res
 #_=> 200
 #_=> (js-obj
 #_=> "Content-Type"
 "text/plain"))
 #_=> (.end res
 #_=> "Hello World from
 Node.js http server!"))))

Getting Ready for ClojureScript Development

[24]

 #_=> 1337
 #_=> "127.0.0.1")

If you visit the URL exposed by this HTTP server, http://127.0.0.1:1337, you should
see a greeting from Node.js, meaning that the ClojureScript you typed in the Figwheel REPL
has been successfully compiled to JavaScript and evaluated by the running Node.js process.

We've studied two alternatives for exposing ClojureScript REPLs-one of them based on
nREPL with Piggieback and the other using a standalone REPL environment based on
Figwheel. In the next sections, we'll talk about how to set up development environments for
ClojureScript on Emacs.

Setting integrated development
environments for ClojureScript
Now that we've got the basic lay of the land, we can now focus on configuring a proper
Integrated Development Environment. We'll also discuss how we can make it ClojureScript-
aware using the REPLs we've covered so far.

In doing so, we strive to profit from the many ways IDEs can assist us. IDEs are powerful
tools, exposing functionalities such as code completion, syntax highlighting, program
structure introspection, and navigation.

We'll focus on Emacs, its Clojure development environment, CIDER, as well as another
simpler package, inf-clojure. The reason why we chose these Emacs-based tools is that
they are the most used IDEs for most Clojurists, and are actively maintained by a vibrant
community of open source enthusiasts.

Working on Emacs with Piggieback and Weasel
on CIDER
CIDER, or the Clojure Interactive Development Environment that Rocks for Emacs (h t t p
s : / / g i t h u b . c o m / c l o j u r e - e m a c s / c i d e r), is an open source Emacs Library for working
with Clojure on Emacs. Originally called nrepl.el, it is stable, feature-rich, and an active
project that is highly beneficial to Clojure and ClojureScript developers.

https://github.com/clojure-emacs/cider
https://github.com/clojure-emacs/cider

Getting Ready for ClojureScript Development

[25]

If you're going to use CIDER, its authors have stated that they expect ClojureScript
developers to use Piggieback and Weasel as their default toolkit.

Let's assume that you can launch a Piggieback/Weasel-enabled nREPL session for your
ClojureScript project (refer to the Live-coding ClojureScript on top of nREPL with PiggieBack
and Weasel section). We'll now focus on how CIDER empowers you to develop ClojureScript
with Emacs.

Installing CIDER
Installing Cider is a matter of getting the relevant library from package.el (using
MELPA, MELPA Stable, or Marmalade repositories) and issuing the following command
(in Emacs):

 M-x package-install [RET] cider [RET]

Alternatively, add the following lines to your Emacs configuration file:

(unless (package-installed-p 'cider)
 (package-install 'cider))

You'll also need to hook up the CIDER middleware into our nREPL. To do this, add the
following to the :user section in your ~/.lein/profiles.clj file:

:plugins [[cider/cider-nrepl "x.y.z"]]

We haven't spoken about Leiningen profiles too much prior to now. To learn more about
how the profiles.clj file works, check out the Leiningen documentation at h t t p s : / / g i
t h u b . c o m / t e c h n o m a n c y / l e i n i n g e n / b l o b / m a s t e r / d o c / P R O F I L E S . m d # d e c l a r i n g - p r

o f i l e s. Take care, the "x.y.z" version number in cider-nrepl must match the CIDER
version, otherwise you'll get a warning when trying to connect to a project's REPL.

Working with Clojure and ClojureScript REPLs on
CIDER
At this point, you're free to tweak CIDER's configuration to add features like different
autocompletion providers or syntax-highlighting behavior. Whether you choose to or not,
you should have everything you need to get CIDER up and running at this point.

https://github.com/technomancy/leiningen/blob/master/doc/PROFILES.md#declaring-profiles
https://github.com/technomancy/leiningen/blob/master/doc/PROFILES.md#declaring-profiles
https://github.com/technomancy/leiningen/blob/master/doc/PROFILES.md#declaring-profiles

Getting Ready for ClojureScript Development

[26]

Once you have installed CIDER and its nREPL middleware, you can open a Clojure file
(even an empty buffer to experiment in), launch an REPL on it and begin to work
interactively. Most Clojure developers go back and forth between editing and sending code
to the REPL for evaluation. To launch a Clojure nREPL session from Emacs use the
following command:

 M-x cider-jack-in

Now, how can we get this set up to work with ClojureScript? Let's go back to our
piggieback_project from earlier in this chapter and get CIDER working for it.

First, we'll need to tell CIDER which ClojureScript evaluation environment we are going to
use. CIDER defaults to Rhino, so for our case we'll need to tell CIDER to use Weasel.
Customize the cider-cljs-repl file to set it to Weasel:

M-x customize-variable RET cider-cljs-repl RET Weasel RET

Make certain that your ClojureScript file contains the following connection code:

(ns piggieback-project.core
 (:require [weasel.repl :as repl]))
 (when-not (repl/alive?)
 (repl/connect "ws://localhost:9001"))

Make sure that this ClojureScript code has been successfully compiled at
least once. Otherwise, we won't be able to load the websocket client.

Next, we'll use the lein-cljsbuild package. To activate this plugin make sure that your
project.clj file looks as follows:

(defproject piggieback_project "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :plugins [[lein-cljsbuild "1.1.0"]]
 :cljsbuild {
 :builds [{:source-paths ["src"]
 :compiler {:main piggieback-project.core
 :output-to "out/main.js"
 :output-dir "out"
 :optimizations :none}}]}
 :dependencies [[org.clojure/clojure "1.7.0"]
 [org.clojure/clojurescript "1.7.122"]

Getting Ready for ClojureScript Development

[27]

 [weasel "0.7.0" :exclusions [org.clojure/clojurescript]]]
 :profiles {:dev {:dependencies [[com.cemerick/piggieback
 "0.2.1"]
 [org.clojure/tools.nrepl "0.2.10"]]
 :repl-options {:nrepl-middleware
 [cemerick.piggieback/wrap-cljs-repl]}}})

Now we'll build the code responsible for creating the connection. While in the project
directory, type the following:

 lein cljsbuild once

Now open any ClojureScript file in Emacs, and launch the nREPL session with:

 M-x cider-jack-in-clojurescript

You'll see two REPLs, one for Clojure and the other for ClojureScript. The ClojureScript
REPL should notify you that it is waiting for the client to connect.

Getting Ready for ClojureScript Development

[28]

Connect your browser to the Weasel session by opening greet.html. You should get the
following screen in Emacs:

Now, switch to the window containing the Clojure REPL and set it to show the buffer
containing your test.cljs ClojureScript file.

Load the content of the file in your REPL using the following Emacs command:

 C-c C-k

Then, set the namespace of the REPL to be the one declared by the current source file:

 C-c M-n

Switch now to your ClojureScript REPL:

 C-c C-z

Getting Ready for ClojureScript Development

[29]

Start typing the name of the function. You'll notice that code completion should be working.
In the minibuffer, Emacs should also help you with the signature of your function.

Now let's evaluate some ClojureScript in our REPL:

 piggieback-project.test> (defn test-fn [your-name] (js/alert (+
 "hello " your-name)))
 piggieback-project.test> (test-fn "Rafik")

And a popup should happily greet you from your connected browser.

Getting Ready for ClojureScript Development

[30]

Working on Emacs with Figwheel and inf-clojure
In order to use Figwheel with Emacs, we'll need to use inf-clojure, an Emacs package
offering basic interaction with a running Clojure subprocess. In conjunction with clojure-
mode, this setup will make sure that we benefit from static code analysis features. inf-
clojure is not as feature rich as CIDER, which is worth keeping in mind. It is nevertheless,
able to load files, switch namespaces, evaluate expressions, show documentation and
source of symbols, and do macro-expansion.

Installing inf-clojure
Type the following in your Emacs:

 M-x package-install [RET] inf-clojure [RET]

You may also want to add the following snippet to your Emacs configuration file:

(unless (package-installed-p 'inf-clojure)
 (package-install 'inf-clojure))

To enable inf-clojure whenever you visit a Clojure or ClojureScript file, add the
following to your Emacs configuration file:

(add-hook 'clojure-mode-hook #'inf-clojure-minor-mode)

Configuring inf-clojure to run Figwheel as a Clojure
subprocess
In order for Emacs to know that we want to use Figwheel as our REPL environment, we'll
need to configure it explicitly. To do this, add the following to your Emacs configuration file
(usually ~/.emacs):

(defun figwheel-repl ()
 (interactive)
 (run-clojure "lein figwheel"))

Getting Ready for ClojureScript Development

[31]

Restart Emacs or re-evaluate the the configuration file buffer for the modifications to take
effect. Next, let's open a file in the source directory of the figwheel_project we've set up
for the browser, say core.cljs, and launch the ClojureScript powered inf-clojure
session by typing the following:

 M-x figwheel-repl

You'll end up to a configuration like the one shown in the following screenshot, where
Figwheel, run from inf-clojure, is awaiting connection from the browser:

Getting Ready for ClojureScript Development

[32]

As soon as you open the greet.html file within your browser, the user prompt should
change to notify you that the evaluation environment is successfully connected to the
Figwheel REPL:

Let's evaluate some ClojureScript. Split your window in two using the following:

 C-x 2

And load the buffer containing core.cljs:

 C-x b core.cljs [RET]

Getting Ready for ClojureScript Development

[33]

You should end up with something like the following:

Move the cursor to the (js-alert...) form and evaluate it by hitting the following:

 C-c C-c

You should see the greeting showing up in the browser.

We've now seen two different possible setups on Emacs: one based on Piggieback/Weasel,
which is harder to set up but offers a fully-fledged Clojure development
environment—CIDER, and another using Figwheel but offering less integrated
development functionality. Which one you choose to use relies pretty much on personal
taste, and how much effort you feel like putting in.

www.allitebooks.com

http://www.allitebooks.org

Getting Ready for ClojureScript Development

[34]

Summary
This concludes our section on getting started with ClojureScript development. We
introduced you to the ClojureScript compiler, demonstrating how it runs on the JVM and
leverages the Google Closure Library to optimize compiled JavaScript and provide
namespace functionality.

We learned how the ClojureScript compiler can be used to build ClojureScript programs
into JavaScript artifacts, how to access these artifacts and, finally, how to interact with them
via a REPL targeting different JavaScript environments.

We covered how to use Piggieback in order to expose a JavaScript-enabled nREPL session,
how to push the compiled JavaScript via websockets to the browser thanks to Weasel, and
how to target Node.js using this setup.

After that, we saw how we could use Figwheel to get a single self-contained Leiningen
plugin for developing with the browser. We also learned how to target Node.js using
Figwheel.

Finally, we saw how one can use one of these setups with an integrated development
environment based on CIDER or inf-clojure.

Now that you have your computer configured for ClojureScript development, lets tackle the
language properly. In the next chapter, we'll dig into the core of the ClojureScript language.

2
ClojureScript Language

Fundamentals
ClojureScript provides the developer with great expressive power, thanks to its elegant
semantics and its bias toward functional programming-both artifacts of its heritage as a Lisp
language.

It also encourages the use of a minimal set of pragmatic and efficient data structures that
make it possible to productively write data-oriented programs that are bound by a set of
unified operations, typically conforming to the powerful seq abstraction.

In this chapter, we are going to explore these semantics and data structures so that we can
gain a deep knowledge of the ClojureScript language basics. We'll delve into its basic scalar
types and collections, understand how expression evaluation and variable scoping work,
study the seq abstraction along with the concept of laziness, and show how interoperability
with JavaScript works. We'll be covering the following topics:

Understanding ClojureScript functions
ClojureScript data structures
Advanced destructuring and namespaces
Immutability
JavaScript interoperability

ClojureScript Language Fundamentals

[36]

Understanding ClojureScript functions
Before we dive too far into ClojureScript, we need to understand the syntax behind
ClojureScript functions. Functions in ClojureScript work like functions in most computer
languages.

Functions
Functions in ClojureScript are first-class entities, which means that we can store them as
variables, or values in data structures, return them as values from other functions, and pass
functions as arguments to other functions.

We'll be demonstrating quite a bit of code evaluation in this chapter. In order to follow
along, start up an REPL following the instructions provided in the previous chapter.

Let's start by quickly seeing what a function call in ClojureScript looks like at the REPL:

 cljs.user=> (+ 1 2)
 ;; => 3

ClojureScript, as a Lisp, looks unlike many other languages, including JavaScript. It is a
language written in prefix notation, which means that the calling function is the first
argument. The same operation, performed in JavaScript, would look like the following:

 > 1 + 2
 3

Let's start by just defining a simple function. Let's say we want to start by just taking a
number and adding one. There is an existing function, inc, that does this for us already, but
let's just reimplement it for now:

 cljs.user=> (def inc2 (fn [x] (+ x 1)))
 ;; => #'cljs.user/inc2
 cljs.user=> (inc2 8)
 ;; => 9

Let's break this apart: the def statement tells us that what follows will be a definition. The
fn parameter is a ClojureScript macro that defines a function. Macros are like functions but
somewhat more complicated; we'll cover them in greater detail in Chapter 3, Advanced
ClojureScript Concepts. The x variable in brackets is the sole argument to our function; any
additional arguments to the function, if they existed, would also go inside the brackets.
What follows after that is the function body.

ClojureScript Language Fundamentals

[37]

The fn parameter is a special macro in that it invokes fn*, which is a
compiler special form. The most important part of function construction
can't be built by a ClojureScript macro, which makes fn (or rather fn*)
special indeed. We'll talk more about special forms later on in this chapter.

We can also define a function using the defn macro, which is a convenient shorthand for
(def (fn...)). There's nothing special about the defn macro that we need to worry about
for now; it's functionally the same as (def (fn ...)), although it makes it syntactically a
little cleaner to attach metadata to the function:

 cljs.user=> (defn inc2
 [x] (+ x 1))
 ;; => #'cljs.user/inc2
 cljs.user=> (inc2 4)
 ;; => 5

The function we've defined previously is the same as the following JavaScript function:

function inc2(x) {
 return x + 1
}

If we're defining a function without arguments, we just use an empty vector:

 cljs.user=> (defn yell [] (print "Aaaaagh!"))
 ;; => #'cljs.user/yell
 cljs.user=> (yell)
 Aaaaagh!
 ;; => nil

A documentation string (docstring) can be attached to a function by including it before the
function's arguments:

 cljs.user=> (defn inc2
 "Returns a number one greater than the number passed in."
 [x] (inc x))
 ;; => #'cljs.user/inc2

We can print out the docstring for our function by calling the doc parameter on it at the
REPL. This is an incredibly useful tool when you want to quickly know what a function
does. We recommend including docstrings for all of the functions you write in
ClojureScript:

 cljs.user=> (doc inc2)

 cljs.user/inc2
 ([x])

ClojureScript Language Fundamentals

[38]

 Returns a number one greater than the number passed in.
 ;; => nil

Multiarity and variadic functions
Sometimes you'll want to write a function that could take potentially different numbers of
arguments. This function might behave differently with different argument lengths or it
might just provide a convenient pointer to the same function but with a specified argument
length (for instance, if you wanted to provide defaults). This is sometimes referred to as
function overloading. Let's see how we can do this in ClojureScript:

 cljs.user=> (defn inc2
 "Returns a number one greater than the number passed in. If
 two numbers are provided, sums them both and increments that
 sum by 1."
 ([x] (inc x))
 ([x y] (inc (+ x y))))
 ;; => 2
 cljs.user=> (inc2 3)
 ;; => 4
 cljs.user=> (inc2 3 4)
 ;; => 8

We can also write functions that take any number of arguments (also known as variadic
functions). This is akin to writing *args in some other languages:

 cljs.user=> (defn sum
 "Given any number of numbers, sum them together."
 [& args]
 (apply + args))
 ;; => #object[Function "function (seq37445) {
 return
 cljs.user.sum.cljs$core$IFn$_invoke$arity$variadic
 (cljs.core.seq.call(null,seq37445));
 }"]

The apply parameter takes a function (in this case, +) and a collection (args) and applies
the function to the argument list. Don't worry about the return value from the defn form
for now-just know that it's saving the function body in the relevant var, sum. We'll leave off
this REPL return value when we're defining functions for the rest of this chapter to save
room, but don't be surprised to see it.

ClojureScript Language Fundamentals

[39]

Vars in ClojureScript are functionally like variables in JavaScript, but
they're actually much more powerful. For instance, you can attach
arbitrary pieces of metadata to a var, which can, in turn, be used to enable
some really incredible reflection programming at the macro level.

Let's test that our function works:

 cljs.user=> (sum 5 4 3 2 1)
 ;; => 15

We can include arguments before the ampersand (&) here as well:

 cljs.user=> (defn foo
 "A simple example function."
 [x y & args]
 (println "This is the first arg:" x)
 (println "This is the second arg:" y)
 (println "These are the remaining args:" args))
 cljs.user=> (foo 1 2 3 4)
 This is the first arg: 1
 This is the second arg: 2
 These are the remaining args: (3 4)
 ;; => nil

Anonymous functions
Note that we don't actually need to store our functions to be able to call them:

 cljs.user=> ((fn [x] (println "The argument to this function
 is:" x)) "Bonkers!")

 The argument to this function is: Bonkers!
 ;; => nil

This gets back to what we were saying earlier about ClojureScript functions being first-class
citizens. You'll find that you're using the so-called anonymous functions (functions that
aren't stored as a specific variable) often. In other languages, these are sometimes called
lambda functions.

ClojureScript, like Clojure, has a special syntactical shorthand that you can use when
working with anonymous functions. You don't have to use it, but it's often more concise.
Let's look at what the preceding example would look like in this shorthand:

 cljs.user=> (#(println "The argument to this function is:" %1)
 "Bonkers!")

ClojureScript Language Fundamentals

[40]

 The argument to this function is: Bonkers!
 ;; => nil

Here in the preceding syntactical shorthand, the function body is signaled by having a
pound sign or hash before the opening parenthesis. The %1 variable tells us to use the first
argument (if the function only takes one argument, you can also drop the 1 and just use %).
If we wanted to make a variadic function, we can use %& where we would normally use &
args:

 cljs.user=> (#(println "The arguments are:" %&) "Bonkers!"
 "a2")

 The arguments are: (Bonkers! a2)
 ;; => nil

This sort of syntactic shorthand is great for defining simple and quick functions on a single
line, but doesn't make for very clear reading when working with more complicated logic. If
you can't easily fit a function on a single line, you're better off sticking to the default
function declaration syntax.

Side effects
Any code inside of parentheses, as well as any data literal, that can be evaluated is known
as a form. Each form is evaluated in isolation and the value of that form is passed on to the
upstream code containing it.

When we execute forms at the REPL, the values are immediately returned. Sometimes,
however, whether at the REPL or as part of a program, we want to execute code for its side
effects. Side effects might include things like updating state, saving a value to a database,
popping up an alert, or printing a value out to the JavaScript console.

Most of the time, evaluating a form that only performs side effects returns nil. For
instance, if we have a Figwheel REPL open, executing the command to log a value to the
JavaScript console returns nil:

 cljs.user=> (js/console.log "I am a side effect")
 nil

Note that in our browser's JavaScript console, the following value was printed:

 > I am a side effect

ClojureScript Language Fundamentals

[41]

Sometimes, we might want to evaluate multiple side effects as part of a function or evaluate
one or more side effects and also return a different value. For that, we use the do special
form, which lets us evaluate multiple forms, only returning the last one. Let's see an
example:

 cljs.user=> (do
 (println "I am a side effect")
 (+ 1 2)
 "This is the returned string"))

 I am a side effect
 ;; => "This is the returned string"

Special forms work like regular forms and functions, but they work directly with the
ClojureScript compiler. Special forms are so called because without them, the language
wouldn't have the core functionality needed to Bootstrap itself.

Let's take a closer look at what happened here. First, note that each of the contained forms
was evaluated; we can tell this because the println function was called and printed I am
a side effect to our REPL's standard output. We also see that the (+ 1 2) form has not
been returned (though it has, in fact, been evaluated). Lastly, the string This is the
returned string was returned.

The use of the do special form gives our programs considerably more flexibility; we'll be
using it frequently, either directly or indirectly, in many of our programs.

Local variables
We've defined some local variables within our function bodies, but this will not be enough
for us in the long run-we'll want to have the ability to define other local variables as we
need them. We can use the let macro to do this:

 cljs.user=> (let [x 10] (println x))
 10
 ;; => nil

As you can see from the preceding example, we've bound the value 10 to the local variable
x the let macro always takes an even number of arguments within its binding vector since.
The arguments are paired-the first the name of the binding variable, the second the values
or references being bound. Let's see an example where we bind multiple values:

 cljs.user=> (let [a 1
 b 2]
 {a b})

ClojureScript Language Fundamentals

[42]

 ;; => {1 2}

Within the context of a function, we can redefine a previously defined local variable:

 cljs.user=> (defn bar [x] (let [x true] x))
 ;; => #'cljs.user/bar

Here, the function already has an argument x, but we've redefined x to be true within the
body of let. This function is equivalent to the following JavaScript:

var bar = function(x) {
 x = true;
 return x;
}

Let's verify that the locally redefined variable is returned:

 cljs.user=> (bar 5)
 ;; => true

The let macro also functions as an implicit do block:

 cljs.user=> (let [a 5]
 (println a)
 (+ a 3))

 5
 ;; => 8

The ClojureScript data structures
ClojureScript shares all of Clojure's basic scalar types, but due to the difference in runtime
platform, it relies on different underlying mechanics for implementation. Let's begin by
quickly reviewing the basic language types first.

Scalar types
As with Clojure, scalars in ClojureScript are directly linked to the host platform. In this case,
this means that ClojureScript scalars are just basic JavaScript types.

ClojureScript Language Fundamentals

[43]

Numbers
ClojureScript numbers are nothing but JavaScript numbers. Type at your REPL the
following:

 cljs.user> (type 3)
 ;; => #object[Number "function Number() {
 [native code]
 }"]

Unlike Clojure, this is true for all numeric types, whereas Java breaks numeric types into
different types like Bigint, Integer, Float and Double, and all numeric types in ClojureScript
are just JavaScript numbers:

 cljs.user> (type 1.1)
 ;; => #object[Number "function Number() {
 [native code]
 }"]
 cljs.user> (type
 5729348720938479023874928374982734982735982374928734928735982
 3749827592387493287592384729385792875982437592875928374923875
 9238749812379582735982374928374982375923874928374982374)
 ;; => #object[Number "function Number() {
 [native code]
 }"]
 cljs.user=> (type 0.0000000000057829734923)
 ;; => #object[Number "function Number() {
 [native code]
 }"]

Working with numbers in ClojureScript is similar to working with numbers in other
languages:

 cljs.user=> (+ 1 2)
 ;; => 3
 cljs.user=> (- 5 1)
 ;; => 4
 cljs.user=> (* 3 4)
 ;; => 12
 cljs.user=> (/ 8 2)
 ;; => 4

Note that ClojureScript, like Clojure, doesn't have a % function (modulo
division) as it is a reserved character for use in anonymous functions
(which we'll cover in Chapter 3, Advanced ClojureScript Concepts).
Instead, we have the rem function:

ClojureScript Language Fundamentals

[44]

 cljs.user=> (rem 10 3)
 ;; => 1

In addition to the preceding code, ClojureScript also has the inc and dec functions, which
just add or subtract 1 from the argument being passed in. In this regard, they are exactly the
same as calling (+ x 1) or (- x 1). We can even verify this at the REPL with the source
macro, which prints out a function's source code:

 cljs.user=> (source inc)

 (defn inc
 "Returns a number one greater than num."
 [x] (cljs.core/+ x 1))

 ;; => nil

Strings and characters
Strings in ClojureScript are just JavaScript strings under the hood:

 cljs.user> (type "A String")
 ;; => #object[String "function String() {
 [native code]
 }"]

Unlike Java, JavaScript does not have a char type, so characters in ClojureScript are just
one-character strings:

 cljs.user> (type \a)
 ;; => #object[String "function String() {
 [native code]
 }"]

We can create strings just by surrounding them with double-quote marks. We can also
coerce various other data types to their string forms by calling either str or name:

 cljs.user=> (str {})
 ;; => "{}"
 cljs.user=> (str 1)
 ;; => "1"

Notice that the user of str on keywords preserves the colon in the string, while name gets
rid of it:

 cljs.user=> (str :hamburger)
 ;; => ":hamburger"

ClojureScript Language Fundamentals

[45]

 cljs.user=> (name :sandwich)
 ;; => "sandwich"

The str type is typically used to create a new string that is the concatenation of individual
strings:

 cljs.user=> (str "this" "is" "all" "one" "word" "now")
 ;; => "thisisallonewordnow"

You can get the length of a string with count:

 cljs.user=> (count "my-string")
 ;; => 9

Slice a string into a substring with subs:

 cljs.user=> (subs "parents just don't understand" 8 18)
 ;; => "just don't"

And there is much more! The clojure.string namespace has a host of handy functions
for working with strings, including functions for capitalization, substitution, and splitting.
You can expect to see these functions getting used throughout this book.

Nil
The concept of nil in Clojure and ClojureScript has many analogies in other languages. If
you're coming from a scripting language background, you might be familiar with Python's
None or Ruby's nil. JavaScript has the concept of null, and ClojureScript's implementation
of nil is built on this.

The nil type is a special type in ClojureScript, which means asking its type at the REPL
returns a somewhat confusing nil as an answer:

 cljs.user=> (type nil)
 ;; nil

Does this mean that nil doesn't actually have a type? No. It's just a special type whose type
is not accessible at runtime.

The nil type is very important in ClojureScript, and we'll be relying on it frequently,
particularly when we want to check for the presence of something or do any sort of logical
gating with Boolean values.

ClojureScript Language Fundamentals

[46]

Boolean values and truthiness
Like most programming languages, ClojureScript retains the basic concept of true and
false as the two possible values for its Boolean type. ClojureScript Booleans are just
JavaScript Booleans:

 cljs.user=> (type true)
 ;; => #object[Boolean "function Boolean() {
 [native code]
 }"]
 cljs.user=> (type false)
 ;; => #object[Boolean "function Boolean() {
 [native code]
 }"]

In ClojureScript, truth of an expression is decided according to a very simple rule, which is
sometimes described as checking for whether or not a value is truthy. Put simply,
everything which is neither false nor nil evaluates to true when placed in a conditional
expression. Truthiness is a language design pattern that can be found in a number of other
languages such as Clojure, Python, and Ruby. Unlike other Lisp languages, this manner of
evaluation means that empty lists are not considered to be “falsey”, as they are neither
explicitly false, nor are they nil. Let's look at some examples:

 cljs.user> (if (js-obj "field" "value") "js object is true" "js
 object is false")

 ;; => "js object is true"
 cljs.user> (if 5 "a number is true" "a number is false")

 ;; => "a number is true"

As we noted earlier, empty lists are not considered false. This holds true for all empty
collections as well; we'll learn more about them shortly:

 cljs.user> (if [] "an empty vector is true" "an empty vector is
 false")

 ;; => "an empty vector is true"
 cljs.user> (if {} "an empty map is true" "an empty map is
 false")

 ;; => "an empty map is true"

ClojureScript Language Fundamentals

[47]

Only false and nil are considered false:

 cljs.user> (if nil "nil is true" "nil is false")
 ;; => "nil is false"
 cljs.user> (if false "false is true?!" "false is false.")
 ;; => "false is false."

ClojureScript has a special predicate (that is, a function that returns true or false), nil?,
which tests if some given quantity is nil or not. For instance, empty collections are not nil:

 cljs.user> (nil? '())
 ;; => false

The inverse function of nil? is called some? and explicitly checks that the thing in question
is not nil:

 cljs.user> (some? '())
 ;; => true
 cljs.user> (some? nil)
 ;; => false

One final note on Booleans: ClojureScript also has two helper functions for working with
Booleans: true? and false?. These are not “truthy”; they're literally checking to see if the
value in question is true or false. Observe the following:

 cljs.user=> (true? 5)
 ;; => false
 cljs.user=> (true? true)
 ;; => true
 cljs.user=> (false? false)
 ;; => true
 cljs.user=> (false? nil)
 ;; => false

A truthy expression does not mean that the expression is literally true.

Keywords
Keywords are a particular type that don't have a direct analogy in many languages. They
denote quantities that evaluate to themselves:

 cljs.user> :some-keyword
 ;; => :some-keyword

ClojureScript Language Fundamentals

[48]

Keywords' literals are written using a colon (:) like you can see in the previous example. If
you want a fully qualified keyword, that is, a keyword represented as a name appended to
the namespace it belongs to (we'll see namespaces in depth shortly), you could use a double
colon (::) in its literal representation:

 cljs.user> ::some-ns-keyword
 ;; => :cljs.user/some-ns-keyword

Keywords are conceptually used to represent tags, like key values in HashMaps (though
you don't necessarily have to), or different values that a given quantity could take.

Since keywords can be evaluated, they're frequently used as functions on maps. When
called, they return the value for that same key in the map. If this sounds confusing, don't
worry-we'll expand more on this when we cover maps later on in this chapter.

Symbols
Symbols function sort of like pointers or references in other languages-they resolve to other
values. Since ClojureScript is a Lisp, not only are we able to manipulate the underlying
values of these symbols, but we can also write code that points to and manipulates the
symbols themselves via macros, which we'll cover in detail in Chapter 3, Advanced
ClojureScript Concepts. For now, let's define a var object:

 cljs.user> (def a 4)

Now let's check the type of a. To be clear, we want to check the type of the symbol a, not the
4 that a resolves to. In order to do this, we must work with a as a symbol, else it will simply
give us the type of what a evaluates to. We do this by calling quote on a, which tells
ClojureScript to pass the code itself to the outer form, rather than evaluating it and then
passing the evaluated result:

 cljs.user> (type (quote a))
 ;; => cljs.core/Symbol

When we look at macros, we'll see more advanced constructs involving symbols.

Whew! Now we've discussed the basic ClojureScript types and the concepts of true,
false, and nil, let's take a deep breath and delve into one of ClojureScript's great
strengths: its immutable collection types.

ClojureScript Language Fundamentals

[49]

ClojureScript collections
At the heart of ClojureScript's collections are a series of interfaces, which dictate what
functions you can use with a given data type as well as how those functions work.

If you're not familiar with the notion of interfaces, an interface is simply a set of functions
that a given data type must have an implementation for. The implementation does not have
to be the same-it just has to have the same name-and typically has to take and return the
same types as its arguments and return values. In ClojureScript, interfaces are defined using
ClojureScript protocols, which we'll talk more about later in this chapter. We'll be using the
term protocol henceforth whenever we want to talk about either the abstract idea or the
specific implementation of an interface.

In this section, we're going to introduce you to the core collection data types, after which
we'll dive deeper into some specific collection protocols that you'll want to know about.
Before we do that, however, we'll talk about the one protocol that all collections satisfy: the
collection protocol, ICollection.

As an example, having this protocol means that the function to add something to a
collection has the same name, conj, regardless of whether you're adding to a list, a vector, a
map, or a set. The collection protocol includes the following three functions:

conj: This function adds a new element to a collection
count: This function returns the number of items in a collection
seq: This function converts a collection to a sequence

As we go through each of these data structures, we'll show an example of the usage of conj
and seq, but since count is fairly straightforward, it doesn't really warrant repeated
demonstrations.

Lists
At the heart of all Lisp languages is the list, and ClojureScript is no exception. If you haven't
worked with a Lisp language previously, this might be confusing-you might be thinking
“lists? I haven't seen any lists so far!” If that's true, you're in for a surprise.

You've probably noticed by now that all of the code you've written in ClojureScript is
wrapped in parentheses—in some cases many, many parentheses. What you may not have
realized is that these expressions you've been writing so far are not only code, they're also
data: lists.

ClojureScript Language Fundamentals

[50]

Let's look at an extremely simple example:

 cljs.user=> (+ 1 2)
 ;; => 3

In this example, the expression (+ 1 2) is actually a ClojureScript list with three items in it:
the function +, and the integers 1 and 2. Let's prove it by checking its type:

 cljs.user=> (type (+ 1 2))
 ;; => #object[Number "function Number() {
 [native code]
 }"]

Wait, what's going on here? We just said it was going to be a list-were we lying? Well, no.
What's happening is that the ClojureScript compiler is first evaluating the contents of the
list and then passing the result to our type call. In effect, we've just done the same thing as
follows:

 cljs.user=> (type 3)
 ;; => #object[Number "function Number() {
 [native code]
 }"]

Lists are unique among ClojureScript collections in that when they are passed to the
ClojureScript compiler, they're automatically evaluated as function calls. If we want to keep
them in list form and not evaluate the function in the calling position, we'll need to rely on
the quote function we used earlier:

 cljs.user=> (quote (+ 1 2))
 ;; => (+ 1 2)
 cljs.user=> (type (quote (+ 1 2)))
 ;; => cljs.core/List

The quote function isn't really a function; it's another special form, which means it works
directly with the ClojureScript compiler. If we want to create lists without having to call
quote on them, we can also use the list function to create them directly. Let's give that a
shot:

 cljs.user=> (list + 1 2)
 ;; => (#object[cljs$core$_PLUS_ "function
 cljs$core$_PLUS_(var_args) {
 var args6798 = [];
 var len__5243__auto___6804 = arguments.length;
 var i__5244__auto___6805 = (0);
 while(true) {
 if((i__5244__auto___6805 < len__5243__auto___6804)) {
 args6798.push((arguments[i__5244__auto___6805]));

ClojureScript Language Fundamentals

[51]

 var G__6806 = (i__5244__auto___6805 + (1));
 i__5244__auto___6805 = G__6806;
 continue;
 }
 else {
 }
 break;
 }
 var G__6803 = args6798.length;
 switch (G__6803) {
 case 0:
 return cljs.core._PLUS_.cljs$core$IFn$_invoke$arity$0();
 break;
 case 1:
 return
 cljs.core._PLUS_.cljs$core$IFn$_invoke$arity$1
 ((arguments[(0)]));
 break;
 case 2:
 return cljs.core._PLUS_.cljs$core$IFn$_invoke$arity$2
 ((arguments[(0)]),(arguments[(1)]));
 break;
 default:
 var argseq__5262__auto__ = (new
 cljs.core.IndexedSeq(args6798.slice((2)),(0)));
 return
 cljs.core._PLUS_.cljs$core$IFn$_invoke$arity$variadic
 ((arguments[(0)]),(arguments[(1)]),argseq__5262__auto__);
 }
 }"] 1 2)

Whoa, what happened there!? It looks like the + operator was replaced with a whole lot of
obfuscated JavaScript code.

This sort of JavaScript code generation often involves the creation of
variables with unique names like argseq__5262__auto__. It's likely that
the JavaScript code generated on your computer will look different from
the preceding code and could be significantly different if you're using an
REPL that targets a different JavaScript runtime.

When we were talking about symbols, we tried calling quote on a and got the name of the
variable back, that is, we got a back, not 4, even though we had defined the var a as 4.
Something similar is happening here because we're using quote on a list that includes +
and everything inside the list is quoted, meaning that the + we get back is a symbol, not the
underlying function. By contrast, when we create the list directly, we get the value that has
been defined for +, which in this case is the underlying JavaScript code for + in string form.

ClojureScript Language Fundamentals

[52]

Let's test this hypothesis out at the REPL. Let's grab the first element from the list:

 cljs.user=> (first (quote (+ 1 2)))
 ;; => +

Now let's see what type it is:

 cljs.user=> (type (first (quote (+ 1 2))))
 ;; => cljs.core/Symbol

We'll avoid reprinting that obfuscated JavaScript function here in this book to save space,
but we can confirm that the the value of + really is that function by just entering + by itself
into the REPL:

 cljs.user=> +
 ;; => <long JavaScript function here>

Let's look at some simpler list examples. Although lists are usually used for code, there's no
reason we can't use them as simple data carriers as well:

 cljs.user=> (def l (list 1 2 3))
 ;; => #'cljs.user/l

If we conj a new element onto the list, note that it gets prepended to the front:

 cljs.user=> (conj l 4)
 ;; => (4 1 2 3)

Because lists satisfy the Sequence protocol, calling seq on a list just returns the list:

 cljs.user=> (seq l)
 ;; => (1 2 3)

Vectors
In principle, ClojureScript vectors can be thought of as sort of like immutable JavaScript
arrays. Since immutable arrays don't exist natively in JavaScript, ClojureScript vectors are
custom implementations of the idea. The important thing to understand here is that the two
are not the same, and although you can trivially convert from one to the other, they're not
interchangeable. We'll be covering immutability at greater length later on in this chapter,
but, for now, the key thing to realize is that the items in a ClojureScript vector can't be
changed but the items in a JavaScript array can.

ClojureScript Language Fundamentals

[53]

Vectors can be instantiated directly using either brackets or the vector constructor function:

 cljs.user=> ["a" "vector" "of" "awesome" "things"]
 ;; => ["a" "vector" "of" "awesome" "things"]
 cljs.user=> (vector "another" "cool" "vector")
 ;; => ["another" "cool" "vector"]

You can also create them by casting a different collection type to a vector:

 cljs.user=> (vec (list "I" "once" "was" "a" "list"))
 ;; => ["I" "once" "was" "a" "list"]

Vectors are great for whenever you might want to keep an ordered list of things that you
want to index into.

Adding a new element to a vector is straightforward and gets added to the end. Note that
because vectors are immutable, this is technically creating an entirely new vector and
returning it with the new values:

 cljs.user=> (conj [1 2 3] 4)
 ;; => [1 2 3 4]

You can retrieve a value from the vector by calling the get function with the item's index:

 cljs.user=> (get ["peanut" "butter" "sandwiches"] 2)
 ;; => "sandwiches"

Trying to retrieve a value from an index outside of the bounds of the vector will return nil
unless a default value is provided as an argument to get:

 cljs.user=> (get ["peanut" "butter" "sandwiches"] 3)
 ;; => nil
 cljs.user=> (get ["peanut" "butter" "sandwiches"] 3 "nub")
 ;; => "nub"

You can also call the vector directly, which behaves the same as calling get:

 cljs.user=> (["peanut" "butter" "sandwiches"] 1)
 ;; => "butter"

Calling seq gives us a sequence:

 cljs.user=> (seq [1 2 3])
 ;; => (1 2 3)

ClojureScript Language Fundamentals

[54]

Converting between JavaScript arrays and ClojureScript vectors is easy. Let's start by
creating a JavaScript array at the REPL. There are a few different ways we can do this. One
way is by invoking the js interop namespace:

 cljs.user=> (js/Array. 1 2 3)
 ;; => #js [1 2 3]

Another way involves using the #js reader macro. If this sounds confusing, don't worry-
we'll cover JavaScript interoperability in more detail later on in this chapter.

 cljs.user=> #js [4 5 6]
 ;; => #js [4 5 6]

Let's just check to make sure it's the right type:

 cljs.user=> (type #js [])
 ;; => #object[Array "function Array() {
 [native code]
 }"]

Great, that's what we were expecting. Let's store an array as a var and compare it to a
ClojureScript vector with the same values:

 cljs.user=> (def arr (js/Array. 1 2 3))
 ;; => #'cljs.user/arr
 cljs.user=> (def v [1 2 3])
 ;; => #'cljs.user/v

Note that even though they have the same values, they're not the same:

 cljs.user=> (= arr v)
 ;; => false

We can easily convert from one type to the other by relying on two of ClojureScript's handy
interoperability functions: clj->js and js->clj:

 cljs.user=> (clj->js v)
 ;; => #js [1 2 3]

Great, so they should be equal now, right?

 cljs.user=> (= (clj->js v) arr)
 ;; => false

ClojureScript Language Fundamentals

[55]

Wait, what? Two arrays with the same values aren't equal? Maybe we're converting them
wrong. What about if we just compare two JavaScript arrays with the same values:

 cljs.user=> (= #js [1 2 3] #js [1 2 3])
 ;; => false

That's just how JavaScript works! Let's test this out in our browser's JavaScript console
(press Cmd +Option +J to open a console on chrome on Mac):

 > a = []
 []
 > b = []
 []
 > a == b
 false
 > a === b
 false
 > a == a
 true
 > a === a
 true

In JavaScript, testing array equality checks to see if the objects themselves are the same, not
whether their values are the same. The equality check of JavaScript arrays exhibits the same
behavior when executed from ClojureScript as it does in JavaScript.

We've already proven that two JavaScript arrays with the same values aren't equal, but
what about the same array? That should be equal to itself:

 cljs.user=> (= arr arr)
 ;; => true

Since casting from ClojureScript to JavaScript will create a new JavaScript array each time,
this means unfortunately we can't check equality for the same ClojureScript vector if we
cast it to an array multiple times:

 cljs.user=> (= (clj->js v) (clj->js v))
 ;; => false

Fortunately, the same behavior isn't true in the other direction! If we cast both objects to
ClojureScript, where vectors are immutable, we have no problem comparing them on the
basis of their values:

 cljs.user=> (= (js->clj arr) v)
 ;; => true

ClojureScript Language Fundamentals

[56]

When should I use lists versus vectors?
Although it can be confusing to understand what makes lists and vectors distinct, the two
data structures have very different algorithmic properties. New elements are appended to
the front of a list in constant time, while new elements are added to the end of a vector in
constant time. Specific elements can be retrieved and updated from a vector in constant
time (assuming you know which index the element is at), whereas accessing the nth element
of a list requires linear time and cannot be changed without instantiating and allocating
memory for a new list.

Under the hood, vectors are similar to arrays as as algorithmic data structures, while lists
can be thought of as linked lists.

In practice, since ClojureScript lists are used primarily as data to be to be passed to the
compiler, and due to prepend efficiency being useful only in specific use cases, lists are
usually used when you're writing or manipulating code, while vectors tend to be used
when you're writing and manipulating data (which will be most of the time).

Maps
Like vectors, ClojureScript's maps can be considered as akin to immutable versions of
JavaScript objects. They are key-value data structures ideal for storing and passing around
data and you should expect to use them frequently:

You can instantiate them directly as follows:

 cljs.user=> {:name "David" :age 28}
 ;; => {:name "David", :age 28}
 cljs.user=> (hash-map :type :book :title "Learning ClojureScript")
 ;; => {:type :book, :title "Learning ClojureScript"}

Note that because maps are key-value data structures, you should take
care to make sure every key has a value defined, otherwise the compiler
will throw an exception.

You can store maps within maps, as both keys and values. For instance:

 cljs.user=>{:address {:city "San Francisco"} {:family "siblings"}
{:brother "paul"}}
 ;; => {:address {:city "San Francisco"}, {:family "siblings"} {:brother
"paul"}}

ClojureScript Language Fundamentals

[57]

Similarly, and unlike JavaScript objects, ClojureScript maps can use fairly arbitrary types as
keys. It's rarer for something to not be a valid map key than the other way around.

For maps, due to the need for an addition to have both a key and a value, conj requires that
the item being added be able to use seq (and to be include at least two elements, though
everything after the first two will be dropped). This means that this throws an exception:

 cljs.user=> (conj {} :a)
 ;; => #object[Error Error: :a is not ISeqable]

But both of the following will work (among other possibilities):

 cljs.user=> (conj {} [:a 1])
 ;; => {:a 1}
 cljs.user=> (conj {} {:a 1})
 ;; => {:a 1}

You can remove keys from a map by calling dissoc:

 cljs.user=> (dissoc {:a 1 :b 2} :b)
 ;; => {:a 1}

There are several ways you can retrieve a value from a map. If the key is a keyword, you
can call it as the accessor function:

 cljs.user=> (:a {:a :b})
 ;; => :b

As with vectors, the get function also works on maps and takes two arguments: the first is
the key you're trying to retrieve and the second is an optional default value if that key isn't
found:

 cljs.user=> (get {1 :a} 1)
 ;; => :a
 cljs.user=> (get {2 :b} 3)
 ;; => nil
 cljs.user=> (get {3 :c} 1 "other-value")
 ;; => "other-value"

Again, as with vectors, you can call the map directly as if it were any other function; this is
another shorthand for calling the get function and behaves the same way:

 cljs.user=> ({1 :a} 1)
 ;; => :a

ClojureScript Language Fundamentals

[58]

Calling seq on a map will return a sequence where each element is a vector pair of a single
key and its associated value:

 cljs.user=> (seq {:b 1 :c 2})
 ;; => ([:b 1] [:c 2])

Like vectors, you can also easily cast a ClojureScript map to a JavaScript object:

 cljs.user=> (def m {:name "David"})
 ;; => #'cljs.user/m
 cljs.user=> (clj->js m)
 ;; => #js {:name "David"}

As with arrays, JavaScript doesn't support direct equality comparisons on the basis of
JavaScript object values. Two objects are only equal if they are the same object:

 cljs.user=> (= #js {"name" "Rafik"} #js {"name" "Rafik"})
 ;; => false
 cljs.user=> (def obj #js {"name" "Rafik"})
 #'cljs.user/obj
 cljs.user=> (= obj obj)
 ;; => true

And again, ClojureScript's data structures support equality on the basis of data equality
since the underlying structure is immutable:

 cljs.user=> (= {:name "David"} {:name "David"})
 ;; => true

Different types of maps
Most of the time in ClojureScript, you'll be working with either ArrayMaps or HashMaps.
ArrayMaps happen to be very efficient at small sizes (typically when there are less than
eight keys), but HashMaps are more efficient at larger sizes. ClojureScript will
automatically convert ArrayMaps to HashMaps for you as your map grows. Observe the
following:

 cljs.user=> (def y {:a 1 :b 2 :c 3})
 ;; => #'cljs.user/y
 cljs.user=> (type y)
 ;; => cljs.core/PersistentArrayMap
 cljs.user=> (type (assoc y :d 4 :e 5 :f 6 :g 7 :h 8 :i 9))
 ;; => cljs.core/PersistentHashMap

ClojureScript Language Fundamentals

[59]

When you use the generic map syntax {}, ClojureScript will automatically figure out which
type is more appropriate for you. You can also deliberately create a new map of a specific
type by calling the constructor function for that map type (that is, either HashMap or
ArrayMap).

In addition to array-maps and hash-maps, ClojureScript also has support for sorted-
maps, which, as the name suggests, preserve the keys in sorted order. These can be created
simply as follows:

 cljs.user=> (sorted-map :c 3 :b 2 :a 1)
 ;; => {:a 1, :b 2, :c 3}

Sets
Last, but certainly not the least, are ClojureScript's set data structures. These are simply
instantiated as follows:

 cljs.user=> (def s #{1 2 3})
 ;; => #'cljs.user/s

You can also create a set with the hash-set function:

 cljs.user=> (hash-set 1 1 2 3)
 ;; => #{1 2 3}

Note that while duplicate items will be automatically removed when you use hash-set, if
you try to include them as part of the default set syntax, an exception will be thrown:

 cljs.user=> #{1 1}
 ;; => clojure.lang.ExceptionInfo: Duplicate key: 1 {:type :reader-
exception, :line 1, :column 7, :file "NO_SOURCE_FILE"}

New items can be easily added with conj:

 cljs.user=> (conj s 4)
 ;; => #{1 3 2 4}
 cljs.user=> (conj s 1)
 ;; => #{1 3 2}

And they can be removed with disj:

 cljs.user=> (disj s 2)
 ;; => #{1 3}

ClojureScript Language Fundamentals

[60]

You can check for set membership with get, like with vectors and maps:

 cljs.user=> (get #{1 2 3} 1)
 ;; => 1
 cljs.user=> (get #{1 2 3} "other")
 ;; => nil
 cljs.user=> (get #{1 2 3} "other" :default)
 ;; => :default

You can also use contains? to check set membership:

 cljs.user=> (contains? #{1 2 3} 1)
 ;; => true

And as with vectors and maps, you can also call sets as functions:

 cljs.user=> (#{1 2 3} 2)
 ;; => 2

This introduces a very handy way of using the filter function to filter for specific values:

 cljs.user=> (filter #{1 2 3} [1 3 5])
 ;; => (1 3)

Like strings, ClojureScript supports a host of other operations via an external namespace-in
this case, clojure.set. Let's take a look at some of these core operations:

 cljs.user=> (clojure.set/union #{1 3} #{1 2})
 ;; => #{1 3 2}
 cljs.user=> (clojure.set/difference #{1 3} #{1 2})
 ;; => #{3}
 cljs.user=> (clojure.set/intersection #{1 3} #{1 2})
 ;; => #{1}

Although ES6 introduced support for sets, at the current moment, browser support for them
is not universal. As a result, calling clj->js creates a JavaScript array instead:

 cljs.user=> (clj->js s)
 ;; => #js [1 3 2]

ClojureScript Language Fundamentals

[61]

Sequences
Lastly, we have sequences. Sequences are an abstraction rather than a specific data type,
though their semantics are so consistent that the abstraction feels very much like a single
data structure. In this regard, it can be helpful to think of sequences as a “view” on top of a
concrete underlying data structure. Sequences are one of the most important abstractions in
both Clojure and ClojureScript, and as their analog doesn't exist in many languages, it can
take a while for those new to the language to understand what makes sequences so special.

A sequence is a logical list with a head (the first item of the sequence) and a remainder (the
remaining elements of the list). Sequences are commonly referred to as seqs; these terms
can be used interchangeably but we'll refer to them as sequences in this book.

Attempting to construct a sequence with no elements returns nil. Since nil is falsey, this is
the idiomatic method for testing if a collection has no elements:

 cljs.user=> (seq {})
 ;; => nil
 cljs.user=> (if (seq {}) true false)
 ;; => false

Sequences are associated with the concrete protocol ISeq, which requires three functions:
first, rest and cons:

first: This function returns the first element in the sequence.
rest: This function returns the remaining elements in the sequence. If there are
no elements remaining, it returns an empty sequence.
cons: This function creates a new sequence, with the new element appended to
the head of the sequence.

You may be wondering about the difference between the conj and cons functions since
both functions add new elements to the front of the underlying list:

 cljs.user=> (conj (seq [1 2 3]) 3)
 ;; => (3 1 2 3)
 cljs.user=> (cons 3 (seq [1 2 3]))
 ;; => (3 1 2 3)

The difference is that cons always returns a lazy sequence and doesn't require realizing the
collection that is passed in, while conj returns a realized collection of the same type that is
passed into it.

ClojureScript Language Fundamentals

[62]

It's worth noting that all sequences are collections, but not all collections
are sequences (though they can all be explicitly cast to sequences by means
of the seq function). For instance, vectors aren't sequences, though they
can be cast as such.

Sequences and most of their related functions are akin to iterators like for or foreach, but
function differently. Since sequences are immutable, they aren't stateful cursors into a
collection, but rather are persistent and immutable views.

It is possible to write new data structures that are not immutable and that satisfy the
sequence protocol, but this is a bad idea. Because a sequence can be evaluated lazily,
building one on top of a mutable data structure might mean that the underlying data
structure sees changes happen after seq has been called. It is, in general, an especially bad
idea to attempt to mutate a data structure that a sequence has been built on top of.

Laziness
Due to the nature of sequences, most sequences are lazy. This means that functions that
return sequences do so incrementally as they are consumed. New functions that return
sequences can be written to return lazy sequences by wrapping the body in the lazy-seq
macro.

We can see what laziness looks like in practice:

 cljs.user=> (defn lazy-func [x] (println "Printed" x))
 ;; => #'cljs.user/lazy-func
 cljs.user=> (take 2 (map lazy-func (seq [1 2 3 4 5])))
 Printed 1
 Printed 2
 ;; => (nil nil)

Here, even though we passed in a sequence with five elements, lazy-func was only
evaluated twice because both seq and map are lazy functions.

One really cool consequence of lazy sequences is that we can actually have sequences that
are infinitely long! The range function, for instance, when invoked with no arguments,
returns an infinite sequence. Don't try to call it at the REPL; it'll generate an infinite
sequence of numbers and eventually your REPL will run out of memory and crash (and
potentially your whole computer, while you're at it!).

ClojureScript Language Fundamentals

[63]

You can bypass this sort of infinite consumption by setting the global
dynamic variable *print-length* to something finite as follows:

cljs.user=> (set! *print-length* 5)
;; => 5

cljs.user=> (range)
;; => (0 1 2 3 4 ...)

If you want to call an infinitely long sequence, make sure you're very careful to only
reference a specific number of its elements, like so:

 cljs.user=> (take 5 (range))
 ;; => (0 1 2 3 4)

Or, alternatively:

 cljs.user=> (range 5)
 ;; => (0 1 2 3 4)

Collection protocols
We've already covered the general collection protocol earlier in this chapter, but there are a
few other collection protocols that are worth talking about.

Sequential
The sequential protocol (not to be confused with sequences that we've been talking a lot
about) requires that the core functions of sequences are supported (first, rest, cons), but
also that the collection retains a linear ordering under insertion and deletion.

Let's take a look at these in the context of vectors:

 cljs.user=> (first [1 2 3])
 ;; => 1
 cljs.user=> (rest [1 2 3])
 ;; => (2 3)
 cljs.user=> (cons 4 [1 2 3])
 ;; => (4 1 2 3)

ClojureScript Language Fundamentals

[64]

You can check to see if a given value is sequential with sequential?

 cljs.user=> (sequential? [])
 ;; => true
 cljs.user=> (sequential? {})
 ;; => false
 cljs.user=> (sequential? #{})
 ;; => false
 cljs.user=> (sequential? (list 1 2 3))
 ;; => true

Associative
Associative collections support key-value lookups. Under the hood, associative data
structures implement the following methods:

-lookup: This returns the value at the given key
-assoc: This store a new value at the given key

In practice, you should use more idiomatic ClojureScript functions like get, contains?,
and assoc when working with associative data structures. We've covered the usage of the
get request earlier in this chapter, but we haven't talked about the others yet, so let's cover
those.

The contains? function is like get, only it just checks to see if a value exists at that key
and returns Boolean true or false:

 cljs.user=> (contains? {:a 1 :b 2} :a)
 ;; => true
 cljs.user=> (contains? {:a 1 :b 2} :c)
 ;; => false

Maps are the canonical associative collections as key-value data structures, but what may
not be obvious is that vectors are also associative due to the fact that their indexes operate
like keys. Let's give that a try:

 cljs.user=> (contains? ["apple" "pear" "banana"] 1)
 ;; => true
 cljs.user=> (contains? ["apple" "pear" "banana"] 3)
 ;; => false

Note that this isn't a search for the contents of the vector:

 cljs.user=> (contains? ["apple" "pear" "banana"] "apple")
 ;; => false

ClojureScript Language Fundamentals

[65]

Lastly, we have assoc as a way of setting new values at a given key:

 cljs.user=> (assoc {:a 3} :b 2)
 ;; => {:a 3, :b 2}
 cljs.user=> (assoc {:a 3} :a 2)
 ;; => {:a 2}

This also works with vectors in the same way as get, where the key is the vector's index:

 cljs.user=> (assoc ["apple" "pear" "banana"] 0 "peach")
 ;; => ["peach" "pear" "banana"]

Although you can add new keys to a map with assoc, if you're going to add a new key to a
vector that way, you'll need to be precise about adding to the index one further than the
length of the vector, as attempting to set a value at an index more than one beyond the
range of the vector will throw an exception:

 cljs.user=> (assoc ["apple" "pear" "banana"] 3 "peach")
 ;; => ["apple" "pear" "banana" "peach"]
 cljs.user=> (assoc ["apple" "pear" "banana"] 4 "peach")
 #object[Error Error: Index 4 out of bounds [0,3]]
 Error: Index 4 out of bounds [0,3]

You can check to see if a given value is associative by calling associative?:

 cljs.user=> (associative? [])
 ;; => true
 cljs.user=> (associative? {})
 ;; => true
 cljs.user=> (associative? #{})
 ;; => false

Sorted
As the name suggests, a sorted collection is able to support fast insertion and retrieval
operations while maintaining a sorted order. Both sorted-maps and sorted-sets
functions satisfy the sorted protocol. You can check whether a collection satisfies the sorted
protocol by asking sorted?:

 cljs.user=> (sorted? (sorted-map :a 1 :b 2))
 ;; => true
 cljs.user=> (sorted? (hash-map :a 1 :b 2))
 ;; => false

ClojureScript Language Fundamentals

[66]

Calling seq on a sorted collection will return a sequence that has the elements in sorted
order, but be aware that the generated sequence no longer satisfies the sorted protocol. This
means that once you cast seq on a sorted collection, any inserts to the returned sequence
will not retain a sorted order.

Counted
Collections that satisfy the counted protocol execute count in constant time. Lists, maps,
sets, sequences, and vectors all satisfy counted, but lazy sequences do not. Lazy sequences
not satisfying count should be obvious reasons in order to obtain the count the sequence
would have to be evaluated, which by definition would not be lazy! Let's take a look again
at that example of laziness from earlier, but this time let's try getting the count:

 cljs.user=> cljs.user=> (count (map lazy-func (seq [1 2 3 4 5])))
 Printed 1
 Printed 2
 Printed 3
 Printed 4
 Printed 5
 ;; => 5

In order to get the count of the original data structure, we needed to realize the entire
sequence, which means we ended up calling lazy-func on each item in the sequence? This
is an aspect of laziness that one needs to be aware of-if side effects (like printing to the
console's standard output) are an aspect of the lazy sequence, then calling count on them
will cause those side effects to be evaluated!

There's another gotcha to remember when calling count-remember how we talked about
infinite lazy sequences earlier on in this chapter? Don't call count on an infinite sequence-
it'll attempt to realize the entire sequence, which will cause you to run out of memory!

You can check whether a collection satisfies counted protocol with counted?:

 cljs.user=> (counted? (seq [1 2 3]))
 ;; => true
 cljs.user=> (counted? (seq {:a 1 :b 2}))
 ;; => true

Although strings are not collections, and therefore cannot satisfy the counted? interface,
calling count on a string does return in constant time:

 cljs.user=> (count "banana")
 ;; => 6

ClojureScript Language Fundamentals

[67]

Reversible
The reversible protocol has a single method, rseq, and in general means that the sequence
in question can be accessed from the opposite end in constant time. Vectors, sorted-maps,
and sorted-sets are all reversible. The rseq method functions just like seq, only it returns a
sequence in reverse sequential order:

 cljs.user=> (rseq (sorted-map :c 3 :b 2 :a 1))
 ;; => ([:c 3] [:b 2] [:a 1])
 cljs.user=> (rseq [1 2 3])
 ;; => (3 2 1)

Object-oriented programming
Even though ClojureScript is a functional language, it has support for object-oriented style
programming. In particular, ClojureScript, like Clojure, has the notion of protocols, types,
and records. We've already encountered protocols, and now we're going to take a closer look
at how the dynamics of these concepts work in practice.

Protocols
As we should now know from our exploration of ClojureScript's collections, a protocol in
ClojureScript specifies a function interface that an object must support. For instance, let's
define a new protocol, IMonster:

 cljs.user=> (defprotocol IMonster
 (roar [this])
 (scare [this other]))
 ;; => nil

Here we've defined a new “monster” protocol. In order for any subsequently defined object
to satisfy the monster protocol, it must have implementations of the two methods, roar and
scare, we've enumerated here. The roar method only takes the monster itself as an
argument, but the scare method requires an other argument to be passed in as well.
Although ClojureScript doesn't strictly enforce this, you'll probably want to make sure your
implementations all take and return the same types.

ClojureScript Language Fundamentals

[68]

Types
A type in ClojureScript is analogous to a class in many other languages-we're declaring an
object that supports certain methods and we're also defining the specific implementation of
those methods:

 cljs.user=> (deftype Human [name age]
 Object
 (getName [this] name)
 (getAge [this] age)
 (panic [this] (println "Aaaaaaagh!")))
 ;; => nil

Here we've defined a new type, Human, which inherits from the base type, Object. A
human must have an age and a name. Let's define a new Human, which we'll name after my
mom:

 cljs.user=> (new Human "Hazel" 50)
 ;; => #object[cljs.user.Human]

Let's store hazel as a var and make sure she's really a Human:

 cljs.user=> (def hazel (new Human "Hazel" 50))
 ;; => #'cljs.user/hazel
 cljs.user=> (.getName hazel)
 ;; => "Hazel"
 cljs.user=> (.getAge hazel)
 ;; => 50
 cljs.user=> (.panic hazel)
 ;; => Aaaaaaagh!
 nil

Whew! Okay. Now, let's define a monster as well:

 cljs.user=> (deftype Troll [name]
 IMonster
 (roar [this] (println "ROAAAAR!!!")))
 ;; => cljs.user/Troll

Let's make sure Troll satisfies IMonster:

 cljs.user=> (satisfies? IMonster (new Troll "Bork"))
 true

ClojureScript Language Fundamentals

[69]

Hmmm. That's weird. Troll doesn't actually satisfy IMonster since it's missing an
implementation for scare. Unfortunately, the compiler takes its cue from the fact that we
told it that Troll was an IMonster and doesn't throw an error when not all of the
functions have implementations-the responsibility for making sure our Trolls are really
monsters is on us. Let's try that again:

 cljs.user=> (deftype Troll [name]
 IMonster
 (roar [this] (println "ROAAAAR!!!"))
 (scare [this other] (.panic other)))
 ;; => cljs.user/Troll

Great. Now, just for laughs, let's have Wilhelm scare hazel:

 cljs.user=> (def wilhelm (new Troll "Wilhelm"))
 ;; => #'cljs.user/wilhelm
 cljs.user=> (scare wilhelm hazel)
 Aaaaaaagh!
 ;; => nil

One difference you might notice, if you're playing around with this code at your own REPL,
is that we can call scare directly without a period in front of it, that is, without using
special JavaScript interoperability syntax sugar. This is because the defprotocol defines
new ClojureScript functions over defined data types, whereas specifying the function
within the context of the deftype without an associated protocol means that the function is
only defined as a JavaScript method on that type.

Records
Lastly, we have records. Records are similar to types, only instead of being extremely bare-
bones objects, they are extensions of a base class that provides built-in hash-map like
features for fast and easy accessing of attributes. It can be helpful to think of records as
being basically maps that happen to support additional functions and that can also satisfy
protocols.

Like protocols and types, records are defined simply with defrecord. Let's define a basic
record for ourselves:

 cljs.user=> (defrecord Lair [place])
 ;; => cljs.user/Lair
 cljs.user=> (def hideout (new Lair "cave"))
 ;; => #'cljs.user/hideout
 cljs.user=> (:place hideout)
 ;; => "cave"

ClojureScript Language Fundamentals

[70]

Records satisfy the map protocol and as such can be treated like maps:

 cljs.user=> (map? hideout)
 ;; => true
 cljs.user=> (assoc hideout :atmosphere "dark and wet")
 ;; => #cljs.user.Lair{:place "cave", :atmosphere "dark and wet"}

Note, however, that if you dissoc a required key from a record, you'll get back a plain
map, not an instance of the given record type:

 cljs.user=> (dissoc (assoc hideout :atmosphere "dark and wet") :place)
 ;; => {:atmosphere "dark and wet"}

Like types, records can also satisfy protocols:

 cljs.user=> (defrecord Vampire [name]
 IMonster
 (roar [this] (println "Actually, we vampires are rather quiet. "))
 (scare [this other] (.panic other)))
 ;; => cljs.user/Vampire
 cljs.user=> (def drac (new Vampire "Dracula"))
 ;; => #'cljs.user/drac
 cljs.user=> (roar drac)
 Actually, we vampires are rather quiet.
 ;; => nil
 cljs.user=> (:name drac)
 ;; => "Dracula"

Extending types and protocols
So far we've seen how to define types and protocols in a single block, but ClojureScript also
gives us tools with which to extend existing types and protocols. Let's define a new record:

 cljs.user=> (defrecord WereWolf [name])
 ;; => cljs.user/WereWolf

Now, our WereWolf record doesn't satisfy IMonster yet. But we can extend it so that it
does:

 cljs.user=> (extend-type WereWolf
 IMonster
 (roar [this] (println "Growl!"))
 (scare [this other] (println "*silent panic*")))
 ;; => #object[Function "function (this$,other){
 var this$__$1 = this;
 return cljs.core.println.call(null,"*silent panic*");
 }"]

ClojureScript Language Fundamentals

[71]

 cljs.user=> (roar (WereWolf. "james"))
 Growl!
 ;; => nil

We can also go about this by another way-adding a protocol and associated
implementations to an existing type:

 cljs.user=> (defprotocol ISecretive
 (hide [this]))
 ;; => nil
 cljs.user=> (extend-protocol ISecretive
 Vampire
 (hide [this] (println "..."))
 WereWolf
 (hide [this] (println "rustle rustle")))
 #object[Function "function (this$){
 var this$__$1 = this;
 return cljs.core.println.call(null,"rustle rustle");
 }"]

Note that this will also extend any existing instances of the relevant type:

 cljs.user=> (hide drac)
 ...
 nil

Reify
Lastly, if you know that you're not going to need a full record or type definition, you can
declare a single instance of an anonymous type with reify. Unlike deftype and
defprotocol, reify doesn't create factories for new instances of its provided type:

 cljs.user=> (def mouse
 (reify ISecretive
 (hide [this] (println "Squeak!"))))
 ;; => #'cljs.user/mouse
 cljs.user=> (hide mouse)
 Squeak!
 ;; => nil

Other ClojureScript types
We're almost at the end of our tour of ClojureScript types, but there are two important types
remaining: regular expressions and atoms. Both are extremely important and are likely to
come up at some point as you work in ClojureScript, so it's worth talking about them.

ClojureScript Language Fundamentals

[72]

Regular expressions
ClojureScript regular expressions are simple JavaScript RegExp instances. You can create
them using ClojureScript's regular expression literal syntax:

 cljs.user=> (type #"^Clojure")
 ;; => #object[RegExp "function RegExp() { [native code] }"]

You can also create them directly as JavaScript RegExp instances:

 cljs.user=> (js/RegExp. "^Clojure$")
 ;; => #"^Clojure$"

In addition to supporting basic JavaScript RegExp functions via ClojureScript's direct
interoperability, there are a number of core regular expression methods including:

re-find: This returns the first match of a regular expression in a string. If there
are multiple matches or groups, it returns a vector.
re-matches: This returns the match of a regular expression in a string if it fully
matches.
re-pattern: This compiles a regular expression from a string.

Regular expressions are a deep area of study and fully explaining how regular expressions
work in JavaScript is beyond the scope of this book. However, there are many resources
online that will help. A good place to start is Mozilla's developer reference available at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions.

Atoms
Atoms in ClojureScript are mutable data structures that are useful to manage changing
states in your application. Atoms are metastructures that can hold any of the data structure
we've talked about in this chapter. Atoms are created with the atom function:

 cljs.user=> (def an-atom (atom 5))
 ;; => #'cljs.user/an-atom
 cljs.user=> an-atom
 ;; => #object [cljs.core.Atom {:val 5}]
 cljs.user=> (def another-atom (atom {:a "value"}))
 ;; => #'cljs.user/another-atom
 cljs.user=> another-atom
 ;; => #object [cljs.core.Atom {:val {:a "value"}}]

ClojureScript Language Fundamentals

[73]

To extract the specific value in an atom, you can dereference it with deref or with the
syntactical shorthand @:

 cljs.user=> @an-atom
 ;; => 5
 cljs.user=> @another-atom
 ;; => {:a "value"}

To update the value within an atom, you have two options: you can use swap! to
atomically apply a function to the existing contents of the atom or you can use reset! to
directly store a new value in an existing atom. Both swap! and reset! return the updated
value being stored in the atom.

Since reset! is simpler, let's look at that first:

 cljs.user=> (reset! an-atom 3)
 ;; => 3

Now, let's look at some examples of using swap!. First, let's try just increasing the value in
an-atom by 1:

 cljs.user=> (swap! an-atom inc)
 ;; => 4
 cljs.user=> (swap! another-atom assoc :b "Other")
 ;; => {:a "value", :b "Other"}

We can also add a watch function to the atom, which will be called whenever the state of
the atom changes:

 cljs.user=> (def new-atom (atom {}))
 ;; => #'cljs.user/new-atom
 cljs.user=> (defn watcher-fn [key the-atom old-value new-value]
 (println key the-atom old-value new-value))
 ;; => #'cljs.user/watcher-fn
 cljs.user=> (add-watch new-atom :watcher-key watcher-fn)
 ;; => #object [cljs.core.Atom {:val {}}]
 cljs.user=> (reset! new-atom {:a 2})
 :watcher-key #object [cljs.core.Atom {:val {:a 2}}] {} {:a 2}
 ;; => {:a 2}

The add-watch parameter requires three functions: the atom to watch, a key, and the
watcher function. The key value here in this case is so that you can remove a watcher later,
if you want:

 cljs.user=> (remove-watch new-atom :watcher-key)
 ;; => #object [cljs.core.Atom {:val {:a 2}}]
 cljs.user=> (reset! new-atom {:b 4})

ClojureScript Language Fundamentals

[74]

 ;; => {:b 4}

The watcher function itself takes four arguments: the key of the watcher function, the
atom itself, its value prior to the change, and its value after the change.

Immutability
Now that you've had a basic introduction to ClojureScript's data structures, let's talk a bit
about immutability. Almost all of ClojureScript's data types are immutable, which means
that once they're defined, including them in an expression won't change their underlying
value. This concept can take a bit of getting used to, so let's take a look at a few examples.
As a point of contrast, we'll use JavaScript as an example of a language where data types
are mutable.

Let's start with an example using a vector. First, we'll define a vector with one element in it,
the integer 1:

 cljs.user=> (def x [1])
 ;; => #'cljs.user/x

Now, we'll call conj on x. We've already talked a bit about how conj works earlier in this
chapter, but just to review, the conj function returns a new vector that consists of the
original vector with any of the following arguments added to the original vector:

 cljs.user=> (conj x 2)
 ;; => [1 2]

Notice that the value of x itself hasn't changed-it's still the original, single-element vector:

 cljs.user=> x
 ;; => [1]

If we actually wanted x to reflect the larger vector, we'd have to re-define x:

 cljs.user=> (def x (conj x 2))
 ;; => #'cljs.user/x

x should now contain both values:

 cljs.user=> x
 ;; => [1 2]

ClojureScript Language Fundamentals

[75]

Let's contrast this with a JavaScript array and the push method at the console:

 > x = [1]
 [1]
 > x.push(2)
 2
 > x
 [1, 2]

Here, the array x hasn't been redefined; rather, the original object itself has been changed. If
we wanted to redefine x in the same way we did with ClojureScript earlier, we could use
JavaScript's concat method instead, which doesn't mutate the underlying object:

 > x = [1]
 [1]
 > x.concat(2)
 [1, 2]
 > x
 [1]
 > x = x.concat(2)
 [1, 2]
 > x
 [1, 2]

So, JavaScript does have the ability to enable you to write programs without mutating the
underlying objects, but it requires you to know which functions to use. The vast majority of
ClojureScript data structures, by contrast, never mutate the underlying object; so you don't
have to worry about doing so by accident. Let's look at another example of immutability,
this time with ClojureScript maps and JavaScript objects.

We start by defining a ClojureScript map:

 cljs.user=> (def m {:key :lock})
 #'cljs.user/m

Now let's assoc a key and value into our map. Again, we've covered assoc in more detail
earlier in this chapter, but for now let's just remember that it returns a new map with a key-
value pair added to the original map:

 cljs.user=> (assoc m :color "gold")
 {:key :lock, :color "gold"}

Note that, as with conj, the underlying var, m, hasn't been changed:

 cljs.user=> m
 {:key :lock}

ClojureScript Language Fundamentals

[76]

As previously, if we want to change the value of m itself, we'll need to re-define it:

 cljs.user=> (def m (assoc m :shape "round"))
 #'cljs.user/m
 cljs.user=> m
 {:key :lock, :shape "round"}

Note that redefining variables in this way is discouraged. A better pattern,
if you know a variable is going to need to point to a different value at
some point in the future, is to use an atom.

Let's compare this with a JavaScript object:

 > o = {}
 Object {}
 > o.key = "value"
 "value"
 > o
 Object {key: "value"}

As with JavaScript arrays, we haven't redefined o, but by setting the key attribute, we've
mutated the underlying object.

You may be wondering why immutability is a desirable characteristic. The answer is that
mutability makes it possible for underlying data to be changed at times and in ways that
aren't intended or obvious.

For instance, what would happen if you wrote a program that expected the value of o.key
to be value but a callback somewhere had set o.key to a different value? Your program
would probably throw an error with a stack trace that pointed to the part of your program
where you were expecting o.key to be value, but you'd have no easy way of figuring out
what line of code was actually responsible for changing the value of o.

This might sound like a contrived example, but in practice, in large production applications,
this sort of thing happens all the time and is extremely difficult to debug (particularly if o is
being mutated by some sort of asynchronous callback triggered by an event that your
application does not directly control or invoke). By contrast, when you encounter a bug in
ClojureScript where a map has a value you don't expect, it is easy to walk up the call stack
and figure out what part of the program was responsible for adding or using the assoc
function for the new value in question.

ClojureScript Language Fundamentals

[77]

Another way in which immutability is incredibly valuable, which we've already talked
about in this chapter, is that you no longer have to worry about whether or not two objects
are “identical” in the JavaScript sense (meaning that they are literally the same object and
occupy the same memory address). Instead, you need only to care about whether or not the
two objects are functionally equal (as can be calculated by a comparison of their values or
any other comparison implementation you might use).

Advanced destructuring and namespaces
In this section, we'll dig further into ClojureScript's destructuring syntax. We'll also learn
about ClojureScript namespaces. If you're familiar with JavaScript ES6 modules,
namespaces are sort of akin to that-they're essentially modules within which variable and
function definitions are located and a collection of imported libraries can be defined, often
with local bindings for convenience.

Destructuring
Destructuring in ClojureScript provides a way of binding values to local variables. We've
already seen a few simple examples of how this works with the code in previous sections,
but destructuring in ClojureScript is extremely powerful and so comprehensive that it's
worth looking at some more advanced patterns of it.

First, let's try destructuring the vector [1 2]:

 cljs.user=> (let [[a b] [1 2]] (+ a b))
 ;; => 3

The same destructuring logic works in a nested fashion:

 cljs.user=> (let [[[a b] c] [[1 2] 3]] (+ a b c))
 ;; => 6

Alternatively, we could first bind the original vector and then attempt to grab a specific
element from it and bind that as well:

 cljs.user=> (let [[a b] [[1 2] 3]
 c (first a)]
 (println a)
 c)
 [1 2]
 ;; => 1

ClojureScript Language Fundamentals

[78]

You'll quickly find that one of the advantages of vector destructuring is that it enables you
to bind many values in a small amount of code, without having to individually bind each
element as you might in the following case:

 (let [a (first [1 2 3])
 b (second [1 2 3])
 c (nth [1 2 3] 2)] [a b c])
 ;; => [1 2 3]

Note again that the let functions just like do, but with a binding section at the beginning.
We don't need to bind everything, and similarly we can attempt to bind more than exists in
the original vector:

 cljs.user=> (let [[a] [1 2 3]] [a])
 ;; => [1]
 cljs.user=> (let [[a b c] [1]] [a b c])
 ;; => [1 nil nil]

As we've seen with variadic functions earlier in this chapter, we can use & to bind a variable
number of remaining values in a sequence or collection. If we use that first example again
but with a variable binding, it might look like the following:

 cljs.user=> (let [[a & b] [1 2 3]] [a b])
 ;; => [1 (2 3)]

We can also bind the value of the original data structure as follows:

 cljs.user=> (let [[a & b :as one-two-three] [1 2 3]] one-two-three)
 ;; => [1 2 3]

You might be wondering why we would do this when we already have the original data
structure at hand. One obvious example is that we use the same destructuring syntax for
function argument declarations, for instance:

 cljs.user=> (defn my-func [[a :as original]] original)
 ;; => #'cljs.user/my-func
 cljs.user=> (my-func [1 2 3])
 ;; => [1 2 3]

Here, when we declare the function and its arguments, we have no idea what might be
passed into it later. We might well want to be able to grab the original contents, and so
having the option to bind the original data structure is particularly valuable.

ClojureScript Language Fundamentals

[79]

Although the examples we've been using so far have all involved vectors, this sort of
destructuring syntax actually works for any indexed data structures as well as sequences:

 cljs.user=> (let [[zero one two & more] (range 5)]
 (list zero one two more))
 ;; => (0 1 2 (3 4))

We can also destructure associative structures like maps:

 cljs.user=> (let [{name :name} {:name "David" :age "28"}] name)
 ;; => "David"

Here, we're binding the name variable to be the value of the :name key in the data structure
passed in. We could also name it something else to make it clearer:

 cljs.user=> (let [{n :name} {:name "David" :age "28"}] n)
 ;; => "David"

As with indexed structures, attempting to bind a key that isn't in the relevant data structure
just binds nil to it. This is what we would expect from how we know accessor functions
like get work with associative structures:

 cljs.user=> (let [{c :city} {:name "David" :age "28"}] c)
 ;; => nil

As with get, we can pass in a default value in case the key we're trying to access can't be
found. We can do this by using the :or keyword:

 cljs.user=> (let [{c :city :or {c "San Francisco"}} {:name "David" :age
"28"}] c)
 ;; => "San Francisco"

We can destructure multiple values and include multiple defaults. A default will only be
used when that key doesn't exist in the original structure:

 cljs.user=> (let [{c :city n :name a :age :or {c "San Francisco" age
"30"}} {:name "David" :age "28"}] [c n a])
 ;; => ["San Francisco" "David" "28"]

As with indexed structures, we can also bind the original data structure with :as:

 cljs.user=> (let [{c :city :as original} {:name "David" :age "28"}]
original)
 ;; => {:name "David", :age "28"}

ClojureScript Language Fundamentals

[80]

Although we've used keywords as examples of the keys we're accessing, we can destructure
anything that is a key in the map. For instance, if we were destructuring a map with
integers as keys, we could destructure those as well:

 cljs.user=> (let [{one 1} {1 "One" 10 "Ten"}] one)
 ;; => "One"

The usual idiom for binding keys that have keyword accessors is to bind them to a variable
with the same name as the key. ClojureScript has a convenient shorthand, :keys, that lets
us do this without having to repeat ourselves:

 cljs.user=> (let [{:keys [a b c]} {:a "one" :b "two" :c "three"}] (list
a b c))
 ;; => ("one" "two" "three")

Similar shorthand functions also exist for string and symbol keys :strs and :syms:

 cljs.user=> (let [{:strs [a b c]} {"a" "one" "b" "two" "c" "three"}]
(list a b c))
 ("one" "two" "three")
 cljs.user=> (let [{:syms [a b c]} {'a "one" 'b "two" 'c "three"}] (list
a b c))
 ;; => ("one" "two" "three")

Lastly, it's important to know that we can destructure things in a nested fashion. Let's try to
destructure a map with a vector as its stored value:

 cljs.user=> (let [{[a b] :name} {:name ["David" "Jarvis"]}] (str a " "
b))
 ;; => "David Jarvis"

Namespaces
Namespaces in ClojureScript are akin to Python or Ruby modules, or Java classes. They're
containers for vars and are often used to group related functionality in modular and
reusable ways. Namespace are declared with the ns macro, which you can usually expect to
find at the top of every ClojureScript file. A simple namespace declaration might look like
the following:

 (ns app.core"Main app logic goes here")

 (def app "I'm actually just a string, whoops!")

ClojureScript Language Fundamentals

[81]

The default namespace at our REPL is cljs.user, which is why we see that at our REPL
prompt. If we wanted to, though, we could easily create a new namespace. Let's try that
now, but first let's quickly store a var in our current namespace:

 ;; if you entered the previous code sample at the REPL, you can
 ;; get back to the `cljs.user` ns by just entering (ns cljs.user)
 ;; at the REPL
 cljs.user => (def x 5)
 ;; => cljs.user/x
 cljs.user=> (ns repl.experiment)
 ;; =>
 repl.experiment=>

Notice how our REPL prompt now shows the new namespace we're in? Now, we could
have just done (ns repl), but it's considered poor style to have a top-level namespace since
it suggests that there isn't more logical grouping available (this is, at least in part, an area
where ClojureScript shows its roots, since Java, and therefore Clojure, doesn't like single-
segment namespaces). In cases where you really only do need one namespace, the idiomatic
convention in ClojureScript is to append .core to the namespace-in this case, we might do
(ns experiment.core) or (ns repl.core).

The ns macro is idempotent with regard to the namespace's state. This means that the first
time you call ns, it'll create a new namespace for you, but if you call the same ns a second
time it won't recreate or overwrite the existing namespace. It will, however, set the current
namespace to be the namespace you've just called.

Remember how we defined x previously? Let's see if we can access it from our new
repl.experiment namespace:

 repl.experiment=> x
 WARNING: Use of undeclared Var repl.experiment/x at line 1
 <cljs repl>
 ;; => nil

The ClojureScript compiler doesn't know what we're referring to because no variable called
x has been declared within the repl.experiment namespace, only in cljs.user. We can
access x explicitly by referencing it with the namespace prepended to the variable:

 repl.experiment=> cljs.user/x
 ;; => 5

ClojureScript Language Fundamentals

[82]

This only works because we've already loaded the cljs.user namespace in the course of
this REPL session. If for some reason x was stored in a namespace that we hadn't loaded,
referring to it this way would cause the REPL to tell us that no such namespace yet existed.
Let's say we had a file in a project called located at src/repl/other.cljs. Its
namespace declaration might look like the following:

 (ns repl.other)
 (def y 10)

Now, from the REPL, if we try to access this directly, we'll get the following error:

 repl.experiment=> repl.other/y
 WARNING: No such namespace: repl.other, could not locate
repl/other.cljs, repl/other.cljc, or Closure namespace "" at line 1 <cljs
repl>
 WARNING: Use of undeclared Var repl.other/y at line 1 <cljs repl>
 #object[TypeError TypeError: Cannot read property 'y' of undefined]
 ...

All of this is great so far but doesn't give us a real example of how namespaces work
together in the context of a larger application, so let's take a look at how you can load
namespaces.

Let's create a new ClojureScript project to test this out. Type lein new figwheel
experiment into your terminal to create a new ClojureScript project named experiment
with Figwheel support. Right now, there's only one file in our src directory:
src/experiment/core.cljs. Let's create a new one, utils.cljs, also in
src/experiment.

We'll want to start a new Figwheel REPL running within this project at some point, which
we can do by calling lein figwheel from within any folder inside our project. Let's fill in
the contents of utils.cljs now-we'll just give it a simple function for the moment:

 (ns experiment.utils)
 (defn adder
 [x y]
 (+ x y))

You'll notice that the namespace name lines up with its location on the directory path. This
isn't a coincidence; the ClojureScript namespace loader expects to find namespaces at
specific file locations. When we invoke the ns macro at the REPL, we avoid that necessity,
but when you're including ns declarations in files, the filename and the namespace name
need to line up.

ClojureScript Language Fundamentals

[83]

One other thing to be aware of is that a hyphen in a namespace should correspond to an
underscore for the filename. This isn't strictly enforced (the way it is in Clojure), but is a
widely used convention (and one that comes in handy when writing portable code for both
Clojure and ClojureScript), so we'll stick with it in this book.

Now, let's replace the original content of core.cljs with the following:

 (ns experiment.core
 (:require [experiment.utils]))
 (defn adder-multiplier
 [x y z]
 (* z (experiment.utils/adder x y)))
 ;; we could replace this, but it's more convenient in the short
 term to leave it here.

 (defn on-js-reload []
 ;; optionally touch your app-state to force rerendering
 depending on
 ;; your application
 ;; (swap! app-state update-in [:__figwheel_counter] inc)
)

Here, we've used the :require syntax within the ns macro to specify that we'd like to make
the experiment.utils namespace accessible from within experiment.core. This is what
enables us to reference the adder function in adder-multiplier. This syntax is actually
shorthand for the require function, which we could call directly outside of an ns
declaration if we wanted, like so:

 (require 'experiment.utils)

We can test out that this function works the way we expect at the REPL. Our project's
default configuration should automatically load experiment.core due to the fact that the
project's project.clj configuration file specifies a Figwheel configuration flag for :on-
jsload that loads experiment.core:

 cljs.user=> (experiment.core/adder-multiplier 1 2 3)
 ;; => 9

Implicitly, this means that experiment.utils has also been loaded for use at the REPL.
Any time you load a namespace that loads other namespaces, you can then access
secondary vars that have been loaded downstream:

 cljs.user=> (experiment.utils/adder 1 3)
 ;; => 4

www.allitebooks.com

http://www.allitebooks.org

ClojureScript Language Fundamentals

[84]

All of this is fine, but it's a little verbose. We can create aliases for loaded namespaces to
keep things concise using :as. Let's change the first part of experiment.core to reflect
that:

 (ns experiment.core
 (:require [experiment.utils :as utils]))
 (defn adder-multiplier
 [x y z]
 (* z (utils/adder x y)))

This is widely done as a best practice and it makes your programs more readable.

If we only want to import a specific var from a namespace, we can use :refer to import
specific things. If we only wanted to import the adder function, for instance, we could
rewrite the first part of experiment.core to look as follows:

 (ns experiment.core
 (:require [experiment.utils :refer [adder]]))
 (defn adder-multiplier
 [x y z]
 (* z (adder x y)))

You can refer any number of vars in that vector and you can require as many namespaces as
you like.

By default, everything in cljs.core is imported and directly available (for example, you
don't need to reference conj with cljs.core/conj; you can just reference it directly). If
for some reason you want to store a var with the same name as something in cljs.core
(which is generally inadvisable, but there are times when it'll make sense), you can use
:refer-clojure :exclude to explicitly not import that var from cljs.core:

 (ns experiment.core
 (:refer-clojure :exclude [conj])
 (:require [experiment.utils :refer [adder]]))

The ns macro has other capabilities as well, including :import for JavaScript interoperability
and :refer-macros for importing macros, but we'll cover those in greater detail when we
need them.

ClojureScript Language Fundamentals

[85]

JavaScript interoperability
One of the most powerful things about ClojureScript is the ease with which one can access
and interact with the JavaScript runtime. In this section, we'll take a closer look at how you
can work with native JavaScript code from ClojureScript.

JavaScript collections
Odds are good that you won't want to work too much with JavaScript collections directly
now that you've gotten an understanding of how powerful ClojureScript's collection objects
are, but it's still important to know how to access these from ClojureScript as well as to
make sure you're comfortable converting JavaScript data types to ClojureScript and vice
versa. Learning about this syntax will also prove useful when calling JS libraries from
ClojureScript.

Arrays
Following is an example of defining and then accessing a JavaScript array from the
ClojureScript REPL:

 cljs.user> (def a (array 1 2 3))
 ;; => #'cljs.user/a
 cljs.user=> a
 ;; => #js [1 2 3]
 cljs.user> (type a)
 ;; => #object[Array "function Array() {
 [native code]
 }"]
 cljs.user> (get a 0)
 ;; => 1

You can also create an array using the #js reader macro:

 cljs.user=> #js [4 5 6]
 ;; => #js [4 5 6]

Throughout this chapter, we've seen how ClojureScript objects can be cast to JavaScript
objects using the clj->js conversion function. The reverse also works and casts arrays into
vectors:

 cljs.user=> (js->clj a)
 ;; => [1 2 3]

ClojureScript Language Fundamentals

[86]

We can retrieve specific values from JavaScript arrays using aget, which works much like
get for ClojureScript vectors (only without allowing the specification of a default
argument). Under the hood, this is the same as indexing into the JavaScript array like a[0]:

 cljs.user=> (aget a 0)
 ;; => 1
 cljs.user=> (aget a 2)
 ;; => 3

Lastly, because JavaScript arrays are mutable, we can actually update the value at a specific
index. Let's set the second value to banana:

 cljs.user=> (aset a 1 "banana")
 ;; => "banana"
 cljs.user=> a
 ;; => #js [1 "banana" 3]

JavaScript objects
To create a JavaScript object, we use the js-obj function and pass in the associated
field/value pairs:

 cljs.user=> (def obj (js-obj "name" "rafik" "age" 39))
 ;; => cljs.user/obj
 cljs.user=> obj
 ;; => #js {:name "rafik", :age 39}

We can retrieve values by calling the key as a property on the object:

 cljs.user=> (.-name obj)
 ;; => "rafik"

We can also use aget to retrieve values:

 cljs.user=> (aget obj "name")
 ;; => "rafik"

Like with arrays, we can use aset to set a particular value:

 cljs.user=> (aset obj "job" "programmer")
 ;; => "programmer"
 cljs.user=> obj
 ;; => #js {:name "rafik", :age 39, :job "programmer"}

ClojureScript Language Fundamentals

[87]

Note how ClojureScript represents JSON objects as maps with a #js annotation. Let's get
the type of such a JavaScript object:

 cljs.user> (type obj)
 ;; => #object[Object "function Object() {
 [native code]
 }"]

Note that, like arrays, you can also create a JSON object using the #js reader macro:

 cljs.user=> #js {"Key" "Value"}
 ;; => #js {:Key "Value"}

It may not surprise you at this point to learn that converting a JSON object to ClojureScript
will return a map:

 cljs.user=> (js->clj obj)
 ;; => {"name" "rafik", "age" 39, "job" "programmer"}

The js->clj parameter takes an optional argument to specify whether you want to
keywordize any strings:

 cljs.user=> (js->clj obj :keywordize-keys true)
 ;; => {:name "rafik", :age 39, :job "programmer"}

JS interop syntax
We've seen a few examples of how to work with JavaScript already in this chapter, but let's
take a closer look at the specific syntax for working with JavaScript.

New instances of a particular object can be instantiated with (new Type ...) or (Type
...), with the latter syntax being preferred:

 cljs.user=> (new js/String "Ta-da!")
 ;; => #object[String Ta-da!]
 cljs.user=> (js/String. "Magic!")
 ;; => #object[String Magic!]

When invoking either instance methods or accessing attributes, we can simply include the
full method chain, much as we would in JavaScript:

 cljs.user=> (js/console.log "Show me your moves!")
 ;; => nil
 cljs.user=> js/Math.PI
 ;; => 3.141592653589793

ClojureScript Language Fundamentals

[88]

Although this style is common, it doesn't give us an implication at the code level as to
whether something is a property or a method on an object. ClojureScript allows us to be
explicit about this by using slightly different notations. For methods, we use simple dot
notation:

 cljs.user=> (.log js/console "Show me your moves!")
 ;; => nil

And for attributes, we use the .- notation:

 cljs.user=> (.-PI js/Math)
 ;; => 3.141592653589793
 cljs.user=> (def v #js {})
 ;; => #'cljs.user/v
 cljs.user=> (set! (.-foo v) "bar")
 ;; => "bar"
 cljs.user=> v
 ;; => #js {:foo "bar"}

The Google Closure Compiler and using external
JavaScript libraries
Eventually, you're likely to want to use external JavaScript libraries as dependencies. You
can go about doing this either by referencing external libraries that are loaded as scripts or
by bundling them with your ClojureScript application.

One thing to understand before going down this road is the extremely close relationship
between the Google Closure Compiler and ClojureScript itself. The two are so closely
related that the Google Closure Library is bundled with ClojureScript by default and can be
easily imported and referenced, much as one would normal ClojureScript code, for instance:

 (ns experiment.goog
 (:import goog.history.Html5History))
 (defonce hist (Html5History.))

You'll notice a new ns syntax here, :import, which is used only when we want to load a
particular Google Closure Library.

ClojureScript Language Fundamentals

[89]

Most ClojureScript applications will be built with the Google Closure Compiler when
comes the time to deploy them in a production environment due to the Closure Compiler's
advanced optimization features. These features include dead code elimination, general
minification and optimization of code, and error notifications in the compilation process.
The cljsbuild macro allows us to specifically configure the degree of compiler
optimization we'd like to use; in general, we'll be using :optimizations :none when we're
developing. We'll discuss deploying code to production more in Chapter 8, Bundling
ClojureScript for Production.

Generating optimized production code via the Closure Compiler renames almost every
symbol in your application to a shorter version of itself to save space. This is fine when our
entire application is written in ClojureScript, but when we're dependent on an external
JavaScript library, renaming that symbol will cause the reference to the library to change,
which will make our code stop working. Again, this behavior won't happen when you're
using :optimizations :none, but will happen once you start using :optimizations
:advanced.

The consequence of this behavior is that most external JavaScript libraries aren't usable by
default when you compile your code for production. If that were the end of the story,
ClojureScript wouldn't be all that useful, so fortunately there are ways to work with
JavaScript libraries that account for the nature of the Closure Compiler.

Referencing external libraries with externs
The most basic way of using an external JavaScript library with your ClojureScript
application is not to bundle it with the application at all but just to reference it directly. For
instance, as the relevant external library is loaded (either via your application or via the
HTML page that loads your application), you can simply reference the JavaScript as you
would any other JavaScript code.

Let's say we'd like to reference the following library, which we'll call treeact. It may
sound similar to another library you've heard of by a company with a name like TreeBook,
but don't think too hard about that. Let's add this to theindex.html file in our experiment
project's resources/public directory, just before our application is loaded:

<script type="text/javascript">
 treeact = function() {
 var tree = {};
 tree.render = function() {
 console.log("Page rendered!");
 }
 return tree;

ClojureScript Language Fundamentals

[90]

 };
</script>

To use this library from ClojureScript, we can just reference it directly as long as we're using
:optimizations :none. Now, let's add the following function to our experiment.core
namespace:

(defn render
 []
 (.render (js/treeact)))

(render)

Figwheel should automatically reload this file when we save it, which will call the render
function. If we check the page, we should see our Page rendered! alert logged to the
console. If you don't see it, make sure you've refreshed the page so that the application can
pick up the external script.

Unfortunately, the preceding code will stop working once we start using advanced
compilation. We can make this continue to function as desired by adding an externs file.
The externs file tells the Google Closure compiler what names not to rename when it's
compiling our application. For our simple treeact library, our externs file would look like
the following:

 var treeact = function() {}
 treeact.render = function() {}

Assuming this function is named treeact-externs.js, we can then add it to our
Cljsbuild's :compiler options for our min configuration in our project.clj. This means
the entire :compiler value should look like the following:

 :compiler {:output-to "resources/public/js/compiled/experiment.js"
 :main experiment.core
 :externs ["treeact-externs.js"]
 :optimizations :advanced
 :pretty-print false}}

Let's stop our Figwheel REPL and build this with lein clean; lein cljsbuild once
min. We won't have a Figwheel server running any more, but we can manually load our
page by opening the HTML file located at resources/public/index.html. You should
see the Page rendered! alert in the console-it worked!

ClojureScript Language Fundamentals

[91]

We can also get away without using an externs file by using strings instead of symbols. The
Google Closure Compiler doesn't rename strings, but writing code this way is generally
only recommended if you have a very small number of external variables you're trying to
keep track of, for instance:

 (let [tree ((goog.object.get js/window "treeact"))]
 ((goog.object.get tree "render")))

Bundling external libraries
In addition to referencing external libraries, you can also bundle them as part of your
application. This has the advantage of pushing everything into a single file and allowing the
Google Closure Compiler to optimize all source code and dependencies for production
simultaneously.

Google Closure Compiler compatible code
Libraries that are written to be compatible with the Google Closure Compiler (meaning they
expose their namespaces using goog.provide) are easy to add as dependencies and
require almost no additional configuration. All you have to do is add the library in question
to your project.clj cljsbuild configuration with the :libs key. For instance, if we
had a version of the popular library jQuery on hand that had been modified to be
compatible with the Google Closure Compiler, we could just add the following section to
our project.clj and then we'd be able to reference it directly:

 {:cljsbuild {:compiler {:libs ["jQuery.js"]}...}}

This is an extremely convenient way of bundling external JavaScript libraries.
Unfortunately, at the time of this book's publications, relatively few libraries are currently
written to be compatible with the Google Closure Compiler.

Foreign JavaScript
Libraries that aren't yet written to be compatible with the Google Closure Compiler can still
be used in ClojureScript applications. You'll need to use an externs file like the one we
wrote earlier in this chapter, but you'll also need to add a :foreign-libs map to your
cljsbuild :compiler options in your project.clj for the min profile. Let's remove our
script section in our application's index.html and move it into an external file in the root
of our project, which we'll call treeact.js. We can now add the following section to our
project.clj :compiler map to bundle it under advanced compilation:

 :foreign-libs [{:file "treeact.js"

ClojureScript Language Fundamentals

[92]

 :provides ["t"]}]

We'll also have to modify our application-specifically, we'll modify the namespace
declaration to import Treeact explicitly. We don't actually need to modify the function
definition-the reason we import it is to inform our application of the namespace and its
contents:

 (ns experiment.core
 (:require [experiment.utils :refer [adder]]
 [t]))

Now, let's rebuild our application with lein clean; lein cljsbuild once min and
reload the index.html page that we were just looking at. We should, once again, see an
alert printed on the console. Woohoo!

CLJSJS
We've now examined a number of different ways in which you can include external
JavaScript libraries in your code, from referencing to bundling. However, you've probably
noticed that adding external libraries can often require some work, especially if you have to
build an externs file. Fortunately, for most common JavaScript libraries, there's a better way.
The CLJSJS project (located online at cljsjs.github.io) is a community-driven effort to
package up the most common and popular JavaScript libraries in a way that's easily
consumable by ClojureScript applications and is compatible with the Google Closure
Compiler.

To use a CLJSJS project, for example, Facebook's React, all you need to do is to add the
following to your project.clj :dependencies key:

 [cljsjs/react "0.14.3-0"]

You can then reference React directly in your application as js/React. In general, CLJSJS
dependencies are far and away the easiest way to bundle external JavaScript code in your
ClojureScript applications.

ClojureScript Language Fundamentals

[93]

Summary
You now have all the basic tools to write simple ClojureScript programs. You've learned
about ClojureScript's data types as well as the language's core syntax. You've seen how
immutability enables us to write programs that are easier to reason about and how to write
programs with smooth interoperability with other JavaScript libraries.

In the next chapter, you'll learn more about how to write idiomatic ClojureScript as well as
some of the differences in design patterns between JavaScript and ClojureScript. We'll also
dig into more advanced ClojureScript concepts such as macros, functional programming
patterns, and concurrent design.

3
Advanced ClojureScript

Concepts
In this chapter, we'll introduce some more advanced concepts of ClojureScript as a
language. At this point, you should already have all the tools you need to write basic
ClojureScript programs, and this chapter will help take you from that level of expertise to
one at which you feel comfortable tackling more complicated and extensive engineering
tasks. This chapter will cover the following topics:

Functional programming concepts
Control flow
Writing macro for ClojureScript
Concurrent design patterns using core.async

Functional programming concepts
We've already talked a little bit about how ClojureScript is a functional language in
Chapter 2, ClojureScript Language Fundamentals, when we introduced the function syntax
and talked about how functions in ClojureScript can be stored, passed, and referenced like
any other variable. We've even seen a few examples of passing functions as arguments to
other functions, as we did when we looked at laziness in Chapter 2, ClojureScript Language
Fundamentals, and passed println as an argument to map. In this section, we'll take a closer
look at these concepts and flesh them out with some helpful examples.

Advanced ClojureScript Concepts

[95]

Loops and iteration
Sooner or later, almost every software program has to iterate through some sort of
collection and perform a transformation on it. In mutable languages, this typically takes the
form of iterating through each object in the collection and mutating the underlying
collection, or perhaps calling a function with a known side effect. In this section, we'll take a
look at various design patterns for iterating through collections.

When used from ClojureScript, these programming patterns are overwhelmingly used for
the execution of side effects. Some, like loop and recur, for, and doall do have a specific
return value that you can control, but others including doseq and dotimes explicitly return
nil. Be careful when using these that you understand what return value you'll be getting!

Loop and recur functions
Let's consider a sample JavaScript program that does this:

x = [1, 2, 3, 4, 5]

for (var i = 0; i < x.length; i++) {
 console.log(x[i]);
}

The preceding function, when executed, prints out the numbers 1 through 5 to the console,
with each number on its own line. In ClojureScript, the most direct translation of the
aforementioned program would look like the following:

 (def x [1 2 3 4 5])
 (loop [i 0] ;; set our starting point
 (println (nth x i))
 (when (< (inc i) (count x))
 (recur (inc i)))) ;; let's do the time warp again!

Although this program does work (and especially well for fans of The Rocky Horror Picture
Show), it's not regarded as an idiomatic way of programming in ClojureScript. For one, it's
quite verbose, and secondly, it's extremely imperative. If we had wanted to actually return
modified versions of the values in question, we would have had to have included quite a bit
of extra code to accommodate for the immutability of vectors. This second issue will be an
ongoing theme in this section until we get around to learning about higher-order functions.

Advanced ClojureScript Concepts

[96]

Note that recur also works to design recursive functions. In a recursive
function, you don't need to specify loop independently of the function
definition recur will automatically go to the top of the function definition.

Let's give this a shot with our previous example:

 (defn looper
 "Don't get me confused with the popular 2012 film"
 [i]
 (println (nth x i))
 (when (< (inc i) (count x))
 (recur (inc i)))) ;; without loop head, go to fn start

Invoking (looper 0) should have the same effect as our original loop code.

for
Let's consider the example from the previous section, but let's make both the JavaScript and
ClojureScript versions slightly more idiomatic by assuming we won't actually need to
mutate the values in question:

 x = [1, 2, 3, 4, 5]
 for (var i in x) {
 console.log(x[i]);
 }

And the corresponding ClojureScript:

 (def x [1 2 3 4 5])
 (for [i x]
 (println i))

This aligns more closely with a slightly cleaner version of the original JavaScript program,
although ClojureScript's for is lazy and returns a sequence, while the JavaScript loop runs
immediately.

The for loop accepts up to three different modifiers: :when, :let, and :while. The :let
modifier allows you to bind additional local variables within the for block, :when only
executes the body when the predicate matches (though it continues to iterate), and :while
terminates iteration when the provided predicate function returns false:

 (for [i x
 :let [y (* i 2)]
 :when (odd? i)

Advanced ClojureScript Concepts

[97]

 :while (< i 4)]
 (println i y))
 1 2
 3 6
 ;;=> (nil nil)

dotimes
We could also do away with the original array using dotimes, which executes a body of
code n times (presumably for side effects):

 (dotimes [n 5] (println (inc n)))

Note that we're careful to increment n by 1 before printing since dotimes
starts at . Also, be aware that dotimes only allows you to bind one
variable: the number of times the body will be executed. The variable n
also doesn't have to be called n —we could have called it rubber-
chickens if we had wanted to.

doseq
Like dotimes and for, doseq allows for the binding of individual elements of a sequence
and then repeated execution of the following body, presumably for side effects. However,
doseq is different from dotimes and for in a few notable ways. First, it operates on a
provided sequence, rather than on an integer. A quick example might look like the
following:

 (doseq [a (range 5)]
 (println a))

Remember in Chapter 2, ClojureScript Language Fundamentals, when we talked about lazy
sequences and realizing infinite sequences? doseq is one tool for working with lazy (and
potentially infinite) sequences. It only realizes a single value at a time, and once it's done
working with it, it discards it and moves on to the next value in the sequence. doseq also
has special logic for dealing with chunked sequences, which is not true of all functions that
take a lazy sequence.

Advanced ClojureScript Concepts

[98]

doseq accepts binding multiple sequences at once and operates over a Cartesian cross of
their values. In simpler terms, this means it executes once for each possible sequence value
combination. Let's take a look at the following commands:

 (doseq [a ["a" "b" "c"]
 b (range 3)]
 (println a b))
 a 0
 a 1
 a 2
 b 0
 b 1
 b 2
 c 0
 c 1
 c 2
 ;; => nil

doseq returns nil, and like for accepts the :let, :while, and when modifiers.

doall
In addition to doseq, we have doall. While the purpose of doseq is to hold in memory
(and invoke side effects) for one element in a sequence at a time, the purpose of doall is the
opposite. doall seeks to realize every element (and, consequently, invoke every side effect),
load it into memory, and return it.

Closely related to doall is dorun, which avoids holding the entire
sequence in memory and also returns nil.

Developers new to lazy evaluation often find themselves confused by circumstances where
their code hasn't evaluated. If you think you might be in one of these situations (and know
that the sequence or collection that should have been evaluated isn't too large to fit into
memory), try calling doall on it to see if it evaluates. Let's look at an example using the
lazy map function, which we'll be taking a closer look at in the next section:

 cljs.user=> (def x [1 2 3 4 5])
 #'cljs.user/x
 cljs.user=> (do
 (map println x)
 true)
 ;; => true

Advanced ClojureScript Concepts

[99]

Here, because map is evaluated lazily, the do block returns true but never calls println on
the individual elements of x. If we wanted to force the map println to evaluate, we could
call doall on it:

 cljs.user=> (do
 (doall (map println x))
 true)
 1
 2
 3
 4
 5
 ;; => true

Higher-order functions
Up until now, we've been looking at very imperative design patterns—patterns that often
require explicitly creating local bindings of variables in order to iterate through a sequence
or collection. From this point on, we'll be looking at higher-order functions as a way of both
invoking side effects on a collection and returning new versions of the sequence being
passed in.

The use of higher-order functions in ClojureScript is more idiomatic than more imperative
software patterns due to the immutability of the language's core data structures (an issue
we discuss in Chapter 2, ClojureScript Language Fundamentals). We can't mutate a data
structure as we iterate over it and we can't easily build a new data structure up while we're
iterating. Instead, we use higher-order functions that perform transformations on the input
sequence and return new, transformed sequences for us to use.

There are many higher-order functions in ClojureScript, and as you become more familiar
with the language, it's very likely you'll end up writing your own. For now, we'll begin with
an introduction to the three most common and critical higher-order functions: map, filter,
and reduce. Each of these functions takes any sequence or collection as an input and
returns a lazy sequence. There are also alternative versions of the map and filter functions
that explicitly return a vector: mapv and filterv.

These core higher-order functions are valuable not only for their simplicity and elegance,
but also because they do a much better job than for of expressing intent.

Advanced ClojureScript Concepts

[100]

map
map takes at least one collection and returns a single new, transformed collection. This
transformed collection is created by calling the provided function on each element in the
provided collections in turn. You can also pass in zero collections, in which case map returns
what's known as a transducer; we'll talk more about transducers later on in this chapter.

If map is passed one or more collections, it returns a lazy sequence consisting of the result of
applying the input function to the first items in each provided collection, followed by the
result of applying the input function to the second items in each collection, and so on, until
any one of the collections has been exhausted. Any remaining items in the other collections
are ignored. The input function should accept as many arguments as there are collections
being passed to map.

This explanation is a bit of a mouthful, so let's start with a simple example. We'll use map to
write up a more functional implementation of our previous examples of printing the
numbers 1 through 5:

 cljs.user=> (map println [1 2 3 4 5])
 1
 2
 3
 4
 5
 ;; => (nil nil nil nil nil)

A quick note here: you may be wondering why, if map is lazy, it's still
evaluating println on each item in the sequence. The reason is that since
we're calling it directly at the REPL, the REPL knows that it has to print
out the return value for us to read and so it realizes the entire sequence.

println as a function returns nil, so this isn't a great example of how we could transform
an input sequence (it does explain the return value as a sequence of 5nil values, though).
Let's try to write a more idiomatic version in which we increment each item in the sequence
by 1 and return that. JavaScript has its own implementation of map, so such a program
might look like the following in JavaScript:

 [1, 2, 3, 4, 5].map(function(x) { return x + 1 })

Advanced ClojureScript Concepts

[101]

The return value of this statement is a new array with the contents [2, 3, 4, 5, 6].
ClojureScript functions similarly, but is slightly cleaner since it has a built-in inc function to
increment the values by 1:

 cljs.user=> (map inc [1 2 3 4 5])
 ;; => (2 3 4 5 6)

We could use anonymous function syntax here as well, just to show off how easily you can
write ClojureScript functions with little boilerplate:

 cljs.user=> (map #(+ % 1) [1 2 3 4 5])
 ;; => (2 3 4 5 6)

Now that we've seen some examples where we've passed in a single collection, let's see
what happens when we pass in multiple collections simultaneously:

 cljs.user=> (map * [1 2 3 4] [2 5 8])
 ;; => (2 10 24)

Here, map returns a sequence where * is applied first to the first element in each collection,
then the next, and so on. We get 2 from (* 1 2), 10 from (* 2 5), and so on. When we
get to 8, the second sequence is empty and so map stops evaluating, even though there's a
remaining element in our first collection.

Using map with a HashMap will map over key-value pairs as vectors:

 cljs.user=> (map identity {:a 1 :b 2 :c 3})
 ;; => ([:a 1] [:b 2] [:c 3])

Although they have the same name, be careful not to confuse map with the map data type.

The filter and remove functions
filter takes a predicate function (a function that returns a “truthy” value) and either zero
or one collections. If called without a collection, it returns a transducer. If called with a
collection, it will return a new sequence comprising only the items for which the predicate
function returned a truthy value. Let's take a look at a quick example:

 cljs.user=> (filter even? [1 2 3 4 5])
 ;; => (2 4)
 cljs.user=> (filter #(<= % 2) [1 2 3 4 5])
 ;; => (1 2)

Advanced ClojureScript Concepts

[102]

Note that as both map and filter are lazy, the functions you provide to
them should be free of side effects.

filter has a twin function, remove, which does the inverse: it removes any items in the
input collection for which the predicate evaluates as truthy:

 cljs.user=> (remove even? [1 2 3 4 5])
 ;; => (1 3 5)
 cljs.user=> (remove #(<= % 2) [1 2 3 4 5])
 ;; => (3 4 5)

reduce
Lastly, we have reduce. reduce incrementally builds a new value up from a collection.
One good way of thinking about it is as a way of “rolling up” a collection. We begin with an
initial state that is then updated with each additional item to be reduced.

reduce takes as its arguments a reducer function, an optional initial value, and a collection.
The supplied reducing function must be able to accept two arguments: the first, the value
being reduced into, and the second, the current value to reduce. reduce behaves quite
differently depending on whether or not the optional initial value is provided, so we'll dig
into how the function works both with and without an initial value.

If the initial value is not supplied, reduce returns the result of applying the input function
to the first two arguments in the collection, then applying the function to that result and the
third item, and so forth. Let's look at a simple example using the + operator:

 cljs.user=> (reduce + [1 2 3 4 5])
 ;; => 15

If the collection is empty, the supplied function must also be capable of accepting no
arguments; reduce will return the result of calling the supplied function with no
arguments:

 cljs.user=> (reduce + [])
 ;; => 0
 cljs.user=> (+)
 ;; => 0

Advanced ClojureScript Concepts

[103]

If the collection has only one item, it is returned and the supplied function is not called:

 cljs.user=> (reduce js/Math.abs [-5])
 ;; => -5

If an initial value is supplied, reduce returns the result of applying the supplied function to
the initial value and the first item in the collection, then applying the supplied function to
that result and the second item, and so on:

 cljs.user=> (reduce + 10 [1 2 3 4 5])
 ;; => 25

If the collection contains no items and an initial value is supplied, reduce just returns the
initial value without calling the supplied function:

 cljs.user=> (reduce str 10 [])
 ;; => 10

Transducers
Transducers are a relatively new member of the ClojureScript family and are a fairly
advanced functional programming concept. In essence, a transducer is a function that takes
one reducing function and returns another. In this context, a reducing function is a function
that can be passed to reduce-a two-argument function where the arguments are the
cumulatively reduced data thus far and the data to be reduced in the current step.

Okay, so that tells us what transducers are, but not much about how we'd actually use
them. Transducers in general are not an intuitive thing to reason about, and so perhaps the
best place to begin is with examples.

Note that by convention, transducers are referred to as xform. So if you're
looking at the function documentation generated by doing, say, doc
into:

cljs.core/into
([to from] [to xform from])
 Returns a new coll consisting of to-coll with all of
the items of
 from-coll conjoined. A transducer may be supplied.

The xform in the preceding function means that into is expecting a transducer to be passed
in as an argument.

Advanced ClojureScript Concepts

[104]

Let's take a look at the sequence function, which coerces a collection to a (possibly empty)
sequence. A basic use of sequence might look like the following:

 cljs.user=> (sequence [1 2 3 4 5 6])
 ;; => (1 2 3 4 5 6)

While one can call sequence with just a collection, you can also provide a transducer to it,
and it'll lazily generate the sequence with the transformation applied. Let's take a fairly
simple transducer, (map inc), and use that as a function argument to sequence:

 cljs.user=> (sequence (map inc) [1 2 3 4 5])
 ;; => (2 3 4 5 6)

If you've had a chance to familiarize yourself with the ->> macro (we'll cover it later in this
chapter when we talk about macros), the preceding command is very similar to the
following:

 cljs.user=> (->> [1 2 3 4 5] (map inc))
 ;; => (2 3 4 5 6)

This latter case is slightly different in that the type that is being returned is a LazySeq,
whereas the use of a transducer causes the return type to be a LazyTransformer.

Transducers represent transformations on data. However, they have some
critical differences from other higher-order functions in ClojureScript that
transform data. Principally, transducers don't care about what the function
does, the context of what's being built up, or the source of inputs.

The most critical differentiating characteristics of transducers is that they don't care about
the source of inputs. Other higher-order functions (map, filter, reduce, and so on) are
critically tied to the collection (and hence sequence) abstractions. For instance, one really
awesome use of transducers is to apply a transformation to everything that goes through a
core.async channel. We'll learn a little bit more about core.async later on in this
chapter, but a quick code snippet should provide an idea of how these transformations
work:

 (ns experiment.async
 (:require [cljs.core.async :as async])
 (:require-macros [cljs.core.async.macros :as async-macros]))

 (defn sample-transducer-channel
 "A simple example of a transduced channel. Increment by one
 all values that pass through this channel. For demonstration
 purposes we'll just hard-code the number 5 for now."
 []

Advanced ClojureScript Concepts

[105]

 (let [c (async/chan 1 (map inc))]
 (async-macros/go (async/>! c 5))
 (async-macros/go (js/console.log (async/<! c)))))

Now, if we call our new function at the REPL, we should see the number 6 in our browser's
JavaScript console.

Transducers can be used for reducing with a transformation:

 (def inc-xform (map inc))

We can test this transducer at the REPL as follows:

 cljs.user=> (transduce inc-xform + 0 [1 3 5])
 ;; => 12
 ;; For clarity, the order here is equivalent to the following,
 ;; only evaluated non-lazily:
 ;; (reduce + 0 (apply inc (1 3 5)))

They can also be used for building a new collection from a transformation of another (again,
non-lazily—basically the non-lazy version of sequence with a specific collection as the
output):

 cljs.user=> (into [] inc-xform '(1 1 2 3 5 8))
 ;; => [2 2 3 4 6 9]

Transducers are a powerful tool for transforming data and creating reusable and
composable functions for doing so.

Control flow
At this point, we've already seen many examples of ClojureScript functions and their
associated control flows, but we haven't really covered them in explicit detail. In this
section, we'll look at various branching control flow special forms and macros, and we'll
cover how to handle exceptions.

if and when
Like almost every programming language, ClojureScript uses if for basic conditional logic.
if in ClojureScript is a special form rather than a function or a macro. Syntactically, if
takes a predicate, a form that is evaluated and yielded if the predicate returns true, and an
optional form that is evaluated and yielded if the predicate returns false. If the optional

Advanced ClojureScript Concepts

[106]

form for the false case is not supplied, it defaults to nil:

 cljs.user=> (if (= 1 1)
 "One equals one!"
 "One does not equal one :(")
 ;; => "One equals one!"
 cljs.user=> (if (= 1 2)
 "One equals two!") ;; implicit nil return value when false
 ;; => nil

when like a combination of if and an implicit do block when its predicate returns true:

 cljs.user=> (when true
 (println "I'm a side effect!")
 ["apples" "bananas"])
 "I'm a side effect!"
 ;; => ["apples", "bananas"]

if-let and when-let
Often, when working with predicates, you'll want to bind the return value to a local
variable and continue to evaluate a code block with that local variable. ClojureScript
provides two convenient macros to make doing so concise: if-let and when-let.

Since you're already aware of the syntax for if, when, and let, the syntax for when-let
should seem fairly straightforward:

 cljs.user=> (if-let [x false]
 "I'm true!"
 "I'm false!")
 ;; => "I'm false!"
 cljs.user=> (when-let [x "true"]
 (println "Oh hi!")
 x)
 Oh hi!
 ;; => "true"

Note that both if-let and when-let can only bind a single variable—the
form that will be used as the dispatch value to determine truthiness.

Advanced ClojureScript Concepts

[107]

cond and condp
cond and condp are both used to run through many possible predicates and to return the
body associated with the first to evaluate as truthy. Let's look at cond first:

 cljs.user=> (cond
 false "Nope."
 nil "Not happening."
 (empty? [1]) "Still not happening."
 true "Finally!")
 ;; => "Finally!"

By convention, it's common when using cond to include an :else clause that includes a
default value like the following:

 cljs.user=> (cond
 false "Nope."
 nil "Not happening."
 :else "I'm a default value!")
 ;; => "I'm a default value!"

Note that there's nothing special about :else here—it just happens to be
truthy since it's a keyword. The choice of :else is, however, a common
convention that you'll find in most open-source code that has a default
value.

If none of the predicates evaluate to true, cond returns nil. Calling cond by itself (for
example, (cond)) therefore returns nil.

condp functions similar to cond, but instead of evaluating a different predicate at each tier,
it takes a predicate and an initial value and compares the result against various possible
values. Finally, it takes a single optional default value (which, unlike cond, does not need
an accompanying :else or similar truthy value preceding it):

 cljs.user=> (condp = [1 2 3 4 5]
 "a string?" false
 'another-value false
 :keyword false
 [1 2 3 4 5] true
 "finally, a single default value")
 ;; => true

Evaluating the preceding code block returns true because that's the return value associated
with the possible value of [1 2 3 4 5]. Note that both cond and condp are sequentially
evaluated, meaning that as soon as they've met a satisfactory value or predicate, they'll

Advanced ClojureScript Concepts

[108]

return the corresponding value (without continuing to evaluate any remaining predicates or
values). Only the matched value, if any, is ever evaluated.

case
case functions like a special case of condp where the predicate is =.

Note that unlike Clojure, case in ClojureScript does evaluate the test
constants; they don't have to be compile-time literals.
In general, you should prefer cond or condp over case; case is a lower-
level construct in JVM Clojure, and while this distinction matters less for
ClojureScript, it's worth keeping that convention.

A simple example might look like the following:

 cljs.user=> (case [1 2]
 [] "empty vec"
 (vec '(1 2)) "my vec"
 "default")
 ;; => "my vec"

You can also include any number of test constants that evaluate to the same result, for
instance:

 cljs.user=> (case [1 2]
 [] "empty vec"
 ([1 2] [3 4]) "my vec"
 "default")
 ;; => "my vec"

Again, we get the same result.

Exception handling
So far, we've talked a lot about how to write programs, but we haven't talked at all about
what happens when things go wrong. Let's take a look how exception handling works in
ClojureScript. Let's take a look at how exception handling works in ClojureScript now,
starting with how we can deliberately throw an exception:

 (throw (js/Error. "You weren't supposed to do this!"))

Advanced ClojureScript Concepts

[109]

Simple enough. ClojureScript also has the same sort of exception handling facilities you
would expect from a high-level language-critically, tools for trying a code block, catching
any exceptions, and finally executing a recovery block.

 cljs.user=> (try
 (throw (js/Error. "I'm an error!"))
 (catch js/Error e
 (println "Error message: " e))
 (finally
 (println "A successful result!")))
 Error message: #object[Error Error: I'm an error!]
 A successful result!
 ;; => nil

Here we've explicitly captured the error of type js/Error, but almost anything can be
thrown as an error in JavaScript. This isn't recommended, but does sometimes come up
with third-party libraries. Consequently, if you're trying to catch any exception that might
be thrown, you can use :default instead of js/Error to catch anything that might be
thrown. More general exception handling usually looks something like the following:

 cljs.user=> (try
 (throw "Exception")
 (catch js/Error err
 ;; whatever error handling you might want
 (println "error was of type js/Error"))
 (catch :default err
 ;; perhaps more general error handling here
 (println "Some non-error type was thrown."))
 (finally
 (println "Done!")))
 Some non-error type was thrown.
 Done!
 ;; => nil

Be aware that anything within a finally block will only be executed for
side effects and not for their return value. The return value of a try block
is: first, if no exceptions are thrown, the last value of the try block is
returned. If any exceptions are thrown, the last value of the appropriate
catch block is returned.

Advanced ClojureScript Concepts

[110]

Writing macros for ClojureScript
If you're new to Lisp languages, you may not be familiar with macros. In essence, Lisp
macros differ from macros in other languages in that they are a mechanism by which code
itself can be transformed and rewritten. We've already used a number of macros so far in
the examples in this book, and, indeed, macros are a core part of ClojureScript and you can
and should expect to find yourself using them frequently. They enable us to do things that
would not otherwise be possible and to optimize and refactor code in powerful ways.

read and eval
In order for all of what we're about to say to make sense, it'll probably be helpful to first
understand a little bit about how programming languages work. With most languages,
there exists a reader function in the compiler that takes a series of strings and transforms
the text you provided into an abstract syntax tree. That abstract syntax tree is then passed
on to an evaluator, which knows how to take the contents of the abstract syntax tree and
turn it into, for instance, machine code or byte code, or whatever low-level code is
appropriate for the language you're working in.

The key thing to understand about this is that in general, for most computer languages, the
abstract syntax tree that is generated by the reader is not accessible to the program that is
actually being executed. You know the old saying, “Physician, heal thyself!“? Most programs,
if they were physicians, couldn't heal themselves.

The special thing about Lisp languages is that the abstract syntax tree of the program is no
different from the data that the language operates on (remember how we showed that the
form for calling functions was just a normal list in Chapter 2, ClojureScript Language
Fundamentals?). And since we know that the data the language operates on is definitely
accessible at the program's runtime, it follows that we can also access and operate on the
abstract syntax tree of the program itself!

This is very cool in that it means that we can have macros that transform and manipulate
both data and code. Let's see a quick example of what the process we've just described looks
like. Passing a string of source code to the reader looks like the following:

 cljs.user=> (cljs.reader/read-string "(+ 1 3)")
 ;; => (+ 1 3)

Advanced ClojureScript Concepts

[111]

Now, let's try treating this piece of source code as we might any data structure:

 cljs.user=> (conj (cljs.reader/read-string "(+ 1 3)") "apples")
 ;; => ("apples" + 1 3)

Cool. Next, let's try passing a string through the reader to the evaluator:

 cljs.user=> (eval (cljs.reader/read-string "(+ 1 3)") "apples")
 WARNING: Use of undeclared Var cljs.user/eval at line 1 <cljs repl>
 #object[TypeError TypeError: Cannot read property 'call' of undefined]

Hmm. What happened there? Well, it turns out that with the ClojureScript project in its
current state, eval is not available during the ClojureScript runtime (including at REPL
evaluation time). Rather, eval of ClojureScript forms is handled by a JVM Clojure process,
which is how the REPL we've been using actually works (it's calling the relevant vanilla
Clojure code that corresponds to eval).

You may be wondering, if eval of ClojureScript code is only available to the JVM Clojure
process, how is that we're able to evaluate code in the browser? The answer lies in what's
actually being evaluated. When we're in the browser environment, the code being evaluated
is JavaScript that we've compiled from ClojureScript. Actually trying to evaluate
ClojureScript code within the browser, won't work.

It's possible that the future may bring the ability for us to use eval within ClojureScript; in
2015, David Nolen (the primary developer and maintainer of ClojureScript) announced that
ClojureScript had reached the point where it was able to compile itself. Self-compiling
ClojureScript means that it becomes possible to evaluate ClojureScript code at runtime (we
no longer need distinct compilation-time and run-time behavior). At the moment, however,
even though some of the larger technical problems have been addressed, the functionality
hasn't been made a core part of the ClojureScript language and build system because using
JVM Clojure for compilation is still considerably faster.

If you're interested in experimenting with a self-hosted version of ClojureScript, the
ClojureScript wiki has a page on the current state of the project (h t t p s : / / g i t h u b . c o m / c l
o j u r e / c l o j u r e s c r i p t / w i k i / B o o t s t r a p p i n g - t h e - C o m p i l e r) as well as a list of some
projects that are currently relying upon self-hosted ClojureScript. At the time of this
writing, self-hosted ClojureScript is still in an experimental/proof of concept phase, so we
can't recommend it yet for production applications.

The fact that eval isn't available to the current ClojureScript runtime has direct implications
for how macros work in ClojureScript as well. Since eval is only available to the JVM
Clojure process, ClojureScript macros are also only able to be evaluated at compile time,
rather than at run time, and they must be written in either a .clj (normal Clojure) file or a
.cljc (reader conditional Clojure) file. Either way, code that is generated by a macro must

https://github.com/clojure/clojurescript/wiki/Bootstrapping-the-Compiler
https://github.com/clojure/clojurescript/wiki/Bootstrapping-the-Compiler

Advanced ClojureScript Concepts

[112]

target the runtime capabilities of ClojureScript, even if the macro itself is written in Clojure.

In practice, this also means that ClojureScript macros need to be evaluated before we get
around to actually calling them anywhere. The most common way of achieving this is to
define them in another namespace than the one in which they are going to be called. They
are then imported into the calling namespace using the special :require-macros keyword
in namespace declarations, for instance:

 (ns my.namespace
 (:require-macros [my.macros :as my]))

A ClojureScript namespace can require macros from a namespace with the same name (that
is, a my/namespace.cljs file could require macros from a my/namespace.clj file).
There's one gotcha to be aware of with this—an imported macro and a function can share
the same name. If that happens, ClojureScript will resolve the symbol to a macro if it's in a
calling position, and to a function if it's not. For instance, if + were both a macro and a
function, it would be a macro in (+ 1 1) and a function in (reduce + [1 1]). We
recommend avoiding this situation in your programs.

Your first macro
Whew, that was a lot of precursor text! Enough chatter; let's get our hands dirty. Let's start
by writing an incredibly simple macro—so simple, it'll look just like a function. For the
exercises we'll be doing in this section, let's go back to our experiment project that we were
using in Chapter 2, ClojureScript Language Fundamentals, and we'll create two new files:
one at src/experiment/macros.clj and one at src/experiment/consumers.cljs.

We'll create macros.clj first and put in a simple namespace declaration:

 (ns experiment.macros)

In consumers.cljs, we'll also add a namespace declaration, and we'll make sure to import
any macros in our macros file:

 (ns experiment.consumers
 (:require-macros [experiment.macros :as m]))

We'll also want to make sure we can access anything we do here in a browser setting, so
let's add a :require section to our main namespace, experiment.core:

 (ns experiment.core
 (:require [experiment.consumers :as consumers]))

Advanced ClojureScript Concepts

[113]

Let's start with an incredibly simple macro that does the same thing as the built-in inc
function:

 (defmacro increment
 "Given a form, increment it by 1 and return"
 [x]
 (+ x 1))

Now, since we have a ClojureScript file that imports these macros, we should immediately
be able to access and test this macro out in our ClojureScript REPL. Let's give it a shot:

 cljs.user=> (experiment.macros/increment 2)
 ;; => 3

So far, so good. Let's see what happens when we try to pass in a larger form, say (+ 1 2):

 cljs.user=> (experiment.macros/increment (+ 1 2))
 ;; => clojure.lang.ExceptionInfo: clojure.lang.PersistentList cannot be
cast to java.lang.Number at line 1 <cljs repl> {:file "<cljs repl>", :line
1, :column 1, :tag :cljs/analysis-error}

Hmm, that's different! What could be going on? Let's see what's different about a function
versus a macro. Let's try a very simple comparison where we see what actually ends up
being passed in as an argument. In our macros namespace, let's define the following simple
macro:

 (defmacro printer-macro
 "Given a form, increment it by 1 and return"
 [x]
 (println x))

And in consumers.clj, let's define the following function:

 (defn printer-func
 [x]
 (println x))

Now, let's try calling both of them at the REPL and see what the result is using the same
argument we were just using to our increment macro:

 cljs.user=> (experiment.macros/printer-macro (+ 1 2))
 (+ 1 2)
 (+ 1 2)
 ;; => nil
 cljs.user=> (experiment.consumers/printer-func (+ 1 2))
 3
 ;; => nil

Advanced ClojureScript Concepts

[114]

Two things stand out here: first, our macro printer printed a different input (the actual form
(+ 1 2) rather than what it evaluates to, 3), and second, the macro printer printed it twice!

The reason the macro printer prints out the full form is that that's how macros work: they
receive the full form that's passed in before the evaluator has had a chance to turn that form
into its underlying value. Macros are ultimately normal functions that run at compile time,
and the compiler doesn't evaluate their arguments before calling.

The reason it prints out the value twice is that when we call println in ClojureScript, it
actually does print out the value twice—once to our REPL and once in our browser's
JavaScript console. When we evaluate the same logic from within a macro, however, it only
has access to the JVM printing environment, and so the value is printed out twice there.

Now, this is all interesting so far, but it doesn't actually let us write very powerful macros.
That's where the power of syntax-quoting comes into play. Let's rewrite our original
increment macro so that it won't choke when passed a form that needs to be evaluated:

 (defmacro increment
 "Given a form, increment it by 1 and return"
 [x]
 `(+ 1 ~x))

Here, we've made two changes: we've added a backtick (`) before our form and we've
added a tilde (~) for consistency in front of the x. These are examples of Clojure macro
characters, and they have special significance to the Clojure reader. The backtick character
is known as the syntax-quote character, the tilde is known as the unquote character, and a
combination of a tilde and an @ sign, ~@, is the unquote-splicing marker.

For all forms in Clojure that aren't a symbol, a list, a vector, a set, or a map, syntax-quoting a
form is the same as quoting it. Syntax-quoting a symbol resolves the symbol within its
current context. If the symbol isn't namespace qualified and ends in a pound or hash sign, it
will resolve to a generated symbol with a unique ID (this resolution is consistent) so that all
references to that symbol within a larger syntax-quoted expression will resolve to the same
generated symbol.

Most importantly, syntax-quoting a list, vector, set, or map creates a template of the
corresponding data structure (let's not forget that lists are the canonical data structure for
Clojure as well as ClojureScript code). Within the template, ordinary forms act as if they,
too, have been syntax-quoted, but forms can be exempted from this by unquoting or
unquote-splicing them. Forms exempted will be treated as expressions and will be replaced
in their template by their value (or sequence of values).

Advanced ClojureScript Concepts

[115]

What does all of this mean? In the case of our increment macro, we've syntax-quoted the
form (+ 1 ~x) and we've unquoted x. This means that the macro will try to evaluate
whatever is passed in as x and then replace that result with x in the template. In this
particular case, the net effect of all of this magic is just to get us back to having our
increment macro behave like a function. Let's try writing another function in our
experiment.consumers namespace:

 (defn increment-func
 "Increment y by 1"
 [y]
 (m/increment y))

And now let's try calling it from the REPL:

 cljs.user=> (experiment.consumers/increment-func (+ 1 2))
 ;; => 4

Nifty!

Writing more advanced macros
Let's try a slightly more advanced macro. We'll write a macro that takes a normal function
body-let's say something like (+ 1 2 3 4)-and replaces the function in the calling position
with a provided function. What we want to do here is to construct a new form with the
provided function at the front and then to have the rest of the original body, without its
original function. Such a macro might look like the following:

 (defmacro fnswap
 "Replace the form in the calling position of body with the function
 f, evaluate and return."
 [f body]
 `(~f ~@(rest body)))

Most of this new macro should look pretty familiar to us: we're syntax-quoting the form
and we're returning a new form with our new function, unquoted, at the front. We're also
using the rest function to extract the remaining elements of the form that's passed in. The
new syntactical element here that we haven't used previously is the unquote-splicing
marker, ~@. Unquote-splicing takes the contents of the form being provided and un-nests
them from the form they're in (typically a list) into the form outside of it.

Let's test out calling our function:

 cljs.user=> (experiment.macros/fnswap - (+ 1 2))
 ;; => -1

Advanced ClojureScript Concepts

[116]

Here, we've swapped out the + in the calling position with its mathematical counterpart, -.
Let's quickly verify that it worked:

 cljs.user=> (- 1 2)
 ;; => -1

Cool. Let's try stepping through what's actually happening. First, the fully non-
macroexpanded form looks the following:

 `(~f ~@(rest (+ 1 2)))

The rest function removes the + operator:

 `(~f ~@(1 2))

The unquote-splice drops the contents of the (1 2) list into the outer form:

 `(~f 1 2)

Finally, the function is replaced by the function we've passed in:

 `(- 1 2)

This body is then returned to the caller and evaluated, where it returns −1.

Gensyms and local binding in macros
We touched on this a little bit earlier in this section, but creating local bindings within a
syntax-quoted block doesn't work the way you might expect. Let's give it a shot anyways
and see what happens. Try adding the following macro to experiment.macros:

 (defmacro bad-binding
 "An example of how local binding in macros does not work"
 []
 `(let [x 5]
 x))

Seems fairly straightforward, right? Sadly, it won't work—the macro reader won't let us
bind to a plain symbol, and attempting to call this macro from the REPL will throw an
exception:

 cljs.user=> (experiment.macros/bad-binding)
 ;; => clojure.lang.ExceptionInfo: Invalid local name:
experiment.macros/x at line 1 <cljs repl> {:file "<cljs repl>", :line 1,
:column 1, :tag :cljs/analysis-error}

Advanced ClojureScript Concepts

[117]

Instead, we have to bind local variables to gensyms (generated symbols). These are
syntactically different from ordinary symbols in that the symbol name is followed by a
hash, or pound sign, as follows:

 (defmacro good-binding
 "An example of how local binding in macros does work"
 []
 `(let [x# 5]
 x#))

Now let's try this out at the REPL:

 cljs.user=> (experiment.macros/good-binding)
 ;; => 5

Under the hood, all that gensyms do is generate new symbols with unique names that the
macro reader knows how to look up.

Don't repeat yourself!
Often, when writing macros, you'll find that you're passing as an argument to the macro an
entire body of code that you want to be evaluated. Maybe your macro rewrites the body
before evaluating it, or maybe it sets some additional local bindings before the body is
evaluated, or maybe it does any number of things. The key thing to realize is that it is
entirely possible for you to inadvertently end up evaluating the body that is passed in
multiple times.

This sounds like it might not be that big of a deal, and for the sort of examples we've been
working with so far, it's not. But let's imagine you're working on some hypothetical
application where you need a macro that does some analytics and logging for database
queries or API calls. If you were to write such a macro as follows:

 (defmacro db-metrics
 "Analyze and log the query."
 [body]
 `(do
 (analyze ~body)
 (log ~body)))

Advanced ClojureScript Concepts

[118]

With the intent of calling it as follows:

 (defn store-data
 "Write data to our data store."
 [data]
 (db-metrics
 (db/store data)))

Then you'd be calling your data storage function twice since the macro calls ~body twice!
This sort of mistake is surprisingly easy to make, so it's critical when developing to keep an
eye out for it.

A personal favorite – Threading macros
So far in this chapter, we've talked a lot about writing macros, but have said little about
using them. In practice, you'll usually find yourself using macros all the time, and often you
won't even know that you're doing it! For instance, did you know that even really basic
logical forms like when and and are macros in ClojureScript rather than functions?

One set of macros that we use all the time are known as the threading macros. These
macros can be used to take the evaluated value of one form and immediately hand it over to
the next form for evaluation. For instance, the -> macro takes the first form, evaluates it,
and inserts it as the second item in the next form, and takes that result and does the same
with the next form, and so on. Let me show you an example:

 cljs.user=> (-> 3
 inc
 (+ 4)
 (str "...is the final result"))
 ;; => "8...is the final result"

This piece of code is exactly the same as writing the following:

 (str (+ (inc 3) 4) "...is the final result")

The ->> macro works similarly, but instead of inserting each stage's result as the second
argument, it inserts it as the last argument, for instance:

 cljs.user=> (->> 3
 inc
 (* 4)
 (- 15)
 (str "The final result is: "))
 ;; => "The final result is: -1"

Advanced ClojureScript Concepts

[119]

This may not seem like a big deal, and, in truth, it's more of a style choice than anything.
However, you'll often find yourself composing pipelines of data transformations where
you're passing the return value of one small pure function to another small pure function.
Using the threading macro makes it easy to compose these pipelines without using so many
parentheses, while also making it clear how the different functions work together.

Our favorite threading macros, however, are some-> and some->>. These macros work just
like -> and ->>, but stop evaluating as soon as any function returns nil. For instance, let's
add the following functions to our experiment.consumers namespace:

 (defn always-nil
 "Just return nil."
 [& args]
 nil)
 (defn example
 "An example of early form termination."
 []
 (some->> 3
 inc
 always-nil
 (println "I should never be evaluated.")
 true))

Since we know that the always-nil function should always return nil, we should never
see that println statement evaluated. Let's make sure that's the case at the REPL:

 cljs.user=> (experiment.consumers/example)
 ;; => nil

Bellissimo. The some-> and some->> macros are great to use in cases where the final
function they're supposed to be passed to can't take a nil value (maybe because it's an
external library that'll throw an exception when passed a nil value, or because they're
computationally expensive functions that are just doing busywork with nil). Think of
these macros as lazy evaluation for sequences, but applied to program logic. Only use what
you need.

Advanced ClojureScript Concepts

[120]

A closing note on macros
Before ending this section on macros, it's worth considering what their ultimate place is in
the context of your ClojureScript libraries and applications. Unquestionably, macros are an
incredibly powerful tool. You can use them to essentially rewrite, on the fly, any code that's
passed into them, and they can be used to generate domain-specific languages, complete
powerful refactoring efforts, and establish different local bindings. You can use macros to
do almost anything.

And yet, you probably shouldn't. Most of the time, you can accomplish what you're trying
to do using a plain function, not a macro. Functions are easier to write, easier to read, and,
perhaps most importantly, easier to understand and reason about. Macros, by contrast, can
easily become complicated and difficult to read. It can be difficult to understand the
runtime implications of macros, and how they compose together.

You can reduce macros' complexity by writing functions that do some of
the heavier lifting and then calling those functions from the macros.

That's not to say that you shouldn't use them. There are definitely times when, for the
domain you're working in, it's totally appropriate for the vast majority of your library or
application to be comprised of macros. But if you can accomplish the same goals using a
simpler tool, you should do so. The version of yourself that'll return to your code two years
later will thank you.

Concurrent design patterns using
core.async
Like its host language, JavaScript, and its parent language, Clojure, ClojureScript has a rich
set of concurrency-oriented design patterns that are available to developers by default. In
ClojureScript's case, these design patterns are heavily event-driven as an asynchronous
event/message queue is the default concurrency model of JavaScript. However, it also has
access to CSP-style concurrency software design primitives and options through the use of
the powerful core.async library, which has been available for both Clojure and
ClojureScript since mid-2013.

Advanced ClojureScript Concepts

[121]

In this section, we'll review what these different concurrency models look like and learn
how we can use core.async to author programs that are easier to reason about at scale.

Before getting started with the examples in this section, you'll want to make sure you have
two dependencies in your project.clj file (at the root directory of our experiment
project).

The first, core.async, should already be listed in your dependencies since a new Figwheel
project will include it by default [org.clojure/core.async "0.2.374"] (the specific
version you use likely won't matter, but it'd be a good idea to make sure you're using at
least that version).

Second, we'll want to include cljs-ajax, a simple Ajax client for ClojureScript and
Clojure. To add that, just add the following to your :dependencies key: [cljs-ajax
"0.5.3"]. You'll need to restart your Figwheel REPL in order for these changes to take
effect and you should delete the previously compiled files in
/resources/public/js/compiled in order for Figwheel to properly pick up the new
dependencies.

JavaScript is event-driven by default
If you're familiar with the JavaScript runtime, you're aware of the fact that one of the more
unique features of JavaScript is its event loop. The event loop is, essentially, a message queue
in which messages are associated with functions and are evaluated as they are received.
JavaScript's event loop makes for a very unique concurrency model that strongly
emphasizes asynchronous behavior; instead of blocking while waiting on an I/O operation,
it handles those through callbacks and promises.

A callback is a function that is passed to another function that is usually triggered at some
point during that function's execution. In JavaScript, this often takes the form of success and
failure callbacks based on the result of some sort of asynchronous operation, such as I/O
operations.

A promise is a more abstract pattern of working with asynchronous code, and it represents
the eventual result of an asynchronous operation. Typically, promises are used in
combination with callbacks; a JavaScript promise is an object or function with three states:
pending, fulfilled, or rejected. The promise takes a function, then, which takes two
arguments, onFulfilled and onRejected, which are typically both callback functions.

Advanced ClojureScript Concepts

[122]

This means that in comparison to more synchronous languages like Java or C, JavaScript is
able to process other inbound messages and functions while waiting for an I/O operation to
complete.

A concrete example of this might be making a database query or an API call and then
receiving a mouse click event. When making such a query or call in a language like Java or
C, unless the program explicitly released the current thread, the program would block
(wait) for the query or call to return before being able to handle the click event. By contrast,
JavaScript immediately goes on to process the click event and doesn't attempt to do
anything with the response of the database query or API call until it has actually returned.

Event-driven programming in ClojureScript
ClojureScript is even more of a functional language than JavaScript, and the use of design
patterns that orient around callbacks and promises are both common and frequently seen.
One could even say that since ClojureScript compiles to JavaScript, they represent the
default option for concurrent program design.

As a simple example, if you decide to use the popular cljs-ajax library for making
asynchronous HTTP requests, you'll often make requests in which you specify a success
handler and an error handler. The following code is taken from the cljs-ajax README
and shows an example of how we might use callbacks:

 (ns foo
 (:require [ajax.core :refer [GET]]))

 (defn handler [response]
 (.log js/console (str response)))

 (defn error-handler [{:keys [status status-text]}]
 (.log js/console (str "something bad happened: " status " " status-
text)))

 (GET "http://www.your-server.com/hello-world"
 {:hander handler
 :error-handler error-handler})

Here we've passed two possible callback functions, handler and error-handler, in an
options map to the GET function, which will call one of the two functions based on what
ultimate response code it receives from the target server when making the HTTP request.

Advanced ClojureScript Concepts

[123]

The Communicating Sequential Processes
concurrency model
ClojureScript's core.async library differs considerably from JavaScript's default
concurrency model in that it is modeled heavily on a formal language for describing
patterns of interaction in concurrent systems known as communicating sequential
processes. Communicating sequential processes, or CSP, is a member of a family of
different concurrency theories that are oriented around the notion of message passing via
channels.

In the context of ClojureScript, a CSP concurrency model means that rather than designing
programs off of a single message queue (the JavaScript runtime event loop), the creation
and maintenance of an arbitrary number of message queues is used instead. These message
queues, typically referred to as channels, can have messages enqueued by any part of a
program and dequeued anywhere else, and allow for programs and systems to be designed
with a stronger separation of concerns between the producers of data and their consumers
and processors.

In JVM Clojure, core.async provides a handy API for managing message passing between
threads. Since ClojureScript shares JavaScript's single-threaded runtime, in practice the
experience of writing programs with core.async gives the feel of writing a multithreaded
program, without either the headache or the actual implementation concerns. For those of
you coming from a JavaScript background, there's also no callback hell!

Another advantage of core.async is that it's fast, especially when compared to JavaScript's
promises. David Nolen, the primary author and maintainer of ClojureScript, published a
blog post, “Make No Promises”, not too long after the initial release of core.async
comparing the speed of vanilla JavaScript promises to messages passed over a core.async.
While individual tests vary widely, on average, the messages passed using core.async
were evaluated two to three times as quickly, and, in some cases, five times faster. The post
itself is available at h t t p : / / s w a n n o d e t t e . g i t h u b . i o / 2 0 1 3 / 0 8 / 2 3 / m a k e - n o - p r o m i s e s
/.

If all of this doesn't make sense just yet, don't worry—concurrency models can seem very
complicated when discussed in the abstract. What's important to know is the following.

First, CSP represents a very different model from the default model of callbacks and
promises that you may be used to in JavaScript. Second, this model is highly flexible and
allows you to write code that separates the behavior of data consumers and processors from
their producers. Finally, this new model is optional-that's why it's in a library rather than a
part of the core language.

http://swannodette.github.io/2013/08/23/make-no-promises/
http://swannodette.github.io/2013/08/23/make-no-promises/

Advanced ClojureScript Concepts

[124]

We believe that core.async is incredibly powerful, and so does the ClojureScript
community at large. You'll find that many open source libraries are built upon its
concurrency model because it's easier to reason about and more elegant to work with.

Getting started with core.async
Let's get our hands dirty. Let's create a new file at src/experiment/async.cljs. We'll
populate that file with the following code:

 (ns experiment.async
 (:require [cljs.core.async :as async])
 (:require-macros
 [cljs.core.async.macros :as async-macros]))

 (def channel (async/chan 5))

 (defn enqueue-val
 "Enqueue a new value into our channel."
 [v]
 (async-macros/go
 (async/>! channel v)))

 (defn retrieve-val
 []
 "Retrieve a new value from our channel and log it."
 (async-macros/go
 (js/console.log (async/<! channel))))

 (defn enqueue-and-retrieve
 "Enqueue a value into a channel, and then test that we can retrieve
it."
 [v]
 (enqueue-val v)
 (retrieve-val))

Let's make sure our application loads this code by making sure that our main namespace,
experiment.core (located at src/experiment/core.cljs), has a :require statement
for it:

 (ns experiment.core
 (:require [experiment.consumers :as consumers]
 [experiment.async]))

Advanced ClojureScript Concepts

[125]

Great, that should have everything up and running. If you're worried that things might not
be linked properly, save one of these files and check the Figwheel page you should have
open in your browser (http://localhost:3449). When you save the file, Figwheel
should be showing us that everything's been compiled. If not, pay attention to any error
messages that have been shown and make sure to fix those before proceeding.

A quick review, since we're starting to write some larger namespaces: the
use of Figwheel in a development environment means that every time we
save this file, Figwheel should be automatically recompiling our
application and pushing it to the browser. This means that if you define a
function and call it in the namespace, the function will automatically be
called in the browser's context.
In other words, if you have Figwheel running, the only thing you need to
do to run this code is to save the project file.

Good? Great. Now let's step through what's going on here section by section.

 (ns experiment.async
 (:require [cljs.core.async :as async])
 (:require-macros
 [cljs.core.async.macros :as async-macros]))

First, we have our namespace declaration. Looks straightforward enough, we're importing
the ClojureScript version of core.async and we're also importing the appropriate macros
from a separate namespace with an appropriately named alias:

 (def channel (async/chan 5))

This is how we define a core.async message channel. Simple! The 5 in this case is an
optional argument that specifies how large we want the channel's buffer to be (that is, how
many messages it can hold at one time). In addition to specifying the buffer's size, we can
also choose what we want the buffer's strategy to be. For instance, we could use the
dropping-buffer function to generate a buffer that drops new values when the buffer is
full or we could use the sliding-buffer function to generate a buffer that drops the
oldest value in the queue and retains the latest value being added when the buffer is full.

Advanced ClojureScript Concepts

[126]

In general, being explicit about your buffer size and behavior is a good
idea. If you don't set an explicit buffer size, the buffer size will be set as . In
this case, the channel will not allow anything to be published unless there
is a waiting consumer. Note that this does not block the thread; it just
means that the publisher will be parked, waiting, until such time as a
consumer becomes available.
If you don't set an explicit buffer strategy, core.async will use a fixed
buffer. This may or may not be ideal for your program; you should think
carefully about whether you are better served by one particular buffer
strategy versus another.

In addition to specifying the buffer, you can also add a transducer to a channel, an example
of which we showed earlier on in this chapter. We'll be taking another look at one of the
cool ways transducers and channels work together later on in this chapter as well.

 (defn enqueue-val
 "Enqueue a new value into our channel."
 [v]
 (async-macros/go
 (async/>! channel v)))

This function shows how we can add a value to the channel. We call the >! macro to put a
value into the channel. One thing that's important to be aware of is that a number of
core.async functions that interact with channels have to take place inside of a go block.
The go blocks are somewhat magical macros in ClojureScript in that they are essentially
asynchronous blocks of execution in which the illusion of blocking operations is supported.

Putting values into a channel within a go block is more or less
instantaneous and will always succeed unless the channel is full, is of
buffer size and has no consumers, or has been closed with the close!
function. However, when taking a value from a channel, being inside a go
block means that nothing after the take command (<!) will execute until a
value can be retrieved from the channel.
This doesn't mean that a go block will grind your entire application to a
halt if it's blocked on waiting for a message. It just means that the
subsequent operations inside of the go block won't happen until the take
command succeeds. The rest of your program will continue to function
using the JavaScript event loop.

Now, let's see how we can take a value off of a channel:

 (defn retrieve-val
 []

Advanced ClojureScript Concepts

[127]

 "Retrieve a new value from our channel and log it."
 (async-macros/go
 (js/console.log (async/<! channel))))

Again, very straightforward. We see the same usage of the go blocks and the function to
take a message from a channel is syntactically very similar to the function for putting things
into the channel. Easy enough. Let's put all of this together:

 (defn enqueue-and-retrieve
 "Enqueue a value into a channel, and then test that we can retrieve
it."
 [v]
 (enqueue-val v)
 (retrieve-val))

Then let's try calling this function at our REPL:

 cljs.user=> (experiment.async/enqueue-and-retrieve "Hello!")
 ;; => #object[cljs.core.async.impl.channels.ManyToManyChannel]

If we check our JavaScript console, we should see Hello! printed there.

Note that go blocks return a channel that will contain one message—the
last expression in the go block. This can be helpful for error reporting.
This is important to keep in mind because you won't otherwise be able to
access the return value of the final expression in the block. If you want the
return value of the final expression, you have to take from the channel.

Background listeners
Let's take our original idea and expand on it a bit. It feels contrived and very manual to
have to call a function to check whether there's something in our channel. What if we could
modify our code so that it was just always listening and it did something whenever a new
value was found? Let's rewrite our code to do that. Let's add a new function, listen, as
follows:

 (defn listen
 []
 "Listen to our channel for any events and log them to the console."
 (async-macros/go
 (while true
 (js/console.log (async/<! channel)))))

Advanced ClojureScript Concepts

[128]

This might seem like it would just loop forever, but remember that within
core.async project's go blocks, functions like <! are essentially blocking.
So as long as <! doesn't find a new value on the channel, listen won't
continue to loop.

We'll want to add a call to this function to the end of our namespace to get the listener
started:

 (listen)

You could call this at the REPL instead if you wanted, though in a production application you'd want to start
the listener after you defined it or at an appropriate time rather than through a manual REPL process:

cljs.user=> (experiment.async/listen)
;; => #object[cljs.core.async.impl.channels.ManyToManyChannel]

Now, in theory, if we were to put a new value into our channel, it would be immediately
read and logged by our background listener. Let's give it a shot!

 cljs.user=> (experiment.async/enqueue-val "Is anybody out there?")
 ;; => #object[cljs.core.async.impl.channels.ManyToManyChannel]

You should be able to check your console and see our string in the console-our background
listener is working!

Errors and core.async
One of the great advantages of core.async, its separation of concerns, can also be a
drawback. Specifically, if we have code that expects to be able to read data from a channel
that is generated by some sort of producing function, what happens when errors occur? We
could just handle the error within the producing function, but that might be a very different
part of the program. We might well want a central pipeline for handling errors.

There are a few different ways we could handle this. One possibility might be to create a
separate channel for error messages and to have a listener for that channel that logs and
reports errors to an exception tracking service. Let's consider what that might look like.

As an example, let's assume that we want our application to be able to poll the kitten factory
to make sure everything's going smoothly.

What even happens at the kitten factory? Is it a factory that makes kittens,
or do kittens run the factory? If they're running the factory, what are they
making—balls of yarn? We have trouble imagining this would be a very
efficient factory.

Advanced ClojureScript Concepts

[129]

Such code might look like the following:

 (ns experiment.kitten.factory
 "Logic for handling messages from the kitten factory."
 (:require [cljs.core.async :as async]
 [ajax.core :refer [GET]])
 (:require-macros
 [cljs.core.async.macros :as async-macros]))

 (def channel (async/chan 5))
 (def error-channel (async/chan 5))

 (defn enqueue-val
 "Enqueue a new value into our channel."
 [c v]
 (async-macros/go
 (async/>! c v)))

 (defn success-fn
 [v]
 (enqueue-val channel v))

 (defn error-fn
 [e]
 (enqueue-val error-channel e))

 (defn kitten-factory
 []
 (GET "/kitten-factory"
 {:handler success-fn
 :error-handler error-fn}))

 (defn listen
 []
 "Listen for the latest message from the kitten factory channels."
 (async-macros/go
 (while true
 (let [[v ch] (async/alts! [channel error-channel])]
 (case ch
 channel
 (do #_(send-success-report-to-cat-hq v))
 error-channel
 (do #_(send-error-report-to-cat-sq v)))))))

 (listen)

Advanced ClojureScript Concepts

[130]

Most of this code should look fairly straightforward to you by now, but one new thing is
the use of alts!. alts! is a function that returns a single bound local variable from any of
the provided channels. In this case, it's handy since we can define a single while loop for all
kitten factory-related behavior and just check to see if the message came in on an error
message channel or on the normal message channel.

An alternative pattern that we could embrace, if we wanted, would be one in which we
actually passed an error itself into the channel. This error-handling pattern is one that
David Nolen has written about previously on his blog at h t t p : / / s w a n n o d e t t e . g i t h u b . i
o / 2 0 1 3 / 0 8 / 3 1 / a s y n c h r o n o u s - e r r o r - h a n d l i n g.

In order for the following example to work, we'd need two additional namespaces:

 (ns experiment.kitten.helpers)

 (defn error?
 [x]
 (instance? js/Error x))

 (defn throw-err
 [x]
 (if (error? x)
 (throw x)
 x))

And we need another macro file (remember to use .clj, not .cljs, as the file type!):

 (ns experiment.kitten.macros)

 (defmacro <?
 "Actively throw an exception if something goes wrong when waiting on
a channel message."
 [expr]
 `(experiment.kitten.helpers/throw-err (cljs.core.async/<! ~expr)))

Lastly, our factory file class might now look like the following:

 (ns experiment.kitten.factory
 "Logic for handling messages from the kitten factory."
 (:require [cljs.core.async :as async]
 [ajax.core :refer [GET]]
 [experiment.kitten.helpers])
 (:require-macros
 [cljs.core.async.macros :as async-macros]
 [experiment.macros :as m]))

 (def channel (async/chan 5))

http://swannodette.github.io/2013/08/31/asynchronous-error-handling
http://swannodette.github.io/2013/08/31/asynchronous-error-handling

Advanced ClojureScript Concepts

[131]

 (defn enqueue-val
 "Enqueue a new value into our channel."
 [c v]
 (async-macros/go
 (async/>! c v)))

 (defn kitten-factory
 []
 (GET "/kitten-factory"
 {:handler (fn [res] (enqueue-val channel res))
 :error-handler (fn [err] (enqueue-val channel (js/Error.
err)))}))

 (defn listen
 []
 "Listen for the latest message from the kitten factory channel.
 If message is an error, throw and catch."
 (async-macros/go
 (while true
 (try
 (let [v (m/<? channel)]
 ;; (send-success-report-to-cat-hq)
)
 (catch js/Error e
 ;; (send-error-report-to-cat-hq e)
)))))

 (listen)

The <? macro we've written in this case is a fairly straightforward macro helper that just
checks to see if the value that's been pulled off of the channel is an error and, if it is throws
an error. Otherwise we'd just be passing an error around by value and the compiler
wouldn't actually throw an error.

This seems fine, but it's a little complicated. Do we really need that extra macro and space?
If we recall some of the content we covered earlier in the chapter, we see an opportunity for
us to use a transducer here. Let's try rewriting this example to use a transducer instead:

 (ns experiment.kitten.factory
 "Logic for handling messages from the kitten factory."
 (:require [cljs.core.async :as async]
 [ajax.core :refer [GET]])
 (:require-macros
 [cljs.core.async.macros :as async-macros]))

 (defn error?
 [x]

Advanced ClojureScript Concepts

[132]

 (instance? js/Error x))

 (defn throw-err
 [x]
 (if (error? x)
 (throw x)
 x))

 (def channel (async/chan 5 (map throw-err)))

 (defn enqueue-val
 "Enqueue a new value into our channel."
 [c v]
 (async-macros/go
 (async/>! c v)))

 (defn kitten-factory
 []
 (GET "/kitten-factory"
 {:handler (fn [res] (enqueue-val channel res))
 :error-handler (fn [err] (enqueue-val channel (js/Error.
err)))}))

 (defn listen
 []
 "Listen for the latest message from the kitten factory channel."
 (async-macros/go
 (while true
 (try
 (let [v (async/<! channel)]
 (js/console.log "All good cap")
)
 (catch js/Error e
 ;; (send-error-report-to-cat-hq e)
)))))

 (listen)

Wow! Instead of needing a custom macro, we can just pass the error detection function
directly to the channel and have it do the transformation when we pull from the channel.
This is a great example of the incredible power we can get by combining transducers and
core.async.

Advanced ClojureScript Concepts

[133]

If you're interested in playing with this example in a more interactive
fashion, try modifying the listen function to add more explicit logging
behavior based on the type of value retrieved from the channel, then see
what happens when you try calling enqueue-val at the REPL with
different value types. What happens when you enqueue an error? What
happens when you enqueue a normal value?

Summary
At this point, you should be comfortable with some of ClojureScript's more advanced
concepts. You've had a chance to familiarize yourself with ClojureScript's functional code
patterns and you've learned how to write macros that are capable of changing the way
ClojureScript code itself is evaluated. Lastly, you've had an in-depth introduction to
core.async—an elegant and powerful tool for writing asynchronous code.

In this next chapter, we'll start to dig into the meat of writing web applications in
ClojureScript. You'll learn about how to work with the DOM and CSS, as well as newer
HTML5 elements like canvas and media. By the end of it, you'll be able to build a basic web
application!

4
Web Applications Basics with

ClojureScript
ClojureScript, because of its very essence (Clojure targeting JavaScript through the use of
the Google Closure library), has led to various approaches as far as developing on the
browser is concerned.

As being a hosted language with powerful JavaScript interoperability primitives,
ClojureScript empowers its developers to mirror their JavaScript DOM manipulation and
events handling habits in their ClojureScript code, as if they were translating it verbatim.

But one can go one level further in abstraction, and take advantage from the Google Closure
library's central place in ClojureScript to write better and more browser-agnostic DOM
manipulation and events handling routines.

The DOM can also be accessed through the usage of ad hoc developed ClojureScript
libraries, built to abstract away the raw browser's API in an idiomatic Clojure-esque way.

Besides manipulating directly the DOM, the development on the browser can be addressed
through client-side templating. As ClojureScript is a language in which data plays a central
role, it is no surprise that we can see it fuel interesting client-side templating libraries.

Finally, it is possible to streamline, thanks to some ClojureScript libraries, the CSS assets
creation process.

In this chapter we'll see:

Raw DOM manipulation and events handling
Interacting with the browser via Google Closure
Dommy – an idiomatic ClojureScript Library for the DOM

Web Applications Basics with ClojureScript

[135]

Client side templating in ClojureScript
CSS preprocessors in ClojureScript

Raw DOM manipulation and events handling
Thanks to the interoperability with JavaScript, we can translate, mostly word by word, the
same very mutable JavaScript logic into ClojureScript programs. You'll find yourself select
DOM nodes using their IDs or mutating their properties to change their appearance on the
browser for instance. In JavaScript, handling events corresponds to setting callbacks, that is,
assigning functions – called callbacks – to special properties corresponding to those events
(like onmousemove, and so on). You can follow the same logic in ClojureScript, setting event
handlers by mutating those same DOM nodes event descriptor properties.

You only have to remember that if you want to access a DOM's element property, you
would write:

(-.property a-js-object)

And to mutate these properties properties, you would have to make use of the set!
function:

(set! (-.a-property a-js-object)

Although this approach means somehow falling back to raw JavaScript, all of the functional
operators and powerful data structures that are specific to ClojureScript remain available
for the developers to use. You can still store JavaScript objects in ClojureScript vectors, sets
or maps, and apply to such collections map, reduce, filter or whatever functional
operator you please. You can even map functions that contain raw JavaScript manipulation
operations to seqs of JavaScript objects.

Let's see an example of how DOM manipulation and events handling can be programmed
in a style heavily inspired by plain JavaScript coding practice.

We'll be using Figwheel to work with our project. Create a new Clojure project:

lein new raw-dom

Edit the project.clj file of your freshly created project so it looks like the following:

(defproject raw-dom "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/clojurescript "1.7.228"]]
 :plugins [[lein-figwheel "0.5.0-6"]]

Web Applications Basics with ClojureScript

[136]

 :clean-targets [:target-path "out"]
 :cljsbuild {
 :builds [{:id "dev"
 :source-paths ["src"]
 :figwheel true
 :compiler {:main "raw-dom.core"}
 }]
 })

Now create a HTML page, index.html, containing the following code:

<html>
 <body>
 <h2>Clicks So Far:</h2>
 <h3 id="clicks">0</h3>
 <button id="reset-btn">Reset count!</button>
 <script type="text/javascript" src="main.js"></script>
 </body>
</html>

This HTML page contains some text, and a button. Our intent is to implement a
functionality which consists of counting the number of clicks on the page and updating
them in the h3 HTML header identified as clicks in the DOM. If the user hits the Reset
Count! button, the clicks count is reset to .

Let's implement this functionality. Create the core.cljs file (present in the src/raw_dom
directory in your project folder) containing the following ClojureScript code:

(ns raw-dom.core)

(def cnt-holder (.getElementById js/document "clicks"))
(def reset-btn (.getElementById js/document "reset-btn"))
(def cnt (atom 0))

(defn inc-clicks!
 []
 (set! (.-innerHTML cnt-holder) (swap! cnt inc)))

(defn reset-clicks!
 []
 (set! (.-innerHTML cnt-holder) (reset! cnt -1)))

(set! (.-onclick js/document) inc-clicks!)
(set! (.-onclick reset-btn) reset-clicks!)

Web Applications Basics with ClojureScript

[137]

The preceding snippet gets two DOM elements, referenced by their identifiers in the DOM.
The first one is a h3 HTML header, identified by “clicks“, and the second is a button,
identified by “reset-btn“.

We then define an atom, cnt, which will act a the clicks counter.

You would have noticed that we also defined two functions, inc-clicks!, which
increments the counter value and assigns it to the innerHTML property of the h3 HTML
header, and reset-clicks!, which resets the counter value and assigns it to the content of
the same HTML header (we reset it at -1 because the click on the button will also be
accounted for as a click on the page, yielding an automatic increment after hitting the
“Reset Count!” button).

We finally assign inc-clicks! to the onclick event handler of the JavaScript document,
and assign reset-clicks! to the “Reset Count!” button.

Now run your project's live-coding session by issuing the following command:

 lein figwheel

And point your browser to index.html, by opening it from your file manager.

You'll notice that when you click on the page, the number increases, and clicking on the
button sets it to 0.

You've seen how we can translate raw JavaScript thinking to ClojureScript. Naturally, every
JavaScript developer would at this stage wonder: can I use JQuery? It is totally possible to
do so, but going this way with the basic JavaScript interoperability style would lead to very
bloated code and would probably make us deviate from our original purpose, of benefiting
from a high and expressive development experience on the browser. Besides, JQuery, in
order to be properly handled at the Google Closure advanced mode compilation, must be
referenced in the externs section of your project.clj file, thus adding some more
complexity to your work.

That being said, there is one library that abstracts away jQuery use in a good idiomatic
ClojureScript way: Jayq (h t t p s : / / g i t h u b . c o m / i b d k n o x / j a y q). As the author of this
library states, having a good layer of abstraction over one of the most fundamental libraries
of the web is a power addition to our ClojureScript toolbox (at the cost of properly
managing the externs declarations, of course!). Let's see it in action in a little example.

https://github.com/ibdknox/jayq

Web Applications Basics with ClojureScript

[138]

First, let's create a new project which we'll call, jq-project and add the dependency to
jayq in our project.clj:

(defproject jq-project "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/clojurescript "1.7.228"]
 [jayq "2.5.4"]]
 :plugins [[lein-figwheel "0.5.0-6"]]
 :clean-targets [:target-path "out"]
 :cljsbuild {
 :builds [{:id "dev"
 :source-paths ["src"]
 :figwheel true
 :compiler {:main "jq-project.core"}
 }]
 })

Next, let's prepare an HTML page that we'll change by using ClojureScript powered jQuery.
Be sure to include the jQuery JavaScript dependency in the index.html page. Since we're
not compiling our ClojureScript with advanced mode, there's no need to add the jQuery
reference in the externs section of the Google Closure compilation options.

Here is what our page, index.html, should look like:

<html>
 <body>
 <head>
 <script src=
"https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></scrip
t>
 </head>
 <div id="some-div"><a>Some Text</div>
 <script type="text/javascript" src="main.js"></script>
 </body>
</html>

Now, let's write some ClojureScript code that showcases Jayq's usage. Let's edit our
project's core.cljs file so that it contains the following code:

(ns jq-project.core
 (:use [jayq.core :only [$ css html]]))

(def $some-div ($:#some-div))

(defn change-the-div!
 []
 (-> $some-div

Web Applications Basics with ClojureScript

[139]

 (css {:background "cyan"})
 (html "changed Inner HTML")))

Note how Jayq bridges the gap between ClojureScript and jQuery: it
exposes a dollar ($) function, so jQuery developers feel at home. The
library enables us to access all jQuery functionality via this dollar function.

In core.cljs, we selected the div by its identifier, and stored it in some variable, $some-
div. Then, we built a function, change-the-div!, which when launched, changes $some-
div's CSS and HTML properties. See how the access to the jQuery beloved jQuery dollar
flows through the Clojure-esque threading macro!

Now let's launch our project's interactive development session:

 $ lein figwheel

And let's point our browser to index.html. It should show a white page on which we can
read Some Text.

Go back in your Figwheel REPL, and evaluate the buffer showing core.cljs using the
following command on CIDER (provided you followed instructions about using inf-
clojure in Chapter 1, Getting Ready For ClojureScript Development):

 M-x RET inf-clojure-eval-buffer

You can also evaluate this namespace by typing in (require jq-project.core) at the
Figwheel REPL.

Now launch change-the-div! and see how the div color and text changed.

The example shows how we can use ClojureScript to interact with the browser in a “raw”
way, manipulating the DOM with JavaScript and sQuery. So, now you might be
wondering, if ClojureScript is based on the Google Closure Library, why couldn't we
manipulate the DOM nodes using this library? Great question! We'll see this in the
following section.

Web Applications Basics with ClojureScript

[140]

Interacting with the browser using the Google
Closure Library
Since ClojureScript is built on top of the Google Closure Library, it is possible for it to
import facilities from the library directly. We can use the Google Closure Library to
access the DOM, respond to events and manipulate style via respective Google Closure
Libraries: goog.dom, goog.events and goog.style. They are all directly available to
ClojureScript and require no special configuration to work with the Advanced Compilation
mode.

Let's have a look at what working with these libraries looks like in the following project.
We'll create a Clojure project and name it raw-goog.

$ lein new figwheel raw-goog

We'll use the index.html page we built for the click counting project, only here we'll re-
implement the project using the Google Closure Library as follows:

<html>
 <body>
 <h2>Clicks So Far:</h2>
 <h3 id="clicks">0</h3>
 <button id="reset-btn">Reset count!</button>
 <script type="text/javascript" src="main.js"></script>
 </body>
</html>

Now, let's rewrite the click-counting code using the Google Closure Library:

(ns raw-goog.core
 (:require [goog.dom :as dom]
 [goog.events :as events]))

(def cnt-holder (dom/getElement "clicks"))

(def reset-btn (dom/getElement "reset-btn"))

(def cnt (atom 0))

(defn inc-clicks!
 []
 (dom/setTextContent cnt-holder (swap! cnt inc)))

(defn reset-clicks!
 []
 (dom/setTextContent cnt-holder (reset! cnt 0)))

Web Applications Basics with ClojureScript

[141]

(events/listen cnt-holder "click" inc-clicks!)(events/listen reset-btn
"click" reset-clicks!)

Launch your interactive ClojureScript development development using Figwheel:

 $ lein figwheel

Our application now increments the counter by clicking on the shown number. Note the use
of the getElement method of the goog.dom library to select a DOM node, and the use of
the method listen from the goog.events library to attach event handlers to specific
DOM elements.

But this approach, apart from targeting the Google Closure Library, is practically no
different from using basic JavaScript interoperability style. Can we interact with the Google
Closure Library in a more idiomatic way? The answer to this question is the purpose of
Domina (h t t p s : / / g i t h u b . c o m / l e v a n d / d o m i n a), a library abstracting usage of the
Google Closure Library in a Clojure-esque way. Let's take a look at it.

Let's create a new Figwheel Project, domina-project, and add the domina dependency
into the project.clj file:

(defproject domina-project "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/clojurescript "1.7.228"]
 [domina "1.0.3"]]
 :plugins [[lein-figwheel "0.5.0-6"]]
 :clean-targets [:target-path "out"]
 :cljsbuild {
 :builds [{:id "dev"
 :source-paths ["src"]
 :figwheel true
 :compiler {:main "domina-project.core"}
 }]
 })

Let's use a stripped-down HTML page, so we can test adding DOM elements to it and
attaching events to them with domina. Here's what our index.html should look like:

<html>
 <body>
 <div id="a-div"></div>
 <script type="text/javascript" src="main.js"></script>
 </body>
</html>

https://github.com/levand/domina

Web Applications Basics with ClojureScript

[142]

Now, let's focus on the ClojureScript code. For this example, we'll attach a hyperlink to
Wikipedia and a button to our page's div element. We'll also add a click event handler to
the button that will emit a greeting message. Here we go:

(ns domina-project.core
 (:require [domina :as dom]
 [domina.css :as css]
 [domina.events :as events]))

(def the-div (css/sel "#a-div"))
(def the-href (dom/html-to-dom "<a>"))
(def the-btn (dom/html-to-dom "<button></button>"))

(defn add-dom-elts!
 []
 (doto the-href
 (dom/set-text! "Wikipedia")
 (dom/set-attr! :href "http://en.wikipedia.org"))

 (dom/append! the-div the-href)
 (doto the-btn
 (dom/set-text! "Click me!")
 (dom/set-attr! :type "button"))

 (events/listen!
 the-btn :click
 (fn[evt]
 (let [my-name (-> evt events/current-target dom/text)]
 (js/alert (str "hello world! from : " my-name)))))

 (dom/append! the-div the-btn))

We first select the main div using its id, #a-div as a CSS selector. Then, we create two
empty DOM nodes, one a element and one button.

In the body of the add-dom-elts! function, we set the text of the a element to
“Wikipedia” and attach an href attribute to it so it becomes a hyperlink. We then add our
freshly created hyper-link to the main div.

Next, we set the “Click me!” text on the button DOM node, and set its type attribute to
button. After we attach a click event handler to it – showing a greeting and the caption of
the event initiator—we add it to the DOM by appending it to the #a-div div.

Web Applications Basics with ClojureScript

[143]

The careful reader may have noticed how our last code snippet looked idiomatic—in the
style of pure ClojureScript functionality. It is hard to tell that this code is actually making
calls to the Google Closure Library under the hood.

For this next section, we'll start a Figwheel browser-REPL for our project:

 $ lein figwheel

Point your browser to index.html. Once done, load the preceding ClojureScript code
(either using your REPL or via your editor), and check back in your browser: you
should now see that two new elements have appeared on your web page: a hyperlink to
Wikipedia and a button:

So far, we've seen how to interact with the DOM using direct JavaScript interoperability as
well as using, Jayq for an abstraction layer over jQuery. We've also seen how to interact
with the browser's elements using the Google Closure Library, either through direct calls or
via an idiomatic wrapper around it.

The ClojureScript community came up with other alternatives as well. These alternatives
seek even better conformance to ClojureScript ideals in terms of functional programming
techniques. Dommy, from Prismatic, is one of these libraries. Let's get acquainted with its
way of working with the DOM and associated event handling.

Dommy – An idiomatic ClojureScript library
for the DOM
Dommy follows a different approach than what we've see so far. For instance, selecting
DOM elements is done via macros that expand to native JavaScript-like DOM selection
calls.

Web Applications Basics with ClojureScript

[144]

Dommy's selection facilities model jQuery's in that that is possible to select single or
multiple DOM nodes (respectively using the sel1 or sel macros), and to specify a
hierarchy of CSS selectors that, when chained, identify an element to be accessed.

Dommy's DOM manipulation routines are also heavily inspired by jQuery but fit
ClojureScript's functional programming style by permitting, for instance, chaining
transformations, as we'll see in the upcoming example.

Event handling procedures in Dommy pretty much resemble the Google Closure Library's
by using the listen! (and unlisten!) mechanisms, and not attaching callbacks to
properties related to events in specific DOM elements.

Let's see a Dommy sample project. Let's first create a new ClojureScript project, which we'll
name dommy-project. Modify its project.clj definition so that it contains the following:

(defproject dommy-project "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/clojurescript "1.7.228"]
 [prismatic/dommy "1.1.0"]]
 :plugins [[lein-figwheel "0.5.0-6"]]
 :clean-targets [:target-path "out"]
 :cljsbuild {
 :builds [{:id "dev"
 :source-paths ["src"]
 :figwheel true
 :compiler {:main "dommy-project.core"}
 }]
 })

Let's prepare an HTML page, index.html, in which we'll create a div holding two p
elements:

<html>
 <head><link rel="stylesheet" href="style.css"></head>
 <body>
 <div id="a-div">
 <p class="changeme">I should have a border</p>
 <p class="changeme">I should have a border,too</p>
 </div>
 <script type="text/javascript" src="main.js"></script>
 </body>
</html>

Web Applications Basics with ClojureScript

[145]

Let's set the contents of style.css as follows:

.changeme {
 background-color: yellow;
}

.border {
 border: 2px solid red;
}

In the beginning, when we load the HTML page, the two p elements should have a yellow
background and show their respective captions.

The aim of our example is to show how we can select a set of DOM nodes by chaining CSS
selectors (which will all be p elements inside a-div) and how to apply a Dommy
transformation to them that removes the CSS changeme class and applies the new CSS
border class.

After that, we will add a button and append it to a-div and attach a click event handler to
it that will show a greeting on a click event. Modify the core.cljs file, under
the src/dommy_project directory of our project, to look like the following:

(ns dommy-project.core
 (:require
 [dommy.core :as dommy :refer-macros [sel sel1]]))

(defn set-borders!
 []
 (let [all-ps (sel [:#a-div :p])]
 (->> all-ps
 (map #(dommy/remove-class! % :changeme))
 (map #(dommy/add-class! % :border))
 (map #(dommy/set-text! % "I now have a border!")))))

(defn add-btn!
 []
 (let [the-div (sel1 :#a-div)
 a-btn (dommy/create-element "button")]
 (dommy/set-text! a-btn "Click me!")
 (dommy/listen! a-btn :click
 (fn[e] (js/alert "You clicked me!")))
 (-> the-div
 (dommy/append! a-btn))))

Web Applications Basics with ClojureScript

[146]

Launch a Figwheel REPL for the dommy-project project:

 $ lein figwheel

Next, point your browser to index.html (loading it from your filesystem). You should see
the following:

Now, let's load dommy-project.core via the Figwheel REPL and call the set-borders!
function. This function selects all the p elements inside a-div, then applies a set of
transformations using the functional operator map: removing each element's initial CSS
class, changeme, and assigning to them the CSS border class and setting a new caption.
Note how the threading macro is used, chaining the DOM transformations, with respect to
the ClojureScript functional spirit. After you've launched the function, you should see this:

Web Applications Basics with ClojureScript

[147]

Now let's add a button by calling add-btn!. This function creates a “button” DOM node,
sets its caption to Click me! and assigns a click event handler to it using
Dommy's listen!. After you've launched this function, you should see:

Clicking on this newly created button yields a greeting message, per the function we
attached to the click event.

Wow! We've covered quite a range of ways to manipulate the DOM in ClojureScript! We
went from the ground up, beginning by interacting with the browser using native
JavaScript and then the ClojureScript Library, Jayq. Then, we took advantage of the Google
Closure Library that ClojureScript is built upon to issue DOM processing operations,
following two approaches: one issuing direct Google Closure Library calls, and one using
the help of a ClojureScript wrapper library, Domina. Lastly, we've learned about some
idiomatic ClojureScript Libraries that abstract away DOM manipulation and event handling
in the browser.

But manipulating the DOM is only one approach to building Web user interfaces. The other
one would be to rely on client-side templating tools, where developers can declare their
interfaces using ClojureScript data structures without caring about how DOM nodes
are created and mutated. Let's take a look at some of our client-side templating possibilities.

Client-side templating in ClojureScript
In Clojure land, there are two big families of HTML templating tools: Hiccup (h t t p s : / / g i
t h u b . c o m / w e a v e j e s t e r / h i c c u p) and Enlive (h t t p s : / / g i t h u b . c o m / c g r a n d / e n l i v e).
Usually used in conjunction with a server framework like Ring (h t t p s : / / g i t h u b . c o m / r i
n g - c l o j u r e / r i n g), they are used to programmatically generate the HTML for pages that
are eventually served to the web browser. Perhaps unsurprisingly, the ClojureScript
community drew inspiration from these two server-side templating philosophies to design

https://github.com/weavejester/hiccup
https://github.com/weavejester/hiccup
https://github.com/cgrand/enlive
https://github.com/ring-clojure/ring
https://github.com/ring-clojure/ring

Web Applications Basics with ClojureScript

[148]

libraries offering client-side templating. Let's first take a look at Hipo (h t t p s : / / g i t h u b . c
o m / j e l u a r d / h i p o /), the client-side alter-ego of Hiccup. But before we do that, let's discuss
Hiccup's syntax.

Hiccup's general idea is as follows: HTML tags are represented as vectors, and any attribute
these tags enclose are denoted using maps. For example, let's consider the following snippet
of HTML, a div, with one CSS class, a-class:

<div class="a-class">some-text</div>

The Hiccup vector corresponding to this HTML would be:

[:div {:class "a-class"} "some-text"]

It is also possible to chain CSS identifiers and classes in Hiccup to benefit from a more
concise syntax. Consider the following example:

<div id="a-div" class="class1 class2">
some-text
</div>

The Hiccup code generating the previous HTML is:

[:div#a-div.class1.class2 "some-text"]

This syntax makes it possible to generate user interfaces using ClojureScript sequences. For
instance, to generate some menu options in HTML, we can use the following Hiccup
snippet:

[:ul
 (for [x ["item1" "item2" "item3" "item4"]]
 [:li x])]

With this little primer on Hiccup syntax under our belt, let's see how, Hipo can be used to
build a web user interface in the following example.

As usual, let's begin by creating a new ClojureScript project, naming it hipo-project. In
this project's project.clj file, be sure to have the following:

(defproject hipo-project "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.7.0"]
 [org.clojure/clojurescript "1.7.170"]
 [hipo "0.5.1"]]
 :plugins [[lein-figwheel "0.5.0-2"]]
 :clean-targets [:target-path "out"]
 :cljsbuild {
 :builds [{:id "dev"

https://github.com/jeluard/hipo/
https://github.com/jeluard/hipo/

Web Applications Basics with ClojureScript

[149]

 :source-paths ["src"]
 :figwheel true
 :compiler {:main "hipo-project.core"}
 }]
 })

Be aware that Hipo internally uses reader conditionals, so you must set your Clojure
version to be at least 1.7.0 (the version of Clojure in which reader conditionals were
introduced).

Next, let's prepare an index.html page containing only one div:

<html>
 <body>
 <div id="a-div"></div>
 <script type="text/javascript" src="main.js"></script>
 </body>
</html>

Now let's prepare our core.cljs file, where we'll use Hipo to initialize our user interface:

(ns hipo-project.core
 (:require [hipo.core :as hipo]))

(defn create-menu-v [items]
 [:ul#my-menu
 (for [x items]
 [(:li {:id x} x])])

(def menu (hipo/create (create-menu-v ["it1" "it2" "it3"])))

(defn add-menu!
 []
 (.appendChild js/document.body menu))

(defn reconcile-new-menu! []
 (hipo/reconciliate! menu (create-menu-v ["new it1" "new it2" "new
it3"])))

Next, let's launch a live coding session for our project:

 $ lein figwheel

Finally, we'll load our hipo-project.core namespaces either via the Figwheel REPL or
our editor.

Let's review what's actually going on in our code. The create-menu-v function just
returns a Hiccup vector of a ul menu with the identifier my-menu.

Web Applications Basics with ClojureScript

[150]

The menu var contains the DOM node generated by our first Hipo generation, yielding a
menu of li elements with the captions it1, it2 and it3.

Ler's now call the add-menu! function. You should see:

Hipo has built-in “reconcilation” functions that trigger React-style DOM diffs and renders.
For instance, the reconcile-new-menu! function uses the create-menu-v function to
attach a new Hiccup vector to our menu var. If we call this function we should see our menu
items get replaced with newer versions.

We've looked at one client-side templating library, Hipo, which is inspired by Hiccup's
syntax. Now let's take a look at the other big name in Clojure's HTML/CSS templating
world, Enlive. In particular, let's study a client-side templating library called Enfocus (h t t p
s : / / g i t h u b . c o m / c k i r k e n d a l l / e n f o c u s).

Unlike Hiccup, which only offers templating as a declarative way of generating HTML,
Enlive is both a templating and a transformation library. That means that Enlive includes a
set of DOM selection facilities, coupled with transformations that can be applied to any
DOM element (once selected).

Generally speaking, Enlive syntax specifies a mapping between CSS3 compliant selectors
and corresponding transformations. An example is worth a thousand words, so here is a
simple HTML page definition.

Be aware that this is Enlive on Clojure, and we provide the namespace
declaration only to illustrate an Enlive example. A fully working
ClojureScript example will follow as we get into Enfocus.

(require '[net.cgrand.enlive-html :as html])
(html/deftemplate sample-page "page.html"
 [page]
 [:title] (html/content (page :title))

https://github.com/ckirkendall/enfocus
https://github.com/ckirkendall/enfocus

Web Applications Basics with ClojureScript

[151]

 [:h1] (html/content (page :title)))

When called, our Enlive function, sample-page, will return a sequence of strings. Each
string in the sequence corresponds to an HTML tag. So in order to get the resulting HTML,
we have to concatenate these strings together, like so:

(reduce str (sample-page {:title "My Sample Page Title"}))

Note that the html/deftemplate call triggers a transformation on every DOM element for
which we have provided a selector. For instance, here we've set the html/content of all
elements matching the [:title] and [:h1] selectors to be (page :title).

Okay, that's enough about how Enlive works. Let's take a look at Enfocus. Let's set up a
new ClojureScript project, and name it enfocus-project. Make sure to add Enfocus to
your project's dependencies, like so:

(defproject enfocus-project "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/clojurescript "1.7.228"]
 [enfocus "2.1.1"]]
 :plugins [[lein-figwheel "0.5.0-2"]]
 :clean-targets [:target-path "out"]
 :cljsbuild {
 :builds [{:id "dev"
 :source-paths ["src"]
 :figwheel true
 :compiler {:main "enfocus-project.core"}
 }]
 })

Now, as you might have guessed, we will prepare an HTML page, index.html, in which
we will client-side templating with Enfocus:

<html>
 <body>
 <div id="a-div" style="border: 3px coral solid;"></div>
 <script type="text/javascript" src="main.js"></script>
 </body>
</html>

In our project's core.cljs file, we'll prepare a series of functions to showcase Enfocus,
capabilities:

(ns enfocus-project.core
 (:require [enfocus.core :as ef]
 [enfocus.events :as events]
 [enfocus.effects :as effects])

Web Applications Basics with ClojureScript

[152]

 (:require-macros [enfocus.macros :as em]))

(defn gen-button
 [id caption]
 (ef/html [:button {:id id} caption]))

(defn say-hello!
 []
 (ef/at js/document
 ["#a-div"] (ef/content "Hello From Enfocus!")
 ["body"] (ef/append (gen-button "btn1" "Click me!"))
 ["body"] (ef/append (gen-button "btn2" "Resize the div!"))))

(em/defaction activate-button! []
 ["#btn1"] (events/listen :click #(js/alert "I am Clicked!")))

(em/defaction resize-div! [param]
 ["#a-div"] (effects/chain
 (effects/resize param :curheight 500)
 (effects/resize :curwidth (* 2 param) 500)))

(em/defaction activate-resize! []
 ["#btn2"] (events/listen :click #(resize-div! 200)))

Launch your Figwheel browser REPL:

 $ lein figwheel

Now let's walk through what's going on in our file.

First, we have gen-button. This uses the html function from Enfocus to create DOM nodes
using Hiccup's syntax. We can use our knowledge of Hiccup to create new DOM elements
and use them in our Enfocus templates. (Enlive permits the use of the Hiccup style helper
form version 1.1.0).

Next, we'll study say-hello! This function uses the at operator, which allows us to select
DOM nodes and apply transformations to them. A transformation is any function accepting
DOM nodes and that returns new transformed DOM nodes. Enfocus comes with many
transformations built-in; we can get an exhaustive listing of the Enfocus transformations at
the project repository on GitHub (h t t p s : / / g i t h u b . c o m / c k i r k e n d a l l / e n f o c u s). In our
example, we've used two of them: content, which changes the text content of a selected
DOM element, and append, which adds new DOM nodes to the selected node. In this case,
our selected DOM nodes are the buttons we created with the gen-button function.

https://github.com/ckirkendall/enfocus

Web Applications Basics with ClojureScript

[153]

To create event handlers, we'll use what Enfocus calls actions. Actions are modifications
that operate live on the DOM. Let's take a look at the activate-button! action, defined
by the Enfocus defaction macro. We select one of the two buttons by its identifier #btn1,
and apply to it a listener on the click event using the Enfocus events/listen method.

If we call this action whenever we click the button labeled “Click me!”, we'll get a greeting
from our browser.

Lastly, we'll discuss Enfocus: effects. Effects are simply transformations that you can see
occurring over given periods of time. In the case of our example, we are going to resize the
#a-div div by decreasing its width and increasing its height.

We accomplish this effect by changing two effects together, as you can see in the code. First
we resize the div's width, then its height. These chained effects are implemented in an
action, resize-div!. We want to be able to watch the effects on the div, so we've
developed another action, activate-resize!, which will add a listener to #btn2,
triggering the double resizing effect whenever we hit this button.

Use the REPL to call resize-div! then activate-resize!. From now on, if you click on
the button labeled Resize the div!, you'll see the orange border first shrinking to the
left, then expanding downwards. Here is what your page should look like before the effects
have been completed:

We've now covered quite a few approaches to DOM manipulation and event handling in
ClojureScript. You have now a wide range of methodologies to choose from when it comes
to building a user interface on the browser with ClojureScript. But as a web applications
developer, there is one more family of tools you may want to be able to use in order to gain
in productivity: CSS preprocessors. In this next section, we'll take a look at what
ClojureScript has to offer with regard to these of tools.

Web Applications Basics with ClojureScript

[154]

CSS preprocessors in ClojureScript
Broadly speaking, a CSS preprocessor is a language that can help you write CSS. Authoring
style sheets in vanilla CSS can be a tedious process, if only because of the lack of variables
and control flow structures. Experience has shown that this way of working does not scale
well, especially when we add media queries and cross-browser support to the equation.

That's why modern front-end development involves heavy use of CSS preprocessors. Such
tools have thrived during the last couple of years, making Less, Sass, Stylus and the like
commonplace in web front-end development today.

Generally such tools are server-based, and this is more or less common sense: CSS does not
change frequently, so hosting it on the browser might make the client suffer an unnecessary
burden.

But recently, as Node.js has gained momentum, the rise of JavaScript preprocessors like
Less or Stylus has seen more of this logic reside on the client side. This comes with a few
advantages, the biggest being that you no longer need to have your server set up in order to
get started since your preprocessor sits in the browser.

Whatever side you may be considering to host your CSS preprocessor, ClojureScript as a
platform has a lot to offer. As a language with data manipulation at its heart, it's a perfect fit
for hosting an embedded language targeting CSS. Let's see how one ClojureScript library
called Garden handles this. (h t t p s : / / g i t h u b . c o m / n o p r o m p t / g a r d e n)

Garden is a Clojure and ClojureScript library with a Hiccup-like syntax for describing CSS
rules. These Hiccup-like data structures are turned into CSS strings using Garden's css
function. To use an example from Garden's README:

user=> (require '[garden.core :refer [css]])
nil
user=> (css [:body {:font-size "16px"}])
"body{font-size:16px}"

CSS rules are described by vectors in Garden. The initial non-seq elements of a rule vector
are considered to be the selectors of that rule. For instance, let's look at the following vector:

[:div :a {:border-style "solid"}]

The preceding vector is compiled into the following CSS:

"div,a{border-style:solid}"

This applies a solid border to all divs and a elements on the page linking to this CSS.

https://github.com/noprompt/garden

Web Applications Basics with ClojureScript

[155]

We can also define hierarchies of selectors by nesting rules vectors. For example, to apply a
particular style to all p elements that are children of the div with the ID mydiv we could
write this:

[:mydiv [:p {:background-color "yellow"}]]

In Garden, accessing parent selectors in a similar manner to Less/Sass is also possible, using
the & character:

[:mydiv {:border-style "solid"}
 [:&:hover
 {:border-style "dashed"}]]

The equivalent CSS would be:

"mydiv{border-style:solid}mydiv:hover{boder-style:dashed}"

One interesting particularity of Garden's syntax is that in a declaration map, if the value is
also a map, the associated key is considered as a prefix to the declaration map's keys. This is
particulary useful in situations when you have to assign several prefixed properties, like -
moz-border-radius and -moz-box-sizing, as in the following example:

[:.box {:-moz {:border-radius "3px"
 :box-sizing "border-box"}}]

This translates to:

".box{-moz-border-radius:3px;-moz-box-sizing:border-box}"

Garden supports media-queries through a special function, at-media. Let's take a look at
an example, taken from the Garden project's README:

user=> (require '[garden.stylesheet :refer [at-media]])
nil
user=> (css (at-media {:screen true} [:h1 {:font-weight "bold"}]))
"@media screen{h1{font-weight:bold}}"

Garden also offers other possibilities which go way beyond its direct capabilities: it is based
on ClojureScript data structures, and so we have the power of a real expressive language to
generate our CSS, with a bias towards interactive development.

Let's see an example of client-side Garden in action. Create a new project, garden-
project, and edit your project.cj to add Garden as a dependency:

(defproject garden-project "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.8.0"]
 [org.clojure/clojurescript "1.7.228"]

Web Applications Basics with ClojureScript

[156]

 [garden "1.3.0"]]
 :plugins [[lein-figwheel "0.5.0-2"]]
 :clean-targets [:target-path "out"]
 :cljsbuild {
 :builds [{:id "dev"
 :source-paths ["src"]
 :figwheel true
 :compiler {:main "garden-project.core"}
 }]
 })

As usual, we'll need an HTML page. Prepare an index.html page containing the following
code:

<html>
 <body>
 <div>
 <p>First paragraph</p>
 <p>Second paragraph</p>
 </div>
 <script type="text/javascript" src="main.js"></script>
 </body>
</html>

And, we'll edit our core.cljs file to include the following:

(ns garden-project.core
 (:require [garden.core :refer [css]]
 [goog.style]))

(defn modify-css!
 []
 (goog.style/installStyles (css
 [:div {:border-style "solid"}
 [:&:hover {:border-style "dashed"}]
 [:p {:background-color "cyan"}]])))

Lastly, let's launch a Figwheel REPL:

 $ lein figwheel

Point your browser to index.html. You should see a blank page containing two
paragraphs.

Web Applications Basics with ClojureScript

[157]

Our page contains one div, which in turn has two child p element, displaying some
captions. The styling of this page is initially blank. We'll use Garden to generate a style for
the div and the p elements, and we'll activate it using a Google Closure Library
facility, goog.style/installStyles.

We'll use Garden to first attach a solid border to our div, and then to use the parent selector
& to attach a hover attribute adding a dashed order. We'll also specify a style for the p
elements, a cyan background color.

We can render the Garden vector as CSS with Garden's css function, and we'll upload this
newly created style-sheet as a whole to the document using Google
Closure's goog.style/installStyles function.

Here's where we see the magic of the modify-css! function. Load your garden-
project.core/modify-css!. Your page should now look like this:

When you hover over the div (which you can recognize thanks to the border), it should
change to be bordered with a dashed line.

Fantastic! We now have access to a fully featured CSS pre-processing engine that comes
with all of the inherent beauty ClojureScript data structures. With the help of the Google
Closure Library, we can also easily upload the resulting CSS to our web pages, empowering
us to live-code our CSS!

Web Applications Basics with ClojureScript

[158]

Summary
In this chapter, we reviewed some of the many possible ways to design user interfaces on
the browser with ClojureScript.

First, we've seen how to adopt an approach dictated by ClojureScript's host language,
JavaScript, via direct interoperability, as well as via Jayq (a library offering functional access
to jQuery).

We've learned how we can use the Google Closure Library, a central piece of the
ClojureScript's compiler, either directly or via a layer of abstraction (using Domina).

Then, we saw how to use Dommy, which is a ClojureScript library designed with functional
idioms as its main motivation.

Next we delved into client-side templating languages and reviewed two libraries inspired
by the two major server-side HTML templating libraries in the Clojure ecosystem: Hipo and
Enfocus.

Lastly, we reviewed the place of a CSS preprocessor in front-end web development, and
saw how to use Garden, a Clojure/ClojureScript CSS preprocessor, as a means to prototype
CSS generation from the comfort of our Figwheel REPL.

All of these approaches remain too close to the browser. Indeed, with these libraries, we still
must deal with application state, routing, and data persistence ourselves. We'll address
these challenges in the following chapters. We'll start by integrating our single page
applications with various data back-ends or authentication providers in the next chapter. In
Chapter 6, Building Richer Web Applications, we'll introduce the use of more advanced web
user interface development approaches like Om, enhancing applications with core.async,
and building for the real-time web via the use of WebSockets.

5
Building Single Page

Applications
In this chapter, we'll build a simple (Single Page Application (SPA) using Om and React.js.
Om is a ClojureScript library that wraps React.js, a library released by Facebook.
ClojureScript's power and expressiveness make it an excellent choice for building web
applications. In this chapter, we'll cover the following:

Om and React.js
Routing using bidi
HTML5 history and pushState
Working with the REST APIs using AJAX

Understanding Single Page Appliactions
An SPA is a way of building a web application. In a traditional application, the server
returns an HTML response containing the page content. Visiting another page on the
application requires an HTTP request to the server, which returns the HTML for the second
page and any associated resources, such as the same JavaScript and CSS as the previous
page. In an SPA, the page content is generated via JavaScript calling DOM functions
directly (for example, document.createElement), and links on the page simulate a new
page load but don't result in an HTTP request to the server. Many well-known websites,
such as Gmail, Facebook, and Twitter are single page applications.

Building Single Page Applications

[160]

The tradeoffs of SPAs
SPAs have advantages and disadvantages over conventional web applications; we will look
at both here.

Advantages:

Provides richer UI
Easier to deal with client-side state and data
Easier to deal with AJAX
Faster client interactions once the page is loaded

Disadvantages:

More development work
Initial page load is usually slower
Legacy browser support is harder

Let's get into more detail for each advantage and disadvantage, in turn.

Richer UI
React.js (on which Om is based) makes it simple to build a data-driven UI that dynamically
changes the contents of the page based on new data. This data can come from anywhere
we can imagine: user interactions, AJAX calls, or websockets. In a conventional application,
we'd probably use a library such as jQuery to directly manipulate the DOM, but that can get
messy and complex as the page gets more complex. Om is data driven with a clear
separation between the data used to render the page and the resulting DOM elements,
which makes it easier to build large, complex applications.

Easier to deal with client-side data
In a conventional application, when the user clicks on a link to the next page, their state is
typically lost. Here, state refers to information that the user has generated, for example, the
contents of a shopping cart. Because each new page is a blank slate, that state has to be
stored somewhere or it is lost. The user's state can be in a cookie or on the server. In an SPA,
the page never actually reloads, so it is trivial to store data in standard JS data structures on
the page. Of course, you'll typically want to store the user's shopping cart data somewhere
safe, like in a database, but it's possible to store the data on a page in an SPA.

Building Single Page Applications

[161]

Easier to deal with AJAX
AJAX is somewhat of a synthesis of the previous two advantages. Let's continue with our
shopping cart example: the user loads their shopping cart page, which currently contains
two items. In a conventional application, the HTML returned from the server contains DOM
elements representing each item. The user deletes one item and then clicks on the button to
change the quantity on the second. For each action (deleting an item and changing the
quantity), there's an AJAX call to the server.

In a conventional application using jQuery, we directly modify the DOM when the AJAX
calls are successful. When creating the new item, we need to add content to the page. We
have several choices, all suboptimal:

Reload the page (this is slow, and interrupts the user).
Make the server return an HTML fragment as part of the AJAX response. Now
the shopping cart HTML has to be factored out from the rest of the page render.
Furthermore, injecting HTML from AJAX is a potential security hole if any of the
data is user-generated.
Have the client know how to render a new cart item (we have now spread the
responsibility of rendering to both client and server).

Also note that there's a difference between items rendered in the initial
page load and items that are redrawn as a result of user interaction.

In an SPA, this story is much simpler. The user visits their shopping cart. The server returns
an HTML page that contains a simple link to the SPA JavaScript. Om renders an empty cart
and a progress spinner. The browser makes an AJAX call to load the user's data. The AJAX
response updates a ClojureScript vector containing the user's items. Om redraws the page.
Marking an item as done still makes an AJAX call to the server (for persistence, but this
could theoretically be skipped). However, the user code no longer directly modifies the
DOM—it's handled by Om for us. Instead, our application modifies the CLJS data for the
shopping cart, and Om + React handle the DOM manipulation and redrawing.

The SPA sounds like more work, and in one way it is, but things have also gotten simpler in
the Rich Hickey sense of the word.

To get a better idea about this, refer to Rich Hickey's excellent talk, Simple
Made Easy: h t t p : / / w w w . i n f o q . c o m / p r e s e n t a t i o n s / S i m p l e - M a d e - E
a s y

http://www.infoq.com/presentations/Simple-Made-Easy
http://www.infoq.com/presentations/Simple-Made-Easy

Building Single Page Applications

[162]

Responsibility for rendering the page now lies solely on the client side, as opposed to being
diffused across client and server. Operations that modify the page have gotten simpler: we
just specify how to render items directly from data, and React automatically redraws the
“dirty” parts of the page for us, when the data changes. We no longer modify the DOM, we
just manipulate data.

Faster client interactions once the page is loaded
Because clicking on a new page in the SPA no longer requires a round trip to the server,
page transitions can be immediate. Typically, the SPA will make an additional AJAX
request to get data from the server for the new page, but rendering the new page isn't
blocked while waiting for an HTTP response from the server. Also, that AJAX request will
typically be smaller than requesting the full page HTML. Because the client (browser) is
now responsible for rendering the page, it's significantly easier to modify the page in
response to, for example, the user clicking on a button. Rendering progress bars, spinners,
and opening menus is all immediate.

Like everything else, there are tradeoffs to SPAs. Let's take a look at a few of them.

More development work
SPAs have more moving parts than a conventional application does. The build process is
more involved because now you have to compile your CLJS. This downside isn't unique to
ClojureScript—it occurs in vanilla JavaScript as well.

Some of the advantages of SPAs come from “taking over” from the standard browser
behavior. For example, when clicking on a link to a new page, work must be done to
capture the click and prevent the standard browser behavior. But now, the SPA is
responsible for controlling the browser's history. Making things like the back button and
middle clicks still work as expected takes a little more effort, and provides potential
opportunities for bugs.

Legacy browser support is harder
SPA applications rely on modern browser APIs such as the HTML5 history. Some of these
APIs are only available in modern browsers. Some browsers (Internet Explorer for
instance), tend to lag in support of the APIs necessary to make SPAs work. In some cases,
there are workarounds, but it's additional work to properly support legacy browsers. If
supporting legacy browsers is a requirement for your app, you may want to reconsider
whether an SPA is the best solution.

Building Single Page Applications

[163]

SPAs in general are possible in older browsers, however, React only supports IE 9 and later,
so if you really want an SPA for IE earlier than 9, you'll need to use something other than
React to accomplish it.

Understanding Om
Om is a ClojureScript library that wraps Facebook's React.js library. Om was originally
developed by David Nolen. At the time of writing, it is the most commonly used
ClojureScript library for writing SPAs. There are other perfectly serviceable CLJS libraries
that wrap React, but we don't have the space to cover them. Most of the concepts we'll cover
transfer over if you're interested in using one of them.

At the time of writing, there is also Om Next, a kind of Om 2.0. Om Next
does not yet have stable official releases, so we will not be covering it. Om
Next's main improvements revolve around querying and syncing data
between the client and server and efficiently combining data from what
would normally be multiple REST API calls. While Om Next's API is
different from Om's, the vast majority of the concepts we cover will
transfer over.

Understanding React
React is a library developed by Facebook, designed to efficiently render dynamic content on
a page using a virtual DOM. React lets us pretend that the entire page is redrawn any time
our application's state changes. As a page author, we write functions that take data and
return DOM elements. React renders the DOM elements on the page. Importantly, when the
data changes, React efficiently diffs the page and re-renders only the parts that have
changed. Diffing is essential because re-rendering the entire page is prohibitively expensive
on even moderately complex pages. React is an improvement over previous attempts at
solving the problem because there's no need to specify data bindings or watchers. We just
describe how to render the page and React handles the change detection for us.

Building Single Page Applications

[164]

The React terminology
React uses several terms that we'll define here.

Component: This is a single JS class implementing the React component
interface. The most important function for a component is render(), which
returns DOM elements based on the application's data. A typical application will
have many components, forming a graph of classes to render a page. For
example, a todo list might have one component that renders a single todo item, a
parent component that renders the list border, and many instances of the single
todo item.

A React component is not the same as an Om component. We'll describe
the differences in more detail later.

Virtual DOM: React uses what they refer to as a virtual DOM. Traditional DOM
traversal and manipulation is slow, so React uses a hack. When React
components return DOM elements, they don't return real browser DOM nodes,
but virtual nodes. These virtual nodes are standard JS objects that implement
React protocols. For example, the React.DOM.div function returns a JavaScript
object that, if rendered, will become a real <div> element on the page. When our
data changes, React creates a new virtual DOM tree and diffs the current tree and
the new tree. When differences are found, React inserts, updates, and deletes real
DOM nodes corresponding to our virtual nodes, as required.
JSX: This is a templating library for writing HTML in JavaScript. JSX files look
identical to JavaScript, but allow us to write the following:

var myDivElement = <div className="foo" />

rather than

var myDivElement = React.createElement('div', {className: 'foo'})

JSX is a separate library from React, but was also written by Facebook. Om
projects don't need it, but it's nice to know what it is in case you ever
encounter mentions of it in the React documentation, or other third-party
JavaScript libraries that use React.

Building Single Page Applications

[165]

The components of an SPA
Let's write an SPA. Om and React are both small libraries that only deal with rendering;
other components of an SPA, such as routing and history, are handled with separate
libraries. We'll also need to handle routing, which is the process of simulating different
URLs (that is, /foo /bar) and displaying the appropriate one without actually reloading
the page. Finally, we'll cover using AJAX to send and load data from a REST API.

Setting up
Let's get started with a simple example—Hello World—and then we'll explore in depth how
Om and React work. Let's create a new om-tutorial project. In a terminal, go to a
directory that will be good for holding a new project directory and run the following:

 $ lein new figwheel om-tut -- --om

This will create a new directory, om-tut, and generate a bunch of files for you, for a quick
Om project.

Next, we'll cd into om-tut/ and run the following:

 $lein figwheel

When you visit http://localhost:3449 in your browser, you should see:

Hello World!

What just happened?
Let's take a brief step-by-step review of how Hello World! appeared on our screen. In
our om-tut/ directory, open project.clj. We should notice several things, as follows:

Our project dependencies include [org.clojure/clojurescript]
[org.omcljs/om]

Figwheel and cljsbuild are both plugins
Cljsbuild defines a ClojureScript build configuration that compiles .cljs files
under src/, and outputs them to resources/public/js/compiled

Building Single Page Applications

[166]

Now, let's take a look at resources/public/index.html and note a few more things.
index.html is a standard HTML file containing the content Figwheel template and a
link to the compiled JavaScript. When we reload localhost:3449, if we quick, we can
observe the Figwheel template content before Hello World! is redrawn on screen.

Finally, let's view src/om_tut/core.cljs:

(defonce app-state (atom {:text "Hello world!"}))

(om/root
 (fn [cursor owner]
 (reify om/IRender
 (render [_]
 (dom/h1 nil (:text cursor)))))
 app-state
 {:target (. js/document (getElementById "app"))})

This is some very dense code that's doing a lot at once, so we'll break it into pieces.

The app-state state is, like it sounds, an application state. Om applications have one piece
of state, typically an atom holding a map. Our app-state contains {:text "Hello
World"}.

The om/root directory defines a render loop. It takes a component constructor function, an
app-state, and a map of configuration. The :target key is required and specifies the
DOM element that React will “own” and render to. This element must exist in the HTML.
Note that our index.html file has a <div id=app> element. The output of the om/root
render loop will be placed there.

The first argument to om/root is a component constructor function. This is a function of
two or three arguments, either [cursor owner] or [cursor owner options]. The
function must return an Om component. An Om component is a JS object that must
implement at least the om/IRender or om/IRenderState protocol, and it may optionally
implement any of the other Om protocols.

Most frequently, OM applications use reify to create objects that satisfy the protocol,
though any of the ClojureScript constructs for implementing a protocol will work. A
complete list of Om protocols can be found in the Om documentation at h t t p s : / / g i t h u b .
c o m / o m c l j s / o m / w i k i / D o c u m e n t a t i o n. We will review the complete list of Om protocols
later in this chapter.

https://github.com/omcljs/om/wiki/Documentation
https://github.com/omcljs/om/wiki/Documentation

Building Single Page Applications

[167]

Finally, our OM component implements one method, render, from the om/IRender
protocol. It simply calls om.dom/h1. Render, and its sibling, render-state, from
om/IRenderState, must return something renderable: either a string (representing an
HTML text node), a virtual DOM element (such as a call to om.dom/h1), or another Om
component (using om/build or om/build-all).

The om.dom functions all return virtual DOM nodes, and they all have the signature
[class-attrs & children]. class-attrs is a map of strings or keywords to strings,
representing HTML attributes for the DOM element. The children attribute passed in will
become child elements of the new virtual DOM element. Children must be renderable
(strings, virtual DOM elements, and OM components, the same as the return value of
render). In this case, our h1 element contains the contents of (:text @app-state), Hello
World.

Don't worry, that was quite a lot to take in. We'll review each part in more detail
throughout this chapter.

So, why did we go through all that work? The key advantage is that our UI is now
completely dynamic and data driven. We have a function that returns HTML based on the
contents of a ClojureScript variable, app-state. We can modify app-state using standard
ClojureScript function calls, and the UI redraws, without having to specify any bindings,
watchers, or on-change hooks. Our UI is also guaranteed to stay in sync with the data, a
common mistake that's easy to make using jQuery, for example.

Child components
We'll go through one slightly more involved example to really demonstrate how Om and
React are used. Let's extend our om-tut example to the barest beginnings of a To-Do List.
Let's modify app-state so that it looks like this:

(defonce app-state (atom {:text "Hello world!"
 :todos [{:id 1
 :done? true
 :text "buy book"}
 {:id 2
 :done? false
 :text "learn CLJS"}]}))

Then, before om/root, we'll add a new function:

(defn todo-item [data owner]
 (reify om/IRender
 (render [this]

Building Single Page Applications

[168]

 (dom/span #js {:className (when (:done? data)
 "done")}
 (:text data)))))

(defn todo-list [cursor owner]
 (reify om/IRender
 (render [_]
 (dom/div nil
 (dom/h1 nil (:text cursor))
 (om/build-all todo-item (:todos cursor) {:key :id}))))))

Next, we'll modify om/root so that it looks like this:

(om/root
 todo-list
 app-state
 {:target (. js/document (getElementById "app"))})

And finally, in resources/public/css/style.css, let's add the following:

 .done {
 text-decoration: line-through;
}

When the page reloads, we should see two items. One should have a strikethrough
indicating that the list is done.

We've done a few things. First, we've refactored the main render dom/h1 nil (:text
cursor) into its own Om component. This is just to make the example more idiomatic;
we'll almost always have one root component that calls other components.

We've extended app-state to now contain a vector of the :todo items. Each todo item is a
map containing a todo item's text and stating whether it's done or not.

Finally, we've added dom/div to render a <div> element, and we added a call to
om/build-all. The om/build-all element creates a todo-item component for each item
in the (:todos data) vector. There's also om/build, the singular version of build-all.

The todo-item function is another Om component constructor function (a function with
arity [cursor owner] or [cursor owner options] and returns an Om component, a JS
object that implements om/IRender, or om/IRenderState). It returns a item with
the CSS class of either done or nil, when the item is marked done.

Building Single Page Applications

[169]

React requires : className rather than the more familiar :class

We use #js {} for the attributes map because the map is being passed directly to React
code. By default, writing {} in ClojureScript creates an instance of one of the immutable
maps, PersistentArrayMap or PersistentHashMap. React doesn't know about
immutable maps, so we use #js to tell the ClojureScript compiler to create a plain JS object
instead.

Items in the Om constructor signature
At this point, you maybe curious as to what the arguments in an Om constructor mean.
We'll describe each in the following sections.

Cursors
Cursors are a custom Om datatype; they're used to pass a piece of app-state data around,
while staying in sync with app-state and keeping track of where the data came from.
Imagine we want to refer to one of the todo items. Without cursors, we can just add (get-
in @app-state [:todos 1]) and pass that data around. But, cursors have an advantage;
they keep track of the path into app-state where the data came from. Consider the following
map:

{:id 2
 :done? false
 :text "learn CLJS"}

At first glance it might not be clear where the data in the app-state came from. If the
original data gets modified, our copy doesn't change with it. Since cursors do keep track of
the original data, a new cursor can be generated with the updated data, and your reference
will stay in sync.

A cursor consists of two parts—a reference to its original atom and a path. The path of a
cursor is the vector we would use to access nested data with get-in, from the root of app-
state. In this example, that would be [:todos 1] because (get-in @app-state
[:todos 1]) returns this todo item.

Building Single Page Applications

[170]

Accessing a key of a cursor returns a new cursor with an updated path. Let's walk through
an example in detail. When we create (om/root component app-state), Om returns a
new cursor with a reference to app-state. The cursor is at the top level, so its path is [].
Accessing (:text data) returns a new cursor with the [:text] path. Dereferencing this
cursor returns the value (get-in @app-state [:text]), Hello World.

In (om/build-all todo-item (:todos data)), accessing (:todos data) creates and
returns a new cursor with the [:todos] path. The om/build-all function maps over each
item in todos. Mapping over a cursor returns a sequence of cursors with paths [:todos
0], [:todos 1], and so on.

Cursors allow for reusable components. We can have multiple components with data all
coming from disparate locations in app-state (for example, each of our todo items is
rendered the same way, but they have different paths because (not= [:todos 0]
[:todos 1])). Cursors also participate in changing app-state, which we'll see shortly.

owner
owner, passed into an Om constructor function is the DOM element where this component
will be rendered. This is the real element, not a virtual element. For example, (.-class
owner) gets the CSS classes on the element. The owner element is necessary when using a
component-local state and when doing interop w/ non-react libraries.

Opts
Opts is just extra data you can pass into a constructor function. Since the function signature
for building a component is fixed—[cursor owner] or [cursor owner opts]—opts is
the only place to pass extra arguments. Opts are passed into a component constructor via
the :opts option in om/build and om/build-all:

 (om/build foo cursor {:opts {:bar 42}})

In this example, the foo component will receive {:bar 42} in options. If arguments are
passed in, the three-argument version of the function is called, otherwise the two-argument
function is called.

Building Single Page Applications

[171]

Input
Let's make our todo example slightly more useful. Let's modify it so we can mark items as
completed:

(defn todo-item [cursor owner]
 (reify om/IRender
 (render [this]
 (dom/div
 nil
 (dom/input #js {:type "checkbox"
 :checked (:done? cursor)
 :onChange (fn [e]
 (om/update! cursor [:done?] (-> e .-
target .-checked)))})
 (dom/span #js {:className (when (:done? cursor)
 "done")}
 (:text cursor))))))

Now, we'll try checking and unchecking the items.

The strikethrough stays in sync with the checkbox.

We've added a checkbox. It is checked if (:done? cursor) is true: onChange is a React
event handler. When the input box changes (because the user clicked on it or JavaScript
code modified the checked state, such as (set! (.-checked elem) true)), our
onChange function is called. It takes one argument, the event. We call om/update! to set
the :done? state of our item to the new checked state. Om will trigger a re-render, so the
input's checkbox stays synced with the data. React supports the complete list of event
handlers you would expect in a normal JavaScript application, such as onClick, onFocus,
and so on. Consult the React documentation for the entire list.

om/update! is essentially analogous to atom's swap! when used with assoc-in. It takes a
cursor, a path, and a new value. Under the covers, it combines the cursor's path and the
path passed in and swaps the app-state atom. (Om also provides om/transact!, which
behaves similarly, but uses update-in rather than assoc-in, that is, it takes a function
and applies the function with the current value of the path and any arguments passed in).

Building Single Page Applications

[172]

The update! and transact! functions close the circuit on a typical Om application. The
primary functions of any Om application are:

Rendering components using data from app-state
Calling om/update! and om/transact! in response to either user input or
AJAX

As we can see here, our React component rendered a checkbox that the user can interact
with. In response to the user clicking, we can call arbitrary code and update the app-state.

In a production application, our todo example might make an AJAX call to update the todo
item stored in the database on a server. A more responsive UI might display a progress
spinner when the AJAX call starts and then display the result when the AJAX operation is
completed. We'll walk through an example of this later in this chapter.

Now that we've covered a brief example, let's take a deep dive and explain how React and
Om work in detail.

Rendering
Rendering is probably the most complex part of this project, so we'll be covering it in some
detail. Since Om is built on top of React, we'll cover how React works as well.

The React diffing algorithm
React lets us pretend that our entire app is re-rendered on every modification. This is nice
because naively re-rendering the entire page on every change is prohibitively slow. Instead,
when modifications happen because the app-state has changed, React diffs the changes
and only inserts/modifies DOM nodes as necessary.

This is still a challenging problem because comparing and diffing two arbitrary trees is
O(n^3) in the best case. React uses several heuristics to get that down to O(n). While most of
time the details aren't important, there are a few edge cases that are useful to keep in mind.

When we first call om/root, React calls render on the root component, which builds up a
tree of virtual DOM elements. There's nothing to diff, so React just inserts the whole tree
under #app, creating a real DOM element corresponding to each element in our virtual tree.
React saves a copy of the virtual tree for diffing later.

Building Single Page Applications

[173]

When the application state changes, React calls render on the root component (the one
passed into om/root) and lazily builds up the new virtual DOM tree; we'll refer to this as
the new tree.

The algorithm recursively walks down both the current virtual DOM tree and the new tree.
There are two item types in the tree: DOM nodes and React components. If two items are
DOM nodes of different classes, React will just destroy the old and insert the new. Similarly,
React will destroy the old component, and build an instance of the new component.

If the two nodes are both DOM nodes (not components), React will diff their attributes and
insert and update attributes as necessary.

If the two nodes are both components of the same React or Om class, React will call
componentWillReceiveProps() and componentDidReceiveProps(), as necessary. The
componentWillReceiveProps() and componentDidReceiveProps functions are React-
specific—they aren't exposed to the user of Om. (There is om.core/IWillReceiveProps,
which sounds the same, but is conceptually different). This process mutates the existing real
DOM node until it looks identical to the virtual DOM node.

Because React claims ownership of all DOM nodes in its containing DOM element, we can't
simply use traditional DOM manipulation, for example, jQuery, because those changes will
be lost on the next render. In our preceding example, that's any DOM element that is a child
of #app. We can theoretically use jQuery on page elements outside of #app. In an SPA, the
base HTML (index.html from our example) is typically only used to serve links to .js and
.css files, and 100% of the visible elements on the page are rendered via the application.

Differences between Om and React
There are a few areas where Om does things differently than React. Let's dig into those in
the following sections.

Components
Om components are not strictly React components. Om creates a hidden object that
implements React's interface, and that interface delegates to the reified object returned from
an Om component constructor. For the most part, this is an implementation detail, and
we don't need to worry about it.

Building Single Page Applications

[174]

State models
React is somewhat less opinionated about its state and where it is stored. Om is strongly
opinionated that you should have one consistent source of state—the application state atom.
Every component on the page reads and writes to that atom, which provides a consistent
view of our application with cursors to provide isolation and reusability, as necessary.

Cursors
Cursors are a new feature unique to Om; they don't exist in React.

Determining the size of a component
As an Om neophyte, you might be wondering what the difference is between building
subcomponents and just regular functions that return HTML. Let's look at a hypothetical
choice borrowed from our previous todo list example:

(defn todo-item [cursor owner]
 (dom/div nil
 (dom/span #js {:className (when (:done? cursor)
 "done")}
 (:text)))))cursor))))
(defn todo-list [cursor owner]
 (reify om/IRender
 (render [_]
 (dom/div nil
 (dom/h1 nil (:text cursor))
 (dom/div nil
 (for [t (:todos cursor)]
 (todo-item t owner))))))) ```

This is a slightly modified version of our previous todo application. Here, todo-item is a
standard function that happens to return virtual DOM nodes rather than an Om component
constructor. It doesn't call reify. The todo-list calls the function directly rather than calling
om/build. So, what's the difference?

The answer is that there's not much of a theoretical difference, though there are several
arguments from a software engineering perspective for splitting components. Similar to
how your entire program could theoretically be one large function, your entire UI could be
one large function that generates HTML. This is technically possible, but not recommended.

Building Single Page Applications

[175]

We recommend using components and standard software engineering
best practices (for example, minimizing the size and complexity of
functions, single responsibility principle, and so on) to determine when to
split components.

Another good rule of thumb is to split components at the logical divisions in the application
state. Components should receive only the part of app-state they actually need. This
makes them more reusable, and improves clarity about the structure of the application state
and reduces coupling between components.

Preferring components is also slightly faster. Components are a short-circuit opportunity in
the React diffing algorithm. If two nodes in the tree are components of different classes,
React doesn't try to compare the following HTML—it just discards the old node and keeps
going. But of course, this is a premature optimization and we won't need to worry about it
99% of the time.

To get the full picture, let's go on to review the rest of the Om API.

Constructing
The om/build and om/build-all directory have the same signature, [constructor
cursor options].

There are several options that can be passed in:

– :key: The key passed in will be used to look up a unique ID in the cursor's data
for the component:

(om/build todo-item t {:key :id})

In our preceding todo example, we passed in :key :id. Om will (get cursor :id). In
our todo application, the item maps contain {:id 1} and {:id 2}, so the components
would have IDs of 1 and 2, respectively. The ID helps the diffing algorithm, so it can
identify whether an item has been inserted or modified in the middle of a sequence. For
example, if we have two todos with the ID [1 2], and then we insert a third todo in the
middle so that (mapv :ids todos) returns [1 3 2], React can correctly identify an insert
in the middle and leave the last item untouched. Without IDs, React wouldn't be able to tell
whether the second item was mutated and a third item inserted at the end, or the third item
was inserted in the middle. If React couldn't tell, it would mutate the old 2 to look like 3
(that is, diff the HTML for 2 and replace/modify DOM nodes until the nodes are identical to
the output of 3) and then insert a new 2. Our components should nearly always assign :id,
especially when creating multiple items via om/build-all.

Building Single Page Applications

[176]

The following are the options which can be used along with the function:

react-key: This is the same as :key, but it directly passes a value rather than
looking up in :key. That is, {:react-key 1} would use 1 as an ID rather than
the result of (get cursor :id).
- :fn: This applies a function f to the cursor's value before invoking the
constructor:
(om/build todo (first (:todos cursor)) {:fn (fn [todo] (assoc-

in todo :done true))}): This is basically the same as the following:
(om/build todo (assoc (first (:todos cursor)) :done true)

:init-state: This is the extra initial state for the component. This will be
merged with the result of IInitState if the component supports it. This is part
of the Component Local state, which we will discuss shortly.
:state: This is the same as the :init-state; but will also used to modify a
component (whereas the :init-state will only be used when a component is
created). Imagine a component that simply prints its state and is called with
(om/build todo cursor {:init-state 1 :state 2}); :init-state is
used when the child component is inserted into the render tree, so this
component will display 1. But if a modification to the parent component causes a
re-render, 2 will be displayed because the initial state is only taken into account
in the initial render, and this is a re-render.
:opts: This is the extra data to be passed to the constructor function. This should
be a map. If this option is supplied, the constructor function will be called with
arity [data owner options] rather than [data owner].

The local state
While Om is opinionated that an application's state should be consistent and stored in a
single place, components have access to what is called the component local state, which
behaves pretty much the way we expect, given the name. This is the local state, which is
only accessible to the component.

Building Single Page Applications

[177]

There is often confusion as to what the component local state should be used for. David
Nolen, author of Om, makes it clear:

“With the exception of transient values (editing flags, dragging flags) or resources
(channels, web sockets, and so on), you should put everything into the application state.”

For example, if our component creates a go channel to process user input events, the local
state is a good place to store that channel. We'll see an example of that later when working
with AJAX.

There are several API functions that touch the local state:

(defn get-state
 ([owner] ...)
 ([owner korks] ...))

[owner]—takes a component owner (the second argument to a component constructor)
and returns the map of the local state for this component.

[owner korks]—korks is a common idiom in Om, which stands for key or keys. If korks
is singular, that is, :foo, it behaves like get: (om/get-state :foo). If korks is a
collection, [:foo :bar], it behaves like get-in: (om/get-state owner [:foo
:bar]).

For functions that set state, korks works the same way but uses assoc/assoc-in rather
than get/get-in as shown here:

(defn set-state!
 ([owner v] ...)
 ([owner korks v] ...))

(om.core/set-state! owner v)—sets the entire component local state:(om/set-
state! owner {:foo 42}).

(om.core/set-state! owner korks v)—sets a part of the local state: (om/set-
state! owner [:foo] 42).

(defn update-state!
 ([owner f] ...)
 ([owner korks f] ...))

This is the same as set-state!, but this uses update/update-in rather than assoc:
(om/update-state! owner :foo inc).

Building Single Page Applications

[178]

Changing the local state either through set-state! or update-state!
will cause a re-render.

In addition to the om/IRender protocol, which defines the method (render [this]),
there is also the om/IRenderState. Instead of (render [this]), IRenderState exposes
(render-state [this state]). In the second argument, state is the component's local
state at the time of the render. In all other ways, render-state behaves identically to
render. A component should implement either IRender or IRenderState, never both.

Life cycle protocols
In addition to the required om/IRender protocol, there are several protocols that notify a
component of various lifecycle and state changes:

(defprotocol IInitState
 (init-state [this]))

If a component uses the local state, init-state can be used to supply an initial value. To
use this, our component should implement om/InitState. The init-state will be called
on our component when created; it should return a map. As we mentioned earlier,
om/build can pass :init-state in as an option. If that is the case, the data from :init-
state will be merged with the value returned by init-state:

(defprotocol IWillMount
 (will-mount [this]))

The will-mount function is called when a component is going to be inserted into the
DOM. This is a good place to set up and create non-DOM resources such as core.async
channels because it is the earliest point in the lifecycle where we know the component will
be mounted. For DOM resources, we use IDidMount, which we'll see next:

(defprotocol IDidMount
 (did-mount [this]))

If our component implements the protocol, did-mount will be called after the component is
inserted into the DOM. We can get access to the actual DOM node with (om/get-node
owner). Since the DOM node exists now, this is a good place to set up code that interacts
with the DOM, so let's do that:

(defprotocol IWillUnmount
 (will-unmount [this]))

Building Single Page Applications

[179]

The will-unmount function will be called when a component is removed from the DOM,
for example, after the diffing algorithm removes a component. This should be used to clean
up any resources that were created during will-mount or did-mount.

The next few protocols revolve around when the component changes state:

(defprotocol IWillReceiveProps
 (will-receive-props [this next-props]))

The will-receive-props function is not called on the first render, but it is called just
before all subsequent renders. In React, props and state are different concepts. Props are for
immutable data that will never change during the lifetime of the component, and state is for
data that can change. In Om, there are no props, just the app-state and component local
state, so will-receive-props is somewhat poorly named.

Use will-receive-props to react to state changes with additional state changes. For
example, if we have two pieces of data that should stay in sync and a user action has
changed one of them, we can use either om/set-state! or om/update! and
om/transact!. The next-props is a cursor that contains the data that will be passed to
the next render.

Use (om/get-props owner) to get the current state.

(defprotocol IWillUpdate
 (will-update [this next-props next-state]))

The will-update function is not called on the first render, but it is called just before all
subsequent renders. The will-update function is called after will-receive-props.

We cannot set the local state during will-update:

(defprotocol IDidUpdate
 (did-update [this prev-props prev-state]))

This is called after rendering the component. The DOM element is fully rendered when this
is called, so it's useful for third-party interop if, for example, the third-party JavaScript
needs to mutate in response to your React component re-rendering:

(defprotocol IShouldUpdate
 (should-update [this next-props next-state]))

Building Single Page Applications

[180]

The Om API documentation states the following:

“You should only implement this if you really know what you're doing. Even then you
probably shouldn't.”

IShouldUpdate is used to take control over whether a component should render based on
changes to the application or local state. The implementation should return true or false to
indicate whether the component should re-render. Note that, by definition, this is used to
make a component's data not stay in sync with the DOM, so it should be used carefully.

IShouldUpdate is typically used as a performance optimization. Imagine that the user is
performing a drag and drop operation, and we're tracking the current cursor position in the
local state, and redrawing the screen is causing performance problems. We've determined that
redrawing is causing performance problems and :pos—the user's current mouse
position—isn't used in redrawing the component. So, we'll ignore it when deciding whether
to re-render.

An implementation might look like this:

(should-update [this next-props next-state]
 (let [curr-state (om/get-state owner)]
 (not= (dissoc curr-state :pos)
 (dissoc next-state :pos))))

Here, we are passed the next state. We fetch the current state and return false, declining a
re-render if the maps are equal except for :pos. This could result in speedups, assuming
that the render would generate a large number of DOM elements to diff. As always, with
performance optimizations, measure first and avoid premature optimization.

Note that Om provides several functions clearly marked EXPERIMENTAL at
the time of writing. The om/commit! function is the same as
om/transact!, but it does not trigger a re-render. Similarly, there is
om/set-state-nr!, which is the same as set-state! but without the
re-render. These might be worth investigating if you find yourself facing
performance issues.

The entire render timeline looks something like this:

WillReceiveProps -> ShouldUpdate -> WillUpdate -> Render -> DidUpdate

Building Single Page Applications

[181]

Using third-party JS
As we mentioned earlier, we can't simply mix React and standard JS libraries and expect the
DOM to stay relatively consistent, however there are some situations where mixing the two
is a requirement. We'll discuss how to do that now.

Let's say we'd like to insert a map into our application using Leaflet.js (h t t p : / / l e a f l e t j s
. c o m /). Leaflet is a popular open source JS library for displaying OpenStreetMap data.

Leaflet's API expects to be given a JS element to render into, which is a relatively common
pattern in JS libraries:

(defn leaflet-map [app owner]
 (reify
 om/IInitState
 (init-state [_]
 {:the-map nil})
 om/IDidMount (did-mount [_]
 (let [the-map (js/L.map "map")]
 (om/set-state! owner :the-map the-map)))
 om/IRender (render [this]
 (dom/div {:id "map"} nil)) ```

Here, in render, we create an empty div with the ID map. During IDidMount, after the div
is rendered into the page, we call Leaflet, (js/L.map "map"), instructing it to render into
#map. Then, we save the resulting map in the local state, in case we want to manipulate it
(change the viewport, for example).

Why does this work? Our render method is stable; it always produces a #map div. React's
diffing algorithm is also stable; it only removes existing nodes when the render output
changes or when the components change.

IDidMount is only called once—the first time this component is added to the page. It would
only be called again if the component was removed from the page and then re-inserted.

jQuery listeners
There's a gotcha around this technique that's worth reviewing in more detail. Let's say we're
using jQuery to set up an event listener on our React elements (which is again, not
recommended, but the failure mode is interesting):

(defn todo-item [cursor owner]
 (reify
 om/IDidMount

http://leafletjs.com/
http://leafletjs.com/

Building Single Page Applications

[182]

 (did-mount [_]
 (-> (js/$ "span")
 (.on "click" (fn [e]
 (js/console.log "span clicked"))))
 om/IRender
 (render [_]
 (dom/div nil
 (dom/span #js {:className (when (:done? cursor)
 "done")} (:text data))))))

Note here that jQuery's on() function sets up an event listener. Also, note
that a new event listener is created every time a todo item is inserted into
the page and never cleaned up. If the user creates many todo items, there
will be many event listeners, all listening for the same events.
We recommend using React and Om over other DOM manipulation
libraries to the fullest extent possible. jQuery shouldn't be necessary in
most Om applications, but if you do end up using it (or other libraries that
set up resources), make sure that you dispose of resources properly in
om/IWillUnmount.

AJAX
Let's continue extending our Todo app. Now, we'd like to persist our todo items on the
server. To get the job done only takes a simple Clojure REST API—that said, it still will take
some work.

If you'd like to avoid all typing and just read along, we've created a Git repo on GitHub at h
t t p s : / / g i t h u b . c o m / l e a r n i n g c l o j u r e s c r i p t / c o d e - e x a m p l e s. You can just clone the
repo and get ready to go.

Dependencies
Let's open the project.clj file in our om-tut directory and add some entries:

:dependencies [[org.clojure/clojurescript "1.7.170"]
 [org.clojure/core.async "0.2.374"
 :exclusions [org.clojure/tools.reader]
 [sablono "0.3.6"]
 [bidi "2.0.3"]
 [cljs-ajax "0.5.3"]
 [clj-http "2.1.0"]
 [com.cognitect/transit-clj "0.8.259"]

https://github.com/learningclojurescript/code-examples
https://github.com/learningclojurescript/code-examples

Building Single Page Applications

[183]

 [org.clojure/clojure "1.7.0"]
 [ring "1.4.0"]
 [ring/ring-jetty-adapter "1.4.0"]]

Here, we've added several entries to the :dependencies vector:

bidi: This is a library for matching and destructing URLs. We'll use it to
associate REST URLs with functions to respond to API requests.
cljs-ajax: This is a ClojureScript library that is a convenience wrapper around
Google Closure's AJAX API. We'll use it on the client side to make requests.
clj-http: This is a Clojure HTTP library. It's not strictly necessary for this
project, but it is useful to debug the API from a Clojure repl.
com.cognitect/transit-clj: This is a Clojure implementation of transit.
Transit is the standard protocol for Clojure API interop. We'll talk more about it
later.
ring: This is a common Clojure library for writing web servers. It's similar to
WSGI in Python or Rack in Ruby, if you're familiar with those.
ring/ring-jetty-adapter: This is just as the name suggests, the ring adapter
for the Jetty web server. Ring is fairly agnostic about which web server to use, so
we have to specify that we want Jetty. Jetty is a widespread Java web server.

The ring-jetty-adapter implicitly pulls in a Jetty dependency, so we
don't have to specify it.

The server
In om-tut/src/om_tut/, let's create a new file, server.clj.

We'll create a standard NS declaration:

(ns om-tut.server
 (:require [bidi.bidi :as bidi]
 [bidi.ring]
 [bidi.schema]
 [schema.core :as s]
 [ring.adapter.jetty :as jetty]
 [cognitect.transit :as transit])
 (:import [java.io ByteArrayInputStream ByteArrayOutputStream]))

Building Single Page Applications

[184]

Transit
Transit is a standardized serialization format developed by Cognitect. Transit is a high-
performance, compact, and extensible format for transferring data between applications. If
your business requirements don't require another encoding such as JSON, and one or both
ends of the communication are Clojure or ClojureScript, Transit is the go-to protocol to use.

We'll define a few utility functions for working with Transit:

(defn to-transit [x]
 (let [baos (ByteArrayOutputStream. 4096)
 writer (transit/writer baos :json {})]
 (transit/write writer x)
 (.toString baos)))

(defn from-transit [s]
 (let [bais (ByteArrayInputStream. (.getBytes s "UTF-8"))
 reader (transit/reader bais :json)]
 (transit/read reader)))

Ring
Ring is a Clojure library that presents a standard interface between web applications and
HTTP servers. Ring defines a data format for an HTTP request and HTTP response. A Ring
request is a Clojure map with a set of required and optional keys, such as :uri, :remote-
addr and :query-string. A Ring response is another Clojure map with another set of
required and optional keys, such as :status, :body, and :headers.

Ring simplifies web application development because our Clojure application just has to
write functions that receive a Ring request map and return a Ring response map. Ring
isolates us from messy Java code and makes our app more functional. If you're familiar
with Rails, Ring roughly corresponds to the “controllers” section of a Rails application. Ring
is only used for handling HTTP requests, it doesn't concern itself with database access or
generating HTML.

You can review the ring spec on GitHub at h t t p s : / / g i t h u b . c o m / r i n g - c l o j u r e / r i n g /
b l o b / m a s t e r / S P E C.

https://github.com/ring-clojure/ring/blob/master/SPEC
https://github.com/ring-clojure/ring/blob/master/SPEC

Building Single Page Applications

[185]

CORS
Cross Origin Resource Sharing (CORS) is an HTTP standard for declaring who is allowed
access to an HTTP resource. For security reasons, browsers won't allow AJAX calls to hosts
other than the one that served the current page unless the responses contain specific
headers:

(defn with-cors [resp]
 (-> resp
 (update-in [:headers]
 merge {"Access-Control-Allow-Origin" "*"
 "Access-Control-Allow-Methods" "GET, POST, OPTIONS"
 "Access-Control-Allow-Headers" "Content-Type"
 "Access-Control-Max-Age" "31536000"})))

Since we're using Ring, our server's response is just a simple Clojure map. We will update
the :headers map in the response to include several more HTTP headers. "Access-
Control-Allow-Origin" "*" will allow AJAX requests from anywhere. "Access-
Control-Allow-Methods" "GET, POST, OPTIONS" allows requests to use the GET
POST and OPTIONS HTTP methods. We also allow the Content-Type header in a request,
and the browser can cache the CORS data for up to one year.

We'll make a simple utility function to mark a Ring response as Transit data.

(defn transit-response [resp]
{:pre [(map? resp)]} (-> resp
 (update-in [:headers "Content-Type"] #(or %
 "application/transit+json; charset=UTF-8")) (update-in
 [:status] #(or % 200)) (update-in [:body] (fn [body]
 (str (to-transit body)))) (with-cors)))

transit-response is a utility function that takes a valid Ring response and modifies it to
include all of the necessary Transit stuff. We set the Content-Type header to Transit if it
isn't already present. We set the HTTP status to 200, serialize the body to Transit format,
and add CORS headers.

Building Single Page Applications

[186]

Data
Let's define a simple data structure to hold our todos. For now, it's just an in-memory atom,
a map of IDs (integers) to todo maps. We'll also create ids, another atom that increments an
integer to guarantee that todos get unique IDs. In a production application, this could be a
database, but for now we're focused on the client side, so this will do as shown:

(defonce todos (atom {}))
(defonce ids (atom 0))
(defn next-id []
 (swap! ids inc))

Now, we can get to our REST API handlers:

(defn get-todo [{:keys [route-params] :as req}]
 (if-let [t (get @todos (:id route-params))]
 (transit-response {:body t})
 {:status 404}))

This is a ring handler because it's a function that takes a ring request (a map) and returns a
response. We look in the todos map and either return a todo in the body of the response or
return {:status 404} to indicate HTTP status of 404:

(defn create-todo [req]
 (let [id (next-id)
 t (slurp (:body req))
 t (from-transit t)
 t (assoc t :id id)]
 (println "create:" t)
 (swap! todos assoc id t)
 (with-cors (transit-response {:body id}))))

(defn list-todos [{:as req}]
 (with-cors (transit-response {:body (vec (vals @todos))})))

(defn options [req]
 (with-cors {:status 200}))

We'll define a few more handlers, which should be pretty straightforward:

(def routes ["/" {"todos" {:get {"" list-todos}
 :post {"" create-todo}
 :options {"" options}
 ["/" :id] {:get get-todo}}
 "" {:options options}}])

Building Single Page Applications

[187]

Finally, we'll define some routes. Ring doesn't concern itself with URL dispatching at all.
Here, URL dispatching or routing means returning a different result based on the requested
URL, that is, /foo vs. /bar. The spec just defines an interface for a handler (a function that
takes a request map and returns a response map). For example, the most basic ring handler
is probably just the following:

(defn foo [req]
 {:status 200
 :body "Hello World"})

This function doesn't check the contents of (:uri request), the page that the user visited.
Regardless of the page, the browser will display Hello World. Obviously, this is a common
use case, but Ring is very focused and allows other libraries to solve the problem in various
ways. There are several possible libraries that can be used; we'll use bidi (h t t p s : / / g i t h u b
. c o m / j u x t / b i d i).

The bidi library, one of the dependencies that we added earlier, is a
library that performs URL matching and destructuring. bidi is a DSL for
defining a mapping from URI strings to data. It's also reversible, meaning
that in addition to mapping strings to data, you can map data to URI
strings. bidi also supports ClojureScript, so we'll use bidi for client-side
routing later in this chapter.

In routes, we define a pure Clojure data structure. This is just vectors and maps organized
in a way that bidi expects. Then, we can use this map to match a given URL to a value using
bidi/match-route:

user> (bidi/match-route om-tut.server/routes "/todos" :request-method :get)
{:handler #object[om_tut.server$list_todos 0x77ca6601
"om_tut.server$list_todos@77ca6601"],
 :request-method :get}

We passed our routes data to bidi along with a /todos string, our request-method is :get,
and bidi returned a map with a :handler key, mapping to our list-todos function. Note
that bidi just concerns itself with the mapping; it's not particularly concerned about what
values it maps to. In routes, we put the list-todos function in the value position, but we
could have put anything else there, like a keyword such as :todos-list.

If we pass in a route that bidi doesn't recognize, it will return nil:

user> (bidi/match-route om-tut.server/routes "/bogus" :request-method :get)
nil

https://github.com/juxt/bidi
https://github.com/juxt/bidi

Building Single Page Applications

[188]

nil is not strictly a legal Ring response, but ring will handle it and serve a
default 404 response. A production application should handle this nil
and return a custom 404 page.

bidi can also handle route parameters. We want to define the route /todos/<id>, where ID
is a number. Note the [/:id] section of the route table. This defines id as a route parameter.
We can test it at the REPL:

user> (bidi/match-route om-tut.server/routes "/todos/42" :request-method
:get)
{:route-params {:id "42"},
 :handler #object[om_tut.server$get_todo 0x4ec64b04
"om_tut.server$get_todo@4ec64b04"],
 :request-method :get}

bidi matched the route and specifies that :id is 42 in the :route-params map. Note that
the response now contains a :route-params map in addition to :handler and the map
contains {:id 42}.

By default, the valid identifier for a parameter is fairly liberal. We can be more precise with
a regex:

(def routes ["/" {"todos" {:get list-todos
 :post create-todo
 :options options
 ["/" [#"\d+" :id]] {:get get-todo}}
 "" {:options options}}])

Finally, we can define our ring handler, as follows:

(defn handler [req]
 (let [resp ((bidi.ring/make-handler routes) req)]
 (println (:request-method req) (:uri req) "->" (:status resp)) resp))

bidi.ring/make-handler is a simple utility function that takes a ring request and
calls bidi/match-route on the :uri in the request map. It also updates the request map
to contain :route-params if appropriate. When there's a matching handler, and it's a
function, bidi assumes that the handler is a valid ring handler function and calls it:

(defn start-server []
 (jetty/run-jetty #'handler {:port 8080
 :host "0.0.0.0"
 :join? false}))

Building Single Page Applications

[189]

Finally, we can start our server. The ring.adapter.jetty/run-jetty function takes a
ring handler function and some options, starts the server, and uses the handler to respond
to all requests.

Okay, we finally have our working server. To start it, you should be able to do the
following:

 $ lein repl
 user> (require 'om-tut.server :as server)
 user> (def jetty (om-tut.server/start-server))
 #'user/jetty
    ```

You should get no errors.

Note that we'll still want Figwheel running (to dynamically recompile our
ClojureScript as we write it), so use a second terminal. For convenience,
we'll continue serving the HTML and JavaScript via Figwheel and serve
the REST API from a separate process. In production, there are arguments
for and against serving the HTML from the same HTTP host as the API
server, but ultimately it comes down to your own business requirements.
Serving both the API and the .html from the same host is probably easier
for smaller shops, but at scale, you'll probably want to separate the two.
Also note that we haven't specified any kind of authorization,
authentication, or access controls. In a production application, you will
definitely want those.

Now, let's move on to the client. Back in core.cljs:

(ns om-tut.core
  (:require [ajax.core :as ajax]
            [om.core :as om :include-macros true]
            [om.dom :as dom :include-macros true]))

We'll modify the require statement to include ajax:

(def api-server "http://localhost:8080")

We'll define the location of our REST API host:

(defonce app-state (atom {:text "Hello world!" :todos []}))



Building Single Page Applications

[ 190 ]

Now, we'll modify app-state to not include any todos when loading:

(defn load-todos [todos]
  (ajax/GET (str api-server "/todos")
            {:handler (fn [response]
                        (om/update! todos response))}))

load-todos is our first AJAX call. It takes a URI and a map. The most important item in
the map, :handler, is a function that will be called if the ajax call is successful (2xx status
code). There are several other options, including :error-handler, a function that will be
called when the HTTP response is not successful (4xx or 5xx).

AJAX stands for Asynchronous JavaScript And XML. JavaScript is single threaded, which
means that only one function can run at a time. There are no threads or futures or agents. Of
course, sending an HTTP request from our browser to a server takes real time. Having our
function block all JavaScript from executing while waiting for a response would be
unreasonable, so all AJAX operates with callbacks. Your AJAX request happens in the
background, allowing other JavaScript to run, and then either :handler or :error-
handler will be run once a response comes back.

The response argument to the :handler function is the body of the response. At the
lowest level, an HTTP body is a string. Our cljs-ajax library automatically parses Transit
data from the body if the Content-Type header from the server response is set
appropriately (it will also parse a few other content types, including JSON and EDN). We've
already set Content-Type on the server in the transit-response function, so at this
point, our data is ready to use.

Our load-todos then is pretty simple. It makes an HTTP GET request to our API server.
We know the server will respond with a list of todos, so we simply take the list of todos and
om/update! them into the list of todos on the browser side. Note that load-todos expects
to be passed a cursor and sets the entire content of the cursor, so load-todos should be
called like (load-todos (:todos cursor)), where the cursor is our root cursor.

The new-todo function is pretty straightforward:

(defn new-todo [todos]
  (let [todo {:text "New Todo" :done? false}]
    (ajax/POST (str api-server "/todos")
               {:params todo
                :handler (fn [resp]
                           (let [todo (assoc todo :id resp)]
                             (om/transact! todos [] (fn [todos]
                                                      (conj todos
todo)))))})))



Building Single Page Applications

[ 191 ]

This is mostly similar to load-todos with a few tweaks. We're posting now, so we've
added a :params key to the map. :params is extra data that goes with the request. On a
GET, params are included as query params in the request; when posting, the data is sent as
part of the body (as Transit, by default).

The server response from /todos is just a single int, the new ID of the todo, so we add that
to our in-memory item and then conj it onto our todos list. Depending on your API design,
it will make sense for the server to respond with an entire newly created todo and just conj
that on.

Finally, we'll modify the todo-list to call load-todos when the component is created:

(defn todo-list [data owner]
  (reify om/IRender
    (render [_]
      (dom/div nil
        (dom/h1 nil (:text data))
        (om/build-all todo-item (:todos data) {:key :id})
        (dom/button #js {:onClick (fn [e]
                                    (new-todo (:todos data)))}
                           "New")))
    om/IWillMount
    (will-mount [this]
      (load-todos (:todos data)))))

In general, we want to begin long operations (such as AJAX calls) as early in the component
construction as possible. The will-mount method is the best place for this because it's the
earliest protocol method that gets called after React has decided the component will be
mounted. Our AJAX calls don't require the actual DOM nodes, so we can use will-mount
rather than did-mount.

Our current example lets the user create new todos and mark them as completed, but there
are a few features we haven't yet implemented, such as the following:

Persisting done-ness to the server
Changing the name of a todo

We're running out of space in this chapter, but both of those can be completed using the
tools we've already demonstrated. A fancy way of changing the todo title might involve the
following:

If the user clicks on the todo text, update its state to :editing true
When rendering a todo, if it is :editing true, render a form input box rather
than dom/span



Building Single Page Applications

[ 192 ]

When the form input box is inserted into the page, set up a click handler that
detects whether the user clicks anywhere outside the input box. If the user does,
update the todo state to :editing false and send the updated todo text to the
server using an HTTP PUT.

Routing and HTML5 history
So, at this point, our todo application has some interesting features, but it's very bare bones.
It's also literally a single page application, but, of course, real applications typically involve
multiple pages. Let's extend ours to have multiple pages.

We've already included bidi as a dependency of the application, and we've already used it
on the server side. Now, we will use it to do client-side routing. Here, routing refers to the
process of determining which page to display, based on the contents of the URL. Let's get
started.

First, we'll modify project.clj and add [venantius/accountant "0.1.7"] to the
:dependencies vector. Then, let's add [accountant.core :as accountant] to the om-
tut.core ns declaration:

 (ns om-tut.core
  (:require [accountant.core :as accountant]
            [ajax.core :as ajax]
            [bidi.bidi :as bidi]
            [om.core :as om :include-macros true]
            [om.dom :as dom :include-macros true]))

Let's create a simple settings page. For now, it won't do anything useful:

 (defn settings [app owner opts]
  (reify
    om/IRender
    (render [_]
      (dom/div
       nil
       (dom/a #js {:href "/"} "Back")
       (dom/h1 nil "Settings")))))

And let's add a link to the settings page from our todo-list component:

 (defn todo-list [cursor owner]
  (reify om/IRender
    (render [_]
      (dom/div nil



Building Single Page Applications

[ 193 ]

        (dom/a #js {:href "/settings"} "Settings")
        (dom/h1 nil (:text cursor))
        (om/build-all todo-item (:todos cursor) {:key :id})
        (dom/button #js {:onClick (fn [e]
                                    (new-todo (:todos cursor)))}
                           "New")))
    om/IWillMount
    (will-mount [this]
      (load-todos (:todos cursor)))))

(def routes ["/" {"" todo-list
                  "settings" settings}])

We'll also create our routing table. If this looks familiar, it should. This is another bidi table,
but remember how we mentioned earlier that a bidi routing table can match anything? On
the server side, our table mapped paths to ring handler functions; on the client side, we're
mapping paths to Om component constructor functions. Functions in ClojureScript are first
class values, and we're taking advantage of that here:

(defn nav-handler [cursor path]
  (om/update! cursor [:active-component] (:handler (bidi/match-route routes
path))))

(defn render-component [app owner]
  (reify
    om/IRender
    (render [_]
      (dom/div
       nil
       (if-let [c (:active-component app)]
         (om/build c app {})
         (dom/p nil "no active component"))))))

(defn main []
  (om/root
   render-component
   app-state
   {:target (. js/document (getElementById "app"))})

  (let [cursor (om/root-cursor app-state)]
    (accountant/configure-navigation!
      {:nav-handler (fn [path]
                      (nav-handler cursor path))
       :path-exists? (fn [path]
                        (boolean (bidi/match-route routes path)))})
    (accountant/dispatch-current!)))



Building Single Page Applications

[ 194 ]

(main)

Phew! This is a decent chunk of code. We've refactored our (om/root...) into a main
function because the setup is slightly more complex than it used to be. We will use a library
called Accountant to abstract some of the HTML5 pushState API away; we'll describe
that in more detail soon. Accountant's configuration takes two settings: a nav-handler,
which is a function of one argument when navigation occurs (when the user clicks on a link
or when JS code triggers a link click), and path-handler, which is a function of one
argument that should return true if the user navigates to a URL that the SPA will handle.
We'll describe these in more detail, too. The important part for now is nav-handler. When
the user clicks on a link, we receive the new path as an argument. We match the route with
bidi and then store that route in app-state under :active-component. Our root
component (passed into om/root) is no longer a todos-list but a container component
that is simply an om/build the :active-component.

Try adding a few todos, marking some of them complete, and then visiting Settings and
clicking back. Note that the number of todos is preserved, but their:done-ness is not
preserved. This is because the todos-list reloads the list of todos from the server during
will-mount, but we're not persisting :done to the server yet.

Okay, now let's dig into what's going on here.

pushState
Modern browsers (those that support HTML5) have an API called pushState. The
pushState API tells the browser to do two things:

Set the current URL in the navigation bar without actually making a request for that
URL
Update the back button history, so the back button still works as expected

The pushState is key to single page applications because it allows us to decouple the page
that is displayed from the URL the user perceives. In our previous example, the user can
move from / to /settings and back with no visible page load.



Building Single Page Applications

[ 195 ]

The pushState has some quirks though. Let's say you visit /settings and then close the
browser and reopen it. Actually, you should try it now and see what happens. You'll get a
404 from Figwheel. Why? The reason is that Figwheel serves static files (it serves
index.html when visiting /), and it doesn't have a settings.html  file on the disk. This
means that, in general, your server implementation should be prepared to handle requests
from the fake URLs used on the client side. A reasonable implementation might recognize
all client-side URLs and serve the SPA HTML. We'll cover more on that topic in the next
chapter.

Navigation
Why does Accountant need the :path-exists? handler? Let's review the flow of events to
answer that. Let's say the user clicks on the settings link. This triggers the onClick event
for the link. The default click handler for an <a href> element is to trigger a navigate
browser event to send the browser to the new URL. The accountant configuration wraps
Google Closure's html5 History library, which abstracts low-level differences across
browsers and generates a synthetic navigate event when the user causes the page URL to
change (or clicks the back button).

The accountant configuration sets up an event listener for the closure's navigate.
Because we have an SPA, we don't want the browser to send a real HTTP request for
/settings. The accountant configuration uses the :path-exists? handler to decide
which URLs are handled by the SPA and calls .preventDefault() on the navigate event,
which causes the browser to cancel the request. Then, during our :nav-handler, we match
the route using bidi and update the active component. Om triggers a re-render as usual
and renders the new page.

Why not .preventDefault() all navigate events? It's not uncommon to mix URLs handled
by the client and server. For example, http://yourcompany.com/foo might be handled
by the server, but http://yourcompany.com/bar might be handled by the client. If the
browser is already on the SPA, visiting /foo would trigger the .preventDefault, and the
SPA would attempt to serve the page rather than the server.



Building Single Page Applications

[ 196 ]

Summary
So, that was a whirlwind tour of an SPA in ClojureScript using Om. In this chapter, we
covered the tradeoffs of Single Page Applications, what Om and React are, and how they
work. We created a simple todo list example to demonstrate the Om API. Finally, we
covered client-side routing and HTML5 history.

In the next chapter, we'll cover some more advanced topics around single page
applications, including DataScript, ClojureScript modules, and server-side rendering.



6
Building Richer Web

Applications
In the last chapter, we saw what Single Page Applications (SPAs) are and took a deep dive
into learning little details about them. SPAs are, as the name suggests, developed to contain
a single page. This page is then refreshed and new content is loaded dynamically, based on
the users clicks, using AJAX and HTML5.

In this chapter, we'll cover a few advanced techniques for SPAs. We'll cover the following:

Real-time communication with websockets
Improving load times with CLJS modules
Server-side rendering

Real-time communication with websockets
WebSockets are a modern browser feature that make it easier and more efficient to work
with real-time streaming data, without the hackiness of long-polling HTTP connections.

For this project, we'll use WebSockets to run a bot from Slack. Who doesn't love chatbots?
This example might seem slightly contrived, in that a Clojure bot might be easier to deploy
and run, but there are a few legitimate uses for this such as, creating a specialized Slack UI
or piping user communication from your website into Slack. Another advantage of using
Slack here means we won't have to set up the server side of this real-time chat client.

You'll need to set up a Slack (slack.com) account if you don't have one already, but it's free.



Building Richer Web Applications

[ 198 ]

Understanding the websocket protocol
WebSockets are a separate protocol from HTTP; they too happen to run on TCP port  80.
WebSockets provide bidirectional messages with lower overhead than HTTP-based hacks,
such as long polling or Bidirectional-streams Over Synchronous HTTP (BOSH). BOSH is
basically long polling, standardized to use XMPP (the protocol used by Jabber and Google
chat).

WebSockets have lower overhead because they utilize binary streams rather than base64
encoded XML. WebSockets have their own URL schema starting with ws:// or wss:// (the
second s stands for secure, similar to http and https). The initial request happens over
HTTP; if the server accepts, the TCP socket “converts” to sending WebSocket messages.
Messages consist of a small binary header and then binary data.

Let's create a new CLJS project using the now standard:

   in new figwheel cljsbot

In your project.clj, let's add the following to our :dependencies:

    [cljs-ajax "0.5.3"]
    [jarohen/chord "0.7.0"]

We saw the cljs-ajax script earlier. Chord is a ClojureScript library for working with
WebSockets. We'll walk through how it works later. For now, let's add it as follows:

    (ns cljsbot.core
      (:require [ajax.core :as ajax]
                [cljs.core.async :as a]
                [chord.client :as chord])
      (:require-macros [cljs.core.async.macros :refer (go)]))
    (enable-console-print!)

Next, we'll write a Slack API helper function:

    (def slack-endpoint "https://slack.com/api")
    (defn slack-api [{:keys [path request-method token]
                      :or {request-method :get}
                      :as args}]
    (let [method (condp = request-method
                     :get ajax/GET
                     :post ajax/POST
                     (throw (js/Error. "unrecognized :request-
                     method" (get args :request-method))))]
    (method (str slack-endpoint path) (-> args
            (merge {:format :json



Building Richer Web Applications

[ 199 ]

                    :response-format :json
                    :keywordize? true})
    (assoc-in [:params :token] token))
               :params {:token token})))

This is just standard factoring. Every Slack API request requires an API token and
send/receive JSON, so we'll just default it:

    (defn rtm-start
      "Connect to slack. Returns a channel containing the websocket
       channel"
      [{:keys [token] :as args}]
      (let [ret-chan (a/chan)]
        (slack-api {:path "/rtm.start"
                    :token token
                    :handler (fn [resp]
                             (go
                             (let [url (get resp "url")
                             {:keys [ws-channel error]}
                             (a/<! (chord/ws-ch url
                             {:format :json-kw}))]
        (if-not error
          (do
            (a/put! ret-chan ws-channel)
            (a/close! ret-chan))
            (println "Error:" (pr-str error))))))})
    ret-chan))

Connecting to Slack's Real Time Messaging (RTM) API returns a JSON map with a key
URL. This is a WebSocket URL. We use chord/ws-ch to connect to the websocket URL.
ws-ch returns a channel that will have one value, a map containing either :ws-channel
(on success) or :error (on failure). ws-ch is a wrapper around raw WebSockets, we'll
describe how it works later in the chapter.

If we get a ws-channel, we put it in ret-chan to return to the caller of rtm-start.

Slack's RTM API states that it will send events down the channel when events happen.
These events will be notifications such as add new message in the chat room, user joined
the room, new room created, and so on. Naturally, we'll need something to handle these
events:

      (defn print-all-handler [ws-chan]
      {:pre [ws-chan]}
      (go
        (loop []
          (when-let [e (a/<! ws-chan)]
            (js/console.log "event:" e)



Building Richer Web Applications

[ 200 ]

            (recur)))))

Here, we create a simple go loop and log every message to the console. In a full-chat client
implementation, we'd probably create a multimethod to handle each type of event and
update your application state as, for example, a new chat messages arrive.

To send a message to a chat room, Slack requires us to send the channel ID in the message.
So we'll need to list the channels:

    (defn list-channels [token]
      (slack-api {:path "/channels.list"
                  :token token
                  :handler (fn [resp]
                             (println "channels" resp))}))

So, now you can run this, look in the console for the list of channels, identify the channel
you'd like to use, and note the ID—we'll be using it later.

Initialization
Now let's cover initializing the WebSocket and sending a message. Let's take a look at the
following commands:

    (defn init-websocket [appstate]
      (go
        (let [ws-chan (a/<! (rtm-start {:token "YOUR-SLACK-API-
         KEY"}))]
          (print-all-handler ws-chan)
          (send-message ws-chan {:channel "YOUR-CHAN-ID" :text
           "hello world"}))))

Replace :token with your Slack API key from the Slack website. To create a personal
testing token, visit h t t p s : / / a p i . s l a c k . c o m / t o k e n s. Using this token will allow the bot
to log into the chat room as you. For more serious applications we would create a separate
bot user, but for now, this is fine.

Since connecting with the websocket is asynchronous, our rtm-start returns
a core.async channel that will contain one value, the WebSocket, when the connection is
complete. Channels containing channels is indeed somewhat awkward, but there's not much
we can do about it. Be clear in your variable naming, and it will make everything easier.

After connecting, we set up the print-all-handler and call send-message. In a full
application, this would also be a good place to store the ws-chan in, for example, our Om
application state.

https://api.slack.com/tokens


Building Richer Web Applications

[ 201 ]

Sending messages
Now, let's cover sending a message to Slack. Let's take a look at the following commands:

    (defonce next-message-id (atom 0))
    (defn get-next-message-id []
      (swap! next-message-id inc))
    (defn send-message
      [ws-chan {:keys [channel text] :as msg}]
      {:pre [channel text]}
      (go
        (a/>! ws-chan (merge msg {:id (get-next-message-id)
                                  :type "message"}))))

Slack requires our client to send a unique ID for each message. Simple enough; we'll just
increment a counter. Sending a message is as simple as putting a message on the ws-chan.
In the Slack API, a chat message is a JSON map containing the keys :id, :type, and :text.
The chord parameter converts ClojureScript maps to JSON for us, so we can just put a map
in the channel.

And we're done! Loading the page, you should see no errors, and our application should
connect to Slack and display the message Hello World. Check your Slack client and you
should see a message from yourself.

Now, let's dig into how Chord works to help understand what WebSockets do.

Understanding Chord
The DOM API for WebSockets is callback based. Chord's main job is converting callbacks to
core.async channels. This doesn't take too much code because one of core.async
project's design goals was to eliminate callback hell.

Let's take a look at the following commands:

    (defn write-to-ws! [ws ch]
      (go-loop []
        (let [msg (<! ch)]
          (when msg
            (.send ws msg)
            (recur)))))
    (defn read-from-ws! [ws ch]
      (set! (.-onmessage ws)
        (fn [ev]
          (let [message (.-data ev)]
            (put! ch {:message message})))))



Building Richer Web Applications

[ 202 ]

Most of the action happens in these two functions in chord/channels.cljc. We elided
the :clj conditional code to make this easier to see.

Sending is simply a go-loop, waiting for messages to arrive in the core.async channel.
Messages are taken out of the channel, and we call .send on the WebSocket.

Reading is slightly more involved. The websocket object has an .onmessage property,
which we can assign to a function. This function gets called any time a new message arrives
on the websocket. Chord takes the message and puts it in the core.async channel.

What we see in Chord is a pretty common use of core.async channels: turning callbacks
(such as .onmessage) into channels. This eliminates callback hell, and makes it easier to
follow data flow through your program.

Using Datascript
Datascript is an in-memory database for ClojureScript, modeled after Datomic, the
commercial Clojure database produced by Cognitect. Why do we need an in-memory
database in the browser? We've spent most of the book learning how to create more
powerful applications. The core.async channels, WebSockets and Om have given us the
tools to collect and render large amounts of data. Adding a database to our large, complex
SPA provides a useful tool for conveniently organizing and locating our data.

Understanding the Datascript/Datomic data
model
Datascript is closely modeled after Datomic due to Datomic's powerful API, and using the
same API on client and server eliminates the need for a translation layer. We'll cover
Datomic's data model and point out differences between the two.

Datomic is a consistent (CP, in CAP terms), ACID, non-SQL database built around the
concept of a datom.

A datom is a tuple (an ordered list of elements) composed
of entity/attribute/value/time, commonly abbreviated as EAVT.



Building Richer Web Applications

[ 203 ]

Let's look at a simple example. Say we want to model movies similar to IMDB—it might
look like this:

    {:movie/title "Top Gun"
      :movie/year 1986}

In Datomic, this map would be broken into a series of datoms, with each datomrepresenting
a single key-value pair, such as [1 :movie/title "Top Gun" 1234] and [1
:movie/year 1986 1234].

Remember EAVT? Here, 1 is the entity ID ,  :user/name is the attribute, Top Gun is the
value, and 1234 is the time or transaction ID that introduced the datom. The database's
primary storage is just an ordered sequence of EAVT tuples. An example from the
datascript documentation is as follows:

    [<e-id>  <attribute>      <value>          <tx-id>]
    ...
    [ 167    :person/name     "James Cameron"    102  ]
    [ 234    :movie/title     "Die Hard"         102  ]
    [ 234    :movie/year      1987               102  ]
    [ 235    :movie/title     "Terminator"       102  ]
    [ 235    :movie/director  167                102  ]

Tuples with the same e-id are facts about the same entity, while tuples with the same
transaction ID were introduced in the same transaction. A transaction is just a sequence of
datoms to add and/or retract at once, and may contain any number of datoms about one or
more entities.

Since all entities are tracked at the key-value level and every datom includes the transaction
ID that introduced it, fine-grained tracking of history is possible and easy.

Let's walk through an example. Launch Figwheel:

    $ lein new figwheel ds

Now, we'll add [datascript "0.15.0"] to our :dependencies:

    (ns ds.core
      (:require [datascript.core :as d]))

    (enable-console-print!)

    (defn datascript-test []
      (let [schema {:movie/actors {:db/cardinality :db.cardinality/many
                                   :db/valueType :db.type/ref}
                    :movie/director {:db/valueType :db.type/ref}}
            conn (d/create-conn schema)]



Building Richer Web Applications

[ 204 ]

        (d/transact! conn [{:db/id -1
                            :movie/title "Top Gun"
                            :movie/year 1986}])
        (-> (d/datoms @conn :eavt)
            (seq)
            (first)
            (println))))
    (datascript-test)

This should print the following:

    #datascript/Datom [1 :movie/title Top Gun 536870913 true]

Transact takes a sequence of maps or datoms. A map in a transaction is syntactic sugar for a
sequence of datoms:

    (d/transact conn [[:db/add -1 :movie/title "Top Gun"] [:db/add
    -1 :movie/year 1986]])

A map must have a key :db/id for the e-id, with the rest of the key-value pairs in the map
being converted to datoms. In the transaction, we provide the EAV for a sequence of
datoms, and the database will assign the same transaction ID to all of the datoms in the
transaction when it is committed. We use negative numbers in the e-id position, such
as :db/id -1, to ask the database to assign a new temporary ID. When the transaction is
committed, the database will assign a new, permanent, positive ID for our user. If we
wanted to introduce two new entities in the same commit, we'd use two distinct negative
numbers:

    (d/transact conn [[:db/add -1 :person/name "Tom Cruise"] [:db/add -2
:person/name "Anthony Edwards"]])

Say we wanted to update an existing entity rather than create a new one. Then, we'd use the
permanent e-id:

    (d/transact conn [[:db/add 1 :movie/director 2]])

Here, we're setting the movie's director to the person with e-id 2.

The permanent ID can be retrieved from the return value of d/transact or by querying for
it.



Building Richer Web Applications

[ 205 ]

A basic query
Datomic and Datascript have an enormously powerful query engine that's based on
Datalog. Datalog is similar in concept to Prolog (if you're familiar with that). Datalog is a
powerful, composable way to write queries using data rather than strings such as SQL. In
this section, we'll review some basic concepts just so we can use it to describe the rest of the
system. We'll cover more advanced queries later. Reading the Datomic and Datascript docs
may also be informative. They can be found at h t t p : / / d o c s . d a t o m i c . c o m / and h t t p s : /
/ g i t h u b . c o m / t o n s k y / d a t a s c r i p t.

A basic query looks like this:

    (d/q '[:find ?e :in $ ?name :where [?e :movie/title ?name]]
    @conn "Top Gun")

    => #{[1]}

Semantically, this looks sort of like a select query from SQL, but the entire expression is
ClojureScript literals. Datascript has more powerful queries, as we'll see shortly. We're
asking the system to find an entity, ?e in the database $ and using a variable ?name, where
the entity has an attribute :movie/title whose value is equal to ?name. We're passing our
database and the value Top Gun as arguments into the query. This returns #{[1]}. The
result of a query is a set of vectors. In this example, the vector has one item because we
asked for one value in :find ?e. If our query asked for multiple values, for
example, :find ?movie ?actor, the result would be a set of vectors where each vector
has two elements.

Query arguments
Note that the preceding query is passed as two arguments, the database (@conn) and the
string Top Gun. These are bound in the query in the :in clause in positional order, so the
database takes the special value $, and ?name is bound to the value passed in to the
function. The database name of $ is special. Queries can also operate across multiple
databases, in which case the databases would use the names $1, $2, and so on, with names
based on the order they're passed into the function. The rest of the arguments to query are
positional arguments, similar to function arguments. The :in parameter creates new
variables and binds them to the values passed in as extra arguments to d/q. While it's
possible to use literal values in queries, this makes the query less reusable. For example,
contrast this:

    (d/q '[:find ?e :in $ ?name :where [?e :movie/title "Top Gun"]]
     @conn)

http://docs.datomic.com/
https://github.com/tonsky/datascript
https://github.com/tonsky/datascript


Building Richer Web Applications

[ 206 ]

With this:

    (d/q '[:find ?e :in $ ?name :where [?e :movie/title ?name]]
     @conn "Top Gun")

The first is legal, but the second is preferred because it's more reusable. In Datomic, there's
also a slight performance improvement because it can cache the parsed query.

Schema
Datascript uses a schema to alter the type of attributes. Unlike Datomic, Datascript does not
require specifying the type of every attribute. Datascript attributes can store any value,
though we want to explicitly specify two types of attributes, refs and cardinality, which
we'll explain in the following sections. Let's take a look at the following commands:

    (let [schema {:movie/actors {:db/cardinality
                                 :db.cardinality/many
                                 :db/valueType :db.type/ref}
                  :movie/director {:db/valueType :db.type/ref}
    conn (d/create-conn schema)]

Understanding db.type/ref
Refs are a datatype used for storing references to other entity IDs. Think of them as being
similar to foreign keys in SQL, though they're a special datatype rather than just ints. Under
the covers, refs are ints as well, but because the foreign key relationship is specified
explicitly, they have a few extra features missing from SQL, which we'll see later.

Refs are always automatically indexed.

Cardinality
SQL databases are row oriented and typically can't represent a one-to-many relationship
without resorting to join tables. Datomic and Datascript natively support these types of
relationships in the database schema. If an attribute is declared with  :db/cardinality
:db.cardinality/many, the attribute will store a set of values rather than a single value.
Consider the following example:



Building Richer Web Applications

[ 207 ]

    @(d/transact conn [[:db/add 1 :movie/actors 2]
                      [:db/add 1 :movie/actors 3]])

Because :movie/actors is declared as :db.cardinality/many, this adds actors 2 and 3
to the set of :movie/actors. Also, as :movie/director is not declared
as :db.cardinality/many, it defaults to :db.cardinality/one. Therefore,
calling :db/add on :movie/director updates the value by replacing any previous
director.

Let's insert some data so we can play with some more interesting queries. Remove the
previous d/transact parameter, so we only have one source of data now:

        @(d/transact conn [{:db/id -1
                            :person/name "Tom Cruise"}
                           {:db/id -2
                            :person/name "Anthony Edwards"}
                           {:db/id -3
                            :person/name "Tony Scott"}
                           {:db/id (d/tempid :user)
                            :movie/title "Top Gun"
                            :movie/year 1986
                            :movie/actors [-1 -2]
                            :movie/director -3}
                           {:db/id -4
                            :person/name "Arnold Schwarzenegger"}
                           {:db/id (d/tempid :user)
                            :movie/title "Terminator"
                            :movie/actors -4}
                           {:db/id -5
                            :person/name "Mel Brooks"}
                           {:db/id (d/tempid :user)
                            :movie/title "Spaceballs"
                            :movie/actors -5
                            :movie/director -5}
                           {:db/id -6
                            :person/name "Clint Eastwood"
                            :person/birth-year 1930}
                           {:db/id -7
                            :person/name "Morgan Freeman"}
                           {:db/id -8
                            :person/name "Gene Hackman"}
                           {:db/id -9
                            :person/name "Eli Wallach"}
                           {:db/id (d/tempid :user)
                            :movie/title "The Good, The Bad and The
                              Ugly"
                            :movie/actors [-6 -9]}



Building Richer Web Applications

[ 208 ]

                           {:db/id (d/tempid :user)
                            :movie/title "Unforgiven"
                            :movie/actors [-6 -7 -8]
                            :movie/director -6}])

Here, we use literal negative numbers in some cases, so we can reuse the same ID to refer to
the same entity later in the transaction. We use d/tempid in others to idiomatically, “Just
generate a new unique ID, I won't be referring to it in this transaction”. You can also use
(d/tempid) in a let block and refer to that tempid when building the transaction.
Consider the following example:

    (let [ahnold (d/tempid)]
      @(d/transact conn [{:db/id ahnold
        :person/name "Arnold Schwarzenegger"}]))

Pull
We've been emphasizing tuples so far because they're core to understanding how Datomic
and Datascript represent things. But of course, most of the time, we don't care about
tuples—we care about compound things such a person and movie. Datomic and
Datascript have a feature called pull, which is used to retrieve some or all of an entity. It's
somewhat analogous to the select* from a SQL query, where we specify which part of the
row to return. Pull can also be used to load data from related refs, similar to .includes
and .preload from Rails' ActiveRecord, if you're familiar with that. Let's take a look at
the following commands:

    (let [clint (d/q '[:find ?e :in $ ?name :where [?e :person/name
     ?name]] @conn "Clint Eastwood")]
       (d/pull @conn '[*] clint))
    => {:db/id 7, :person/birth-year 1930, :person/name Clint
        Eastwood}

If we have an e-id, we can pull the current value of one or more attributes. Here, [*] is
a pull-expression. We can use * to ask for all attributes of the entity or a list of keywords
such as [:person/name]. When using d/pull directly, * is a symbol, so we can write
either [*] or '[*]; but, quoting the vector is idiomatic. More important, pull expressions
can be used in queries:

    (println "all movies:")
    (d/q '[:find (pull ?movie [:movie/title]) :in $ :where
     [?movie :movie/title]] @conn)



Building Richer Web Applications

[ 209 ]

Without the pull expression, writing :find ?movie would return entity IDs. We can
wrap ?movie with (pull ?movie [:movie/title]), and instead return attributes from
the matching entity. Inside a query, we don't need to quote * because the vector passed
to d/q is already quoted.

Let's say we want to pull the list of actors in Top Gun. Typically, you'd use d/q for this, but
you can also use pull:

    (let [top-gun (d/q '[:find ?mov . :in $ ?title :where [?mov
:movie/title ?title]] @conn "Top Gun")]
          (d/pull @conn '[* {:movie/actors [:person/name]}] top-gun))
    => {:db/id 4, :movie/actors [{:person/name Tom Cruise} {:person/name
Anthony Edwards}], :movie/director {:db/id 3}, :movie/title Top Gun,
:movie/year 1986}

This tells Datascript to pull all attributes on the entity, then also look up the
 :movie/actors references, and pull their names. Pulls can be nested recursively.

Interestingly, we can also use pull to look things up in reverse:

    (let [clint (d/q '[:find ?e . :in $ ?name :where [?e :person/name
?name]] @conn "Clint Eastwood")]
          (d/pull @conn '[* {:movie/_actors [:movie/title]}] clint))

Note the :movie/_actors value. Using _ as the leading character in a pull instructs
Datascript to look that value up in reverse, that is, every place clint appears in the value
of :movie/actors. This says, “Pull all attributes of Clint Eastwood and then also pull the
title of every movie he acted in”.

Finding results
Currently, all queries return a set of vectors, which is sometimes awkward when we know
that, for example, a query can only have one result. As we've alluded to, but haven't
formalized yet, a query returns one or more variables:

    (d/q '[:find ?person ?movie :in ...]

After :find, one or more variables (starting with ?) are listed. The query returns a set of
vectors, where each vector's length matches the number of variables to return.

There are a few ways to customize the results:

    (d/q '[:find ?p . :in $ ?name :where [?e :person/name ?name]]
     @conn "Arnold Schwarzenegger")



Building Richer Web Applications

[ 210 ]

We use a . after ?p to specify that we only want the first result:

    (d/q '[:find [?p ...] :in $ ?title :where [?mov :movie/actors ?
     p] [?mov :movie/name ?title]] @conn "Top Gun")

We wrap ?p in a vector ending with ... to specify that we want the collection of values ?p
can take on. This is nicer than having to write, for example, (map first results).

We can also compose a pull by returning a collection:

    (d/q '[:find [(pull ?p [:person/name])...] :in $ ?name :where
     [?mov :movie/actors ?p] [?mov :movie/title "Top Gun"]] @conn)

Unification
The :where clause of a query takes one or more EAVT, and the query returns all values in
the database that satisfy the constraints. In Datalog, variables can take on any value unless
constrained. Constraints are added to a variable by including it in a :where clause. We'll
see more of that in a moment.

Let's say we want to find all movies:

    (d/q '[:find (pull ?movie [:movie/title]) :in $ :where [?movie
     :movie/title]] @conn)

Note here that our :where clause tuple is short; it only includes two values corresponding
to E and A. This means that the value is unconstrained and can take any value, therefore it
returns all :movie/title values in the database. A full :where tuple can optionally
include all three items (or fewer) in EAV. For example, if we want to see all attributes that
take on a specific value, we can use the following:

    (d/q '[:find ?a :in $ ?tx :where [_ ?a "Top Gun"]] @conn)

This finds all attributes that take the value "Top Gun", and it predictably
returns :movie/title. Note that we used a variable to refer to an attribute, which would
be very unusual in SQL. Datalog has no problems with this.

As another example, to find all actors in the database, we would use the following
command:

    (d/q '[:find ?act :in $ :where [_ :movie/actors ?act]] @conn)



Building Richer Web Applications

[ 211 ]

Here, we use “_” to idiomatically mean that the value can be anything, and we don't care
about the result. The ?act parameter binds to all tuples where [eid :movie/actor
?act], and then our :find returns ?act, so it returns the list of all actors.

Let's use the following to find all movies where the director acts in the movie:

    (d/q '[:find (pull ?p [:person/name]) :in $ :where [?mov
           :movie/actors ?p]
          [?mov :movie/director ?p]] @conn)

Okay, you might have noticed that we've introduced a few tricks here. First, our :where
clause can have any number of vectors. Second, we can introduce new variables in a query
just by referring to them. Since both vectors refer to ?mov, both vectors must agree to find a
result. We've already discussed how ?mov :movie/actors ?p works, so we can finally
get to the heart of unification. With just one clause, [?mov :movie/actors ?p], we
can return the set of all acting credits in all movies, that is, [1 :movie/actor 2] [1
:movie/actor 3]. But with the second clause, we're imposing a second constraint that the
same person appears as actor and director in the same film.

Unification means that a variable must take the same value in all clauses at
the same time.

For example, if we wanted to find all people who have ever acted and directed, we can
write the following:

    (d/q '[:find ?p :in $ :where [?mov1 :movie/actors ?p]
                                 [?mov2 :movie/director ?p]] @conn)

Predicate expressions
In the previous query about finding directors who act in their own films, since we use two
variables, ?mov1 and ?mov2 are now free to take on separate values. However, it's still
possible for them to return the same value because there's not yet a constraint that ?mov1
!= ?mov2. If we want to find the set of people who have acted and directed, but in separate
movies, that looks like the following:

        (d/q '[:find (pull ?p [:person/name])
                     (pull ?mov1 [:movie/title])
                     (pull ?mov2 [:movie/title])
               :in $
               :where



Building Richer Web Applications

[ 212 ]

               [?mov1 :movie/actors ?p]
               [?mov2 :movie/director ?p]
               [(!= ?mov1 ?mov2)]] @conn)
        =>([{:person/name Clint Eastwood} {:movie/title The Good,
              The Bad and The Ugly} {:movie/title Unforgiven}])

Here, [(!= ?mov1 ?mov2)] is an predicate expression. This is ClojureScript code that
returns true or false if the clause does or does not match. The current list of supported
functions is undocumented in Datascript, but Datomic promises that it provides the
following:

    - Two argument comparison predicates !=, <, <=, >, and >=.
    - Two-argument mathematical operators +, -, *, and /.
    - All of the functions from the clojure.core namespace of
      Clojure, except eval.

Indexes
As we mentioned earlier, the database can be imagined as a sequence of datoms. To make
queries fast, Datascript maintains several indices, which the query planner uses to optimize
queries. These are named eavt, aevt, and avet. As you can imagine, each index is sorted
in the order corresponding to e, a, v, and t. For example, when looking up an actor by
name, you'd use a :where clause that looks like [?p :person/name ?name]. We know
the attribute and the value (their name), but we need to know the entity ID. Therefore, we
traverse the avet index, jumping to :person/name, and then to the value of their name.

Most of the time, the query planner does a good job. On some occasions, it is necessary to
get raw access to the datoms, for speed. You can access the indices directly using d/datoms:

    (d/datoms @conn :eavt)

You can also provide a starting point to filter the results:

    (->> (d/datoms @conn :avet :movie/actors)
         (map identity))

This will return a sorted set of datoms that use :movie/actors. You can provide up to all
three of e, a, and v. The d/datoms parameter returns a custom iterator, so we use (map
identity) to convert back to a sequence.



Building Richer Web Applications

[ 213 ]

Differences between Datomic and Datascript
While Datascript is powerful and full featured, it's not 100% compatible with Datomic. The
primary difference between them is that Datomic is fully time travelling. It stores every
datom ever seen, so you can query for things such as, “Show me all values this attribute has
ever taken on, and return the transaction IDs when changed”. Because Datascript is
intended to be in-memory, and it primarily targets browsers, constant memory use is a
desirable feature. Therefore, historical datoms are not preserved.

Why Datascript?
We've now provided a glimpse of some of Datascript's power. It might seem counter-
intuitive to put a database in the browser, but it can make managing a large amount of state
more tractable. For example, if we writing a game, and there are a large number of entities
on screen, Datascript can be used to locate and update entites in response to events such as
user input or the next frame of the simulation. It's not necessary in every SPA, but when it's
necessary, it's a lifesaver.

In the next few sections, we'll talk about optimizing our SPA for faster load times.

Improving load times
Production SPAs frequently contain upward of 1 MB of JavaScript, which takes time to
download and parse, especially for mobile browsers. For internal applications, this might
not be a big deal, but for SPAs deployed to the public Internet, speed is important. Users are
impatient and will abandon a slow-loading page. Faster websites see increased repeat
traffic, higher search engine rankings and higher conversion rates. In the next sections, we'll
cover techniques that will reduce the download size of our SPA and improve its load time.

ClojureScript modules
ClojureScript modules are a Google Closure Compiler option for breaking a ClojureScript
application into multiple .js files. The key insight to modules is that the entirety of your
ClojureScript code is not typically required to render every page. For example, many
applications have an “inner” and “outer” split, where “outer” consists of things such as
marketing and pricing pages, while “inner” consists of the actual application. Even in the
“inner” application, there could be pages that use leaflet.js to display maps, pages that
use a charting library to display charts and graphs, and settings UIs which use neither.



Building Richer Web Applications

[ 214 ]

Splitting the application into modules allows us to serve less of JavaScript to the user
initially and then lazily load other modules as needed, which results in smaller downloads
and faster page loads. In practice, it's not uncommon to see a 30% reduction in page load
times.

Preparing for modules
In order to take advantage of modules, we should consider our application and identify the
largest libraries that can be factored into a module. Typically, the biggest gains come from
splitting third-party libraries into modules because they usually contain more code than our
Om components. We probably won't be able to get away with splitting ClojureScript,
Om/React, and core.async into modules, but it is possible for many other large libraries.
Mapping libraries such as Google Maps and Leaflet.js are good candidates, as are graphing,
and charting libraries. We want to identify the typical use cases of your users and which
pages they visit. Are there a large number of settings for UI? Is the settings
page infrequently visited? That could be a potential place to refactor.

ClojureScript modules split at the namespace level, meaning that the contents of a single
namespace are all in one module or another. Think about whether it makes sense to
split your namespaces into smaller namespaces, if necessary.

We'll walk through an example based on a real-world experience of factoring an application
to use modules. In this example, we'll split the application into two modules, “inner” and
“outer”.

Most libraries are pulled in by Om components, so by splitting the Om components into
two modules, we can also pull the dependent charting libraries into a module.

Getting started
This entire example, with Git history, is available at h t t p s : / / g i t h u b . c o m / l e a r n i n g c l o j
u r e s c r i p t / c o d e - e x a m p l e s / t r e e / m a s t e r / c h a p t e r - 6 / c l j s - m o d u l e s. The code under
the master tab is the finished version, so if you want to follow along with the code, we
recommend viewing the entire commit history and starting from the beginning: h t t p s : / / g
i t h u b . c o m / l e a r n i n g c l o j u r e s c r i p t / c o d e - e x a m p l e s / c o m m i t s / m a s t e r.

We'll do the now familiar:

    $ lein new figwheel cljs-modules

https://github.com/learningclojurescript/code-examples/tree/master/chapter-6/cljs-modules
https://github.com/learningclojurescript/code-examples/tree/master/chapter-6/cljs-modules
https://github.com/learningclojurescript/code-examples/commits/master
https://github.com/learningclojurescript/code-examples/commits/master


Building Richer Web Applications

[ 215 ]

And, we'll add the following to our :dependencies:

     [bidi "2.0.3"]
     [org.omcljs/om "0.9.0"]
     [venantius/accountant "0.1.7"]

We'll create a now-familiar Om app with support for two routes:

    (ns cljs-modules.core
      (:require [accountant.core :as accountant]
                [bidi.bidi :as bidi]
                [om.core :as om]
                [om.dom :as dom :include-macros true]))

    (defonce app-state (atom {}))

    (defn outer-component [app owner opts]
      (reify om/IRender
        (render [_]
          (dom/div #js {} nil
                   (dom/h1 #js {} "Hello from Outer!")
                   (dom/a #js {:href "/app"} "inner")))))

    (defn inner-component [app owner opts]
      (reify om/IRender
        (render [_]
          (dom/div #js {} nil
                   (dom/h1 #js {} "Hello from Inner!")
                   (dom/a #js {:href "/"} "outer")))))

    (def routes ["/" {"" outer-component
                      "app" inner-component}])

    (defn nav-handler [cursor path]
      (om/update! cursor [:active-component] (:handler (bidi/match-
        route routes path))))
    (defn renderer [app owner opts]
      (reify
        om/IRender
        (render [_]
          (dom/div
           nil
           (if-let [c (:active-component app)]
             (om/build c app {})
             (dom/p nil "no active component"))))))
    (defn main []
      (om/root
       renderer



Building Richer Web Applications

[ 216 ]

       app-state
       {:target (. js/document (getElementById "app"))})
      (let [cursor (om/root-cursor app-state)]
        (accountant/configure-navigation!
        {:nav-handler (fn [path]
        (nav-handler cursor path))
         :path-exists? (fn [path]
        (boolean (bidi/match-route routes path)))})
        (accountant/dispatch-current!)))

    (main)

Now when you run, lein figwheel and you should see “Hello from Outer!“. Clicking on
the link should display “Hello from Inner!” with a link back to outer.

Route definition
Initially, routes is a bidi table that maps URLs to functions. Each of outer-
component, inner-component is an Om constructor function. We use Accountant's nav-
handler to set :active-component in app-state to the actual function, and then Om
constructs that component when rendering.

Remember that we mentioned earlier that module splitting is done at the namespace level?
Now, we'll need to fix that. We need a solution that allows us to not require inner
and outer directly from the core namespace. We'll modify the routing table to store
keywords rather than the actual functions:

    (def routes ["/" {"" :outer/outer
                      "app" :inner/inner}])

Here, we're using namespaced keywords to identify which module the handler is located
in; the namespace must match the module name. If we had other outer modules, they might
be called :outer/landing or :outer/pricing or :outer/faq.

We'll use a multimethod to dispatch from namespaced keywords to Om components. Since
inner and outer both need to refer to the multimethod (because they extend it), we can't
place that multimethod in main. We'll factor it out into its own namespace called render:

    (ns cljs-modules.render
      (:require [om.core :as om]
                [om.dom :as dom]))

    (def routes ["/" {"" :outer/outer
                      "app" :inner/inner}])
    (defmulti active-component identity)



Building Richer Web Applications

[ 217 ]

    (defmethod active-component :default [_]
      nil)

    (defn render [app owner opts]
      (reify
        om/IRender
        (render [_]
          (dom/div nil
                   (if-let [c (active-component (:active-component
                     app))]
                     (om/build c app {})
                     (dom/p nil "no active component"))))))

Then, we'll refactor inner and outer to separate namespaces:

    (ns cljs-modules.outer
      (:require [om.core :as om]
                [om.dom :as dom]
                [cljs-modules.render :as render]))

    (defn outer-component [app owner opts]
      (reify om/IRender
        (render [_]
          (dom/div #js {} nil
                   (dom/h1 #js {} "Hello from Outer!")
                   (dom/a #js {:href "/app"} "inner")))))

    (defmethod render/active-component :outer/outer [_]
      outer-component)

    (ns cljs-modules.inner
      (:require [om.core :as om]
                [om.dom :as dom]
                [cljs-modules.render :as render]))

    (defn inner-component [app owner opts]
      (reify om/IRender
        (render [_]
          (dom/div #js {} nil
                   (dom/h1 #js {} "Hello from Inner!")
                   (dom/a #js {:href "/"} "outer")))))

    (defmethod render/active-component :inner/inner [_]
      inner-component)

If we had other components that belonged in the inner module, we'd add a  defmethod
method for each, as appropriate.



Building Richer Web Applications

[ 218 ]

Okay, now let's return to our cljs-modules.core, and add a dependency on render:

    (ns cljs-modules.core
      (:require [cljs-modules.render :as render]))

Now, let's modify our om/root to call render as the main component:

    (om/root
      render/render
      app-state
      {:target (. js/document (getElementById "app"))})

And, there! We see our nav-handler remains the same, but we're now storing keywords in
active-component rather than functions:

    (defn nav-handler [cursor path]
      (om/update! cursor [:active-component] (:handler (bidi/match-
       route routes path))))

If you reload now, you should have no errors and the page should show “No active
component”. This is actually a success!

Note that the dependency chain here, cljs-modules.core, depends on cljs-
modules.render. The cljs-modules.inner and cljs-modules.outer method both
depend on cljs-modules.render. It's important to understand here that, nothing
depends on cljs-modules.inner and cljs-modules.outer. If they happen to be
loaded, extra routes are added to the render/active-component multimethod. If they
haven't been loaded, our logic all works, but active-component will return nil. For now,
we haven't loaded inner or outer, so there is no active component.

Right about now, you might be asking, “Got it, but what does this solve?” It allows us to
effectively name routes and refer to them without requiring the code to be loaded. This is
important because earlier when we referred to outer/outer, it referred directly to the
loaded JavaScript. Now, we can refer to  :inner/inner, regardless of whether the inner
module is loaded or not.

Now that we've split our files, we can specify modules in project.clj. Let's start by
modifying the min cljsbuild:

    :cljsbuild {:builds
                  [...
                   {:id "min"
                    :source-paths ["src"]
                    :compiler {:output-dir
                      "resources/public/js/compiled"
                    :main cljs-modules.core



Building Richer Web Applications

[ 219 ]

                    :optimizations :advanced
                    :modules {:outer {:output-to
                       "resources/public/js/compiled/outer.js"
                    :entries #{"cljs-modules.outer"}}
                    :inner {:output-to
                      "resources/public/js/compiled/inner.js"
                    :entries #{"cljs-modules.inner"}}}
                    :pretty-print false}}]}

Modules are only supported under :simple or :advanced optimizations,
but for the effort they require, we would reserve them for times we need
to use :advanced optimizations.

We added a :modules, key, and we've also added :output-dir. Under advanced
compilation with modules, the compiler will create a cljs_base.js file, and then a .js
file for each module specified. To make switching between development and :advanced
easier, let's also modify the :dev build's :output-to:

    :compiler {:main cljs-modules.core
               :asset-path "js/compiled/out"
               :output-to
                 "resources/public/js/compiled/cljs_base.js"
               :output-dir "resources/public/js/compiled/out"
               :source-map-timestamp true}}

Then, we'll modify resources/public/index.html and change the script
from cljs_modules.js to cljs_base.js.

We'll kill the running Figwheel and run the following:

    $ lein do clean, cljsbuild once min

Everything should work. Run the following:

    $ ls -l resources/public/js/compiled/

You should see inner.js, outer.js, cljs_base.js, among other files. The  inner.js
and outer.js files are present because we asked for them to be created.
The cljs_base.js file always gets created, and it contains all the code that wasn't
included in one of the explicitly asked for modules. When using modules, cljs_base.js is
placed in the root of :output-dir, and :output-to is ignored. Since cljs_base.js
includes things such as the ClojureScript standard library and likely contains OM
and core.async, you should always serve it before other modules.



Building Richer Web Applications

[ 220 ]

Note that right now, our modules are tiny; when we run this, our cljs_base.js is 325kB,
and inner.js and outer.js are just 700 bytes (your values might be different, but they
should be similar in magnitude). For this application, that's expected. The majority of the
size savings from modules come from excluding large libraries, and right now, our example
application just isn't doing that much. In larger production applications, modules can save
30-50% in file size, depending on the size of the application and how amenable the
application is to isolating libraries.

Loading modules
So, now we have modules on disk, but they aren't being loaded. Let's fix that.

To serve our modules, we'll have to set up a simple HTTP server. We'll use Clojure and
Ring to do that.

We'll need to add Ring to our :dependencies:

                     [ring "1.4.0"]
                     [ring/ring-jetty-adapter "1.4.0"]

Now, we'll create a new file, src/cljs_modules/server.clj:

    (ns cljs-modules.server
      (:require [ring.adapter.jetty :as jetty]
                [ring.middleware.resource :as resource]))

    (defn handler [req]
      {:status 200
       :body (slurp "resources/public/index.html")})

    (def handler (-> handler
                     (resource/wrap-resource "public")))

    (defn main []
      (jetty/run-jetty handler {:port 8080
                                :host "0.0.0.0"
                                :join? false}))

In a new terminal, we'll run the following:

    $ lein repl



Building Richer Web Applications

[ 221 ]

And then:

    (require 'cljs-modules.server)
    (cljs-modules.server/main)

If you kill the Figwheel process and visit http://localhost:8080, the page should load,
and you should see No active component. Success again! Here, we're using the Ring
middleware known as wrap-resource to serve all files contained in resources/public.
We serve index.html to all other routes (such as “/” and “/app“).

Now, back in ClojureScript, we'll need some helper functions to keep track of which
modules are loaded:

    (ns cljs-modules.modules
      (:require [goog.module :as module]
                [goog.module.ModuleManager :as module-manager]
                [goog.module.ModuleLoader]
                [om.core :as om]))

    (def modules? false) ;; true if serving modules

    (def modules
      ;; "The map of id/uris pairs for each module."
      #js {"inner" "/js/compiled/inner.js"
           "outer" "/js/compiled/outer.js"})

    (def module-info
      ;; "An object that contains a mapping from module id (String)
          to list of required module ids (Array)."
      #js {"inner" []
           "outer" []})

    (def manager (module-manager/getInstance))
    (def loader (goog.module.ModuleLoader.))

    (.setLoader manager loader)
    (.setAllModuleInfo manager module-info)
    (.setModuleUris manager modules)

    (defn loaded? [id]
      (if-let [module (.getModuleInfo manager id)]
        (.isLoaded module)
        false))

    (defn require-module
      [app id]
      (if (not (loaded? id))



Building Richer Web Applications

[ 222 ]

        (do
          (om/update! app [:loading id] true)
          (.execOnLoad manager id (fn []
          (om/update! app [:loaded id] true)
          (om/update! app [:loading id] false))))))

    (defn set-loaded!
      "Mark a module as loaded"
      [id]
      (-> goog.module.ModuleManager .getInstance (.setLoaded id)))

Mostly we're relying on Closure's module libraries to handle loading. The (def modules
...) method is a map of module IDs to the URL where the module can be loaded. The (def
module-info) method forms a simple dependency graph. If outer depends on another
module, it would be specified here. Our modules have no extra dependencies, so the
vectors are empty.

When we call require-module, ModuleManager will make an AJAX request to the server
at the path listed in modules and then evaluate the JavaScript. We'll use set-loaded! at
the end of each module. In cljs-modules.inner and cljs-modules.outer, require
the cljs-modules.modules namespace, and add it at the very bottom of the file:

    (modules/set-loaded! "outer")

This marks the module as loaded, which is important when we're waiting for the module to
load before rendering.

Hang in there. We're almost done! There's just one more step, which is adjusting the render
component to deal with modules being loaded at runtime:

    (ns cljs-modules.render
      (:require [cljs-modules.modules :as modules]
                [om.core :as om]
                [om.dom :as dom])
      (:require-macros [cljs.core.async.macros :refer (go)]))

    (def routes ["/" {"" :outer/outer
                      "app" :inner/inner}])

    (defmulti active-component identity)

    (defmethod active-component :default [_]
      nil)

    (defn handler-module [handler]
      (namespace handler))



Building Richer Web Applications

[ 223 ]

    (defn require-module! [app module]
      (when modules/modules?
        (modules/require-module app module)))

    (defn render [app owner opts]
      (reify
        om/IRender
        (render [_]
          (let [c (get-in @app [:active-component])
                module (handler-module c)
                loaded? (modules/loaded? module)]
            (dom/div nil
                     (if loaded?
                       (let [cfn (active-component c)]
                         (om/build cfn app {:opts opts}))
                       "Loading..."))))
        om/IWillMount
        (will-mount [_]
          (let [c (get-in @app [:active-component])
                module (handler-module c)
                loaded? (modules/loaded? module)]
            (require-module! app module)))
        om/IWillReceiveProps
        (will-receive-props [_ next-props]
          (let [next-component (get-in next-props
            [:active-component])
                next-module (handler-module  next-component)]
            (require-module! app next-module)))))

Our render method looks the same, but we're implementing two more protocols now:
 IWillMount and IWillReceiveProps. In IWillMount, we determine the current module
and require it. In IWillReceiveProps, we determine the module of the next component
and require it.

Why do we need both? IWillMount is called once when the render component is first
added to the page before either module is loaded. IWillReceiveProps is called when
app-state changes, which could be because :active-component changed. Here, it's
important to note when visiting a new page, the nav-handler runs and possibly
updates :active-component. The render method will either build the correct component
or display Loading… if it isn't fully loaded yet. When the module is loaded, modules.cljs
calls om/update! on app-state and sets :loaded true, which will trigger a re-render.



Building Richer Web Applications

[ 224 ]

It is possible, and a good idea, to serve one of inner.js or outer.js in
the intial.html to optimize load times.

Fixing development mode
You may ask, why do we check the value of modules/modules? Remember that modules
are only supported in :simple and :advanced optimizations. When we use Figwheel,
with :optimizations :none, there will be no modules and every .js file is served
separately. Let's try setting modules/modules? to false, running lein do clean,
figwheel and reloading the page. We should see our Figwheel REPL hang at Loading….

What's going on? Remember that there's no file that requires cljs-modules.outer
directly and there are no modules, so render will wait indefinitely. Let's fix that.

Let's make a new file, dev.cljs:

    (ns cljs-modules.dev
      (:require [cljs-modules.core]
                [cljs-modules.inner]
                [cljs-modules.outer]))

The sole point of this file is to require inner and outer.

In project.clj, we modify our dev cljsbuild to change :main from cljs-modules.core
to cljs-modules.dev:

    :compiler {:main cljs-modules.dev}

Next, restart Figwheel, and you should see “Hello from Outer!”

The modules/modules? parameter is used to control runtime behavior, and it should
correspond to the way the app was compiled, or we'll have trouble. In production, we can
set it any number of ways. A common technique is to embed an inline JSON object into the
HTML that serves the link to our app.js. We can insert any number of configuration
variables into the JSON, and use that to customize the app's behavior. For example, in
our index.html we can see the following code:

<script>
  var config = {"modules": true};
</script>
<script src="/js/app.js" />



Building Richer Web Applications

[ 225 ]

Then, in the modules.cljs file, we look for the following code:

(def modules? (get (js/config) "modules"))

In production, we'll be generating index.html directly or using a templating engine such
as Enlive to modify index.html, so it is easy to make the values of modules match the way
they were actually compiled.

And we're finally done! That was a big, complex topic. Modules take some work to set up,
but they can result in smaller up-front downloads for your users, which results in faster
page loads and increased user satisfaction.

.cljc and server-side rendering
As discussed in many places throughout this book, Clojure and ClojureScript are very
similar, but they are distinct languages. Clojure 1.7 released a feature called Reader
Conditionals, which allows files to be loaded by both Clojure and ClojureScript.

There are a few interesting and powerful uses for reader conditionals as they apply to web
applications. First, let's review what reader conditions actually are.

Reader conditionals are a new syntax which was added to Clojure 1.7 and ClojureScript.
They create a new file extension, .cljc, which stands for Clojure Commmon, and new
syntax to support loading .cljc files from Clojure, ClojureScript, and any future dialect.

.cljc
Clojure files that end in the .cljc extension can be loaded by both Clojure and
ClojureScript processes, with a few features and restrictions.

.cljc files shouldn't directly reference host interoperability forms because those
aren't common across dialects. In Clojure, this means .cljc should avoid using Java
classes, such as java.lang.Integer. In ClojureScript, this means avoiding JS forms such
as js/Number.

However, .cljc files can reference host interoperability forms through the use of
reader conditionals. Think of these as cond or case, except the branch that is taken depends
on whether the compiler loading the file is Clojure or ClojureScript. A clichéd example is as
follows:

    (defn str->int [s]



Building Richer Web Applications

[ 226 ]

      #?(:clj  (java.lang.Integer/parseInt s)
         :cljs (js/parseInt s)))

This defines a function named str->int with different implementations for Clojure and
ClojureScript. #?() is a new reader macro allowing for conditionally loaded code. In
Clojure, the #?() form takes the :clj branch and (java.lang.Integer/parseInt s) is
returned. In ClojureScript, the :cljs branch is evaluated and (js/parseInt s) is
returned. In a reader conditional, each branch can only contain a single form, though of
course you can use do to combine forms.

If a reader conditional doesn't contain a value for the current compiler, no form is read; not
nil, but nothing:

    [1 2 #?(:cljs 3)]

This expression will return [1 2 3] in ClojureScript, but [1 2], not [1 2 nil], in
Clojure.

Remember unquote-splicing, such as ~@foo from macros? There is an analogous
construct, #?@(), for reader conditionals:

    (ns foo.bar
      (:require #?@(:clj [[clojure.core.async :as a]
                          [schema.core :as s]]
       :cljs [[cljs.core.async :as a]
         [schema.core :as s]])))

When using #?@, the value in the pair must be a sequence, and the reader returns all the
forms without the containing parenthesis.

There are a few neat tricks we used in this most recent example. First, we can use reader
conditionals in a :require form to control which namespaces get loaded. Second, we
aliased both clojure.core.async and cljs.core.async to a, which means that this
namespace logically uses core.async, even though they refer to different namespaces.
We'll use this technique later.

Armed with reader conditionals, we can create entire libraries that are crossplatform, which
can be used by both Clojure and ClojureScript. We've already seen some of them, such as
bidi, which we used for both client-side and server-side routing in Chapter 5, Building
Single Page Applications.



Building Richer Web Applications

[ 227 ]

Schema and input validation
The simplest and most straightforward use of .cljc is to share validation code across the
client and server. This has been a problem for web applications for over a decade: the user
is submitting data and we want to validate the data on the client side because it leads to
better UX, but then we still need to validate the data on the server for security and
correctness reasons. This typically leads to duplication of logic because we have to write the
validation code in both JavaScript and server side.

We cover how to use Schema, a popular library for addressing this problem, in detail in
Chapter 7, Going Further with ClojureScript. For now, it's enough to know that Schema has
been ported to .cljc and our Schema definitions can be loaded by both Clojure and
ClojureScript. This provides a solution to our duplication earlier. We simply load our
schemas on both client and server, and call s/validate to check the data using the same
validation on the client and server.

Server-side rendering
Let's work through a more involved example that requires reader conditionals. We'll
implement server-side rendering for an SPA. Like our previous foray into ClojureScript
modules, server-side rendering is also about speed. Users are impatient, and a 1 MB
JavaScript download slows down the page load. If we were able to render the page and
serve it with the HTML before the 1 MB download, the user could interact with the page
sooner.

Previous hacky solutions to this involved using a browser on the server, such as phantomJS
or Selenium with Chrome to render the SPA in the browser, then grabbing the page source
and serving that as a request. It is as hacky and error prone as it sounds.

Now that we have reader conditionals and .cljc, we can move our entire Om application
to .cljc and render it server-side. This is powerful and not as difficult as it seems.

First, a warning: While the library we're using (Foam) is very early in development, it is
likely that the technique will become mainstream in the ClojureScript community.
Foam provided a proof of concept that server-side rendering of ClojureScript applications is
possible, but the technique has been copied to several other ClojureScript web application
libraries, and Foam or something Foam-like might become merged into Om proper. The
exact implementation might change in the future, but the technique will likely remain the
same.



Building Richer Web Applications

[ 228 ]

Setting up the project
Let's create a new project to demonstrate server-side rendering; we'll name ours  ssr.

    $ lein new figwheel ssr

Next, we'll modify your project.clj, and add a few libraries to our dependencies:

    [arohner/foam "0.1.7"]
    [hiccup "1.0.5"]
    [org.omcljs/om "0.9.0"]
    [ring "1.4.0"]
    [ring/ring-jetty-adapter "1.4.0"]

We'll create a basic OM app:

    (ns ssr.core
      (:require [om.core :as om]
                [om.dom :as dom]))

    (defonce app-state (atom {:text "Hello from CLJS"}))

    (defn home [app owner opts]
      (reify
        om/IRender
        (render [_]
          (dom/div nil
                   (:text app)))))

    (defn main []
      (om/root
       home
       app-state
       {:target (. js/document (getElementById "app"))}))

    (main)

This should all be familiar from Chapter 5, Building Single Page Applications. As usual, we
can boot our Figwheel server with the following:

    $ lein figwheel

Now, you should see “Hello from CLJS“. Great!



Building Richer Web Applications

[ 229 ]

Since this project is about server-side rendering, we'll need a server that can render HTML.
Also, because we'll use ClojureScript compiled with :optimizations  :advanced, which
Figwheel doesn't support, we'll need to serve compiled ClojureScript as well. Let's get
started on the server by creating src/ssr/server.clj:

    (ns ssr.server
      (:require [foam.core :as foam]
                [foam.dom :as dom]
                [hiccup.core :as html]
                [ring.adapter.jetty :as jetty]
                [ring.middleware.resource :as resource]))

    (defn handler [req]
      {:status 200
       :body (slurp "resources/public/index.html")})

    (def handler (-> handler
                 (resource/wrap-resource "public")))

    (defn main []
      (jetty/run-jetty handler {:port 8080
                                :host "0.0.0.0"
                                :join? false}))

We'll start a REPL with lein repl, run main, and visit http://localhost:8080
(not 3449). And, you should see “Hello from CLJS“.

Now, let's port core.cljs to .cljc. Rename the file to core.cljc, and we'll make a few
small edits:

    (ns ssr.core
      (:require #?@(:clj [[foam.core :as om]
                          [foam.dom :as dom]]
                    :cljs [[om.core :as om]
                           [om.dom :as dom]])))
    ....
    (defn main []
      #?(:cljs
         (om/root
          home
          app-state
          {:target (. js/document (getElementById "app"))})))



Building Richer Web Applications

[ 230 ]

Wait! What's going on here? Om is written in ClojureScript, so we can't load it from Clojure.
We're using Foam, a library that provides a “fake” implementation of Om's API written in
Clojure. It implements (nearly) all of Om's API, including all protocols. Since foam.core
provides the same functions as om.core, our code continues to compile, as long as we refer
to om/IRender rather than om.core/IRender.

We also modify main, to essentially no-op it in Clojure. We've used a reader conditional to
essentially say, “Only load this code in ClojureScript”. We won't be using  main from
Clojure, so that's fine.

Now, back in server.clj, we'll add [ssr.core :as ssr] to the require statement, and
reload the file. It should compile with no errors. This means our Om component is now
available from Clojure! Let's put it to good use.

In server.clj, add the following:

    (defn base-html [body]
      (html/html
       [:head
        [:meta {:charset "UTF-8"}]
        [:meta {:name "viewport"
                :content "width=device-width"
                :initial-scale 1}]
        [:link {:href "css/style.css" :rel "stylesheet" :type
          "text/css"}]]
       [:body
        [:div {:id "app"}
         (if body
           body
           [:h2 "Server html response"])]
        [:script {:src "js/compiled/ssr.js"
                  :type "text/javascript"}]]))

Also, we will modify handler:

    (defn handler [req]
      {:status 200
       :body (base-html nil)})

Rather than slurping the static index.html, we've used Hiccup to port it to Clojure, and
served that. This makes it easier to insert HTML into the base HTML, which we'll do
shortly. Now, we can finally call our Om component. Let's take a look at the following
commands:

    (defn app-state []
      (atom {:text "Hello From Clojure!"}))



Building Richer Web Applications

[ 231 ]

    (defn foam-html []
      (let [state (app-state)
          cursor (foam/root-cursor state)
          com (foam/build ssr/home cursor {})]
          (dom/render-to-string com)))

    (defn handler [req]
      {:status 200
       :body (base-html (foam-html))})

We will define our own Om app-state and a function for returning Foam HTML. Then,
modify the handler to pass the Foam HTML in as the first argument. In base HTML,
comment out [:script {:src "js/compiled/ssr.js"}], just to prove that we're not
serving ClojureScript. Reload the namespace and reload the page, and you should see Hello
From Clojure!

You can and should try uncommenting the script tag and watch what happens. If you're
fast, you can observe the HTML containing Hello From Clojure! being displayed and then
being replaced with Hello from CLJS when the ClojureScript loads.

Understanding Foam
What exactly is foam doing here? From Chapter 5, Building Single Page Applications, we
know Om is based on React and that Om functions such as om.dom/div are wrappers that
turn around and call React functions of the same name, and the React functions return
virtual DOM elements.

Foam implements the Om public API, but it doesn't use React. Foam functions such as
 foam.dom/div also return virtual DOM elements, but they're not React elements, they're
just Clojure defrecords that implement a protocol, foam.core/-render-to-string.
The foam.core/build protocol works analogously to om.core/build in that it builds up
a tree of Foam components and virtual elements. When we call foam.dom/render-to-
string, it walks the tree and generates an HTML string. We insert that string into our
conventional HTML response and serve it just like any other standard HTML response.

Note that we served our server-side Om component into the #app div. If ssr.js is served,
when Om takes over, React will render the client-generated component into the same div,
overwriting the server-generated one. That's fine, and it provides a seamless experience.
Assuming both client and server use the same values for app-state, you won't notice a
transition. We intentionally change :text in this example so that you can observe the
transition.



Building Richer Web Applications

[ 232 ]

Also note that we're hard-coding ssr/home. In a production application, we'll likely have
many components and use bidi to handle routing. We could easily choose which
component to pass to foam/build based on the route that bidi matches. And of
course, bidi works in Clojure and ClojureScript, so we can place the routing table in
a .cljc file, and make the same decision in both places.

Remember that the page loaded just fine without ssr.js being served at all. This allows us
to shorten load times even more when the rendered page is 100% static. While Foam
appears nearly magical, it doesn't provide React, so while the server HTML can look
identical to the client-side version, it can't provide React's interactivity. If the page is
dynamic at all, for example using Om/React event handlers to change the page in response
to user actions or API calls, we'll still need to serve the ClojureScript version of the page as
well.

Summary
And there you have it! In this chapter, we covered a few advanced web application topics.
We covered real-time communication using WebSockets and handling large, complex data
using Datascript as an in-memory database. Finally, we illustrated two techniques for
improving the page load time of these large complex applications.

In the next chapter, we'll cover a few more exciting ClojureScript libraries, such as
 core.match, core.logic and schema.



7
Going Further with ClojureScript
At this point, you have all the tools you need to build serious, production-ready web
applications in ClojureScript. You've learned how the language works, how to write
functional and idiomatic code, and how to compose that code into greater web applications
using the latest industry best practices. We could call it a day here, but we won't. Instead, in
this chapter, we'll take a look at some interesting libraries and subject domains in the
ClojureScript ecosystem that are a little further afield from the subject matter we've covered
so far.

The subjects we'll be examining in this chapter range from more esoteric core ClojureScript
namespaces to third-party libraries such as Prismatic's schema. We'll also take a look at two
of the more interesting “core” libraries—libraries whose development process, like
core.async, is managed by Cognitect and the core ClojureScript development team, but
that are standalone dependencies. Specifically, we'll be taking a closer look at:

Pattern matching with core.match
Exploring nested data structures with clojure.zip
Declaratively solving problems with core.logic
Runtime type validation using schema

Pattern matching with core.match
The first subject of this chapter is the pattern-matching library, core.match. Pattern
matching in computer languages is a method by which a given sequence of tokens is
checked for the presence of specific markers of a pattern (which is typically either a
sequence or a tree of some sort). The technique has a somewhat storied history going all the
way back to the SNOBOL language (1962), with the first tree-based, pattern-matching
features being introduced in an extension of LISP in 1970.



Going Further with ClojureScript

[ 234 ]

Pattern matching has a number of different practical uses, from search-and-replace
algorithms and other low-level regular expression logic to general tree-based data
processing. The particular pattern-matching algorithm used by both Clojure and
ClojureScript's implementations in core.match is an implementation of an algorithm
described in Luc Maranget's paper, Compiling Pattern Matching to Good Decision Trees.

Configuring our project
core.match, like core.async, is not a part of ClojureScript's standard library. As a result,
we'll need to add it to our dependencies before we can work with it. Let's create a new
project that we can work within:

    $ lein new figwheel match-demo

Next, let's add core.match to our :dependencies key in our project.clj.

 core.match has been stable at version 0.3.0-alpha4 since December 2014, so that's the
version we'll use. Your :dependencies key should now look something like the following:

  :dependencies [[org.clojure/clojure "1.7.0"]
                 [org.clojure/clojurescript "1.7.170"]
                 [org.clojure/core.match "0.3.0-alpha4"]
                 [org.clojure/core.async "0.2.374"
                  :exclusions [org.clojure/tools.reader]]]

Now, as usual, we'll start a Figwheel REPL going so that we can get hot-reloading and we
can test our code in action:

    $ cd match-demo
    $ rlwrap lein figwheel

Don't forget to navigate a browser window to http://localhost:3449/ to get
the browser REPL to connect.



Going Further with ClojureScript

[ 235 ]

Getting started with core.match
We'll get started with core.match with the most basic example possible—matching
directly on literals:

cljs.user=> (require '[cljs.core.match :refer-macros [match]])

cljs.user=> (let [v [:a :a :b]]
              (match v
                [_ :a :a] 1
                [:a :b _ ] 2
                [_ _ :a] 3
                [_ _ :b] 4
                :else 5))
;; => 4

Here, we've locally bound a small vector, v, and provided various patterns that v could
match against, as well as the values we'd like to return for each of the possibilities. The way
core.match checks to see whether a given pattern matches the provided vector, v, is to
check against the individual values in the pattern to see whether they match.

Let's take a look at the first of these possible patterns, [_ :a :a], as an example. In the
case of this pattern, the first value is _, which to core.match is a wildcard, so this would
match against the first value of v. The second value in the pattern is the keyword :a, which
will also match against v. However, the final value in the pattern is :a as well, whereas the
final value in v is the keyword :b, so this pattern fails to match overall.

If one looks at the patterns provided, it's clear that only the fourth pattern matches (where
the first two values are wildcards, and the third value is the keyword :b), and so we see the
returned value is  4, which is what we expect.

One thing to be aware of about core.match is that the underlying
algorithm doesn't attempt to match against patterns by checking each one
from top to bottom or from left to right. Rather, the algorithm underlying
the match macro figures out which column has the highest “score”, where
a score is a measure of the degree to which a column must be tested
explicitly.
It then checks to see whether a given pattern matches the provided value
by checking against each column in decreasing order based on that
column's precomputed score. In the case of our simple example using
literal matching, the last column would have the highest score, since we
must know the value in that column in order to match it against any of the
provided patterns. By contrast, the first column would have the lowest



Going Further with ClojureScript

[ 236 ]

score, since we only need to know the element in that column to match
against one of the four patterns.
We've already seen how we can match against anything using wildcards.
What wasn't obvious from our earlier example is that wildcards are also
local bindings (bindings that can be returned as the response for a
matched pattern). In this regard, the choice of a wildcard as _ is just an
idiomatic indicator that we don't plan on using the binding later. Let's take
a look at an example in which we actually use some bindings:

cljs.user=> (match [:x :y]
                   [:y a] a
                   [b :y] b
                   :else nil)
;; => :x

Here, we've matched against the second pattern, where the first value we're matching
against is bound to the local variable b and then returned.

Although the merits of this may not be immediately obvious, this sort of local binding can
be extremely valuable if you need to do recursive matching or otherwise retain a particular
value within a matched structure that you may not know in advance.

In addition to wildcards, we can also specify a concrete list of possible alternatives using
:or when we know there might only be a finite set of acceptable options and we don't want
to have to enumerate all of them on separate lines. For instance:

cljs.user=> (let [x ["a" "b" "c"]]
              (match x
                     [(:or "a" "z") "d" "c"] :a1
                     ["x" "b" "c"] :a2
                     [(:or "a" "z") _ (:or "d" "c")] :a3
                     :else nil))
;; => :a3

If we had to do this without :or, it would be much longer:

cljs.user=> (let [x ["a" "b" "c"]]
              (match x
                     ["a" "d" "c"] :a1
                     ["z" "d" "c"] :a1
                     ["x" "b" "c"] :a2
                     ["a" _ "d"] :a3
                     ["a" _ "c"] :a3
                     ["z" _ "d"] :a3
                     ["z" _ "c"] :a3
                     :else nil))



Going Further with ClojureScript

[ 237 ]

;; => :a3

Matching collections
Now that we've had a look at what matching literals look like, let's take a closer look at the
collection matching syntax. As the syntax of literal matching might suggest, we can easily
match directly against vectors as follows:

cljs.user=> (let [v [:a :b :c]]
              (match [v]
                     [[:a :c _]] 1
                     [[:b _ :a]] 2
                     [[_ :b :c]] 3
                     :else nil)
;; => 3

Similarly, we can pattern match against maps with a similar syntax:

cljs.user=> (let [v {:x 1 :y 1}]
              (match [v]
                     [{:x _ :y 2}] 1
                     [{:x 1 :y 1}] 2
                     [{:x 3 :y _ :z 3}] 3
                     :else nil))
;; => 2

If you specify a key with a wildcard value as part of a pattern, and the value doesn't have
that key, core.match will not match against it:

cljs.user=> (let [v {:x 1 :y 1}]
              (match [v]
                     [{:x _ :y 2}] 1
                     [{:x 1 :y 1 :z _}] 2
                     :else "no match found"))
;; => "no match found"

The converse, however, is not true—if you specify a pattern that includes a subset of the
relevant keys (that is to say, a case in which the provided value has more keys than the
pattern does), then the pattern will successfully match. For instance:

cljs.user=> (let [v {:x 1 :y 1}]
              (match [v]
                     [{:x 1}] true
                     :else false))
;; => true



Going Further with ClojureScript

[ 238 ]

If you want to make sure the pattern and the value have the exact same keys, you can use
the :only pattern modifier, as follows:

cljs.user=> (let [v {:x 1 :y 1}]
              (match [v]
                     [({:x 1} :only [:x])] true
                     :else false))
;; => false

We can also match on nested maps in a manner that might be expected at this point:

cljs.user=> (let [v {:x {:y :z}}]
              (match [v]
                     [{:x {:y _}}] true
                     :else nil))
;; => true

We've seen cases already where we're matching on vectors, but we can also generalize
vector-style matching to any sequence using the special :seq keyword. In the following
example, we can test the same matching logic against two different concrete types that are
both sequences and get the same matching result:

cljs.user=> (let [x [1 2 nil nil nil]]
  (match [x]
    [([1 2] :seq)] :a1
    [([1 2 nil nil nil] :seq)] :a2
    :else nil))
;; =>:a2
cljs.user=> (let [x (list 1 2 nil nil nil)]
              (match [x]
                     [([1 2] :seq)] :a1
                     [([1 2 nil nil nil] :seq)] :a2
                     :else nil))
;; => :a2

We can combine rest (variable length) patterns with sequences or vectors in the same way
we would with function arguments:

cljs.user=> (let [x [1 2 nil nil nil]]
              (match [x]
                     [([1 2] :seq)] :a1
                     [([1 2 & r] :seq)] :a2
                     :else nil))
;; => :a2



Going Further with ClojureScript

[ 239 ]

Guards and function applications
This is where things start to get really cool. In addition to all of the matching against
discrete value possibilities and wildcards, we can also leverage ClojureScript's functional
nature to match on functional filters, both directly and indirectly.

Guards are one way that we can match on the result of a function—think of them as being
analogous to filter. We use guards via the :guard keyword and structure as follows:

cljs.user=> (let [x [1 3]]
              (match x
                     [(_ :guard odd?) _] :a1
                     [(_ :guard even?) (_ :guard even?)] :a2
                     :else nil))
;; => :a1

In addition to guards, we can also match directly on the result of applying a particular
function using the :<< keyword as follows:

Cljs.user=> (let [x [1 3]]
              (match x
                     [(2 :<< dec) 3] :a1
                     [1 (2 :<< dec)] :a2
                     :else nil))
;; => :a2

Wrapping up
This concludes our section on core.match. In the real world, pattern matching has a
number of potential applications, such as parsing inputs and writing function dispatch logic
(for instance, if you were to write a compiler in ClojureScript, you could use core.match to
do polym

Exploring nested data structures with clojure.zip
In this section, we'll be taking a closer look at clojure.ziporphic function dispatching). In
general, pattern matching provides a highly flexible dispatch mechanism for your
applications. Exploring nested data structures with clojure.zip In this section, we'll be
taking a closer look at clojure.zip, one of the libraries that ships with ClojureScript as part of
its standard library. clojure.zip provides purely functional generic tree walking and
editing, using a technique called a zipper. A zipper is a data structure representing a
location in a hierarchical data structure and the path it took to get there. It provides



Going Further with ClojureScript

[ 240 ]

down/up/left/right navigation and localized functional editing, insertion, and removal of
nodes.

Zippers are remarkable in that the code involved in interacting with them looks highly
imperative, meaning it's much closer to what you might write if you were trying to do
something similar in native JavaScript. However, nothing is actually mutated—it's all
purely functional code passing immutable values under the hood.

Example – Replacing values in a tree
Let's say we've got the following data structure:

(def data
  [:type :state
   :name "California"
   :population 39144000
   :capital [:type :city
             :name "Sacramento"
             :population 500]])

If you were writing a program from scratch, you'd probably choose to represent this data as
a map, but for the moment let's not worry about that. The observant reader will notice that
the population number for Sacramento is way off—in fact, I just made it up off the top of
my head. Let's assume that this isn't a hardcoded value. Perhaps you've got a program
where you retrieve data from an external source, where the author is me, and I've told you
in advance that I stubbed out the value of the Sacramento population with 500.

What to do? Well, you're just going to have to replace it.

There are a number of possible ways of doing this, but clojure.zip gives us a handy way
of walking arbitrary tree-like data structures and modifying their values in place. In doing
so, we're not actually mutating any of the underlying data; we're continuing to hold onto
the entire original structure, while also replacing components of it. When we're done, we
can return the new structure with its different elements.

If we just wanted to replace the value 500 with the correct value (about 466,500), we could
do the following:

cljs.user=> (require '[clojure.zip :as zip]))
;; => nil
cljs.user=> (let [data (zip/vector-zip data)] ;; make a zipper
  (loop [loc data]

    ;; when we reach the end of our search, return the tree



Going Further with ClojureScript

[ 241 ]

    (if (zip/end? loc)
      (zip/root loc)
      (recur

        ;; depth-first search the tree
        (zip/next
          (if (= (zip/node loc) 500)

            ;; replace the value
            (zip/replace loc 466500)
            loc)))))))
;; => [:type :state :name "California" :population 39144000 :capital [:type
:city :name "Sacramento" :population 466500]]

Okay, that's pretty nifty. We're basically searching the entire data structure, and when we
find the value 500, we replace it with the correct population. If we wanted to, we could
write a more generic replace-all function as follows:

(defn replace-val
  "Given a zipper, replace all instances of oldv with newv"
  [d oldv newv]
  (loop [loc d]
    (if (zip/end? loc)
      (zip/root loc)
      (recur
        (zip/next
          (if (= (zip/node loc) oldv)
            (zip/replace loc newv)
            loc))))))

Here we're focusing on a piece of data, but what about if we were to think about code as
data? Let's try to apply clojure.zip to a situation where we're treating code as data.
Remember our macro example in Chapter 3, Advanced ClojureScript Concepts, where we
were writing a macro to replace the function in the calling position with a different
function? Let's try extending that idea—instead of replacing the function in the calling
position, let's say we want to replace all instances of that function in a given body of code.

Let's say we've got the following body of code:

cljs.user=> (+ 1 (* 3 (+ 1 4)) (+ 3 10)))
;; => 29



Going Further with ClojureScript

[ 242 ]

To make things simple, we can replace + in this code with * by declaring the body as a
quoted value (which is what the data we'd have available at macro-evaluation time would
look like):

cljs.user=> (def data2
  '(+ 1 (* 3 (+ 1 4)) (+ 3 10)))
;; => cljs.user/data2

cljs.user=> (replace-val (zip/seq-zip data2) '+ '*)
;; => (* 1 (* 3 (* 1 4)) (* 3 10))

cljs.user=> (* 1 (* 3 (* 1 4)) (* 3 10))
;; => 360

Okay. Let's try plugging this back into our macro namespace from Chapter 3, Advanced
ClojureScript Concepts, to see whether it works:

(ns experiment.macros
  (:require [clojure.zip :as zip]))

(defn replace-val
  "Given a zipper, replace all instances of oldv with newv"
  [d oldv newv]
  (loop [loc d]
    (if (zip/end? loc)
      (zip/root loc)
      (recur
       (zip/next
        (if (= (zip/node loc) oldv)
          (zip/replace loc newv)
          loc))))))

(defmacro replace-anything
  "Replace all instances of oldv with newv in body"
  [body oldv newv]
  (replace-val (clojure.zip/seq-zip body) oldv newv))

Now let's try calling this on the command line:

    cljs.user=> (experiment.macros/replace-anything (+ 1 (* 3 (+ 1 4)) (+ 3
10)) + *)
    ;; => 360

Sweet! Just for demo purposes, let's check that it works with our example from Chapter 3,
Advanced ClojureScript Concepts:

    cljs.user=> (experiment.macros/replace-anything (+ 1 2) + -)
    ;; => -1



Going Further with ClojureScript

[ 243 ]

Okay, so maybe that's actually less impressive than the original, but still! This example
shows that, in ClojureScript, there are many ways of approaching a given problem.

Example – Removing values from a tree
Let's now take a look at another example—one in which we want to remove a given value
from a tree entirely. Our code for this doesn't look too dissimilar from our earlier example
where we were replacing a value. We're just searching for a match, and then removing it
from the tree.

Let's say we have a nested sequence and we want to remove all occurrences of the term
alfalfa from the nested sequence. I really don't like alfalfa. I tried to grow it once and then
it grew too fast and there were seeds everywhere, even though I just wanted something
light and breezy to put on my sandwich.

If we weren't worried about having to deal with a nested data structure,
filter would suit us fine for this sort of thing, but zippers are great when
you know you're dealing with a nested data structure of an unknown
form.
This sort of problem could also be generalized to a larger problem of
searching for swear words or other inappropriate user input in larger
forms on a web application, particularly one with nested sections.

At any rate, let's start with some input data:

cljs.user=> (def data (list "sprouts" "beans" "onions" (list "alfalfa"
"parsley") "alfalfa" "leeks"))
;; => #'cljs.user/data

And now, let's remove all that icky alfalfa:

cljs.user=> (let [data (zip/seq-zip data)]
  (loop [loc data]
    (if (zip/end? loc)
      (zip/root loc)
      (recur
       (zip/next
        (if (= (zip/node loc) "alfalfa")
          (zip/remove loc)
          loc))))))
;; => ("sprouts" "beans" "onions" ("parsley") "leeks")



Going Further with ClojureScript

[ 244 ]

Further possibilities
The examples we've covered so far in this section represent just a small fraction of the ways
that clojure.zip can help you navigate and transform tree-like data structures. For
instance, zippers can be amazing for scraping structured data out of HTML (another tree
structure!). In addition to replacing or removing values, you can add new values to specific
parts of the tree, generate fast search paths to individual nodes, apply functions to values at
different nodes, and more. All of this is available to you as part of the core ClojureScript
library, and all of it is purely functional and (perhaps most importantly) extremely fast from
a performance standpoint.

Declaratively solving problems with core.logic
core.logic is a logic programming library for ClojureScript. It offers Prolog-style
relational programming, constraint logic programming, and nominal logic programming
for ClojureScript. It is based on a family of languages described by William Byrd as
miniKanren, as well as subsequent extensions known as cKanren and αKanrenA.

Logic programming is an unfamiliar knowledge domain for many
software engineers, and we expect many of the concepts we'll be covering
in this section to be quite different from anything you've encountered
before, whether in this book or elsewhere.
We've done our best to make the subject matter approachable, but if you
find yourself with questions or are curious to learn more, we recommend
taking some time to investigate the project's public wiki, located at h t t p s :
/ / g i t h u b . c o m / c l o j u r e / c o r e . l o g i c / w i k i.

At a high level, a logic program consists of one or more logic expressions, and a solution
engine or solver (in this case, core.logic is the solver). Inside the library, the provided
expressions are input to a logic engine, which returns all assignments to the logic variables
that satisfy the constraints in the expressions.

If you're familiar with SQL or other database languages that orient around relational
statements, this concept is somewhat similar—we provide a series of statements to an
engine, with the desire of retrieving all data that is consistent with the statements provided.

https://github.com/clojure/core.logic/wiki
https://github.com/clojure/core.logic/wiki


Going Further with ClojureScript

[ 245 ]

Configuring our project
As we did with core.match earlier in this chapter, we're going to need to modify our
dependencies a bit to make core.logic available at runtime. For simplicity, let's just
quickly create a standalone project to work in:

    $ lein new figwheel logic-demo

Next, let's add core.logic to our :dependencies key in our project.clj.

core.logic still receives the odd update, but is fairly stable, with the last stable release
being 0.8.10 from March 2015. Your :dependencies key should now look something like
the following:

  :dependencies [[org.clojure/clojure "1.7.0"]
                 [org.clojure/clojurescript "1.7.170"]
                 [org.clojure/core.logic "0.8.10"]
                 [org.clojure/core.async "0.2.374"
                  :exclusions [org.clojure/tools.reader]]]

Next, we'll start a Figwheel REPL going so that we can get hot-reloading and we can test
our code in action:

    $ cd logic-demo
    $ rlwrap lein figwheel

Don't forget to navigate a browser window to http://localhost:3449/
to get the browser REPL to connect.

Getting started with core.logic
First, let's require the main core.logic namespace:

cljs.user=> (require '[cljs.core.logic :as l])
;; => nil

Now, let's take a look at a simple example using core.logic. In this example, we're asking
the logic engine to find all possible solutions that are members of the collections [1 2 3 4]
and [3 4 5 6]:

cljs.user=> (l/run* [q]
  (l/membero q [1 2 3 4])



Going Further with ClojureScript

[ 246 ]

  (l/membero q [3 4 5 6]))
;; => (3 4)

Like core.match, core.logic has a core macro that wraps everything else. Where it was
previously match, here it is run* (there's also run, which takes an additional argument
specifying a limit on the number of requested solutions).

The function membero here seeks to satisfy q such that q is a member of the provided
collection. In general, core.logic functions have a vowel appended to the end, hence
membero means member. Another example is conde, which behaves like ClojureScript's
built-in cond.

Perhaps an even simpler core.logic example can be found with the == macro (also
known as unify), which seeks to constrain the local variable to the exact set of possible
values. Concretely, that looks like the following:

cljs.user=> (l/run* [q]
  (l/== q 5))
;; => (5)

Note that the returned value is always a lazy sequence, even in the case
where there's only one solution. This is because core.logic returns a
sequence of all possible solutions, whether there are many solutions, one
solution, or no solutions at all.

Now, you may be wondering what the use case for unify might be. After all, if all it does is
solve for a possible solution in which one value is equal to another, why wouldn't we
simply return that value from the start, or in other circumstances just check for equality?

The key insight here is that unify becomes more powerful once we begin using core.logic
to solve more elaborate problems; in particular, ones in which there are other “unknown”
values that we're using the logic engine to solve for. For instance, let's consider the
following example:

cljs.user=> (l/run* [q]
              (l/fresh [a]
                (l/membero a [:animal :mineral :vegetable])
                (l/membero q [:animal :plant :fungi :bacteria])
                (l/== a q)))
;; => (:animal)

We haven't seen the fresh macro before, so let's cover that first. The fresh macro works
sort of like let in ordinary ClojureScript, only it doesn't bind a specific value to the
variable. Instead, like our solver variable q, it marks an unknown value that the logic engine
must solve for.



Going Further with ClojureScript

[ 247 ]

In this example, then, we've required that a must be a member of the collection including
:animal, :mineral, and :vegetable, while q must be a member of the collection
including :animal, :plant, :fungi, and :bacteria. Finally, we've required that a must
be equal to q. This leaves only one answer, which is :animal.

This example is a little contrived, but let's dig deeper. First, note that the order of the
constraints doesn't matter. We could specify that a equals q first and get the same result:

cljs.user=> (l/run* [q]
              (l/fresh [a]
                (l/== a q)
                (l/membero a [:animal :mineral :vegetable])
                (l/membero q [:animal :plant :fungi :bacteria])))
;; => (:animal)

Next, let's take a look at an example in which a being equal to q means there is more than
one possible answer. For this, we'll modify our example from earlier in the chapter and
reuse it here:

cljs.user=> (l/run* [q]
              (l/fresh [a]
                (l/== a q)
                (l/membero a [1 2 3 4])
                (l/membero q [3 4 5 6])))
;; => (3 4)

This example shows the true power of unify. The constraint that a being equal to q doesn't
mean that there's only a single possible value, but rather that for all of the possible values of
a and q, the only valid solutions are ones where a can also be found in q.

The last of core.logic essential macros is conde. Unsurprisingly, conde behaves very
similarly to ClojureScript's conde macro. It checks against various predicates and then
returns the corresponding value.

conde is a little bit different, in that both the predicate and the returned value have to be
true in order for the value to be returned. Let's look at a fairly simple example:

cljs.user=> (l/run* [q]
              (l/conde
                (l/succeed l/succeed)
                (l/succeed l/fail)
                (l/fail l/succeed)))
;; => (_.0)



Going Further with ClojureScript

[ 248 ]

We haven't seen succeed or fail before now, but they're goals that either
always succeed or always fail. When succeed is returned, it shows up at
the REPL as _.0.

Let's break down what's going on here. conde evaluates each of the conditions in order, and
then returns the ones for which both the predicate and the value are true. Our first
condition always succeeds, and so does the value, so we return succeed (or _.0, as per the
previous info box). The second condition is successful, but the value fails, so we don't return
that. Our final condition fails, so even though the value would succeed we don't return it
either.

Let's take a look at a slightly more advanced example:

cljs.user=> (l/run* [q]
              (l/conde
                ((l/== :apricot q) l/succeed)
                ((l/== :banana q) l/succeed)))
;; => (:apricot :banana)

Here, both predicate conditions evaluate successfully, and so do the values. The values
evaluating successfully also retain the constraint of the predicate, which means that even
though the values only indicate success, we remain constrained by the limits we created in
the predicates. Thus, our final possibilities for the logical engine are those determined by
the predicates.

If we wanted to think about this in a purely logical sense, conde works like the following:

(pred AND val) OR (pred AND val) ...

One final example should help illustrate the AND aspect of this logical relationship:

cljs.user=> (l/run* [q]
              (l/conde
                ((l/membero q [:a :b :c]) (l/membero q [:b :c :d]))
                ((l/== :banana q) l/succeed)))
;; => (:banana :b :c)

Here, the logical AND of our two membero constraints give us the values of :b and :c.
Combined with conde logical OR, we also get :banana for the final result of all three.



Going Further with ClojureScript

[ 249 ]

Advanced core.logic
So far, we've covered the major focus areas of core.logic: the main logic engine, run*,
membero, as well as the core operators from miniKanren, upon which core.logic is
based: unify, conde, and fresh. In this section, we'll take a look at some higher-level
constraints—namely, conso and resto.

conso is, as the name would suggest, a core.logic analog to ClojureScript's cons. Let's
quickly recall the behavior of cons:

cljs.user=> (cons 0 [1 2])
;; => (0 1 2)

conso works like cons, but accepts an additional argument: the resulting sequence from
the operation is also provided as an operation (making its function signature (conso x r
s)). So, an analog for the previous example using core.logic would look something like
the following:

cljs.user=> (l/run* [q]
              (l/conso 0 [1 2] q))
;; => ((0 1 2))

Okay, so that's not particularly impressive by itself. What is impressive is that we can pass
in our logic variable to any part of the equation. Observe:

cljs.user=> (l/run* [q]
              (l/conso q [1 2] [0 1 2]))
;; => (0)

cljs.user=> (l/run* [q]
              (l/conso 0 q [0 1 2]))
;; => ((1 2))

We can even pass our logic variable into a specific index of one of the constraint's
arguments:

cljs.user=> (l/run* [q]
              (l/conso 0 [1 q] [0 1 2]))
;; => (2)



Going Further with ClojureScript

[ 250 ]

Finally, we have resto, which is a complement to conso. As with the other functions we've
seen in this section, resto corresponds to the core ClojureScript function rest, which gives
us the remaining items in a sequence (and an empty sequence if there are no remaining
items). It behaves in a very similar way to conso, so rather than show all of the possible
examples, we'll jump right to one that should, at this point, be fairly comprehensive:

cljs.user=> (l/run* [q]
              (l/resto [1 2 3 4] [2 q 4]))
;; => (3)

We've covered membero already in some detail in this section, but one
thing we haven't covered is that membero works just like conso and
resto in terms of being able to substitute the logic variable into the
collection in question. For instance:
cljs.user=> (l/run* [q]
(l/membero 1 [q 2 3]))
;; => (1)

Going even further
This concludes our section on core.logic. We'd like to stress that we've only covered the
basic building blocks of how core.logic works, and that these basic building blocks only
give a subtle hint as to how powerful the library truly is. core.logic is easily extended to
solving more advanced problems, such as writing in-memory databases or dealing with
arbitrary and/or runtime inputs.

If you'd like to learn more about core.logic and to see just a few of the many possible
extensions and use cases for the library, we encourage you to take a look at the list of
examples available on the core.logic wiki (link:
https://github.com/clojure/core.logic/wiki/Examples), which include, among
other things:

A classic AI program
A Sudoku solver
A type inference machine

https://github.com/clojure/core.logic/wiki/Examples)
https://github.com/clojure/core.logic/wiki/Examples)


Going Further with ClojureScript

[ 251 ]

Runtime data validation using schema
Like JavaScript, ClojureScript is dynamic; no type declarations are required, and attempting
to provide them doesn't really give much meaningful support since ClojureScript's close
relationship with the Google Closure compiler ensures your applications will already be
fairly optimized when such type-related optimizations are available.

However, there are reasons you might want to have type checking as part of your program
that aren't performance oriented. For instance, you might want to do input validation, or
you might need to ensure that your functions are correctly passing the right data to each
other in a test environment. For essentially all scenarios in which you might want to do
runtime data validation, Prismatic's schema library is the perfect fit.

At a high level, the schema library provides functionality for data validation, function
annotation, and coercion. It is an invaluable tool when it comes to making runtime
assertions about programs and designing tests that can ensure that your applications
behave in the way you expect them to.

For most of the lifetime of the schema project, it's been under the careful
stewardship of the San Francisco-based company, Prismatic. Prismatic
recently changed their business model and more-or-less removed their
online presence. In the process, they migrated their prior GitHub
organization from “Prismatic” to “plumatic”. This means that the source
code for schema can now be found online at h t t p s : / / g i t h u b . c o m / p l u m
a t i c / s c h e m a.
Users of the library shouldn't worry, however; the same people who were
maintaining the library before are still actively developing it and
responding to issues, and the source code remains available on
clojars.org under the original organization name as
prismatic/schema.

Configuring our project
schema is a third-party library, so we'll need to add it to our dependencies if we want to
have it available to the compiler. This probably seems like old hat by now, but let's quickly
throw together a new project for us to work within:

    $ lein new figwheel schema-demo

And let's add `schema to our :dependencies key in our project.clj. At the time of
writing, the most recent version of schema is 1.0.4, so we'll use that.

https://github.com/plumatic/schema
https://github.com/plumatic/schema


Going Further with ClojureScript

[ 252 ]

Your :dependencies key should now look something like the following:

  :dependencies [[org.clojure/clojure "1.7.0"]
                 [org.clojure/clojurescript "1.7.170"]
                 [prismatic/schema "1.0.4"]
                 [org.clojure/core.async "0.2.374"
                  :exclusions [org.clojure/tools.reader]]]

Then we'll start a Figwheel REPL going so that we can get hot-reloading and we can test our
code in action:

    $ cd schema-demo
    $ rlwrap lein figwheel

A quick introduction to schema
Let's start out with an example. Let's try to validate some high-level demographic
information. In particular, let's go back to the data examples we were using when we were
looking at clojure.zip, and let's try to adapt those examples for use here. Let's assume
we've got some data in the following form:

cljs.user=> (def data
  {:type :state
   :name "California"
   :population 39144000
   :capital {:type :city
             :name "Sacramento"
             :population 500}})
;; => #'cljs.user/data

How might we want to validate this?

A naïve approach using schema would entail defining a corresponding data structure
where the keys are the same as our desired data structure, and the values correspond to the
data type we'd expect to find there. So, for the example data provided previously, a relevant
schema would look like the following:

;; import schema.core so that we can use it at the REPL

cljs.user=> (require '[schema.core :as s :include-macros true])
;; => nil

;; note that our defined schema is just a normal map, which makes
;; extending it or defining other variants of it easy

cljs.user=> (def state



Going Further with ClojureScript

[ 253 ]

  "A schema to describe a state"
  {:type s/Keyword
   :name s/Str
   :population s/Int
   :capital {:type s/Keyword
             :name s/Str
             :population s/Int}})
;; => #'cljs.user/state

Let's see whether this schema works to validate our test data. If the data we pass in is valid,
validate just returns the data:

cljs.user=> (s/validate state data)
;; => {:type :state, :name "California", :population 39144000, :capital
{:type :city, :name "Sacramento", :population 500}}

If the data we pass in is invalid, schema throws an error:

cljs.user=> (def invalid-data
  {:type :state
   :name "California"
   :population "39144000" ;; we've changed population to a string
   :capital {:type :city
             :name "Sacramento"
             :population 500}})
;; => #'cljs.user/invalid-data

cljs.user=> (s/validate state invalid-data)
;; => #error {:message "Value does not match schema: {:population (not
(cljs$core$integer? "39144000"))}", :data {:type :schema.core/error,
:schema {:type #schema.core.Predicate{:p? #object[cljs$core$keyword_QMARK_
"function cljs$core$keyword_QMARK_(x){
return (x instanceof cljs.core.Keyword);
}"], :pred-name cljs$core$keyword?}, :name #schema.core.Predicate{:p?
#object[cljs$core$string_QMARK_ "function cljs$core$string_QMARK_(x){
return goog.isString(x);
}"], :pred-name cljs$core$string?}, :population #schema.core.Predicate{:p?
#object[cljs$core$integer_QMARK_ "function cljs$core$integer_QMARK_(n){
return (typeof n === 'number') && (!(isNaN(n))) && (!((n === Infinity))) &&
((parseFloat(n) === parseInt(n,(10))));
}"], :pred-name cljs$core$integer?}, :capital {:type
#schema.core.Predicate{:p? #object[cljs$core$keyword_QMARK_ "function
cljs$core$keyword_QMARK_(x){
return (x instanceof cljs.core.Keyword);
}"], :pred-name cljs$core$keyword?}, :name #schema.core.Predicate{:p?
#object[cljs$core$string_QMARK_ "function cljs$core$string_QMARK_(x){
return goog.isString(x);
}"], :pred-name cljs$core$string?}, :population #schema.core.Predicate{:p?



Going Further with ClojureScript

[ 254 ]

#object[cljs$core$integer_QMARK_ "function cljs$core$integer_QMARK_(n){
return (typeof n === 'number') && (!(isNaN(n))) && (!((n === Infinity))) &&
((parseFloat(n) === parseInt(n,(10))));
}"], :pred-name cljs$core$integer?}}}, :value {:type :state, :name
"California", :population "39144000", :capital {:type :city, :name
"Sacramento", :population 500}}, :error {:population (not
(cljs$core$integer? "39144000"))}}}

;; longer stacktrace follows

In addition to schema's validate function, there's also a check function, which does much
the same thing, only without the thrown exception. Instead, check returns nil if the
validation is successful, and if the validation fails, it returns a value that looks like the non-
matching parts of the input data with errors at the leaves describing the failures. We'll be
using check instead of validate for the rest of this chapter, since the error messages in
ClojureScript can be rather verbose.

This example, where we define the expected types for values in a map, is a good place for
us to start because the odds are good that you'll end up writing something similar to it. That
having been said, it'd behoove us to go over schema's capabilities from the ground up, so
that you can have a more complete idea of how the library works on a more intuitive level.

One thing to be aware of early on is that schema type variables (s/Keyword, s/Int, s/Str,
and so on) are actually functions, not references to the types themselves. For instance, the
source code of s/Str is just (pred string?), where pred is a fairly straightforward
predicate utility function in schema.core.

We can test this ourselves by quickly substituting a sample schema function ourselves,
modeled in a similar way:

cljs.user=> (s/check (s/pred even?) 1)
;; => (not (cljs$core$even? 1))

cljs.user=> (s/check (s/pred even?) 2)
;; => nil

From the previous example, we can see that all schema is really doing is calling the
provided function on the data it's validating. This insight will become even more apparent
later on in this chapter, when we start experimenting with schema's non-type-related
validation capabilities in greater depth.



Going Further with ClojureScript

[ 255 ]

The simplest sort of validation we can do is by checking against basic types (numbers,
strings, keywords, and so on):

cljs.user=> (s/check s/Num 42)
;; => nil

Now let's try with a string (obviously not a number!):

cljs.user=> (s/check s/Num "42")
(not (instance? #object[Number "function Number() { [native code] }"]
"42"))

Against a keyword schema:

cljs.user=> (s/check s/Keyword :party)
;; => nil

And when that fails:

cljs.user=> (s/check s/Keyword 'party)
(not (cljs$core$keyword? party))

This sort of low-level validation exists for all of ClojureScript's primitives, with the
corresponding schema type defined as s/Str, s/Keyword, s/Num, s/Symbol, and so on.

Collection schemas
Next, let's see how we can compose these basic schema functions into greater validations
for collections. We've already seen a pretty clear example about how we can validate the
types for values in a map with known keys, so let's take look at some more generic
examples:

;; We can validate that a vector's elements are numbers

cljs.user=> (s/check [s/Num] [1 2 2 3])
;; => nil

Similarly, we can define a generic map where keys must be integers and values must be
strings:

cljs.user=> (s/check {s/Int s/Str} {1 "first" 2 "second"})
;; => nil

;; We can also define multiple possible key types; for instance
;; here a key can be an integer or the keyword :foo



Going Further with ClojureScript

[ 256 ]

cljs.user=> (s/check {s/Int s/Str :foo s/Str} {1 "first" :foo "second"})
;; => nil

Because schema types are just functions, we can easily compose them with other functions,
such as optional-key:

cljs.user=> (def person
  {:name s/Str
   (s/optional-key :occupation) s/Str})
;; => #'cljs.user/person

cljs.user=> (s/check person {:name "David"})
;; => nil

cljs.user=> (s/check person
                     {:name "David"
                      :occupation "Software Engineer"})
;; => nil

If we put all of this together, we can create highly customizable schema to capture whatever
we think our data might look like. For instance, we can have a generic person schema for
which the name must be a string, and the age, when provided, must be an integer:

cljs.user=> (def person
  {:name s/Str
   (s/optional-key :age) s/Int
   s/Keyword s/Str})
;; => #'cljs.user/person

;; looking good

cljs.user=> (s/check person
                     {:name "David"
                      :age 29
                      :occupation "Software Engineer"
                      :hobby "Billiards"})
;; => nil

;; looking bad

cljs.user=> (s/check person
                  {:age "29"
                   :occupation "Software Engineer"
                   :hobby "Billiards"
                   :bicycles 1})
;; => {:name missing-required-key, :age (not (cljs$core$integer? "29")),
:bicycles (not (cljs$core$string? 1))}



Going Further with ClojureScript

[ 257 ]

We have similar powers of customization when it comes to defining other collection
schemas. For instance, we can define a vector where the first element must be a string, a
second optional element can be a keyword, and anything after that must be an integer, as
follows:

cljs.user=> (def form
  [(s/one s/Str "s")
   (s/optional s/Keyword "k")
   s/Int])
;; => #'cljs.user/form

Note that the syntax we've used here (using s/one, s/optional, and so
on) is a function of our desire to have multiple schema types within our
vector. If we just wanted a homogeneously typed vector (one with a single
possible type), we'd specify it with, for example (def form [s/Int]).

The strings s and k that follow s/one and s/optional just name the relevant part of the
schema. They don't tell you what the value has to be:

cljs.user=> (s/check form ["Event"])
;; => nil

cljs.user=> (s/check form ["Event" :logout])
;; => nil

cljs.user=> (s/check form ["Event" :logout 1])
;; => nil

cljs.user=> (s/check form ["Event" :logout 1 2 3])
;; => nil

cljs.user=> (s/check form ["Event" :logout 1 :banana])
;; => [nil nil nil (not (cljs$core$integer? :banana))]

We also have an escape hatch for when we truly don't know what type something might be,
in the form of Any:

cljs.user=> (s/check [s/Any] [1 :oh "really?"])
;; => nil



Going Further with ClojureScript

[ 258 ]

Function schemas
In addition to defining validations for data itself, we can also define validations for
functions themselves. These types of validations allow you to specify both the argument
types and the return types of your functions.

Let's look at a simple example:

cljs.user=> (defn untyped-fn
  "A simple un-typed function"
  [x]
  (inc x))
;; => #'cljs.user/untyped-fn

cljs.user=> (s/defn typed-fn :- s/Int
  "A simple typed function."
  [x :- s/Int]
  (inc x))
;; => #'cljs.user/typed-fn

Note that you don't need to define a schema for every argument or return
value; those values without a schema' are just treated as having been
defined with a schema of s/Any.

Let's quickly verify that these both work:

cljs.user=> (untyped-fn 5)
;; => 6

cljs.user=> (typed-fn 4)
;; => 5

cljs.user=> (typed-fn "a")
;; => "a1"

Hey, wait a second! What's the point of providing type annotations when they don't stop
you from passing in the wrong type? Well, what's happening under the hood is that the
typed functions in schema are leveraging ClojureScript's underlying abilities to provide
type hints, which are more for documentation purposes than actual compile-time or runtime
validation.



Going Further with ClojureScript

[ 259 ]

Unlike pure ClojureScript type hints, however, schema-type annotations can be used for
runtime code validation (particularly handy when writing tests!). To turn on function
validation, wrap the relevant piece of code in the with-fn-validation macro, as follows:

cljs.user=> (s/with-fn-validation (typed-fn 1))
;; => 2

cljs.user=> (s/with-fn-validation (typed-fn "a"))
;; => #error {:message "Input to typed-fn does not match schema: [(named
(not (cljs$core$integer? "a")) x)]", :data {:type :schema.core/error,
:schema [#schema.core.One{:schema #schema.core.Predicate{:p?
#object[cljs$core$integer_QMARK_ "function cljs$core$integer_QMARK_(n){
return (typeof n === 'number') && (!(isNaN(n))) && (!((n === Infinity))) &&
((parseFloat(n) === parseInt(n,(10))));
}"], :pred-name cljs$core$integer?}, :optional? false, :name x}], :value
["a"], :error [(named (not (cljs$core$integer? "a")) x)]}}
;; longer stacktrace follows

If you want global runtime-type validation, you can also just call set-fn-validation!.
There's a slight performance hit to this, but it's generally worth it, especially when you're
working in a development environment:

cljs.user=> (s/set-fn-validation! true)
;; => true

cljs.user=> (typed-fn 1)
;; => 2

cljs.user=> (typed-fn "a")
;; returns the same error as before

To enable function validation during testing (covered in Chapter 8, Bundling ClojureScript
for Production), you can use the following (from the schema.test namespace):

 (use-fixtures :once schema.test/validate-schemas)

Advanced schema validation
So far, all of the examples we've looked at have been fairly straightforward—essentially,
just iterations on checking whether or not a provided value was of the appropriate type (or
types, in the case of a collection schema). However, schema is highly extensible, and has
built-in support for much more by way of data validation than pure type checking. We've
already seen a few hints of what these features look like for instance, with the optional
modifying function. Let's take a look at a few more advanced examples.



Going Further with ClojureScript

[ 260 ]

First, we have maybe, which validates whether the provided data matches either the
provided schema function, or is nil:

cljs.user=> (s/check (s/maybe s/Int) 5)
;; => nil

cljs.user=> (s/check (s/maybe s/Int) nil)
;; => nil

cljs.user=> (s/check (s/maybe s/Int) "a")
;; => (not (cljs$core$integer? "a"))

Next, we have features we might expect to see in a fully featured language spec—explicit
equality checking by value, as well as enum support:

cljs.user=> (s/check (s/eq 5) 5)
;; => nil

cljs.user=> (s/check (s/eq 5) 4)
;; => (not (= 5 4))

cljs.user=> (s/check (s/enum :login :signup :logout) :login)
;; => nil

cljs.user=> (s/check (s/enum :login :signup :logout) :email)
;; => (not (#{:login :signup :logout} :email))

We've already seen how schema's pred function can be used for simple conditionals, but
there's also a proper conditional function that mirrors the behavior of cond within
schema:

cljs.user=> (def KeywordVectorOrString
              (s/conditional vector? [s/Keyword] :else s/Str))
;; => #'cljs.user/KeywordVectorOrString

cljs.user=> (s/check KeywordVectorOrString "I'm a string!")
;; => nil

cljs.user=> (s/check KeywordVectorOrString [:a :vector :of :keywords])
;; => nil

cljs.user=> (s/check KeywordVectorOrString ["This isn't okay, dude."])
;; => [(not (cljs$core$keyword? a-string))]



Going Further with ClojureScript

[ 261 ]

There's a convenience function, if, for when there are only two possibilities:

cljs.user=> (def KeywordVectorOrString (s/if vector? [s/Keyword] s/Str))
;; => #'cljs.user/KeywordVectorOrString

We can define recursive schema as follows:

(def Tree {:value s/Int :children [(s/recursive #'Tree)]})
;; => #'cljs.user/Tree

cljs.user=> (s/validate Tree {:value 0, :children [{:value 1, :children
[]}]})
;; => {:value 0, :children [{:value 1, :children []}]}

In closing this section, we hope you see how schema's functional programming core allows
for practically infinite flexibility when it comes to data validation. Use it to validate types,
check for specific values, or provide your own custom validation logic to ensure that the
data you're validating is of the expected shape and content for your application.

Schema coercion
So far, our focus has been on validating that a given piece of data satisfied a given schema,
but schema also supports coercing data into a target schema. The process of coercion is very
similar to that of validation under the hood, but involves an initial transformation that is
applied to the data before attempting to validate that the data now meets the final schema.

The canonical example here is also the most likely one you'll run into, which is for coercing
parsed JSON to a domain-specific schema with different data types (for instance, when one
prefers certain values to be ClojureScript keywords instead of strings).

Let's say, for instance, that we have a blog application where users can post comments.
Their posted comments include preferences to share their comments with associated social
media accounts. The schema for a posted comment might look like the following:

cljs.user=>(def CommentSchema
  {:post-id s/Int
   :text s/Str
   :share-services [(s/enum :twitter :facebook :google)]})
;; => #'cljs.user/CommentSchema



Going Further with ClojureScript

[ 262 ]

An actual comment, though, would come in as a JSON object. This means the keys would
be strings, not keywords, and the values in the array for :share-services would be
strings as well. So a comment would probably look something like this, at the moment it
came off the wire:

#js {"post-id" 583
     "text" "You're right, ClojureScript *is* awesome!"
     "share-services" ["twitter" "facebook"]}

In your application, you'd first translate this JSON object to a ClojureScript map, and in the
process cast the string keys to keywords (unless you had some particular reason for keeping
them as strings), giving you the following, which we'll store in the post-comment var for
easy demonstration purposes:

cljs.user=> (def post-comment
              {:post-id 583
               :text "You're right, ClojureScript *is* awesome!"
               :share-services ["twitter" "facebook"]})
;; => #'cljs.user/post-comment

So far, the process of converting JSON to our target data format has been fairly
straightforward, but here's where things break down. Ordinarily, if we wanted to handle
the strings in the :share-services vector (formerly array), we'd have to write a custom
function to do so. That function wouldn't be terrible to write, and it'd probably look
something like this:

(s/defn parse-comment :- CommentSchema
  "Given a comment map, coerce it's share-services to keywords"
  [c]
  (update-in c [:share-services] (partial mapv keyword)))

The problem is that, as our application grows, so (generally speaking) do the number of
different data types it's likely to handle. Over time, we'd find ourselves having to write
similar logic for every possible data type. schema coercion functionality lets us do this in a
way that is simple, straightforward, and repeatable.

First, we define a schema coercer for our target schema as follows:

;; import schema's coercion namespace

cljs.user=> (require '[schema.coerce :as coerce])
;; => nil

cljs.user=> (def comment-coercer (coerce/coercer CommentSchema coerce/json-
coercion-matcher))
;; => #'cljs.user/comment-coercer



Going Further with ClojureScript

[ 263 ]

comment-coercer here is our new coercion function. All we have to do now is to call it on
our target data and it'll do the coercion for us:

cljs.user=> (comment-coercer post-comment)
;; => {:post-id 583,
       :text "You're right, ClojureScript *is* awesome!",
       :share-services [:twitter :facebook]}

Although schema's built-in JSON coercer is by far the most commonly used coercion engine
for most ClojureScript applications, it's not inconceivable that you might want to write your
own custom coercer (either for handling non-JSON data or for coercing JSON data to types
that aren't built-in to schema).

If you're interested in learning more about writing custom schema
coercions, you can find a detailed tutorial on how to do so on the `schema`
project's wiki, here: h t t p s : / / g i t h u b . c o m / p l u m a t i c / s c h e m a / w i k i / W r
i t i n g - C u s t o m - T r a n s f o r m a t i o n s.

Summary
Congratulations! You now have a working knowledge of some of ClojureScript's more
interesting libraries, as well as a good idea of how to take that knowledge and apply it to
your particular applications. You've learned how to use core.match and core.logic to
write code that programmatically matches patterns or other logical constraints. With
clojure.zip, you now know how to rapidly traverse and modify ClojureScript data
structures in a way that feels mutable, but has all the safety of immutability. Lastly, you
learned how to use schema to do runtime data validation.

In the next and final chapter of this book, we'll learn about how to write portable code that'll
work for both Clojure and ClojureScript, how to use cljs.test to write tests for your code,
and how to work with some of the ClojureScript compiler's more advanced compilation
options. We'll also show you how to deploy dual Clojure-ClojureScript applications in
Docker containers. By the time you're done, you should know everything you need to know
in order to be ready to ship your applications to a production environment.

https://github.com/plumatic/schema/wiki/Writing-Custom-Transformations
https://github.com/plumatic/schema/wiki/Writing-Custom-Transformations


8
Bundling ClojureScript for

Production
We've almost come to the end of our journey together in learning ClojureScript. In this final
chapter, we'll cover subjects relevant to readers interested in shipping their applications to
production environments. In particular, we'll focus on the details of testing, configuration,
and deployment as they pertain to ClojureScript applications. This chapter's major areas of
focus are the following:

Testing your application with cljs.test
Advanced ClojureScript compilation options
Deploying Clojure and ClojureScript applications in a Docker container

Testing your application with cljs.test
In this section, we'll take a look at how to configure your ClojureScript application or library
for testing. As usual, we'll start by creating a new project for us to play around with:

    $ lein new figwheel testing

Unlike previous examples where we spent most of our time in the src directory, we'll play
around in a test directory this time. Most JVM Clojure projects will have one already, but
since the default Figwheel template doesn't include one, let's make one first (following the
same convention used with source directories, that is, instead of src/$PROJECT_NAME,
we'll create test/$PROJECT_NAME):

    $ mkdir -p test/testing



Bundling ClojureScript for Production

[ 265 ]

We'll now want to make sure that Figwheel knows to watch the test directory for file
modifications. To do that, we will edit the dev build in our project.clj project's
:cljsbuild map so that its :source-paths vector includes both src and test. Your
new dev build configuration should look like this:

{:id "dev"
 :source-paths ["src" "test"]

 ;; If no code is to be run, set :figwheel true for continued automagical
reloading
 :figwheel {:on-jsload "testing.core/on-js-reload"}

 :compiler {:main testing.core
            :asset-path "js/compiled/out"
            :output-to "resources/public/js/compiled/testing.js"
            :output-dir "resources/public/js/compiled/out"
            :source-map-timestamp true}}

Next, we'll get the ol' Figwheel REPL going so that we can have our ever familiar hot
reloading:

    $ cd testing
    $ rlwrap lein figwheel

Don't forget to navigate your browser window to
http://localhost:3449/ to get the browser REPL to connect.

Now, let's create a new file in the test/testing directory, core_test.cljs.

By convention, most libraries and applications in Clojure and
ClojureScript have test files that correspond to source files with the suffix
_test. In this project, that means test/testing/core_test.cljs is
intended to contain the tests for src/testing/core.cljs.

Let's get started by just running tests on a single file. Inside core_test.cljs, let's add the
following code:

(ns testing.core-test
  (:require [cljs.test :refer-macros [deftest is]]))

(deftest i-should-fail
  (is (= 1 0)))

(deftest i-should-succeed



Bundling ClojureScript for Production

[ 266 ]

  (is (= 1 1)))

This code first requires two of the most important cljs.test macros, and then gives us
two simple examples of what a failed test and a successful test should look like.

At this point, we can run our tests from the Figwheel REPL:

cljs.user=> (require 'testing.core-test)
;; => nil

cljs.user=> (cljs.test/run-tests 'testing.core-test)

Testing testing.core-test

FAIL in (i-should-fail) (cljs/test.js?zx=icyx7aqatbda:430:14)
expected: (= 1 0)
  actual: (not (= 1 0))

Ran 2 tests containing 2 assertions.
1 failures, 0 errors.
;; => nil

Great. So, at this point, what we've got is tolerable but it's not really practical in terms of
being able to test a larger application. We don't want to have to test our application in the
REPL and pass in our test namespaces one by one.

The current idiomatic solution for this in ClojureScript is to write a separate test runner that
is responsible for any important setup and running all of your tests. Let's take a look at
what this looks like.

Let's start by creating another test namespace. Let's call this one app_test.cljs, and we'll
put the following in there:

(ns testing.app-test
  (:require [cljs.test :refer-macros [deftest is]]))

(deftest another-successful-test
  (is (= 4 (count "test"))))

We're not doing anything remarkable here; it's just another test namespace with a single test
that should pass by itself. Let's quickly make sure that this is exactly the case at the REPL:

cljs.user=> (require 'testing.app-test)
nil
cljs.user=> (cljs.test/run-tests 'testing.app-test)

Testing testing.app-test



Bundling ClojureScript for Production

[ 267 ]

Ran 1 tests containing 1 assertions.
0 failures, 0 errors.
;; => nil

Perfect. Now, let's write a test runner. Let's open a new file that we'll call, simply enough,
test_runner.cljs, and let's include the following:

(ns testing.test-runner
  (:require [cljs.test :refer-macros [run-tests]]
            [testing.app-test]
            [testing.core-test]))

;; This isn't strictly necessary, but is a good idea depending
;; upon your application's ultimate runtime engine.
(enable-console-print!)

(defn run-all-tests
  []
  (run-tests 'testing.app-test
             'testing.core-test))

Again, nothing surprising. We're just making a single function for us that runs all of our
tests. This is handy for us at the REPL:

cljs.user=> (require 'testing.test-runner)
;; => nil

cljs.user=> (testing.test-runner/run-all-tests)

Testing testing.app-test

Testing testing.core-test

FAIL in (i-should-fail) (cljs/test.js?zx=icyx7aqatbda:430:14)
expected: (= 1 0)
  actual: (not (= 1 0))

Ran 3 tests containing 3 assertions.
1 failures, 0 errors.
;; => nil

Ultimately, however, we want something we can run at the command line so that we can
use it in a continuous integration environment. There are a number of ways we can go
about configuring this directly, but if we're clever, we can let someone else do the heavy
lifting for us. Enter doo, the handy ClojureScript testing plugin for Leiningen.



Bundling ClojureScript for Production

[ 268 ]

Using doo for easier testing configuration
doo is a library and Leiningen plugin for running the cljs.test in many different
JavaScript environments. It makes it easy to test your ClojureScript regardless of whether
you're writing for the browser or for the server, and it also includes file watching
capabilities like Figwheel so that you can automatically rerun tests on file changes. The doo
project page can be found at h t t p s : / / g i t h u b . c o m / b e n s u / d o o.

To configure our project to use doo, first we need to add it to the list of plugins in
our project.clj file. Modify the :plugins key so that it looks like the following:

  :plugins [[lein-figwheel "0.5.2"]
            [lein-doo "0.1.6"]
            [lein-cljsbuild "1.1.3" :exclusions [[org.clojure/clojure]]]]

Next, we will add a new Cljsbuild build configuration for our test runner. Add the
following build map after the dev build map we've been working with up until now:

{:id "test"
 :source-paths ["src" "test"]
 :compiler {:main testing.test-runner
            :output-to "resources/public/js/compiled/testing_test.js"
            :optimizations :none}}

This configuration tells Cljsbuild to use both our src and test directories, just like
our dev profile. However, it adds some different configuration elements to the compiler
options.

To start with, we're not using testing.core as our main namespace anymore—instead,
we'll use our test runner's namespace, testing.test-runner. We will also change the
output JavaScript file to a different location from our compiled application code. Lastly, we
will make sure that we pass :optimizations :none in so that the compiler runs quickly
and doesn't have to do any magic to look things up.

Note that our currently running Figwheel process won't know about the
fact that we've added lein-doo to our list of plugins or that we've added
a new build configuration. In order to get Figwheel to play nicely
with doo, you should add doo as a dependency to your project on top of
having lein-doo as a plugin. Once you've done that, exit the Figwheel
process and restart it after you've saved the changes to project.clj.

https://github.com/bensu/doo


Bundling ClojureScript for Production

[ 269 ]

Lastly, we need to modify our test runner namespace so that it's compatible with doo. To do
this, open test_runner.cljs and change it to the following:

(ns testing.test-runner
  (:require [doo.runner :refer-macros [doo-tests]]
            [testing.app-test]
            [testing.core-test]))

;; This isn't strictly necessary, but is a good idea depending
;; upon your application's ultimate runtime engine.
(enable-console-print!)

(doo-tests 'testing.app-test
           'testing.core-test)

This shouldn't look too different from our original test runner—we're just importing from
doo.runner rather than cljs.test and using doo-tests instead of a custom runner
function. The -testsdoo-tests function works very similarly to cljs.test/run-tests,
but it places hooks around the tests to know when to start them and finish them. We're also
putting this at the top-level of our namespace rather than wrapping it in a particular
function.

The last thing we're going to need to do is to install a JavaScript runtime that we can use to
execute our tests with. Up until now, we've been using the browser via Figwheel, but
ideally we want to be able to run our tests in a headless environment as well. For this
purpose, we recommend installing PhantomJS (though other execution environments are
also fine).

If you're on OS X and have Homebrew installed (http://www.brew.sh), installing
PhantomJS is as simple as typing brew install phantomjs. If you're not on OS X or
don't have Homebrew, you can find instructions on how to install PhantomJS on the
project's website at h t t p : / / p h a n t o m j s . o r g /. The key thing is that the following should
work:

    $ phantomjs -v
    2.0.0

Once you've got PhantomJS installed, you can now invoke your test runner from the
command line with the following:

    $ lein doo phantom test once

    ;; ===================================================================

    ;; Testing with Phantom:

http://phantomjs.org/


Bundling ClojureScript for Production

[ 270 ]

    Testing testing.app-test
    Testing testing.core-test

    FAIL in (i-should-fail) (:)
    expected: (= 1 0)
      actual: (not (= 1 0))

    Ran 3 tests containing 3 assertions.
    1 failures, 0 errors.
    Subprocess failed

Let's break this command apart a bit. The first part, lein doo, just tells Leiningen to invoke
the doo plugin. Next, we have phantom, which tells doo to use PhantomJS as its running
environment.

Doo supports a number of other environments, including Chrome, Firefox,
Internet Explorer, Safari, Opera, SlimerJS, NodeJS, Rhino, and Nashorn.
Be aware that if you're interested in running doo on one of these other
environments, you may have to configure and install additional software.
For instance, if you want to run tests on Chrome, you'll need to install
Karma as well as the appropriate Karma npm modules to enable Chrome
interaction.

Next, we have test, which refers to the Cljsbuild build ID that we set up earlier. Lastly,
we have once, which tells doo to just run tests and not to set up a filesystem watcher. If,
instead, we wanted doo to watch the filesystem and rerun tests on any changes, we would
just use lein doo phantom test.

Testing fixtures
The cljs.test function has support for adding fixtures to your tests that will run before
and after your tests. Test fixtures are useful for establishing an isolated state between
tests—for instance, you could use tests to set up a specific database state before each test
and to tear it down afterwards. You can add them to your ClojureScript tests by declaring
them with the “use-fixtures” macro within the testing namespace you want fixtures applied
to.

Let's see what this looks like in practice by changing one of our existing tests and adding
some fixtures to it. Modify the app_test.cljs file to the following:

(ns testing.app-test
  (:require [cljs.test :refer-macros [deftest is use-fixtures]]))



Bundling ClojureScript for Production

[ 271 ]

;; Run these fixtures for each test.

;; We could also use :once instead of :each in order to run
;; fixtures once for the entire namespace instead of once for
;; each individual test.
(use-fixtures
  :each
  {:before (fn [] (println "Setting up tests..."))
   :after (fn [] (println "Tearing down tests..."))})

(deftest another-successful-test
  ;; Give us an idea of when this test actually executes.
  (println "Running a test...")
  (is (= 4 (count "test"))))

Here, we added a call to use-fixtures that prints to the console before and after running
the test, and we added a println call to the test itself so that we know when it executes.
Now when we run this test, we get the following:

    $ lein doo phantom test once

    ;; ===================================================================

    ;; Testing with Phantom:

    Testing testing.app-test
    Setting up tests...
    Running a test...
    Tearing down tests...

    Testing testing.core-test

    FAIL in (i-should-fail) (:)
    expected: (= 1 0)
      actual: (not (= 1 0))

    Ran 3 tests containing 3 assertions.
    1 failures, 0 errors.
    Subprocess failed

Note that our fixtures get called in the order we expect them. You should feel free, at this
point, to remove the failing test in core_test.cljs, but we'll assume that you've left it in
for the rest of this chapter.



Bundling ClojureScript for Production

[ 272 ]

Asynchronous testing
Due to the fact that client-side code is frequently asynchronous and JavaScript is single-
threaded, we need to have a way to support asynchronous tests. To do this, we can use the
async macro from cljs.test. Let's take a look at an example using an asynchronous HTTP
GET request.

First, let's modify our project.clj file to add cljs-ajax to our dependencies. Your
dependencies project key should now look similar to this:

:dependencies [[org.clojure/clojure "1.8.0"]
               [org.clojure/clojurescript "1.7.228"]
               [cljs-ajax "0.5.4"]
               [org.clojure/core.async "0.2.374"
                :exclusions [org.clojure/tools.reader]]]

Next, let's create a new file in our test.testing directory, async_test.cljs. Inside it,
we will add the following code:

(ns testing.async-test
  (:require [ajax.core :refer [GET]]
            [cljs.test :refer-macros [deftest is async]]))

(deftest test-async
  (GET "http://www.google.com"
       ;; will always fail from PhantomJS because
       ;; `Access-Control-Allow-Origin` won't allow
       ;; our headless browser to make requests to Google.
       {:error-handler
        (fn [res]
          (is (= (:status-text res) "Request failed."))
          (println "Test finished!"))}))

Note that at the moment, we're not using async in our test.

Let's try running this test with doo (don't forget that you have to add testing.async-
test to test_runner.cljs!):

    $ lein doo phantom test once
    ...
    Testing testing.async-test
    ...
    Ran 4 tests containing 3 assertions.



Bundling ClojureScript for Production

[ 273 ]

    1 failures, 0 errors.
    Subprocess failed

Now, our test here passes, but note that the println async code never fires and our
additional assertion doesn't get called (looking back at our previous examples, since we've
added a new is assertion, we should expect to see four assertions in the summary)! If we
actually want our test to appropriately validate the error-handler callback within the
context of the test, we need to wrap it in an  async block. Doing so gives us a test that looks
like the following:

(deftest test-async
  (async done
    (GET "http://www.google.com"
         ;; will always fail from PhantomJS because
         ;; `Access-Control-Allow-Origin` won't allow
         ;; our headless browser to make requests to Google.
         {:error-handler
          (fn [res]
            (is (= (:status-text res) "Request failed."))
            (println "Test finished!")
            (done))})))

Now, let's try to run our tests again:

    $ lein doo phantom test once
    ...
    Testing testing.async-test
    Test finished!
    ...
    Ran 4 tests containing 4 assertions.
    1 failures, 0 errors.
    Subprocess failed

Awesome! Note that this time we both see the printed statement from our callback and we
can see that cljs.test properly ran all four of our assertions.

Asynchronous fixtures
One final “gotcha” on testing—the fixtures we talked about earlier in this chapter do not
handle asynchronous code automatically. This means that if you have a  :before fixture
that executes asynchronous logic, your test could begin running before your fixture has
completed! In order to get around this, all you need to do is to wrap your :before fixture
in an async block, just like with asynchronous tests. For instance:

(use-fixtures :once



Bundling ClojureScript for Production

[ 274 ]

  {:before
   #(async done
      ...
      (done))
   :after
   #(do ...)})

This concludes our section on cljs.test. Testing, whether in ClojureScript or any other
language, is a critical software engineering best practice to ensure that your application
behaves the way you expect it to and to protect you and your fellow developers from
accidentally introducing bugs into your application. With cljs.test and doo, you have
the power and flexibility to test your ClojureScript application with multiple browsers and
JavaScript environments, and to integrate your tests into a larger continuous testing
framework.

Advanced ClojureScript compilation options
In this section, we'll cover more advanced ClojureScript compilation options with an eye to
helping you bundle your application for production. Compiling ClojureScript applications
for production can involve a significant degree of configuration, and we recommend that
you begin thinking about how you're going to compile your application sooner rather than
later.

While we've done our best to cover what we consider the most important
aspects of compiler configuration, an up-to-date and exhaustive list of
ClojureScript compiler options can also be found online on the
ClojureScript project's wiki page at h t t p s : / / g i t h u b . c o m / c l o j u r e / c l o
j u r e s c r i p t / w i k i / C o m p i l e r - O p t i o n s.

While we generally believe that premature optimization is the root of many a wasted hour,
in this case, it's a better idea to make sure that things are working early and often. This will
help you ensure that your compilation configuration is giving you builds that behave the
way you expect them to in a production-like environment.

We've already covered certain aspects of advanced ClojureScript
compilation at other points in the book, and our editor has politely asked
us not to repeat ourselves. With that in mind, we recommend that you
refer to the The Google Closure Compiler and Using External JavaScript
Libraries section from Chapter 2, ClojureScript Language Fundamentals, as
you work on getting your application's compiler configuration geared for
production.

https://github.com/clojure/clojurescript/wiki/Compiler-Options
https://github.com/clojure/clojurescript/wiki/Compiler-Options


Bundling ClojureScript for Production

[ 275 ]

Compilation optimization levels
The Google Closure Compiler supports three different levels of optimizations, and the 
ClojureScript compiler adds another (or, more precisely, it adds an option to not use the
Google Closure Compiler at all). This means that when it comes to compiling a
ClojureScript project, we have four different optimization levels for our compiler:

:none

:whitespace

:simple

:advanced

The default ClojureScript Compiler optimization level is :none. As the name suggests,
when using this setting, the compiler simply concatenates all of the compiled JavaScript into
a single file and calls it a day.

The next level on the compiler optimization scale is :whitespace, which simply removes
all comments from the compiled code as well as line breaks, unnecessary spaces, extraneous
punctuation (such as parentheses and semicolons), and other whitespace. Functionally, the
output JavaScript is identical to the source JavaScript.

This provides more compression than :none but less than :simple
or :advanced.

Next, we have :simple, which performs the same optimizations as :whitespace but also
performs optimizations within expressions and functions, including renaming local
variables and function parameters to shorter names. This makes the final output code
considerably smaller. Because :simple only renames symbols that are local to functions, it
does not interfere with any calls to and from compiled JavaScript and other JavaScript.
Compilation with :simple optimizations preserves functionality on the condition that the
codebase doesn't access local variables using string names (that is, by using eval() or
calling toString() on functions). Projects using the Google Closure Compiler directly
(that is, not using the ClojureScript Compiler) will have this as the default compilation
setting.



Bundling ClojureScript for Production

[ 276 ]

The final optimization level is :advanced. This performs the same optimizations
as :simple, but adds a number of more aggressive code transformations to achieve a much
higher level of compression. As it has been discussed at some length in Chapter
2, ClojureScript Language Fundamentals, :advanced optimization makes a number of
assumptions about the structure of your code—code that doesn't meet those assumptions
will not fail during the compilation phase, but it will behave unexpectedly at runtime.

Getting your project structured to work with the :advanced compilation may seem like a
hassle and a lot of work, but code compiled using the :advanced configuration flag is
guaranteed to have a much smaller payload (meaning faster load times for your site
visitors)! The Google Closure Compiler achieves this by engaging in more aggressive
renaming, dead code removal, and global inlining.

Be aware that :advanced compilation will take considerably longer than
other optimization modes, which is why it's not ideal for development.

Generating modules
Recent releases of ClojureScript have added support for emitting Google Closure modules.
Modules support splitting a given optimized build into multiple different files. If you
provide :modules as a key in your compilation configuration options map, it'll replace the
single file path normally given to the :output-to option (that is, :output-to is ignored
since it implies only generating a single file, not multiple modules).

While our coverage of ClojureScript modules in this section will focus on
configuration details, Chapter 6, Building Richer Web Applications,
includes a detailed example of how to actually structure ClojureScript
modules in a “real-world” application.

When configuring modules, each generated module needs a name, its own :output-to
path, a set of namespaces to be added (under the :entries key), and :depends-on, which
is the set of modules upon which the specific module depends. Closure modules are only
supported when using :simple or :advanced optimization. An example module
configuration might look like the following:

{:optimizations :advanced
 :source-map true
 :output-dir "resources/public/js"
 :modules {
   :common



Bundling ClojureScript for Production

[ 277 ]

     {:output-to "resources/public/js/common.js"
      :entries #{"foo.common"}}
   :landing
     {:output-to "resources/public/js/landing.js"
      :entries #{"foo.landing"}
      :depends-on #{:common}}
   :mobile
     {:output-to "resources/public/js/mobile.js"
      :entries #{"foo.mobile" "foo.mobile.util"}
      :depends-on #{:common}}}}

In this example, the :landing and :mobile modules both depend on the :common
module.

When using modules, any namespace in your source paths that isn't specified in a specific
module will be added to a default module, :cljs-base. This module will be written out to
the specified :output-dir as cljs_base.js. If you want it to go into a differently named
file, just create an additional module for it in which you only specify :output-to, for
instance:

 {:optimizations :advanced
 :source-map true
 :output-dir "resources/public/js"
 :modules {
   :common
     {:output-to "resources/public/js/common.js"
      :entries #{"foo.common"}}
   :landing
     {:output-to "resources/public/js/landing.js"
      :entries #{"foo.landing"}
      :depends-on #{:common}}
   :cljs-base
     {:output-to "resources/public/js/base.js"}}}

In this example, we altered our configuration so that :cljs-base is compiled to base.js
rather than cljs_base.js.

Targeting a Node.js runtime
Although the focus of this book is primarily on single-page applications, most of the
subjects covered in this book will also work on a Node.js runtime. To compile your
application for Node.js, add :target :nodejs to your compilation map (by default, the 
ClojureScript Compiler assumes that you are targeting the browser).



Bundling ClojureScript for Production

[ 278 ]

By default, if you choose to target Node.js, the compiler will emit a shebang as the first line
of the compiled source to make it an executable. If you're writing a Node.js module rather
than an executable application, you should also add :hashbang false to your project's
compilation options.

Additional details and examples on running your ClojureScript
application on Node.js can be found on the ClojureScript wiki at
https://github.com/clojure/clojurescript/wiki/Quick-Start#running-clojures
cript-on-nodejs.

General configuration recommendations
We recommend configuring your projects to have at least two compilation profiles—one for
development using :none and another for deployment using :advanced. You may,
optionally, find it valuable to have an additional profile for testing, but we encourage you
to keep configuration changes limited to things like the inclusion of test file source paths.

You should try to make sure that you get a functioning  :advanced configuration early and
to keep a special eye on it when changing compilation settings or adding foreign
dependencies, particularly those using native JavaScript (that is, non-ClojureScript
dependencies).

Where possible, we recommend using dependencies downloaded from CLJSJS. Failing that,
we encourage you to use widely supported and used externs configurations. In general,
having to configure and maintain your own custom configuration for a third-party library is
much more work than relying on the open source community for support.

Deploying Clojure and ClojureScript
applications in a Docker container
In this final section, we'll cover deploying our client and server application code in a single
Docker container. Containers are a technology that you can use to wrap up a piece of
software in a complete filesystem that includes everything it needs to run: application code,
a runtime, system tools, system libraries, and so on—anything you might otherwise install
on a server. Using container technology provides a way of guaranteeing that your
application will always run the same regardless of the underlying environment it is running
in.



Bundling ClojureScript for Production

[ 279 ]

Today, many cloud infrastructure providers offer products and services that have direct
support for Docker. For instance, if you're using Amazon Web Service's Elastic Beanstalk to
host, deploy, and scale your application, you can deploy a container directly by telling the
Elastic Beanstalk API to deploy a specific container ID from a given Docker registry and it'll
know what to do.

Installing Docker
To install Docker, you have a few different options depending on what operating system
you're running. If you're running Linux, you basically just have to curl a script from the
Docker website. If you're running OS X or Windows, we recommend installing Docker
Toolbox from the Docker website and following their instructions.

The process of getting Docker installed and configured for every possible
architecture is beyond the scope of this book; however, you should be able
to find instructions on how to get Docker installed and configured for
your system architecture online on Docker's documentation portal located
at h t t p s : / / d o c s . d o c k e r . c o m /.
Although Docker's installation and configuration process is still fairly
manual for OS X, there's currently an active beta for a better native Docker
experience that'll allow you to get up and running even faster. Since you're
likely reading this in the future, there's a good chance this is an option for
you!

In short, in order to get Docker working, you'll need the following:

A Docker server running on your machine. If you're on OS X or Windows, this
will need to run on a virtual machine, which you can either set up with
Docker's Kitematic UI application, using the terminal or an application like
Virtualbox.
The latest version of the Docker client installed. As of the time of writing this, that
would be version 1.11.0.

The preceding requirements are what are strictly necessary in order to get
Docker working on your machine. In addition to the preceding
explanation, and especially if you're on OS X or Windows, we recommend
installing Docker Machine. Docker Machine includes, among other things,
the ability to easily check to see if the Docker server VM is up and running
(using docker-machine status) and also the ability to quickly set the
appropriate environment variables to connect to said server.
In general, if you're on OS X, we recommend adding the following line to

https://docs.docker.com/


Bundling ClojureScript for Production

[ 280 ]

your ~/.bash_profile or other shell initialization file:
eval "$(docker-machine env default)"
This command sets all of the appropriate environment variables in your
shell to let your Docker client know how to access the server. If you
execute it by itself (that is, outside of the evaluation context), you should
see something like the following:
export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.99.100:2376"
export DOCKER_CERT_PATH=
  "/Users/ursa/.docker/machine/machines/default"
export DOCKER_MACHINE_NAME="default"
# Run this command to configure your shell:
# eval $(docker-machine env default)

Once you've got Docker set up and configured properly, you should be able to test out that
it works by successfully executing docker run hello-world:

    $ docker run hello-world
    Hello from Docker.
    This message shows that your installation appears to be working
    correctly.
    To generate this message, Docker took the following steps:

     1. The Docker client contacted the Docker daemon.
     2. The Docker daemon pulled the "hello-world" image from the
        Docker Hub.
     3. The Docker daemon created a new container from that image
        which runs the executable that produces the output you are
        currently reading.
     4. The Docker daemon streamed that output to the Docker
        client, which sent it to your terminal.

     To try something more ambitious, you can run an Ubuntu
     container with:

     $ docker run -it ubuntu bash

     Share images, automate workflows, and more with a free Docker
     Hub account:
     https://hub.docker.com

     For more examples and ideas, visit:
     https://docs.docker.com/userguide/



Bundling ClojureScript for Production

[ 281 ]

Compiling an Uberjar
By now, you should have at least a passing awareness of JAR files—the standard
mechanism for distributing Java source code (as well as Clojure and precompiled
ClojureScript code). An Uberjar differs from a jar file in that it includes all of a project's
dependencies as well.

This means that while a normal JAR file might include a manifest of which dependencies
would need to be downloaded prior to initializing an executable, a comparable Uberjar
would have all of the requisite dependencies already included. Uberjars, therefore,
represent an excellent way of bundling together all of the application code necessary to run
something into a single file.

Leiningen makes it incredibly easy for us to create Uberjars for our projects—all we have to
do is run lein uberjar. To see how this works, let's first create a sample
Clojure/ClojureScript project. If you like, you can reuse the project from Chapter
5, Building Single Page Applications; otherwise, we can just use a basic Chestnut application.
We'll assume that you're creating a new Chestnut application for the purposes of this
section.

Chestnut is a Leiningen template for a Figwheel-enabled
Clojure/ClojureScript application based on Om or Reagent. Although
converting existing projects to Chestnut's structure isn't usually worth it,
Chestnut provides a decent way to get a quick Clojure/ClojureScript
project up and running. The project page for Chestnut can be found at h t t
p s : / / g i t h u b . c o m / p l e x u s / c h e s t n u t.

First, let's create a new project using the Chestnut template:

    $ lein new chestnut docker
    Generating fresh Chestnut project.
    README.md contains instructions to get you started.
    $ cd docker/

By default, Chestnut's web server will start silently. We'd like to know when the server is
done booting, so let's edit the -main method in src/clj/docker/server.clj to include
a quick println call once the server's done booting:

(defn -main [& [port]]
  (let [port (Integer. (or port (env :port) 10555))]
    (run-jetty http-handler {:port port :join? false})
    (println "Server started!")))

https://github.com/plexus/chestnut
https://github.com/plexus/chestnut


Bundling ClojureScript for Production

[ 282 ]

Now, let's compile our ClojureScript and start the web server:

    $ lein cljsbuild once app
    Compiling ClojureScript...
    Compiling "resources/public/js/compiled/docker.js" from ["src/cljs"]...
    Successfully compiled "resources/public/js/compiled/docker.js" in 3.987
seconds.
    $ lein run
    Server started!

Once you see the Server started! message, you should be able to navigate your web browser
to http://localhost:10555 and see the following:

It's not particularly impressive, but what matters here is that we've got a functioning
backend web server and some compiled ClojureScript that's rendering an h1 element using
React. On the backend, our web server is configured to invoke the -main method that's
defined in the Clojure file located at src/clj/docker/server.clj to run. And on the
frontend, we configured our ClojureScript to launch from src/cljs/docker/core.cljs.
This configuration is set in our project.clj file with the following configuration that
Chestnut will have set up for us by default:

  :main docker.server

Now, if we wanted we could attempt to just bundle this up as a Clojure application in a
Docker container to run using the same lein run command we just invoked; it's possible
to configure Docker to run using Leiningen without too much difficulty. But doing so
would mean our application would be a bit slower to start-up since it'd have to deal with
Leiningen's startup time as well.



Bundling ClojureScript for Production

[ 283 ]

Leiningen starts its own JVM and then uses that to initialize your
application. By default, Leiningen's JVM will stay active until the task it's
been told to run is complete (which, if you're starting a Clojure web server,
could be a long time). You can tell Leiningen to terminate itself using lein
trampoline command once your application is launched, but even then
you have to wait for Leiningen to finish initializing and loading your
application first.

In a production environment, it's not unreasonable for us to want our application to load
quickly without having to worry about Leiningen's startup time.

It's also one extra dependency we'd have to include in our final container, making the file
size a bit larger as well. What if we just built a single Uberjar that didn't contain Leiningen,
while still including everything our application needed to run?

It turns out this is relatively straightforward to do. First, let's get rid of any existing
compiled ClojureScript or other assets:

    $ lein clean

Next, let's run lein uberjar to compile an Uberjar for ourselves:

    $ lein uberjar
    Compiling docker.server
    Compiling ClojureScript...
    Compiling "resources/public/js/compiled/docker.js" from
      ["src/cljs"]...
    Successfully compiled "resources/public/js/compiled/docker.js"
      in 24.857 seconds.
    Created /Users/ursa/Code/example-code/chapter-
    /docker/target/docker-0.1.0-SNAPSHOT.jar
    Created /Users/ursa/Code/example-code/chapter-
    /docker/target/docker.jar

There are a few things to take note of here. First, note that we've created two separate JAR
files. In this case, the former of these two JAR files, docker-0.1.0-SNAPSHOT.jar, is not
an Uberjar; it just gets generated at the same time. The latter, however, is an Uberjar.
Typically, the Uberjar would be named docker-0.1.0-SNAPSHOT-standalone.jar
(more generally $PROJECT_NAME-$PROJECT_VERSION-standalone.jar), but in this case,
the Chestnut template sets the :uberjar-name configuration flag in the project.clj file
to just use the name of the project, and so we end up with an Uberjar named docker.jar.



Bundling ClojureScript for Production

[ 284 ]

The other thing that's worth noting here is that our ClojureScript compiled
with :advanced optimizations took considerably longer to compile than it
did when we were just executing lein cljsbuild once app—almost
10 times as long, in fact! We encourage you to take a look at what's
different between the app build's compilation settings and the uberjar
build's compilation settings in the project.clj file to see what else has
been changed here as well.

Now that we have our Uberjar built, let's try running it to see if it works:

    $ java -jar target/docker.jar
    Server started!

If you get an Address already in use exception, then the server we started
earlier in this chapter is still running. Since two web processes can't share
a port, you need to kill that server and re-start this one to get it to work.

We should now be able to navigate our browser to http://localhost:10555 and see the
familiar Hello Chestnut! page. This means that our Uberjar has compiled all of our
JavaScript and is successfully serving it from the bundled Clojure server.

Building a Docker container for our app
In order to build a Docker container for our Chestnut application, we're going to need to
put together a Dockerfile. A Dockerfile can be thought of as a recipe for building a container
image. Dockerfiles are composed by taking a base operating system layer and then layering
on additional modifications to the file system that are then encoded into the file system.
Because Dockerfiles support repeated layering, we can even take an existing Dockerfile and
then layer additional modifications on top of that, which is exactly what we're going to do!

In this section, we're largely going to use the terms “container” and
“image” interchangeably, but this obscures the fact that the two are
fundamentally different.
A Docker image is an ordered collection of root filesystem changes, as well
as some metadata (including execution parameters for use within a
container runtime). Images are immutable—if you make a change to an
image, Docker will store the post-change state as an entirely new image.
By contrast, a Docker container is an active (or, if its execution has
concluded or been stopped, inactive) stateful instantiation of an image.
Containers are generated from images, but once running can be mutated
in any number of possible ways. Consequently, you have no guarantee



Bundling ClojureScript for Production

[ 285 ]

that two containers that were started from the same image are in the same
state.
A somewhat helpful analogy can be to the world of object-oriented
programming; if a Docker image is a class, then a Docker container would
be an instance of that class.

For our Dockerfile, we're going to use as a base image the java:8 image from the official
repository on Docker Hub, the public Docker registry. Details on the Java repository can be
found on the repository's website on the Docker Hub: h t t p s : / / h u b . d o c k e r . c o m / _ / j a v a
/.

Not all repositories on Docker Hub are official; in fact, most belong to
normal, everyday contributors hacking on open source projects and
systems. Official repositories, by contrast, are a curated set of repositories
promoted because they provide essential base repositories (either for an
OS or a runtime such as Java), exemplify Dockerfile best practices, have
good security hygiene, or provide a channel for software vendors to
distribute the latest supported versions of their products.
We strongly recommend that you stick to official repositories when
getting started with Docker. You can learn more about official repositories
on Docker's website at h t t p s : / / d o c s . d o c k e r . c o m / d o c k e r - h u b / o f f i c
i a l _ r e p o s /.

We will now add some additional metadata and instructions that will take our Uberjar, add
it to the Docker filesystem, and then tell Docker how to run our JAR.

Save the following to a file named Dockerfile in the root of your project:

    FROM java:8
    # Feel free to put your name here!
    MAINTAINER W. David Jarvis <yournamehere@gmail.com>
    ADD target/docker.jar /srv/app.jar
    WORKDIR /srv
    CMD ["java", "-jar", "/srv/app.jar"]

Let's walk through what each of these lines does.

The MAINTAINER parameter just adds a bit of friendly metadata about the author to the
Docker image that we're building. Feel free to add your name here or leave this line out
entirely.

The ADD parameter tells Docker to copy a file from our computer's filesystem into the
container's filesystem at a specific location. Here, we've told it to take our compiled Uberjar
and to store it in the container's filesystem at /srv/app.jar.

https://hub.docker.com/_/java/
https://hub.docker.com/_/java/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/


Bundling ClojureScript for Production

[ 286 ]

The WORKDIR parameter sets the working directory for any RUN, CMD, ENTRYPOINT, COPY,
or ADD instructions that come afterward. In this case, we're just setting /srv as our working
directory.

Lastly, the CMD instruction tells Docker what executable and arguments to run when we try
to start a running container off of this image.

It's possible to pass a different execution command at runtime to Docker,
but in practice, it's best to encode the default run command in the
Dockerfile for the convenience of the end user or server.

There can only be one CMD instruction in a Dockerfile.

Now that we have our Dockerfile defined, we can use Docker to build a Docker image for
our application. Once we're done with that, we'll be able to run it as a container. Run the
following command to build our Docker image (your output may differ slightly):

    $ docker build -t dockerapp.
    Sending build context to Docker daemon 34.41 MB
    Step 1 : FROM java:8
    8: Pulling from library/java
    efd26ecc9548: Pull complete
    a3ed95caeb02: Pull complete
    d1784d73276e: Pull complete
    72e581645fc3: Pull complete
    1e6509b4af69: Pull complete
    cb657b848e5b: Pull complete
    a61be2f3cb34: Pull complete
    c7e88b44d657: Pull complete
    c7335ca7647e: Pull complete
    Digest:
      sha256:11ba9d7a2927ae52203aa1a7065fdef70c626a5f780952eb0229
      6a103ed1e0d1
    Status: Downloaded newer image for java:8
     ---> 081ce13c85db
    Step 2 : MAINTAINER W. David Jarvis <yournamehere@gmail.com>
     ---> Running in cfc28de2d657
     ---> e237c1744882
    Removing intermediate container cfc28de2d657
    Step 3 : ADD target/docker.jar /srv/app.jar
     ---> 8e6dee0c150a
    Removing intermediate container b3ebb00358c1
    Step 4 : WORKDIR /srv
     ---> Running in 46e66d7eadc3
     ---> de4f9fab91cf



Bundling ClojureScript for Production

[ 287 ]

    Removing intermediate container 46e66d7eadc3
    Step 5 : CMD java -jar /srv/app.jar
     ---> Running in f1175d8feea8
     ---> 92693b384187
    Removing intermediate container f1175d8feea8
    Successfully built 92693b384187

What this command does is build an image with the dockerapp tag using the Dockerfile
found in this directory (hence the “.“). A tag is a handy piece of searchable metadata that is
applied to a Docker image so that we can ask Docker to run images with human-readable
names. There are a few different conventions around tag naming—in general, you'll
probably want to use tags that are of the form $repository/$image_name:$version, but
for this example, we're sticking with a simple tag.

Next, we'll run our Docker image as a container:

    $ docker run dockerapp # note that we're passing our image tag here
    Server started!

Now, let's navigate our browser to http://localhost:10555 and … hey! What
happened? How come we can't see our application?

The answer is a little complicated, but basically we have either one or two problems. First,
we need to tell the Docker server how to map ports from the container we're running to the
host machine. Additionally, if we're using OS X or Windows, we need to figure out how to
access that host machine (since our Docker host will be running inside of a VM and not on
our actual machine as a daemon).

We can resolve the first problem by just passing an extra argument to our invocation of
Docker that tells it how to map container ports to host ports, as follows:

    $ docker run -p 10555:10555 dockerapp
    Server started!

If you're on Linux, you should now be able to access the app at
 http://localhost:10555. If you're on OS X or Windows, however, you'll need to
use docker-machine to figure out what IP your VM is available at and then access the app
of that URL:

    $ docker-machine ip
    192.168.99.100

Now that we know our VM's IP address is 192.168.99.100, we should now be able to
access our application at http://192.168.99.100:10555. Perfect!



Bundling ClojureScript for Production

[ 288 ]

We've now covered everything you need to know in order to build, test, and run Docker
containers locally, but there's a lot more to Docker that's beyond the scope of this book. If
you're looking to deploy Docker in a production environment, your next steps would be
optionally setting up a private image registry (so as to not expose your source code to
anyone outside your company), configuring your continuous deployment system able to
push those images to a remote repository, and finally configuring your deployment system
to tell whatever hardware or infrastructure you're deploying onto to pull and run the latest
image from your Docker repository as part of a successful deployment.

Summary
You now have many of the tools necessary to configure and deploy your ClojureScript
application to a production environment, including how to write tests for your application,
how to configure more advanced compilation options, and how to build Docker containers
for Clojure/ClojureScript applications. Ultimately, the specific test and deployment needs of
your application are going to be particular to your application and infrastructure, but the
lessons learned in this chapter should prove helpful as a general guide that isn't too
dependent on the idiosyncratic requirements you ultimately face.

The end of this chapter also brings us to the conclusion of our journey together in learning
ClojureScript. At this point, you have all the tools necessary to write advanced ClojureScript
applications as well as an understanding of how to take those applications and prepare
them for real-world conditions. We hope you've enjoyed reading this book, and we look
forward to see your ClojureScript code live on the World Wide Web!



Index

.

.cljc
   about  225
   input validation  227

A
advanced compilation options, ClojureScript
   about  274
   general configuration recommendations  278
   modules, generating  276
   Node.js runtime, targetting  277
   optimization levels  275
advanced core.logic  249, 250
advanced macros
   don't repeat yourself!  117
   gensyms  116
   local binding  116
   writing  115
advantages, Single Page Applications (SPAs)
   AJAX, dealing with  161
   client-side data, dealing with  160
   faster client interactions  162
   richer UI  160
AJAX server
   CORS  185
   data  186, 187, 188, 189, 190, 191
   Ring  184
   Transit  184
AJAX
   about  182
   dependencies  182
   server  183
asynchronous testing, clijs.test
   about  272
   asynchronous fixtures  273

B
Bidirectional-streams Over Synchronous HTTP

(BOSH)  198
browser
   interacting with, Google Closure Library used 

140, 142, 143

C
callbacks  135
Chestnut
   project page, reference link  281
CIDER
   about  12, 24
   Clojure and ClojureScript REPLs, working with 

25, 27, 29
   installing  25
   URL  24
Cljs-bootstrap
   reference  7
cljs.test
   asynchronous testing  272
   doo, used for easier testing configuration  268
   fixtures, testing  270
   used, for application testing  264
clojure.zip
   about  244
   used, for exploring nested data  239
   value, replacing in tree  242
   values, removing from tree  243
   values, replacing in tree  240
Clojure
   deploying, in Docker container  278
ClojureScript collections
   about  49
   laziness  62
   lists  49, 50, 51, 52



[ 290 ]

   lists, versus vectors using  56
   maps  56, 57, 58
   sequences  61, 62
   sets  59, 60
   types of maps  58
   vectors  52, 53, 54, 55
ClojureScript compiler  7, 8
ClojureScript data structures
   about  42
   ClojureScript collections  49
   ClojureScript types  71
   collection protocols  63
   object-oriented programming  67
   scalar types  42
ClojureScript ecosystem
   about  7
   ClojureScript compiler  7
   ClojureScript REPL, working with  10, 12
ClojureScript functions
   about  36, 37
   anonymous functions  39
   local variables  41, 42
   multiarity functions  38, 39
   side effects  40
   variadic functions  38, 39
ClojureScript modules
   about  213
   development mode, fixing  224
   getting started process  214
   loading  220, 221, 222, 223
   preparing for  214
   route definition  216, 218, 219
ClojureScript REPL
   working with  10, 12
ClojureScript types
   about  71
   atoms  72, 73, 74
   regular expressions  72
ClojureScript, live coding with Figwheel
   about  20
   Figwheel, setting up for browser live-coding  20,

21
   Node.js interactive development workflows, with

Figwheel  22, 23
ClojureScript, live coding with Piggieback and

Weasel
   about  13
   ClojureScript REPLs, on Node.js with Piggieback 

18, 19
   Piggieback, working with  13, 15, 16
   Weasel, setting up with Piggieback  16, 17, 18
ClojureScript
   deploying, in Docker container  278
   macros, writing for  110
collection protocols
   associative  64, 65
   counted  66
   reversible  67
   sequential  63, 64
   sorted  65
Communicating Sequential Processes concurrency

model
   about  123
   background listeners  127
   core.async  124, 126, 127
   error handling  128, 130, 131
concurrent design patterns, with core.async
   about  120
   CSP concurrency model  123
   event-driven programming, in ClojureScript  122
   JavaScript event-driven, by default  121, 122
control flow
   about  105
   case functions  108
   cond  107
   condp  107
   exception handling  108, 109
   if  105
   if-let  106
   when  105
   when-let  106
core.logic
   project, configuring  245
   reference link  244, 250
   starting with  245, 247
   used, for declaratively solving problems  244
core.match
   function application  239
   guards  239
   matching collections  237



[ 291 ]

   project, configuring  234
   starting with  235
   used, for pattern matching  233, 234
   wrapping up  239
Cross Origin Resource Sharing (CORS)  185
Cursive  13

D
Datascript/Datomic data model  202, 204
Datascript
   about  202
   basic query  205
   cardinality  206
   db.type/ref  206
   features  213
   indexes  212
   predicate expressions  211
   pull  208
   query arguments  205
   results, finding  209
   schema  206
   unification  210, 211
   using  202
   versus Datomic  213
datom  202
destructuring  77, 78, 80
Docker container
   building, for our app  284, 286
Docker Hub
   reference link  285
Docker Toolbox  279
Docker
   installing  279
   Kitematic UI application  279
   reference link  279, 285
Dommy
   about  143, 145, 146, 147
   client-side templating, in ClojureScript  147, 149,

150, 151, 153
   CSS preprocessors, in ClojureScript  154, 155,

157
doo-tests function  269
doo
   about  268
   reference link  268

E
Elastic Beanstalk  279
Enfocus
   reference  150
external libraries
   building  91
   Foreign JavaScript  91
   Google Closure Compiler compatible code  91

F
Figwheel
   about  20
   reference  20
functional programming concepts
   about  94
   higher-order functions  99
   loops and iteration  95
   transducers  103
functions, ClojureScript  36

G
Google Closure Compiler
   about  88
   CLJSJS  92
   external JavaScript libraries, referencing with

externs  89, 90, 91
   external JavaScript libraries, using  88, 89
   external libraries, bundling  91
Google Closure Library
   about  7
   benefits  7
   reference  7
   used, for interacting with browser  140, 142,

143
guards  239

H
higher-order functions
   about  99
   filter function  101
   map  100, 101
   reduce  102, 103
   remove function  101



[ 292 ]

I
ICollection  49
immutability  74, 75, 76
inf-clojure
   configuring, to run Figwheel as Clojure

subprocess  30, 31, 33
   installing  30
integrated development environments, for

ClojureScript
   Emacs, working on with Figwheel and inf-clojure 

30
   Emacs, working on with Piggieback and Weasel

on CIDER  24
   setting  24
Intellij IDEA  13

J
JavaScript collections
   about  85
   arrays  85, 86
   JavaScript objects  86, 87
   JS interop syntax  87
JavaScript interoperability
   about  85
   Google Closure Compiler  88
   JavaScript collections  85

L
lambda functions  39
Leaflet.js
   URL  181
Leiningen
   about  8, 13
   reference  13
life cycle protocols  178, 180
Lisp language  35
loops and iteration
   about  95
   doall  98, 99
   doseq  97
   dotimes  97
   for  96
   loop function  95
   recur function  95, 96

M
macros, writing for ClojureScript
   about  110
   advanced macros, writing  115
   closing note  120
   eval function  111
   first macro  112, 114, 115
   reader function  110
   threading macros  118

N
namespaces  80, 82, 83
Nashorn  7
Network REPL (nREPL)
   about  13
   URL  13
Node.js services  6
nrepl.el  24

O
object-oriented programming
   about  67
   protocols  67
   records  69, 70
   reify  71
   types  68, 69
   types and protocols, extending  70, 71
Om  163
Om and React, differences
   about  173
   components  173
   cursors  174
   state models  174
Om constructor signature
   cursors  169
   input  171, 172
   items  169
   opts  170
   owner  170
   rendering  172

P
PhantomJS
   about  227, 269



[ 293 ]

   reference link  269
Piggieback
   about  13
   URL  13
   working with  13, 15, 16
predicate expression  212
protocol  49

R
raw DOM manipulation
   and events handling  135, 137, 138, 139
React  163
React diffing algorithm  172, 173
React terminology
   about  164
   component  164
   JSX  164
   virtual DOM  164
Read-Eval-Print-Loop (REPL)  6
Reader Conditionals  225
Real Time Messaging (RTM)  199
real-time communication, with, WebSockets
   about  197
   Chord  201
   initialization  200
   messages, sending  201
   WebSocket protocol  198
reducing function  103
render  216
Rhino  26
routing, SPAs
   about  192, 194
   navigation  195
   pushState  194
runtime data validation
   schema, using  251

S
scalar types, ClojureScript data structures
   about  42
   boolean values  46, 47
   characters  44, 45
   keywords  47
   nil  45
   numbers  43, 44

   strings  44, 45
   symbols  48
schema
   about  252
   advanced validation  259, 261
   coercion  261
   collection schema  255
   function schema  258
   project configuration  251
   reference link  251, 263
   used, for performing runtime data validation  251
   using  227
server-side rendering
   about  227
   foam  231
   project, setting up  228, 230
Single Page Applications (SPAs)
   about  159
   advantages  160
   child components  167
   components  165
   disadvantages  160
   Hello World project, setting up  165, 166, 167
   HTML5 history  192
   load times, improving  213
   Om  163
   React  163
   routing  192
size, of component
   constructing  175, 176
   determining  174
   life cycle protocols  178
   local state  176, 177, 178

T
third-party JS
   jQuery listeners  181
   using  181
threading macros  118
tradeoffs, Single Page Applications (SPAs)
   legacy browser support, as header  162
   more development work  162
transducers  103, 104, 105



U
Uberjar
   compiling  281, 282

W
Weasel

   about  16
   reference  16
WebSocket protocol  198, 199
WebSockets  197

Z
zipper  239


	Cover
	Credits
	Foreword
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Ready for ClojureScript Development
	Getting familiar with the ClojureScript ecosystem
	Inside the ClojureScript compiler
	Working with the ClojureScript REPL

	Live coding ClojureScript on top of nREPL with Piggieback and Weasel
	Working with Piggieback
	Setting up Weasel with PiggieBack for browser live coding
	ClojureScript REPLs on Node.js with Piggieback

	Live coding ClojureScript with Figwheel
	Setting up Figwheel for browser live coding
	Node.js interactive development workflows with Figwheel

	Setting integrated development environments for ClojureScript
	Working on Emacs with Piggieback and Weasel on CIDER
	Installing CIDER
	Working with Clojure and ClojureScript REPLs on CIDER

	Working on Emacs with Figwheel and inf-clojure
	Installing inf-clojure
	Configuring inf-clojure to run Figwheel as a Clojure subprocess


	Summary

	Chapter 2: ClojureScript Language Fundamentals
	Understanding ClojureScript functions
	Functions
	Multiarity and variadic functions
	Anonymous functions
	Side effects
	Local variables


	The ClojureScript data structures
	Scalar types
	Numbers
	Strings and characters
	Nil
	Boolean values and truthiness
	Keywords
	Symbols

	ClojureScript collections
	Lists
	Vectors
	When should I use lists versus vectors?

	Maps
	Different types of maps

	Sets
	Sequences
	Laziness

	Collection protocols
	Sequential
	Associative
	Sorted
	Counted
	Reversible

	Object-oriented programming
	Protocols
	Types
	Records
	Extending types and protocols
	Reify

	Other ClojureScript types
	Regular expressions
	Atoms


	Immutability
	Advanced destructuring and namespaces
	Destructuring
	Namespaces

	JavaScript interoperability
	JavaScript collections
	Arrays
	JavaScript objects
	JS interop syntax

	The Google Closure Compiler and using external JavaScript libraries
	Referencing external libraries with externs
	Bundling external libraries
	Google Closure Compiler compatible code
	Foreign JavaScript

	CLJSJS


	Summary

	Chapter 3: Advanced ClojureScript Concepts
	Functional programming concepts
	Loops and iteration
	Loop and recur functions
	for
	dotimes
	doseq
	doall


	Higher-order functions
	map
	The filter and remove functions
	reduce

	Transducers

	Control flow
	if and when
	if-let and when-let

	cond and condp
	case
	Exception handling

	Writing macros for ClojureScript
	read and eval
	Your first macro
	Writing more advanced macros
	Gensyms and local binding in macros
	Don't repeat yourself!

	A personal favorite – Threading macros
	A closing note on macros

	Concurrent design patterns using core.async
	JavaScript is event-driven by default
	Event-driven programming in ClojureScript

	The Communicating Sequential Processes concurrency model
	Getting started with core.async
	Background listeners
	Errors and core.async


	Summary

	Chapter 4: Web Applications Basics with ClojureScript
	Raw DOM manipulation and events handling
	Interacting with the browser using the Google Closure Library

	Dommy – An idiomatic ClojureScript library for the DOM
	Client-side templating in ClojureScript
	CSS preprocessors in ClojureScript

	Summary

	Chapter 5: Building Single Page Applications
	Understanding Single Page Appliactions
	The tradeoffs of SPAs
	Richer UI
	Easier to deal with client-side data
	Easier to deal with AJAX
	Faster client interactions once the page is loaded
	More development work
	Legacy browser support is harder


	Understanding Om
	Understanding React
	The React terminology
	The components of an SPA
	Setting up
	What just happened?

	Child components
	Items in the Om constructor signature
	Cursors
	owner
	Opts
	Input
	Rendering

	The React diffing algorithm

	Differences between Om and React
	Components
	State models
	Cursors

	Determining the size of a component
	Constructing
	The local state
	Life cycle protocols

	Using third-party JS
	jQuery listeners

	AJAX
	Dependencies
	The server
	Transit
	Ring
	CORS
	Data


	Routing and HTML5 history
	pushState
	Navigation

	Summary

	Chapter 6: Building Richer Web Applications
	Real-time communication with websockets
	Understanding the websocket protocol
	Initialization
	Sending messages
	Understanding Chord

	Using Datascript
	Understanding the Datascript/Datomic data model
	A basic query
	Query arguments

	Schema
	Understanding db.type/ref
	Cardinality
	Pull
	Finding results
	Unification

	Predicate expressions
	Indexes
	Differences between Datomic and Datascript
	Why Datascript?

	Improving load times
	ClojureScript modules
	Preparing for modules
	Getting started
	Route definition
	Loading modules
	Fixing development mode


	.cljc and server-side rendering
	.cljc
	Schema and input validation
	Server-side rendering
	Setting up the project
	Understanding Foam


	Summary

	Chapter 7: Going Further with ClojureScript
	Pattern matching with core.match
	Configuring our project
	Getting started with core.match
	Matching collections
	Guards and function applications

	Wrapping up
	Exploring nested data structures with clojure.zip

	Example – Replacing values in a tree
	Example – Removing values from a tree
	Further possibilities
	Declaratively solving problems with core.logic

	Configuring our project
	Getting started with core.logic
	Advanced core.logic
	Going even further


	Runtime data validation using schema
	Configuring our project
	A quick introduction to schema
	Collection schemas
	Function schemas
	Advanced schema validation
	Schema coercion


	Summary

	Chapter 8: Bundling ClojureScript for Production
	Testing your application with cljs.test
	Using doo for easier testing configuration
	Testing fixtures
	Asynchronous testing
	Asynchronous fixtures


	Advanced ClojureScript compilation options
	Compilation optimization levels
	Generating modules
	Targeting a Node.js runtime
	General configuration recommendations

	Deploying Clojure and ClojureScript applications in a Docker container
	Installing Docker
	Compiling an Uberjar
	Building a Docker container for our app

	Summary

	Index



