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Preface
This	book	helps	the	reader	to	learn,	create,	deploy,	and	provide	administration	steps	for
Docker	networking.	Docker	is	a	Linux	container	implementation	that	enables	the	creation
of	light-weight	portable	development	and	production-quality	environments.	These
environments	can	be	updated	incrementally.	Docker	achieves	this	by	leveraging
containment	principles,	such	as	cgroups	and	Linux	namespaces,	along	with	overlay
filesystem-based	portable	images.

Docker	provides	the	networking	primitives	that	allow	administrators	to	specify	how
different	containers	network	with	each	application,	connect	to	each	of	their	components,
then	distribute	them	across	a	large	number	of	servers,	and	ensure	coordination	between
them	irrespective	of	the	host	or	the	VM	that	they	are	running	on.	This	book	aggregates	all
the	latest	Docker	networking	technology	and	provides	great	in	depth	explanation	with
setup	details.



What	this	book	covers
Chapter	1,	Docker	Networking	Primer,	explains	the	essential	components	of	Docker
networking,	which	have	evolved	from	coupling	simple	Docker	abstractions	and	powerful
network	components,	such	as	Linux	bridges,	Open	vSwitch,	and	so	on.	This	chapter	also
explains	how	Docker	containers	can	be	created	with	various	modes.	In	the	default	mode,
port	mapping	helps	us	through	the	use	of	iptables	NAT	rules,	allowing	traffic	arriving	at
the	host	to	reach	containers.	Later	in	this	chapter,	basic	linking	of	the	container	is	covered
and	the	next	generation	of	Docker	networking,	which	is	libnetwork,	is	also	discussed.

Chapter	2,	Docker	Networking	Internals,	discusses	Docker’s	internal	networking
architecture.	We	will	learn	about	IPv4,	IPv6,	and	DNS	configurations	in	Docker.	Later	in
this	chapter,	Docker	bridge	and	communication	between	containers	in	single	host	and
multihost	is	covered.	This	chapter	also	explains	overlay	tunneling	and	different	methods
that	are	implemented	on	Docker	networking,	such	as	OVS,	Flannel,	and	Weave.

Chapter	3,	Building	Your	First	Docker	Network,	shows	how	Docker	containers
communicate	from	multiple	hosts	using	different	networking	options,	such	as	Weave,
OVS,	and	Flannel.	Pipework	uses	legacy	Linux	bridge,	Weave	creates	a	virtual	network,
OVS	uses	GRE	tunneling	technology,	and	Flannel	provides	a	separate	subnet	to	each	host
to	connect	containers	on	multiple	hosts.	Some	of	the	implementations,	such	as	Pipework,
are	legacy	and	will	become	obsolete	over	a	period	of	time,	while	others	are	designed	to	be
used	in	the	context	of	specific	OSes,	such	as	Flannel	with	CoreOS.	Basic	comparisons	of
Docker	networking	options	are	also	covered	in	this	chapter.

Chapter	4,	Networking	in	a	Docker	Cluster,	explains	Docker	networking	in	depth	using
various	frameworks,	such	as	native	Docker	Swarm,	where	using	the	libnetwork	or	the	out-
of	the-box	overlay	network,	Swarm,	provides	the	multihost	networking	features.
Kubernetes,	on	the	other	hand,	has	a	different	perspective	from	Docker,	where	each	pod
will	get	a	unique	IP	address	and	communication	between	pods	can	occur	with	the	help	of
services.	Using	Open	vSwitch	or	IP-forwarding	advanced	routing	rules,	the	Kubernetes
networking	can	be	enhanced	to	provide	connectivity	between	pods	on	different	subnets
across	hosts	and	expose	the	pods	to	the	external	world.	In	the	case	of	Mesosphere,	we	can
see	that	Marathon	is	used	as	a	backend	for	the	networking	of	the	deployed	containers.	In
the	case	of	DCOS	of	the	Mesosphere,	the	entire	deployed	stack	of	machines	is	treated	as
one	machine	to	provide	a	rich-networking	experience	between	deployed	container
services.

Chapter	5,	Security	and	QoS	for	Docker	Containers,	takes	a	dive	into	Docker	security	by
referring	to	kernel	and	cgroups	namespaces.	We	will	also	visit	some	of	the	aspects	of
filesystems	and	various	Linux	capabilities,	which	containers	leverage	in	order	to	provide
more	features,	such	as	the	privileged	container	but	at	the	cost	of	exposing	itself	more	on
the	threat	side.	We	will	also	see	how	containers	can	be	deployed	in	a	secured	environment
in	AWS	ECS	using	proxy	containers	to	restrict	the	vulnerable	traffic.	We	will	also	talk
about	how	AppArmor	is	also	provided	with	a	rich	set	of	Mandatory	Access	Control
(MAC)	system,	which	provides	kernel-enhancement	features	in	order	to	confine



applications	to	a	limited	set	of	resources.	Leveraging	their	benefits	to	Docker	containers
helps	us	deploy	them	in	a	secured	environment.	In	the	last	section,	we	take	a	quick	dive
into	Docker	security	benchmarks	and	some	of	the	important	recommendations	that	can	be
followed	during	auditing	and	Docker	deployment	in	a	production	environment.

Chapter	6,	Next	Generation	Networking	Stack	for	Docker:	libnetwork,	will	look	into	some
of	the	deeper	and	conceptual	aspects	of	Docker	networking.	One	of	these	is	libnetworking
—the	future	of	the	Docker	network	model,	which	is	already	getting	into	shape	with	the
release	of	Docker	1.9.	While	explaining	the	libnetworking	concept,	we	will	also	study	the
CNM	model,	its	various	objects	and	components,	along	with	its	implementation	code
snippets.	Next,	we	will	look	into	drivers	of	CNM,	the	prime	one	being	the	overlay	driver,
in	detail	with	deployment	as	part	of	Vagrant	setup.	We	will	look	at	standalone	integrations
of	containers	with	overlay	network	with	Docker	Swarm	and	Docker	Machine	as	well.	In
the	next	section,	we	explain	the	CNI	interface,	its	executable	plugins,	and	give	a	tutorial	to
configure	Docker	networking	with	the	CNI	plugin.	In	the	last	section,	Project	Calico	is
explained	in	detail,	which	provides	scalable	networking	solutions	that	are	based	out	of
libnetwork	and	provides	integration	with	Docker,	Kubernetes,	Mesos,	bare-metal,	and
VMs,	primarily.





What	you	need	for	this	book
Mostly	all	of	the	setups	basically	require	Ubuntu	14.04	(either	installed	on	a	physical
machine	or	as	a	virtual	machine)	and	Docker	1.9,	which	is	the	latest	version	to	date.
Specific	OS	and	software	requirements	(Open	Source	Git	Projects)	are	mentioned	before
each	setup	if	required.





Who	this	book	is	for
If	you	are	a	Linux	administrator	who	wants	to	learn	networking	using	Docker	to	ensure
the	efficient	administration	of	core	elements	and	applications,	then	this	book	is	for	you.
Basic	knowledge	of	LXC/Docker	is	assumed.
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Conventions
You	will	also	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“You
may	notice	that	we	used	the	Unix	command,	rm,	to	remove	the	Drush	directory	rather	than
the	DOS	del	command.”

A	block	of	code	is	set	as	follows:

#	*	Fine	Tuning

#

key_buffer	=	16M

key_buffer_size	=	32M

max_allowed_packet	=	16M

thread_stack	=	512K

thread_cache_size	=	8

max_connections	=	300

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

#	*	Fine	Tuning

#

key_buffer	=	16M

key_buffer_size	=	32M

max_allowed_packet	=	16M

thread_stack	=	512K

thread_cache_size	=	8

max_connections	=	300

Any	command-line	input	or	output	is	written	as	follows:

cd	/ProgramData/Propeople

rm	-r	Drush

git	clone	--branch	master	http://git.drupal.org/project/drush.git

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“On	the	Select
Destination	Location	screen,	click	on	Next	to	accept	the	default	destination.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

http://www.packtpub.com
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Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
http://www.packtpub.com/sites/default/files/downloads/LearningDockerNetworking_ColorImages.pdf
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Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.
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Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com
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If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com




Chapter	1.	Docker	Networking	Primer
Docker	is	a	lightweight	container	technology	that	has	gathered	enormous	interest	in	recent
years.	It	neatly	bundles	various	Linux	kernel	features	and	services,	such	as	namespaces,
cgroups,	SELinux,	and	AppArmor	profiles,	over	union	filesystems	such	as	AUFS	and
BTRFS	in	order	to	make	modular	images.	These	images	provide	a	highly	configurable
virtualized	environment	for	applications	and	follow	a	write	once,	run	anywhere
workflow.	An	application	can	be	composed	of	a	single	process	running	in	a	Dcker
container	or	it	could	be	made	up	of	multiple	processes	running	in	their	own	containers	and
being	replicated	as	the	load	increases.	Therefore,	there	is	a	need	for	powerful	networking
elements	that	can	support	various	complex	use	cases.

In	this	chapter,	you	will	learn	about	the	essential	components	of	Docker	networking	and
how	to	build	and	run	simple	container	examples.

This	chapter	covers	the	following	topics:

Networking	and	Docker
The	docker0	bridge	networking
Docker	OVS	networking
Unix	domain	networks
Linking	Docker	containers
What’s	new	in	Docker	networking

Docker	is	getting	a	lot	of	traction	in	the	industry	because	of	its	performance-savvy	and
universal	replicability	architecture,	while	providing	the	following	four	cornerstones	of
modern	application	development:

Autonomy
Decentralization
Parallelism
Isolation

Furthermore,	wide-scale	adoption	of	Thoughtworks’s	microservices	architecture,	or
LOSA	(Lots	of	Small	Applications),	is	further	bringing	potential	to	Docker	technology.
As	a	result,	big	companies	such	as	Google,	VMware,	and	Microsoft	have	already	ported
Docker	to	their	infrastructure,	and	the	momentum	is	continued	by	the	launch	of	myriad
Docker	start-ups,	namely	Tutum,	Flocker,	Giantswarm,	and	so	on.

Since	Docker	containers	replicate	their	behavior	anywhere,	be	it	your	development
machine,	a	bare	metal	server,	virtual	machine,	or	data	center,	application	designers	can
focus	their	attention	on	development,	while	operational	semantics	are	left	with	DevOps.
This	makes	team	workflow	modular,	efficient,	and	productive.	Docker	is	not	to	be
confused	with	a	virtual	machine	(VM),	even	though	they	are	both	virtualization
technologies.	While	Docker	shares	an	OS	with	providing	a	sufficient	level	of	isolation	and
security	to	applications	running	in	containers,	it	later	completely	abstracts	away	the	OS
and	gives	strong	isolation	and	security	guarantees.	However,	Docker’s	resource	footprint
is	minuscule	in	comparison	to	a	VM	and	hence	preferred	for	economy	and	performance.



However,	it	still	cannot	completely	replace	VMs	and	is	therefore	complementary	to	VM
technology.	The	following	diagram	shows	the	architecture	of	VMs	and	Docker:



Networking	and	Docker
Each	Docker	container	has	its	own	network	stack,	and	this	is	due	to	the	Linux	kernel	NET
namespace,	where	a	new	NET	namespace	for	each	container	is	instantiated	and	cannot	be
seen	from	outside	the	container	or	from	other	containers.

Docker	networking	is	powered	by	the	following	network	components	and	services.



Linux	bridges
These	are	L2/MAC	learning	switches	built	into	the	kernel	and	are	to	be	used	for
forwarding.



Open	vSwitch
This	is	an	advanced	bridge	that	is	programmable	and	supports	tunneling.



NAT
Network	address	translators	are	immediate	entities	that	translate	IP	addresses	and	ports
(SNAT,	DNAT,	and	so	on).



IPtables
This	is	a	policy	engine	in	the	kernel	used	for	managing	packet	forwarding,	firewall,	and
NAT	features.



AppArmor/SELinux
Firewall	policies	for	each	application	can	be	defined	with	these.

Various	networking	components	can	be	used	to	work	with	Docker,	providing	new	ways	to
access	and	use	Docker-based	services.	As	a	result,	we	see	a	lot	of	libraries	that	follow	a
different	approach	to	networking.	Some	of	the	prominent	ones	are	Docker	Compose,
Weave,	Kubernetes,	Pipework,	libnetwork,	and	so	on.	The	following	figure	depicts	the
root	ideas	of	Docker	networking:
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The	docker0	bridge
The	docker0	bridge	is	the	heart	of	default	networking.	When	the	Docker	service	is	started,
a	Linux	bridge	is	created	on	the	host	machine.	The	interfaces	on	the	containers	talk	to	the
bridge,	and	the	bridge	proxies	to	the	external	world.	Multiple	containers	on	the	same	host
can	talk	to	each	other	through	the	Linux	bridge.

docker0	can	be	configured	via	the	--net	flag	and	has,	in	general,	four	modes:

--net	default

--net=none

--net=container:$container2

--net=host



The	—net	default	mode
In	this	mode,	the	default	bridge	is	used	as	the	bridge	for	containers	to	connect	to	each
other.



The	—net=none	mode
With	this	mode,	the	container	created	is	truly	isolated	and	cannot	connect	to	the	network.



The	—net=container:$container2	mode
With	this	flag,	the	container	created	shares	its	network	namespace	with	the	container
called	$container2.



The	—net=host	mode
With	this	mode,	the	container	created	shares	its	network	namespace	with	the	host.

Port	mapping	in	Docker	container
In	this	section,	we	look	at	how	container	ports	are	mapped	to	host	ports.	This	mapping	can
either	be	done	implicitly	by	Docker	Engine	or	can	be	specified.

If	we	create	two	containers	called	Container1	and	Container2,	both	of	them	are	assigned
an	IP	address	from	a	private	IP	address	space	and	also	connected	to	the	docker0	bridge,	as
shown	in	the	following	figure:

Both	the	preceding	containers	will	be	able	to	ping	each	other	as	well	as	reach	the	external
world.

For	external	access,	their	port	will	be	mapped	to	a	host	port.

As	mentioned	in	the	previous	section,	containers	use	network	namespaces.	When	the	first
container	is	created,	a	new	network	namespace	is	created	for	the	container.	A	vEthernet
link	is	created	between	the	container	and	the	Linux	bridge.	Traffic	sent	from	eth0	of	the
container	reaches	the	bridge	through	the	vEthernet	interface	and	gets	switched	thereafter.
The	following	code	can	be	used	to	show	a	list	of	Linux	bridges:

#	show	linux	bridges

$	sudo	brctl	show

The	output	will	be	similar	to	the	one	shown	as	follows,	with	a	bridge	name	and	the	veth
interfaces	on	the	containers	it	is	mapped	to:

bridge	name						bridge	id								STP	enabled				interfaces

docker0						8000.56847afe9799								no									veth44cb727

																																																	veth98c3700

How	does	the	container	connect	to	the	external	world?	The	iptables	nat	table	on	the
host	is	used	to	masquerade	all	external	connections,	as	shown	here:

$	sudo	iptables	-t	nat	-L	–n



...

Chain	POSTROUTING	(policy	ACCEPT)	target	prot	opt

source	destination	MASQUERADE	all—172.17.0.0/16

!172.17.0.0/16

...

How	to	reach	containers	from	the	outside	world?	The	port	mapping	is	again	done	using
the	iptables	nat	option	on	the	host	machine.





Docker	OVS
Open	vSwitch	is	a	powerful	network	abstraction.	The	following	figure	shows	how	OVS
interacts	with	the	VMs,	Hypervisor,	and	the	Physical	Switch.	Every	VM	has	a	vNIC
associated	with	it.	Every	vNIC	is	connected	through	a	VIF	(also	called	a	virtual
interface)	with	the	Virtual	Switch:

OVS	uses	tunnelling	mechanisms	such	as	GRE,	VXLAN,	or	STT	to	create	virtual
overlays	instead	of	using	physical	networking	topologies	and	Ethernet	components.	The
following	figure	shows	how	OVS	can	be	configured	for	the	containers	to	communicate
between	multiple	hosts	using	GRE	tunnels:







Unix	domain	socket
Within	a	single	host,	UNIX	IPC	mechanisms,	especially	UNIX	domain	sockets	or	pipes,
can	also	be	used	to	communicate	between	containers:

$		docker	run		--name	c1	–v	/var/run/foo:/var/run/foo	–d	–I	–t	base	

/bin/bash		

$		docker	run		--name	c2	–v	/var/run/foo:/var/run/foo	–d	–I	–t	base	

/bin/bash

Apps	on	c1	and	c2	can	communicate	over	the	following	Unix	socket	address:

struct		sockaddr_un	address;

address.sun_family	=	AF_UNIX;

snprintf(address.sun_path,	UNIX_PATH_MAX,	"/var/run/foo/bar"	);

C1:	Server.c C2:	Client.c

bind(socket_fd,	(struct	sockaddr	*)	&address,	

sizeof(struct	sockaddr_un));

listen(socket_fd,	5);

while((connection_fd	=	accept(socket_fd,	(struct	

sockaddr	*)	&address,	&address_length))	>	-1)

nbytes	=	read(connection_fd,	buffer,	256);

connect(socket_fd,	(struct	sockaddr	*)	

&address,	sizeof(struct	sockaddr_un));

write(socket_fd,	buffer,	nbytes);





Linking	Docker	containers
In	this	section,	we	introduce	the	concept	of	linking	two	containers.	Docker	creates	a	tunnel
between	the	containers,	which	doesn’t	need	to	expose	any	ports	externally	on	the
container.	It	uses	environment	variables	as	one	of	the	mechanisms	for	passing	information
from	the	parent	container	to	the	child	container.

In	addition	to	the	environment	variable	env,	Docker	also	adds	a	host	entry	for	the	source
container	to	the	/etc/hosts	file.	The	following	is	an	example	of	the	host	file:

$	docker	run	-t	-i	--name	c2	--rm	--link	c1:c1alias	training/webapp	

/bin/bash

root@<container_id>:/opt/webapp#	cat	/etc/hosts

172.17.0.1		aed84ee21bde

...

172.17.0.2		c1alaias	6e5cdeb2d300	c1

There	are	two	entries:

The	first	is	an	entry	for	the	container	c2	that	uses	the	Docker	container	ID	as	a	host
name
The	second	entry,	172.17.0.2	c1alaias	6e5cdeb2d300	c1,	uses	the	link	alias	to
reference	the	IP	address	of	the	c1	container

The	following	figure	shows	two	containers	Container	1	and	Container	2	connected	using
veth	pairs	to	the	docker0	bridge	with	--icc=true.	This	means	these	two	containers	can
access	each	other	through	the	bridge:



Links
Links	provide	service	discovery	for	Docker.	They	allow	containers	to	discover	and
securely	communicate	with	each	other	by	using	the	flag	-link	name:alias.	Inter-
container	communication	can	be	disabled	with	the	daemon	flag	-icc=false.	With	this	flag
set	to	false,	Container	1	cannot	access	Container	2	unless	explicitly	allowed	via	a	link.
This	is	a	huge	advantage	for	securing	your	containers.	When	two	containers	are	linked
together,	Docker	creates	a	parent-child	relationship	between	them,	as	shown	in	the
following	figure:

From	the	outside,	it	looks	like	this:

#	start	the	database

$		sudo	docker	run	-dp	3306:3306	--name	todomvcdb	\

-v	/data/mysql:/var/lib/mysql	cpswan/todomvc.mysql	

#	start	the	app	server

$		sudo	docker	run	-dp	4567:4567	--name	todomvcapp	\	

--link	todomvcdb:db	cpswan/todomvc.sinatra	

On	the	inside,	it	looks	like	this:

$		dburl	=	''mysql://root:pa55Word@''	+	\	ENV[''DB_PORT_3306_TCP_ADDR'']	+	

''/todomvc''

$		DataMapper.setup(:default,	dburl)





What’s	new	in	Docker	networking?
Docker	networking	is	at	a	very	nascent	stage,	and	there	are	many	interesting	contributions
from	the	developer	community,	such	as	Pipework,	Weave,	Clocker,	and	Kubernetes.	Each
of	them	reflects	a	different	aspect	of	Docker	networking.	We	will	learn	about	them	in	later
chapters.	Docker,	Inc.	has	also	established	a	new	project	where	networking	will	be
standardized.	It	is	called	libnetwork.

libnetwork	implements	the	container	network	model	(CNM),	which	formalizes	the	steps
required	to	provide	networking	for	containers	while	providing	an	abstraction	that	can	be
used	to	support	multiple	network	drivers.	The	CNM	is	built	on	three	main	components—
sandbox,	endpoint,	and	network.



Sandbox
A	sandbox	contains	the	configuration	of	a	container’s	network	stack.	This	includes
management	of	the	container’s	interfaces,	routing	table,	and	DNS	settings.	An
implementation	of	a	sandbox	could	be	a	Linux	network	namespace,	a	FreeBSD	jail,	or
other	similar	concept.	A	sandbox	may	contain	many	endpoints	from	multiple	networks.



Endpoint
An	endpoint	connects	a	sandbox	to	a	network.	An	implementation	of	an	endpoint	could	be
a	veth	pair,	an	Open	vSwitch	internal	port,	or	something	similar.	An	endpoint	can	belong
to	only	one	network	but	may	only	belong	to	one	sandbox.



Network
A	network	is	a	group	of	endpoints	that	are	able	to	communicate	with	each	other	directly.
An	implementation	of	a	network	could	be	a	Linux	bridge,	a	VLAN,	and	so	on.	Networks
consist	of	many	endpoints,	as	shown	in	the	following	diagram:





The	Docker	CNM	model
The	CNM	provides	the	following	contract	between	networks	and	containers:

All	containers	on	the	same	network	can	communicate	freely	with	each	other
Multiple	networks	are	the	way	to	segment	traffic	between	containers	and	should	be
supported	by	all	drivers
Multiple	endpoints	per	container	are	the	way	to	join	a	container	to	multiple	networks
An	endpoint	is	added	to	a	network	sandbox	to	provide	it	with	network	connectivity

We	will	discuss	the	details	of	how	CNM	is	implemented	in	Chapter	6,	Next	Generation
Networking	Stack	for	Docker:	libnetwork.





Summary
In	this	chapter,	we	learned	about	the	essential	components	of	Docker	networking,	which
have	evolved	from	coupling	simple	Docker	abstractions	and	powerful	network
components	such	as	Linux	bridges	and	Open	vSwitch.

We	learned	how	Docker	containers	can	be	created	with	various	modes.	In	the	default
mode,	port	mapping	helps	through	the	use	of	iptables	NAT	rules,	allowing	traffic	arriving
at	the	host	to	reach	containers.	Later	in	the	chapter,	we	covered	the	basic	linking	of
containers.	We	also	talked	about	the	next	generation	of	Docker	networking,	which	is
called	libnetwork.





Chapter	2.	Docker	Networking	Internals
This	chapter	discusses	the	semantics	and	syntax	of	Docker	networking	in	detail,	exposing
strengths	and	weaknesses	of	the	current	Docker	network	paradigm.

It	covers	the	following	topics:

Configuring	the	IP	stack	for	Docker

IPv4	support
Issues	with	IPv4	address	management
IPv6	support

Configuring	DNS

DNS	basics
Multicast	DNS

Configuring	the	Docker	bridge
Overlay	networks	and	underlay	networks

What	are	they?
How	does	Docker	use	them?
What	are	some	of	their	advantages?



Configuring	the	IP	stack	for	Docker
Docker	uses	the	IP	stack	to	interact	with	the	outside	world	using	TCP	or	UDP.	It	supports
the	IPv4	and	IPv6	addressing	infrastructures,	which	are	explained	in	the	following
subsections.



IPv4	support
By	default,	Docker	provides	IPv4	addresses	to	each	container,	which	are	attached	to	the
default	docker0	bridge.	The	IP	address	range	can	be	specified	while	starting	the	Docker
daemon	using	the	--fixed-cidr	flag,	as	shown	in	the	following	code:

$	sudo	docker	–d	--fixed-cidr=192.168.1.0/25

We	will	discuss	more	about	this	in	the	Configuring	the	Docker	bridge	section.

The	Docker	daemon	can	be	listed	on	an	IPv4	TCP	endpoint	in	addition	to	a	Unix	socket:

$	sudo	docker	-H	tcp://127.0.0.1:2375	-H	unix:///var/run/docker.sock	-d	&



IPv6	support
IPv4	and	IPv6	can	run	together;	this	is	called	a	dual	stack.	This	dual	stack	support	is
enabled	by	running	the	Docker	daemon	with	the	--ipv6	flag.	Docker	will	set	up	the
docker0	bridge	with	the	IPv6	link-local	address	fe80::1.	All	packets	shared	between
containers	flow	through	this	bridge.

To	assign	globally	routable	IPv6	addresses	to	your	containers,	you	have	to	specify	an	IPv6
subnet	to	pick	the	addresses	from.

The	following	commands	set	the	IPv6	subnet	via	the	--fixed-cidr-v6	parameter	while
starting	Docker	and	also	add	a	new	route	to	the	routing	table:

#	docker	–d	--ipv6	--fixed-cidr-v6="1553:ba3:2::/64"

#	docker	run	-t	-i	--name	c0	ubuntu:latest	/bin/bash

The	following	figure	shows	a	Docker	bridge	configured	with	an	IPv6	address	range:

If	you	check	the	IP	address	range	using	ifconfig	inside	a	container,	you	will	notice	that
the	appropriate	subnet	has	been	assigned	to	the	eth0	interface,	as	shown	in	the	following
code:

#ifconfig

eth0						Link	encap:Ethernet	HWaddr	02:42:ac:11:00:01



										inet	addr:172.17.0.1		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	fe80::42:acff:fe11:1/64	Scope:Link

										inet6	addr:	1553:ba3:2::242:ac11:1/64	Scope:Global

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:7	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:10	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:738	(738.0	B)		TX	bytes:836	(836.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

All	the	traffic	to	the	1553:ba3:2::/64	subnet	will	be	routed	via	the	docker0	interface.

The	preceding	container	is	assigned	using	fe80::42:acff:fe11:1/64	as	the	link-local
address	and	1553:ba3:2::242:ac11:1/64	as	the	global	routable	IPv6	address.

Note
Link-local	and	loopback	addresses	have	link-local	scope,	which	means	they	are	to	be	used
in	a	directly	attached	network	(link).	All	other	addresses	have	global	(or	universal)	scope,
which	means	they	are	globally	routable	and	can	be	used	to	connect	to	addresses	with
global	scope	anywhere.





Configuring	a	DNS	server
Docker	provides	hostname	and	DNS	configurations	for	each	container	without	us	having
to	build	a	custom	image.	It	overlays	the	/etc	folder	inside	the	container	with	virtual	files,
in	which	it	can	write	new	information.

This	can	be	seen	by	running	the	mount	command	inside	the	container.	Containers	receive
the	same	resolv.conf	file	as	that	of	the	host	machine	when	they	are	created	initially.	If	a
host’s	resolv.conf	file	is	modified,	this	will	be	reflected	in	the	container’s	/resolv.conf
file	only	when	the	container	is	restarted.

In	Docker,	you	can	set	DNS	options	in	two	ways:

Using	docker	run	--dns=<ip-address>
Adding	DOCKER_OPTS="--dns	ip-address"	to	the	Docker	daemon	file

You	can	also	specify	the	search	domain	using	--dns-search=<DOMAIN>.

The	following	figure	shows	a	nameserver	being	configured	in	a	container	using	the
DOCKER_OPTS	setting	in	the	Docker	daemon	file:

The	main	DNS	files	are	as	follows:

/etc/hostname

/etc/resolv.conf

/etc/hosts

The	following	is	the	command	to	add	a	DNS	server:



#	docker	run	--dns=8.8.8.8	--net="bridge"	-t	-i		ubuntu:latest	/bin/bash

Add	hostnames	using	the	following	command:

#docker	run	--dns=8.8.8.8	--hostname=docker-vm1		-t	-i		ubuntu:latest	

/bin/bash



Communication	between	containers	and	external
networks
Packets	can	only	pass	between	containers	if	the	ip_forward	parameter	is	set	to	1.	Usually,
you	will	simply	leave	the	Docker	server	at	its	default	setting,	--ip-forward=true,	and
Docker	will	set	ip_forward	to	1	for	you	when	the	server	starts	up.

To	check	the	settings	or	to	turn	IP	forwarding	on	manually,	use	these	commands:

#	cat	/proc/sys/net/ipv4/ip_forward

0

#	echo	1	>	/proc/sys/net/ipv4/ip_forward

#	cat	/proc/sys/net/ipv4/ip_forward

1

By	enabling	ip_forward,	users	can	make	communication	possible	between	containers	and
the	external	world;	it	will	also	be	required	for	inter-container	communication	if	you	are	in
a	multiple-bridge	setup.	The	following	figure	shows	how	ip_forward	=	false	forwards
all	the	packets	to/from	the	container	from/to	the	external	network:

Docker	will	not	delete	or	modify	any	pre-existing	rules	from	the	Docker	filter	chain.	This
allows	users	to	create	rules	to	restrict	access	to	containers.

Docker	uses	the	docker0	bridge	for	packet	flow	between	all	the	containers	on	a	single
host.	It	adds	a	rule	to	forward	the	chain	using	IPTables	in	order	for	the	packets	to	flow



between	two	containers.	Setting	--icc=false	will	drop	all	the	packets.

When	the	Docker	daemon	is	configured	with	both	--icc=false	and	--iptables=true
and	docker	run	is	invoked	with	the	--link	option,	the	Docker	server	will	insert	a	pair	of
IPTables	accept	rules	for	new	containers	to	connect	to	the	ports	exposed	by	the	other
containers,	which	will	be	the	ports	that	have	been	mentioned	in	the	exposed	lines	of	its
Dockerfile.	The	following	figure	shows	how	ip_forward	=	false	drops	all	the	packets
to/from	the	container	from/to	the	external	network:

By	default,	Docker’s	forward	rule	permits	all	external	IPs.	To	allow	only	a	specific	IP	or
network	to	access	the	containers,	insert	a	negated	rule	at	the	top	of	the	Docker	filter	chain.

For	example,	using	the	following	command,	you	can	restrict	external	access	such	that	only
the	source	IP	10.10.10.10	can	access	the	containers:

#iptables	–I	DOCKER	–i	ext_if	!	–s	10.10.10.10	–j	DROP

Restricting	SSH	access	from	one	container	to	another
Following	these	steps	to	restrict	SSH	access	from	one	container	to	another:

1.	 Create	two	containers,	c1	and	c2.

For	c1,	use	the	following	command:



#	docker	run	-i	-t	--name	c1	ubuntu:latest	/bin/bash

The	output	generated	is	as	follows:

root@7bc2b6cb1025:/#	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:ac:11:00:05

										inet	addr:172.17.0.5		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	2001:db8:1::242:ac11:5/64	Scope:Global

										inet6	addr:	fe80::42:acff:fe11:5/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:7	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:8	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:738	(738.0	B)		TX	bytes:696	(696.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

For	c2,	use	the	following	command:

#	docker	run	-i	-t	--name	c2	ubuntu:latest	/bin/bash

The	following	is	the	output	generated:

root@e58a9bf7120b:/#	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:ac:11:00:06

										inet	addr:172.17.0.6		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	2001:db8:1::242:ac11:6/64	Scope:Global

										inet6	addr:	fe80::42:acff:fe11:6/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:6	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:8	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:648	(648.0	B)		TX	bytes:696	(696.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

We	can	test	connectivity	between	the	containers	using	the	IP	address	we’ve	just
discovered.	Let’s	see	this	now	using	the	ping	tool:

root@7bc2b6cb1025:/#	ping	172.17.0.6

PING	172.17.0.6	(172.17.0.6)	56(84)	bytes	of	data.

64	bytes	from	172.17.0.6:	icmp_seq=1	ttl=64	time=0.139	ms

64	bytes	from	172.17.0.6:	icmp_seq=2	ttl=64	time=0.110	ms

^C

---	172.17.0.6	ping	statistics	---



2	packets	transmitted,	2	received,	0%	packet	loss,	time	999ms

rtt	min/avg/max/mdev	=	0.110/0.124/0.139/0.018	ms

root@7bc2b6cb1025:/#

root@e58a9bf7120b:/#	ping	172.17.0.5

PING	172.17.0.5	(172.17.0.5)	56(84)	bytes	of	data.

64	bytes	from	172.17.0.5:	icmp_seq=1	ttl=64	time=0.270	ms

64	bytes	from	172.17.0.5:	icmp_seq=2	ttl=64	time=0.107	ms

^C

---	172.17.0.5	ping	statistics	---

2	packets	transmitted,	2	received,	0%	packet	loss,	time	1002ms

rtt	min/avg/max/mdev	=	0.107/0.188/0.270/0.082	ms

root@e58a9bf7120b:/#

2.	 Install	openssh-server	on	both	the	containers:

#apt-get	install	openssh-server

3.	 Enable	iptables	on	the	host	machine:

1.	 Initially,	you	will	be	able	to	SSH	from	one	container	to	another.
2.	 Stop	the	Docker	service	and	add	DOCKER_OPTS="--icc=false	--

iptables=true"	to	the	default	Dockerfile	of	the	host	machine.	This	option	will
enable	the	iptables	firewall	and	drop	all	ports	between	the	containers.

By	default,	iptables	is	not	enabled	on	the	host.	Use	the	following	command	to
enable	it:

root@ubuntu:~#	iptables	-L	-n

Chain	INPUT	(policy	ACCEPT)

target					prot	opt	source															destination

Chain	FORWARD	(policy	ACCEPT)

target					prot	opt	source															destination

DOCKER					all	—	0.0.0.0/0												0.0.0.0/0

ACCEPT					all	—	0.0.0.0/0												0.0.0.0/0												ctstate	

RELATED,ESTABLISHED

ACCEPT					all	—	0.0.0.0/0												0.0.0.0/0

DOCKER					all	—	0.0.0.0/0												0.0.0.0/0

ACCEPT					all	—	0.0.0.0/0												0.0.0.0/0												ctstate	

RELATED,ESTABLISHED

ACCEPT					all	—	0.0.0.0/0												0.0.0.0/0

ACCEPT					all	—	0.0.0.0/0												0.0.0.0/0

ACCEPT					all	—	0.0.0.0/0												0.0.0.0/0

#service	docker	stop

#vi	/etc/default/docker

3.	 Docker	Upstart	and	SysVinit	configuration	file.	Customize	the	location	of	the
Docker	binary	(especially	for	development	testing):

#DOCKER="/usr/local/bin/docker"

4.	 Use	DOCKER_OPTS	to	modify	the	daemon’s	startup	options:

#DOCKER_OPTS="--dns	8.8.8.8	--dns	8.8.4.4"

#DOCKER_OPTS="--icc=false	--iptables=true"



5.	 Restart	the	Docker	service:

#	service	docker	start

6.	 Inspect	iptables:

root@ubuntu:~#	iptables	-L	-n

Chain	INPUT	(policy	ACCEPT)

target					prot	opt	source													destination

Chain	FORWARD	(policy	ACCEPT)

target					prot	opt	source													destination

DOCKER					all	—	0.0.0.0/0										0.0.0.0/0

ACCEPT					all	—	0.0.0.0/0										0.0.0.0/0				ctstate	RELATED,	

ESTABLISHED

ACCEPT					all	—	0.0.0.0/0										0.0.0.0/0

DOCKER					all	—	0.0.0.0/0										0.0.0.0/0

ACCEPT					all	—	0.0.0.0/0										0.0.0.0/0			ctstate	RELATED,	

ESTABLISHED

ACCEPT					all	—	0.0.0.0/0										0.0.0.0/0

ACCEPT					all	—	0.0.0.0/0										0.0.0.0/0

DROP							all	—	0.0.0.0/0										0.0.0.0/0

The	DROP	rule	has	been	added	to	iptables	on	the	host	machine,	which	drops	a
connection	between	containers.	Now	you	will	be	unable	to	SSH	between	the
containers.

4.	 We	can	communicate	with	or	connect	containers	using	the	--link	parameter,	with
the	help	of	following	steps:

1.	 Create	the	first	container,	which	will	act	as	the	server,	sshserver:

root@ubuntu:~#	docker	run	-i	-t	-p	2222:22	--name	sshserver	ubuntu	

bash

root@9770be5acbab:/#

2.	 Execute	the	iptables	command,	and	you	will	find	a	Docker	chain	rule	added:

#root@ubuntu:~#	iptables	-L	-n

Chain	INPUT	(policy	ACCEPT)

target					prot	opt	source									destination

Chain	FORWARD	(policy	ACCEPT)

target					prot	opt	source									destination

Chain	OUTPUT	(policy	ACCEPT)

target					prot	opt	source									destination

Chain	DOCKER	(0	references)

target					prot	opt	source									destination

ACCEPT					tcp	—	0.0.0.0/0								172.17.0.3					tcp	dpt:22

3.	 Create	the	second	container,	which	acts	like	a	client,	sshclient:

root@ubuntu:~#	docker	run	-i	-t	--name	sshclient	--link	

sshserver:sshserver	ubuntu	bash

root@979d46c5c6a5:/#

4.	 We	can	see	that	there	are	more	rules	added	to	the	Docker	chain	rule:



root@ubuntu:~#	iptables	-L	-n

Chain	INPUT	(policy	ACCEPT)

target					prot	opt	source															destination

Chain	FORWARD	(policy	ACCEPT)

target					prot	opt	source															destination

Chain	OUTPUT	(policy	ACCEPT)

target					prot	opt	source															destination

Chain	DOCKER	(0	references)

target					prot	opt	source															destination

ACCEPT					tcp	—	0.0.0.0/0												172.17.0.3											tcp	

dpt:22

ACCEPT					tcp	—	172.17.0.4											172.17.0.3											tcp	

dpt:22

ACCEPT					tcp	—	172.17.0.3											172.17.0.4											tcp	

spt:22

root@ubuntu:~#

The	following	image	explains	communication	between	the	containers	using	the
--link	flag:

5.	 You	can	inspect	your	linked	container	with	the	docker	inspect	command:

root@ubuntu:~#	docker	inspect	-f	"{{	.HostConfig.Links	}}"	

sshclient

[/sshserver:/sshclient/sshserver]

Now	you	can	successfully	ssh	into	sshserver	with	its	IP.

#ssh	root@172.17.0.3	–p	22

Using	the	--link	parameter,	Docker	creates	a	secure	channel	between	the	containers
that	doesn’t	need	to	expose	any	ports	externally	on	the	containers.





Configuring	the	Docker	bridge
The	Docker	server	creates	a	bridge	called	docker0	by	default	inside	the	Linux	kernel,	and
it	can	pass	packets	back	and	forth	between	other	physical	or	virtual	network	interfaces	so
that	they	behave	as	a	single	Ethernet	network	.	Run	the	following	command	to	find	out	the
list	of	interfaces	in	a	VM	and	the	IP	addresses	they	are	connected	to:

root@ubuntu:~#	ifconfig

docker0			Link	encap:Ethernet		HWaddr	56:84:7a:fe:97:99

										inet	addr:172.17.42.1		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	fe80::5484:7aff:fefe:9799/64	Scope:Link

										inet6	addr:	fe80::1/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:11909	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:14826	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:516868	(516.8	KB)		TX	bytes:46460483	(46.4	MB)

eth0						Link	encap:Ethernet		HWaddr	00:0c:29:0d:f4:2c

										inet	addr:192.168.186.129		Bcast:192.168.186.255		

Mask:255.255.255.0

										inet6	addr:	fe80::20c:29ff:fe0d:f42c/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:108865	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:31708	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:1000

										RX	bytes:59902195	(59.9	MB)		TX	bytes:3916180	(3.9	MB)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:4	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:4	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:336	(336.0	B)		TX	bytes:336	(336.0	B)

Once	you	have	one	or	more	containers	up	and	running,	you	can	confirm	that	Docker	has
properly	connected	them	to	the	docker0	bridge	by	running	the	brctl	command	on	the
host	machine	and	looking	at	the	interfaces	column	of	the	output.

Before	configuring	the	docker0	bridge,	install	the	bridge	utilities:

#	apt-get	install	bridge-utils

Here	is	a	host	with	two	different	containers	connected:

root@ubuntu:~#	brctl	show

bridge	name					bridge	id															STP	enabled					interfaces

docker0									8000.56847afe9799							no														veth21b2e16

																																																								veth7092a45

Docker	uses	the	docker0	bridge	settings	whenever	a	container	is	created.	It	assigns	a	new
IP	address	from	the	range	available	on	the	bridge	whenever	a	new	container	is	created,	as
can	be	seen	here:



root@ubuntu:~#	docker	run	-t	-i	--name	container1	ubuntu:latest	/bin/bash

root@e54e9312dc04:/#	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:ac:11:00:07

										inet	addr:172.17.0.7		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	2001:db8:1::242:ac11:7/64	Scope:Global

										inet6	addr:	fe80::42:acff:fe11:7/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:7	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:8	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:738	(738.0	B)		TX	bytes:696	(696.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

root@e54e9312dc04:/#	ip	route

default	via	172.17.42.1	dev	eth0

172.17.0.0/16	dev	eth0		proto	kernel		scope	link		src	172.17.0.7

By	default,	Docker	provides	a	virtual	network	called	docker0,	which	has	the	IP	address
172.17.42.1.	Docker	containers	have	IP	addresses	in	the	range	of	172.17.0.0/16.

To	change	the	default	settings	in	Docker,	modify	the	file	/etc/default/docker.

Changing	the	default	bridge	from	docker0	to	br0	can	be	done	like	this:

#	sudo	service	docker	stop

#	sudo	ip	link	set	dev	docker0	down

#	sudo	brctl	delbr	docker0

#	sudo	iptables	-t	nat	-F	POSTROUTING

#	echo	'DOCKER_OPTS="-b=br0"'	>>	/etc/default/docker

#	sudo	brctl	addbr	br0

#	sudo	ip	addr	add	192.168.10.1/24	dev	br0

#	sudo	ip	link	set	dev	br0	up

#	sudo	service	docker	start

The	following	command	displays	the	new	bridge	name	and	the	IP	address	range	of	the
Docker	service:

root@ubuntu:~#	ifconfig

br0							Link	encap:Ethernet		HWaddr	ae:b2:dc:ed:e6:af

										inet	addr:192.168.10.1		Bcast:0.0.0.0		Mask:255.255.255.0

										inet6	addr:	fe80::acb2:dcff:feed:e6af/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:7	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:738	(738.0	B)

eth0						Link	encap:Ethernet		HWaddr	00:0c:29:0d:f4:2c

										inet	addr:192.168.186.129		Bcast:192.168.186.255		

Mask:255.255.255.0

										inet6	addr:	fe80::20c:29ff:fe0d:f42c/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1



										RX	packets:110823	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:33148	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:1000

										RX	bytes:60081009	(60.0	MB)		TX	bytes:4176982	(4.1	MB)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:4	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:4	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:336	(336.0	B)		TX	bytes:336	(336.0	B)





Overlay	networks	and	underlay	networks
An	overlay	is	a	virtual	network	that	is	built	on	top	of	underlying	network	infrastructure
(the	underlay).	The	purpose	is	to	implement	a	network	service	that	is	not	available	in	the
physical	network.

Network	overlay	dramatically	increases	the	number	of	virtual	subnets	that	can	be	created
on	top	of	the	physical	network,	which	in	turn	supports	multi-tenancy	and	virtualization.

Every	container	in	Docker	is	assigned	an	IP	address,	which	is	used	for	communication
with	other	containers.	If	a	container	has	to	communicate	with	the	external	network,	you
set	up	networking	in	the	host	system	and	expose	or	map	the	port	from	the	container	to	the
host	machine.	With	this,	applications	running	inside	containers	will	not	be	able	to
advertise	their	external	IP	and	ports,	as	the	information	will	not	be	available	to	them.

The	solution	is	to	somehow	assign	unique	IPs	to	each	Docker	container	across	all	hosts
and	have	some	networking	product	that	routes	traffic	between	hosts.

There	are	different	projects	to	deal	with	Docker	networking,	as	follows:

Flannel
Weave
Open	vSwitch

Flannel	provides	a	solution	by	giving	each	container	an	IP	that	can	be	used	for	container-
to-container	communication.	Using	packet	encapsulation,	it	creates	a	virtual	overlay
network	over	the	host	network.	By	default,	Flannel	provides	a	/24	subnet	to	hosts,	from
which	the	Docker	daemon	allocates	IPs	to	containers.	The	following	figure	shows	the
communication	between	containers	using	Flannel:

Flannel	runs	an	agent,	flanneld,	on	each	host	and	is	responsible	for	allocating	a	subnet
lease	out	of	a	preconfigured	address	space.	Flannel	uses	etcd	to	store	the	network
configuration,	allocated	subnets,	and	auxiliary	data	(such	as	the	host’s	IP).



Flannel	uses	the	universal	TUN/TAP	device	and	creates	an	overlay	network	using	UDP	to
encapsulate	IP	packets.	Subnet	allocation	is	done	with	the	help	of	etcd,	which	maintains
the	overlay	subnet-to-host	mappings.

Weave	creates	a	virtual	network	that	connects	Docker	containers	deployed	across
hosts/VMs	and	enables	their	automatic	discovery.	The	following	figure	shows	a	Weave
network:

Weave	can	traverse	firewalls	and	operate	in	partially	connected	networks.	Traffic	can	be
optionally	encrypted,	allowing	hosts/VMs	to	be	connected	across	an	untrusted	network.

Weave	augments	Docker’s	existing	(single	host)	networking	capabilities,	such	as	the
docker0	bridge,	so	these	can	continue	to	be	used	by	containers.

Open	vSwitch	is	an	open	source	OpenFlow-capable	virtual	switch	that	is	typically	used
with	hypervisors	to	interconnect	virtual	machines	within	a	host	and	between	different
hosts	across	networks.	Overlay	networks	need	to	create	a	virtual	datapath	using	supported
tunneling	encapsulations,	such	as	VXLAN	and	GRE.

The	overlay	datapath	is	provisioned	between	tunnel	endpoints	residing	in	the	Docker	host,
which	gives	the	appearance	of	all	hosts	within	a	given	provider	segment	being	directly
connected	to	one	another.

As	a	new	container	comes	online,	the	prefix	is	updated	in	the	routing	protocol,	announcing
its	location	via	a	tunnel	endpoint.	As	the	other	Docker	hosts	receive	the	updates,	the
forwarding	rule	is	installed	into	the	OVS	for	the	tunnel	endpoint	that	the	host	resides	on.
When	the	host	is	de-provisioned,	a	similar	process	occurs	and	tunnel	endpoint	Docker
hosts	remove	the	forwarding	entry	for	the	de-provisioned	container.	The	following	figure
shows	the	communication	between	containers	running	on	multiple	hosts	through	OVS-
based	VXLAN	tunnels:







Summary
In	this	chapter,	we	discussed	Docker’s	internal	networking	architecture.	We	learned	about
IPv4,	IPv6,	and	DNS	configuration	in	Docker.	Later	in	the	chapter,	we	covered	the	Docker
bridge	and	communication	between	containers	within	a	single	host	and	in	multiple	hosts.

We	also	discussed	overlay	tunneling	and	different	methods	that	are	implemented	in
Docker	networking,	such	as	OVS,	Flannel,	and	Weave.

In	the	next	chapter,	we	will	learn	hands-on	Docker	networking,	clubbed	with	various
frameworks.
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Chapter	3.	Building	Your	First	Docker
Network
This	chapter	describes	practical	examples	of	Docker	networking,	spanning	multiple
containers	over	multiple	hosts.	We	will	cover	the	following	topics:

Introduction	to	Pipework
Multiple	containers	over	multiple	hosts
Towards	scaling	networks	–	introducing	Open	vSwitch
Networking	with	overlay	networks	–	Flannel
Comparison	of	Docker	networking	options



Introduction	to	Pipework
Pipework	lets	you	connect	together	containers	in	arbitrarily	complex	scenarios.

In	practical	terms,	it	creates	a	legacy	Linux	bridge,	adds	a	new	interface	to	the	container,
and	then	attaches	the	interface	to	that	bridge;	containers	get	a	network	segment	on	which
to	communicate	with	each	other.





Multiple	containers	over	a	single	host
Pipework	is	a	shell	script	and	installing	it	is	simple:

#sudo	wget	-O	/usr/local/bin/pipework	

https://raw.githubusercontent.com/jpetazzo/pipework/master/pipework	&&	sudo	

chmod	+x	/usr/local/bin/pipework

The	following	figure	shows	container	communication	using	Pipework:

First,	create	two	containers:

#docker	run	-i	-t	--name	c1	ubuntu:latest	/bin/bash

root@5afb44195a69:/#	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:ac:11:00:10

										inet	addr:172.17.0.16		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	fe80::42:acff:fe11:10/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:13	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:9	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:1038	(1.0	KB)		TX	bytes:738	(738.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0



										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

#docker	run	-i	-t	--name	c2	ubuntu:latest	/bin/bash

root@c94d53a76a9b:/#	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:ac:11:00:11

										inet	addr:172.17.0.17		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	fe80::42:acff:fe11:11/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:8	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:9	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:648	(648.0	B)		TX	bytes:738	(738.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

Now	let’s	use	Pipework	to	connect	them:

#sudo	pipework	brpipe	c1	192.168.1.1/24

This	command	creates	a	bridge,	brpipe,	on	the	host	machine.	It	adds	an	eth1	interface	to
the	container	c1	with	the	IP	address	192.168.1.1	and	attaches	the	interface	to	the	bridge
as	follows:

root@5afb44195a69:/#	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:ac:11:00:10

										inet	addr:172.17.0.16		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	fe80::42:acff:fe11:10/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:13	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:9	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:1038	(1.0	KB)		TX	bytes:738	(738.0	B)

eth1						Link	encap:Ethernet		HWaddr	ce:72:c5:12:4a:1a

										inet	addr:192.168.1.1		Bcast:0.0.0.0		Mask:255.255.255.0

										inet6	addr:	fe80::cc72:c5ff:fe12:4a1a/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:23	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:9	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:1000

										RX	bytes:1806	(1.8	KB)		TX	bytes:690	(690.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)



#sudo	pipework	brpipe	c2	192.168.1.2/24

This	command	will	not	create	bridge	brpipe	as	it	already	exists.	It	will	add	an	eth1
interface	to	the	container	c2	and	connect	it	to	the	bridge	as	follows:

root@c94d53a76a9b:/#	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:ac:11:00:11

										inet	addr:172.17.0.17		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	fe80::42:acff:fe11:11/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:8	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:9	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:648	(648.0	B)		TX	bytes:738	(738.0	B)

eth1						Link	encap:Ethernet		HWaddr	36:86:fb:9e:88:ba

										inet	addr:192.168.1.2		Bcast:0.0.0.0		Mask:255.255.255.0

										inet6	addr:	fe80::3486:fbff:fe9e:88ba/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:8	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:9	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:1000

										RX	bytes:648	(648.0	B)		TX	bytes:690	(690.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

Now	the	containers	are	connected	and	will	be	able	to	ping	each	other	as	they	are	on	the
same	subnet,	192.168.1.0/24.	Pipework	provides	the	advantage	of	adding	static	IP
addresses	to	the	containers.



Weave	your	containers
Weave	creates	a	virtual	network	that	can	connect	Docker	containers	across	multiple	hosts
as	if	they	are	all	connected	to	a	single	switch.	The	Weave	router	itself	runs	as	a	Docker
container	and	can	encrypt	routed	traffic	for	transmission	over	the	Internet.	Services
provided	by	application	containers	on	the	Weave	network	can	be	made	accessible	to	the
outside	world,	regardless	of	where	those	containers	are	running.

Use	the	following	code	to	install	Weave:

#sudo	curl	-L	git.io/weave	-o	/usr/local/bin/weave

#sudo	chmod	a+x	/usr/local/bin/weave

The	following	figure	shows	multihost	communication	using	Weave:

On	$HOST1,	we	run	the	following:

#	weave	launch

#	eval	$(weave	proxy-env)

#	docker	run	--name	c1	-ti	ubuntu

Next,	we	repeat	similar	steps	on	$HOST2:

#	weave	launch	$HOST1

#	eval	$(weave	proxy-env)

#	docker	run	--name	c2	-ti	ubuntu

In	the	container	started	on	$HOST1,	the	following	output	is	generated:

root@c1:/#	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:ac:11:00:21

										inet	addr:172.17.0.33		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	fe80::42:acff:fe11:21/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:38	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:34	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0



										RX	bytes:3166	(3.1	KB)		TX	bytes:2299	(2.2	KB)

ethwe					Link	encap:Ethernet		HWaddr	aa:99:8a:d5:4d:d4

										inet	addr:10.128.0.3		Bcast:0.0.0.0		Mask:255.192.0.0

										inet6	addr:	fe80::a899:8aff:fed5:4dd4/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:65535		Metric:1

										RX	packets:130	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:74	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:1000

										RX	bytes:11028	(11.0	KB)		TX	bytes:6108	(6.1	KB)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

You	can	see	the	Weave	network	interface,	ethwe,	using	the	ifconfig	command:

root@c2:/#	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:ac:11:00:04

										inet	addr:172.17.0.4		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	fe80::42:acff:fe11:4/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:28	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:29	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:2412	(2.4	KB)		TX	bytes:2016	(2.0	KB)

ethwe					Link	encap:Ethernet		HWaddr	8e:7c:17:0d:0e:03

										inet	addr:10.160.0.1		Bcast:0.0.0.0		Mask:255.192.0.0

										inet6	addr:	fe80::8c7c:17ff:fe0d:e03/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:65535		Metric:1

										RX	packets:139	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:74	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:1000

										RX	bytes:11718	(11.7	KB)		TX	bytes:6108	(6.1	KB)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

#root@c1:/#	ping	-c	1	-q	c2

PING	c2.weave.local	(10.160.0.1)	56(84)	bytes	of	data.

---	c2.weave.local	ping	statistics	---

1	packets	transmitted,	1	received,	0%	packet	loss,	time	0ms

rtt	min/avg/max/mdev	=	1.317/1.317/1.317/0.000	ms

Similarly,	in	the	container	started	on	$HOST2,	the	following	output	is	generated:

#root@c2:/#	ping	-c	1	-q	c1

PING	c1.weave.local	(10.128.0.3)	56(84)	bytes	of	data.

---	c1.weave.local	ping	statistics	---



1	packets	transmitted,	1	received,	0%	packet	loss,	time	0ms

rtt	min/avg/max/mdev	=	1.658/1.658/1.658/0.000	ms

So	there	we	have	it—two	containers	on	separate	hosts	happily	talking	to	each	other.





Open	vSwitch
Docker	uses	the	Linux	bridge	docker0	by	default.	However,	there	are	cases	where	Open
vSwitch	(OVS)	might	be	required	instead	of	a	Linux	bridge.	A	single	Linux	bridge	can
only	handle	1024	ports	–	this	limits	the	scalability	of	Docker	as	we	can	only	create	1024
containers,	each	with	a	single	network	interface.



Single	host	OVS
We	will	now	install	OVS	on	a	single	host,	create	two	containers,	and	connect	them	to	an
OVS	bridge.

Use	this	command	to	install	OVS:

#	sudo	apt-get	install	openvswitch-switch

Install	the	ovs-docker	utility	with	the	following:

#	cd	/usr/bin

#	wget	

https://raw.githubusercontent.com/openvswitch/ovs/master/utilities/ovs-

docker

#	chmod	a+rwx	ovs-docker

The	following	diagram	shows	the	single-host	OVS:

Creating	an	OVS	bridge
Here,	we	will	be	adding	a	new	OVS	bridge	and	configuring	it	so	that	we	can	get	the
containers	connected	on	a	different	network,	as	follows:

#	ovs-vsctl	add-br	ovs-br1

#	ifconfig	ovs-br1	173.16.1.1	netmask	255.255.255.0	up

Add	a	port	from	the	OVS	bridge	to	the	Docker	container	using	the	following	steps:

1.	 Create	two	Ubuntu	Docker	containers:

#	docker	run	-I	-t	--name	container1	ubuntu	/bin/bash

#	docekr	run	-I	-t	--name	container2	ubuntu	/bin/bash



2.	 Connect	the	container	to	the	OVS	bridge:

#	ovs-docker	add-port	ovs-br1	eth1	container1	--ipaddress=173.16.1.2/24

#	ovs-docker	add-port	ovs-br1	eth1	container2	--ipaddress=173.16.1.3/24

3.	 Test	the	connection	between	the	two	containers	connected	via	an	OVS	bridge	using
the	ping	command.	First,	find	out	their	IP	addresses:

#	docker	exec	container1	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:ac:10:11:02

										inet	addr:172.16.17.2		Bcast:0.0.0.0		Mask:255.255.255.0

										inet6	addr:	fe80::42:acff:fe10:1102/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1472		Metric:1

										RX	packets:36	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:8	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:4956	(4.9	KB)		TX	bytes:648	(648.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

#	docker	exec	container2	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:ac:10:11:03

										inet	addr:172.16.17.3		Bcast:0.0.0.0		Mask:255.255.255.0

										inet6	addr:	fe80::42:acff:fe10:1103/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1472		Metric:1

										RX	packets:27	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:8	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:4201	(4.2	KB)		TX	bytes:648	(648.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

Now	that	we	know	the	IP	addresses	of	container1	and	container2,	we	can	ping
them:

#	docker	exec	container2	ping	172.16.17.2

PING	172.16.17.2	(172.16.17.2)	56(84)	bytes	of	data.

64	bytes	from	172.16.17.2:	icmp_seq=1	ttl=64	time=0.257	ms

64	bytes	from	172.16.17.2:	icmp_seq=2	ttl=64	time=0.048	ms

64	bytes	from	172.16.17.2:	icmp_seq=3	ttl=64	time=0.052	ms

#	docker	exec	container1	ping	172.16.17.2



PING	172.16.17.2	(172.16.17.2)	56(84)	bytes	of	data.

64	bytes	from	172.16.17.2:	icmp_seq=1	ttl=64	time=0.060	ms

64	bytes	from	172.16.17.2:	icmp_seq=2	ttl=64	time=0.035	ms

64	bytes	from	172.16.17.2:	icmp_seq=3	ttl=64	time=0.031	ms



Multiple	host	OVS
Let’s	see	how	to	connect	Docker	containers	on	multiple	hosts	using	OVS.

Let’s	consider	our	setup	as	shown	in	the	following	diagram,	which	contains	two	hosts,
Host	1	and	Host	2,	running	Ubuntu	14.04:

Install	Docker	and	Open	vSwitch	on	both	the	hosts:

#	wget	-qO-	https://get.docker.com/	|	sh

#	sudo	apt-get	install	openvswitch-switch

Install	the	ovs-docker	utility:

#	cd	/usr/bin

#	wget	

https://raw.githubusercontent.com/openvswitch/ovs/master/utilities/ovs-

docker

#	chmod	a+rwx	ovs-docker

By	default,	Docker	chooses	a	random	network	to	run	its	containers	in.	It	creates	a	bridge,
docker0,	and	assigns	an	IP	address	(172.17.42.1)	to	it.	So,	both	Host	1	and	Host	2
docker0	bridge	IP	addresses	are	the	same,	due	to	which	it	is	difficult	for	containers	in	both
the	hosts	to	communicate.	To	overcome	this,	let’s	assign	static	IP	addresses	to	the	network,
that	is,	192.168.10.0/24.

Let’s	see	how	to	change	the	default	Docker	subnet.

Execute	the	following	commands	on	Host	1:



#	service	docker	stop

#	ip	link	set	dev	docker0	down

#	ip	addr	del	172.17.42.1/16	dev	docker0

#	ip	addr	add	192.168.10.1/24	dev	docker0

#	ip	link	set	dev	docker0	up

#	ip	addr	show	docker0

#	service	docker	start

Add	the	br0	OVS	bridge:

#	ovs-vsctl	add-br	br0

Create	the	tunnel	to	the	other	host	and	attach	it	to	the:

#	add-port	br0	gre0—set	interface	gre0	type=gre	

options:remote_ip=30.30.30.8

Add	the	br0	bridge	to	the	docker0	bridge:

#	brctl	addif	docker0	br0

Execute	the	following	commands	on	Host	2:

#	service	docker	stop

#	iptables	-t	nat	-F	POSTROUTING

#	ip	link	set	dev	docker0	down

#	ip	addr	del	172.17.42.1/16	dev	docker0

#	ip	addr	add	192.168.10.2/24	dev	docker0

#	ip	link	set	dev	docker0	up

#	ip	addr	show	docker0

#	service	docker	start

Add	the	br0	OVS	bridge:

#	ip	link	set	br0	up

#	ovs-vsctl	add-br	br0

Create	the	tunnel	to	the	other	host	and	attach	it	to	the:

#	br0	bridge	ovs-vsctl	add-port	br0	gre0—set	interface	gre0	type=gre	

options:remote_ip=30.30.30.7

Add	the	br0	bridge	to	the	docker0	bridge:

#	brctl	addif	docker0	br0

The	docker0	bridge	is	attached	to	another	bridge,	br0.	This	time,	it’s	an	OVS	bridge.	This
means	that	all	traffic	between	the	containers	is	routed	through	br0	too.

Additionally,	we	need	to	connect	together	the	networks	from	both	the	hosts	in	which	the
containers	are	running.	A	GRE	tunnel	is	used	for	this	purpose.	This	tunnel	is	attached	to
the	br0	OVS	bridge	and,	as	a	result,	to	docker0	too.

After	executing	the	preceding	commands	on	both	hosts,	you	should	be	able	to	ping	the
docker0	bridge	addresses	from	both	hosts.

On	Host	1,	the	following	output	is	generated	on	using	the	ping	command:



#	ping	192.168.10.2

PING	192.168.10.2	(192.168.10.2)	56(84)	bytes	of	data.

64	bytes	from	192.168.10.2:	icmp_seq=1	ttl=64	time=0.088	ms

64	bytes	from	192.168.10.2:	icmp_seq=2	ttl=64	time=0.032	ms

^C

---	192.168.10.2	ping	statistics	---

2	packets	transmitted,	2	received,	0%	packet	loss,	time	999ms

rtt	min/avg/max/mdev	=	0.032/0.060/0.088/0.028	ms

On	Host	2,	the	following	output	is	generated	on	using	the	ping	command:

#	ping	192.168.10.1

PING	192.168.10.1	(192.168.10.1)	56(84)	bytes	of	data.

64	bytes	from	192.168.10.1:	icmp_seq=1	ttl=64	time=0.088	ms

64	bytes	from	192.168.10.1:	icmp_seq=2	ttl=64	time=0.032	ms

^C

---	192.168.10.1	ping	statistics	---

2	packets	transmitted,	2	received,	0%	packet	loss,	time	999ms

rtt	min/avg/max/mdev	=	0.032/0.060/0.088/0.028	ms

Let’s	see	how	to	create	containers	on	both	the	hosts.

On	Host	1,	use	the	following	code:

#	docker	run	-t	-i	--name	container1	ubuntu:latest	/bin/bash

On	Host	2,	use	the	following	code:

#	docker	run	-t	-i	--name	container2	ubuntu:latest	/bin/bash

Now	we	can	ping	container2	from	container1.	In	this	way,	we	connect	Docker
containers	on	multiple	hosts	using	Open	vSwitch.





Networking	with	overlay	networks	–
Flannel
Flannel	is	the	virtual	network	layer	that	provides	the	subnet	to	each	host	for	use	with
Docker	containers.	It	is	packaged	with	CoreOS	but	can	be	configured	on	other	Linux	OSes
as	well.	Flannel	creates	the	overlay	by	actually	connecting	itself	to	Docker	bridge,	to
which	containers	are	attached,	as	shown	in	the	following	figure.	To	setup	Flannel,	two
host	machines	or	VMs	are	required,	which	can	be	CoreOS	or,	more	preferably,	Linux	OS,
as	shown	in	this	figure:

The	Flannel	code	can	be	cloned	from	GitHub	and	built	locally,	if	required,	on	a	different
flavor	of	Linux	OS,	as	shown	here.	It	comes	preinstalled	in	CoreOS:

#	git	clone	https://github.com/coreos/flannel.git

Cloning	into	'flannel'...

remote:	Counting	objects:	2141,	done.

remote:	Compressing	objects:	100%	(19/19),	done.

remote:	Total	2141	(delta	6),	reused	0	(delta	0),	pack-reused	2122

Receiving	objects:	100%	(2141/2141),	4.

Checking	connectivity…	done.

#	sudo	docker	run	-v	`pwd`:/opt/flannel	-i	-t	google/golang	/bin/bash	-c	

"cd	/opt/flannel	&&	./build"

Building	flanneld…

CoreOS	machines	can	be	easily	configured	using	Vagrant	and	VirtualBox,	as	per	the
tutorial	mentioned	in	the	following	link:



https://coreos.com/os/docs/latest/booting-on-vagrant.html

After	the	machines	are	created	and	logged	in	to,	we	will	find	a	Flannel	bridge
automatically	created	using	the	etcd	configuration:

#	ifconfig	flannel0

flannel0:	flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST>		mtu	1472

										inet	10.1.30.0		netmask	255.255.0.0		destination	10.1.30.0

										unspec	00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00		

txqueuelen	500	(UNSPEC)

										RX	packets	243		bytes	20692	(20.2	KiB)

										RX	errors	0		dropped	0		overruns	0		frame	0

										TX	packets	304		bytes	25536	(24.9	KiB)

										TX	errors	0		dropped	0	overruns	0		carrier	0		collisions	0

The	Flannel	environment	can	be	checked	by	viewing	subnet.env:

#	cat	/run/flannel/subnet.env

FLANNEL_NETWORK=10.1.0.0/16

FLANNEL_SUBNET=10.1.30.1/24

FLANNEL_MTU=1472

FLANNEL_IPMASQ=true

The	Docker	daemon	requires	to	be	restarted	with	the	following	commands	in	order	to	get
the	networking	re-instantiated	with	the	subnet	from	the	Flannel	bridge:

#	source	/run/flannel/subnet.env

#	sudo	rm	/var/run/docker.pid

#	sudo	ifconfig	docker0	${FLANNEL_SUBNET}

#	sudo	docker	-d	--bip=${FLANNEL_SUBNET}	--mtu=${FLANNEL_MTU}	&	INFO[0000]	

[graphdriver]	using	prior	storage	driver	"overlay"

INFO[0000]	Option	DefaultDriver:	bridge

INFO[0000]	Option	DefaultNetwork:	bridge

INFO[0000]	Listening	for	HTTP	on	unix	(/var/run/docker.sock)

INFO[0000]	Firewalld	running:	false

INFO[0000]	Loading	containers:	start.

..............

INFO[0000]	Loading	containers:	done.

INFO[0000]	Daemon	has	completed	initialization

INFO[0000]	Docker	daemon

commit=cedd534-dirty	execdriver=native-0.2	graphdriver=overlay	

version=1.8.3

The	Flannel	environment	for	the	second	host	can	also	be	checked	by	viewing	subnet.env:

#	cat	/run/flannel/subnet.env

FLANNEL_NETWORK=10.1.0.0/16

FLANNEL_SUBNET=10.1.31.1/24

FLANNEL_MTU=1472

FLANNEL_IPMASQ=true

A	different	subnet	is	allocated	to	the	second	host.	The	Docker	service	can	also	be	restarted
in	this	host	by	pointing	to	the	Flannel	bridge:

#	source	/run/flannel/subnet.env

#	sudo	ifconfig	docker0	${FLANNEL_SUBNET}

https://coreos.com/os/docs/latest/booting-on-vagrant.html


#	sudo	docker	-d	--bip=${FLANNEL_SUBNET}	--mtu=${FLANNEL_MTU}	&	INFO[0000]	

[graphdriver]	using	prior	storage	driver	"overlay"

INFO[0000]	Listening	for	HTTP	on	unix	(/var/run/docker.sock)

INFO[0000]	Option	DefaultDriver:	bridge

INFO[0000]	Option	DefaultNetwork:	bridge

INFO[0000]	Firewalld	running:	false

INFO[0000]	Loading	containers:	start.

....

INFO[0000]	Loading	containers:	done.

INFO[0000]	Daemon	has	completed	initialization

INFO[0000]	Docker	daemon

commit=cedd534-dirty	execdriver=native-0.2	graphdriver=overlay	

version=1.8.3

Docker	containers	can	be	created	in	their	respective	hosts,	and	they	can	be	tested	using	the
ping	command	in	order	to	check	the	Flannel	overlay	network	connectivity.

For	Host	1,	use	the	following	commands:

#docker	run	-it	ubuntu	/bin/bash

INFO[0013]	POST	/v1.20/containers/create

INFO[0013]	POST	

/v1.20/containers/1d1582111801c8788695910e57c02fdba593f443c15e2f1db9174ed90

78db809/attach?stderr=1&stdin=1&stdout=1&stream=1

INFO[0013]	POST	

/v1.20/containers/1d1582111801c8788695910e57c02fdba593f443c15e2f1db9174ed90

78db809/start

INFO[0013]	POST	

/v1.20/containers/1d1582111801c8788695910e57c02fdba593f443c15e2f1db9174ed90

78db809/resize?h=44&w=80

root@1d1582111801:/#	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:0a:01:1e:02

										inet	addr:10.1.30.2		Bcast:0.0.0.0		Mask:255.255.255.0

										inet6	addr:	fe80::42:aff:fe01:1e02/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1472		Metric:1

										RX	packets:11	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:6	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:969	(969.0	B)		TX	bytes:508	(508.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

For	Host	2,	use	the	following	commands:

#	docker	run	-it	ubuntu	/bin/bash

root@ed070166624a:/#	ifconfig

eth0							Link	encap:Ethernet		HWaddr	02:42:0a:01:1f:02

											inet	addr:10.1.31.2		Bcast:0.0.0.0		Mask:255.255.255.0

											inet6	addr:	fe80::42:aff:fe01:1f02/64	Scope:Link

											UP	BROADCAST	RUNNING	MULTICAST		MTU:1472		Metric:1



											RX	packets:18	errors:0	dropped:2	overruns:0	frame:0

											TX	packets:7	errors:0	dropped:0	overruns:0	carrier:0

											collisions:0	txqueuelen:0

											RX	bytes:1544	(1.5	KB)		TX	bytes:598	(598.0	B)

lo									Link	encap:Local	Loopback

											inet	addr:127.0.0.1		Mask:255.0.0.0

											inet6	addr:	::1/128	Scope:Host

											UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

											RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

											TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

											collisions:0	txqueuelen:0

											RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

root@ed070166624a:/#	ping	10.1.30.2

PING	10.1.30.2	(10.1.30.2)	56(84)	bytes	of	data.

64	bytes	from	10.1.30.2:	icmp_seq=1	ttl=60	time=3.61	ms

64	bytes	from	10.1.30.2:	icmp_seq=2	ttl=60	time=1.38	ms

64	bytes	from	10.1.30.2:	icmp_seq=3	ttl=60	time=0.695	ms

64	bytes	from	10.1.30.2:	icmp_seq=4	ttl=60	time=1.49	ms

Thus,	in	the	preceding	example,	we	can	see	the	complexity	that	Flannel	reduces	by
running	the	flanneld	agent	on	each	host,	which	is	responsible	for	allocating	a	subnet
lease	out	of	preconfigured	address	space.	Flannel	internally	uses	etcd	to	store	the	network
configuration	and	other	details,	such	as	host	IP	and	allocated	subnets.	The	forwarding	of
packets	is	achieved	using	the	backend	strategy.

Flannel	also	aims	to	resolve	the	problem	of	Kubernetes	deployment	on	cloud	providers
other	than	GCE,	where	a	Flannel	overlay	mesh	network	can	ease	the	issue	of	assigning	a
unique	IP	address	to	each	pod	by	creating	a	subnet	for	each	server.





Summary
In	this	chapter,	we	learnt	how	Docker	containers	communicate	across	multiple	hosts	using
different	networking	options	such	as	Weave,	OVS,	and	Flannel.	Pipework	uses	the	legacy
Linux	bridge,	Weave	creates	a	virtual	network,	OVS	uses	GRE	tunneling	technology,	and
Flannel	provides	a	separate	subnet	to	each	host	in	order	to	connect	containers	to	multiple
hosts.	Some	of	the	implementations,	such	as	Pipework,	are	legacy	and	will	become
obsolete	over	a	period	of	time,	while	others	are	designed	to	be	used	in	the	context	of
specific	OSes,	such	as	Flannel	with	CoreOS.

The	following	diagram	shows	a	basic	comparison	of	Docker	networking	options:

In	the	next	chapter,	we	will	discuss	how	Docker	containers	are	networked	when	using
frameworks	such	as	Kubernetes,	Docker	Swarm,	and	Mesosphere.





Chapter	4.	Networking	in	a	Docker
Cluster
In	this	chapter,	you	will	learn	how	Docker	containers	are	networked	when	using
frameworks	like	Kubernetes,	Docker	Swarm,	and	Mesosphere.

We	will	cover	the	following	topics:

Docker	Swarm
Kubernetes

Networked	containers	in	a	Kubernetes	cluster
How	Kubernetes	networking	differs	from	Docker	networking
Kubernetes	on	AWS

Mesosphere



Docker	Swarm
Docker	Swarm	is	a	native	clustering	system	for	Docker.	Docker	Swarm	exposes	the
standard	Docker	API	so	that	any	tool	that	communicates	with	the	Docker	daemon	can
communicate	with	Docker	Swarm	as	well.	The	basic	aim	is	to	allow	the	creation	and
usage	of	a	pool	of	Docker	hosts	together.	The	cluster	manager	of	Swarm	schedules	the
containers	based	on	the	availability	resources	in	a	cluster.	We	can	also	specify	the
constrained	resources	for	a	container	while	deploying	it.	Swarm	is	designed	to	pack
containers	onto	a	host	by	saving	other	host	resources	for	heavier	and	bigger	containers
rather	than	scheduling	them	randomly	to	a	host	in	the	cluster.

Similar	to	other	Docker	projects,	Docker	Swarm	uses	a	Plug	and	Play	architecture.	Docker
Swarm	provides	backend	services	to	maintain	a	list	of	IP	addresses	in	your	Swarm	cluster.
There	are	several	services,	such	as	etcd,	Consul,	and	Zookeeper;	even	a	static	file	can	be
used.	Docker	Hub	also	provides	a	hosted	discovery	service,	which	is	used	in	the	normal
configuration	of	Docker	Swarm.

Docker	Swarm	scheduling	uses	multiple	strategies	in	order	to	rank	nodes.	When	a	new
container	is	created,	Swarm	places	it	on	the	node	on	the	basis	of	the	highest	computed
rank,	using	the	following	strategies:

1.	 Spread:	This	optimizes	and	schedules	the	containers	on	the	nodes	based	on	the
number	of	containers	running	on	the	node	at	that	point	of	time

2.	 Binpack:	The	node	is	selected	to	schedule	the	container	on	the	basis	of	CPU	and
RAM	utilization

3.	 Random	strategy:	This	uses	no	computation;	it	selects	the	node	randomly	to
schedule	containers

Docker	Swarm	also	uses	filters	in	order	to	schedule	containers,	such	as:

Constraints:	These	use	key/value	pairs	associated	with	nodes,	such	as
environment=production

Affinity	filter:	This	is	used	to	run	a	container	and	instruct	it	to	locate	and	run	next	to
another	container	based	on	the	label,	image,	or	identifier
Port	filter:	In	this	case,	the	node	is	selected	on	the	basis	of	the	ports	available	on	it
Dependency	filter:	This	co-schedules	dependent	containers	on	the	same	node
Health	filter:	This	prevents	the	scheduling	of	containers	on	unhealthy	nodes

The	following	figure	explains	various	components	of	a	Docker	Swarm	cluster:





Docker	Swarm	setup
Let’s	set	up	our	Docker	Swarm	setup,	which	will	have	two	nodes	and	one	master.

We	will	be	using	a	Docker	client	in	order	to	access	the	Docker	Swarm	cluster.	A	Docker
client	can	be	set	up	on	a	machine	or	laptop	and	should	have	access	to	all	the	machines
present	in	the	Swarm	cluster.

After	installing	Docker	on	all	three	machines,	we	will	restart	the	Docker	service	from	a
command	line	so	that	it	can	be	accessed	from	TCP	port	2375	on	the	localhost
(0.0.0.0:2375)	or	from	a	specific	host	IP	address	and	can	allow	connections	using	a	Unix
socket	on	all	the	Swarm	nodes,	as	follows:

$	docker	-H	tcp://0.0.0.0:2375	-H	unix:///var/run/docker.sock	–d	&

Docker	Swarm	images	are	required	to	be	deployed	as	Docker	containers	on	the	master
node.	In	our	example,	the	master	node’s	IP	address	is	192.168.59.134.	Replace	it	with
your	Swarm’s	master	node.	From	the	Docker	client	machine,	we	will	be	installing	Docker
Swarm	on	the	master	node	using	the	following	command:

$	sudo	docker	-H	tcp://192.168.59.134:2375	run	--rm	swarm	create

Unable	to	find	image	'swarm'	locally

Pulling	repository	swarm

e12f8c5e4c3b:	Download	complete

cf43a42a05d1:	Download	complete

42c4e5c90ee9:	Download	complete

22cf18566d05:	Download	complete

048068586dc5:	Download	complete

2ea96b3590d8:	Download	complete

12a239a7cb01:	Download	complete

26b910067c5f:	Download	complete

4fdfeb28bd618291eeb97a2096b3f841

The	Swarm	token	generated	after	the	execution	of	the	command	should	be	noted,	as	it	will
be	used	for	the	Swarm	setup.	In	our	case,	it	is	this:

"4fdfeb28bd618291eeb97a2096b3f841"

The	following	are	the	steps	to	set	up	a	two-node	Docker	Swarm	cluster:

1.	 From	the	Docker	client	node,	the	following	docker	command	is	required	to	be
executed	with	Node	1’s	IP	address	(in	our	case,	192.168.59.135)	and	the	Swarm
token	generated	in	the	preceding	code	in	order	to	add	it	to	the	Swarm	cluster:

$	docker	-H	tcp://192.168.59.135:2375	run	-d	swarm	join	--

addr=192.168.59.135:2375	token://	4fdfeb28bd618291eeb97a2096b3f841

Unable	to	find	image	'swarm'	locally

Pulling	repository	swarm

e12f8c5e4c3b:	Download	complete

cf43a42a05d1:	Download	complete

42c4e5c90ee9:	Download	complete

22cf18566d05:	Download	complete

048068586dc5:	Download	complete

2ea96b3590d8:	Download	complete



12a239a7cb01:	Download	complete

26b910067c5f:	Download	complete

e4f268b2cc4d896431dacdafdc1bb56c98fed01f58f8154ba13908c7e6fe675b

2.	 Repeat	the	preceding	steps	for	Node	2	by	replacing	Node	1’s	IP	address	with	Node
2’s.

3.	 Swarm	manager	is	required	to	be	set	up	on	the	master	node	using	the	following
command	on	the	Docker	client	node:

$	sudo	docker	-H	tcp://192.168.59.134:2375	run	-d	-p	5001:2375	swarm	

manage	token://	4fdfeb28bd618291eeb97a2096b3f841

f06ce375758f415614dc5c6f71d5d87cf8edecffc6846cd978fe07fafc3d05d3

The	Swarm	cluster	is	set	up	and	can	be	managed	using	the	Swarm	manager	residing
on	the	master	node.	To	list	all	the	nodes,	the	following	command	can	be	executed
using	a	Docker	client:

$	sudo	docker	-H	tcp://192.168.59.134:2375	run	--rm	swarm	list	\	

token://	4fdfeb28bd618291eeb97a2096b3f841

192.168.59.135:2375

192.168.59.136:2375

4.	 The	following	command	can	be	used	to	get	information	about	the	cluster:

$	sudo	docker	-H	tcp://192.168.59.134:5001	info

Containers:	0

Strategy:	spread

Filters:	affinity,	health,	constraint,	port,	dependency

Nodes:	2

agent-1:	192.168.59.136:2375

				└	Containers:	0

				└	Reserved	CPUs:	0	/	8

				└	Reserved	Memory:	0	B	/	1.023	GiB

	agent-0:	192.168.59.135:2375

				└	Containers:	0

				└	Reserved	CPUs:	0	/	8

				└	Reserved	Memory:	0	B	/	1.023	GiB

5.	 The	test	ubuntu	container	can	be	launched	onto	the	cluster	by	specifying	the	name	as
swarm-ubuntu	and	using	the	following	command:

$	sudo	docker	-H	tcp://192.168.59.134:5001	run	-it	--name	swarm-ubuntu	

ubuntu	/bin/sh

6.	 The	container	can	be	listed	using	the	Swarm	master’s	IP	address:

$	sudo	docker	-H	tcp://192.168.59.134:5001	ps

This	completes	the	setup	of	a	two-node	Docker	Swarm	cluster.



Docker	Swarm	networking
Docker	Swarm	networking	has	integration	with	libnetwork	and	even	provides	support	for
overlay	networks.	libnetwork	provides	a	Go	implementation	to	connect	containers;	it	is	a
robust	container	network	model	that	provides	network	abstraction	for	applications	and	the
programming	interface	of	containers.	Docker	Swarm	is	now	fully	compatible	with	the	new
networking	model	in	Docker	1.9	(note	that	we	will	be	using	Docker	1.9	in	the	following
setup).	The	key-value	store	is	required	for	overlay	networks,	which	includes	discovery,
networks,	IP	addresses,	and	more	information.

In	the	following	example,	we	will	be	using	Consul	to	understand	Docker	Swarm
networking	in	a	better	way:

1.	 We	will	provision	a	VirtualBox	machine	called	sample-keystore	using	docker-
machine:

$	docker-machine	create	-d	virtualbox	sample-keystore

Running	pre-create	checks…

Creating	machine…

Waiting	for	machine	to	be	running,	this	may	take	a	few	minutes…

Machine	is	running,	waiting	for	SSH	to	be	available…

Detecting	operating	system	of	created	instance…

Provisioning	created	instance…

Copying	certs	to	the	local	machine	directory…

Copying	certs	to	the	remote	machine…

Setting	Docker	configuration	on	the	remote	daemon…

To	see	how	to	connect	Docker	to	this	machine,	run:	docker-machine.exe	

env	sample-keystore

2.	 We	will	also	deploy	the	progrium/consul	container	on	the	sample-keystore
machine	on	port	8500	with	the	following	command:

$	docker	$(docker-machine	config	sample-keystore)	run	-d	\

				-p	"8500:8500"	\

				-h	"consul"	\

				progrium/consul	-server	–bootstrap

Unable	to	find	image	'progrium/consul:latest'	locally

latest:	Pulling	from	progrium/consul

3b4d28ce80e4:	Pull	complete

e5ab901dcf2d:	Pull	complete

30ad296c0ea0:	Pull	complete

3dba40dec256:	Pull	complete

f2ef4387b95e:	Pull	complete

53bc8dcc4791:	Pull	complete

75ed0b50ba1d:	Pull	complete

17c3a7ed5521:	Pull	complete

8aca9e0ecf68:	Pull	complete

4d1828359d36:	Pull	complete

46ed7df7f742:	Pull	complete

b5e8ce623ef8:	Pull	complete

049dca6ef253:	Pull	complete

bdb608bc4555:	Pull	complete

8b3d489cfb73:	Pull	complete

c74500bbce24:	Pull	complete



9f3e605442f6:	Pull	complete

d9125e9e799b:	Pull	complete

Digest:	

sha256:8cc8023462905929df9a79ff67ee435a36848ce7a10f18d6d0faba9306b97274

Status:	Downloaded	newer	image	for	progrium/consul:latest

1a1be5d207454a54137586f1211c02227215644fa0e36151b000cfcde3b0df7c

3.	 Set	the	local	environment	to	the	sample-keystore	machine:

$	eval	"$(docker-machine	env	sample-keystore)"

4.	 We	can	list	the	consul	container	as	follows:

$	docker	ps

CONTAINER	ID							IMAGE											COMMAND											CREATED							

STATUS								PORTS																																	NAMES

1a1be5d20745			progrium/consul		/bin/start	-server		5	minutes	ago		Up	5	

minutes			53/tcp,	53/udp,	8300-8302/tcp,	8400/tcp,	8301-8302/udp,	

0.0.0.0:8500->8500/tcp			cocky_bhaskara

5.	 Create	a	Swarm	cluster	using	docker-machine.	The	two	machines	can	be	created	in
VirtualBox;	one	can	act	as	the	Swarm	master.	As	we	create	each	Swarm	node,	we
will	be	passing	the	options	required	for	Docker	Engine	to	have	an	overlay	network
driver:

$	docker-machine	create	-d	virtualbox	--swarm	--swarm-image="swarm"	--

swarm-master	--swarm-discovery="consul://$(docker-machine	ip	sample-

keystore):8500"	--engine-opt="cluster-store=consul://$(docker-machine	

ip	sample-keystore):8500"	--engine-opt="cluster-advertise=eth1:2376"	

swarm-master

Running	pre-create	checks…

Creating	machine…

Waiting	for	machine	to	be	running,	this	may	take	a	few	minutes…

Machine	is	running,	waiting	for	SSH	to	be	available…

Detecting	operating	system	of	created	instance…

Provisioning	created	instance…

Copying	certs	to	the	local	machine	directory…

Copying	certs	to	the	remote	machine…

Setting	Docker	configuration	on	the	remote	daemon…

Configuring	swarm…

To	see	how	to	connect	Docker	to	this	machine,	run:	docker-machine	env	

swarm-master

The	use	of	the	parameters	used	in	the	preceding	command	is	as	follows:

--swarm:	This	is	used	to	configure	a	machine	with	Swarm.
--engine-opt:	This	option	is	used	to	define	arbitrary	daemon	options	required
to	be	supplied.	In	our	case,	we	will	supply	the	engine	daemon	with	the	--
cluster-store	option	during	creation	time,	which	tells	the	engine	the	location
of	the	key-value	store	for	the	overlay	network	usability.	The	--cluster-
advertise	option	will	put	the	machine	on	the	network	at	the	specific	port.
--swarm-discovery:	It	is	used	to	discover	services	to	use	with	Swarm,	in	our
case,	consul	will	be	that	service.
--swarm-master:	This	is	used	to	configure	a	machine	as	the	Swarm	master.



6.	 Another	host	can	also	be	created	and	added	to	Swarm	cluster,	like	this:

$	docker-machine	create	-d	virtualbox	--swarm	--swarm-

image="swarm:1.0.0-rc2"	--swarm-discovery="consul://$(docker-machine	ip	

sample-keystore):8500"	--engine-opt="cluster-store=consul://$(docker-

machine	ip	sample-keystore):8500"	--engine-opt="cluster-

advertise=eth1:2376"	swarm-node-1

Running	pre-create	checks…

Creating	machine…

Waiting	for	machine	to	be	running,	this	may	take	a	few	minutes…

Machine	is	running,	waiting	for	SSH	to	be	available…

Detecting	operating	system	of	created	instance…

Provisioning	created	instance…

Copying	certs	to	the	local	machine	directory…

Copying	certs	to	the	remote	machine…

Setting	Docker	configuration	on	the	remote	daemon…

Configuring	swarm…

To	see	how	to	connect	Docker	to	this	machine,	run:	docker-machine	env	

swarm-node-1

7.	 The	machines	can	be	listed	as	follows:

$	docker-machine	ls

NAME												ACTIVE			DRIVER							STATE					URL															SWARM

sample-keystore			-					virtualbox			Running			

tcp://192.168.99.100:2376

swarm-master						-					virtualbox			Running			

tcp://192.168.99.101:2376		swarm-master	(master)

swarm-node-1						-					virtualbox			Running			

tcp://192.168.99.102:2376			swarm-master

8.	 Now,	we	will	set	the	Docker	environment	to	swarm-master:

$	eval	$(docker-machine	env	--swarm	swarm-master)

9.	 The	following	command	can	be	executed	on	the	master	in	order	to	create	the	overlay
network	and	have	multihost	networking:

$	docker	network	create	–driver	overlay	sample-net

10.	 The	network	bridge	can	be	checked	on	the	master	using	the	following	command:

$	docker	network	ls

NETWORK	ID									NAME											DRIVER

9f904ee27bf5						sample-net						overlay

7fca4eb8c647							bridge									bridge

b4234109be9b							none												null

cf03ee007fb4							host												host

11.	 When	switching	to	a	Swarm	node,	we	can	easily	list	the	newly	created	overlay
network,	like	this:

$	eval	$(docker-machine	env	swarm-node-1)

$	docker	network	ls

NETWORK	ID								NAME												DRIVER

7fca4eb8c647						bridge										bridge

b4234109be9b						none													null



cf03ee007fb4						host												host

9f904ee27bf5					sample-net							overlay

12.	 Once	the	network	is	created,	we	can	start	the	container	on	any	of	the	hosts,	and	it	will
be	part	of	the	network:

$	eval	$(docker-machine	env	swarm-master)

13.	 Start	the	sample	ubuntu	container	with	the	constraint	environment	set	to	the	first
node:

$	docker	run	-itd	--name=os	--net=sample-net	--

env="constraint:node==swarm-master"	ubuntu

14.	 We	can	check	using	the	ifconfig	command	that	the	container	has	two	network
interfaces,	and	it	will	be	accessible	from	the	container	deployed	using	Swarm
manager	on	any	other	host.





Kubernetes
Kubernetes	is	a	container	cluster	management	tool.	Currently,	it	supports	Docker	and
Rocket.	It	is	an	open	source	project	supported	by	Google,	and	the	project	was	launched	in
June	2014	at	Google	I/O.	It	supports	deployment	on	various	cloud	providers	such	as	GCE,
Azure,	AWS,	and	vSphere	as	well	as	on	bare	metal.	The	Kubernetes	manager	is	lean,
portable,	extensible,	and	self-healing.

Kubernetes	has	various	important	components,	as	explained	in	the	following	list:

Node:	This	is	a	physical	or	virtual-machine	part	of	a	Kubernetes	cluster,	running	the
Kubernetes	and	Docker	services,	onto	which	pods	can	be	scheduled.
Master:	This	maintains	the	runtime	state	of	the	Kubernetes	server	runtime.	It	is	the
point	of	entry	for	all	the	client	calls	to	configure	and	manage	Kubernetes
components.
Kubectl:	This	is	the	command-line	tool	used	to	interact	with	the	Kubernetes	cluster
to	provide	master	access	to	Kubernetes	APIs.	Through	it,	the	user	can	deploy,	delete,
and	list	pods.
Pod:	This	is	the	smallest	scheduling	unit	in	Kubernetes.	It	is	a	collection	of	Docker
containers	that	share	volumes	and	don’t	have	port	conflicts.	It	can	be	created	by
defining	a	simple	JSON	file.
Replication	controller:	It	manages	the	lifecycle	of	a	pod	and	ensures	that	a	specified
number	of	pods	are	running	at	a	given	time	by	creating	or	killing	pods	as	required.
Label:	Labels	are	used	to	identify	and	organize	pods	and	services	based	on	key-value
pairs.

The	following	diagram	shows	the	Kubernetes	Master/Minion	flow:



Deploying	Kubernetes	on	AWS
Let’s	get	started	with	Kubernetes	cluster	deployment	on	AWS,	which	can	be	done	by
using	the	config	file	that	already	exists	in	the	Kubernetes	codebase:

1.	 Log	in	to	AWS	Console	at	http://aws.amazon.com/console/.
2.	 Open	the	IAM	console	at	https://console.aws.amazon.com/iam/home?#home.
3.	 Choose	the	IAM	username,	select	the	Security	Credentials	tab,	and	click	on	the

Create	Access	Key	option.
4.	 After	the	keys	have	been	created,	download	and	keep	them	in	a	secure	place.	The

downloaded	.csv	file	will	contain	an	Access	Key	ID	and	Secret	Access	Key,
which	will	be	used	to	configure	the	AWS	CLI.

5.	 Install	and	configure	the	AWS	CLI.	In	this	example,	we	have	installed	AWS	CLI	on
Linux	using	the	following	command:

$	sudo	pip	install	awscli

6.	 In	order	to	configure	the	AWS	CLI,	use	the	following	command:

$	aws	configure

AWS	Access	Key	ID	[None]:	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

AWS	Secret	Access	Key	[None]:	YYYYYYYYYYYYYYYYYYYYYYYYYYYY

Default	region	name	[None]:	us-east-1

Default	output	format	[None]:	text

7.	 After	configuring	the	AWS	CLI,	we	will	create	a	profile	and	attach	a	role	to	it	with
full	access	to	S3	and	EC2:

$	aws	iam	create-instance-profile	--instance-profile-name	Kube

8.	 The	role	can	be	created	separately	using	the	console	or	AWS	CLI	with	a	JSON	file
that	defines	the	permissions	the	role	can	have:

$	aws	iam	create-role	--role-name	Test-Role	--assume-role-policy-

document	/root/kubernetes/Test-Role-Trust-Policy.json

A	role	can	be	attached	to	the	preceding	profile,	which	will	have	complete	access	to
EC2	and	S3,	as	shown	in	the	following	screenshot:

http://aws.amazon.com/console/
https://console.aws.amazon.com/iam/home?#home


9.	 After	the	creation	of	the	role,	it	can	be	attached	to	a	policy	using	the	following
command:

$	aws	iam	add-role-to-instance-profile	--role-name	Test-Role	--

instance-profile-name	Kube

10.	 By	default,	the	script	uses	the	default	profile.	We	can	change	it	as	follows:

$	export	AWS_DEFAULT_PROFILE=Kube

11.	 The	Kubernetes	cluster	can	be	easily	deployed	using	one	command,	as	follows:

$	export	KUBERNETES_PROVIDER=aws;	wget	-q	-O	-	https://get.k8s.io	|	

bash

Downloading	kubernetes	release	v1.1.1	to	/home/vkohli/kubernetes.tar.gz

--2015-11-22	10:39:18--		https://storage.googleapis.com/kubernetes-

release/release/v1.1.1/kubernetes.tar.gz

Resolving	storage.googleapis.com	(storage.googleapis.com)...	

216.58.220.48,	2404:6800:4007:805::2010

Connecting	to	storage.googleapis.com	

(storage.googleapis.com)|216.58.220.48|:443…	connected.

HTTP	request	sent,	awaiting	response…	200	OK

Length:	191385739	(183M)	[application/x-tar]

Saving	to:	'kubernetes.tar.gz'

100%[======================================>]	191,385,739	1002KB/s			in	

3m	7s

2015-11-22	10:42:25	(1002	KB/s)	-	'kubernetes.tar.gz'	saved	

[191385739/191385739]

Unpacking	kubernetes	release	v1.1.1

Creating	a	kubernetes	on	aws…

...	Starting	cluster	using	provider:	aws

...	calling	verify-prereqs

...	calling	kube-up

Starting	cluster	using	os	distro:	vivid

Uploading	to	Amazon	S3

Creating	kubernetes-staging-e458a611546dc9dc0f2a2ff2322e724a

make_bucket:	s3://kubernetes-staging-e458a611546dc9dc0f2a2ff2322e724a/

+++	Staging	server	tars	to	S3	Storage:	kubernetes-staging-

e458a611546dc9dc0f2a2ff2322e724a/devel

upload:	../../../tmp/kubernetes.6B8Fmm/s3/kubernetes-salt.tar.gz	to	

s3://kubernetes-staging-

e458a611546dc9dc0f2a2ff2322e724a/devel/kubernetes-salt.tar.gz

Completed	1	of	19	part(s)	with	1	file(s)	remaining

12.	 The	preceding	command	will	call	kube-up.sh	and,	in	turn,	utils.sh	using	the
config-default.sh	script,	which	contains	the	basic	configuration	of	a	K8S	cluster
with	four	nodes,	as	follows:

ZONE=${KUBE_AWS_ZONE:-us-west-2a}

MASTER_SIZE=${MASTER_SIZE:-t2.micro}

MINION_SIZE=${MINION_SIZE:-t2.micro}

NUM_MINIONS=${NUM_MINIONS:-4}

AWS_S3_REGION=${AWS_S3_REGION:-us-east-1}

13.	 The	instances	are	t2.micro	running	Ubuntu	OS.	The	process	takes	5	to	10	minutes,
after	which	the	IP	addresses	of	the	master	and	minions	get	listed	and	can	be	used	to



access	the	Kubernetes	cluster.



Kubernetes	networking	and	its	differences	to
Docker	networking
Kubernetes	strays	from	the	default	Docker	system’s	networking	model.	The	objective	is
for	each	pod	to	have	an	IP	at	a	level	imparted	by	the	system’s	administration	namespace,
which	has	full	correspondence	with	other	physical	machines	and	containers	over	the
system.	Allocating	IPs	per	pod	unit	makes	for	a	clean,	retrogressive,	and	good	model
where	units	can	be	dealt	with	much	like	VMs	or	physical	hosts	from	the	point	of	view	of
port	allotment,	system	administration,	naming,	administration	disclosure,	burden
adjustment,	application	design,	and	movement	of	pods	from	one	host	to	another.	All
containers	in	all	pods	can	converse	with	all	other	containers	in	all	other	pods	using	their
addresses.	This	also	helps	move	traditional	applications	to	a	container-oriented	approach.

As	every	pod	gets	a	real	IP	address,	they	can	communicate	with	each	other	without	any
need	for	translation.	By	making	the	same	configuration	of	IP	addresses	and	ports	both
inside	as	well	as	outside	of	the	pod,	we	can	create	a	NAT-less	flat	address	space.	This	is
different	from	the	standard	Docker	model	since	there,	all	containers	have	a	private	IP
address,	which	will	allow	them	to	be	able	to	access	the	containers	on	the	same	host.	But	in
the	case	of	Kubernetes,	all	the	containers	inside	a	pod	behave	as	if	they	are	on	the	same
host	and	can	reach	each	other’s	ports	on	the	localhost.	This	reduces	the	isolation	between
containers	and	provides	simplicity,	security,	and	performance.	Port	conflict	can	be	one	of
the	disadvantages	of	this;	thus,	two	different	containers	inside	one	pod	cannot	use	the
same	port.

In	GCE,	using	IP	forwarding	and	advanced	routing	rules,	each	VM	in	a	Kubernetes	cluster
gets	an	extra	256	IP	addresses	in	order	to	route	traffic	across	pods	easily.

Routes	in	GCE	allow	you	to	implement	more	advanced	networking	functions	in	the	VMs,
such	as	setting	up	many-to-one	NAT.	This	is	leveraged	by	Kubernetes.

This	is	in	addition	to	the	main	Ethernet	bridge	which	the	VM	has;	this	bridge	is	termed	as
the	container	bridge	cbr0	in	order	to	differentiate	it	from	the	Docker	bridge,	docker0.	In
order	to	transfer	packets	out	of	the	GCE	environment	from	a	pod,	it	should	undergo	an
SNAT	to	the	VM’s	IP	address,	which	GCE	recognizes	and	allows.

Other	implementations	with	the	primary	aim	of	providing	an	IP-per-pod	model	are	Open
vSwitch,	Flannel,	and	Weave.

In	the	case	of	a	GCE-like	setup	of	an	Open	vSwitch	bridge	for	Kubernetes,	the	model
where	the	Docker	bridge	gets	replaced	by	kbr0	to	provide	an	extra	256	subnet	addresses	is
followed.	Also,	an	OVS	bridge	(ovs0)	is	added,	which	adds	a	port	to	the	Kubernetes
bridge	in	order	to	provide	GRE	tunnels	to	transfer	packets	across	different	minions	and
connect	pods	residing	on	these	hosts.	The	IP-per-pod	model	is	also	elaborated	more	in	the
upcoming	diagram,	where	the	service	abstraction	concept	of	Kubernetes	is	also	explained.

A	service	is	another	type	of	abstraction	that	is	widely	used	and	suggested	for	use	in
Kubernetes	clusters	as	it	allows	a	group	of	pods	(applications)	to	be	accessed	via	virtual	IP
addresses	and	gets	proxied	to	all	internal	pods	in	a	service.	An	application	deployed	in



Kubernetes	could	be	using	three	replicas	of	the	same	pod,	which	have	different	IP
addresses.	However,	the	client	can	still	access	the	application	on	the	one	IP	address	which
is	exposed	outside,	irrespective	of	which	backend	pod	takes	the	request.	A	service	acts	as	a
load	balancer	between	different	replica	pods	and	a	single	point	of	communication	for
clients	utilizing	this	application.	Kubeproxy,	one	of	the	services	of	Kubernetes,	provides
load	balancing	and	uses	rules	to	access	the	service	IPs	and	redirects	them	to	the	correct
backend	pod.



Deploying	the	Kubernetes	pod
Now,	in	the	following	example,	we	will	be	deploying	two	nginx	replication	pods	(rc-pod)
and	exposing	them	via	a	service	in	order	to	understand	Kubernetes	networking.	Deciding
where	the	application	can	be	exposed	via	a	virtual	IP	address	and	which	replica	of	the	pod
(load	balancer)	the	request	is	to	be	proxied	to	is	taken	care	of	by	Service	Proxy.	Please
refer	to	the	following	diagram	for	more	details:

The	following	are	the	steps	to	deploy	the	Kubernetes	pod:

1.	 In	the	Kubernetes	master,	create	a	new	folder:

$	mkdir	nginx_kube_example

$	cd	nginx_kube_example

2.	 In	the	editor	of	your	choice,	create	the	.yaml	file	that	will	be	used	to	deploy	the	nginx
pods:

$	vi	nginx_pod.yaml

Copy	the	following	into	the	file:

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	nginx

spec:

		replicas:	2

		selector:

				app:	nginx

		template:



				metadata:

						name:	nginx

						labels:

								app:	nginx

		spec:

				containers:

				-	name:	nginx

						image:	nginx

						ports:

						-	containerPort:	80

3.	 Create	the	nginx	pod	using	kubectl:

$	kubectl	create	-f	nginx_pod.yaml

4.	 In	the	preceding	pod	creation	process,	we	created	two	replicas	of	the	nginx	pod,	and
its	details	can	be	listed	using	the	following	command:

$	kubectl	get	pods

The	following	is	the	output	generated:

NAME										READY					REASON				RESTARTS			AGE

nginx-karne			1/1							Running			0										14s

nginx-mo5ug			1/1							Running			0										14s

To	list	replication	controllers	on	a	cluster,	use	the	kubectl	get	command:

$	kubectl	get	rc

The	following	is	the	output	generated:

CONTROLLER			CONTAINER(S)			IMAGE(S)			SELECTOR				REPLICAS

nginx								nginx										nginx						app=nginx			2

5.	 The	container	on	the	deployed	minion	can	be	listed	using	the	following	command:

$	docker	ps

The	following	is	the	output	generated:

CONTAINER	ID								IMAGE																																			COMMAND																

CREATED													STATUS														PORTS															NAMES

1d3f9cedff1d								nginx:latest																												"nginx	-g	

'daemon	of			41	seconds	ago						Up	40	seconds							

k8s_nginx.6171169d_nginx-karne_default_5d5bc813-3166-11e5-8256-

ecf4bb2bbd90_886ddf56

0b2b03b05a8d								nginx:latest																												"nginx	-g	

'daemon	of			41	seconds	ago						Up	40	seconds

6.	 Deploy	the	nginx	service	using	the	following	.yaml	file	in	order	to	expose	the	nginx
pod	on	host	port	82:

$	vi	nginx_service.yaml

Copy	the	following	into	the	file:

apiVersion:	v1

kind:	Service



metadata:

		labels:

				name:	nginxservice

		name:	nginxservice

spec:

		ports:

				#	The	port	that	this	service	should	serve	on.

				-	port:	82

		#	Label	keys	and	values	that	must	match	in	order	to	receive	traffic	

for	this	service.

		selector:

				app:	nginx

		type:	LoadBalancer

7.	 Create	the	nginx	service	using	the	kubectl	create	command:

$kubectl	create	-f	nginx_service.yaml

services/nginxservice

8.	 The	nginx	service	can	be	listed	using	the	following	command:

$	kubectl	get	services

The	following	is	the	output	generated:

NAME											LABELS																																				SELECTOR				

IP(S)										PORT(S)

kubernetes					component=apiserver,provider=kubernetes			<none>						

192.168.3.1				443/TCP

nginxservice			name=nginxservice																									app=nginx			

192.168.3.43			82/TCP

9.	 Now,	the	nginx	server’s	test	page	can	be	accessed	on	the	following	URL	via	the
service:
http://192.168.3.43:82





Mesosphere
Mesosphere	is	a	software	solution	that	provides	ways	of	managing	server	infrastructures
and	basically	expands	upon	the	cluster-management	capabilities	of	Apache	Mesos.
Mesosphere	has	also	launched	the	DCOS	(data	center	operating	system),	used	to
manage	data	centers	by	spanning	all	the	machines	and	treating	them	as	a	single	computer,
providing	a	highly	scalable	and	elastic	way	of	deploying	apps	on	top	of	it.	DCOS	can	be
installed	on	any	public	cloud	or	your	own	private	data	center,	ranging	from	AWS,	GCE,
and	Microsoft	Azure	to	VMware.	Marathon	is	the	framework	for	Mesos	and	is	designed	to
launch	and	run	applications;	it	serves	as	a	replacement	for	the	init	system.	Marathon
provides	various	features	such	as	high	availability,	application	health	check,	and	service
discovery,	which	help	you	run	applications	in	Mesos	clustered	environments.

This	session	describes	how	to	bring	up	a	single-node	Mesos	cluster.



Docker	containers
Mesos	can	run	and	manage	Docker	containers	using	the	Marathon	framework.

In	this	exercise,	we	will	use	CentOS	7	to	deploy	a	Mesos	cluster:

1.	 Install	Mesosphere	and	Marathon	using	the	following	command:

#	sudo	rpm	-Uvh	

http://repos.mesosphere.com/el/7/noarch/RPMS/mesosphere-el-repo-7-

1.noarch.rpm

#	sudo	yum	-y	install	mesos	marathon

Apache	Mesos	uses	Zookeeper	to	operate.	Zookeeper	acts	as	the	master	election
service	in	the	Mesosphere	architecture	and	stores	states	for	the	Mesos	nodes.

2.	 Install	Zookeeper	and	the	Zookeeper	server	package	by	pointing	to	the	RPM
repository	for	Zookeeper,	as	follows:

#	sudo	rpm	-Uvh	http://archive.cloudera.com/cdh4/one-click-

install/redhat/6/x86_64/cloudera-cdh-4-0.x86_64.rpm

#	sudo	yum	-y	install	zookeeper	zookeeper-server

3.	 Validate	Zookeeper	by	stopping	and	restarting	it:

#	sudo	service	zookeeper-server	stop

#	sudo	service	zookeeper-server	start

Mesos	uses	a	simple	architecture	to	give	you	intelligent	task	distribution	across	a
cluster	of	machines	without	worrying	about	where	they	are	scheduled.

4.	 Configure	Apache	Mesos	by	starting	the	mesos-master	and	mesos-slave	processes
as	follows:

#	sudo	service	mesos-master	start

#	sudo	service	mesos-slave	start

5.	 Mesos	will	be	running	on	port	5050.	As	shown	in	the	following	screenshot,	you	can
access	the	Mesos	interface	with	your	machine’s	IP	address,	here,
http://192.168.10.10:5050:



6.	 Test	Mesos	using	the	mesos-execute	command:

#	export	MASTER=$(mesos-resolve	`cat	/etc/mesos/zk`	2>/dev/null)

#	mesos	help

#	mesos-execute	--master=$MASTER	--name="cluster-test"	--command="sleep	

40"

7.	 With	the	mesos-execute	command	running,	enter	Ctrl	+	Z	to	suspend	the	command.
You	can	see	how	it	appears	in	the	web	UI	and	command	line:

#	hit	ctrl-z

#	mesos	ps	--master=$MASTER

The	Mesosphere	stack	uses	Marathon	to	manage	processes	and	services.	It	serves	as	a
replacement	for	the	traditional	init	system.	It	simplifies	the	running	of	applications	in
a	clustered	environment.	The	following	figure	shows	the	Mesosphere	Master	slave
topology	with	Marathon:



Marathon	can	be	used	to	start	other	Mesos	frameworks;	as	it	is	designed	for	long-
running	applications,	it	will	ensure	that	the	applications	it	has	launched	will	continue
running	even	if	the	slave	nodes	they	are	running	on	fail.

8.	 Start	the	Marathon	service	using	the	following	command:

#	sudo	service	marathon	start

You	can	view	the	Marathon	GUI	at	http://192.168.10.10:8080.



Deploying	a	web	app	using	Docker
In	this	exercise,	we	will	install	a	simple	Outyet	web	application:

1.	 Install	Docker	using	the	following	commands:

#	sudo	yum	install	-y	golang	git	device-mapper-event-libs	docker

#	sudo	chkconfig	docker	on

#	sudo	service	docker	start

#	export	GOPATH=~/go

#	go	get	github.com/golang/example/outyet

#	cd	$GOPATH/src/github.com/golang/example/outyet

#	sudo	docker	build	-t	outyet.

2.	 The	following	command	tests	the	Docker	file	before	adding	it	to	Marathon:

#	sudo	docker	run	--publish	6060:8080	--name	test	--rm	outyet

3.	 Go	to	http://192.168.10.10:6060/	on	your	browser	in	order	to	confirm	it	works.
Once	it	does,	you	can	hit	CTRL	+	C	to	exit	the	Outyet	Docker.

4.	 Create	a	Marathon	application	using	Marathon	Docker	support,	as	follows:

#	vi	/home/user/outyet.json

{

			"id":	"outyet",

			"cpus":	0.2,

			"mem":	20.0,

			"instances":	1,

			"constraints":	[["hostname",	"UNIQUE",	""]],

			"container":	{

						"type":	"DOCKER",

						"docker":	{

									"image":	"outyet",

									"network":	"BRIDGE",

									"portMappings":	[	{	"containerPort":	8080,	"hostPort":	0,	

"servicePort":	0,	"protocol":	"tcp"	}

								]

					}

			}

}

#	echo	'docker,mesos'	|	sudo	tee	/etc/mesos-slave/containerizers

#	sudo	service	mesos-slave	restart

5.	 Containers	are	configured	and	managed	better	with	Marathon	Docker,	as	follows:

#	curl	-X	POST	http://192.168.10.10:8080/v2/apps	-d	

/home/user/outyet.json	-H	"Content-type:	application/json"

6.	 You	can	check	all	your	applications	on	the	Marathon	GUI	at
http://192.168.10.10:8080,	as	shown	in	the	following	screenshot:





Deploying	Mesos	on	AWS	using	DCOS
In	this	final	section,	we	will	be	deploying	the	latest	launch	of	DCOS	by	Mesosphere	on
AWS	in	order	to	manage	and	deploy	Docker	services	in	our	data	center:

1.	 Create	an	AWS	key	pair	in	the	region	where	the	cluster	is	required	to	be	deployed	by
going	to	the	navigation	pane	and	choosing	Key	Pairs	under	NETWORK	&
SECURITY:

2.	 After	being	created,	the	key	can	be	viewed	as	follows	and	the	generated	key	pair
(.pem)	file	should	be	stored	in	a	secure	location	for	future	use:

3.	 The	DCOS	cluster	can	be	created	by	selecting	the	1	Master	template	on	the	official



Mesosphere	site:

It	can	also	be	done	by	providing	the	link	for	the	Amazon	S3	template	URL	in	the
stack	deployment:

4.	 Click	on	the	Next	button.	Fill	in	the	details	such	as	Stack	name	and	KeyName,
generated	in	the	previous	step:



5.	 Review	the	details	before	clicking	on	the	Create	button:

6.	 After	5	to	10	minutes,	the	Mesos	stack	will	be	deployed	and	the	Mesos	UI	can	be
accessed	at	the	URL	shown	in	the	following	screenshot:



7.	 Now,	we	will	be	installing	the	DCOS	CLI	on	a	Linux	machine	with	Python	(2.7	or
3.4)	and	pip	preinstalled,	using	the	following	commands:

$	sudo	pip	install	virtualenv

$	mkdir	dcos

$	cd	dcos

$	curl	-O	https://downloads.mesosphere.io/dcos-cli/install.sh

%	Total				%	Received	%	Xferd		Average	Speed			Time				Time					Time		

Current

																																	Dload		Upload			Total			Spent				Left		

Speed

100		3654		100		3654				0					0			3631						0		0:00:01		0:00:01	--:--:-

-		3635

$	ls

install.sh

$	bash	install.sh	.	http://mesos-dco-elasticl-17lqe4oh09r07-

1358461817.us-west-1.elb.amazonaws.com

Installing	DCOS	CLI	from	PyPI…

New	python	executable	in	/home/vkohli/dcos/bin/python

Installing	setuptools,	pip,	wheel…done.

[core.reporting]:	set	to	'True'

[core.dcos_url]:	set	to	'http://mesos-dco-elasticl-17lqe4oh09r07-

1358461817.us-west-1.elb.amazonaws.com'

[core.ssl_verify]:	set	to	'false'

[core.timeout]:	set	to	'5'

[package.cache]:	set	to	'/home/vkohli/.dcos/cache'

[package.sources]:	set	to	

'[u'https://github.com/mesosphere/universe/archive/version-1.x.zip']'

Go	to	the	following	link	in	your	browser:

https://accounts.mesosphere.com/oauth/authorize?

scope=&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&response_type=c

ode&client_id=6a552732-ab9b-410d-9b7d-d8c6523b09a1&access_type=offline

Enter	verification	code:	Skipping	authentication.

Enter	email	address:	Skipping	email	input.

Updating	source	

[https://github.com/mesosphere/universe/archive/version-1.x.zip]



Modify	your	bash	profile	to	add	DCOS	to	your	PATH?	[yes/no]		yes

Finished	installing	and	configuring	DCOS	CLI.

Run	this	command	to	set	up	your	environment	and	to	get	started:

source	~/.bashrc	&&	dcos	help

The	DCOS	help	file	can	be	listed	as	follows:

$	source	~/.bashrc	&&	dcos	help

Command	line	utility	for	the	Mesosphere	Datacenter	Operating	System	

(DCOS).	The	Mesosphere	DCOS	is	a	distributed	operating	system	built	

around	Apache	Mesos.	This	utility	provides	tools	for	easy	management	of	

a	DCOS	installation.

Available	DCOS	commands:

								config							Get	and	set	DCOS	CLI	configuration	properties

								help									Display	command	line	usage	information

								marathon					Deploy	and	manage	applications	on	the	DCOS

								node									Manage	DCOS	nodes

								package						Install	and	manage	DCOS	packages

								service						Manage	DCOS	services

								task									Manage	DCOS	tasks

8.	 Now,	we	will	deploy	a	Spark	application	on	top	of	the	Mesos	cluster	using	the	DCOS
package	after	updating	it.	Get	a	detailed	command	description	with	dcos	<command>
--help:

$	dcos	config	show	package.sources

[

		"https://github.com/mesosphere/universe/archive/version-1.x.zip"

]

$	dcos	package	update

Updating	source	

[https://github.com/mesosphere/universe/archive/version-1.x.zip]

$	dcos	package	search

NAME							VERSION												FRAMEWORK					SOURCE													

DESCRIPTION

arangodb			0.2.1																True					

https://github.com/mesosphere/universe/archive/version-1.x.zip			A	

distributed	free	and	open-source	database	with	a	flexible	data	model	

for	documents,	graphs,	and	key-values.	Build	high	performance	

applications	using	a	convenient	SQL-like	query	language	or	JavaScript	

extensions.

cassandra		0.2.0-1															True					

https://github.com/mesosphere/universe/archive/version-1.x.zip		Apache	

Cassandra	running	on	Apache	Mesos.

chronos				2.4.0																	True					

https://github.com/mesosphere/universe/archive/version-1.x.zip		A	fault	

tolerant	job	scheduler	for	Mesos	which	handles	dependencies	and	ISO8601	

based	schedules.

hdfs							0.1.7																	True					

https://github.com/mesosphere/universe/archive/version-1.x.zip		Hadoop	

Distributed	File	System	(HDFS),	Highly	Available.

kafka						0.9.2.0															True					

https://github.com/mesosphere/universe/archive/version-1.x.zip		Apache	

Kafka	running	on	top	of	Apache	Mesos.



marathon			0.11.1																True					

https://github.com/mesosphere/universe/archive/version-1.x.zip		A	

cluster-wide	init	and	control	system	for	services	in	cgroups	or	Docker	

containers.

spark						1.5.0-multi-roles-v2		True					

https://github.com/mesosphere/universe/archive/version-1.x.zip		Spark	

is	a	fast	and	general	cluster	computing	system	for	Big	Data.

9.	 The	Spark	package	can	be	installed	as	follows:

$	dcos	package	install	spark

Note	that	the	Apache	Spark	DCOS	Service	is	beta	and	there	may	be	bugs,	

incomplete	features,	incorrect	documentation	or	other	discrepancies.

We	recommend	a	minimum	of	two	nodes	with	at	least	2	CPU	and	2GB	of	RAM	

available	for	the	Spark	Service	and	running	a	Spark	job.

Note:	The	Spark	CLI	may	take	up	to	5min	to	download	depending	on	your	

connection.

Continue	installing?	[yes/no]	yes

Installing	Marathon	app	for	package	[spark]	version	[1.5.0-multi-roles-

v2]

Installing	CLI	subcommand	for	package	[spark]	version	[1.5.0-multi-

roles-v2]

10.	 After	deployment,	it	can	be	seen	in	the	DCOS	UI	under	the	Services	tab,	as	shown	in
the	following	screenshot:

11.	 In	order	to	deploy	a	dummy	Docker	application	on	the	preceding	Marathon	cluster,
we	can	use	the	JSON	file	to	define	the	container	image,	command	to	execute,	and
ports	to	be	exposed	after	deployment:

$	nano	definition.json

{

		"container":	{



				"type":	"DOCKER",

				"docker":	{

						"image":	"superguenter/demo-app"

				}

		},

		"cmd":		"python	-m	SimpleHTTPServer	$PORT",

		"id":	"demo",

		"cpus":	0.01,

		"mem":	256,

		"ports":	[3000]

}

12.	 The	app	can	be	added	to	Marathon	and	listed	as	follows:

$	dcos	marathon	app	add	definition.json

$	dcos	marathon	app	list

ID							MEM				CPUS		TASKS		HEALTH		DEPLOYMENT		CONTAINER		CMD

/demo			256.0			0.01			1/1				---							---								DOCKER			python	-m	

SimpleHTTPServer	$PORT

/spark		1024.0		1.0				1/1				1/1							---								DOCKER			mv	

/mnt/mesos/sandbox/log4j.properties	conf/log4j.properties	&&	

./bin/spark-class	org.apache.spark.deploy.mesos.MesosClusterDispatcher	

--port	$PORT0	--webui-port	$PORT1	--master	

mesos://zk://master.mesos:2181/mesos	--zk	master.mesos:2181	--host	

$HOST	--name	spark

13.	 Three	instances	of	the	preceding	Docker	app	can	be	started	as	follows:

$	dcos	marathon	app	update	--force	demo	instances=3

Created	deployment	28171707-83c2-43f7-afa1-5b66336e36d7

$	dcos	marathon	deployment	list

APP				ACTION		PROGRESS		ID

/demo		scale					0/1					28171707-83c2-43f7-afa1-5b66336e36d7

14.	 The	deployed	application	can	be	seen	in	the	DCOS	UI	by	clicking	on	the	Tasks	tab
under	Services:







Summary
In	this	chapter,	we	learnt	about	Docker	networking	using	various	frameworks,	such	as	the
native	Docker	Swarm.	Using	libnetwork	or	out-of-the-box	overlay	networks,	Swarm
provides	multihost	networking	features.

Kubernetes,	on	the	other	hand,	has	a	different	perspective	from	Docker,	in	which	each	pod
gets	its	unique	IP	address	and	communication	between	pods	can	occur	with	the	help	of
services.	Using	Open	vSwitch	or	IP	forwarding	and	advanced	routing	rules,	Kubernetes
networking	can	be	enhanced	to	provide	connectivity	between	pods	on	different	subnets
across	hosts	and	the	ability	to	expose	the	pods	to	the	external	world.	In	the	case	of
Mesosphere,	we	can	see	that	Marathon	is	used	as	the	backend	for	the	networking	of	the
deployed	containers.	In	the	case	of	DCOS	by	Mesosphere,	the	entire	deployed	stack	of
machines	is	treated	as	one	machine	in	order	to	provide	a	rich	networking	experience
between	deployed	container	services.

In	the	next	chapter,	we	will	learn	about	security	and	QoS	for	basic	Docker	networking	by
understanding	kernel	namespace,	cgroups,	and	virtual	firewalls.





Chapter	5.	Security	and	QoS	for	Docker
Containers
In	this	chapter,	we	will	learn	how	security	is	implemented	in	the	context	of	containers	in
general	and	how	QoS	policies	are	implemented	to	make	sure	that	resources	such	as	CPU
and	IO	are	shared	as	intended.	Most	of	the	discussion	will	focus	on	the	relevance	of	these
topics	in	the	context	of	Docker.

We	will	cover	the	following	in	this	chapter:

File	system	restrictions

Read-only	mount	points
Copy	on	write

Linux	capabilities	and	Docker
Securing	containers	in	AWS	ECS	(EC2	container	service)
Understanding	Docker	security	I	–	kernel	namespaces
Understanding	Docker	security	II	–	cgroups
Using	AppArmour	to	secure	Docker	containers
Docker	security	benchmark



Filesystem	restrictions
In	this	section,	we	are	going	to	study	filesystem	restrictions	with	which	Docker	containers
are	started.	The	following	section	explains	the	read-only	mount	points	and	copy-on-write
filesystems,	which	are	used	as	a	base	for	Docker	containers	and	the	representation	of
kernel	objects.



Read-only	mount	points
Docker	needs	access	to	filesystems	such	as	sysfs	and	proc	for	processes	to	function.	But	it
doesn’t	necessarily	need	to	modify	these	mount	points.

Two	primary	mount	points	loaded	in	read-only	mode	are:

/sys

/proc

sysfs
The	sysfs	filesystem	is	loaded	into	mount	point	/sys.	sysfs	is	a	mechanism	for
representing	kernel	objects,	their	attributes,	and	their	relationships	with	each	other.	It
provides	two	components:

A	kernel	programming	interface	for	exporting	these	items	via	sysfs
A	user	interface	to	view	and	manipulate	these	items	that	maps	back	to	the	kernel
objects	that	they	represent

The	following	code	shows	the	mount	points	being	mounted:

{

		Source:						"sysfs",

		Destination:	"/sys",

		Device:						"sysfs",

		Flags:							defaultMountFlags	|	syscall.MS_RDONLY,

},

A	reference	link	for	the	preceding	code	is	at
https://github.com/docker/docker/blob/ecc3717cb17313186ee711e624b960b096a9334f/daemon/execdriver/native/template/default_template_linux.go

procfs
The	proc	filesystem	(procfs)	is	a	special	file	system	in	Unix-like	operating	systems,	which
presents	information	about	processes	and	other	systems	information	in	a	hierarchical	file-
like	structure.	It	is	loaded	into	/proc.	It	provides	a	more	convenient	and	standardized
method	for	dynamically	accessing	process	data	held	in	the	kernel	than	traditional	tracing
methods	or	direct	access	to	kernel	memory.	It	is	mapped	to	a	mount	point	named	/proc	at
boot	time:

{

		Source:						"proc",

		Destination:	"/proc",

		Device:						"proc",

		Flags:							defaultMountFlags,

},

Read-only	paths	with	/proc:

ReadonlyPaths:	[]string{

		"/proc/asound",

		"/proc/bus",

		"/proc/fs",

https://github.com/docker/docker/blob/ecc3717cb17313186ee711e624b960b096a9334f/daemon/execdriver/native/template/default_template_linux.go


		"/proc/irq",

		"/proc/sys",

		"/proc/sysrq-trigger",

}

/dev/pts
This	is	another	mount	point	that	is	mounted	as	read-write	for	the	container	during	creation.
/dev/pts	lives	purely	in	memory	and	nothing	is	stored	on	disk,	hence	it	is	safe	to	load	it
in	read-write	mode.

Entries	in	/dev/pts	are	pseudo-terminals	(pty	for	short).	Unix	kernels	have	a	generic
notion	of	terminals.	A	terminal	provides	a	way	for	applications	to	display	output	and	to
receive	input	through	a	terminal	device.	A	process	may	have	a	controlling	terminal.	For	a
text	mode	application,	this	is	how	it	interacts	with	the	user:

{

		Source:						"devpts",

		Destination:	"/dev/pts",

		Device:						"devpts",

		Flags:							syscall.MS_NOSUID	|	syscall.MS_NOEXEC,

		Data:								"newinstance,ptmxmode=0666,mode=0620,gid=5",

},

/sys/fs/cgroup
This	is	the	mount	point	where	cgroups	are	implemented	and	is	loaded	as	MS_RDONLY	for
the	container:

{

		Source:						"cgroup",

		Destination:	"/sys/fs/cgroup",

		Device:						"cgroup",

		Flags:							defaultMountFlags	|	syscall.MS_RDONLY,

},



Copy-on-write
Docker	uses	union	filesystems,	which	are	copy-on-write	filesystems.	This	means
containers	can	use	the	same	filesystem	image	as	the	base	for	the	container.	When	a
container	writes	content	to	the	image,	it	gets	written	to	a	container-specific	filesystem.	It
prevents	one	container	from	being	able	to	access	the	changes	of	another	container	even	if
they	are	created	from	the	same	filesystem	image.	One	container	cannot	change	the	image
content	to	effect	the	processes	in	another	container.	The	following	figure	explains	this
process:





Linux	capabilities
Docker	containers	before	1.2	could	either	be	given	complete	capabilities	under	privileged
mode,	or	they	can	all	follow	a	whitelist	of	allowed	capabilities	while	dropping	all	others.
If	the	flag	--privileged	is	used,	it	will	grant	all	capabilities	to	the	container.	This	was	not
recommended	for	production	use	because	it’s	really	unsafe;	it	allowed	Docker	all
privileges	as	a	process	under	the	direct	host.

With	Docker	1.2,	two	flags	have	been	introduced	with	docker	run:

--cap-add

--cap-drop

These	two	flags	provide	fine-grain	control	to	a	container,	for	example,	as	follows:

Change	the	status	of	the	Docker	container’s	interface:

docker	run	--cap-add=NET_ADMIN	busybox	sh	-c	"ip	link	eth0	down"

Prevent	any	chown	in	the	Docker	container:

docker	run	--cap-drop=CHOWN…

Allow	all	capabilities	except	mknod:

docker	run	--cap-add=ALL	--cap-drop=MKNOD…

Docker	starts	containers	with	a	restricted	set	of	capabilities	by	default.	Capabilities
convert	a	binary	mode	of	root	and	non-root	to	a	more	fine-grained	access	control.	As
an	example,	a	web	server	which	serves	HTTP	request	needs	to	be	bound	to	port	80
for	HTTP	and	443	for	HTTPs.	These	servers	need	not	be	run	in	the	root	mode.	These
servers	can	be	granted	net_bind_service	capability.

Containers	and	servers	are	a	little	different	in	this	context.	Servers	need	to	run	a	few
processes	in	the	root	mode.	For	example,	ssh,	cron,	and	network	configurations	to
handle	dhcp,	and	so	on.	Containers,	on	the	other	hand,	do	not	need	this	access.

The	following	tasks	need	not	happen	in	the	container:

ssh	access	is	managed	by	Docker	host
cron	jobs	should	be	run	in	the	user	mode
Network	configuration	such	as	ipconfig	and	routing	should	not	happen	inside
the	container

We	can	safely	deduce	containers	might	not	need	root	priviledges.

Examples	that	can	be	denied	are	as	follows:

Do	not	allow	mount	operations
Do	not	allow	access	to	sockets
Prevent	access	to	filesystem	operations	such	as	changing	file	attributes	or
ownership	of	the	files
Prevent	the	container	from	loading	new	modules



Docker	allows	only	the	following	capabilities:

Capabilities:	[]string{

		"CHOWN",

		"DAC_OVERRIDE",

		"FSETID",

		"FOWNER",

		"MKNOD",

		"NET_RAW",

		"SETGID",

		"SETUID",

		"SETFCAP",

		"SETPCAP",

		"NET_BIND_SERVICE",

		"SYS_CHROOT",

		"KILL",

		"AUDIT_WRITE",

},

A	reference	to	the	preceding	code	is	at
https://github.com/docker/docker/blob/master/daemon/execdriver/native/template/default_template_linux.go

A	full	list	of	available	capabilities	can	be	found	in	the	Linux	man-pages
(http://man7.org/linux/man-pages/man7/capabilities.7.html).

One	primary	risk	with	running	Docker	containers	is	that	the	default	set	of	capabilities
and	mounts	given	to	a	container	may	provide	incomplete	isolation,	either
independently	or	when	used	in	combination	with	kernel	vulnerabilities.

Docker	supports	the	addition	and	removal	of	capabilities,	allowing	the	use	of	a	non-
default	profile.	This	may	make	Docker	more	secure	through	capability	removal	or
less	secure	through	the	addition	of	capabilities.	The	best	practice	for	users	would	be
to	remove	all	capabilities	except	those	explicitly	required	for	their	processes.

https://github.com/docker/docker/blob/master/daemon/execdriver/native/template/default_template_linux.go
http://man7.org/linux/man-pages/man7/capabilities.7.html




Securing	containers	in	AWS	ECS
The	Amazon	EC2	container	service	(ECS)	provides	a	highly	scalable,	high-performance
container	management	service	that	supports	Docker	containers.	It	allows	you	to	easily	run
applications	on	a	managed	cluster	of	Amazon	EC2	instances.	Amazon	ECS	eliminates	the
need	for	you	to	install,	operate,	and	scale	your	own	cluster	management	infrastructure.
With	simple	API	calls,	you	can	launch	and	stop	Docker-enabled	applications	and	query
the	complete	state	of	your	cluster.

In	the	following	example,	we	will	see	how	to	deploy	a	secured	web	application	using	two
Docker	containers,	one	containing	a	simple	web	application	(application	container),	and
the	other	containing	a	reverse	proxy	with	throttling	enabled	(proxy	container),	which	can
be	used	to	protect	the	web	application.	These	containers	will	be	deployed	on	the	Amazon
EC2	instance	using	ECS.	As	can	be	seen	in	the	following	diagram,	all	the	network	traffic
will	be	routed	through	the	proxy	container	that	throttles	requests.	Also,	we	can	perform
activities	such	as	filtering,	logging,	and	intrusion	detection	at	proxy	containers	using
various	security	software.

The	following	are	the	steps	to	do	so:

1.	 We	will	build	a	basic	PHP	web	application	container	from	the	GitHub	project.	The
following	steps	can	be	performed	on	a	separate	EC2	instance	or	a	local	machine:

$	sudo	yum	install	-y	git

$	git	clone	https://github.com/awslabs/ecs-demo-php-simple-app

2.	 Change	directories	to	the	ecs-demo-php-simple-app	folder:

$	cd	ecs-demo-php-simple-app

3.	 We	can	examine	Dockerfile	as	follows	in	order	to	understand	the	web	application	it
will	deploy:

$	cat	Dockerfile

4.	 Build	the	container	image	using	Dockerfile	and	then	push	it	in	your	Docker	Hub
account.	The	Docker	Hub	account	is	required	as	it	helps	to	deploy	the	containers	on
the	Amazon	ECS	service	by	just	specifying	the	container	name:

$	docker	build	-t	my-dockerhub-username/amazon-ecs-sample.

The	image	built	over	here	is	required	to	have	dockerhub-username	(correct	without
spaces)	as	the	first	parameter.

The	following	figure	depicts	a	hacker	not	able	to	access	the	web	application,	as	the
request	is	filtered	via	a	proxy	container	and	access	is	blocked:



5.	 Upload	the	Docker	image	to	the	Docker	Hub	account:

$	docker	login

6.	 Check	to	ensure	your	login	worked:

$	docker	info

7.	 Push	your	image	to	the	Docker	Hub	account:

$	docker	push	my-dockerhub-username/amazon-ecs-sample

8.	 After	creating	the	sample	web	application	Docker	container,	we	will	now	create	the
proxy	container,	which	can	also	contain	some	security-related	software,	if	required,
in	order	to	strengthen	security.	We	will	create	a	new	proxy	Docker	container	using	a
customized	Dockerfile	and	then	push	the	image	to	your	Docker	Hub	account:

$	mkdir	proxy-container

$	cd	proxy-container

$	nano	Dockerfile

FROM	ubuntu

RUN	apt-get	update	&&	apt-get	install	-y	nginx

COPY	nginx.conf	/etc/nginx/nginx.conf

RUN	echo	"daemon	off;"	>>	/etc/nginx/nginx.conf

EXPOSE	80

CMD	service	nginx	start



In	the	previous	Dockerfile	we	are	using	a	base	Ubuntu	image	and	installing	nginx
and	exposing	it	on	port	80.

9.	 Next,	we	will	create	a	customized	nginx.conf,	which	will	override	the	default
nginx.conf	in	order	to	ensure	the	reverse	proxy	is	configured	properly:

user	www-data;

worker_processes	4;

pid	/var/run/nginx.pid;

events	{

		worker_connections	768;

		#	multi_accept	on;

}

http	{

		server	{

				listen											80;

				#	Proxy	pass	to	servlet	container

				location	/	{

						proxy_pass						http://application-container:80;

				}

		}

}

10.	 Build	the	proxy	Docker	image	and	push	the	built	image	to	the	Docker	Hub	account:

$	docker	build	-t	my-dockerhub-username/proxy-image.

$	docker	push	my-dockerhub-username/proxy-image

11.	 The	ECS	container	service	can	be	deployed	by	navigating	to	AWS	Management
Console	(https://aws.amazon.com/console/).

12.	 Click	Task	Definitions	in	the	left	sidebar	and	then	click	Create	a	New	Task
Definition.

13.	 Give	your	task	definition	a	name,	such	as	SecurityApp.
14.	 Next,	click	on	Add	Container	and	insert	the	name	of	the	proxy	web	container

pushed	to	the	Docker	Hub	account,	as	well	as	the	name	of	the	application	web
container.	View	the	contents	of	the	JSON	using	Configure	via	JSON	tab	to	see	the
task	definition	that	you	have	created.	It	should	be	like	this:

Proxy-container:

Container	Name:	proxy-container

Image:	username/proxy-image

Memory:	256

Port	Mappings

Host	port:	80

Container	port:	80

Protocol:	tcp

CPU:	256

Links:	application-container

Application	container:

Container	Name:	application-container

Image:	username/amazon-ecs-sample

https://aws.amazon.com/console/


Memory:	256

CPU:	256

Click	the	Create	button	in	order	to	deploy	the	application.

15.	 Click	Clusters	in	the	left	sidebar.	If	a	default	cluster	does	not	exist,	create	one.
16.	 Launch	an	ECS-optimized	Amazon	Machine	Image	(AMI),	ensuring	it	has	a	public

IP	address	and	a	path	to	the	Internet.
17.	 When	your	instance	is	up	and	running,	navigate	to	the	ECS	section	of	the	AWS

Management	Console	and	click	Clusters,	then	default.	Now,	we	should	be	able	to
see	our	instance	under	the	ECS	Instances	tab.

18.	 Navigate	to	the	TASK	definitions	from	the	left	side	of	the	AWS	Management
Console	tab	and	click	Run	Task.

19.	 On	the	next	page,	ensure	the	cluster	is	set	to	Default	and	the	number	of	tasks	is	1,
then	click	Run	Task.

20.	 After	the	process	completes	we	can	see	the	state	of	the	task	from	a	pending	state	to	a
green	running	state.

21.	 Clicking	on	the	ECS	tab,	we	can	see	the	container	instance	created	earlier.	By
clicking	on	it,	we	will	get	information	about	its	public	IP	address.	By	hitting	this
public	IP	address	via	the	browser	we	will	be	able	to	see	our	sample	PHP	application.





Understanding	Docker	security	I	–	kernel
namespaces
A	namespace	provides	a	wrapper	around	a	global	system	resource	of	the	kernel	and	makes
the	resource	appear	to	the	process	within	the	namespace	as	if	they	have	an	isolated
instance.	Global	resource	changes	are	visible	to	processes	in	the	same	namespace	but
invisible	to	others.	Containers	are	considered	an	excellent	implementation	of	a	kernel
namespace.

The	following	namespaces	are	implemented	by	Docker:

pid	namespace:	Used	for	process	isolation	(PID—Process	ID)
net	namespace:	Used	for	managing	network	interfaces	(NET—Networking)
ipc	namespace:	Used	for	managing	access	to	IPC	resources	(IPC—Inter	Process
Communication)
mnt	namespace:	Used	for	managing	mount	points	(MNT—Mount)
uts	namespace:	Used	for	isolating	kernel	and	version	identifiers	(UTS—Unix	Time
sharing	System)

Adding	namespace	support	in	libcontainer	required	adding	patches	in	the	system	layer	of
GoLang
(https://codereview.appspot.com/126190043/patch/140001/150001<emphsis>src/syscall/exec_linux.go</emphsis>
so	that	new	data	structures	could	be	maintained	for	PIDs,	user	UIDs,	and	so	on.

https://codereview.appspot.com/126190043/patch/140001/150001


pid	namespace
pid	namespaces	isolate	the	process	ID	number	space;	processes	in	different	pid
namespaces	can	have	the	same	pid.	pid	namespaces	allow	containers	to	provide
functionality	such	as	suspending/resuming	the	set	of	processes	in	the	container,	and
migrating	the	container	to	a	new	host	while	the	processes	inside	the	container	maintain	the
same	pids.

pids	in	a	new	namespace	start	with	PID	1.	The	kernel	needs	to	be	configured	for	the	flag
CONFIG_PID_NS	for	the	namespace	to	work.

pid	namespaces	can	be	nested.	Each	pid	namespace	has	a	parent,	except	for	the	initial
(root)	pid	namespace.	The	parent	of	a	pid	namespace	is	the	pid	namespace	of	the	process
that	created	the	namespace	using	clone	or	unshare.	pid	namespaces	form	a	tree,	with	all
namespaces	ultimately	tracing	their	ancestry	to	the	root	namespace	as	shown	in	the
following	figure:



net	namespace
net	namespace	provides	isolation	of	the	system	resources	associated	with	networking.
Each	network	namespace	has	its	own	network	devices,	IP	addresses,	IP	routing	tables,
/proc/net	directory,	port	numbers,	and	so	on.

Network	namespaces	make	containers	useful	from	a	networking	perspective:	each
container	can	have	its	own	(virtual)	network	device	and	its	own	applications	that	bind	to
the	per-namespace	port	number	space;	suitable	routing	rules	in	the	host	system	can	direct
network	packets	to	the	network	device	associated	with	a	specific	container.	Use	of
network	namespaces	requires	a	kernel	that	is	configured	with	the	CONFIG_NET_NS	option
(https://lwn.net/Articles/531114/).

As	each	container	has	its	own	network	namespace,	which	basically	means	its	own	network
interface	and	routing	tables,	net	namespace	is	also	directly	leveraged	by	Docker	to	isolate
IP	addresses,	port	numbers,	and	so	on.

Basic	network	namespace	management
Network	namespaces	are	created	by	passing	a	flag	to	the	clone()	system	call,
CLONE_NEWNET.	From	the	command	line,	though,	it	is	convenient	to	use	the	IP	networking
configuration	tool	to	set	up	and	work	with	network	namespaces:

#	ip	netns	add	netns1

This	command	creates	a	new	network	namespace	called	netns1.	When	the	IP	tool	creates
a	network	namespace,	it	will	create	a	bind	mount	for	it	under	/var/run/netns,	which
allows	the	namespace	to	persist,	even	when	no	processes	are	running	within	it,	and
facilitates	the	manipulation	of	the	namespace	itself.	Since	network	namespaces	typically
require	a	fair	amount	of	configuration	before	they	are	ready	for	use,	this	feature	will	be
appreciated	by	systems	administrators.

The	ip	netns	exec	command	can	be	used	to	run	network	management	commands	within
the	namespace:

#	ip	netns	exec	netns1	ip	link	list

1:	lo:	<LOOPBACK>	mtu	65536	qdisc	noop	state	DOWN	mode	DEFAULT	

link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

This	command	lists	the	interfaces	visible	inside	the	namespace.	A	network	namespace	can
be	removed	with	the	use	of	following	command:

#	ip	netns	delete	netns1

This	command	removes	the	bind	mount	referring	to	the	given	network	namespace.	The
namespace	itself,	however,	will	persist	for	as	long	as	any	processes	are	running	within	it.

Network	namespace	configuration
New	network	namespaces	will	have	a	loopback	device	but	no	other	network	devices.
Aside	from	the	loopback	device,	each	network	device	(physical	or	virtual	interfaces,
bridges,	and	so	on)	can	only	be	present	in	a	single	network	namespace.	In	addition,

https://lwn.net/Articles/531114/


physical	devices	(those	connected	to	real	hardware)	cannot	be	assigned	to	namespaces
other	than	the	root.	Instead,	virtual	network	devices	(for	example,	virtual	Ethernet	or	vEth)
can	be	created	and	assigned	to	a	namespace.	These	virtual	devices	allow	processes	inside
the	namespace	to	communicate	over	the	network;	it	is	the	configuration,	routing,	and	so
on	that	determines	who	they	can	communicate	with.

When	first	created,	the	lo	loopback	device	in	the	new	namespace	is	down,	so	even	a
loopback	ping	will	fail.

#	ip	netns	exec	netns1	ping	127.0.0.1

connect:	Network	is	unreachable

In	the	previous	command,	we	can	see	that	since	the	net	namespace	for	a	Docker	container
is	stored	in	a	separate	location,	and	thus	a	symlink	is	required	to	be	created	to
/var/run/netns,	it	can	be	done	in	the	following	way:

#	pid=`docker	inspect	-f	'{{.State.Pid}}'	$container_id`

#	ln	-s	/proc/$pid/ns/net	/var/run/netns/$container_id

In	this	example,	it	is	done	by	bringing	that	interface	up,	which	will	allow	the	pinging	of
the	loopback	address.

#	ip	netns	exec	netns1	ip	link	set	dev	lo	up

#	ip	netns	exec	netns1	ping	127.0.0.1

	PING	127.0.0.1	(127.0.0.1)	56(84)	bytes	of	data.

64	bytes	from	127.0.0.1:	icmp_seq=1	ttl=64	time=0.052	ms

64	bytes	from	127.0.0.1:	icmp_seq=2	ttl=64	time=0.042	ms

64	bytes	from	127.0.0.1:	icmp_seq=3	ttl=64	time=0.044	ms

64	bytes	from	127.0.0.1:	icmp_seq=4	ttl=64	time=0.031	ms

64	bytes	from	127.0.0.1:	icmp_seq=5	ttl=64	time=0.042	ms

This	still	doesn’t	allow	communication	between	netns1	and	the	root	namespace.	To	do
that,	virtual	Ethernet	devices	need	to	be	created	and	configured.

#	ip	link	add	veth0	type	veth	peer	name	veth1

#	ip	link	set	veth1	netns	netns1

The	first	command	sets	up	a	pair	of	virtual	Ethernet	devices	that	are	connected.	Packets
sent	to	veth0	will	be	received	by	veth1	and	vice	versa.	The	second	command	assigns
veth1	to	the	netns1	namespace.

#	ip	netns	exec	netns1	ifconfig	veth1	10.0.0.1/24	up

#	ifconfig	veth0	10.0.0.2/24	up

Then,	these	two	commands	set	IP	addresses	for	the	two	devices.

#	ping	10.0.0.1

#	ip	netns	exec	netns1	ping	10.0.0.2

Communication	in	both	directions	is	now	possible	as	the	previous	ping	commands	show.

As	mentioned,	though,	namespaces	do	not	share	routing	tables	or	firewall	rules,	as	running
route	and	iptables	-L	in	netns1	will	attest:

#	ip	netns	exec	netns1	route



Kernel	IP	routing	table

Destination			Gateway				Genmask								Flags				Metric	Ref				Use	Iface

10.0.0.0									*						255.255.255.0					U								0		0		0							veth1

#	ip	netns	exec	netns1	iptables	-L

Chain	INPUT	(policy	ACCEPT)

target					prot	opt	source															destination

Chain	FORWARD	(policy	ACCEPT)

target					prot	opt	source															destination

Chain	OUTPUT	(policy	ACCEPT)

target					prot	opt	source															destination



User	namespace
User	namespaces	allows	per-namespace	mappings	of	user	and	group	IDs.	This	means	that
user	IDs	and	group	IDs	of	a	process	inside	a	user	namespace	can	be	different	from	its	IDs
outside	of	the	namespace.	A	process	can	have	a	non-zero	user	ID	outside	a	namespace
while,	at	the	same	time,	having	a	user	ID	of	zero	inside	the	namespace.	The	process	is
unprivileged	for	operations	outside	the	user	namespace	but	has	root	privileges	inside	the
namespace.

Creating	a	new	user	namespace
User	namespaces	are	created	by	specifying	the	CLONE_NEWUSER	flag	when	calling	clone()
or	unshare():

clone()	allows	the	child	process	to	share	parts	of	its	execution	context	with	the	calling
process,	such	as	the	memory	space,	the	table	of	file	descriptors,	and	the	table	of	signal
handlers.

unshare()	allows	a	process	(or	thread)	to	disassociate	parts	of	its	execution	context	that
are	currently	being	shared	with	other	processes	(or	threads).	Part	of	the	execution	context,
such	as	the	mount	namespace,	is	shared	implicitly	when	a	new	process	is	created	using
fork()	or	vfork().

As	mentioned	previously,	Docker	containers	are	very	similar	to	LXC	containers	as	a	set	of
namespaces	and	control	groups	are	created	separately	for	containers.	Each	container	gets
its	own	network	stack	and	namespace.	Until	and	unless	containers	do	not	have	the
privileged	access,	they	are	not	allowed	to	access	other	hosts	sockets	or	interfaces.	If	the
host	network	mode	is	given	to	the	container,	then	only	it	gets	the	ability	to	access	the	host
ports	and	IP	address,	which	can	cause	a	potential	threat	to	other	programs	running	on	the
host.

As	shown	in	the	following	example,	where	we	use	the	host	network	mode	in	the	container
and	it	is	able	to	access	all	the	hosts	bridges:

docker	run	-it	--net=host	ubuntu	/bin/bash

$	ifconfig

docker0			Link	encap:Ethernet		HWaddr	02:42:1d:36:0d:0d

										inet	addr:172.17.0.1		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	fe80::42:1dff:fe36:d0d/64	Scope:Link

										UP	BROADCAST	MULTICAST		MTU:1500		Metric:1

										RX	packets:24	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:38	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:1608	(1.6	KB)		TX	bytes:5800	(5.8	KB)

eno16777736	Link	encap:Ethernet		HWaddr	00:0c:29:02:b9:13

										inet	addr:192.168.218.129		Bcast:192.168.218.255		

Mask:255.255.255.0

										inet6	addr:	fe80::20c:29ff:fe02:b913/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:4934	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:4544	errors:0	dropped:0	overruns:0	carrier:0



										collisions:0	txqueuelen:1000

										RX	bytes:2909561	(2.9	MB)		TX	bytes:577079	(577.0	KB)

$	docker	ps	-q	|	xargs	docker	inspect	--format	'{{	.Id	}}:	NetworkMode={{	

.HostConfig.NetworkMode	}}'

52afb14d08b9271bd96045bebd508325a2adff98dbef8c10c63294989441954d:	

NetworkMode=host

While	auditing,	it	should	be	checked	that	all	the	containers,	by	default,	have	network
mode	set	to	default	and	not	host:

$	docker	ps	-q	|	xargs	docker	inspect	--format	'{{	.Id	}}:	NetworkMode={{	

.HostConfig.NetworkMode	}}'

1aca7fe47882da0952702c383815fc650f24da2c94029b5ad8af165239b78968:	

NetworkMode=default

Each	Docker	container	is	connected	to	an	Ethernet	bridge	in	order	to	provide	inter-
connectivity	between	containers.	They	can	ping	each	other	to	send/receive	UDP	packets
and	establish	TCP	connections,	but	that	can	be	restricted	if	necessary.	Namespace	also
provides	a	straightforward	isolation	in	restricting	the	access	of	the	processes	running	in	the
other	container	as	well	as	the	host.

We	will	be	using	the	following	nsenter	command	line	utility	in	order	to	enter	into
namespaces.	It	is	an	open-source	project	on	GitHub	available	at
https://github.com/jpetazzo/nsenter.

Using	it,	we	will	try	to	enter	existing	container	namespaces	or	try	to	spawn	a	new	set	of
namespaces.	It	is	different	from	the	Docker	exec	command	as	nsenter	doesn’t	enter	the
cgroups,	which	gives	potential	benefits	for	debugging	and	external	audits	by	escaping	the
resource	limitations	using	namespace.

We	can	install	nsenter	from	PyPI	(it	requires	Python	3.4)	and	use	the	command	line
utility	to	connect	to	a	running	container:

$	pip	install	nsenter

To	replace	pid	with	the	container’s	pid,	use	the	following	command:

$	sudo	nsenter	--net	--target=PID	/bin/ip	a

1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state	UNKNOWN	group	

default

				link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

				inet	127.0.0.1/8	scope	host	lo

							valid_lft	forever	preferred_lft	forever

				inet6	::1/128	scope	host

							valid_lft	forever	preferred_lft	forever

14:	eth0:	<BROADCAST,UP,LOWER_UP>	mtu	1500	qdisc	noqueue	state	UP	group	

default

				link/ether	02:42:ac:11:00:06	brd	ff:ff:ff:ff:ff:ff

				inet	172.17.0.6/16	scope	global	eth0

							valid_lft	forever	preferred_lft	forever

				inet6	fe80::42:acff:fe11:6/64	scope	link

							valid_lft	forever	preferred_lft	forever

We	can	use	the	docker	inspect	command	to	make	it	more	convenient	as	follows:

https://github.com/jpetazzo/nsenter


1.	 First	start	a	new	nginx	server:

$	docker	run	-d	--name=nginx	-t	nginx

2.	 Then	get	pid	of	the	container:

PID=$(docker	inspect	--format	{{.State.Pid}}	nginx)

3.	 Connect	to	the	running	nginx	container:

$	nsenter	--target	$PID	--uts	--ipc	--net	–pid

docker-enter	is	also	one	of	the	wrappers	that	can	be	used	to	enter	inside	the	container
specifying	the	shell	commands,	and	if	no	command	is	specified,	a	shell	will	be	invoked
instead.	If	it	is	required	to	inspect	or	manipulate	containers	without	executing	another
command	line	tool,	we	can	use	context	manager	to	do	this:

import	subprocess

from	nsenter	import	Namespace

with	Namespace(mypid,	'net'):

#	output	network	interfaces	as	seen	from	within	the	mypid's	net	NS:

		subprocess.check_output(['ip',	'a'])





Understanding	Docker	security	II	–
cgroups
In	this	section,	we	look	at	how	cgroups	form	the	backbone	of	isolation	for	a	container.



Defining	cgroups
Control	groups	provide	a	mechanism	for	aggregating/partitioning	sets	of	tasks	(processes),
and	all	their	future	children,	into	hierarchical	groups.

A	cgroup	associates	a	set	a	tasks	with	parameters	from	a	subsystem.	A	subsystem	itself	is	a
resource	controller	used	to	define	boundaries	for	cgroups	or	for	provisioning	a	resource.

A	hierarchy	is	a	set	of	cgroups	arranged	in	a	tree,	such	that	every	task	in	the	system	is	in
exactly	one	of	the	cgroups	in	the	hierarchy	and	a	set	of	subsystems.



Why	are	cgroups	required?
There	are	multiple	efforts	to	provide	process	aggregations	in	the	Linux	kernel,	mainly	for
resource-tracking	purposes.

Such	efforts	include	cpusets,	CKRM/ResGroups,	UserBeanCounters,	and	virtual	server
namespaces.	These	all	require	the	basic	notion	of	a	grouping/partitioning	of	processes,
with	newly	forked	processes	ending	up	in	the	same	group	(cgroup)	as	their	parent	process.

The	kernel	cgroup	patch	provides	essential	kernel	mechanisms	to	efficiently	implement
such	groups.	It	has	minimal	impact	on	the	system	fast	paths	and	provides	hooks	for
specific	subsystems	such	as	cpusets	to	provide	additional	behavior	as	desired.



Creating	a	cgroup	manually
In	the	following	steps,	we	will	create	a	cpuset	control	group:

#	mount	-t	tmpfs	cgroup_root	/sys/fs/cgroup

tmpfs	is	a	file	system	that	keeps	all	files	in	virtual	memory.	Everything	in	tmpfs	is
temporary	in	the	sense	that	no	files	will	be	created	on	your	hard	drive.	If	you	unmount	a
tmpfs	instance,	everything	stored	therein	is	lost:

#	mkdir	/sys/fs/cgroup/cpuset

#	mount	-t	cgroup	-ocpuset	cpuset	/sys/fs/cgroup/cpuset

#	cd	/sys/fs/cgroup/cpuset

#	mkdir	Charlie

#	cd	Charlie

#	ls

cgroup.clone_children		cpuset.cpu_exclusive		cpuset.mem_hardwall					

cpuset.memory_spread_page		cpuset.sched_load_balance		tasks

cgroup.event_control			cpuset.cpus											cpuset.memory_migrate			

cpuset.memory_spread_slab		cpuset.sched_relax_domain_level

cgroup.procs											cpuset.mem_exclusive		cpuset.memory_pressure		

cpuset.mems																notify_on_release

Assign	CPU	and	memory	limits	to	this	cgroup:

#	/bin/echo	2-3	>	cpuset.cpus

#	/bin/echo	0	>	cpuset.mems

#	/bin/echo	$$	>	tasks

The	following	command	shows	/Charlie	as	the	cpuset	cgroup:

#	cat	/proc/self/cgroup

11:name=systemd:/user/1000.user/c2.session

10:hugetlb:/user/1000.user/c2.session

9:perf_event:/user/1000.user/c2.session

8:blkio:/user/1000.user/c2.session

7:freezer:/user/1000.user/c2.session

6:devices:/user/1000.user/c2.session

5:memory:/user/1000.user/c2.session

4:cpuacct:/user/1000.user/c2.session

3:cpu:/user/1000.user/c2.session

2:cpuset:/Charlie



Attaching	processes	to	cgroups
Add	the	process	ID	PID{X}	to	the	tasks	file	as	shown	in	the	following:

#	/bin/echo	PID	>	tasks

Note	that	it	is	PID,	not	PIDs.

You	can	only	attach	one	task	at	a	time.	If	you	have	several	tasks	to	attach,	you	have	to	do
it	one	after	another:

#	/bin/echo	PID1	>	tasks

#	/bin/echo	PID2	>	tasks

...

#	/bin/echo	PIDn	>	tasks

Attach	the	current	shell	task	by	echoing	0:

#	echo	0	>	tasks



Docker	and	cgroups
cgroups	are	managed	as	part	of	the	libcontainer	project	under	Docker’s	GitHub	repo
(https://github.com/opencontainers/runc/tree/master/libcontainer/cgroups).	There	is	a
cgroup	manager	that	manages	the	interaction	with	the	cgroup	APIs	in	the	kernel.

The	following	code	shows	the	lifecycle	events	managed	by	the	manager:

type	Manager	interface	{

		//	Apply	cgroup	configuration	to	the	process	with	the	specified	pid

		Apply(pid	int)	error

		//	Returns	the	PIDs	inside	the	cgroup	set

		GetPids()	([]int,	error)

		//	Returns	statistics	for	the	cgroup	set

		GetStats()	(*Stats,	error)

		//	Toggles	the	freezer	cgroup	according	with	specified	state

		Freeze(state	configs.FreezerState)	error

		//	Destroys	the	cgroup	set

		Destroy()	error

		//	Paths	maps	cgroup	subsystem	to	path	at	which	it	is	mounted.

		//	Cgroups	specifies	specific	cgroup	settings	for	the	various	subsystems

		//	Returns	cgroup	paths	to	save	in	a	state	file	and	to	be	able	to

		//	restore	the	object	later.

		GetPaths()	map[string]string

		//	Set	the	cgroup	as	configured.

		Set(container	*configs.Config)	error

}

https://github.com/opencontainers/runc/tree/master/libcontainer/cgroups




Using	AppArmor	to	secure	Docker
containers
AppArmor	is	a	Mandatory	Access	Control	(MAC)	system	that	is	a	kernel	enhancement
to	confine	programs	to	a	limited	set	of	resources.	AppArmor’s	security	model	is	to	bind
access	control	attributes	to	programs	rather	than	to	users.

AppArmor	confinement	is	provided	via	profiles	loaded	into	the	kernel,	typically	on	boot.
AppArmor	profiles	can	be	in	one	of	two	modes:	enforcement	or	complain.

Profiles	loaded	in	enforcement	mode	will	result	in	enforcement	of	the	policy	defined	in
the	profile,	as	well	as	reporting	policy	violation	attempts	(either	via	syslog	or	auditd).

Profiles	in	complain	mode	will	not	enforce	policy	but	instead	report	policy	violation
attempts.

AppArmor	differs	from	some	other	MAC	systems	on	Linux:	it	is	path-based,	it	allows
mixing	of	enforcement	and	complain-mode	profiles,	it	uses	include	files	to	ease
development,	and	it	has	a	far	lower	barrier	to	entry	than	other	popular	MAC	systems.	The
following	figure	shows	the	AppArmour	application	profiles	linked	to	apps:

AppArmor	is	an	established	technology	first	seen	in	Immunix	and	later	integrated	into
Ubuntu,	Novell/SUSE,	and	Mandriva.	Core	AppArmor	functionality	is	in	the	mainline
Linux	kernel	from	2.6.36	onwards;	work	is	ongoing	by	AppArmor,	Ubuntu,	and	other
developers	to	merge	additional	AppArmor	functionality	into	the	mainline	kernel.

You	can	find	more	information	about	AppArmor	at	https://wiki.ubuntu.com/AppArmor.

https://wiki.ubuntu.com/AppArmor


AppArmor	and	Docker
Applications	running	inside	Docker	can	leverage	AppArmor	for	defining	policies.	These
profiles	can	either	be	created	manually	or	loaded	using	a	tool	called	bane.

Note
On	Ubuntu	14.x,	make	sure	systemd	is	installed	for	the	following	commands	to	work.

The	following	steps	show	how	to	use	this	tool:

1.	 Download	the	bane	project	for	GitHub:

$	git	clone	https://github.com/jfrazelle/bane

Make	sure	this	is	done	in	the	directory	in	your	GOPATH.	For	example,	we	used
/home/ubuntu/go	and	the	bane	source	was	downloaded	in
/home/Ubuntu/go/src/github.com/jfrazelle/bane.

2.	 Install	toml	parser	needed	by	bane	to	be	compiled:

$	go	get	github.com/BurntSushi/toml

3.	 Go	to	the	/home/Ubuntu/go/src/github.com/jfrazelle/bane	directory	and	run	the
following	command:

$	go	install

4.	 You	will	find	the	bane	binary	in	/home/Ubuntu/go/bin.
5.	 Use	a	.toml	file	to	create	a	profile:

Name	=	"nginx-sample"

[Filesystem]

#	read	only	paths	for	the	container

ReadOnlyPaths	=	[

		"/bin/**",

		"/boot/**",

		"/dev/**",

		"/etc/**",

		…

]

AllowExec	=	[

		"/usr/sbin/nginx"

]

#	denied	executable	files

DenyExec	=	[

		"/bin/dash",

		"/bin/sh",

		"/usr/bin/top"

]

6.	 Execute	bane	to	load	the	profile.	sample.toml	is	a	file	in	the	directory
/home/Ubuntu/go/src/github.com/jfrazelle/bane:

$	sudo	bane	sample.toml

#	Profile	installed	successfully	you	can	now	run	the	profile	with	#	



`docker	run	--security-opt="apparmor:docker-nginx-sample"`

This	profile	will	make	a	whole	lot	of	paths	read	only	and	allows	only	nginx	execution
in	the	container	we	are	going	to	create.	It	disables	TOP,	PING,	and	so	on.

7.	 Once	the	profile	is	loaded	you	can	create	a	nginx	container:

$	docker	run	--security-opt="apparmor:docker-nginx-sample"	-p	80:80	--

rm	-it	nginx	bash

Note,	if	AppArmor	is	not	able	to	find	the	file,	copy	the	file	into	the	/etc/apparmor.d
directory	and	reload	the	AppArmour	profiles:

$	sudo	invoke-rc.d	apparmor	reload

Create	the	nginx	container	with	the	AppArmor	profile:

ubuntu@ubuntu:~/go/src/github.com$	docker	run	--security-

opt="apparmor:docker-nginx-sample"	-p	80:80	--rm	-it	nginx	bash

root@84d617972e04:/#	ping	8.8.8.8

ping:	Lacking	privilege	for	raw	socket.

The	following	figure	shows	how	an	nginx	app	running	inside	a	container	uses	AppArmour
application	profiles:



Docker	security	benchmark
The	following	tutorial	shows	some	of	the	important	guidelines	that	should	be	followed	in
order	to	run	Docker	containers	in	secured	and	production	environments.	It	is	referred	from
the	CIS	Docker	Security	Benchmark
https://benchmarks.cisecurity.org/tools2/docker/CIS_Docker_1.6_Benchmark_v1.0.0.pdf.

Audit	Docker	daemon	regularly
Apart	from	auditing	your	regular	Linux	filesystem	and	system	calls,	audit	Docker	daemon
as	well.	Docker	daemon	runs	with	root	privileges.	It	is	thus	necessary	to	audit	its	activities
and	usage:

$	apt-get	install	auditd

Reading	package	lists…	Done

Building	dependency	tree

Reading	state	information…	Done

The	following	extra	packages	will	be	installed:

		libauparse0

Suggested	packages:

		audispd-plugins

The	following	NEW	packages	will	be	installed:

		auditd	libauparse0

0	upgraded,	2	newly	installed,	0	to	remove	and	50	not	upgraded.

Processing	triggers	for	libc-bin	(2.21-0ubuntu4)	...

Processing	triggers	for	ureadahead	(0.100.0-19)	...

Processing	triggers	for	systemd	(225-1ubuntu9)	...

Remove	the	audit	log	file,	if	it	exists:

$	cd	/etc/audit/

$	ls

audit.log

$	nano	audit.log

$	rm	-rf	audit.log

Add	the	audit	rules	for	the	Docker	service	and	audit	the	Docker	service:

$	nano	audit.rules

-w	/usr/bin/docker	-k	docker

$	service	auditd	restart

$	ausearch	-k	docker

<no	matches>

$	docker	ps

CONTAINER	ID				IMAGE						COMMAND				CREATED				STATUS			PORTS					NAMES

$	ausearch	-k	docker

----

time->Fri	Nov	27	02:29:50	2015

type=PROCTITLE	msg=audit(1448620190.716:79):	proctitle=646F636B6572007073

type=PATH	msg=audit(1448620190.716:79):	item=1	name="/lib64/ld-linux-x86-

64.so.2"	inode=398512	dev=08:01	mode=0100755	ouid=0	ogid=0	rdev=00:00	

nametype=NORMAL

type=PATH	msg=audit(1448620190.716:79):	item=0	name="/usr/bin/docker"	

inode=941134	dev=08:01	mode=0100755	ouid=0	ogid=0	rdev=00:00	

nametype=NORMAL

https://benchmarks.cisecurity.org/tools2/docker/CIS_Docker_1.6_Benchmark_v1.0.0.pdf


type=CWD	msg=audit(1448620190.716:79):		cwd="/etc/audit"

type=EXECVE	msg=audit(1448620190.716:79):	argc=2	a0="docker"	a1="ps"

type=SYSCALL	msg=audit(1448620190.716:79):	arch=c000003e	syscall=59	

success=yes	exit=0	a0=ca1208	a1=c958c8	a2=c8

Create	a	user	for	the	container
Currently,	mapping	the	container’s	root	user	to	a	non-root	user	on	the	host	is	not	supported
by	Docker.	The	support	for	user	namespace	would	be	provided	in	future	releases.	This
creates	a	serious	user	isolation	issue.	It	is	thus	highly	recommended	to	ensure	that	there	is
a	non-root	user	created	for	the	container	and	the	container	is	run	using	that	user.

As	we	can	see	in	the	following	snippet,	by	default,	the	centos	Docker	image	has	a	user
field	as	blank,	which	means,	by	default,	the	container	will	get	a	root	user	during	runtime,
which	should	be	avoided:

$	docker	inspect	centos

[

		{

				"Id":	

"e9fa5d3a0d0e19519e66af2dd8ad6903a7288de0e995b6eafbcb38aebf2b606d",

				"RepoTags":	[

						"centos:latest"

				],

				"RepoDigests":	[],

				"Parent":	

"c9853740aa059d078b868c4a91a069a0975fb2652e94cc1e237ef9b961afa572",

				"Comment":	"",

				"Created":	"2015-10-13T23:29:04.138328589Z",

				"Container":	

"eaa200e2e187340f0707085b9b4eab5658b13fd190af68c71a60f6283578172f",

				"ContainerConfig":	{

						"Hostname":	"7aa5783a47d5",

						"Domainname":	"",

						"User":	"",

						contd

While	building	the	Docker	image,	we	can	provide	the	test	user,	the	less-privileged	user,
in	the	Dockerfile,	as	shown	in	the	following	snippet:

$	cd

$	mkdir	test-container

$	cd	test-container/

$	cat	Dockerfile

FROM	centos:latest

RUN	useradd	test

USER	test

root@ubuntu:~/test-container#	docker	build	-t	vkohli	.

Sending	build	context	to	Docker	daemon	2.048	kB

Step	1	:	FROM	centos:latest

	--->	e9fa5d3a0d0e

Step	2	:	RUN	useradd	test

	--->	Running	in	0c726d186658

	--->	12041ebdfd3f

Removing	intermediate	container	0c726d186658



Step	3	:	USER	test

	--->	Running	in	86c5e0599c72

	--->	af4ba8a0fec5

Removing	intermediate	container	86c5e0599c72

Successfully	built	af4ba8a0fec5

$	docker	images	|	grep	vkohli

vkohli				latest					af4ba8a0fec5						9	seconds	ago					172.6	MB

When	we	start	the	Docker	container,	we	can	see	that	it	gets	a	test	user,	and	the	docker
inspect	command	also	shows	the	default	user	as	test:

$	docker	run	-it	vkohli	/bin/bash

[test@2ff11ee54c5f	/]$	whoami

test

[test@2ff11ee54c5f	/]$	exit

$	docker	inspect	vkohli

[

		{

				"Id":	

"af4ba8a0fec558d68b4873e2a1a6d8a5ca05797e0bfbab0772bcedced15683ea",

				"RepoTags":	[

								"vkohli:latest"

				],

				"RepoDigests":	[],

				"Parent":	

"12041ebdfd3f38df3397a8961f82c225bddc56588e348761d3e252eec868d129",

				"Comment":	"",

				"Created":	"2015-11-27T14:10:49.206969614Z",

				"Container":	

"86c5e0599c72285983f3c5511fdec940f70cde171f1bfb53fab08854fe6d7b12",

				"ContainerConfig":	{

						"Hostname":	"7aa5783a47d5",

						"Domainname":	"",

						"User":	"test",

						Contd..

Do	not	mount	sensitive	host	system	directories	on	containers
If	sensitive	directories	are	mounted	in	read-write	mode,	it	would	be	possible	to	make
changes	to	files	within	those	sensitive	directories.	The	changes	might	bring	down	security
implications	or	unwarranted	changes	that	could	put	the	Docker	host	in	a	compromised
state.

If	the	/run/systemd	sensitive	directory	is	mounted	in	the	container	then	we	can	actually
shutdown	the	host	from	the	container	itself:

$	docker	run	-ti	-v	/run/systemd:/run/systemd	centos	/bin/bash

[root@1aca7fe47882	/]#	systemctl	status	docker

docker.service	-	Docker	Application	Container	Engine

		Loaded:	loaded	(/lib/systemd/system/docker.service;	enabled)

		Active:	active	(running)	since	Sun	2015-11-29	12:22:50	UTC;	21min	ago

		Docs:	https://docs.docker.com

	Main	PID:	758

		CGroup:	/system.slice/docker.service

[root@1aca7fe47882	/]#	shutdown



It	can	be	audited	by	using	the	following	command,	which	returns	the	list	of	current
mapped	directories	and	whether	they	are	mounted	in	read-write	mode	for	each	container
instance:

$	docker	ps	-q	|	xargs	docker	inspect	--format	'{{	.Id	}}:	Volumes={{	

.Volumes	}}	VolumesRW={{	.VolumesRW	}}'

Do	not	use	privileged	containers
Docker	supports	the	addition	and	removal	of	capabilities,	allowing	the	use	of	a	non-
default	profile.	This	may	make	Docker	more	secure	through	capability	removal,	or	less
secure	through	the	addition	of	capabilities.	It	is	thus	recommended	to	remove	all
capabilities	except	those	explicitly	required	for	your	container	process.

As	seen	in	the	following,	when	we	run	the	container	without	the	privileged	mode,	we	are
unable	to	change	the	kernel	parameters,	but	when	we	run	the	container	in	privileged	mode
using	the	--privileged	flag,	it	is	possible	to	change	the	kernel	parameters	easily,	which
can	cause	security	vulnerability:

$	docker	run	-it	centos	/bin/bash

[root@7e1b1fa4fb89	/]#		sysctl	-w	net.ipv4.ip_forward=0

sysctl:	setting	key	"net.ipv4.ip_forward":	Read-only	file	system

$	docker	run	--privileged	-it	centos	/bin/bash

[root@930aaa93b4e4	/]#		sysctl	-a	|	wc	-l

sysctl:	reading	key	"net.ipv6.conf.all.stable_secret"

sysctl:	reading	key	"net.ipv6.conf.default.stable_secret"

sysctl:	reading	key	"net.ipv6.conf.eth0.stable_secret"

sysctl:	reading	key	"net.ipv6.conf.lo.stable_secret"
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[root@930aaa93b4e4	/]#	sysctl	-w	net.ipv4.ip_forward=0

net.ipv4.ip_forward	=	0

So,	while	auditing,	it	should	be	made	sure	that	all	the	containers	should	not	have	the
privileged	mode	set	to	true:

$	docker	ps	-q	|	xargs	docker	inspect	--format	'{{	.Id	}}:	Privileged={{	

.HostConfig.Privileged	}}'

930aaa93b4e44c0f647b53b3e934ce162fbd9ef1fd4ec82b826f55357f6fdf3a:	

Privileged=true





Summary
In	this	chapter,	we	took	a	deep	dive	into	Docker	security	with	an	overview	of	cgroups	and
kernel	namespace.	We	also	went	over	some	of	the	aspects	of	filesystems	and	Linux
capabilities,	which	containers	leverage	in	order	to	provide	more	features,	such	as	the
privileged	containers,	but	at	the	cost	of	exposing	itself	more	on	the	threat	side.	We	also
saw	how	containers	can	be	deployed	in	a	secured	environment	in	AWS	ECS	(EC2
container	service)	using	proxy	containers	to	restrict	vulnerable	traffic.	AppArmor	also
provides	kernel-enhancement	features	in	order	to	confine	applications	to	a	limited	set	of
resources.	Leveraging	their	benefits	to	Docker	containers	helps	us	to	deploy	them	in	a
secured	environment.	Finally,	we	had	a	quick	dive	into	Docker	security	benchmarks	and
some	of	the	important	recommendations	that	can	be	followed	during	auditing	and	Docker
deployment	in	the	production	environment.

In	the	next	chapter,	we	will	learn	about	tuning	and	troubleshooting	in	the	Docker	network
using	various	tools.





Chapter	6.	Next	Generation	Networking
Stack	for	Docker:	libnetwork
In	this	chapter,	we	will	learn	about	a	new	networking	stack	for	Docker:	libnetwork,	which
provides	a	pluggable	architecture	with	a	default	implementation	for	single	and	multi-host
virtual	networking:

Introduction

Goal
Design

CNM	objects

CNM	attributes
CNM	lifecycle

Drivers

Bridge	driver
Overlay	network	driver

Using	overlay	network	with	Vagrant
Overlay	network	with	Docker	Machine	and	Docker	Swarm
Creating	an	overlay	network	manually	and	using	it	for	containers
Container	network	interface
Calico’s	libnetwork	driver



Goal
libnetwork	which	is	written	in	go	language	is	a	new	way	for	connecting	Docker
containers.	The	aim	is	to	provide	a	container	network	model	that	helps	programmers	and
provides	the	abstraction	of	network	libraries.	The	long-term	goal	of	libnetwork	is	to
follow	the	Docker	and	Linux	philosophy	to	deliver	modules	that	work	independently.
libnetwork	has	the	aim	to	provide	a	composable	need	for	networking	in	containers.	It	also
aims	to	modularize	the	networking	logic	in	Docker	Engine	and	libcontainer	into	a	single,
reusable	library	by:

Replacing	the	networking	module	of	Docker	Engine	with	libnetwork
Being	a	model	that	allows	local	and	remote	drivers	to	provide	networking	to
containers
Providing	a	tool	dnet	for	managing	and	testing	libnetwork—still	a	work	in	progress
(reference	from	https://github.com/docker/libnetwork/issues/45).

https://github.com/docker/libnetwork/issues/45




Design
libnetwork	implements	a	container	network	model	(CNM).	It	formalizes	the	steps
required	to	provide	networking	for	containers,	while	providing	an	abstraction	that	can	be
used	to	support	multiple	network	drivers.	Its	endpoint	APIs	are	primarily	used	for
managing	the	corresponding	object	and	book-keeps	them	in	order	to	provide	a	level	of
abstraction	as	required	by	the	CNM	model.

The	CNM	is	built	on	three	main	components.	The	following	figure	shows	the	network
sandbox	model	of	libnetwork:





CNM	objects
Let’s	discuss	the	CNM	objects	in	detail.



Sandbox
This	contains	the	configuration	of	a	container’s	network	stack,	which	includes
management	of	routing	tables,	the	container’s	interface,	and	DNS	settings.	An
implementation	of	a	sandbox	can	be	a	Linux	network	namespace,	a	FreeBSD	jail,	or	other
similar	concept.	A	sandbox	may	contain	many	endpoints	from	multiple	networks.	It	also
represents	a	container’s	network	configuration	such	as	IP-address,	MAC	address,	and
DNS	entries.	libnetwork	makes	use	of	the	OS-specific	parameters	to	populate	the	network
configuration	represented	by	sandbox.	libnetwork	provides	a	framework	to	implement
sandbox	in	multiple	operating	systems.	Netlink	is	used	to	manage	the	routing	table	in
namespace,	and	currently	two	implementations	of	sandbox	exist,	namespace_linux.go
and	configure_linux.go,	to	uniquely	identify	the	path	on	the	host	filesystem.

A	sandbox	is	associated	with	a	single	Docker	container.	The	following	data	structure
shows	the	runtime	elements	of	a	sandbox:

type	sandbox	struct	{

		id												string

		containerID			string

		config								containerConfig

		osSbox								osl.Sandbox

		controller				*controller

		refCnt								int

		endpoints					epHeap

		epPriority				map[string]int

		joinLeaveDone	chan	struct{}

		dbIndex							uint64

		dbExists						bool

		isStub								bool

		inDelete						bool

		sync.Mutex

}

A	new	sandbox	is	instantiated	from	a	network	controller	(which	is	explained	in	more
detail	later):

func	(c	*controller)	NewSandbox(containerID	string,	options…SandboxOption)	

(Sandbox,	error)	{

		…..

}



Endpoint
An	endpoint	joins	a	sandbox	to	the	network	and	provides	connectivity	for	services
exposed	by	a	container	to	the	other	containers	deployed	in	the	same	network.	It	can	be	an
internal	port	of	Open	vSwitch	or	a	similar	veth	pair.	An	endpoint	can	belong	to	only	one
network	but	may	only	belong	to	one	sandbox.	An	endpoint	represents	a	service	and
provides	various	APIs	to	create	and	manage	the	endpoint.	It	has	a	global	scope	but	gets
attached	to	only	one	network,	as	shown	in	the	following	figure:

An	endpoint	is	specified	by	the	following	data	structure:

type	endpoint	struct	{

		name										string

		id												string

		network							*network

		iface									*endpointInterface

		joinInfo						*endpointJoinInfo

		sandboxID					string

		exposedPorts		[]types.TransportPort

		anonymous					bool

		generic							map[string]interface{}

		joinLeaveDone	chan	struct{}

		prefAddress			net.IP

		prefAddressV6	net.IP

		ipamOptions			map[string]string

		dbIndex							uint64



		dbExists						bool

		sync.Mutex

}

An	endpoint	is	associated	with	a	unique	ID	and	name.	It	is	attached	to	a	network	and	a
sandbox	ID.	It	is	also	associated	with	an	IPv4	and	IPv6	address	space.	Each	endpoint	is
associated	with	an	endpointInterface	struct.



Network
A	network	is	a	group	of	endpoints	that	are	able	to	communicate	with	each	other	directly.	It
provides	the	required	connectivity	within	the	same	host	or	multiple	hosts,	and	whenever	a
network	is	created	or	updated,	the	corresponding	driver	is	notified.	An	example	is	a
VLAN	or	Linux	bridge,	which	has	a	global	scope	within	a	cluster.

Networks	are	controlled	from	a	network	controller,	which	we	will	discuss	in	the	next
section.	Every	network	has	a	name,	address	space,	ID,	and	network	type:

type	network	struct	{

		ctrlr								*controller

		name									string

		networkType		string

		id											string

		ipamType					string

		addrSpace				string

		ipamV4Config	[]*IpamConf

		ipamV6Config	[]*IpamConf

		ipamV4Info			[]*IpamInfo

		ipamV6Info			[]*IpamInfo

		enableIPv6			bool

		postIPv6					bool

		epCnt								*endpointCnt

		generic						options.Generic

		dbIndex						uint64

		svcRecords			svcMap

		dbExists					bool

		persist						bool

		stopWatchCh		chan	struct{}

		drvOnce						*sync.Once

		internal					bool

		sync.Mutex

}



Network	controller
A	network	controller	object	provides	APIs	to	create	and	manage	a	network	object.	It	is	an
entry	point	in	the	libnetwork	by	binding	a	particular	driver	to	a	given	network,	and	it
supports	multiple	active	drivers,	both	in-built	and	remote.	Network	controller	allows	users
to	bind	a	particular	driver	to	a	given	network:

type	controller	struct	{

		id													string

		drivers								driverTable

		ipamDrivers				ipamTable

		sandboxes						sandboxTable

		cfg												*config.Config

		stores									[]datastore.DataStore

		discovery						hostdiscovery.HostDiscovery

		extKeyListener	net.Listener

		watchCh								chan	*endpoint

		unWatchCh						chan	*endpoint

		svcDb										map[string]svcMap

		nmap											map[string]*netWatch

		defOsSbox						osl.Sandbox

		sboxOnce							sync.Once

		sync.Mutex

}

Each	network	controller	has	reference	to	the	following:

One	or	more	drivers	in	the	data	structure	driverTable
One	or	more	sandboxes	in	the	data	structure
DataStore
ipamTable

The	following	figure	shows	how	Network	Controller	sits	between	the	Docker	Engine
and	the	containers	and	networks	they	are	attached	to:





CNM	attributes
There	are	two	types	of	attributes,	as	follows:

Options:	They	are	not	end-user	visible	but	are	the	key-value	pairs	of	data	to	provide
a	flexible	mechanism	to	pass	driver-specific	configuration	from	user	to	driver
directly.	libnetwork	operates	on	the	options	only	if	the	key	matches	a	well-known
label	as	a	result	value	is	picked	up,	which	is	represented	by	a	generic	object.
Labels:	They	are	a	subset	of	options	that	are	end-user	variables	represented	in	the	UI
using	the	–labels	option.	Their	main	function	is	to	perform	driver-specific
operations	and	they	are	passed	from	the	UI.



CNM	lifecycle
Consumers	of	the	container	network	model	interact	through	the	CNM	objects	and	its	APIs
to	network	the	containers	that	they	manage.

Drivers	register	with	network	controller.	Built-in	drivers	register	inside	of	libnetwork,
while	remote	drivers	register	with	libnetwork	via	a	plugin	mechanism	(WIP).	Each	driver
handles	a	particular	network	type.

A	network	controller	object	is	created	using	the	libnetwork.New()	API	to	manage	the
allocation	of	networks	and	optionally	configure	a	driver	with	driver-specific	options.

The	network	is	created	using	the	controller’s	NewNetwork()	API	by	providing	a	name	and
networkType.	The	networkType	parameter	helps	to	choose	a	corresponding	driver	and
binds	the	created	network	to	that	driver.	From	this	point,	any	operation	on	the	network	will
be	handled	by	that	driver.

The	controller.NewNetwork()	API	also	takes	in	optional	options	parameters	that	carry
driver-specific	options	and	labels,	which	the	drivers	can	make	use	for	its	purpose.

network.CreateEndpoint()	can	be	called	to	create	a	new	endpoint	in	a	given	network.
This	API	also	accepts	optional	options	parameters	that	vary	with	the	driver.

Drivers	will	be	called	with	driver.CreateEndpoint	and	it	can	choose	to	reserve
IPv4/IPv6	addresses	when	an	endpoint	is	created	in	a	network.	The	driver	will	assign	these
addresses	using	the	InterfaceInfo	interface	defined	in	the	driver	API.	The	IPv4/IPv6
addresses	are	needed	to	complete	the	endpoint	as	a	service	definition	along	with	the	ports
the	endpoint	exposes.	A	service	endpoint	is	a	network	address	and	the	port	number	that	the
application	container	is	listening	on.

endpoint.Join()	can	be	used	to	attach	a	container	to	an	endpoint.	The	Join	operation
will	create	a	sandbox	if	it	doesn’t	exist	for	that	container.	The	drivers	make	use	of	the
sandbox	key	to	identify	multiple	endpoints	attached	to	the	same	container.

There	is	a	separate	API	to	create	an	endpoint	and	another	to	join	the	endpoint.

An	endpoint	represents	a	service	that	is	independent	of	the	container.	When	an	endpoint	is
created,	it	has	resources	reserved	for	the	container	to	get	attached	to	the	endpoint	later.	It
gives	a	consistent	networking	behavior.

endpoint.Leave()	is	invoked	when	a	container	is	stopped.	The	driver	can	clean	up	the
states	that	it	allocated	during	the	Join()	call.	libnetwork	will	delete	the	sandbox	when	the
last	referencing	endpoint	leaves	the	network.

libnetwork	keeps	holding	on	to	IP	addresses	as	long	as	the	endpoint	is	still	present.	These
will	be	reused	when	the	container	(or	any	container)	joins	again.	It	ensures	that	the
container’s	resources	are	re-used	when	they	are	stopped	and	started	again.

endpoint.Delete()	is	used	to	delete	an	endpoint	from	a	network.	This	results	in	deleting
the	endpoint	and	cleaning	up	the	cached	sandbox.Info.

network.Delete()	is	used	to	delete	a	network.	Delete	is	allowed	if	there	are	no	endpoints



attached	to	the	network.





Driver
A	driver	owns	a	network	and	is	responsible	for	making	the	network	work	and	manages	it.
Network	controller	provides	an	API	to	configure	the	driver	with	specific	labels/options
that	are	not	directly	visible	to	the	user	but	are	transparent	to	libnetwork	and	can	be
handled	by	drivers	directly.	Drivers	can	be	both	in-built	(such	as	bridge,	host,	or	overlay)
and	remote	(from	plugin	providers)	to	be	deployed	in	various	use	cases	and	deployment
scenarios.

The	driver	owns	the	network	implementation	and	is	responsible	for	managing	it,	including
IP	Address	Management	(IPAM).	The	following	figure	explains	the	process:

The	following	are	the	in-built	drivers:

Null:	In	order	to	provide	backward	compatibility	with	old	docker	--net=none,	this
option	exists	primarily	in	the	case	when	no	networking	is	required.
Bridge:	It	provides	a	Linux-specific	bridging	implementation	driver.
Overlay:	The	overlay	driver	implements	networking	that	can	span	multiple	hosts
network	encapsulation	such	as	VXLAN.	We	will	be	doing	a	deep-dive	on	two	of	its
implementations:	basic	setup	with	Consul	and	Vagrant	setup	to	deploy	the	overlay
driver.
Remote:	It	provides	a	means	of	supporting	drivers	over	a	remote	transport	and	a
specific	driver	can	be	written	as	per	choice.



Bridge	driver
A	bridge	driver	represents	a	wrapper	on	a	Linux	bridge	acting	as	a	network	for
libcontainer.	It	creates	a	veth	pair	for	each	network	created.	One	end	is	connected	to	the
container	and	the	other	end	is	connected	to	the	bridge.	The	following	data	structure
represents	a	bridge	network:

type	driver	struct	{

		config						*configuration

		etwork						*bridgeNetwork

		natChain				*iptables.ChainInfo

		filterChain	*iptables.ChainInfo

		networks				map[string]*bridgeNetwork

		store							datastore.DataStore

		sync.Mutex

}

Some	of	the	actions	performed	in	a	bridge	driver:

Configuring	IPTables
Managing	IP	forwarding
Managing	Port	Mapping
Enabling	Bridge	Net	Filtering
Setting	up	IPv4	and	IPv6	on	the	bridge

The	following	diagram	shows	how	the	network	is	represented	using	docker0	and	veth
pairs	to	connect	endpoints	with	the	docker0	bridge:





Overlay	network	driver
Overlay	network	in	libnetwork	uses	VXLan	along	with	a	Linux	bridge	to	create	an
overlaid	address	space.	It	supports	multi-host	networking:

const	(

		networkType		=	"overlay"

		vethPrefix			=	"veth"

		vethLen						=	7

		vxlanIDStart	=	256

		vxlanIDEnd			=	1000

		vxlanPort				=	4789

		vxlanVethMTU	=	1450

)

type	driver	struct	{

		eventCh						chan	serf.Event

		notifyCh					chan	ovNotify

		exitCh							chan	chan	struct{}

		bindAddress		string

		neighIP						string

		config							map[string]interface{}

		peerDb							peerNetworkMap

		serfInstance	*serf.Serf

		networks					networkTable

		store								datastore.DataStore

		ipAllocator		*idm.Idm

		vxlanIdm					*idm.Idm

		once									sync.Once

		joinOnce					sync.Once

		sync.Mutex

}





Using	overlay	network	with	Vagrant
Overlay	network	is	created	between	two	containers,	and	VXLan	tunnel	connects	the
containers	through	a	bridge.



Overlay	network	deployment	Vagrant	setup
This	setup	has	been	deployed	using	the	Docker	experimental	version,	which	keeps	on
updating	regularly	and	might	not	support	some	of	the	features:

1.	 Clone	the	official	libnetwork	repository	and	switch	to	the	docs	folder:

$	git	clone

$	cd

	libnetwork/docs

2.	 The	Vagrant	script	pre-exists	in	the	repository;	we	will	deploy	the	three-node	setup
for	our	Docker	overlay	network	driver	testing	by	using	the	following	command:

$	vagrant	up

Bringing	machine	'consul-server'	up	with	'virtualbox'	provider…

Bringing	machine	'net-1'	up	with	'virtualbox'	provider…

Bringing	machine	'net-2'	up	with	'virtualbox'	provider…

==>	consul-server:	Box	'ubuntu/trusty64'	could	not	be	found.

Attempting	to	find	and	install…

				consul-server:	Box	Provider:	virtualbox

				consul-server:	Box	Version:	>=	0

==>	consul-server:	Loading	metadata	for	box	'ubuntu/trusty64'

				consul-server:	URL:	https://atlas.hashicorp.com/ubuntu/trusty64

==>	consul-server:	Adding	box	'ubuntu/trusty64'	(v20151217.0.0)	for

provider:	virtualbox

				consul-server:	Downloading:

https://atlas.hashicorp.com/ubuntu/boxes/trusty64/versions/20151217.0.0

/providers/virtualbox.box

==>	consul-server:	Successfully	added	box	'ubuntu/trusty64'

(v20151217.0.0)	for	'virtualbox'!

==>	consul-server:	Importing	base	box	'ubuntu/trusty64'...

==>	consul-server:	Matching	MAC	address	for	NAT	networking…

==>	consul-server:	Checking	if	box	'ubuntu/trusty64'	is	up	to	date…

==>	consul-server:	Setting	the	name	of	the	VM:

libnetwork_consul-server_1451244524836_56275

==>	consul-server:	Clearing	any	previously	set	forwarded	ports…

==>	consul-server:	Clearing	any	previously	set	network	interfaces…

==>	consul-server:	Preparing	network	interfaces	based	on

configuration…

				consul-server:	Adapter	1:	nat

				consul-server:	Adapter	2:	hostonly

==>	consul-server:	Forwarding	ports…

				consul-server:	22	=>	2222	(adapter	1)

==>	consul-server:	Running	'pre-boot'	VM	customizations…

==>	consul-server:	Booting	VM…

==>	consul-server:	Waiting	for	machine	to	boot.	This	may	take	a	few	

minutes…

consul-server:

101aac79c475b84f6aff48352ead467d6b2b63ba6b64cc1b93c630489f7e3f4c

==>	net-1:	Box	'ubuntu/vivid64'	could	not	be	found.	Attempting	to	find	

and	install…

				net-1:	Box	Provider:	virtualbox

				net-1:	Box	Version:	>=	0

==>	net-1:	Loading	metadata	for	box	'ubuntu/vivid64'



				net-1:	URL:	https://atlas.hashicorp.com/ubuntu/vivid64

\==>	net-1:	Adding	box	'ubuntu/vivid64'	(v20151219.0.0)	for	provider:	

virtualbox

				net-1:	Downloading:

https://atlas.hashicorp.com/ubuntu/boxes/vivid64/versions/20151219.0.0/

providers/virtualbox.box

contd…

3.	 We	can	list	the	deployed	machine	by	Vagrant	as	follows:

$	vagrant	status

Current	machine	states:

consul-server											running	(virtualbox)

net-1																			running	(virtualbox)

net-2																			running	(virtualbox)

This	environment	represents	multiple	VMs.	The	VMs	are	all	listed	above	

with	their	current	state.	For	more	information	about	a	specific	VM,	run	

`vagrant	status	NAME`.

4.	 The	setup	is	complete	thanks	to	the	Vagrant	script;	now,	we	can	SSH	to	the	Docker
hosts	and	start	the	testing	containers:

$	vagrant	ssh	net-1

Welcome	to	Ubuntu	15.04	(GNU/Linux	3.19.0-42-generic	x86_64)

*	Documentation:https://help.ubuntu.com/

System	information	as	of	Sun	Dec	27	20:04:06	UTC	2015

System	load:		0.0															Users	logged	in:							0

Usage	of	/:			4.5%	of	38.80GB			IP	address	for	eth0:			10.0.2.15

Memory	usage:	24%															IP	address	for	eth1:				192.168.33.11

Swap	usage:			0%																IP	address	for	docker0:	172.17.0.1

Processes:				78

Graph	this	data	and	manage	this	system	at:		

https://landscape.canonical.com/

Get	cloud	support	with	Ubuntu	Advantage	Cloud	Guest:		

http://www.ubuntu.com/business/services/cloud

5.	 We	can	create	a	new	Docker	container,	and	inside	the	container	we	can	list	the
contents	of	the	/etc/hosts	file	in	order	to	verify	that	it	has	the	overlay	bridge
specification,	which	was	previously	deployed,	and	it	automatically	connects	to	it	on
the	launch:

$	docker	run	-it	--rm	ubuntu:14.04	bash

Unable	to	find	image	'ubuntu:14.04'	locally

14.04:	Pulling	from	library/ubuntu

6edcc89ed412:	Pull	complete

bdf37643ee24:	Pull	complete

ea0211d47051:	Pull	complete

a3ed95caeb02:	Pull	complete

Digest:	

sha256:d3b59c1d15c3cfb58d9f2eaab8a232f21fc670c67c11f582bc48fb32df17f3b3

Status:	Downloaded	newer	image	for	ubuntu:14.04

root@65db9144c65b:/#	cat	/etc/hosts

172.21.0.4		2ac726b4ce60

127.0.0.1			localhost

::1	localhost	ip6-localhost	ip6-loopback



fe00::0	ip6-localnet

ff00::0	ip6-mcastprefix

ff02::1	ip6-allnodes

ff02::2	ip6-allrouters

172.21.0.3		distracted_bohr

172.21.0.3		distracted_bohr.multihost

172.21.0.4		modest_curie

172.21.0.4		modest_curie.multihost

6.	 Similarly,	we	can	create	the	Docker	container	in	the	other	host	net-2	as	well	and	can
verify	the	working	of	the	overlay	network	driver	as	both	the	containers	will	be	able	to
ping	each	other	in	spite	of	being	deployed	on	different	hosts.

In	the	previous	example,	we	started	the	Docker	container	with	the	default	options	and	they
got	automatically	added	to	a	multi-host	network	of	type	overlay.

We	can	also	creat	a	separate	overlay	bridge	and	add	containers	to	it	manually	using	the	--
publish-service	option,	which	is	part	of	Docker	experimental:

vagrant@net-1:~$	docker	network	create	-d	overlay	tester

447e75fd19b236e72361c270b0af4402c80e1f170938fb22183758c444966427

vagrant@net-1:~$	docker	network	ls

NETWORK	ID											NAME															DRIVE

447e75fd19b2									tester													overlay

b77a7d741b45									bridge													bridge

40fe7cfeee20									none															null

62072090b6ac									host															host

The	second	host	will	also	see	this	network	and	we	can	create	containers	added	to	the
overlay	network	in	both	of	these	hosts	by	using	the	following	option	in	the	Docker
command:

$	docker	run	-it	--rm	--publish-service=bar.tester.overlay	ubuntu:14.04	

bash

We	will	be	able	to	verify	the	working	of	the	overlay	driver	as	both	the	containers	will	be
able	to	ping	each	other.	Also,	tools	such	as	tcpdump,	wireshark,	smartsniff,	and	so	on	can
be	used	to	capture	the	vXLAN	package.





Overlay	network	with	Docker	Machine
and	Docker	Swarm
This	section	explains	the	basics	of	creating	a	multi-host	network.	The	Docker	Engine
supports	multi-host	networking	through	the	overlay	network	driver.	Overlay	drivers	need
the	following	pre-requisites	to	work:

3.16	Linux	kernel	or	higher
Access	to	a	key-value	store
Docker	supports	the	following	key-value	stores:	Consul,	etcd,	and	ZooKeeper
A	cluster	of	hosts	connected	to	the	key-value	store
Docker	Engine	daemon	on	each	host	in	the	cluster

This	example	uses	Docker	Machine	and	Docker	Swarm	to	create	the	multi-network	host.

Docker	Machine	is	used	to	create	the	key-value	store	server	and	the	cluster.	The	cluster
created	is	a	Docker	Swarm	cluster.

The	following	diagram	explains	how	three	VMs	are	set	up	using	Docker	Machine:



Prerequisites
Vagrant
Docker	Engine
Docker	Machine
Docker	Swarm



Key-value	store	installation
An	overlay	network	requires	a	key-value	store.	The	key-value	store	stores	information
about	the	network	state	such	as	discovery,	networks,	endpoints,	IP	addresses,	and	so	on.
Docker	supports	various	key-value	stores	such	as	Consul,	etcd,	and	Zoo	Keeper.	This
section	has	been	implemented	using	Consul.

The	following	are	the	steps	to	install	key-value	store:

1.	 Provision	a	VirtualBox	virtual	machine	called	mh-keystore.

When	a	new	VM	is	provisioned,	the	process	adds	the	Docker	Engine	to	the	host.
Consul	instance	will	be	using	the	consul	image	from	the	Docker	Hub	account
(https://hub.docker.com/r/progrium/consul/):

$	docker-machine	create	-d	virtualbox	mh-keystore

Running	pre-create	checks…

Creating	machine…

(mh-keystore)	Creating	VirtualBox	VM…

(mh-keystore)	Creating	SSH	key…

(mh-keystore)	Starting	VM…

Waiting	for	machine	to	be	running,	this	may	take	a	few	minutes…

Machine	is	running,	waiting	for	SSH	to	be	available…

Detecting	operating	system	of	created	instance…

Detecting	the	provisioner…

Provisioning	with	boot2docker…

Copying	certs	to	the	local	machine	directory…

Copying	certs	to	the	remote	machine…

Setting	Docker	configuration	on	the	remote	daemon…

Checking	connection	to	Docker…

Docker	is	up	and	running!

To	see	how	to	connect	Docker	to	this	machine,	run:	docker-machine	env	

mh-keystore

2.	 Start	the	progrium/consul	container	created	previously	running	on	the	mh-keystore
virtual	machine:

$	docker	$(docker-machine	config	mh-keystore)	run	-d	\

>					-p	"8500:8500"	\

>					-h	"consul"	\

>					progrium/consul	-server	–bootstrap

Unable	to	find	image	'progrium/consul:latest'	locally

latest:	Pulling	from	progrium/consul

3b4d28ce80e4:	Pull	complete

…

d9125e9e799b:	Pull	complete

Digest:	

sha256:8cc8023462905929df9a79ff67ee435a36848ce7a10f18d6d0faba9306b97274

Status:	Downloaded	newer	image	for	progrium/consul:latest

032884c7834ce22707ed08068c24c503d599499f1a0a58098c31be9cc84d8e6c

A	bash	expansion	$(docker-machine	config	mh-keystore)	is	used	to	pass	the
connection	configuration	to	the	Docker	run	command.	The	client	starts	a	program

https://hub.docker.com/r/progrium/consul/


from	the	progrium/consul	image	running	in	the	mh-keystore	machine.	The
container	is	called	consul	(flag	–h)	and	is	listening	on	port	8500	(you	can	choose
any	other	port	as	well).

3.	 Set	the	local	environment	to	the	mh-keystore	virtual	machine:

$	eval	"$(docker-machine	env	mh-keystore)"

4.	 Execute	the	docker	ps	command	to	make	sure	the	Consul	container	is	up:

$	docker	ps

CONTAINER	ID						IMAGE												COMMAND															CREATED

032884c7834c			progrium/consul			"/bin/start	-server	-"			47	seconds	

ago

			STATUS										PORTS

Up	46	seconds		53/tcp,	53/udp,	8300-8302/tcp,	8301-8302/udp,	8400/tcp,	

0.0.0.0:8500->8500/tcp

NAMES

sleepy_austin



Create	a	Swarm	cluster	with	two	nodes
In	this	step,	we	will	use	Docker	Machine	to	provision	two	hosts	for	your	network.	We	will
create	two	virtual	machines	in	VirtualBox.	One	of	the	machines	will	be	Swarm	master,
which	will	be	created	first.

As	each	host	is	created,	options	for	the	overlay	network	driver	will	be	passed	to	the
Docker	Engine	using	Swarm	using	the	following	steps:

1.	 Create	a	Swarm	master	virtual	machine	mhs-demo0:

$	docker-machine	create	\

-d	virtualbox	\

--swarm	--swarm-master	\

--swarm-discovery="consul://$(docker-machine	ip	mh-keystore):8500"	\

--engine-opt="cluster-store=consul://$(docker-machine	ip	mh-

keystore):8500"	\

--engine-opt="cluster-advertise=eth1:2376"	\

mhs-demo0

At	creation	time,	you	supply	the	engine	daemon	with	the	--cluster-store	option.
This	option	tells	the	engine	the	location	of	the	key-value	store	for	the	overlay
network.	The	bash	expansion	$(docker-machine	ip	mh-keystore)	resolves	to	the
IP	address	of	the	Consul	server	you	created	in	step	1	of	the	preceding	section.	The	--
cluster-advertise	option	advertises	the	machine	on	the	network.

2.	 Create	another	virtual	machine	mhs-demo1	and	add	it	to	the	Docker	Swarm	cluster:

$	docker-machine	create	-d	virtualbox	\

				--swarm	\

				--swarm-discovery="consul://$(docker-machine	ip	mh-keystore):8500"	

\

				--engine-opt="cluster-store=consul://$(docker-machine	ip	mh-

keystore):8500"	\

				--engine-opt="cluster-advertise=eth1:2376"	\

mhs-demo1

Running	pre-create	checks…

Creating	machine…

(mhs-demo1)	Creating	VirtualBox	VM…

(mhs-demo1)	Creating	SSH	key…

(mhs-demo1)	Starting	VM…

Waiting	for	machine	to	be	running,	this	may	take	a	few	minutes…

Machine	is	running,	waiting	for	SSH	to	be	available…

Detecting	operating	system	of	created	instance…

Detecting	the	provisioner…

Provisioning	with	boot2docker…

Copying	certs	to	the	local	machine	directory…

Copying	certs	to	the	remote	machine…

Setting	Docker	configuration	on	the	remote	daemon…

Configuring	swarm…

Checking	connection	to	Docker…

Docker	is	up	and	running!

To	see	how	to	connect	Docker	to	this	machine,	run:	docker-machine	env	



mhs-demo1

3.	 List	virtual	machines	using	Docker	Machine	to	confirm	that	they	are	all	up	and
running:

$	docker-machine	ls

NAME										ACTIVE			DRIVER							STATE					URL																									

SWARM																DOCKER			ERRORS

mh-keystore			*								virtualbox			Running			tcp://192.168.99.100:2376																								

v1.9.1

mhs-demo0					-								virtualbox			Running			tcp://192.168.99.101:2376			

mhs-demo0	(master)			v1.9.1

mhs-demo1					-								virtualbox			Running			tcp://192.168.99.102:2376			

mhs-demo0												v1.9.1

At	this	point,	virtual	machines	are	running.	We	are	ready	to	create	a	multi-host
network	for	containers	using	these	virtual	machines.



Creating	an	overlay	network
The	following	command	is	used	to	create	an	overlay	network:

$	docker	network	create	--driver	overlay	my-net

We	will	only	need	to	create	the	network	on	a	single	host	in	the	Swarm	cluster.	We	used	the
Swarm	master	but	this	command	can	run	on	any	host	in	the	Swarm	cluster:

1.	 Check	that	the	overlay	network	is	running	using	the	following	command:

$	docker	network	ls

bd85c87911491d7112739e6cf08d732eb2a2841c6ca1efcc04d0b20bbb832a33

rdua1-ltm:overlay-tutorial	rdua$	docker	network	ls

NETWORK	ID										NAME																DRIVER

bd85c8791149								my-net														overlay

fff23086faa8								mhs-demo0/bridge				bridge

03dd288a8adb								mhs-demo0/none						null

2a706780454f								mhs-demo0/host						host

f6152664c40a								mhs-demo1/bridge				bridge

ac546be9c37c								mhs-demo1/none						null

c6a2de6ba6c9							mhs-demo1/host					host

Since	we	are	using	the	Swarm	master	environment,	we	are	able	to	see	all	the
networks	on	all	the	Swarm	agents:	the	default	networks	on	each	engine	and	the	single
overlay	network.	In	this	case,	there	are	two	engines	running	on	mhs-demo0	and	mhs-
demo1.

Each	NETWORK	ID	is	unique.

2.	 Switch	to	each	Swarm	agent	in	turn	and	list	the	networks:

$	eval	$(docker-machine	env	mhs-demo0)

$	docker	network	ls

NETWORK	ID										NAME																DRIVER

bd85c8791149								my-net														overlay

03dd288a8adb								none																		null

2a706780454f								host																		host

fff23086faa8								bridge														bridge

$	eval	$(docker-machine	env	mhs-demo1)

$	docker	network	ls

NETWORK	ID										NAME																DRIVER

bd85c8791149								my-net														overlay

358c45b96beb								docker_gwbridge					bridge

f6152664c40a								bridge														bridge

ac546be9c37c								none																null

c6a2de6ba6c9								host																host

Both	agents	report	they	have	the	my-net	network	with	the	overlay	driver.	We	have	a
multi-host	overlay	network	running.

The	following	figure	shows	how	two	containers	will	have	containers	created	and	tied



together	using	the	overlay	my-net:





Creating	containers	using	an	overlay
network
The	following	are	the	steps	for	creating	containers	using	an	overlay	network:

1.	 Create	a	container	c0	on	mhs-demo0	and	connect	to	the	my-net	network:

$	eval	$(docker-machine	env	mhs-demo0)

root@843b16be1ae1:/#

$	sudo	docker	run	-i	-t	--name=c0	--net=my-net		debian	/bin/bash

Execute	ifconfig	to	find	the	IPaddress	of	c0.	In	this	case,	it	is	10.0.0.4:

root@843b16be1ae1:/#	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:0a:00:00:04

										inet	addr:10.0.0.4		Bcast:0.0.0.0		Mask:255.255.255.0

										inet6	addr:	fe80::42:aff:fe00:4/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1450		Metric:1

										RX	packets:17	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:17	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:1474	(1.4	KB)		TX	bytes:1474	(1.4	KB)

eth1						Link	encap:Ethernet		HWaddr	02:42:ac:12:00:03

										inet	addr:172.18.0.3		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	fe80::42:acff:fe12:3/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:8	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:8	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:648	(648.0	B)		TX	bytes:648	(648.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

2.	 Create	a	container,	c1	on	mhs-demo1,	and	connect	to	the	my-net	network:

$	eval	$(docker-machine	env	mhs-demo1)

$	sudo	docker	run	-i	-t	--name=c1	--net=my-net		debian	/bin/bash

Unable	to	find	image	'ubuntu:latest'	locally

latest:	Pulling	from	library/ubuntu

0bf056161913:	Pull	complete

1796d1c62d0c:	Pull	complete

e24428725dd6:	Pull	complete

89d5d8e8bafb:	Pull	complete

Digest:	



sha256:a2b67b6107aa640044c25a03b9e06e2a2d48c95be6ac17fb1a387e75eebafd7c

Status:	Downloaded	newer	image	for	ubuntu:latest

								root@2ce83e872408:/#

3.	 Execute	ifconfig	to	find	the	IP	address	of	c1.	In	this	case,	it	is	10.0.0.3:

root@2ce83e872408:/#	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:0a:00:00:03

										inet	addr:10.0.0.3		Bcast:0.0.0.0		Mask:255.255.255.0

										inet6	addr:	fe80::42:aff:fe00:3/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1450		Metric:1

										RX	packets:13	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:7	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:1066	(1.0	KB)		TX	bytes:578	(578.0	B)

eth1						Link	encap:Ethernet		HWaddr	02:42:ac:12:00:02

										inet	addr:172.18.0.2		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	fe80::42:acff:fe12:2/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:7	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:7	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:578	(578.0	B)		TX	bytes:578	(578.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

4.	 Ping	c1	(10.0.0.3)	from	c0	(10.0.0.4)	and	vice	versa:

root@2ce83e872408:/#	ping	10.0.04

PING	10.0.04	(10.0.0.4)	56(84)	bytes	of	data.

64	bytes	from	10.0.0.4:	icmp_seq=1	ttl=64	time=0.370	ms

64	bytes	from	10.0.0.4:	icmp_seq=2	ttl=64	time=0.443	ms

64	bytes	from	10.0.0.4:	icmp_seq=3	ttl=64	time=0.441	ms



Container	network	interface
Container	network	interface	(CNI)	is	a	specification	that	defines	how	executable
plugins	can	be	used	to	configure	network	interfaces	for	Linux	application	containers.	The
official	GitHub	repository	of	CNI	explains	how	a	go	library	explains	the	implementing
specification.

The	container	runtime	first	creates	a	new	network	namespace	for	the	container	in	which	it
determines	which	network	this	container	should	belong	to	and	which	plugins	to	be
executed.	The	network	configuration	is	in	the	JSON	format	and	defines	on	the	container
startup	which	plugin	should	be	executed	for	the	network.	CNI	is	actually	an	evolving	open
source	technology	that	is	derived	from	the	rkt	networking	protocol.	Each	CNI	plugin	is
implemented	as	an	executable	and	is	invoked	by	a	container	management	system,	docker,
or	rkt.

After	inserting	the	container	in	the	network	namespace,	namely	by	attaching	one	end	of	a
veth	pair	to	a	container	and	attaching	the	other	end	to	a	bridge,	it	then	assigns	an	IP	to	the
interface	and	sets	up	routes	consistent	with	IP	address	management	by	invoking	an
appropriate	IPAM	plugin.

The	CNI	model	is	currently	used	for	the	networking	of	kubelets	in	the	Kubernetes	model.
Kubelets	are	the	most	important	components	of	Kubernetes	nodes,	which	takes	the	load	of
running	containers	on	top	of	them.

The	package	CNI	for	kubelet	is	defined	in	the	following	Kubernetes	package:

Constants

const	(

				CNIPluginName								=	"cni"

				DefaultNetDir								=	"/etc/cni/net.d"

				DefaultCNIDir								=	"/opt/cni/bin"

				DefaultInterfaceName	=	"eth0"

				VendorCNIDirTemplate	=	"%s/opt/%s/bin"

)

func	ProbeNetworkPlugins

func	ProbeNetworkPlugins(pluginDir	string)	[]network.NetworkPlugin

The	following	figure	shows	the	CNI	placement:







CNI	plugin
As	per	the	official	GitHub	repository	(https://github.com/appc/cni),	the	parameters	that	the
CNI	plugin	need	in	order	to	add	a	container	to	the	network	are:

Version:	The	version	of	CNI	spec	that	the	caller	is	using	(container	call	invoking	the
plugin).
Container	ID:	This	is	optional,	but	recommended,	and	defines	that	there	should	be	a
unique	ID	across	an	administrative	domain	while	the	container	is	live.	For	example,
the	IPAM	system	may	require	that	each	container	is	allocated	a	unique	ID	so	that	it
can	be	correlated	properly	to	a	container	running	in	the	background.
Network	namespace	path:	This	represents	the	path	to	the	network	namespace	to	be
added,	for	example,	/proc/[pid]/ns/net	or	a	bind-mount/link	to	it.
Network	configuration:	It	is	the	JSON	document	that	describes	a	network	to	which
a	container	can	be	joined	and	is	explained	in	the	following	section.
Extra	arguments:	It	allows	granular	configuration	of	CNI	plugins	on	a	per-container
basis.
Name	of	the	interface	inside	the	container:	It	is	the	name	that	gets	assigned	to	the
container	and	complies	with	Linux	restriction,	which	exists	for	interface	names.

The	results	achieved	are	as	follows:

IPs	assigned	to	the	interface:	This	is	either	an	IPv4	address	or	an	IPv6	address
assigned	to	the	network	as	per	requirements.
List	of	DNS	nameservers:	This	is	a	priority-ordered	address	list	of	DNS	name
servers.

https://github.com/appc/cni


Network	configuration
The	network	configuration	is	in	the	JSON	format	that	can	be	stored	on	disk	or	generated
from	other	sources	by	container	runtime.	The	following	fields	in	the	JSON	have
importance,	as	explained	in	the	following:

cniVersion	(string):	It	is	Semantic	Version	2.0	of	the	CNI	specification	to	which	this
configuration	meets.
name	(string):	It	is	the	network	name.	It	is	unique	across	all	containers	on	the	host
(or	other	administrative	domain).
type	(string):	Refers	to	the	filename	of	the	CNI	plugin	executable.
ipMasq	(boolean):	Optional,	sets	up	an	IP	masquerade	on	the	host	as	it	is	necessary
for	the	host	to	act	as	a	gateway	to	subnets	that	are	not	able	to	route	to	the	IP	assigned
to	the	container.
ipam:	Dictionary	with	IPAM-specific	values.
type	(string):	Refers	to	the	filename	of	the	IPAM	plugin	executable.
routes	(list):	List	of	subnets	(in	CIDR	notation)	that	the	CNI	plugin	should	make
sure	are	reachable	by	routing	through	the	network.	Each	entry	is	a	dictionary
containing:

dst	(string):	A	subnet	in	CIDR	notation
gw	(string):	It	is	the	IP	address	of	the	gateway	to	use.	If	not	specified,	the
default	gateway	for	the	subnet	is	assumed	(as	determined	by	the	IPAM	plugin).

An	example	configuration	for	plugin-specific	OVS	is	as	follows:

{

		"cniVersion":	"0.1.0",

		"name":	"pci",

		"type":	"ovs",

		//	type	(plugin)	specific

		"bridge":	"ovs0",

		"vxlanID":	42,

		"ipam":	{

				"type":	"dhcp",

				"routes":	[	{	"dst":	"10.3.0.0/16"	},	{	"dst":	"10.4.0.0/16"	}	]

		}

}



IP	allocation
The	CNI	plugin	assigns	an	IP	address	to	the	interface	and	installs	necessary	routes	for	the
interface,	thus	it	provides	great	flexibility	for	the	CNI	plugin	and	many	CNI	plugins
internally	have	the	same	code	to	support	several	IP	management	schemes.

To	lessen	the	burden	on	the	CNI	plugin,	a	second	type	of	plugin,	IP	address	management
plugin	(IPAM),	is	defined,	which	determines	the	interface	IP/subnet,	gateway,	and	routes
and	returns	this	information	to	the	main	plugin	to	apply.	The	IPAM	plugin	obtains
information	via	a	protocol,	ipam	section	defined	in	the	network	configuration	file,	or	data
stored	on	the	local	filesystem.



IP	address	management	interface
The	IPAM	plugin	is	invoked	by	running	an	executable,	which	is	searched	in	a	predefined
path	and	is	indicated	by	a	CNI	plugin	via	CNI_PATH.	The	IPAM	plugin	receives	all	the
system	environment	variables	from	this	executable,	which	are	passed	to	the	CNI	plugin.

IPAM	receives	a	network	configuration	file	via	stdin.	Success	is	indicated	by	a	zero	return
code	and	the	following	JSON,	which	gets	printed	to	stdout	(in	the	case	of	the	ADD
command):

{

		"cniVersion":	"0.1.0",

		"ip4":	{

				"ip":	<ipv4-and-subnet-in-CIDR>,

				"gateway":	<ipv4-of-the-gateway>,		(optional)

				"routes":	<list-of-ipv4-routes>				(optional)

		},

		"ip6":	{

				"ip":	<ipv6-and-subnet-in-CIDR>,

				"gateway":	<ipv6-of-the-gateway>,		(optional)

				"routes":	<list-of-ipv6-routes>				(optional)

		},

		"dns":	<list-of-DNS-nameservers>					(optional)

}

The	following	is	an	example	of	running	Docker	networking	with	CNI:

1.	 First,	install	Go	Lang	1.4+	and	jq	(command	line	JSON	processor)	to	build	the	CNI
plugins:

$	wget	https://storage.googleapis.com/golang/go1.5.2.linux-amd64.tar.gz

$	tar	-C	/usr/local	-xzf	go1.5.2.linux-amd64.tar.gz

$	export	PATH=$PATH:/usr/local/go/bin

$	go	version

go	version	go1.5.2	linux/amd64

$	sudo	apt-get	install	jq

2.	 Clone	the	official	CNI	GitHub	repository:

$	git	clone	https://github.com/appc/cni.git

Cloning	into	'cni'...

remote:	Counting	objects:	881,	done.

remote:	Total	881	(delta	0),	reused	0	(delta	0),	pack-reused	881

Receiving	objects:	100%	(881/881),	543.54	KiB	|	313.00	KiB/s,	done.

Resolving	deltas:	100%	(373/373),	done.

Checking	connectivity…	done.

3.	 We	will	now	create	a	netconf	file	in	order	to	describe	the	network:

mkdir	-p	/etc/cni/net.d

root@rajdeepd-virtual-machine:~#	cat	>/etc/cni/net.d/10-mynet.conf	

<<EOF

>{

>		"name":	"mynet",

>		"type":	"bridge",



>		"bridge":	"cni0",

>		"isGateway":	true,

>		"ipMasq":	true,

>		"ipam":	{

>				"type":	"host-local",

>				"subnet":	"10.22.0.0/16",

>				"routes":	[

>						{	"dst":	"0.0.0.0/0"	}

>				]

>		}

>}

>	EOF

4.	 Build	the	CNI	plugins:

~/cni$	./build

Building	API

Building	reference	CLI

Building	plugins

		flannel

		bridge

		ipvlan

		macvlan

		ptp

		dhcp

		host-local

5.	 Now	we	will	execute	the	priv-net-run.sh	script	in	order	to	create	the	private
network	with	the	CNI	plugin:

~/cni/scripts$	sudo	CNI_PATH=$CNI_PATH	./priv-net-run.sh	ifconfig

eth0						Link	encap:Ethernet		HWaddr	8a:72:75:7d:6d:6c

										inet	addr:10.22.0.2		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	fe80::8872:75ff:fe7d:6d6c/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:1	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:1	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:90	(90.0	B)		TX	bytes:90	(90.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

6.	 Run	a	Docker	container	with	the	network	namespace,	which	was	set	up	previously
using	the	CNI	plugin:

~/cni/scripts$	sudo	CNI_PATH=$CNI_PATH	./docker-run.sh	--rm	

busybox:latest	/bin/ifconfig

eth0						Link	encap:Ethernet		HWaddr	92:B2:D3:E5:BA:9B

										inet	addr:10.22.0.2		Bcast:0.0.0.0		Mask:255.255.0.0



										inet6	addr:	fe80::90b2:d3ff:fee5:ba9b/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:2	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:2	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:180	(180.0	B)		TX	bytes:168	(168.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)





Project	Calico’s	libnetwork	driver
Calico	provides	a	scalable	networking	solution	for	connecting	containers,	VMs,	or	bare
metal.	Calico	provides	connectivity	using	the	scalable	IP	networking	principle	as	a	layer	3
approach.	Calico	can	be	deployed	without	overlays	or	encapsulation.	The	Calico	service
should	be	deployed	as	a	container	on	each	node	and	provides	each	container	with	its	own
IP	address.	It	also	handles	all	the	necessary	IP	routing,	security	policy	rules,	and
distribution	of	routes	across	a	cluster	of	nodes.

The	Calico	architecture	contains	four	important	components	in	order	to	provide	a	better
networking	solution:

Felix,	the	Calico	worker	process,	is	the	heart	of	Calico	networking,	which	primarily
routes	and	provides	desired	connectivity	to	and	from	the	workloads	on	host.	It	also
provides	the	interface	to	kernels	for	outgoing	endpoint	traffic.
BIRD,	the	route	distribution	open	source	BGP,	exchanges	routing	information
between	hosts.	The	kernel	endpoints,	which	are	picked	up	by	BIRD,	are	distributed	to
BGP	peers	in	order	to	provide	inter-host	routing.	Two	BIRD	processes	run	in	the
calico-node	container,	IPv4	(bird)	and	one	for	IPv6	(bird6).
Confd,	a	templating	process	to	auto-generate	configuration	for	BIRD,	monitors	the
etcd	store	for	any	changes	to	BGP	configuration	such	as	log	levels	and	IPAM
information.	Confd	also	dynamically	generates	BIRD	configuration	files	based	on
data	from	etcd	and	triggers	automatically	as	updates	are	applied	to	data.	Confd
triggers	BIRD	to	load	new	files	whenever	a	configuration	file	is	changed.
calicoctl,	the	command	line	used	to	configure	and	start	the	Calico	service,	even
allows	the	datastore	(etcd)	to	define	and	apply	security	policy.	The	tool	also	provides
the	simple	interface	for	general	management	of	Calico	configuration	irrespective	of
whether	Calico	is	running	on	VMs,	containers,	or	bare	metal.	The	following
commands	are	supported	at	calicoctl:

$	calicoctlOverride	the	host:port	of	the	ETCD	server	by	setting	the	

environment	variable	ETCD_AUTHORITY	[default:	127.0.0.1:2379]Usage:	

calicoctl	<command>	[<args>...]

status												Print	current	status	information

node														Configure	the	main	calico/node	container	and	

establish	Calico	networking

container									Configure	containers	and	their	addresses

profile											Configure	endpoint	profiles

endpoint										Configure	the	endpoints	assigned	to	existing	

containers

pool														Configure	ip-pools

bgp															Configure	global	bgp

ipam														Configure	IP	address	management

checksystem							Check	for	incompatibilities	on	the	host	system

diags													Save	diagnostic	information

version											Display	the	version	of	calicoctl

config												Configure	low-level	component	configuration

See	'calicoctl	<command>	--help'	to	read	about	a	specific	subcommand.

As	per	the	official	GitHub	page	of	the	Calico	repository



(https://github.com/projectcalico/calico-containers),	the	following	integration	of	Calico
exists:

Calico	as	a	Docker	network	plugin
Calico	without	Docker	networking
Calico	with	Kubernetes
Calico	with	Mesos
Calico	with	Docker	Swarm

The	following	figure	shows	the	Calico	architecture:

In	the	following	tutorial	we	will	run	the	manual	set	up	of	Calico	on	a	single	node	machine
with	Docker	1.9,	which	finally	brings	libnetwork	out	of	its	experimental	version	to	main
release,	and	Calico	can	be	configured	directly	without	the	need	of	other	Docker
experimental	versions:

1.	 Get	the	etcd	latest	release	and	configure	it	on	the	default	port	2379:

$	curl	-L	https://github.com/coreos/etcd/releases/download/v2.2.1/etcd-

v2.2.1-linux-amd64.tar.gz	-o	etcd-v2.2.1-linux-amd64.tar.gz

		%	Total				%	Received	%	Xferd		Average	Speed			Time				Time					Time		

Current

																																	Dload		Upload			Total			Spent				Left		

Speed

100			606				0			606				0					0				445						0	--:--:--		0:00:01	--:--:-

-			446

100	7181k		100	7181k				0					0			441k						0		0:00:16		0:00:16	--:--:-

-	1387k

$	tar	xzvf	etcd-v2.2.1-linux-amd64.tar.gz

etcd-v2.2.1-linux-amd64/

etcd-v2.2.1-linux-amd64/Documentation/

etcd-v2.2.1-linux-amd64/Documentation/04_to_2_snapshot_migration.md

etcd-v2.2.1-linux-amd64/Documentation/admin_guide.md

etcd-v2.2.1-linux-amd64/Documentation/api.md

https://github.com/projectcalico/calico-containers


contd..

etcd-v2.2.1-linux-amd64/etcd

etcd-v2.2.1-linux-amd64/etcdctl

etcd-v2.2.1-linux-amd64/README-etcdctl.md

etcd-v2.2.1-linux-amd64/README.md

$	cd	etcd-v2.2.1-linux-amd64

$	./etcd

2016-01-06	15:50:00.065733	I	|	etcdmain:	etcd	Version:	2.2.1

2016-01-06	15:50:00.065914	I	|	etcdmain:	Git	SHA:	75f8282

2016-01-06	15:50:00.065961	I	|	etcdmain:	Go	Version:	go1.5.1

2016-01-06	15:50:00.066001	I	|	etcdmain:	Go	OS/Arch:	linux/amd64

Contd..

2016-01-06	15:50:00.107972	I	|	etcdserver:	starting	server…	[version:	

2.2.1,	cluster	version:	2.2]

2016-01-06	15:50:00.508131	I	|	raft:	ce2a822cea30bfca	is	starting	a	new	

election	at	term	5

2016-01-06	15:50:00.508237	I	|	raft:	ce2a822cea30bfca	became	candidate	

at	term	6

2016-01-06	15:50:00.508253	I	|	raft:	ce2a822cea30bfca	received	vote	

from	ce2a822cea30bfca	at	term	6

2016-01-06	15:50:00.508278	I	|	raft:	ce2a822cea30bfca	became	leader	at	

term	6

2016-01-06	15:50:00.508313	I	|	raft:	raft.node:	ce2a822cea30bfca	

elected	leader	ce2a822cea30bfca	at	term	6

2016-01-06	15:50:00.509810	I	|	etcdserver:	published	{Name:default	

ClientURLs:[http://localhost:2379	http://localhost:4001]}	to	cluster	

7e27652122e8b2ae

2.	 Open	the	new	terminal	and	configure	the	Docker	daemon	with	the	etcd	key-value
store	by	running	the	following	commands:

$	service	docker	stop

$	docker	daemon	--cluster-store=etcd://0.0.0.0:2379

INFO[0000]	[graphdriver]	using	prior	storage	driver	"aufs"

INFO[0000]	API	listen	on	/var/run/docker.sock

INFO[0000]	Firewalld	running:	false

INFO[0015]	Default	bridge	(docker0)	is	assigned	with	an	IP	address	

172.16.59.1/24.	Daemon	option	--bip	can	be	used	to	set	a	preferred	IP	

address

WARN[0015]	Your	kernel	does	not	support	swap	memory	limit.

INFO[0015]	Loading	containers:	start.

.....INFO[0034]	Skipping	update	of	resolv.conf	file	with	ipv6Enabled:	

false	because	file	was	touched	by	user

INFO[0043]	Loading	containers:	done.

INFO[0043]	Daemon	has	completed	initialization

INFO[0043]	Docker	daemon							commit=a34a1d5	execdriver=native-0.2	

graphdriver=aufs	version=1.9.1

INFO[0043]	GET	/v1.21/version

INFO[0043]	GET	/v1.21/version

INFO[0043]	GET	/events

INFO[0043]	GET	/v1.21/version

3.	 Now,	in	the	new	terminal,	start	the	Calico	container	in	the	following	way:

$	./calicoctl	node	--libnetwork



No	IP	provided.	Using	detected	IP:	10.22.0.1

Pulling	Docker	image	calico/node:v0.10.0

Calico	node	is	running	with	id:	

79e75fa6d875777d31b8aead10c2712f54485c031df50667edb4d7d7cb6bb26c

Pulling	Docker	image	calico/node-libnetwork:v0.5.2

Calico	libnetwork	driver	is	running	with	id:	

bc7d65f6ab854b20b9b855abab4776056879f6edbcde9d744f218e556439997f

$	docker	ps

CONTAINER	ID								IMAGE																											COMMAND									

CREATED													STATUS														PORTS															NAMES

7bb7a956af37								calico/node-libnetwork:v0.5.2			"./start.sh"											

3	minutes	ago							Up	3	minutes													calico-libnetwork

13a0314754d6								calico/node:v0.10.0													"/sbin/start_runit"				

3	minutes	ago							Up	3	minutes													calico-node

1f13020cc3a0								weaveworks/plugin:1.4.1									

"/home/weave/plugin"			3	days	ago										Up	3	minutes													

weaveplugin

4.	 Create	the	Calico	bridge	using	the	docker	network	command	recently	introduced	in
the	Docker	CLI:

$docker	network	create	–d	calico	net1

$	docker	network	ls

NETWORK	ID										NAME																DRIVER

9b5f06307cf2								docker_gwbridge					bridge

1638f754fbaf								host																host

02b10aaa25d7								weave															weavemesh

65dc3cbcd2c0								bridge														bridge

f034d78cc423								net1																calico

5.	 Start	the	busybox	container	connected	to	the	Calico	net1	bridge:

$docker	run	--net=net1	-itd	--name=container1	busybox

1731629b6897145822f73726194b1f7441b6086ee568e973d8a88b554e838366

$	docker	ps

CONTAINER	ID								IMAGE																											COMMAND																

CREATED													STATUS														PORTS															NAMES

1731629b6897								busybox																									"sh"																			

6	seconds	ago							Up	5	seconds																												container1

7bb7a956af37								calico/node-libnetwork:v0.5.2			"./start.sh"											

6	minutes	ago							Up	6	minutes																												calico-

libnetwork

13a0314754d6								calico/node:v0.10.0													"/sbin/start_runit"				

6	minutes	ago							Up	6	minutes																												calico-node

1f13020cc3a0								weaveworks/plugin:1.4.1									

"/home/weave/plugin"			3	days	ago										Up	6	minutes																												

weaveplugin

$	docker	attach	1731

/	#

/	#	ifconfig

cali0					Link	encap:Ethernet		HWaddr	EE:EE:EE:EE:EE:EE

										inet	addr:10.0.0.2		Bcast:0.0.0.0		Mask:255.255.255.0

										inet6	addr:	fe80::ecee:eeff:feee:eeee/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:29	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:8	errors:0	dropped:0	overruns:0	carrier:0



										collisions:0	txqueuelen:1000

										RX	bytes:5774	(5.6	KiB)		TX	bytes:648	(648.0	B)

eth1						Link	encap:Ethernet		HWaddr	02:42:AC:11:00:02

										inet	addr:172.17.0.2		Bcast:0.0.0.0		Mask:255.255.0.0

										inet6	addr:	fe80::42:acff:fe11:2/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:21	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:8	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:4086	(3.9	KiB)		TX	bytes:648	(648.0	B)

lo								Link	encap:Local	Loopback

										inet	addr:127.0.0.1		Mask:255.0.0.0

										inet6	addr:	::1/128	Scope:Host

										UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

Inside	the	container	we	can	see	that	the	container	is	now	connected	to	the	Calico
bridge	and	can	connect	to	the	other	containers	deployed	on	the	same	bridge.





Summary
In	this	chapter,	we	looked	into	some	of	the	deeper	and	more	conceptual	aspects	of	Docker
networking,	one	of	them	being	libnetworking,	the	future	Docker	network	model	that	is
already	getting	into	shape	with	the	release	of	Docker	1.9.	While	explaining	libnetworking,
we	also	studied	the	CNM	model	and	its	various	objects	and	components	with	its
implementation	code	snippets.	Next,	we	looked	into	drivers	of	CNM,	the	prime	one	being
the	overlay	driver,	in	detail,	with	deployment	as	part	of	the	Vagrant	setup.	We	also	looked
at	the	stand-alone	integration	of	containers	with	the	overlay	network	and	as	well	with
Docker	Swarm	and	Docker	Machine.	In	the	next	section,	we	explained	about	the	CNI
interface,	its	executable	plugins,	and	a	tutorial	of	configuring	Docker	networking	with	the
CNI	plugin.

In	the	last	section,	project	Calico	is	explained	in	detail,	which	provides	a	scalable
networking	solution	based	out	of	libnetwork	and	provides	integration	with	Docker,
Kubernetes,	Mesos,	bare-metal,	and	VMs	primarily.
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