
Learning
Groovy

—
Adam L. Davis

www.allitebooks.com

http://www.allitebooks.org

 Learning Groovy

 Adam L. Davis

www.allitebooks.com

http://www.allitebooks.org

Learning Groovy

Adam L. Davis
New York, USA

ISBN-13 (pbk): 978-1-4842-2116-7 ISBN-13 (electronic): 978-1-4842-2117-4
DOI 10.1007/978-1-4842-2117-4

Library of Congress Control Number: 2016949453

Copyright © 2016 by Adam L. Davis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Cover image designed by Freepik

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Manuel Jordan Elera
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text are available
to readers at www.apress.com/9781484221167 . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ . Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484221167
www.apress.com/source-code/
http://www.allitebooks.org

 To my parents, to whom I owe everything in ways large and small.

 To my children, who mean the world to me.

 To my wife, for putting up with me and supporting me.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ... xv

About the Technical Reviewer ... xvii

Acknowledgments .. xix

About This Book.. xxi

 ■Part I: Getting Groovy ... 1

 ■Chapter 1: Software to Install ... 3

 ■Chapter 2: Groovy 101 .. 5

 ■Chapter 3: Tools .. 15

 ■Chapter 4: GDK ... 17

 ■Chapter 5: Coming from Java ... 23

 ■Part II: Advanced Groovy .. 29

 ■Chapter 6: Groovy Design Patterns ... 31

 ■Chapter 7: DSLs .. 35

 ■Chapter 8: Traits ... 41

 ■Chapter 9: Functional Programming .. 45

 ■Chapter 10: Groovy GPars ... 55

 ■Part III: The Groovy Ecosystem 59

 ■Chapter 11: Groovy Awesomeness ... 61

 ■Chapter 12: Gradle .. 65

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS AT A GLANCE

vi

 ■Chapter 13: Grails ... 71

 ■Chapter 14: Spock .. 79

 ■Chapter 15: Ratpack ... 83

 ■Appendix A: Java/Groovy .. 95

 ■Appendix B: Resources ... 97

Index .. 99

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ... xv

About the Technical Reviewer ... xvii

Acknowledgments .. xix

About This Book.. xxi

 ■Part I: Getting Groovy ... 1

 ■Chapter 1: Software to Install ... 3

Java/Groovy ... 3

Trying It Out .. 4

Others .. 4

Code on Github .. 4

 ■Chapter 2: Groovy 101 .. 5

What Is Groovy? .. 5

Compact Syntax .. 6

Dynamic def .. 6

List and Map Defi nitions .. 6

Groovy GDK .. 7

Everything Is an Object ... 7

Easy Properties ... 7

GString .. 8

Closures .. 8

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

A Better Switch ... 9

Meta-Programming ... 10

Static Type-Checking ... 10

Elvis Operator .. 11

Safe Dereference Operator .. 12

A Brief History ... 12

Groovy 1.8 ... 12

Groovy 2.0 ... 13

Groovy 2.1 ... 13

Groovy 2.2 ... 13

Groovy 2.3 ... 14

Groovy 2.4 ... 14

Summary ... 14

 ■Chapter 3: Tools .. 15

Console .. 15

Compilation ... 15

Shell .. 16

Documentation .. 16

 ■Chapter 4: GDK ... 17

Collections ... 17

Spread .. 18

GPath .. 18

IO ... 18

Files .. 18

URLs ... 19

Ranges .. 20

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

Utilities .. 21

Confi gSlurper .. 21

Expando .. 21

ObservableList/Map/Set ... 22

 ■Chapter 5: Coming from Java ... 23

Default Method Values .. 23

Equals, Hashcode, and More ... 23

Regex Pattern Matching .. 24

Missing Java Syntax .. 25

Semicolon Optional ... 25

Where Are Generics? ... 26

Groovy Numbers .. 26

Boolean-Resolution ... 26

Map Syntax ... 27

Summary ... 27

 ■Part II: Advanced Groovy .. 29

 ■Chapter 6: Groovy Design Patterns ... 31

Strategy Pattern .. 31

Meta-Programming ... 32

Meta-Class ... 32

Categories .. 32

Missing Methods ... 33

Delegation ... 34

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

x

 ■Chapter 7: DSLs .. 35

Delegate .. 35

Overriding Operators ... 36

Missing Methods and Properties ... 38

 ■Chapter 8: Traits ... 41

Defi ning Traits ... 41

Using Traits .. 41

Summary ... 43

 ■Chapter 9: Functional Programming .. 45

Functions and Closures ... 45

Using Closures .. 46

Map/Filter/And So On .. 46

Immutability .. 50

Groovy Fluent GDK ... 51

Groovy Curry .. 52

Method Handles .. 53

Tail Recursion .. 53

Summary ... 54

 ■Chapter 10: Groovy GPars ... 55

Parallel Map Reduce ... 55

Actors .. 56

 ■Part III: The Groovy Ecosystem 59

 ■Chapter 11: Groovy Awesomeness ... 61

Web and UI Frameworks ... 61

Grails .. 61

Griffon ... 61

 ■ CONTENTS

xi

vert.x ... 61

Ratpack... 61

Cloud Computing Frameworks .. 62

Gaelyk ... 62

Caelyf .. 62

Build Frameworks ... 62

Gradle ... 62

Gant .. 62

Testing Frameworks/Code Analysis... 62

Easyb ... 62

Spock .. 63

Codenarc .. 63

GContracts .. 63

Concurrency .. 63

GPars .. 63

RxGroovy ... 63

Others .. 63

gvm ... 64

lazybones .. 64

 ■Chapter 12: Gradle .. 65

Projects and Tasks .. 65

Plugins... 66

Confi guring a Task ... 66

Extra Confi guration .. 67

Maven Dependencies .. 67

Gradle Properties ... 68

Multiproject Builds .. 68

■ CONTENTS

xii

File Operations .. 69

Exploring ... 70

Completely Groovy .. 70

Summary ... 70

 ■Chapter 13: Grails ... 71

Quick Overview of Grails ... 71

Plugins... 73

REST in Grails .. 73

Short History of Grails ... 74

Grails 2.0 .. 74

Grails 2.1 .. 75

Grails 2.2 .. 75

Grails 2.3 .. 76

Grails 2.4 .. 76

Grails 3.1.x .. 76

Testing ... 77

Cache Plugin ... 77

Grails Wrapper ... 78

Cloud ... 78

 ■Chapter 14: Spock .. 79

Spock Basics ... 79

A Simple Test ... 79

Mocking ... 80

Lists or Tables of Data ... 81

Expecting Exceptions .. 81

Summary ... 82

 ■ CONTENTS

xiii

 ■Chapter 15: Ratpack ... 83

Script ... 84

Gradle .. 84

Ratpack Layout .. 85

Handlers .. 85

Rendering .. 86

Groovy Text ... 87

JSON.. 89

Bindings .. 90

Blocking .. 91

Confi guration ... 91

Testing ... 92

Summary ... 94

 ■Appendix A: Java/Groovy ... 95

No Java Analogue .. 96

Tricks ... 96

 ■Appendix B: Resources ... 97

Index .. 99

xv

 About the Author

 Adam L. Davis makes software. He has spent many years developing in Java (since Java 1.2)
and has enjoyed using Spring and Hibernate. Since 2006 he’s been using Groovy and Grails
in addition to Java to create SaaS web applications that help track contracts and finances
for large institutions (among other things) at The Solution Design Group, Inc. Adam has a
Master’s and a Bachelor’s degree in Computer Science from Georgia Tech. He attends
many conferences, has authored several books, and sometimes speaks at his local
Java User Group.

 You can find out more at his website: adamldavis.com .
 He currently resides in Central Florida with his wife, two small children, and their dog.

http://adamldavis.com/

xvii

 About the Technical
Reviewer

 Manuel Jordan Elera is an autodidactic developer and
researcher who enjoys learning new technologies for
his own experiments and creating new integrations.

 Manuel won the 2010 Springy Award—Community
Champion and Spring Champion 2013. In his little
free time, he reads the Bible and composes music on
his guitar. Manuel is known as dr_pompeii . He has
tech reviewed numerous books for Apress, including
 Pro Spring, 4th Edition (2014), Practical Spring LDAP
(2013), Pro JPA 2, Second Edition (2013), and Pro Spring
Security (2013).

 Read his 13 detailed tutorials about many
Spring technologies, contact him through his blog at
 http://www.manueljordanelera.blogspot.com , and
follow him on his Twitter account @dr_pompeii .

http://www.manueljordanelera.blogspot.com/

xix

 Acknowledgments

 Thank you to the following individuals who, without their contributions and support, this
book would not have been written:

• Guillaume Laforge, leader and evangelist of the Groovy project for
many years.

• Dierk König and Paul King, two famous Groovy committers.

• Søren Berg Glasius, core contributor of Spock.

• Luke Daley, contributor to Ratpack, Gradle, Spock, and others.

• Dan Woods, core contributor to Ratpack and author of Learning
Ratpack.

xxi

 About This Book

 This book is organized into several chapters, starting from the most basic concepts. If you
already understand a concept, you can safely move ahead to the next chapter. Although
this book concentrates on Groovy, it also refers to other languages such as Java, Scala, and
JavaScript.

 As the title suggests, this book is about learning Groovy, but will also cover related
technology such as build tools and web frameworks.

 Assumptions
 This book assumes the reader already is familiar with Java syntax and basic programming
ideas.

 Icons

 ■ Tips If you see text stylized like this, it is extra information that you might find

helpful.

 ■ Info Text stylized this way is usually a reference to additional information for the

curious reader.

 ■ Warnings Text like this are cautions for the wary reader—many have fallen on

the path of computer programming.

 ■ Exercises This is an exercise. We learn by doing. These are highly

recommended.

 PART I

 Getting Groovy

3© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_1

 CHAPTER 1

 Software to Install

 Before you begin programming, you need to install some basic tools.

 Java/Groovy
 For Java and Groovy you will need to install the following:

• JDK (Java Development Kit) such as JDK 8

• IDE (Integrated Development Environment) such as NetBeans 8

• Groovy

 ■ Install Java and NetBeans 8

 Download and install the Java JDK 8 1 .

 ■ Install Groovy

 Go and install Groovy 2 2.4

 You can Download Groovy 3 and install it. 4

 1 http://www.oracle.com/technetwork/java/javase/downloads/index.html
 2 http://groovy-lang.org/
 3 http://groovy-lang.org/download.html
 4 http://sdkman.io/

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-2117-4_1) contains supplementary material, which is available to
authorized users.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://groovy-lang.org/
http://groovy-lang.org/download.html
http://sdkman.io/
http://dx.doi.org/10.1007/978-1-4842-2117-4_1

CHAPTER 1 ■ SOFTWARE TO INSTALL

4

 You may need to set the JAVA_HOME environment variable to the location of your Java
installation and GROOVY_HOME to the location of your groovy installation.

 Trying It Out
 After installing Groovy, you should use it to try coding. Open a command prompt and
type groovyConsole and press enter to begin.

 ■ In the groovyConsole, type the following and then press Ctrl+R to run the code:

 1 print "hello"

 You should keep the Groovy Console open and use it to try all of the examples in
this book.

 Others
 Once you have the above installed, you should probably install:

• SDKMAN 5 : The Software Development Kit Manager

• Git 6 : A version control program

 Go ahead and install these if you're in the mood—I'll wait.

 Code on Github
 A lot of the code from this book is available on github.com/adamldavis/learning-groovy 7 .
You can go there at any time to follow along with the book.

 5 http://sdkman.io/
 6 http://git-scm.com/
 7 https://github.com/adamldavis/learning-groovy

https://github.com/adamldavis/learning-groovy
http://sdkman.io/
http://git-scm.com/
https://github.com/adamldavis/learning-groovy

5© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_2

 CHAPTER 2

 Groovy 101

 In this chapter, we are going to cover the basics of Groovy, the history of Groovy, and the
advantages of using Groovy.

 What Is Groovy ?
 Groovy is a flexible open source language built for the JVM (Java Virtual Machine) with
a Java-like syntax. It can be used dynamically (where any variable can hold any type
of object) or statically-typed (where the type of each variable is heavily restricted);
it’s your choice. In most other languages, it is one or the other. It supports functional
programming constructs, including first-class functions, currying, and more. It has
multiple-inheritance, type inference, and meta-programming.

 Groovy began in 2003 partly as a response to Ruby. Its main features were dynamic
typing, meta-programming (the ability to change classes at runtime), and tight
integration with Java. Although its original developer abandoned it, many developers 1
in the community have contributed to it over the years. Various organizations have
supported the development of Groovy in the past and, like many open source projects,
it cannot be attributed to one person or company. It is now an Apache Software
Foundation 2 project .

 Groovy is very similar in syntax to Java so it is generally easy for Java developers to
learn (Java code is generally valid Groovy code). However, Groovy has many additional
features and relaxed syntax rules: closures, dynamic typing, meta-programming (via
 metaClass), semicolons are optional, regex support, operator overloading, GStrings, and
more. Groovy is interpreted at runtime, but in Groovy 2.0 the ability to compile to byte-
code and enforce type-checking were added to the language.

 1 http://melix.github.io/blog/2015/02/who-is-groovy.html
 2 http://apache.org/

http://melix.github.io/blog/2015/02/who-is-groovy.html
http://apache.org/

CHAPTER 2 ■ GROOVY 101

6

 Compact Syntax
 Groovy’s syntax can be made far more compact than Java. For example, the following
code in Standard Java 5+ should print out "Rod" :

 1 for (String it : new String[] {"Rod", "Carlos", "Chris"})
 2 if (it.length() < 4)
 3 System.out.println(it);

 The same thing can be expressed in Groovy in one line as the following:

 1 ["Rod", "Carlos", "Chris"].findAll{it.size() < 4}.each{println it}

 It has tons of built-in features to make this possible (compact List definition,
extensions to JDK objects, closures, optional semicolons, the println method, and
optional parentheses).

 The method findAll traverses the list and uses the given test to create a new
collection with only the objects that pass the test.

 Dynamic def
 A key feature of Groovy is dynamic typing using the def keyword . This keyword replaces
any type definition, thereby allowing variables to be of any type. This is somewhat like
defining variables as Object but not exactly the same because the Groovy compiler treats
 def differently. For example, you can use def and still use the @TypeChecked annotation,
which we will cover later.

 List and Map Definitions
 Groovy makes List and Map definitions much more concise and simple. You simply use
brackets ([]) and the mapping symbol (:)for mapping keys to values:

 1 def list = [1, 2]
 2 def map = [cars: 2, boats: 3]
 3 println list.getClass() // java.util.ArrayList
 4 println map.getClass() // java.util.LinkedHashMap

 By default, Groovy interprets Map key values as strings without requiring quotes.
When working with maps with String keys, Groovy makes life much easier by allowing
you to refer to keys using dot-notation (avoiding the get and put methods). For example :

 1 map.cars = 2
 2 map.boats = 3
 3 map.planes = 0
 4 println map.cars // 2

CHAPTER 2 ■ GROOVY 101

7

 This even makes it possible to Mock objects using a Map when testing.
 Groovy Lists even override the left shift operator (<<), which allows the following

syntax example:

 1 def list = []
 2 list.add(new Vampire("Count Dracula", 1897))
 3 // or
 4 list << new Vampire("Count Dracula", 1897)
 5 // or
 6 list += new Vampire("Count Dracula", 1897)

 ■ Tip Groovy allows overriding of common operators like plus and minus. We will

cover this in a later chapter.

 Groovy GDK
 Built-in Groovy types (the GDK) are much the same as Java's except that Groovy adds tons
of methods to every class.

 For example, the each method allows you to iterate over a collection as follows:

 1 ["Java", "Groovy", "Scala"].each{ println it }

 The println and print methods are shorthand for calling those methods on
 System.out . We will cover the GDK more in depth later.

 Everything Is an Object
 Unlike in Java, primitives can be used like Objects at any time so there appears to be no
distinction. For example, since the GDK adds the times method to Number you can do
the following:

 1 100.times { println "hi" }

 This would print "hi" 100 times.

 Easy Properties
 Groovy takes the idea of Java Beans to a whole new level. You can get and set Bean
properties using dot-notation (and Groovy automatically adds getters and setters to your
classes if you don’t).

CHAPTER 2 ■ GROOVY 101

8

 For example, instead of person.getFirstName() , you can use person.firstName .
When setting properties, instead of person.setFirstName("Bob") you can just use
 person.firstName = 'Bob' .

 ■ Tip Unlike Java, Groovy always defaults to public.

 You can also easily get a list of all properties of an object in Groovy using
 .properties . For example:

 1 println person.properties

 ■ Tip Use properties to explore some class in Groovy that you want to know

more about.

 GString
 Groovy adds its own class, called GString , that allows you to embed Groovy code within
strings. This is another features that makes Groovy very concise and easy to read. A
GString is created every time you use double quotes ("") in Groovy.

 For example, it makes it easy to embed a bunch of variables into a string:

 1 def os = 'Linux'
 2 def cores = 2
 3 println("Cores: $cores, OS: $os, Time: ${new Date()}")

 The dollar $ allows you to refer directly to variables, and ${code} allows you to
execute arbitrary Groovy code when included in a GString.

 ■ Tip If you just want to use a java.lang.String , you should use single quotes ('foo').

 Closures
 A closure is a block of code in Groovy, which may or may not take parameters and return
a value. It's similar to lambda expressions in Java 8 or an inner class with one method.
Closures can be extremely useful in many ways, which will be covered later. For example,
closures are used by the findAll , each , and times methods, as you have already seen.

CHAPTER 2 ■ GROOVY 101

9

 Groovy closures have several implicit variables:

• it —If the closure has one argument, it can be referred to
implicitly as it .

• this —Refers to the enclosing class.

• owner —The same as this unless it is enclosed in another closure.

• delegate —Usually the same as owner but you can change it
(this allows the methods of delegate to be in scope).

 Closures can be passed as method arguments. When this is done (and it is the last
argument), the closure may go outside the parentheses. For example, when using the
 collect method (which uses the given closure to transform elements of list into a new
list), you can call it as follows:

 1 def list = ['foo','bar']
 2 def newList = []
 3 list.collect(newList) {
 4 it.toUpperCase()
 5 }
 6 println newList // ["FOO", "BAR"]

 ■ Tip The return keyword is completely optional in Groovy. A method or closure

simply returns its last expression, as seen previously.

 You can also assign closures to variables and call them later:

 1 def closr = {x -> x + 1}
 2 println(closr(2)) // prints 3

 ■ Tip Create a closure and print out the class of its delegate using getClass() .

 A Better Switch
 Groovy’s switch statement is much like Java’s, except that it allows many more case
expressions. For example, it allows Strings, lists, ranges, and class types:

 1 def x = 42
 2 switch (x) {
 3 case "foo":
 4 result = "found foo"
 5 break

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ GROOVY 101

10

 6 case [4, 5, 6]:
 7 result = "4 5 or 6"
 8 break
 9 case 12..30: // Range
 10 result = "12 to 30"
 11 break
 12 case Integer:
 13 result = "was integer"
 14 break
 15 case Number:
 16 result = "was number"
 17 break
 18 default :
 19 result = "default"
 20 }

 Meta-Programming
 In Groovy, you can add methods to classes at runtime, even to core Java libraries. For
example, the following code adds the upper method to the String class:

 1 String.metaClass.upper = { -> toUpperCase() }

 or for a single instance (str):

 1 def str = "test"
 2 str.metaClass.upper = { -> toUpperCase() }

 The upper method would convert the String to uppercase:

 1 str.upper() == str.toUpperCase()

 Static Type-Checking
 If you add the @TypeChecked annotation to your class, it causes the compiler to enforce
compile time type-checking. It will infer types for you, so your code can still be Groovy . It
infers the Lowest Upper Bound (LUB) type based on your code. For example:

 1 import groovy.transform.*
 2 @TypeChecked
 3 class Foo {
 4 int i = 42.0 // this does not compile
 5 }

CHAPTER 2 ■ GROOVY 101

11

 1 import groovy.transform.*
 2 @TypeChecked
 3 class Foo {
 4 int i = 42 // this works fine
 5 }
 6 new Foo()

 ■ Gotcha’s

• Runtime meta-programming won't work!

• Explicit type is needed in a closure: a.collect {String it ->
it.toUpperCase()}

 If you add the @CompileStatic annotation to your class or method, it causes the
compiler to compile your Groovy code to byte-code. This would be useful when you have
code that needs to be extremely performant or you need Java byte-code for some other
reason. The generated byte-code is almost identical to compiled Java. Both annotations
are located in the groovy.transform package . For example:

 1 import groovy.transform.*
 2 @CompileStatic
 3 class Foo {
 4 void getFibs(int count) {
 5 def list = [0, 1] // print first #count Fibonacci numbers
 6 count.times {
 7 print "${list.last()}"
 8 list << list.sum()
 9 list = list.tail()
 10 }
 11 }
 12 }

 ■ Tip Try using @TypeChecked and the def keyword. It works surprisingly well.

 Elvis Operator
 The elvis operator was born from a common idiom in Java: using the ternary operation to
provide a default value, for example:

 1 String name = person.getName() == null ? "Bob" : person.getName();

 Instead in Groovy you can just use the elvis operator:

 1 String name = person.getName() ?: "Bob"

CHAPTER 2 ■ GROOVY 101

12

 Safe Dereference Operator
 Similar to the elvis operator, Groovy has the safe dereference operator that allows you to
easily avoid null-pointer exceptions. It consists of simply adding a question mark. For
example:

 1 String name = person?.getName()

 This would simply set name to null if person is null. It also works for method calls.

 ■ Tip Write some Groovy code using the elvis operators and safe dereference

several times until you memorize the syntax.

 A Brief History
 What follows is a brief history of updates to the Groovy language starting with Groovy 1.8.
This will help you if you must use an older version of Groovy or if you haven't looked at
Groovy in several years.

 Groovy 1.8
• Command Chains: pull request on github =>

pull(request).on(github)

• GPars 3 Bundled for parallel and concurrent paradigms

• Closure annotation parameters: @Invariant({number >= 0})

• Closure memoization: {...}.memoize()

• Built-in JSON support: Consuming, producing, and pretty-printing

• New AST Transformations: @Log, @Field, @AutoClone,
@AutoExternalizable, ...

 Groovy 1.8 further improved the ability to omit unnecessary punctuation by
supporting command chains, which allow you to omit parentheses and dots for a chain of
method calls.

 3 https://github.com/GPars/GPars

https://github.com/GPars/GPars

CHAPTER 2 ■ GROOVY 101

13

 Groovy 2.0
• More modular - multiple jars: Create your own module

(Extension modules 4)

• @CompileStatic : Compiles your Groovy code to byte-code

• @TypeChecked : Enforces compile time type-checking (as seen in
the previous section)

• Java 7 alignments: Project coin and invoke dynamic

• Java 7 catch (Exception1 | Exception2 e) {}

 The huge change in Groovy 2 was the addition of the @ CompileStatic and
 @TypeChecked annotations, which were already covered.

 Groovy 2.1
• Full support for the JDK 7 “invoke dynamic” instruction and API

• Groovy 2.1's distribution bundles the concurrency library GPars 1.0

• @DelegatesTo : A special annotation for closure delegate based
DSLs and static type-checker extensions

• Compile-time Meta-annotations: @groovy.transform.
AnnotationCollector can be used to create a meta-annotation

• Many improvements to existing AST transformations

 This release saw a huge improvement in performance by taking advantage of Java 7’s
invoke dynamic. However, it is not enabled by default (this will be covered in a later chapter;
basically you just have to “turn it on”).

 Groovy 2.2
• Implicit closure coercion

• @Memoized AST transformation for methods

• Bintray's JCenter repository

• Define base script classes with an annotation

• New DelegatingScript base class for scripts

• New @Log variant for the Log4j2 logging framework

• @DelegatesTo with generics type tokens

• Precompiled type-checking extensions

 4 http://docs.groovy-lang.org/latest/html/documentation/core-metaprogramming.
html#_extension_modules

http://docs.groovy-lang.org/latest/html/documentation/core-metaprogramming.html#_extension_modules
http://docs.groovy-lang.org/latest/html/documentation/core-metaprogramming.html#_extension_modules

CHAPTER 2 ■ GROOVY 101

14

 The main point to notice here is implicit closure coercion, which allows you to use
closures anywhere a SAM (single abstract method interface) could be used. Before this
release, you needed to cast the closure explicitly.

 Groovy 2.3
• Official support for running Groovy on JDK 8

• Traits

• New and updated AST transformations

 This release added a brand new concept (traits), and the trait keyword. We will
cover them in a later chapter.

 Groovy 2.4
• Android support

• Performance improvements and reduced byte-code

• Traits @Self Type annotation

• GDK improvements

• More AST transformations

 Outdoing themselves yet again, the developers behind Groovy made tons of
improvements and included Android support.

 Summary
 In this chapter, you learned about:

• How Groovy extends and simplifies programming on the JDK in a
familiar syntax.

• Groovy’s dynamic def , easy properties, closures, a better
“switch,” meta-programming, type-checking and static-compile
annotations, the elvis operator, and safe dereference.

 “”

• A brief overview of the features available to Groovy and in what
versions they were introduced.

15© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_3

 CHAPTER 3

 Tools

 In addition to groovy the Groovy installation comes with several helpful tools covered in
this chapter.

 Console
 1 groovyConsole

 The Groovy Console is a quick and easy way to try things in Groovy visually without the
overhead of a complete IDE.

 Whenever you have an idea you want to try out quickly, open the Groovy Console,
type some code, and then press Ctrl+R to run it. After reading your output and changing
the code, press Ctrl+W to clear the output and Ctrl+R again to run the code. Once you
get used to those two shortcuts, the Groovy Console might become an indispensable
development tool.

 It also has the ability (among other things) to inspect the AST (Abstract Syntax Tree)
of your code, the internal representation of the code used by the compiler. Use Script -
Inspect Ast or Ctrl+T to open the Groovy AST Browser.

 You can provide a classpath to be available at runtime to the Groovy Console using
the -cp option. This is useful when you want to refer to other classes you have compiled.
For example, in a Linux/OSX environment, you use:

 1 groovyConsole -cp src/main/groovy/:src/main/resources/ example.groovy

 Compilation
 1 groovyc

 To take advantage of the JDK 7 invoke-dynamic instruction, use the --indy flag 1 . This
also works with the groovy command.

 1 Available in Groovy 2.0 and above.

CHAPTER 3 ■ TOOLS

16

 Invoke-dynamic helps the compiler improve the performance of things like duck-
typing, meta-programming, and method-missing calls.

 Shell
 1 groovysh

 The Groovy shell can be used to execute Groovy code in an interactive command shell.

 ■ Exercise Try it out!

 Documentation
 1 groovydoc

 This tool generates documentation from your Groovy code.
 Groovy uses the same comment syntax as Java, including the conventions for

documenting code.

 1 /** This is a documentation comment. */
 1 /* This is not */
 1 // This is a one-line comment.

17© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_4

 CHAPTER 4

 GDK

 The GDK (Groovy Development Kit) provides a number of helper methods, helper
operators, utilities, and additional classes.

 Some of these are methods added to every Java class, like each , and some are more
obscure.

 Collections
 Groovy adds tons of helpful methods that allow easier manipulation of collections:

• sort —Sorts the collection (if it is sortable).

• findAll —Finds all elements that match a closure.

• collect —An iterator that builds a new collection.

• inject —Loops through the values and returns a single value.

• each —Iterates through the values using the given closure.

• eachWithIndex —Iterates through with two parameters: a value
and an index.

• find – Finds the first element that matches a closure.

• findIndexOf —Finds the first element that matches a closure and
returns its index.

• any —True if any element returns true for the closure.

• every —True if all elements return true for the closure.

• reverse —Reverses the ordering of elements in a list.

• first —Gets the first element of a list.

• last —Returns the last element of a list.

• tail —Returns all elements except the first element of a list.

CHAPTER 4 ■ GDK

18

 Spread
 The spread operator can be used to access the property of every element in a collection.
It can be used instead of collect in many cases. For example, you could print the name
of every dragon in a list named dragons :

 1 dragons*.name.each { println it }

 GPath
 GPath is something like XPath in Groovy. Thanks to the support of property notation for
both lists and maps, Groovy provides syntactic sugar making it really easy to deal with
nested collections, as illustrated in the following examples:

 1 def listOfMaps = [['a': 11, 'b': 12], ['a': 21, 'b': 22]]
 2 assert listOfMaps.a == [11, 21] //GPath notation
 3 assert listOfMaps*.a == [11, 21] //spread dot notation
 4
 5 listOfMaps = [['a': 11, 'b': 12], ['a': 21, 'b': 22], null]
 6 assert listOfMaps*.a == [11, 21, null] // caters for null values
 7 assert listOfMaps*.a == listOfMaps.collect { it?.a } //equivalent notation
 8 // But this will only collect non-null values
 9 assert listOfMaps.a == [11,21]

 IO
 The GDK helps you a lot with input/output (IO) .

 Files
 The GDK adds several methods to the File class to ease reading and writing files.

 1 println path.toFile().text

 A getText() method is added to the File class, which simply reads the whole file.

 1 new File("books.txt").text = "Modern Java"

 Here we are using the setText method on the File class, which simply writes the file
contents. For binary files, you can also use the bytes property on File :

 1 byte [] data = new File('data').bytes
 2 new File('out').bytes = data

CHAPTER 4 ■ GDK

19

 If you want to use an InputStream or reader or the corresponding OutputStream or
writer for output, you have the following methods:

 1 new File('dragons.txt').withInputStream { in -> }
 2 new File('dragons.txt').withReader {r -> }
 3 new File('dragons.txt').withOutputStream {out ->}
 4 new File('dragons.txt').withWriter {w -> }

 Lastly you can use the eachLine method to read each line of a file. For example:

 1 new File('dragons.txt').eachLine { line->
 2 println "$line"
 3 }
 4 //OR
 5 new File('dragons.txt').eachLine { line, num ->
 6 println "Line $num: $line"
 7 }

 In all of these cases, Groovy takes care of closing the I/O resource even if an
exception is thrown.

 ■ Tip Print out a multiline file and then read it back in and print out the lines.

 URLs
 The GDK makes it extremely simple to execute a URL .

 The following Java code opens an HTTP connection on the given URL (http://
g o ogle.com in this case), reads the data into a byte array, and prints out the resulting text.

 1 URL url = new URL("http://google.com");
 2 InputStream input = (InputStream) url.getContent();
 3 ByteArrayOutputStream out = new ByteArrayOutputStream();
 4 int n = 0;
 5 byte [] arr = new byte [1024];
 6
 7 while (-1 != (n = input.read(arr)))
 8 out.write(arr, 0, n);
 9
 10 System.out.println(new String(out.toByteArray()));

 However, in Groovy this also can be reduced to one line (leaving out exceptions):

 1 println "http://google.com".toURL().text

http://google.com/
http://google.com/
http://google.com/

CHAPTER 4 ■ GDK

20

 A toURL() method is added to the String class and a getText() method (which is
called as .text) is added to the URL class in Groovy.

 ■ Exercise Use Groovy to download your favorite web site and see if you can

parse something from it.

 Ranges
 The Range is a built-in type in Groovy. It can be used to perform loops, in switch cases,
extracting substrings, and other places. Ranges are generally defined using the syntax
 start..end .

 Ranges come in handy for traversing using the each method and for loops:

 1 (1..4).each {print it} //1234
 2 for (i in 1..4) print i //1234

 A case statement was demonstrated in an earlier chapter such as the following:

 1 case 12..30: // Range 12 to 30

 ■ Warning This works only if the value given to the switch statement is the same

type as Range (an integer in this case).

 You can use ranges to extract substrings from a string using the getAt syntax.
For example :

 1 def text = 'learning groovy'
 2 println text[0..4] //learn
 3 println text[0..4,8..-1] //learn groovy

 ■ Tip Negative numbers count down from the last element of a collection or string.

So -1 equates to the last element.

 You can also use ranges to access elements of a list:

 1 def list = ['hank', 'john', 'fred']
 2 println list[0..1] //[hank, john]

CHAPTER 4 ■ GDK

21

 You can define a range to be exclusive of the last number by using the ..< operator.
For example, another way to print 1234 would be the following:

 1 (1..<5).each {print it} //1234

 ■ Exercsie Attempt to use a variable in a range. Do you need to surround the

variable with parentheses?

 Utilities
 The GDK adds several utility classes such as ConfigSlurper, Expando, and
ObservableList/Map/Set.

 ConfigSlurper
 ConfigSlurper is a utility class for reading configuration files defined in the form of Groovy
scripts. Like with Java *.properties files, ConfigSlurper allows for a dot notation. It also
allows for nested (closure) configuration values and arbitrary object types.

 1 def config = new ConfigSlurper().parse('''
 2 app.date = new Date()
 3 app.age = 42
 4 app {
 5 name = "Test${42}"
 6 }
 7 ''')
 8
 9 def properties = config.toProperties()
 10
 11 assert properties."app.date" instanceof String
 12 assert properties."app.age" == '42'
 13 assert properties."app.name" == 'Test42'

 Expando
 The Expando class can be used to create a dynamically expandable object. You can add
fields and methods. This can be useful when you want to use extremely dynamic
meta-programming. For example:

 1 def expando = new Expando()
 2 expando.name = { -> 'Draco' }
 3 expando.say = { String s -> "${expando.name} says: ${s}" }
 4 expando.say('hello') // Draco says: hello

CHAPTER 4 ■ GDK

22

 ■ Exercise Use meta-programming to alter some class’s metaClass and then

print out the class of the metaClass . Is it the Expando class?

 ObservableList/Map/Set
 Groovy comes with observable lists, maps, and sets. Each of these collections triggers
 PropertyChangeEvent (from the java.beans package) when elements are added,
removed, or changed. Note that a PropertyChangeEvent does not only signal that an
event has occurred, it also holds information on the property name and the old/new
value of a property.

 For example, here’s an example using ObservableList and printing out the class of
each event:

 1 def list = new ObservableList()
 2 def printer = {e -> println e.class}
 3 list.addPropertyChangeListener(printer)
 4 list.add 'Harry Potter'
 5 list.add 'Hermione Granger'
 6 list.remove(0)
 7 println list

 This would result in the following output:

 1 class groovy .util.ObservableList$ElementAddedEvent
 2 class java .beans.PropertyChangeEvent
 3 class groovy .util.ObservableList$ElementAddedEvent
 4 class java .beans.PropertyChangeEvent
 5 class groovy .util.ObservableList$ElementRemovedEvent
 6 class java .beans.PropertyChangeEvent
 7 [Hermione Granger]

 This can be useful for using the Observer pattern on collections.

 ■ Exercise Use an ObservableMap and a PropertyChangeListener to reject null

values from being added to the map .

23© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_5

 CHAPTER 5

 Coming from Java

 Since most readers are already familiar with Java, it would be helpful to compare
common Java idioms with the Groovy equivalent.

 Default Method Values
 One thing that might surprise you coming from Java is that in Groovy you can provide
default values for method parameters. For example, let's say you have a fly method with
a parameter called text :

 1 def fly(String text = "flying") {println text}

 This would essentially create two methods behind the scenes (from a Java
standpoint):

 1 def fly() {println "flying"}
 2 def fly(String text) {println text}

 This can work with any number of parameters as long as the resulting methods do
not conflict with other existing methods.

 Equals, Hashcode , and More
 One of the tedious tasks you must often do in Java is create an equals and a hashCode
method for a class. For this purpose, Groovy added the @EqualsAndHashCode annotation.
Simply add it to the top of your class (right before the word class) and you’re done.

 Likewise, you often want to create a constructor for all of the fields of a class. For this,
Groovy has @TupleConstructor . It simply uses the order of the definitions of your fields to
also define a constructor. Just add it right before your class definition.

 There’s also the @ToString annotation you can add before your class definition for
automatically creating a toString() method for your class .

 Finally, if you want to have all of these things on your class, just use the @Canonical
annotation. You can use Ctrl+T in the groovyConsole to see how this affects the syntax tree.

CHAPTER 5 ■ COMING FROM JAVA

24

 1 import groovy.transform.*
 2 @Canonical class Dragon { def name}
 3 println new Dragon("Smaug")
 4 // prints: Dragon(Smaug)
 5 assert new Dragon("").equals(new Dragon(""))

 ■ Exercise Create your own class with multiple properties using these annotations.

 Regex Pattern Matching
 Groovy greatly simplifies using a pattern to match text using regex (Regular Expressions).

 Where in Java you must use the java.util.regex.Pattern class, create an instance
and then create a matcher, in Groovy this can all be simplified to one line.

 By convention you surround your regex with slashes. This allows you to use special
regex syntax without using the tedious double backslash. For example, to determine if
something is an e-mail (sort of):

 1 def isEmail = email ==~ /[\w.]+@[\w.]+/

 The equivalent code in Java would be:

 1 Pattern patt = Pattern.compile("[\\w.]+@[\\w.]+");
 2 boolean isEmail = patt.matches(email);

 There's also an operator for creating a Matcher in Groovy:

 1 def email = 'mailto:adam@email.com'
 2 def mr = email =~ /[\w.]+@[\w.]+/
 3 if (mr.find()) println mr.group()

 This allows you to find regular expressions inside strings and to get sub-groups from
a regex.

 ■ Exercise Create a better regex for validating e-mail in Groovy.

CHAPTER 5 ■ COMING FROM JAVA

25

 Missing Java Syntax
 Due to the nature of Groovy’s syntax and some additions to Java’s syntax over the
years, Groovy is “missing” a few functions. However, there are other ways to do the
same things.

 Arrays can be somewhat difficult to work with in Groovy because the Java syntax
for creating an array of values does not compile. For example, the following would not
compile in Groovy:

 1 String[] array = new String[] {"foo", "bar"};

 You should instead use the following syntax (if you must use an array):

 1 String[] array = ['foo', 'bar'].toArray()

 For a long time, the for (Type item : list) syntax was not supported in Groovy.
Instead you have two options: using the in keyword or using the each method with a
closure. For example:

 1 // for (def item : list)
 2 for (item in list) doStuff(item)
 3 list.each { item -> doStuff(item) }

 Semicolon Optional
 Since the semicolon is optional in Groovy this can sometimes cause line-ending
confusion when you’re used to Java. Usually this is not a problem, but when calling
multiple methods in a row (using a fluent API, for example), this can cause problems. In
this case, you need to end each line with a non-closed operator, such as a dot for example.

 For example, let's take an arbitrary fluent API:

 1 class Pie {
 2 def bake() { this }
 3 def make() { this }
 4 def eat() { this }
 5 }
 6 def pie = new Pie().
 7 make().
 8 bake().
 9 eat()

 If you were to use the typical Java syntax, it might cause a compilation error in Groovy:

 1 def pie = new Pie() //Groovy interprets end of line
 2 .make() // huh? what is this?

CHAPTER 5 ■ COMING FROM JAVA

26

 Where Are Generics?
 Groovy supports the syntax of generics but does not enforce them by default. For this
reason, you won't see a lot of generics in Groovy code. For example, the following would
work fine in Groovy:

 1 List<Integer> nums = [1, 2, 3.1415, 'pie']

 However, Groovy will enforce generics if you add the @CompileStatic or @
TypeChecked annotation to your class or method. For example:

 1 import groovy.transform.*
 2 @CompileStatic
 3 class Foo {
 4 List<Integer> nums = [1, 2, 3.1415] //error
 5 }

 This would cause the compilation error "Incompatible generic argument
types. Cannot assign java.util.List <java.lang.Number> to: java.util.List
<Integer>" . Since 3.1415 becomes a java.math.BigDecimal in Groovy, the generic type
of the List is automatically determined to be java.lang.Number .

 Groovy Numbers
 This discussion leads us to decimal numbers , which use BigDecimal by default in Groovy.
This allows you do math without rounding errors.

 If you want to use double or float , simply follow your number with d or f
respectively (as you can also do in Java). For example:

 1 def pie = 3.141592d

 ■ Exercise Try multiplying different number types and determining the class of the result.

 Boolean-Resolution
 Since Groovy is very similar to Java, but not Java, it's easy to get confused by the
differences. A couple of the areas of confusion are boolean-resolution (also called “Groovy
truth”) and the Map syntax sugar .

CHAPTER 5 ■ COMING FROM JAVA

27

 Groovy is much more liberal in what it accepts in a Boolean expression. For example,
an empty string and a zero are considered false . So, the following prints out "true"
four times:

 1 if ("foo") println("true")
 2 if (!"") println("true")
 3 if (42) println("true")
 4 if (! 0) println("true")

 ■ Tip This is sometimes referred to as “Groovy truth”.

 Map Syntax
 Groovy syntax sugar for Maps allows you use string keys directly, which is often very
helpful. However, this can cause confusion when attempting to get the class-type of a
map using Groovy's property-accessor syntax sugar (.class refers to the key-value, not
 getClass()). So you should use the getClass() method directly.

 This can also cause confusion when you’re trying to use variables as keys. In this
case, you need to surround the variables with parentheses. For example:

 1 def foo = 1
 2 def bar = 2
 3 def map = [(foo): bar]

 Without the parentheses, foo would resolve to the string "foo" .

 Summary
 In this chapter, you learned about the following Groovy features:

• You can provide default method values.

• Various annotations that simplify life in the groovy.transform
package.

• How regular expressions are built into Groovy.

• You should define arrays differently than Java.

• How to use unclosed operations when writing a multiline statement.

• Groovy uses BigDecimal by default for non-integer numbers.

• Groovy truth.

• You can use variable keys in the map syntax.

 PART II

 Advanced Groovy

 Beyond the basics, Groovy is a rich tapestry of language features. It can be
used dynamically or statically-typed; it’s your choice. It supports functional
programming constructs, including first-class functions, currying, and more.
It has multiple-inheritance, type inference, and meta-programming.

31© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_6

 CHAPTER 6

 Groovy Design Patterns

 Design patterns are a great way to make your code functional, readable, and extensible.
There are some patterns that are easier and require less code in Groovy compared to Java.

 Strategy Pattern
 Imagine you have three different methods for finding totals:

 1 def totalPricesLessThan10(prices) {
 2 int total = 0
 3 for (int price : prices)
 4 if (price < 10) total += price
 5 total
 6 }
 7 def totalPricesMoreThan10(prices) {
 8 int total = 0
 9 for (int price : prices)
 10 if (price > 10) total += price
 11 total
 12 }
 13 def totalPrices(prices) {
 14 int total = 0
 15 for (int price : prices)
 16 total += price
 17 total
 18 }

 A lot of code is duplicated in this case. There’s only one small thing that changes
in each of these methods. In Groovy, you can use a closure parameter instead of three
different methods so you can have the following:

 1 def totalPrices(prices, selector) {
 2 int total = 0
 3 for (int price : prices)
 4 if (selector(price)) total += price
 5 total
 6 }

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 ■ GROOVY DESIGN PATTERNS

32

 Now you have a method, totalPrices(prices, selector) , where selector is a
closure. Also, you can put the closure outside of the method parameters in a method call
if it’s the last parameter. So you can call this method three different ways to achieve the
desired results:

 1 totalPrices(prices) { it < 10 }
 2 totalPrices(prices) { it > 10 }
 3 totalPrices(prices) { true }

 This not only makes your code more concise, it’s also easier to read and extend.

 Meta-Programming
 Groovy meta-programming means you can add methods to any class at runtime. This
allows you to add helper methods to commonly used classes to make your code more
concise and readable.

 Meta-Class
 For example, let’s say you’re writing a javax.servlet.Filter and you get and set session
attributes a lot. You could do the following:

 1 HttpSession.metaClass.getAt = { key -> delegate.getAttribute(key) }
 2 HttpSession.metaClass.putAt = {
 3 key, value -> delegate.setAttribute(key, value)
 4 }

 Remember that the delegate is the object that owns the closure, which is the
 HttpSession in this case.

 This allows the following syntax:

 1 def session = request.session
 2 session['my_id'] = '123'
 3 def id = session['my_id']

 Categories
 Category is one of the many meta-programming techniques available in Groovy. A Category
is a class that can be used to add functionality to existing classes. It can be useful when
you don’t want to mess with a class for the whole application, but only want special
treatment for a limited section of the code.

 To make a Category, you create some static methods that have at least one parameter
of a particular type (e.g., an integer). When the category is used, that type (the type of
the first parameter) appears to have those methods in addition to its previously defined
methods. The object on which the method is called is used as the first parameter.

CHAPTER 6 ■ GROOVY DESIGN PATTERNS

33

 For example, Groovy has the TimeCategory 1 Category built-in for manipulating dates
and times. This lets you add and subtract any arbitrary length of time. For example:

 1 import groovy.time.TimeCategory
 2 def now = new Date()
 3 println now
 4 use(TimeCategory) {
 5 nextWeekPlusTenHours = now + 1.week + 10.hours - 30.seconds
 6 }
 7 println nextWeekPlusTenHours

 In this case, TimeCategory adds a bunch of methods to the Integer class. For
example, some of the method signatures look like the following:

 1 static Duration getDays(Integer self)
 2 static TimeDuration getHours(Integer self)
 3 static TimeDuration getMinutes(Integer self)
 4 static DatumDependentDuration getMonths(Integer self)
 5 static TimeDuration getSeconds(Integer self)

 ■ Exercise Create your own Category class and then put it on GitHub.

 Missing Methods
 In Groovy you can intercept missing methods (methods that are called, but are not
defined in the classic sense) using the methodMissing method. This can be a very useful
design pattern when you want to dynamically define methods at runtime with a flexible
method name and signature. You write the methodMissing signature as follows:

 1 def methodMissing(String name, args)

 The name parameter is the name of the missing method and the args parameter is all
of the arguments passed to that method. You then can write whatever functionality you
want this method to have, using the name and args parameters.

 Next, to improve efficiency, you can intercept, cache, and invoke the called method
(GORM in Grails uses this for its query functions). For example:

 1 def methodMissing(String name, args) {
 2 impl = { /* your code */ }
 3 getMetaClass()."$name" = impl
 4 impl()
 5 }

 1 http://docs.groovy-lang.org/latest/html/api/groovy/time/TimeCategory.html

http://docs.groovy-lang.org/latest/html/api/groovy/time/TimeCategory.html

CHAPTER 6 ■ GROOVY DESIGN PATTERNS

34

 This implements the missing functionality and then adds it to the current
class’s metaClass so that future calls go directly to the implementation instead of the
 methodMissing method. This might be useful if you expect the same missing methods to
be called a lot.

 Delegation
 Delegation is when a class has methods that directly call (method signature identical)
methods of another class. This is hard in Java because it is difficult and time consuming to
add methods to a class.

 This is much easier with the new @Delegate annotation in Groovy 2.0. It’s like
compile-time meta-programming. It automatically adds the methods of the delegate class
to the current class.

 For example:

 1 public class Person {
 2 def eatDonuts() { println("yummy") }
 3 }
 4
 5 public class RoboCop {
 6 @Delegate final Person person
 7
 8 public RoboCop(Person person) { this .person = person }
 9 public RoboCop() { this .person = new Person() }
 10
 11 def crushCars() {
 12 println("smash")
 13 }
 14 }

 Although RoboCop does not have an eatDonuts() method, all of the methods of
 Person are added to RoboCop and delegated to person . This allows for the following usage:

 1 def person = new RoboCop()
 2 person.eatDonuts()
 3 person.crushCars()

 ■ Exercise Use @Delegate on a List property and use it to make a list that

cannot have elements removed.

35© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_7

 CHAPTER 7

 DSLs

 Groovy has many features that make it great for writing DSLs (Domain Specific Languages):

• Closures with delegates.

• Parentheses and dots (.) are optional.

• Ability to add methods to standard classes using Category and
Mixin transformations.

• The ability to override many operators (plus, minus, etc.).

• The methodMissing and propertyMissing methods.

 Domain Specific Languages can be useful for many purposes, such as allowing
domain experts to read and write code, or to clarify the meaning of business logic. They
allow business experts to read or write code without having to be programming experts.

 Delegate
 Within Groovy you can take a block of code (a closure) as a parameter and then call it
using a local variable as a delegate. For example, imagine you have the following code for
sending SMS texts:

 1 class SMS {
 2 def from(String fromNumber) {
 3 // set the from
 4 }
 5 def to(String toNumber) {
 6 // set the to
 7 }
 8 def body(String body) {
 9 // set the body of text
 10 }
 11 def send() {
 12 // send the text.
 13 }
 14 }

CHAPTER 7 ■ DSLS

36

 In Java, you’d need to use this the following way:

 1 SMS m = new SMS();
 2 m.from("555-432-1234");
 3 m.to("555-678-4321");
 4 m.body("Hey there!");
 5 m.send();

 In Groovy you can add the following static method to the SMS class for DSL-like usage
(block is expected to be a closure):

 1 def static send(block) {
 2 SMS m = new SMS()
 3 block.delegate = m
 4 block()
 5 m.send()
 6 }

 This sets the SMS object as a delegate for the block so that methods are forwarded to
it. With this you can now do the following:

 1 SMS.send {
 2 from '555-432-1234'
 3 to '555-678-4321'
 4 body 'Hey there!'
 5 }

 This removes a lot of repetition from the code.

 ■ Tip As demonstrated, you can omit the parentheses when making a simple

method call.

 Overriding Operators
 In Groovy you can override operators simply by naming your methods using the English
word for the operator. For example, plus for + and minus for - .

CHAPTER 7 ■ DSLS

37

 Operator Method Name

 + Plus

 - Minus

 * Multiply

 / Div

 % Mod

 ** Power

 | Or

 & And

 ̂ xor

 << Left shift

 >> Right shift

 ++ Next

 -- Previous

 All of these methods have one parameter except for next and previous, which have
no parameters. For example, let’s create a class called Logic with a Boolean value and
define the and and or methods.

 1 class Logic {
 2 boolean value
 3 Logic(v) { this .value = v}
 4 def and(Logic other) {
 5 this .value && other.value
 6 }
 7 def or(Logic other) {
 8 this .value || other.value
 9 }
 10 }

 Then let’s use these methods and see if they work like we would expect:

 1 def pale = new Logic(true)
 2 def old = new Logic(false)
 3
 4 println "groovy truth: ${pale && old}"
 5 println "using and: ${pale & old}"
 6 println "using or: ${pale | old}"

 Notice that using the built-in && operator uses “Groovy truth” and returns true
because both variables are non- null .

CHAPTER 7 ■ DSLS

38

 Next let’s try defining the leftShift and minus operators on a class:

 1 class Wizards {
 2 def list = []
 3 def leftShift(person) { list.add person }
 4 def minus(person) { list.remove person }
 5 String toString() { "Wizards: $list" }
 6 }
 7 def wiz = new Wizards()
 8 wiz << 'Gandolf'
 9 println wiz
 10 wiz << 'Harry'
 11 println wiz
 12 wiz - 'Harry'
 13 println wiz

 You can also implement map-like putAt and getAt methods as demonstrated in the
next section. This allows you to use the bracket syntax, for example:

 1 def value = object[parameter] // uses getAt
 2 object[parameter] = value // uses putAt

 This can be useful when writing for a domain that uses the bracket notation.

 Missing Methods and Properties
 As noted previously, Groovy provides a way to implement functionality at runtime via the
 methodMissing method :

 1 def methodMissing(String name, args)

 However, Groovy also provides a way to intercept missing properties that are
accessed using Groovy’s property syntax. Property access is implemented using
 propertyMissing(String name) (which returns a value) and property modification via
 propertyMissing(String name, Object value) (which sets the value for a property).

 For example, here’s an excerpt from a DSL for chemical compounds:

 1 class Chemistry {
 2 public static void exec(Closure block) {
 3 block.delegate = new Chemistry()
 4 block()
 5 }
 6 def propertyMissing(String name) {
 7 def comp = new Compound(name)
 8 (comp.elements.size() == 1 && comp.elements.values()[0]==1) ?
 9 comp.elements.keySet()[0] : comp
 10 }
 11 }

CHAPTER 7 ■ DSLS

39

 In this example, propertyMissing creates a new Compound object and returns either
the Compound or an Element object if there is only one element in the Compound . This enables
the creation of Compound s based on the name of a “missing” property. For example:

 1 def c = new Chemistry()
 2 def water = c.H2O
 3 println water
 4 println water.weight

 This is interpreted as trying to access a property named H2O , which triggers the
 propertyMissing method.

 ■ Info H2O refers to the chemical composition of water, which is two hydrogens

and one oxygen atom.

 By using the static exec method, this DSL reaches its full potential by exposing
an instance of Chemistry as a delegate to the closure, which allows for the following
example:

 1 Chemistry.exec {
 2 def water = H2O
 3 println water
 4 println water.weight
 5 }

 This has the same effect of creating the H2O compound by calling the
 propertyMissing method of Chemistry .

 The full code for Groovy Chemisty 1 is provided on GitHub. It provides the ability to
compute atomic weights of chemical compounds and percentages by atomic weight. It
includes all known elements, their names, and atomic weights.

 This DSL would be very difficult to implement without the help of Groovy. In Java
for example, you would need to use strings to represent compounds, polluting the syntax
with tons of quotes and parentheses.

 ■ Exercise Create a DSL in Groovy for something that interests you, be it sports,

math, movies, or astrophysics.

 1 https://github.com/adamldavis/groovy-chemistry

https://github.com/adamldavis/groovy-chemistry

41© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_8

 CHAPTER 8

 Traits

 Traits are like interfaces with default implementations and state. Traits in Groovy are
inspired by Scala’s traits.

 Those familiar with Java 8 know that it added default methods to interfaces. Traits
are similar to Java 8 interfaces but with the added ability to have state (fields). This allows
more flexibility, but should be treated with caution.

 Defining Traits
 A trait is defined using the trait keyword:

 1 trait Animal {
 2 int hunger = 100
 3 def eat() { println "eating"; hunger -= 1 }
 4 abstract int getNumberOfLegs()
 5 }

 As this code demonstrates, traits can have properties, methods, and abstract
methods. If a class implements a trait, it must implement its abstract methods.

 Using Traits
 To use a trait, you use the implements keyword . For example:

 1 class Rocket {
 2 String name
 3 def launch() { println(name + " Take off!") }
 4 }
 5 trait MoonLander {
 6 def land() { println("${getName()} Landing!") }
 7 abstract String getName()
 8 }
 9 class Apollo extends Rocket implements MoonLander {
 10 }

CHAPTER 8 ■ TRAITS

42

 So now you can do the following:

 1 def apollo = new Apollo(name: "Apollo 12")
 2 apollo.launch()
 3 apollo.land()

 This would generate the following output:

 1 Apollo 12 Take off!
 2 Apollo 12 Landing!

 Unlike super-classes , you can use multiple traits in one class. Here is such
an example:

 1 trait Shuttle {
 2 boolean canFly() { true }
 3 abstract int getCargoBaySize()
 4 }
 5 class MoonShuttle extends Rocket
 6 implements MoonLander, Shuttle {
 7 int getCargoBaySize() { 100 }
 8 }

 This would allow you to do the following:

 1 MoonShuttle m = new MoonShuttle(name: 'Taxi')
 2 println "${m.name} can fly? ${m.canFly()}"
 3 println "cargo bay: ${m.getCargoBaySize()}"
 4 m.launch()
 5 m.land()

 And you would get the following output:

 1 Taxi can fly? true
 2 cargo bay: 100
 3 Taxi Take off!
 4 Taxi Landing!

 ■ Exercise See what happens when you have the same fields or methods in two

different traits and then try to mix them.

CHAPTER 8 ■ TRAITS

43

 Summary
 In this chapter, you learned about the following Groovy features:

• What traits are, which is similar to Java 8 interfaces.

• How to define a trait with fields and methods.

• How you can use multiple traits in one class.

45© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_9

 CHAPTER 9

 Functional Programming

 Functional Programming (FP) is a programming style that focuses on functions and
minimizes changes of state (using immutable data structures). It is closer to expressing
solutions mathematically rather than step-by-step instructions.

 In FP, functions should be “ side-effect free ” (nothing outside the function is
changed) and referentially transparent (a function returns the same value every time
when given the same arguments).

 FP can be seen as an alternative to the more common imperative programming ,
which is closer to telling the computer the steps to follow.

 Although functional-programming can be achieved in Java pre-Java-8 1 , Java 8
enabled language-level FP-support with Lambda expressions and functional interfaces .

 Java 8, JavaScript, Groovy, and Scala all support functional-style programming,
although they are not strictly FP languages.

 Functions and Closures
 As you might know, “ functions as a first-class feature” is the basis of functional
programming. First-class feature means that a function can be used anywhere a value
could be used.

 For example, in JavaScript, you can assign a function to a variable and call it:

 1 var func = function(x) { return x + 1; }
 2 var three = func(2); //3

 Although Groovy doesn't have first-class functions, it has something very similar:
closures. As you have learned, a closure is simply a block of code wrapped in curly
brackets with parameters defined to the left of the -> (arrow). For example :

 1 def closr = {x -> x + 1}
 2 println(closr(2)); //3

 1 http://functionaljava.org/

http://functionaljava.org/

CHAPTER 9 ■ FUNCTIONAL PROGRAMMING

46

 If a closure has one argument, it can be referenced as it in Groovy. For example:

 1 def closr = {it + 1}

 ■ Tip In Groovy, the return keyword can be omitted if the returned value is the

last expression.

 Using Closures
 When a closure is the last or only parameter to a method it can go outside of the
parentheses. For example, the following defines a method that takes a list and a closure
for filtering items:

 1 def find(list, tester) {
 2 for (item in list)
 3 if (tester(item)) return item
 4 }

 This method returns the first item in the list for which the closure returns true. Here's
an example of calling the method with a simple closure:

 1 find([1,2]) { it > 1 }

 Map/Filter /And So On
 Once you have mastered functions, you quickly realize you need a way to perform
operations on collections (or sequences or streams) of data.

 Since these are common operations, people invented sequence operations such as
 map , filter , reduce , etc.

 For this section , we will be using a list of Person objects for all the operations
(see Figure 9-1 through 9-5):

 class Person { String name; int age }
 def persons = [new Person(name:'Bob',age:20),
 new Person(name:'Tom',age:15)]

CHAPTER 9 ■ FUNCTIONAL PROGRAMMING

47

 1 def adults = persons.findAll { person -> return person.age >= 18 }

Map

MAP

 Figure 9-1. Map (collect): Translates or changes input elements into something else

 1 def names = persons.collect { person -> person.name }

FILTER

Filter

 Figure 9-2. Filter (findAll): Gives you a sub-set of elements (what returns true from some
predicate function)

CHAPTER 9 ■ FUNCTIONAL PROGRAMMING

48

 1 def totalAge = persons.inject(0) {(total, p) -> return total+p.age }

 For this, we use the inject method, which loops through the values and returns a
single value (equivalent of foldRight in Scala). The startValue (0 in this case) is the
initial value given to total . For each element of the list, we add the person’s age.

REDUCE

Reduce

 Figure 9-3. Reduce (inject): Performs a reduction (returning one result, such as a sum) on
the elements

CHAPTER 9 ■ FUNCTIONAL PROGRAMMING

49

CONCAT

Concat

 Figure 9-5. Concat (+): Combines two different collections of elements

Limit

LIMIT(2)

 Figure 9-4. Limit ([0..n-1]): Gives you only the first N elements

 1 def firstTwo = persons[0..1]

CHAPTER 9 ■ FUNCTIONAL PROGRAMMING

50

 2 http://docs.groovy-lang.org/latest/html/documentation/#xform-Immutable

 1 def a = [1,2,3]
 2 def b = [4,5]
 3 a+b
 4 // Result: [1, 2, 3, 4, 5]

 Immutability
 Immutability and FP go together like peanut butter and jelly. Although it's not necessary,
they go together nicely.

 In purely functional languages the idea is that each function has no effect outside
itself—that is, no side effects. This means that every time you call a function it returns the
same value given the same inputs.

 To accommodate this behavior, there are immutable data structures. An immutable
data structure cannot be directly changed, but returns a new data structure with every
operation.

 For example, Scala's default Map is immutable:

 1 val map = Map ("Smaug" -> "deadly")
 2 val map2 = map + ("Norbert" -> "cute")
 3 println(map2) // Map(Smaug -> deadly, Norbert -> cute)

 So in this code, map would remain unchanged.
 Each language has a keyword for defining immutable variables (values). Java has the

 final keyword for declaring immutable variables , which Groovy also respects.

 1 public class Centaur {
 2 final String name
 3 public Centaur(name) { this .name=name}
 4 }
 5 Centaur c = new Centaur("Bane");
 6 println(c.name) // Bane
 7 c.name = "Firenze" //error

 In addition to the final keyword, Groovy includes the @Immutable annotation 2 for
declaring a whole class immutable. It also adds default constructors with parameter-
order , hashCode , equals , and toString methods. For example (in Groovy):

 1 import groovy.transform.Immutable
 2 @Immutable
 3 public class Dragon {
 4 String name
 5 int scales

http://docs.groovy-lang.org/latest/html/documentation/#xform-Immutable

CHAPTER 9 ■ FUNCTIONAL PROGRAMMING

51

 3 https://github.com/google/guava

 6 }
 7 Dragon smaug = new Dragon('Smaug', 499)
 8 println smaug
 9 // Output: Dragon(Smaug, 499)

 This works for simple references and primitives such as numbers and Strings, but for
things like lists and maps, it's more complicated. For these cases, open source immutable
libraries have been developed—for example Guava 3 for Java and Groovy.

 Groovy Fluent GDK
 In Groovy, findAll and other methods are available on every object, but are especially
useful for lists, sets, and ranges. In addition to findAll , collect , and inject , the
following method names are used in Groovy:

• each —Iterates through the values using the given closure.

• eachWithIndex —Iterates through with two parameters: a value
and an index.

• find —Finds the first element that matches a closure.

• findIndexOf —Finds the first element that matches a closure and
returns its index.

 For example, collect makes it very simple to perform an operation on a list of values:

 1 def list = ['foo','bar']
 2 def newList = []
 3 list.collect(newList) { it.substring(1) }
 4 println newList // [oo, ar]

 For another example, assuming dragons is a list of dragon objects:

 1 def dragons = [new Dragon('Smaug', 499), new Dragon('Norbert', 488)]
 2 String longestName = dragons.
 3 findAll { it.name != null }.
 4 collect { it.name }.
 5 inject("") { n1, n2 -> n1.length() > n2.length() ? n1 : n2 }

 The result should be Norbert . This code finds all non-null names, collects the
names, and then reduces the list of names to the longest one.

https://github.com/google/guava

CHAPTER 9 ■ FUNCTIONAL PROGRAMMING

52

 ■ Tip Remember that it in Groovy can be used to reference the single argument

of a closure.

 ■ Exercise Using the previous code as a starting point, find the dragon with the

most scales.

 Groovy Curry
 The curry method allows you to predefine values for parameters of a closure. It takes any
number of arguments and replaces parameters from left to right as you might expect. For
example, given a concat closure, you could create a burn closure and an inate closure
easily as follows:

 1 def concat = { x, y -> return x + y }
 2 // closure
 3 def burn = concat.curry("burn")
 4 def inate = concat.curry("inate")

 Since you're only providing the first parameter, these closures are prepending their
given text: burn prepends "burn" and inate prepends "inate" . For example:

 1 burn(" wood") // == burn wood

 You could then use another closure called composition to apply the two functions to
one input.

 1 def composition = { f, g, x -> return f(g(x)) }
 2 def burninate = composition.curry(burn, inate)
 3 def trogdor = burninate(' all the people')
 4 println "Trogdor: ${trogdor}"
 5 // Trogdor: burninate all the people

 Functional composition is an important idea in functional programming. It
allows you compose functions together to create complex algorithms out of simple
building blocks.

CHAPTER 9 ■ FUNCTIONAL PROGRAMMING

53

 Method Handles
 Method handles allow you to refer to actual methods much like they are closures. This
is useful when you want to use existing methods instead of closures, or you just want an
alternative syntax for closures. For example, given a method:

 1 def breathFire(name) { println "Burninating $name!" }

 You could later on do the following (within the same class that defined breathFire):

 1 ['the country side', 'all the people'].each(this .&breathFire)

 This would pass the breathFire method to the each method as a closure, causing
the following to be printed:

 1 Burninating the country side
 2 Burninating all the people

 ■ Exercise Create a method with multiple parameters and attempt to call it using

a method handle. Does it work as expected?

 Tail Recursion
 In Groovy 1.8, the trampoline method was introduced for a closure to use the tail
recursion optimization . This allows closure invocations to be invoked sequentially
instead of stacked to avoid a StackOverFlowError and improve performance.

 Starting in Groovy 2.3, you can use trampoline for recursive methods but even better
is the @TailRecursive AST transformation. Simply annotate a tail-recursive method with
 @TailRecursive and Groovy does the rest. For example:

 1 import groovy.transform.*
 2 @TailRecursive
 3 long totalPopulation(list, total = 0) {
 4 if (list.size() == 0)
 5 total
 6 else
 7 totalPopulation(list.tail(), total + list.first().population)
 8 }

CHAPTER 9 ■ FUNCTIONAL PROGRAMMING

54

 ■ Info On a Groovy list, the tail method returns the list without the first element

and first returns just the first element.

 This would take a list of objects with a population property and get the sum of them.
For example, let's make a City class, use a range to create a bunch of them, and then use
our totalPopulation method:

 1 @Canonical class City { int population}
 2 def cities = (10..1000).collect{ new City(it)}
 3 totalPopulation(cities)
 4 // 500455

 This demonstrates how tail recursion can be used in a functional style as an
alternative to iteration.

 ■ Info Tail recursion goes well with immutability because no direct modification of

variables is necessary in tail recursion.

 Summary
 In this chapter, you learned about:

• Functions as a first-class feature as closures.

• Map/filter/reduce as collect/findAll/inject .

• Immutability and how it relates to FP.

• Various features that support FP in Groovy.

• Method handles in Groovy.

• Tail recursion optimization.

55© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_10

 CHAPTER 10

 Groovy GPars

 GPars began as a separate project bringing many concurrency abstractions to Groovy,
but was bundled in Groovy 1.8 and beyond.

 It includes parallel map/reduce , Actors, and many other concurrency models.

 Parallel Map Reduce
 In this section we will use a list of students with graduation years and GPAs.

 class Student { int graduationYear; double gpa; }// create a list of students

 You perform parallel map/reduce with the GPars library in the following way:

 1 GParsPool.withPool {
 2 // a map-reduce functional style (students is a Collection)
 3 def bestGpa = students.parallel
 4 .filter{ s -> s.graduationYear == Student.THIS_YEAR }
 5 .map{ s -> s.gpa }
 6 .max()
 7 }

 The static method GParsPool.withPool takes in a closure and augments any
Collection with several methods (using Groovy’s Category mechanism). The parallel
method actually creates a ParallelArray (JSR-166) from the given Collection and uses
it with a thin wrapper around it. 1

 1 http://gpars.org/1.0.0/guide/guide/dataParallelism.html#dataParallelism_
map-reduce

http://gpars.org/1.0.0/guide/guide/dataParallelism.html#dataParallelism_map-reduce
http://gpars.org/1.0.0/guide/guide/dataParallelism.html#dataParallelism_map-reduce

CHAPTER 10 ■ GROOVY GPARS

56

 Actors
 The Actor design pattern is a useful pattern for developing concurrent software. In this
pattern, each Actor executes in its own thread and manipulates its own data. The data
cannot be manipulated by any other thread. Messages are passed between the Actors to
cause them to change the data. You can also make stateless Actors.

 When data can be changed by only one thread at a time, it’s called thread-safe .

 1 import groovyx.gpars.actor.Actor
 2 import groovyx.gpars.actor.DefaultActor
 3
 4 class Dragon extends DefaultActor {
 5 int age
 6
 7 void afterStart() {
 8 age = new Random().nextInt(1000) + 1
 9 }
 11 void act() {
 12 loop {
 13 react { int num ->
 14 if (num > age)
 15 reply 'too old'
 16 else if (num < age)
 17 reply 'too young'
 18 else {
 19 reply 'you guessed right!'
 20 terminate()
 21 }
 22 }
 23 }
 24 }
 25 }
 26 // Guesses the age of the Dragon
 27 class Guesser extends DefaultActor {
 28 String name
 29 Actor server
 30 int myNum
 31
 32 void act() {
 33 loop {
 34 myNum = new Random().nextInt(1000) + 1
 35 server.send myNum

CHAPTER 10 ■ GROOVY GPARS

57

 36 react {
 37 switch (it) {
 38 case 'too old': println "$name: $myNum was too old"; break
 39 case 'too young': println "$name: $myNum was too young"; break
 40 default : println "$name: I won $myNum"; terminate(); break
 41 }
 42 }
 43 }
 44 }
 45 }
 46
 47 def master = new Dragon().start()
 48 def player = new Guesser(name: 'Guesser', server: master).start()
 49
 50 //this forces main thread to live until both actors stop
 51 [master, player]*.join()

 Here the Dragon class starts with some random age between 1 and 1000. It then
reacts to a given number replying if the number is too big, too small, or the same as its
age. The Guesser class loops, generating a random guess each time through the loop and
sending it to the Dragon (referred to as server). The Guesser then reacts to the message
from the Dragon and terminates when the correct age was guessed.

 PART III

 The Groovy Ecosystem

 There are many different frameworks built on top of Groovy that make up the
Groovy ecosystem.

61© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_11

 CHAPTER 11

 Groovy Awesomeness

 This short chapter introduces various useful frameworks within the Groovy ecosystem.
Some of these will be described more fully in later chapters.

 Web and UI Frameworks
 The following are web and user-interface frameworks that are built on top of Groovy, or
where Groovy is supported.

 Grails 1
 Web-framework inspired by Ruby-on-Rails; has at least 800 plugins.

 Griffon 2
 Swing UI command-line very similar to Grails: create-app cool -archetype=jumpstart

 vert.x 3
 A framework for asynchronous application development. Not strictly a Groovy project,
but you can use it. It's currently an Eclipse Foundation project 4 .

 Ratpack 5
 A toolkit for web applications on the JVM and RESTful web services (microservices).

 1 http://grails.org/
 2 http://new.griffon-framework.org/
 3 http://vertx.io/
 4 https://groups.google.com/forum/?fromgroups=#!topic/vertx/3O6NCDQQdUU
 5 http://www.ratpack.io/

http://grails.org/
http://new.griffon-framework.org/
http://vertx.io/
https://groups.google.com/forum/?fromgroups=#!topic/vertx/3O6NCDQQdUU
http://www.ratpack.io/

CHAPTER 11 ■ GROOVY AWESOMENESS

62

 Cloud Computing Frameworks
 Cloud computing has become a mainstream necessity in today’s programming world.
Here are two useful Groovy frameworks for two popular cloud platforms.

 Gaelyk 6
 An abstraction over GAE (Google App Engine); it has an emerging plugin system.

 Caelyf 7
 Born in 2011, Apache 2 licensed framework for CloudFoundry; it’s similar to gaelyk.

 Build Frameworks
 No project is complete without a build framework. Gradle has become more and more
popular in the last few years for building Java projects especially. It is also now the default
build framework for Google Android projects.

 Gradle 8
 A Groovy DSL for building projects. Uses build.gradle .

 Gant 9
 Like Ant in Groovy. Born in 2006; now in maintenance mode. Was used by Grails and
Griffon.

 Testing Frameworks/Code Analysis
 Testing is extremely important for any project and code analysis is sometimes useful for
large projects. We will cover one of these frameworks, called Spock, in a later chapter.

 Easyb 10
 BDD—behavior driven development, human readable.

 6 http://gaelyk.appspot.com/
 7 http://caelyf.cloudfoundry.com/
 8 http://www.gradle.org/
 9 http://gant.github.io/
 10 http://easyb.org/

http://gaelyk.appspot.com/
http://caelyf.cloudfoundry.com/
http://www.gradle.org/
http://gant.github.io/
http://easyb.org/

CHAPTER 11 ■ GROOVY AWESOMENESS

63

 Spock 11
 DSL testing framework. Around since 2007. Uses strings as method names. You can use
data tables for test input. @Unroll(String) works like JUnit theories “unrolled”.

 Codenarc 12
 Static code analysis for Groovy and has been around since 2009. It has plugins for Grails
and Griffon.

 GContracts 13
 Enforces contracts in your code. @Requires, @Ensures

 Concurrency
 As described earlier, concurrency is extremely important for efficient applications.

 GPars 14
 A multi-threading framework for Groovy. It has a fork/join abstraction, Actors, STM, and
more (it comes bundled with Groovy).

 RxGroovy 15
 This is a Groovy adapter to RxJava; it’s a library for composing asynchronous and
event-based programs using observable sequences for the JVM.

 Others
 These are other tools created by the community for managing your installed programming
frameworks and tools and for creating new projects.

 11 http://code.google.com/p/spock/
 12 http://codenarc.sourceforge.net/
 13 http://blog.andresteingress.com/2011/03/11/gcontracts-1-2-0-released/
 14 http://www.gpars.org/guide/index.html
 15 https://github.com/ReactiveX/RxGroovy

http://code.google.com/p/spock/
http://codenarc.sourceforge.net/
http://blog.andresteingress.com/2011/03/11/gcontracts-1-2-0-released/
http://www.gpars.org/guide/index.html
https://github.com/ReactiveX/RxGroovy

CHAPTER 11 ■ GROOVY AWESOMENESS

64

 gvm 16
 The Groovy enVironment Manager (GVM). It’s now called SDKMAN (The Software
Development Kit Manager) and is very cool. It allows you to manage multiple versions of
several Groovy and non-Groovy applications, including Groovy itself.

 lazybones 17
 A simple project-creation tool that uses packaged project templates. This can be installed
using gvm/sdkman.

 16 https://github.com/gvmtool/gvm
 17 https://github.com/pledbrook/lazybones

https://github.com/gvmtool/gvm
https://github.com/pledbrook/lazybones

65© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_12

 CHAPTER 12

 Gradle

 Gradle is a Groovy-based DSL for building projects. The Gradle web site describes it
as follows:

 Gradle combines the power and flexibility of Ant with the
dependency management and conventions of Maven into a more
effective way to build. Powered by a Groovy DSL and packed with
innovation, Gradle provides a declarative way to describe all kinds
of builds through sensible defaults. -gradle.org (2015) 1

 Projects and Tasks
 Each Gradle build is composed of one or more projects and each project is composed of
tasks. The core of the Gradle build is the build.gradle file (which is called the build script).

 To try it out, go to gradle.org and install Gradle. Then create your own build.
gradle file.

 Tasks can be defined by writing task then a task name followed by a closure.
For example:

 1 task upper << {
 2 String someString = 'test'
 3 println "Original: $someString"
 4 println "Uppercase: " + someString.toUpperCase()
 5 }

 Tasks can contain any Groovy code.
 Much like in Ant, a task can depend on other tasks, which means they need to be

run before the task. You simply call dependsOn with any number of task names as the
arguments. For example:

 1 task buildApp {
 2 dependsOn clean, installApp, processAssets
 3 }

 1 http://www.gradle.org/

http://www.gradle.org/

CHAPTER 12 ■ GRADLE

66

 You can also use the following alternative syntax:

 1 task buildApp(dependsOn: [clean, installApp, processAssets])

 ■ Tip Use the << if your task contains the actual code you want the task to run.

You are adding a closure to the task, not configuring the task. Otherwise, Gradle always runs
the code in the first pass, not just when you invoke the task.

 Once you’ve defined your tasks, you run them by invoking gradle <task_name> at
the command line. There are some built-in tasks. For example, to list all available tasks,
invoke the following:

 1 gradle tasks

 Plugins
 Gradle core has very little built-in, but it has powerful plugins to allow it to be very
flexible. A plugin can do one or more of the following:

• Add tasks to the project (e.g., compile and test).

• Pre-configure added tasks with useful defaults.

• Add dependency configurations to the project.

• Add new properties and methods to existing type via extensions.

 We’re going to concentrate on building Groovy-based projects, so we'll be using the
Groovy plugin (however, Gradle is not limited to Groovy projects!):

 1 apply plugin: 'groovy'

 This plugin uses Maven's conventions. For example, it expects to find your main
source code under src/main/groovy and your test source code under src/test/groovy .

 Configuring a Task
 Once you've added some plugins, you might want to configure some of the properties of a
task for your purposes.

 For example, you might want to specify a version of Gradle for the Gradle wrapper task:

 1 task wrapper(type: Wrapper) {
 2 gradleVersion = '2.2.1'
 3 }

 The properties available depend on what task you are configuring.

CHAPTER 12 ■ GRADLE

67

 Extra Configuration
 To provide extra properties within your Gradle build file, use the ext method. You can
define any arbitrary values within the closure and they will be available throughout
your project.

 You can also apply properties from other Gradle build files. For example:

 1 ext {
 2 apply from: 'props/another.gradle'
 3 myVersion = '1.2.3'
 4 }

 The properties defined within this closure can be used in your tasks.

 Maven Dependencies
 Every Java project tends to rely on many open source projects to be built. Gradle builds
on Maven so you can easily include your dependencies using a simple DSL, like in the
following example:

 1 apply plugin: 'java'
 2
 3 sourceCompatibility = 1.8
 4
 5 repositories {
 6 mavenLocal()
 7 mavenCentral()
 8 }
 9
 10 dependencies {
 11 compile 'com.google.guava:guava:14.0.1'
 12 compile 'org.bitbucket.dollar:dollar:1.0-beta3'
 13 testCompile group : 'junit', name: 'junit', version: '4.+'
 14 testCompile "org.mockito:mockito-core:1.9.5"
 15 }

 This build script uses sourceCompatibility to define the Java source code version of
 1.8 (which is used during compilation). Next it tells Maven to use the local repository first
(mavenLocal), then Maven Central.

 In the dependencies block, this build script defines two dependencies for the
 compile scope and two for testCompile scope. Jars in the testCompile scope are only
used by tests, and won't be included in any final products.

 The line for JUnit shows the more verbose style for defining dependencies. It also
specifies, using + , that the version be 4.0 or greater.

CHAPTER 12 ■ GRADLE

68

 You can also specify your own Maven repository by calling maven with a closure
supplying the appropriate parameters (at least an URL). For example (in the repositories
section):

 1 maven {url "https://oss.sonatype.org/content/repositories/snapshots/" }
 2 maven { url = "$nexus/content/groups/public"
 3 credentials {
 4 username 'deployment'
 5 password deploymentPassword
 6 }
 7 }

 The second example demonstrates using a secured Maven repository. It also
demonstrates using the variables nexus and deploymentPassword which could (probably
should) be stored in a gradle.properties file.

 Gradle Properties
 The gradle.properties file allows you to specify Gradle properties and other properties
available to your build script. For example, you can specify JVM arguments and whether
you want to use the Gradle daemon (which runs in the background and speeds up
subsequent Gradle builds):

 1 org.gradle.daemon= true
 2 org.gradle.jvmargs=-Xms128m -Xmx512m

 You could also specify build specific values that you don't want to keep in your
versioning system (such as Nexus credentials, for example).

 Multiproject Builds
 A multiproject build can include any number of sub-projects that are built together. Each
sub-project should be put in a directory under a single top directory, where the name of
each directory is the name of the sub-project.

 Separate builds in a multi-project build may depend on one another. You can express
dependencies on any number of subprojects using the following syntax:

 1 dependencies {
 2 compile project(':subproject1')
 3 compile project(':subproject2')
 4 }

CHAPTER 12 ■ GRADLE

69

 The top-level build.gradle file of multiproject should look something like the
following:

 1 allprojects {
 2 apply plugin: "groovy"
 3 }
 4 project(":subproject1") {
 5 dependencies {}
 6 }
 7 project(":subproject2") {
 8 dependencies {}
 9 }

 File Operations
 Since Gradle evaluates tasks before actually executing them, you should generally not use
 java.util.File for defining files or directories. Instead, Gradle provides a number of
built-in methods and tasks. For example, you should use the file method for single files
or directories and the files method to define a collection of files or directories.

 1 outputDir = file("libs/x86")

 There's also a fileTree method for recursively listing a directory of files. For
example, you can depend on all files under the lib directory in the following way:

 1 dependencies {
 2 compile fileTree('lib')
 3 }

 To copy files from one place to another, use the Copy task. Here's a good example:

 1 task copyImages(type: Copy) {
 2 from 'assets'
 3 into 'build/images'
 4 include '**/*.jpg'
 5 exclude '**/*test*'
 6 }

 This task would copy all images that end with .jpg in the assets directory into the
 build/images directory, excluding any files containing the word test .

CHAPTER 12 ■ GRADLE

70

 Exploring
 Remember you can also easily list properties of an object in Groovy using .properties .
This can help you explore available Gradle properties at runtime. For example:

 1 task test {
 2 println sourceSets.main.properties
 3 }

 Completely Groovy
 Remember that all of Groovy's goodness is available in Gradle. For example, the following
one-liner sets the encoding option to UTF-8 for two tasks using the “star-dot” notation
(this is useful when your code contains non-ASCII characters):

 1 [compileJava, compileTestJava]*.options*.encoding = 'UTF-8'

 ■ Exercise Explore Gradle by making your own build.gradle and trying out

everything in this chapter.

 Summary
 This chapter taught you the following about Gradle:

• How to create tasks

• How to use plugins

• How to specify dependencies

• What gradle.properties is all about

• How to create multiproject builds

• Using built-in methods for file operations

 ■ Online Documentation Gradle has a huge online user guide available at

 gradle.org 2 .

 2 http://www.gradle.org/docs/current/userguide/userguide.html

http://www.gradle.org/docs/current/userguide/userguide.html

71© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_13

 CHAPTER 13

 Grails

 Grails is a web framework for Groovy that follows the example of Ruby on Rails to be an
opinionated web framework with a command-line tool that gets things done really fast.
Grails uses convention over configuration to reduce configuration overhead.

 Grails lives firmly in the Java ecosystem and is built on top of technologies like Spring
and Hibernate. Grails also includes an Object-Relational-Mapping (ORM) framework
called GORM and has a large collection of plugins.

 Different versions of Grails can be very different, so you need to take care when
upgrading your Grails application, especially with major versions (2.4 to 3.0, for example).

 This chapter contains a quick overview of how Grails (2) works, and then includes a
history of Grails.

 Quick Overview of Grails
 After installing Grails 1 , you can create an app by running the following on the command-line:

 1 $ grails create-app

 Then, you can run commands like create-domain-class and generate-all to create
your application as you go. Run grails help to see the full list of commands available.

 Grails applications have a very specific project structure. The following is a simple
breakdown of most of that structure:

• grails-app —The Grails-specific folder.

 – conf —Configuration, such as the DataSource script and Bootstrap class.
 – controllers —Controllers with methods for index/create/edit/delete or

anything else.
 – domain —Domain model; classes representing your persistent data.
 – i18n —Message bundles.
 – jobs —Any scheduled jobs you might have go here.
 – services—Backend services where your backend or "business" logic goes.

 1 This overview is based on Grails 2.1.4, but the basics should remain the same for all versions of Grails.

https://grails.org/

CHAPTER 13 ■ GRAILS

72

 – taglib —You can very easily define your own tags for use in your GSP files.
 – views —Views of MVC; typically these are GSP files (HTML based).

• src —Any utilities or common code that don’t fit anywhere else.

 – java —Java code
 – groovy —Groovy code

• web-app

 – css —CSS stylesheets
 – images —Images used by your web-application
 – js —Your JavaScript files
 – WEB-INF —Spring’s applicationContext.xml goes here

 To create a new domain (model) class, run the following:

 1 $ grails create-domain- class

 It’s a good idea to include a package for your domain classes (like example.Post).
 A domain class in Grails also defines its mapping to the database. For example, here’s a

domain class representing a blog post (assuming User and Comment were already created):

 1 class Post {
 2 String text
 3 int rating
 4 Date created = new Date()
 5 User createdBy
 6
 7 static hasMany = [comments: Comment]
 8
 9 static constraints = {
 10 text(size:10..5000)
 11 }
 12 }

 The static hasMany field is a map that represents one-to-many relationships in your
database. Grails uses Hibernate in the background to create tables for all of your domain
classes and relationships. Every table gets an id field for the primary key by default.

 To have Grails automatically create your controller and views, run the following:

 1 $ grails generate-all

 ■ Warning Grails will ask if you want to overwrite existing files if they exist. Be

careful when using this command.

CHAPTER 13 ■ GRAILS

73

 When you want to test your app, you simply run the following:

 1 $ grails run-app

 When you’re ready to deploy to an application container (e.g., Tomcat), you can
create a war file by typing this:

 1 $ grails war

 Plugins
 The Grails ecosystem now includes over 1,000 plugins . To list all of the plugins, simply
execute this command:

 1 $ grails list-plugins

 When you’ve picked out a plugin you want to use, execute the following (with the
plugin name and version):

 1 $ grails install-plugin [NAME] [VERSION]

 This will add the plugin to your project. If you decide to uninstall it, simply use the
 uninstall- plugin command.

 REST in Grails
 Groovy includes some built-in support for XML, such as the XMLSlurper. Grails also
includes converters for converting objects to XML or JSON or vice versa.

 1 import grails.converters.JSON
 2 import grails.converters.XML
 3
 4 class PostController {
 5 def getPosts = {
 6 render Post.list() as JSON
 7 }
 8 def getPostsXML = {
 9 render Post.list() as XML
 10 }
 11 }

CHAPTER 13 ■ GRAILS

74

 For REST services that service multiple formats, you can use the built-in withFormat
in Grails. So the above code would become the following:

 1 def getPosts = {
 2 withFormat {
 3 json { render list as JSON }
 4 xml { render list as XML }
 5 }
 6 }

 Then Grails would decide which format to use based on numerous inputs, the
simplest being the extension of the URL such as .json or the request’s Accept header.

 For using web services in Grails, there’s a REST plugin 2 .

 Short History of Grails
 What follows is a brief history of the features added to Grails starting with version 2.0.

 Grails 2.0
 There have been a lot of great changes in Grails 2.0:

• Grails docs are better.

• Better error page that shows code what caused the problem.

• H2 database console in development mode (at the URI /dbconsole).

• Grails 2.0 supports Groovy 1.8.

• Runtime reloading for typed services, domain classes, src/
groovy , and src/java .

• Run any command with -reloading to dynamically reload it.

• Binary plugins (jars).

• Better scaffolding that’s HTML 5 compliant (mobile/tablet ready).

• PageRenderer and LinkGenerator API for services.

• Servlet 3.0 async API supported; events plugin; platform core.

• Resources plugin integrated into core.

• Plugins for GZIP, cache, bundling (install-plugin cached-
resources , zipped-resources).

• New tags: img , external , and javascript .

 2 http://www.grails.org/plugin/rest

http://www.grails.org/plugin/rest

CHAPTER 13 ■ GRAILS

75

• The jQuery plugin is now the default JavaScript library installed in
a Grails application.

• A new date method has been added to the params object to
allow easy, null-safe parsing of dates: def val = params.
date('myDate', 'dd-MM-yyyy') .

 Various GORM improvements include:

• Support for DetachedCriteria and new findOrCreate and
 findOrSave methods.

• GORM now supports MongoDB 3 , riak 4 , Cassandra 5 , neo4j 6 , redis 7 ,
and Amazon SimpleDB.

• New compile-time checked query DSL (where with a closure):
 avg , sum , subqueries , .size() , and so on.

• Multiple scoped data sources.

• Added database-migration plugin for updating production
databases.

 Grails 2.1
• Grails’ Maven support has been improved in a number of

significant ways. For example, it is now possible to specify plugins
within your pom.xml file.

• The grails command now supports a -debug option which will
start the remote debug agent.

• Installs the cache plugin by default.

• In Grails 2.1.1, domain classes now have static methods named
 first and last that retrieve the first and last instances from the
datastore.

 Grails 2.2
• Grails 2.2 supports Groovy 2.

• Adds new functionality to criteria queries to provide access to
Hibernate’s SQL projection API.

 3 http://www.mongodb.org/
 4 http://basho.com/
 5 http://cassandra.apache.org/
 6 http://neo4j.org/
 7 http://redis.io/

http://www.mongodb.org/
http://basho.com/
http://cassandra.apache.org/
http://neo4j.org/
http://redis.io/

CHAPTER 13 ■ GRAILS

76

• Supports forked JVM execution of the Tomcat container in
development mode.

• Includes improved support for managing naming conflicts
between artifacts provided by an application and its plugins.

 Grails 2.3
• Improved Dependency Management using the same library used

by Maven (Aether) by default.

• Includes a new data binding mechanism that’s more flexible and
easier to maintain than the data binder used in previous versions.

• All major commands can now be forked into a separate JVM, thus
isolating the build path from the runtime and test paths.

• Grails’ REST support has been significantly improved.

• Grails’ Scaffolding feature has been split into a separate plugin
(includes support for generating REST controllers, async
controllers, and Spock unit tests).

• Includes new Asynchronous Programming APIs that allow for
asynchronous processing of requests and integrates seamlessly
with GORM.

• Controllers may now be defined in a namespace that allows for
multiple controllers to be defined with the same name in different
packages.

 Grails 2.4
• Grails 2.4 comes with Groovy 2.3.

• Uses Hibernate 4.3.5 by default. (Hibernate 3 is still available as an
optional install.)

• The Asset-Pipeline replaces Resources to serve static assets.

• Now has great support for static type checking and static compilation.
The GrailsCompileStatic annotation (from the grails.
compiler package) behaves much like the groovy.transform.
Compi annotation and provides special handling for Grails.

 Grails 3.1.x
 Grails 3 represents a huge refactoring of Grails. The public API is now located in the
 grails package and everything has been redone to use traits. Each new project also
features an Application class with a traditional static void main.

CHAPTER 13 ■ GRAILS

77

 Grails 3 comes with Groovy 2.4, Spring 4.1, and Spring Boot 1.2 and the build system
now uses Gradle instead of the Gant-based system.

 Among other changes, the use of filters has been deprecated and should be replaced
with interceptors. To create a new interceptor, use the following command:

 1 grails create-interceptor MyInterceptor

 An interceptor contains the following methods:

 1 boolean before() { true }
 2 boolean after() { true }
 3 void afterView() {}

• The before method is executed before a matched action. The
return value determines whether the action should execute,
allowing you to cancel the action.

• The after method is executed after the action executes but prior
to view rendering. Its return value determines whether the view
rendering should execute.

• The afterView method is executed after view rendering completes.

 Grails 3 supports built-in support for Spock/Geb functional tests using the
 create-functional-test command.

 Testing
 Grails supports unit testing with a mixin approach. Annotations:

• @TestFor(X) : Specifies the class under test.

• @Mock(Y) : Creates a mock for the given class.

 For tests, GORM provides an in-memory mock database that uses a
 ConcurrentHashMap . You can create tests for tag libraries, command objects, URL-
Mappings, XML and JSON, and so on.

 Cache Plugin
 The Cache plugin can be used to cache content for highly performant web applications.

• You can add the @Cacheable annotation on Service or Controller methods.

• cache tags include cache:block , cache:render

• Includes cache-ehcache , -redis , and –gemfire .

• Cache configuration DSL.

CHAPTER 13 ■ GRAILS

78

 Grails Wrapper
 The Grails wrapper was added in Grails 2.0. You can create the wrapper using the
following command:

 1 $ grails wrapper

 This produces grailsw and grailsw.bat (for *nix and Windows, respectively).
 The Grails wrapper is helpful when multiple people are working on a project. The

wrapper scripts will actually download and install Grails when run. Then you can send
these scripts to anyone or keep them in your repository.

 Cloud
 Grails is supported by the following cloud providers:

• CloudFoundry 8

• Amazon 9

• Heroku 10

 ■ Only an Overview This has been a brief overview of Grails. Many books have

been written about Grails and how to use it. For more information on using Grails, visit
 grails.org 11 .

 ■ Exercise Create your own Grails app and then deploy it in the cloud.

 8 http://www.cloudfoundry.com/
 9 http://aws.amazon.com/ec2/
 10 http://www.heroku.com/
 11 http://grails.org/
 12 http://www.mailgun.com/
 13 https://gist.github.com/3996601

http://grails.org/
http://www.cloudfoundry.com/
http://aws.amazon.com/ec2/
http://www.heroku.com/
http://grails.org/
http://www.mailgun.com/
https://gist.github.com/3996601

79© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_14

 CHAPTER 14

 Spock

 Spock is a testing framework for Java and Groovy applications. The Spock web site 1 has
this to say about Spock:

 What makes it stand out from the crowd is its beautiful and
highly expressive specification language. Thanks to its JUnit
runner, Spock is compatible with most IDEs, build tools, and
continuous integration servers. Spock is inspired from JUnit,
RSpec, jMock, Mockito, Groovy, Scala, Vulcans, and other
fascinating life forms.

 Spock Basics
 The basic structure of a test class in Spock is a class that extends Specification and has
multiple methods with Strings for names.

 Spock processes the test code and allows you to use a simple Groovy syntax to
specify tests.

 Each test is composed of labeled blocks of code with labels like when , then , and
 where . The best way to learn Spock is with examples.

 A Simple Test
 Let’s start by recreating a simple test :

 1 def "toString yields the String representation"() {
 2 def array = ['a', 'b', 'c'] as String[]
 3 when:
 4 def arrayWrapper = new ArrayWrapper<String>(array);
 5 then:
 6 arrayWrapper.toString() == '[a, b, c]'
 7 }

 1 https://code.google.com/p/spock/

https://code.google.com/p/spock/

CHAPTER 14 ■ SPOCK

80

 As shown, assertions are simply groovy conditional expressions. If the == expression
returns false , the test will fail and Spock will give a detailed printout to explain why it failed.

 In the absence of any when clause, you can use the expect clause instead of then ;
for example:

 1 def "empty list size is zero"() {
 2 expect: [].size() == 0
 3 }

 Mocking
 Mocking interfaces is extremely easy in Spock 2 . Simply use the Mock method, as shown in
the following example (where Subscriber is an interface):

 1 class APublisher extends Specification {
 2 def publisher = new Publisher()
 3 def subscriber = Mock(Subscriber)

 Now subscriber is a mocked object. You can implement methods simply using
the overloaded >> operator as shown next. The following example throws an Exception
whenever receive is called:

 1 def "can cope with misbehaving subscribers"() {
 2 subscriber.receive(_) >> { throw new Exception() }
 3
 4 when:
 5 publisher.send("event")
 6 publisher.send("event")
 7
 8 then:
 9 2 * subscriber.receive("event")
 10 }

 Expected behavior is described by using a number or range multiplied by (*) the
method call, as shown here.

 The underscore (_) is treated like a wildcard (much like in Scala).

 2 You can also Mock classes, but it requires including the cglib JAR as a dependency.

CHAPTER 14 ■ SPOCK

81

 Lists or Tables of Data
 Much like how JUnit has DataPoints and Theories, Spock allows you to use lists or tables
of data in tests.

 For example:

 1 def "subscribers receive published events at least once"() {
 2 when: publisher.send(event)
 3 then: (1.._) * subscriber.receive(event)
 4 where: event << ["started", "paused", "stopped"]
 5 }

 The overloaded << operator is used to provide a list for the event variable. Although
it is a list here, anything that is iterable could be used.

 ■ Ranges The range 1.._ here means “one or more” times. You can also use _..3 ,
for example, to mean “three or fewer” times.

 Tabular formatted data can be used as well. For example:

 1 def "length of NASA mission names"() {
 2 expect:
 3 name.size() == length
 4
 5 where:
 6 name | length
 7 "Mercury" | 7
 8 "Gemini" | 6
 9 "Apollo" | 6
 10 }

 In this case, the two columns (name and length) are used to substitute the
corresponding variables in the expect block. Any number of columns can be used.

 Expecting Exceptions
 Use the thrown method in the then block to expect a thrown Exception .

 1 def "peek on empty stack throws"() {
 2 when: stack.peek()
 3 then: thrown(EmptyStackException)
 4 }

CHAPTER 14 ■ SPOCK

82

 You can also capture the thrown Exception by simply assigning it to thrown() .
For example:

 1 def "peek on empty stack throws"() {
 2 when: stack.peek()
 3 then:
 4 Exception e = thrown()
 5 e.toString().contains("EmptyStackException")
 6 }

 Summary
 As you can see, Spock makes tests more concise and easy to read, and, most importantly,
makes the intentions of the test clear.

83© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4_15

 CHAPTER 15

 Ratpack

 At its core, Ratpack 1 enables asynchronous, stateless HTTP applications. It is built on
Netty, the event-driven networking engine. Unlike some web frameworks, there is
no expectation that one thread handles one request. Instead, you are encouraged to
handle blocking operations in a way that frees the current thread, thus allowing high
performance.

 Ratpack can be used to make responsive, RESTful microservices , although it’s not a
requirement.

 ■ REST stands for REpresentational State Transfer a . It was designed in a PhD dissertation
and has gained some popularity as the new web service standard. At the most basic level in
REST, each CRUD operation is mapped to an HTTP method (GET, POST, PUT, and so on).

 a http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

 Unlike Grails and other popular web frameworks, Ratpack aims not to be a
framework, but instead a set of libraries. Although it’s a lean set of libraries, Ratpack
comes packed with support for JSON, websockets, SSE (Server Sent Events), SSL, SQL,
logging, Dropwizard Metrics, newrelic, health checks, hystrix, and more.

 Ratpack uses Guice by default for DI (dependency injection).

 Tip Ratpack is written in Java (8) and you can write Ratpack applications in pure

Java, but we are focusing on the Groovy side.

 1 http://www.ratpack.io/

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ratpack.io/

CHAPTER 15 ■ RATPACK

84

 Script
 In its simplest form, you can create a Ratpack application using only a Groovy script.
For example:

 1 @Grab('io.ratpack:ratpack-groovy:1.1.1')
 2
 3 import static ratpack.groovy.Groovy.ratpack
 4
 5 ratpack {
 6 handlers {
 7 handler {
 8 response.send "Hello World!"
 9 }
 10 }
 11 }

 Gradle
 For production systems you should use a Gradle build. Ratpack has its own Gradle plugin
that you can use, as follows (jcenter refers to the Maven central alternative, Bintray’s
JCenter):

 1 buildscript {
 2 repositories {
 3 jcenter()
 4 }
 5 dependencies {
 6 classpath 'io.ratpack:ratpack-gradle:1.1.1'
 7 }
 8 }
 9
 10 apply plugin: 'io.ratpack.ratpack-groovy'
 11
 12 repositories {
 13 jcenter()
 14 }

 Using the ratpack-gradle plugin, you can run tasks such as distZip , distTar ,
 installApp , and run which create a ZIP distribution file, TAR distribution file, install the
Ratpack application locally, and run the application respectively .

CHAPTER 15 ■ RATPACK

85

 The run task is very useful for test driving your application. After invoking gradle
run , you should see the following output:

 1 [main] INFO ratpack.server.RatpackServer - Starting server...
 2 [main] INFO ratpack.server.RatpackServer - Building registry...
 3 [main] INFO ratpack.server.RatpackServer - Ratpack started (development)
 4 for http://localhost:5050

 Ratpack Layout
 Unlike in Grails, you need to create these files and directories yourself (or use Lazybones).

• build.gradle (the Gradle build file)

• src

 – main/groovy —Where you put general Groovy classes

 – main/resources —Where you put static resources such as
Handlebars templates

 – ratpack —Contains Ratpack.groovy , which defines your
Ratpack handlers and bindings and ratpack.properties

 – ratpack/public —Any public files like HTML, JavaScript,
and CSS

 – ratpack/templates —Holds your Groovy-Markup templates
(if you have any)

 Handlers
 Handlers are the basic building blocks for Ratpack. They form something like a pipeline
or “Chain of Responsibility” 2 . Multiple handlers can be called per request, but one must
return a response. If none of your handlers is matched, a default handler returns a 404
status code.

 1 import static ratpack.groovy.Groovy.ratpack
 2
 3 ratpack {
 4 handlers {
 5 all() { response.headers.add('x-custom', 'x'); next() }
 6 get("foo") {
 7 render "foo handler"
 8 }

 2 http://www.oodesign.com/chain-of-responsibility-pattern.html

www.allitebooks.com

http://www.oodesign.com/chain-of-responsibility-pattern.html
http://www.allitebooks.org

CHAPTER 15 ■ RATPACK

86

 9 get(":key") {
 10 def key = pathTokens.key
 11 render "{\"key\": \"$key\"}"
 12 }
 13 files { dir "public" }
 14 }
 15 }

 The first handler all() is used for every HTTP request and adds a custom header. It
then calls next() so the next matching handler gets called. The next handler that matches
a given HTTP request will be used to fulfill the request with a response.

 The pathTokens map contains all parameters passed in the URL as specified in the
matching path pattern, as in :key , by prefixing the : to a variable name you specify.

 You can define a handler using a method corresponding to any one of the HTTP methods :

• get

• post

• put

• delete

• patch

• options

 To accept multiple methods on the same path, you should use the path handler and
 byMethod with each method handler inside it. For example:

 1 path("foo") {
 2 byMethod {
 3 post() { render 'post foo'}
 4 put() { render 'put foo'}
 5 delete() { render 'delete foo'}
 6 }
 7 }

 Rendering
 There are many ways to render a response. The “grooviest” ways are using the
 groovyMarkupTemplate or groovyTemplate methods.

 For example, here’s how to use the groovyMarkupTemplate :

 1 import ratpack.groovy.template.MarkupTemplateModule
 2 import static ratpack.groovy.Groovy.groovyMarkupTemplate
 3 import static ratpack.groovy.Groovy.ratpack
 4 ratpack {
 5 bindings {
 6 module MarkupTemplateModule
 7 }

CHAPTER 15 ■ RATPACK

87

 8 handlers {
 9 get(":key") {
 10 def key = pathTokens.key
 11 render groovyMarkupTemplate("index.gtpl", title: "$key")
 12 }
 13 files { dir "public" }
 14 }
 15 }

 This allows you to use the Groovy Markup language and, by default, it looks in the
 ratpack/templates directory for markup files. For example, your index.gtpl might look
like the following :

 1 yieldUnescaped '<!DOCTYPE html>'
 2 html {
 3 head {
 4 meta(charset:'utf-8')
 5 title("Ratpack: $title")
 6 meta(name: 'apple-mobile-web-app-title', content: 'Ratpack')
 7 meta(name: 'description', content: '')
 8 meta(name: 'viewport', content: 'width=device-width, initial-scale=1')
 9 link(href: '/images/favicon.ico', rel: 'shortcut icon')
 10 }
 11 body {
 12 header {
 13 h1 'Ratpack'
 14 p 'Simple, lean & powerful HTTP apps'
 15 }
 16 section {
 17 h2 title
 18 p 'This is the main page for your Ratpack app.'
 19 }
 20 }
 21 }

 Groovy Text
 If you prefer to use a plain old text document with embedded Groovy (much like a
GString), you can use the TextTemplateModule :

 1 import ratpack.groovy.template.TextTemplateModule
 2 import static ratpack.groovy.Groovy.groovyTemplate
 3 import static ratpack.groovy.Groovy.ratpack
 4 ratpack {
 5 bindings {
 6 module TextTemplateModule
 7 }

CHAPTER 15 ■ RATPACK

88

 8 handlers {
 9 get(":key") {
 10 def key = pathTokens.key
 11 render groovyTemplate("index.html", title: "$key")
 12 }
 13 }
 14 }

 Then create a file named index.html in the src/main/resources/templates
directory with the following content:

 1 < html >< h1 >${model.title}</ h1 ></ html >

 It supplies a model map to your template, which contains all of the parameters
you supply .

 Handlebars and Thymeleaf
 Ratpack also supports Handlebars and Thymeleaf templates, two alternative methods
of generating dynamic web pages. Since these are static resource, you should put these
templates in the src/main/resources directory.

 You will first need to include the appropriate Ratpack project in your Gradle build file:

 1 runtime 'io.ratpack:ratpack-handlebars:1.1.1'
 2 runtime 'io.ratpack:ratpack-thymeleaf:1.1.1'

 To use Handlebars, include the HandlebarsModule and render Handlebar templates
as follows:

 1 import ratpack.handlebars.HandlebarsModule
 2 import static ratpack.handlebars.Template.handlebarsTemplate
 3 import static ratpack.groovy.Groovy.ratpack
 4 ratpack {
 5 bindings {
 6 module HandlebarsModule
 7 }
 8 handlers {
 9 get("foo") {
 10 render handlebarsTemplate('myTemplate.html', title: 'Handlebars')
 11 }
 12 }
 13 }

CHAPTER 15 ■ RATPACK

89

 Create a file named myTemplate.html.hbs in the src/main/resources/handlebars
directory with Handlebar content. For example:

 1 < span >{{title}}</ span >

 Thymeleaf works in a similar way:

 1 import ratpack.thymeleaf.ThymeleafModule
 2 import static ratpack.thymeleaf.Template.thymeleafTemplate
 3 import static ratpack.groovy.Groovy.ratpack
 4 ratpack {
 5 bindings {
 6 module ThymeleafModule
 7 }
 8 handlers {
 9 get("foo") {
 10 render thymeleafTemplate('myTemplate', title: 'Thymeleaf')
 11 }
 12 }
 13 }

 The requested file should be named myTemplate.html and be located in the
 src/main/resources/thymeleaf directory of your project. Example content:

 1 < span th:text=\"${title}\"/>

 JSON
 Integration with the Jackson JSON marshaling library provides the ability to work with
JSON as part of ratpack-core .

 The ratpack.jackson.Jackson class provides most of the Jackson-related
functionality. For example, to render JSON, you can use Jackson.json :

 1 import static ratpack.jackson.Jackson.json
 2 ratpack {
 3 bindings {
 4 }
 5 handlers {
 6 get("user") {
 7 render json([user: 1])
 8 }
 9 }
 10 }

 The Jackson integration also includes a parser for converting JSON request bodies
into objects. The Jackson.jsonNode() and Jackson.fromJson(Class) methods can be
used to create parseable objects to be used with the parse() method.

CHAPTER 15 ■ RATPACK

90

 For example, the following handler would parse a JSON string representing a Person
object and render the Person 's name:

 1 post("personNames") {
 2 render(parse(fromJson(Person.class)).map {it.name})
 3 }

 Tip Context.parse returns a ratpack.exec.Promise . A Promise is a commonly

used pattern in concurrent programming that allows a simplified syntax. It implements
methods such as map as shown previously.

 Bindings
 Bindings in Ratpack make objects available to the handlers. If you are familiar with
Spring, Ratpack uses a registry, which is similar to the application context in Spring. It
can also be thought of as a simple map from classtypes to instances. Ratpack-Groovy uses
Guice by default, although other direct-injection frameworks can be used (or none at all).

 Instead of a formal plugin system, reusable functionality can be packaged as
modules. You can create your own modules to properly decouple and organize your
application into components. For example, you might want to create a MongoModule or a
 JdbcModule . Alternatively, you could break your application into services. Either way, the
registry is where you put them.

 Anything in the registry can be automatically used in a handler and gets wired in by
classtype from the registry. Here’s an example of bindings in action:

 1 bindings {
 2 bindInstance(MongoModule, new MongoModule())
 3 bind(DragonService, DefaultDragonService)
 4 }
 5 handlers {
 6 get('dragons') { DragonService dService ->
 7 dService.list().then { dragons ->
 8 render(toJson(dragons))
 9 }
 10 }
 11 }

CHAPTER 15 ■ RATPACK

91

 Blocking
 Blocking operations should be handled by using the blocking API. A blocking operation
is anything that is IO-bound, such as querying the database.

 The Blocking class is located at ratpack.exec.Blocking . For example, the following
handler calls a method on the database :

 1 get("deleteOlderThan/:days") {
 2 int days = pathTokens.days as int
 3 Blocking.get { database.deleteOlderThan(days) }
 4 .then { int i -> render("$i records deleted") }
 5 }

 You can chain multiple blocking calls using the then method . The result of the
previous closure is passed as the parameter to the next closure (an int above).

 Promise Ratpack makes this possible by using its own implementation of a

 promise . Blocking.get returns a ratpack.exec.Promise .

 Ratpack handles the thread scheduling for you and then joins with the original
computation thread. This way, you can rejoin with the original HTTP request thread and
return a result.

 1 get("deleteOlderThan/:days") {
 2 int days = pathTokens.days as int
 3 int result
 4 Blocking.get { database.deleteOlderThan(days) }
 5 .then { int count -> result = count }
 6 render("$result records deleted")
 7 }

 If no return value is required, use the Blocking.exec method.

 Configuration
 Any self-respecting web application should allow configuration to come from multiple
locations: the application, the filesystem, environment variables, and system properties.
This is a good practice in general, but especially for cloud-native apps.

 Ratpack includes a built-in configuration API. The ratpack.config.ConfigData
class allows you to layer multiple sources of configuration. Using the of method with a
passed closure allows you to define a factory of sorts for configuration from JSON, YAML,
and other sources.

CHAPTER 15 ■ RATPACK

92

 First, you define your configuration classes. These class properties will define the
names of your configuration properties. For example :

 1 class Config {
 2 DatabaseConfig database
 3 }
 4 class DatabaseConfig {
 5 String username = "root"
 6 String password = ""
 7 String hostname = "localhost"
 8 String database = "myDb"
 9 }

 In this case, your JSON configuration might look like:

 1 {
 2 "database": {
 3 "username": "user",
 4 "password": "changeme",
 5 "hostname": "myapp.dev.company.com"
 6 }
 7 }

 Later, in the binding declaration, add the following to bind the configuration defined
by the previous classes:

 1 def configData = ConfigData.of { d -> d.
 2 json(getResource("/config.json")).
 3 yaml(getResource("/config.yml")).
 4 sysProps().
 5 env().build()
 6 }
 7 bindInstance(configData.get(Config))

 Each declaration overrides the previous declarations. So in this case the order would
be “class definition,” config.json , config.yml , system-properties, and then environment
variables. This way you could override properties at runtime.

 System property and environment variable configuration must be prefixed with the
 ratpack. and RATPACK_ prefixes. For example, the hostname property would be ratpack.
database.hostname as a system property.

 Testing
 Ratpack includes many test fixtures for aiding your unit, functional, and integration tests.
It assumes you’ll be using Spock to test your application.

CHAPTER 15 ■ RATPACK

93

 First, if you’re using the Ratpack-Gradle plugin, simply add the following dependencies:

 1 dependencies {
 2 testCompile ratpack.dependency('test')
 3 testCompile "org.spockframework:spock-core:0.7-groovy-2.0"
 4 testCompile 'cglib:cglib:2.2.2'
 5 testCompile 'org.objenesis:objenesis:2.1'
 6 }

 The cglib and objenesis dependencies are needed for object mocking.
 Second, add your Spock tests under the src/test/groovy directory using the same

package structure as your main project. A simple test might look like the following:

 1 package myapp. services
 2 import spock.lang.Specification
 3
 4 class MyServiceSpec extends Specification {
 5 void "default service should return Hello World"() {
 6 setup:
 7 "Set up the service for testing"
 8 def service = new MyService()
 9 when:
 10 "Perform the service call"
 11 def result = service.doStuff()
 12 then:
 13 "Ensure that the service call returned the proper result"
 14 result == "Hello World"
 15 "Shutdown the service when this feature is complete"
 16 service.shutdown()
 17 }
 18 }

 Ratpack enables your functional tests by running your full application within a
test environment using GroovyRatpackMainApplicationUnderTest . For example, the
following test would test the text rendered by your default handler:

 1 package myapp
 2 import ratpack.groovy.test.GroovyRatpackMainApplicationUnderTest
 3 import spock.lang.Specification
 4
 5 class FunctionalSpec extends Specification {
 6 void "default handler should render Hello World"() {
 7 setup:
 8 def aut = new GroovyRatpackMainApplicationUnderTest()
 9 when:
 10 def response = aut.httpClient.text
 11 then:
 12 response == "Hello World!"

CHAPTER 15 ■ RATPACK

94

 13 cleanup:
 14 aut.close()
 15 }
 16 }

 Merely calling text on the httpClient invokes a GET request. However, more
complex requests can be invoked using requestSpec . For example, to test a specific
response is returned based on the User-Agent header:

 1 void "should properly render for v2.0 clients"() {
 2 when:
 3 def response = aut.httpClient.requestSpec { spec ->
 4 spec.headers.'User-Agent' = ["Client v2.0"]
 5 }.get("api").body.text
 6 then:
 7 response == "V2 Model"
 8 }

 Summary
 This chapter taught you about the following:

• How to get started with Ratpack.

• Using handlers.

• How to use bindings as a plugin architecture and for decoupling
your modules.

• How to render using Groovy Markup, Groovy Text, Thymeleaf,
and Handlebars templates.

• How to render and parse JSON.

• Doing blocking operations.

• Configuring a Ratpack app.

• Testing a Ratpack app.

 Info For more information, check out the Ratpack API 3 . Also, you should read the

book Learning Ratpack 4 by Dan Woods.

 3 http://ratpack.io/manual/1.1.1/api/index.html
 4 http://shop.oreilly.com/product/0636920037545.do

http://ratpack.io/manual/1.1.1/api/index.html
http://shop.oreilly.com/product/0636920037545.do

95© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4

 APPENDIX A

 Java/Groovy 1

 Feature Java Groovy

 Public class public class class

 Loops for(Type it : c){...} c.each {...}

 Lists List list = asList(1,2,3); def list = [1,2,3]

 Maps Map m = ...; m.put(x,y); def m = [x: y]

 Function definition void method(Type t) {} def method(t) {}

 Mutable value Type t def t

 Immutable value final Type t final t

 Null safety (x == null ? null : x.y) x?.y

 Null replacement (x == null ? "y" : x) x ?: "y"

 Sort Collections.sort(list) list.sort()

 Wildcard import import java.util.*; import java.util.*

 Var-args (String... args) (String... args)

 Type parameters Class<T> Class<T>

 Concurrency Fork/Join GPars

 1 Version 1.4 of this cheatsheet

APPENDIX A ■ JAVA/GROOVY1

96

 No Java Analogue
 Feature Groovy

 Default closure arg it

 Default value def method(t = "yes")

 Add method to object t.metaClass.method = {}

 Auto-delegate @Delegate

 Extension methods Categories or Traits

 Rename import import java.util.Vector as Vect

 Tricks
 Feature Groovy

 Range def range = [a..z]

 Slice def slice = list[0..3]

 << operator list << addMeToList

 Cast operation def dog = [name: "Fido", speak:{println "woof"}] as Dog

 GString def gString = "Dog's name is ${dog.name}"

97© Adam L. Davis 2016
A. L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4

 APPENDIX B

 Resources

• Java Tutorials: http://docs.oracle.com/javase/tutorial/

• Java Docs: http://docs.oracle.com/javase/tutorial/

• Groovy Docs: http://groovy-lang.org/documentation.html

• Spock Docs: http://spockframework.github.io/spock/docs/

• Gradle Docs: https://docs.gradle.org/current/userguide/
userguide.html

• Grails Docs : http://grails.org/learn

• Ratpack Docs: https://ratpack.io/manual/current/

• JavaOne (by going to Tools ➤ Content Catalog):
http://www.oracle.com/javaone/index.html

• StackOverflow: http://stackoverflow.com/

http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/
http://groovy-lang.org/documentation.html
http://spockframework.github.io/spock/docs/
https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/current/userguide/userguide.html
http://grails.org/learn
http://grails.org/learn
https://ratpack.io/manual/current/
http://www.oracle.com/javaone/index.html
http://www.oracle.com/javaone/index.html
http://stackoverflow.com/

99© Adam L. Davis 2016
A.L. Davis, Learning Groovy, DOI 10.1007/978-1-4842-2117-4

 A
 Abstract Syntax Tree (ABT) , 15
 Actor design pattern , 56–57
 Apache software foundation project , 5

 built-in Groovy types , 7
 closures , 8–9
 compact syntax , 6
 def keyword , 6
 elvis operator , 11
 groovy.transform package , 11
 GString , 8
 history , 12
 list defi nitions , 6
 map defi nitions , 6
 meta-programming , 10
 Mock objects , 7
 objects , 7
 properties , 7
 safe dereference operator , 12
 static type-checking , 10–11
 switch statement , 9–10

 B
 Blocking operations , 91
 Boolean-resolution , 26
 Build framework

 Gant , 62
 Gradle , 62

 Build script , 65

 C
 Cache plugin (Web application) , 77
 Cloud computing frameworks

 Caelyf , 62
 Gaelyk , 62
 grails , 78

 Codenarc , 63
 Collections , 17

 concat (elements combination) , 49
 GPath , 18
 methods , 17
 spread operator , 18

 Concurrency
 GPars , 63
 RxGroovy , 63

 Confi gSlurper , 21
 curry method , 52

 D
 Default method values , 23
 @Delegate annotation , 34
 Dependency injection (DI) , 83
 Design patterns , 31

 delegation , 34
 intercept missing

methods , 33–34
 meta-programming , 32

 categories , 32–33
 meta-class , 32

 strategy pattern , 31
 Domain Specifi c

Languages (DSLs) , 35
 delegation , 35–36
 missing methods and

properties , 38–39
 overriding operators , 36–38

 E
 Easyb , 62
 Elvis operator , 11
 Expando , 21
 Extra confi guration , 67

 Index

■ INDEX

100

 F
 File operations , 69
 Filter , 46
 Functional Programming (FP) , 45

 closures , 45
 concat , 49
 curry method , 52
 fi lter , 46–47
 fi rst-class feature , 45
 fl uent GDK , 51
 functions , 45
 immutability , 50
 limit , 49
 map , 46
 method handles , 53
 reduce , 48
 referentially transparent , 45
 sequence operations , 46
 side-eff ect free , 45
 tail recursion optimization , 53

 G
 Gaelyk , 62
 Gant , 62
 GContracts , 63
 Generics , 26
 Git , 4
 Github , 4
 GPars

 actor design pattern , 56–57
 parallel map/reduce , 55

 GPath , 18
 Gradle , 62, 84

 completion , 70
 exploring , 70
 extra confi guration , 67
 fi le operations , 69
 Maven dependencies , 67–68
 multiproject builds , 68
 plugins , 66
 projects and tasks , 65
 properties , 68
 task confi guration , 66
 web site , 65

 Grails , 61
 applications , 71–72
 cache plugin , 77
 cloud , 78
 history of , 74–77
 overview , 71

 plugins , 73
 REST , 73
 testing , 77
 wrapper , 78

 Grails 2.0 , 74–75
 Grails 2.1 , 75
 Grails 2.2 , 75
 Grails 2.3 , 76
 Grails 2.4 , 76
 Grails 3.1.x , 76–77
 Griff on , 61
 Groovy , 3

 groovyConsole method , 4
 installation , 3
 open source language , 5
 Apache software foundation

(see Apache software foundation
project)

 Groovy 1.8 , 12
 Groovy 2.0 , 13
 Groovy 2.1 , 13
 Groovy 2.2 , 13
 Groovy 2.3 , 14
 Groovy 2.4 , 14
 groovyc , 15
 groovyConsole , 15
 Groovy Development Kit (GDK) , 17

 collections , 17–18
 GPath , 18
 input/output (IO) , 18–19
 Ranges , 20
 spread operator , 18
 utilities , 21–22

 groovydoc , 16
 Groovy enVironment

Manager (GVM) , 64
 groovysh , 16

 H
 Handlebars and Th ymeleaf , 88–89
 Handle methods , 53
 Hashcode , 23
 HTTP methods , 83, 86

 I
 Imperative programming , 45
 Input/output (IO) , 18

 fi les , 18
 URL , 19

 Interfaces , 45

■ INDEX

101

 J, K
 Java , 3

 boolean-resolution , 26–27
 decimal numbers , 26
 default method values , 23
 equals and hashcode , 23
 Generics , 26
 Java and NetBeans 3 , 8
 map syntax , 27
 regex pattern matching , 24
 semicolon option , 25
 syntax , 25

 Java Virtual Machine (JVM) , 5
 JSON , 89

 L
 lazybones , 64
 Limit , 49
 Lowest Upper Bound (LUB) type , 10

 M, N
 Map syntax , 26–27
 Maven dependencies , 67–68
 Meta-programming , 32
 methodMissing method , 33–34, 38
 Missing methods , 33, 38
 Mocking interfaces , 80
 Multiproject builds , 68

 O
 Observable List/Map/Set , 22
 Overriding operators , 36, 38

 P, Q
 Parallel map reduce , 55–56
 propertyMissing method , 39

 R
 Ranges , 20
 Ratpack , 61

 bindings , 90
 blocking operations , 91
 confi guration , 91–92
 Gradle , 84

 handlers , 85
 JSON , 89
 layout , 85
 rendering , 86

 groovyMarkupTemplate method , 86
 Handlebars and Th ymeleaf , 88–89
 ratpack/templates directory , 87
 TextTemplateModule method , 87–88

 script , 84
 testing , 92–94

 Reduce , 46, 48
 Regex pattern matching , 24
 REpresentational State

Transfer (REST) , 73–74, 83
 RESTful microservices , 83
 RxGroovy , 63

 S
 Safe dereference operator , 12
 SDKMAN , 4, 64
 Semicolon option , 25
 Spock , 63

 basic structure , 79
 data lists/tables , 81
 exceptions , 81
 mocking interfaces , 80
 ranges , 81
 simple test , 79
 testing framework , 79

 Spread operator , 18
 Strategy pattern , 31

 T
 Tail recursion optimization , 53
 Task confi guration , 66
 Testing frameworks/code analysis , 79

 Codenarc , 63
 Easyb , 62
 GContracts , 63
 Spock , 63

 then method , 91
 thrown exceptions , 81–82
 Th ymeleaf , 88–89
 Tools

 compilation , 15
 console , 15
 documentation , 16
 shell , 16

■ INDEX

102

 Traits , 41
 defi nition , 41
 implements keyword , 41
 super-classes , 42

 trampoline method , 53

 U
 URL , 19
 Utilities , 21

 Confi gSlurper , 21
 Expando , 21
 ObservableList/Map/Set , 22

 V
 vert.x , 61

 W, X, Y, Z
 Web and UI

frameworks , 61
 Grails , 61
 Griff on , 61
 Ratpack , 61
 vert.x , 61

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	About This Book
	Part I: Getting Groovy
	Chapter 1: Software to Install
	Java/Groovy
	Trying It Out

	Others
	Code on Github

	Chapter 2: Groovy 101
	What Is Groovy?
	Compact Syntax
	Dynamic def
	List and Map Definitions
	Groovy GDK
	Everything Is an Object
	Easy Properties
	GString
	Closures
	A Better Switch
	Meta-Programming
	Static Type-Checking
	Elvis Operator
	Safe Dereference Operator
	A Brief History
	Groovy 1.8
	Groovy 2.0
	Groovy 2.1
	Groovy 2.2
	Groovy 2.3
	Groovy 2.4

	Summary

	Chapter 3: Tools
	Console
	Compilation
	Shell
	Documentation

	Chapter 4: GDK
	Collections
	Spread
	GPath

	IO
	Files
	URLs

	Ranges
	Utilities
	ConfigSlurper
	Expando
	ObservableList/Map/Set

	Chapter 5: Coming from Java
	Default Method Values
	Equals, Hashcode, and More
	Regex Pattern Matching
	Missing Java Syntax
	Semicolon Optional
	Where Are Generics?
	Groovy Numbers
	Boolean-Resolution
	Map Syntax
	Summary

	Part II: Advanced Groovy
	Chapter 6: Groovy Design Patterns
	Strategy Pattern
	Meta-Programming
	Meta-Class
	Categories

	Missing Methods
	Delegation

	Chapter 7: DSLs
	Delegate
	Overriding Operators
	Missing Methods and Properties

	Chapter 8: Traits
	Defining Traits
	Using Traits
	Summary

	Chapter 9: Functional Programming
	Functions and Closures
	Using Closures

	Map/Filter/And So On
	Immutability
	Groovy Fluent GDK
	Groovy Curry
	Method Handles
	Tail Recursion
	Summary

	Chapter 10: Groovy GPars
	Parallel Map Reduce
	Actors

	Part III: The Groovy Ecosystem
	Chapter 11: Groovy Awesomeness
	Web and UI Frameworks
	Grails1
	Griffon2
	vert.x3
	Ratpack5

	Cloud Computing Frameworks
	Gaelyk6
	Caelyf7

	Build Frameworks
	Gradle8
	Gant9

	Testing Frameworks/Code Analysis
	Easyb10
	Spock11
	Codenarc12
	GContracts13

	Concurrency
	GPars14
	RxGroovy15

	Others
	gvm16
	lazybones17

	Chapter 12: Gradle
	Projects and Tasks
	Plugins
	Configuring a Task
	Extra Configuration
	Maven Dependencies
	Gradle Properties
	Multiproject Builds
	File Operations
	Exploring
	Completely Groovy

	Summary

	Chapter 13: Grails
	Quick Overview of Grails
	Plugins
	REST in Grails
	Short History of Grails
	Grails 2.0
	Grails 2.1
	Grails 2.2
	Grails 2.3
	Grails 2.4
	Grails 3.1.x

	Testing
	Cache Plugin
	Grails Wrapper
	Cloud

	Chapter 14: Spock
	Spock Basics
	A Simple Test
	Mocking
	Lists or Tables of Data
	Expecting Exceptions
	Summary

	Chapter 15: Ratpack
	Script
	Gradle
	Ratpack Layout
	Handlers
	Rendering
	Groovy Text
	Handlebars and Thymeleaf

	JSON
	Bindings
	Blocking
	Configuration
	Testing
	Summary

	Appendix A: Java/Groovy1
	No Java Analogue
	Tricks

	Appendix B: Resources

	Index

