
[1]

www.allitebooks.com

http://www.allitebooks.org

Learning Pentaho CTools

Acquire finesse with CTools features and build rich and
custom analytics solutions using Pentaho

Miguel Gaspar

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Pentaho CTools

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Production reference: 1250516

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-342-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Miguel Gaspar

Reviewers
Dan Keeley

Sadakar Pochampalli

Umang Shah

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Sonali Vernekar

Content Development Editor
Kirti Patil

Technical Editor
Jayesh Sonawane

Copy Editor
Ameesha Smith-Green

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Miguel Gaspar started working at Webdetails about 3 years ago, some time before
the acquisition of Webdetails by Pentaho. He was a consultant in the Implementation
team and his work involved developing dashboard solutions as part of services. He
is now acting as the technical owner of some of the Implementations projects as part
of the Webdetails team in Pentaho. He likes to be as professional as possible, but in
an informal way. One of his favorite hobbies is learning and his particular areas of
interest are: business analytics, predictive analysis and big data, augmented reality,
and cloud computing. He likes to play and is a huge martial arts fan and also one of
the worst soccer players ever. He is married and a parent of two young and lovely
daughters, who would like to spend more time playing like crazies with him. He also
likes to spend time with friends or just having a drink and a good talk with someone
else, if possible with his family at his side. He really hates liars.

I am really grateful to my wife for all the support and also to my
daughters for letting me compensate them for the time I spent
writing the book while I should be spending the time with them,
playing and laughing. I also want to thank all the reviewers and the
team that worked on the book to make it better.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Dan Keeley is an open source analytics advocate who has been working with
Pentaho for nearly 10 years. He is now running his own company, building a
team specializing in fast turnaround analytics. He has reviewed books on Pentaho
Reporting and Pentaho Data Integration.

Sadakar Pochampalli has been working as a BI consultant, and has around 4
years of experience with the Pentaho BI suite (all the modules) and the Japsersoft BI
suite (all the modules). He is a postgraduate with a masters in computer applications
from Bankatlal Badruka College for IT, Hyderabad, Telangana. He was awarded
by Badruka (BBCIT) college with E.Balagurusamy gold medal for his outstanding
performance during his postgraduation. He has been involved in end-to-end
BI solutions using the Pentaho BI suite to meet the customers' expectations. He
is passionate about learning open source and enterprise BI technologies as well
an enthusiast of working on big data technologies. He often says to his friends,
colleagues, and family that learning things never exhausts the mind. He has successfully
delivered around 20 end-to-end BI projects using Pentaho and Jaspersoft. He has also
trained more than 200 folks, from freshers to the CEOs of companies.

This is the first book he has reviewed. He is the author of two active blogs: http://
pentaho-bi-suite.blogspot.in/ (Pentaho BI Suite) and http://jasper-bi-
suite.blogspot.in/ (Jaspersoft BI Suite).

I would like to express my special thanks to the author of this book
Miguel Gaspar and Packt Publishing for giving me this wonderful
opportunity to review the content of book to make me part of this
project. I enjoyed doing it as I have been working on the same
technology for the past few years. Hope you find this book very
useful and you will also enjoy learning CTools.

www.allitebooks.com

http://pentaho-bi-suite.blogspot.in/
http://pentaho-bi-suite.blogspot.in/
http://jasper-bi-suite.blogspot.in/
http://jasper-bi-suite.blogspot.in/
http://www.allitebooks.org

Umang Shah did his MSc (IT) at the Dhirubhai Ambani Institute of Information
and Communication Technology (DA-IICT), which is among India's top tier
institutes. After completing his masters of science, he worked in a startup firm,
Cogbooks, as a BI-ETL developer and has working here for the last 3 years. As
a startup culture, he worked on multiple roles and with multiple technologies.
Pentaho, Amazon-EC2, and Cassandra are major parts of them. He writes a blog for
helping Pentaho community: https://shahumang.wordpress.com.

This is the very first book I am reviewing, so I want to thank Packt
Publishing for giving me this opportunity.

www.allitebooks.com

https://shahumang.wordpress.com
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to all the Pentaho Community contributors, and to the
excellent Webdetails team for the excellent work they do. I hope all of you can

keep the contributions coming and hope that the book can bring new ones.

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with CTools 1

Introducing the CTools 2
Considerations before creating a dashboard 4
The first steps in creating a dashboard 7

Getting the right requirements 7
Creating a mock-up or dashboard design 9

Team and project management 10
Developing a dashboard 10

Installing CTools 11
Installing the CTools using Pentaho Marketplace 12
Installing the CTools using the CTools installer 15
Manually installing the CTools 17

Concepts and frameworks used 17
Summary 19

Chapter 2: Acquiring Data with CDA 21
Introduction to CDA 22
Creating a new CDA data source 24
Available types of CDA data sources 28

SQL databases 28
Mondrian cubes 29
Pentaho metadata 31
Kettle transformations 31
Scripting data sources 33
XPath over XML 35
Compound queries 35

Table of Contents

[ii]

Common properties 36
Making use of parameters 37

Parameters on SQL queries 38
Parameters in MDX queries 39
Parameters on kettle queries 41
Private parameters 42

Editing and previewing 43
Manipulating the output of a data source 45
CDA cache 45

Managing the cache and the scheduler 45
Cache keys 47

Configuring local cache keys 47
Configuring system-wide cache keys 48

Web API reference 48
getCdaList 48
listQueries 49
listParameters 49
doQuery 49
clearCache 50
previewQuery 50
editFile 51
manageCache 51

Hands-on dashboards 51
Summary 54

Chapter 3: Building the Dashboard Using CDF 55
Understanding the basics of a CDF dashboard 56

Lifecycle of dashboards and components 56
Creating a CDF dashboard 62
Hands-on dashboards 66

Using components inside the dashboards 66
Defining data sources for components 68
Creating and using parameters in data sources 72
The importance of listeners inside the components 75
Interaction between components 77
Using preExecution and postExecution 82
Understanding how to work with postFetch 85
Using preChange and postChange 87
Priority of component execution 89
Available components and properties 90

Table of Contents

[iii]

Adding resources – JavaScript and CSS 92
Using internal modules 92
Defining and including new modules 94
Including CSS files 95

Dashboards utilities 95
Formatting numbers 95

Numbers 97
Currency 97
Abbreviation 97
Percentages 98
Languages and locales 98
Multiple formats 98

Formatting and manipulating dates 99
Internationalization of numbers and dates 100

Dashboard storage 101
Dashboard context 104
Useful functions of the CDF API 107

Functions from the dashboards module: 107
Functions from the logger module: 109
Functions from the components module: 109

Summary 109
Chapter 4: Leverage the Process with CDE 111

A brief introduction to CDE 112
Working with the editor 113

Operational toolbar 115
New 115
Save and Save as 115
Reload 117
Settings 117

The perspectives toolbar 121
The layout perspective 122
The data sources perspective 142
The components perspective 145

Parameter, parameters, and listeners, again 156
Putting it all together 157

Creating your first CDE dashboard 159
Creating the layout 159
Define the data sources 161
Add the parameters and components 164
Overall improvements 166

Summary 167

Table of Contents

[iv]

Chapter 5: Applying Filters to the Dashboard 169
The select component 170
The multi-select component 174
The filter component 177

Expected data layout 178
Specific properties 179
Making use of add-ins 180
Advanced options and configurations 185

Changing default messages 185
Showing values 186

Date range input component 186
The multi-button component 189
Summary 190

Chapter 6: Tables, Templates, Exports, and Text Components 191
Table component 192

Table pagination 194
Internationalization and localization 195
Draw function 196
Column formats, types, width, and headers 196
Expanding content 200
Making use of add-ins 203

groupHeaders 206
clippedText 207
sparkline 207
dataBar 209
trendArrow 210
circle 213
cccBulletChart 215
formattedText 215
localizedText 217
hyperlink 220

Template component 221
Automatically generated model and root element 225
Template and engine 226
Model handler 227
Formatters 229
Add-ins 230
Events 242
Extendable options 244

Export button component 245
Export Popup button component 245
Text component 248
Summary 249

Table of Contents

[v]

Chapter 7: Advanced Concepts Using CDF and CDE 251
References to components, parameters, and layout elements 252
The query and freeform components 253

The query component 254
The freeform component 257

Creating add-ins 257
The template add-in 260
Extending CDF and CDE with new components 263

Extending CDF 263
Extending CDE 268

Extending or creating new dashboard types 274
Creating a new dashboard style/template 276

Extending styles for CDF dashboards 276
Extending styles for CDE dashboards 278

Bookmarkable parameters 279
Internationalization and localization 280
The dashboard component 283
Summary 285

Chapter 8: Visualizations Using CCC 287
Some background on CCC 288
Making use of the CCC library in a CDF dashboard 288
Mandatory and desirable properties 291
Mapping data 291

Crosstab 292
The crosstabMode property 293
The seriesInRows property 294
The timeSeries and timeSeriesFormat properties 295

Making use of CCC in CDE 295
Changing properties in preExecution or postFetch 297
Handling the click event 298
Internationalization of CCC Charts 299
What are extension points and how do you use them? 301
Formatting a basis axis label based on the scale 302
Customizing tooltips 304
Pie chart showing the value in the center 307
Dimensions 308

Readers 309
Visual roles 310

Debugging the CCC charts 311

Table of Contents

[vi]

CGG – Community Graphics Generator 314
References 315
Summary 315

Chapter 9: Pentaho App Builder 317
Understanding Pentaho App Builder 318
Installing Pentaho App Builder 318
Create a new plugin 319

Creating a new endpoint 321
Creating a job/transformation 322
Creating a dashboard 327
Folder structure 328
Making use of Kettle endpoints on a dashboard 329

How do I make the plugin available on the marketplace? 332
Summary 333

Chapter 10: Embed, Deploy, and Debug 335
Embedding dashboards 336

Avoiding cross-domain requests 336
Embedding a CDF dashboard 337
Embedding a CDE dashboard 340
Dashboard, component, and parameter events 341

Debugging 343
Browser compatibility 344
Debugging with developer tools 344

Short tips 347
Delivering a solution 348

Version control and deploying projects 349
Documentation 350
Knowledge transfer 350

How to get help and help others 351
Summary 353

Index 355

[vii]

Preface
Using Pentaho allows you to build a complete analytics solution, and CTools brings an
advanced flexibility to creating custom reports and making the most out of Pentaho.
You can build your analytics dashboards/reports in an advanced and remarkable
way. I can not avoid saying that Pentaho and CTools are two of the fastest and most
amazing tools for building a complete solution that really takes your business to
another level, and you probably would not be able to do with any other tool on
the market.

CTools provides a way to use web technologies to deliver astounding data
visualizations that are proven to create a huge visual impact, but the the learning
curve can be quite slow; the documentation can be dispersed and sometimes not easy
to obtain. So, this book will help overcome the problem, getting you up to speed and
giving you basic and advanced concepts so that you can acquire all the knowledge
you need.

By reading the book, you can learn not only how to understand how CTools work,
but also the best way to make use of them. You will learn how to create custom
dashboards to build incomparable analytics solutions. Throughout the book, your
knowledge will increase, and at the end, you will be capable of creating your own
custom and advanced analysis.

Preface

[viii]

What this book covers
Chapter 1, Getting Started with CTools, gives a brief introduction to the history of
CTools. It will also introduce the reader to the purpose of the tool and teaches
the user what methods are needed to install Community Tools. It is important to
take some time getting an introduction to some concepts before you start building
dashboards with Community Tools, so this chapter is not optional. When developing
a dashboard, the first step is to interact with the client and get the requirements.
There is a need to understand what is the best way to display data on the dashboard,
and of course, there are some techniques that can be used to have a clean and simple
dashboard that is, at the same time, very informative and intuitive. Navigation inside
the dashboard should respect the requirements, but should be easy to understand.
There is also a need to use standard components with a custom style so that it
can be a unique dashboard while being quick to develop. Understanding this
and other concepts will make the difference when developing the dashboard, so
this chapter exposes some considerations that should be taken into account while
creating dashboards.

Chapter 2, Acquiring Data with CDA, is focused on the use of Community Data Access
(CDA). Readers will find what kinds of Pentaho data sources we can use to acquire
data using CDA, and also how to do it. How we can use parameters and all the other
properties to get the desired results and how to manipulate the output that will be
exposed to the dashboards or to the exports will also be covered.

Chapter 3, Building the Dashboard Using CDF, will cover the two ways to build
Community Dashboards. To build a dashboard, readers can avoid the use of CDF,
but to achieve better results and build incredible dashboards, users should know
how it works. One of the most important parts when building a CTools dashboard
is the life cycle, so readers will have the chance to know how the life cycle of the
dashboards and the components works. Pentaho uses the CDF framework inside the
platform, so some concepts will become clear to you. Readers will also be challenged
to create their first dashboard using CDF to better understand the concepts of
Community Dashboards Editor.

Preface

[ix]

Chapter 4, Leverage the Process with CDE, will be focused on the advantages and
disadvantages of using Community Dashboards Editor (CDE) and why to use
CDE to build a dashboard. Here, we will learn how to create dashboards without
writing code or leveraging the work without the need to write code. The reader
will also learn how to build a responsive and interactive dashboard, starting with
the main concepts, and how to use the available graphical interface. Among the
other concepts, you will learn how to create a layout, use components, and set some
queries to be used inside the components. The chapter will also teach what needs to
be changed to quickly build dashboards when using CDE. An important part is how
to add more resources to the dashboard, and include them in the execution of
the dashboard.

Chapter 5, Applying Filters to the Dashboard , will show how to work with the most
important and commonly used components. This chapter will cover filters and
selectors that can be applied to the dashboard as one way to create interaction by
filtering data for the full dashboard, or just some sections of it. A dashboard is meant
to be easy to use and give good insights to get results at the first look. We can filter
the information being displayed. This chapter covers the components we can use so
that the user can have access to all the information, keeping it simple to understand
and only providing information for the selected context.

Chapter 6, Tables, Templates, Exports, and Text Components, covers add-ins for both table
and template components. An important part of building a dashboard is to find the
best way to represent data on the dashboard. We should not focus on only showing a
table, a chart, or any other component, but how to represent the data using that same
component. So, this chapter covers the most commonly used components. There is
also another component such as the exports and the text component. There are some
tips on how to avoid performance issues in the dashboards.

Chapter 7, Advanced Concepts Using CDF and CDE, covers the advanced concepts
when building dashboards with both CDF and CDE dashboards. CDF and CDE
provide some really cool components that have more flexibility and allow you to
build your own visualizations. So, we will also need to cover these components. You
will face some requests to internationalize/localize dashboards, so we will also be
covering it. There are some tips and advanced concepts that new CTools developers
may not find easy to understand at first glance, but that more advanced users will
find useful. The chapter also reinforces the concepts of references to components,
parameters, and layout elements.

Preface

[x]

Chapter 8, Visualizations Using CCC, may be one of the most expected chapters. A
dashboard is really useful and desirable when a user looks at it and can understand
what is going on with the business without the need of having to look for quite a
large amount of information. This is where visualizations become very useful. This
chapter will teach the reader how to make customizations on the available charts
produced by the Community Charts Components (CCC). This book will show how
to apply properties that can be shared between multiple charts. Readers will get a
better knowledge of how to customize charts, where to look for information, and
see some more advanced features useful inside dashboards. I would like to cover all
the aspects, concepts, and properties, but that's almost impossible. CCC is a huge
tool with infinite customizations that can be applied, so we would need to focus on
giving you what you really need to keep learning about CCC by yourself.

Chapter 9, Pentaho App Builder, talks about the one new feature created for Pentaho—
the ability to create plugins without the need to create Java code. I would say this is
one of the most interesting plugins created for Pentaho. By this time, readers already
know how to create a dashboard. So, if you already know how to create jobs and
transformations using Pentaho Data Integration, you should also be able to create
plugins. We will need to understand the Community Plugin Kick-starter (CPK) and
its relation with the Pentaho App Builder, and this chapter will explain it.

Chapter 10, Embed, Deploy, and Debug, will explain how to embed both CDF and CDE
dashboards into third-party applications. Usually, one request from customers is
how to embed a dashboard into one application. Using RequireJS, this is simple
and very flexible. You can build mini dashboards that you easily embed into your
application without interfering with its default behavior. This chapter will provide
information on how you can do debugging on the dashboard using the developer's
tools of your browser.

What you need for this book
The only requirements are to have a Pentaho 5.X installed, but it's recommended to
install 6.X.

When installing Pentaho, there is the option to include some sample data, so please
do it. Most of the samples make use of it, so to properly make use of samples, you
will need to include them. It is known as the Steelwheels sample data. This includes
a database of Metadata and Mondrian schemas.

Preface

[xi]

To make proper use of Pentaho Builder Application Server, you will need a browser.
Even if Pentaho, in some of its versions, supports Internet Explorer 8, we just can't
use this version when building responsive dashboards or making use of CSS3. You
will need to have a higher version, such as Internet Explorer 9 or even better, make
use of Chrome, Firefox, or Safari.

The reader should have knowledge of JavaScript, JQuery, and Cascading Style Sheets
(CSS). Not that it's mandatory to know the technologies, but it's the way the user will
take the most out of some CTools.

Who this book is for
If you are a CTools developer and would like to expand your knowledge and create
attractive dashboards and frameworks, this book is the go-to-guide for you. A basic
knowledge of JavaScript and Cascading Style Sheets (CSS) is highly recommended.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

<?xml version="1.0" encoding="UTF-8"?>
<CDADescriptor>
 <DataSources>
 <!—- HERE LIVES EACH ONE OF <Connection>-->
 </DataSources>
 <!—- HERE LIVES EACH ONE OF <DataAccess> -->
</CDADescriptor>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[xiii]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learning-Pentaho-CTools . We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/LearningPentahoCTools_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/LearningPentahoCTools_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearningPentahoCTools_ColorImages.pdf

Preface

[xiv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Getting Started with CTools
We will start this chapter with a brief overview of the history of the CTools, and from
there we will jump into the general concepts involved when building a dashboard.
When building a dashboard, it's not enough to just start developing the dashboard—
there is a process to follow and some tasks that you should know about in order to
produce better work.

First, you will need to have a good understanding of the requirements, such as who
is going to use the dashboard, what is the purpose, what it will be used for, and
so on. The next step will be preparing a mock-up or design of the dashboard. It is
essential that you understand the best way to display data on the dashboard, and of
course there are some techniques that provide a clean and simple dashboard that is
very informative and intuitive at the same time. Doing a functional breakdown of the
entire dashboard will make a big difference when developing both the back end and
front end of the dashboard.

When working in a team, you always need to know the responsibilities of each
element of the project. This chapter will touch a little on each of these points. You
can see this chapter as a way to demystify what you probably need to know and do
before starting the development of the dashboard.

To be able to use the CTools, you need to install them, or if you already have the
CTools, you need to learn how to update them, and how to check what version
you have. To be able to follow the remaining chapters, we will also provide a brief
introduction to the most important technologies and frameworks that the CTools
use. This is really important, because for you to become an expert at developing
dashboards using the CTools, you will need to know these technologies and
frameworks, and have an idea what they are used for. You don't need to know the
details about how they work just yet, so this chapter will not give you in-depth
knowledge on each one of them.

Getting Started with CTools

[2]

Understanding these concepts and applying them will make all the difference while
developing dashboards, so you should not consider this chapter as optional.

We will cover the following topics:

• A brief introduction to the CTools
• Considerations when creating the design of a dashboard
• The difference between dashboard design and mock-up
• Frameworks and libraries used when developing dashboards
• External tools to use while developing dashboards
• The processes available to install the CTools, and how to install them
• The process of developing a dashboard from beginning to end
• Interacting with clients and getting their requirements

Introducing the CTools
If you take a look at http://www.webdetails.pt/info/storywithtruth.html,
you will find a great infographic with a timeline of the CTools.

Let's briefly talk about the CTools. The development of CTools started in the summer
of 2008, just because the opinion of a client was, "That's great, but it's just too ugly."
So, then there was a lot of work done on the development of the Community
Dashboard Framework (CDF), and in April 2009, the first CTool was adopted
by Pentaho and integrated in version 3. But at that time, we needed to build a
dashboard by writing all of the code, so in the second half of the same year, the first
version of the Community Dashboard Editor (CDE) was released.

As the number of projects started to increase, it would have taken a huge amount
of time to prepare a system for these projects. To tackle this issue, the Community
Build Framework (CBF) was built. Then came the data layer abstraction, which was
also adopted by Pentaho. This leveraged data access and at the same time, allowed to
increase the number of accessible data systems.

The CTools became very popular, and the needs and interests of clients to have
the best visualizations they could have increased, so a year after the first CTool,
CDE started to include its own chart library, Community Charts Components
(CCC), which would later also be used in the visualizations produced by Pentaho
Analyzer. Just four months after this, a series of CTools training sessions started. In
the meantime, due to the needs of many clients, the possibility to export a chart as an
image became reality with the Community Graph Generator (CGG).

http://www.webdetails.pt/info/storywithtruth.html

Chapter 1

[3]

To increase the speed with which data is delivered to the user, and to improve
the user experience when using the dashboards, the Community Distributed
Cache (CDC) was released in January 2012. CDC, I believe, has some advantages
compared to the two options that are currently provided and supported by Pentaho,
particularly when it comes to cache management.

Pedro Alves, during one of his trips for the CTools training sessions, started a new
plugin, the Community Data Generator (CDG), which provided the functionality
to set some options that made it possible to create dummy data to be used in the
dashboards.

Another tool arrived in the summer of 2012, Community Data Validation (CDV),
which could be used to validate data and make sure it sends notifications to the
right people. However, we are not going to cover this tool, because I believe we
can achieve the same results using Pentaho Data Integration (PDI).

I started to work at Webdetails in September 2012, and since then I have seen some
other CTools, such as the Community File Repository (CFR), which enables us to
make use of files outside the solution repository.

Sometime later, Sparkl, nowadays known as Pentaho App Builder, was presented,
which is built on top of the Community Plugin Kickstart (CPK). Pentaho App
Builder is a Pentaho plugin used to create Pentaho plugins without the need to
know Java code. This made it possible for people who already knew how to use data
integration and CDE to build a plugin. Now, there are a lot of plugins available on
Pentaho Marketplace that were developed using this great tool.

In the meanwhile, Pentaho Repository Synchronizer (PRS) also arrived, and was
created on top of Sparkl. It came out to be used with version 5 of Pentaho so users
could avoid the inconvenience of having all their files and folders inside a database
and not in the file system, as was the case in the previous versions.

All the CTools have been built as open source projects and are
available under Mozilla Public License, Version 2.0, licenses
(http://mozilla.org/MPL/2.0/). All the projects are available
under the public Git repository through http:/www.github.com/
webdetails. Don't be shy to contribute.

http://mozilla.org/MPL/2.0/
http:/www.github.com/webdetails
http:/www.github.com/webdetails

Getting Started with CTools

[4]

Considerations before creating a
dashboard
Nowadays, most business analytics tools have a way to create dashboards easily,
but to this day, I have not encountered another that is capable of having the
level of customizations that we can achieve with Pentaho and the CTools. Most
business analytics solutions, like Pentaho, provide self-service business intelligence
capabilities, but they don't provide capabilities for developers to build really
customized dashboards.

I am sure that self-service capabilities are very important nowadays, when users can
create their own dashboards/reports easily, but often we want to get some results
that we are just not able to get using the self-service capability tools.

Pentaho provides the best of both worlds, the capability to create self-service
reports/dashboards, but also to make use of the CTools to build high-customized
visualizations and dashboards/reports. However, we should not think of custom
and self-service reports as independent from each other, as they can live together and
accomplish better results. A great example of this is the Stream Line Data Refinery
(SDR) that Pentaho has implemented and made available to their clients. It uses a
combination of a custom dashboard and Analyzer, where users are able to request
and refine data to a small dataset that is modeled and published as a new data
source, usable in the Analyzer to create self-service reports.

This solution solves a challenge in the area of Big Data. Data will be delivered to the
end user through the Analyzer, but the request and control of the refinery process is
done through a custom page, which is built like a dashboard using the CTools. We
should see this custom dashboard as a web page that will make calls to ensure that
it is getting a smaller dataset and will publish it. It's possible not only to make the
selection, but also to fire some actions and control the status. At the end, it's possible
to invoke an Analyzer report that can make use of the published data source. To get
more details on this solution and how it works, you can take a look at http://www.
pentaho.com/Streamlined-Data-Refinery.

Another example is CTools, used to embed the Analyzer by making use of its
API. Highly customizable and embedded interfaces are just another example of
where you can use the CTools, but this one is to the detriment of using self-service
capabilities. As in the preceding SDR example, I really agree that self-service
capabilities are very useful, but not always sufficient.

http://www.pentaho.com/Streamlined-Data-Refinery
http://www.pentaho.com/Streamlined-Data-Refinery

Chapter 1

[5]

Dashboard Designer, like the Analyzer and Interactive Reports, is only available
in the Enterprise Edition (EE). Dashboard Designer is a tool where, just by
dragging-and-dropping, you are able to build a dashboard, create new content for
the dashboard, or reuse some of the reports that you have already created. You can
start building reports with the Analyzer, Interactive Reports, and Report Designer
(after publishing them), and drag them onto a dashboard. This kind of dashboards
is not very customizable, so you might need to use a custom dashboard that can be
build with some of the CTools.

When using CTools you also have the ability to add filters to the dashboard
and specify which elements will react to changes. Sometimes you just need to
go further and create really custom reports that Analyzer and other business
intelligence platforms are not capable of producing, and that is when most part
of the CTools comes in. The CTools provide a way to create custom dashboards
by offering very customizable data sources, components, and visualizations. This
can lead to astounding dashboards. With them, you are able to create pixel perfect
visualizations, without limits. I like to think that the only limit is our imagination.

So, one of the advantages of using the CTools is really to deliver custom dashboards
with the visualizations that you need using the standard functionality, or by
extending it. CTools dashboards are web pages built with Hypertext Markup
Language (HTML), JavaScript, and Cascade Style Sheets (CSS). Like Dashboard
Designer (the standard tool from Pentaho for building dashboards), Analyzer, and
Interactive Reports, CTools dashboards are web-based and can be rendered in your
browser, so there is no need to install a client application. The big difference between
Analyzer, Interactive Reports, Dashboard Designer, and CTools dashboards is that
the first three are self-service tools that allow you to build reports just by dragging-
and-dropping, but you can face some limitations with them. You will not find these
limitations when creating dashboards, reports, or web pages with the CTools.

Of course, you may face some difficulties when building some really custom
visualizations, but even if you have some difficulties, you will be able to get them
done, and that's where this book comes in—helping you to achieve great results.
We are all conscious of the fact that it's very important for companies to have
platforms that provide tools capable of creating insights and trends in an easy,
but also flexible, way.

Let's suppose you want to create a dashboard as a landing page to launch other
reports, but also provide Key Performance Indicators (KPIs) that can vary from
user to user. You will not be able to do this with self-service tools, but you are
able to achieve these goals using the CTools dashboards.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with CTools

[6]

A very common request from final users is to have some kind of visualization that's
not available out of the box, and using CTools, we are able to extend the tools to
deliver the visualizations that users need and expect, such as a new selector, a map,
or even a floor plan if needed.

Multi-tenancy, that is, the ability to serve multiple tenants on a unique server, is
becoming very common in analytics, and when using CTools, you have a way to
provide a custom interface (images, colors, fonts, and more) or whatever you need
to the end user, just by knowing which user is logged in or which group the user
belongs to. So based on a custom property that we can customize inside Pentaho, you
are able to create the visualizations, dashboards, and reports that you have always
dreamed of.

Top business analytics tools need to be able to provide machine learning/data
mining/predictive capabilities. Not all are capable of this, but Pentaho is one of the
tools that provides these capabilities. Think of the potential when using predictive
analytics and custom visualizations to display the results. If we join the capability
to mine data with the ability to provide user integrations and produce high custom
visualizations, Pentaho and CTools are definitely the right choice. Let's suppose you
want to create some simulations based on risk—for this you may provide the user
with some interaction, process the risk analysis, and later provide a custom way to
give the user the right information in a clearer way. Or, you may want to create a
recommendation system that is able to provide this information to your end users
with incredible visualizations.

When we look at some of the most successful business/companies over the last few
years, such as Google, Facebook, LinkedIn, and Amazon, among others, we can see
that they provide custom insights and trends to their clients, customers, and users.
These insights are unique and focused on the business, and are getting better and
better results every single day. Pentaho and CTools are the tools that allows us
to get business further ahead just by using the combination of tools, plugins
and capabilities.

For the first time it might not seem so easy to build a custom dashboard, but, if we
put some effort in, we can ensure they get end users going in the right direction.

Social media and marketing analysis are also very important areas nowadays; for
some cases it may be important to create custom dashboards where each one is
different from the others. In those cases, we can always use CTools dashboards.

Chapter 1

[7]

The first steps in creating a dashboard
There are a few steps to take before starting to develop the dashboard itself. First,
we need to gather the requirements, then we need to see what the best visualizations
are or the best way to display the information, then create a mock-up or dashboard
design, next do a breakdown of the components and data sources to use, and later
start the development of the dashboard. It's not the purpose of this book to go into
detail about all of these points, but we can give you some insights.

Getting the right requirements
One of the first steps, and it's a really important one, is to collect the requirements.
Gathering the requirements can be the difference between just doing a project and
really delivering a valuable project that can have an impact and push companies
forward. The following questions need to be answered:

• Who is going to use the dashboard?
When designing a dashboard, we should consider the audience and
what they need most. Different people in a company will want different
information. Executives might want at-a-glance statistics and trending,
whereas a department manager might want to get just an overview of some
global results of the company (but will certainly need more details about
what he is managing). A technician may need more detailed information.

• What expectations do the end users have?
A dashboard is useful and users are happy when we provide the information
that they need. It's important to know what expectations users have for the
dashboard. This is an open question that may give you some ideas and help
you really get to know the goals or the motivations behind wanting the
dashboard.

• Is this dashboard replacing any other system/reports? Can you get a copy of
them?
If there are some reports we can use to get a clearer idea what needs to be
displayed and what format the data should be in, that would be great. We
could make a copy of a report/dashboard that is already being used, as it's
much easier to understand the requirements if we can see the current report,
and it may be useful when explaining the advantages of the change.

Getting Started with CTools

[8]

• Should we respect the existing User Interface (UI) guidelines (colors, fonts,
layout, elements, and so on)?
Usually, companies already have some UI elements, colors, and so on that
are UI-related, and we may use them. This will also make it easier for end
users to focus on the real information and not get distracted by colors that are
different to what they are used to. Of course, this should not break the rules
of creating proper UIs.

• What information should be displayed?
A dashboard is a quick way to display KPIs, insights, and trends, so we need
to discover what the dashboard should show to the end user. Users need to
be able to quickly access the information.

• What granularity will the data have and what level should be displayed?
It's also important to understand what the granularity of the data is to be
displayed, as the filters will depend on this. The level of detail that we have
on the dashboard can dramatically change the way we display each one of
the sections or the way they interact with each other. Having details about
one KPI, to see why sales are going down, can reduce the time needed to take
action. Just by clicking on top of the KPI to get details is one of best ways to
go. This can also be important because of performance reasons.

• How is the data being filtered? What filters will we need, and for what
sections?
What data levels we should be able to filter within the dashboard is also
important. Filters are one of the most commonly used components when
sifting through data on a dashboard, however any other component can also
be used. We can have filters for particular sections of the dashboard, but it is
usual to have common filters applied all over the dashboard.
Having a way to filter the time range and frame for the available KPIs, charts,
and tables, will give the user valuable information, for instance, providing
the ability to filter data for the last 30 days, last seven days, or the last hour.

• What are the best visualizations for achieving the intended results?
Just by looking at the dashboard, the user should be able to understand the
results without spending too much time on understanding how to read the
information. The information displayed should be intuitive to read, and if
there is too much data, an update to a section may be required. The value
and the quantity of the data will also determine the best visualization.

Chapter 1

[9]

• Will the data be displayed to users with different roles?
Different roles have different responsibilities and access to different levels
of information. While many KPIs are shared, different ones may also be
required for different roles.

Creating a mock-up or dashboard design
After getting the requirements, we should create a mock-up or a dashboard design
of the dashboard. With the answers/requirements determined in advance, we
now start by creating some kind of wireframe containing all the sections and each
one of the components. Here, the wireframe can be seen as a two-dimensional
illustration that specifically focuses on space allocation, prioritization of content, the
functionalities available, and the intended behaviors.

Whenever possible, this should be done by UI/UX experts, and should provide
the necessary details that are important not only for visualizations, but also for
navigation. No one wants to learn how to navigate a dashboard, or have training just
to understand the dashboard, so just keep it simple. We should never undervalue the
user's visual experience. Use visual elements, colors, and styles, but not too much.
Apply alignments and layering to deliver information and increase the appeal. Use
images if absolutely necessary, and be consistent when creating multiple dashboards.
Usually, a clean dashboard is better than a full dashboard where users have to look
around and may have trouble finding what they need. Start with a simple and
clean dashboard that has the essential information, and provide a way for users
to drill down.

The interaction with, and feedback from, the users is very important in this phase,
because what we agree to do in this phase may become difficult to change after
starting the actual development of the dashboard. Of course, we may need to make
some adjustments, but it should not be more than that.

There are many tools to do this with, and if you are not a designer, you can use
simple tools that provide an easy way to build wireframe mock-ups, and can guide
you during development. But if you can have a pixel perfect design, don't hesitate to
get it, as it will make a big difference to the final result.

Of course, interaction with the developer is also important, because the designer may
end up creating something that may become time-expensive to develop, and all the
teams working together will certainly find a way that works for everyone.

Getting Started with CTools

[10]

Don't forget that a dashboard should be fast to load. Having the best-looking
dashboard is not always enough if it's slow to get results to the user. Also, it's easier
for a user to understand waiting for drilled-down data than for main KPIs. Anyhow,
you should ensure fast responses to keep your users engaged, so the project team
should bear this in mind.

Team and project management
When working on medium-to-large projects, we often end up having a team working
on the project. The team can be divided into two or more groups, for example, the
back end and the front end. When working on the front end, it may be useful to have
more than one developer working on a single dashboard. When that happens, it's
always a good idea to have a project manager that can lead the project and team, and
sync with the client's project manager, without the need for developer interaction, so
everyone can focus on their own tasks and responsibilities. Even when working as a
solitary person on a project, you will get better results if you can make a plan of the
work to be done and the time window.

Developing a dashboard
Having already completed the dashboard design, we need to start work on the
dashboard itself. Here, we should do what's called a functional breakdown of the
dashboard. This is a document where you can specify the components to be used on
each section of the dashboard, and the queries and parameters to be set on each of
the components.

It's also very useful if you add the estimated time that will be spent on each task
so you can have a good idea of how much time will be needed to develop the
dashboard. This is a great help in managing not only the work that was planned
versus the work that has been completed, but also to give you an overall idea of the
components, parameters, listeners, and queries to use. For each one of the queries,
the breakdown should include the resulting columns and types.

You will spend some time creating the functional breakdown, but you will save time
when developing the dashboard, as ideas will become clearer, you'll anticipate some
problems, and some questions will be raised that need answers. You will also gain
massive advantages from this if you are working on a team, as each team member
will know what has to be done and how to achieve the goals.

Chapter 1

[11]

Doing this breakdown will also give you an advantage when building the
documentation for the project/dashboard, and also for the knowledge transfer at the
end of the project. When doing the knowledge transfer to the customers, we need
to ensure this information is the best, is complete, and is easy to understand. When
delivering to a customer technical team, we should be able to do this in a complete
and understandable way. The functional breakdown will help them understand how
the dashboard works. So, everyone can take advantage of this document.

Once all the tasks are delivered to the team's different elements, the team should
start the development of the back end and the front end of the dashboard. But they
should always look back to the dashboard design and the functional breakdown and
take these into account.

Don't forget the version control
Create or request a version control repository, and make sure that
the team's elements have the proper access and rights to it. We
will come back to version control later on in the book.

The time has come when you need to start creating your dashboard, but for this you
need to install the CTools.

Installing CTools
One of the first steps when developing a custom dashboard is to install the CTools.
It's required that you already have Pentaho installed and well set up. There are three
ways of installing the CTools:

• Using Pentaho Marketplace
• Using the ctools-installer (this is only for earlier versions of Pentaho

such as 4.5 and 4.8; it might work on Pentaho 5.x, but it is not recommended,
and it will not work for 6.x)

• Manually

Getting Started with CTools

[12]

Starting from version 5.2, CTools comes already installed, so you can skip the
installation process; however, it's important to know the process because sooner or
later you may want to upgrade. The standard CTools, the ones that come installed
with Pentaho and that were used during the writing of this book, do not allow you
to edit or create a new CDE dashboard. But you can perform a few changes to make
this possible. You just need to uncomment the <operation> and <overlays> code
lines in the following files for the CDE and CDA plugins:

• /cda/plugin.xml

• /pentaho-cdf-dd/plugin.xml

The plugins can be found in the pentaho-solutions/system folder of your
Pentaho installation.

Installing the CTools using Pentaho Marketplace
The first way, and definitely the easiest, is using Pentaho Marketplace. To follow this
process, you need to make sure you have a Pentaho version that already includes
Marketplace; otherwise you should download the files and install it first.

Pentaho Community Edition (CE) already comes with Pentaho Marketplace
installed by default, which may not happen in EE. Starting from Pentaho 6.1
and above, the Marketplace should come already installed by default.

The first step is to check whether Marketplace is available in your Pentaho version.
In the Pentaho User Console (PUC), you can click on the operational menu and
check that you have an option available to execute Marketplace. If you have it
already installed, you can skip the installation of Pentaho Marketplace; otherwise
you will need to install it.

If I had to provide a definition of Pentaho Marketplace, I would say this: Marketplace
is a graphical interface running on Pentaho itself that allows users to know what
plugins are available and to install/uninstall them, at the same time giving
developers the ability to publish their work and make solutions or utilities available
to others that may solve a problem or add a new functionality.

Marketplace can be downloaded from http://community.pentaho.com/
marketplace/plugins/. Depending on the version of Pentaho you are using, check
it using PUC menu under Help | About, and download Marketplace for the version
of Pentaho you are using. You will get a zip file, so unzip the file and, after stopping
the Pentaho Server, copy the unzipped folder into your pentaho-solution/system
folder. You will end up with a folder named marketplace in your system folder.
Start the BA Server and you should have Marketplace already available to be used.

http://community.pentaho.com/marketplace/plugins/
http://community.pentaho.com/marketplace/plugins/

Chapter 1

[13]

Upon launching Pentaho Marketplace, you should get an image like the following
figure:

The numbers in the preceding screenshot are explained as follows:

1. The tabs on the top area of the frame let you filter the plugins by status. They
are available in Marketplace (will show all plugins), or can be installed on
your Pentaho server.

2. The drop-down selectors allows you to filter the plugins.
Each one of the rows represents a plugin. You can identify the plugin
by its name and developer. You can get more information, or search for
plugins online, at the Marketplace website (http://www.pentaho.com/
marketplace/).

3. You can also identify the development stage of the plugin. The number
and color identify the development stage. Depending on whether it's in a
Customer Lane or Community Lane, there will be a blue or green color,
where the number represents the stage in each group. To get more details
on this, please visit the Marketplace page at http://www.pentaho.com/
marketplace/.

4. The status can be one of two options, Installed and Available. A plugin that
is already installed can then be updated.

http://www.pentaho.com/marketplace/
http://www.pentaho.com/marketplace/
http://www.pentaho.com/marketplace/
http://www.pentaho.com/marketplace/

Getting Started with CTools

[14]

5. Depending on the available actions, you will get different buttons such as:

Clicking on the row of a plugin will launch a dialog with the details of the
plugin. This dialog will show the name of the plugin and the developer,
version, license, and dependencies, action buttons, and description and,
when scrolling down, some screenshots of the plugin may also be available:

It's important to know what version of the plugin we should install. This may be a
standard version, a stable version, or a trunk version. The standard version is the
version that comes installed with Pentaho 5.2 and above. This version lets you open
dashboards or use each of the CTools, but with some limitations. For example, you
will be able to open CDE dashboards, but you will not be able to create or edit them.
To create or edit dashboards you need to install the stable version.

From the drop-down menu, you should select which version you want to install.
Then, you should click on the action, which is Install or Uninstall. After clicking on
Install/Uninstall, you will get a confirmation dialog and if you proceed, you will
also get some feedback about the success of the request made as a number shown in
previous screenshot:

1. From the dropdown, it will be possible to select the version.
2. From the buttons, it will be possible to install/uninstall it.

Chapter 1

[15]

By selecting and installing another version, the files will be overwritten, so there is
no need to uninstall the previous version. Note that after the process is completed,
you need to restart the BA server.

Check the plugin dependencies and don't forget to install them
When installing a plugin, you need to take a look at the dependencies,
as they are not installed automatically when you install a plugin. No
order is required but all the dependencies must be installed.

Installing the CTools using the CTools installer
The CTools installer, which should only be used for Pentaho versions earlier than 5.x,
is a script that will download the proper version of the selected plugins, unzip the
folder, and copy the files into the right folders. You can download it from https://
github.com/pmalves/ctools-installer. When executed, the script will check
whether there is a new version and will inform you about it. I advise you to always
install the updates, as depending on the version of Pentaho you are using, you may
need an upgrade, and it can make a big difference.

To make use of the script, you need to run it from the command line, and if you're
running just the script with no options, you will get a list of changes in the script,
as well as the usage. When running ./ctools-installer.sh, you will get
something like:

Usage: ctools-installer.sh -s solutionPath [-w pentahoWebapPath] [-b
branch]

-s Solution path (eg: /biserver/pentaho-solutions)

-w Pentaho webapp server path (required for cgg on versions before
4.5. eg: /biserver-ce/tomcat/webapps/pentaho)

-b Branch from where to get ctools, stable for release, dev for trunk.
Default is stable

-c Comma-separated list of CTools to install (Supported module-names:
marketplace,cdf,cda,cde,cgg,cfr,sparkl,cdc,cdv,saiku,saikuadhoc)

-y Assume yes to all prompts

--no-update Skip update of the ctools-installer.sh

-n Add newline to end of prompts (for integration with CBF)

-r Directory for storing offline files

-h This help screen

https://github.com/pmalves/ctools-installer
https://github.com/pmalves/ctools-installer

Getting Started with CTools

[16]

To successfully run the installer and install the plugins, you will need to provide the
solution path using the –s options and specify the absolute path to your Pentaho
Solutions folder or the path where you are running the script from.

Pentaho Web App folder is optional, and is only mandatory when installing the
CGG plugin on versions previous to Pentaho 4.5. You will not need to specify this
option otherwise.

You may also specify the branch to install CTools from. For that option, you may use
a value of stable or dev, depending on what you want to install.

The stable version is the one to use
In some cases, you can use the development version. For example, if
you need a bug fix or just to make use of new functionality, then you
might want use the dev version; otherwise you should avoid it.

You will be asked something like:

Install CDF? This will delete everything in pentaho-solutions/system/
pentaho-cdf. you sure? (y/N)

You should answer y when you want to install the referred plugin, or N if you don't
want to install it. But you can also avoid this if you want to confirm the installation
of all plugins. For this, add the option –y to the ctools-installer script. This will
confirm the installation of all the plugins available for the selected branch.

Depending on the branch, the number of CTools to be installed
will also vary
When using the Assume yes to all prompts option, make
sure you know which ones are installed for the branch you are
selecting. The number of plugins will be different depending on the
branch you are selecting. When using dev on the branch option, it
will include more plugins compared to the stable branch.

Sometimes, you don't want to install all the Ctools at once. For this, –c is available.
This should be used followed by the abbreviation of each of the CTools names that
you want to install without a prompt, separated by a comma. This gives you a way
to automate the install of the CTools.

Chapter 1

[17]

When you are behind a proxy, you may have some difficulties using the script.
This blog post from Pedro Alves can help you overcome the problem: http://
pedroalves-bi.blogspot.de/2014/07/using-pentaho-marketplace-over-
proxy-or.html.

There is a new option that lets you use the installer to download the plugin, and later
install the CTools in offline mode. To achieve this, you should use the option –r and
specify the folder to use. If no folder exists, the script will create it and download
the folders to it, but will not install them. When the folder you are pointing to with
the –r option exists, then it will install the CTools using the files inside, without the
need to download them. Note that you can copy the downloaded folder to another
location/machine, and when pointing to the existing folder, the installer will use
them. So the first time, you will need to run the script from a machine that is able to
successfully download the CTools .zip files from the Internet. You can see what the
options are by running the command:

./ctools-installer.sh

Here is an example of the syntax of a complete command to install the CTools:

./ctools-installer.sh -s pentaho-solutions/ -b stable -c cdf,cda,cde,cgg
-r offlineCToolsFiles

This will create a folder and subfolders with the CTools files, or you can just install
them from the specified location.

Manually installing the CTools
A manual installation of the CTools is also possible. For this, you should download
the plugins yourself. Go to the Marketplace web page (http://www.pentaho.
com/marketplace) where you can select your version of Pentaho and the plugin,
and download it. Unzip the folders and copy them into the pentaho-solutions/
system folder. When restarting the server, the plugins will be working properly. Just
make sure you are downloading the version of the plugin that corresponds to your
Pentaho version. Be careful with the versions you are installing, and make sure that
all the dependencies are also installed, because some plugins are dependent on each
other. For example, when installing CDE you also need CDF to be installed.

Concepts and frameworks used
You should already know that the CTools work on the back end using Java, and
make use of the Pentaho API, and on the client side, work on top of HTML, CSS,
and JavaScript.

http://pedroalves-bi.blogspot.de/2014/07/using-pentaho-marketplace-over-proxy-or.html
http://pedroalves-bi.blogspot.de/2014/07/using-pentaho-marketplace-over-proxy-or.html
http://pedroalves-bi.blogspot.de/2014/07/using-pentaho-marketplace-over-proxy-or.html
http://www.pentaho.com/marketplace
http://www.pentaho.com/marketplace

Getting Started with CTools

[18]

CDF and implicitly CDE are HTML pages that employ JavaScript to make
dashboards more interactive and dynamic. These tools also make use of
CSS to make the user interface the most astounding it can be.

To leverage the code and work on the CTools side, but also to make it possible to use
the most recent and advanced technology, they include some frameworks/libraries
that you can take a look at. The most used ones and the ones you should take a look
at are as follows:

Utilities:

• jQuery (https://jquery.com/)
• jQueryUI (http://jqueryui.com/)
• jQuery i18n (https://plugins.jquery.com/i18n/)
• Mustache (https://github.com/janl/mustache.js)
• Backbone (http://backbonejs.org/)
• Underscore (http://underscorejs.org/)
• Moment (http://momentjs.com/)
• Require (http://requirejs.org/)

Layout-related:

• Modernizr (http://modernizr.com/)
• Bootstrap (http://getbootstrap.com/)
• Blueprint (http://www.blueprintcss.org/)
• Font-awesome (http://fortawesome.github.io/Font-Awesome/)

Components:

• Raphael (http://raphaeljs.com/)
• Protovis (http://mbostock.github.io/protovis/)
• DataTables (https://www.datatables.net/)
• Community Charts Components – CCC (www.webdetails.pt/ctools/ccc/)
• Select2 (https://select2.github.io/)
• Chosen (http://harvesthq.github.io/chosen/)
• Sparkline (http://omnipotent.net/jquery.sparkline/#s-about)
• Fancybox (http://fancybox.net/)

https://jquery.com/
http://jqueryui.com/
https://plugins.jquery.com/i18n/
https://github.com/janl/mustache.js
http://backbonejs.org/
http://underscorejs.org/
http://momentjs.com/
http://requirejs.org/
http://modernizr.com/
http://getbootstrap.com/
http://www.blueprintcss.org/
http://fortawesome.github.io/Font-Awesome/
http://raphaeljs.com/
http://mbostock.github.io/protovis/
https://www.datatables.net/
http://www.webdetails.pt/ctools/ccc/
https://select2.github.io/
http://harvesthq.github.io/chosen/
http://omnipotent.net/jquery.sparkline/#s-about
http://fancybox.net/

Chapter 1

[19]

Some of these frameworks and libraries are covered in the book, at least a part of
the libraries and frameworks. To make the most out of them, you should read their
documentation. It's not the purpose of this book to teach you how to work with them.

Summary
By now, you should have learned what the most common uses of the CTools are.
You got to know a summary of the CTools, a little bit of history, and how they were
born. You also now know how to install them using the different processes that
exist. We talked about the frameworks/libraries that are used with them, but you
should gain some more knowledge on how they work, because that will make all the
difference when building your dashboards. For that you can refer to the provided
links, the official webpages and at least get an idea of how they work.

You won't have a full understanding about the process of building CTools
dashboards just yet, but you have an idea, and it's just a matter of adjusting process
to the way you work and to provide the best services to your clients. You saw that an
important part of this process is to ask the right questions and get a full and accurate
knowledge of the business and its goals.

To be able to build a dashboard we need to get data, so in the next chapter, you will
learn how to use CDA, and find out how to get the most out of it.

[21]

Acquiring Data with CDA
When we want to display data on a dashboard, we need to get this data from
anywhere and display it in the easiest way possible, without having to write code
to parse the results in a way that components can make use of these results. Using
Pentaho, you have many ways to access data. If you are calling a report built with
Pentaho plugins or client tools, you will be able to select one kind of data source,
but if you want to use your own application and make use of Pentaho data, it would
be possible for you to use XMLA, Kettle transformations as web services, and the
Community Data Access (CDA) plugin.

The purpose of this book is to cover Community Tools, so this chapter is focused on
the use of CDA. You will learn about the available data sources, how to create a new
data source, how to pass some parameters to the query to get the right results, and
then how to preview the results. You can write your own customized queries but
if this is not enough, then you will learn how to manipulate the output that will be
exposed to the dashboards or to the exports.

CDA also makes it possible to export the results of your queries to various standard
types as a result, so this chapter will also explain how to make use of that endpoint.
There is also a chance to combine data from different data sources to make a join or
union, so this is also covered in this chapter.

This chapter focuses on teaching you how CDA works, so we will get deep and
write some code. You may not even need to write it, however, you will get a better
and deeper understanding of how CDA works by doing so. Don't be scared, because
it's really simple to create CDA data sources without writing code or editing XML
files manually.

Acquiring Data with CDA

[22]

This chapter covers the following topics:

• Available Pentaho data sources using CDA
• Defining a new data source
• Testing and displaying the results of a query
• Using parameters to get the expected results
• Available endpoints and how to export results
• Creating compound queries
• Making use of the cache to improve performance
• Sorting and pagination on server side

Introduction to CDA
CDA was one of the first CTools. Its main purpose is to provide data abstraction for
multiple kinds of data sources wrapped as web services. It was first created to be
used as an interface between the data connections and the Community Dashboard
Framework (CDF), but nowadays it can also be used in Report Designer to embed
data in third-party applications.

CDA includes many different output types that we can configure, and also includes
some configurable cache options to optimize performance, which you will have
the chance to learn about. Another great feature in CDA that is somehow related to
performance, is to sort and paginate on the server side.

The following diagram is an example of how CDA can be used to acquire data
from. CDA is able to provide data to a CDF and/or CDE dashboards. However,
an external application can get data directly from CDA using its endpoints. When
requested for data, CDA will check whether the cache is enabled and whether there
are results already cached. It will only query the final data sources when no values
for that query (that includes the parameters used) have been cached, values in the
cache have already expired, or the cache keys do not match:

Chapter 2

[23]

Mondrian Pentaho
Metadata

SQL
Databases

Any other data
source valid

for kettle
XML Files

External Application

CDF/CDE Dashboards

CDA Cache

Community Data Access (CDA)

SQL over JDBC
or JND

MQL queries over
Pentaho Metadata

Kettle
Transformation

XPath over
XML files

Compound
queries

CDA Data
Source

Scripting
(Beanshell or JavaScript)

MDX queries over
Mondrian or olap4j

To enable the cache, we need to set some options when defining the CDA data
source, but let's focus on the general functionality and leave these details to be
explained later on in this chapter.

As we can see in the diagram, the available data sources for CDA are:

• SQL over JDBC or JNDI.
• MDX queries over Mondrian or olap4j.
• MQL queries over a Pentaho metadata connection.
• Kettle transformations.
• Scripting (only Beanshell and JavaScript are currently supported).
• XPath over XML files.
• Compound queries.

CDA files are a definition of the different sources to get data from. As you can
have multiple data sources defined inside a single CDA file, you need to specify an
identifier (ID). ID: the identifier of the connection. This child element is the unique
identifier for that same CDA data source. Setting this child element would allow you
to identify a particular query to be executed and get the data from it. It can also be
seen as or called Data AccessID. It is mandatory and unique—the opposite of some
other properties that are common to all data sources, which we will cover later in
this chapter.

Acquiring Data with CDA

[24]

Creating a new CDA data source
There are multiple ways to create CDA data sources. One of the ways is to use CDE,
where no code or XML is needed, and we will cover this later in the CDE chapter.
There is another way, which is using the CDA editor, or just editing the file by hand
using the Pentaho Text Editor plugin.

For now, I want you to understand the internals of CDA, so we need to start with the
hardest way to create a CDA file—by creating/editing an XML file. The CDA files
that are XML files will define the Pentaho repository and will have a .cda extension.
This way, Pentaho will recognize the file extension and will provide the capability to
preview the results or edit the file. The main structure of a CDA file is the following:

<?xml version="1.0" encoding="UTF-8"?>
<CDADescriptor>
 <DataSources>
 <!—- HERE LIVES EACH ONE OF <Connection>-->
 </DataSources>
 <!—- HERE LIVES EACH ONE OF <DataAccess> -->
</CDADescriptor>

As a .cda file is written using XML syntax, let's consider the concepts behind XML.
XML files have elements and attributes.

The first line dictates that the file is written using the XML format type and the
following lines will define all the connections and data access. We do it using the
CDADescriptor element. Inside it, we will have a data source element with the
definition of the data sources that can be used by different queries. It does not make
sense to define the connections to the database when defining a query. Most of the
time, queries that we want to execute share the same connections settings, so we can
define the settings for the connections.

When defining the properties for each data access, we need to set some attributes like
in the following example:

<Connection id="1" type="sql.jdbc">
...
</Connection>

Chapter 2

[25]

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this
book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:

• Log in or register to our website using your e-mail address
and password.

• Hover the mouse pointer on the SUPPORT tab at the top.
• Click on Code Downloads & Errata.
• Enter the name of the book in the Search box.
• Select the book for which you're looking to download the

code files.
• Choose from the drop-down menu where you purchased this

book from.
• Click on Code Download.

You can also download the code files by clicking on the Code Files
button on the book's webpage at the Packt Publishing website. This
page can be accessed by entering the book's name in the Search box.
Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://
github.com/PacktPublishing/Learning-Pentaho-CTools.
We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/.
Check them out!

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-Pentaho-CTools
https://github.com/PacktPublishing/Learning-Pentaho-CTools
https://github.com/PacktPublishing/
http://www.allitebooks.org

Acquiring Data with CDA

[26]

The following attributes are mandatory:

• ID: This is used to define a unique name that will later be used to identify the
connections that the queries will be using.

• Type: This is used to define the type of connection, and this will set the
elements that we need to have inside. When using CDE, this type will be set
automatically when selecting the data source type to create.
After having all the connections defined, you will need to jump and start
creating the data access. For each one of the queries, create an element like
the following example:
<DataAccess id="1" connection="1" type="sql" access="private"
 cache="true" cacheDuration="300">
 ...
</DataAccess>

The following attributes should be set:

• id: This is used to define the data access identifier that will be used in the
components.

• connection: This is the identifier of the connection created previously.
Different DataAccess id can share the same connection id.

• access: This defines whether the data access is visible. Here we can have one
of two values: private or public. Private will say that the data access will not
be visible, and public says the opposite. You may want to define that a data
source is private when it is just to be used inside compound queries to create
unions or joins between queries.

• cache: This defines whether the results of the query will be cached. Possible
values are true and false. You should set it to true if you want your query to
be cached. The default value is true.

• cacheDuration: This defines the cache duration in seconds. The query will
be executed again after the specified seconds have passed. The query will be
executed and the results cached again. This attribute will be ignored when
the cache is set to false. The default value is 3600, the same as one hour
expressed in seconds.

• type: We have the same goal when defining a connection and a Data Access,
but they have different purposes, so we also need to specify the query type.

Chapter 2

[27]

You can take a look at the following example to see how your .cda file should look
after defining all the connections and Data Access. The example used is to define a
query in a new type, and it uses the JSON syntax:

<?xml version="1.0" encoding="UTF-8"?>
<CDADescriptor>
 <DataSources>
 <Connection id="query" type="scripting.scripting">
 <Initscript></Initscript>
 <Language>beanshell</Language>
 </Connection>
 </DataSources>
 <DataAccess access="public" connection="query"
 id="query" type="jsonScriptable">
 <Cache duration="3600" enabled="true"/>
 <Columns/>
 <Parameters/>
 <Query>{
 "resultset":[["row1", 0]],
 "metadata":[
 {"colIndex":0,"colType":"String","colName":"value"},
 {"colIndex":1,"colType":"Integer","colName":"name2"}
]}
 </Query>
 </DataAccess>
</CDADescriptor>

Once you have the file uploaded/saved and available inside the Pentaho repository,
you will get the ability to use a CDA editor/previewer.

There is an easy way to create CDA data sources
Like I already told before, there are easier ways to define a CDA data
source. Later, you will see that you can also use CDE to create/edit data
sources in a CDA file in a simpler way, using an intuitive Graphical
User Interface (GUI). Don't get scared.

You should now be able to create a new CDA file. To do so, you should use your
preferred code editor. Start by creating a new file in your file system with the name
myFistQuery.cda and add the XML we just mentioned. Upload the file into the
Pentaho repository and then open the file by clicking on Open in the right section of
the Pentaho User Console. Select the Data Access identifier.

Acquiring Data with CDA

[28]

Available types of CDA data sources
The data sources covered in this book are the ones already pointed out previously,
but we need to see them in detail. To create a new data source, you should also
specify the attribute type that will be used to distinguish the method to be called on
the server side to get the data and return the results. Depending on the data source
that you are creating, you should also specify some properties that may be different
depending on the kind of data source. Let's look at each one of the available options.

Each one of the following distinguished subsections will give you a brief overview
and inform you about the properties that should be defined for the connections
and also for the Data Access types. There are some common properties, such as the
columns, that we will cover later in this chapter. For now, we will only focus on the
different ones.

SQL databases
You can use this type of connection to get data from any source that uses Structured
Query Language (SQL) and that can be reached using a JNDI connection or a JDBC
driver. You can use one of these two kinds:

• sql.jdbc: To be utilized when using SQL over JDBC
• sql.jndi: To be utilized when using SQL over JNDI

When creating a connection of the sql.jdbc type, we should also specify the
following properties:

 ° Driver: The Java class name to use (for example, org.postgresql.
Driver)

 ° URL: The URL to connect to (for example, jdbc:postgresql://
localhost:5432/database)

 ° User: The username to use
 ° Pass: The user's password

When defining the connection for a sql.jndi connection, you would need to
set the following properties:

 ° jndi: The connection's name as defined in the context.xml file

Chapter 2

[29]

JNDI autocomplete filed when using CDE
When setting this child element using CDE editor, a list of the JNDI
connections available will be presented to you.

When specifying the Data Access properties, there is one that is mandatory:

• Query: Provides the SQL query to be executed

Mondrian cubes
When specifying the type for an MDX connection, we have the following
available types:

• mondrian.jdbc: To be utilized when using MDX over JDBC
• mondrian.jndi: To be utilized when using MDX over JNDI
• olap4j.defaultolap4j: To be utilized when using MDX over olap4j

To set a connection of a mondrian.jdbc type, the following properties must
be defined:

• Driver: The Java class name to use (for example, org.postgresql.Driver)
• URL: The URL to connect to (for example, jdbc:postgresql://

localhost:5432/database)
• User: The username to use
• Pass: The user's password
• Catalog: The Mondrian schema to use

When creating a connection of the mondrian.jndi type, use the following properties:

• jndi: The jndi identifier
• Catalog: The Mondrian schema to use

And when creating a connection of the olap4j.defaultolap4j type, you should use:

• Driver: The Java class name to use (for example, mondrian.olap4j.
MondrianOlap4jDriver)

• URL: The URL used to get call the driver class (for example,
jdbc:mondrian:)

Acquiring Data with CDA

[30]

• JDBCUser: The username for the connection to the database (for example,
pentaho_user)

• JDBCPassword: The password to verify authentication on the database (for
example, password)

• JDBCDriver: The driver for the connection to the database (for example,
org.hsqldb.jdbcDriver)

• JDBC: The URL to connect to the database (for example,
jdbc:hsqldb:hsql://localhost:9001/Sampledata)

• Catalog: The path to the Mondrian schema (for example, mondrian:/
SteelWheels)

To define the Data Access for a Mondrian data source, we should start discussing the
difference between normalized and denormalized output. It's out of the scope of this
book to explain data normalization/denormalization in detail, but it's important that
you know the difference between them.

Normalized queries will have an output as expected, with the same number of
columns as defined, but for denormalized queries—regardless of the number
of selected measures—CDA will only display the name of the column and the
value. Looking at the examples provided by the CDA samples, you would see the
difference between them. With the normalized queries, we will get the result as
provided in the query:

[Time].[(All)] [Time].[Years] [Measures].[Sales] [Measures].[Quantity]
All Years 2004 4750205.89 47151
All Years 2005 1513074.46 14607

The denormalized queries will have a different output format, as referred to
before, and will only have two columns representing the measures. All the selected
measures in columns will be denormalized to appear as levels and value, where each
level represents the measure name, followed by the value. Each one of the measures
names will appear as a value of the column representing the level:

[Time].[(All)] [Time].[Years] [Measures].[MeasuresLevel] Measure
All Years 2004 Quantity 47151
All Years 2005 Quantity 14607
All Years 2005 Sales 1513074.46
All Years 2004 Sales 4750205.89

Chapter 2

[31]

Looking at both tables, it is easy to understand the big difference between them.
This definition should be specified in the type attribute when creating the Data
Access element. Depending on connection type and the output format, you
should choose one of the following types: MDX, denormalizedMDX, olap4j, and
denormalizedOlap4j.

So when defining the Data Access for an MDX data source inside a .cda file, you
should also specify the following properties:

• Banded: This is only used and valid for normalized queries, and it also
defines how the output is. If a classic mode is used, the result will be like we
showed previously. When using a compact mode, only one column will be
presented for each one of the dimensions used, corresponding to the lowest
selected level.

• Query: This is the query to be executed.

Pentaho metadata
The Pentaho metadata data sources are used when acquiring data using a Pentaho
Metadata Schema. When specifying a metadata query, we need to set the metadata.
metadata type. This allows Pentaho metadata to be accessed from a dashboard
through an MQL query. To do this, and when defining the connection, we should
provide the following properties:

• DomainId: The domain used when creating the metadata schema
• XmiFile: The path and name of the file of the metadata schema

When creating the Data Access, we also need to specify:

• Query: A valid metadata query to be used to get data to the dashboard

Kettle transformations
This kind of data source, kettle transformations, allows you to get data from a kettle
transformation. Besides the fact that it delivers powerful Extract, Transform, and
Load (ETL) capabilities, it allows us to have many input sources. It provides a GUI
with zero coding required, and the great ability to connect, combine, and transform
data from multiple sources, making it easier when we have to deal with a hybrid
data ecosystem. It also makes it possible to use predictive analytics.

Acquiring Data with CDA

[32]

Whatever you do with kettle, you will then be able to get data from a particular step
in the transformation. Some time ago, it was only possible to call a transformation,
but now we have the ability to run jobs from inside a transformation, which makes
it even more powerful. Let's suppose you need some information from MongoDB.
Well, you will be able to acquire data from MongoDB using a kettle transformation
that will be called from the dashboard.

Also, let's suppose you want to apply some data mining algorithms using Weka or R.
You can achieve your goals with kettle and get the results in your dashboard.

It's very simple to use—you just need to create a data source, and you should use an
attribute type of kettle.TransFromFile. Also, when setting the connection, you
will need to specify the following properties:

• KtrFile: This is used to specify the path and name of your transformation.
• Variables: This is used to specify the mapping between kettle parameters

and the parameters used in the dashboard. You know how to use parameters
in kettle transformations, you already know that you might specify
parameters in your kettle transformations in a way you can run those kettle
transformation with values that can be specified when executing them. The
dashboard can also make use of parameters, which we will cover later in
this chapter.

You should make use of the element "variables", to create a relationship between the
parameters used inside the dashboard and the parameters you have defined inside
your dashboard. To make use of this, you should specify as many variables as you
need, the datarow-name, and the variable-name attributes.

If you look at the .cda samples, you will find a kettle.cda transformation that is
defining parameters to be sent to the transformation. Let's look at the sample:

<Connection id="1" type="kettle.TransFromFile">
 <KtrFile>sample-trans.ktr</KtrFile>
 <variables datarow-name="myRadius"/>
 <variables datarow-name="zipCode" variable-name="myDashZipCode"/>
</Connection>

The first variable defines a datarow-name, but it does not define a variable name,
and that's because the parameter inside the transformation has the same name as
the parameter defined to be used in the data source. The second one defines both
datarow-name and variable-name, and that's because the names are not similar,
so we need to create the map between them.

Chapter 2

[33]

When defining the Data Access, we also need to define the kettle step name that we
want to retrieve the data from. This is done using the query child element:

• Query: This defines the name of the step to get data from

Scripting data sources
Scriptable data sources are very useful when you start to build your dashboard, but
you still do not have a query to start with. Sometimes, when working in a team, this
may happen. If two teams start to work on the same project at the same time, with
the same goal, the back-end team may not have the ability to provide a query to be
used to start building the dashboards.

Let's suppose that we will have MDX queries. To have MDX queries, we need
to have a Mondrian schema that works on top of a data warehouse. For this, it's
necessary to build some ETL that will later be translated in a data warehouse. On top
of what we are also building, we need a Mondrian schema to make MDX queries.
All of this takes some time, so to start developing your dashboard, you have been
provided with the ability to create some dummy data sources.

CDA started with one scriptable query, but has recently added a new one.

For both types of scripting when creating a scriptable data source, we need to create
a similar connection. We need to specify the attribute type, that should have a value
of scripting.scripting, but also the following child element:

• Language: For both kinds of scriptable queries, we should set the value
beanshell or overJavaScript.

The definition of this data source should look something like this:

 <Connection id="scriptable" type="scripting.scripting">
 <Language>beanshell</Language>
 </Connection>

When defining the Data Access, it's different, so for the first case, when setting the
language to Beanshell, we should end up with something like the following:

<DataAccess id="overBeanshell" type="scriptable"
connection="scriptable" access="public">
 <Name>Sample query on SteelWheelsSales</Name>
 <Query>
import org.pentaho.reporting.engine.classic.core.util.TypedTableModel;
String[] columnNames = new String[5];
columnNames[0] = "Region";
columnNames[1] = "Q1";

Acquiring Data with CDA

[34]

columnNames[2] = "Q2";
Class[] columnTypes = new Class[5];
columnTypes[0] = String.class;
columnTypes[1] = Integer.class;
columnTypes[2] = Integer.class;
TypedTableModel model = new TypedTableModel(columnNames, columnTypes);
model.addRow(new Object[]{ new String("East"), new Integer(10), new
Integer(10) });
model.addRow(new Object[]{ new String("West"), new Integer(14), new
Integer(34) });
return model;
 </Query>
</DataAccess>

Scripting using JavaScript is a new type of data source that will simplify your life,
but has the same drawbacks as when setting the language to overJavaScript:

<DataAccess id="overJavaScript" type="jsonScriptable" access="public"
connection="scriptable" >
 <Cache duration="3600" enabled="true"/>
 <Columns/>
 <Parameters/>
 <Query>{
 "resultset":[["row1", 0]],
 "metadata":[
 {"colIndex":0,"colType":"String","colName":"value"},
 {"colIndex":1,"colType":"Integer","colName":"name2"}
]}
 </Query>
 </DataAccess>

Be careful using scripting data sources
You should be careful when using a scripting data source, and there
are two reasons for this. The first one is that this type of query is very
fast to execute, so you should always try to use a real data source,
otherwise you will not know if your dashboard is having performance
issues. There are some tricks that you can apply to the queries and to
the dashboard to make them work faster, and we will cover them later.
The second reason is that you would always get the same result,
because almost certainly you are not creating scriptable code that can
deliver different results when changing parameters. Since you will get
different results when you apply real queries, it's important that you
keep looking at your dashboards using real data.

Chapter 2

[35]

XPath over XML
Another type of data source is XPath over XML. This will allow you to grab specific
nodes from a specified XML file. When defining the connection, the type should be
xpath.xPath, and the mandatory property for the connection is:

• DataFile: The path and name of the XML file to extract data from. This will
be something like the following:
<Connection id="xpath" type="xpath.xPath">
<DataFile>region.xml</DataFile>
</Connection>

When defining the Data Access, we also should specify the XPath string query in the
query element:

<DataAccess access="public" connection="xpath" id="xpath"
type="xPath">
 <Query>/*/*[REGION=9]</Query>
</DataAccess>

More complex queries using XPath can also be done using a kettle
transformation
The query specified in the last example would extract all the nodes where
a region is equal to 9 from the file with the name region.xml. This
example is very similar to what can be done using a kettle step. If you are
trying to achieve some other results that are not achievable only using
this data source, you can create a more complex kettle transformation and
then call the transformations as you've already seen.

Compound queries
You can use compound queries to make a join or union of the results of two queries.
There are two types of compound queries: join and union. For both of these types,
we don't need to define a connection, because in reality we will be using the Data
Access that is already defined. Since we are using another data source already
created, and that which can only be created with the purpose to be used here, then
as referred to earlier, they can be defined with an attribute access set to private.
This way, they will not be seen in the previewer, but can be used inside the
compound queries.

Acquiring Data with CDA

[36]

When creating a Data Access, we need to specify the attribute as being of the type
joins or union, depending on the case. For the first case, when defining a join, we
should define the following properties:

• JoinType: The join type will have the kind of join that you may know from
the following SQL queries: Inner, Left Outer, Right Outer, and Full Outer

• Left: Here, we need to define two attributes: the id of the data source to be
used and also the keys that should be used for the right side of the join

• Right: This is similar to the previous property but for the data source to be
used on the left side of the join.

The other type, union, should include the following properties:

• Up: Identifies the query to be used on the top of the union
• Bottom: This identifies the query that will be placed on the bottom part

of the union

Note that when defining the union, the number of columns should be the same.

You can use compound queries to make the join or union of the results of two
queries, but you can also use a kettle transformation to get data from different data
sources, do a lot of operations such as joining the results, and then returning the
results to CDA so that they can be delivered to you in the format you have chosen.
Kettle, or Pentaho Data Integration, as you prefer, is used for these operations.

You can find examples for all these types of data sources inside CDA plugin samples.
You can access the samples using PUC and open them from the folder: /public/
plugin-samples/CDA/cdafiles.

Common properties
There are some common properties that should or can be used when defining a Data
Access. These properties are:

• Cache: The cache can also be defined as an attribute when defining a Data
Access. When defining the cache as an element, we should also specify the
two attributes, duration and enabled. The first attribute is used to define
the time that the query will be cached since the last execution. The enabled
attribute will be set to true or false depending on whether you want to enable
it or disable it.

• Name: This is the friendly name of the data access being defined.

Chapter 2

[37]

• Columns: This is an element that can create a different output by changing
the name of a column or just by adding new ones using calculated columns.
To change the name of columns, you would just need to specify the columns'
idx, starting from 0, and the desired name, as shown in the following
example:
<Column idx="0">
 <Name> Region </Name>
</Column>
<Column idx="1">
 <Name> Quantity </Name>
</Column>
<Column idx="2">
 <Name> TotalPrice </Name>
</Column>

To create a calculated column, we need to specify the name of the new
column and the formula to be used. The formulas should match the open
formula specification. Please refer to http://wiki.pentaho.com/display/
Reporting/Formula+Expressions to find out more information about this:
<CalculatedColumnidx="0">
 <Name> Unit Price </Name>
 <Formula>=[TotalPrice]/[Quantity]</Formula>
</CalculatedColumn >

• Query: Almost all Data Access makes use of this element. Refer to each one
of the the data sources types referred earlier to get more information.

• Parameters: These are the parameters to be sent/used in the query. They is
covered in the next subsection.

• Output: This element lets us define a different output than the one defined
in the queries. Please refer to the Manipulating the output of a data source
subsection.

Making use of parameters
We definitely do not want our queries to be static. If you can use a criterion in
a query to restrict the set of records that the query returns, you also want that
criterion to be changed dynamically without always having the same static value.
This allows you to create a query that can be easily updated without needing to
change the query itself.

http://wiki.pentaho.com/display/Reporting/Formula+Expressions
http://wiki.pentaho.com/display/Reporting/Formula+Expressions

Acquiring Data with CDA

[38]

Parameters on SQL queries
Having a parameter is like having a variable that can change over time. Each time
the query runs, the parameter will be replaced by the value that the parameter is
holding, returning data based on a criterion. The way to build a parameter is to
use the following syntax: ${parameterName}. When setting a query to grab the
customer for a particular country like:

select * from customers where country in ('USA');

You can change the static value by the parameter that you want to use:

select * from customers where country in (${country});

If the country is equal to USA, then the result from both queries is exactly the same.
The advantage of using this parameter is that you would not need to change the
query to grab the customers from another country. Just by changing the value of the
parameter when running the query again, the results will also change with respect
to the selected country. This is very useful when used inside dashboards, because
dashboards are meant to be dynamic and respond to changes or interaction from
the user.

When using parameters in CDA, you should also set a child element, Parameters.
You should create your parameters like the following XML syntax:

 <Parameters>
 <Parameter default="USA" name="country" type="String"/>
 </Parameters>

In one single query, you can define more than one parameter. So, inside the
Parameters tag, you will have a Parameter element for each one of the parameters
that you want to define. The attributes to define are the name of the parameter that
should match to the one used in the query, the default value to be used when no
other value is used, and the type of the parameter. For the type, you can use one of
the following:

• String, Integer, Numeric, or Date: This depends on the type of value
that you will use. Just to be clear, the Integer type can contain only whole
numbers, such as 10 or 365. The Numeric type can contain decimal numbers
such as 15.39.

• StringArray, IntegerArray, NumericArray, or DateArray: These are used
when you have multiple values to be included in an IN condition.

Chapter 2

[39]

As an example, your CDA file would look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<CDADescriptor>
 <DataSources>
 <Connection id="sqlSample" type="sql.jndi">
 <Jndi>SampleData</Jndi>
 </Connection>
 </DataSources>
 <DataAccess access="public" connection="sqlSample" id="sqlSample"
type="sql">
 <Cache duration="3600" enabled="true"/>
 <Columns/>
 <Parameters>
 <Parameter default="USA" name="country" type="StringArray"/>
 </Parameters>
 <Query>select * from customers where country in (${country})</
Query>
 </DataAccess>
</CDADescriptor>

When using SQL queries, CDA replaces the parameters as prepared statements.
SQL queries passed to this method go to the database for precompilation if the JDBC
driver supports it. If it does not, then precompilation occurs when you execute
prepared queries. They are precompiled in the database and their access plan will be
reused to execute further queries, which allows them to be executed much quicker
than normal queries generated by a statement object. Another advantage of using
them is that it will disable the ability to prevent SQL injection attacks.

Parameters in MDX queries
Parameterizing in MDX queries is much simpler than in SQL. It's not possible to
perform SQL injection attacks, so CDA lets you have a parameter that is part of the
query or the full query. You can use whatever tool you need/want and pass the
query as a parameter to be executed by Mondrian. You might think that this would
cause a security-related problem by passing a query that a user could not execute.
When security in Mondrian is well implemented, even if you create a query to grab a
part of data that you are not allowed to, you will not get the results back.

Using parameters in a Mondrian query is very similar, except for the fact that you
can use the parameter anywhere in the query.

Acquiring Data with CDA

[40]

It's not the purpose of this book to teach you how MDX works or how to build MDX
queries, so we will just stick with some sample queries. Creating the following query
will show the sales by quantity for each one of the members of a particular level of
a territory:

<?xml version="1.0" encoding="UTF-8"?>
<CDADescriptor>
<DataSources>
<Connection id="mk" type="mondrian.jndi">
 <Catalog>mondrian:/SteelWheels</Catalog>
 <Jndi>SampleData</Jndi>
 </Connection>
</DataSources>
<DataAccess access="public" connection="mk" id="mk" type="mdx">
<BandedMode>compact</BandedMode>
<Cache duration="3600" enabled="true"/>
<Columns/>
<Parameters>
 <Parameter name="markets" default="Territory" type="String"/>
</Parameters>
<Query>
SELECT
NON EMPTY {[Measures].[Quantity]} ON COLUMNS,
NON EMPTY {[Markets].[${markets}].Members} ON ROWS
FROM [SteelWheelsSales]
</Query>
</DataAccess>
</CDADescriptor>

You can see the query is defined with a parameter ${markets}. The parameter has a
default value of Territory, so if no other value is set, the resulting query will show
the quantities that were sold for each one of the territory's members. If a value of
Country, State, Province, or City is set, then the quantities shown have numbers
that correspond to each one of the levels of the selected level of the dimension territory.

As we referred to before, you can pass a parameter anywhere in the query, or just
have the query as a parameter. Here is an example:

<DataAccess access="public" connection="mk" id="mk" type="mdx">
<BandedMode>compact</BandedMode>
<Parameters>
 <Parameter name="myQuery" default="SELECT {[Measures].[Sales]}
ON COLUMNS FROM [SteelWheelsSales]" type="String"/>

Chapter 2

[41]

</Parameters>
<Query>
 ${myQuery}
</Query>
</DataAccess>

Parameters on kettle queries
When grabbing data from a kettle query, we don't need to define a query to be
executed by kettle. Well, you may need to define one inside the transformation, but
not in CDA. What you can do is pass the parameters to the kettle transformation. As
we may have parameters in a dashboard that have a different parameter name in the
kettle transformation, we will need to map them. Looking at the example provided
by the CDA samples, we can see the variables that are used by the transformation
inside the definition of the connection:

<?xml version="1.0" encoding="utf-8"?>
<CDADescriptor>
<DataSources>
 <Connection id="1" type="kettle.TransformFile">
 <KtrFile>sample-trans.ktr</KtrFile>
 <variables datarow-name="myRadius"/>
 <variables datarow-name="ZipCode" variable-name="myZip"/>
 </Connection>
 </DataSources>
<DataAccess id="1" connection="1" type="kettle" access="public"
cache="true">
 <Name>Sample query on SteelWheelsSales</Name>
 <Query>Report Columns</Query>
 <Parameters>
 <Parameter name="myRadius" type="Integer" default="30"/>
 <Parameter name="ZipCode" type="Integer" default="32771"/>
 </Parameters>
 </DataAccess>
</CDADescriptor>

myZip and myRadius are the names of the parameters defined inside the
transformation, but we can see that the parameters ZipCode and myRadius are
used inside CDA. That's the reason why the example sets a variable datarow-
name=ZipCode and variable-name=myZip. These two, names and variable name
need to be related to each other.

Acquiring Data with CDA

[42]

As the other parameter has the same name inside CDA and the kettle transformation,
there is no need to establish the mapping—just set it so that CDA needs to pass the
parameters to the transformation. You can also see that the CDA parameters are
similar, as defined inside the definition of the Data Access.

Private parameters
Parameters can also be defined as private. When you define a parameter as private,
the value is set on the server side, so even when you try to pass a parameter value
from the client side, the value will be the value that is set by default. That's why the
access can be set to private.

A use case of this is when you want to pass the username or tenant to a SQL query,
and you want the username to be able to send a value that would compromise the
real identity. So if you're setting the value of ${[security:principalName]}, on
the server side, this parameter will be evaluated and replaced by the username of
the user's login, no matter what value the user is sending from the client side to
overwrite the default parameter value. For this, the parameter and SQL query
should be set like the following:

<Parameters>
 <Parameter default="${[security:principalName]}" name="username"
type="String" access="private"/>
</Parameters>
<Query>SELECT * from Employee where id=${username}</Query>

Using session variables
You can also get values from a session variable to be used in CDA
parameters' values using ${[session:sessionVariableName]}.
Don't forget that to do this, you will need to have it defined on the server.
You have multiple ways to set a session variable: using xActions,
through Java code, using the Set session variables step available in the
new BA Server Utils plugin for kettle, and through the Startup Rule
Engine plugin for BA Server.

By default, a value is set as public; otherwise, you will need to specify that the
parameter access level is private.

Chapter 2

[43]

Editing and previewing
Once you have created a file and uploaded it to BA Server, the .cda extension will
tell Pentaho how to handle this file. When clicking on a .cda file, in the context menu
that becomes available on the right side of Pentaho User Console (PUC), you will be
able to edit and open the previewer. When selecting edit, you will see a screen like
the following:

You can see the editor on the center of the page, and three buttons on the right-hand
side, above the editor. We are able to change the XML file and use the buttons to
trigger some actions. The available actions are:

• Save: To save the changes we can make in the editor
• Reload: To reload the content of the file
• Preview: This will open the previewer so that we can see the results of the

execution of the data source

There are two ways to preview a query result when using CDA. The first one is
using the CDA previewer, a GUI that will let you select the Data Access that you
would like to execute. To open the previewer, you can select the .cda file in the PUC
browser and click Select Edit or double-click on the file, click on the Preview button
of the editor, or call the previewer in the browser:

Acquiring Data with CDA

[44]

The first step to get results is to select the data access using the dropdown. Next, set
the values of the parameters, if they exist, and then click the refresh button. On the
bottom of the page, you will get the results of the execution of the query.

There are also three available buttons: from left to right, the first one gives you the
ability to export the results to an .xls file. The second one presents a dialog window
with the URL you can use to call the query using an HTTP request. The last one
gives you the ability to schedule the execution of the report so that the results can
be cached.

When clicking on the Cache this button, you get a dialog where you can choose the
time interval to execute the query and cache the results.

Advanced options for cache scheduler
There is also an advanced option so that you can schedule it by using
a Cron Expression. More information about Cron can be found at:
https://en.wikipedia.org/wiki/Cron

There is another way to get and check the results which is not so user-friendly. This
is by calling the endpoint in your browser to get the results from the execution of a
query. The URL is provided to you when you click the Query URL button. You can
also pass the parameters, and as a bonus, you can test the pagination on the server
side and select the output type that you want to get results with. We will briefly
cover this option later.

https://en.wikipedia.org/wiki/Cron

Chapter 2

[45]

Manipulating the output of a data source
Manipulating the result of a data source is really simple. You can use the child
element Output when setting the Data Access. Let's suppose we are performing
a query that is returning 10 columns, but we only want to display the first two.
If that's the case, then you should set the following child element in the Data
Access definition:

<Output indexes="0,1" mode="include"/>

This child element tells CDA that it should use the first and second columns,
identified by index 0 and 1. The mode will tell CDA that these are the columns
to be included; otherwise, if you use exclude, you will get all the columns except
the first two.

When accessing a query through a URL, another way to manipulate the output is to
have a different output format. This can be achieved by calling the URL and adding
a parameter outputType of one of the following formats: JSON, XML, CSV, XLS,
or HTML.

For example, if you want to manipulate the output of the data source, you can use
something like the following URL example can be used in your browser:

http://localhost:8080/pentaho/plugin/cda/api/doQuery?path=/public/
plugin-samples/cda/cdafiles/sql-jndi.cda&dataAccessId=1¶mstatus=S
hipped¶morderDate=2004-03-01&outputType=csv

This request will download a .csv file and depending on the chosen format, it
will be displayed in the browser or will just download a file (by default, if the file
recognizes the format, the content will be rendered on the browser, otherwise the
content will be download). The default format is JSON.

CDA cache
CDA is able to cache the queries that have been executed. Every query that runs will
be cached or not cached, and by the time defined in the Cache property element when
defining the Data Access. You can also set the interval of time to grab results from
the cache, avoiding new requests to the server.

Managing the cache and the scheduler
In the PUC menu, click on Tools | Refresh | CDA Cache Manager, and you will
have the ability to clean the CDA cache. When choosing this option, every single
cache will be flushed.

http://localhost:8080/pentaho/plugin/cda/api/doQuery?path=/public/plugin-samples/cda/cdafiles/sql-jndi.cda&dataAccessId=1¶mstatus=Shipped¶morderDate=2004-03-01&outputType=csv
http://localhost:8080/pentaho/plugin/cda/api/doQuery?path=/public/plugin-samples/cda/cdafiles/sql-jndi.cda&dataAccessId=1¶mstatus=Shipped¶morderDate=2004-03-01&outputType=csv
http://localhost:8080/pentaho/plugin/cda/api/doQuery?path=/public/plugin-samples/cda/cdafiles/sql-jndi.cda&dataAccessId=1¶mstatus=Shipped¶morderDate=2004-03-01&outputType=csv
http://localhost:8080/pentaho/plugin/cda/api/doQuery?path=/public/plugin-samples/cda/cdafiles/sql-jndi.cda&dataAccessId=1¶mstatus=Shipped¶morderDate=2004-03-01&outputType=csv
http://localhost:8080/pentaho/plugin/cda/api/doQuery?path=/public/plugin-samples/cda/cdafiles/sql-jndi.cda&dataAccessId=1¶mstatus=Shipped¶morderDate=2004-03-01&outputType=csv

Acquiring Data with CDA

[46]

It's also possible to manage what has been cached or is scheduled to be cached. By
clicking on the PUC menu and going to Tools | CDA Cache Manager, it will open a
new tab with the scheduled/cached queries manager. When opening the manager,
you have the ability to choose between two modes by using the Scheduled Queries
or Cached Queries buttons, respectively:

The previous image is an example of the Scheduled Queries manager, and it will
display all the queries that have been cached. For each query, you have some
information about the last execution, the next execution, the Cron expression, the
status, and also two buttons, Execute or Remove, from the scheduler:

Chapter 2

[47]

In the Cached Queries screen, you will see the queries that have been cached. When
clicking on each row, you will get details about cached query, such as the executed
query, the parameters used, the number of rows, how many hits, and also some
actions buttons. The actions buttons are used to display the results below the query,
and make it possible to remove a particular item from the cache. You also have a
button that can empty the cache by removing all the items from the cache.

Cache keys
When using a Dynamic Schema Processor (DSP) to be used on Mondrian and
MDX queries on top of CDA, we may face some problems with cached results. To
optimize the cached results, CDA will use the query, the parameter values, and the
role of the user as keys to manage/control the cached queries and the results. In a
multi-tenant environment, it's important that the user or some other key can be set.
More information about multi-tenancy is available at: https://help.pentaho.com/
Documentation/6.0/0R0/070/Multi-Tenancy.

Configuring local cache keys
We can define cache keys in two different ways, The first way can be set when
defining the data access, inside the Cache element, where we may also define the
keys to use like the following:

<DataAccess>
 <Cache enabled="true" duration="500">
 <Key name="tenantId" value="${[session:org.pentaho.tenantId]}"
default="/pentaho/tenant0"/>
 </Cache>
</DataAccess>

This will make CDA add a key when managing the cache, and the cache will be
segmented, also taking into account the tenantId value that will be acquired from
the session variable org.pentaho.tenantId. The default value will be used if the
used session variable is not defined at the time.

Some other valid examples provided by Webdetails are as follows:

<Key name="data-access-roles" value="${[system:data-access/settings.
xml{data-access-roles}]}" default="data-access-roles"/>

<Key name="user-in-session" value="${[security:principalName]}"
default="user-in-session"/>

<Key name="tenantId" value="${[session:org.pentaho.tenantId]}"
default="default-tenant"/>

https://help.pentaho.com/Documentation/6.0/0R0/070/Multi-Tenancy
https://help.pentaho.com/Documentation/6.0/0R0/070/Multi-Tenancy

Acquiring Data with CDA

[48]

Configuring system-wide cache keys
The other way to define cache keys, configuring it to be used system-wide, has a
drawback, all defined data accesses would need to define their cache keys. There
is a way to make these keys system-wide. To do this, you need to edit the file cda.
properties. You can find the file at pentaho-solutions/system/cda/.

At the end of the file, you have a commented example on how to set the keys, which
is very simple. They keys are defined like the following:

pt.webdetails.cda.cache.extraCacheKeys.key=value

An example of how to use tenantId is as follows:

pt.webdetails.cda.cache.extraCacheKeys.tenantId=${[session:org.
pentaho.tenantId]}

Save the file, restart BA Server, and CDA will start using the configured keys. These
settings will be valid for all the queries.

Web API reference
One of the interesting things in knowing how to work with the API is that we can
use CDA to get data into an external application. This is interesting if we're not using
CDE or CDF to build the dashboard. Anyhow, a good reason for you to know about
the API is so you can go further when using CTools.

You can make requests to CDA using Web API. The base URL to use is
$BASE_URL/$WEBAPP/plugin/cda/api/, where $BASE_URL is the protocol,
hostname, and port, and $WEBAPP is the web application name used on Apache
Tomcat, and the default webapp is defined as pentaho.

For example, the following URL is referring the pentaho webapp: http://
localhost:8080/pentaho/plugin/cda/api/doQuery?path=/public/plugin-
samples/cda/cdafiles/mondrian-jndi.cda&dataAccessId=1¶mstatus=Shi
pped

Next we will cover the available endpoint. An endpoint, defines the particulars of a
specific endpoint at which a given service is available.

getCdaList
The getCdaList endpoint will get a list of all the CDA files available inside the
repository. There is no need to specify the parameters for this endpoint.

For example: http://localhost:8080/pentaho/plugin/cda/api/getCdaList

Chapter 2

[49]

listQueries
The listQueries endpoint will list all the queries available in a CDA file. There is
one mandatory parameter that needs to be used: path, to specify the path to the CDA
file where we want to get the queries from. There is an optional parameter that we
can specify, outputType, which defines a different output format for the results. The
default value is json and the other option is xml.

Example of the call to list queries: http://localhost:8080/pentaho/plugin/cda/
api/listQueries?path=/public/plugin-samples/cda/cdafiles/mondrian-
jndi.cda

listParameters
The listParameter endpoint will list all the parameters that are defined in a
particular query. There are two mandatory parameters that need to be used: path, to
specify the path to the CDA file where the queries are defined, and dataAccessId,
to specify the query we want to use. There is an optional parameter that we can
specify, outputType, which defines a different output format for the results, where
the default value is json and option is xml.

Example on how to list parameters: http://localhost:8080/pentaho/plugin/
cda/api/listParameters?path=/public/plugin-samples/cda/cdafiles/
mondrian-jndi.cda&dataAccessId=1

doQuery
This method makes a call to a query and returns the result. There are two mandatory
parameters that need to be used: path and dataAccessId. The first one will inform
the method which file should be used to get the connection and the query to be used.
The second one informs which one of the data accesses that were defined in the CDA
file are to be used. You should remember that in the last chapter, we needed to define
connections, and that data access would point to a defined connection.

When using parameters, you should also specify the values of those parameters.
To do this, it should be passed to the URL paramParameter, where Parameter
corresponds to the name of the parameter.

There are other options that are optional, such as outputType, to specify a different
output format for the results, where the default value is json and options are xml,
csv, xls, or html.

Acquiring Data with CDA

[50]

If there is a need to have pagination, we can also define paginateQuery, which
should have a Boolean value, and if we are setting a value of true, we should also
specify pageStart to define which to start with and pageSize to define the numbers
of rows we want to get.

Another parameter, bypassCache, can be used with a value of true if we need to
bypass the cache and make CDA raise a new request to the database. To sort the
query using a particular column or groups of columns, we should use sortBy and
specify the list of columns.

Example on how to execute query: http://localhost:8080/pentaho/plugin/
cda/api/doQuery?path=/public/plugin-samples/cda/cdafiles/mondrian-
jndi.cda&dataAccessId=1¶mstatus=Shipped

Let's suppose you want to get data to your web application that is not built with
CDE or CDF. You can do this by calling the same requests that CDF and CDE do.
To get data, you need to specify which CDA to use and which data access identifier
should be used. You can also specify the parameters to paste to the query, and then
the URL will be as follows:

http://localhost:8080/pentaho/plugin/cda/api/doQuery?path=/public/
plugin-samples/cda/cdafiles/mondrian-jndi.cda&dataAccessId=1¶msta
tus=Shipped

This request is calling dataAccessId 1, which is available in the Mondrian-jndi.
cda file located at: /public/plugin-samples/cda/cdafiles. It passes Shipped
as the status parameter value. You will get the result in the json format as explained
previously, and it will contain the metadata, queryInfo, and the resultset. It will
provide you with information on the columns' names and the type being returned,
how many rows were returned, and also a multidimensional array that represents
the results.

clearCache
The clearCache will clear the CDA cache. Example: http://localhost:8080/
pentaho/plugin/cda/api/clearCache

previewQuery
This method will open the CDA previewer. Example: http://localhost:8080/
pentaho/plugin/cda/api/previewQuery?path=/public/plugin-samples/cda/
cdafiles/mondrian-jndi.cda

Chapter 2

[51]

editFile
This method will open the CDA editor for a particular query. We should define a
parameter with the path to the CDA file. The parameter is path. Example: http://
localhost:8080/pentaho/plugin/cda/api/editFile?path=/public/plugin-
samples/cda/cdafiles/mondrian-jndi.cda

manageCache
This method will open the cache manager, which we already covered previously
in this chapter. Examples: http://localhost:8080/pentaho/plugin/cda/api/
manageCache

Let's suppose you want to get data to your web application that is not built with
CDE or CDF. You can do this by calling the same requests as CDF and CDE do.
You can also specify the parameters to paste to the query, and then the URL will
be as follows:

http://localhost:8080/pentaho/plugin/cda/api/doQuery?path=/public/
plugin-samples/cda/cdafiles/mondrian-jndi.cda&dataAccessId=1¶msta
tus=Shipped

Hands-on dashboards
Now it's time for you to create your data sources. In order to display the results
from the queries, in the next chapter, you should create a CDA file with the
following content:

<?xml version="1.0" encoding="utf-8"?>
<CDADescriptor>
<!—-Data source for the dashboard, a unique data source is used for
all connections-->
 <DataSources>
 <Connection id="SampleData" type="mondrian.jndi">
 <Jndi>SampleData</Jndi>

Acquiring Data with CDA

[52]

 <Catalog>mondrian:/SteelWheels</Catalog>
 <Cube>SteelWheelsSales</Cube>
 </Connection>
 </DataSources>
 <!-—Data Access to get the territories values-->
 <DataAccess id="territories" connection="SampleData" type="mdx"
access="public">
 <Name>territories</Name>
 <BandedMode>compact</BandedMode>
 <Query>
 WITH
 MEMBER [Measures].[UID] AS [Markets].CURRENTMEMBER.
UNIQUENAME
 SELECT
 UNION([Markets].[All Markets], DESCENDANTS([Markets].
[All Markets], [Markets].[Territory])) on ROWS,
 {[Measures].[UID]} on COLUMNS
 FROM [SteelWheelsSales]
 </Query>
 <Output indexes="1,0" mode="include"/>
 </DataAccess>
 <!-—Data Access to get the countries values-->
 <DataAccess id="countries" connection="SampleData" type="mdx"
access="public">
 <Name>countries</Name>
 <BandedMode>compact</BandedMode>
 <Query>
 WITH
 MEMBER [Measures].[UID] AS [Markets].CURRENTMEMBER.
UNIQUENAME
 SELECT
 UNION([Markets].[All Markets], DESCENDANTS(${marketQue
ryParam}, [Markets].[Country])) on ROWS,
 {[Measures].[UID]} on COLUMNS
 FROM [SteelWheelsSales]
 </Query>
<!—-Parameters and default values to be used on the query. -->

 <Parameters>
 <Parameter name="marketQueryParam" type="String"
default="[Markets].[All Markets]"/>
 </Parameters>
 <Output indexes="1,0" mode="include"/>

Chapter 2

[53]

 </DataAccess>
 <!-—Data Access to get the top 50 customers -->
 <DataAccess id="top50Customers" connection="SampleData" type="mdx"
access="public">
 <Name>top50Customers</Name>
 <BandedMode>compact</BandedMode>
 <Query>
 WITH
 SET CUSTOMERS AS TopCount([Customers].Children, 50.0,
[Measures].[Sales])
 SELECT
 NON EMPTY {[Measures].[Sales]} ON COLUMNS,
 NON EMPTY CUSTOMERS ON ROWS
 FROM [SteelWheelsSales]
 WHERE ${marketQueryParam}
 </Query>
<!—-Parameters and default values to be used on the query.-->
 <Parameters>
 <Parameter name="marketQueryParam" type="String"
default="[Markets].[All Markets]"/>
 </Parameters>
 </DataAccess>
</CDADescriptor>

We are creating a data source that points to the sample data source that is created
during the Pentaho installation. We also have two MDX queries, the first one to get
the territories and the unique name for each one, but filtering the undesired values.
We are also changing the order of the columns from 0, 1 to 1, 0. The second one
gets the customers that belong to a particular market. This query is created using
a parameter for the markets, which has a default value to select all the customers
available. When firing the query with a different value, we will get different results
by filtering the customers based on the market they belong to.

This example will be used in some samples during the next chapter. Don't forget to
preview the results and confirm that you are able to return the results for both queries.

Acquiring Data with CDA

[54]

Summary
Now you know how to create data sources that can bring data to your
reports/dashboards. You should now understand how to create different types of
queries by defining all the XML elements. There is an important part of the chapter
on how to send parameters to the queries. One of the query types is a Kettle query,
where you need to specify the mapping between the parameters that come from the
dashboard and the variables defined inside the kettle transformation. If necessary,
we can blend data, just by creating queries for different data sources that will later be
combined using a join or union in a compound query.

We also covered how to preview the queries, how to edit a CDA file, and how to
manage or clean segments of the CDA cache. You should now be able to schedule the
queries so that they can be cached and give shorter response times to the users who
are accessing the same query.

This chapter showed you how to create or edit a CDA file manually; however, you
don't always need to do so.

Now that you know how to get data into the dashboard, we can start creating
a dashboard, or at least getting to know the basic concepts of how to build a
dashboard. In the next chapter, you will learn about CDF.

[55]

Building the Dashboard
Using CDF

There are two ways to build the community dashboards: using the Community
Dashboards Framework (CDF) or the Community Dashboard Editor (CDE). You
could leverage some of the work and do it faster when you are using the second
option, but behind it, we will still be using CDF. You could choose not to read this
chapter, but to have proper knowledge of how the CDE works, and to achieve
better results, you should be able to understand the concepts behind the CDF API.
In this chapter, you will get the chance to see the lifecycle of the dashboard and
its components. Pentaho uses the CDF framework on the platform, so acquiring
knowledge about how to use CDF can be an advantage when using other tools
than CDE.

While covering CDF, we will present to you some of the most important and
commonly used methods/functions available for this tool. Of course, we need to
start covering the components and get them working. Sending parameters to the
queries is an important part of the process, as you will definitely want to create
interactive, and not static, dashboards. We will also cover how to work with filters
and make components react to changes that the user makes to the dashboard.

To have a dashboard that could be rendered by any user in any part of the world,
we should also provide our dashboards with the ability to change language, and the
formatting of numbers and dates depending on the user's settings, which we can
grab from the browser or from the Pentaho platform.

The main purpose of this chapter is for you to understand the lifecycle of dashboards
and their components, to know what methods are available on the CDF API, and to
see how to use them.

Building the Dashboard Using CDF

[56]

Understanding the basics of a CDF
dashboard
We have already mentioned that CDF will work on the browser as a HTML page that
will make use of the JavaScript and CSS languages, frameworks, and libraries.

But how does CDF really work? When we are making a request to the Pentaho
platform to get a dashboard, we make a request to a Pentaho plugin. That request
is done through the Web API that the plugin is providing on the server side. This
server-side code is written in Java, and by reading the dashboard's files, will send the
HTML and JavaScript code to the browser for the execution of the dashboard on the
client side (the browser). This code will include some scripts that are mandatory so
that the plugins can execute themselves in the browser. The number of libraries may
vary depending on the components included. The following image is a really simple
diagram that should give you a clear understanding of how the requests to get the
dashboards are handled:

Lifecycle of dashboards and components
The start of the lifecycle begins with the execution of the dashboard, when the
request is made to the CDE or CDF. As we saw earlier, and to be more precise, the
dashboard starts when the browser gets all the resources and starts executing the
JavaScript code inside the dashboard. To start the execution of the dashboards, there
is a function that needs be called, [dashboard].init(). This will make the browser
start the execution of all the code that may be defined. For now, let's consider
[dashboard] as just the name of a variable that we may use when creating the code
for our dashboard.

Chapter 3

[57]

In the following diagram, you will see two different areas:

• The dashboard lifecycle, which refers to the lifecycle itself

• The component lifecycle, which refers to each of the components on
the dashboard

The dashboard will start, and during the execution of the dashboard, one or more
components will be executed, so the diagram shows the lifecycle from the start of the
dashboard until it finishes its execution, including the components themselves:

Building the Dashboard Using CDF

[58]

Looking at the legend section of the diagram, you will find some colors that identify
the functions which can be defined by the developer, as part of the lifecycle, to extend
the behavior of the dashboard and components. By looking at the diagram, you can
identify whether they belong to the lifecycle of the dashboard or to the components.

To get a better understanding of the preceding diagram, we need to split it into two
diagrams, so you can understand the lifecycle of the dashboard and the components
themselves, and later on how they work together.

The preInit function will be called by CDF and may include some custom code. If
you define the function with some code inside, the code will be executed just before
the initialization of the dashboard. So, you will execute the lines inside just before
CDF starts executing the dashboard:

[dashboard].preInit = function() {
// Code to execute before CDF starts the execution of the
// dashboard, goes here.
}

As the name suggests, code is to be executed before the initialization of the dashboard.

You should also have noticed that there is a function called [dashboard].
postInit(), which works exactly the same way as the previous function, but will
only be executed after it finishes the execution of the dashboard, just before delivering
control to the user. These two functions are not executed again, unless you refresh
the page. At this time, the changes in the dashboard will only be executed by the
interaction of the user, or by some custom code. Of course, the dashboard will
keep working, but no pre- or post-execution will be called. So, the lifecycle of the
dashboard will be something like the following diagram:

Chapter 3

[59]

Let's see how the lifecycle of the dashboard works. First, the dashboard's init()
function is called and starts the execution of the custom code that can be placed
inside preInit(). The next step is to start the execution of all the components,
ordered by the grouped priority of execution, and when CDF finishing the execution
of the task, CDF will execute the code inside postInit(). When the components
are executed, the lifecycle of the components will keep running and changes in
the dashboard will depend on listeners (these are parameters/variables that the
components can listen to in order to be notified about changes). These listeners will
update the components based on a user's, or a predefined action.

On the complete diagram, the one that includes both the dashboard and components
lifecycle, we can see that components are executed on the initialization of the
dashboard when the executeAtStart property is set to true; otherwise the
component will be started and will only be executed when fired by a listener. When a
component is executed, its lifecycle will be as shown in the following diagram:

When executing a component, the first function to be called is preExecution, and as
an option, the developer can place some code to be executed inside the function.

Building the Dashboard Using CDF

[60]

From there, if there is a query to execute, CDF will call a function that is responsible
for the execution of the query and, after getting the results, will call postFetch with
an argument that is the result set of the execution of the query. The user can also
specify the code to be executed, which can be used to make necessary changes to
the results.

From there, or just if there is no query to be executed, CDF will call the draw
function for the component and start rendering the elements on the page. After that,
postExecution will be called, which is a function that can also be defined by the
developer to run some custom code. This can be used to perform some actions after
the components have been rendered on the page, so we can use it to make some
change on the Document Object Model (DOM) of the web page.

The preExecution function should be defined as shown in the following example,
to prepare the components and specify some options:

[component].preExec = function() {
// Code to execute before CDF starts the execution of the
// dashboard, goes here.
}

If for some reason we need to cancel the execution of a component, there is the
chance to return a value of False inside the pre-execution function. This makes
it possible to make some validations before proceeding with the execution of
the component(s).

The postFetch function is where we can manipulate the results from the execution
of the query. It can be defined as:

[component].postFetch = function(data) {
// Code to manipulate data. Should always return a valid result.
return data;
}

The postExecution function, as already mentioned, can be used after the
components, and elements that belong to it are rendered on the DOM, and
can be specified as follows:

[component].postExec = function() {
// Code to execute before CDF starts the execution of the
// dashboard, goes here.
}

Chapter 3

[61]

This ends the first cycle of the execution of the component and delivers the
next execution to the events listener. The main function of the listeners is to keep
listening for changes to a specific parameter or parameters. The listeners will be
pointing to a parameter on the dashboard that will be kept under observation, in
order to request the update of a component every time CDF gets notified about a
change to that parameter.

The change of parameter values may be dependent on, or associated with, user
interaction. When the user interacts with the dashboard, this will fire a change in
the values of a parameter that is being observed, initiating the execution of the
components that are listening to it, or to them.

User interaction can be made by the click of a button, selecting from a dropdown,
or even clicking on a radio button. Filters and/or selectors are particular cases of
components that also have two more functions that can be defined by the user. When
applying a change to the selector, the components will fire a change in a parameter.

One of the functions will be triggered before that, preChange, and another one
after the parameter is already changed, postChange. Both functions can receive one
argument that is the new choice made by the user. The preChange function can be
used to make validations, and postChange can be used to perform some actions after
the changes are confirmed in the parameter:

[component].preChange = function(usersChoice) {
// Code to execute before the fireChange() of the parameter
return usersChoice;
}

The difference between a selector and a filter is that in a selector, at least one value
should be selected, while in a filter, when you don't select a value you are selecting
everything. That's because on a filter if you don't do a selection, you are not filtering.

The postChange function is pretty much the same syntax, except the name of the
function and of course the code inside to be executed. Here, you will not need to
return a value.

This is the hardest part of CDF to understand, but when you understand the
workflow of the lifecycle, you will get better dashboards than before. Don't worry if
you didn't fully understand it, as we will go back to some of the concepts during the
rest of the book.

Building the Dashboard Using CDF

[62]

Creating a CDF dashboard
Nowadays, CDF can make use of Asynchronous Module Definition (AMD). AMD
is a JavaScript specification that defines an API on top of which we are able to create
code modules and their dependencies. Modules can be loaded asynchronously, even
if they depend on each other. AMD concepts also allow the developer to encapsulate
code in smaller, more logically-organized files.

RequireJS is a JavaScript file and module loader that implements the AMD
specification that CDF is using. One of the advantages is that you can create and
reuse modules without polluting the global namespace. The more polluted your
global namespace is, the bigger the chance of a function/variable collision. Another
advantage is that you can structure your code into separate folders and files, and
RequireJS will load them asynchronously when needed, in a way that ensures
everything works just fine.

The sample code that we are using in this book is already based on the use of
RequireJS inside CDF. These changes will also leverage the process of embedding a
dashboard or part of a dashboard. We will cover how to embed a dashboard or part
of it in third-party applications later in the book. For now, you should just focus on
learning how to create a dashboard.

To build a CDF dashboard, you need to create two main files that are mandatory:

• XCDF: This is the main file that identifies the dashboard as a CDF dashboard
type inside Pentaho. This is the file that identifies the dashboards inside
Pentaho, and where the general settings are. For instance, we can set the
name, template, and style for our dashboards. This file is written using the
XML syntax.

• HTML: This is the template file with HTML content where the components
will be rendered.

XCDF is the main file, where the root element <cdf> and the following child
elements are:

• <title>: This corresponds to the title displayed in the Pentaho User Console
(PUC).

• <author>: This is the author of the file that will be displayed inside the user
console.

• <description>: This is the description displayed in the PUC and on the
browser.

• <icon>: This is the icon to be displayed.

Chapter 3

[63]

• <template>: This is the HTML template file to render. This is the second
mandatory element.

• <style>: This is the name of the style to use to render the dashboard.
• <require>: This is set to true or false to define whether or not we're using

the RequireJS dashboard. We can load a different style file with the
require suffix.

The content of the XCDF file should be something like:

<?xml version="1.0" encoding="UTF-8"?>
<cdf>
 <title>My first dashboard!</title>
 <author>My Name</author>
 <description>My first dashboard!</description>
 <icon></icon>
 <template>myFirstDashboard.html</template>
 <style>clean</style>
 <require>true</require>
</cdf>

But what's the difference between the properties style and the template? Well, the
difference between them is that the style will have the HTML of the full page and can
be used for multiple dashboards. Let's say that the style will have the content that is
similar from dashboard to dashboard. On the other hand, the template is the file that
has the HTML and JavaScript code to render the dashboard.

The template or the HTML and JavaScript would be something like:

<style>
</style>
<div class="container-fluid">
 <h1>My first dashboard!</h1>
</div>
<script language="javascript" type="text/javascript">
 var dashboard;
 require(['cdf/Dashboard.Clean'],
 function(Dashboard) {
 dashboard = new Dashboard();
 dashboard.init();
 }
);
</script>

Building the Dashboard Using CDF

[64]

We can see that there is the <style> element where we can add some CSS to be
applied to our dashboard. Here, we can also have references to external files and
extend the dashboard, including CSS or JavaScript code. This is pure HTML,
so here you can do what you would usually do when on a web page.

You can also see some HTML tags where all the content will be placed, so here
you should have the layout needed for your dashboard. At the end, there is the
<script> tag with the JavaScript code to execute the dashboard. On the last sample
code, you can also see that we are calling the required modules that we need for
our dashboard.

To be able to have the core code of the dashboards available to use, we must include
a module that specifies the dashboard type. In the previous example, we did not
specify any other component or module.

At least one of the following modules that correspond to a dashboard type should
be included:

• [cdf/Dashboard.Clean]: This will load its main dependencies, and will
load the base code for the dashboard. It will not load any framework to be
used in the layout, and you can use one of your own preferences.

• [cdf/Dashboard.Bootstrap]: This will load the same libraries and code
as the previous one, plus the Bootstrap framework. This way you have
the code for the dashboard, but can also make use of this great framework
to build responsive dashboards. We will cover a little bit more on this
framework later.

• [cdf/Dashboard.Blueprint]: This will load the same libraries and code as
the first one, plus the Blueprint framework.

Use Bootstrap to build responsive dashboards
During this book, we will just cover the Bootstrap framework
by including a call to cdf/Dashboard.Bootstrap. We will
only use a Bootstrap dashboard type in our examples. This is a
more advanced framework that allows us to build responsive
dashboards, which it is also possible to use in CDE dashboards.
You should use the cdf/Dashboard.Clean module if you want a
clean dashboard. That way you can use another framework.

Chapter 3

[65]

You can see the dashboard style as a file that will have the common code to apply
to multiple dashboards. When you are creating dashboards for multiple customers,
you can create/adapt a template for each customer and create dashboards that will
make use of the code inside the style page file. Inside your [baserver]/pentaho-
solutions/system/pentaho-cdf file, you will find some HTML pages that can be
used by defining the style element. The options for them are as follows:

• Clean: This will make use of the code defined in the files template-
dashboard-clean-require.html and template-dashboard-clean.html.
Selecting one or the other will depend on the flag on the <require> element.
If the value is true, then template-dashboard-clean-require.html will be
used, and template-dashboard-clean.html otherwise.

• Mantle: This will make use of the code defined in the files template-
dashboard-mantle-require.html and template-dashboard-mantle.
html. Like the previous options, we will need to set the <require> element
with a value of true or false.

The difference between them is that they will apply different styles/wrappers to the
dashboard. The first one will not apply any style at all, while the second will apply a
style that is related to the new Pentaho theme.

Defining an empty or invalid style for a dashboard
If we do not set a valid option or available style when creating a
new CDF dashboard, the CDF API will make use of the default one.
It will use the dashboard-template.html file.

In the last example code we presented, you can also see functions that are called
when the modules are loaded, and these functions will receive as an argument
the module that we have included. In the previous example, we just included the
dashboard type, and we are using an argument with the name dashboard. This
variable will make reference to the dashboard object that contains the functions to
add components, add parameters, start the execution of the dashboard, and so on.

In this chapter, we will cover some of the available functions. For now, you need
to understand that to create a dashboard, we need to create a new instance of the
dashboard object, and later make a call to the init() function. This will create the
dashboard and trigger its execution.

Building the Dashboard Using CDF

[66]

Hands-on dashboards
At this point, you should be able to understand the basic concepts to create a really
simple page showing just the text My first Dashboard!. To do so, you just need to
follow these steps:

• Inside your file system, create a file with the name myFirstDashboard.xcdf.
You should use the code that we previously used for the XCDF file, in the
Creating a CDF dashboard section.

• Create another file with the name myFirstDashboard.html in the same
folder as the previous file, and write the code that we previously used for the
template files (HTML), in the Creating a CDF dashboard section.

Compress the folder with the two files using the ZIP file format, and upload
the file to the Pentaho repository. Once uploaded, you need to double-click the
myFirstDashboard.xcdf file to open the dashboard. You should get a simple page,
showing the text My first Dashboard!.

Using the Community Text Editor (CTE) to edit files inside Pentaho
CTE is a Pentaho plugin that you may install using Marketplace. The
plugin provides the ability to edit the contents of a file within the
JCR repository, directly from the PUC. You will not be able to create
the files with it, but will be able to change the content and save the
changes, which will immediately be recognized by Pentaho. This is
very useful if you want to edit .xcdf, .html, .css, .js, and other
file formats. More information can be found at: https://github.
com/webdetails/cte.

You will find the sample code inside the book samples in the /CtoolsBookSamples/
myFirstDashboard folder.

Using components inside the
dashboards
We have not really covered the concept of a dashboard if we do not show any
Key Performance Indicators (KPIs), charts, tables, and so on. CDF provides many
components we can use to create the dashboard. To use them, we just need to extend
the code we used previously. You saw that we need to include the modules we will
need. Each component is a module that has its own dependencies that will be loaded
automatically when we include the component.

https://github.com/webdetails/cte
https://github.com/webdetails/cte

Chapter 3

[67]

The previous example shows the code that should be placed inside the XCDF file.
This code creates a dashboard with a simple text component that returns a simple
Hello World! message.

If you look at the code, you will find that we are including the dashboard module
and also the component module. You will see that we are already using the Bootstrap
framework. For this case, we are also including cdf/components/TextComponent,
the module that makes it possible to use a text component, one of the simplest
components that exists within CDF. To make it possible to use the component, we
also need to specify an argument in the function that will represent the object of the
component being called.

To define a new component, we should make a call to the dashboard function
addComponent with an argument that will be a new instance of the text component,
and we can create as many instances as we would like. When creating instances of a
component, we need to set some properties and/or functions, and this will depend
on the component that we are including in the dashboard:

<style>
 .msgContainer {
 background-color: #4682B4;
 color: white;
 }
</style>
<div class="container-fluid">
 <div id="container" class="container">
 <div id="row" class="row">
 <div id="col" class="col-sx-12">
 <div id="msgContainer" class="msgContainer"></div>
 </div>
 </div>
 </div>
</div>
<script language="javascript" type="text/javascript">
 var dashboard;
 require(['cdf/Dashboard.Bootstrap', 'cdf/components/
TextComponent'],
 function(Dashboard, TextComponent) {
 dashboard = new Dashboard();
 dashboard.addComponent(new TextComponent({
 name: "myTextComponent",
 type: "textComponent",
 htmlObject: "msgContainer",
 executeAtStart: true,

Building the Dashboard Using CDF

[68]

 priority: 5,
 expression: function() {
 return "Hello World!";
 }
 }));
 dashboard.init();
 return dashboard;
 }
);
</script>

The next step, after creating all the instances of the components to use and setting
all the necessary properties and/or functions for each component, is to initialize the
dashboard by calling the init() function of the dashboard instance.

You should have noticed that we are creating a variable outside the dashboard
module, which we then make use of inside the dashboard and assign to the
dashboard instance. This will make it possible to interact with the dashboard later.
We will have a dashboard variable available in the global scope, so we will be able to
create interactions between dashboards, but we will cover that later on in the book.

If you create a .xcdf file with a template tag that is pointing to the previous code,
and execute by making a call to Pentaho, you will get a dashboard with your first
component already working.

You should have noticed a property called htmlObject. This property is used to
specify where on the dashboard the components should be rendered. It needs to
point to the name of an element of your HTML. This will make the component create
all its elements as children of the element specified in the htmlObject property.

Defining data sources for components
We don't want static dashboards, we want to query data to be shown in them. There
are two ways to set queries in components. The data sources can be of one of two
types, CDA and non-CDA:

• Going the CDA way, you need to define it using the query it's
defining, inside the component, an object such as queryDefinition or
chartDefiniton depending on the component, with a set of properties:

 ° path: This is the path that points to a CDA file. You can make use of
the CDA files created as explained in the chapter dedicated to CDA.

 ° dataAccessId: This should set the ID of an available data source, also
covered in the CDA chapter, that is set in the file we are pointing at.

Chapter 3

[69]

• Going the non-CDA way, by just using a simple SQL or MDX query,
we can define, inside the component, an object queryDefinition or
chartDefiniton, depending on the component, with a set of properties:

 ° queryType: This is the type of the query selecting one of the two
values available, mdx or sql.

 ° jndi: This is the name of the JNDI defined in Pentaho.
 ° catalog: The catalog can be seen as the Mondrian schema to be used.

When using mdx, we should also specify the schema name to use. No
need when using a SQL query.

 ° query: This is the function that returns the SQL or MDX query to get
the data.

In the following two samples, we have two dashboards with a table component
each. We used a table component to be able to present the results that come from the
query. Let's look at the first example, where we are using a query defined in a CDA
file, and grab the results from a query that is set in the CDA file.

The first step will be to set a query like we covered in the last chapter, after which
we need to point to the CDA by setting the name and location of the file, and the
data access source that we want to use. You can see that path and dataAccessId
are defined in chartDefiniton.

The sample query that we are using is the one we created at the end of the last chapter:

require(['cdf/Dashboard.Bootstrap', 'cdf/components/TableComponent'],
 function(Dashboard, TableComponent) {
 dashboard = new Dashboard();
 var dashboardPath = dashboard.context.path.match(/^(\/
([^/]+\/)*)(.*)$/)[1];
 dashboard.addComponent(new TableComponent ({
 name: "top50Customers",
 type: "tableComponent",
 parameters:[],
 listeners: [],
 chartDefinition: {
 path: dashboardPath+"customers.cda",
 dataAccessId: "top50Customers"
 },
 htmlObject: "table",
 executeAtStart: true,
 priority: 5
 }));
 dashboard.init();
 return dashboard;
 }
);

Building the Dashboard Using CDF

[70]

You should be asking why use chartDefiniton? Well, I really don't know why,
maybe some mistake that cannot be undone. The main idea you need to be aware
of is that the components that are able to represent data coming from a query will
do this by defining chartDefinition or queryDefiniton, depending on the
component that we are using. By the end of this chapter, you will know what to use
in what components, so let's proceed and you can learn something else before we
cover that part.

The second example depicts how to directly call an MDX query without the need for
a CDA file:

require(['cdf/Dashboard.Bootstrap', 'cdf/components/TableComponent'],
 function(Dashboard, TableComponent) {
 dashboard = new Dashboard();
 dashboard.addComponent(new TableComponent ({
 name: "top50Customers",
 type: "tableComponent",
 parameters:[],
 listeners: [],
 chartDefinition: {
 queryType: "mdx",
 jndi: "SampleData",
 catalog: "mondrian:/SteelWheels",
 query: function(){
 return "select NON EMPTY {[Measures].[Sales]} ON
COLUMNS,"+
 " NON EMPTY TopCount([Customers].[All
Customers].Children, 50.0, [Measures].[Sales])" +
 " ON ROWS from [SteelWheelsSales]";
 }
 },
 htmlObject: "table",
 executeAtStart: true,
 priority: 5
 }));
 dashboard.init();
 return dashboard;
 }
);

Chapter 3

[71]

You should know that when grabbing results this way from a query, you are making
a POST request to the CDF Web API, calling viewAction, which will execute
xAction, and you'll get the result in an appropriate format that can be understood
by the table component. This call will execute xAction, located inside the Pentaho
repository at /public/plugin-samples/pentaho-cdf/actions/jtable.xaction,
and pass some of the parameters we have specified, such as the query type, JNDI, the
catalog, and query. The result is then processed by the component, which will finally
render the results in the browser.

What's the best option? For many reasons, such as security, options, query
abstraction, and cache among others, I would advise that you always use CDA. CDA
allows you to abstract from the queries, and will let you work as a team. While one of
your team is building the queries and all the related tasks, you can just focus on the
dashboard, but using the data sources defined within, you have the ability to query
for data. When using CDA, you will have your query results cached, so you will
have better response times than using the other option.

As we saw earlier, when using SQL queries you could allow SQL injection, but CDA
will avoid those malicious requests. Another reason is to have private parameters
without the need to make changes to your xAction, change that would affect all
other requests that are being executed through that same xAction. There are many
more options and data sources you can create using CDA, and I would even risk
saying that there is no data source from which you are not able to get data. I believe
that these reasons are enough to justify executing queries through CDA.

To get more information about them, please refer to: http://wiki.pentaho.com/
display/ServerDoc2x/03.+Action+Sequences.

Pentaho Action Sequence, also known as xActions
The xActions have a lot of utility inside Pentaho, but they can be
replaced by Kettle transformations in some cases. If you have the ability
to install a new plugin, you can leverage your work and use Kettle
transformations, and replace some xActions. There is a plugin called
Startup Rule Engine, which you can find in Marketplace, that allows you
to execute Kettle transformations during the start up, login, or logout
from Pentaho. To be honest, I don't dislike xActions, even if it's hard to
debug and takes some time to create; xActions are fast to execute.

http://wiki.pentaho.com/display/ServerDoc2x/03.+Action+Sequences
http://wiki.pentaho.com/display/ServerDoc2x/03.+Action+Sequences

Building the Dashboard Using CDF

[72]

Creating and using parameters in data
sources
You can see a parameter as a variable which is storing some value. In the last
example, we created a parameter, and now we want to make use of it so we can send
it to the query and have queries that can give back different results, depending on
the input. To achieve this, we need to have a parameter inside the query in a way
that we can later pass some value through the parameter. You already saw how to
create parameters in the queries and how to set default values. Now we want to
send a value to the query that can change depending on the user interaction, so the
user can get the intended results, and have a proper visualization with the correct
information in it:

require(['cdf/Dashboard.Bootstrap', 'cdf/components/TableComponent'],
 function(Dashboard, TableComponent) {
 dashboard = new Dashboard();
 dashboard.addParameter('marketDashParam','[Markets].[All
Markets]');
 var path = dashboard.context.path;
 var dashPath = path.substring(0,path.lastIndexOf('/'));
 dashboard.addComponent(new TableComponent({
 name: "top50Customers",
 type: "tableComponent",
 parameters:[['marketQueryParam', 'marketDashParam']],
 listeners: [],
 chartDefinition: {
 path: dashPath+"/customers.cda",
 dataAccessId: "top50Customers"
 },
 htmlObject: "table",
 executeAtStart: true,
 priority: 5
 }));
 dashboard.init();
 return dashboard;
 }
);

After creating a new instance of the dashboard, we are creating a parameter using
the line of code: dashboard.addParameter('marketDashParam', '[Markets].
[All Markets]'). This will create a parameter in the dashboard that can be used by
components or used on custom code. In the previous code example we are creating
a variable with the name marketParam that will have a default value of [Markets].
[All Markets].

Chapter 3

[73]

We are also finding the dashboard path by getting it from dashboard.context.
path, so that we can point the dashboard to the CDA file. When creating a new
instance of the table component, we are also setting the property parameters. When
triggering a query, this property will be used to find out which parameters and value
should be sent to the queries.

What CDF needs to do is request a query and say, Hey these are the parameters you have
here, and they should be replaced with these values. The parameters property needs to be
defined with an array of arrays, and each array will be a pair of a query parameter
name and a dashboard parameter name. In each pair, the first value is used to
identify the name of the parameter used inside the query, and it will be replaced
before sending the query. The second value of each pair is the name of the parameter
of the dashboard from where we want to grab the value to be sent. So we need to set
as many values pairs as parameters names and values we want the query to use.

When defining a parameter/variable, we should have a default value, and once sent
to the query, we will overwrite the default values that we have set in the CDA file.
If you change the value of the parameter in the dashboard later and fire the query
again, it will use the value that the dashboard parameter is storing. If you don't
specify a default value, no value will be passed to the query, and a default value that
may be specified in the query might be used. Neither of these are mandatory, but it
might break your query or make the query not return the results.

We have started to cover listeners, and we will be talking about them in this and the
next chapter. The listeners will give us a way to receive a notification when there
is a change in a parameter. A listener points to a parameter, so if the value of that
parameter is changed, the component is notified and updated.

As we covered in the lifecycle, when a component executes/updates, this will trigger
a new query. In the component, we need to define the parameters that should be sent
to the query. So, if you set the parameters to be on the list of listeners, and if you also
set the parameter on the parameters to be sent to the query, every time a change is
fired in the parameter, the parameter is sent to be used in the query. The request can
be processed using, for instance, the value of the parameter as part of a where clause
of a query.

Building the Dashboard Using CDF

[74]

If you create a new dashboard with the previous code, you will get a table showing
all the customers. If you change the value to [Markets].[APAC], you will get only
the customers that belong to the territory identified by APAC. It's not the intention
of this book to teach you MDX, MQL, SQL, or how to apply filters, so if you don't
know any MDX, you should try to understand it a little bit, as this could save you a
lot of time and work. Just for the users that are not familiar with MDX, when applying
[Markets].[All Markets], we are applying a filter that will display customers for all
the markets. That way we are not applying any filter.

Most of the examples that will be shown here use MDX. Building a dashboard
usually works better with MDX, and has other big advantages such as security.
It's not mandatory for you to build a dashboard with MDX, but you should really
consider it.

Take a look at the following diagram showing Pentaho CDF Dashboard:

Chapter 3

[75]

To get a better understanding of how to use parameters and how they work
with queries:

1. First, you need to set the connection and create the queries. You need to
specify the connection and the data access identifier, where you need to
specify the query and the query parameter to be replaced just before the
request sends.

2. The second step is to create the territoryDashParam parameter on
the dashboard.

3. Next add the component and define the path to the CDA file, which data
access identifier to use, and the parameter mapping between what you have
in the query and in the dashboard.

4. Last, initialize the dashboard, which will trigger the query passing the value
of the dashboard parameter you have at that particular point in time, to
execute the query. The results will then be rendered in the dashboard using
the component you have set.

The importance of listeners inside the
components
We do not want our users to be executing code and making the changes. What
we want is to have a way to let the components know that they need to update
themselves when a change happens in the dashboard. That's the purpose of the
listeners. You could say that a component should be listening for the changes in
the parameter(s) that exist in the dashboard. Components have a property called
listeners, which you should define as an array. When creating a dashboard, what do
you think provides the user with the ability to interact with the dashboard during
runtime? The answer is, mostly the listeners.

In the console of your browser, run the following lines:

dashboard.setParameter('marketDashParam', '[Markets].[EMEA]');
var component = dashboard.getComponentByName('top50Customers');
component.update();

The first line of the code is used to change the value of the dashboard parameter,
the second is to get the component instance, and the last one is to update the
component. You will see that the dashboard now shows the customer data of
another market territory.

www.allitebooks.com

http://www.allitebooks.org

Building the Dashboard Using CDF

[76]

The developer tools in your browser
Each browser has their own developer tools, which can have some
differences from browser to browser, but the concept and main
functionality are the same. Even if every browser, has its own
developer tools, you might be able to install Firebug.

The array that should be defined on the listeners will have all the parameters that the
component should be listening for to know about changes. So, let's suppose we set
the table component to listen to marketDashParam. Later, when the user changes the
parameter value, they can also notify the components that are listening to it. This will
automatically trigger the update of the component.

The following code shows you how to set the listeners. You will see in the example
that a listener is being set on the market parameter:

 require(['cdf/Dashboard.Bootstrap', 'cdf/components/TableComponent',
'cdf/components/SelectComponent'],
 function(Dashboard, TableComponent) {
 dashboard = new Dashboard();
 dashboard.addParameter('marketDashParam', '[Markets].[All
Markets]');
 var path = dashboard.context.path;
 var dashPath = path.substring(0,path.lastIndexOf('/'));

 dashboard.addComponent(new TableComponent({
 name: "top50Customers",
 type: "tableComponent",
 parameters:[['marketQueryParam', 'marketDashParam']],
 listeners: ['marketDashParam'],
 chartDefinition: {
 path: dashPath+"/customers.cda",
 dataAccessId: "top50Customers"
 },
 htmlObject: "table",
 executeAtStart: true,
 priority: 5
 }));
 dashboard.init();
 return dashboard;
 }
);

Chapter 3

[77]

In CDF, we have a way to change the value of a parameter and send a notification,
in order to update other components. This can be done through the execution of the
following line of code:

dashboard.fireChange('marketDashParam', '[Markets].[EMEA]');

As soon as you execute the preceding code line, you will see an update in the
dashboard.

Interaction between components
However, this is not enough—you need something more, because we still need to
execute a line of code to make changes happen. If you make a filter available to the
user, a dropdown for instance, which makes them able to apply changes to the table,
they will not hesitate to use it. I am pretty sure you will want to do this, if not with a
dropdown, then with a date selector, a button, a radio button, a checkbox, a simple text
box, or whatever you can think of where the user can make a change or selection.

The first step is to add some kind of component that can provide interaction with
the user. For our purposes, let's use a simple dropdown. The following code is an
example of how to create a new instance of a select component:

new SelectComponent({
 name: "marketFilter",
 type: "selectComponent",
 parameter: "marketDashParam",
 valueAsId: false,
 queryDefinition: {
 path: dashPath+"/customers.cda",
 dataAccessId: "territories"
 },
 htmlObject: "selector",
 executeAtStart: true,
 priority: 5
 }));

Defining a component means simply applying settings to properties. We do this by
setting properties and/or functions to the components. You can see in the previous
code that the first two properties are the type and name of the component. Next,
we set a parameter that states which parameter the selector should write the user
selection with when a new value is selected. At the beginning, the selector will
display the option that corresponds to the value inside the parameter, but once the
user selects a new option, the component will trigger a change in the parameter,
changing the values and notifying the other components about the changes.

Building the Dashboard Using CDF

[78]

Please note that we are now talking about a parameter and not the parameters of the
component:

• Parameters is the property that allows us to specify the parameter/variable
that will be sent to the query.

• Parameter is the variable where to set/get values.

You can see the parameter of a select component as the variable where the value of
the selection will be stored, while the parameters are the variables that will be passed
to the query on its request.

They can both be set on a single component, but why? Let's imagine the case where
you have a selector that is dependent on another selector, and it gets the values for the
dropdown from a query. In this case, we need to specify the parameters that should be
used on the query. Anyhow, we also need to define the parameter/variable where we
can store the selected value when the user makes a selection.

You also need to set datasource, sometimes referred to as the query to use, and
htmlObject, the element name, where the component will be rendered in the layout.
Should the component be executed at the beginning of the dashboard? If yes, we
need to set the executeAtStart property to true, and also the priority of execution.

You will see later that is possible to set parameters and listeners on the selectors, in
case you want to have cascading filters, where the value of a filter will be used in the
query of another filter. Just don't forget that the big difference between parameter
and parameters is that in a parameter you are setting the name of the variable that
will store the selection, and in parameters you are saying which parameters should
be used to execute the query and populate the dropdown or whatever.

Populating a selector with data can be done using a query or a
values array
Usually, you would set a query to populate a selector, but when
a small amount of static values are required, we can use the
valuesArray option.

Let's look at an example of how to set the properties, have a selector making changes
to a parameter, and notify the table component about changes:

require(['cdf/Dashboard.Bootstrap', 'cdf/components/TableComponent',
'cdf/components/SelectComponent'],
 function(Dashboard, TableComponent, SelectComponent) {
 dashboard = new Dashboard();
 dashboard.addParameter('marketDashParam', '[Markets].[All
Markets]');

Chapter 3

[79]

 var path = dashboard.context.path;
 var dashPath = path.substring(0,path.lastIndexOf('/'));
 dashboard.addComponent(new SelectComponent({
 name: "marketFilter",
 type: "selectComponent",
 parameter: "marketDashParam",
 valueAsId: false,
 queryDefinition: {
 path: dashPath+"/customers.cda",
 dataAccessId: "territories"
 },
 htmlObject: "selector",
 executeAtStart: true,
 priority: 5
 }));
 dashboard.addComponent(new TableComponent({
 name: "top50Customers",
 type: "tableComponent",
 parameters:[['marketQueryParam', 'marketDashParam']],
 listeners: ['marketDashParam'],
 chartDefinition: {
 path: dashPath+"/customers.cda",
 dataAccessId: "top50Customers"
 },
 htmlObject: "table",
 executeAtStart: true,
 priority: 5
 }));
 dashboard.init();
 return dashboard;
 }
);

You are now starting to have a dashboard that is able to provide interaction to the
user, where the user can select a market to filter the customers that get to the table. It
works without the need to execute any other line of code; interaction will be enough.

The following example dashboard is illustrated with two selectors, one for the
territory and another one for the country. You will see that when selecting a
particular territory, only the countries for that territory are showing:

<div class="container-fluid">
 <div class="container">
 <div class="row">

Building the Dashboard Using CDF

[80]

 <div class="col-xs-12">
 <h1>CTools Book Samples!</h1>
 </div>
 </div>
 <div class="row">
 <div class="col-xs-12 col-md-6">
 <div id="territorySelector" class="selector"></div>
 </div>
 <div class="col-xs-12 col-md-6">
 <div id="countrySelector" class="selector"></div>
 </div>
 <div class="col-xs-12">
 <div id="table" class="table"></div>
 </div>
 </div>
 </div>
</div>
<script language="javascript" type="text/javascript">
 var dashboard;
 require(['cdf/Dashboard.Bootstrap', 'cdf/components/
TableComponent', 'cdf/components/SelectComponent'],
 function(Dashboard, TableComponent, SelectComponent) {
 dashboard = new Dashboard();
 dashboard.addParameter('territoryDashParam', '[Markets].
[All Markets]');
 dashboard.addParameter('countryDashParam', '[Markets].
[Country].Members');
 var path = dashboard.context.path;
 var dashPath = path.substring(0,path.lastIndexOf('/'));
 dashboard.addComponent(new SelectComponent({
 name: "territoryFilter",
 type: "selectComponent",
 parameter: "territoryDashParam",
 valueAsId: false,
 queryDefinition: {
 path: dashPath+"/customers.cda",
 dataAccessId: "territories"
 },
 htmlObject: "territorySelector",
 executeAtStart: true,
 priority: 5
 }));
 dashboard.addComponent(new SelectComponent({
 name: "countryFilter",

Chapter 3

[81]

 type: "selectComponent",
 parameter: "countryDashParam",
 valueAsId: false,
 parameters:[['marketQueryParam',
'territoryDashParam']],
 listeners: ['territoryDashParam'],
 queryDefinition: {
 path: dashPath+"/customers.cda",
 dataAccessId: "countries"
 },
 htmlObject: "countrySelector",
 executeAtStart: true,
 priority: 5
 }));
 dashboard.addComponent(new TableComponent({
 name: "top50Customers",
 type: "tableComponent",
 parameters:[['marketQueryParam', 'countryDashParam']],
 listeners: ['countryDashParam'],
 chartDefinition: {
 path: dashPath+"/customers.cda",
 dataAccessId: "top50Customers"
 },
 htmlObject: "table",
 executeAtStart: true,
 priority: 5
 }));
 dashboard.init();
 return dashboard;
 }
);
</script>

When selecting a new country, changes will happen in the tables. To make it
possible, we should define two parameters in the dashboards. One parameter for
the territories that the country selector will be listening. Another parameter for
the countries, which the table will be listening to. A very important note is that
the territory component will store the selection in the territory parameter and the
country selector in the country parameters.

Just by using two parameters and setting some properties such as a parameter,
listeners, parameters, and queries, we can have an interactive dashboard. Wait until
you get to know how to create interaction from table and charts components, you
will learn how to create much more interactive dashboards. We will cover this in
Chapter 6, Tables, Templates, Exports, and Text Components.

Building the Dashboard Using CDF

[82]

Using preExecution and postExecution
The preExecution and postExecution functions are very similar concerning their
usage, but different in their purposes.

The first one, preExecution, you can see as preparing the execution of the
component. One really good example is to point to another data source, or even
to a different CDA file. Let's suppose you have multiple queries that are used in
multiple dashboards, and you want to have a simple file where all the common
queries are placed. This is possible to change with just a couple of lines of code in the
PreExecution function.

Another good example is when you want to have cascading parameters. Let's
suppose you want to have a selector where you can choose between the market level
(country or city), and the second filter will show you countries or cities depending
on what you have selected for the first one. The first will drive the query for your
second filter, and so the values to select will vary between country or city. The
following code will help you understand how we can make cascading parameters
work using the pre- and post- execution functions:

require(['cdf/Dashboard.Bootstrap', 'cdf/components/TableComponent',
'cdf/components/SelectComponent', "cdf/Logger", "cdf/lib/jquery"],
 function(Dashboard, TableComponent, SelectComponent, Logger, $) {
 dashboard = new Dashboard();
 dashboard.addParameter('marketLevelDashParam', 'territories');
 dashboard.addParameter('marketDashParam', '[Markets].[All
Markets]');
 var path = dashboard.context.path;
 var dashPath = path.substring(0,path.lastIndexOf('/'));
 dashboard.addComponent(new SelectComponent({
 name: "marketLevelFilter",
 type: "selectComponent",
 parameter: "marketLevelDashParam",
 valueAsId: false,
 valuesArray: [["territories","Territory"],["countries","Co
untry"],["cities","City"]],
 htmlObject: "marketLevelSelector",
 executeAtStart: true,
 priority: 5,
 postExecution: function(){
 $('#marketLevelSelectorLabel').text('Select market
level:');
 },
 }));
 dashboard.addComponent(new SelectComponent({

Chapter 3

[83]

 name: "marketFilter",
 type: "selectComponent",
 parameter: "marketDashParam",
 valueAsId: false,
 parameters:[],
 listeners: ["marketLevelDashParam"],
 queryDefinition: {
 path: dashPath+"/customers-selection-change.cda"
 },
 htmlObject: "marketSelector",
 executeAtStart: true,
 priority: 5,
 preExecution: function(){
 var level = dashboard.getParameterValue("marketLevelD
ashParam");
 this.queryDefinition.dataAccessId = level;
 },
 postExecution: function(){
 var level = dashboard.getParameterValue("marketLevelD
ashParam");
 $('#marketSelectorLabel').text('Select from
'+level+':');
 }
 }));
 dashboard.addComponent(new TableComponent({
 name: "top50Customers",
 type: "tableComponent",
 parameters:[["marketQueryParam", 'marketDashParam']],
 listeners: ['marketDashParam'],
 chartDefinition: {
 path: dashPath+"/customers-selection-change.cda",
 dataAccessId: "top50Customers"
 },
 htmlObject: "table",
 executeAtStart: true,
 priority: 5
 }));
 dashboard.init();
 return dashboard;
 }
);

Building the Dashboard Using CDF

[84]

The trick here is to have two parameters: marketLevelDashParam and
marketDashParam. The first one is used to store countries or cities, depending on the
user's selection in the first selector. The second will be used to store what country or
city the final user selects, so that we can then use it in the parameters of the table in
order to be sent as part of the query and to get only the customers for that particular
selection. The first selector does not have any tricks, just a postExecution function,
similar to the one in the second selector, which we will explain next.

The real magic is in the listeners and preExecution of the second selector. This
selector will be listening for changes in marketLevelDashParam and will use the
value of the parameter to know which query to use and run. The query that will be
executed will be a new query based on the value for the level, where the level is the
value that was selected.

On this line, and in all other functions inside components, this refers to the
component itself, followed by changing dataAccessId in the queryDefinition
object. You saw in previous examples that we can use this to define which CDA
file and which data access ID the component should use to get the data.

Similar to this case, you can also change the path and point to another CDA file.
To get the stored value(s) in a dashboard parameter, we can use the following
line of code:

var level=dashboard.getParameterValue("marketLevelDashParam")

This way, we are pointing to a query countries or cities that are defined on the
CDA file.

In front of each selector, you can see a label. The postExecution function is being
used to change the label for the selector. Take a look at the post execution function of
the second selector and you will see that we are grabbing the value of the parameter
that identifies the level of the filter, and this value will be used as part of the label.

The code $('#marketSelectorLabel').text('Select from '+level+':') is
used to change the text inside the label before the selector. This could be done, and
would be even better, in the pre execution function, but you would not see how
to use post execution. Usually, post execution is used to manipulate the HTML
generated during the rendering of the component, and this is only available in post
execution. A good example is applying a jQuery plugin, which we will cover in
the CDE chapters. Another example is to attach an event to some elements that the
component made available on the page. There are a lot of use cases, and we just don't
have the space to cover them all.

Chapter 3

[85]

Just keep in mind that you should use preExecution to execute code to prepare the
execution of the component, and postExecution to execute code to manipulate the
DOM that the component has created in the dashboard.

In our example, just add a new option (Territory) to the values array of the first
selector. Set the values array as:

valuesArray: [
["territories","Territory"],
["countries","Country"],
["cities","City"]]

If you now execute the sample code of your dashboard, you will automatically
be able to choose the customers, with the option to select all of those who are
in a particular territory level.

Understanding how to work with
postFetch
In the Steel Wheels sample data, which we have been using in our examples and
is available with the standard installation of Pentaho, we have one territory showing
in the selector as having a #null value. This description is not friendly to the end
user, so we may make a change, thereby manipulating the result set that we get from
the execution of the query. With this, we can change the description of #null to
something like NA.

The following code is for the territory selector component, where we just added a
function to define the code to be executed on the postFetch function:

dashboard.addComponent(new SelectComponent({
 name: "territoryFilter",
 type: "selectComponent",
 parameter: "territoryDashParam",
 valueAsId: false,
 queryDefinition: {
 path: dashPath+"/customers.cda",
 dataAccessId: "territories"
 },
 htmlObject: "territorySelector",
 executeAtStart: true,
 priority: 5,
 postFetch: function(data) {
 // manipulate result from query

Building the Dashboard Using CDF

[86]

 for (var i=0; i<data.resultset.length; i++) {
 if (data.resultset[i][1]=="#null")
 data.resultset[i][1]="NA";
 }
 return data;
 }
 }));

You can see the postFetch function being defined and passing the result of the
execution of the query as an argument. This result can be manipulated by changing
the values inside the data variable.

First let's just quickly review something we covered in the last chapter. When
creating a query through CDA, the results are by default returned in a JSON
format, something like:

{
"metadata":[
 {"colIndex":0,"colType":"String","colName":"UID"},
 {"colIndex":1,"colType":"String","colName":"Markets"}
],
"resultset":[
 ["[Markets].[All Markets]","All Markets"],
 ["[Markets].[#null]","#null"],
 ["[Markets].[APAC]","APAC"],
 ["[Markets].[EMEA]","EMEA"],
 ["[Markets].[Japan]","Japan"],
 ["[Markets].[NA]","NA"]
],
"queryInfo":{"totalRows":"6"},

}

The result is a JSON object composed of:

• metadata: This is an array of objects where the metadata is described. Each
column will be an element of the array, so we will have as many elements on
the array as columns returned from the query. For each element of the array,
you will get an object with:

 ° colIndex: The index of the column
 ° colType: The data type contained in the columns
 ° colName: The name of the column

Chapter 3

[87]

• resultset: Here you will get the result of the execution of the query. The
result set is a multidimensional array. Each element of the array will contain
the result of a row and each row will be an array with as many elements as
columns. In our example, we will have an array of six rows and two columns.

• queryInfo: This is an object with a unique element, totalRows, which
contains the number of rows in the result set.

You now understand the JSON returned from the execution of the CDA queries, so
let's return to our example on how to manipulate the result set. Don't forget that this
is the default format, but when using the CDA Web API, you can change the format
type of the result, as already covered in the last chapter.

So in the sample code, you can see that we are using a for loop to iterate over all the
rows contained in data.resultSet, and use the if condition to check whether the
second column, the one with the description, will be shown in the selector. If we
have a #null value, we will just change the value to be NA in the same position with
in the array. Note that we are just changing the description and not the ID, because
the ID will be used to filter the results for the country selector.

A very important step is to return the object that you need to be used in your
component. In our sample, we are just returning the same object that with a changed
value. That same value will be used by the component when being rendered.

It's also important for you to know that you can use postFetch not only to
manipulate data, but also to manipulate parameters, or another component on the
dashboard, or even manipulate elements on the DOM. Let's suppose that you want
to change some behavior or settings on the component based on the result of the
execution of the query. An example would be changing the column type, headers,
and format based on the results, and the number of columns based on the result
set. This kind of operation is what will make all the difference when developing the
dashboard, but will also produce outstanding results. Here again, imagination is the
only limit.

Using preChange and postChange
Now it's time to cover preChange and postChange. These two functions will only
be available in components whose main purpose is to be used as filters. Examples
of this are select, input, date range, radio button, button, multi button, and so on.

Building the Dashboard Using CDF

[88]

Every component where we can set a parameter to store the selections and the
lifecycle of the component will trigger fireChange to that parameter. We have the
option to specify the function that will be executed both before this happens and
after applying the changes to the parameter, preChange and postChange. Take a
look at following image:

As you can figure out, that the first function, the preChange function, can be used to
execute the code that can validate the options and take some actions before changing
the parameter value. Can be used to prepare something before other components
starts to execute because they are listening to that same parameter. The other
postExecution function, can be used to perform operations that need to be extended
just after the changes on the parameter are confirmed.

In the next sample code, the options that we have in our selector are different to
the name of the query, so we can make use of preChange to control what the value
to use on fireChange will be. To achieve this, we just need to return the value that
we need for the fireChange function, and this value will then be passed to the
postChange function:

dashboard.addComponent(new SelectComponent({
 name: "marketLevelFilter",
 type: "selectComponent",
 parameter: "marketLevelDashParam",
 valueAsId: false,
 valuesArray: [["1","Territory"],["2","Country"],["3","City"]],
 htmlObject: "marketLevelSelector",
 executeAtStart: true,
 priority: 5,
 postExecution: function(){
 $('#marketLevelSelectorLabel').text('Select market level:');
 },
 preChange: function(choice) {
 var selection = "";

Chapter 3

[89]

 switch (choice) {
 case "2": selection = "countries";
 break;
 case "3": selection = "cities";
 break;
 default: selection = "territories";
 }
 return selection;
 },
 postChange: function(choice) {
 Logger.log("You choose the value: "+choice+" for parameter
"+this.parameter);
 }
}));

A very common use case for preChange is to apply validations and return an
appropriate value or propagate changes to more parameters that are dependent on
the selections made by the user, per instance, in a drop-down. Common use cases for
postChange is to take some actions after the parameter changes have started to be
propagated to the other components, to display some information about the selection
made by the user in another element of the dashboard, or just to execute some
custom code.

Priority of component execution
The order of the execution of the components will depend on another property for
each component. The priority property should be set using integer values. Lower
values as higher priorities. The default value of the property is 5. The components
with the same priority are executed at almost the same time and they are executed in
an arbitrary order, but during the same routine. If a different and higher priority is
set for a component, it will only be executed after the ones with a lower priority are
executed. Each similar priority will correspond to a cycle, where it will start with the
execution of the components, and will end after the last component that has the same
priority finishes.

Inside a dashboard, to change the order of execution of the components, you just
need to change the priority property and set another value.

Let's look at the following example where we have five components:

• Components 1 and 2: priority 5
• Components 3: priority 10
• Components 4 and 5: priority 15

Building the Dashboard Using CDF

[90]

In the following image the X-axis is the time and the Y-axis is the priority:

In the preceding image we can look at the components with the same priority as
being in the same group, and because the execution of components in the same
group will be asynchronous, they will be executed at the same time, and only when
all the components of that group have finished will the components with the nearest
priority up be executed.

So, in the preceding image, you can see that components 1 and 2 start the execution
at the same time, and only after they're finished will the execution of component
3 start. The order of execution for components of the same priority is arbitrary, and
you should not expect any sequence that you can guess. Also, components 4 and 5,
which have the highest priority, will start the execution only after the component
with priority 10 has finished executing.

Available components and properties
When defining new components, you need to define a set of properties that define
the object and/or the behavior. The generic and mandatory properties of all/almost
all the components are:

• type: This property assumes a variety of values such as tableComponent,
buttonComponent, selectComponent, and so on, depending on the
component that is used.

Chapter 3

[91]

• name: This is the unique identifier of the component inside the dashboard.
• listeners: Will accept an array of a strings with the name of the parameters.

If a value on each one of those parameters changes, the component will be
updated. This array is crucial to create interaction among components.

• parameters: This accepts an array of arrays, where each array will have the
name of the parameters of the query and the parameters of the dashboard
with the value to be used.

• parameter: For components where user input is required, this is where the
input is stored to be used later.

• htmlObject: This is the ID of the HTML object that will be replaced by the
component's content result and be reached by calling a method from inside
the component using this.placeholder().

• priority: This is the priority of the component's execution, defaulting to
5. The lowest priorities have the highest priority of execution. Components
with the same priority will be executed simultaneously.

• executeAtStart: If set to false, the component will not execute at the
start of the dashboard, but it can be updated as soon as one of its listeners
has changed.

Some other properties have already been covered, such as preChange/postChange
or preExec/postExec, and we will cover others in the remaining chapters.

There are a lot of components available in CDF, and more in CDE. When you install
the CTools, you also get some samples that you can find under /public/plugin-
samples/CDF/Require samples/Documentation/Components Reference.
These samples are very useful for getting knowledge about each of the available
components and how they work. For each component, you will find a CDF dashboard
that will provide you with a description of the component, the available methods, and
the options. Also available is sample code and a previewer of the components, where
you can also understand how to use the component inside a dashboard.

If you know how the lifecycle works and how you can define and use a component,
you are now able to create a dashboard on your own.

It would not make sense to waste a bunch of pages just providing almost the same
information as you have seen in the previous examples, but you don't yet have a
summary where you can see which properties are available for which components.
We will show you how to work with the most important components in the next
chapter, where we will cover a great deal of the available properties.

Building the Dashboard Using CDF

[92]

Adding resources – JavaScript and CSS
You already saw how to create a new dashboard, and add components, but you
haven't yet seen how to include JavaScript and CSS code, which is available in CDF.
I always like to add my JavaScript files with the code for the project/dashboard.
Regardless of whether we are creating a dashboard or multiple dashboards in a
project, we should always develop it while bearing in mind that we may need to
have multiple dashboards, and some of the code and style could be reused for these
multiple dashboards.

If you are building dashboards that are similar to each other, you should rethink the
way you are creating or designing your dashboards. A dashboard can be flexible in
a way that will let you change the behavior and the data to be displayed in an easy
way, without too many components and or too much logic.

Let's suppose we are creating four dashboards and all the dashboards will share the
style, but also will have different components. Some of the components will share
some properties, but will have some specific properties for their case. What we can
do is have some files that contain JavaScript code and CSS rules that are applied to
all the dashboards, and some other files that can be applied for a specific dashboard.
The files that are specific to a particular dashboard will just extend or overwrite the
existing code.

JavaScript code is easy to extend and overwrite, and when using CSS you should
write rules, or just load the files in a different order to define which rules are
extending or overwriting the remaining ones.

Using internal modules
The way to add JavaScript code in a file to a dashboard is by including a module
when creating the dashboard. RequireJS provides a way to do this, you just need to
follow the rules and be able to use modules that are already defined, or just point to
a file by its relative path. There are a lot of modules in CDF that you can use, and if
not you can include your own.

The modules that are available by default in CDF are the following:

cdf/Dashboard.
Clean

cdf/Dashboard.
Bootstrap

cdf/Dashboard.
Blueprint

cdf/Logger

cdf/Addin cfd/dashboard/
Utils

cfd/dashboard/
RefreshEngine

cdf/lib/
modernizr

cdf/lib/jquery amd!cdf/lib/
jquery.ui

cdf/lib/jquery.
blockUI

cdf/lib/jquery.
impromptu

Chapter 3

[93]

cdf/lib/jquery.
fancybox

cdf/lib/mustache cdf/lib/
datatables

cdf/lib/jquery.
ui.autobox

cdf/lib/jquery.
templating

cdf/lib/
bootstrap

cdf/lib/jquery.
bgiframe

cdf/lib/jquery.
jdMenu

cdf/lib/cdf.
jquery.i18n

cdf/lib/
OpenLayers

cdf/lib/
queryParser

cdf/lib/jquery.
corner

cdf/lib/jquery.
select2

cdf/lib/jquery.
chosen

cdf/lib/jquery.
multiselect

cdf/lib/Raphael

cdf/lib/base64 cdf/lib/moment amd!cdf/lib/

underscore

amd!cdf/lib/

jquery.
ui.autobox

amd!cdf/lib/

backbone

amd!cdf/lib/

daterangepicker.
jQuery

The way to add a resource is just to use the module ID, in the require instruction, like
in the following example:

require(['cdf/Dashboard.Clean',
 'cfd/dashboard/Utils',
 'cdf/Logger'],
 function(Dashboard, Utils, Logger) {
 dashboard = new Dashboard();
 Looger.log(Utils.numberFormat(0.2, '0.00%'));
 dashboard.init();
 }
);

We included three modules in the previous example. The first one for the dashboard
type will include the dashboard's core functionality, the second one will include
the utilities functions, in our case to format a number as a percentage, and the last
one to make it possible to send log messages to the console. You can also see in
the dashboard's code that we are just sending a log message to the console with a
number formatted as a percentage with two decimal places.

Building the Dashboard Using CDF

[94]

Defining and including new modules
We may also want to include our own code so that we can also create a module of
our own by using the define function of require.

The syntax is as follows: define([[id,] dependencies,] factory). First, two
arguments, ID and dependencies, are optional and consist of an ID for the module
and the dependencies for your module. You can avoid defining the ID, and if that's
the case, the file name and path will be used as ID for the module. Third, factory is
a function that is executed to instantiate a module. If the dependencies argument is
not specified, this means that the module has no dependencies. You can get more
detailed information from the RequireJS website (http://requirejs.org/docs/
api.html). The following code is an example of how to define a module to be used
in a dashboard:

define(function() {
 var myModule = {
 sayHello: function(user) {return 'Hello '+user+'!'}
 };
 return myModule;
 }
);

The module is defined in a JavaScript file with the name myModule in the same folder
as the dashboard.

Next, you can see how we can include a custom module in a dashboard and make it
possible to use the unique function sayHello. The module function is called inside
the expression function of the component:

require(['cdf/Dashboard.Bootstrap', 'cdf/components/TextComponent',
'myModule', 'css!myDashboardStyle'],
 function(Dashboard, TextComponent, myModule) {
 dashboard = new Dashboard();
 dashboard.addComponent(new TextComponent({
 name: "showText",
 type: "textComponent",
 parameters:[],
 listeners: ["inputParam"],
 htmlObject: "showMessage",
 executeAtStart: true,
 priority: 5,
 expression: function(){

http://requirejs.org/docs/api.html
http://requirejs.org/docs/api.html

Chapter 3

[95]

 return myModule.sayHello(dashboard.context.user ||
'world');
 }
 }));
 dashboard.init();
 return dashboard;
 });

Including CSS files
But that's not all, because when defining a dashboard, we definitely want to make
it unique and outstanding, and we also want to include CSS in our dashboard. The
way to do this is very similar to what we saw earlier with the modules, but we
need to prepend the path/file name with css!. This will load the CSS file when the
dashboard is also being loaded, and all the styling will be applied as intended.

If we have a file called myDashboardStyle.css on the same level as the dashboard
HTML file, then we should have the file included as css!myDashboardStyle,
which was also included in the last example.

Dashboards utilities
There was once a time when we needed to add libraries as external resources to
leverage the process of formatting dates and numbers. Nowadays, it is possible to do
the formatting without the need to include external files. We can do the formatting
just by including the cfd/dashboard/Utils module. This will make require load
all the dependencies without any more effort.

Formatting numbers
Numbers can be formatted to look like currency, percentages with decimal places,
thousands, and abbreviations. To format numbers, you should use the function
numberFormat, available in the dashboard object. In our examples, you could do this
by calling Utils.numberFormat(value[, format[, langCode]]). The function
accepts the arguments; the first one is the value to format, the second one is the format
mask, and the last is the language and locale to use when formatting the number.

Building the Dashboard Using CDF

[96]

The mask or format argument is a string made up of symbols that shows how to
format the number. The most commonly used symbols are listed in the next table.
There is always the need to enclose the format in quotes or double quote marks.
The number formatting is based on cdo.NumberFormat, code that is built in CCC
and Protovis. CCC, which was covered in the first chapter, is the chart library that
brings a lot of flexibility to represent data using charts/graphs, while Protovis is the
JavaScript library that CCC uses:

Symbol Description

0 This is the digit placeholder, which prints a trailing or a leading zero in this
position, if appropriate

This is a digit placeholder, which will never print trailing or leading zeros
. This is a decimal placeholder
, This is a thousands separator
–, +, $, (
), space

This is a literal character, that is, a character that is displayed exactly as typed
into the format string

We also have the ability to use several standard formats with the format function.
Instead of specifying symbols in the format argument, you will denote these formats
by using a name in the format argument of the format function. These names should
be enclosed inside the quotes that define the format mask:

Symbol Description
Currency, or C This displays a number with thousands separators, if appropriate. It

displays two digits to the right of the decimal separator. The output is
based on settings and/or language and locale specified.

Abbreviation, or A This will abbreviate the number, if appropriate, and include a symbol
that indicates the number of zeros that the user should consider when
evaluating the number. You can also specify abbreviations by using
only the letter A.

Chapter 3

[97]

Let's look at some examples on how to use the masks to format numbers with
the numberFormat function (first you can see the number being formatted, in the
middle you can see the format mask being applied, and on the right side you can
see the result):

Numbers

Number Format mask Resulting string
1250 0.## 1250
1250 0.00 1250.00
1250 00000.0 01250.0
1250 #####.00 1250.00
1250.45 #.0 1250.5
1250.45 #,#.00 1,250.45
1250.45 #,#.000 1,250.450
12349867450.45 #,#.0 12,349,867,450.5

Currency

Number Format mask Resulting string
1250 #,#.0 € 1,250.0 €
1250 #,#.0€ 1,250.0€
1250 $1,250.0 € $1,250.0
1250 #,#.0Currency 1,250.0$
1250 C#,#.0 $1,250.0
1250 #,#.0\u00a4 1,250.0$

Abbreviation

Number Format mask Resulting string
12568 '0.00 Abbreviation' 12.6k
12568 '0.00 A' 12.6k
1250 0.000A 1.250k
1250 0.###A 1.25k
1250000 0.#A 1.3m

Building the Dashboard Using CDF

[98]

Number Format mask Resulting string
1250000 0.##A 1.25m
125873987343 0.##A 125.87b

Percentages

Number Format mask Resulting string
0.2 0.00% 20.00%
0.96 0.00% 96.00%
0.9636 0.0% 96.4%

There are ways to change the general settings and the language/locale settings, so
let's cover that now.

Languages and locales
For the third argument, you should set the language-locale to use so that the
format knows what the default masks are and/or the currency symbol to use. When
using currency and defining the language and locale, you should not specify the
symbol to use, and just use C, letting the formatter apply the defined settings:

Number Format mask Language Resulting string
323636 0.0C pt-pt 323636.0€
323636 C0.0 en-us $323636.0
323636 C0.0 en-gb £323636.0

Multiple formats
You also may want to specify format masks for positive and negative numbers,
and you are able to do so just by separating the formats with semicolons.
It should be used by specifying [positive_mask];[negative_mask];
[zero_mask];[null_mask]:

Number Format mask Resulting string
-323636 $#,##0;($#,##0) ($323,636)
0 $#,##0;($#,##0);zero zero
null $#,##0;($#,##0);zero
null $#,##0;($#,##0);zero;nil nil

Chapter 3

[99]

Formatting and manipulating dates
We can also use a function to format dates and time. When using the CDF Utils to
format the date and time, in reality we are making use of MomentJS, a JavaScript
library that is automatically included when using the CDF Utils module in
our dashboard. We can format dates by using the dateFormat function, and
similar to what you saw earlier, you should use the following function: Utils.
dateFormat(date[, format[, langCode]]). The first argument is the date,
which can be a string or a moment call with the input format of the specified date:

dashboards.dateFormat('2014-12-20', 'DD/MM/YY')
dashboards.dateFormat(moment('20/12/2014','DD/MM/YYYY'), 'DD/MM/YY')

The previous examples will return the same result, but are specifying the input date
in different formats. The second example would not recognize '20/12/2014' as a
valid date, so we need to use MomentJS to specify the input format as 'DD/MM/YYYY'.

The first argument of the function is the date to format, where you can specify a
string or a MomentJS object. It's good practice to do it as in the second example,
due to compatibility reasons when rendering the dashboard in different browsers.

The second argument of the function is the format mask to be used by the formatter,
and it's based on the format masks provided by MomentJS. You can get more
information at: http://momentjs.com/docs/#/displaying/format/.

It's not the purpose of this book to explain how to work with MomentJS, you just
need to know that is a really great library that also allows you to manipulate dates.
It's very easy and intuitive to use, and you will find detailed documentation, with a
lot of examples, on their website at http://momentjs.com/docs/. Usually, dates are
very important in all projects, so we really advise you to get to know how to work
with this library.

When using a date like new Date() on the date argument of the function, we could
end up getting the following results:

Date Format mask Resulting string
new Date() dddd, MMMM Do YYYY,

h:mm:ss a
Friday, May 29th 2015,
9:27:37 am

moment('20/12/2014','DD/
MM/YYYY')

DD-MMM-YY, hh:mm 20-Dec-14, 12:00

moment() DD/MM/YYYY 29/05/2015
moment() ddd, hA Fri, 9PM

http://momentjs.com/docs/#/displaying/format/
http://momentjs.com/docs/

Building the Dashboard Using CDF

[100]

Internationalization of numbers and dates
When talking about the internationalization of numbers and dates, there is a
function that you can use to add or change the settings. The function to use is Utils.
configLanguage(langCode, config), which will receive two arguments, one of
which is the language/locale code and another is the settings object. The language
code is just a string with an identifier and the configuration is an object that can
contain one or both keys with the settings to format numbers and dates. The keys are:

• number: This configures the number's format language
• dateLocale: This configures the date's format language

In the following example, we can see the usage for both options, and both options
will expect an object with the settings to use:

Utils.configLanguage('myLangCode', {
 number: {
 mask: '#,0.##',
 style: {
 integerPad: '0',
 fractionPad: '0',
 decimal: ',',
 group: ' ',
 groupSizes: [3],
 abbreviations: ['k','m', 'b', 't'],
 negativeSign: '-',
 currency: 'F'
 }
 },
 dateLocale: {
 months: [
 "January", "February", "March", "April", "May", "June",
 "July", "August", "September", "October", "November",
"December"
],
 monthsShort: [
 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
],

 }
})

Chapter 3

[101]

After these settings are defined, we may use them using langCode defined.
In our example, we have set our own language code as myLangCode in the
following function:

• Utils.numberFormat(value[, format[, langCode]])

• Utils.dateFormat(value[, format[, langCode]])

The last argument of each function is the language code, and if we apply myLangCode
string in there, we will be using the setting we have set for this specific language as:

Utils.numberFormat(254179)

The function will return the number formatted with the default format mask
'#,0.##' and return the number formatted accordingly.

In the example, you can see that we are setting definitions for number and
dateLocale, but you define just one of them. It's not mandatory to define both.

For the dateLocale settings, there are more options that we could customize, so you
can find the complete reference at http://momentjs.com/docs/#/customization/.

Dashboard storage
It's now possible to maintain parameter states between different sessions. Instead of
using simple parameters, objects inside the special namespace storage can be saved
and restored.

Dashboards can store values as per the user preferences. Let's suppose you
have a dashboard where you want to persist the status next time you get on the
dashboard. It's possible to do this with the storage functionality of CDF. Each time
that the function dashboard.saveStorage() is called, CDF will store the content
of the dashboard.storage object. When the dashboard is loaded for that user,
the dashboard will have access to the object dashboard.storage where all the
collections (objects and arrays) or functions are defined.

Don't forget to save the storage:
Storage will only be saved on the server side after running the
dashboard.saveStorage()function; otherwise if you refresh
the dashboard before saving it, you will notice that you have lost
the last changes before the last save.

http://momentjs.com/docs/#/customization/

Building the Dashboard Using CDF

[102]

You can also force the load of the storage, by calling dashboard.loadStorage()
function, or if you want to clean the storage, you just need to run dashboard.
cleanStorage(). You can also just clean part of the storage by deleting it:

require(['cdf/Dashboard.Bootstrap', 'cdf/components/
TextInputComponent', 'cdf/components/TextComponent', "cdf/Logger"],
 function(Dashboard, TextInputComponent, TextComponent, Logger)
{
 dashboard = new Dashboard();
 dashboard.addParameter('inputParam', dashboard.storage.
inputParam || "");
 dashboard.addComponent(new TextInputComponent({
 name: "inputTextComponent",
 type: "textInputComponent",
 parameters:[],
 parameter: "inputParam",
 htmlObject: "inputComponent",
 executeAtStart: true,
 priority: 5,
 postChange: function() {
 dashboard.storage.inputParam = dashboard.
getParameterValue(this.parameter);
 dashboard.saveStorage();
 }
 }));
 dashboard.addComponent(new TextComponent({
 name: "showTextComponent",
 type: "textComponent",
 parameters:[],
 listeners: ["inputParam"],
 htmlObject: "textComponent",
 executeAtStart: true,
 priority: 5,
 expression: function(){
 return dashboard.getParameterValue('inputParam');
 }
 }));
 dashboard.init();
 return dashboard;
 });

Chapter 3

[103]

The previous example shows that we can make use of storage in CDF. In the
dashboard, we have two components and one parameter. The parameter created
has, as a default value, dashboard.storage.inputParam || "", meaning that it
will grab the value from a previously saved parameter in the storage object. If it is
not defined, it will return an empty string, which is the case when executing the
dashboard for a user for the first time.

Take caution when storing a huge amount of information in
the storage
This works on a per user basis, and the developer needs to be
aware that everything saved will be loaded for every dashboard
for that same user, so if too much is stored, one may have a
performance penalty.

The first defined component is an input component that will let you enter text in the
input box, and, once the value is confirmed, it will write the value for the parameter.
But, at that time, only the parameter has the value entered, so we also need to write
value to the storage object and save it.

That is what we can see in the postChange function, where we are just writing
a variable inside the context with the value to store. Once we have created or
overwritten the variable value, we need to save it with the instruction dashboard.
saveStorage(). We could also have another component, such as a button
component that would clean the storage by executing the instruction dashboard.
cleanStorage(). You should try it.

Loading the storage object
If for some reason you need to update the value of the storage object,
you can do this by calling dashboard.loadStorage(), but only
if that's the case. You don't need to do this at the beginning of the
dashboard because the storage object will be automatically filled out
when the dashboard starts.

Building the Dashboard Using CDF

[104]

Dashboard context
When the dashboard loads, there is also an object that will be available to get some
information about the context where the dashboard is running. This object can
be accessed using the variable that is instantiating the dashboard. Let's check the
content of the object:

• user: This is the ID of the user that is logged in
• roles: This is an array of strings that contains the roles associated with

the user
• serverLocalDate: This is the timestamp of the server
• serverUTCDate: This is the UTC timestamp on the server
• sessionTimeout: This is the time timeout interval for the session
• path: This is the dashboard path in the Pentaho repository
• locale: This is the language and locale that is set on the Pentaho server for

the logged in user

Sometimes there is the need to add some more information when generating the
dashboard, so CDF gives you the capability to add that information, and you are
able to do this in two ways: using values from session variables directly in Pentaho,
or using values from queries. Session variables are variables that can store values in
the user session in Pentaho. There are two steps in Kettle that can be used to get/
set session variable values. For more information, please refer to: http://wiki.
pentaho.com/display/EAI/Get+Session+Variables and http://wiki.pentaho.
com/display/EAI/Set+Session+Variables.

The configuration should be set using a solution file cdf/dashboardContext.xml,
and you can take a peek at the default configuration file that is available in the /
system/pentaho-cdf/dashboardContext.xml file.

To include the session variable key/value pair in the context of the dashboard, you
should change the configuration file to include the settings, so that CDF knows what
variables should be included. You should add the <sessionattributes> element,
which contains as many <attribute> elements as variables we want to include.
This should be placed inside the <context> root element. Let's suppose you have
a session variable with the name myTerritory, where you have some information
about the territory of the user that is logged in. You will end up with a file like this:

<context>
 <!-- Query auto-includes -->
 <autoincludes>
 <autoinclude>

http://wiki.pentaho.com/display/EAI/Get+Session+Variables
http://wiki.pentaho.com/display/EAI/Get+Session+Variables
http://wiki.pentaho.com/display/EAI/Set+Session+Variables
http://wiki.pentaho.com/display/EAI/Set+Session+Variables

Chapter 3

[105]

 <cda><![CDATA[/public/cdf/includes/(.*)/(.*?)\.cda]]></cda>
 <ids>.*</ids>
 <dashboards>
 <include><![CDATA[.*/$1/.*\.wcdf]]></include>
 <include><![CDATA[.*/$1/.*\.xcdf]]></include>
 <include><![CDATA[.*/$1/.*\.cdfde]]></include>
 </dashboards>
 </autoinclude>
 </autoincludes>
 <sessionattributes>
 <attribute name="myTerritory">myTerritory</attribute>
 </sessionattributes>
</context>

You can see that the file is pretty similar to the default one, and the only difference is
that we are including the sessionatrributes elements to include the value of the
session variable myTerritory in the dashboard context.

Including multiple session variables
If you have more than one variable you want to include, you just
need to add as many attribute elements as the variables you need.

As previously mentioned, we can also include some values resulting from queries;
as we can understand by its name, autoincludes provides you that ability. At
the beginning of the configuration file of the last sample code, we can see the
autoincludes elements that contain the rules to define which files will be included
or excluded.

You can imagine how you could achieve the same results by adding queries and
changing the priority of execution of the components so that you have some results
loaded before any other query is triggered. But you would need to add this logic to
the dashboard by yourself, and it is even more time expensive when you need those
results to be included on multiple dashboards. So the autoincludes can save you
some time and avoid unnecessary logic and complexity.

Looking at the previous example, you will see the include/exclude elements where
we need to set the regular expressions rules to include or exclude dashboard files
that will have the auto-includes in the context. The CDA XML element is where the
pattern is defined for the CDA files with the queries, whose results will be included
in the context of the dashboard. You can also specify the pattern for the data access
ID of the CDA files to be included.

Building the Dashboard Using CDF

[106]

The way this works is by placing the CDA files with the queries and default
parameters inside the public/cdf/inludes hierarchy folder, and every dashboard
with the same relative path to the root folder will include the results in the context.
Let's suppose you have a CDA file inside public/cdf/includes/public/myfolder
and a dashboard inside public/myfolder. The dashboard's results of the queries
will be included in the context of the dashboard. On the other hand, if you have a
dashboard that is under public/myotherfolder, it will not include the results in
the context. This is done using the default configuration, but you can change the
default behavior. By changing, adding, or removing rules you will be including or
excluding files.

The syntax would be set like:

<autoinclude>
 <cda>cda_pattern</cda>
 <ids>id_pattern</ids>
 <dashboards>
 <include>includePattern_1</include>
 <include>includePattern_2</include>
 <exclude>excludePattern_1</include>
 ...
 <include>includePattern_n</include>
 <exclude>excludePattern_n</include>
 </dashboards>
 </autoinclude>

In the preceding block of code, CDF will include all the results of the data access
identifiers in the context object, from the CDA files whose IDs match id_ pattern
and the path of the file matches cda_pattern, if all include rules are true and the
exclude rules are false. This leads us to the dashboards element, where we may have
any number of include and exclude elements.

These elements should be ordered by importance, from the least to the most
important, and we can also include back references to capture groups from the CDA
pattern. In the default configuration, we can see /$1/, which references the path
capture group, meaning that the path begins with the previously matched CDA
files. The path for the dashboard that is being executed will be checked against
the include/exclude patterns in order of importance, and the dashboard will
automatically include CDAs queries if it matches at least:

• One include rule
• Unless it matches a subsequent exclude rule
• Unless it matches a further include rule

Chapter 3

[107]

Getting back to the session variables, you can also achieve the same results by
creating a query auto included that uses a Kettle transformation in combination with
the BA Server Utils plugin to read the values of the session variables. This way,
the values of the session's variable will also be included. The step to use would be
getVariable.

To access the results in the dashboard, you just need to access the dashboard context
object such as Dashboards.context.sessionAttributes and Dashboards.context.
queryData to get access to the session variables or query results, respectively.

Both dashboard storage and context can be used in CDE. To be more precise, all the
functionality available in CDF is also available in CDE, but not the other way around.

Useful functions of the CDF API
CDF provides a list of methods/functions that you can and should use when
building the dashboards. Next, you will find some of the most used functions.

Functions from the dashboards module:
• init(components): This function is used to start the execution of the

dashboard. You have seen this function in our examples. It receives an
argument and an array of the components to execute. This function can
be called without any argument, but in this context we need to add the
components to the dashboard using the addComponents function.

• addComponents(components): This function accepts an array with the
components to add to the dashboard.

• addComponent(component): This is the same as the previous function, but
will just add one component.

• removeComponent(component): This will remove a component from the list
of the components of the dashboard.

• getComponentByName(component): This returns the component with the
name specified as an argument.

• update(component): This will update the component. The function receives
an argument, that is, the name of the component to update.

• updateAll(components): This updates a set of components. The argument
is an array of strings with the name of the components to update.

• isBookmarkable(parameter): This verifies whether a parameter is
bookmarkable and returns the Boolean value of the condition.

Building the Dashboard Using CDF

[108]

• setBookmarkable(parameter, value): This sets a parameter as
bookmarkable and also sets its default value.

• getQueryParameter(parameter): This gets the value of a parameter that
was passed through the URL used to call the dashboard in the browser.

• setParameterValue(parameter, value): This sets the value of a
parameter. This is the first argument of the parameter name, and the second
argument is the value to set. This function does not notify the listeners.

• fireChange(parameter, value): This is the same as the previous function,
but will notify the listeners.

• getParemeterValue(parameter): This returns the value of a parameter.
• preInit(): This can be defined to be executed before the dashboard starts

the execution.
• postInit(): This can be defined to be executed after the dashboard finishes

the first render of the dashboard.
• saveStorage(): This saves the contents of the object.
• loadStorage(): This reloads the object (this is done automatically at the

dashboard rendering time, and is useful only to undo certain operations).
• cleanStorage(): This empties the entire storage of that user.
• storage: This is the object where the storage will be loaded, and where the

developer should store the values of the persistent parameters.
• context: This is an object that contains a set of properties that define the

context where the dashboard is executed. It has some properties such as the
user, roles, path to the dashboard, and more.

• on(event_name, callback, context): This allows the developer to
attaching the event to the events fired by the CDF dashboards.

• off(event_name): This allows the developer to remove the event.
• trigger(event_name): This triggers an event.
• objectToPropertiesArray(object): This returns an array from an

object of properties and can be used to define some of the properties of
a component. This function accepts an argument, that is, the object to be
translated to an array.

• propertiesArrayToObject(array): This returns an object from an array.
This function has an argument that is an array.

Chapter 3

[109]

Functions from the logger module:
• log(message, type): This writes a message to the console with one of the

following types: log, error, warn, info, or debug.

Functions from the components module:
• update(): This function will update the component, but is called from the

update function of the component itself.
• getValue(): The function is then used by the processChange function,

getting a value to be used later.
• processChange('component_name'): When creating custom components

that require the input of the user, this function should be called to make
changes to the parameter and notify the listeners. If it exists, preChange will
be called by executing fireChange using the defined parameter, and also if
defined, postChange will be called for execution.

Summary
CDF is the API to create dashboards and reports. By this point, you should
understand the concepts behind the lifecycle of the dashboard and components. You
should also know how to create a dashboard using the CDF API, and know the most
part of the available methods, which are very important when creating advanced
dashboards. We also covered a very important topic related to the use of parameters
and listeners to create interaction among components.

Of course, you have a lot more to learn, and there are some more advanced concepts
that we will cover in the following chapters.

In the next chapter, we will start covering CDE, and how to build a dashboard in an
easier and faster way than by just using CDF.

[111]

Leverage the
Process with CDE

In the previous chapter, you saw how to create custom dashboards at the code
level, and now you will see how to build them in an easier and faster way. Creating
a custom dashboard should not be difficult and time-consuming, and CDE is a
Pentaho server plugin that allows you to create, edit, and render a dashboard easily.
CDE can build all the code for you, and you just need to use the graphical interface
that CDE will make available to you to create or edit your dashboards.

The topics covered in this chapter are based on how to create a dashboard using a
graphical user interface (GUI). You will gain knowledge on how to build a responsive
layout for the dashboard, add components, add some custom code, and add resources
(both JavaScript and CSS) to the dashboard to create and use data sources without the
need to create the CDA file by hand. What you learn here will help you to leverage the
process and decrease the development time of the dashboards.

In the previous chapter, we already covered a major part of the core concepts
that you need to build a dashboard using CDF/CDE. When you are building a
CDE dashboard, you are creating CDF content, even if you are using CDE only
components, as at the end they are also using and working on top of CDF. You
are not required to build a dashboard by writing code using CDF, so you can
skip writing CDF code, but it is important to know how it works and have a good
understanding of it. Only this way will you be able to make the most out of CDE
when building your dashboards. Make sure you really understand the lifecycle of
the dashboard and components, as this is very important, even if you don't want to
create your dashboards by writing your own code using CDF.

Leverage the Process with CDE

[112]

During this chapter, we will cover the following topics:

• Including resources in the dashboard
• Creating responsive dashboards
• Creating and customizing the layout of the dashboard
• Defining and using data sources
• Making use of parameters and listeners
• Making use of components
• Changing the order of execution of the components
• Previewing the dashboard

A brief introduction to CDE
CDE is a graphical interface tool where you can create your dashboard. Using CDE,
you are able to decrease the development time, because CDE will generate the CDF
code for you. But how does this work? The dashboard file is created on the client side
and saved to the server side. When we later request that dashboard, we are making
the request to the server which will deliver to the client side as an HTML page. This
HTML page will not only include all the libraries needed for the execution of the
dashboard, but will also provide the code for the dashboard. As soon as the browser,
on the client side, has the HTML page, it will make the request to get all the libraries
or JavaScript and CSS files that are needed or included by the developer in the
dashboard. The server will return the files to the browser, and the web page that in
turn is the dashboard, can begin executing.

When rendering the components, the dashboard, or to be more precise, the
components, will make the requests for the queries to get the data to be displayed on
the page. After getting the results and executing the remaining code, the dashboard is
finally ready, and the user now has the ability to start interacting with the dashboard.

As we saw in previous chapters, the interaction of the user will generate changes on
the parameters that in turn will trigger the update of the components, which will
trigger new queries to get new data to the dashboard.

You should not expect CDE to have direct properties or options that you can
directly set for everything you can do on the web or in a business analytics solution,
but CDE will definitely provide a way to do these things; you just need to have an
open mind and a good understanding of how CDE works. CDE works on top of
CDF and CDA, and uses CCC. This way, you will find a solution for all your goals
and build amazing, stunning dashboards that can go much further and build
prescriptive solutions.

Chapter 4

[113]

Working with the editor
One of the first things you need to learn to do is save and edit a particular
dashboard. Usually, when using the term open the dashboard, we are referring to the
operation of calling the dashboard using the generatedContent endpoint, which
will execute the dashboard in the browser. This way, you will execute the dashboard
and be able to interact with the dashboard. This is the operation that the final user
will perform when requesting a dashboard.

There is another term that is frequently used, open the dashboard using the edit mode,
which refers to the process of editing the dashboard in a way that you can make
changes to the dashboard or just look at its layout, components, and data sources.
This operation can be done using both wcdf.edit and the edit endpoints.

From now on, just let's use open and edit, the first when referring to the call to the
dashboard to render the dashboard, and the second to make changes to the layout,
components, or data sources.

The ability to create a new dashboard in a Pentaho standard installation
By default from version 5.3 and above, CTools comes with the Pentaho
standard installation, but with a disabled flag that would not provide an
option to create a new dashboard. You can overcome this by installing the
last stable version of CTools (CDE, CDF, CDA, and CGG), by following
the procedures in the second chapter.

To create a new dashboard, go to Pentaho User Console (PUC) and select from the
menu: File | New | CDE Dashboard, and you will get a new tab with CDE Editor.
What Pentaho is doing here is calling an endpoint that you can also call directly in
your browser using the following URL: http://<server>:<port>/pentaho/api/
repos/wcdf/new.

To open or edit a dashboard, you should select the dashboard from the repository
using the PUC browser and click the open or edit button on the rightmost panel.
Depending on the operation you are doing, you will get a new tab in the PUC, which
uses one of the following URLs:

• To edit: http://<server>:<port>/pentaho/api/repos/<path>/wcdf.
edit

• To open: http://<server>:<port>/pentaho/api/repos/<path>/
generatedContent

http://<server>:<port>/pentaho/api/repos/wcdf/new
http://<server>:<port>/pentaho/api/repos/wcdf/new
http://<server>:<port>/pentaho/api/repos/<path>/wcdf.edit
http://<server>:<port>/pentaho/api/repos/<path>/wcdf.edit
http://<server>:<port>/pentaho/api/repos/<path>/generatedContent
http://<server>:<port>/pentaho/api/repos/<path>/generatedContent

Leverage the Process with CDE

[114]

Here, path would the path and filename of the dashboard and something similar to
:public:Steel Wheels:CTools_dashboard.wcdf, which would redirect you to the
Steel Wheels sample CDE dashboard. This will lead you to a good example that
you later should edit and take a look at to recap what you have learned by reading
this book. This is also a way to learn a few more tricks.

When creating a new dashboard or editing an existing one, you will get something
like the following image, that we can divide into six sections:

The sections shown in the previous image are explained as follows:

1. Main toolbar: Here you will find some functional buttons such as New,
Save, Save as..., Reload, and Settings. This is where you select where to save
a file, the name, and description of the dashboard, and also the style and the
dashboard type or the framework to use when creating the layout.

2. Title of the dashboard: This is the title given to the dashboard when saving
it. When creating a new dashboard, you will see the name as New Dashboard.
This means that you haven't saved your dashboard or you just gave it the
title of New Dashboard, and let me tell you, that's not the most creative title
or name to give to a dashboard.

3. Perspectives toolbar: You can select which panel you want to display in the
perspective panel area.

Chapter 4

[115]

4. Perspective panel area: Depending on the selection you make in the
Perspective toolbar, you will get the layout, components, or data
sources panels.

5. Properties panel area: For each one of the selections in the elements of the
perspectives panels, you will have at least 2 panels, one for the existing
elements and another with the Properties available for the existing elements.

6. Help and documentation toolbar: Here you have two options: the first
one will display a brief description of the tool, with information about the
installed version. Selecting the second option will give you the same dialog,
but it contains documentation and some buttons where you can find some
basic documentation and links to the CDE tutorial and sample demos you
can buy from Webdetails/Pentaho.

Let's now start to look each of the sections. There are two sections that are really
simple to explain and understand, so let's start with those two.

Operational toolbar
The main toolbar will show you the options in the following image:

New
This allows you to create a new dashboard. It will do the same operation as the
New option in PUC.

Save and Save as
The behavior of Save and Save as… is the same as you get in all other applications.
When clicking on Save for the first time, you will get a dialog where you need
to specify the folder where you want to save the dashboard, and also specify
the following:

• Name: The name of the files in the dashboard. This is the name to use when
saving the file in the repository.

• Title: The name that identifies the dashboard. This is the name that will be
displayed when browsing the Pentaho repository and the name that will be
displayed in the browser when editing or rendering the dashboard.

Leverage the Process with CDE

[116]

• Description: This is just some more information that will be added to the
metadata of the dashboard.

• Dashboard/Widget: You can select between a dashboard or a widget, but
let's just focus on saving the files as dashboards. Nowadays, we will see
better alternatives to widgets, but anyhow, we will cover widgets later on in
this book.

After selecting the folder in which you want to save the file, and adding the file
name, you are able to click on the OK button, and save the file successfully.

When clicking Save for a dashboard that has already been saved, this will overwrite
the existing files. Save as... will have the same behavior as saving a new dashboard
for the first time. The following image shows the dialog you will get:

When saving a CDE dashboard, three files are written to the repository, all of them
with the same name but with different extensions:

• WCDF: This is saved as an XML file, containing the main information about
the dashboard such as the title, description, author, style, layout type, and a
flag for RequireJS.

• CDFDE: This is saved using the JSON syntax and will have all the
information, keys, and values for all the properties and elements that have
been used or are just needed for the rendering. Layout, components, custom
code, and query definitions are part of the file.

Chapter 4

[117]

• CDA: This is also saved as XML with the structure explained in the second
chapter. It will have data sources that are defined using the editor. You will
see later that we can make the components use the queries that are in another
CDA file, which is useful when we are creating multiple dashboards where
we have some common queries, or just have a centralized file with all the
queries. We can use the editor to create CDA files and define data sources in
an easy way, just using the editor to create a new dashboard, but not defining
layouts or components. This file is only saved when data sources are defined,
otherwise, only the first two files are saved.

Reload
Reload will load the dashboard files again, and all the changes made since the last
saved change will be discarded.

Settings
Using the Settings operational button, you will be prompted with a dialog box where
you are able to set/change the following options, as shown in the following image:

Leverage the Process with CDE

[118]

The options shown in the previous image are as follows:

• Title: This is the title of the dashboard, as defined when saving it.
• Author: This is the name of the author of the dashboard. The only way to

change the author is by changing it here in the settings dialog, or changing
the WCDF extension file by hand.

• Description: This is the description of the dashboard, as defined when
saving it.

• Style: As explained in the CDF chapter, the style is where we can choose
from an existing HTML page that will provide similar content for multiple
dashboards. When in CDE, there is a dropdown where we can choose
from the styles that are available. The one selected by default is the Clean
template, but you have three more templates that can be applied, and they
are used in the web details documentation and for the Pentaho App Builder
dashboard/plugin.
There is also the chance to create new styles, by creating your own templates
with similar content that dashboards can have, which is very simple to do.
We just need to create an HTML page with content to be presented in all the
dashboards using the style. This should be similar to the following example:
<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1">
 @HEADER@
 </head>
 <body>
 <div class="dashboardWrapper">Your dashboard will be wrapped
by this element
 @CONTENT@
 </div>
 @FOOTER@
 </body>
</html>

Chapter 4

[119]

Defining a new style is just creating an HTML page where we need to add
the following strings, which will be replaced by the HTML and JavaScript
code needed for the dashboard:

 ° @HEADER@: This will be replaced by the scripts to include the
JavaScript and CSS needed for the execution of the dashboard.

 ° @CONTENT@: This will be replaced by the HMTL with the structure
defined in the Layout panel and the JavaScript code generated by
CDE to run the dashboard, using as a base the components and data
sources defined and the components panels.

 ° @FOOTER@: This will be replaced by some supplementary code to
render some content that may be needed for the dashboard.

The styles should be uploaded to the repository and should be placed inside
the folder /public/cde/styles. The styles inside the dropdown will have
the name of the file, but two files should exist. One when creating legacy
dashboards, not using RequireJS, and another when using RequireJS. The
file name containing the style to be applied when using RequireJS should be
appended by the text Require. For instance, create an HTML page with the
name customStyleRequire.html containing the previous code and upload
it to the folder /public/cde/styles folder. By creating your own styles,
you can add content that will be used in all the dashboards where the style
is applied.

Refresh the CDE plugin
When uploading files into the folder /public/cde/*, we should
refresh the CDE, and to do this, you need to make a call to the following
URL: http://<server>:<port>/pentaho/plugin/pentaho-
cdf-dd/api/renderer/refresh. This call will refresh the CDE, and
all the content added to that folder will now be included in the CDE
editor and will be available when rendering the dashboards.

• Dashboard Type: This will specify which framework to use when creating
the layout. There are three options available:

 ° Blueprint: This creates a dashboard using the Blueprint CSS
framework. You can get some more knowledge on their website:
http://www.blueprintcss.org.

 ° Mobile: This creates a dashboard using the JQuery Mobile
framework. If you pretend to use it, you can get some more
knowledge at their website by using the following URL:
https://jquerymobile.com/.

http://www.blueprintcss.org.
https://jquerymobile.com/.

Leverage the Process with CDE

[120]

 ° Bootstrap: This creates a dashboard using the Twitter Bootstrap
framework. You could go through all the documentation, but you
can just start by reading about the grid system, the concept that you
really need to know to create the layout for the dashboards.
The following URLs are a good start: http://getbootstrap.com/
css/#grid and http://getbootstrap.com/css/#responsive-
utilities-classes

In this book, we only cover Bootstrap, which is selected by default.
This is the right one to use when building responsive dashboards.
Just by looking at the names, you could think that to build a mobile
dashboard, you should use the Mobile option, but that's not really
true. You can use Bootstrap to build a desktop and/or mobile
dashboard, something that would not be fully true when using
the mobile framework. If you build a dashboard with the mobile
framework, it won't become a desktop dashboard.

• RequireJS Support: This checkbox will be used by CDE to know whether
the code should make use of RequireJS when generating the CDF code of
the dashboard. When the box is checked, CDE will generate the code using
RequireJS. When rendering a dashboard with this option checked, by default,
CDE will require a collection of the base modules. This way, the developer
does not need to specifically require them when building custom JavaScript
code. By default, the loaded modules are:

 ° Logger: This is represented as Logger
 ° JQuery: This is represented as $
 ° Underscore: This is represented as _
 ° Moment: This is represented as moment
 ° Cdo: This is represented as cdo
 ° Utils: This is represented as Utils

http://getbootstrap.com/css/#grid
http://getbootstrap.com/css/#grid
http://getbootstrap.com/css/#responsive-utilities-classes
http://getbootstrap.com/css/#responsive-utilities-classes

Chapter 4

[121]

The perspectives toolbar
You should know that there are three perspectives and a preview button, as shown
in the following image. The other three buttons or perspectives are as follows:

1. The layout perspective: This is used to switch to the layout perspective
of the editor. You should use this perspective to define the layout of your
dashboard. When clicking the layout button, you will get the available and
used layout elements. The properties panels will change according to the
element selected, displaying all the available properties.

2. The components perspective: This is used to switch to the components
perspective of the editor. You should use this perspective to define the
components to apply to the dashboard. When clicking the components
button, the perspective and properties panels will change accordingly and
will show you the available components you can use for your dashboard,
and also the ones already added to the dashboard.

3. The data sources perspective: This is used to switch to the data sources
perspective of the editor. You should use this perspective to define the
data sources to be saved on the CDA file that will be directly related to the
dashboard you are working on. When clicking the data source button, the
perspective and properties panels will change accordingly and show the data
sources available to be used, and the ones already defined.

4. Preview the dashboard: This is the rightmost button, and it allows you to
preview the dashboard. When pressed, you will get a new dialog, with the
dashboard you are working on inside of it. This way, you are able to test the
behavior and see how the dashboard would look.

We will now cover each of the perspectives, except for the last one, as there is
nothing else to cover there, so we will give you some more details on the first three.

Leverage the Process with CDE

[122]

The layout perspective
When clicking on the layout perspective button, you will switch to the layout
perspective and get two panels, as you can see in the following image:

1. Layout toolbar: This toolbar is used to create the elements in the layout
structure. (See panel 1 in the previous image.) When clicking on the buttons,
you will be adding or removing the element, and these changes will be
reflected in the layout structure panel.

2. Layout structure: In this panel (see panel 2 in the previous image) of the
layout perspective, will have represented all the elements that are part of the
layout of the dashboard. Whenever you click on an element, the Properties
panel will be updated and will show you the properties available for the
selected element.

3. Properties: This panel (see panel 3 in the previous image) shows you the
available properties of the selected element in the layout structure, and
depending on the type of element, the properties may vary. This is where
you can see the value for each of the properties or just set their value.

The Layout toolbar
The toolbar that becomes available when you are in the layout perspective is like
the following image. Depending on the elements you have selected in the layout
structure, you may find some of the buttons enabled or disabled:

Chapter 4

[123]

In the image given, we have labelled each button as per their corresponding
elements. Now let's look at what each of the buttons is used for:

1. Save as Template: You can save the dashboard you are working on as a
template. When clicking the button, you will be presented with a dialog
like the following image, where you can set the name for the template
and the title:

The name and title will be used as previously explained when saving a
dashboard. File Name is the name of the file inside the repository and Title
is the text that will be displayed when you are later choosing which template
to use.
When saving a template, you should also specify whether you want your
template to include components and/or data sources within the template.
When these options are checked and when using the template, you are
saving all the components and data sources included in the new dashboard.
But when those options are unchecked, you will include only the layout of
the template in your new dashboard, and nothing else. This will not add new
elements to the layout structure.

Templates are saved inside the Pentaho repository
The templates you are saving will become available in the repository
inside the /public/cde/templates folder.

Leverage the Process with CDE

[124]

2. Apply Template: Clicking this button will give you a dialog where you can
choose from the available templates, as shown in the following image:

You can choose from the available templates already included in CDE, or
you can select from ones you have created and saved. If you want to select
one of your own, you should click the My Templates button, available at the
bottom-right side of the dialog. When selecting this option, you will see the
templates you have saved.
To select a template, you only need to click on the template you want to
choose and click the Ok button.

Chapter 4

[125]

3. Add Resource: You can add resources, JavaScript, and CSS files to your
dashboard as a code snippet or as an external file.
To add a resource, when clicking a button, a dialog box will pop up, similar
to the one in the following image. You must select from the dropdowns if
you want to include CSS or JavaScript code and if the code will be added as
an external resource or code snippet:

When adding resources as a code snippet, a line referring to the resource will
be added in the layout structure. The properties that become available for
this element are as follows:

 ° Name: This is the name you want to use to identify the resource in
the layout structure.

 ° Resource Code: When clicking on the button available in the
property, a dialog will be presented where you can write, delete,
and edit your code. You just need to click Ok or Cancel to confirm
whether you want to add it to the dashboard.

 ° Type: This is the type of the resource, which is automatically set
when adding the resource. It will have the value selected in the type
dropdown when adding a new resource.

Leverage the Process with CDE

[126]

When adding resources as a code snippet, a line referring to the resource will
be added in the layout structure. The properties that become available for
this element are:

 ° Name: This is the same as the previous.
 ° Resource File: In this property, you can set the URL of the resource,

or use the buttons available. The first button will open a new dialog
that will allow you to select the file to include, and the second one
will allow you to edit the code that is inside the file. When editing the
content of the file, you will have three available buttons: Save, which
can be used to save the changes in the file, Close, which can be used
to close the dialog without saving the changes, and Open Tab in
new Tab/Window, which will open a new tab in the browser with
the editor that allows you to change the content of the selected
resource file.

 ° Type: This is the same as the previous.

When adding a code snippet, the code will be part of the dashboard when
it is saved, and this is because it will be saved inside the CDFDE file. When
using an external file, the reference to the file will be added to the dashboard.
When generating the code for the dashboard, CDE will also include it as
a RequireJS module by using the require functions that incorporate its
location on the server. Later during the execution of the dashboard, the file
will be requested to the server, and the code will become available inside the
require context of the dashboard.
When adding your code as a code snippet, it will be included inside the
dashboard module and will become available inside the dashboard object.
When you are including a resource that uses an external file with your code,
you need to define a RequireJS module, because the dashboard will require
it. It will then become available in the dashboard module. You can define the
code in your file as follows:
define(function() {
 var myObj = {
 name: "Joe",
 sayHello: function() {
 return "Hello " + this.name}
 };
 return myObj;
});

Chapter 4

[127]

or
define({
 name: "Joe",
 sayHello: function() {
 return "Hello " + this.name }
});

This way, you are able to access the code in the dashboard module. Here you
can set the name of the resource using the same name as the file, and this will
be used to define your module name. Let's suppose you named the resource
myModule and the name of the file is myModule.js. You can later use this
code inside your dashboard. For instance, you would set the following code
in the Expression property for a text component:
function f() {
 this.placeholder().text(myModule.sayHello());
}

You may also want to include a third-party resource to be used in your
dashboard. If they are built as RequireJS modules, you just need to follow the
previous instructions. Most of the JavaScript frameworks and libraries have
this support, so you should look for it. If the resource is not exposed as an
AMD module, you'll need to develop AMD support for it.
You may ask: What option should I use: code snippet or external file? Well,
this depends on what you want or are doing, but I always prefer to have
all the code in external files. One of the reasons for this is that when you
are saving a dashboard, CDE can change the order of the elements inside
the saved file, and this will cause problems with version control, especially
when you are working as part of a team working on the same files. It will be
painful to solve conflicts just because of a small change in the CSS.
Of course, it will be easier to deploy the code to another server if you have
the JavaScript and CSS code as snippets, where you just need to worry about
deploying the dashboard files, because the code will also be there.

4. Add Bootstrap panel: This is used to add a Bootstrap panel to our
dashboard, like the examples available at: http://getbootstrap.com/
components/#panels. If clicked, it will add a parent element containing
three child elements. The parent element is a Bootstrap panel, where you can
change the properties, and the child elements are panel header, panel body,
and panel footer. You can change the properties available for these elements,
but you can also add more elements as rows, columns, freeform, and HTML
inside each one of these child elements.

http://getbootstrap.com/components/#panels.
http://getbootstrap.com/components/#panels.

Leverage the Process with CDE

[128]

For the parent element, identified by the type Bootstrap Panel, the
properties that become available are:

 ° Name: This will be the unique identifier of the HTML element that
is going to be created by CDE and used in the dashboard to render
elements. This will correspond to the id property of the HTML
element being created.

 ° Height: You can specify the height of the panel, but usually we let it
be dynamic and let it be larger or smaller depending on its content.

 ° Corner: Let's consider this property deprecated. It was used in older
versions of CDE, where it was not possible to use CSS to create a
rounded corner. We will not refer to this property again in this book.

 ° CSS class: When creating the element on the page, CDE will add
the values of this property as the values of the class property for
the HTML element being created. This will allow you to use your
own CSS classes and later use them when defining the CSS for the
dashboard.

 ° Panel Style: You can select from multiple options available in
Bootstrap and depending on the value used, you will have different
styles applied to the panel being created. The possible values are:
Default, Primary, Success, Info, Warning, and Danger.
Child elements identified by the type panel header, panel body, and
panel footer will have the same properties, except for the panel type,
which will not be available.

The Bootstrap panel will include the header and the footer, but if you want
to exclude them, you can add some CSS to hide them when needed, or delete
them by clicking the X button.
Depending on what you are trying to achieve, you may find Bootstrap
very useful.

5. Add freeform element: Adding rows and columns will just add DIVs to the
dashboard, but using the freeform element, you can specify which HTML
will be added. When you click the button, the freeform element will be
added to the layout structure, and the properties that become available
are as follows:

 ° Name: This corresponds to the value of the id property for the
HTML element being created. CDE will generate a random and
unique ID when the value is not set.

Chapter 4

[129]

 ° CSS Class: These values will be used as the values of the class
property of the element being created. This is used to set your own
CSS classes for the element. It can have multiple values separated by
a space, like the normal CSS property of the HTML elements.

 ° Element Tag: Here you should set the HTML type to create. By
default, it uses a value of div. This way, you would create a div
element, so you should change the default value and write the name
of the element to create.

 ° Other Attributes: Here you can set the name of the properties and the
value to be used for these properties. When creating the element, CDE
will also add the property/values that will become available in the
dashboard. When clicked, the input field of this property will become
available as a dialog, where you should set the property name in the
option field and the value in the value field. To add more properties,
you just need to click the Add button. At the right side of each row
added, you will find a minus button, which, when clicked, will remove
that row. Click Ok to confirm or Cancel to discard:

Let's suppose you added a freeform with properties the same as the previous
image. The HMTL code generated by CDE will be as follows:
<input id="searchBox" class="inputBox" type="input">

You can see that the element is an input type just as specified in the
Element Tag property, the id is the value set in the Name property, the class
is inputBox as the value of the CSS Class property, and finally, the type
property is input as the key value set on the other attributes.

Leverage the Process with CDE

[130]

6. Add row: Use this button when you want to create a Bootstrap row. A
Bootstrap row is just a div element with a class value of row. This way, the
dashboard will use the Bootstrap framework and apply the rules defined
for the grid system. Following the best practices of Bootstrap, components
should be rendered inside columns and not directly on rows. As referred to
previously, you can find more information at http://getbootstrap.com/
css/#grid. This means that you should always have at least a column inside
the row, except for some special cases where you have the need to create a
row. The properties that become available are:

 ° Name: This corresponds to the value of the ID property for the
HTML element being created. CDE will generate a random and
unique ID when the value is not set.

 ° Height: This is used to set the height of the HTML element. It should
be left blank whenever possible.

 ° CSS Class: These values will be used as the value of the class
property of the element being created. It is used to set your own CSS
classes for the element. It can have multiple values separated by a
space, like the normal CSS property of the HTML elements.

 ° Background Color, Corner, and Text Align should be set as the CSS.

7. Add column: You should click this button when you want to create a new
column to be used by your dashboard. Columns should always be created
inside a row element and, not always but usually, used to render the
components. If it's a leaf, you always need to set the name, so that we can use
the name on the components. When creating a new column, it will become
available in the layout structure of the dashboard. The properties are:

 ° Name: This corresponds to the value of the ID property for the
HTML element being created. CDE will generate a random and
unique ID when the value is not set.

 ° Extra small devices, small devices, medium devices, and large
devices: These are used to set the width to be used for the column.
This is where you should already have some knowledge about the
Bootstrap framework, particularly the grid system.

When creating a row using the CSS Bootstrap framework and the concepts
of the grid system, each row can go up to 12 columns, scaling appropriately
when the viewport or screen size increases. When creating a column, there
is a need to include a class such as col-<device_size>-<num_columns_to_
span>.

http://getbootstrap.com/css/#grid
http://getbootstrap.com/css/#grid

Chapter 4

[131]

Bootstrap already includes predefined classes that can be used for all the
columns spanning from 1 up to 12. So, depending on the device/screen size
and the number of columns to span, the CSS rule to be applied can change.
CDE will take care of this for you, you just need to set the number of columns
to span, for instance, if you are creating columns that should occupy six
columns of the 12 available columns for each row, you just need to set the
number 6 for the device size you want to apply to this value. This is why
you have these four properties: extra small devices, small devices, medium
devices, and large devices, corresponding to col-xs-*, col-sm-*, col-md-*,
and col-lg-*, where * is the number of columns you wish to span for the
specified device/screen size.
Let's analyze this example. We have created a row that contains two
columns. The two columns are named col1 and col2 and use a value of 8
and 4 respectively for each of the columns of the extra small devices property
of each column.
The HTML result would be as follows:
<div id="329e160a-625d5a5ds5" class="row clearfix ">
<div class="col-xs-8">
 <div id="col1"> </div>
</div>
 <div class="col-xs-4 last">
 <div id="col2"> </div>
</div>
</div>

By analyzing the generated HTML, we can see that we have a row, the first
element that has a uniquely random generated ID, because we haven't set the
name for it. Inside of it, we have two child elements: the first column uses the
col-xs-8 class and the second one uses col-xs-4, because we used a value
of 8 and 4 in the extra small devices:

col1 col2

The layout generated would always span the first eight columns available for
the row, and use it for col1 and the span the last four columns also available
for the row.
We can also offset the columns by using an additional Bootstrap CSS class
col-<device_size>-offset-<num_columns_to_span>. More information
can be found on this at: http://getbootstrap.com/css/#grid-
offsetting.

http://getbootstrap.com/css/#grid-offsetting
http://getbootstrap.com/css/#grid-offsetting

Leverage the Process with CDE

[132]

Let's suppose you only wanted to have col1 at the right side of the
dashboard using only the last four columns. To achieve this result, you
would create just one column with the name col1, a value of 4 in the extra
small devices property, but also set the Bootstrap class, the next property
to be explained, to have a value of col-xs-offset-8. This would give the
following result:

col2

Don't forget that by using CSS, you can extend the position, and the look
and feel, by using additional media queries, for instance, to include a max
width to limit the CSS for a narrower set of devices.
Similar to the use of offset is the use of the responsive utilities classes,
available at http://getbootstrap.com/css/#responsive-utilities-
classes.

 ° Bootstrap class: This is a CSS class that will be added to the Bootstrap
element. You can refer to the last example of the last property. Here,
it is possible to have multiple CSS classes; you just need to separate
them with a space, just like when you are defining multiple CSS
classes on a HTML element.

 ° Height: This is used to set the height of the HTML element. It should
be left blank whenever possible.

 ° Background Color, Corners, and Text Align: This should be set in
the CSS.

 ° CSS class: These values will be used as the value of the class property
of the element being created. This is used to set your own CSS classes
for the element. You can have multiple values separated by a space,
like the normal CSS property of the HTML elements.

8. Add space: This is used to create a vertical space between elements of the
dashboard. If clicked, it will add an element to the layout structure. The
following elements become available:

 ° Height: This is used to set the height of the separator. This property
is mandatory when using this type of element.

 ° Background color, corners, and text align: This should be set in
the CSS.

 ° CSS class: These values will be used as the value of the class property
of the element being created. This is used to set your own CSS classes
for the element. You can have multiple values separated by a space,
like the normal CSS property of the HTML elements.

http://getbootstrap.com/css/#responsive-utilities-classes
http://getbootstrap.com/css/#responsive-utilities-classes

Chapter 4

[133]

You should be able to create the same effect when setting the CSS margin at
the top or bottom for the elements you want to separate visually.

9. Add image: Click this button to add images to the dashboard. The properties
that will be available for this element are:

 ° URL: This is the URL to the image ${solution:../../images/
logo.png}. It will point to an image of two folders below the current
directory of the dashboard, or refer to http://www.pentaho.com/
sites/all/themes/pentaho_resp/_media/logo-pentaho-n.png,
which will point an image on the Internet.

 ° CSS class: These values will be used as the value of class property
of the element being created. Used to set your own CSS classes for
the element. Can have multiple values separated by a space, like the
normal CSS property of the HTML elements.
To be honest, I never use this element and always do it in CSS. To
do so, I just add a column where I also set a CSS class that will later
be used to load the image using just CSS rules. I do this because it
is easier to change in CSS and keep a track of the version control
system, but also because, using RequireJS, the HTML will be loaded
in the first place and then all the components and CSS. If you set the
image directly in the layout, the image will appear on the dashboard
first rather than all the other components, so you may see the image
being pushed from one side to the other.
Also, if you later apply some CSS rules to the image, you will see the
image changing only sometime after, when the CSS code is loaded by
RequireJS. When changing the CSS, I can do it in any text editor or
using the referred Community Text Editor plugin.

10. Add HTML: This should be used to set HTML on your own. You may find
the HTML element very useful when setting some static content, or when
you can't do it with all the other elements available in CDE, but I find this
very hard to believe. The properties that will become available for this
element are:

 ° Name: This corresponds to the value of the ID property for the
HTML element being created. CDE will generate a random and
unique ID when the value is not set.

 ° HTML: This is where you can add HTML to include in the
dashboard. When clicking the button available on the right side of
the property, you will get a dialog you can use the editor to edit the
HMTL code and confirm or cancel the changes you have made.

http://www.pentaho.com/sites/all/themes/pentaho_resp/_media/logo-pentaho-n.png
http://www.pentaho.com/sites/all/themes/pentaho_resp/_media/logo-pentaho-n.png

Leverage the Process with CDE

[134]

 ° CSS class: Values will be used as the value of class property of the
element being created. It is used to set your own CSS classes for the
element. Can have multiple values separated by a space, like the
normal CSS property of the HTML elements.

 ° Font size and color: As we already saw for some other properties,
these two should also be set using CSS.

11. Duplicate layout element: Another really useful ability is being able to copy
elements, without needing to create all the elements by hand, when you want
to replicate structures similar to already existing ones. Selecting one element
and clicking the duplicate button on the layout toolbar will create a copy of
the selected element and all its children.

12. Delete: Selecting one element and clicking the delete buttons will remove the
element itself and all its children. Use this button carefully because CDE does
not yet have an undo operation.

Nowadays, can also can change the position of the elements inside the layout
structure, and to do this, you just need to grade the element to the position you need.
You should take a look at the sample provided with the book and available once
you upload them to the repository. You can find this under CTools Book Sample/
Chapter 4. You should not expect a really a dashboard running queries, but it's
good to understand the capabilities of the layout elements and how to use them.

Considerations when creating the layout of your dashboard
You should have noticed that I placed more importance on some properties than
others. This is because some of the properties may be deprecated, and they are there
just to ensure compatibility with older dashboards that were developed with earlier
versions of CTools. Another reason may be because of my preference to have all the
styles in CSS files.

Let's use the example of the align property, which allows us to specify the alignment
for the content inside the element where element is defined. When defining the
alignment in the property of the element, it may not work for all the content
you have inside, and you would end up having some CSS to align some of the
elements. If you set some properties using CDE and others in CSS, you are not being
consistent. We should always avoid inconsistency, and I can point you to some other
reasons beside consistency: complexity, maintainability, and also very importantly,
reusability.

Chapter 4

[135]

When developing dashboards, the layout can get a bit complex and you should find
a way to build it to make it simple and use a name convention. One way is to find
the most correct and simple hierarchical structure, and always set the proper names
that can identify not only the element, but also the section and maybe the hierarchy
level where it belongs. The name or ID must be unique and never be repeated again.
You will see that following one name convention will help you later. A question that
you could be asking is: Is the name or ID mandatory for all the elements defined in
the layout structure? The answer is no, CDE will make sure you generate randomly
unique IDs that will be used for the elements where you are not specifying a name,
but never forget that you need to set the names for the leafs, because they probably
will be used by a component.

Don't forget that you may be delivering dashboards to a customer or department
that may need to make some changes later, so the dashboards should be simple,
while always meeting the requirements.

You saw that when defining some of the components using the Bootstrap
framework, there are two similar properties: the CSS Class and the Bootstrap Class,
so another question you may ask is: What's the difference between the CSS Class and
the Bootstrap Class and/or which one should I use? When we add a row/column
in the layout panel, CDE will generate two HTML DIV elements. A parent where
the value of the Bootstrap class will be applied and a child that will have the value
of the CSS Class property. Depending on your goals, you can set both properties. In
the Bootstrap Class, you should use the predefined classes available in the Bootstrap
Framework, and in the CSS Class you should set your own classes, which you can
use later in your CSS files.

When creating rows and columns, CDE always generates DIV elements for your
page. The freeform and the HTML elements allow you to create different types of
elements in your page. Let's suppose you want to create an input element—you don't
have any button in the layout perspective to create these kinds of elements, so the
only way to do so is to use freeform elements or create your own code for the HTML
structure.

Regarding this matter, one question that I already asked myself was: When should
I use freeform or HTML elements? I believe that the answer is use what you prefer,
but note that when creating a structure using freeform, you can just keep expanding
or collapsing the elements inside the layout panel. You cannot do this when using
the HTML element, because you always need to click the edit button on the right
side of the element to look at the code. However, it will be faster and more flexible if
you define it by hand. To be honest, you will be fine using one or the other, you just
need to see what you feel most comfortable using.

Leverage the Process with CDE

[136]

The freeform element (layout and component)
We will look at the usage of the freeform component during the
next chapter, just to avoid getting confused later by establishing
a relationship between the freeform component and the freeform
element. They both have the same goal, which is giving more
flexibility, but they have different applications. The freeform element
is used to provide the flexibility to introduce a different element in
the layout, and the freeform component is used to create content that
can be rendered inside the other elements of the layout, which could
be the freeform element or not.

When editing the content of a resource that was added as an external file, and when
we're using the CDE button available in the Code File property, CDE will use ACE,
a web-based code editor. It has the ability to do syntax highlighting and is a great
help when reading or writing code. You also have a bunch of shortcuts that are very
useful, and you can learn more about these at the following web page: https://
github.com/ajaxorg/ace/wiki/Default-Keyboard-Shortcuts. Now you can see
some of the shortcuts I often use:

Windows/Linux Mac Action
Ctrl + A command + A Select all
Ctrl + Shift + Right arrow key option + shift + Right arrow key Select word

right
Alt + Shift + Right arrow key command + shift + Right arrow key Select to line end
Shift + Up arrow key shift + Up arrow key Select up
Shift + Down arrow key shift + Down arrow key Select down
Ctrl + F command + F Find
Ctrl + H command + option + F Replace
Ctrl + Z command + Z Undo
Ctrl + Shift + Z,Ctrl + Y command + shift + Z, command + Y Redo

Using Bootstrap to create a responsive dashboard
Creating a responsive dashboard is simple, but don't forget that the components
must respond to the changes and not only the layout. It is very important when
creating CSS rules that you always use relative widths values and never static values.
By default, almost all the components can adapt to changes in screen size, and that's
because the CSS which has been included, except for the charts that need some extra
code to readapt their size when changes happens to the dashboard. CCC charts, the
charts used by default in CDE, are not yet responsive. I will explain this and give you
the source code later to make it possible, but for now let's focus on the layout. This
can make your dashboard look good and be usable on all device sizes.

https://github.com/ajaxorg/ace/wiki/Default-Keyboard-Shortcuts
https://github.com/ajaxorg/ace/wiki/Default-Keyboard-Shortcuts

Chapter 4

[137]

We already saw that the Bootstrap grid system appropriately scales up to 12 columns
as the device or viewport size increases, and we can make predefined classes for
easy layout options, as well as powerful mixins to generate more semantic layouts.
But how does Bootstrap do this? Bootstrap uses media queries and some predefined
classes we can use to leverage the process, but there are some Bootstrap rules that
must be followed, which are as follows:

• Rows must be placed within .container (fixed-width) or .container-
fluid (full-width) to get the correct alignment and padding, and by placing
all the elements within a .container automatically will take care of
alignment and padding.

• Content should be placed within columns, and only columns may
be immediate children of rows. We must be careful to say where the
components are rendered, so always do this in columns. CDE will take care
of applying the correct row and col classes, but the col classes will be set
based on the device size and span value.

• For each CDE column element, we need to specify how many of the 12
columns available we will span. When more than 12 columns are placed
within a single row, each group of extra columns will, as one unit, wrap on to
a new line. We should play with this and the device size to make the layout
of the dashboard responsive.

• Grid classes are applied to devices with screen widths greater than or equal
to the ones where we had set values. Values set in classes for larger devices
will override the values of smaller devices; therefore, applying a value on
Medium Devices to an element will not only affect the style on medium
devices but will also affect large devices, if and only if a value for the Large
Devices property value is not set.
For instance, if you set two columns of a row to have the following
properties/values:
Extra Small Devices: 12
Medium Devices: 6

What you will get is that it will display two columns on different lines for
Extra Small and Small devices and will get the two columns side by side
in the same line for Medium Devices and Large Devices. Setting the right
values for these four properties is really an important task when building
your responsive dashboard.

Leverage the Process with CDE

[138]

Another consideration when building a responsive dashboard would be using utility
classes to hide some layout components. It should be used as previously covered in
this chapter when talking about offsetting columns. To show or hide layout elements
in the dashboard, we can set a class visible-<device_size>-<display_rule>
and/or hidden-<device_size>, where <device_size> should be set as xs, sm,
md, and lg (for extra small, small, medium, and large devices/screen sizes), and
<display_rule> should be set as block, inline, or inline-block, the last one
set only for visible. The display rules will make the CSS apply similarly to the CSS
display property.

Let's suppose, for instance, that we have created a row that contains three columns.
The three columns are named col1, col2, and col3:

• Should be pulled to different lines, each with the full size of the screen, when
on extra small and small devices

• Should be seen side by side on medium or larger devices
• The col2 column should only be seen when on medium or larger devices
• The height should be 15px and background colors should be red, green, and

blue for col1, col2, and col3 respectively

To accomplish these requirements, you need to set a value of 12 in the Extra Small
Devices property for all three columns (col1, col2, and col3), and a value of 3 in
the Medium Devices property. In the property of the second column (col2), you
should also set a value of hidden-xs hidden-sm to hide the element for those screen
sizes. You also need to add the class emptyBox in the CSS class for all the columns
and classes red, green, and blue in the CSS class for each one of the corresponding
colors. Don't forget that the classes should be separated by a space.

The resulting HTML would be as follows:

<div id="responsive" class="row clearfix ">
 <div class="col-xs-12 col-md-4">
 <div id="col1" class="emptyBox red"></div>
 </div>
 <div class="col-xs-12 col-md-4 hidden-xs">
 <div id="col2" class="emptyBox green"></div>
 </div>
 <div class="col-xs-12 col-md-4 last">
 <div id="col3" class="emptyBox blue "></div>
 </div>
</div>

Chapter 4

[139]

If you build a dashboard with the layout set this way, you will get a responsive
layout for your dashboard. Please take a look at the sample, which we provide with
this book, and edit it. You can find the dashboard files in the responsiveDashboard
folder within the chapter samples. After opening the dashboard, change the browser
size and you will see the magic happening.

Considerations when building responsive dashboards
using CDE
For me, it's very important to know the difference between the responsive and
adaptive/responsive design concepts. Both concepts attempt to optimize the user
experience across different devices, making the necessary adjustments for different
viewport sizes, resolutions, and usage contexts, and I really like the Mozilla
definition for these two concepts:

"Responsive design works on the principle of flexibility. The idea is that a single
fluid design based upon media queries, flexible grids, and responsive images can
be used to create a user experience that flexes and changes based on a multitude of
factors. The primary benefit is that each user experiences a consistent design. One
drawback is a slower load time."

"Adaptive design is more like the modern definition of progressive enhancement.
Instead of one flexible design, adaptive design detects the device and other features,
and then provides the appropriate feature and layout based on a predefined set of
viewport sizes and other characteristics. This can result in a lack of consistency
across platforms and devices, but the load time tends to be faster."

It is my opinion that you should not choose between using one or the other; you
should use the advantages of both concepts and avoid the disadvantages of both
concepts, and this is possible when putting together the Bootstrap framework's
capabilities and the dashboards and components lifecycle. I believe this means
having a layout that uses responsive concepts and components; the more adaptive
concepts would make the perfect dashboard, where you can have only one
dashboard for all devices and screen sizes, but just execute or change the behavior of
the components depending on the device. This way, we can have the advantage of a
unique dashboard for all devices and at the same time control what's being executed
so that we can have better response times and avoid the possible lack of consistency
across platforms and devices.

Leverage the Process with CDE

[140]

Desktops can have better processing capabilities and a lot more memory than mobile
phones. When building a dashboard that will be used for various platforms, screen
sizes, and even hardware capabilities, we need to be cautious. There are some points
that we should consider:

• Mobile dashboards may face some hardware limitations. Processing
and memory capabilities are not the same when comparing mobiles and
desktops. When using a huge amount of points to represent, CCC Charts
may be a bit heavy; anyhow when using a mobile phone the user would not
get the best look and feel if you are trying to represent charts that become too
tight on the screen. Here you have two options: using the same dashboard,
you may use preExecution of the component to control if the chart is
rendered on a mobile, or change the parameters and/or the query itself so
that you can have an optimized visualization solution.

• You need to adapt the visualizations for the device/screen size. Similar
to the last point, you can use the preExecution function of components
to prepare the execution of the component. Depending on device/screen
size or orientation, you can write some code to change the behavior of the
component. For instance, if you have a bar chart, when on a mobile, you
could change one property of the chart to have a horizontal bar chart instead
of a vertical bar chart. Please refer to the following web page: http://dev.
w3.org/csswg/cssom-view/#the-mediaquerylist-interface.
You place the following code in the preExecution of a CCC BarChart, and
you will get a chart with vertical bars for screens greater than 840, a chart
with horizontal bars if the screen size is between 600 and 839, and not get a
chart at all if the screen size is less than or equal to 600:
function f() {
 var mq = {};
 mq['<=600'] = window.matchMedia("(max-width: 600px)");
 mq['<=840'] = window.matchMedia("(max-width: 840px)");
 if (mq['<=600'].matches) {
 return false;
 } else {
 if (mq['<=840'].matches) {
 this.chartDefinition.orientation = 'horizontal';
 }
 }
}

http://dev.w3.org/csswg/cssom-view/#the-mediaquerylist-interface
http://dev.w3.org/csswg/cssom-view/#the-mediaquerylist-interface

Chapter 4

[141]

You should learn about and make use of media queries, using CSS or
JavaScript, as they are important when using adaptive and responsive
concepts. It may also be important to reduce the number of components
being rendered.

• Mobile network communications are usually slower than wired networks,
so avoid making lots of requests and requests that need a big portion of data
when transferring from the client to the server side or the opposite. This is
also the case when building the desktop version of a dashboard; we should
be more careful when doing it for mobiles.

• Put your images on a diet, or even avoid using them. Just use icon fonts
whenever you can. You have two options available to use in CDE/CDF:

 ° http://getbootstrap.com/components/#glyphicons

 ° http://fortawesome.github.io/Font-Awesome/

• Use relative sizes whenever possible. For instance, when you set a static
width for an element, the element will not respond to the screen and
orientation changes. The parent elements may change, but the element itself
would always have the same size. Try to use relative sizes as percentages
when setting the width of elements.

• Similar to the changes in the charts, we should adapt the column content to
different device sizes. For instance, when applying an add-in to the columns
of a table where we want to have a trend arrow (up or down depending on
whether it's a good or bad value), we can change the options so we can also
see the value. On a mobile, we would need to hide the arrow or the value.
That can be achieved doing something similar to what we saw in the section
for the charts, or we could do it using CSS Media Queries.

• Be careful with the number/size of the included libraries. When on a mobile
(it is also the case for desktops, but needs more attention on a mobile), we
already saw that the communications may be slower, so we need to be
careful when loading libraries, and just load the libraries and the parts that
are really indispensable.

http://getbootstrap.com/components/#glyphicons
http://fortawesome.github.io/Font-Awesome/

Leverage the Process with CDE

[142]

The data sources perspective
When clicking on the datasources perspective button, you will be switched to
the data sources view and get three panels and a toolbar, as you can see on the
following image:

The four panels shown in the previous image are:

1. The data sources toolbar: This toolbar is used to change the position of the
created data sources, up and down, and duplicate or delete them.

2. Available groups and types: This panel shows the available data sources.
The data sources types are divided into groups that can be expanded when
clicking on the group when selecting one.

3. Available data sources: This is where we can select from the data sources
that have already been created, and it can be used by the dashboard and
components. When selecting a particular data source, the properties will
become available inside the properties panel.

4. Properties: This is where we can change or just get to know the values that
will be or were set for the selected data source. Depending on the data source
that is selected, the properties may vary, and the displayed properties may
be different from data source to data source. We already saw in the second
chapter of this book, the CDA chapter, that for different types, different
properties are needed.

Chapter 4

[143]

The data sources toolbar
The data sources toolbar becomes available when you are in the datasources
perspective. You will see a toolbar like the following image:

Depending on the position of the selected datasource, you may find some of the
buttons enabled or disabled:

1. Move up: This changes the position of the data source, moving it up.
2. Move down: This changes the position of a data source, moving it down.
3. Duplicate: This creates a copy of the data source and appends _new to

the name.
4. Delete: This deletes a data source. It will remove the data source from the

dashboard and from the available data sources panel.

Creating new data sources
To define a new data source, we just need to select the group of the data source
to create and select the type. You will then see, on the right side of the screen, the
palette of properties we need/can set to get the selected data source to work.

You already know which data sources types are available and what the properties
are used for, as this was covered in Chapter 2, Acquiring Data with CDA. Let's suppose
you wanted to create an MDX query. You should expand the MDX Queries by
clicking on it, and then select mdx over mondrianJndi. This will create a new empty
data source in the Dashboards data sources panel. The advantage of using CDE is
that you don't need to know what the data sources types are or the names of the
properties available for each one of the properties. Not that this is a disadvantage,
but the difference is that CDE will generate a connection for each data source you
set. When you are setting the data sources by hand, you can reuse one of the existing
connections. If this is the case, CDE will generate a larger file, but at the end, you will
notice the difference.

When you click on a created data source, on the right side, you will get a list of
properties for the kind of data source you have created or selected. There are some
mandatory properties and some other ones that are not. Some of them are common
to all the data sources and other ones will just appear for a particular data source
type, because they would not make sense for other types.

Leverage the Process with CDE

[144]

Automatically generated CDA files should not be edited and changed
by hand
You should not edit and change any of the CDA files by hand that are
generated when you save dashboards and have data sources defined.
CDE will not read the CDA file, and instead will read the definitions
that are inside the CDFDE file and always generate a new CDA file when
we save the dashboard. This way, you will lose the changes that you
make directly on the CDA file that you have changed by hand. Note
that this is the case only for the CDA files that are automatically created
with CDE, that is, the ones that have the same name as the dashboard.
The CDA file is just read and used by CDA, never by CDE.

When you finish creating your data sources using the CDE editor, and after saving the
dashboard, you will get a CDA file with the same name as the dashboard. Double-click
on the CDA file and the CDA previewer will open. As we covered in the CDA chapter,
you can use previewer to test the queries you just created using CDE.

Data sources properties
When creating data sources, you will see some common properties in all or in almost
all the data sources you will create:

• Name: This is the name of the data source. This is the name to be used by the
components or when selecting the Data Access ID when using CDA directly
to run queries, or when using a previewer.

• Access level: This should be used for the query to be accessible from the
outside or just for internal use. For instance, data sources that are just to be
used on compound queries can be set as Private.

• Parameters: This is used to make queries dynamic. We can add parameters
to be used inside the queries, and this parameters will be replaced during
the execution. Parameters are very important, so don't forget to also set them
in the query. It's also important to set the default values, because these are
the values that will be used when previewing the results using the CDA
previewer. You can change the parameters values in the previewer when
using the CDA previewer or they will be overwritten by the parameters from
the dashboard when we also establish the mapping on the components that
will use the same data source.

• Calculated columns: This is used to set some simple formulas to create new
columns based on calculations using other columns.

• Columns: Here you can change the header for your columns. You just need
to add an element using the add button in the pop-up window and add the
index of the column (starting from zero) and the name for the new column.

Chapter 4

[145]

• Output options: This can be used to change the order to repeat a column
after getting the results from the source and before sending the results
back to the dashboard. You should specify the index of the columns
starting from zero.

• Output mode: This should be used together with output options. The index
of the columns specified will be included or excluded from the dashboard.
The possible values are Include or Exclude.

• Cache keys: These are the keys that will be used to manage the cache
segments where we are writing and getting the results from.

• Cache duration: This is the length of time that the cache will store the
last results.

• Cache: This tells you whether the cache is enabled or disabled. True will
enable it and false will disable the cache. Queries will be cached or not
using this method.

Some other properties may be found just for some of the data sources types. For
instance, the Query property is available for most of the queries, but not for all of
them. When using a kettle data source you will not see a query property, but you
will see the variables property. This is used to make the matching between the
parameters and the variables in the kettle transformation. When the name of the
parameters is the same, you don't have to set the matching, but when the name of the
parameters is different from the variables defined in the kettle transformation, you
need to set it.

JNDI is another example of a property that would appear in multiple data sources
types, but not all of them, and allows distributed applications to look up services in
an abstract, resource-independent way. At least will become available for SQL and
MDX queries. For MDX queries, you will also get the Mondrian Schema to set the
name of the schema to use. For both cases, you will see the property query.

Regarding the explanation here, you also can refer to the CDA chapter, the second one.

The components perspective
When you have the layout of the dashboards and the queries ready to get data using
parameters, it's time to set the components.

Leverage the Process with CDE

[146]

To add components, you need to go to the components perspective. When you click
on it, you will be switched to the components perspective and will see three panels,
as shown here:

1. Layout toolbar: This toolbar is used to manipulate the elements you can see
in the dashboard components panel.

2. Components groups and types: Here you can select the element type that
you want to add to the dashboard. In a wide view, we can classify the
components in three different categories:

 ° Visual Components: These are the components that are displayed
in your dashboard, including tables, charts (such as lines, pies,
bars, stacked, heatgrid, waterfall, and so on), selectors (such as
dropdowns, radio buttons, date pickers, or buttons) and a lot more.
There is a new component, called template component, where you
can build your templates that will be rendered using the model,
which is built automatically from the query results or that you can
build on your own.

 ° Parameters: These represent values that can be shared by the
components. The parameters are crucial for the interaction with the
dashboards. They should be set in the input components, and set as
listeners in the components that need to be updated when the values
are changed.

 ° Scripts: These are pieces of JavaScript code that let you customize the
look and feel or behavior of other components, and add code to be
executed before or after the execution of the dashboard.

Chapter 4

[147]

3. Dashboard components: This is where all the elements that are part of
the dashboard will be represented. Whenever you select an element in
the properties panel, some parameters will be updated, and will show
the properties available for the selected element. When you add more
components, parameter(s), or scripts, you will see them in this
perspective panel.

4. Properties: This panel shows you the available properties of the selected
component, and depending on the type of element, the properties may vary.
This is where you can see the value for each of the properties or just set their
values.

The components toolbar
This toolbar becomes available when you are in the components perspective and it is
shown in the following image. Depending on the elements you have selected in the
dashboard panel, you may find some of the buttons enabled or disabled:

1. Move up: This changes the position of a component, moving it up.
2. Move down: This changes the position of a component, moving it down.
3. Duplicate: This creates a copy of a component and appends _new to the name.
4. Delete: This deletes a component. It will remove the component from the

dashboard and from the panel.

Dashboard parameters
You saw that we can create parameters using the components perspective. We
already covered this, but it's never too much to refer it again. There are two different
kinds of parameters, the kind that are set to be used by the queries and the kind that
are set to be used by the components in the components. You just need to establish
a matching between both the dashboard and query parameters and pass the values
stored in the dashboard parameters to the query parameters. To do so, you should
use the parameters property available in almost all of the components.

Leverage the Process with CDE

[148]

To create a parameter in the dashboard, you need to be in the components
perspective and choose the right type from the generic, in the Components Groups
and Types section. When expanding this group, you will get three different
parameters to use. The difference between them is the way you set the default value,
because at the end you are just setting a JavaScript variable, so the big difference is
the value you are setting for the first time.

• Date parameter: You should name the parameter and set a property date
value. The available options here are: Today, Yesterday, One week ago, One
month ago, First day of month, First day of year, or Pick date.

• Custom parameter: Here you should set the name and JavaScript code, and
this way you will have all the flexibility you need. You may set a number, a
string, a Boolean, a date, a function, or whatever you need, just by setting the
JavaScript code to do so.

• Simple parameter: For this, you should set the name and a default value
that will always be set as a string. Each value you may set will always be
interpreted like a string. It's really simple to use, but be careful when using
it, because if you're setting it to true or false, it will be set as a string, so it will
not be interpreted like a Boolean value. Comparing a Boolean and a string
that has a Boolean string inside it is not the same when using JavaScript, so
be cautious.

For me, it's always a good idea to set a custom parameter and just ignore the other
two types.

You should have noticed that we haven't yet talked about the bookmarkable property
that is in the parameters. This is a property where you can set a True or False
value. If you want to open a dashboard on a particular state/selection, you can use
bookmarkable parameters. When you call the dashboard using the URL, you can
pass some values into the parameters and make those the values to be used for the
parameters, which can make the dashboard work with a particular selection of values.

You will also notice, when using bookmarkable parameters, that your URL changes
based on the new selections in the dashboard, so you can send the link to another
person in the company and when that person opens the dashboard, they will see
what you are seeing.

Chapter 4

[149]

So, the bookmarkable parameters are used to accept values that come from the
URL when requesting a dashboard. If you are expecting the values of a parameter
to come from the URL, you should set the parameter as bookmarkable. You can
later specify the values for the parameters of the URL, and those values will be
automatically used to set the value of the parameter. For instance, if you just created
a parameter called country and checked the box for bookmarkable, when calling the
dashboard, you can just call a line, like in the following example. After the name of
the dashboard or other options, you should add the following:

&bookmarkState=%7B"impl"%3A"client"%2C"params"%3A%7B"country"%3A"Port
ugal"%7D%7D

If it's decoded, you should add the following:

&bookmarkState={"impl":"client","params":{"country":"Portugal"}}

Appending this example code to the URL of the dashboard with a parameter named
country will display a dashboard with values for the specified country, in this case,
Portugal.

Scripts
You can also add some code to your dashboard using scripts. A script is just a
JavaScript function or part of code you can add to the dashboard that will be
executed at the beginning of the rendering of the dashboard, or called later as a
regular function in JavaScript.

To add a script, you should expand the script group in the components groups and
types panel that is available in the components perspective. You just need to click on
the function component. This will make the script component available in the center
panel, and the properties that need to be set are as follows:

• Name: This is the name you want to give to this element. The name is just an
identifier for your own use.

• JavaScript code: This is where you will place the code that you need to
include in your dashboard.

Visual components
The last type of components category is the visual components category. There are
a lot of groups that belongs to this category—pretty much every group that is not
script or generic is a visual component.

Leverage the Process with CDE

[150]

When looking at the groups and trying to find some logic, you will most likely be
disappointed and you have a good reason to be. To be honest, I think anyone will
be able to find the true logic behind the grouping as it is right now, but I also think
and truly believe that Pentaho/Webdetails will take care of it and create some real
logic there. Well, there is a group where the name is really informative, and that's the
selectors group.

To add a visual component to the dashboard, you should act as for the last two
categories, you need to expand the groups and types of available components and
then click on the component you want to use.

Visual Components should only be set when you have the necessary layout elements
and queries ready to be used, because to properly set a component we really need
to specify values for some mandatory properties. There are some properties, like
datasource and htmlObject, which are common for most of the components. We
already covered these common properties during the CDF chapter, so you should
already be familiar with them. Anyhow, let's do a recap:

• Name: This is the unique identifier of the component inside the dashboard.
• Listeners: This will accept an array of string with the name of the parameters

of the dashboard that triggers the component update. This array is crucial in
the iteration between components. Here you should check the parameters
that will trigger the update of the components when the values of those same
parameters are changed by the fireChange function. If you remember, this is
the function that can be called using your own code, or automatically called
by a particular type of component. Suppose that you have a component
that needs to be updated when selecting a value from a dropdown, and
then you need to check the name checkbox in front of the parameter whose
value will be changed by the dropdown, which is also another component.
When clicking on the listener's property, you will get a list of names that will
correspond to the dashboard's parameters created in the dashboard.

• Data source: This is the name of the data source you may have created
in the data sources perspective. When typing the name, you will get an
autocomplete list of values, that is, the names of the already created data
sources. You can also click the bottom cursor arrow to get a complete list,
before you start typing. When you type, you may be excluding some of the
available values.

Chapter 4

[151]

• Parameters: This accepts an array of arrays, where each array will have the
name of the parameters of the query and the parameters of the dashboard
with the value to be used. You already saw that we may have parameters
defined in the query and in the dashboard. This is where we make the
mapping between them in the component. You can have as many rows as
you need for each component, and for each row you will specify the name of
the parameter of the dashboard on the right side, and the name of the query
parameter on the left side. What will happen is that the component will
request the execution of the query defined in the data source, and send the
values of the parameters that are in the dashboard to replace the parameters
that are in the query. This way, the same query can get different results. Just
don't forget that the parameters overwritten in the query are the ones where
the matching is established, not for any other. Make sure the matching uses
correct and created parameter names, otherwise you will not get the expected
results, or you will get errors. To avoid this kind of error, you can use the
same name for the parameters of the dashboard and for the query, but you
will need to define the mapping between them anyhow.

• Parameter: For components where user input is required, this is where you
set the name of the parameter where a value will be stored for later use. This
is different from the last one, because this is where you are saying what the
parameter name is where the values are stored, and not to be sent to the
query. It is very important to know the difference between a parameter and
parameters. You will find a parameter in the components that are under
the group Selectors. The parameter should be set with the name of where it
will be stored when the value is changed. In the same components, you will
be able to get values to use from a query and you may need to pass some
parameters to the query, so for that purpose you should use parameters.
For this reason, you may need to set both, but definitely, where you have
a parameter property, you should always set the name of the dashboard
parameter you already created.

• htmlobject: This is the name of the layout element that you defined using the
layout perspective. It's the ID of the HTML object, which will be the wrapper
of the component's contents. The iQuery element can be reached by calling
a method from inside the component using this.placeholder(). For
instance, it can be used inside preExecution or postExecution.

• priority: This is the priority of the components' execution, defaulting to 5.
The lowest priorities have the highest priority of execution. Components
with the same priority will be executed simultaneously.

• executeAtStart: When set to false, the component will not execute at the start
of the dashboard, but it can be updated as soon as one of its listeners has
changed.

Leverage the Process with CDE

[152]

• preExecution: This accepts a function that will be executed, which can
happen in three different ways: at the beginning of the dashboard, when
there is a change in a parameter in the list of listeners of the component, or
when directly calling the update function of the component.

• postFetch: This accepts a function with an argument that will have the object
with the result of the query. As already described in last chapters, that object
will be composed of three properties: metadata, where the column's name
and type are described, resultset, where you will find a multidimensional
array with the results, and queryInfo, with the number of rows in the result.

• postExecution: This accepts a function that is called after the rendering/
drawing of the component. The function can be used for you to manipulate
the DOM or perform some operations that you can only do after the
rendering of the component.

In some cases, there are also two more functions on the components, the ones where
user input is required. You can see it like the ones that can act as filters. For instance,
when using a select component that would be rendered as a dropdown, when
you change or select another option in the dropdown, it will automatically call a
fireChange (which changes the value and notifies the components that are listening
to the parameter that you set in the parameter property) between the executions of
the following functions. Those properties, where you can add a function with the
code to be executed before and after the parameter value changes, are as follows:

• preChange: This accepts a function that is called before doing the
fireChange to the parameter. You can verify whether it's a valid option
and return another value, one that is going to be set in the parameter. If not
returning a value, the selected option is used.

• postChange: This accepts a function that is called after the fireChange
to the parameter. You can use this function to execute after confirming the
choice. Let's suppose you want to generate another value/parameter based
on the choice the user made. Here you are able to do so by adding your own
custom code.

For further information or reference, you can always review the CDF chapter.

Chapter 4

[153]

The remaining properties are more specific to the type of component that you are
using. For example, when using a chart, you will see properties that are not available
for a table, or when using a table you will not get properties that you would get
when using a template component. In the next chapter, I will start teaching you
about how to use the most important components, so that's the right place to talk
about these specific properties. This is also the reason why, in this chapter, we will
not go into detail about using the components. From my experience of building
a dashboard with CTools, the most important ones, and the ones that you should
know really well are: select, multi select, date range, multi button, button, table,
charts, duplicate, freeform, query, text, duplicate, export popup, map, and the new
template component.

Not all components are everywhere
Note that some of the components may only be available in CDE
and not in CDF. If they exist in CDE, this does not mean that they
exist in CDF, and if they exist in CDF, they may not be seen in CDE.

As I just referred to, there are more important visual components than others, and to
build an outstanding dashboard you really need to know a few of them, and these
will be covered in the next chapter. Anyhow, we can provide an overview and a brief
description of all the components here:

• Charts

Type Description
CCC
charts

CCC charts are the charts included by default in CDE. This chart library is built
on top of Protovis for older visualizations and D3 for newer visualizations.
The advantage of them is that they are extremely customizable and interactive
and can accept a result that comes from a CDA query. There will be a chapter
dedicated only to CCC charts.

Protovis This is a kind of component where you can use your own code. You can build
your own chart without the need to create a new CDE component. To create the
visualization, you should use Protovis.

• Others

Type Description
Button This is a component based on a simple button, where you can add some

code that is executed when the button is pressed.
Comments This component can be used to create comments on a dashboard. Another

user can then see the comments. It's possible to set a property to control who
sees what comments.

Leverage the Process with CDE

[154]

Type Description
PRPT Using this component, you will be able to render a Pentaho Report Designer

report inside a dashboard. For instance, you can create a dashboard to
control the execution of reports and the parameters that will be sent.

Freeform This is a component that allows you to create your own code and embed it
inside the dashboard. It's very similar to the Query component; it will not
run any query, but it will be inside the lifecycle. It can be very handy.

Navigation This allows you to create navigation between dashboards.
Query This is a component that will run a query and will write the results to a

variable. It will let you create any kind of elements in the dashboard by
making use of the results from a query. It can be used to create custom
visualizations that are created to be used once in a dashboard.

Table This is one of the most important components. It allows you to create
amazing dashboards, and you should not think of it as a simple table. You
have addins, where you can customize the content of columns or cell or have
expandable content inside the row. We will cover this in detail later in the
book.

Template This is a new component that allows you to build content for your
dashboard based on Mustache or Underscore templates. These templates
will be rendered with the results of a query as the model. You can also use
addins and control clicks or some other functionality, which we will also
cover later on in this book.

Text The text component does not run a query, and you just need to define a
function that returns the content to be rendered. This can be used to perform
the internationalization and localization of your dashboards.

Viz API It's also possible to render Analyzer Visualizations in CDE dashboards,
using the results from a CDA query.

Xaction This allows you to run an Xaction in a CDE dashboard.
Duplicate The duplicate component is used to create copies of other components. It

will create a copy of the HTML elements, parameters, and component itself.
Having also duplicated the parameters, you will have a different result set
coming from the query of each of the components.

Export
Button

This will create a button on the dashboard that lets the user export the data
to a particular component. The formats that you can export to are: XLS,
CSV, XML, JSON, and PNG, the last one just for the charts. When using the
button, the exported file will use the defined format. If you pretend that the
user can choose the format from more than one option, you should use the
Export Popup Button.

Popup This is a way to display some content or components inside a popup. They
can be hidden in a hidden part of the dashboard and displayed only when
the popup is called.

Chapter 4

[155]

Type Description
Export
popup
button

Similar to export, this will display a popup where the user can select a
different format for the data to export.

• Selects

Type Description
Auto
Complete

This is an input box that can have autocomplete, based on a values array or
query result.

Check This is a checkbox element where the options are based on the results of a
query or by just defining the values array. As the normal checkboxes, they
allow multiple selections.

Radio
Button

This is a radio button element, where the options are based on the results of a
query or by just defining the values array. As the normal radio buttons, they
do not allow single selections.

Date
Input

This shows a calendar where you can pick a date.

Date
Range

This is used to select a start and end date. It's very flexible and lets you select
open periods, so be careful regarding the performance of the queries.

Month
Picker

This is similar to Date Input, but it lets you select a month.

Multi
Button

This component will generate as many buttons as results from the query,
or as many as defined in the values array. You can have single or multiple
selections. I always use this in place of radio and check box components. It
can also be used to simulate the behavior of tabs.

Select This is a dropdown selector.
Select
Multi

This is similar to Select, but allows multiple selections. There is a new Select
component that we will cover, and it's very useful.

Text Area
Input

This will use a text area input as a selector. The text entered will fire a change
in a parameter. It can handle multiple lines.

Text Input This is similar to the last one, but it will be a simple text input element with
one line only.

Leverage the Process with CDE

[156]

• Community and custom

Type Description
Ajax
Request

You can use this component to make Ajax requests and get the results back.
Just by setting the properties you would get a result, which you can later
use on your dashboard.

New Map This is a map component you can use in your dashboard. It can use two
different engines: Google or OpenLayers. To represent data, you can use
shapes or markers. It is very simple to use, but may not have some of the
interactions you would expect.

Raphael If you want to use the Raphael library to build your visualizations, this is
the right component. Of course, you need to write your own code for the
visualization.

Google
Maps
Overlay

This is a component that was created by Sinn Technology, a community
contribution, and allows you to make use of Google Maps Overlay.

Google
Analytics

This is a component that was created by Sinn Technology, a community
contribution, and allows you to work with Google Analytics.

Parameter, parameters, and listeners,
again
When talking about building an interactive dashboard, you need to remember that
parameters are crucial. To have a component using the same query but showing
different results, we need to use parameters. When defining the data source, we need
to say which parameters will be used and build the query with them inside. Also,
we need to have the dashboard parameters where the values we want to use when
executing the query are.

When setting the component, we need to specify the data source and the parameters
properties, among others, but for now let's focus on these two. In the component, the
parameters property is where you specify the mapping of the parameters that you
have created in the dashboard, using the components perspective, and the name of
the parameters in the data source. This way, the component can get different results,
depending on the value of the parameters we have in our dashboard.

Listeners are also crucial. The dashboard parameters will store the value that we
want to be used by the queries. When the values inside the parameters are changed,
we may need to update some of the components in the dashboard, but for that, the
components must be listening to those parameters so that they can be notified about
the changes. To have this in place, we need to add the parameters that will trigger
the update on the listeners of the component that will be updated on changes.

Chapter 4

[157]

But how can the parameters be changed and store other values? You can directly call
two functions, fireChange and setParameter, or just let it be done automatically
by some components, which are available under the selectors group. The type of
components inside this group have another property, called parameter, where we
need to set the name of the dashboard parameter that will store the value.

When selecting or writing, depending on the component's type, the component will
automatically call the fireChange function and set the new value to the dashboard
parameter. This way, components listening to those dashboard parameters will be
updated, and a query will be executed. Using the matching between dashboard and
query parameters, set in the component, the component will know what values should
be sent to the query so that the query can use them to get the pretended results.

Putting it all together
Now it's time to build your first dashboard with CTools. These are the steps you
should follow:

Create/change the layout: Create the responsive layout for the dashboard using
the Bootstrap concepts we covered earlier and add resources (JavaScript and CSS)
if necessary:

1. Define the data sources: Create the data sources with the queries and if
necessary, include these parameters:

 ° Add the parameters and components: Create the dashboard
parameters, add the scripts (JavaScript code, if necessary), add the
components to be displayed in the layout elements, and render the
data coming from the queries. You will need to set the necessary
properties:
Set the parameter on the components that are in the groups of
Selectors
Set the data source and the parameters to use
Set the listeners so that the components can be notified about
parameter value changes and be updated
Set all the other properties or, if necessary, some custom code

2. Overall improvements: This step is not mandatory, but it can increase the
user experience just by adding some improvements to the components and
layout, creating some custom behaviors, and adding some CSS to make the
dashboard more attractive. These are just some examples of what you could
do in this step.

Leverage the Process with CDE

[158]

3. Testing and Quality Assurance: This is where you, but always someone
else that did not work on the backend or frontend, if existing should be
done by the QA team, making sure the developments meet all the acceptance
criteria, never forgetting the performance. Don't forget that performance is
also important.

Once you finish step 3, if it's necessary for any reason, such as bugs, acceptance
criteria not being met, or unsatisfactory performance, you will need to go through
all the steps again and make the necessary changes to ensure the work delivered is
really good. The cycle should be like the following diagram:

Chapter 4

[159]

Creating your first CDE dashboard
Now let's create a dashboard using the concepts covered from Chapter 1, Getting
Started with CTools till this chapter. Next you will find some images showing the
dashboard design for the desktop and mobile versions:

The dashboard should be responsive, and the layout should adapt to the device/
screen size. It will be created as a sample of the SteelWheels sample data. The
dashboard has four components: a dropdown selector to select the year for the data
to be displayed, and a multi button to select the product lines to display on the table.
The table is the three columns with the name, total sales, and percentage. Last, we
also have a simple pie chart using the same data used in the table. When changing
the selectors, year, and product line, the table and the chart will be updated and fire
new queries, so they should be listening to the correct parameters.

Creating the layout
Following are the steps to create the layout:

1. Create a new dashboard using the PUC menu: File | New | CDE
Dashboard.

 ° Start by saving the dashboard in a folder chosen by you.

2. Go to the Settings of the dashboard, check RequireJS Support and
press Save.

Leverage the Process with CDE

[160]

3. Using the Layout Perspective, add the following elements and properties
(between curly brackets) respecting the hierarchy:
Row (Name="headerBackground", CSS Class="headerBackground")
Row (Name="header", CSS Class="header")
Column (Name="userInfo", Extra Small Devices="12", Medium
Devices="4")
Row (No need to set aby property here)
Column (Name="userImage", Extra Small Devices="2", Medium
Devices="1", CSS Class="fa fa-user userImage")
Column (Name="username", Extra Small Devices="10", Medium
Devices="11", CSS Class="username")
Html (Html="Welcome: CTools Book Reader")
Column (Name="filters", Extra Small Devices="12", Medium
Devices="6", CSS Class="filters")
Row ()
Column (Name="yearFilterTitle", Extra Small Devices="12", CSS
Class="description")
Html (Html="Welcome: CTools Book Reader")
Column (Name="yearFilter", Extra Small Devices="12", CSS
Class="yearFilter")
Row (Name="middlePanel")
Column (Name="dashMiddlePanel", Extra Small Devices="12", CSS
Class="dashPanel")
Row (Name="overview", CSS Class="overview")
Column (Extra Small Devices="12", Medium Devices="3")
Row ()
Column (Name="productLineFilterTitle", Extra Small Devices="12",
CSS Class="description")
Html (Html="Click on the product line to toggle")
Column (Name="productLineFilter", Extra Small Devices="12", CSS
Class="productLineFilter")
Column (Name="overviewTable", Extra Small Devices="12", Medium
Devices="6", CSS Class="overviewTable")
Column (Name="overviewPieChart", Extra Small Devices="12", Medium
Devices="6", CSS Class="overviewPieChart")
Row (Name="footerBackground", CSS Class="footerBackground")

Chapter 4

[161]

Define the data sources
Using Datasources Perspective, add the queries for the dashboard. The
queries will all be mdx over mondrianJndi using a JNDI property with the value
SampleData and the Mondrian Schema using SteelWheels. The data sources types
and properties you need to create/define are as follows:

• As data source type: MDX Over JNDI:
Name: productLineQuery,
Query:
WITH
 SET PRODUCTLINES AS { [Product].[Trains], [Product].[Trucks
and Buses], [Product].[Motorcycles], [Product].[Vintage Cars],
[Product].[Classic Cars] }
 MEMBER [Measures].[UniqueName] AS [Product].CURRENTMEMBER.
UNIQUENAME
 MEMBER [Measures].[Total] AS AGGREGATE(PRODUCTLINES,
[Measures].[Sales])
 MEMBER [Measures].[Percentage] AS [Measures].[Sales]/
[Measures].[Total]

SELECT
 {[Measures].[UniqueName], [Measures].[Sales], [Measures].
[Percentage]} ON COLUMNS,
 ORDER(PRODUCTLINES, [Measures].[Percentage], DESC) ON ROWS
FROM [SteelWheelsSales]

Output Options: 1, 0, 2
Output Mode: include

• As data source type: MDX Over JNDI:
Name: yearQuery,
Query:
WITH
 MEMBER [Measures].[Years UniqueName] AS [Time].
currentmember.UniqueName
 SET YEAR AS UNION([Time].[All Years] , [Time].[Years].
Members)
SELECT
 [Measures].[Years UniqueName] ON COLUMNS,
 YEAR ON ROWS
FROM [SteelWheelsSales]

Output Options: 1, 0, 2
Output Mode: include

Leverage the Process with CDE

[162]

• As data source type: MDX Over JNDI:
Name: overviewTableQuery,
Parameters:
[productLineParam, [Product].[Trains], [Product].[Trucks and
Buses], [Product].[Motorcycles], [Product].[Vintage Cars]
[yearParam, [Product].[Classic Cars]], [productLineParam, [Time].
[All Years]]
Query:
WITH
 SET PRODUCTLINES AS { ${productLineParam} }
 MEMBER [Measures].[UniqueName] AS [Product].CURRENTMEMBER.
UNIQUENAME
 MEMBER [Measures].[Total] AS AGGREGATE(PRODUCTLINES,
[Measures].[Sales])
 MEMBER [Measures].[Percentage] AS ([Measures].[Sales]/
[Measures].[Total])*100

SELECT
 {[Measures].[UniqueName], [Measures].[Sales], [Measures].
[Percentage]} ON COLUMNS,
 ORDER(PRODUCTLINES, [Measures].[Percentage], DESC) ON ROWS
FROM [SteelWheelsSales]
WHERE {${yearParam}}

Output Options: 0, 2, 3
Output Mode: include

• As data source type: MDX Over JNDI:
Name: totalSalesQuery,
Parameters:
[productLineParam, [Product].[Trains], [Product].[Trucks and
Buses], [Product].[Motorcycles], [Product].[Vintage Cars]
[yearParam, [Product].[Classic Cars]], [productLineParam, [Time].
[All Years]]
Query:
WITH
 MEMBER [Measures].[Year] AS [Time].CURRENTMEMBER.PARENT.Name
SELECT
 NON EMPTY UNION(Crossjoin({[Product].[All Products]},
{[Measures].[Year]}), Crossjoin({${productLineParam}},
{[Measures].[Sales]})) ON COLUMNS,
 NON EMPTY {Except(Descendants(${yearParam}, [Time].
[Quarters]), {[Time].[All Years]})} ON ROWS
FROM [SteelWheelsSales]

Chapter 4

[163]

• As data source type: MDX Over JNDI:
Name: quantitySoldQuery,
Parameters:
[productLineParam, [Product].[Trains], [Product].[Trucks and
Buses], [Product].[Motorcycles], [Product].[Vintage Cars]
[yearParam, [Product].[Classic Cars]], [productLineParam, [Time].
[All Years]]
Query:
WITH
 MEMBER [Measures].[Year] AS [Time].CURRENTMEMBER.PARENT.Name
SELECT
 NON EMPTY UNION(Crossjoin({[Product].[All Products]},
{[Measures].[Year]}), Crossjoin({${productLineParam}},
{[Measures].[Quantity]})) ON COLUMNS,
 NON EMPTY {Except(Descendants(${yearParam}, [Time].
[Quarters]), {[Time].[All Years]})} ON ROWS
FROM [SteelWheelsSales]

• As data source type: MDX Over JNDI:
Name: salesByTerritoryQuery,
Parameters:
productLineParam:[Product].[Classic Cars], [Product].[Trains],
[Product].[Trucks and Buses], [Product].[Motorcycles], [Product].
[Vintage Cars]
yearParam: [Time].[All Years]
Query:
WITH
 MEMBER [Measures].[Sales in Time] AS ([Measures].[Sales] ,
${yearParam})
Select
 { [Markets].[APAC] , [Markets].[EMEA] , [Markets].[NA] } on
COLUMNS,
 { ${productLineParam} } on ROWS
FROM [SteelWheelsSales]
Where [Measures].[Sales in Time]

Do not forget to test the queries using the CDA Previewer. Correct any mistakes that
you may have made.

Leverage the Process with CDE

[164]

Add the parameters and components
Now that we have the layout and the queries ready to be used, go to the Components
Perspective and add the parameters, components, and scripts to the dashboard.
The components and properties you need to create/define are as follows:

• Generic -> Custom Parameter
Name: productLineParam
JavaScript: ["[Product].[Trains]", "[Product].[Trucks and
Buses]", "[Product].[Motorcycles]", "[Product].[Vintage Cars]",
"[Product].[Classic Cars]"]

• Generic -> Custom Parameter
Name: yearParam
JavaScript: ["[Product].[Trains]", "[Product].[Trucks and
Buses]", "[Product].[Motorcycles]", "[Product].[Vintage Cars]",
"[Product].[Classic Cars]"]

• Selects -> Multiple button Component
Name: productLineFilter
Parameter: productLineParam
Multiple Selection: True
Value as ID: False
Datasource: productLineQuery
HTMLObject: productLineFilter

• Selects -> Select Component
Name: yearFilter
Parameter: yearParam
JQuery Plugin: Chosen
Value as ID: False
Datasource: yearQuery
HtmlObject: yearFilter

• Others -> Table Component
Name: overviewTable
Listeners: productLineParam, yearParam

Chapter 4

[165]

Parameters:
 ° productLineParam

 ° yearParam

Column headers: Product Line, Sales Amount ($), %
Column types: string, numeric, numeric
Column formats: %s, $%.0f, $%.1f%
Column widths: 50%, 30%, 20%
Expand on click, Show filter, Info filter, Info filter, Length change, Paginate,
Sort data: False
Datasource: overviewTableQuery
HTMLObject: overviewTable

• Charts -> CCC Pie Chart
Name: overviewPieChart
Listeners: productLineParam, yearParam
Parameters:

 ° productLineParam

 ° yearParam

Datasource: overviewTableQuery
HtmlObject: overviewPieChart
Height: 150
CrosstabMode: False
Legend: False
PreExecution:
function() {
 // this code will reset the size of the chart
 if (!_.isNull(this.chart) && !_.isUndefined(this.chart.
options))
 this.chart.options.width = this.placeholder().width();
 // the code bellow will change some of the properties of the
chart. will reset the size of the chart
 var cd = this.chartDefinition;
 cd.slice_innerRadiusEx = '60%';
 cd.explodedSliceRadius = '0%';
 cd.animate = false;
 cd.colorMap = {"Classic Cars": "#005CA7", "Vintage Cars":

Leverage the Process with CDE

[166]

"#3E83B7", "Motorcycles": "#5C9FBC", "Trucks and Buses":
"#66C2A5", "Trains": "#22B573"};
}
Save the dashboard and execute it, so that you can check the
result.

Overall improvements
If you follow the previous steps and render your dashboard, you can see that the
elements and components are there and working, but they do not have the look and
feel you expect or should be happy with.

Just by applying some CSS, you will definitely have an incredible change in the
look of the dashboard. We are providing you with the files you can add to your
dashboard. To add the CSS, you can go to the layout perspective and add a resource,
CSS as an External File, and point it to the following file: /public/Ctools Book
Samples/Chapter 4/SteelWheelsSample-1st/resources/css/steelWheels.
css. Don't forget that to be able to use it, you should already have imported the
book samples. This file contains CSS that uses the CSS Classes that we defined in the
layout perspective, and it will make the dashboard much fancier.

You will not notice a problem when rendering on different devices where you are
not resizing the window, but when resizing the window, the layout will adapt to the
new size, but not the charts. We will cover this later on in a special chapter dedicated
to CCC and will explain the following code; for now just follow the instructions to
be able to update the charts when the window is resized. Using the Components
Perspective, just add a JavaScript Function to the dashboard under the group
Script. You can name it dashboard.postInit and write the following code for the
JavaScript Code property:

dashboard.postInit = function() {
 var chartsTypeToUpdate = ['CccPieChartComponent',
'CccBarChartComponent'];
 var chartsToUpdate = _.filter(dashboard.components, function(elem,
index) {
 return (chartsTypeToUpdate.indexOf(elem.type) >= 0);
 });

 var resizeChart = function() {
 _.each(chartsToUpdate, function(elem, index){
 elem.chart.options.width = elem.placeholder().width();
 elem.chart.render(true, true, false);
 });
 };

 var throttle = _.throttle(resizeChart, 100, {leading: false});

Chapter 4

[167]

 $(document).ready(function() {
 $(window).resize(throttle);
 });
};

Now if you save the dashboard and refresh it, you will see that the charts are
also updated when the window changes its size. You will find an example of the
dashboard after uploading the book samples inside the folder /public/Ctools
Book Samples/Chapter 4/SteelWheelsSample-1st. It will also be a good help if
you have any trouble creating your own dashboard.

Please check the samples provided for each one of the chapters. The
samples for this chapter are under the Chapter 4 folder. There are two
simple but complete dashboards, and also another small sample related to
the content covered in this chapter. You are able to render them, but also
edit them and check the layout, component, and data sources.

Summary
In earlier chapters, you may have got the idea that working with CTools, you would
need to write a lot of code, but as you can see, CDE can save you a lot of work, and
you can have a dashboard that works with no or almost no code.

In this chapter, you learned how to use CDE to create a dashboard, so at this time
you should already know how to build a CDE dashboard. You are now able to
create the layout of a responsive dashboard, define the data sources, and then make
use of the parameters and components. At this time, you should already know the
importance of parameters, the ones from the dashboard and the ones set on the
queries, and how to establish the mapping between them. Also, you learned about
how to set the listeners so that the components know when to be updated. We gave
you a detailed explanation about the buttons, options, and sections, so that you know
where to find them and what they are used for.

We haven't yet covered the visual components in detail, because that's what we will
cover in the next chapter.

If I ask you what are the mandatory steps to build a CDE dashboard, what would
be your answer? Certainly, it would be: create the layout, define the data sources,
and create the dashboard parameters and the components, where we can then set
the parameter, the parameters, and the listeners, because this is what creates the
interactivity of the dashboard. Of course, we have a lot more to cover, so let's jump to
the next chapter.

[169]

Applying Filters to the
Dashboard

Now that you are able to build a dashboard using CDE on your own, you now
should see how to take advantage of the most important components. After building
some fancy dashboards, you will notice that you are not using all the components,
just a subset of them. We will cover these components now.

We've split the chapter into two. The first part covers the filters and the other part
covers the data being displayed. Filters, or selectors, can be applied to the dashboard
as one way to create an interaction and filter the data you want to be displayed on
the dashboard. If you deliver a dashboard with too much information, it will be hard
for the final user to understand it at first glance. We already said that a dashboard
should be easy to understand and get results from at first look, so by filtering the
information, the user will be able to access all the information and it will be simple
to understand.

Firstly, you need to know that there is a difference between filters and selectors.
A filter component only applies a selection when at least one option is selected,
and it will not filter anything if there is no selection, the same as if everything was
selected. A selector will always apply a selection on data because it will always have
something selected.

In this chapter, you will learn how to work with the select components, at least the
ones I consider as the most important and powerful ones. We will also give you
some tricks and tips for each of the components and some customizations that will
enable you to create even greater dashboards. There is a big focus on the new filter
component, which was desired previously and is a long-awaited improvement.

Applying Filters to the Dashboard

[170]

By the end of the chapter, you will be able to apply and customize the filters on a
dashboard. You will know what properties are available for each one of the select
components covered, and will be able to improve the look and feel of dashboard as
well as the user experience. The components that are covered are listed as follows:

• Select and select-multi components
• The filter component
• The multi-button component
• The date range component

The select component
The select component is part of the input components group. Based on the results
of a query or based on a values array, it can be set on the properties or on the
pre-execution of the component, and the user will be able to select an option
from a dropdown. A select component can look like the following image:

To have a select component properly working, the first step is to create a placeholder
for the filter, using the layout perspective. The following step is used to set up the
query, but it is not needed when you want to set the values on the values array.
Another step, and an important one, is to create the dashboard parameter to store
the value that is selected by default, and to set the name of the parameter on the
corresponding property. The last step is to add the component to the dashboard and
set all the properties needed.

By clicking on Select Component inside the Select group, the component will
become available. Once available, you will need to set: the name, the data source
and the placeholder (the layout element where the component will be rendered).

Chapter 5

[171]

Among the properties that are available for the component, some of them are
common to all the components, and you already know them from the last two
chapters. For these components, there are some properties that you need to be
aware of:

• Value as array: When we don't want or need to have a query, it's possible to
make use of the values array property, setting the ID and value to be used.
When using a data source, it will ignore the values array that might be set.
The values array accepts a multidimensional array, where each array will be
a pair of ID and value.

• Value as ID: When you are setting the values array or defining the data
source, you may use two columns: one for the ID and another one for the
values/description. The first one is used as the ID and the second one is used
as the value. If you need to have the value also as the ID, you can set this
property to true; otherwise, if you want to display a value but write the ID
for the parameter, you should set this property to false. Let's suppose you
need to have the following options to be used in the select component:

ID Value
1 Option One
2 Option Two
3 Option Three

The code to apply such options would be as follows:
function(){
 this.valuesArray = [
 ["1","Option One"],
 ["2","Option Two"],
 ["3","Option Three"]
];
}

When setting false on the Value as ID option, you are telling the component
that you want to display Option One, Option Two, and Option Three in the
dropdown list, but when selecting a choice, you will get the corresponding
ID and not the value itself. If you choose Option Two, the parameter that
stores the value is written with the ID that for this case, would be 2. This is
because you just said that you don't want to have the value as the ID.

Applying Filters to the Dashboard

[172]

When setting the property to true, you will still see in the dropdown the
options: Option One, Option Two, and Option Three. If you choose Option
Two, the parameter will be written with the value and not the ID. If that's the
case, the parameter would have Option Two. This is because you said in the
property that you want to use the value as the ID. When applying a filter and
working with an MDX query, you can set the ID as the unique name of the
member. When selecting one option, the ID will be written to the parameters
that can be used in a query. This can be achieved by setting the values array
or using a query that returns the following result:

ID Value
[Markets].[APAC].[Australia] Australia
[Territory].[EMEA].[Portugal] Portugal
[Territory].[EMEA].[Spain] Spain

• JQuery plugin: This is used to set the JQuery plugin, which will be used to
generate a fancy selector that will be similar from browser to browser, not
like the traditional select HTML, that will have a different look depending on
the browser that is being used. Here, you can select from the list of available
plugins, or write the available values: Select2, Chosen, and Hynds. No
option is selected by default, and a traditional dropdown will be used. You
will find more information about the components on the following sites:

 ° Select2: https://select2.github.io/
 ° Chosen: https://harvesthq.github.io/chosen/
 ° Hynds: http://www.erichynds.com/examples/jquery-ui-

multiselect-widget/demos

Now let's suppose you want to make use of another JQuery plugin that's not
available on the list; are you still able to use it? The answer is yes. You should
remember that you are able to manipulate the DOM on postExecution of
the component. That's the place to do it. For example, if you are trying to
set the bootstrap-select plugin, available at https://silviomoreto.
github.io/bootstrap-select/, you just need to download the plugin and
add it as a resource using the layout perspective.

Don't forget to also include the CSS files when needed
You should not forget that sometimes, plugins and libraries are not just
.js files; they may also need some styling, so do not forget to include
these CSS files when you want to customize the styling of your dashboard.

https://select2.github.io/
https://harvesthq.github.io/chosen/
http://www.erichynds.com/examples/jquery-ui-multiselect-widget/demos
http://www.erichynds.com/examples/jquery-ui-multiselect-widget/demos
https://silviomoreto.github.io/bootstrap-select/
https://silviomoreto.github.io/bootstrap-select/

Chapter 5

[173]

When applying a plugin as shown in this example, we should not specify or set an
available plugin, so the JQuery plugin property must be empty.

After including the plugin as a resource, it will become available to be used. On
postExecution, place the following lines of code:

function() {
 var opts = { plugins: ['remove_button'] };
 var selector = this.placeholder('select');
 selector.attr('placeholder','Select your option...');
 selector.selectpicker(opts);
}

In the previous code, we are setting an object to pass to the select-bootstrap
plugin, which contains the options and customizations for the filter, as you can see
in the documentation and samples provided on the plugin website. We are setting
one option, which won't be used for this example, but that we need for the following
component/example.

The second line of the function is grabbing the select HTML that was created by this
component, and it returns the JQuery element that we need to add a property. The
last line of the function code is just applying the plugin.

Add the minified version of the libraries and plugins when in
production
You can add the non-minified version of the plugins or libraries when
you are developing the dashboard, which makes debugging easier
or even possible. Change to minified files for quality analysis and
production. If you are adding the resource as an external file, copy
the imported file to the minified and non-minified files to the same
resources folder. Later, to change from non-minified to minified, you
just need to change the name of the file.

To have a selector working besides the name and layout element where to render it,
you need to set the values array or make use of a data source. When a data source
is used, the values array will be ignored, even if it was defined. After this, you need
also to specify whether the component should make use of one or two columns, to
get an id and a value, or just a value that will be used also as the id.

Of course, the visual impact and usability is very important, so you should change
the plugin and apply the best setting, depending on your case.

Applying Filters to the Dashboard

[174]

The multi-select component
The multi-select component, identified by the name MultiSelect, is very similar to
the select component. The big difference is that we may select multiple options in
the selector. When we need to provide the ability to choose multiple values from the
selector, this is the component to use.

For you to be able to test it and see how it works, you can create a component with
a values array that will display more than the four rows in the preceding example.
Render the component and check that you now have multiple selections. The
properties that are available are the same as those for the select component.

One important feature that is common to all the components inside the Selectors
group is that they can be nested, so the selection of one can depend on the selection
of another and so on. The concept behind this is the same as for the remaining
components: having to pass parameters to the data sources and listening to the
parameters that trigger this update to fetch new data.

Let's build a quick example here. Start by creating two data sources using MDX over
JNDI and the Steel Wheels sample data, as follows:

Name territoryQuery

Jndi SampleData

Mondrian schema SteelWheels

Query WITH

MEMBER [Measures].[UID] AS [Markets].CURRENTMEMBER.
UNIQUENAME

SELECT

FILTER(DESCENDANTS([Markets].[All Markets],
[Markets].[Territory]), [Markets].CURRENTMEMBER.
NAME <> '#null') on ROWS,

{[Measures].[UID]} on COLUMNS

FROM [SteelWheelsSales]

Output options 1,0

Chapter 5

[175]

Name countryQuery

Jndi SampleData

Mondrian schema SteelWheels

Query WITH

MEMBER [Measures].[UID] AS [Markets].CURRENTMEMBER.
UNIQUENAME

SELECT

DESCENDANTS({${territoryParam}}, [Markets].
[Country]) on ROWS,

{[Measures].[UID]} on COLUMNS

FROM [SteelWheelsSales]

Parameters [['territoryParam', '[Markets].[APAC]']]

Output options 1,0

Using the layout perspective, add one row, with two columns named territory
and country, and using the components perspective, create the parameters and the
components.

Two of the parameters should be like the following:

Terriotoy parameter Country parameter
Name territoryParam countryParam

Property value territorySelector

Two of the components should be like the following:

Territory component Country component
Name territoryComp countryComp

Parameter territoryParam countryParam

Listeners territoryParam

Parameters [['territoryParam',
'territoryParam']]

Datasource territoryQuery countryQuery

Value as ID False False

HTML object territory country

Applying Filters to the Dashboard

[176]

Territory component Country component
postExecution function() {

 var opts = {};
 var selector = this.
placeholder('select');
 selector.
addClass('selectpicker');
 selector.
attr({'placeholder':'Select
your option...', 'data-width':
'100%'});
 selector.
selectpicker(opts);
}

After creating all the layout, components, parameters, and queries, save and render
the dashboard so that you can see the results, as shown in the next image:

Chapter 5

[177]

You should see two selectors, one below the other, and on the top you will be able
to select the territory; depending on the selected territories, you will be able to select
the countries. If you have any trouble, you may import, render, and edit the sample
provided in the chapter folder.

The filter component
The filter component is a new and recent component, with more advanced options
that will make the interaction of the dashboard even better. It is used as a simple
selector or as a more advanced selector with multiple choices. The selection of all
or none options is also available and achievable by setting some properties. The
component also provides server-side capabilities that can be used when the number
of elements to be displayed is too high.

I would dare to say that it's replacing the select and multi-select components. It's
more powerful, able to provide single and multiple selections, and has a lot more
improvements, besides the fact that it is even more user-friendly when using a select
component with a plugin. If you also need to extend its capabilities, you are able to.
Do not hesitate—just use it.

As with any other component, you need to at least set the Name and the HTML Object
property where the component should be rendered, and if it's a select component
being used, you also need to set the data source/parameters, or the values array.
Depending on whether the value and the ID should or should not be different, you
should also set the Values as ID property.

To have a proper knowledge of how to work with the component, we need to cover
some topics such as the expected data format, specific properties, and also how to
extend the functionality by making use of add-ins.

Applying Filters to the Dashboard

[178]

Expected data layout
First, we need to bring the data to populate the selector. To populate the selector
with values, you need to at least return two columns, the first one for the ID and the
second one for the value. The following image is an example of the results of a query
that should be used. You can see in the first column that we have the unique name
of the members that we use to filter the data using MDX queries, and in the second
column, the names that are displayed:

The filter also provides grouping for the options. Let's suppose that you want to be
able to select Product Vendor, but you want to display them by the product line. If
you need to use the grouping, you just need to return four or more columns, and the
component will automatically take care of it. The following image is an example of a
query that would be needed:

We should respect the order of the columns; there is a way to customize them,
but for now, let's focus on the default configuration. First, you should return the
columns for the items and next, the columns with the information about the groups.
You should have noticed that first, on the left-hand side of the image, there are two
columns that represent the id and the value to be used as options on the filter, and
only after that are the two columns for the group with the id and value.

Chapter 5

[179]

Specific properties
After setting the mandatory properties, you will be able to use the selectors. Let's
jump now to the specific properties of this component:

• Title: This is the label to display on top of the filter.
• Multiple selection: This is whether the component should accept multiple

selections or not. This property will also change its behavior. If a single
selection is selected, when clicking on an option, it immediately closes the
filter and writes the selection to a parameter. If a multiple selection is set, the
filter only closes if the user clicks outside, cancels, or commits the current
selection, and the parameter is only updated when the user presses the
Apply button. The default value is set to True, so a multiple selection is set.
The following images are an example of a single selection on the left and a
multiple selection on the right:

• Output format: This determines how the selection is written to the parameter
upon commit. If it is set to Group and Item Ids, the filter attempts to write
the group's IDs when all of its members are selected. When using groups, we
should use Group and Item Ids because this will generate a compact array
to be written to the parameter. The default value is Item Ids, and if this is
selected, the group's IDs will not be used.

• Always expanded: This accepts true or false, and it's used to keep the filter
expanded. When set to true, and an option or the Apply button is clicked,
the filter will still be opened. The default value is false, so the filter will
collapse when the options are selected.

Applying Filters to the Dashboard

[180]

• Selection limit: This accepts an integer that represents the maximum number
of options that can be selected. You should not use a high value, because
depending on some other factors, it can affect the performance of the queries
that the selection will trigger. This value is valid for all the options selected,
independently of the group they belong to. When you have more options
than the limit, the All selection button will not work.

• Page length: This is used to sequentially load pages of items from the server.
By default, the filter attempts to load the entire dataset defined by a data
source, but sometimes, the list of options might be quite large. For this case,
you may want to take advantage of CDA's support for pagination and server-
side searching, and you can set the property to true so that the component
takes care of it for you. This property option accepts an integer value with
the number of rows for each load from the server, so when the user reaches
the bottom of the scrollbar, a new page is loaded and added to the list of
items. We can view this as lazy loading. If no value is set, the component
tries to load the entire dataset. When you have a huge number of options, for
performance reasons, you might want set a value to activate it.

• Show icons: By default, this is set to true and an icon, checkbox, or radio
button will be displayed next to each item.

• Show only button: This is used to specify that for each option, you also want
to see a link/button where you can click and unselect all the other options
and select only the one that you are clicking on.

• Show search filter: This is used to specify whether the search box should
or should not be available. This option accepts a Boolean value. When set to
true, the search will be available. The default value is set to true.

Making use of add-ins
Add-ins are an advanced option that you will not need if the standard behavior of
the filter is enough for your use case. Either way, you won't lose anything if you
learn some more advanced concepts, such as how to do some customizations here.

This component also has some properties that are related to the use of the add-ins.
If you check the properties, you will find some where the name ends with Addin,
and these are the properties we will be covering now. In some ways, they are
similar to the add-ins that you will see in the next chapter for the table and template
components. Here, they are used to customize the default behavior of the component
by associating them to slots.

Chapter 5

[181]

An add-in is basically a snippet of reusable code capable of modifying a component,
so let's start to check the add-ins that are available:

• notificationSelectionLimit: This is used to show a notification that the
selection limit has been reached

• sumSelected: This is used to calculate the sum value for the list of the
selected items

• selectedOnTop: This is used to keep selected items on top
• insertionOrder: This is used to keep the insertion order
• sortByLabel: This is used to sort items alphabetically, using their labels
• sortByValue: This is used to sort items by their values
• sumValues: This is used to sum the values of the items
• template: This is used to apply a mustache template, so that the HTML of

the item can be customized
• accordion: This makes the filters of a particular group behave as an accordion

To get an add-in working, we should apply it to a slot, but what's a slot? A slot is a
part of the processing of a filter that can go from data loading to rendering. Slots are
being processed between the postFetch and postExecution functions, at the end of
postFetch and just before postExecution. Let's see what available slots there are:

• Post update add-ins: This is used to perform some action when data is added
to the model. The identifier of the slot is postUpdate.

• Root header add-ins: This is used to perform an action on every update of
the root header. The identifier of the slot is renderRootHeader.

• Root selection add-ins: This is used to perform an action when the selection
is changed. The identifier of the slot is renderRootSelection.

• Group selection add-ins: This is used to perform an action when the group
selection is changed. The identifier of the slot is renderGroupSelection.

• Item selection add-ins: This is used to perform an action when the item
selection is changed. The identifier of the slot is renderItemSelection.

• Root footer add-ins: This is used to perform an action when the root footer
is changed, and it can be used for notifications. The identifier of the slot is
renderRootFooter.

• Group sorting add-ins: This is used to determine the visual order of the
groups where the items will be. The identifier of the slot is sortGroup.

• Item sorting add-ins: This is used to determine the visual order of the items.
The identifier of the slot is sortItem.

Applying Filters to the Dashboard

[182]

So, the slots are parts of the code of the component where we can make use of add-
ins, but not all add-ins are available for all the slots, so I have compiled the following
matrix, where you can see the slots where we can apply each one of the add-ins:

P
o
s
t

U
p
d
a
t
e

R
o
o
t

H
e
a
d
e
r

R
o
o
t

S
e
l
e
c
t
i
o
n

G
r
o
u
p

S
e
l
e
c
t
i
o
n

I
t
e
m

S
e
l
e
c
t
i
o
n

R
o
o
t

F
o
o
t
e
r

G
r
o
u
p

S
o
r
t
i
n
g

I
t
e
m

S
o
r
t
i
n
g

Notification X
Sum selected X X
Select on top X X
Insertion order X X
Sort by label X X
Sort by value X X

Sum value X X

Template X X X X X
Accordion X

The way to apply an add-in to a slot is to to set the right properties on the
component. In the layout perspective, in the component, you can click on the
property with the name of the slot ending with Addin, and you will get a dialog,
where you can start adding the add-ins names. This operation must be done for each
row and each add-in. This way, during the execution of the component and for each
one of the slots, the add-ins that were added will also be processed.

Add-ins are great, but even greater when we can modify the options of the add-in.
The way to do this is by making a call via setAddInOptions on the preExecution
callback of the component itself. The following code is an example of this:

this.dashboard.setAddInOptions('postUpdate', 'accordion', {
 group: 'myGroup' //Name of the group who this filter belongs to
});

Chapter 5

[183]

In the preceding code, we are applying options for the add-in accordion that will be
used in the slot postUpdate, which runs when data is imported into a filter's model.
The add-in works by hooking a callback to an event emitted by a model whenever
the filter is expanded/collapsed. Whenever the user expands a filter, a global event
is triggered, so that the remaining filters configured to use this add-in will listen that
event. If they share the same group, the same as we set in the earlier options, they
will close themselves accordingly. When applying this code, we are setting the group
that the filter belongs to, and acts as an accordion, along with the remaining filters
that also belong to this group. The group is the only property that we may need to
set. The default value here is group and if it is not changed, the filter will belong to
the group group.

For the accordion add-in to work as expected, you will also need to apply the
following CSS to the dashboard:

.filter-accordion .filter-root-body{
 position: relative;
}

For some of the add-ins, you just need to apply them, but when using others, you
also are able to change their behavior. For example, for the sortByLabel and
sortByValue add-ins, you can change an option, that is, ascending. Setting this
option to false would be like the following:

this.dashboard.setAddInOptions('sortGroup', 'sortByLabel', {
 ascending: false
});

Just don't forget that the add-in should be applied on the Group Sorting AddIns
property and the name of the add-in, sortByLabel, should be added to the list of
add-ins to be applied. By default, the list of add-ins is empty.

The add-in sumValues can be applied per instance to the render of the root selection
slot, and here, the property we have to apply is formatValue. This needs to be a
function that receives one argument that is the number of selected values and should
return the string/value/HTML to be displayed. The name of the option/function
is formatValue. If you were applying the code, to get it working as the default, you
would write the following.

this.dashboard.setAddInOptions('renderRootSelection', 'sumValues', {
 formatValue: function(total) {
 return Mustache.render('{{total}}', {
 total: total
 });
 }
});

Applying Filters to the Dashboard

[184]

The template add-in has two main properties that can be overwritten, which
are template and postRender. For template, we should provide a valid string
containing the mustache template, but we will get back to the templates later. For
postRender, it should be defined as a function that will execute/perform some
action after the elements appear on the page. The following code is a small example
of this:

this.setAddInOptions('renderItemSelection', 'template', {
 template:'{{label}}' +
 'Google Search',
 postRender: function($tgt, st, opt){
 tgt.find('.filter-item-label a').click(function(event){
 window.open(event.target.attributes.url.value, '_blank');
 event.stopPropagation();
 });
 }
});

We are appending a link that, when pressed, will open a new tab in the browser with
a Google search about the item clicked on. The postRender function will add a click
event handler that will open the link in a new tab, and will stop propagation of the
event, so that the item does not become selected when only the link is pressed. If the
stop propagation was not there, then the item would become selected. The following
image is one example of the result:

Chapter 5

[185]

We have already covered the options for the accordion add-in.

You can see and check the properties, options, and code in the samples provided for
this chapter and component.

Advanced options and configurations
There are more advanced options you can use, and among others, we can customize
the strings/messages that are used inside the component. These options are changed
in the advanced options property of the component. A function must be defined, and
it should return a component object with the options inside.

Changing default messages
To change the default messages, you can use the following function in the advanced
options property:

function options(){
 return {
 component:{
 Root: {
 strings:{
 isDisabled: 'No available data'
 }
 }
 }
 };
}

The returned JSON structure is changing the string that is applied when there
is no data and the component is disabled. Other messages/strings that can be
customized are as follows:

• title: This overrides the value in the title component property
• allItems: This message is displayed when all the items are selected
• noItems: This message is displayed when no items are selected
• btnApply: This label is displayed for the Apply button
• btnCancel: This label is displayed for the Cancel button

This makes it possible and very easy to make the internationalization and
localization of the dashboards, but this we will cover in another chapter.

Applying Filters to the Dashboard

[186]

Showing values
It is also possible to show the values related to the available items. The next example
will makes it possible:

Function options(){
 return {
 component: {
 Item: {
 options: {
 showValue: true
 }
 }
 }
 };
}

You will be able to perform the same operation for the Root and Group elements;
you just need to add a similar structure at the same level as for the Item in the
previous example.

Now you should be able to make use of the filter component, for single and multiple
selections, or even to show the items grouped, using server-side functionality,
and apply the add-ins. You should also be able to customize the messages/strings
that will be shown. When covering internationalization and localization, you will
understand how to apply it here.

Date range input component
With the date range selector, you can select dates within a range of dates. For
instance, you can select the last seven days, the last month, or even an interval of
dates. Besides the common properties, there are the following ones available:

• Today: This option will select today's date as the start and end date.
• Last 7 days: This will select the last seven days by setting today's date.

The end date will be today's date and the start date will be today's date
less seven days.

• Month to date: This will select the period starting at the beginning of the
current month and ending at the current date.

• Previous month: This will select the last day of the last month as the end date
and the first day of the last month as the start date.

• Specific date: This will let the user select one specific date. The start and end
date will be the same.

Chapter 5

[187]

• All dates before: This will select all dates before the selected day. When
setting the component, we need to specify the earliest date, starting from
today, which can be selected. The start date will always be the start date of
the interval specified on the earliest date property. The end date will be the
selected day.

• All dates after: This will be the opposite of the last one, where we will get
all the dates after the selected day until the last date of the interval that is
specified as being the latest date. When setting the component, we need to
specify the latest date property. The start date will always be the selected day
and the end date will be the latest day of the specified interval.

• Date range: This lets you select two dates, which will be the start and end
date. We need to be cautious when using open dates, as we may get poor
performance when making this kind of selection in the MDX queries.

Besides the usual and common properties, we also have available the following:

• Earliest date: This can be used to set the date or specific interval to set the
earliest date that it is possible to select. The default value is -1 years.

• Latest date: This can be used to set the date or specific interval to set the
latest date that it is possible to select. The default value is +1 years.

When setting the earliest and latest date, we can specify a value that can be accepted
by the Date.parse(…) function. For instance, you can specify a specific date. You
can also specify the interval that you want to be calculated, starting from today, such
as -1 years or +1 years. You need to specify the operator -/+, the number, and the
time period, such as days, weeks, months, and years.

Default JavaScript date parsing can be different from browser to
browser
When parsing dates using different browsers, you will notice that
you can and may get different results. On some browsers, you
may get a date as expected, but when using another browser, you
may not get a date at all. This is because the parsing is done at the
browser level and there is not a standard between them.

Applying Filters to the Dashboard

[188]

The available properties to be used besides the common ones are:

• Single input: When set to true, this will use one input box to show or
specify the time interval. When set to false, it will use two separated boxes
for the start and end dates. The default value is true.

• Input separator: Used only when a single input is set to true. This is used
to specify the separator when showing the start and end dates. The default
value is >.

• Can click outside popup: This is used to specify whether the popup will be
closed when clicked outside. The default value is false.

• On open / On close: This is used to define a function that will be called
when the popup opens or closes.

You will notice that on parameters, there is a list of the available parameters,
and you must select two of them as being the start and end date. In our example,
which you may find in the samples provided, there are two parameters selected,
startDateParam and endDateParam. The first one to be selected will be the start
date and the last one will be the end date.

You may have found that there is not a date format property in the date input
component. This is not a problem because we can format the dates in preChange,
after fireChange to the parameters. You can specify the format by using the values
in the start and end date parameters, and write them to the input box. For instance,
you can use the following code:

function(start, end) {
 var formatted = Utils.dateFormat(start, 'DD MMM YY') +
 " " + this.inputSeparator + " " +
 Utils.dateFormat(end, 'DD MMM YY');
 this.placeholder('input').val(formatted);
});

You can see that I am using the Utils module, which is automatically included in
the dashboard by CDE, to customize the output of the selected dates.

Chapter 5

[189]

The multi-button component
From my perspective, the multi-button component can and should be seen as a
selector. I have also used it as a tab selector and/or as a radio and checkbox selector,
and that's because it's simple to style, and has the same look and feel on all the
browsers:

• Datasource: When setting a data source, the options available will be the
ones from the result of the execution of the query.

• Values array: This is used if we want to have to set fixed values without the
use of a datasource. It accepts a multidimensional array. Each option should
be set using an ID and a value to be displayed.

• Value as ID: This was already covered for other selectors. It tells you
whether the values and id should be considered as the same.

• Multiple selection: This is used to allow or not allow multiple selections. The
default value is false, so it will not accept multiple options selected at the
same time. Set the value to true if you want to make it possible.

Values array set dynamically inside preExecution
When setting a select component, we should specify one of the properties:
data source or values array. This will set the options that
will become available in the dashboard. The values array can be set
dynamically in preExecution, but for this to be possible, we always
need to have a dummy value set using CDE. The preExecution function
will only be executed when one of these properties is defined.

Don't forget that you need to set a parameter so that it's possible to notify another
component of the changes. This may also be needed for some other queries.

Please refer to the samples provided with this book, as you will find filters, selectors,
and date pickers among the samples. Also, don't forget that you have the samples
provided with CDE, where you have a description of the properties that can be used.

Applying Filters to the Dashboard

[190]

Summary
By reading this chapter, you learned about using selectors on a dashboard built with
CDE. You should know which components are the most useful and are used to filter
data in the dashboard, which does not mean that you can use only components from
the selectors group. You will see in the next two chapters that we can also use a table,
a chart, or a template component to create interaction on the dashboard.

You should be aware that you can replace the use of the select and multi-select
components and make use of the filter component instead. Button and multi-button
components can be used to filter data, but can also be used to create interaction on
the dashboard, and you can use the multi-button component to replace selections
using radio buttons and checkboxes. This is the reason why we didn't cover the
radio-button and checkbox components. The multi-button component is much
easier to style, and with the knowledge you have gained about the use of other
selectors/filters, you should also be able to use them.

[191]

Tables, Templates, Exports,
and Text Components

So, I have told you that we needed to split the last chapter into two. The first one
contained components usually used to filter data on the dashboard, and now it's
time to present the most important and flexible components to represent data on the
dashboard. This is one of the most detailed chapters where you get all the details I
could think of.

One important part of building a dashboard is to find the best way to represent
data on the dashboard. We should not only focus on showing a table, a chart,
or any other component, but also on how to represent the data using that same
component. Besides learning how to use some valuable components, you will get a
full understanding of the capabilities of those components. I usually see people using
few of these capabilities; of components, I believe this is because they don't really
know the capabilities and how to apply small changes that can have a huge impact.
While reading this chapter, just release your creativity and start thinking about what
you could do to with it.

You will learn how to use the table component. It is easy to use, but also very flexible
and powerful with some options that allow a lot of customization. The table also
allows interaction on the dashboard, by using custom code or expanding the rows to
display details. We will also be covering a new component that allows a great level of
customization, and all data driven, the template component. The template component
leverages the necessary work to repeat some content based on the response of a query.
Finally, we will talk about how to export the results to different formats.

There are some more components that can be used, such as queries, freeform, and
charts, which will be covered in later chapters, but it's not possible to cover them all.
So once again let's focus on the components that are useful for all or most parts of
the dashboard.

Tables, Templates, Exports, and Text Components

[192]

The components that are covered are listed as follows:

• Table component
• Template component
• Export button component
• Export Popup button component
• Text component

Table component
Besides charts and the template component, the table component is one of the most
complete and useful components that we can have on a dashboard. It's very simple
to use and we should not think of a table in CDE like traditional tables that we are
used to. With the use of add-ins and expanded content we have the ability to create
amazing dashboards, which really don't look like a table.

To create tables, CDF uses the JQuery plugin DataTables (http://datatables.
net/), which also makes this component exceptional for most parts of the sections on
a dashboard. We can extend the capability of DataTables itself by using plugins; we
just need to know how to use the plugin and the best way to extend the capabilities
of the component.

Like any other component, when using it you should set its name, the htmlObject
where it will be rendered, the data source (in this case it's not an option) and,
if needed, parameters and listeners. When setting valid values for the previous
properties you can render the dashboard and take a look at the results coming from
the query. By default, you will get as many columns on the table as columns on the
query results, and the names of the columns will be the names that you have just
used on the query or when defining the dashboard data source used for the table.

Besides common properties such as name, parameters, listeners, htmlObject,
and others that you should already be used to, there are the following properties
for the table component. The properties that are available and their usage are
explained as follows:

• Show filter: It will show a filter at the top right of the table that will allow
you to filter the records of the table. The default value is true.

• Searchable cols: You need to specify the index of the columns that will be
searchable when Show filter is set to true.

• Info filter: This is displayed at the bottom right of the table, showing some
information about the amount of rows that are being shown.

http://datatables.net/
http://datatables.net/

Chapter 6

[193]

• Length change: This will show a drop-down with some values such as 10,
25, 50, and 100, which when changed will update the number of rows being
displayed on the table. The default value is true.

• Page length: The number of rows to show on. This will be applied once if
Length change is set to true, because later, when changing the size, this
value will change. If Length change is set to false then the table will show
exactly the number (integer) of rows that we set in this property.

• Sort data: Shows whether the table should allow sorting of data or not. This
should to be set to false if you don't want your columns to be sortable. The
default value is true.

• Sortable columns: If you set Sort data to true, you may also specify the
column index and the default sort function, which can be ASC or DESC. This
can also be set in the preExecution or postFetch of the component by using
a multidimensional array such as [[0, "ASC"], [1, "ASC"]].

• Style: The style to use on the table, one of the following options: New,
Classic, Bootstrap. The default value is Bootstrap.

• Paginate: Determines whether the table should be paginated. The page
length will only work when paginate is activated. The default value is true

• Paginate on server-side: We can also activate the pagination on the server-
side where you are specifying whether you want the pagination to be
handled by CDA. The default value is true.

• Pagination type: The pagination type that will be used by the final user and
that will be displayed below the table. There are some predefined options
you can use, or you can set a custom pagination, but of course you need to
add the code that needs to be used. The predefined options are:

 ° Here it shows how it appears:

 ° Here it shows how it appears as simple numbers:

 ° Here it shows how it appears in full:

Tables, Templates, Exports, and Text Components

[194]

 ° Here it shows how it appears as full numbers:

 ° Here it shows how it appears as two numbers:

Table pagination
You will get the same rows on the table as rows on the resultset of the query, but
they will all be displayed on the page, or not, depending on some of the property
definitions. There are two properties, Length Change and Page Length, which will
change the number of rows to display. If Length Change is set to true it will be
possible for the user to change the number of rows that the dashboard is displaying.
Page Length is used to define the number of rows to display at the execution of the
component. Of course this can also change the number of available pages.

Depending on the number of pages and elements on the table, you can give the user
a better experience when navigating through the pages, so choose the pagination
type that better adapts to the user experience.

The pagination on the server-side is really useful if you have lots of records that are
returned back to the component. Let's suppose you are rendering 100,000 of rows on
the dashboard. This will not perform because there are a lot of elements that should
be rendered on the page. It will be even worse when using add-ins as they will need
some extra code and possibly more elements will need to be displayed. Anyway,
it's also not good practice to display rows that the user will not look at and will just
make them lose focus on the important aspects.

If you are not trying to display that number of rows but you want to have pagination
on the dashboard so as not to display more than 20 rows, per instance, and your
query is not very well performed, just use the pagination on the server-side.

Chapter 6

[195]

Internationalization and localization
The DataTables plugin provides a way to implement the internationalization and
localization of the table elements, not the content because that's the responsibility
of the query. We might or not get the results of the query already translated, but we
can specify the translation of the elements that are part of the table it self, such as the
pagination and other text that may be in buttons or other elements. The following
properties are available for internationalization and localization:

• oLanguage: Used to set the language information presented by DataTables.
Should use a JSON object such as https://www.datatables.net/plug-
ins/i18n/English.

• Language: Used to set the language information presented by DataTables.
Should specify the file where the JSON object containing the translation
is available.

You can download or make use of Content Delivery Network (CDN) files that are
available as alternatives to the static files on your server. The property oLanguage
overwrites the Language property. So when setting oLanguage, CDF will not look to
Language.

When setting the object without using an external file, we should set oLanguage as:

{
 "emptyTable": "No data available in table",
 "info": "Showing _START_ to _END_ of _TOTAL_ entries",
 …
 "search": "Search:",
 "zeroRecords": "No matching records found"
}

An example of the Language property is:

{ "url":"//cdn.datatables.net/plug-ins/1.10.7/i18n/English.json" }

Another, more dynamic, option to use is preExecution, which defines the language
to use. The code should be similar to the following:

function() {
 var cd = this.chartDefinition;
 var languages = {
 'en_US': "//cdn.datatables.net/plug-ins/1.10.7/i18n/English.
json",
 'pt_PT': "//cdn.datatables.net/plug-ins/1.10.7/i18n/
Portuguese.json"

https://www.datatables.net/plug-ins/i18n/English
https://www.datatables.net/plug-ins/i18n/English

Tables, Templates, Exports, and Text Components

[196]

 };
 delete cd.oLanguage;
 cd.language = {
 "url": languages[this.dashboard.context.locale]
 };
}

Draw function
Property Default Value Description
Draw Function Used to place a function that will be executed

every time we change the table, when rendering,
sorting, filtering, changing the page, and changing
the number of visible rows. This can be used to
manipulate the DOM of the table each time the table
suffers a change. Those kinds of change will not
trigger postExecution, so we can't use it for this
case.

The use of drawFunction is pretty much the same as postExecution except for the
fact that it will be triggered almost every time any change happens to the table. We
should therefore avoid using it, and when doing so, we should be very cautious with
the code so that performance does not suffer.

Column formats, types, width, and headers
Property Default Value Description
Column Format Here we can set the column format and specify the

format for the content of the cells of each column.
The format should be specified as the sprintf
options already covered in Chapter 3, Building the
Dashboard Using CDF.

Column Types Column Types are to specifies the behavior of the
cells for each one of the columns or even for the
rows.

Column Widths Column Widths is used to specify the width of each
one of the columns. Don't forget that you should
avoid absolute values such as px and instead use
relative values such as %. This is very important
when building a dashboard that needs to be
responsive and/or adaptive.

Chapter 6

[197]

Property Default Value Description
Columns
Headers

The table component will use the names that are
coming from the query or the column names that
you just defined on the data source being used.

If you are building a more advanced and dynamic dashboard, you could set
the properties in a dynamic way by using preExecution or, even better, using
postFetch, making use of the results of the query to define what the user will get.

On the sample provided for this chapter, you will find that on the desktop we
display all the columns, totals, and values for each territory, but when shifting to a
mobile dashboard, we will only get the columns for the totals. This is because there
is no space to display all the columns when on a mobile dashboard, like when using
a mobile phone. This is done during execution time, so we need to be able to make
those changes during the size change of the window. We can make the properties on
preExecution or even on postFetch before rendering the table, but first we need
to define the handler when the table should be updated. The first part is to create
some code on the preInit of the dashboard. Let's forget, for now, the part about
responsive charts. We already covered this earlier. Let's focus on the table changes,
depending on whether you are using a mobile or another device:

dashboard.postInit = function(e) {
 var self = this;
 var resizeTable = function() {
 var screenSize = '';
 if (matchMedia('only screen and (max-width: 992px)').matches) {
 screenSize = 'mobile';
 } else {
 screenSize = 'desktop';
 }
 if (screenSize != dashboard.getParameterValue('changeTable')) {
 dashboard.fireChange('changeTable', screenSize);
 }
 };
 var throttle = _.throttle(resizeTable, 100, {leading: false});
 $(document).ready(function() {
 $(window).resize(throttle);
 });
};

Tables, Templates, Exports, and Text Components

[198]

The previous code is used on the postInit of the dashboard. The trick is to listen
to the changes on the resize of the window, but only notify the table to be updated
just when we change from or to mobile. The only change we want on the table is
to change the columns to be displayed, because the table will already respond to
changes on the size, if we are using Bootstrap as the grid layout system for the
dashboard. Of course you may consider a better validation than the one I am using
to check whether we are using a mobile version. Here we are just checking the max-
width of the screen and changing the behavior based on that.

So, the preExecution of the chart should look like this:

function() {
 this.lifecycle = {silent: true};
 var screenSize = this.dashboard.getParameterValue('changeTable');
 if (screenSize=='desktop') {
 cd.colFormats = ["%s","%d","%.0f","%.1f","%d","%.0f","%.1f","%
d","%.0f","%.1f","%d","%.0f","%.1f","%d","%.0f","%.1f"];
 cd.colTypes = ["string","numeric","numeric","trendArrow","nume
ric","numeric","trendArrow","numeric","numeric","trendArrow","numeric"
,"numeric","trendArrow","numeric","numeric","trendArrow"];
 } else {
 cd.colFormats = ["%s","%d","%.0f","%.1f","%d","%.0f","%.1f","%
d","%.0f","%.1f","%d","%.0f","%.1f","%d","%.0f","%.1f"];
 cd.colTypes = ["string","numeric","numeric","trendArrow","hidd
en","hidden","hidden","hidden","hidden","hidden","hidden","hidden","hi
dden","hidden","hidden","hidden"];
 }
}

On the previous block of code, in the preExecution of the table, we can see that
the first line of the table is this.lifecycle={silent:true}, and it's used to silent
the lifecycle by setting its value to true, so we won't see spinning when updating
the table. The remaining code is used to check whether we are displaying the table
on a desktop or on a mobile screen. If not on the desktop, we hide most parts of the
columns because they will not fit.

Chapter 6

[199]

You can avoid the spinning wheel that blocks the UI
When a component is updated, you will get dashboard interactivity
blocked, showing a spinning wheel. This means that components are
waiting for queries to be executed while rendering the elements on the
dashboard. This is useful to notify the user that we are still waiting
for results and avoids the user having to change the selector again. If,
for some reason, you want to disable it for a particular component,
you just need to apply the following code on the preExcution or
postExecution of a component: this.lifecycle={silent:true}.

We still have a problem because, the first time the components are rendered, the
parameter screenSize is still not filled with a value, because this is only done
when the document is finally ready and when the code in the preInit function
is executed. The previous code, show how we are able to do this validation on
the preExeution of the table component. We should also place some code on the
preInit of the dashboard. The following block of code shows exactly what we need.
To check the screen size and set the value using a parameter that we can later use in
the components, use the following:

dashboard.preInit = function(e) {
 this.addParameter('changeTable', '');
 var screenSize = '';
 if (matchMedia('only screen and (max-width: 992px)').matches) {
 screenSize = 'mobile';
 } else {
 screenSize = 'desktop';
 }
 if (screenSize != dashboard.getParameterValue('changeTable')) {
 dashboard.fireChange('changeTable', screenSize);
 }
};

You should be conscious that there are multiple ways to achieve this, and it's a good
exercise to think of another way to do it. The first thing to do would be to create
a function to involve the repeated code on the preInit and postInit functions.
Another way would be to place all the code in preInit. It should work because the
code that will be executed will only be executed when the document is ready.

When resizing the dashboard, we are requesting it to be updated, so on the
postExecution we can check whether we have a windows size capable of
displaying the full set of columns. If not, we will just stick with the totals by
changing the column types and changing some of the columns to c hidden type.

Tables, Templates, Exports, and Text Components

[200]

Expanding content
There is another great functionality on table components: the expanded content,
or the ability to show content below the row that was clicked. This way we can
display details for a particular row on a table. The content to be displayed inside the
tables is defined by the developer, as with any other content to be displayed on the
dashboard. The difference is that, at the start of the dashboard, these elements will
not be available. The following are the properties that you define when you want to
create expandable content:

• Expand On-Click: Expand allows you to have a container inside a table row
the table. When clicking on a row of the table, you can get content below the
row. This property enables this feature. The default value is false.

• Expand Parameters: Parameters that will target a fireChange. We need
to specify the parameter(s) and column(s) index(es) of the table. The index
will be used to get the value that will be filling the parameter. Index(es) start
from 0, as the first column. It accepts an array of arrays, where each array is
a pair of parameter and column indexes. This will only be used when Expand
on-click is set to true.

• Expand Container: This is the parent container, with the layout elements
that will be displayed below the clicked column. This will only be used when
Expand On-Click is set to true.

Let's suppose that we wanted to show some details about a row on the table. The
following screenshot is an example. You can see three charts inside the row that was
clicked; the example we are going to build just uses one chart. The options that you
need to apply for one chart are the same as for the others.

Chapter 6

[201]

To achieve this result, you need to start by enabling the Expand On-Click option
on the table, so the very first step is to change the value of this property to true.
The second step is to create the layout, queries, and components that we want to be
displayed as details. For that we need to specify a parent container that will be hidden,
and that table component will make it visible below the row that has been clicked.

On the layout perspective, create a row and a column to be the placeholder for the
table. You should also create another row and as many rows inside as components to
display. The names could be salesByProduct and prodSalesByTerritory.

The second row should have a name, as we need to use it to specify to the parent
container where all the HTML will be displayed when we click on the row. So, set a
second row with the name tableDetailsContainer.

On the components perspective you should create a parameter such as
productParam with the default value of 1968 Ford Mustang. Using the data source
perspective, create two queries using the steel wheels connection and Mondrian
schema. The query should be:

WITH
MEMBER [Measures].[Trend] as IIF(ISEMPTY(([Time].CURRENTMEMBER.lag(1),
[Measures].[Sales])) OR [Measures].[Sales]=0, 0, ([Measures].[Sales]-
([Time].CURRENTMEMBER.lag(1), [Measures].[Sales])) /[Measures].
[Sales])+0
MEMBER [Measures].[Sales ($)] as [Measures].[Sales]+0
MEMBER [Measures].[Qt] as [Measures].[Quantity]+0
SELECT
NON EMPTY {[Measures].[Qt], [Measures].[Sales ($)], [Measures].
[Trend]} ON COLUMNS,
NON EMPTY {[Product].[Product].Members} ON ROWS
FROM [SteelWheelsSales]
Where [Time].[2004]

And another query should be:

WITH
 MEMBER [Measures].[Sales in Time] AS [Measures].[Sales]
 SET PRODUCTFILTER AS FILTER([Product].[Product].MEMBERS,
[Product].CURRENTMEMBER.NAME = '${productParam}')
Select
 { [Markets].[APAC] , [Markets].[EMEA] , [Markets].[NA] } on
COLUMNS,
 { PRODUCTFILTER } on ROWS
FROM [SteelWheelsSales]
Where [Measures].[Sales in Time]

Tables, Templates, Exports, and Text Components

[202]

For this last one you will need to specify a parameter with the name productParam
that can also have a default value of 1968 Ford Mustang. The names for the queries
are salesByProductQuery and prodSalesByTerritoryQuery.

The first one will be used in the table, and the second will be used to get details
about the selected product when selecting a row on the table. The next step is to
create a table with have the following properties.

Property Value
name products

datasource salesByProductQuery

htmlObject salesByProduct

paginate True

Expand On-click True

Expand parameters [[0, 'productParam']]

Expand Container Object tableDetailsContainer

Execute at start True

The table has some common properties such as Name, Datasource, and htmlObject
but we also have Expand On-Click activated. The Expand Container Object is
used to specify the parent container where all the HTML to be presented below the
row is clicked, and Expand Parameters to specify which parameter is needed to
be a target for a fireChange using the index value of the columns from where we
need to extract the value to be set in the parameter. Looking to the second query, you
will notice that we are using it to filter the product that the user has selected. On the
table component, we are specifying that the first column should be used, so the name
of the product will be set to the parameter productParam, so that the table can be
updated each time we click on a row. This way, the components with the details will
be notified that they need to update and be rendered below a row of the table.

There is a need to have a second component to display the details, so let's have a
chart. It can be a pie chart or whatever. For now, you can use a bar chart with the
following properties:

Property Value
name products

datasource prodSalesByTerritoryQuery

htmlObject prodSalesByTerritory

listerners productParam

parameters [['productParam','productParam']]

Execute at start False

Chapter 6

[203]

Here we are creating the components where the details for the selected product
will be displayed. The properties are already well known, so you just want to make
a quick note about Execute at start. This property is set to false because, the
first time we render the dashboard, the user hasn't yet selected/clicked a product
so we don't want to show the chart with details for a product. Once the user clicks
on a row/product, a fireChange will be triggered and the chart component will be
notified, because it's listening to the parameter and will be updated with the right
values for the selected product. At that time, the component will be rendered inside
the htmlObject that is inside the parent container, which has already been placed
below the table that was selected.

Making use of add-ins
There are different column types or add-ins, which can change what's displayed as
the content of each cell of a column. Inside the community and at Webdetails, the
column types are usually referred to as add-ins, and the way to apply them is just
by changing the property Column Types and setting the type for each one of the
columns that will be available on the table.

By default, the Datatables plugin provides three types:

• string: To display the text in the cell
• numeric: To display a number in the cell
• hidden: When using this type, the column will not be displayed

CDF also extends the column types we can use inside the component. The following
image shows the column types or add-ins:

Tables, Templates, Exports, and Text Components

[204]

The numbers on the previous image correspond to the column types or add-ins that
we are covering using the following numbered list. The ones that are available are:

1. groupHeaders

2. clippedText

3. sparklines

4. dataBar

5. trendArrow

6. circle

7. cccBulletChart

8. formattedText

9. localizedText

10. hyperlink

There is another add-in that is not displayed in the image: the template add-in. We
will be covering this in the next chapter.

When you select one add-in just by setting the column type, you will get a result
using the default options. If you need to give them a different aspect or behavior,
you can customize them by changing the add-in options.

As already explained, we need to change the add-in by setting the type on the
column types property. The way to extend the options is to add some code on the
preExecution or postFetch functions of the component. Let's see an example using
the sparklines add-in.

A Sparkline is a very small line chart that is typically drawn without any axes or
coordinates. One use case is to use the variation of a measurement over time, for
example for the temperature over the last 12 months.

Just by including the following line inside preExecution, we change the Sparkline
type from line to bar:

this.setAddInOptions("colType","sparkline", {"type":"bar"});

I always like to have the options on a variable as it makes the code more readable.
The previous example is not ideal, but we will see in the following example code
where the code is so readable at first glance.

Chapter 6

[205]

Among the properties that are applied to the Sparkline add-in, we have the type,
which can be, line, bar, pie, and others, but let's cover that later when we go over the
properties for this add-in. Using the previous code inside the preExecution function
will change the representation of the values using bars in place of a line, which is the
default value for the type when using this add-in.

This applies to the options for all the columns that use the column type sparkline,
but what if we want to have a column where the values should be represented by
bars and another one by a bar and a line? That's also possible by using a function
that, depending on the column that is being processed, returns one object of
properties, with the type set to bar, and another one using a line. The following code
is one example of this:

var options = function(state){
 if(state.colIdx == "3"){
 return {type:'bar'};
 }
 };
this.setAddInOptions("colType","sparkline", options);

First, we have a variable that will be a function that receives one argument
represented with the name state. This function will be executed for all the cells of the
columns that have the column type Sparkline, so inside the function and using the
state variable we will get access to one object that represents its context. For each cell,
we will have access to colIdx, rowIdx, value, the target element on the DOM, and
all the table data returned from the query. We can also have access to colFormat, if
we have defined one using the property column Formats of the table component.

Having all the information mentioned previously, we can change the behavior of the
add-in, for each instance, and also have a condition that will return the options for an
add-in depending on the row that we are processing, or even the value of a previous
row or column.

Now that you know how to change the option to pass to change the defaults and
options of an add-in, let's cover add-ins and their options.

The way to apply options to each add-in is always the same; it is just the options that
are applied that are different. Let's cover each one of the available add-ins.

Tables, Templates, Exports, and Text Components

[206]

groupHeaders
Based on the value of the cell being rendered on a column, the rows can be grouped.
In the same columns, if the values of the rows are similar from one row to another, a
group can be created. If that's the case, a group header is created and inserted under
any of the following circumstances:

• On the first row of all records
• After a higher-level group header, when using group headers for more than

one column
• When the value for the current cell differs from the one immediately before it

To be able to create groups, rows must be sorted on the columns where groups
should be created. In the CDE samples, there is a great example on how to use the
aoSortingFixed option of the Datatables JQuery plugin, which is provided when
you install it and is also available under /public/plugin-samples/CDE/Require
Samples/CDE References/Addins.

We have already seen that all add-ins have defaults that can be overwritten by
passing the options to the add-in. The defaults are:

• hide: Its default value is true and will hide the column from the table,
because the value is already on the header that identifies the group. If, for
some reason, you want to display the column, you just need to set the option
to false.

• columnHeadersInGroups: Repeats the column headers for each one of the
groups, meaning that for each group the final user will also see the headers
of the columns. The default value is false.

• textFormat: This is a function that receives three arguments, as follows:
 ° The value: The value being processed
 ° The status: A Json object where you can find:

The row and column being processed or get access to all datasets
returned from the query

 ° The option: The last argument is the option used on the add-in

The function should return a string that will be the name of the group. You can
overwrite this function and, based on the value, status, and options passed to the
add-in, return a custom string that will be the header for the group. See the following
default function:

textFormat: function(v, st, opt) {
 return st.colFormat ? sprintf(st.colFormat,v) : v;
}

Chapter 6

[207]

clippedText
The clippedText add-in can be used when the text to be displayed inside a cell is
bigger than the space that is available. The part of the text that cannot to be displayed
on the same line will be hidden and ellipses will be shown.

The options available for this add-in are:

• showTooltip: This is for, when hovering over the text, you want to display a
tooltip with the full text. The default value is true.

• useTipsy: This is if the tooltip shown is not the default HTML tooltip but
instead you want to use the Tipsy JQuery plugin to display the tooltip. When
set to true it will show a fancier tooltip. The default value is false, so if you
want to use it, you will need to set it to true.

• style: This is the style to apply to the element inside the cell of the table. The
style is an object with CSS.

The following code is one example of how to apply the style to bold text and activate
the Tipsy JQuery plug-in:

var options = {
 showTooltip: true,
 useTipsy: true,
 style: {'font-weight': 'bold'}
};
this.setAddInOptions("colType", "clippedText", options);

sparkline
This add-in is based on the JQuery sparklines, which generates small inline
charts using the data returned by the query. It allows using the properties of the
sparklines plugin itself and generating different types of inline chart. It can
generate inline charts such as line, bar, stacked bar, pie, bullet, composite, discrete,
and box plot.

It is a really simple but powerful add-in, which gives the final user a great
understanding of the data, and also gives multiple options to the developer. It's a
great way to give the final user a distribution of the values over time, or to provide
insights if the user needs to get into the details of the values he is looking at.

You can go to the Try It Out section at http://ominipotent.net/jquery.
sparkline. Select the type of chart, change the necessary properties to get the result
you expect, and copy the code that is automatically generated, because those are the
properties to send to the add-in.

http://ominipotent.net/jquery.sparkline
http://ominipotent.net/jquery.sparkline

Tables, Templates, Exports, and Text Components

[208]

When using this add-in, you need to return from the query, and for the cell
you want to have the add-in displayed, a column containing a string with all the
values separated by a comma. For each instance, sales by month for a particular
year would be:

"7498.9,4517.9,0.0,5774.7,0.0,3922.6,9160.4,13063.2,0.0,6934.6,13390.
6,2891.7"

There are multiple ways to achieve this result and this will depend on the query type
you are using in CDA. If using Kettle, there are also multiple ways to do it. It may
be you just need to use one or more steps to join all the values into a string column
type; just don't forget to separate them by commas. When using SQL you may need
to concatenate all the values but by always combining single values with a comma.
When using MDX, it's very simple; you can make use of the Generate function
like this:

GENERATE(
 DESCENDANTS([Time].[2004], [Time].[Months]),
 CAST(([Measures].[Sales]+0) AS STRING),
 ',')

You can also get a complete query example on the samples provided for the table
component inside the Chapter 6 folder, available in the samples supplied with
this book. You will find a subfolder where you will find three samples for the
table component.

The only property that is mandatory is the following:

• type: It's the type of the chart and also a property that is passed from the
add-in to the Sparkline Plugin. The default value is line, which will generate
a line chart with the remaining default values for the line chart of the
Sparkline Plugin.

By going to the Try It Out section of the Sparkline Plugin you can check that the
properties will differ from chart type to chart type. There are also some advanced
options that the Sparkline Plug-in has, which are perfectly usable inside the add-in,
and that's because what the add-in does is make a call to the plugin, and passing the
options you have set. For each instance, if you want to generate one bar chart and
change some of the properties, you would use code such as:

var options = { type: 'bar', barWidth: 6};
this.setAddInOptions("colType", "sparkline", options);

Chapter 6

[209]

dataBar
This add-in is used to display a horizontal bar that represents the values returned
from the query. The size of the bar is the relation between the value and the
minimum and maximum values for all the rows on that same column. The add-
in makes use of the Raphael JavaScript library to draw the bar, which is an SVG
element, and the available options for the add-in are:

• width: Used to define the size of the parent container, the element that will
contain the SVG representing the bar. The default value is 98%.

• widthRatio: This is the ratio of the bar to the parent element. The size of its
parent is set by the width option. The default value is 1.

• height: Used to define the height in pixels of the bar.
• align: Used to define the alignment of the bar. Can be left or right. By

default, it will be aligned at the left.
• startColor: The color of the bar can be a gradient. This option is used to

define the color to the top part of the bar. The default is #55A4D6.
• endColor: Used to define the color to the bottom part of the bar. The default

is #448FC8.
• stroke: Used to specify the color of the border.
• max: The maximum and minimum values are used to calculate the size and

left and right position of the bar. This option is used to specify a fixed value
or a function that returns a value. When it is not set, the value will be the max
value for all the rows for that same column.

• min: The same as previous, but for the minimum value.
• includeValue: Used to specify whether the value should be visible or not.

The default is false. Change it to true to also see the value.
• absValue: Used to tell the add-in whether it should apply the absolute value

of the number to represent.
• valueFormat: This function accepts four arguments: the value, format,

status, and options.

One example of the code needed to change the options would be as follows:

var myself = this;
require(['cdf/dashboard/Sprintf'], function(sprintf) {
 var options = {
 widthRatio:0.6,
 height: 15,
 align: 'left',

Tables, Templates, Exports, and Text Components

[210]

 startColor: "#3366cc",
 endColor: "#3366cc",
 stroke: null,
 absValue: true,
 includeValue: true,
 valueFormat: function(v, format, st, opt) {
 return "" + sprintf(format || "%.1f", v);
 }
 };
 myself.setAddInOptions("colType", "dataBar", options);
});

The previous code is wrapped by a require function, because we need to use a sprint
function that's not available in the scope of the preExecution of the component.

trendArrow
The trendArrow add-in is very simple, it presents an up or down arrow depending
on whether we have a value below the threshold, which by default, is set to zero. This
means that values above the value defined as the up threshold will be represented with
a green and upper arrow, and values below the value defined as the down threshold
will be represented with a red arrow pointing down. Values that are between the
ranges defined as the threshold are represented by a yellow equals symbol.

There is also the chance that values below the threshold are good values, so the
add-in is also able to handle that. Values above the threshold are shown with a red
arrow pointing up, and when below the threshold will be represented by a green
arrow pointing down. To achieve this, we only need to set the good option to false,
that means that upper values are considered bad, and lower values are considered
good. Setting this option will change the color witch upper or lower values are
represented. The threshold is also configurable, so it's better to cover now the options
that are available:

• good: Used to define whether values above the thresholds are considered
good or bad values. By default, it's set to true meaning that the values above
the thresholds are good values. When set to false it will set the opposite.

• threshold: It sets the upper and lower thresholds. The threshold accepts an
object with two keys, up and down, to set both threshold values. For each
instance setting a range would be like {up: 30, down: 60}. You can see in
the following sample code, where the valueFormat property is explained.

• includeValue: Used to set whether the value will be shown together with
the trend arrows. By default, it is set to false. If you need the value to be
displayed, just set it to true.

Chapter 6

[211]

• valueFormat: Is a function used to format the value to be displayed together
with trend arrows when the option includeValue is set to true. The function
accepts four arguments: the value, format, status, and options. The value
is the value that comes from the query to that same cell of the table. The
format is the format specified in the columns format of the table component.
The status is where you can get to know what columns and row is being
processed at the time, or where you can get access to the full dataset returned
from the query. Finally, the options parameter, is where you can find the
options that were set to be used by the add-in. The code to apply the options
would be as follows:
var myself = this;
require(['cdf/dashboard/Sprintf'], function(sprintf) {
 var options = {
 good: true,
 includeValue: false,
 valueFormat: function(v, format, st, opt) {
 return sprintf(format || "%.1f", v);
 },
 thresholds: {up: 0, down: 0}
 };
 myself.setAddInOptions("colType", "trendArrow", options);
});

It's possible to change the CSS to change the arrows, showing other symbols
and/or colors. To be honest I don't like the default ones, so I always change them.

For each instance, if you have some images that you want to use, you may do so
by changing the CSS. You may add the following CSS to your dashboard and the
defaults will be overwritten; you just need to change the path and filename of the
image. Do not forget that, if the images have a different size, you may also need to
change a few more rules:

.trend.up.good { background: url("img/up-good.png"); }

.trend.neutral { background: url("img/neutral.png"); }

.trend.down.good { background: url("img/down-good.png"); }

.trend.up.bad { background: url("img/up-bad.png"); }

.trend.down.bad { background: url("img/down-bad.png"); }

I always avoid using images on the dashboards as using icon fonts has more
advantages. You can change the size (without losing any definition), change the
colors, or apply a shadow just by using CSS. Besides that, your page becomes lighter.

Tables, Templates, Exports, and Text Components

[212]

To apply an icon font, perform the following:

table .trend {
 position: relative;
}
table .trend:after {
 position: absolute;
 background: none;
 font: normal normal normal 20px/1 FontAwesome;
 top: -5px;
 left: -3px;
}
table .trend.down.good {
 background: none;
}
table .trend.down.good:after {
 content: "\f0ab";
 color: red;
}
table .trend.up.good {
 margin-top: 5px;
 background: none;
}
table .trend.up.good:after {
 content: "\f0aa";
 color: green;
}
table .trend.neutral.good {
 background: none;
}
table .trend.neutral.good:after {
 content: "\f0a9";
 color: #ccc;
}

You can find more information about using icon fonts by looking at:
https://fortawesome.github.io/Font-Awesome/icons/.

You will find the code inside the table samples of this book. Notice that this example
was only set when values upper of the threshold are good. Otherwise you would
need to make similar rules but using bad besides good.

https://fortawesome.github.io/Font-Awesome/icons/

Chapter 6

[213]

circle
This add-in can be used to represent values as circles. The circles are represented
through an SVG, which is the result of the use of the Raphael JavaScript Library.
Here we always need to set some options, otherwise you would always get the same
size and color that, by default, have default values of four for the size and black for
the color. The options are:

• canvasSize: Used to set the size, width, and height of the SVG element. By
default, its value is set to 10. It accepts a fixed value or a function that can
return the value to use as the size. The same value will be used for the width
and height.

• radius: Used to set the radius of the circle. The default value is set to 4, but
you can use a function to return the value to use as the radius. The function
will receive one argument that is the value, and the value can be a string.
Don't forget that, to see a full circle, the radius should not be higher than half
of the canvasSize.

• color: Used to set the color for the circle. You can return any value that
represents a valid color when representing SVGs. By default, its value is
set to black. It accepts a fixed value or a function that can return the string,
which represents the color.

• title: Used to set a function that returns the value to display when hovering
the circle. The default value is:
title: function(st, opt) { return "Value: " + st.value; }

Let's suppose that you wanted to show a circle where the radius is calculated based
on the percentage relative to the maximum value of the quantities sold, where the
lowest value will have the smallest radius and the highest value will have the highest
radius. The color is calculated based on the values of sales. To be able to achieve this,
we need to get two values from the query, quantity, and sales. For this example, the
value is a string that will be a concatenation of both values separated by a comma.
You can do it the way you want; we just used a member calculated as:

MEMBER [Measures].[circle] AS
 CAST(([Time].[2004], [Measures].[Quantity])+0 AS STRING) ||
 "," ||
 CAST(([Time].[2004], [Measures].[Sales])+0 AS STRING)

Tables, Templates, Exports, and Text Components

[214]

The code to apply the options would be as follows:

 var options = {
 canvasSize: 20,
 radius: function(st) {
 var values = st.tableData.map(function(e){
 return Number(_.first(e[st.colIdx].split(',')));
 });
 var tblMax = _.max(values),
 tblMin = _.min(values),
 value = Number(_.first(st.value.split(','))),
 size = (value-tblMin)/(tblMax-tblMin);
 return (20*size)/2;
 },
 color: function(st) {
 var values = st.tableData.map(function(e){
 return Number(_.last(e[st.colIdx].split(',')));
 });
 var tblMax = _.max(values),
 tblMin = _.min(values),
 value = Number(_.last(st.value.split(','))),
 size = (value-tblMin)/(tblMax-tblMin),
 red = Math.min(255, Math.round(510-2*255*size)),
 green = Math.min(255, Math.round(2*255*size));
 return "rgb(" + red + "," + green + ",0)";
 },
 title: function(st, opt) {
 var sales = Number(_.first(st.value.split(','))),
 quant = Number(_.last(st.value.split(',')));
 return "(#): " + Utils.numberFormat(sales, "0") + " " +
 "($): " + Utils.numberFormat(quant, "0.0");
 }
 };
 this.setAddInOptions("colType", "circle", options);

The inside options we are defining are the size for the SVG element, and functions
for the radius, color, and title. The radius function will return the radius to be
used based on the calculations using the value, min, and max values for all the rows
being displayed. Color is also a function that will return the RGB string with the
colors for red and green, also based on the value passed as an argument.

Chapter 6

[215]

cccBulletChart
This can represent a bullet chart with the values that come from the query for the
same cell. Here you need to return all the values to use on the bullet chart, separated
by a comma. The options that you have available are all the options for the CCC
charts that we are going to cover later, but the following is the code to apply the
default options:

var options = {
 height: 40,
 animate: false,
 orientation: "horizontal",
 bulletSize: 16,
 bulletSpacing: 150,
 bulletMargin: 5,
 bulletRanges: [30, 80, 100],
 extensionPoints: {
 "bulletMarker_shape": "triangle",
 "bulletTitle_textStyle": "green",
 "bulletMeasure_fillStyle": "black",
 "bulletRuleLabel_font": "8px sans-serif",
 "bulletRule_height": 5
 }
};
this.setAddInOptions("colType", "cccBulletChart", options);

formattedText
This add-in is used to specify a custom format to the value that is supposed to
appear on the table. The default option is the following:

• textFormat: This is used to return the value to display on the table. The
function receives three arguments. The arguments are the value being
processed, the status where you can know the row and column being
processed or get access to all datasets returned from the query, and the
last argument is the options used on the add-in. See the following default
function:
textFormat: function(v, st, opt) {
 return st.colFormat ? sprintf(st.colFormat,v) : v;
}

Tables, Templates, Exports, and Text Components

[216]

This is a really simple but useful add-in. We will see later that we can extend
and write our own add-ins, but if using this add-in you can almost do whatever
you want. Of course, if writing a new add-in, we have the ability to include the
JavaScript file. When using this add-in you would need to include some code on the
preExecution or postFetch of the component. You can overwrite the textFormat
function and, based on the arguments that are passed, the value, status, and options
passed to the add-in return a string that will be rendered on the cell of the table being
processed. Here you can return a string that is the HTML to be rendered inside the
cell, so as you can imagine you have almost no limits here.

Let's see a small example where you need to display the negative value using red. If
that's the case, just using the columns format will not be sufficient, so the formatted
text add-in is an option, maybe the easiest one. You would need to include the
following lines inside the preExecution of the table component:

var myself = this;
require(['cdf/dashboard/Sprintf'], function(sprintf) {
 var options = {
 textFormat: function(v, st, opt) {
 var cssClass = ((v < 0) ? 'negative' : 'positive'),
 value = st.colFormat ? sprintf(st.colFormat,v) : v ;
 return '<div class='+cssClass+'">'+value+'</div>';
 }
 };
 myself.setAddInOptions("colType", "formattedText", options);
});

We also need to add some CSS similar to the following line:

.formattedText .negative {color: red;}

You will find on the JavaScript code the textFormat function returning a div
element with the formatted value, which will use the mask specified on the columns
format of the table. We can get the specified format from the st.colFormat from the
st object. This way we could execute the sprint function and format the value with
that mask. The div element will have a CSS class that will be negative if the value is
less than zero, and positive otherwise, so that we can apply some CSS and turn the
negative values to red. All of the code is wrapped by a require function because we
need the sprintf library to be included and available when executing the code.

Chapter 6

[217]

localizedText
The localizedText add-in allows the table to display content based on a
language that is set for the browser. Using this add-in you may delegate to i18n the
translations of the values returned from the query.

If the range of values returned is not too big, and if they are not changing over time,
it's fine to use this add-in; otherwise, we have a drawback because you need to have
all the translations in one file, and if there is no translation for the current value being
displayed, i18n will not be able to do it. When adding new rows in the database, we
would also need to add them on the property files that are going to be used by i18n.
So, if the range of values is too big and change over time, maybe you should consider
doing it on the back end, using a Dynamic Schema Processor, SQL Generator, or any
other technique available in Pentaho; but that is not the purpose of this book, so let's
skip this option.

So, if you have to meet the requirements to use the add-in, or for any other reason
you need to use it, let's see how to do it. We have not yet discussed how to use i18n
on the dashboards but we will do it later, but we need to have a brief introduction.

When building a dashboard that needs to handle internationalization and
localization, and they all should, you must specify a file with the name messages_
supported_languages.properties, which should be in the same folder as the
dashboard. That's the way i18n will read the message files and their content will be
key/value pairs where:

• key: will be the <language> and/or <language>_<COUNTRY>, where
<language> is the lowercase code for the language and <COUNTRY> is the
uppercase country code

• value: can be any description of the language/country

One example of the messages_supported_languages.properties file would be:

en=English
en_US=English (United States)
en_UK=English (United Kingdom)
pt=Portuguese
pt_PT=Portuguese (Portugal)
pt_BR=Portugues (Brazil)

Tables, Templates, Exports, and Text Components

[218]

Here we don't need to specify the fallback file, it will use the one with the name
messages.properties. We can delegate i18n messages to three specific files, which
need to be placed in the same folder as the dashboard. The standard in Pentaho is to
have the names using the following rules:

• messages_<language>_<COUNTRY>.properties: These files are the ones
that contain the translations for a particular country for a language, where
<language> should be replaced by the lowercase language code and
<COUNTRY> should be replaced by the uppercase country code (per instance:
messages_en_US.properties, messages_en_UK.properties, messages_
pt_PT.properties, and messages_pt_BR.properties).

• messages_<language>.properties: These files are the ones that will
contain the translations for a particular language, not specifying the country,
where <language> should be replaced by the lowercase language code (per
instance: messages_en.properties and messages_pt.properties).

• messages.properties: This is the fallback file, where no language or
country is specified. Here we will not need to specify a language or country.

Messages, or translations, can and should be shared by the different files and
whenever that happens the following rule applies:

• The messages keys placed at messages_<language>_<COUNTRY>.
properties will override similar ones placed at messages_<language>.
properties, which in turn will overwrite the messages.properties

If we wanted to display a hierarchical structure of the messages.properties files, it
would look as follows:

+ messages.properties
++ messages_en.properties
++++ messages_en_US.properties
++++ messages_en_UK.properties
++ messages_pt.properties
++++ messages_pt_PT.properties
++++ messages_pt_BR.properties

Chapter 6

[219]

We will need to specify the messages.properties files, which are also a list of
key/value pairs where the key will be translated to the values specified. As an
example, let's suppose we have a column that reveals which month had the highest
value of sales. If the fallback language is English, the messages.properties file
should be specified like:

Jan=January
…
Nov=November
Dec=December

The messages_EN.properties files would be similar, but messages_
PT.properties would be:

Jan=Janeiro
…
Nov=Novembro
Dec=Dezembro

The previous samples do not specify messages for countries but, as already covered,
you would be able to do it, and the content would also be based on key/value pairs.
We can avoid repeating key/value pairs that are similar and use the hierarchical
priority rules to specify only the key/value pairs that are different from file to file.

Regarding the options available for this add-in, I can't see any advantage to changing
the defaults; there is only one option, which is the localize function. The only reason I
can see to change this function would be to add a prefix or suffix to the value coming
from the query and to match the key of the messages files. In the following code we
are applying the same function by default, but it can give you an idea of the code
needed to change the function:

var options = {
 localize: function(v, st, opt) {
 return dashboard.i18nSupport.prop(v);
 }
};
this.setAddInOptions("colType", "localizedText", options);

Please refer to the sample provided for this chapter. You will find the example on the
add-in's sample dashboard.

Tables, Templates, Exports, and Text Components

[220]

hyperlink
The hyperlink is an add-in that can provide links to any URI that is recognized
by the HTML and the browser. You need to return a string with a valid URL from
the query. It expects a URI string, for example: http://www.pentaho.com. The
add-in will create an HTML element that provides a link the user can click in order
to interact.

The following are options that we can use to customize the appearance and
the behavior:

• openInNewTab: Used to open the URI on a new tab of the browser. By
default, it is set to true. When set to false it will be opened on the same tab.

• prependHttpIfNeeded: Used to tell the add-in to prepend the string http://
to the URL provided when the URI does not include one. We should avoid it
when providing an e-mail address as the URI.

• Regexp: We can provide a regular expression to check whether the provided
URL is valid. The regular expression is just to check whether it's valid or
not. If it's valid then the add-in can create the link. By default, it's set to null,
avoiding the validation.

• pattern: This is the regular expression that will extract the strings to use as
the label and as the URI.

• urlReference: Used to tell from which group index we get the URI. By
default, its value is set to 2.

• labelReference: Used to tell from which group index we get the label. By
default, its value is set to 1.

Let's suppose that the query returns something like [Link to Pentaho][http://
www.pentaho.com], where we first have the label and finally the URI. We would
need to overwrite some of the default options, which would look something like:

var options = {
 openInNewTab: true,
 prependHttpIfNeeded: true,
 regexp: null,
 pattern: "/\[(.*?)\]/g",
 urlReference: 2,
 labelReference: 1
};
this.setAddInOptions("colType", "hyperlink", options);

http://www.pentaho.com

Chapter 6

[221]

The previous code defines a pattern, used to extract the label and the URI from the
string that's returned from the query. By default, urReference and labelReference
have this but, if needed, we could also change it and get those values from other
indexes of the resulting application of the regular expression.

We are also able to extend them because CDF provides the capability to create new
add-ins, but we need to cover this in a later and more advanced chapter.

Template component
The template component is a component that allows us to create custom
visualizations based on templates and models, all based on the data that we have
acquired from a data source. The concept of building HTML content is not new, just
the fact that we now have a component that allows us to do that. Maybe you don't
need them for simple use cases, as using the query or freeform component can be
an alternative, but it doesn't take too much complexity before the use of a template
component becomes a good decision.

One of the big advantages of using templates is that we can have the same template
making use of the same model with different data. So, if the model is the same but just
the data has changed, which can be the result of a query, it will leverage the work you
need to build a section of a dashboard. It also lets you split the structure of the content
to display from the data that needs to be displayed, so your dashboard will have
less complexity when building custom visualizations. This is because the alternative
would be a custom component, which would take you more time and effort.

You should use this component when you have visualizations that cannot use
another component, or if the use of another component becomes hard and you can
represent the data coming from a query using HTML. In other words, to be used
when you need to loop in data driven HTML representation. We will see later,
in this chapter, that it's also possible to use add-ins like we can on tables, handle
events for interactions, and create functions for custom formatting, which makes the
component even more dynamic.

First of all, you need to understand the concept of templates and how they work. It's
not the purpose of this book to get into the details, we will just give you the basic
concepts. You should refer to the documentation about template engines (https://
github.com/janl/mustache.js and http://underscorejs.org/#template) we
can make use of inside a CDF/CDE dashboard. You will find some examples on the
CDE samples or on the samples provided with the book. There are also plenty of
examples on the use of templates on the Web, which you may find interesting.

https://github.com/janl/mustache.js and http://underscorejs.org/#template
https://github.com/janl/mustache.js and http://underscorejs.org/#template

Tables, Templates, Exports, and Text Components

[222]

Templates are based on a template itself and the model. The template defines the
formatting and structure, while the model provides the data that is going to be used
on the template. So, when making use of templates, we can separate the formatting
and structure from the content, where the JavaScript template engine makes the
JavaScript business logic inject content into the template. The template component
specifically uses JavaScript-powered templates and was developed to work with
two libraries that provide template capabilities, with the advantage of already being
included in CDF. The libraries are: Mustache and Underscore.

To have a better understanding of the differences between them, let's use the same
example to create the content for the dashboard based on the template. For both
engines, the model will be the sales by territory for a particular year, so the final
result we want to get is:

<div class="title"> Sales by territory: </div>

 EMEA: $168479
 APAC: $601606
 Japan: $168479
 NA: $1821247

The model, where data is?, will be represented by a JSON structure such as:

var model = {
 territory: [
 { name: 'EMEA', sales: 168479},
 { name: 'APAC', sales: 601606},
 { name: 'Japan', sales: 168479},
 { name: 'NA', sales: 1821247}
]};

Mustache is a logic-less template syntax, because there are no logical conditions,
such as if statements, else clauses, or for loops. Mustache makes use of tags that are
replaced by either a value, nothing, or a series of values. It can be used for HTML,
configuration files, source code, or anything else. Mustache works by expanding tags
in a template using values provided in a hash or object, and it's very clean with a
small learning curve. It is a very popular template language, which is evident from
its many platform implementations.

Chapter 6

[223]

A Mustache tag begins with two opening braces and ends with two closing braces
and, as you might have guessed, the "{{" and "}}" delimiters are where Mustache
gets its name from. We can use {{…}} to access a variable and {{#…}}…{{/…}}
to display a chunk of markup if a certain condition is true (or false), or to repeat
sections, which let you display lists of values. If you have a need to escape HTML,
you have the option to use {{{…}}}.

Following the provided example, using Mustache we would need to define a
template such as:

var template = '<div class="title"> Sales by territory: </div> ' +
 '' +
 ' {{#territory}}' +
 ' {{name}}:{{sales}}' +
 ' {{/territory}}' +
 '';

And the instruction to get the rendered HTML string is:

Mustache.render(template, model);

You don't need to run the render when using the component
You won't need to run the render when using a template inside the
component; you just need to specify the template engine that you
want to use, and the component will take care of it for you.

Underscore is a library that offers functional programming utilities, but it does have
an easy template method with a lot of flexibility. By default, it uses more complex
delimiters that can easily be modified, and makes use of braces, similar to Mustache.
Underscore provides the capability of having logical conditions such as if or for
loops, among others. It allows you to make use of JavaScript inside the template,
so it's much more flexible than Mustache, but of course its learning curve may be a
little harder.

Template functions can both interpolate values, using <%=…%>, and execute arbitrary
JavaScript code with <%…%> and this is how all loops will be created. If you wish to
interpolate a value, and have it be HTML-escaped, use <%-…%>.

Tables, Templates, Exports, and Text Components

[224]

Following the example using Underscore we would need to define a template
such as:

var template = '<div class="title"> Sales by territory: </div> ' +
 '' +
 '<% _.each(model.territory, function(elem) { %>' +
 ' <%= elem.name %>: $ <%= elem.sales %> ' +
 '<% }); %>' +
 '';

Among other options, the way to render the template to an HTML string is:

_.template.render(template, model);

I am used to the syntax, but you may find it harder to understand because of the tags
that Underscore uses by default. That can be changed just by placing the following
code before using the component:

_.templateSettings = {
 evaluate: /\{\{(.+?)\}\}/g,
 interpolate: /\{\{=(.+?)\}\}/g,
 escape: /\{\{-(.+?)\}\}/g
 };

Make the same changes on the component
It's also possible to apply these changes to the component. We can place
this code just before returning the template to use, which should be done
on the template component property.

If that's the case we can build a template such as:

var template = '<div class="title"> Sales by territory: </div> ' +
 '' +
 '{{ _.each(model.territory, function(elem) { }}' +
 ' {{=elem.name}}: $ {{=elem.sales}} ' +
 '{{ }); }}' +
 '';

If the project is relatively simple, you can use Mustache, but when the template must
be more complex, you will need to use Underscore.

I tend to think of myself as the father of this component, and I have some great ideas
and improvements that will make it even greater, so keep an eye on the updates.

Chapter 6

[225]

Automatically generated model and root
element
When we make use of the template component, we also want to get data from a
server. We need to define a data source using the data sources perspective, making
use of CDA to get the data back to the dashboard, but when doing it the data is
returned to the component using the standard CDA format. The component will
automatically generate a model you can use when building your template, but you
can also do it by yourself when you need to build a more complex model that fits
your requirements.

Let's suppose that the query returns sales by territory, so we will have a row for
each territory, and on the columns we will have the name and the sales for that
same territory.

The resulting dataset would be something like:

APAC 1281705.9
EMEA 5008224.3
Japan 503957.6
NA 3852061.4

The resulting model is based on the result set so the model will be a
multidimensional array. I already mentioned that the model should be an object, so a
JavaScript object will wrap the multidimensional array with a key that, by default, is
items. One example would be:

{
 items = [
 ['EMEA', 168479], ['APAC', 601606],
 ['Japan', 168479], ['NA', sales: 1821247]
]
};

There is a property that we can cover right away because it will be the key of the root
element of the returned model:

• Model root element: Used to change the key of the root element of the
model. By default, it's set to items. The template needs to refer to the root
element so you can use a name that you feel comfortable with. It's not
mandatory to change it.

Tables, Templates, Exports, and Text Components

[226]

Template and engine
Besides the properties that are available for other components, and that we need to
define, such as the name, data source, parameters, listeners, and the HTML object,
we also need to have at least the template and the template type well set:

• Template library: Used to specify the engine that will be used to render the
template. There are two options available: Underscore and Mustache, and the
default value is Underscore.

• Template: Used to define the template to be used. You need to define a valid
template for the selected engine. The property accepts a function that should
return a string with the template to be used. An example of the code to
create an Underscore template for the automatically generated model sample
would be:
function() {
 var template = '<div class="row">' +
 '<% _.each(items, function(elem) { %>' +
 ' <div class="col-xs-6 col-md-3 single">'+
 ' <%= elem[0] %>: $<%= elem[1] %> '+
 ' <div> <%= addin("3,5,7,3,4,2", "sparkline", "sparkline") %>
</div>'+
 ' </div>' +
 '<% }); %>' +
 '</div>';
 return template;
}

The template creates a parent element that will wrap all other elements. Since each
row is the same as one element of items, the root key of the model, the template
generates a <div> that's going to have the name of the territory and the value. You
should have noticed that we are using CSS classes, the bootstrap CSS classes that will
make this content responsive to screen size changes.

Chapter 6

[227]

Model handler
We already covered in earlier chapters and/or sections the fact that we can use
Pentaho Data Integration (Kettle) transformations to return data to the dashboard.
When using MDX, we may return some more complex value parsed in a string and,
when this happens, you may also need to manipulate the model so that it will let you
build a really advanced visualization. Let's suppose that you are returning the sales
for each territory and country, and you want to display a card by territory where you
will include all countries' sales, such as in the following image:

What we need to do is to group the result by territory, because if we can have
an object for each one of the territories then we can have all countries inside it.
It's easy to build a template that can bring those results to the screen:

function(data){
 if (data.queryInfo.totalRows > 0) {
 var model = {};
 var territories = _.groupBy(data.resultset, function(elem){
 return elem[1];
 });
 model[this.rootElement] = territories;
 return model;
 } else {
 return null;
 }
}

Tables, Templates, Exports, and Text Components

[228]

On the previous code, first we are checking whether we get results from the query,
otherwise we want to return null to notify the component that it will not have data
to display. If we have data on the result, then we will use the groupBy function to
group all rows based on the second column (index one) that contains the territory.
What we are getting is an object where the key will be the territory and the value
will be the array of countries/values that belong to that same territory. After getting
the result object we also need to put it on a root key, which is represented by this.
rootElement, so we are using the property that has been set on the component
(default value is items) so that we can iterate on each territory inside of it. An
example of the model that is returned to the component is:

{ items: {
 APAC: [["Australia", "APAC", 630623, "0,49637,0,…,0,37905"], …,
 ["New Zealand", "APAC", 535584,"0,0,36409,…,0,102523"]],
 EMEA: [[…],…,[…]],
 Japan: [[…],…,[…]],
 NA: [[…],…,[…]]
}

Based on the model, we can now build the template. We will need to iterate on each
element of items, getting each one of the territories, where we will iterate on each one
of the arrays inside it. When inside each country we can access the value by using the
proper index such as 0 to get the country, 1 to get the territory, or 2 to get the value
for sales:

function() {
 var template = '<div class="row">' +
 '<% _.each(items, function(tVal, tKey) { %>' +
 ' <div class="col-xs-6 col-md-3 single territoryContainer"> '+
 ' <div class="category"> <%=tKey%> </div>'+
 ' <% _.each(tVal, function(cVal, countryKey) { %>' +
 ' <div class="row countryContainer"> '+
 ' <div class="col-xs-4 country"> <%=cVal[0]%> </div>'+
 ' <div class="col-xs-3"><%=formatter(cVal[2],"sales")%></div>'+
 ' <div class="col-xs-5"><%=addin(cVal[3],"sparkline"%></div>'+
 ' </div>' +
 ' <% }); %>' +
 ' </div>' +
 '<% }); %>' +
 '</div>';
 return template;
}

Chapter 6

[229]

You will see two loops that are coded using the _.each function. First, iterate for each
one of the territories and then for each one of the countries. When on the territory,
we are using the key to create an element that will have the category or territory.
When on the country, we will build three elements to display the name of country,
the sale of the year, and a sparkline that represents the value for each one of the
months for that same year.

You will notice two function formatters and add-ins, but don't worry; we are going
to cover them now.

Formatters
Formatters are very useful because, most of the time, we can't get the value
formatted from the query, as we want it to be displayed on the dashboard. Let's
suppose you have a query that can be used to get data to more than one component,
taking advantage of the already cached data. If that's the case and if you want to
display the values on a different format, then you need to handle it on the client-
side. It's also easier changing the format on the client-side than on the queries, which
can also be used by another dashboard or application. The template component has
the concept of formatters, which are functions that we can define on the component
and later use them inside the template. The values here can be numeric, a date, or a
string. This can be done using the following property of the component:

• Formatters: Used to define the formats that we may need to apply to the
values returned from the dashboard and that will be displayed on the
dashboard. When you click on the property you will get a popup where you
will have to define the identifier/name for the formatter and the function
that receives an argument, the value, and returns the already formatted
value. Let's suppose you wanted to display the numbers, not to eight
decimal places but just one. For that we would create a formatter with
the identifier/name floatFormatter and a function such as:
function(value, id){
 return Utils.numberFormat(value, '$0.0a')
}

Formatters are defined as a property. When you click on the property, you
have the ability to add as many as you want.

Tables, Templates, Exports, and Text Components

[230]

To make use of the formatter inside the template, we need to use a function
that is a formatter and receives two arguments: the value to be formatted,
and the identifier/name of the formatter to use. This is because you can
define and use multiple formatters on a template. One example of a template
that would make use of the formatter would be as follows:
function() {
 var template = '<div class="row">' +
 '<% _.each(items, function(elem) { %>' +
 ' <div class="col-xs-6 col-md-3 single">'+
 ' <%=elem[0]%><%=formatter(elem[1],"floatFormatter","")%>
'+
' </div>' +
 '<% }); %>' +
 '</div>';
 return template;
}

You can see in the code that this way we are displaying all the sales by territory, but
the values of sales are being formatted to have only one decimal place. The formatter
function is being used and called from the template.

Add-ins
We already covered the use of add-ins in the table component. They are really
useful and easy to create on the tables, and here on the template component this is
also very easy. We can create new add-ins or make use of the ones that are already
there by default. The way to apply add-ins that already exist is a bit different
from tables.

Here on the template component, since we are defining the layout for our
visualization you also need to define it on the template. You can make use of it by
using the addin function that receives three arguments, the data to be used by the
add-in that will create the visualization, the name of the add-in to use, and the name
of the column that comes from the query because the add-in may need to access the
column. Another reason to specify the ID is because, when using the same add-in
on the same template but for a different purpose, you may want to have a different
format, as is possible on the table component. Let's suppose you want to display
sparklines but using lines and bars for different purposes. By including the id, you
may do so. Just don't forget that the id must match the column name that is returned
from the query.

Chapter 6

[231]

Let's suppose you want to display sparklines like you can do on the table
component. For that you should have the string with comma-separated values, and
let's suppose that the third column of your query is returning it for you. You would
need to apply a template as follows:

function() {
 var template = '<div class="row card">' +
 '<% _.each(items, function(elem) { %>' +
 ' <div class="col-xs-6 col-md-3 single territory"> '+
 ' <div class="category"> <%= elem[0] %> </div>'+
 ' <div class="value"> <%=formatter(elem[1], "sales", "sales")%>
</div> '+
 ' <div class="addin"> <%=addin(elem[2], "sparkline",
"sparkline")%> </div>'+
 ' </div>' +
 '<% }); %>' +
 '</div>';
 return template;
}

You can see the addin function being used, passing as arguments elem[2] where the
string containing the values separated by commas is, and another argument with the
name of the add-in to use.

We may also want to change the default options for add-ins, and here it's the same as
on the table component. We need to use the setAddInOptions function to override
the default values. The function should be placed on the preExecution function of
the component:

function f(){
 var opts = {
 type: 'bar',
 height: 20,
 barWidth: 6
 };
 this.setAddInOptions("templateType","sparkline", opts);
}

Tables, Templates, Exports, and Text Components

[232]

The result of the add-in would be something similar to that displayed in the
following image:

You need to be sure that the add-in that you are using is registered, otherwise it
will not work. The add-ins that are available for the template component are not the
same; some will be available and others will not. During the writing of this book I
also created approximately ten add-ins, some of them almost a copy of add-ins used
in the table component. The following image is an example of the add-ins that can
already be used inside the template component:

Chapter 6

[233]

You can see on the image some numbers pointing to the add-ins; let's cover them
and use the numbers so that you can easily identify them. The add-ins that we
are covering for the template component are very similar to the ones on the table
component so you already have most of the information. Don't forget that these
options should be set inside the preExecution function of the component:

1. clippedText: The same as the table add-in plugin used when we have text
larger than the space we have to display it. It will show the full text when we
hover over it. The options available are:

 ° showTooltip: To show a tooltip when hovering over the text. The
default value is true.

 ° useTipsy: Use the Tipsy JQuery plugin to show a fancy and
customizable tooltip. The default value is true.

 ° applyFormat: This is a function that receives an argument that is the
value to show on the tooltip and returns the formatted value. One
example would be:
var options = {
 showTooltip: true,
 useTipsy: true,
 applyFormat: function(value) {
 return value;
} }
this.setAddInOptions("templateType","clippedText", options);

2. trendArrow: This add-in is very similar to the trend arrow of the table
component using the exact same behavior and properties. It will display an
arrow up/down and red/green depending on whether it's up/below and
whether it's a good/bad value. This is the same behavior as the trendArrow
table add-in, so please refer to the documentation. The properties are the
same:

 ° good: This property says that a good value is above the threshold
upper interval. The opposite applies if we set a value of false.
The default value is true.

 ° thresholds: Defines the up and down thresholds. The default for up
and down thresholds is zero:
{up: 0, down: 0}.

Tables, Templates, Exports, and Text Components

[234]

 ° includeValue: Used to specify that we will also see the value side by
side with the arrow. The default value is false. Here the difference
to the add-ins available on the table component is that I have used
font icons to display the arrow. Color and sizes can be changed just
by changing/overriding some CSS. By opening the trendArrow.css
file when debugging your dashboard, you will find the CSS classes
that you need to override and customize the size, icon, and color.
The following image is an example of the template add-in showing
the trendArrow pointing down or up depending on a negative or
positive trend compared to the sibling period:

3. formatted: I consider this a multiuse add-in because you can use it to easily
apply some formatting or even customize, and have complete control over,
what you will display. You can use the add-in to send HTML to the dashboard,
so it gives you great flexibility. By default, the add-in format will be applied
using one of two functions. You can format numbers and/or dates. This is
quite different from the one we have discussed for the table component; it's
simpler to use but powerful as well. The three main properties are:

 ° formatFunction: Here you should specify a string with the name of
the function that you want to use from Utils. Use numberFormat to
format a number or dateFormat to format a date. The default value is
numberFormat.

 ° formatMask: You should remember from the section where you
covered the Utils number and date formatting functions that we also
need to specify the format mask, so this property is used to specify
it. You should set a string with the format to use on the function that
you specified as formatFunction. The default value is #,#.#. To get
more information, please refer to the date and number formatting of
the CDF chapter, Chapter 3, Building the Dashboard Using CDF.

Chapter 6

[235]

 ° applyFormat: By default, the functions used are the formatFunction
and formatMask properties, so it will do the formatting based on
what you have specified for those properties. But if you want to
customize the content to display, you can overwrite this function. If
so, you need to define your own function, which needs to receive the
value as the argument and return the text/HTML to be presented on
the dashboard:
var options = {
applyFormat: function(value) {
 return '<div class='customContent'">'+value+'</div>';
 }
};
this.setAddInOptions("templateType","formatted", options);

The previous code is an example of the code to be placed on the
preExecution function of the component to extend the options, if
we want to customize the content to return to the dashboard when
applying the formatted add-in inside the template component.

4. sparkline: Allows you to use the JQuery Sparkline Plugin just like we
covered on the table component. Options should be the ones available on
the plugin; just make sure the value returned is a string, represented with
comma-separated (,) numbers. This is the only property that you will need
to define, but you can use more. You can go to the Try It Out section of the
Sparkline Plugin to check that the properties will differ from chart type to
chart type:

 ° type: It's a chart type and also a property that is passed from the
add-in to the Sparkline Plugin. Here the default is bar.
Per instance, if you need to display bars to represent the values chart
and change some of the properties you would use code such as:
var options = { type: 'bar', barWidth: 6};
this.setAddInOptions("templateType", "sparkline", options);

Tables, Templates, Exports, and Text Components

[236]

Please refer to the sparkline add-in section of the table component. You
will find all the information you need, which will also work on the template
component. The following images are also examples of what you can achieve
when using the add-in:

The previous image uses the bullet chart options, while the following image
uses the bar chart options to represent the values that should be represented:

5. hyperlink: hyperlink is an add-in that can provide links to any URI that
is recognized by the HTML and the browser. You need to return a string
with a valid URL from the query. The use is exactly the same as on the table
component, so please refer to that section to get more information. The
options are:

 ° openInNewTab: Used to open the URI on a new tab of the browser.
By default, it is set to true. When set to false it will be opened on the
same tab.

Chapter 6

[237]

 ° prependHttpIfNeeded: Used to tell the add-in to prepend the string
http:// to the URL provided when the URI does not include one.
We should avoid it when providing an e-mail address as the URI.

 ° regexp: We can provide a regular expression to check whether
the provided URL is valid. The regular expression is just to check
whether it's valid or not. If it's valid then the add-in can create the
link. By default, it's set to null, avoiding the validation.

 ° pattern: This is the regular expression that will extract the strings to
use as the label and as the URI.

 ° labelReference: Used to tell from which group index we get the
label. By default, its value is set to 0.

 ° urlReference: Used to tell from which group index we get the
URI. By default, its value is set to 1. To use the add-in, the value
returned can be something such as: [Pentaho Website][http://
www.pentaho.com], and if that's the case you will need to apply the
following options to the add-in:
var options = {
 pattern: /\[(.*?)\]/g
};
this.setAddInOptions("templateType","hyperlink", options);

6. localized: This is similar to the localizedText add-in on the table
component. Please refer to the documentation on the table component
section.

7. bubble: This add-in will draw a bubble where the size of the bubble is the
relation between the value and the minimum and maximum values for all
the rows on that same column, where the biggest bubble will be the highest
value of all. The available properties are:

 ° containerSize: Sets the size of the parent container where the
bubble will be. The default value is 30. The size of the bubble should
be returned as a percentage, which will be the relative size for the
bubble inside the parent container.

Tables, Templates, Exports, and Text Components

[238]

 ° valuesArray: This is the function used to return the array of values
where we should be searching for the max and min values, so that
we can calculate the size of the bubble. By default, it will use the
id passed when applying the add-in on the template, where the id
should match the name of the column that we want to use to get
the max and min values. Therefore, it's very important to have the
id of the column passed when making the call of the add-in on the
template. Based on the modelHandler function and the model you
are returning to the component, the valuesArray function may need
to be changed to get the proper array of values from the returned
model. The function receives an argument that is the status but, as
it's called from the radius and/or color functions that we also may
override, you may include more arguments on it:
function(st) {
 var colNames = _.map(st.data.metadata, function(elem){
 return elem.colName;
 });
 var colIdx = _.indexOf(colNames, st.id);
 var values = st.data.resultset.map(function(e){
 return Number(e[colIdx]);
 });
 return values;
}

 ° radius: The default value is a function that will calculate the size
based on the value for this same element. It accepts a function that
receives the status as an argument. From the status, we can get the
value that should be represented by the bubble, the data returned
from the query, and the id for the add-in, which should identify the
name of the column that should be used to find the min and max
values that can be used to calculate the size of the bubble. If there are
some add-ins that can work without the id being passed, this is not
the case. By default, the following code is applied:
function(st) {
 var values = this.valuesArray(st);
 var tblMax = _.max(values),
 tblMin = _.min(values);
 var value = Number(st.value),
 size = (value-tblMin)/(tblMax-tblMin);
 return size*100;
},

Chapter 6

[239]

 ° color: The color to be used for the bubble. This option accepts a
function that receives as an argument the status, where we can
find the value, all the data returned from the query, and an id that
identifies that unique add-in. The default function is:
function(st) {
 return "rgba(200, 200, 200 , 0.6)";
}

 ° showTooltip: To show a tooltip when hovering over the bubble. The
default value is true.

 ° useTipsy: Use the Tipsy JQuery plugin to show a fancy and
customizable tooltip. The default value is true.

 ° applyFormat: This is a function that receives an argument that is the
value to show on the tooltip, and returns the formatted value. The
default value is:
function(st, opt) {
 return "Value:" + Utils.numberFormat(st.value, '#,#.#');
}

 ° tipsyOptions: The options to be passed to the Tipsy JQuery plugin.
This way Tipsy can be customized. The default value is:
{ gravity: 's', html: false }

The following image is an example of the result of applying the
Bubble add-in:

Tables, Templates, Exports, and Text Components

[240]

8. bulletChart: This is used to represent a bullet chart with the values that
come from the query for that same cell. Here you need to return all the values
to use on the bullet chart, separated by a comma. The options that you have
available are all those available for CCC charts, which we are going to cover
later. The options for the chart should be set inside the chartDefinition
object. The following code is an example of how to set the properties:
var options = {
 chartOpts: {
 compatVersion: 2,
 height: 60,
 orientation: "horizontal",
 }
}
this.setAddInOptions("templateType","bulletChart", options);

When using the default properties, you get a bullet chart similar to the ones
in the following image:

9. cccChart: This add-in allows you to display any CCC chart, but it's tricky.
We will see later in this book, when we cover CCC charts, that CCC can
receive from the query any result set and still display the chart. You may
need to change some properties to have data displayed as expected. This is
the tricky part here. What is the best way to represent the data so that we can
have it represented correctly? Depending on the chart and on the properties
that you set for the chart to represent it, you may need to adapt the result
set. It would be easier to set the query, choose the chart to represent it, and
then just adapt some of the options to adapt the chart to the data format that
is returned. You may be a little bit confused with this, but do not worry,
you will get the information to understand it. For now, let's focus on the
properties that can be used to customize the behavior of the add-in:

Chapter 6

[241]

 ° type: Used to set the kind of chart to represent data. Possible values
are: BarChart, LineChart, PieChart, DotChart, StackedLineChart,
StackedAreaChart, HeatGridChart, WaterfallChart,
BoxplotChart, MetricLineChart, TreemapChart, SunburstChart,
and BulletChart. You won't need the last one since you have an
add-in capable of doing the same thing. The default value is set
to PieChart.

 ° chartOptions: Used to set the options for the chart; you should take
a look at the CCC documentation pages and check what properties
are available. You can also directly change some of the properties of
the chart and check the results. Those are the options/properties that
you can set here. One example would be:
chartOptions: {
 compatVersion: 2,
 height: 100,
 animate: false,
 crosstabMode: false,
 seriesInRows: false,
 timeSeries: false
}

The crosstabMode, seriesInRows, and timeSeries properties
are the ones that will make the difference when CCC is interpreting
the results. This will definitely change the data you are displaying.
The compatVersion is used to inform CCC that the chart should be
rendered using version 2, which has a lot of improvements and fixes.
In this case there is a property that's really mandatory, the height for
the chart. Without this one the chart will not be rendered.

 ° transformData: A function that receives the data as an argument
and returns the complete result containing the metadata and
resultset. Please refer to the Chapter 2, Acquiring Data with CDA to
get more information if you can't remember the format expected. You
won't need to include the queryInfo:
function(data) {
 var result = { metadata: [], resultset: []};
 try {
 data = JSON.parse(data);
 var colMetadata = [];
 _.each(data, function(row, index) {
 if (index == 0) {
 _.each(row, function(col, index) {
 result.metadata.push({

Tables, Templates, Exports, and Text Components

[242]

 colIndex: index,
 colName: "Col"+index,
 colType: "String"});
 });
 }
 result.resultset.push(row);
 });
 } catch(e) {
 return null;
 }
 return result;
}

The following code accepts as an argument an array of arrays. For each row we need
to add it to the new result set, and in the case of the first row, we also need to add the
metadata to it.

The following image is one example of a pie chart being displayed inside the
template component:

Events
It's also possible to handle clicks on the elements created by the template component.
You can use events to expand a particular section, to make a fireChange creating
interaction between components, or to get details for the clicked section. Since you
are creating a function, you can do whatever you need inside.

To create an event, you need to use the Events property of the component. For the
right-most value you will need to define the event that you want to handle, followed
by the selector of the element from where you want to handle the event separated
by a comma (,). On the left you will need to define the function and write the code (it
can only be a fireChange) so that other components can be notified and updated.

Chapter 6

[243]

Let's suppose that you wanted to get details for a particular territory, the one that is
clicked; the template would be like:

function() {
 var template = '<div class="row card">' +
 '<% _.each(items, function(elem) { %>' +
 ' <div class="single clickable" data-territory="<%=elem[0]%>"> '+
 ' <div class="category"> <%=elem[0]%> </div>'+
 ' <div class="addin"> <%=addin(elem[4],"trendArrow")%> </div>'+
 ' </div>';
 '<% }); %>' +
 '</div>';
 return template;
}

You can see that for each of the items/territories, we are creating a parent container
that includes data-territory attribute with the name of the territory and a CSS
class where the value set is the clickable value. The data-territory attribute will
be used to get the territory we are clicking on, and the CSS class will be used to get
the HTML element where we will attach the event.

To handle the event, we will need to add an event handler on the events property of
the component. To do it you will need to use the left field click , .territory and
the following function on the right field of the dialog that pops up:

function(event) {
 var $elem = $(event.currentTarget);
 var selected = $elem.data('territory');
 $elem.toggleClass('selected');
 this.dashboard.fireChange('selectedParam', selected);
}

Inside the function this will refer to the add-in, so on the first line we are getting
the element that we clicked on. After that, we are using the JQuery data function to
get the data from the attribute data category from where we will know which value
should be used to set the parameter value. But first, we also need to toggle the CSS
class to know which territories are selected. At the end we add a fireChange so
that the value is written to the parameter, and the components that are listening it
can be notified about the change. Don't forget that, for this to work, you will need to
create the parameter to store the selected territory name. In our example the name is
selectedParam.

Besides fireChange, you can expand the container you are clicking on and display
some more information. This doesn't need to be an element outside, as in the samples
provided with the book.

Tables, Templates, Exports, and Text Components

[244]

Extendable options
On the template component it's possible to customize the messages that you get in
the event of an error, and for that we can use the following property:

Extendable options: Accepts a function that returns the JSON object structure with
all the messages to override it. The function to return the messages, which is used by
default, is the following:

function() {
 var opts = {
 messages: {
 error: {
 noData: "No data available.",
 invalidTemplate: "Invalid template.",
 invalidTemplateType: "Invalid template type.",
 generic: "Invalid options defined…."
 },
 config: {
 style: {
 error: {icon: "remove-sign", type: "danger"}
 },
 template: ""+
 "<div class='alert alert-<%=type%>' role='alert'>" +
 " <span class='glyphicon glyphicon-<%=icon%>' aria-
hidden='true'> " +
 " <%=msg%> " +
 "</div>"
 }
 },
 };
 return opts;
}

The function will return an object with customized error messages but also the
Underscore template that is used to build the error message that will be displayed.
If you look deeper into the template, you will find that I used a Bootstrap alert
component and also made use of the icons to display on the alert. The alert type
to use and the icons are defined inside messages.config.style. It will work as
a template model where the template will act as the template and the style as the
model. If needed, you can also overwrite the processMessage function that takes
care of building the message. The function accepts two arguments, the message and
the type, and returns a string with the HTML to be displayed as a message.

Chapter 6

[245]

If you have no row to display, by default, the following will be shown:

As you can see, the template component needs to be improved, mainly by making
it easier to use, but without losing the flexibility to adapt and create new and
impacting visualizations. We are in an era where the request to have prescriptive
solutions and real-time prescriptive solutions is already a reality. I will be working
on a similar component that can have real-time results presented on a dashboard
using your custom visualization, so I am expecting to be able to have a real-time
template component in the near future.

Export button component
When presenting content on a dashboard, which uses a query to present the
content, we can make the export of the data to a specific format. It can be done only
for a component, so the results of only a query and not the full dashboard will be
exported. When using this component, you can export data to one of two formats,
csv or xls; no other format is available on this component.

The properties that you need to set are:

• Label: The label that will be displayed on the button.
• Component name: The name of the component from where to export the

data. This should be the name that you gave to the component. Since you
need to export the data from a component, you should already have a
component set and ready to be used.

• Output type: The format to export data to. Available options are the ones
already mentioned, csv or xls.

Export Popup button component
The Export Popup button component is more flexible and will let you have more
options. When using this component, the final user will have a link available where
he can click to do the exporting. When clicking on the link, the user will get a popup
with the options to export to different formats, and one option should be selected to
make the export. The formats available are the same that are available in CDA, so
you are able to export data to csv, xls, json, and xml. Besides that, if you have a
chart, the final user will also be able to export the chart to svg or png format.

Tables, Templates, Exports, and Text Components

[246]

The options that you have available are:

• Title: This is the text that will be displayed on the dashboard, where the final
user can click.

• Gravity parameter: This is used to set the position where the popup will jump.
• Chart component to export: This is the name of the chart to export. Here

you can click on the down arrow key to get the list of values and select the
component name.

• Chart export label: This is used to set the text that will be displayed and to
make possible the export of the chart.

• Chart export type: Here we need to specify the format to export the chart to.
Available options are svg or png.

• Data component to export: This is the name of the component from where
data will be exported. Here you can click on the down arrow key to get the
list of values and select the component name.

• Data export label: This is used to set the text that will be displayed and to
enable exporting the data.

• Data export type: Here we need to specify the format to export the data to.
Available options are csv, xls, json, or xml.

• Name for data export attachment: This is name of the file that will be
exported. The format will automatically be appended to the name of the file.

• Content linking: This an advanced option to present the options and set the
links that will enable the export. Per instance, when you want to be able to
export to CSV and XLS. Using the previous properties you can only specify
one format. The content linking property will allow you to specify the text to
be displayed and a function that will be executed when the respective link is
clicked. Inside this function you will be able to define the component from
where to export, the format, and the filename to export to.

When using this property, you will get a dialog where you will be able to add
options. Each new line will be an option, and for each line you need to specify an
argument and a value. On the text more to the left, you need to specify the text
to display as the link. On the text more to the right, you will need to specify the
function. Per instance, on the text to display you would set Export to CSV and the
function would be as follows:

function() {
 var comp = dashboard.getComponentByName('${c:myTable}');

Chapter 6

[247]

 var cd = comp.chartDefinition || comp.queryDefinition;
 var query = dashboard.getQuery(cd);
 query.exportData('csv', {}, {filename: "filename.csv"});
}

The first line of code will get the instance of the component with the name myTable,
whereas on the second line we get chartDefinitions or queryDefinitions.
Depending on the component, it will return the correct option, because if one is not
available we will use the other. The third line gets the information about the query,
and by using this last one we can export the data. For that we need to make use of
the exportData function that should be available for all the components that run a
query. This function accepts three arguments; the first is the export type, the second
is the overwrite options, and here you can return an empty object, and finally the
third one is an object where we can specify the filename and extension for the file
that will be exposed.

The following image is an example of what can be produced, out-of-the-box:

When doing the export, the CDA query will run again, using the same parameters
that are selected on the dashboard, and at that time it's already cached. Anyway, you
can play around a little with this. It's not unusual to have a request to have quite a
different export than we are seeing on the dashboard, so you can imagine a scenario
where you will have a component that is hidden and is not executed until an export
is requested.

Tables, Templates, Exports, and Text Components

[248]

Referring to component, parameters, and to the layout
If you go to the developer tool of your browser and inspect a CDE
dashboard code, you can see that, to the names of the components that
we set when editing the dashboard, we always prepend with render_.
So when you want to refer to the name of the component, you should
refer to the complete name such as render_myComponentName.
When you use code inside the dashboard, which is not valid
for code on external files, you can refer to the component as
${c:myComponentName}. This will be translated when the code is
sent to the browser, as it's already referring to the correct name of the
component.
This is also valid for parameters ${p:myParameterName} and for
elements on the layout by using ${h:myPlaceholderName}.
The syntax difference is the letter before the name and inside the {}.
You can use c for components, p for parameters, and h for elements on
the layout.

Text component
The text component is another component that is really simple to use. It allows you
to display text on the dashboard. This component will not trigger a query, but is still
executed as part of the lifecycle of the dashboard, so it's very useful. It can be used,
per instance, to display the user that is logged in.

Besides the properties that you already know and that are common to the remaining
components, there can also be:

• Expression: A function that should return the text/HTML to be displayed on
the element of the layout associated to this component.
One example would be:
function() {
 return this.dashboard.context.user;
}

The previous code is returning the username of the user that is using the dashboard,
but we could have returned HTML to display.

Chapter 6

[249]

Summary
By reading this chapter, you should have learned how to use the table component,
template component, export buttons, and text component. You should be able
to use the table component to display details for each one of the rows, or just
trigger some changes to other components when the user clicks on a row. You
also should have learned to apply add-ins and customize tables, understand the
capabilities provided by functionality on the server-side, or just customize what we
see displayed (and the how of it). You have also learned how to use the template
component to display data the way you need to. The template component provides
many ways to display the results of a query, customize messages, or just apply some
functions to customize formatting.

Besides the fact of learning how to use the components, you should be able to
make the most of them and be able to find the best way to present data to the user
using these two components. Hopefully you also understand what you should use,
or should avoid, so as to not decrease the performance of the dashboard, or even
queries triggered. Performance is very important.

At the end of the chapter, besides learning how to use the text component, you also
learned how to export data and the way to do it. We have covered the way to export
an image from a chart. There is a dedicated chapter for charts, as they are one of the
best ways to represent data on the dashboard.

The next chapter will cover some advanced concepts that you can use in both CDF
and CDE dashboards.

[251]

Advanced Concepts Using
CDF and CDE

Today, when we are requested to build a dashboard, most of the time we find
ourselves faced with customers who want you to make the dashboard available
in multiple languages, and to be honest, this makes sense. Why would you have
a dashboard available only in your language and not in other languages? In this
chapter, we will teach you how you can do this.

CDF and CDE provide you with some really cool components that are more
flexibility then others, and allow you to build your own visualizations, so we
will also cover these components. But for now let's suppose that you are working
with a customer who has hired you to build a dashboard but also to train his team
to build the remaining dashboards. If there is a visualization that you need to
implement/develop, you will certainly be capable of creating a delivery that includes
a custom component that they can use/reuse later. This is possible, and we are going
to cover how to do it, as well as how to extend template and table components by
creating new add-ins.

In one of the sections of the book, we also provided some information about reusing
templates and styles, and we already showed you how to create a new template, save
it, and reuse it. But we also may want to create a style, and this is the chapter where
we are going to do that.

A very interesting possibility is building a dashboard and embedding it in another
one. Do you realize how cool this could be? Just imagine creating a dashboard that
can be used a section of another dashboard, and reusing it multiple times. You must
be having some ideas already, so let's start with the chapter.

Advanced Concepts Using CDF and CDE

[252]

The topics covered include:

• Creating new add-ins for table and template components
• Making use of the template add-in for table and template components
• Creating and changing the style of the dashboards
• Using the dashboard component to reuse dashboards
• Creating new add-ins and new components
• Making use of bookmarkable parameters

References to components, parameters,
and layout elements
First, I want to start by covering one important concept in CDF, and don't forget that
concepts in CDF also extend to CDE. If you open the developer tools in your browser
and start inspecting some CDE dashboard code, you will see that the names of the
components are always prepended with render_ with the name of the components
that we set when editing the dashboard. This way, when you want to refer to a
component using its name, you should use the complete name of the component
such as:

this.dashboard.getComponentByName('${c:myComponentName}');

This would be the same as:

this.dashboard.getComponentByName('render_myComponentName');

When you use this code line inside a dashboard, where it is not valid for code in
external files, you can refer to the component as ${c:myComponentName}. This is
possible because, when using this syntax, it will be translated and replaced by the
full name of the component, so you don't need to worry about the name that CDE
may have given to it.

This is also valid for the parameters or elements created in the layout perspective.
When you use a dashboard embedded in a dashboard, like we are going to see later,
and you take a look at the code, you will see that the name will not be exactly the
same as the one you gave it. You should worry about this, because you can use the
syntax previously referred to.

Chapter 7

[253]

Since this is also valid for components, parameters, and layout elements, we should
have a way to distinguish them. This is done by changing the letter before :. You
should use a p for parameters, a c for components, and an h (from HTML) for the
layout elements, like the following:

• Components, which has already been covered:
this.dashboard.getComponentByName('${c:myComponentName}');

• Parameters:
this.dashboard.getParameterValue('${p:myParameterName}');

• Layout elements:
$('.${h:myLayoutLementName}').text('Hello World');

When you select the name of parameters, the elements of the layout, and the
component's name using the drop-down, CDE will automatically create a reference
to the proper object of the dashboard, using the correct syntax. It won't work, if you
type the name yourself nor when writing your own code. For this reason, I always
advise you to select the values using the drop-down, and select the value from the
list, otherwise you might be creating issues.

The query and freeform components
The components we have covered will give you the freedom to do almost everything
you need to do to build an amazing dashboard. However, sometimes we need to
go further, and we might be able to do this just by using the available components.
To build custom visualizations, you can also make use of the query and freeform
components, but what's the difference between them? A very frequently asked
question is where to use one or the other. So now let's answer this question and learn
how to use these components.

Advanced Concepts Using CDF and CDE

[254]

The query component will trigger a query, but you want to display some custom
content inside your dashboard. Here you can't avoid setting a valid query, so the
freeform component is useful here. The freeform component will not trigger any query
so you can use it as you want/need. You may be thinking, If it does not do anything,
why would I use it? Well, it's because sometimes you have the need to execute
some code that respects the lifecycle (a good example can be internationalization/
localization, or just adding static HTML to the page/dashboard) of the dashboard;
as with any other component, these two components have their own lifecycle. When
using require, if you add HTML elements with text directly to the layout of the
dashboard, you will see that text displayed in the first place, will give you a bad look
and feel. You can use a text component to add the HTML, which will just be added to
the page when the dashboard is being rendered.

For both, query and freeform components, you will be able to specify the priority
of execution and the preExecution and postExecution functions, as well as the
component that should be executed at the start of the dashboard, by setting true
or false in executeAtStart. For the query component, we are also able to specify
the properties datasource, parameters, and the postFetch function, which will
be executed as soon as the component gets the results, just after the preExecution
function and before the postExecution function.

So the difference between the query and the freeform components, is that, for the
query component, a data source will be used and, for the freeform, it will not. Just
use them when you need to present content that you are not able to present with any
other component provided by CDF and CDE.

The query component
As already said, we can use the query component to present custom content to the
dashboard. The properties that are available along with the common ones are:

• Result var: This is the name of the dashboard parameter that is going to be
used to store the result set from the query. This will not include the metadata,
but just the resultset itself. It will store a multidimensional array with
all the rows and columns returned. There is no default value—you should
specify the name of a parameter. When you leave it blank, no parameter
will be set. To access the parameter that could be named myResultset, you
should use the same methods as for any other parameter in the dashboard, as
in the following code:
var data = this.dashboard.getParameterValue('${p:myResultset}');

Chapter 7

[255]

• Asynchronous mode: This tells us that the component should work in an
asynchronous way. The default value is true and, when set to false, only
after the component's rendering is complete, the components with a low
priority (higher values) will be executed. My advice is to always use the
default value. Pretty much, the property is there to retain compatibility with
older versions of dashboards/components, so keep this property set to true.

You can also get more details on Pedro Alves' blog at the following links:

• http://pedroalves-bi.blogspot.co.uk/2012/11/making-cdf-calls-
asynchronous.html

• http://pedroalves-bi.blogspot.co.uk/2013/01/cdf-async-support.
html

Let's suppose that you wanted to display the product line to be displayed as an
accordion, where for each product line item we display the products and sales for
that same line. There is no component, out of the box, that would build what was
described in last sentence. Anyhow, you can build a custom component if you want
to use it multiple times in multiple dashboards; otherwise you can just use the query
component. The reason for using the query component is because the results that
are going to be displayed come from a query, and we still don't have them in
the dashboard.

http://pedroalves-bi.blogspot.co.uk/2012/11/making-cdf-calls-asynchronous.html
http://pedroalves-bi.blogspot.co.uk/2012/11/making-cdf-calls-asynchronous.html
http://pedroalves-bi.blogspot.co.uk/2013/01/cdf-async-support.html
http://pedroalves-bi.blogspot.co.uk/2013/01/cdf-async-support.html

Advanced Concepts Using CDF and CDE

[256]

We could use the query component in one of two ways. The first way is to use the
variable to create and write the elements to the page on the postExecution function,
only after postFetch. The following code is an example of creating the accordion
with the accordion from JQuery UI (more information is available at: https://
jqueryui.com/accordion/):

function() {
 var data = this.dashboard.getParameterValue('${p:myResultset}');
 var $placeholder = this.placeholder(),
 $accordion = $('<div id="accordion"></div>'),
 productLines = _.groupBy(data, function(elem) {
 return elem[0];
 });
 _.each(productLines, function(products, line) {
 $accordion.append('<h3>'+line +'</h3>');
 var $content = $('<div class="container"><p></p></div>');
 _.each(products, function(product) {
 var values = product[1] + ': ' +
 Utils.numberFormat(product[2], '$#,###.0');
 $content.find('p').append('<div>'+ values + '</div>');
 });
 $accordion.append($content);
 });
 $accordion.accordion({
 heightStyle: "content"
 });
 $placeholder.empty().append($accordion);
}

In the previous code, we are getting the result of the query and iterating on each
product line, and for each line we are also iterating on the products. This way, we
can write the elements to the page. At the end of the code, we are using the accordion
plugin and rendering it in the dashboard.

The other way is to use postFetch directly, making use of the argument that is
passed. If that was the case, then you will not need to define the variable data,
just specify it as argument of the function; where you have data, it will be data.
resultset. Don't forget that, when in postFetch, we should return data to the
component.

https://jqueryui.com/accordion
https://jqueryui.com/accordion

Chapter 7

[257]

The freeform component
If you have a component that already has the result of a query that fits your need
or you just want to render some content in the dashboard that does not depend on
the result of a query, you can use the freeform component. The advantage is that
the component has its own lifecycle and will be perfectly synced with the lifecycle of
the dashboard. You can change the priority of execution, and add code for pre-
or post execution.

A property that is different from the other components is:

• Custom script: This will accept a function with the code to be executed, just
after preExecution and before postExecution. For this case, and supposing
that you had a query component execution before this one, you could use
the same code here in the custom script. This would grab the result from the
parameters and the same code would be used to build the content for the
dashboard.

Even simpler would be a case where you needed to have the freeform component
performing fireChange to a parameter based on some actions that can be controlled
by the lifecycle of the dashboard.

As the component will not make use of a query, you should already have figured out
that it will not make a call to postFetch.

Creating add-ins
We have seen that both the table and template component can make use of add-ins.
We can also extend CDF and create new add-ins that can be added to the dashboard.
You should always be aware that when using it on a table component the add-in will
be used for the cell of the table, so be cautious about what you are showing for each
cell, so that the table does not become hard to read due to excessive information.
Just because dashboard users get information from a dashboard does not mean you
should present excessive information.

To add a new add-in you just need to write a few lines of code and some properties,
create a new instance of an add-in, and register it to the dashboard. The definition of
the add-ins will be set using a JSON structure with the following elements:

• name: This is the name/identifier given to the add-in, which will be used to
reference it. This field is mandatory and accepts a string.

• label: This will be the description of the add-in. It accepts a string.

Advanced Concepts Using CDF and CDE

[258]

• defaults: Here we need to set another JSON structure with the default
properties of the add-in. These properties are the ones that may be
overwritten later when setting the properties of the add-in. For example,
for the sparkline add-in, it may have the type set as line but later we may
want to use a bar.

• init: This is used to execute some code once the add-in is requested. Some
preparation code can be executed here. When defining an add-in that will be
applied to a table, we also need to specify the sort functions, and the right
place to do it. It accepts a function and accepts no arguments.

• implementation: This is a function where the code of the implementation
will be added. The function receives three arguments:

• target or tgt: As you will see in the following example, it's a reference to
the HTML element where we will be rendering the content to be displayed.

• status or st: As you will see in the following example, it's an object where
we can find the value to be used. The information that will be available
inside this argument will depend on the component that is using the add-in.
For instance, when used in a table, we may have access to the index of the
column (colIdx) and the index of the row index (rowIdx) being processed.
Since in some cases we may be using a hierarchical structure, we will have
access to the add-in identifier (id) that is being passed when the add-in is
used in the template. For both cases, independently of the component, we
will have access to the complete dataset or model (data when in the table
component and model when in the template component).

• options or opt: Like you will see in the following example, these are the
options set by the developer to customize the appearance and/or behavior of
the add-in. We should use them if we want to extend the default options.

Let's see what the code would be for an add-in created to be used in a table and
another for the template component. Let's suppose you want to create an add-in
to format the values that are going to be displayed in the dashboard. For this, you
need to use the numberFormat function under the CDF utilities, which was already
referred to in this book as Utils. We should not forget to include the module.

To create and include a new add-in in your dashboard, you will need to add a new
resource, using the layout perspective, and give it a name. After setting the name,
you should place the code inside it, something like:

define(['../../../AddIn','../../../Dashboard',
 '../../../dashboard/Utils','../../../Logger',
 '../../../lib/jquery','amd!../../../lib/underscore',
 'amd!../../../lib/datatables'],

Chapter 7

[259]

function(AddIn, Dashboard, Utils, Logger, $, _) {
 var formatted = {
 name: "numberFormat",
 label: " numberFormat",
 defaults: {
 formatMask: '#,#.#'
 },
 init: function() {
 $.fn.dataTableExt.oSort[this.name+'-asc']=
 $.fn.dataTableExt.oSort['string-asc'];
 $.fn.dataTableExt.oSort[this.name+'-desc']=
 $.fn.dataTableExt.oSort['string-desc'];
 },
 implementation: function(tgt, st, opt) {
 var opts = $.extend(true, this.defaults, opt),
 Value = Utils.numberFormat(st.value, opts.formatMask);
 $(tgt).empty().text(Value);
 }
 };
 var addin = new AddIn(numberFormat);
 Dashboard.registerGlobalAddIn("Table", "colType", addin);
 return formatted;
});

In the previous code, first we are using require to create the add-in, including all the
modules (JavaScript and CSS). When all modules are there, we need to start creating
the code for the add-in. We start by creating a JSON structure, the name, label, and
defaults as well as the init and implementation functions. The name will be the
identifier of the add-in, in this case the formatter. For the defaults, we are defining
the format mask, which will be applied when no other format is passed to the add-in.

The init function is being used to define the sort functions of the jQuery
Datatables plugin. This will only be used by the add-ins that we create and apply
for the tables. It will not break if applied to the template; it will just not be used.

The implementation function has the code that will be executed every time it's called
by the table or by the template components. On the first line of the implementation
function, we are extending the default options with the options that may be passed to
the add-in on the pre-execution of the component. On the second line, we are setting a
variable with the format, which is defined in the options and applied to the value that
we can grab from the status. Here, using jQuery, we are cleaning the actual content
that might be there and writing the already formatted value.

Advanced Concepts Using CDF and CDE

[260]

After this is complete, and now that we have the formatted JSON with the definition of
the add-in, it's time to create a new instance of the add-in. And last, we are registering
the add-in in the dashboard and as available as a column type of the table.

When developing the add-in for the template component, there are two main
differences between the add-in for the table component. One difference is that we
would not need to define the sort function inside the init function, because that
may not make sense when applying a template. That way, we would also not need
the datatables module.

The other difference is when registering the add-in for the dashboard. As you can
see in the following code line, we are registering it to be used for the template
component. Just look at the first two arguments of the function. We are using
Template and not Table, as we are also using templateType and not colType:

Dashboard.registerGlobalAddIn("Template", "templateType", addin);

The template add-in
There is one other add-in that was not covered, and it's available for the template
component but also in the table component. The way it works is pretty much the
same as the template component.

There are three ways for the add-in to use the data being processed. The first one
is by working on the query to return a string with the JSON structure that will be
parsed by the default modelHandler function. There is another way: overwriting the
modelHandler function by writing your own code and returning a custom and valid
JSON structure as the model. If none of the earlier options return valid JSON, then
the value will be treated as a string. Please refer to: http://www.json.org for
more information.

Just use the method that you are most comfortable with, prepare everything in the
query/backend, or use the available function to return a valid model that can be
applied to the template being defined.

The way to apply options to the add-in is the same as already covered for the other
add-ins, and the ones available are:

• templateType: You must select the template engine to use. Those currently
available are underscore and mustache. The last one is the default value.

• template: This is the template to be used.
• rootElement: This is the name/key that will wrap the model/value being

processed.

http://www.json.org

Chapter 7

[261]

• formatters: This accepts a multidimensional array. Each formatter will be
represented by an array that will have two elements. The first element will
be a string with the name of the formatter and the second will be the function
that accepts two arguments: the value to be formatted and the identifier of
the add-in being executed. It should return the formatted value.

• events: This is similar to the last option, and here it accepts a
multidimensional array. Each event will be an array with two elements. The
first element is a string that has the event being handled and the selector of
the element, separated by a comma (,). The second element is a function with
the code to execute when the event is triggered in the selected element. The
function accepts one argument that is a reference to the event itself, just like
writing a function such as a regular JavaScript event.

• modelHandler: This is a function that accepts data being processed by the
component. The function is used to return a valid model to be rendered in
the template of the add-in.

• postProcess: This is a function where you can write some code after the
elements are rendered on the page.

For any of these functions, please refer to the template component documentation to
get more information:

var templateOpts = {
 templateType: 'underscore',
 template:
 '<% _.each(items, function(value, idx) { %>' +
 ' <div class="row clickable productLine" data-
id="<%=value[1]%>"> '+
 ' <div class="category"> <%= value[1] %> : </
div>'+
 ' <div class="value"> <%= formatter(value[2],
"abbreviation") %> </div>'+
 ' </div>' +
 '<% }); %>',
 formatters: [["abbreviation",function(value, id) {
 return Utils.numberFormat(value, '$0.0A');
 }]],
 events: [["click, clickable.productLine", function(event){
 alert('You clicked: '+$(this).data('id'));
 }]],
 modelHandler: function(data, opt) {
 var model = {};
 model.items = data;
 return model;

Advanced Concepts Using CDF and CDE

[262]

 },
};
this.setAddInOptions("templateType","template", templateOpts);

You may also apply the options and use this add-in in the template component so
you just need to apply the options in the template and make a call to the add-in of
the template using the following instruction:

this.setAddInOptions("templateType", "template", options);

In this code, you will see that we are setting the options to be used by the template
add-in. First we are setting the template type, which for our case is underscore.

You will also see the template and, inside it, you will find a call to the formatter.
We are passing two arguments to the formatter: the value to be formatted and
the name of the function to be used. We could and should also specify another
argument (a third one) that is the identifier and is useful when we want some
conditional formatting.

We can have multiple formatters, so we need to define them as a multidimensional
array. Each element of the parent array will have two elements: the first one is the
name of the function and the second one is the function that is executed when the
formatter is used inside the defined template. The second element, the function,
accepts two arguments: the value to be formatted and one identifier. The identifier
is really useful if we need to define a formatter that can be used multiple times with
different options for the same template.

We can also see that we are specifying an event, and to do so we are specifying
one array with one event and one Document Object Model (DOM) element. The
events will also accept a multidimensional array and, once again, each element of
the main/parent array will have another two elements. The first element is the event
and the selector, which identify the target in the HTML, while the second one is the
handler function triggered when the event is fired. The first and second elements of
the array should be separated by a comma (,).

In the previous sample code, we are just showing an alert message with the product
line where we are clicking. The last option is modelHandler, where we are returning
the array wrapped in a JSON structure where the root element is items, used in the
template. The last instruction registers the options for the add-in.

Take a look at the examples of dashboards provided with the book, and you can get
a clear idea of how it works. Anyhow, it's the concept that we covered earlier for the
template component, but applied to a table add-in.

Chapter 7

[263]

Extending CDF and CDE with new
components
When we covered the query component, you must have been asking: If I want to
use this for multiple dashboards, do I need to apply my own code over and over
again for every dashboard? The answer is, no. With the custom components, you are
perfectly able to create components that can be reusable in CDF or in CDE.

What changes between CDE and CDF, is that, for CDE, you also need to include a
XML file with the information about what should we see in the dashboard editor.
Let's see how can you create your custom components.

Extending CDF
I would like you to consider two different kinds of components: those that allow
filtering and those that allow you to display data in the dashboard. Of course, the ones
that display information can also be used as selectors, but just add functionality to
those that are really to allow visualizations of data on the dashboard.

You should remember from Chapter 3, Building the Dashboard Using CDF, that
components can run asynchronously among those with the same priority of
execution. If they have different priorities of execution, then they will run
synchronously.

It's important to realize that, when I am talking about asynchronous execution, what
I am really saying is that simultaneous AJAX requests will be executed, but the
browser only allows a limited amount of concurrent calls, so they may be divided
into multiple batches. That will depend on the number of components and the limit
of simultaneous calls for the browser being used.

To be able to take advantage of some concepts of the Object-Oriented Programming
(OOP) languages, CDF makes use of libraries that ease the pain of OOP in JavaScript.
One of them is Base, which can be found at http://dean.edwards.name/
weblog/2006/03/base/. This is a simple class and extends the object Object by
adding two instance methods and one class method.

http://dean.edwards.name/weblog/2006/03/base/
http://dean.edwards.name/weblog/2006/03/base/

Advanced Concepts Using CDF and CDE

[264]

When creating a new component, you should be sure to create it in a way that
it can run synchronously or asynchronously. This can be achieved by extending
from existing classes. The UnmanagedComponent class is one of those cases. It
already inherits from BaseComponent, which also inherits from Base class, so a
lot of properties and methods/behaviors can be inherited. To take advantage of
the existing base classes, we need to use UnmanagedComponent. This means that
UnmanagedComponent is an advanced and more complete version of BaseComponent.
It allows you to have control over the lifecycle when implementing components.

When using UnmanagedComponent, the class will make the calls to preExecution,
postExecution, and even to postFetch when triggering a query. This will also
make sure the listeners are handled and that the parameters are sent to the queries
when the component is executed. This way, the calls to these functions are entirely
the responsibility of CDF, and the component doesn't need to worry about them.

There are three functions that we can use when creating a component, and one of
them needs be used. They are:

• synchronous: This implements a synchronous lifecycle identical to the core
CDF lifecycle

• triggerQuery: This implements a simple interface to a lifecycle built around
query objects

• triggerAjax: This implements a simple interface to a lifecycle built around
AJAX calls

Creating a Hello World! component would be something like:

define(['cdf/components/UnmanagedComponent','amd!cdf/lib/underscore'],
function(UnmanagedComponent, _) {
 HelloWorldComponent = UnmanagedComponent.extend({
 update: function() {
 var render = _.bind(this.render,this);
 this.synchronous(render);
 },
 render: function(data) {
 var message = this.message || 'Hello World!';
 this.placeholder().empty().text(message);
 }
 });
 return HelloWorldComponent;
});

Chapter 7

[265]

This example code doesn't make use of a query, so this.synchronous(render)
should be used. Managed automatically by the CDF lifecycle, the render function
will be called just after preExecution and before postExecution. In the example,
the render function is being called using the synchronous function. The render
function will show the Hello World text if a property message is not defined
in the component.

In the following example, we are making use of a query to show the result of the
query. Here this.triggerQuery(this.queryDefinition, render) will be used,
so postFetch will be also called, just before the render function, where we are
making use of the data that we fetched. Inside the call of the query function, you
can see that we are making use of the definitions of the data source/query for this
component, so the definitions will be used to trigger the correct data source/query.

define(['cdf/components/UnmanagedComponent','amd!cdf/lib/underscore'],
function(UnmanagedComponent, _) {
 ShowResultComponent = UnmanagedComponent.extend({
 update: function() {
 var render = _.bind(this.render,this);
 this.triggerQuery(this.queryDefinition, render);
 },
 render: function(data) {
 this.placeholder().empty().text(JSON.stringify(data));
 }
 });
 return ShowResultComponent;
});

The queryDefiniton object should look like the following, where dataAccessId is
the identifier of the CDA datasource defined, and file will by default point to the
same name and folder as the dashboard:

{
 dataAccessId: 'myQuery',
 file: '/path/to/my/datasourceDefinition.cda'
}

Since the methods (synchronous, triggerQuery, and triggerAjax) expect a
callback that handles the actual component rendering, the conventional style is to
have that pointing to a redraw/render function. Also, to follow the standards we
should use the bind function, as you can see in the two previous examples. This
function will ensure that, inside the redraw/render callback, these point to the
component itself.

Advanced Concepts Using CDF and CDE

[266]

Now let's suppose you want to create some kind of a select component and you may
want developers to be able to make use of a values array and not a query. If that's the
case, you can switch between static values and the result of a query:

define(['./UnmanagedComponent', 'amd!../lib/underscore'],
function(UnmanagedComponent, _) {
 ShowResultComponent = UnmanagedComponent.extend({
 update: function() {
 var render = _.bind(this.render, this);
 if(this.valuesArray && this.valuesArray.length > 0) {
 this.synchronous(render, this.valuesArray);
 } else {
 this.triggerQuery(this.queryDefinition, render);
 }
 }
 render: function(data) {
 this.placeholder().text(JSON.stringify(data));
 }
 });
 return ShowResultComponent;
});

In reality, we have been acting on modules where the components are defined. We
can include the component in the dashboard, or we can make it available for CDF
in such a way that all dashboards will have access to it. You can have your custom
components inside the Pentaho Repository—just create a folder such as /Public/
cdf/components, and place your components there. For instance, you should save
the code of the first example provided for this section, Hello World, in a file called
HelloWorldComponent.js, so you can use it later in dashboards.

Now let's take a look at how you can make use of that same component, the custom
Hello World. You will need to build a CDF dashboard like the one you can see here:

<div id="showTextHere"></div>
<script language="javascript" type="text/javascript">
 require([
 'cdf/Dashboard.Bootstrap',
 CONTEXT_PATH + 'api/repo/files/public/cdf/components/HelloWorld/
HelloWorldComponent.js'],
 function(Dashboard, HelloWorldComponent) {
 dashboard = new Dashboard();
 dashboard.addComponent(new HelloWorldComponent({
 name: "HelloWorld",
 type: "HelloWorldComponent",

Chapter 7

[267]

 htmlObject: "showTextHere",
 message: "Hello World",
 executeAtStart: true
 }));
 dashboard.init();
 });
</script>

You will see that we are requiring a resource using the Pentaho Repository API,
and from there we just use any other component. Don't forget that , as it's a
CDF component, you could also define and make use of the preExecution and
postExecution functions, like you can for any other component.

When creating a component that acts like a filter, when an action is triggered (such as
a click on the Apply button), it will change the parameter to store the selected values.
We should make use of the following code:

this._value = selectedValues;
this.dashboard.processChange(this.name);

In this code, we can see the first line where we are setting the selected values of an
internal variable _value, which will be used later to get the values that were selected.

The processChange function accepts an argument that is the name of the component
making the call, and it's responsible for grabbing the selected values. This is done
by calling the getValue function, so this function should also be defined in the
component code.

Here is one example of the getValues function:

getValue: function() {
 return this._value;
},

You can see that the getValue function is just returning the values that were selected,
so that the processChange function can proceed with its work. The processChange
function now knows the values that have been selected, so it will make a call to
preChange from the component if it exists, do the fireChange function using the
parameter defined for the component, and call the postChange function.

We don't need to worry about calling preChange, fireChange, and postChange; we
just need to define the getValue function and call the processChange function. The
dashboard lifecycle will take care of the rest for you.

Advanced Concepts Using CDF and CDE

[268]

Extending CDE
Now that we have a component working as a CDF component, we can also extend
CDE to use that same component. We already saw that CDE is provided by a
friendly interface that allows you to build the dashboard. But CDE needs to know
what components are available, what properties may be used, and which types of
values are accepted for each one of the properties.

The big difference between a CDF and a CDE component is that a CDE component
is also provided with some kind of a metadata file that should be specified using
XML. Reading this XML file is the way that the server knows how to build the editor
HTML page that will be rendered by the browser.

You should give the same name to the file as for the component; that way, if you
have multiple components inside the same folder, you will know which component
belongs to which file. Another reason is because you can use different folders for
the XML and JavaScript/CSS files. You have names that can identify them and will
make your life easier, not only for you, but also for someone in your team who needs
to understand them. For our example, we will show you the folder structure that we
can have. But you should find out what the best approach is for you.

The XML file with the definition of the component should also be placed inside the
folder /Public/cde/components. The main structure of the file will be similar to:

<?xml version="1.0"?>
<DesignerComponent>
 <Header>
 <Name>Hello World</Name>
 <IName>HelloWorld</IName>
 <Description>Hello </Description>
 <Category>OTHERCOMPONENTS</Category>
 <CatDescription>Others</CatDescription>
 <Type>PalleteEntry</Type>
 <Version>1.0</Version>
 </Header>
 <Contents>
 <Model>
 <Property>title</Property>
 <Property>executeAtStart</Property>
 <Property>htmlObject</Property>
 <Property name="parameters">xActionArrayParameter</Property>
 <Definition name="chartDefinition">
 <Property type="query">dataSource</Property>
 </Definition>
 <Property>preExecution</Property>

Chapter 7

[269]

 <Property>postExecution</Property>
 <Property>postFetch</Property>
 <Property>parameter</Property>
 <Property>tooltip</Property>
 <Property>listeners</Property>
 <!-- START: Template Component Properties -->
 <Property>message</Property>
 <!-- END: Template Component Properties -->
 </Model>
 <Implementation>
 <Code src="HelloWorldComponent.js"/>
 <Styles>
 <Style src="style.css" version="1.0">Style</Style>
 </Styles>
 <Dependencies>
 <Dependency src=" lib.js" version="1.0">Library</Dependency>
 </Dependencies>
 <CustomProperties>
 <DesignerProperty>
 <Header>
 <Name>mesage</Name>
 <Parent>BaseProperty</Parent>
 <DefaultValue>Hello World</DefaultValue>
 <Description>Model Handler</Description>
 <Tooltip>Message to display.</Tooltip>
 <InputType>String</InputType>
 <OutputType>String</OutputType>
 <Order>0</Order>
 <Advanced>false</Advanced>
 <Version>1.0</Version>
 </Header>
 </DesignerProperty>
 </CustomProperties>
 </Implementation>
 </Contents>
</DesignerComponent>

You will get a lot of examples in your Pentaho solutions folder, under the CDE
plugin folder, and inside the following folder: <your pentaho folder>/pentaho-
solutions/system/pentaho-cdf-dd/resources/custom/components. This is
where CDE components are placed, so you can have access to all the sources of all
the CDE components.

Advanced Concepts Using CDF and CDE

[270]

Based on the knowledge that you have about using the lifecycle and the CDE
components, the example code we just gave is almost self-explanatory. An important
part is that we have a main tag <DesignerComponent> where we set all the other
definitions. Inside it we will have headers and content.

In the <Headers> tag we are setting the name, description, and category/group for
the component, where the following properties are being used:

• Name: The name of the component.
• Iname: The interface name of the component, which is very useful for a

legacy dashboard. It should not have any special characters or blank spaces.
It would be a good practice to set it with the same name as the RequireJS
module.

• Description: This is just a description of the component.
• Category: This is the ID of the group where the component will become

available. Another way to say this is to set the group of the layout
perspective where we can select this component from.

• CatDescription: This is the description of the category where the
component will be available.

• Version: This is just a number that you can use to specify the version of the
component.

In the <Contents> tag, we are setting:

• Model: This is where we have defined the properties that will become
visible when using the layout perspective and when the component has been
selected. In the previous example, you will find the following properties
that you already know: title, executeAtStart, htmlObject, parameters,
preExecution, postExecution, postFetch, tooltip, listeners, and
chartDefiniton, where you can find the dataSource to be used. If defining
a select component, it would also make sense to have preChange and
postChange.

Chapter 7

[271]

A property that you don't really know is the message property, which we need to
specify in the tag <CustomProperties> , which we will cover as follows:

• Implementation: Here you will find the definition of the component. The
previous example code shows two properties in the <Implementation> tag;
the first one supportsLegacy is used to make the component available for
a legacy dashboard. Since it's not the purpose of this book to cover legacy
but only a RequireJS dashboard, we have set this property to false. As the
component should work in RequireJS dashboards, we have set supportsAMD
to true. The renaming tags are:

 ° Code: This property is where we specify the path and filename of the
JavaScript file where the code for the component will be placed.

 ° Styles: This is a tag where you will have all the styles (CSS files) that
should be loaded with the dashboard. The <Style> tag will have two
properties: the src attribute where you should specify the path and
filename of the CSS file to load, and version where you can set the
version number (not mandatory). You can add as many <style> tags
as you want pointing to CSS files.

 ° Dependencies: This is where you can specify the JavaScript files
that should be loaded with the dashboard. If you need to use some
third-party libraries/plugins, you need to specify them here. Like
the styles tag, there are two properties: one to point to the file
to be loaded and another to set the version. You can use multiple
dependencies when setting multiple <Dependency> tags, as you can
see in the previous example.

 ° Order: This is a number that will set the order that should be used
when displaying the list of properties.

 ° Advanced: This property only becomes available when we click on
Advanced Properties when setting the values of the properties of
the component while using it in the layout perspective. It needs to be
true or false. Setting it to true will make it available as an advanced
property.

 ° Version: This property is a number inside double quotes where you
can set the version.

 ° Custom properties: The definitions of properties in the model tag are
already defined, but not the custom properties we are creating for
this specific component.

Advanced Concepts Using CDF and CDE

[272]

These custom properties are enclosed inside the header tag, and the ones that you
need to define are:

• name: This is used to set the name of the component.
• parent: This is the parent property. It should be set to BaseProperty, as it's

part of the component.
• DefaultValue: This is the value that will be used and is visible by default. It

may be changed.
• Description: This is the description to display in the property, like a label.
• Tooltip: This is a tooltip that a CDE Editor user will get when hovering over

the name of a property.
• InputType and OutputType: These two properties are related to the property

type:
 ° InputType is used by CDE to know what kinds of visual input

element will be provided to the user. For instance, when you click to
set a value on a postExecution property, you get a dialog where you
can write your JavaScript code. When setting parameters, you get
multiple pairs of input boxes where you can select a value or write
one. This input type is also used for validation of the values that are
being set for the property. You can see the Input type as the behavior
that CDE should exhibit in order to allow the input of a value(s).
Here, the number of options is big, but we can restrict them to just
the most important.

 ° OutputType is the JavaScript data type that will be used to store the
value(s) specified for the property. Here, the options to set are pretty
much: String, Number, Boolean, Array, Function, and Object.
Now let's see what options for the input and output property types
are available, and how they combine with each other:

Input Type Output
Type

Description

String

Integer

Float

Integer

Boolean

String
Number
Number
Number
Boolean

Basic input types and mapping. The input will be
validated depending on InputType. The Boolean
input type will also allow you to select between true
and false.

Chapter 7

[273]

Input Type Output
Type

Description

JavaScript Function This will open a dialog where you can write the
JavaScript code.

ValuesArray Array Displays a dialog like the one used in parameters.
It allows you to combine a pair of values:

EditorValuesArray Array This is like the last one but, in the column to the
right, it is possible to write JavaScript code, not just
a string or number. Extension points, which we will
cover later, are an example.

Array Array This displays a dialog where you can add multiple
values. Vertical input boxes will be displayed.

ColSortableArray Array This is similar to the last one, but the values will be
sortable. So you can change their order.

HTML String This allows you to write HTML code. This will be
translated to a string, so the advantage is that you
will get a friendly interface to do it.

Advanced Concepts Using CDF and CDE

[274]

You can find a lot of examples in the XML files under resourses/base/properties
and resources/custom/properties. Just look under the system/pentaho-cdf-dd
plugin folder.

Another way to load styles and dependencies is by setting them in the RequireJS
dependencies. The HelloWorldComponent.js file; if you compare it with the code
used in CDF, you will see the same, so a CDE component is pretty much a file that
can be as follows:

define(['cdf/components/UnmanagedComponent','amd!cdf/lib/underscore'],
function(UnmanagedComponent, _) {
 ShowResultComponent = UnmanagedComponent.extend({
 update: function() {
 var render = _.bind(this.render,this);
 this.triggerQuery(this.queryDefinition, render);
 },
 render: function(data) {
 this.placeholder().empty().text(JSON.stringify(data));
 }
 });
 return ShowResultComponent;
});

Extending or creating new dashboard
types
CDF also provides three types of dashboard that you can use when creating a CDF
dashboard. It's also possible to extend the functionality of CDF and create new
dashboard styles. The three dashboards types that are available out of the box are:

• Clean: When using this, the dashboard does not load any CSS—it's just an
empty container. It might create some more work, but it also gives you more
flexibility and enables a high level of customization. The way to use this
dashboard is by setting the module in the modules dependency of RequireJS.
The instruction should resemble: require(['cdf/Dashboard.Clean'],...)

• Blueprint: When using this, the dashboard loads the blueprint CSS
framework, which you can find at http://www.blueprintcss.org/. You
can use its classes easily without including any more resources. The way
to use this is with an instruction, such as: require(['cdf/Dashboard.
Blueprint'],...)

http://www.blueprintcss.org/

Chapter 7

[275]

• Bootstrap: Last but not least. When you use this one, the dashboard loads
the Bootstrap framework, which is my preferred framework as it provides
more flexibility when applying styles to the layout of your dashboards. This
is a very well-known and popular framework that you can find at http://
getbootstrap.com/. The way to use it is by setting it as a dependency/
module using RequireJS: require(['cdf/Dashboard.Bootstrap'],...)

The great advantage of having a dashboard type is that you or other developers can
include some CSS and/or JavaScript frameworks and libraries that you might want
to use in all the dashboards. Don't forget that you should be careful when doing this
because, if you are loading resources that will not be used, you are just decreasing
the load time and other resources.

But how do you create a new type? To create a new type, you should define
a new require module. Just create a new JavaScript file and give it the name
myCustomDashboardType.js. You just need also to include all the dependencies
that you will need for your dashboards. There is one module that is mandatory and
that you can't avoid: the Dashboard module/dependency. You can include that
dependency and all the others you need, as follows:

define(['./Dashboard'], function(Dashboard) {
 return Dashboard;
});

The example just provided will produce the same result as the Clean dashboard
type, because it does not include any other modules/frameworks/dependencies.

Let's suppose you also want to extend the Dashboard module with some methods,
options, and so on. You can just do something like:

define(['./Dashboard'], function(Dashboard) {
 return Dashboard.extend({
 someCustomCode: function() {
 //...
 }
 });
});

The dashboard will now have access to the function and can be used as: dashboard.
someCustomCode().

http://getbootstrap.com/
http://getbootstrap.com/

Advanced Concepts Using CDF and CDE

[276]

You can require the dashboard type by providing the relative path to it. Let's
suppose the dashboard type is in the same folder as the dashboard HTML file,
and you can just use the name myCustomDashboardType when requiring. See the
following example:

require([' myCustomDashboardType'], function(Dashboard) {
 var dashboard = new Dashboard();
 dashboard.init();

 dashboard.someCustomCode ();
});

It is not possible to apply or extend these types to a CDE
dashboard
At this time, creating a new dashboard type, it's only available
to CDF dashboards, and cant' be applied to CDE dashboards.
Inside CDE, you can choose the dashboard type from three
options, but you cannot add more types there.

Creating a new dashboard style/template
Besides the dashboard type, we can also specify a dashboard style that will somehow
work as a template wrapper for the dashboards. Here you can include some scripts
or just HTML; you can define what is valid for an HTML file.

Extending styles for CDF dashboards
We saw earlier that when creating a CDF dashboard, we should specify the style in
the XCDF file similar to <style>clean</style>. This will instruct CDF to make use
of a particular template/style for our dashboard.

By default, the templates are inside a folder in the filesystem, in the plugin itself. The
folder is <baserver>/pentaho-solutions/system/pentaho-cdf. When we create
styles/templates, we need to have them in one place that is accessible for multiple
projects, if needed; however, if we place them in the same folder as the default ones,
they will be overwritten on the next update of the plugin. To avoid this, it's possible
to place our own templates in a folder, inside the Pentaho Repository, that will not
be lost when updating the plugins. It should be created in a folder as: /public/cdf/
templates, and all the styles/templates will become available for the dashboards.

The name of the file should be: dashboard-template-myTemplate.html; when
setting it in the XCDF file dashboard, we should exclude the prefix dashboard-
template. The tag inside the XCDF will be <style>myTemplate</style>.

Chapter 7

[277]

But how should we define the template? To answer that, let's look at the following
example, which is exactly the same as the clean template:

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8"
/>
 <title>Ctools Book Samples</title>
 <meta name="keywords" content="" />
 <meta name="description" content="" />
 </head>
 <body>
 {content}
 </body>
</html>

You can see that this is pretty much an HTML page where you can also add
CSS and JavaScript files, and CSS code—well, everything you can have on an
HTML page you can also have here. The magic is the expression {content},
which represents the area where the specific code for each one of the dashboards
will be placed. This expression will be replaced by the HTML, again including
JavaScript and CSS code, from the file that is defined in the template element,
such as <template>myFirstDashboard.html</template>. So the code inside
myFirstDashboard.html will be replacing the referred expression, generating a
complete HTML page for your dashboard, the file that will be used by the browser to
render the web page with the dashboard.

So, when creating our first dashboard with the example code we saw previously, the
browser would render similar to the following code:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8" />
 <title>Ctools Book Samples</title>
 <meta name="keywords" content="" />
 <meta name="description" content="" />
 </head>
 <body>
 <style>
 </style>

Advanced Concepts Using CDF and CDE

[278]

 <div class="container-fluid">
 <h1>My first dashboard!</h1>
 </div>
 <script language="javascript" type="text/javascript">
 var dashboard;
 require(['cdf/Dashboard.Clean'],
 function(Dashboard) {
 dashboard = new Dashboard();
 dashboard.init();
 }
);
 </script>
 </body>
</html>

Extending styles for CDE dashboards
It's also possible to extend CDE with new styles/templates. The way to create them
is pretty much the same, except for the name and the folder where they should
be saved. CDE templates should be saved inside /public/cdf/templates and
the names are simple. As we can have legacy and require dashboards, we may
need to specify two different files, one for the legacy and the other one to be used
when building a require dashboard. The name should be appended by Require
before the extension, for instance, myCustomStyleRequire.html. Otherwise
on a legacy dashboard, which we are not covering in this book, it would just be
myCustomStyle.html.

The tags that will be replaced also change a bit, so here we need to make use of:

• @header@: This is used to include some initialization scripts, such as the
dashboard context. It should be part of the header.

• @content@: This is use to be replaced by the content of the dashboard. This
is where the dashboard will be rendered. All the layout and code for the
execution of the dashboard are placed here.

• @footer@: This is used to include some scripts. It can be part of the footer
template.

The way to apply a style/template to a CDE dashboard is to just choose it
from the setting dialog of the dashboard. You will see a dropdown where the
available styles/templates will be selectable. You just need to select the one for
your dashboard and save it. Next time the dashboard is rendered, it will make
use of that style/template.

Chapter 7

[279]

The CleanRequire.html style looks like the following code. You can see a clean file
where the header, content, and footer will be placed:

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1">
 @HEADER@
 </head>
 <body>
 @CONTENT@

 @FOOTER@
 </body>
</html>

Bookmarkable parameters
You have already seen that we are able to create a dashboard that uses filters to be
interactive. But let's suppose you want a dashboard to jump to a particular state
using some values that could be specified using the URL. That's also possible out of
the box using the bookmarkable parameters.

A great usage of this is for you to share the status of a dashboard with someone else.
When you are exploring data through the dashboard, you may find some insights
or just some warnings that you want to send to someone else. You can even send an
e-mail with that information to someone else in the company. So now let's see how
you can get them working.

When you create parameters, by using the components perspective, you may
create a parameter by expanding the Generic group, choosing the type of parameter
(also covered in this book). Three properties will become available: one for the
name, a second one for the default value, and a checkbox to make the parameter a
bookmarkable one.

If you make a parameter available, and when you start using the dashboard in such a
way the parameter value is changed, you will notice that the URL changes and some
more information has been added. The changes that you will find in the decoded
URL will look like the following, depending on the parameters and the values being
sent to them:

bookmarkState={"params":{"filterParam":"[Product].[Trains]"}}

Advanced Concepts Using CDF and CDE

[280]

This line shows that the value that is selected is Trains. What this means is that, if
you use the entire URL like we are getting in the browser, opening another tab or
window for your browser and pasting the complete URL will filter your dashboards
and show only trains. If you use the dashboard URL without bookmarkState in the
URL, then you will get the dashboard filtered with the default value, which in the
sample provided is Classic Cars.

You will find a short and simple example in the chapter samples of a dashboard
that presents a button that will send an e-mail with the URL containing the selection
applied. In that case, you could send a message to a particular department or person,
providing some insights. The code in the button would resemble:

function() {
 var dashboardPath = window.location.href;
 // send email with path to dashboard
}

This just gets the current URL with the bookmark state and sends it by e-mail.

Bookmarkable parameters in CDF
The Bookmarkable parameters are a CDE functionality, so you can
also use them in CDF dashboards as well, if you include the module,
cdf/Dashboard.Bootstrap.

Internationalization and localization
We can have internationalized and localized dashboards, and these are based on
the i18n jQuery plugin. When we need to translate a dashboard, we need to create
multiple files in the same folder as the dashboard, all of the .properties files.

The first one is messages_supported_languages.properties, where we need to
specify the languages that will be supported. This will dictate the files and languages
that should be read. If we want to be able to provide transactions in Portuguese (pt)
and English (en), we use:

pt
en

Here we should have <language> and/or <language>_<COUNTRY>, where
<language> is the lowercase code for the language and <COUNTRY> is the uppercase
country code.

Chapter 7

[281]

The i18n properties files will be key/value pairs where the names will dictate the
language that will be used. We can also make use of a fallback file, but the fallback
file doesn't need to be defined in the supported languages file.

We can delegate i18n messages to three specific files, which need to be placed in the
same folder as the dashboard. The standard in Pentaho is to have the names using
the following rules:

messages_<language>_<COUNTRY>.properties

These files are the ones that will contain the translations for a particular country for
a language, where <language> should be replaced by the lowercase language code
and <COUNTRY> should be replaced by the uppercase country code (for instance:
messages_en_US.properties, messages_en_UK.properties, messages_pt_
PT.properties and messages_pt_BR.properties):

messages_<language>.properties

These files contain the translations for a particular language, not specifying the
country, where <language> should be replaced by the lowercase language code
(for instance: messages_en.properties and messages_pt.properties):

messages.properties

That's the fallback file, where no language or country is specified. Here we will not
need to specify a language or country.

Messages or translations can and should be shared by the different files; whenever
that happens, the following rule applies:

The message keys placed in messages_<language>_<COUNTRY>.properties will
override similar ones placed in messages_<language>.properties, which will
overwrite messages.properties.

A hierarchical structure of the messages properties files would be:

+ messages.properties
++ messages_en.properties
++++ messages_en_US.properties
++++ messages_en_UK.properties
++ messages_pt.properties
++++ messages_pt_PT.properties
++++ messages_pt_BR.properties

Advanced Concepts Using CDF and CDE

[282]

Each one of these files is a pair of key/value, where the key and value are
separated by an equals sign (=). The key will represent the identifier for the
transactions while the value will be the translation itself, the text that will be
displayed on the dashboard.

Let's suppose that we are creating a dashboard that can translate English and
Portuguese. The first step is to create the fallback properties file. From there,
we need to create new files for language and country, and just include the keys
that need translation.

The messages.properties file would look like:

DASH.TITLE: Internationalization and localization
DASH.DESC: Internationalization and localization, sample dashboard

The messages_en.properties file could be empty, because the translation will
be the same. When there is no key/value for the requested key, the priority (as
explained before) is taken into consideration, so the text from the fallback file would
be shown.

The messages_pt.properties file would look like this:

DASH.TITLE: Internacionalização e localização
DASH.DESC: Exemplo de internacionalização e localização

To make use of the translations inside a dashboard, we need to make use of the CDF
API, calling the prop function from i18nSupport. The following line of code grabs
the translation from the correct language file and returning it. This is done through a
line of code:

this.dashboard.i18nSupport.prop('DASH.TITLE');

The previous examples do not specify the messages for the countries but, as already
covered, you should be able to do it; the content will also be based on key/value
pairs. We can avoid repeating the key/value pairs that are similar and use the
hierarchical priority rules to specify only the key/value pairs that are different from
file to file.

Chapter 7

[283]

To apply this to the DOM using postExecution of the components, you can use
jQuery or a text component.

There are some places such as charts or tables where you can also use the function,
but make sure you also have a way to return the transactions for the result of a
query. This can be achieved using a metadata schema, a dynamic schema processor
on Mondrian, or with Kettle (PDI), but it may be harder with a simple SQL query
where we can't use parameters to change the column returned.

The dashboard component
Using RequireJS allows great flexibility for the integration of CDE and CDF
dashboards in third-party applications. That said, you could start asking: Is there
a way to have dashboards inside another dashboard? This way, we could develop
mini-dashboards that we can reuse inside the same dashboard and/or for multiple
dashboards.

Later, we will cover, in Chapter 10, Embed, Deploy, and Debug, how we can
integrate/embed dashboards into third-party applications, because now reusing
a CDE dashboard inside another CDE dashboard is really easy. We can use the
dashboard component that you can find inside the Custom group of the Components
panel. The component will only be available when building RequireJS and not a
legacy dashboard and, as we said before, the CDF and CDE chapters of this book are
really focused on building dashboards using RequireJS.

The dashboard component is really easy to understand and use, and in my opinion
it's one of the most desired components for developers and teams who want to reuse
code and build more complete and complex solutions with less effort.

One of its advantage is that you can make use of a mini-dashboard in multiple
dashboards. If you find a problem or just want to make a change, you just need to
apply it to the mini-dashboard, and instantly you will see those changes applied to
all the dashboards making using of that mini-dashboard.

Advanced Concepts Using CDF and CDE

[284]

The available properties when using this component are:

• Dashboard path: This is the path to the dashboard you want to embed inside
your main dashboard. Here you can point to a mini-dashboard that in reality
is a dashboard. That mini-dashboard will be called and rendered inside the
main dashboard.

• Parameter mapping: If you want to synchronize some of the parameters
between both dashboards, you can do this using this property. You can
choose the parameters from the list of available parameters; when entering
the name, you just need to click on the down arrow. On the left, you will find
the parameters of the main dashboard, and on the right are the parameters
that are public on the dashboard that is being instantiated. The following
screenshot shows the mapping between the parameters from the main
instantiated dashboard:

But you should now be asking, why am I referring to a public parameters?
Well, it is possible to define the parameter mapping using the parameters
of the dashboard being instantiated, and it's necessary that you make them
public. When you are creating/editing a parameter, you need to change
the Public property to True. This will make the parameter available to the
outside world. The following screenshot is an example of this:

You will see that the Public property is set to true, so the parameter will
become available when instantiated in the dashboard component.

Chapter 7

[285]

• Datasource mapping: Interesting? Yes, definitely interesting. This can be used
to overwrite a data source being used on the instantiated dashboard. This
means that we can replace the data source and use one defined in the main
dashboard. When you create a mapping between dashboards, that data source
will be replaced everywhere. So if you have multiple components using
the same data source on the instantiated dashboard, this means that those
components will use the data source from the main dashboard being mapped.

In the examples from this chapter that you can import to your repository, you
will find inside the chapter 7 folder an example on the use of the dashboard
component. There you will find two dashboards. On one main dashboard we
use the mini-dashboard four times, displaying different titles, data, and even
different chart types.

You can use the dashboard component to create navigation between dashboards,
reuse dashboards, and create what in a more limited way CDE made available as
widgets (with the use of RequireJS, this does not make sense anymore). I find the
dashboard component much more flexible and easy to use, with the advantage that it
is possible to define a dummy data source for the mini-dashboards and really use the
data sources defined in the main-dashboard.

Summary
In this chapter, you learned some advanced features, tricks, and tips that you can
use to build fancier dashboards, just save time developing dashboards, or extend
the CDF and CDE capabilities by creating new components. We also covered some
important features such as internationalization and localization.

You should also now know how to use the bookmarkable parameters to initiate a
dashboard from a particular state or just call new dashboards, passing some values
to replace the default values for the parameters.

If you create a new dashboard template that will be used to standardize the look and
feel of all your dashboards, this topic is also covered in this chapter.

This may be one of the most complex chapters and hard to understand, but it is
important when you start to get more complex and advanced requirements for the
dashboards. This is really useful when you want to deliver advanced and custom
features to your customers or developers. There is no need for everyone to know
every single feature and possibility in CDF and CDE so, if you have a team that does
not have that knowledge but you want them to be able to reuse some of your code
and/or dashboards, you now have the knowledge to make it possible.

Advanced Concepts Using CDF and CDE

[286]

Don't forget that is fine to use the query component, but if you are using the same
code twice, you may need to consider the development of a custom component and
make it easier to reuse.

In the next chapter, you will come to understand the CCC properties and how they
can be used for visualization.

[287]

Visualizations Using CCC
The Charts Component Library is not really a Pentaho plugin, but instead is a Chart
library that Webdetails created some years ago and that Pentaho started to use on
Analyzer visualizations. It allows a great level of customization by changing the
properties that are applied to the charts and perfectly integrates with CDF, CDE,
and CDA.

The dashboards that Webdetails creates make use of CCC charts, usually with a great
level of customization. Customizing them is a way to make them fancy and really
good-looking and, even more importantly, it is a way to create a visualization that
best fits the customer/end user's needs. We really should be focused on having the
best visualizations for the end user, and CCC is one of the best ways to achieve this,
but to do this you need to have a very deep knowledge of the library, and know how
to get amazing results.

I think I could write an entire book just about CCC, and in this chapter I will only
be able to cover a small part of what I like, but I will try to focus on the basics and
give you some tips and tricks that could make a difference. I'll be happy if I can give
you some directions for you to follow, and then you can keep searching and learning
about CCC. An important part of CCC is understanding properties such as series in
rows or crosstab mode, because that is where people usually struggle at the start.

When you can't find a property to change chart styling/functionality/behavior,
you might find a way to extend the options by using something called extension
points, so we will also cover them. I also find interaction within the dashboard
to be an important feature. So we will look at how to use it, and you will see
that it's very simple.

Visualizations Using CCC

[288]

In this chapter, you will learn how to:

• Understand the properties needed to adapt the chart to your data
source results

• Use the properties of a CCC chart
• Create a CCC chat by using the JavaScript library
• Make use of the internationalization of CCC charts
• See how to handle clicks on charts
• Scale the base axis
• Customize tooltips

Some background on CCC
CCC is built on top of Protovis, a JavaScript library that allows you to produce
visualizations just based on simple marks, such as bars, dots, and lines, among
others, which are created through dynamic properties based on the data to be
represented. You can get more information on this at: http://mbostock.github.
io/protovis/.

If you want to extend charts with some elements that are not available you can,
but it would be useful to have an idea about how Protovis works. CCC has a great
website, http://www.webdetails.pt/ctools/ccc/, where you can see some
samples including the source code. On the page, you can edit the code, change some
properties, and click the Apply button. If the code is valid, you will see your chart
update. As well as that, it provides documentation for almost all of the properties
and options that CCC makes available.

Making use of the CCC library in a CDF
dashboard
As CCC is a chart library, you can use it as you would on any other web page. But
CDF also provides components that you can implement to use a CCC chart on a
dashboard and fully integrate with the life cycle of the dashboard. To use a CCC
chart on the CDF dashboard, the HTML that is invoked from the XCDF file would
look like the following (as we have already covered how to build a CDF dashboard, I
will not focus on that, and will mainly focus on the JavaScript code):

<div class="row">
 <div class="col-xs-12">
 <div id="chart"/>

http://mbostock.github.io/protovis/
http://mbostock.github.io/protovis/
http://www.webdetails.pt/ctools/ccc/

Chapter 8

[289]

 </div>
</div>
<script language="javascript" type="text/javascript">
 require(['cdf/Dashboard.Bootstrap',
 'cdf/components/CccBarChartComponent'],
 function(Dashboard, CccBarChartComponent) {
 var dashboard = new Dashboard();
 var chart = new CccBarChartComponent({
 type: "cccBarChart",
 name: "cccChart",
 executeAtStart: true,
 htmlObject: "chart",
 chartDefinition: {
 height: 200,
 path: "/public/…/queries.cda",
 dataAccessId: "totalSalesQuery",
 crosstabMode: true,
 seriesInRows: false,
 timeSeries: false
 plotFrameVisible: false,
 compatVersion: 2
 }
 });
 dashboard.addComponent(chart);
 dashboard.init();
 });
</script>

The most important thing here is the use of the CCC chart component that we
have covered in an example as a bar chart. We can see by the object that we are
instantiating, CccBarChartComponent, and also by the type, cccBarChart.

The previous dashboard will execute the query specified as dataAccessId for the
CDA file set on the property path, and render the chart on the dashboard. The
dashboard code also refers to the crosstab mode for the result set, but the base axis
should not be a timeSeries. There are series in the columns, but don't worry about
this as we'll be covering this topic later.

Visualizations Using CCC

[290]

The existing CCC components that you are able to use out of the box inside CDF
dashboards are as follows. Don't forget that CCC has plenty of charts, so the sample
images that you will see in the following table are just one example of the type of
charts you can achieve.

CCC Component Chart Type Sample Chart

CccAreaChartComponent cccAreaChart Not available

CccBarChartComponent cccBarChart http://www.webdetails.
pt/ctools/ccc/#type=bar

CccBoxplotChartComponent cccBoxplotChart http://www.
webdetails.pt/ctools/
ccc/#type=boxplot

CccBulletChartComponent cccBulletChart http://www.
webdetails.pt/ctools/
ccc/#type=bullet

CccDotChartComponent cccDotChart http://www.webdetails.
pt/ctools/ccc/#type=dot

CccHeatGridChartComponent cccHeatGridChart http://www.
webdetails.pt/ctools/
ccc/#type=heatgrid

CccLineChartComponent cccLineChart http://www.
webdetails.pt/ctools/
ccc/#type=line

CccMetricDotChartComponent cccMetricDotChart http://www.
webdetails.pt/ctools/
ccc/#type=metricdot

CccMetricLineChartComponent cccMetricLineChart Not available

CccNormalizedBarChartComponent cccNormalizedBarChart Not available

CccParCoordChartComponent cccParCoordChart Not available

CccPieChartComponent cccPieChart http://www.webdetails.
pt/ctools/ccc/#type=pie

CccStackedAreaChartComponent cccStackedAreaChart http://www.
webdetails.pt/ctools/
ccc/#type=stackedarea

CccStackedDotChartComponent cccStackedDotChart Not available

CccStackedLineChartComponent cccStackedLineChart http://www.
webdetails.pt/ctools/
ccc/#type=stackedline

CccSunburstChartComponent cccSunburstChart http://www.
webdetails.pt/ctools/
ccc/#type=sunburst

CccTreemapAreaChartComponent cccTreemapAreaChart http://www.
webdetails.pt/ctools/
ccc/#type=treemap

http://www.webdetails.pt/ctools/ccc/#type=bar
http://www.webdetails.pt/ctools/ccc/#type=bar
http://www.webdetails.pt/ctools/ccc/#type=boxplot
http://www.webdetails.pt/ctools/ccc/#type=boxplot
http://www.webdetails.pt/ctools/ccc/#type=boxplot
http://www.webdetails.pt/ctools/ccc/#type=bullet
http://www.webdetails.pt/ctools/ccc/#type=bullet
http://www.webdetails.pt/ctools/ccc/#type=bullet
http://www.webdetails.pt/ctools/ccc/#type=dot
http://www.webdetails.pt/ctools/ccc/#type=dot
http://www.webdetails.pt/ctools/ccc/#type=heatgrid
http://www.webdetails.pt/ctools/ccc/#type=heatgrid
http://www.webdetails.pt/ctools/ccc/#type=heatgrid
http://www.webdetails.pt/ctools/ccc/#type=line
http://www.webdetails.pt/ctools/ccc/#type=line
http://www.webdetails.pt/ctools/ccc/#type=line
http://www.webdetails.pt/ctools/ccc/#type=metricdot
http://www.webdetails.pt/ctools/ccc/#type=metricdot
http://www.webdetails.pt/ctools/ccc/#type=metricdot
http://www.webdetails.pt/ctools/ccc/#type=pie
http://www.webdetails.pt/ctools/ccc/#type=pie
http://www.webdetails.pt/ctools/ccc/#type=stackedarea
http://www.webdetails.pt/ctools/ccc/#type=stackedarea
http://www.webdetails.pt/ctools/ccc/#type=stackedarea
http://www.webdetails.pt/ctools/ccc/#type=stackedline
http://www.webdetails.pt/ctools/ccc/#type=stackedline
http://www.webdetails.pt/ctools/ccc/#type=stackedline
http://www.webdetails.pt/ctools/ccc/#type=sunburst
http://www.webdetails.pt/ctools/ccc/#type=sunburst
http://www.webdetails.pt/ctools/ccc/#type=sunburst
http://www.webdetails.pt/ctools/ccc/#type=treemap
http://www.webdetails.pt/ctools/ccc/#type=treemap
http://www.webdetails.pt/ctools/ccc/#type=treemap

Chapter 8

[291]

CCC Component Chart Type Sample Chart

CccWaterfallAreaChartComponent cccWaterfallAreaChart http://www.
webdetails.pt/ctools/
ccc/#type=waterfall

In the sample code, you will find a property called compatMode that has a value of 2
set. This will make CCC work as a revamped version that delivers more options and
a lot of improvements, and makes it easier to use.

Mandatory and desirable properties
Among other properties such as name, datasource, and htmlObject, other chart
properties are mandatory. The height is really important, because if you don't set the
height of the chart, you will not fit the chart in the dashboard. The height should also
be specified in pixels.

If you don't set the width of the component, or to be more precise, then the chart will
grab the width of the element where it's being rendered it will grab the width of the
HTML element with the name specified in the htmlObject property.

The seriesInRows, crosstabMode, and timeseries properties are optional but,
depending on the kind of chart you are generating, you might want to specify them.
The use of these properties becomes clear if we can also see the output of the queries
we are executing. We need to go deeper into the properties that are related to the
data mapping to visual elements.

Mapping data
We need to be aware of the way that data mapping is done in the chart. You can
understand how it works if you can imagine data input as a table. CCC can receive
the data as two different structures: relational and crosstab. If CCC receives data as
a crosstab query, it will translate it to a relational structure. You can see this in the
following examples.

http://www.webdetails.pt/ctools/ccc/#type=waterfall
http://www.webdetails.pt/ctools/ccc/#type=waterfall
http://www.webdetails.pt/ctools/ccc/#type=waterfall

Visualizations Using CCC

[292]

Crosstab
The following table is an example of the crosstab data structure:

Column Data 1 Column Data 2
Row Data 1 Measure Data 1.1 Measure Data 1.2
Row Data 2 Measure Data 2.1 Measure Data 2.2

Creating crosstab queries
To create a crosstab query, usually you can do this with the group
when using SQL; or just use MDX, which allows us to easily
specify a set for the columns and for the rows.

Just by looking at the previous and following examples, you should be able to
understand that, in the crosstab structure (the previous example), columns and rows
are part of the result set, while in the relational format (the following example),
column headers or headers are not part of the result set, but are part of the metadata
returned from the query.

The relational format is as follows:

Column Row Value
Column Data 1 Row Data 1 Measure Data 1.1
Column Data 2 Row Data 1 Measure Data 2.1
Column Data 1 Row Data 2 Measure Data 1.2
Column Data 2 Row Data 2 Measure Data 2.1

The preceding two data structures represent the options when setting the
crosstabMode and seriesInRows properties.

Chapter 8

[293]

The crosstabMode property
To better understand these concepts, we will make use of a real example. This
property, crosstabMode, is easy to understand when comparing the results of
two queries.

Non-crosstab (Relational): Crosstab:
Markets Sales Markets 2003 2004 2005
APAC 1281705 APAC 3529 5938 3411

EMEA 50028224 EMEA 16711 23630 9237

Japan 503957 Japan 2851 1692 380

NA 3852061 NA 13348 18157 6447

In the previous tables, you can see that on the left-hand side you can find the
values of sales from each of the territories. The only relevant information is relative
to the values presented are the territories. We can say that we are able to get all
the information just by looking at the rows, where we can see a direct connection
between markets and the sales value.

In the table presented on the right, you will find a value for each territory/year,
meaning that the values presented, and in the sample provided in the matrix, are
dependent on two variables, which are the territory in the rows and the years in the
columns. Here we need both the rows and the columns to know what each one of the
values represents. Relevant information can be found in the rows and the columns,
so this is a crosstab. Crosstabs display the joint distribution of two or more variables,
and are usually represented in the form of a contingency table in a matrix.

When the result of a query is dependent only on one variable, then you should
set the crosstabMode property to false. When it is dependent on two or more
variables, you should set the crosstabMode property to false, otherwise CCC will
just use the first two columns like in the non-crosstab example.

Visualizations Using CCC

[294]

The seriesInRows property
Now let's use the same two where we have a crosstab:

The previous figure shows two charts: the one on the left is a crosstab with the
series in the rows, and the one on the right is also crosstab but the series are not in
the rows (the series are in the columns). When the crosstab is set to true, it means
that the measure column title can be translated as a series or a category, and that's
determined by the property seriesInRows. If this property is set to true, then it will
read the series from the rows, otherwise it will read the series from the columns.

If the crosstab is set to false, the community chart component is expecting a row to
correspond exactly to one data point, and two or three columns can be returned.
When three columns are returned, they can be a category, series and data, or series,
category and data and that's determined by the seriesInRows property. When set
to true, CCC will expect the structure to have three columns such as category, series,
and data. When it is set to false, it will expect them to be series, category, and data.

A simple table should give you a quicker reference:

crosstabMode seriesInRows Description
true true The column titles will act as category values while the

series values are represented as data points of the first
column.

true false The column titles will act as series value while the
category/category values are represented as data points
of the first column.

false true The column titles will act as category values while the
series values are represented as data points of the first
column.

false false The column titles will act as category values while the
series values are represented as data points of the first
column.

Chapter 8

[295]

The timeSeries and timeSeriesFormat
properties
The timeSeries property defines whether the data to be represented by the chart
is discrete or continuous. If we want to present some values over time, then the
timeSeries property should be set to true. When we set the chart to be timeSeries,
we also need to set another property to tell CCC how it should interpret the dates
that come from the query. Check out the following image for timeSeries and
timeSeriesFormat:

In the example provided with the book, you will find a dashboard that presents
data as a timeSeries property. The result of one of the queries has the year and
the abbreviated month name separate by -, such as 2015-Nov. For the chart to
understand it as a date, we need to specify the format by setting the property
timeSeriesFomart, which in our example would be %Y-%b, where %Y is the year is
represented by four digits, and %b is the abbreviated month name.

The format should be specified using the Protovis format, which follows the same
format as strftime in the C programming language, aside from some unsupported
options. To find out what options are available, you should take a look at the
documentation, which you will find at: https://mbostock.github.io/protovis/
jsdoc/symbols/pv.Format.date.html.

Making use of CCC in CDE
There are a lot of properties that will use a default value, and you can find out about
them by looking at the documentation or inspecting the code that is generated by
CDE when you use chart components. By looking at the console log of your browser,
you should also able to understand and get some information about the properties
being used by default and/or see whether you are using a property that does not fit
your needs.

https://mbostock.github.io/protovis/jsdoc/symbols/pv.Format.date.html
https://mbostock.github.io/protovis/jsdoc/symbols/pv.Format.date.html

Visualizations Using CCC

[296]

The use of CCC charts in CDE is simpler, just because you may not need to code. I
am only saying may because, to achieve quicker results, you may apply some code
and make it easier to share properties among different charts or type of chart. To use
a CCC chart, you just need to select the property that you need to change and set its
value by using the drop-down or by just setting the value:

The previous screenshot shows a group of properties with the respective values on
the right.

One of the best ways to start to get used to CCC properties is to use the CCC page
available as part of the Webdetails page: http://www.webdetails.pt/ctools/
ccc. There you will find samples and the properties that are being used for each of
the chart. You can use the dropdown to select different kinds of charts from all those
that are available inside CCC. You also have the ability to change the properties and
update the chart to check the result immediately.

What I usually do, as it's easier and faster, is to change the properties here, check
the results, and then apply the necessary values for each of the properties in the
CCC charts inside the dashboards. In the following samples, you will also find
documentation about the properties, see where the properties are separated by
sections of the chart, and after that you will find the extension points.

On the site, when you click on a property/option you will be redirected to another
page where you will find the documentation and how to use it.

http://www.webdetails.pt/ctools/ccc
http://www.webdetails.pt/ctools/ccc

Chapter 8

[297]

Changing properties in preExecution or
postFetch
We are able to change the properties for the charts, as with any other component.
Inside preExecution, the keyword this, refers to the component itself, so we
will have access to the chart's main object, which we can also manipulate and add,
remove, and change options.

For instance, you can apply the following code:

function() {
 var cdProps = {
 dotsVisible: true,
 plotFrame_strokeStyle: '#bbbbbb',
 colors: ['#005CA7', '#FFC20F', '#333333', '#68AC2D']
 };
 $.extend(true, this.chartDefinition, cdProps);
}

What we are doing is creating an object with all the properties that we want to add
or change for the chart, and then extending the chartDefinitions (where the
properties or options are). This is what we are doing with the JQuery function.

Use the CCC website and make your life easier
This way to apply options makes it easier to set the properties. Just
change or add the properties that you need, test it, and, when you're
happy with the result, you just need to copy them into the object that will
extend/overwrite the chart options. Just keep in mind that the properties
you change directly in the editor will be overwritten by the ones defined
in the preExecution function, if they match each other of course.

Why is this important? It's because not all the properties that you can apply to CCC
are exposed in CDE, so you can use preExecution to use or set those properties.

Visualizations Using CCC

[298]

Handling the click event
One important thing about charts is that they allow interaction. CCC provides a
way to handle some events in the chart and click is one of those events. To have
it working, we need to change two properties: clickable, which needs to be set
to true, and clickAction where we need to write a function with the code to be
executed when a click happens. The function receives one argument that usually is
referred to as a scene. The scene is an object that has a lot of information about the
context where the event happened. From the object you will have access to vars,
another object where we can find the series and the categories where the
click happened.

We can use the function to get the series/categories being clicked and perform a
fireChange that can trigger updates on other components:

function(scene) {
 var series = "Series:"+scene.atoms.series.label;
 var category = "Category:"+scene.vars.category.label;
 var value = "Value:"+scene.vars.value.label;
 Logger.log(category+" & "+value);
 Logger.log(series);
}

In the previous code example, you can find the function to handle the click action
for a CCC chart. When the click happens, the code is executed, and a variable with
the click series is taken from scene.atoms.series.label. As well as this, the
clicked category scene.vars.category.label and the value that crosses the same
series/category in scene.vars.value.value. This is valid for a crosstab, but you
will not find the series when it is a non-crosstab.

You can think of a scene as describing one instance of visual representation. It is
generally local to each panel or section of the chart and it's represented by a group
of variables that are organized hierarchically. Depending on the scene, it may
contain one or many datums. And you must be asking what a a datum is. A datum
represents a row, so it contains values for multiple columns.

We also can see from the example that we are referring to atoms, which hold at least
a value, a label, and the key of a column. To get a better understanding of what I
am talking about, you should perform a breakpoint anywhere in the code of the
previous function and explore the object scene.

Chapter 8

[299]

In the previous example, you would be able to access the category, series labels, and
value, as you can see in the following table:

Corosstab Non-crosstab
Value scene.vars.value.label

or
scene.getValue();

scene.vars.value.label

or
scene.getValue();

Category scene.vars.category.label

or
scene.getCategoryLabel();

scene.vars.category.label

or
scene.getCategoryLabel();

Series scene.atoms.series.label

or
scene.getSeriesLabel()

For instance, if you add the previous function code to a chart that is a crosstab where
the categories are the years and the series are the territories, if you click on the chart,
the output would be something like:

[info] WD: Category:2004 & Value:23630
[info] WD: Series:EMEA

This means that you clicked on the year 2004 for the EMEA. EMEA sales for the
year 2004 were 23,630.

If you replace the Logger functions with fireChange as follows, you will be able to
make use of the label/value of the clicked category to render other components and
some details about them:

this.dashboard.fireChange("parameter", scene.vars.category.label);

Internationalization of CCC Charts
We already saw that all the values coming from the database should not need to be
translated. There are some ways in Pentaho to do this, but we may still need to set
the title of a chart, where the title should be also internationalized. Another case is
when you have dates where the month is represented by numbers in the base axis,
but you want to display the month's abbreviated name. This name could be also
translated to different languages, which is not hard.

Visualizations Using CCC

[300]

For the title, sub-title, and legend, the way to do it is to use the instructions on how
to set properties on preExecution and the instructions that we already covered in
an earlier Chapter 6, Tables, Templates, Exports, and Text Components about i18n. First,
you will need to define the properties files for the internationalization and set the
properties/translations:

var cd = this.chartDefinition;
cd.title = this.dashboard.i18nSupport.prop('BOTTOMCHART.TITLE');

To change the title of the chart based on the language defined, we will need to define
a function, but we can't use the property on the chart because that will only allow
you to define a string, so you will not be able to use a JavaScript instruction to get the
text. If you set the previous example code on the preExecution of the chart, you will
be able to do so.

It may not only make sense to change not only the titles, but for instance it may
also be advisable to internationalize the month names. If you are getting data such
as 2004-02, this may correspond to a time series format as %Y-%m. If that's the
case and you want to display the abbreviated month name, then you may use the
baseAxisTickFormatter and the dateFormat function from the dashboard utilities,
also known as Utils. The code to write inside the preExecution would be:

var cd = this.chartDefinition;
cd.baseAxisTickFormatter = function(label) {
 return Utils.dateFormat(moment(label, 'YYYY-mmm'), 'MMM/YYYY');
};

The preceding code uses baseAxisTickFormatter, which allows you to write a
function that receives an argument, identified on the code as a label, because it will
store the label for each one of the base axis tick marks. We are using the dateFormat
method and moment library function to format and return the year followed by the
abbreviated month name.

You can get information about the language defined and being used by running the
following instruction

moment.locale();

If you need to, you can change the language. If so, please refer to the CDF chapter, as
we already covered it there.

Chapter 8

[301]

What are extension points and how do
you use them?
One great thing about the options that you can use is that they are are already
implemented. If not, and if they are available as part of Protovis but just not in CCC,
you are able can make use of the extension points. So, with extension points you are
able to use properties/options that are not implemented directly in CCC. They are
one of the great features of CCC charts, because they provide almost direct access to
the underlying Protovis marks.

When setting an extension point, we should specify its name and value. The name is
a combination of a CCC identification and the Protovis property name separated by
an underscore (_). For instance, to define the fill style for the legend, you would need
to define legendArea_fillStyle and set a color. First you need to set the visual
element, followed by (_) and by the extension point property.

There are no ways to handle the right-click action in CCC, nor is there the possibility
to directly listen to the context menu in a Protovis mark, so we can make use of
extension points. A good example is:

bar_event: [
 ['contextmenu', function(s) { … }],
 ['mouseover', function(s) { … }],
 ['mouseover', function(s) { … }]
]

For each chart type, you will find at the bottom of each chart type the extension
points that are available. For instance, the extension points that are available
for line charts can be found at: http://www.webdetails.pt/ctools/
ccc/#type=dot&anchor=extension-points. The image on the left is
an example of it.

http://www.webdetails.pt/ctools/ccc/#type=dot&anchor=extension-points
http://www.webdetails.pt/ctools/ccc/#type=dot&anchor=extension-points

Visualizations Using CCC

[302]

When you click on a visual element name such as baseAxisGrid_, you will be
redirected to another page where you can select the mark, which is the image at the
center. Let's suppose that you choose to change the label, you need to add the mark
to the visual element like baseAxisGrid_label. Finally, after clicking on the marker,
you get a list of extension points, which is the image on the right, where you can
select the extension point. Let's suppose you have chosen to change the font. It will
also need to be added to the property and will end up as baseAxisGrid_labelFont.

For the provided extension point, we would need to specify the font and size, as
specified at: http://www.w3.org/TR/CSS2/fonts.html#font-shorthand.

Formatting a basis axis label based on
the scale
When you are working with a time series chart, you may want to set a different
format for the base axis labels. Let's suppose you want to have a chart that is
listening to a time selector. If you select one-year old data to be displayed on the
chart, certainly you are not interested in seeing the minutes on the date label.
However, if you want to display the last hour, the ticks of the base axis need to be
presented in minutes.

There is an extension point we can use to get a conditional format based on the scale
of the base axis. The extension point is baseAxisScale_tickFormatter, and it can
be used like in the code as follows:

baseAxisScale_tickFormatter: function(value, dateTickPrecision) {
 switch(dateTickPrecision) {
 case pvc.time.intervals.y:

http://www.w3.org/TR/CSS2/fonts.html#font-shorthand

Chapter 8

[303]

 return format_date_year_tick(value);
 break;
 case pvc.time.intervals.m:
 return format_date_month_tick(value);
 break;

 case pvc.time.intervals.H:
 return format_date_hour_tick(value);
 break;
 default:
 return format_date_default_tick(value);

 }
}

It accepts a function with two arguments: the value to be formatted and the tick
precision, and should return the formatted label to be presented on each label
of the base axis.

The previous code shows how the function is used. You can see that a switch
based on the base axis scale will perform a different format, calling a function. The
functions in the code are not pre-defined—we need to write the functions or code to
create the formatting. One example of a function to format the date is using the utils
dateFormat function to return the formatted value to the chart.

The following table shows the intervals that can be used when verifying which time
intervals are being displayed on the chart:

Interval Description Number representing the interval
y Year 31536e6
m Month 2592e6
d30 30 days 2592e6
d7 7 days 6048e5
d Day 864e5
H Hour 36e5
m Minute 6e4
s Second 1e3
ms Milliseconds 1

Visualizations Using CCC

[304]

Customizing tooltips
CCC provides the ability to change the default tooltip format, and can be changed
using the tooltipFormat property. We can change it, making it look like the
following image, on the right. You can also compare it to the one on the left,
which is the default one:

The tooltip default format might change depending on the chart type, but also on
some options that you apply to the chart, mainly crosstabMode and seriesInRows.
The property accepts a function that receives one argument, the scene, which will
be a similar structure as already covered for the click event. You should return the
HTML to be shown on the dashboard when we hover the chart.

In the previous image, you will see on the chart on the left side the defiant tooltip,
and on the right a different tooltip. That's because the following code was applied:

tooltipFormat: function(scene){
 var year = scene.atoms.series.label;
 var territory = scene.atoms.category.value;
 var sales = Utils.numberFormat(scene.vars.value.value, "#.00A");
 var html = '<html>' +
 <div>Sales for '+year+' at '+territory+':'+sales+'</div>' +
 '</html>';
 return html;
}

The code is pretty self-explanatory. First we are setting some variables such as year,
territory, and the sales values, which we need to present inside the tooltip. Like in
the click event, we are getting the labels/value from the scene, which might depend
on the properties we set for the chart. For the sales, we are also abbreviating it, using
two decimal places. And last, we build the HTML to be displayed when we hover
over the chart.

Chapter 8

[305]

You can also change the base axis tooltip
Like we are doing to the tooltip when hovering over the values represented
in the chart, we can also use baseAxisTooltip; just don't forget that use
the baseAxisTooltipVisible property must be set to true (the value
by default). Getting the values to show will be pretty similar.

It can get more complex, though not much more, when we also want, for instance,
to display the total value of sales for one year or for the territory. Based on that, we
could also present the percentage relative to the total. We should use the property as
explained earlier.

The previous image is one example of how we can customize a tooltip. In this case,
we are showing the value but also the percentage that represents the hovered over
territory (as the percentage/all the years) and also for the hovered over year (where
we show the percentage/all the territories):

tooltipFormat: function(scene){
 var year = scene.getSeriesLabel();
 var territory = scene.getCategoryLabel();
 var value = scene.getValue();
 var sales = Utils.numberFormat(value, "#.00A");
 var totals = {};
 _.each(scene.chart().data._datums, function(element) {

Visualizations Using CCC

[306]

 var value = element.atoms.value.value;
 totals[element.atoms.category.label] =
 (totals[element.atoms.category.label]||0)+value;
 totals[element.atoms.series.label] =
 (totals[element.atoms.series.label]||0)+value;
 });
 var categoryPerc = Utils.numberFormat(value/totals[territory],
"0.0%");
 var seriesPerc = Utils.numberFormat(value/totals[year], "0.0%");
 var html = '<html>' +
 '<div class="value">'+sales+'</div>' +
 '<div class="dValue">Sales for '+territory+' in '+year+'</div>' +
 '<div class="bar">'+
 ' <div class="pPerc">'+categoryPerc+' of '+territory+'</div>'+
 ' <div class="partialBar" style="width:'+cPerc+'"></div>'+
 '</div>' +
 '<div class="bar">'+
 ' <div class="pPerc">'+seriesPerc+' of '+year+'</div>'+
 ' <div class="partialBar" style="width:'+seriesPerc+'"></div>'+
 '</div>' +
 '</html>';
 return html;
}

The first lines of the code are pretty similar except that we are using scene.
getSeriesLabel() in place of scene.atoms.series.label. They do the same, so
it's only different ways to get the values/labels, and then the total calculations that
are calculated by iterating in all the elements of scene.chart().data._datums,
which return the logical/relational table, a combination of the territory, years, and
value. The last part of code is just to build the HTML with all the values and labels
that we already got from the scene.

There are multiple ways to get the values you need; for instance to customize the
tooltip, you just need to explore the hierarchical structure of the scene and get used
to it.

The image that you are seeing also presents a different style, and that should be done
using CSS. You can add CSS for your dashboard and change the style of the tooltip,
not just the format.

Chapter 8

[307]

Styling tooltips
When we want to style a tooltip, we may want to use the developer
tools to check the classes or names and CSS properties already applied,
but it's hard because the popup does not stay still. We can change the
tooltipDelayOut property and increase its default value from 80 to
1000 or more, depending on the time you need.

When you want to apply some styles to the tooltips for a particular chart you
can do by setting a CSS class on the tooltip. For that you should use the property
tooltipClassName and set the class name to be added and later used on the CSS.

Pie chart showing the value in the center
There are features that CCC presents and that we don't yet know about, so you
should keep an eye on the CCC forum (http://forums.pentaho.com/showthread.
php?161089-CCC-FAQ-Frequently-Asked-Questions-About-CCC) and Duarte
Cunha fiddles (http://jsfiddle.net/user/duarteleao/fiddles). The following
example has been generated with some simple options that can make a difference. Of
course, you also could achieve this with CSS, but it would make your life harder.

To get the result just shown, for each one of the charts we could apply the
following options:

function() {
 var cd = this.chartDefinition;
 var options = {
 valuesVisible: true,
 valuesLabelStyle: 'inside',
 valuesFont: '35px sans-serif',
 valuesMask: '{value.percent}',
 label_visible: function() { return !this.index; },
 label_left: null,
 label_top: null,
 label_textAngle: 0,
 label_textAlign: 'center',

http://forums.pentaho.com/showthread.php?161089-CCC-FAQ-Frequently-Asked-Questions-About-CCC
http://forums.pentaho.com/showthread.php?161089-CCC-FAQ-Frequently-Asked-Questions-About-CCC
http://jsfiddle.net/user/duarteleao/fiddles

Visualizations Using CCC

[308]

 label_textBaseline: 'middle',
 slice_innerRadiusEx: '70%',
 legend: false
 }
 $.extend(true, cd, options);
}

Dimensions
It's important to know that a dimension in CCC is not an MDX dimension. Here
it is represented by a subset of atoms. When you want to achieve more advanced
results, you can change the behavior of CCC. Well maybe I shouldn't say change the
behavior, but help CCC behave in a different way than the default behavior. What
we can do is change one dimension, but not change the rest of them; CCC will apply
the default options to just those dimensions. Don't forget that these changes are
optional and you only want to apply them to change the default behavior of CCC.

When dimensions are not defined, the default dimensions, with the default options,
are generated to satisfy the needs of the chart. Anyhow, the data dimensions can be
explicitly defined. When defining dimensions, you can define them partially. You
will be able to define just one and let the others be automatically generated.

The list of dimension options is defined at: http://www.webdetails.pt/ctools/
ccc/charts/jsdoc/symbols/pvc.options.DimensionType.html, where you can
also get more details.

We have made a table with a complete list and default values and a brief description
of them:

Name Type Short description

(from the CCC website)
label string The name of the dimension type as it is shown to the user.

format string
function
object

The dimension type's format provider.

isHidden Boolean This indicates whether the values of this dimension type
should be hidden from the user.

isDiscrete Boolean This indicates whether a dimension type should be
considered discrete or continuous.

valueType function This is the type of value that dimensions of this type will
hold.

http://www.webdetails.pt/ctools/ccc/charts/jsdoc/symbols/pvc.options.DimensionType.html
http://www.webdetails.pt/ctools/ccc/charts/jsdoc/symbols/pvc.options.DimensionType.html

Chapter 8

[309]

Name Type Short description

(from the CCC website)
rawFormat string This is a Protovis format string that is to parse the raw value.
comparer function This is a function that compares two different and non-null

values of the dimension's valueType.
converter any This converts a non-null raw value, as read from the data

source, into a value of the dimension's valueType.
key string This is a function that converts a non-null value of the

valueType into a string that (uniquely) identifies the value
in the dimension.

formatter function This is a function that formats a value, possibly null, of the
dimension's valueType.

For instance, if we want to have the dimension, category to be a date, but represented
on a discrete and not continuous axis, we would need to specify the following options:

dimensions: {
category: {valueType: Date, isDiscrete: true}
}.

Readers
One of the options that we have to apply to the dimension is readers. Readers allow
you to declare the mapping of columns to dimensions. As it was not always possible
to use colName, there was a need to invent readers. This will only happen after
parsing the data structure and when CCC is already making use of a relational data
structure (this could be the result of a data structure parsing from a crosstab).

We can set readers using two different approaches:

• Using visual role names or visual row prefix names: category, series,
measure, value, and multiChart. Depending on the chart type, there
might be other dimension types available such as median, lowerQuartil,
upperQuartil, minimum, and maximum. They are applied on the box plot chart.

 ° For instance: readers: ['category', 'series', 'value']: this
would make CCC interpret the columns as specified, the measure,
series, category and at least the value, slightly changing the way it
interprets the columns by default

Visualizations Using CCC

[310]

• By using business names instead of defining measures, series, categories, and
value.

 ° For instance: readers: ['Markets', 'Years', 'Sales']
 ° When doing this, we also need to define the mapping for the visual

roles:
visualRoles: {
value: 'Sales', // <-- mapping defined here
series: 'Years', // <-- mapping defined here
category: 'Markets' // <-- mapping defined here
}

When defining readers, we might use the same visual role names or visual row prefix
names that are not defined. These column values will not be mapped to visual roles
automatically, but we are still able to use them on, for instance, tooltip customization
or event handling. It can be very.

Another way to define readers is using the indexes of the columns being mapped:

readers: [
 {names: 'Sales', indexes: 2},
{names: 'Years', indexes: 1},
{names: 'Markets', indexes: 0}
]
visualRoles: {
value: 'Sales',
series: 'Years',
category: 'Markets'
}

In the previous example, the first column (index 0) of the data source feeds the
Markets dimension, while the second column (index 1) feeds the Years dimension
and so on.

Visual roles
You might use visual roles even if you are not using the business names as readers.
For instance, they might be used to represent a second plot in the chart. Anyhow, the
visualRoles option allows you to declare the mapping from CCC dimensions to
visual roles.

Chapter 8

[311]

If you want to represent a second plot that should be a boxplot, then you will the
code as follows:

plots: [
 // Main plot - bars
 {
 name: 'main',
 dotsVisible: true
},
 // Second plot - boxes
 {
 type: 'box',
 visualRoles: {
 // Comment the ones you don't want represented
 median: 'value',
 lowerQuartil: 'value2',
 upperQuartil: 'value3',
 minimum: 'value4',
 maximum: 'value5'
 }
 }
]

You can see that we are mapping the visual roles median, lowerQuartil,
upperQuartil, minimum, and maximum, using the row prefix names value, value2,
value3, value4, and value5. This will make it possible to have a second chart using
box plot representations for each of the categories.

You are able to check the example provided on the CCC web page at the following
link: http://www.webdetails.pt/ctools/ccc/#type=line&anchor=line-with-
5-number-statistics.

The available visual roles are: category, series, multiChart, value, dataPart, and
measures.

Debugging the CCC charts
When you want to customize your options a bit more, you may be entering some
advanced features, where it's hard to understand what's being done or what changes
we should apply. CCC provides some debugging modes that allow you to have a
better understanding and knowledge of what these advanced features are doing.

http://www.webdetails.pt/ctools/ccc/#type=line&anchor=line-with-5-number-statistics
http://www.webdetails.pt/ctools/ccc/#type=line&anchor=line-with-5-number-statistics

Visualizations Using CCC

[312]

We will cover how to use developer tools to perform debugging later, but for now
just be aware that you have specific debugging levels for CCC. You will see later that
you can perform debugging on a dashboard if you add a parameter of your URL
(debug=true).

If you have a URL that is http://localhost:8080/pentaho/api/
repos/%3Apublic%3Asample.wcdf/generatedContent, you need change it to:
http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/
generatedContent?debug=true. Or if you have http://localhost:8080/
pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent?paramcou
ntry=Portugal, you need to change it to:http://localhost:8080/pentaho/api/
repos/%3Apublic%3Asample.wcdf/generatedContent?paramcountry=Portugal&
debug=true.

To debug a CCC chart and get extra information you can add &debugLevel=5.
You need to use it like: http://localhost:8080/pentaho/api/
repos/%3Apublic%3Asample.wcdf/generatedContent?paramcountry=Portugal&
debug=true&debugLevel=5.

When you do this, you will get a lot more information that is really important. This
information will be available on the console in the developer tools of the browser
you are using. The following examples are screenshots taken from Chrome for Mac
OS X, version 46.0.2490.80 (64-bit). The image to the left shows the output on the
console regarding the options being used to render the chart. The one to the right
shows one example of the data source summary that CCC provides. Some examples
are as follows:

 http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent
 http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent
http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent?debug=true
http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent?debug=true
http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent?paramcountry=Portugal
http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent?paramcountry=Portugal
http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent?paramcountry=Portugal
http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent?paramcountry=Portugal
http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent?paramcountry=Portugal
http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent?paramcountry=Portugal
http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent?paramcountry=Portugal
http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent?paramcountry=Portugal
http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.wcdf/generatedContent?paramcountry=Portugal

Chapter 8

[313]

The following image is also part of the output that we get from debugging CCC. The
image on the left gives you information about the Logical Table and how CCC
parses the result set of the query seriesInRows and crosstabMode, or for readers:

Looking at the table on the right, you will find the Visual Roles Mapping that is
being used as the default for the options used or as set by you, as explained earlier in
this chapter.

If, instead of using a value of 5 for the CCC debugging level, you use a value of 16
(&debugLevel=16), when displaying the chart you will be able to see some borders
that identify all the panels of the chart. The following screenshot is an example of
this. Among other things, it's useful to check whether it's being used as padding or
margins for the panels. You can see those margins in the following image:

Visualizations Using CCC

[314]

CGG – Community Graphics Generator
CGG is a plugin that allows you to export CCC charts in CDE dashboards as images.
CGG will generate the image on the server side, and that's the reason why you will
see some JavaScript files related to the charts to be exported. Every time you set a
chart to be exportable, it will be provided with a URL that you can use to export the
image. This means you can see the generated images of the charts you can embed
inside any other dashboard/report/page.

When editing a CDE dashboard, you can press Shift + G, which is a shortcut to
get to a dialog with a list of charts in the dashboard. By selecting a chart, you
will be enabling the option to export the chart using CGG. You can see this in
the following image:

The previous image also shows the URL button, which you can click to get the link
to use for the export. For example, for one of the examples provided with the book,
the link to the chart will be: http://<server>:<port>/pentaho/plugin/cgg/api/
services/draw?script=/public/Ctools+Book+Samples/Chapter+8/CGGSample/
CGGSample_chart.js&outputType=png.

This URI uses two parameters, the script and the output type. The first one is used to
point to where the script to generate the chart is located. This script is only generated
when you enable the checkbox in the CGG dialog box and just after saving the
dashboard. When you save the dashboard, the script is generated and you can make
use of it.

Using CGG, charts can be exposed as a PNG or SVG image. Let's see how we
can make this happen. We can change the outputType parameter and set the string
png to get a PNG image or set svg to get an SVG image. I always prefer to use SVG
but, if you have some incompatibilities, you can use the other option. By default,
CGG uses PNG.

http://<server>:<port>/pentaho/plugin/cgg/api/services/draw?script=/public/Ctools+Book+Samples/Chapter+8/CGGSample/CGGSample_chart.js&outputType=png
http://<server>:<port>/pentaho/plugin/cgg/api/services/draw?script=/public/Ctools+Book+Samples/Chapter+8/CGGSample/CGGSample_chart.js&outputType=png
http://<server>:<port>/pentaho/plugin/cgg/api/services/draw?script=/public/Ctools+Book+Samples/Chapter+8/CGGSample/CGGSample_chart.js&outputType=png

Chapter 8

[315]

References
Other good sources of additional information and examples are the following links:

• http://jsfiddle.net/user/duarteleao/fiddles/

• http://forums.pentaho.com/showthread.php?161089-CCC-FAQ-
Frequently-Asked-Questions-About-CCC

Summary
In this chapter, we provided a quick overview of how to use CCC in CDF and CDE
dashboards and showed you what kinds of chart are available. We covered some of
the base options as well as some advanced options that you might use to get almost
a fully custom visualization. Might be that some of the properties are not available
in the CDE GUI, but the properties and respective values might be used in the
preExecution or postFetch function of the CCC component being used.

You should now know about internationalization and how to customize tooltips, and
even how to deal with the click event, creating interaction with new components.
When starting out using CCC, you might not be interested in debugging, but if you
are or are intending to be an advanced user, you should start looking into it. We also
covered what an extension point is and how to use it.

In the next chapter, we are going to cover the Pentaho App Builder and you'll see
how to build a Pentaho plugin with it.

http://jsfiddle.net/user/duarteleao/fiddles/
http://forums.pentaho.com/showthread.php?161089-CCC-FAQ-Frequently-Asked-Questions-About-CCC
http://forums.pentaho.com/showthread.php?161089-CCC-FAQ-Frequently-Asked-Questions-About-CCC

[317]

Pentaho App Builder
Pentaho App Builder is one plugin you can use to build your Pentaho plugins. The
most interesting part of it is that you don't need to create any code to get it working.
Yes, you heard right, no code.

In this chapter, you will learn about:

• Pentaho App Builder
• Community Plugin Kick-starter
• Creating a dashboard
• Making a plugin available on the marketplace

By the end of this chapter, you will understand Pentaho App Builder and how to
work with it. There was a time when you would have needed to know how to write
Java code for the back end of the plugin, but now it's much more simple and more
accessible to many more people.

You will also know what the Community Plugin Kick-starter (CPK) is and its
relationship with Pentaho App Builder. You really need to understand the concepts
behind CPK, because that's where most of the magic happens. Pentaho App Builder
is just a graphical interface that leverages the work. You will also see that with CPK,
you are able to make use of jobs directly, and not just transformations like in CDA.
We'll give you some tips and tricks that you will find very useful.

Pentaho App Builder

[318]

Understanding Pentaho App Builder
"Sparkl, or Pentaho App Builder, is a plugin creator instrument that sits on 2
major cornerstones of Pentaho: CTools and PDI, aiming to leverage as much as
possible of our existing stack."

 – Pedro Alves

The main idea is to use both of the two most amazing tools in Pentaho: the
CTools and Kettle (also known as Pentaho Data Integration). If you know how to
build Kettle jobs and transformations and also know how to build a dashboard,
you should be able to build a Pentaho plugin. If not, it's about time to learn. I
can recommend you two books: https://www.packtpub.com/big-data-and-
business-intelligence/pentaho-data-integration-beginners-guide-
second-edition and https://www.packtpub.com/big-data-and-business-
intelligence/pentaho-data-integration-4-cookbook.

If you didn't know Java code, it would be hard for you to create a plugin, but that's
not the case anymore as you are able to do it without the need to write Java code.
You can also create a CTools dashboard without writing a line of code; however, as I
already told you earlier in the book, you will need to write some JavaScript to build
remarkable dashboards. Not that you need to know a lot of JavaScript; you just need
to understand it and adjust some code in the book or in the included samples. We
are making the absolute most of the existing skills of data developers. When we talk
about building a web application, usually we will talk about having a back end and a
front end.

Pentaho App Builder works on top of CPK. CPK provides a way to simplify the
structure of a Pentaho package application, where the UI can be built as a CDE
dashboard and the back end as a Kettle transformation/job. There are other options,
such as making the back end using JavaScript or Java code. However, there is no
need to do this if you can use Kettle.

Installing Pentaho App Builder
You can install Pentaho App Builder using Marketplace, and you just need to refer to
the instructions in the first chapter. Pentaho App Builder has some dependencies, so
make sure you have them installed:

• CPF: Community Plugin Framework
• CDE: Community Dashboard Editor
• CDF: Community Dashboard Framework
• CDA: Community Data Access

https://www.packtpub.com/big-data-and-business-intelligence/pentaho-data-integration-beginners-guide-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/pentaho-data-integration-beginners-guide-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/pentaho-data-integration-beginners-guide-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/pentaho-data-integration-4-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pentaho-data-integration-4-cookbook

Chapter 9

[319]

Create a new plugin
Open Pentaho App Builder using the PUC menu, or directly from http://
localhost:8080/pentaho/plugin/sparkl/api/main. When you start Pentaho
App Builder, you will be in the following dashboard. I referred to the dashboard,
because Pentaho App Builder is itself dashboard:

In the preceding image, you will find the following buttons/options:

1. Sort plugins by: This is to sort the plugins that are available in your Pentaho
instance. Here, you only see the plugins that were built using Pentaho App
Builder or CPK.

2. Refresh: This refreshes the list of available plugins.
3. Create a new Plugin: Click this plus sign to be able to create new plugins.

You will learn more about this later in the chapter.
4. Play: This will open/execute the main dashboard of the plugin.
5. Edit: You will be redirected to another window where you can edit the

metadata of the plugin, or create/edit/remove end points.
6. Remove: This deletes the plugin from the system folder. The files will be

removed from the system folder of the server.

When you create a new plugin using option 3, you need to enter the name of the
plugin and click on the Create plugin button. You will get a message to restart the
server. So please proceed. In future versions of Pentaho 6.X and new releases of
Pentaho App Builder for Pentaho 6.X, it will be possible to generate a new plugin
that becomes immediately available.

http://localhost:8080/pentaho/plugin/sparkl/api/main.
http://localhost:8080/pentaho/plugin/sparkl/api/main.

Pentaho App Builder

[320]

After the restart, you need to go into Pentaho App Builder and edit your plugin. If
you didn't set the metadata of the plugin, it's a good time to do it. Just fill out the
form data and click on Apply Changes. The following image is an example of what
you will get:

You will see two tabs: About and Elements. About is the information/metadata of
the plugin. Elements is about the endpoints of the plugin:

Chapter 9

[321]

In the preceding image, we can identify the following sections:

1. Plugin name: The plugin's ID/name.
2. Add new element: You can click on this plus button to add a new endpoint.

It can be a dashboard or a Kettle job/transformation. We will cover these
separately in this chapter.

3. Display options: You can select the type of add-in you want to be displayed.
It can be a dashboard or a Kettle transformation/job, or both at the same
time. In the image, you can see a dashboard that can be used as the front end
and a Kettle transformation/job as part of the back end.

4. Refresh button: This will let you refresh the endpoints available. You can
add a dashboard or transformation/job to the endpoints folder in the plugin
system folder, and you can then refresh the plugin to see the endpoints listed,
so there is no need for a restart.

5. Available endpoints: Here you will get a list of the available endpoints. The
list will include the name, type, and permissions. The type will give you
information about whether it's a dashboard or Kettle endpoint.

Creating a new endpoint
An endpoint can be considered as a URI and HTTP method that directly gets a
response from the server. For instance, when invoking the URI, we might get a
dashboard or the result from a Kettle job/transformation. It does not need to be
invoked from the plugin itself, as you can run a Kettle endpoint from another
application, but of course one of the use cases it to use the end points inside the
plugin itself.

We saw in Chapter 2, Acquiring Data with CDA, that we can use CDA to get data
from a Kettle transformation, but using Pentaho App Builder to do so, you can also
use jobs to execute some actions and return success or error messages, download a
file/multiple files, or have a custom format. Note that you should use Pentaho App
Builder only if you're building one application/plugin, otherwise you might build
a normal dashboard or use CDA endpoints to get data. If you can't do this with a
regular dashboard and CDA data sources, then use Pentaho App Builder.

Like we have already covered, there are two kinds of endpoints that you can use in
Pentaho App Builder/CPK. When creating a new element, you need to specify its
name and type:

• A Pentaho Data Integration (Kettle) job/transformation
• A CDE dashboard

Pentaho App Builder

[322]

Creating a job/transformation
To create a new Kettle endpoint, you will need to specify the name and the
type Kettle Endpoint. You will also need to choose from Clean Job or Clean
Transformation. You can also create a Kettle transformation that can be executed
only by an administrator:

After the endpoint has been created, you will see it as shown in the following image:

There are two buttons here you can use for each Kettle endpoint:

1. Execute the endpoint: This will trigger the execution of the endpoint.
2. Remove/delete the endpoint: This removes the endpoint, and will ask

for confirmation.

You don't have a button to edit the Kettle transformation/job, and that's because it's
not possible to open Data Integration in the browser.

Starting to learn about CPK
Like we covered earlier, CPK is where almost all the magic exists. In reality, the
plugins that you create with Pentaho App Builder are CPK plugins that might be
created by Pentaho App Builder, the web interface that allows you to do so easily.

CPK lets you expose the Kettle jobs, transformations, and dashboards as a REST
endpoint. You can call them using either of the following calls:

• http://<host>:<port>/<webapp>/plugin/<cpkPluginId>/api/
{kettleFileName}

• http://<host>:<port>/<webapp>/plugin/<cpkPluginId>/api/
{dashboardFileName}

Here:

• host: This is the hostname or IP of the server. It can be localhost when you
have Pentaho installed on the same machine as the request.

• port: This is the port we can use to access the Pentaho server. It is 8080
by default.

Chapter 9

[323]

• webapp: This is the web app's name, which by default is pentaho.
• cpkPluginId: This is the ID of the plugin that you specified when creating

the plugin.
• kettleFileName or dashboardFileName: This is the name of the endpoint

you are requesting. You can specify the name of the dashboard or the name
of a Kettle transformation or job.

When we create a Kettle transformation or job using Pentaho App Builder, as
explained earlier, you will get the following parameters automatically created for the
job or transformation you have created:

Parameter Default
value

Description

#cpk.cache.isEnabled false This enables/disables the caching of results.
#cpk.cache.
timeToLiveSeconds

3,600 This shows how many seconds a result will
be cached for. Setting this value to 0 means
the result will be cached forever.

#cpk.executeAtStart This indicates whether the transformation is
to be executed when the plugin is initialized
or not.

#cpk.plugin.dir This is the plugin folder.
#cpk.plugin.id This is the ID of the plugin.
#cpk.response.
attachmentName

This is the attachment name used when
downloading a file from a result.

#cpk.response.download false This shows whether or not to mark the HTTP
response body as an attachment.

#cpk.response.
kettleOutput

This is the output format to be used by
default. The possible values are: Infered,
Json, SingleCell, ResultFiles, and
ResultOnly.

#cpk.response.mimeType This is the mimeType of the HTTP response.
If this value is not set, the plugin will try to
determine it from the file extension.

#cpk.result.stepName OUTPUT This is the default output step where the
rows will be fetched for the result.

#cpk.session.
[sessionVarName]

This is the value of the session variable
named [sessionVarName]. It will be
automatically injected when the variable is
enabled.

#cpk.session.roles These are the roles of the username
executing this transformation.

Pentaho App Builder

[324]

Parameter Default
value

Description

#cpk.session.username This is the username that is executing this
transformation.

#cpk.solution.system.
dir

This is the pentaho-solutions folder.

#cpk.webapp.dir This is the webapp folder.

By default, all the parameters are disabled. To enable the parameter, you should
remove the # from the beginning of its name. Otherwise, it will be seen as a comment.

Specifying the step of where to get results from
A Kettle endpoint (job or transformation) may have multiple steps or job entries
where we can get the results from. You are able to choose which step to retrieve
data from. This can be done by setting the name of the step/job entry to start with
OUTPUT. Just prefix the name of your step with the referred string and see the results
returned to the caller of the endpoint.

There is also another way. It is possible to specify which step entry we want to fetch
the row results from—we just need to include the stepName parameter in the query
string of the request. To make it easier to identify the step name where to pull the
information from, we need to add to our URI ?stepName=OUTPUT:

http://<host>:<port>/<webapp>/plugin/<cpkPluginId>/api/
{dashboardName}?stepName=OUTPUT

By default, CPK will try to find an OUTPUT step name. A bit later on, we will cover
how you can change the step name directly in the jobs/transformations using the
cpk.result.stepName property.

Specifying parameters' values
It's very useful that you can pass parameters to a transformation/job. To do so, you
need to prefix the name of the parameter with param. If the parameter name is called
territory, you need to use paramterritory, as shown here:

http://<host>:<port>/pentaho/plugin/<cpkPluginId>/api/{dashboardName}
?paramterritory=EMEA

Chapter 9

[325]

Changing the output format type
CPK will try to guess the output type; however, you can specify the output type
you desire. We may want to return data to the caller, or just return a file that can
be downloaded. The available options are as follows:

• Json: This returns the result rows in a standard CDA-like result set format
(metadata / queryinfo / resultset), just like a CDA data source.

• ResultFiles: This gets the files that were set in the result. For this to be
enabled, we need to set the option Add filename to the result set.

• SingleCell: This returns the content of the first cell of the first row in the
result. This allows us to return other format types, for instance XML.

• ResultOnly: This returns status information about the execution. This is
usually the output of the executions of a job.

We can select the desired format by setting a query string parameter like in the
following link. The query string name is kettleOutput:

http://<host>:<port>/pentaho/plugin/<cpkPluginId>/api/{dashboardName}
?paramterritory=EMEA

You want to avoid the use of the query string parameter, and you also have the
transformation/job parameter cpk.response.kettleOutput that you can change.
When the parameter cpk.response.kettleOutput isn't used, CPK will try to infer
it. Take a look at the following diagram:

Pentaho App Builder

[326]

The previous diagram is the decision logic to determine which will be the result
returned from the endpoint.

When the option resultFiles is used, CPK will compress all the files inside a .zip
file, which is returned, but keep in mind that if the result only includes one file, CPK
will not zip it and will return the files, so if you're using a browser, the browser will
try to determine the mime type from the file extension. If the mime type is known,
the browser will try to render the file and not download it. You can also force the file
to be downloaded if it's a single file. This can be achieved by setting cpk.response.
download to true.

If you also want to specify the mime type so that the browser can understand its
content, you can do this by setting the parameter cpk.response.mimeType to the
desired value (for example, an application/XML).

Specify the filename for the downloaded file
To specify the filename, you can use the parameter cpk.response.
attachmentName, or set the query string parameter name
attachmentName.

Returning a single cell
Let's suppose you want to return your own JSON or XML structure. How would
you do so? To achieve that you need to return a single cell. You should follow the
same behavior as for the result file. This will also behave as defined by the use of
the parameters cpk.response.download, cpk.response.mimeType and cpk.
response.attachedName.

Other considerations
Each CPK plugin has its own cache to store the results obtained from the execution
of its endpoints. By default, caching is disabled and to enable it, you set the value of
the transformation/job parameter cpk.cache.isEnabled to true.

The length of time that the results will remain cached can be set by setting the time in
seconds using the parameter cpk.cache.timeToLiveSeconds.

Chapter 9

[327]

Creating a dashboard
To create a new dashboard, just add the name of your dashboard and select the
type Dashboard. You will also need to select its style between a clean dashboard or a
Pentaho App Builder template dashboard. I advise you to use the clean dashboard
and apply your own styles, or create your own style (similar to what was explained
in Chapter 7, Advanced Concepts using CDF and CDE):

There is also a checkbox you can check if the dashboard should only be accessible
only to Pentaho administrators. When you create a new endpoint, the dashboard
will become available. The following image is an example of a row displaying a
dashboard endpoint.

After the endpoint has been created, you will see the following image:

There are three buttons you can use for each frontend endpoint (dashboard):

1. Open the dashboard: This will trigger the execution of the dashboard.
2. Edit the dashboard: This will open the dashboard in edit mode.
3. Remove / Delete the endpoint: This removes the endpoint, and will ask

for confirmation.

A dashboard is used like the Kettle endpoints are. The URL to call is basically the
same, and the only change is the name of the endpoint, which should point to the
name of the dashboard.

You can invoke dashboards using the following calls:

• http://<host>:<port>/<webapp>/plugin/<cpkPluginId>/api/
{dashboardFileName}

• http://<host>:<port>/<webapp>/plugin/<cpkPluginId>/api/
{dashboardFileName}?mode=edit

In the second call, you will see ?mode=edit, meaning that we want to open the
dashboard in edit mode, while the first one will open it in render mode.

Pentaho App Builder

[328]

There are some default endpoints already defined that you can use so you don't
give the same name to the dashboards or transformations/jobs. The endpoints
are as follows:

• status: Displays the status of the plugin and all its endpoints
• refresh or reload: Reloads all the configurations, endpoints, and

dashboards, and also clears the endpoints cache
• version: Returns the plugin version (defined in the plugin's version.xml

file or through the control panel)
• getSitemapJson: Returns a JSON object with the plugins sitemap

(for dashboards only!)
• getElementsList: Returns a JSON object with the whole list of elements

present in the plugin (dashboards and Kettle endpoints)

Folder structure
The folder structure of the plugins is as follows:

dashboards | endpoints | static | resources | lib | plugin.xml

Where, they are explained as follows:

• dashboards: Inside the folder are all the dashboards that have been created
and that should be accessible to all users. Any dashboard that is placed inside
the admin folder will only be available for administrators.

• endpoints: All backend endpoints, Kettle jobs, and transformations
should be placed inside a kettle folder. When the name of a Kettle job or
transformation is prefixed by _, the endpoint will not become available as an
external endpoint. This makes it possible to have private endpoints that can
only be used by another job and/or transformation.

• static: All CSS, JavaScript, and images can be placed here, and will be
available to be used inside the dashboard.

• lib: This is where the Java libraries can be placed.
• plugin.xml: This is the file where all the configurations are set. Here you

may uncomment the menu-item tag and make a menu item available to open
the dashboard when the option is clicked:
<!-- Menu entry -->
<menu-items>
 <menu-item id="myPlugin_main" anchor="tools-submenu"
 label="MyPlugin" command="content/myPlugin/"
 type="MENU_ITEM" how="LAST_CHILD"/>
</menu-items>

Chapter 9

[329]

Making use of Kettle endpoints on a dashboard
You may use some of the Kettle endpoints you have created for each of the plugins
available on the server. When creating the dashboard, in edit mode of course, if you
go to the data sources perspectives, you will find some data sources groups that are
new to the list of data sources types. Inside each one of those groups, you will find a
list of endpoints that you have created for your plugin, but also can be used in other
plugins. Each plugin will have its own group, and the data sources inside are the
data sources for each of them, as shown here:

The previous image is one example of the groups that will become available, and
you will also see your own data sources or the data sources you have created
for your plugin. You can see in the following image two plugins: myPlugin and
d3ComponentLibrary. There are two endpoints that belong to myPlugin: getData
and removeMe:

Pentaho App Builder

[330]

You can make use of this endpoint as another data source, except that you will
have fewer options. The preceding image shows you that an endpoint provides
three properties:

• Name: Used the same as with other data sources. This is the name of the data
source that can be set on a component.

• Output step: This is where you can set the name of the step where you want
to extract data from.

• Output type: This sets the output type of the data source. The available
options that you can select from the dropdown when you start typing or
clicking down are as follows:

 ° Inferred: This lets CPK infer the result, as explained earlier.
 ° JSON: The result will be a Json object like any other CDA data source.
 ° ResultFiles: This will return a file, which may be the only one, or a

.zip file with all the files that are being used in the dashboard. You
will need to check the option add filename to the result set
for the steps where the option is available. Doing so is not mandatory
for all the steps but only for the ones where the files will be exported
from. The filenames are used to identify the files to export.

 ° ResultOnly: This is usually used when the endpoint is a job.
 ° SingleCell: This is used when you want to get a custom result. You

set the output that you wish for a single cell as a string. The result of
the string of a single cell will be returned.

But how about parameters? Can't we use parameters and pass them to a
transformation/job? Yes, you can, but you need to define them in the parameters
of the component that is using the data source.

Using another plugins endpoint
When using another plugin transformation from another Pentaho
App Builder plugin, you need to take care, because there will be an
endpoint that belongs to another plugin, and that's a dependency.
There is no problem doing so, you just need to make sure that you
include the plugin as a dependency, so that users installing your
plugin know that another plugin needs to be included.

Chapter 9

[331]

When you use a data source (that is, a plugin endpoint) in a component, you may
specify the parameters to pass to the transformation/job. Check the following image:

Let's suppose you have a parameter in your little transformation called
myKettleParameter. You can send a value to the transformation by creating a
mapping with the parameter of the dashboard. When using a table component,
for instance, you may define the data source and the parameters to be sent to the
data source.

The preceding image is one example of the image you will get when setting the
parameters. On the left, you will need to specify the name of the parameters of the
transformation, and on the right, the name of the parameter of the dashboard. This
will create a mapping between both, and that's the way we can send a value to a
Kettle parameter. You can add as many parameters as you need. Just don't forget
that if you are adding too many parameters, you may be doing something wrong.

When creating a plugin, you don't always want a job/transformation to be used as
a way to get data for the front end. You may want the dashboard of the plugin to
perform some action. For that purpose, you can use a Kettle transformation or job.
You can use your own code to do so, or you can use the button component.

The button component has a property called Action Datasource, where you can
choose one of the data sources to execute when clicking the button. The action
parameters property is where we can specify the parameters mapping between the
Kettle job/transformation and the dashboard parameters. There are two callbacks
you can use when setting Action Datasource:

• Success Callback: This will be executed when the job/transformation is
executed with success.

• Failure Callback: This will be executed when the job/transformation fails
to execute.

Pentaho App Builder

[332]

The functions that can be defined are as follows:

function(result) {
 …
 // Make use of the result returned to the dashboard.
 …
}

The function receives one argument, which is the result returned to the dashboard.
Inside the function, you will need to write the code to parse the information and
display it, or just interpret it.

How do I make the plugin available on the
marketplace?
As soon as the plugin is developed and in a stable state, it is ready to be shared to
the community. CPK is able to generate a .zip file with metadata information so it
is able to be published to the marketplace. Of course, if you are building the plugin
for a customer, you don't want to make it public, so you don't need to go through
these steps.

To submit the plugin, you need to follow the instructions provided at the following
link: https://github.com/pentaho/marketplace-metadata.

The following instructions assume that you have the git command line installed
and available.

As you can see, there are three main steps:

1. Clone the repository:
To do this, you first need to create a GitHub account, which can be created
for free. Go to https://github.com/pentaho/marketplace-metadata and
click on the fork button, which will create a fork of the repository in your
account. You will then be able to clone the fork in your account. There are
many ways to clone the repository, and one of these ways is to execute a line,
as follows:
git clone git@github.com:mfgaspar/marketplace-metadata.git

This will create a folder with all the files needed. The file you will need to
change is marketplace.xml. These steps are required to make it possible to
perform the submit request.

https://github.com/pentaho/marketplace-metadata
https://github.com/pentaho/marketplace-metadata

Chapter 9

[333]

2. Update the marketplace.xml file with your market-entry:
You should edit the file and add an entry as explained in the instructions
provided on the Pentaho marketplace metadata link we just mentioned. After
you've filled out all the necessary information, you can proceed with the pull
request, but first you will need to commit the changes to your repository. To
do so, you can run the following in the command line:
git add marketplace.xml
git commit –m "Adding myPlugin to the marketplace"

3. Submit a pull request to have your plugin reviewed for inclusion on both the
marketplace plugins and the Pentaho Marketplace website.
To submit the pull request, you need to go back to your Pentaho Marketplace
fork page, add click on Pull Request, and include a message.

Pentaho will need to categorize and approve the plugin before it becomes available
on the marketplace.

Summary
As you can see, it's pretty simple to create a new plugin for Pentaho. I really
hope you can have a brilliant idea that we can use, that becomes available on
the marketplace.

In this chapter, you learned that you can build a plugin just by creating endpoints
that are accessible from the browser, and this can be very useful when integrating
Pentaho with third-party applications.

In the next chapter, we will cover what we have missed until now, for example,
how to embed a CDF/CDE dashboard in a third-party application and how to
perform debugging.

[335]

Embed, Deploy, and Debug
Usually, one of the request from customers is to embed dashboards in a third party
application. Using RequireJS, doing so is simple and very flexible. You can
build mini dashboards that you can easily embed into your application without
interfering with the dashboard's default behavior. In this chapter, you will learn
how to embed both CDF and CDE dashboards into third-party applications and
will explore some considerations.

In all the earlier chapters, you learned how to build a dashboard using CDF
and/or CDE. But when we are developing them, we may face some problems, and it
would be great to know what should we be looking for. In this chapter, you will get
information on how you can debug the dashboard using the developer tools in
your browser.

One of the last phases of a project is delivery to the customer or internally to a
department, or any other issue that you find. In this chapter, you will also learn some
concepts that will help you deploy a project and you'll explore some considerations
when delivering a project to a customer.

You may also know, if you've been paying close attention, that there are some
CTools that have Pentaho support. If you are a Pentaho customer who has paid for
support, you may raise a support case for CDA, CDF, CDE, and CGG, which are the
supported tools. Otherwise, if you are a community user, you have other options
that may not be as good and quick as support, but we will explore the options so you
can find some help if you need it.

In this chapter, you will learn how to:

• Embed CDF and CDE dashboards
• Avoid cross-domain references problems
• Handle events from outside the dashboard
• Debug dashboards when developing them

Embed, Deploy, and Debug

[336]

Embedding dashboards
A frequent question or request that I get from customers is how to embed the
dashboards in another application. To be honest, the process before RequireJS was
introduced into CDF was quite hard and was not interesting. The possibilities, and
I will not get into details of them, were to use an HTML iframe, but this came with
a lot of problems later on, it was not really suitable for mobiles, and it was bad from
the usability point of view. Another option would be to use html div integration,
but that created conflicts in JavaScript libraries and in the CSS, so it might create a
mess when styling your pages.

With the use of RequireJS, the process is much more simple and flexible, and does
not cause big issues. Of course, you might find some minor issues, but they can be
easily identified and fixed. The process of embedding a CDF and a CDE dashboard is
different, even if the base concepts are quite similar.

Of course, the first step before embedding a dashboard, is to create that same
dashboard. This is valid when embedding a CDE dashboard, because a CDF
dashboard is created at the same time you are embedding it. The good news,
which you should be expecting, is that you don't need to do anything different
from what we've covered up to now to create a dashboard that can be embedded.
A really good advantage is that you can embed the same dashboard multiple times
in your application. And you may build a kind of mini dashboard that you can use
multiple times.

Avoiding cross-domain requests
Before you start embedding your dashboards, you need to be aware of how to avoid
cross-domain request issues.

When embedding dashboards in other applications and in earlier versions of CDF
and CDE, you needed to have a reverse proxy working to avoid cross-domain
request issues. Nowadays, the process is really simple. You can turn on an extra
setting for CDF and CDE. To properly allow embedding, which usually requires
cross-domain requests, you will need to add the following XML tag, and that's valid
for both CDF and CDE.

Edit the settings.xml file of CDF and/or CDE, which you will find in your
pentaho-solutions folder: system/pentaho-cdf-dd/settings.xml and system/
pentaho-cdf/settings.xml. Then add the following property:

<allow-cross-domain-resources>true</allow-cross-domain-resources>

Chapter 10

[337]

Depending on the configuration of your server, you may need to restart the server.
If you don't know what I am talking about, just restart it and you will see it working
without cross-domain request problems.

So now let's start embedding some dashboards.

Embedding a CDF dashboard
A CDF dashboard can be easily embedded in any HTML page hosted anywhere—
you just need to include a script to embed CDF in your web page/application. The
script will ask for CDF, and the request should be made to a Pentaho Server that has
CDF installed. The script to include is as follows:

<script
 type="text/javascript"
 src="http://<server>/<webapppath>/plugin/pentaho-cdf/api/cdf-embed.
js">
</script>

Where:

• <server>: This should be replaced by the server name or IP and the port
number when different from 80.

• <webapppath>: This should be replaced by the web app name. By default, it's
Pentaho, but this can be changed.

If your Pentaho server is hosted on the same machine as your application and the
web app is the default one, your request would be:

<script
 type="text/javascript"
 src="http://localhost:8080/pentaho/plugin/pentaho-cdf/api/cdf-embed.
js">
</script>

That's it …

Okay, you must be asking, but how do I include the dashboard in my application/site,
because I only saw how to call CDF's embedded capabilities?

Well, a CDF dashboard is nothing more than JavaScript code you have built,
so you can include it on your web page/application now and it will work. From
the Chapter 3, Building the Dashboard Using CDF you must remember that we had
at least two files, but one of them was just to be used by Pentaho.

Embed, Deploy, and Debug

[338]

The main one is the .xcdf file, which is an xml file that identifies the dashboard
when you double-click on it. It reality, it will be rendering a web page with the
dashboard inside. This file will point to two more files, both HTML pages.

The first one is the dashboard itself, which is an HTML page where you can also
include scripts (JavaScript and CSS, among others) and it is where the code of your
CDF dashboard should be. The second one is just a wrapper for the first one. If you
want more details, please refer back to Chapter 3, Building the Dashboard Using CDF.
Please check whether the code of your dashboard (the code that .xcdf is pointing to)
is like the following:

<div id="sampleObject"></div>
<script type="text/javascript">
 require(['cdf/Dashboard.Blueprint', 'cdf/components/
SelectComponent'],
 function(Dashboard, SelectComponent) {
 var myDashboard = new Dashboard();
 myDashboard.addParameter("region", "1");
 var selectComponent = new SelectComponent({
 name: "regionSelector",
 type: "select",
 parameters: [],
 valuesArray: [["1","Lisbon"],["2","Dusseldorf"]],
 parameter: "region",
 valueAsId: false,
 htmlObject: "sampleObject",
 executeAtStart: true,
 postChange: function() {
 alert("You chose: " + myDashboard.getParameterValue(this.
parameter));
 }
 });
 myDashboard.addComponent(selectComponent);
 myDashboard.init();
 });
</script>

If so, the code of your web page/application should be like this:

<html>
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8"
/>
 <title>mySample</title>

Chapter 10

[339]

 <script type="text/javascript"
 src="http://localhost:8080/pentaho/plugin/pentaho-cdf/api/cdf-
embed.js">
 </script>
</head>
<body>
 <div id="sampleObject"></div>
 <script type="text/javascript">
 require(['cdf/Dashboard.Blueprint', 'cdf/components/
SelectComponent'],
 function(Dashboard, SelectComponent) {
 var myDashboard = new Dashboard();
 myDashboard.addParameter("region", "1");
 var selectComponent = new SelectComponent({
 name: "regionSelector",
 type: "select",
 parameters: [],
 valuesArray: [["1","Lisbon"],["2","Dusseldorf"]],
 parameter: "region",
 valueAsId: false,
 htmlObject: "sampleObject",
 executeAtStart: true,
 postChange: function() {
 var choice = myDashboard.getParameterValue(this.
parameter);
 alert("You chose: " + choice);
 }
 });
 myDashboard.addComponent(selectComponent);
 myDashboard.init();
 });
 </script>
</body>
</html>

As you can see, one of the ways to embed the dashboard is really simple—just embed
CDF by calling it as a script and include the code to create your CDF dashboard.

You have a mini dashboard that you want to reuse, so you can wrap it with
RequireJS and reuse it as many times as you need—just don't forget that you also
need the HTML elements on the page. I believe that, at this time, you should be
able to find a way to do it. You have all the concepts, or you just need some more
JavaScript and RequireJS knowledge, but that's not really the purpose of this book.

Embed, Deploy, and Debug

[340]

Embedding a CDE dashboard
Embedding a CDE dashboard can be quite simple. You really need to create your
own dashboard using CDE in Pentaho. When you have your dashboard working,
you just need to request it.

To make it possible to embed a CDE dashboard, we first need to embed CDE, just
like we saw for CDF, but this time we request CDE to be embedded:

<script
 type="text/javascript"
 src="http://localhost:8080/pentaho/plugin/pentaho-cdf-dd/api/
renderer/cde-embed.js">
</script>

You can now embed a dashboard in one of two different ways. Using RequireJS in
your web page/application, you will be able to include a dashboard as a module.
The two ways to do this are:

1. Directly point to the getDashboard endpoint available in CDF:
'/pentaho/plugin/pentaho-cdf-dd/api/renderer/
getDashboard?path=/public/dash/sample.wcdf'

2. Use the dash! RequireJS loader plugin:
'dash!/public/dash/sample.wcdf'

So, let's explore how to use it. The first step is to create a CDE dashboard. Only
after you have a dashboard, do you need to include the dashboard in your web
page/application.

Your dashboard and/or web page/application just needs to include the following
code:

require([
 '/pentaho/plugin/pentaho-cdf-dd/api/renderer/getDashboard?path=/
public/dash /sample.wcdf'
], function(SampleDash) {
 var sampleDash = new SampleDash("content1");
 sampleDash.render();
});

Chapter 10

[341]

Or it could include:

require([
 'dash!/public/dash/sample.wcdf'
], function(SampleDash) {
 var sampleDash = new SampleDash("content1");
 sampleDash.render();
});

If you look at both examples, you will notice a difference: the link to the module
required. Both options will have a RequireJS module that contains a class for a
specific dashboard. You can create new instances of that class, just to provide an
element ID, or the element itself. The returned class extends the Dashboard class
and adds some new methods:

• render(): This is used to render the dashboard, by first setting up the DOM,
adding the components and parameters to the dashboard, and finally calling
the init() function

• setupDOM(): This is used to set up a predefined layout inside its element
• renderDashboard(): This adds the components and the parameters to the

dashboard, and then initializes it

You may use render() to render the dashboard; or, for better control, you may use
setupDOM() followed by some logic of yours to manipulate the DOM, and finally call
element.renderDashboard().

When embedding a CDE dashboard, your page does not need to provide all
the HTML elements needed for the dashboard, because you have created them.
You just need to have one element where all the other elements will be placed.

Dashboard, component, and parameter
events
One interesting feature that embedded CDE provides is the ability to manage events
from the outside. For instance, we can create a link between dashboards. The way to
do this is using dashboard events.

Embed, Deploy, and Debug

[342]

Let's suppose you have one instance for each of two dashboards. Both dashboards
have one parameter in common, productLine. The first dashboard has one selector
that allows you to change a product line, and the second dashboard has a chart that
is listening to a parameter with the same name. The parameters from each of the
dashboards will not automatically be linked, so we need to specify that connection:

require([
 'dash!/public/dash/selectorDash.wcdf'],
 'dash!/public/dash/lineChartDash.wcdf'],
 function(SelectorDash, LineChartDash) {
 var selectorDash = new SelectorDash("selector");
 selectorDash.render();
 var lineChartDash= new LineChartDash("lineChart");
 lineChartDash.render();
 selectorDash.on("productLine:fireChange", function (evt) {
 lineChartDash.fireChange("productLine", evt.value);
 });
});

Looking at the code, you will see that, in the first dashboard, the productLine
parameter is being watched, and a change is triggered by the fireChange function.
For instance, when the user makes a selection, the code inside the function will
trigger a change for the productLine parameter of the second dashboard. This
creates a link between both dashboards.

This feature is nothing more than an extension of Backbone.Events, so you can
learn to use it to the fullest at http://backbonejs.org/#Events.

The events can be triggered by the dashboard or by the components. The following
events are available:

• The events triggered by dashboards are as follows:
 ° Parameter changes: When a parameter changes its value, the event

<parameterName>:fireChange is triggered
 ° Dashboard pre-initialization: When the dashboard finishes running

the pre-initialization scripts, the event cdf:preInit is triggered
 ° Dashboard post-initialization: When the dashboard finishes running

the post-initializations scripts, the event cdf:postInit is triggered
 ° User not logged in error: When CDF detects that a user is no longer

logged in, the event cdf:loginError is triggered
 ° Server error: If a call to the server returns an error, the event

cdf:serverError is triggered

http://backbonejs.org/#Events

Chapter 10

[343]

• The events triggered by components are as follows:
 ° Pre-execution of the component: After the call to the preExecution

function, the event cdf:preExecution is triggered.
 ° Post-execution of the component: After the call to the

postExecution function, the event cdf:postExecution is triggered.
 ° Error: If an error happens during the execution of the component,

the event cdf:error is triggered. This can be applied for each one
of the components.

Managing events is important inside the dashboard, but the ability to manage events
outside the dashboard becomes very important when we are embedding dashboards.

Debugging
When we are developing a dashboard, we may face problems and we need to know
where to look for solutions. Many of the problems we face when developing a
dashboard can be identified using the developer tools in your browser.

I usually use Chrome, so the examples here are based on the developer tools of this
browser. The version that was used while writing this was 46.0.2490.86 (64-bit).
Anyhow, if you are using Firefox, you also have developer tools, or you can install
Firebug, a developer tool that does not come installed by default. To be honest, I
find the developer tools of Internet Explorer to be very poor, even if they are getting
better in the latest versions of the browser. Anyhow, we must use them when we are
debugging problems that only exist in this browser.

Do not forget to test your dashboard on all of the browsers.

Embed, Deploy, and Debug

[344]

Browser compatibility
Like any other web page, a dashboard can work in one browser and fail to execute
in another browser. Every browser has an engine, and they can be quite different.
To check what each browser supports and does not support, and for which version,
you can use the following site: http://caniuse.com. For instance, if you want
to check which ones support SVG images, just search for SVG and you will see
something like this:

The preceding screenshot shows browsers and their versions; a red rectangle
means that SVG is not supported and a green rectangle shows the versions that
are supported.

Debugging with developer tools
Among other features, developer tools allow you to inspect, edit, and monitor CSS,
HTML, JavaScript, and network requests in any web page. If you want to know
more, the following links show how developer tools work:

• https://developer.chrome.com/devtools

• https://developer.apple.com/safari/tools/

• https://developer.mozilla.org/en-US/docs/Tools

• https://msdn.microsoft.com/en-us/library/dd565628.aspx

http://caniuse.com
https://developer.chrome.com/devtools
https://developer.apple.com/safari/tools/
https://developer.mozilla.org/en-US/docs/Tools
https://msdn.microsoft.com/en-us/library/dd565628.aspx

Chapter 10

[345]

When a dashboard is rendered, the CSS and JavaScript files are minified; thus, when
you are debugging the dashboard, you must add a parameter to your URL. The
parameter to be added is debug and it needs to be set to true. You can add it as
?debug=true if no other parameter exists or as &debug=true if another parameter
already exists. Please look at the following two examples:

• http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.
wcdf/generatedContent?debug=true

• http://localhost:8080/pentaho/api/repos/%3Apublic%3Asample.
wcdf/generatedContent?paramcountry=Portugal&debug=true

Both examples will allows you to debug the dashboard the only difference is that one
has a parameter and another one does not, so one uses the & to set the debug to true,
and the other one uses a ? to set the debug mode to true.

This will make CDF and CDE return non-minified versions of the code, and you
will be able to check and understand the code. It will even be possible to add some
breakpoints.

It is not the purpose of this book to teach you how to use developer tools, but I
will give you some hints about the main and basic concepts to start with. This
doesn't mean you should forget about your need to have a better understanding
of developer tools for different browsers. On Chrome, open the developer tools
using Ctrl + Shift + I (or command + option + I on the Mac) to open them. You will get
something like the following screenshot:

Embed, Deploy, and Debug

[346]

In the preceding screenshot, you can see three numbers:

1: This is where you can get details about HTML elements, the network, and sources.

2: This is where you display the CSS of each element you can select in panel 1 when
you are in the Elements tab.

• When you're in the Elements tab, you can to evaluate HTML and CSS, and
you can also change HTML and CSS and preview the changes in real time.
The changes are not saved to the dashboard, nor to file.

• When you're in the Network tab, you can get information about the requests
made to the server. On the highest level, there are two types of errors you
can expect here when using developer tools: the front end and the back end.
When you get errors executing queries, it means that something went wrong
when executing queries. You should first look at the request that is being
executed; if it all looks fine, then you need to find the errors on the server
side, and here the browser's developer tools can't help you. In these cases,
you need to look at the errors on the server side and, if you're not getting the
necessary information, you might need to increase the log level, but on the
server side.

• When you're in the Sources tab, you can display each of the files loaded
and needed for the execution of the dashboard. This is where is you can add
breakpoints and pause the execution so that you can evaluate the code at
a specific time. When the errors happening in the dashboard are not at the
back end, then the Source tab is where you might need to look and to also
interpret the logs being showed in the Console shown in 3.

3: The console is where you can get the messages being sent from the dashboard.
This is where you need to search for errors. If they're not shown, you can press
on the Esc key. We covered some examples of logs in Chapter 8, Visualizations
Using CCC.

Don't forget to learn a bit more about developer tools.

Chapter 10

[347]

Short tips
Keep one eye on the console, as it provides you with a lot of information. You can
see the order of execution of the components, which part of the dashboard is being
executed, and even errors and which file we get the logged information from.

The previous screenshot also shows one error. If you click on the error, you will
be redirected to the place where the error is coming from. If it's a JavaScript error,
the code will be displayed in the source tab. If it's a network request, it will display
details in the request. You can create a breakpoint there.

The preceding screenshot shows the details of one of the queries being executed.
Before looking at the server-side logs, make sure all the parameters are correct,
as the full request.

Embed, Deploy, and Debug

[348]

When using the Source tab, to create a breakpoint in the code you just need to
click on the left side of the line where you want to stop. You will see a blue sign that
identifies that there is a breakpoint, and the code execution will be stopped when
that part of the code is being executed. You need to make sure that the code is
executed so that the execution can be paused. You can then control the flow of the
process by jumping into functions, to the next line, or to the next breakpoint. When
hovering over the variable, its current value will be displayed.

The preceding screenshot shows the code paused during the execution of the
dashboard, and the mouse is hovering over the this variable, so we also see its
value. In the top-right corner, you can see a toolbar, where you can jump to the
next breakpoint, jump to the next line, jump into the next function, or jump out from
current functions. You will also be able to disable breakpoints from pausing, among
other options.

Delivering a solution
Before delivering a solution, you need to consider some aspects of the project. In
reality, and as we saw earlier, they should be considered at the start of the project
when everything is being planned. There are some phases of the project that are
usually part of a successful project and can save you some time, but they can also
help you create a better relationship with the customer and achieve a greater level of
satisfaction. The documentation and knowledge transfer are two of those tasks, and
another one is deploying a project and version control for our code.

Chapter 10

[349]

Version control and deploying projects
You can't afford to lose your work, do you? Can you also spend most lots of lying
changes for development to quality acceptance tests or production environment?

It's an important part of development that you keep all the code in a version control
system. All content developed with or for Pentaho should be treated as a software
artefact and tested and controlled as such. This is true even if we are talking about
reports, such as the ones you can build with the standard Pentaho tools. For instance,
a Pentaho Analyzer file is just an XML file that you can push into version control.
The dashboards and CDA files that you produce with CTools are also files that you
should push to the repository.

This also applies to the version of configuration files from your Pentaho system, and
some custom extensions that are not deployed to the repository can be controlled via
a external version control system. Finally, even though the DI repository does have
version control, it lacks an advanced version control system (VCS) feature such as
branching or tagging. For this reason, Pentaho recommends managing all artefacts
with a VCS such as GIT or SVN.

The following diagram shows a conceptual architecture to deploy and test in
different environments. Developers have the complete Pentaho stack on their
development systems, or they might be developing on top of the development
server. As artefacts are created and developer-tested, they get checked into VCS.

Once a set of functionalities are completed and checked, they are pushed from
development to the quality acceptance (QA) server that is used for integration and
testing. When QA is done, the artefacts are checked into a production environment
using VCS. Here, you can use a specific branch and/or tags for an upcoming version
or a patch. Finally, when a production release is ready, the branch or tag can be used
to check out all of the artefacts.

Embed, Deploy, and Debug

[350]

In order to isolate the developer work, it is useful to have a full copy of the
development stack. Even some customers do not provide or allows to have a QA
environment; the production and development environment should be exactly the
same. Believe me, you won't deploy solutions from a development environment to
QA or production if they do not match.

There is an issue with the way .cdfde files are saved to disk—the files are rewritten
in such a way that the VCS will get confused and identify a lot of changes when in
reality there was a small change. This can turn the process of merging files into a
nightmare. When working as a team and working on the same file, there are merges
that will be required, so be careful when committing changes and make sure you are
doing the right thing.

Documentation
One important part of delivery to the customer is documentation. For you to be
successful in your deliveries to the customer, you definitely need to include proper
documentation. I agree that it's hard to create proper documentation, and that it's
better to create interesting and useful stuff. Anyhow, it's not useful if people do not
know how to make use of it or how to make it work.

You should train yourself to create documentation during some phases of the project.
If you are not creating any documentation at the end of each completed phase of
your work/tasks, you are doing something wrong. If you need to, you can break
down your tasks into smaller tasks and schedule/spend some time building the
documentation.

The truth is that it will save you time in the future, and it will also provide a better
delivery for the customer, and enable you to reach the highest level of satisfaction for
your customers. I'm sure you would prefer to select the most interesting projects and
say, "I can't do it" or "I have no time" to a customer, rather than not being engaged
again because the customer isn't truly happy with your work.

Knowledge transfer
Even if you are delivering proper documentation to the customer, it's possible and
common that the customer will ignore it and archive it before even reading it. A
good way to pass some knowledge is to make a knowledge transfer. And if you are
asking why on earth you are building documentation, the answer is: because you are
a good professional doing a great job and you wouldn't fail to deliver an important
part of the project just because the customer probably won't give it any attention.

Chapter 10

[351]

You won't need to spend a lot of time on the knowledge transfer, but you need to
make sure that the customer has the necessary information to make proper use of
your solutions and deliveries. This is a good opportunity to make it clear to the
customer that the knowledge transfer does not replace the documentation and
that reading the documentation is a prerequisite to the knowledge transfer. That
said, we should never schedule a knowledge transfer before we can deliver the
documentation.

I believe that it is also an advantage to request a list of questions regarding the
documentation that the customer would like to be covered during the knowledge
transfer. This removes their right to complain later about missing knowledge. Of
course, that does not excuse you from creating proper documentation and preparing
a proper knowledge transfer.

Some topics that you should cover during the knowledge transfer will be related to
the project and the team you are delivering the project to. It's quite different when
delivering a solution to an IT department than it is to a final customer, and your
documentation and knowledge transfer should reflect this.

How to get help and help others
If you are an enterprise user, you have access to support (CDA, CDF, CDE, and CGG,
which are the supported tools), but when you are not, how should you proceed?
Well, you have multiple ways to solve your problem, and of course that will also be
dependent on the problem you have found, the way you phrase the question, and
how much information you are requesting. When you're not an enterprise user, you
have some options. You will probably get a quick answer, but don't be disappointed
if you don't—just try again.

For any and each of the ways to get help (even if it's enterprise support), you should
always provide the most information you can. This includes the context of the
problem that's happening. You should provide a good and clear description of the
problem, a sample when ever possible (even if you need to create it with sample
data), and/or screenshots when it makes sense to do so. You should also provide
the configurations that are not there by default, because they might be important to
replicate the problem.

You should always bear it in mind that people who are looking at your request or
even trying to answer it might not guess what it's in your mind; alternatively, they
may not be seeing the same as you. This might be the difference between getting a
quick solution/response and not getting an answer.

Embed, Deploy, and Debug

[352]

When you want to get some help, you may want to ask the community, and you
can use the forum to do so. You will find the forum at http://forums.pentaho.
com and more specifically http://forums.pentaho.com/forumdisplay.php?80-
Community-Tools-CTools.

The first step is to register as a user on the forum, so that you can create your
own posts. First, you should search for your question/problem, which is also a good
way to learn more. You might also want to search for JIRAs that are already closed
and have a solution to your issue. If there is none, you can create a new post and
wait for answers.

If you find some questions that you know the answer to, or have an idea how to
solve them, you should reply with an answer, because you might be helping another
user. This is the way you can help to build a strong community.

If you find that the problem is a bug, you should raise a JIRA. Go to http://jira.
pentaho.com/secure/Dashboard.jspa and create a user. When you have a new
issue, you need to select the project, so please ensure you select the right project. As
said before, you should provide all the information that you are able to. You can see
the selection of a project in the following screenshot:

The issues that you can create are not only bugs, but also improvements and new
features. Improvements and new features are well received, and by suggesting these,
you are contributing to a better product—a product that you are using.

For the JIRAs that you open, you will get notifications, so you will know their status.
There is also a button that enables you to start watching some issues that you might
be interesting on getting updates for.

You can also find some blogs that provide you with a lot of good content on how
to use solutions and solve challenges. You should also be aware that having a
good knowledge of the full Pentaho solution will be an advantage when trying to
overcome some challenges. So don't discard any blog, help pages, or forums that
might not be related to CTools, but that can provide information and knowledge
about Pentaho, or even about front-end development, JavaScript, CSS, and so on.

http://forums.pentaho.com
http://forums.pentaho.com
http://forums.pentaho.com/forumdisplay.php?80-Community-Tools-CTools
http://forums.pentaho.com/forumdisplay.php?80-Community-Tools-CTools
http://jira.pentaho.com/secure/Dashboard.jspa
http://jira.pentaho.com/secure/Dashboard.jspa

Chapter 10

[353]

A good way to get updates about new features or bug fixes is to look at the CTools
change log at http://www.webdetails.pt/ctools-changelog. You will be
redirected to the last change log, but you can select earlier versions. You can click on
each of the lines displayed to get more information about it. You will even be able to
get the code that was changed.

Summary
In this chapter, you learned how to embed CFD and CDE dashboards in third-party
applications. You saw that we must first embed CDF or CDE and then embed the
dashboards. When embedding a CDE dashboard, there are two ways to do it. When
embedding, it might also be important to receive information from, and send it to,
the dashboard or create links between dashboards, and for that we can make use
of events.

We also talked about some aspects of the delivery of dashboards, which should
also include documentation and knowledge transfers. Depending on who we
are delivering the solution to, the technical level of the knowledge transfer and
documentation might be quite different. Version control is an important part of the
process when developing a dashboard; this is not part of the delivery, but it might be
part of the deployment, so we discussed it in this chapter.

Finally, we covered where and how you can get help or a solution to your problems
when developing dashboards using CTools. You can use the community to get help,
report bugs, suggest improvements, and request new features.

Now that you have learned about CTools and how to create dashboards and Pentaho
plugins, you should apply this knowledge to the dashboards that you already have,
or just create new ones. Keep this book by your side while creating them, and you
will see that it can be useful when you don't yet have a good knowledge of CTools.

You should go through the examples provided with the book, as this is important for
you to get a better understanding of components, parameters, listeners, and so on.
This book does not provides examples for all of the components, but now that you
have an understanding of CDA, CDF, and CDE, you can take a look at the examples
included when you install CDF and CDE. This way, you will develop knowledge of
the available components, their properties, and how they can be used. You will also
need to keep an eye on the backlog updates to the CTools, because they are getting
better and better day by day, with new functionalities and improvements.

http://www.webdetails.pt/ctools-changelog

[355]

Index
A
add-ins

creating 257-259
add-ins, filter component

about 180
group selection add-ins 181
group sorting add-ins 181
item selection add-ins 181
item sorting add-ins 181
post update add-ins 181
root footer add-ins 181
root header add-ins 181
root selection add-ins 181

add-ins, table component
cccBulletChart 215
circle 213, 214
clippedText 207
dataBar 209, 210
formattedText 215, 216
groupHeaders 206
hyperlink 220, 221
localizedText 217, 219
sparkline 207, 208
trendArrow 210, 211
using 204, 205

add-ins, template component 230-241
Asynchronous Module

Definition (AMD) 62

B
Backbone

URL 18

basis axis label
formatting, scale based 302, 303

Blueprint
URL 18, 274

bookmarkable parameters 279
Bootstrap

URL 18, 275
bootstrap-select plugin

URL 172

C
Cascade Style Sheets (CSS) 5
CCC (Community Charts Components)

about 2
background 288
charts, debugging 311-313
charts, internationalization 299, 300
component 290
library, using in CDF dashboard 288-291
references, URL 315
URL 18, 288, 311
using, in CDE 295, 296

cccBulletChart add-in 215
CDA

about 21, 22
cache 45
data sources 23
editing 43, 44
previewing 43, 44

CDA cache
and scheduler 45-47
keys 47
managing 45-47
system-wide cache keys, configuring 48

[356]

CDA data source
creating 24-27
ID attribute 26
output, manipulating 45
Type attribute 26
types 28

CDA data source, types
about 28
compound queries 35, 36
data sources, scripting 33, 34
Kettle transformations 31, 32
mondrian cubes 29-31
Pentaho metadata 31
SQL databases 28, 29
XPath, over XML 35

CDE (Community Dashboard Editor)
about 2, 55, 112, 318
CCC, using 295, 296
extending 263, 268, 269, 270, 272, 274

CDE, dashboard
about 159, 276
components, adding 164, 165
data sources, defining 161-163
embedding 340, 341
layout, creating 159
overall improvements 166, 167
parameters, adding 164, 165
styles, extending 278

CDF (Community Dashboard
Framework)

about 2, 22, 318 55
component lifecycle 56-61
dashboard 55
dashboard lifecycle 56-61
extending 263-267

CDF API, functions
about 107
from components module 109
from dashboards module 107, 108
from logger module 109

CDF dashboard
about 56, 66
building, files for 62
CCC library, using 288-291
creating 62-65

embedding 337-339
styles, extending 276, 277

Chosen
URL 18, 172

circle add-in 213, 214
clearCache endpoint 50
click event

handling 298, 299
clippedText add-in 207
Community Build Framework (CBF) 2
Community Data Access. See CDA
Community Data Generator (CDG) 3
Community Data Validation (CDV) 3
Community Distributed Cache (CDC) 3
Community Edition (CE) 12
Community File Repository (CFR) 3
Community Graphics Generator (CGG) 314
Community Plugin Framework (CPF) 318
Community Plugin Kick-starter (CPK) 317
Community Text Editor (CTE) 66
components

available 90, 91, 109
data sources, defining 68-71
execution, priority 89, 90
interacting between 77-81
listeners 75
references to 252, 253
using, inside dashboards 66, 68

components perspective, perspectives
toolbar

about 145-147
components toolbar 147
dashboard parameters 147-149
scripts 149
visual components 149-156

Content Delivery Network (CDN) files 195
Cron

URL 44
cross domain requests

avoiding 336
crosstabMode property 293
crosstab property 292
CSS files 172
CTools

about 2, 157, 158
change log, URL 353

[357]

installing 11
installing, CTools used 15-17
installing, Pentaho Marketplace used 12-14
manual installation 17
URL 2

CTools installer
URL 15
used, for installing CTools 15, 17

D
dashboard

about 7, 51, 107, 108, 283
and components 341
and parameters events 341
CDE dashboard, embedding 340, 341
CDF dashboard, embedding 337-339
components, using 66-68
context 104-106
cross domain requests, avoiding 336
dashboard path 284
Datasource mapping 285
design, creating 9
developing 10, 11
embedding 336
mock-up, creating 9
parameter mapping 284
prerequisites 4-6
requisites, getting 7, 8
storage 101
team and project management 10
utilities 95

dashboard style/template
CDE dashboards style, extending 278
CDF dashboards style, extending 276, 277
creating 276

dashboard types
Blueprint 274
Bootstrap 275
clean 274
creating 274, 275
extending 274, 275

dashboard, utilities
abbreviation 97
about 95

currency 97
dates, formatting 99
dates, manipulating 99
languages and locales 98
multiple formats 98
numbers 97
numbers and dates,

internationalization 100, 101
numbers, formatting 95, 96
percentages 98

data
crosstabMode property 293
mapping 291, 292
seriesInRows property 294
timeSeriesFormat property 295
timeSeries property 295

Data Access
Cache property 36
Columns property 37
common properties 36, 37
Name property 36
Output property 37
Parameters property 37
Query property 37

Data AccessID 23
dataBar add-in 209
data sources

defining, for components 68-71
parameters, creating 72-75
parameters, using 72-75
URL 4

data sources perspective, perspectives
toolbar

about 142, 143
data sources, properties 144, 145
new data sources, creating 143, 144

DataTables
types 203
URL 18, 192

date range input component
about 186-188
properties 186, 187

debugging
about 343
browser compatibility 344

[358]

short tips 347, 348
with developer tools 344-346

dimensions
about 308, 309
readers 309, 310
URL 308
visual roles 310, 311

Document Object Model (DOM) 60, 262
doQuery method 49, 50
Draw function property 196

E
editFile method 51
editor

operational toolbar 115
working with 113-115

Enterprise Edition (EE) 5
events, template component 242, 243
export button component

about 245
component name property 245
label property 245
output type property 245

export popup button component
about 245, 247
chart component to export option 246
chart export label option 246
chart export type option 246
content linking option 246
data component to export option 246
data export label option 246
data export type option 246
gravity parameter option 246
name for data export attachment

option 246
title option 246

extendable options, template
component 244

extension point
URL 302

Extract, Transform, and Load (ETL) 31

F
Fancybox

URL 18
filter component

about 177
add-ins, usage 180-185
configurations, advanced 185
data layout, expected 178
default messages, changing 185
options, advanced 185
properties, specific 179, 180
values, displaying 186

Font-awesome
URL 18

formattedText add-in 215, 216
formatters, template component 229, 230
forum

URL 352
frameworks 17
freeform components 253, 257

G
getCdaList endpoint 48
Git repository

URL 3
Graphical User Interface (GUI) 27, 111
groupHeaders add-in 206

H
help 351, 352
HTML 62
Hynds

URL 172
hyperlink add-in 220, 221
Hypertext Markup Language (HTML) 5

I
icon fonts

URL 212
identifier (ID) 23
internationalization 280-283

[359]

internationalization and localization, table
component

Language property 195

J
JavaScript 5
JIRA

URL 352
jQuery

URL 18
jQuery i18n

URL 18
jQueryUI

URL 18
JSON

URL 260
JSON object

URL 195

K
Kettle

URL 104
Kettle endpoint

buttons 322
creating 322
parameters values, specifying 324
results, getting 324
using, on dashboard 329-332

Kettle transformations
about 31
KtrFile property 32
variables property 32

Key Performance Indicators (KPIs)
about 5
components, using 66

L
layout elements

references to 252, 253
layout perspective, perspectives toolbar

about 122
Bootstrap, used for creating responsive

dashboard 136-139
considerations 134-136

layout toolbar 122-134
responsive dashboards, building

considerations 139-141
line charts

URL 301
listeners

inside components 75
listParameters endpoint 49
listQueries endpoint 49
localization 280-283
localizedText add-in 217-219
logger module 109

M
manageCache method 51
Marketplace

URL 12, 13, 17
Modernizr

URL 18
Moment

URL 18
MomentJS

URL 99, 101
Mondrian cubes 29-31
Mozilla Public License

URL 3
multi-button component

about 189
Datasource 189
ultiple selection 189
value as ID 189
values array 189

multi-tenancy
URL 47

Mustache
URL 18

O
Object-Oriented Programming (OOP)

languages 263
open formula

URL 37
operational toolbar, editor

about 115
new 115

[360]

reload 117
save and save as 115, 116
settings 117-120

P
parameters

about 37, 156
in MDX queries 39, 40
on kettle queries 41, 42
on SQL queries 38, 39
private 42
references to 252

Pedro Alves blog post
URL 17, 255

Pentaho App Builder
about 3, 318
installing 318
new plugin, creating 319-321
URL 318

Pentaho Data Integration (Kettle)
transformations 227

Pentaho Data Integration (PDI) 3
Pentaho Marketplace

used, for installing CTools 12-15
Pentaho Metadata Schema

about 31
DomainId 31
XmiFile 31

Pentaho Repository Synchronizer (PRS) 3
Pentaho User Console (PUC) 12, 43, 62
perspectives toolbar, editor

about 121
components perspective 121, 145, 147
data sources perspective 121, 142
layout perspective 121, 122
layout toolbar 122-130
preview the dashboard 121

pie chart
value, displaying in center 307

plugin creation, Pentaho App Builder
availability, in marketplace 332, 333
CPK 322-324
dashboard, creating 327, 328
folder structure 328
GitHub account, URL 332

job/transformation, creating 322
Kettle endpoint 322
Kettle endpoints, using on

dashboard 329-331
new endpoint, creating 321
other considerations 326
output format type, changing 325, 326
single cell, returning 326
submission, URL 332

plugins
minified version 173

postChange
using 87, 89

postExecution
using 82, 84

postFetch
properties, changing in 297
working with 85-87

preChange
using 87-89

preExecution
properties, changing in 297
using 82-84

previewQuery method 50
properties

available 90, 91
mandatory 291

Protovis
URL 18, 288

Q
quality acceptance (QA) server 349
query components 253-256

R
Raphael

URL 18
Require

URL 18
RequireJS

URL 94
resources (JavaScript and CSS), adding

about 92
CSS files, including 95

[361]

internal modules, using 92, 93
new modules, defining 94
new modules, including 94

S
scale based

basis axis label, formatting 302
Select2

URL 18, 172
select component

about 170-173
JQuery plugin 172
value as array 171
value as ID 171

select multi-component 174-177
seriesInRows property 294
solution

delivering 348
documentation 350
knowledge transfer 350
version control and deploy 349, 350

Sparkl 3, 318
sparkline add-in

about 207, 208
URL 18

Stream Line Data Refinery (SDR) 4
Structured Query Language (SQL)

databases 28, 29

T
table component

about 192-194
add-ins, using 203-205
column formats 196-199
column headers 196-199
column types 196-199
column width 197-199
content, expanding 200-203
Draw function 196
internationalization and localization 195
table pagination 194

table component, properties
info filter 192
length change 193

page length 193
paginate 193
paginate on server-side 193
pagination type 193
searchable cols 192
show filter 192
sortable columns 193
sort data 193
style 193

template add-in
about 260, 262
options, applying 260

template component
about 221-224
add-ins 230-241
events 242, 243
extendable options 244
formatters 229, 230
model, automatically generated 225
model handler 227-229
root element, automatically generated 225
template and engine 226

template engines
URL 221

text component
about 248
expression function 248

timeSeriesFormat property 295
timeSeries property 295
tooltips

customizing 304-307
trendArrow add-in 210-212
Try It Out section

URL 207

U
Underscore

URL 18
URI string

URL 220
User Interface (UI) 8

V
version control system (VCS) 349

[362]

W
Web API, reference

about 48
clearCache 50
doQuery 49, 50
getCdaList 48
listParameters 49
listQueries 49
manageCache 51
previewQuery 50, 51

Webdetails page
URL 296

X
xAction

URL 71
XCDF 62
XPath

over XML 35

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with CTools
	Introducing the CTools
	Considerations before creating a dashboard
	The first steps in creating a dashboard
	Getting the right requirements
	Creating a mock-up or dashboard design

	Team and project management
	Developing a dashboard
	Installing CTools
	Installing the CTools using Pentaho Marketplace
	Installing the CTools using the CTools installer
	Manually installing the CTools

	Concepts and frameworks used
	Summary

	Chapter 2: Acquiring Data with CDA
	Introduction to CDA
	Creating a new CDA data source
	Available types of CDA data sources
	SQL databases
	Mondrian cubes
	Pentaho metadata
	Kettle transformations
	Scripting data sources
	XPath over XML
	Compound queries

	Common properties
	Making use of parameters
	Parameters on SQL queries
	Parameters in MDX queries
	Parameters on kettle queries
	Private parameters

	Editing and previewing
	Manipulating the output of a data source
	CDA cache
	Managing the cache and the scheduler
	Cache keys
	Configuring local cache keys
	Configuring system-wide cache keys

	Web API reference
	getCdaList
	listQueries
	listParameters
	doQuery
	clearCache
	previewQuery
	editFile
	manageCache

	Hands-on dashboards
	Summary

	Chapter 3: Building the Dashboard Using CDF
	Understanding the basics of a CDF dashboard
	Lifecycle of dashboards and components
	Creating a CDF dashboard
	Hands-on dashboards

	Using components inside the dashboards
	Defining data sources for components
	Creating and using parameters in data sources
	The importance of listeners inside the components
	Interaction between components
	Using preExecution and postExecution
	Understanding how to work with postFetch
	Using preChange and postChange
	Priority of component execution
	Available components and properties
	Adding resources – JavaScript and CSS
	Using internal modules
	Defining and including new modules
	Including CSS files

	Dashboards utilities
	Formatting numbers
	Numbers
	Currency
	Abbreviation
	Percentages
	Languages and locales
	Multiple formats

	Formatting and manipulating dates
	Internationalization of numbers and dates

	Dashboard storage
	Dashboard context
	Useful functions of the CDF API
	Functions from the dashboards module:
	Functions from the logger module:
	Functions from the components module:

	Summary

	Chapter 4: Leverage the
Process with CDE
	A brief introduction to CDE
	Working with the editor
	Operational toolbar
	New
	Save and Save as
	Reload
	Settings

	The perspectives toolbar
	The layout perspective
	The data sources perspective
	The components perspective

	Parameter, parameters, and listeners, again
	Putting it all together
	Creating your first CDE dashboard
	Creating the layout
	Define the data sources
	Add the parameters and components
	Overall improvements

	Summary

	Chapter 5: Applying Filters to the Dashboard
	The select component
	The multi-select component
	The filter component
	Expected data layout
	Specific properties
	Making use of add-ins
	Advanced options and configurations
	Changing default messages
	Showing values

	Date range input component
	The multi-button component
	Summary

	Chapter 6: Tables, Templates, Exports, and Text Components
	Table component
	Table pagination
	Internationalization and localization
	Draw function
	Column formats, types, width, and headers
	Expanding content
	Making use of add-ins
	groupHeaders
	clippedText
	sparkline
	dataBar
	trendArrow
	circle
	cccBulletChart
	formattedText
	localizedText
	hyperlink

	Template component
	Automatically generated model and root element
	Template and engine
	Model handler
	Formatters
	Add-ins
	Events
	Extendable options

	Export button component
	Export Popup button component
	Text component
	Summary

	Chapter 7: Advanced Concepts Using CDF and CDE
	References to components, parameters, and layout elements
	The query and freeform components
	The query component
	The freeform component

	Creating add-ins
	The template add-in
	Extending CDF and CDE with new components
	Extending CDF
	Extending CDE

	Extending or creating new dashboard types
	Creating a new dashboard style/template
	Extending styles for CDF dashboards
	Extending styles for CDE dashboards

	Bookmarkable parameters
	Internationalization and localization
	The dashboard component
	Summary

	Chapter 8: Visualizations Using CCC
	Some background on CCC
	Making use of the CCC library in a CDF dashboard
	Mandatory and desirable properties
	Mapping data
	Crosstab
	The crosstabMode property
	The seriesInRows property
	The timeSeries and timeSeriesFormat properties

	Making use of CCC in CDE
	Changing properties in preExecution or postFetch
	Handling the click event
	Internationalization of CCC Charts
	What are extension points and how do you use them?
	Formatting a basis axis label based on the scale
	Customizing tooltips
	Pie chart showing the value in the center
	Dimensions
	Readers
	Visual roles

	Debugging the CCC charts
	CGG – Community Graphics Generator
	References
	Summary

	Chapter 9: Pentaho App Builder
	Understanding Pentaho App Builder
	Installing Pentaho App Builder
	Create a new plugin
	Creating a new endpoint
	Creating a job/transformation
	Creating a dashboard
	Folder structure
	Making use of Kettle endpoints on a dashboard

	How do I make the plugin available on the marketplace?

	Summary

	Chapter 10: Embed, Deploy, and Debug
	Embedding dashboards
	Avoiding cross-domain requests
	Embedding a CDF dashboard
	Embedding a CDE dashboard
	Dashboard, component, and parameter events

	Debugging
	Browser compatibility
	Debugging with developer tools
	Short tips

	Delivering a solution
	Version control and deploying projects
	Documentation
	Knowledge transfer

	How to get help and help others
	Summary

	Index

