

Learning	Python	Design	Patterns	Second
Edition

Table	of	Contents

Learning	Python	Design	Patterns	Second	Edition

Credits

Foreword

About	the	Author

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Introduction	to	Design	Patterns

Understanding	object-oriented	programming

Objects

Classes

Methods

Major	aspects	of	object-oriented	programming

Encapsulation

Polymorphism

Inheritance

Abstraction

Composition

Object-oriented	design	principles

The	open/close	principle

The	inversion	of	control	principle

The	interface	segregation	principle

The	single	responsibility	principle

The	substitution	principle

The	concept	of	design	patterns

Advantages	of	design	patterns

Taxonomy	of	design	patterns

Context	–	the	applicability	of	design	patterns

Patterns	for	dynamic	languages

Classifying	patterns

Creational	patterns:

Structural	patterns

Behavioral	patterns

Summary

2.	The	Singleton	Design	Pattern

Understanding	the	Singleton	design	pattern

Implementing	a	classical	Singleton	in	Python

Lazy	instantiation	in	the	Singleton	pattern

Module-level	Singletons

The	Monostate	Singleton	pattern

Singletons	and	metaclasses

A	real-world	scenario	–	the	Singleton	pattern,	part	1

A	real-world	scenario	–	the	Singleton	pattern,	part	2

Drawbacks	of	the	Singleton	pattern

Summary

3.	The	Factory	Pattern	–	Building	Factories	to	Create	Objects

Understanding	the	Factory	pattern

The	Simple	Factory	pattern

The	Factory	Method	pattern

Implementing	the	Factory	Method

Advantages	of	the	Factory	method	pattern

The	Abstract	Factory	pattern

Implementing	the	Abstract	Factory	pattern

The	Factory	method	versus	Abstract	Factory	method

Summary

4.	The	Façade	Pattern	–	Being	Adaptive	with	Façade

Understanding	Structural	design	patterns

Understanding	the	Façade	design	pattern

A	UML	class	diagram

Façade

System

Client

Implementing	the	Façade	pattern	in	the	real	world

The	principle	of	least	knowledge

Frequently	asked	questions

Summary

5.	The	Proxy	Pattern	–	Controlling	Object	Access

Understanding	the	Proxy	design	pattern

A	UML	class	diagram	for	the	Proxy	pattern

Understanding	different	types	of	Proxies

A	virtual	proxy

A	remote	proxy

A	protective	proxy

A	smart	proxy

The	Proxy	pattern	in	the	real	world

Advantages	of	the	Proxy	pattern

Comparing	the	Façade	and	Proxy	patterns

Frequently	asked	questions

Summary

6.	The	Observer	Pattern	–	Keeping	Objects	in	the	Know

Introducing	Behavioral	patterns

Understanding	the	Observer	design	pattern

A	UML	class	diagram	for	the	Observer	pattern

The	Observer	pattern	in	the	real	world

The	Observer	pattern	methods

The	pull	model

The	push	model

Loose	coupling	and	the	Observer	pattern

The	Observer	pattern	–	advantages	and	disadvantages

Frequently	asked	questions

Summary

7.	The	Command	Pattern	–	Encapsulating	Invocation

Introducing	the	Command	pattern

Understanding	the	Command	design	pattern

A	UML	class	diagram	for	the	Command	pattern

Implementing	the	Command	pattern	in	the	real	world

Design	considerations

Advantages	and	disadvantages	of	Command	patterns

Frequently	asked	questions

Summary

8.	The	Template	Method	Pattern	–	Encapsulating	Algorithm

Defining	the	Template	Method	pattern

Understanding	the	Template	Method	design	pattern

A	UML	class	diagram	for	the	Template	Method	pattern

The	Template	Method	pattern	in	the	real	world

The	Template	Method	pattern	–	hooks

The	Hollywood	principle	and	the	Template	Method

The	advantages	and	disadvantages	of	the	Template	Method	pattern

Frequently	asked	questions

Summary

9.	Model-View-Controller	–	Compound	Patterns

An	introduction	to	Compound	patterns

The	Model-View-Controller	pattern

Model	–	knowledge	of	the	application

View	–	the	appearance

Controller	–	the	glue

A	UML	class	diagram	for	the	MVC	design	pattern

The	MVC	pattern	in	the	real	world

Modules

Benefits	of	the	MVC	pattern

Frequently	asked	questions

Summary

10.	The	State	Design	Pattern

Defining	the	State	design	pattern

Understanding	the	State	design	pattern

Understanding	the	State	design	pattern	with	a	UML	diagram

A	simple	example	of	the	State	design	pattern

The	State	design	pattern	with	v3.5	implementation

Advantages/disadvantages	of	the	State	pattern

Summary

11.	AntiPatterns

An	introduction	to	AntiPatterns

Software	development	AntiPatterns

Spaghetti	code

Golden	Hammer

Lava	Flow

Copy-and-paste	or	cut-and-paste	programming

Software	architecture	AntiPatterns

Reinventing	the	wheel

Vendor	lock-in

Design	by	committee

Summary

Index

Learning	Python	Design	Patterns	Second
Edition

Learning	Python	Design	Patterns	Second
Edition
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2013

Second	edition:	February	2016

Production	reference:	1080216

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-803-8

www.packtpub.com

http://www.packtpub.com

Credits
Author

Chetan	Giridhar

Reviewer

Maurice	HT	Ling

Commissioning	Editor

Kunal	Parikh

Acquisition	Editor

Denim	Pinto

Content	Development	Editor

Merint	Thomas	Mathew

Technical	Editor

Chinmay	S.	Puranik

Copy	Editor

Tasneem	Fatehi

Project	Coordinator

Suzanne	Coutinho

Proofreader

Safis	Editing

Indexer

Priya	Sane

Graphics

Kirk	D’Penha

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

Foreword
	 “Controlling	complexity	is	the	essence	of	computer	programming.” 	

	 —Brian	Kernighan

	 “All	problems	in	computer	science	can	be	solved	by	another	level	of	indirection	(abstraction).” 	

	 —David	Wheeler

The	preceding	two	quotes	by	two	well	known	computer	scientists	illustrate	the	problem
faced	by	the	modern	software	designer—coming	up	with	a	good,	stable,	reusable,	flexible
solution	to	a	software	design	problem.

Design	patterns	solve	the	preceding	problems	in	the	most	elegant	way.	Design	patterns
abstract	and	present	in	neat,	well-defined	components	and	interfaces	the	experience	of
many	software	designers	and	architects	over	many	years	of	solving	similar	problems.
These	are	solutions	that	have	withstood	the	test	of	time	with	respect	to	reusability,
flexibility,	scalability,	and	maintainability.

There	have	been	many	books	on	design	patterns	with	the	well-known	Gang	of	Four	(GoF)
book	forming	the	cornerstone	of	nearly	the	entire	domain.

However,	in	this	era	of	web	and	mobile	computing,	where	programs	tend	to	get	written	in
high-level	languages	such	as	Python,	Ruby,	and	Clojure,	there	is	often	a	need	for	books
that	translate	the	rather	esoteric	language	used	in	such	books	into	more	familiar	terms,
with	reusable	code	written	in	these	newer,	more	dynamic	programming	languages.	This	is
especially	true	when	it	comes	to	newbie	programmers	who	often	tend	to	get	lost	in	the
complexities	of	design	versus	implementation	and	often	require	an	expert	helping	hand.

This	book	fulfills	that	role	very	well.	It	uses	the	template	of	design	patterns	as	laid	out	in
the	GoF	book	and	adds	a	few	others	as	well	for	completion—but	before	jumping	into	the
patterns	itself,	gives	the	young	and	inexperienced	reader	the	fundamentals	of	software
design	principles	that	have	gone	into	the	thinking	behind	the	creation	and	evolution	of
these	design	patterns.	It	doesn’t	walk	the	gentle	reader	blindly	into	the	maze	of	the	pattern
world,	but	lays	out	the	fundamentals	well	before	opening	that	door	and	carrying	the	reader
along	that	path	of	learning.

The	book	is	written	with	Python	as	the	language	for	implementing	the	sample	code	for	the
patterns—and	this	makes	excellent	sense.	As	someone	who	has	spent	more	than	12	years
in	the	company	of	this	wonderful	programming	language,	I	can	attest	to	its	beauty	and
simplicity	and	its	effectiveness	in	solving	problems	ranging	from	routine	to	the	most
complex.	Python	is	ideally	suited	to	the	rookie	and	young	programmer,	and	with	the	ease
of	learning	it,	it	is	also	a	lot	of	fun	to	code	in.	The	young	programmer	would	find	their
time	spent	in	the	company	of	Python	along	in	this	book	very	rewarding	and	fruitful.

Chetan	Giridhar	has	been	working	and	contributing	to	Python	for	well	over	7	years.	He	is
ideally	suited	for	the	job	of	penning	a	book	like	this,	as	he	has	gone	through	some	of	the
cycles	of	learning	the	complexities	of	implementation	and	design	himself	and	has	learned

well	through	that	process.	He	is	a	well-known	speaker	on	a	number	of	varied	topics	in
Python	and	has	delivered	well-attended	talks	at	Python	conferences,	such	as	PyCon	India.
He	was	amongst	the	invited	speakers	for	conferences	in	the	USA,	Asia-Pacific,	and	New
Zealand.

I	believe	this	book,	Learning	Python	Design	Patterns,	Second	Edition,	would	be	an
excellent	addition	to	the	Learning	series	by	Packt	Publishing	and	would	provide	a	set	of
skills	to	the	toolbox	of	the	young	Python	programmer	that	would	take	them	gently	and
expertly	to	being	able	to	design	modular	and	efficient	programs	in	Python.

Anand	B	Pillai

CTO—Skoov.com

Board	Member—Python	Software	Foundation

Founder—Bangalore	Python	User’s	Group

About	the	Author
Chetan	Giridhar	is	a	technology	leader,	open	source	enthusiast,	and	Python	developer.
He	has	written	multiple	articles	on	technology	and	development	practices	in	magazines
such	as	LinuxForYou	and	Agile	Record,	and	has	published	technical	papers	in	the	Python
Papers	journal.	He	has	been	a	speaker	at	PyCon	conferences	such	as	PyCon	India,	Asia-
Pacific,	and	New	Zealand	and	loves	working	on	real-time	communications,	distributed
systems,	and	cloud	applications.	Chetan	has	been	a	reviewer	at	Packt	Publishing	and	has
contributed	to	books	on	IPython	Visualizations	and	Core	Python.

I’d	like	to	thank	the	Packt	Publishing	team,	especially	Merint	Thomas	Mathew,	and	the
technical	reviewer,	Maurice	HT	Ling,	for	bringing	out	the	best	content	in	this	book.
Special	thanks	to	my	mentor,	Anand	B	Pillai,	for	graciously	accepting	to	review	this	book
and	writing	the	foreword.	This	book	wouldn’t	be	possible	without	the	blessings	of	my
parents,	Jyotsana	and	Jayant	Giridhar,	and	constant	support	and	encouragement	from	my
wife,	Deepti,	and	my	daughter,	Pihu!

About	the	Reviewer
Maurice	HT	Ling	has	been	programming	in	Python	since	2003.	Having	completed	his	Ph
D	in	bioinformatics	and	B	Sc	(honors)	in	molecular	and	cell	biology	from	The	University
of	Melbourne,	he	is	currently	a	research	fellow	in	Nanyang	Technological	University,
Singapore,	and	an	honorary	fellow	at	The	University	of	Melbourne,	Australia.	Maurice	is
the	chief	editor	for	computational	and	mathematical	biology,	and	co-editor	for	The	Python
Papers.	Recently,	Maurice	cofounded	the	first	synthetic	biology	startup	in	Singapore,
AdvanceSyn	Pte.	Ltd.,	as	a	director	and	chief	technology	officer.	He	is	also	the	principal
partner	of	Colossus	Technologies	LLP,	Singapore.	His	research	interests	lie	in	life—
biological	life,	artificial	life,	and	artificial	intelligence—using	computer	science	and
statistics	as	tools	to	understand	life	and	its	numerous	aspects.	In	his	free	time,	Maurice
likes	to	read,	enjoy	a	cup	of	coffee,	write	his	personal	journal,	or	philosophize	on	various
aspects	of	life.	You	can	reach	him	at	his	website	and	on	his	LinkedIn	profile	at
http://maurice.vodien.com	and	http://www.linkedin.com/in/mauriceling,	respectively.

http://maurice.vodien.com
http://www.linkedin.com/in/mauriceling

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Design	patterns	are	among	the	most	powerful	methods	of	building	large	software	systems.
With	an	increasing	focus	on	optimized	software	architecture	and	design,	it	is	important
that	software	architects	think	about	optimizations	in	object	creation,	code	structure,	and
interaction	between	objects	at	the	architecture	or	design	level.	This	makes	sure	that	the
cost	of	software	maintenance	is	low,	and	code	can	be	easily	reused	and	is	adaptable	to
change.	Moreover,	providing	frameworks	for	reusability	and	separation	of	concerns	is	key
to	software	development	today.

What	this	book	covers
Chapter	1,	Introduction	to	Design	Patterns,	goes	through	the	basics	of	object-oriented
programming	and	discusses	object-oriented	design	principles	in	detail.	This	chapter	gives
a	brief	introduction	to	the	concept	of	design	patterns	so	that	you	will	be	able	to	appreciate
the	context	and	application	of	design	patterns	in	software	development.

Chapter	2,	The	Singleton	Design	Pattern,	covers	one	of	the	simplest	and	well-known
Creational	design	patterns	used	in	application	development—the	Singleton	design	pattern.
The	different	ways	in	which	we	can	create	a	Singleton	pattern	in	Python	are	also	covered
in	this	chapter	along	with	examples.	This	chapter	also	covers	the	Monostate	(or	Borg)
design	pattern,	which	is	a	variant	of	the	Singleton	design	pattern.

Chapter	3,	The	Factory	Pattern	–	Building	Factories	to	Create	Objects,	discusses	another
creational	pattern,	the	Factory	pattern.	You	will	also	learn	about	the	Factory	Method
pattern	and	Abstract	Factory	pattern	with	a	UML	diagram,	real-world	scenarios,	and
Python	v3.5	implementations.

Chapter	4,	The	Façade	Pattern	–	Being	Adaptive	with	Façade,	shows	you	another	type	of
design	pattern,	the	Structural	design	pattern.	We	will	be	introduced	to	the	concept	of
Façade	and	learn	how	it	is	applicable	to	software	design	with	the	help	of	the	Façade
design	pattern.	You’ll	also	learn	its	implementation	with	a	sample	Python	application
using	a	real-world	scenario.

Chapter	5,	The	Proxy	Pattern	–	Controlling	Object	Access,	deals	with	the	Proxy	pattern
that	falls	into	the	category	of	Structural	design	patterns.	We	will	be	introduced	to	the
Proxy	as	a	concept	and	discuss	the	design	pattern	and	see	how	it	is	used	in	software
application	development.	You’ll	also	learn	about	the	different	variants	of	the	Proxy	pattern
—Virtual	Proxy,	Smart	Proxy,	Remote	Proxy,	and	Protective	Proxy.

Chapter	6,	The	Observer	Pattern	–	Keeping	Objects	in	the	Know,	talks	about	the	third	type
of	design	pattern—the	behavioral	design	pattern.	We	will	be	introduced	to	the	Observer
design	pattern	with	examples.	In	this	chapter,	you’ll	learn	how	to	implement	the	Push	and
Pull	models	of	the	Observer	pattern	and	the	principles	of	loose	coupling.	We’ll	also	see
how	this	pattern	is	critical	when	it	comes	to	applying	it	to	cloud	applications	and
distributed	systems.

Chapter	7,	The	Command	Pattern	–	Encapsulating	Invocation,	tells	you	about	the
Command	design	pattern.	We	will	be	introduced	to	the	Command	design	pattern	and
discuss	how	it	is	used	in	software	application	development	with	a	real-world	scenario	and
Python	implementation.	We	will	also	study	two	main	aspects	of	the	Command	pattern—an
implementation	of	redo/rollback	operations	and	asynchronous	task	execution.

Chapter	8,	The	Template	Method	Pattern	–	Encapsulating	Algorithm,	discusses	the
Template	design	pattern.	Like	the	Command	pattern,	the	Template	pattern	falls	into	the
category	of	Behavioral	patterns.	Here,	we	discuss	the	Template	method	pattern,	and	you
will	learn	about	Hooks	with	an	implementation.	We’ll	also	cover	the	Hollywood	principle
that	helps	us	appreciate	this	pattern	better.

Chapter	9,	Model-View-Controller	–	Compound	Patterns,	talks	about	Compound	patterns.
We	will	be	introduced	to	the	Model-View-Controller	design	pattern	and	discuss	how	it	is
used	in	software	application	development.	MVC	is	easily	one	of	the	most	used	design
patterns;	in	fact,	many	Python	frameworks	are	based	on	this	principle.	You	will	learn
about	the	details	of	MVC	implementation	with	an	example	application	written	in	Python
Tornado	(a	framework	used	by	Facebook).

Chapter	10,	The	State	Design	Pattern,	introduces	you	to	the	State	design	pattern,	which
falls	into	the	category	of	Behavioral	patterns	just	like	the	Command	or	Template	design
patterns.	We	will	discuss	how	it	is	used	in	software	application	development.

Chapter	11,	AntiPatterns,	tells	you	about	AntiPatterns—what	we	shouldn’t	do	as	architects
or	software	engineers.

What	you	need	for	this	book
All	you	need	is	Python	v3.5,	and	you	can	download	it	from
https://www.python.org/downloads/.

https://www.python.org/downloads/

Who	this	book	is	for
This	book	is	for	Python	developers	and	software	architects	who	care	about	software
design	principles	and	details	of	application	development	aspects	in	Python.	It	requires	a
basic	understanding	of	programming	concepts	and	beginner-level	Python	development
experience.	It	will	also	be	helpful	for	students	and	teachers	in	live	learning	environments.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The	Car
object	will	have	attributes	such	as	fuel	level,	isSedan,	speed,	and	steering	wheel	and
coordinates.”

A	block	of	code	is	set	as	follows:

class	Person(object):

				def	__init__(self,	name,	age):		#constructor

								self.name	=	name				#data	members/	attributes

								self.age	=	age

				def	get_person(self,):			#	member	function

									return	"<Person	(%s,	%s)>"	%	(self.name,	self.age)

p	=	Person("John",	32)				#	p	is	an	object	of	type	Person

print("Type	of	Object:",	type(p),	"Memory	Address:",	id(p))

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“In	Python,	the	concept
of	encapsulation	(data	and	method	hiding)	is	not	implicit,	as	it	doesn’t	have	keywords
such	as	public,	private,	and	protected	(in	languages	such	as	C++	or	Java)	that	are
required	to	support	encapsulation.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Introduction	to	Design
Patterns
In	this	chapter,	we	will	go	through	the	basics	of	object-oriented	programming	and	discuss
the	object-oriented	design	principles	in	detail.	This	will	get	us	prepared	for	the	advanced
topics	covered	later	in	the	book.	This	chapter	will	also	give	a	brief	introduction	to	the
concept	of	design	patterns	so	that	you	will	be	able	to	appreciate	the	context	and
application	of	design	patterns	in	software	development.	Here	we	also	classify	the	design
patterns	under	three	main	aspects—creational,	structural,	and	Behavioral	patterns.	So,
essentially,	we	will	cover	the	following	topics	in	this	chapter:

Understanding	object-oriented	programming
Discussing	object-oriented	design	principles
Understanding	the	concept	of	design	patterns	and	their	taxonomy	and	context
Discussing	patterns	for	dynamic	languages
Classifying	patterns—creational	pattern,	structural	pattern,	and	behavioral	pattern

Understanding	object-oriented
programming
Before	you	start	learning	about	design	patterns,	it’s	always	good	to	cover	the	basics	and	go
through	object-oriented	paradigms	in	Python.	The	object-oriented	world	presents	the
concept	of	objects	that	have	attributes	(data	members)	and	procedures	(member
functions).	These	functions	are	responsible	for	manipulating	the	attributes.	For	instance,
take	an	example	of	the	Car	object.	The	Car	object	will	have	attributes	such	as	fuel	level,
isSedan,	speed,	and	steering	wheel	and	coordinates,	and	the	methods	would	be
accelerate()	to	increase	the	speed	and	takeLeft()	to	make	the	car	turn	left.	Python	has
been	an	object-oriented	language	since	it	was	first	released.	As	they	say,	everything	in
Python	is	an	object.	Each	class	instance	or	variable	has	its	own	memory	address	or
identity.	Objects,	which	are	instances	of	classes,	interact	among	each	other	to	serve	the
purpose	of	an	application	under	development.	Understanding	the	core	concepts	of	object-
oriented	programming	involves	understanding	the	concepts	of	objects,	classes,	and
methods.

Objects
The	following	points	describe	objects:

They	represent	entities	in	your	application	under	development.
Entities	interact	among	themselves	to	solve	real-world	problems.
For	example,	Person	is	an	entity	and	Car	is	an	entity.	Person	drives	Car	to	move	from
one	location	to	the	other.

Classes
Classes	help	developers	to	represent	real-world	entities:

Classes	define	objects	in	attributes	and	behaviors.	Attributes	are	data	members	and
behaviors	are	manifested	by	the	member	functions
Classes	consist	of	constructors	that	provide	the	initial	state	for	these	objects
Classes	are	like	templates	and	hence	can	be	easily	reused

For	example,	class	Person	will	have	attributes	name	and	age	and	member	function
gotoOffice()	that	defines	his	behavior	for	travelling	to	office	for	work.

Methods
The	following	points	talk	about	what	methods	do	in	the	object-oriented	world:

They	represent	the	behavior	of	the	object
Methods	work	on	attributes	and	also	implement	the	desired	functionality

A	good	example	of	a	class	and	object	created	in	Python	v3.5	is	given	here:

class	Person(object):

				def	__init__(self,	name,	age):		#constructor

								self.name	=	name				#data	members/	attributes

								self.age	=	age

				def	get_person(self,):			#	member	function

									return	"<Person	(%s,	%s)>"	%	(self.name,	self.age)

p	=	Person("John",	32)				#	p	is	an	object	of	type	Person

print("Type	of	Object:",	type(p),	"Memory	Address:",	id(p))

The	output	of	the	preceding	code	should	look	as	follows:

Major	aspects	of	object-oriented
programming
Now	that	we	have	understood	the	basics	of	object-oriented	programming,	let’s	dive	into
the	major	aspects	of	OOP.

Encapsulation
The	key	features	of	encapsulation	are	as	follows:

An	object’s	behavior	is	kept	hidden	from	the	outside	world	or	objects	keep	their	state
information	private.
Clients	can’t	change	the	object’s	internal	state	by	directly	acting	on	them;	rather,
clients	request	the	object	by	sending	messages.	Based	on	the	type	of	requests,	objects
may	respond	by	changing	their	internal	state	using	special	member	functions	such	as
get	and	set.
In	Python,	the	concept	of	encapsulation	(data	and	method	hiding)	is	not	implicit,	as	it
doesn’t	have	keywords	such	as	public,	private,	and	protected	(in	languages	such	as
C++	or	Java)	that	are	required	to	support	encapsulation.	Of	course,	accessibility	can
be	made	private	by	prefixing	__	in	the	variable	or	function	name.

Polymorphism
The	major	features	of	polymorphism	are	as	follows:

Polymorphism	can	be	of	two	types:

An	object	provides	different	implementations	of	the	method	based	on	input
parameters
The	same	interface	can	be	used	by	objects	of	different	types

In	Python,	polymorphism	is	a	feature	built-in	for	the	language.	For	example,	the	+
operator	can	act	on	two	integers	to	add	them	or	can	work	with	strings	to	concatenate
them

In	the	following	example,	strings,	tuples,	or	lists	can	all	be	accessed	with	an	integer	index.
This	shows	how	Python	demonstrates	polymorphism	in	built-in	types:

a	=	"John"

b	=	(1,2,3)

c	=	[3,4,6,8,9]

print(a[1],	b[0],	c[2])

Inheritance
The	following	points	help	us	understand	the	inheritance	process	better:

Inheritance	indicates	that	one	class	derives	(most	of	its)	functionality	from	the	parent
class.
Inheritance	is	described	as	an	option	to	reuse	functionality	defined	in	the	base	class
and	allow	independent	extensions	of	the	original	software	implementation.
Inheritance	creates	hierarchy	via	the	relationships	among	objects	of	different	classes.
Python,	unlike	Java,	supports	multiple	inheritance	(inheriting	from	multiple	base
classes).

In	the	following	code	example,	class	A	is	the	base	class	and	class	B	derives	its	features
from	class	A.	So,	the	methods	of	class	A	can	be	accessed	by	the	object	of	class	B:

class	A:

				def	a1(self):

								print("a1")

class	B(A):

				def	b(self):

								print("b")

b	=	B()

b.a1()

Abstraction
The	key	features	of	abstraction	are	as	follows:

It	provides	you	with	a	simple	interface	to	the	clients,	where	the	clients	can	interact
with	class	objects	and	call	methods	defined	in	the	interface
It	abstracts	the	complexity	of	internal	classes	with	an	interface	so	that	the	client	need
not	be	aware	of	internal	implementations

In	the	following	example,	internal	details	of	the	Adder	class	are	abstracted	with	the	add()
method:

class	Adder:

				def	__init__(self):

								self.sum	=	0

				def	add(self,	value):

								self.sum	+=	value

acc	=	Adder()

for	i	in	range(99):

				acc.add(i)

print(acc.sum)

Composition
Composition	refers	to	the	following	points:

It	is	a	way	to	combine	objects	or	classes	into	more	complex	data	structures	or
software	implementations
In	composition,	an	object	is	used	to	call	member	functions	in	other	modules	thereby
making	base	functionality	available	across	modules	without	inheritance

In	the	following	example,	the	object	of	class	A	is	composited	under	class	B:

class	A(object):

				def	a1(self):

								print("a1")

class	B(object):

				def	b(self):

								print("b")

								A().a1()

objectB	=	B()

objectB.b()

Object-oriented	design	principles
Now,	let’s	talk	about	another	set	of	concepts	that	are	going	to	be	crucial	for	us.	These	are
nothing	but	the	object-oriented	design	principles	that	will	act	as	a	toolbox	for	us	while
learning	design	patterns	in	detail.

The	open/close	principle
The	open/close	principle	states	that	classes	or	objects	and	methods	should	be	open	for
extension	but	closed	for	modifications.

What	this	means	in	simple	language	is,	when	you	develop	your	software	application,	make
sure	that	you	write	your	classes	or	modules	in	a	generic	way	so	that	whenever	you	feel	the
need	to	extend	the	behavior	of	the	class	or	object,	then	you	shouldn’t	have	to	change	the
class	itself.	Rather,	a	simple	extension	of	the	class	should	help	you	build	the	new	behavior.

For	example,	the	open/close	principle	is	manifested	in	a	case	where	a	user	has	to	create	a
class	implementation	by	extending	the	abstract	base	class	to	implement	the	required
behavior	instead	of	changing	the	abstract	class.

Advantages	of	this	design	principle	are	as	follows:

Existing	classes	are	not	changed	and	hence	the	chances	of	regression	are	less
It	also	helps	maintain	backward	compatibility	for	the	previous	code

The	inversion	of	control	principle
The	inversion	of	control	principle	states	that	high-level	modules	shouldn’t	be	dependent	on
low-level	modules;	they	should	both	be	dependent	on	abstractions.	Details	should	depend
on	abstractions	and	not	the	other	way	round.

This	principle	suggests	that	any	two	modules	shouldn’t	be	dependent	on	each	other	in	a
tight	way.	In	fact,	the	base	module	and	dependent	module	should	be	decoupled	with	an
abstraction	layer	in	between.

This	principle	also	suggests	that	the	details	of	your	class	should	represent	the	abstractions.
In	some	cases,	the	philosophy	gets	inverted	and	implementation	details	itself	decide	the
abstraction,	which	should	be	avoided.

Advantages	of	the	inversion	of	control	principle	are	as	follows:

The	tight	coupling	of	modules	is	no	more	prevalent	and	hence	no	complexity/rigidity
in	the	system
As	there	is	a	clear	abstraction	layer	between	dependent	modules	(provided	by	a	hook
or	parameter),	it’s	easy	to	deal	with	dependencies	across	modules	in	a	better	way

The	interface	segregation	principle
As	the	interface	segregation	principle	states,	clients	should	not	be	forced	to	depend	on
interfaces	they	don’t	use.

This	principle	talks	about	software	developers	writing	their	interfaces	well.	For	instance,	it
reminds	the	developers/architects	to	develop	methods	that	relate	to	the	functionality.	If
there	is	any	method	that	is	not	related	to	the	interface,	the	class	dependent	on	the	interface
has	to	implement	it	unnecessarily.

For	example,	a	Pizza	interface	shouldn’t	have	a	method	called	add_chicken().	The	Veg
Pizza	class	based	on	the	Pizza	interface	shouldn’t	be	forced	to	implement	this	method.

Advantages	of	this	design	principle	are	as	follows:

It	forces	developers	to	write	thin	interfaces	and	have	methods	that	are	specific	to	the
interface
It	helps	you	not	to	populate	interfaces	by	adding	unintentional	methods

The	single	responsibility	principle
As	the	single	responsibility	principle	states,	a	class	should	have	only	one	reason	to
change.

This	principle	says	that	when	we	develop	classes,	it	should	cater	to	the	given	functionality
well.	If	a	class	is	taking	care	of	two	functionalities,	it	is	better	to	split	them.	It	refers	to
functionality	as	a	reason	to	change.	For	example,	a	class	can	undergo	changes	because	of
the	difference	in	behavior	expected	from	it,	but	if	a	class	is	getting	changed	for	two
reasons	(basically,	changes	in	two	functionalities),	then	the	class	should	be	definitely	split.

Advantages	of	this	design	principle	are	as	follows:

Whenever	there	is	a	change	in	one	functionality,	this	particular	class	needs	to	change,
and	nothing	else
Additionally,	if	a	class	has	multiple	functionalities,	the	dependent	classes	will	have	to
undergo	changes	for	multiple	reasons,	which	gets	avoided

The	substitution	principle
The	substitution	principle	states	that	derived	classes	must	be	able	to	completely	substitute
the	base	classes.

This	principle	is	pretty	straightforward	in	the	sense	that	it	says	when	application
developers	write	derived	classes,	they	should	extend	the	base	classes.	It	also	suggests	that
the	derived	class	should	be	as	close	to	the	base	class	as	possible	so	much	so	that	the
derived	class	itself	should	replace	the	base	class	without	any	code	changes.

The	concept	of	design	patterns
Finally,	now	is	the	time	that	we	start	talking	about	design	patterns!	What	are	design
patterns?

Design	patterns	were	first	introduced	by	GoF	(Gang	of	Four),	where	they	mentioned
them	as	being	solutions	to	given	problems.	If	you	would	like	to	know	more,	GoF	refers	to
the	four	authors	of	the	book,	Design	Patterns:	Elements	of	Reusable	Object-Oriented
Software.	The	book’s	authors	are	Erich	Gamma,	Richard	Helm,	Ralph	Johnson,	and	John
Vlissides,	with	a	foreword	by	Grady	Booch.	This	book	covers	software	engineering
solutions	to	the	commonly	occurring	problems	in	software	design.	There	were	23	design
patterns	first	identified,	and	the	first	implementation	was	done	with	respect	to	the	Java
program	language.	Design	patterns	are	discoveries	and	not	an	invention	in	themselves.

The	key	features	of	design	patterns	are	as	follows:

They	are	language-neutral	and	can	be	implemented	across	multiple	languages
They	are	dynamic,	as	new	patterns	get	introduced	every	now	and	then
They	are	open	for	customization	and	hence	useful	for	developers

Initially,	when	you	hear	about	design	patterns,	you	may	feel	the	following:

It’s	a	panacea	to	all	the	design	problems	that	you’ve	had	so	far
It’s	an	extraordinary,	specially	clever	way	of	solving	a	problem
Many	experts	in	software	development	world	agree	to	these	solutions
There’s	something	repeatable	about	the	design,	hence	the	word	pattern

You	too	must	have	attempted	to	solve	the	problems	that	a	design	patterns	intends	to,	but
maybe	your	solution	was	incomplete,	and	the	completeness	that	we’re	looking	for	is
inherent	or	implicit	in	the	design	pattern.	When	we	say	completeness,	it	can	refer	to	many
factors	such	as	the	design,	scalability,	reuse,	memory	utilization,	and	others.	Essentially,	a
design	pattern	is	about	learning	from	others’	successes	rather	than	your	own	failures!

Another	interesting	discussion	that	comes	up	on	design	patterns	is—when	do	I	use	them?
Is	it	in	the	analysis	or	design	phase	of	Software	Development	Life	Cycle	(SDLC)?

Interestingly,	design	patterns	are	solutions	to	known	issues.	So	they	can	be	very	much
used	in	analysis	or	design,	and	as	expected,	in	the	development	phase	because	of	the	direct
relation	in	the	application	code.

Advantages	of	design	patterns
The	advantages	of	design	patterns	are	as	follows:

They	are	reusable	across	multiple	projects
The	architectural	level	of	problems	can	be	solved
They	are	time-tested	and	well-proven,	which	is	the	experience	of	developers	and
architects
They	have	reliability	and	dependence

Taxonomy	of	design	patterns
Not	every	piece	of	code	or	design	can	be	termed	as	a	design	pattern.	For	example,	a
programming	construct	or	data	structure	that	solves	one	problem	can’t	be	termed	as	a
pattern.	Let’s	understand	terms	in	a	very	simplistic	way	below:

Snippet:	This	is	code	in	some	language	for	a	certain	purpose,	for	example,	DB
connectivity	in	Python	can	be	a	code	snippet
Design:	A	better	solution	to	solve	this	particular	problem
Standard:	This	is	a	way	to	solve	some	kind	of	problems,	and	can	be	very	generic	and
applicable	to	a	situation	at	hand
Pattern:	This	is	a	time-tested,	efficient,	and	scalable	solution	that	will	resolve	the
entire	class	of	known	issues

Context	–	the	applicability	of	design	patterns
To	use	design	patterns	efficiently,	application	developers	must	be	aware	of	the	context
where	design	patterns	apply.	We	can	classify	the	context	into	the	following	main
categories:

Participants:	They	are	classes	that	are	used	in	design	patterns.	Classes	play	different
roles	to	accomplish	multiple	goals	in	the	pattern.
Non-functional	requirements:	Requirements	such	as	memory	optimization,
usability,	and	performance	fall	under	this	category.	These	factors	impact	the	complete
software	solution	and	are	thus	critical.
Trade-offs:	Not	all	design	patterns	fit	in	application	development	as	it	is,	and	trade-
offs	are	necessary.	These	are	decisions	that	you	take	while	using	a	design	pattern	in
an	application.
Results:	Design	patterns	can	have	a	negative	impact	on	other	parts	of	the	code	if	the
context	is	not	appropriate.	Developers	should	understand	the	consequences	and	use
of	design	patterns.

Patterns	for	dynamic	languages
Python	is	a	dynamic	language	like	Lisp.	The	dynamic	nature	of	Python	can	be	represented
as	follows:

Types	or	classes	are	objects	at	runtime.
Variables	can	have	type	as	a	value	and	can	be	modified	at	runtime.	For	example,	a	=
5	and	a	=	"John",	the	a	variable	is	assigned	at	runtime	and	type	also	gets	changed.
Dynamic	languages	have	more	flexibility	in	terms	of	class	restrictions.
For	example,	in	Python,	polymorphism	is	built	into	the	language,	there	are	no
keywords	such	as	private	and	protected	and	everything	is	public	by	default.
Represents	a	case	where	design	patterns	can	be	easily	implemented	in	dynamic
languages.

Classifying	patterns
The	book	by	GoF	on	design	patterns	spoke	about	23	design	patterns	and	classified	them
under	three	main	categories:

Creational	patterns
Structural	patterns
Behavioral	patterns

The	classification	of	patterns	is	done	based	primarily	on	how	the	objects	get	created,	how
classes	and	objects	are	structured	in	a	software	application,	and	also	covers	the	way
objects	interact	among	themselves.	Let’s	talk	about	each	of	the	categories	in	detail	in	this
section.

Creational	patterns:
The	following	are	the	properties	of	Creational	patterns:

They	work	on	the	basis	of	how	objects	can	be	created
They	isolate	the	details	of	object	creation
Code	is	independent	of	the	type	of	object	to	be	created

An	example	of	a	creational	pattern	is	the	Singleton	pattern.

Structural	patterns
The	following	are	the	properties	of	Structural	patterns:

They	design	the	structure	of	objects	and	classes	so	that	they	can	compose	to	achieve
larger	results
The	focus	is	on	simplifying	the	structure	and	identifying	the	relationship	between
classes	and	objects
They	focus	on	class	inheritance	and	composition

An	example	of	a	behavior	pattern	is	the	Adapter	pattern.

Behavioral	patterns
The	following	are	the	properties	of	Behavioral	patterns:

They	are	concerned	with	the	interaction	among	objects	and	responsibility	of	objects
Objects	should	be	able	to	interact	and	still	be	loosely	coupled

An	example	of	a	behavioral	pattern	is	the	Observer	pattern.

Summary
In	this	chapter,	you	learned	about	the	basic	concepts	of	object-oriented	programming,	such
as	objects,	classes,	variables,	and	features	such	as	polymorphism,	inheritance,	and
abstraction	with	code	examples.

We	are	also	now	aware	of	object-oriented	design	principles	that	we,	as
developers/architects,	should	consider	while	designing	an	application.

Finally,	we	went	on	to	explore	more	about	design	patterns	and	their	applications	and
context	in	which	they	can	be	applied	and	also	discussed	their	classifications.

At	the	end	of	this	chapter,	we’re	now	ready	to	take	the	next	step	and	study	design	patterns
in	detail.

Chapter	2.	The	Singleton	Design	Pattern
In	the	previous	chapter,	we	explored	design	patterns	and	their	classifications.	As	we	are
aware,	design	patterns	can	be	classified	under	three	main	categories:	structural,
behavioral,	and	creational	patterns.

In	this	chapter,	we	will	go	through	the	Singleton	design	pattern—one	of	the	simplest	and
well-known	Creational	design	patterns	used	in	application	development.	This	chapter	will
give	you	a	brief	introduction	to	the	Singleton	pattern,	take	you	through	a	real-world
example	where	this	pattern	can	be	used,	and	explain	it	in	detail	with	the	help	of	Python
implementations.	You	will	learn	about	the	Monostate	(or	Borg)	design	pattern	that	is	a
variant	of	the	Singleton	design	pattern.

In	this	chapter,	we	will	cover	the	following	topics	in	brief:

An	understanding	of	the	Singleton	design	pattern
A	real-world	example	of	the	Singleton	pattern
The	Singleton	pattern	implementation	in	Python
The	Monostate	(Borg)	pattern

At	the	end	of	the	chapter,	we	have	a	short	summary	on	Singletons.	This	will	help	you
think	independently	about	some	of	the	aspects	of	the	Singleton	design	pattern.

Understanding	the	Singleton	design
pattern
Singleton	provides	you	with	a	mechanism	to	have	one,	and	only	one,	object	of	a	given
type	and	provides	a	global	point	of	access.	Hence,	Singletons	are	typically	used	in	cases
such	as	logging	or	database	operations,	printer	spoolers,	and	many	others,	where	there	is	a
need	to	have	only	one	instance	that	is	available	across	the	application	to	avoid	conflicting
requests	on	the	same	resource.	For	example,	we	may	want	to	use	one	database	object	to
perform	operations	on	the	DB	to	maintain	data	consistency	or	one	object	of	the	logging
class	across	multiple	services	to	dump	log	messages	in	a	particular	log	file	sequentially.

In	brief,	the	intentions	of	the	Singleton	design	pattern	are	as	follows:

Ensuring	that	one	and	only	one	object	of	the	class	gets	created
Providing	an	access	point	for	an	object	that	is	global	to	the	program
Controlling	concurrent	access	to	resources	that	are	shared

The	following	is	the	UML	diagram	for	Singleton:

A	simple	way	of	implementing	Singleton	is	by	making	the	constructor	private	and	creating
a	static	method	that	does	the	object	initialization.	This	way,	one	object	gets	created	on	the
first	call	and	the	class	returns	the	same	object	thereafter.

In	Python,	we	will	implement	it	in	a	different	way	as	there’s	no	option	to	create	private
constructors.	Let’s	take	a	look	at	how	Singletons	are	implemented	in	the	Python	language.

Implementing	a	classical	Singleton	in	Python
Here	is	a	sample	code	of	the	Singleton	pattern	in	Python	v3.5.	In	this	example,	we	will	do
two	major	things:

1.	 We	will	allow	the	creation	of	only	one	instance	of	the	Singleton	class.
2.	 If	an	instance	exists,	we	will	serve	the	same	object	again.

The	following	code	shows	this:

class	Singleton(object):

					def	__new__(cls):

							if	not	hasattr(cls,	'instance'):

									cls.instance	=	super(Singleton,	cls).__new__(cls)

							return	cls.instance

s	=	Singleton()

print("Object	created",	s)

s1	=	Singleton()

print("Object	created",	s1)

The	output	of	the	preceding	snippet	is	given	here:

In	the	preceding	code	snippet,	we	override	the	__new__	method	(Python’s	special	method
to	instantiate	objects)	to	control	the	object	creation.	The	s	object	gets	created	with	the
__new__	method,	but	before	this,	it	checks	whether	the	object	already	exists.	The	hasattr
method	(Python’s	special	method	to	know	if	an	object	has	a	certain	property)	is	used	to
see	if	the	cls	object	has	the	instance	property,	which	checks	whether	the	class	already	has
an	object.	Till	the	time	the	s1	object	is	requested,	hasattr()	detects	that	an	object	already
exists	and	hence	s1	allocates	the	existing	object	instance	(located	at	0x102078ba8).

Lazy	instantiation	in	the	Singleton	pattern
One	of	the	use	cases	for	the	Singleton	pattern	is	lazy	instantiation.	For	example,	in	the
case	of	module	imports,	we	may	accidently	create	an	object	even	when	it’s	not	needed.
Lazy	instantiation	makes	sure	that	the	object	gets	created	when	it’s	actually	needed.
Consider	lazy	instantiation	as	the	way	to	work	with	reduced	resources	and	create	them
only	when	needed.

In	the	following	code	example,	when	we	say	s=Singleton(),	it	calls	the	__init__	method
but	no	new	object	gets	created.	However,	actual	object	creation	happens	when	we	call
Singleton.getInstance().	This	is	how	lazy	instantiation	is	achieved.

class	Singleton:

				__instance	=	None

				def	__init__(self):

								if	not	Singleton.__instance:

												print("	__init__	method	called..")

								else:

												print("Instance	already	created:",	self.getInstance())

				@classmethod

				def	getInstance(cls):

								if	not	cls.__instance:

												cls.__instance	=	Singleton()

								return	cls.__instance

s	=	Singleton()	##	class	initialized,	but	object	not	created

print("Object	created",	Singleton.getInstance())	#	Object	gets	created	here

s1	=	Singleton()	##	instance	already	created

Module-level	Singletons
All	modules	are	Singletons	by	default	because	of	Python’s	importing	behavior.	Python
works	in	the	following	way:

1.	 Checks	whether	a	Python	module	has	been	imported.
2.	 If	imported,	returns	the	object	for	the	module.	If	not	imported,	imports	and

instantiates	it.
3.	 So	when	a	module	gets	imported,	it	is	initialized.	However,	when	the	same	module	is

imported	again,	it’s	not	initialized	again,	which	relates	to	the	Singleton	behavior	of
having	only	one	object	and	returning	the	same	object.

The	Monostate	Singleton	pattern
We	discussed	the	Gang	of	Four	and	their	book	in	Chapter	1,	Introduction	to	Design
Patterns.	GoF’s	Singleton	design	pattern	says	that	there	should	be	one	and	only	one	object
of	a	class.	However,	as	per	Alex	Martelli,	typically	what	a	programmer	needs	is	to	have
instances	sharing	the	same	state.	He	suggests	that	developers	should	be	bothered	about	the
state	and	behavior	rather	than	the	identity.	As	the	concept	is	based	on	all	objects	sharing
the	same	state,	it	is	also	known	as	the	Monostate	pattern.

The	Monostate	pattern	can	be	achieved	in	a	very	simple	way	in	Python.	In	the	following
code,	we	assign	the	__dict__	variable	(a	special	variable	of	Python)	with	the
__shared_state	class	variable.	Python	uses	__dict__	to	store	the	state	of	every	object	of
a	class.	In	the	following	code,	we	intentionally	assign	__shared_state	to	all	the	created
instances.	So	when	we	create	two	instances,	'b'	and	'b1',	we	get	two	different	objects
unlike	Singleton	where	we	have	just	one	object.	However,	the	object	states,	b.__dict__
and	b1.__dict__	are	the	same.	Now,	even	if	the	object	variable	x	changes	for	object	b,	the
change	is	copied	over	to	the	__dict__	variable	that	is	shared	by	all	objects	and	even	b1
gets	this	change	of	the	x	setting	from	one	to	four:

class	Borg:

				__shared_state	=	{"1":"2"}

				def	__init__(self):

								self.x	=	1

								self.__dict__	=	self.__shared_state

								pass

b	=	Borg()

b1	=	Borg()

b.x	=	4

print("Borg	Object	'b':	",	b)	##	b	and	b1	are	distinct	objects

print("Borg	Object	'b1':	",	b1)

print("Object	State	'b':",	b.__dict__)##	b	and	b1	share	same	state

print("Object	State	'b1':",	b1.__dict__)

The	following	is	the	output	of	the	preceding	snippet:

Another	way	to	implement	the	Borg	pattern	is	by	tweaking	the	__new__	method	itself.	As
we	know,	the	__new__	method	is	responsible	for	the	creation	of	the	object	instance:

class	Borg(object):

					_shared_state	=	{}

					def	__new__(cls,	*args,	**kwargs):

							obj	=	super(Borg,	cls).__new__(cls,	*args,	**kwargs)

							obj.__dict__	=	cls._shared_state

							return	obj

Singletons	and	metaclasses
Let’s	start	with	a	brief	introduction	to	metaclasses.	A	metaclass	is	a	class	of	a	class,	which
means	that	the	class	is	an	instance	of	its	metaclass.	With	metaclasses,	programmers	get	an
opportunity	to	create	classes	of	their	own	type	from	the	predefined	Python	classes.	For
instance,	if	you	have	an	object,	MyClass,	you	can	create	a	metaclass,	MyKls,	that	redefines
the	behavior	of	MyClass	to	the	way	that	you	need.	Let’s	understand	them	in	detail.

In	Python,	everything	is	an	object.	If	we	say	a=5,	then	type(a)	returns	<type	'int'>,
which	means	a	is	of	the	int	type.	However,	type(int)	returns	<type	'type'>,	which
suggests	the	presence	of	a	metaclass	as	int	is	a	class	of	the	type	type.

The	definition	of	class	is	decided	by	its	metaclass,	so	when	we	create	a	class	with	class
A,	Python	creates	it	by	A	=	type(name,	bases,	dict):

name:	This	is	the	name	of	the	class
base:	This	is	the	base	class
dict:	This	is	the	attribute	variable

Now,	if	a	class	has	a	predefined	metaclass	(by	the	name	of	MetaKls),	Python	creates	the
class	by	A	=	MetaKls(name,	bases,	dict).

Let’s	look	at	a	sample	metaclass	implementation	in	Python	3.5:

class	MyInt(type):

				def	__call__(cls,	*args,	**kwds):

								print("*****	Here's	My	int	*****",	args)

								print("Now	do	whatever	you	want	with	these	objects…")

								return	type.__call__(cls,	*args,	**kwds)

class	int(metaclass=MyInt):

				def	__init__(self,	x,	y):

								self.x	=	x

								self.y	=	y

i	=	int(4,5)

The	following	is	the	output	of	the	preceding	code:

Python’s	special	__call__	method	gets	called	when	an	object	needs	to	be	created	for	an
already	existing	class.	In	this	code,	when	we	instantiate	the	int	class	with	int(4,5),	the
__call__	method	of	the	MyInt	metaclass	gets	called,	which	means	that	the	metaclass	now
controls	the	instantiation	of	the	object.	Wow,	isn’t	this	great?!

The	preceding	philosophy	is	used	in	the	Singleton	design	pattern	as	well.	As	the	metaclass
has	more	control	over	class	creation	and	object	instantiation,	it	can	be	used	to	create
Singletons.	(Note:	To	control	the	creation	and	initialization	of	a	class,	metaclasses	override
the	__new__	and	__init__	method.)

The	Singleton	implementation	with	metclasses	can	be	explained	better	with	the	following
example	code:

class	MetaSingleton(type):

				_instances	=	{}

				def	__call__(cls,	*args,	**kwargs):

								if	cls	not	in	cls._instances:

												cls._instances[cls]	=	super(MetaSingleton,	\

																cls).__call__(*args,	**kwargs)

								return	cls._instances[cls]

class	Logger(metaclass=MetaSingleton):

				pass

logger1	=	Logger()

logger2	=	Logger()

print(logger1,	logger2)

A	real-world	scenario	–	the	Singleton
pattern,	part	1
As	a	practical	use	case,	we	will	look	at	a	database	application	to	show	the	use	of
Singletons.	Consider	an	example	of	a	cloud	service	that	involves	multiple	read	and	write
operations	on	the	database.	The	complete	cloud	service	is	split	across	multiple	services
that	perform	database	operations.	An	action	on	the	UI	(web	app)	internally	will	call	an
API,	which	eventually	results	in	a	DB	operation.

It’s	clear	that	the	shared	resource	across	different	services	is	the	database	itself.	So,	if	we
need	to	design	the	cloud	service	better,	the	following	points	must	be	taken	care	of:

Consistency	across	operations	in	the	database—one	operation	shouldn’t	result	in
conflicts	with	other	operations
Memory	and	CPU	utilization	should	be	optimal	for	the	handling	of	multiple
operations	on	the	database

A	sample	Python	implementation	is	given	here:

import	sqlite3

class	MetaSingleton(type):

				_instances	=	{}

				def	__call__(cls,	*args,	**kwargs):

								if	cls	not	in	cls._instances:

												cls._instances[cls]	=	super(MetaSingleton,	\

																cls).__call__(*args,	**kwargs)

								return	cls._instances[cls]

class	Database(metaclass=MetaSingleton):

		connection	=	None

		def	connect(self):

				if	self.connection	is	None:

								self.connection	=	sqlite3.connect("db.sqlite3")

								self.cursorobj	=	self.connection.cursor()

				return	self.cursorobj

db1	=	Database().connect()

db2	=	Database().connect()

print	("Database	Objects	DB1",	db1)

print	("Database	Objects	DB2",	db2)

The	output	of	the	preceding	code	is	given	here:

In	the	preceding	code,	we	can	see	following	points	being	covered:

1.	 We	created	a	metaclass	by	the	name	of	MetaSingleton.	Like	we	explained	in	the
previous	section,	the	special	__call__	method	of	Python	is	used	in	the	metaclass	to
create	a	Singleton.

2.	 The	database	class	is	decorated	by	the	MetaSingleton	class	and	starts	acting	like	a
Singleton.	So,	when	the	database	class	is	instantiated,	it	creates	only	one	object.

3.	 When	the	web	app	wants	to	perform	certain	operations	on	the	DB,	it	instantiates	the
database	class	multiple	times,	but	only	one	object	gets	created.	As	there	is	only	one
object,	calls	to	the	database	are	synchronized.	Additionally,	this	is	inexpensive	on
system	resources	and	we	can	avoid	the	situation	of	memory	or	CPU	resource.

Consider	that	instead	of	having	one	webapp,	we	have	a	clustered	setup	with	multiple	web
apps	but	only	one	DB.	Now,	this	is	not	a	good	situation	for	Singletons	because,	with	every
web	app	addition,	a	new	Singleton	gets	created	and	a	new	object	gets	added	that	queries
the	database.	This	results	in	unsynchronized	database	operations	and	is	heavy	on
resources.	In	such	cases,	database	connection	pooling	is	better	than	implementing
Singletons.

A	real-world	scenario	–	the	Singleton
pattern,	part	2
Let’s	consider	another	scenario	where	we	implement	health	check	services	(such	as
Nagios)	for	our	infrastructure.	We	create	the	HealthCheck	class,	which	is	implemented	as
a	Singleton.	We	also	maintain	a	list	of	servers	against	which	the	health	check	needs	to	run.
If	a	server	is	removed	from	this	list,	the	health	check	software	should	detect	it	and	remove
it	from	the	servers	configured	to	check.

In	the	following	code,	the	hc1	and	hc2	objects	are	the	same	as	the	class	in	Singleton.

Servers	are	added	to	the	infrastructure	for	the	health	check	with	the	addServer()	method.
First,	the	iteration	of	the	health	check	runs	against	these	servers.	The	changeServer()
method	removes	the	last	server	and	adds	a	new	one	to	the	infrastructure	scheduled	for	the
health	check.	So,	when	the	health	check	runs	in	the	second	iteration,	it	picks	up	the
changed	list	of	servers.

All	this	is	possible	with	Singletons.	When	the	servers	get	added	or	removed,	the	health
check	must	be	the	same	object	that	has	the	knowledge	of	the	changes	made	to	the
infrastructure:

class	HealthCheck:

				_instance	=	None

				def	__new__(cls,	*args,	**kwargs):

								if	not	HealthCheck._instance:

												HealthCheck._instance	=	super(HealthCheck,	\

																cls).__new__(cls,	*args,	**kwargs)

								return	HealthCheck._instance

				def	__init__(self):

								self._servers	=	[]

				def	addServer(self):

								self._servers.append("Server	1")

								self._servers.append("Server	2")

								self._servers.append("Server	3")

								self._servers.append("Server	4")

				def	changeServer(self):

								self._servers.pop()

								self._servers.append("Server	5")

hc1	=	HealthCheck()

hc2	=	HealthCheck()

hc1.addServer()

print("Schedule	health	check	for	servers	(1)..")

for	i	in	range(4):

				print("Checking	",	hc1._servers[i])

hc2.changeServer()

print("Schedule	health	check	for	servers	(2)..")

for	i	in	range(4):

				print("Checking	",	hc2._servers[i])

The	output	of	the	code	is	as	follows:

Drawbacks	of	the	Singleton	pattern
While	Singletons	are	used	in	multiple	places	to	good	effect,	there	can	be	a	few	gotchas
with	this	pattern.	As	Singletons	have	a	global	point	of	access,	the	following	issues	can
occur:

Global	variables	can	be	changed	by	mistake	at	one	place	and,	as	the	developer	may
think	that	they	have	remained	unchanged,	the	variables	get	used	elsewhere	in	the
application.
Multiple	references	may	get	created	to	the	same	object.	As	Singleton	creates	only	one
object,	multiple	references	can	get	created	at	this	point	to	the	same	object.
All	classes	that	are	dependent	on	global	variables	get	tightly	coupled	as	a	change	to
the	global	data	by	one	class	can	inadvertently	impact	the	other	class.

Note
As	part	of	this	chapter,	you	learned	a	lot	on	Singletons.	Here	are	a	few	points	that	we
should	remember	about	Singletons:

There	are	many	real-world	applications	where	we	need	to	create	only	one	object,
such	as	thread	pools,	caches,	dialog	boxes,	registry	settings,	and	so	on.	If	we	create
multiple	instances	for	each	of	these	applications,	it	will	result	in	the	overuse	of
resources.	Singletons	work	very	well	in	such	situations.
Singleton;	a	time-tested	and	proven	method	of	presenting	a	global	point	of	access
without	many	downsides.
Of	course,	there	are	a	few	downsides;	Singletons	can	have	an	inadvertent	impact
working	with	global	variables	or	instantiating	classes	that	are	resource-intensive	but
end	up	not	utilizing	them.

Summary
In	this	chapter,	you	learned	about	the	Singleton	design	pattern	and	the	context	in	which	it’s
used.	We	understood	that	Singletons	are	used	when	there	is	a	need	to	have	only	one	object
for	a	class.

We	also	looked	at	various	ways	in	which	Singletons	can	be	implemented	in	Python.	The
classical	implementation	allowed	multiple	instantiation	attempts	but	returned	the	same
object.

We	also	discussed	the	Borg	or	Monostate	pattern,	which	is	a	variation	of	the	Singleton
pattern.	Borg	allows	the	creation	of	multiple	objects	that	share	the	same	state	unlike	the
single	pattern	described	by	GoF.

We	went	on	to	explore	the	webapp	application	where	Singleton	can	be	applied	for
consistent	database	operations	across	multiple	services.

Finally,	we	also	looked	at	situations	where	Singletons	can	go	wrong	and	what	situations
developers	need	to	avoid.

At	the	end	of	this	chapter,	we’re	now	comfortable	enough	to	take	the	next	step	and	study
other	creational	patterns	and	benefit	from	them.

In	the	next	chapter,	we’ll	take	a	look	at	another	creational	pattern	and	the	Factory	design
pattern.	We’ll	cover	the	Factory	method	and	Abstract	Factory	patterns	and	understand
them	in	the	Python	implementation.

Chapter	3.	The	Factory	Pattern	–
Building	Factories	to	Create	Objects
In	the	previous	chapter,	you	learned	about	Singleton	design	patterns—what	they	are	and
how	they	are	used	in	the	real	world	along	with	the	Python	implementation.	The	Singleton
design	pattern	is	one	of	the	Creational	design	patterns.	In	this	chapter,	we	move	ahead	and
learn	about	another	creational	pattern,	the	Factory	pattern.

The	Factory	pattern	is	arguably	the	most	used	design	pattern.	In	this	chapter,	we	will
understand	the	concept	of	Factory	and	go	through	the	Simple	Factory	pattern.	You	will
then	learn	about	the	Factory	method	pattern	and	Abstract	Factory	pattern	with	a	UML
diagram,	real-world	scenarios,	and	Python	v3.5	implementations.	We’ll	also	compare	the
Factory	method	and	Abstract	Factory	method.

In	this	chapter,	we	will	cover	the	following	topics	in	brief:

Understanding	the	Simple	Factory	design	pattern
Discussing	the	Factory	method	and	Abstract	Factory	method	and	their	differences
Implementing	real-world	scenarios	with	the	Python	code	implementation
Discussing	the	advantages	and	disadvantages	of	the	patterns	and	their	comparisons

Understanding	the	Factory	pattern
In	object-oriented	programming,	the	term	factory	means	a	class	that	is	responsible	for
creating	objects	of	other	types.	Typically,	the	class	that	acts	as	a	factory	has	an	object	and
methods	associated	with	it.	The	client	calls	this	method	with	certain	parameters;	objects	of
desired	types	are	created	in	turn	and	returned	to	the	client	by	the	factory.

So	the	question	here	really	is,	why	do	we	need	a	factory	when	the	client	can	directly	create
an	object?	The	answer	is,	a	factory	provides	certain	advantages	that	are	listed	here:

The	first	advantage	is	loose	coupling	in	which	object	creation	can	be	independent	of
the	class	implementation.
The	client	need	not	be	aware	of	the	class	that	creates	the	object	which,	in	turn,	is
utilized	by	the	client.	It	is	only	necessary	to	know	the	interface,	methods,	and
parameters	that	need	to	be	passed	to	create	objects	of	the	desired	type.	This	simplifies
implementations	for	the	client.
Adding	another	class	to	the	factory	to	create	objects	of	another	type	can	be	easily
done	without	the	client	changing	the	code.	At	a	minimum,	the	client	needs	to	pass
just	another	parameter.
The	factory	can	also	reuse	the	existing	objects.	However,	when	the	client	does	direct
object	creation,	this	always	creates	a	new	object.

Let’s	consider	the	situation	of	a	manufacturing	company	that	manufactures	toys—cars	or
dolls.	Let’s	say	that	a	machine	in	the	company	is	currently	manufacturing	toy	cars.	Then,
the	CEO	of	the	company	feels	that	there	is	an	urgent	need	to	manufacture	dolls	based	on
the	demand	in	the	market.	This	situation	calls	for	the	Factory	pattern.	In	this	case,	the
machine	becomes	the	interface	and	the	CEO	is	the	client.	The	CEO	is	only	bothered	about
the	object	(or	the	toy)	to	be	manufactured	and	knows	the	interface—the	machine—that
can	create	the	object.

There	are	three	variants	of	the	Factory	pattern:

Simple	Factory	pattern:	This	allows	interfaces	to	create	objects	without	exposing
the	object	creation	logic.
Factory	method	pattern:	This	allows	interfaces	to	create	objects,	but	defers	the
decision	to	the	subclasses	to	determine	the	class	for	object	creation.
Abstract	Factory	pattern:	An	Abstract	Factory	is	an	interface	to	create	related
objects	without	specifying/exposing	their	classes.	The	pattern	provides	objects	of
another	factory,	which	internally	creates	other	objects.

The	Simple	Factory	pattern
For	some,	Simple	Factory	is	not	a	pattern	in	itself.	It	is	more	of	a	concept	that	developers
need	to	know	before	they	know	more	about	the	Factory	method	and	Abstract	Factory
method.	The	Factory	helps	create	objects	of	different	types	rather	than	direct	object
instantiation.

Let’s	understand	this	with	the	help	of	the	following	diagram.	Here,	the	client	class	uses	the
Factory	class,	which	has	the	create_type()	method.	When	the	client	calls	the
create_type()	method	with	the	type	parameters,	based	on	the	parameters	passed,	the
Factory	returns	Product1	or	Product2:

A	UML	Diagram	of	Simple	Factory

Let’s	now	understand	the	Simple	Factory	pattern	with	the	help	of	a	Python	v3.5	code
example.	In	the	following	snippet,	we	create	an	Abstract	product	called	Animal.	Animal	is
an	abstract	base	class	(ABCMeta	is	Python’s	special	metaclass	to	make	a	class	Abstract)
and	has	the	do_say()	method.	We	create	two	products	(Cat	and	Dog)	from	the	Animal
interface	and	implement	do_say()	with	appropriate	sounds	that	these	animals	make.
ForestFactory	is	a	factory	that	has	the	make_sound()	method.	Based	on	the	type	of
argument	passed	by	the	client,	an	appropriate	Animal	instance	is	created	at	runtime	and
the	right	sound	is	printed	out:

from	abc	import	ABCMeta,	abstractmethod

class	Animal(metaclass	=	ABCMeta):

				@abstractmethod

				def	do_say(self):

								pass

class	Dog(Animal):

				def	do_say(self):

								print("Bhow	Bhow!!")

class	Cat(Animal):

				def	do_say(self):

								print("Meow	Meow!!")

##	forest	factory	defined

class	ForestFactory(object):

				def	make_sound(self,	object_type):

								return	eval(object_type)().do_say()

##	client	code

if	__name__	==	'__main__':

				ff	=	ForestFactory()

				animal	=	input("Which	animal	should	make_sound	Dog	or	Cat?")

				ff.make_sound(animal)

The	following	is	the	output	of	the	preceding	code	snippet:

The	Factory	Method	pattern
The	following	points	help	us	understand	the	factory	method	pattern:

We	define	an	interface	to	create	objects,	but	instead	of	the	factory	being	responsible
for	the	object	creation,	the	responsibility	is	deferred	to	the	subclass	that	decides	the
class	to	be	instantiated.
The	Factory	method	creation	is	through	inheritance	and	not	through	instantiation.
The	Factory	method	makes	the	design	more	customizable.	It	can	return	the	same
instance	or	subclass	rather	than	an	object	of	a	certain	type	(as	in	the	simple	factory
method).

A	UML	diagram	for	the	Factory	method

In	the	preceding	UML	diagram,	we	have	an	abstract	class,	Creator,	that	contains
factoryMethod().	The	factoryMethod()	method	has	the	responsibility	of	creating	objects
of	a	certain	type.	The	ConcreteCreator	class	has	factoryMethod()	that	implements	the
Creator	abstract	class,	and	this	method	can	change	the	created	object	at	runtime.
ConcreteCreator	creates	ConcreteProduct	and	makes	sure	that	the	object	it	creates
implements	the	Product	class	and	provides	implementation	for	all	the	methods	in	the
Product	interface.

In	brief,	factoryMethod()	of	the	Creator	interface	and	the	ConcreteCreator	class
decides	which	subclass	of	Product	to	create.	Thus,	the	Factory	method	pattern	defines	an
interface	to	create	an	object,	but	defers	the	decision	ON	which	class	to	instantiate	to	its
subclasses.

Implementing	the	Factory	Method
Let’s	take	a	real-world	scenario	to	understand	the	Factory	method	implementation.
Consider	that	we	would	like	to	create	profiles	of	different	types	on	social	networks	such	as
LinkedIn	and	Facebook	for	a	person	or	company.	Now,	each	of	these	profiles	would	have
certain	sections.	In	LinkedIn,	you	would	have	a	section	on	patents	that	an	individual	has
filed	or	publications	s/he	has	written.	On	Facebook,	you’ll	see	sections	in	an	album	of
pictures	of	your	recent	visit	to	a	holiday	place.	Additionally,	in	both	these	profiles,	there’d
be	a	common	section	on	personal	information.	So,	in	brief,	we	want	to	create	profiles	of
different	types	with	the	right	sections	being	added	to	the	profile.

Let’s	now	take	a	look	at	the	implementation.	In	the	following	code	example,	we	will	start
by	defining	the	Product	interface.	We	will	create	a	Section	abstract	class	that	defines
how	a	section	will	be.	We	will	keep	it	very	simple	and	provide	an	abstract	method,
describe().

We	now	create	multiple	ConcreteProduct	classes,	PersonalSection,	AlbumSection,
PatentSection,	and	PublicationSection.	These	classes	implement	the	describe()
abstract	method	and	print	their	respective	section	names: 

from	abc	import	ABCMeta,	abstractmethod

class	Section(metaclass=ABCMeta):

				@abstractmethod

				def	describe(self):

								pass

class	PersonalSection(Section):

				def	describe(self):

								print("Personal	Section")

class	AlbumSection(Section):

				def	describe(self):

								print("Album	Section")

class	PatentSection(Section):

				def	describe(self):

								print("Patent	Section")

class	PublicationSection(Section):

				def	describe(self):

								print("Publication	Section")

We	create	a	Creator	abstract	class	that	is	named	Profile.	The	Profile	[Creator]
abstract	class	provides	a	factory	method,	createProfile().	The	createProfile()
method	should	be	implemented	by	ConcreteClass	to	actually	create	the	profiles	with
appropriate	sections.	The	Profile	abstract	class	is	not	aware	of	the	sections	that	each

profile	should	have.	For	example,	a	Facebook	profile	should	have	personal	information
and	album	sections.	So	we	will	let	the	subclass	decide	this.

We	create	two	ConcreteCreator	classes,	linkedin	and	facebook.	Each	of	these	classes
implement	the	createProfile()	abstract	method	that	actually	creates	(instantiates)
multiple	sections	(ConcreteProducts)	at	runtime:

class	Profile(metaclass=ABCMeta):

				def	__init__(self):

								self.sections	=	[]

								self.createProfile()

				@abstractmethod

				def	createProfile(self):

								pass

				def	getSections(self):

								return	self.sections

				def	addSections(self,	section):

								self.sections.append(section)

class	linkedin(Profile):

				def	createProfile(self):

								self.addSections(PersonalSection())

								self.addSections(PatentSection())

								self.addSections(PublicationSection())

class	facebook(Profile):

				def	createProfile(self):

								self.addSections(PersonalSection())

								self.addSections(AlbumSection())

We	finally	write	client	code	that	determines	which	Creator	class	to	instantiate	in	order	to
create	a	profile	of	the	desired	choice:

if	__name__	==	'__main__':

				profile_type	=	input("Which	Profile	you'd	like	to	create?	[LinkedIn	or	

FaceBook]")

				profile	=	eval(profile_type.lower())()

				print("Creating	Profile..",	type(profile).__name__)

				print("Profile	has	sections	--",	profile.getSections())

If	you	now	run	the	complete	code,	it’ll	first	ask	you	to	enter	the	name	of	the	profile	that
you’d	like	to	create.	In	the	following	screenshot,	we	say	Facebook.	It	then	instantiates	the
facebook	[ConcreateCreator]	class.	This	internally	creates	ConcreteProduct(s),	that
is,	it	instantiates	PersonalSection	and	AlbumSection.	If	Linkedin	is	chosen,	then
PersonalSection,	PatentSection,	and	PublicationSection	are	created.

The	following	is	the	output	of	the	preceding	code	snippet:

Advantages	of	the	Factory	method	pattern
As	you	have	now	learned	the	Factory	method	pattern	and	how	to	implement	Factory
methods,	let’s	see	the	advantages	of	the	Factory	method	pattern:

It	brings	in	a	lot	of	flexibility	and	makes	the	code	generic,	not	being	tied	to	a	certain
class	for	instantiation.	This	way,	we’re	dependent	on	the	interface	(Product)	and	not
on	the	ConcreteProduct	class.
There’s	loose	coupling,	as	the	code	that	creates	the	object	is	separate	from	the	code
that	uses	it.	The	client	need	not	bother	about	what	argument	to	pass	and	which	class
to	instantiate.	The	addition	of	new	classes	is	easy	and	involves	low	maintenance.

The	Abstract	Factory	pattern
The	main	objective	of	the	Abstract	Factory	pattern	is	to	provide	an	interface	to	create
families	of	related	objects	without	specifying	the	concrete	class.	While	the	factory	method
defers	the	creation	of	the	instance	to	the	subclasses,	the	goal	of	Abstract	Factory	method	is
to	create	families	of	related	objects:

A	UML	Diagram	for	the	Abstract	Factory	pattern

As	shown	in	the	diagram,	ConcreteFactory1	and	ConcreteFactory2	are	created	from	the
AbstractFactory	interface.	This	interface	has	methods	to	create	multiple	products.

ConcreteFactory1	and	ConcreteFactory2	implement	AbstractFactory	and	create
instances	of	ConcreteProduct1,	ConcreteProduct2,	AnotherConcreteProduct1,	and
AnotherConcreteProduct2.

ConcreteProduct1	and	ConcreteProduct2	are	in	turn	created	from	the	AbstractProduct
interface,	and	AnotherConcreteProduct1	and	AnotherConcreteProduct2	are	created
from	the	AnotherAbstractProduct	interface.

In	effect,	Abstract	Factory	patterns	make	sure	that	the	client	is	isolated	from	the	creation
of	objects	but	allowed	to	use	the	objects	created.	The	client	has	the	ability	to	access
objects	only	through	an	interface.	If	products	of	one	family	are	to	be	used,	Abstract
Factory	pattern	helps	the	client	use	the	objects	from	one/	family	at	a	time.	For	example,	if
an	application	under	development	is	supposed	to	be	platform-independent,	then	it	needs	to
abstract	dependencies	such	as	OS,	file	system	calls,	among	others.	Abstract	Factory
pattern	takes	care	of	creating	the	required	services	for	the	entire	platform	so	that	the	client
doesn’t	have	to	create	platform	objects	directly.

Implementing	the	Abstract	Factory	pattern
Consider	the	case	of	your	favorite	pizza	place.	It	serves	multiple	types	of	pizzas,	right?
Wait,	hold	on,	I	know	you	want	to	order	one	right	away,	but	let’s	just	get	back	to	the
example	for	now!

Now,	imagine	that	we	create	a	pizza	store	where	you	are	served	with	delicious	Indian	and
American	pizzas.	For	this,	we	first	create	an	abstract	base	class,	PizzaFactory
(AbstractFactory	in	the	preceding	UML	diagram).	The	PizzaFactory	class	has	two
abstract	methods,	createVegPizza()	and	createNonVegPizza(),	that	need	to	be
implemented	by	ConcreteFactory.	In	this	example,	we	create	two	concrete	factories,
namely,	IndianPizzaFactory	and	USPizzaFactory.	Look	at	the	following	code
implementation	for	the	concrete	factories:

from	abc	import	ABCMeta,	abstractmethod

class	PizzaFactory(metaclass=ABCMeta):

				

				@abstractmethod

				def	createVegPizza(self):

								pass

				

				@abstractmethod

				def	createNonVegPizza(self):

								pass

class	IndianPizzaFactory(PizzaFactory):

				

				def	createVegPizza(self):

								return	DeluxVeggiePizza()

				

				def	createNonVegPizza(self):

								return	ChickenPizza()

class	USPizzaFactory(PizzaFactory):

				

				def	createVegPizza(self):

								return	MexicanVegPizza()

				

				def	createNonVegPizza(self):

								return	HamPizza()

Now,	let’s	move	ahead	and	define	AbstractProducts.	In	the	following	code,	we	create
two	abstract	classes,	VegPizza	and	NonVegPizza	(AbstractProduct	and
AnotherAbstractProduct	in	the	preceding	UML	diagram].	They	individually	have	a
method	defined,	prepare()	and	serve().

The	thought	process	here	is	that	vegetarian	pizzas	are	prepared	with	an	appropriate	crust,
vegetables,	and	seasoning,	and	nonvegetarian	pizzas	are	served	with	nonvegetarian
toppings	on	top	of	vegetarian	pizzas.

We	then	define	ConcreteProducts	for	each	of	the	AbstractProducts.	Now,	in	this	case,
we	create	DeluxVeggiePizza	and	MexicanVegPizza	and	implement	the	prepare()
method.	ConcreteProducts1	and	ConcreteProducts2	would	represent	these	classes	from
the	UML	diagram.

Later,	we	define	ChickenPizza	and	HamPizza	and	implement	the	serve()	method—these
represent	AnotherConcreteProducts1	and	AnotherConcreteProducts2:

class	VegPizza(metaclass=ABCMeta):

				@abstractmethod

				def	prepare(self,	VegPizza):

								pass

class	NonVegPizza(metaclass=ABCMeta):

				@abstractmethod

				def	serve(self,	VegPizza):

								pass

class	DeluxVeggiePizza(VegPizza):

				def	prepare(self):

								print("Prepare	",	type(self).__name__)

class	ChickenPizza(NonVegPizza):

				def	serve(self,	VegPizza):

								print(type(self).__name__,	"	is	served	with	Chicken	on	",	

type(VegPizza).__name__)

class	MexicanVegPizza(VegPizza):

				def	prepare(self):

								print("Prepare	",	type(self).__name__)

class	HamPizza(NonVegPizza):

				def	serve(self,	VegPizza):

								print(type(self).__name__,	"	is	served	with	Ham	on	",	

type(VegPizza).__name__)

When	an	end	user	approaches	PizzaStore	and	asks	for	an	American	nonvegetarian	pizza,
USPizzaFactory	is	responsible	for	preparing	the	vegetarian	pizza	as	the	base	and	serving
the	nonvegetarian	pizza	with	ham	on	top!

class	PizzaStore:

				def	__init__(self):

								pass

				def	makePizzas(self):

								for	factory	in	[IndianPizzaFactory(),	USPizzaFactory()]:

												self.factory	=	factory

												self.NonVegPizza	=	self.factory.createNonVegPizza()

												self.VegPizza	=	self.factory.createVegPizza()

												self.VegPizza.prepare()

												self.NonVegPizza.serve(self.VegPizza)

pizza	=	PizzaStore()

pizza.makePizzas()

The	following	is	the	output	of	the	preceding	code	example:

The	Factory	method	versus	Abstract
Factory	method
Now	that	you	have	learned	the	Factory	method	and	Abstract	Factory	method,	let’s	see	the
comparison	of	the	two:

Factory	method Abstract	Factory	method

This	exposes	a	method	to	the	client	to	create	the
objects

Abstract	Factory	method	contains	one	or	more	factory	methods	to
create	a	family	of	related	objects

This	uses	inheritance	and	subclasses	to	decide
which	object	to	create

This	uses	composition	to	delegate	responsibility	to	create	objects	of
another	class

The	factory	method	is	used	to	create	one
product Abstract	Factory	method	is	about	creating	families	of	related	products

Summary
In	this	chapter,	you	learned	about	the	Factory	design	pattern	and	the	context	in	which	it’s
used.	We	understood	the	basics	of	the	Factory,	and	how	it	is	effectively	used	in	software
architecture.

We	looked	at	Simple	Factory,	where	an	appropriate	instance	is	created	at	runtime	based	on
the	type	of	the	argument	passed	by	the	client.

We	also	discussed	the	Factory	method	pattern,	which	is	a	variation	of	Simple	Factory.	In
this	pattern,	we	defined	an	interface	to	create	objects,	but	the	creation	of	objects	is
deferred	to	the	subclass.

We	went	on	to	explore	the	Abstract	Factory	method,	which	provides	an	interface	to	create
families	of	related	objects	without	specifying	the	concrete	class.

We	also	worked	out	a	real-world	Python	implementation	for	all	the	three	patterns,	and
compared	the	Factory	method	with	Abstract	Factory	method.

At	the	end	of	this	chapter,	we’re	now	ready	to	take	the	next	step	and	study	other	types	of
patterns,	so	stay	tuned.

Chapter	4.	The	Façade	Pattern	–	Being
Adaptive	with	Façade
In	the	previous	chapter,	you	learned	about	the	Factory	design	pattern.	We	discussed	about
three	variations—Simple	Factory,	Factory	method,	and	Abstract	Factory	pattern.	You	also
learned	how	each	of	them	is	used	in	the	real	world	and	looked	at	Python	implementations.
We	also	compared	the	Factory	method	with	Abstract	Factory	patterns	and	listed	the	pros
and	cons.	As	we	are	now	aware,	both	the	Factory	design	pattern	and	Singleton	design
pattern	(Chapter	2,	The	Singleton	Design	Pattern)	are	classified	as	Creational	design
patterns.

In	this	chapter,	we	will	move	ahead	and	learn	about	another	type	of	design	pattern,	the
Structural	design	pattern.	We	will	get	introduced	to	the	Façade	design	pattern	and	how	it	is
used	in	software	application	development.	We	will	work	with	a	sample	use	case	and
implement	it	in	Python	v3.5.

In	brief,	we	will	cover	the	following	topics	in	this	chapter:

An	introduction	to	Structural	design	patterns
An	understanding	of	the	Façade	design	pattern	with	a	UML	diagram
A	real-world	use	case	with	the	Python	v3.5	code	implementation
The	Façade	pattern	and	principle	of	least	knowledge

Understanding	Structural	design	patterns
The	following	points	will	help	us	understand	more	about	Structural	patterns:

Structural	patterns	describe	how	objects	and	classes	can	be	combined	to	form	larger
structures.
Structural	patterns	can	be	thought	of	as	design	patterns	that	ease	the	design	by
identifying	simpler	ways	to	realize	or	demonstrate	relationships	between	entities.
Entities	mean	objects	or	classes	in	the	object-oriented	world.
While	the	Class	patterns	describe	abstraction	with	the	help	of	inheritance	and	provide
a	more	useful	program	interface,	Object	patterns	describe	how	objects	can	be
associated	and	composed	to	form	larger	objects.	Structural	patterns	are	a	combination
of	Class	and	Object	patterns.

The	following	are	a	few	examples	of	different	Structural	design	patterns.	You’d	notice
how	each	of	these	involve	interaction	between	objects	or	classes	to	achieve	high-level
design	or	architectural	goals.

Some	of	the	examples	of	Structural	design	patterns	are	as	follows:

Adapter	pattern:	Adapting	an	interface	to	another	one	so	that	it	meets	the	client’s
expectations.	It	tries	to	match	interfaces	of	different	classes	based	on	the	client’s
needs.
Bridge	pattern:	This	decouples	an	object’s	interface	from	its	implementation	so	that
both	can	work	independently.
Decorator	pattern:	This	defines	additional	responsibilities	for	an	object	at	runtime
or	dynamically.	We	add	certain	attributes	to	objects	with	an	interface.

There	are	a	few	more	Structural	patterns	that	you	will	learn	in	this	book.	So,	let’s	start	by
first	taking	up	the	Façade	design	pattern.

Understanding	the	Façade	design	pattern
The	façade	is	generally	referred	to	as	the	face	of	the	building,	especially	an	attractive	one.
It	can	be	also	referred	to	as	a	behavior	or	appearance	that	gives	a	false	idea	of	someone’s
true	feelings	or	situation.	When	people	walk	past	a	façade,	they	can	appreciate	the	exterior
face	but	aren’t	aware	of	the	complexities	of	the	structure	within.	This	is	how	a	façade
pattern	is	used.	Façade	hides	the	complexities	of	the	internal	system	and	provides	an
interface	to	the	client	that	can	access	the	system	in	a	very	simplified	way.

Consider	the	example	of	a	storekeeper.	Now,	when	you,	as	a	customer,	visit	a	store	to	buy
certain	items,	you’re	not	aware	of	the	layout	of	the	store.	You	typically	approach	the
storekeeper,	who	is	well	aware	of	the	store	system.	Based	on	your	requirements,	the
storekeeper	picks	up	items	and	hands	them	over	to	you.	Isn’t	this	easy?	The	customer	need
not	know	how	the	store	looks	and	s/he	gets	the	stuff	done	through	a	simple	interface,	the
storekeeper.

The	Façade	design	pattern	essentially	does	the	following:

It	provides	a	unified	interface	to	a	set	of	interfaces	in	a	subsystem	and	defines	a	high-
level	interface	that	helps	the	client	use	the	subsystem	in	an	easy	way.
Façade	discusses	representing	a	complex	subsystem	with	a	single	interface	object.	It
doesn’t	encapsulate	the	subsystem	but	actually	combines	the	underlying	subsystems.
It	promotes	the	decoupling	of	the	implementation	with	multiple	clients.

A	UML	class	diagram
We	will	now	discuss	the	Façade	pattern	with	the	help	of	the	following	UML	diagram:

As	we	observe	the	UML	diagram,	you’ll	realize	that	there	are	three	main	participants	in
this	pattern:

Façade:	The	main	responsibility	of	a	façade	is	to	wrap	up	a	complex	group	of
subsystems	so	that	it	can	provide	a	pleasing	look	to	the	outside	world.
System:	This	represents	a	set	of	varied	subsystems	that	make	the	whole	system
compound	and	difficult	to	view	or	work	with.
Client:	The	client	interacts	with	the	Façade	so	that	it	can	easily	communicate	with
the	subsystem	and	get	the	work	completed.	It	doesn’t	have	to	bother	about	the
complex	nature	of	the	system.

You	will	now	learn	a	little	more	about	the	three	main	participants	from	the	data	structure’s
perspective.

Façade
The	following	points	will	give	us	a	better	idea	of	Façade:

It	is	an	interface	that	knows	which	subsystems	are	responsible	for	a	request
It	delegates	the	client’s	requests	to	the	appropriate	subsystem	objects	using
composition

For	example,	if	the	client	is	looking	for	some	work	to	be	accomplished,	it	need	not	have	to
go	to	individual	subsystems	but	can	simply	contact	the	interface	(Façade)	that	gets	the
work	done.

System
In	the	Façade	world,	System	is	an	entity	that	performs	the	following:

It	implements	subsystem	functionality	and	is	represented	by	a	class.	Ideally,	a	System
is	represented	by	a	group	of	classes	that	are	responsible	for	different	operations.
It	handles	the	work	assigned	by	the	Façade	object	but	has	no	knowledge	of	the	façade
and	keeps	no	reference	to	it.

For	instance,	when	the	client	requests	the	Façade	for	a	certain	service,	Façade	chooses	the
right	subsystem	that	delivers	the	service	based	on	the	type	of	service.

Client
Here’s	how	we	can	describe	the	client:

The	client	is	a	class	that	instantiates	the	Façade
It	makes	requests	to	the	Façade	to	get	the	work	done	from	the	subsystems

Implementing	the	Façade	pattern	in	the
real	world
To	demonstrate	the	applications	of	the	Façade	pattern,	let’s	take	an	example	that	we’d
have	experienced	in	our	lifetime.

Consider	that	you	have	a	marriage	in	your	family	and	you	are	in	charge	of	all	the
arrangements.	Whoa!	That’s	a	tough	job	on	your	hands.	You	have	to	book	a	hotel	or	place
for	marriage,	talk	to	a	caterer	for	food	arrangements,	organize	a	florist	for	all	the
decorations,	and	finally	handle	the	musical	arrangements	expected	for	the	event.

In	yesteryears,	you’d	have	done	all	this	by	yourself,	for	example	by	talking	to	the	relevant
folks,	coordinating	with	them,	negotiating	on	the	pricing,	but	now	life	is	simpler.	You	go
and	talk	to	an	event	manager	who	handles	this	for	you.	S/he	will	make	sure	that	they	talk
to	the	individual	service	providers	and	get	the	best	deal	for	you.

Putting	it	in	the	Façade	pattern	perspective:

Client:	It’s	you	who	need	all	the	marriage	preparations	to	be	completed	in	time
before	the	wedding.	They	should	be	top	class	and	guests	should	love	the	celebrations.
Façade:	The	event	manager	who’s	responsible	for	talking	to	all	the	folks	that	need	to
work	on	specific	arrangements	such	as	food,	and	flower	decorations,	among	others
Subsystems:	They	represent	the	systems	that	provide	services	such	as	catering,	hotel
management,	and	flower	decorations

Let’s	develop	an	application	in	Python	v3.5	and	implement	this	use	case.	We	start	with	the
client	first.	It’s	you!	Remember,	you’re	the	one	who	has	been	given	the	responsibility	to
make	sure	that	the	marriage	preparations	are	done	and	the	event	goes	fine!

Let’s	now	move	ahead	and	talk	about	the	Façade	class.	As	discussed	earlier,	the	Façade
class	simplifies	the	interface	for	the	client.	In	this	case,	EventManager	acts	as	a	façade	and
simplifies	the	work	for	You.	Façade	talks	to	the	subsystems	and	does	all	the	booking	and
preparations	for	the	marriage	on	your	behalf.	Here	is	the	Python	code	for	the
EventManager	class:

class	EventManager(object):

				

				def	__init__(self):

								print("Event	Manager::	Let	me	talk	to	the	folks\n")

				

				def	arrange(self):

								self.hotelier	=	Hotelier()

								self.hotelier.bookHotel()

								

								self.florist	=	Florist()

								self.florist.setFlowerRequirements()

								

								self.caterer	=	Caterer()

								self.caterer.setCuisine()

								

								self.musician	=	Musician()

								self.musician.setMusicType()

Now	that	we’re	done	with	the	Façade	and	client,	let’s	dive	into	the	subsystems.	We	have
developed	the	following	classes	for	this	scenario:

Hotelier	is	for	the	hotel	bookings.	It	has	a	method	to	check	whether	the	hotel	is	free
on	that	day	(__isAvailable).
The	Florist	class	is	responsible	for	flower	decorations.	Florist	has	the
setFlowerRequirements()	method	to	be	used	to	set	the	expectations	on	the	kind	of
flowers	needed	for	the	marriage	decoration.
The	Caterer	class	is	used	to	deal	with	the	caterer	and	is	responsible	for	the	food
arrangements.	Caterer	exposes	the	setCuisine()	method	to	accept	the	type	of
cuisine	to	be	served	at	the	marriage.
The	Musician	class	is	designed	for	musical	arrangements	at	the	marriage.	It	uses	the
setMusicType()	method	to	understand	the	music	requirements	for	the	event.

Let	us	now	look	at	the	Hotelier	object,	followed	by	Florist	object	and	their	methods:

class	Hotelier(object):

				def	__init__(self):

								print("Arranging	the	Hotel	for	Marriage?	--")

				

				def	__isAvailable(self):

								print("Is	the	Hotel	free	for	the	event	on	given	day?")

								return	True

				

				def	bookHotel(self):

								if	self.__isAvailable():

												print("Registered	the	Booking\n\n")

class	Florist(object):

				def	__init__(self):

								print("Flower	Decorations	for	the	Event?	--")

				

				def	setFlowerRequirements(self):

								print("Carnations,	Roses	and	Lilies	would	be	used	for	

Decorations\n\n")

class	Caterer(object):

				def	__init__(self):

								print("Food	Arrangements	for	the	Event	--")

				

				def	setCuisine(self):

								print("Chinese	&	Continental	Cuisine	to	be	served\n\n")

class	Musician(object):

				def	__init__(self):

								print("Musical	Arrangements	for	the	Marriage	--")

				

				def	setMusicType(self):

								print("Jazz	and	Classical	will	be	played\n\n")

However,	you’re	being	clever	here	and	passing	on	the	responsibility	to	the	event	manager,
aren’t	you?	Let’s	now	look	at	the	You	class.	In	this	example,	you	create	an	object	of	the
EventManager	class	so	that	the	manager	can	work	with	the	relevant	folks	on	marriage
preparations	while	you	relax.

class	You(object):

				def	__init__(self):

								print("You::	Whoa!	Marriage	Arrangements??!!!")

				def	askEventManager(self):

								print("You::	Let's	Contact	the	Event	Manager\n\n")

								em	=	EventManager()

								em.arrange()

				def	__del__(self):

								print("You::	Thanks	to	Event	Manager,	all	preparations	done!	

Phew!")

you	=	You()

you.askEventManager()

The	output	of	the	preceding	code	is	given	here:

We	can	relate	to	the	Facade	pattern	with	the	real	world	scenario,	in	the	following	way:

The	EventManager	class	is	the	Façade	that	simplifies	the	interface	for	You
EventManager	uses	composition	to	create	objects	of	the	subsystems	such	as
Hotelier,	Caterer,	and	others

The	principle	of	least	knowledge
As	you	have	learned	in	the	initial	parts	of	the	chapter,	the	Façade	provides	a	unified
system	that	makes	subsystems	easy	to	use.	It	also	decouples	the	client	from	the	subsystem
of	components.	The	design	principle	that	is	employed	behind	the	Façade	pattern	is	the
principle	of	least	knowledge.

The	principle	of	least	knowledge	guides	us	to	reduce	the	interactions	between	objects	to
just	a	few	friends	that	are	close	enough	to	you.	In	real	terms,	it	means	the	following:

When	designing	a	system,	for	every	object	created,	one	should	look	at	the	number	of
classes	that	it	interacts	with	and	the	way	in	which	the	interaction	happens.
Following	the	principle,	make	sure	that	we	avoid	situations	where	there	are	many
classes	created	that	are	tightly	coupled	to	each	other.
If	there	are	a	lot	of	dependencies	between	classes,	the	system	becomes	hard	to
maintain.	Any	changes	in	one	part	of	the	system	can	lead	to	unintentional	changes	to
other	parts	of	the	system,	which	means	that	the	system	is	exposed	to	regressions	and
this	should	be	avoided.

Frequently	asked	questions
Q1.	What	is	the	Law	of	Demeter	and	how	is	it	related	to	the	Factory	pattern?

A:	The	Law	of	Demeter	is	a	design	guideline	that	talks	about	the	following:

1.	 Each	unit	should	have	only	limited	knowledge	of	other	units	in	the	system
2.	 A	unit	should	talk	to	its	friends	only
3.	 A	unit	should	not	know	about	the	internal	details	of	the	object	that	it	manipulates

The	principle	of	least	knowledge	and	Law	of	Demeter	are	the	same	and	both	point	to	the
philosophy	of	loose	coupling.	The	principle	of	least	knowledge	fits	the	use	case	of	the
Façade	pattern	as	the	name	is	intuitive	and	the	word	principle	acts	as	a	guideline,	not
being	strict,	and	being	useful	only	when	needed.

Q2.	Can	there	be	multiple	Façades	for	a	subsystem?

A:	Yes,	one	could	implement	more	than	one	façade	for	a	group	of	subsystem	components.

Q3.	What	are	the	disadvantages	of	the	principle	of	least	knowledge?

A:	A	Façade	provides	a	simplified	interface	for	the	clients	to	interact	with	subsystems.	In
the	spirit	of	providing	a	simplified	interface,	an	application	can	have	multiple	unnecessary
interfaces	that	add	to	the	complexity	of	the	system	and	reduce	runtime	performance.

Q4.	Can	the	client	access	the	subsystems	independently?

A:	Yes,	in	fact,	the	Façade	pattern	provides	simplified	interfaces	so	that	the	client	need	not
be	bothered	about	the	complexity	of	the	subsystems.

Q5.	Does	the	Façade	add	any	functionality	of	its	own?

A:	A	Façade	can	add	its	“thinking”	to	the	subsystems,	such	as	making	sure	that	the	order
of	innovation	for	subsystems	can	be	decided	by	the	Façade.

Summary
We	began	the	chapter	by	first	understanding	the	Structural	design	patterns.	You	then
learned	about	the	Façade	design	pattern	and	the	context	in	which	it’s	used.	We	understood
the	basis	of	Façade	and	how	it	is	effectively	used	in	software	architecture.	We	looked	at
how	Façade	design	patterns	create	a	simplified	interface	for	clients	to	use.	They	simplify
the	complexity	of	subsystems	so	that	the	client	benefits.

The	Façade	doesn’t	encapsulate	the	subsystem,	and	the	client	is	free	to	access	the
subsystems	even	without	going	through	the	Façade.	You	also	learned	the	pattern	with	a
UML	diagram	and	sample	code	implementation	in	Python	v3.5.	We	understood	the
principle	of	least	knowledge	and	how	its	philosophy	governs	the	Façade	design	patterns.

We	also	covered	a	section	on	FAQs	that	would	help	you	get	more	ideas	on	the	pattern	and
its	possible	disadvantages.	We’re	now	geared	up	to	learn	more	Structural	patterns	in	the
chapters	to	come.

Chapter	5.	The	Proxy	Pattern	–
Controlling	Object	Access
In	the	previous	chapter,	we	started	with	a	brief	introduction	to	Structural	patterns	and	went
ahead	to	discuss	about	the	Façade	design	pattern.	We	understood	the	concept	of	Façade
with	a	UML	diagram	and	also	learned	how	it’s	applied	in	the	real	world	with	the	help	of
Python	implementations.	You	learned	about	the	upsides	and	downsides	of	the	Façade
pattern	in	the	FAQs	section.

In	this	chapter,	we	take	a	step	forward	and	deal	with	the	Proxy	pattern	that	falls	under	the
hood	of	the	Structural	design	patterns.	We	will	get	introduced	to	the	Proxy	pattern	as	a
concept	and	go	ahead	with	a	discussion	on	the	design	pattern	and	see	how	it	is	used	in
software	application	development.	We	will	work	with	a	sample	use	case	and	implement	it
in	Python	v3.5.

In	this	chapter,	we	will	cover	the	following	topics	in	brief:

An	introduction	to	proxy	and	Proxy	design	patterns
A	UML	diagram	for	the	Proxy	pattern
Variations	of	Proxy	patterns
A	real-world	use	case	with	the	Python	v3.5	code	implementation
Advantages	of	the	Proxy	pattern
Comparison	-	Façade	and	the	Proxy	pattern
Frequently	asked	questions

Understanding	the	Proxy	design	pattern
Proxy,	in	general	terms,	is	a	system	that	intermediates	between	the	seeker	and	provider.
Seeker	is	the	one	that	makes	the	request,	and	provider	delivers	the	resources	in	response	to
the	request.	In	the	web	world,	we	can	relate	this	to	a	proxy	server.	The	clients	(users	in	the
World	Wide	Web),	when	they	make	a	request	to	the	website,	first	connect	to	a	proxy
server	asking	for	resources	such	as	a	web	page.	The	proxy	server	internally	evaluates	this
request,	sends	it	to	an	appropriate	server,	and	gets	back	the	response,	which	is	then
delivered	to	the	client.	Thus,	a	proxy	server	encapsulates	requests,	enables	privacy,	and
works	well	in	distributed	architectures.

In	the	context	of	design	patterns,	Proxy	is	a	class	that	acts	as	an	interface	to	real	objects.
Objects	can	be	of	several	types	such	as	network	connections,	large	objects	in	memory	and
file,	among	others.	In	short,	Proxy	is	a	wrapper	or	agent	object	that	wraps	the	real	serving
object.	Proxy	could	provide	additional	functionality	to	the	object	that	it	wraps	and	doesn’t
change	the	object’s	code.	The	main	intention	of	the	Proxy	pattern	is	to	provide	a	surrogate
or	placeholder	for	another	object	in	order	to	control	access	to	a	real	object.

The	Proxy	pattern	is	used	in	multiple	scenarios	such	as	the	following:

It	represents	a	complex	system	in	a	simpler	way.	For	example,	a	system	that	involves
multiple	complex	calculations	or	procedures	should	have	a	simpler	interface	that	can
act	as	a	proxy	for	the	benefit	of	the	client.
It	adds	security	to	the	existing	real	objects.	In	many	cases,	the	client	is	not	allowed	to
access	the	real	object	directly.	This	is	because	the	real	object	can	get	compromised
with	malicious	activities.	This	way	proxies	act	as	a	shield	against	malicious
intentions	and	protect	the	real	object.
It	provides	a	local	interface	for	remote	objects	on	different	servers.	A	clear	example
of	this	is	with	the	distributed	systems	where	the	client	wants	to	run	certain	commands
on	the	remote	system,	but	the	client	may	not	have	direct	permissions	to	make	this
happen.	So	it	contacts	a	local	object	(proxy)	with	the	request,	which	is	then	executed
by	the	proxy	on	the	remote	machine.
It	provides	a	light	handle	for	a	higher	memory-consuming	object.	Sometimes,	you
may	not	want	to	load	the	main	objects	unless	they’re	really	necessary.	This	is	because
real	objects	are	really	heavy	and	may	need	high	resource	utilization.	A	classic
example	is	that	of	profile	pictures	of	users	on	a	website.	You’re	much	better	off
showing	smaller	profile	images	in	the	list	view,	but	of	course,	you’ll	need	to	load	the
actual	image	to	show	the	detailed	view	of	the	user	profile.

Let’s	understand	the	pattern	with	a	simple	example.	Consider	the	example	of	an	Actor	and
his	Agent.	When	production	houses	want	to	approach	an	Actor	for	a	movie,	typically,	they
talk	to	the	Agent	and	not	to	the	Actor	directly.	Based	on	the	schedule	of	the	Actor	and
other	engagements,	the	Agent	gets	back	to	the	production	house	on	the	availability	and
interest	in	working	in	the	movie.	Now,	in	this	scenario,	instead	of	production	houses
directly	talking	to	the	Actor,	the	Agent	acts	as	a	Proxy	that	handles	all	the	scheduling	&
payments	for	the	Actor.

The	following	Python	code	implements	this	scenario	where	the	Actor	is	the	Proxy.	The
Agent	object	is	used	to	find	out	if	the	Actor	is	busy.	If	the	Actor	is	busy,	the
Actor().occupied()	method	is	called	and	if	the	Actor	is	not	busy,	the
Actor().available()	method	gets	returned.

class	Actor(object):

				def	__init__(self):

								self.isBusy	=	False

				

				def	occupied(self):

								self.isBusy	=	True

								print(type(self).__name__	,	"is	occupied	with	current	movie")

				def	available(self):

								self.isBusy	=	False

								print(type(self).__name__	,	"is	free	for	the	movie")

				def	getStatus(self):

								return	self.isBusy

class	Agent(object):

				def	__init__(self):

								self.principal	=	None

				

				def	work(self):

								self.actor	=	Actor()

								if	self.actor.getStatus():

												self.actor.occupied()

								else:

												self.actor.available()

if	__name__	==	'__main__':

				r	=	Agent()

				r.work()

The	Proxy	design	pattern	essentially	does	the	following:

It	provides	a	surrogate	for	another	object	so	that	you	can	control	access	to	the	original
object
It	is	used	as	a	layer	or	interface	to	support	distributed	access
It	adds	delegation	and	protects	the	real	component	from	undesired	impact

A	UML	class	diagram	for	the	Proxy
pattern
We	will	now	discuss	the	Proxy	pattern	with	the	help	of	the	following	UML	diagram.	As
we	discussed	in	the	previous	paragraph,	the	Proxy	pattern	has	three	main	actors:	the
production	house,	Agent,	and	the	Actor.	Let’s	put	these	in	a	UML	diagram	and	see	how
the	classes	look:

As	we	observe	the	UML	diagram,	you’ll	realize	that	there	are	three	main	participants	in
this	pattern:

Proxy:	This	maintains	a	reference	that	lets	the	Proxy	access	the	real	object.	It
provides	an	interface	identical	to	the	Subject	so	that	Proxy	can	substitute	the	real
subject.	Proxies	are	also	responsible	for	creating	and	deleting	the	RealSubject.
Subject:	It	provides	a	representation	for	both,	the	RealSubject	and	Proxy.	As	Proxy
and	RealSubject	implement	Subject,	Proxy	can	be	used	wherever	RealSubject	is
expected.
RealSubject:	It	defines	the	real	object	that	the	Proxy	represents.

From	the	data	structure’s	perspective,	the	UML	diagram	can	be	represented	as	follows:

Proxy:	It	is	a	class	that	controls	access	to	the	RealSubject	class.	It	handles	the
client’s	requests	and	is	responsible	for	creating	or	deleting	RealSubject.
Subject/RealSubject:	Subject	is	an	interface	that	defines	what	RealSubject	and
Proxy	should	look	like.	RealSubject	is	an	actual	implementation	of	the	Subject
interface.	It	provides	the	real	functionality	that	is	then	used	by	the	client.
Client:	It	accesses	the	Proxy	class	for	the	work	to	be	accomplished.	The	Proxy	class
internally	controls	access	to	RealSubject	and	directs	the	work	requested	by	Client.

Understanding	different	types	of	Proxies
There	are	multiple	common	situations	where	Proxies	are	used.	We	talked	about	some	of
them	in	the	beginning	of	this	chapter.	Based	on	how	the	Proxies	are	used,	we	can
categorize	them	as	virtual	proxy,	remote	proxy,	protective	proxy,	and	smart	proxy.	Let’s
learn	a	little	more	about	them	in	this	section.

A	virtual	proxy
Here,	you’ll	learn	in	detail	about	the	virtual	proxy.	It	is	a	placeholder	for	objects	that	are
very	heavy	to	instantiate.	For	example,	you	want	to	load	a	large	image	on	your	website.
Now	this	request	will	take	a	long	time	to	load.	Typically,	developers	will	create	a
placeholder	icon	on	the	web	page	suggesting	that	there’s	an	image.	However,	the	image
will	only	be	loaded	when	the	user	actually	clicks	on	the	icon	thus	saving	the	cost	of
loading	a	heavy	image	in	memory.	Thus,	in	virtual	proxies,	the	real	object	is	created	when
the	client	first	requests	or	accesses	the	object.

A	remote	proxy
A	remote	proxy	can	be	defined	in	the	following	terms.	It	provides	a	local	representation	of
a	real	object	that	resides	on	a	remote	server	or	different	address	space.	For	example,	you
want	to	build	a	monitoring	system	for	your	application	that	has	multiple	web	servers,	DB
servers,	celery	task	servers,	caching	servers,	among	others.	If	we	want	to	monitor	the	CPU
and	disk	utilization	of	these	servers,	we	need	to	have	an	object	that	is	available	in	the
context	of	where	the	monitoring	application	runs	but	can	perform	remote	commands	to	get
the	actual	parameter	values.	In	such	cases,	having	a	remote	proxy	object	that	is	a	local
representation	of	the	remote	object	would	help.

A	protective	proxy
You’ll	understand	more	about	the	protective	proxy	with	the	following	points.	This	proxy
controls	access	to	the	sensitive	matter	object	of	RealSubject.	For	example,	in	today’s
world	of	distributed	systems,	web	applications	have	multiple	services	that	work	together
to	provide	functionality.	Now,	in	such	systems,	an	authentication	service	acts	as	a
protective	proxy	server	that	is	responsible	for	authentication	and	authorization.	In	this
case,	Proxy	internally	helps	in	protecting	the	core	functionality	of	the	website	for
unrecognized	or	unauthorized	agents.	Thus,	the	surrogate	object	checks	that	the	caller	has
access	permissions	required	to	forward	the	request.

A	smart	proxy
Smart	proxies	interpose	additional	actions	when	an	object	is	accessed.	For	example,
consider	that	there’s	a	core	component	in	the	system	that	stores	states	in	a	centralized
location.	Typically,	such	a	component	gets	called	by	multiple	different	services	to
complete	their	tasks	and	can	result	in	issues	with	shared	resources.	Instead	of	services
directly	invoking	the	core	component,	a	smart	proxy	is	built-in	and	checks	whether	the
real	object	is	locked	before	it	is	accessed	in	order	to	ensure	that	no	other	object	can	change
it.

The	Proxy	pattern	in	the	real	world
We	will	take	up	a	payment	use	case	to	demonstrate	a	real-world	scenario	for	the	Proxy
pattern.	Let’s	say	that	you	go	to	shop	at	a	mall	and	like	a	nice	denim	shirt	there.	You
would	like	to	purchase	the	shirt	but	you	don’t	have	enough	cash	to	do	so.

In	yesteryears,	you’d	go	to	an	ATM,	take	out	the	money,	then	come	to	the	mall,	and	pay
for	it.	Even	earlier,	you	had	a	bank	check	for	which	you	had	to	go	to	the	bank,	withdraw
money,	and	then	come	back	to	pay	for	your	expense.

Thanks	to	the	banks,	we	now	have	something	called	a	debit	card.	So	now,	when	you	want
to	purchase	something,	you	present	your	debit	card	to	the	merchant.	When	you	punch	in
your	card	details,	the	money	is	debited	in	the	merchant’s	account	for	your	expense.

Let’s	develop	an	application	in	Python	v3.5	and	implement	the	above	use	case.	We	start
with	the	client	first.	You	went	to	the	shopping	mall	and	now	would	like	to	purchase	a	nice
denim	shirt.	Lets	see	how	Client	code	is	written:

Your	behavior	is	represented	by	the	You	class—the	client
To	buy	the	shirt,	the	make_payment()	method	is	provided	by	the	class
The	special	__init__()	method	calls	the	Proxy	and	instantiates	it
The	make_payment()	method	invokes	the	Proxy’s	method	internally	to	make	the
payment
The	__del__()	method	returns	in	case	the	payment	is	successful

Thus,	the	code	example	is	as	follows:

class	You:

				def	__init__(self):

								print("You::	Lets	buy	the	Denim	shirt")

								self.debitCard	=	DebitCard()

								self.isPurchased	=	None

				

				def	make_payment(self):

								self.isPurchased	=	self.debitCard.do_pay()

				

				def	__del__(self):

								if	self.isPurchased:

												print("You::	Wow!	Denim	shirt	is	Mine	:-)")

								else:

												print("You::	I	should	earn	more	:(")

you	=	You()

you.make_payment()

Now	let’s	talk	about	the	Subject	class.	As	we	know,	the	Subject	class	is	an	interface	that
is	implemented	by	the	Proxy	and	RealSubject.

In	this	example,	the	subject	is	the	Payment	class.	It	is	an	abstract	base	class	and
represents	an	interface.
Payment	has	the	do_pay()	method	that	needs	to	be	implemented	by	the	Proxy	and
RealSubject.

Let’s	see	these	methods	in	action	in	the	following	code:

from	abc	import	ABCMeta,	abstractmethod

class	Payment(metaclass=ABCMeta):

				@abstractmethod

				def	do_pay(self):

								pass

We	also	developed	the	Bank	class	that	represents	RealSubject	in	this	scenario:

Bank	will	actually	make	the	payment	from	your	account	in	the	merchant’s	account.
Bank	has	multiple	methods	to	process	the	payment.	The	setCard()	method	is	used	by
the	Proxy	to	send	the	debit	card	details	to	the	bank.
The	__getAccount()	method	is	a	private	method	of	Bank	that	is	used	to	get	the
account	details	of	the	debit	card	holder.	For	simplicity,	we	have	enforced	the	debit
card	number	to	be	the	same	as	the	account	number.
Bank	also	has	the	__hasFunds()	method	to	see	if	the	account	holder	has	enough
funds	in	the	account	to	pay	for	the	shirt.
The	do_pay()	method	that	is	implemented	by	the	Bank	class	(from	the	Payment
interface)	is	actually	responsible	for	making	the	payment	to	the	merchant	based	on
available	funds:

class	Bank(Payment):

				

				def	__init__(self):

								self.card	=	None

								self.account	=	None

				

				def	__getAccount(self):

								self.account	=	self.card	#	Assume	card	number	is	account	number

								return	self.account

				def	__hasFunds(self):

								print("Bank::	Checking	if	Account",	self.__getAccount(),	"has	

enough	funds")

								return	True

				def	setCard(self,	card):

								self.card	=	card

				def	do_pay(self):

								if	self.__hasFunds():

												print("Bank::	Paying	the	merchant")

												return	True

								else:

												print("Bank::	Sorry,	not	enough	funds!")

												return	False

Let’s	now	understand	the	last	piece,	which	is	the	Proxy:

The	DebitCard	class	is	the	Proxy	here.	When	You	wants	to	make	a	payment,	it	calls
the	do_pay()	method.	This	is	because	You	doesn’t	want	go	to	the	bank	to	withdraw

money	and	pay	the	merchant.
The	DebitCard	class	acts	as	a	surrogate	for	the	RealSubject,	Bank.
The	payWithCard()	method	internally	controls	the	object	creation	of	RealSubject,
the	Bank	class,	and	presents	the	card	details	to	Bank.
Bank	goes	through	the	internal	checks	on	the	account	and	does	the	payment,	as
described	in	previous	code	snippet:

class	DebitCard(Payment):

				

				def	__init__(self):

								self.bank	=	Bank()

				

				def	do_pay(self):

								card	=	input("Proxy::	Punch	in	Card	Number:	")

								self.bank.setCard(card)

								return	self.bank.do_pay()

For	a	positive	case,	when	funds	are	enough,	the	output	is	as	follows:

For	a	negative	case—insufficient	funds—the	output	is	as	follows:

Advantages	of	the	Proxy	pattern
As	we’ve	seen	how	the	Proxy	pattern	works	in	the	real	world,	let’s	browse	through	the
advantages	of	the	Proxy	pattern:

Proxies	can	help	improve	the	performance	of	the	application	by	caching	heavy
objects	or,	typically,	the	frequently	accessed	objects
Proxies	also	authorize	the	access	to	RealSubject;	thus,	this	pattern	helps	in
delegation	only	if	the	permissions	are	right
Remote	proxies	also	facilitate	interaction	with	remote	servers	that	can	work	as
network	connections	and	database	connections	and	can	be	used	to	monitor	systems

Comparing	the	Façade	and	Proxy
patterns
Both	the	façade	and	proxy	patterns	are	structural	design	patterns.	They	are	similar	in	the
sense	that	they	both	have	a	proxy/façade	object	in	front	of	the	real	objects.	Differences	are
really	in	the	intent	or	purpose	of	the	patterns,	as	shown	in	the	following	table:

Proxy	pattern Façade	pattern

It	provides	you	with	a	surrogate	or	placeholder	for	another	object	to
control	access	to	it

It	provides	you	with	an	interface	to	large
subsystems	of	classes

A	Proxy	object	has	the	same	interface	as	that	of	the	target	object	and
holds	references	to	target	objects

It	minimizes	the	communication	and
dependencies	between	subsystems

It	acts	as	an	intermediary	between	the	client	and	object	that	is
wrapped

A	Façade	object	provides	a	single,	simplified
interface

Frequently	asked	questions
Q1.	What	is	the	difference	between	the	Decorator	pattern	and	Proxy	pattern?

A:	A	Decorator	adds	behavior	to	the	object	that	it	decorates	at	runtime,	while	a	Proxy
controls	access	to	an	object.	The	relationship	between	Proxy	and	RealSubject	is	at
compile	time	and	not	dynamic.

Q2.	What	are	the	disadvantages	of	the	Proxy	pattern?

A:	The	Proxy	pattern	can	increase	the	response	time.	For	instance,	if	the	Proxy	is	not	well-
architectured	or	has	some	performance	issues,	it	can	add	to	the	response	time	of
RealSubject.	Generally,	it	all	depends	on	how	well	a	Proxy	is	written.

Q3.	Can	the	client	access	RealSubject	independently?

A:	Yes,	but	there	are	certain	advantages	that	Proxies	provide	such	as	virtual,	remote,	and
others,	so	it’s	advantageous	to	use	the	Proxy	pattern.

Q4.	Does	the	Proxy	add	any	functionality	of	its	own?

A:	A	Proxy	can	add	additional	functionality	to	RealSubject	without	changing	the	object’s
code.	Proxy	and	RealSubject	would	implement	the	same	interface.

Summary
We	began	the	chapter	by	understanding	what	Proxies	are.	We	understood	the	basics	of	a
Proxy	and	how	it	is	used	effectively	in	software	architecture.	You	then	learned	about	the
Proxy	design	pattern	and	the	context	in	which	it’s	used.	We	looked	at	how	the	Proxy
design	patterns	control	access	to	the	real	object	that	provides	the	required	functionality.

We	also	saw	the	pattern	with	a	UML	diagram	and	sample	code	implementation	in	Python
v3.5.

Proxy	patterns	are	implemented	in	four	different	ways:	virtual	proxy,	remote	proxy,
protective	proxy,	and	smart	proxy.	You	learned	about	each	of	these	with	a	real-world
scenario.

We	compared	the	Façade	and	Proxy	design	patterns	so	that	the	difference	between	their
use	cases	and	intentions	are	clear	to	you.

We	also	covered	a	section	on	FAQs	that	would	help	you	get	more	ideas	on	the	pattern	and
its	possible	advantages/disadvantages.

At	the	end	of	this	chapter,	we’re	now	geared	up	to	learn	more	Structural	patterns	in	the
chapters	to	come.

Chapter	6.	The	Observer	Pattern	–
Keeping	Objects	in	the	Know
In	the	previous	chapter,	we	started	with	a	brief	introduction	to	Proxy	and	went	ahead	to
discuss	the	Proxy	design	pattern.	We	understood	the	concept	of	the	Proxy	pattern	with	a
UML	diagram	and	also	learned	how	it’s	applied	in	the	real	world	with	the	help	of	Python
implementations.	You	learned	about	the	ups	and	downs	of	the	Proxy	pattern	with	the	FAQ
section.

In	this	chapter,	we	will	talk	about	the	third	type	of	design	pattern—the	behavioral	design
pattern.	We	will	be	introduced	to	the	Observer	design	pattern,	which	falls	under	the	hood
of	Behavioral	patterns.	We	will	discuss	how	the	Observer	design	pattern	is	used	in
software	application	development.	We	will	work	with	a	sample	use	case	and	implement	it
in	Python	v3.5.

In	this	chapter,	we	will	cover	the	following	topics	in	brief:

An	introduction	to	behavioral	design	patterns
The	Observer	pattern	and	its	UML	diagram
A	real-world	use	case	with	the	Python	v3.5	code	implementation
The	power	of	loose	coupling
Frequently	asked	questions

At	the	end	of	the	chapter,	we	will	summarize	the	entire	discussion—consider	this	a
takeaway.

Introducing	Behavioral	patterns
In	the	previous	chapters	of	the	book,	you	learned	about	creational	patterns	(Singleton)	and
structural	patterns	(Façade).	In	this	section,	we	will	get	a	brief	idea	of	Behavioral	patterns.

Creational	patterns	work	on	the	basis	of	how	objects	can	be	created.	They	isolate	the
details	of	object	creation.	Code	is	independent	of	the	type	of	object	to	be	created.
Structural	patterns	design	the	structure	of	objects	and	classes	so	that	they	can	work
together	to	achieve	larger	results.	Their	main	focus	is	on	simplifying	the	structure	and
identifying	relationships	between	classes	and	objects.

Behavioral	patterns,	as	the	name	suggests,	focus	on	the	responsibilities	that	an	object	has.
They	deal	with	the	interaction	among	objects	to	achieve	larger	functionality.	Behavioral
patterns	suggest	that	while	the	objects	should	be	able	to	interact	with	each	other,	they
should	still	be	loosely	coupled.	We	will	learn	about	the	principle	of	loose	coupling	later	in
this	chapter.

The	Observer	design	pattern	is	one	of	the	simplest	Behavioral	patterns.	So,	let’s	gear	up
and	understand	more	about	them.

Understanding	the	Observer	design
pattern
In	the	Observer	design	pattern,	an	object	(Subject)	maintains	a	list	of	dependents
(Observers)	so	that	the	Subject	can	notify	all	the	Observers	about	the	changes	that	it
undergoes	using	any	of	the	methods	defined	by	the	Observer.

In	the	world	of	distributed	applications,	multiple	services	interact	with	each	other	to
perform	a	larger	operation	that	a	user	wants	to	achieve.	Services	can	perform	multiple
operations,	but	the	operation	they	perform	is	directly	or	heavily	dependent	on	the	state	of
the	objects	of	the	service	that	it	interacts	with.

Consider	a	use	case	for	user	registration	where	the	user	service	is	responsible	for	user
operations	on	the	website.	Let’s	say	that	we	have	another	service	called	e-mail	service	that
observes	the	state	of	the	user	and	sends	e-mails	to	the	user.	For	example,	if	the	user	has
just	signed	up,	the	user	service	will	call	a	method	of	the	e-mail	service	that	will	send	an	e-
mail	to	the	user	for	account	verification.	If	the	account	is	verified	but	has	fewer	credits,
the	e-mail	service	will	monitor	the	user	service	and	send	an	e-mail	alert	for	low	credits	to
the	user.

Thus,	if	there’s	a	core	service	in	the	application	on	which	many	other	services	are
dependent,	the	core	service	becomes	the	Subject	that	has	to	be	observed/monitored	by	the
Observer	for	changes.	The	Observer	should,	in	turn,	make	changes	to	the	state	of	its	own
objects	or	take	certain	actions	based	on	the	changes	that	happen	in	the	Subject.	The	above
scenario,	where	the	dependent	service	monitor’s	state	changes	in	the	core	service,	presents
a	classical	case	for	the	Observer	design	pattern.

In	the	case	of	a	broadcast	or	publish/subscribe	system,	you’ll	find	the	usage	of	the
Observer	design	pattern.	Consider	the	example	of	a	blog.	Let’s	suppose	that	you’re	a	tech
enthusiast	who	loves	to	read	about	the	latest	articles	on	Python	on	this	blog.	What	will	you
do?	You	subscribe	to	the	blog.	Like	you,	there	would	be	multiple	subscribers	that	are	also
registered	with	the	blog.	So,	whenever	there	is	a	new	blog,	you	get	notified,	or	if	there	is	a
change	on	the	published	blog,	you	are	also	made	aware	of	the	edits.	The	way	in	which
you’re	notified	of	the	change	can	be	an	e-mail.	Now	if	you	apply	this	scenario	to	the
Observer	pattern,	the	blog	is	the	Subject	that	maintains	the	list	of	subscribers	or
Observers.	So	when	a	new	entry	is	added	to	the	blog,	all	Observers	are	notified	via	e-mail
or	any	other	notification	mechanism	as	defined	by	the	Observer.

The	main	intentions	of	the	Observer	pattern	are	as	follows:

It	defines	a	one-to-many	dependency	between	objects	so	that	any	change	in	one
object	will	be	notified	to	the	other	dependent	objects	automatically
It	encapsulates	the	core	component	of	the	Subject

The	Observer	pattern	is	used	in	the	following	multiple	scenarios:

Implementation	of	the	Event	service	in	distributed	systems

A	framework	for	a	news	agency
The	stock	market	also	represents	a	great	case	for	the	Observer	pattern

The	following	Python	code	implements	the	Observer	design	pattern:

class	Subject:

				def	__init__(self):

								self.__observers	=	[]

				

				def	register(self,	observer):

								self.__observers.append(observer)

				

				def	notifyAll(self,	*args,	**kwargs):

								for	observer	in	self.__observers:

												observer.notify(self,	*args,	**kwargs)

class	Observer1:

				def	__init__(self,	subject):

								subject.register(self)

				

				def	notify(self,	subject,	*args):

								print(type(self).__name__,'::	Got',	args,	'From',	subject)

class	Observer2:

				def	__init__(self,	subject):

								subject.register(self)

				

				def	notify(self,	subject,	*args):

								print(type(self).__name__,	'::	Got',	args,	'From',	subject)

subject	=	Subject()

observer1	=	Observer1(subject)

observer2	=	Observer2(subject)

subject.notifyAll('notification')

The	output	of	the	preceding	code	is	as	follows:

A	UML	class	diagram	for	the	Observer	pattern
Let’s	now	understand	more	about	the	Observer	pattern	with	the	help	of	the	following
UML	diagram.

As	we	discussed	in	the	previous	paragraph,	the	Observer	pattern	has	two	main	actors:	the
Subject	and	Observer.	Let’s	put	these	in	a	UML	diagram	and	see	how	the	classes	look:

As	we	look	at	the	UML	diagram,	you’ll	realize	that	there	are	three	main	participants	in
this	pattern:

Subject:	The	Subject	class	is	aware	of	the	Observer.	The	Subject	class	has
methods	such	as	register()	and	deregister()	that	are	used	by	Observers	to
register	themselves	with	the	Subject	class.	A	Subject,	thus	can	handle	multiple
Observers.
Observer:	It	defines	an	interface	for	objects	that	are	observing	the	Subject.	It	defines
methods	that	need	to	be	implemented	by	the	Observer	to	get	notified	of	changes	in
the	Subject.
ConcreteObserver:	It	stores	the	state	that	should	be	consistent	with	that	of	the
Subject's	state.	It	implements	the	Observer	interface	to	keep	the	state	consistent
with	changes	in	the	Subject.

The	flow	is	straightforward.	ConcreteObservers	register	themselves	with	the	Subject	by
implementing	the	interface	provided	by	the	Observer.	Whenever	there	is	a	change	in	state,
the	Subject	notifies	all	ConcreteObservers	with	the	notify	method	provided	by	the
Observers.

The	Observer	pattern	in	the	real	world
We	will	take	up	a	news	agency	case	to	demonstrate	the	real-world	scenario	for	the
Observer	pattern.	News	agencies	typically	gather	news	from	various	locations	and	publish
them	to	the	subscribers.	Let’s	look	at	the	design	considerations	for	this	use	case.

With	information	being	sent/received	in	real	time,	a	news	agency	should	be	able	to	publish
the	news	as	soon	as	possible	to	its	subscribers.	Additionally,	because	of	the	advancements
in	the	technology	industry,	it’s	not	just	the	newspapers,	but	also	the	subscribers	that	can	be
of	different	types	such	as	an	e-mail,	mobile,	SMS,	or	voice	call.	We	should	also	be	able	to
add	any	other	type	of	subscriber	in	the	future	and	budgeting	for	any	new	technology.

Let’s	develop	an	application	in	Python	v3.5	and	implement	the	preceding	use	case.	We
will	start	with	the	Subject,	which	is	the	news	publisher:

Subject	behavior	is	represented	by	the	NewsPublisher	class
NewsPublisher	provides	you	with	an	interface	so	that	subscribers	can	work	with	it
The	attach()	method	is	used	by	the	Observer	to	register	with	NewsPublisher	and
the	detach()	method	helps	in	deregistering	the	Observer
The	subscriber()	method	returns	the	list	of	all	the	subscribers	that	have	already
registered	with	the	Subject
The	notifySubscriber()	method	iterates	over	all	the	subscribers	that	have
registered	with	NewsPublisher
The	addNews()	method	is	used	by	the	publisher	to	create	new	news	and	getNews()	is
used	to	return	the	latest	news,	which	is	then	notified	to	the	Observer

Let’s	first	look	at	the	NewsPublisher	class:

class	NewsPublisher:

				def	__init__(self):

								self.__subscribers	=	[]

								self.__latestNews	=	None

				def	attach(self,	subscriber):

								self.__subscribers.append(subscriber)

				def	detach(self):

								return	self.__subscribers.pop()

				def	subscribers(self):

								return	[type(x).__name__	for	x	in	self.__subscribers]

				def	notifySubscribers(self):

								for	sub	in	self.__subscribers:

												sub.update()

				def	addNews(self,	news):

								self.__latestNews	=	news

				def	getNews(self):

								return	"Got	News:",	self.__latestNews

Let’s	talk	about	the	Observer	interface	now:

In	this	example,	Subscriber	represents	the	Observer.	It	is	an	abstract	base	class	and
represents	any	other	ConcreteObserver.
Subscriber	has	the	update()	method	that	needs	to	be	implemented	by
ConcreteObservers.
The	update()	method	is	implemented	by	ConcreteObserver	so	that	they	get	notified
by	the	Subject	(NewsPublishers)	about	any	news	getting	published.

Lets	us	now	look	at	the	code	for	the	Subscriber	abstract	class:

from	abc	import	ABCMeta,	abstractmethod

class	Subscriber(metaclass=ABCMeta):

				

				@abstractmethod

				def	update(self):

								pass

We	also	developed	certain	classes	that	represent	ConcreteObserver:

In	this	case,	we	have	two	main	observers:	EmailSubscriber	and	SMSSubscriber	that
implement	the	subscriber	interface
In	addition	to	these	two,	we	have	another	Observer,	AnyOtherObserver,	that
demonstrates	the	loose	coupling	of	Observers	with	the	Subject
The	__init__()	method	of	each	of	these	ConcreteObservers	registers	them	with
NewsPublisher	with	the	attach()	method
The	update()	method	of	ConcreteObserver	is	used	internally	by	NewsPublisher	to
notify	about	the	news	additions

Here’s	how	the	SMSSubscriber	class	is	implemented:

class	SMSSubscriber:

				def	__init__(self,	publisher):

								self.publisher	=	publisher

								self.publisher.attach(self)

				

				def	update(self):

								print(type(self).__name__,	self.publisher.getNews())

				

class	EmailSubscriber:

				def	__init__(self,	publisher):

								self.publisher	=	publisher

								self.publisher.attach(self)

				

				def	update(self):

								print(type(self).__name__,	self.publisher.getNews())

				

class	AnyOtherSubscriber:

				def	__init__(self,	publisher):

								self.publisher	=	publisher

								self.publisher.attach(self)

				

				def	update(self):

								print(type(self).__name__,	self.publisher.getNews())

Now	that	all	the	required	subscribers	have	been	implemented,	lets	look	at	the
NewsPublisher	and	SMSSubscribers	class	in	action:

The	client	creates	an	object	for	NewsPublisher	that	is	used	by	ConcreteObservers
for	various	operations.
SMSSubscriber,	EmailSubscriber,	and	AnyOtherSubscriber	classes	are	initialized
with	publisher	objects.
In	Python,	when	we	create	objects,	the	__init__()	method	gets	called.	In	the
ConcreteObserver	class,	the	__init__()	method	internally	uses	the	attach()
method	of	NewsPublisher	to	register	itself	for	news	updates.
We	then	print	the	list	of	all	the	subscribers	(ConcreteObservers)	that	got	registered
with	the	Subject.
The	object	of	NewsPublisher	(news_publisher)	is	then	used	to	create	new	news
with	the	addNews()	method.
The	notifySubscribers()	method	of	NewsPublisher	is	used	to	notify	all
subscribers	of	the	news	addition.	The	notifySubscribers()	method	internally	calls
the	update()	method	implemented	by	ConcreteObservers	so	that	they	get	the	latest
news.
NewsPublisher	also	has	the	detach()	method	that	removes	the	subscriber	from	the
list	of	registered	subscribers.

The	following	code	implementation	represents	the	interactions	between	the	Subject	and
Observers:

if	__name__	==	'__main__':

				news_publisher	=	NewsPublisher()

				for	Subscribers	in	[SMSSubscriber,	EmailSubscriber,	

AnyOtherSubscriber]:

								Subscribers(news_publisher)

				print("\nSubscribers:",	news_publisher.subscribers())

				news_publisher.addNews('Hello	World!')

				news_publisher.notifySubscribers()

				print("\nDetached:",	type(news_publisher.detach()).__name__)

				print("\nSubscribers:",	news_publisher.subscribers())

				news_publisher.addNews('My	second	news!')

				news_publisher.notifySubscribers()

The	output	of	the	preceding	code	is	as	follows:

The	Observer	pattern	methods
There	are	two	different	ways	of	notifying	the	Observer	of	the	changes	that	happen	in	the
Subject.	They	can	be	classified	as	push	or	pull	models.

The	pull	model
In	the	pull	model,	Observers	play	an	active	role	as	follows:

The	Subject	broadcasts	to	all	the	registered	Observers	when	there	is	any	change
The	Observer	is	responsible	for	getting	the	changes	or	pulling	data	from	the
subscriber	when	there	is	an	amendment
The	pull	model	is	ineffective	as	it	involves	two	steps—the	first	step	where	the
Subject	notifies	the	Observer	and	the	second	step	where	the	Observer	pulls	the
required	data	from	the	Subject

The	push	model
In	the	push	model,	the	Subject	is	the	one	that	plays	a	dominant	role	as	follows:

Unlike	the	pull	model,	the	changes	are	pushed	by	the	Subject	to	the	Observer.
In	this	model,	the	Subject	can	send	detailed	information	to	the	Observer	(even
though	it	may	not	be	needed).	This	can	result	in	sluggish	response	times	when	a	large
amount	of	data	is	sent	by	the	Subject	but	is	never	actually	used	by	the	Observer.
Only	the	required	data	is	sent	from	the	Subject	so	that	the	performance	is	better.

Loose	coupling	and	the	Observer	pattern
Loose	coupling	is	an	important	design	principle	that	should	be	used	in	software
applications.	The	main	purpose	of	loose	coupling	is	to	strive	for	loosely-coupled	designs
between	objects	that	interact	with	each	other.	Coupling	refers	to	the	degree	of	knowledge
that	one	object	has	about	the	other	object	that	it	interacts	with.

Loosely-coupled	designs	allow	us	to	build	flexible	object-oriented	systems	that	can	handle
changes	because	they	reduce	the	dependency	between	multiple	objects.

The	loose	coupling	architecture	ensures	following	features:

It	reduces	the	risk	that	a	change	made	within	one	element	might	create	an
unanticipated	impact	on	the	other	elements
It	simplifies	testing,	maintenance,	and	troubleshooting	problems
The	system	can	be	easily	broken	down	into	definable	elements

The	Observer	pattern	provides	you	with	an	object	design	where	the	Subject	and	Observer
are	loosely	coupled.	The	following	points	will	explain	this	better:

The	only	thing	that	the	Subject	knows	about	an	Observer	is	that	it	implements	a
certain	interface.	It	need	not	know	the	ConcreteObserver	class.
Any	new	Observer	can	be	added	at	any	point	in	time	(as	we	saw	in	the	sample
example	earlier	in	this	chapter).
The	Subject	need	not	be	modified	at	all	to	add	any	new	Observer.	In	the	example,
we	saw	that	AnyOtherObserver	can	be	added/removed	without	any	changes	in	the
Subject.
Subjects	or	Observers	are	not	tied	up	and	can	be	used	independently	of	each	other.
So	the	Observer	can	be	reused	anywhere	else,	if	needed.
Changes	in	the	Subject	or	Observer	will	not	affect	each	other.	As	both	are
independent	or	loosely	coupled,	they	are	free	to	make	their	own	changes.

The	Observer	pattern	–	advantages	and
disadvantages
The	Observer	pattern	provides	you	with	the	following	advantages:

It	supports	the	principle	of	loose	coupling	between	objects	that	interact	with	each
other
It	allows	sending	data	to	other	objects	effectively	without	any	change	in	the	Subject
or	Observer	classes
Observers	can	be	added/removed	at	any	point	in	time

The	following	are	the	disadvantages	of	the	Observer	pattern:

The	Observer	interface	has	to	be	implemented	by	ConcreteObserver,	which	involves
inheritance.	There	is	no	option	for	composition,	as	the	Observer	interface	can	be
instantiated.
If	not	correctly	implemented,	the	Observer	can	add	complexity	and	lead	to
inadvertent	performance	issues.
In	software	application,	notifications	can,	at	times,	be	undependable	and	result	in	race
conditions	or	inconsistency.

Frequently	asked	questions
Q1.	Can	there	be	many	Subjects	and	Observers?

A:	There	can	be	a	case	for	a	software	application	to	have	multiple	Subjects	and
Observers.	For	this	to	work,	Observers	need	to	be	notified	of	changes	in	the	Subjects	and
which	Subject	underwent	a	change.

Q2.	Who	is	responsible	for	triggering	the	update?

A:	As	you	learned	earlier,	the	Observer	pattern	can	work	in	both	push	and	pull	models.
Typically,	the	Subject	triggers	the	update	method	when	there	are	changes,	but	sometimes
based	on	the	application	need,	the	Observer	can	also	trigger	notifications.	However,	care
needs	to	be	taken	that	the	frequency	should	not	be	too	high,	otherwise	it	can	lead	to
performance	degradation,	especially	when	the	updates	to	the	Subject	are	less	frequent.

Q3.	Can	the	Subject	or	Observer	be	used	for	access	for	any	other	use	case?

A:	Yes,	that’s	the	power	of	loose	coupling	that	is	manifested	in	the	Observer	pattern.	The
Subject/Observer	can	both	be	independently	used.

Summary
We	began	the	chapter	by	understanding	the	behavioral	design	patterns.	We	understood	the
basis	of	the	Observer	pattern	and	how	it	is	effectively	used	in	software	architecture.	We
looked	at	how	Observer	design	patterns	are	used	to	notify	the	Observer	of	the	changes
happening	in	the	Subject.	They	manage	the	interaction	between	objects	and	manage	one-
to-many	dependencies	on	the	objects.

You	also	learned	the	pattern	with	a	UML	diagram	and	sample	code	implementation	in
Python	v3.5.

Observer	patterns	are	implemented	in	two	different	ways:	push	and	pull	models.	You
learned	about	each	of	these	and	discussed	their	implementation	and	performance	impact.

We	understood	the	principle	of	loose	coupling	in	software	design	and	how	the	Observer
pattern	leverages	this	principle	in	application	development.

We	also	covered	a	section	on	FAQs	that	would	help	you	get	more	ideas	about	the	pattern
and	its	possible	advantages/disadvantages.

At	the	end	of	this	chapter,	we’re	now	geared	up	to	learn	more	Behavioral	patterns	in	the
chapters	to	come.

Chapter	7.	The	Command	Pattern	–
Encapsulating	Invocation
In	the	previous	chapter,	we	started	with	an	introduction	to	behavioral	design	patterns.	You
learned	the	concept	of	Observers	and	discussed	the	Observer	design	pattern.	We
understood	the	concept	of	the	Observer	design	pattern	with	a	UML	diagram	and	also
learned	how	it’s	applied	in	the	real	world	with	the	help	of	Python	implementations.	We
discussed	the	pros	and	cons	of	the	Observer	pattern.	You	also	learned	about	the	Observer
pattern	with	an	FAQ	section	and	summarized	the	discussion	at	the	end	of	the	chapter.

In	this	chapter,	we	will	talk	about	the	Command	design	pattern.	Like	the	Observer	pattern,
the	Command	pattern	falls	under	the	hood	of	Behavioral	patterns.	We	will	get	introduced
to	the	Command	design	pattern	and	discuss	how	it	is	used	in	software	application
development.	We	will	work	with	a	sample	use	case	and	implement	it	in	Python	v3.5.

In	this	chapter,	we	will	cover	the	following	topics	in	brief:

An	introduction	to	Command	design	patterns
The	Command	pattern	and	its	UML	diagram
A	real-world	use	case	with	the	Python	v3.5	code	implementation
The	Command	pattern’s	pros	and	cons
Frequently	asked	questions

Introducing	the	Command	pattern
As	we	saw	in	the	previous	chapter,	Behavioral	patterns	focus	on	the	responsibilities	that
an	object	has.	It	deals	with	the	interaction	among	objects	to	achieve	larger	functionality.
The	Command	pattern	is	a	behavioral	design	pattern	in	which	an	object	is	used	to
encapsulate	all	the	information	needed	to	perform	an	action	or	trigger	an	event	at	a	later
time.	This	information	includes	the	following:

The	method	name
An	object	that	owns	the	method
Values	for	method	parameters

Let’s	understand	the	pattern	with	a	very	simple	software	example.	Consider	the	case	of	an
installation	wizard.	A	typical	wizard	may	contain	multiple	phases	or	screens	that	capture	a
user’s	preferences.	While	the	user	browses	through	the	wizard,	s/he	makes	certain	choices.
Wizards	are	typically	implemented	with	the	Command	pattern.	A	wizard	is	first	launched
with	an	object	called	the	Command	object.	The	preferences	or	choices	made	by	the	user	in
multiple	phases	of	the	wizard	are	then	stored	in	the	Command	object.	When	the	user	clicks
on	the	Finish	button	on	the	last	screen	of	the	wizard,	the	Command	object	runs	an
execute()	method,	which	considers	all	the	stored	choices	and	runs	the	appropriate
installation	procedure.	Thus,	all	the	information	regarding	the	choices	are	encapsulated	in
an	object	that	can	be	used	later	to	take	an	action.

Another	easy	example	is	that	of	the	printer	spooler.	A	spooler	can	be	implemented	as	a
Command	object	that	stores	information	such	as	the	page	type	(A5-A1),	portrait/landscape,
collated/non-collated.	When	the	user	prints	something	(say,	an	image),	the	spooler	runs	the
execute()	method	on	the	Command	object	and	the	image	is	printed	with	the	set
preferences.

Understanding	the	Command	design
pattern
The	Command	pattern	works	with	the	following	terms—Command,	Receiver,	Invoker,	and
Client:

A	Command	object	knows	about	the	Receiver	objects	and	invokes	a	method	of	the
Receiver	object.
Values	for	parameters	of	the	receiver	method	are	stored	in	the	Command	object
The	invoker	knows	how	to	execute	a	command
The	client	creates	a	Command	object	and	sets	its	receiver

The	main	intentions	of	the	Command	pattern	are	as	follows:

Encapsulating	a	request	as	an	object
Allowing	the	parameterization	of	clients	with	different	requests
Allowing	to	save	the	requests	in	a	queue	(we	will	talk	about	this	later	in	the	chapter)
Providing	an	object-oriented	callback

The	Command	pattern	can	be	used	in	the	following	multiple	scenarios:

Parameterizing	objects	depending	on	the	action	to	be	performed
Adding	actions	to	a	queue	and	executing	requests	at	different	points
Creating	a	structure	for	high-level	operations	that	are	based	on	smaller	operations

The	following	Python	code	implements	the	Command	design	pattern.	We	talked	about	the
example	of	the	wizard	earlier	in	the	chapter.	Consider	that	we	want	to	develop	a	wizard	for
installation	or,	popularly,	installer.	Typically,	an	installation	implies	the	copying	or	moving
of	files	in	the	filesystem	based	on	the	choices	that	a	user	makes.	In	the	following	example,
in	the	client	code,	we	start	by	creating	the	Wizard	object	and	use	the	preferences()
method	that	stores	the	choices	made	by	the	user	during	various	screens	of	the	wizard.	On
the	wizard,	when	Finish	button	is	clicked,	the	execute()	method	is	called.	The	execute()
method	picks	up	the	preference	and	starts	the	installation:

class	Wizard():

				

				def	__init__(self,	src,	rootdir):

								self.choices	=	[]

								self.rootdir	=	rootdir

								self.src	=	src

				

				def	preferences(self,	command):

								self.choices.append(command)

				

				def	execute(self):

								for	choice	in	self.choices:

												if	list(choice.values())[0]:

																print("Copying	binaries	--",	self.src,	"	to	",	

self.rootdir)

												else:

																print("No	Operation")

if	__name__	==	'__main__':

		##	Client	code

		wizard	=	Wizard('python3.5.gzip',	'/usr/bin/')

		##	Users	chooses	to	install	Python	only

		wizard.preferences({'python':True})

		wizard.preferences({'java':False})

		wizard.execute()

The	output	of	the	preceding	code	is	as	follows:

A	UML	class	diagram	for	the	Command	pattern
Let’s	now	understand	more	about	the	Command	pattern	with	the	help	of	the	following
UML	diagram.

As	we	discussed	in	the	previous	paragraph,	the	Command	pattern	has	these	main
participants:	the	Command,	ConcreteCommand,	Receiver,	Invoker,	and	Client.	Let’s	put
these	in	a	UML	diagram	and	see	how	the	classes	look:

As	we	look	at	the	UML	diagram,	you’ll	realize	that	there	are	five	main	participants	in	this
pattern:

Command:	This	declares	an	interface	to	execute	an	operation
ConcreteCommand:	This	defines	a	binding	between	the	Receiver	object	and	action
Client:	This	creates	a	ConcreteCommand	object	and	sets	its	receiver
Invoker:	This	asks	ConcreteCommand	to	carry	out	the	request
Receiver:	This	knows	how	to	perform	the	operations	associated	with	carrying	out	the
request

The	flow	is	straightforward.	The	client	asks	for	a	command	to	be	executed.	The	invoker
takes	the	command,	encapsulates	it,	and	places	it	in	a	queue.	The	ConcreteCommand	class
is	in	charge	of	the	requested	command	and	asks	the	receiver	to	perform	the	given	action.
The	following	code	example	is	to	understand	the	pattern	with	all	the	participants	involved:

from	abc	import	ABCMeta,	abstractmethod

class	Command(metaclass=ABCMeta):

				def	__init__(self,	recv):

								self.recv	=	recv

				

				def	execute(self):

								pass

class	ConcreteCommand(Command):

				def	__init__(self,	recv):

								self.recv	=	recv

				

				def	execute(self):

								self.recv.action()

class	Receiver:

				def	action(self):

								print("Receiver	Action")

class	Invoker:

				def	command(self,	cmd):

								self.cmd	=	cmd

				

				def	execute(self):

								self.cmd.execute()

if	__name__	==	'__main__':

				recv	=	Receiver()

				cmd	=	ConcreteCommand(recv)

				invoker	=	Invoker()

				invoker.command(cmd)

				invoker.execute()

Implementing	the	Command	pattern	in
the	real	world
We	will	take	up	an	example	of	the	stock	exchange	(much	talked	about	in	the	Internet
world)	to	demonstrate	the	implementation	of	the	Command	pattern.	What	happens	in	a
stock	exchange?	You,	as	a	user	of	the	stock	exchange,	create	orders	to	buy	or	sell	stocks.
Typically,	you	don’t	buy	or	sell	them;	it’s	the	agent	or	broker	who	plays	the	intermediary
between	you	and	the	stock	exchange.	The	agent	is	responsible	for	taking	your	request	to
the	stock	exchange	and	getting	the	work	done.	Imagine	that	you	want	to	sell	a	stock	on
Monday	morning	when	the	exchange	opens	up.	You	can	still	make	the	request	to	sell	stock
on	Sunday	night	to	your	agent	even	though	the	exchange	is	not	yet	open.	The	agent	then
queues	this	request	to	be	executed	on	Monday	morning	when	the	exchange	is	open	for	the
trading.	This	presents	a	classical	case	for	the	Command	pattern.

Design	considerations
Based	on	the	UML	diagram,	you	learned	that	the	Command	pattern	has	four	main
participants—Command,	ConcreteCommand,	Invoker,	and	Receiver.	For	the	preceding
scenario,	we	should	create	an	Order	interface	that	defines	the	order	that	a	client	places.	We
should	define	ConcreteCommand	classes	to	buy	or	sell	a	stock.	A	class	also	needs	to	be
defined	for	the	stock	exchange.	We	should	define	the	Receiver	class	that	will	actually
execute	the	trade	and	the	agent	(known	as	the	invoker)	that	invokes	the	order	and	gets	it
executed	by	the	receiver.

Let’s	develop	an	application	in	Python	v3.5	and	implement	the	preceding	use	case.	We
start	with	the	Command	object,	Order:

The	Command	object	is	represented	by	the	Order	class
Order	provides	you	with	an	interface	(Python’s	abstract	base	class)	so	that
ConcreteCommand	can	implement	the	behavior
The	execute()	method	is	the	abstract	method	that	needs	to	be	defined	by	the
ConcreteCommand	classes	to	execute	the	Order	class

The	following	code	represents	the	abstract	class	Order	and	the	abstract	method
execute():

from	abc	import	ABCMeta,	abstractmethod

class	Order(metaclass=ABCMeta):

				

				@abstractmethod

				def	execute(self):

								pass

We	have	also	developed	certain	classes	that	represent	ConcreteCommand:

In	this	case,	we	have	two	main	concrete	classes:	BuyStockOrder	and
SellStockOrder	that	implement	the	Order	interface
Both	the	ConcreteCommand	classes	use	the	object	of	the	stock	trading	system	so	that
they	can	define	appropriate	actions	for	the	trading	system
The	execute()	method	of	each	of	these	ConcreteCommand	classes	uses	the	stock
trade	object	to	execute	the	actions	to	buy	and	sell

Let’s	now	look	at	concrete	classes	that	implement	the	interface:

class	BuyStockOrder(Order):

				def	__init__(self,	stock):

								self.stock	=	stock

				

				def	execute(self):

								self.stock.buy()

class	SellStockOrder(Order):

				def	__init__(self,	stock):

								self.stock	=	stock

				

				def	execute(self):

								self.stock.sell()

Now,	let’s	talk	about	the	stock	trading	system	and	how	it’s	implemented:

The	StockTrade	class	represents	the	Receiver	object	in	this	example
It	defines	multiple	methods	(actions)	to	execute	the	orders	placed	by
ConcreteCommand	objects
The	buy()	and	sell()	methods	are	defined	by	the	receiver	which	are	called	by
BuyStockOrder	and	SellStockOrder	respectively	to	buy	or	sell	the	stock	in	the
exchange

Let’s	take	a	look	at	the	StockTrade	class:

class	StockTrade:

				def	buy(self):

								print("You	will	buy	stocks")

				

				def	sell(self):

								print("You	will	sell	stocks")

Another	part	of	the	implementation	is	the	invoker:

The	Agent	class	represents	the	invoker.
Agent	is	the	intermediary	between	the	client	and	StockExchange	and	executes	the
orders	placed	by	the	client.
Agent	defines	a	data	member,	__orderQueue	(a	list),	that	acts	as	a	queue.	Any	new
orders	placed	by	the	client	are	added	to	the	queue.
The	placeOrder()	method	of	Agent	is	responsible	for	queuing	the	orders	and	also
executing	the	orders.

The	following	code	depicts	the	Agent	class	which	performs	the	role	of	Invoker:

class	Agent:

				def	__init__(self):

								self.__orderQueue	=	[]

				

				def	placeOrder(self,	order):

								self.__orderQueue.append(order)

								order.execute()

Let	us	now	put	all	the	above	classes	into	perspective	and	look	at	how	the	client	is
implemented:

The	client	first	sets	its	receiver,	the	StockTrade	class
It	creates	orders	to	buy	and	sell	stocks	with	BuyStockOrder	and	SellStockOrder
(ConcreteCommand)	that	executes	the	action	on	StockTrade
The	invoker	object	is	created	by	instantiating	the	Agent	class
The	placeOrder()	method	of	Agent	is	used	to	get	the	orders	that	the	client	places

The	following	is	the	code	for	the	client	is	implemented:

if	__name__	==	'__main__':

				#Client

				stock	=	StockTrade()

				buyStock	=	BuyStockOrder(stock)

				sellStock	=	SellStockOrder(stock)

				

				#Invoker

				agent	=	Agent()

				agent.placeOrder(buyStock)

				agent.placeOrder(sellStock)

The	following	is	the	output	of	the	preceding	code:

There	are	multiple	ways	in	which	the	Command	pattern	is	used	in	software	applications.
We	will	discuss	two	specific	implementations	that	are	very	relevant	to	the	cloud
applications:

Redo	or	rollback	operations:

While	implementing	the	rollback	or	redo	operations,	developers	can	do	two
different	things.
These	are	to	create	a	snapshot	in	the	filesystem	or	memory,	and	when	asked	for
a	rollback,	revert	to	this	snapshot.
With	the	Command	pattern,	you	can	store	the	sequence	of	commands,	and	when
asked	for	a	redo,	rerun	the	same	set	of	actions.

Asynchronous	task	execution:

In	distributed	systems,	we	often	need	the	facility	to	perform	the	asynchronous
execution	of	tasks	so	that	the	core	service	is	never	blocked	in	case	of	more
requests.
In	the	Command	pattern,	the	invoker	object	can	maintain	a	queue	of	requests
and	send	these	tasks	to	the	Receiver	object	so	that	they	can	be	acted	on
independent	of	the	main	application	thread.

Advantages	and	disadvantages	of
Command	patterns
The	Command	pattern	has	the	following	advantages:

It	decouples	the	classes	that	invoke	the	operation	from	the	object	that	knows	how	to
execute	the	operation
It	allows	you	to	create	a	sequence	of	commands	by	providing	a	queue	system
Extensions	to	add	a	new	command	is	easy	and	can	be	done	without	changing	the
existing	code
You	can	also	define	a	rollback	system	with	the	Command	pattern,	for	example,	in	the
Wizard	example,	we	could	write	a	rollback	method

The	following	are	the	disadvantages	of	the	Command	pattern:

There	are	a	high	number	of	classes	and	objects	working	together	to	achieve	a	goal.
Application	developers	need	to	be	careful	developing	these	classes	correctly.
Every	individual	command	is	a	ConcreteCommand	class	that	increases	the	volume	of
classes	for	implementation	and	maintenance.

Frequently	asked	questions
Q1.	Can	there	be	no	Receiver	and	ConcreteCommand	implement	execute	method?

A:	Yes,	it	is	definitely	possible	to	do	so.	Many	software	applications	use	the	Command
pattern	in	this	way	too.	The	only	thing	to	note	here	is	the	interaction	between	the	invoker
and	receiver.	If	the	receiver	is	not	defined,	the	level	of	decoupling	goes	down;	moreover,
the	facility	to	parameterize	commands	is	lost.

Q2.	What	data	structure	do	I	use	to	implement	the	queue	mechanism	in	the	invoker
object?

A:	In	the	stock	exchange	example	that	we	studied	earlier	in	the	chapter,	we	used	a	list	to
implement	the	queue.	However,	the	Command	pattern	talks	about	a	stack	implementation
that	is	really	helpful	in	the	case	of	redo	or	rollback	development.

Summary
We	began	the	chapter	by	understanding	the	Command	design	pattern	and	how	it	is
effectively	used	in	software	architecture.

We	looked	at	how	Command	design	patterns	are	used	to	encapsulate	all	the	information
needed	to	trigger	an	event	or	action	at	a	later	point	in	time.

You	also	learned	the	pattern	with	a	UML	diagram	and	sample	code	implementation	in
Python	v3.5	along	with	the	explanation.

We	also	covered	an	FAQ	section	that	would	help	you	get	more	ideas	on	the	pattern	and	its
possible	advantages/disadvantages.

We	will	now	take	up	other	behavioral	design	patterns	in	the	chapters	to	come.

Chapter	8.	The	Template	Method	Pattern
–	Encapsulating	Algorithm
In	the	previous	chapter,	we	started	with	an	introduction	to	the	Command	design	pattern	in
which	an	object	is	used	to	encapsulate	all	the	information	needed	to	perform	an	action	or
trigger	an	event	at	a	later	time.	We	understood	the	concept	of	the	Command	design	pattern
with	a	UML	diagram	and	also	saw	how	it’s	applied	in	the	real	world	with	the	help	of	the
Python	implementation.	We	discussed	the	pros	and	cons	of	Command	patterns,	explored
more	in	the	FAQ	section,	and	summarized	the	discussion	at	the	end	of	the	chapter.

In	this	chapter,	we	will	talk	about	the	Template	design	pattern,	such	as	the	Command
pattern	and	Template	pattern	that	falls	under	the	hood	of	Behavioral	patterns.	We	will	get
introduced	to	the	Template	design	pattern	and	discuss	how	it	is	used	in	software
application	development.	We	will	also	work	with	a	sample	use	case	and	implement	it	in
Python	v3.5.

In	this	chapter,	we	will	cover	the	following	topics	in	brief:

An	introduction	to	the	Template	Method	design	pattern
The	Template	pattern	and	its	UML	diagram
A	real-world	use	case	with	the	Python	v3.5	code	implementation
The	Template	pattern	–	pros	and	cons
The	Hollywood	principle,	Template	Method,	and	Template	hook
Frequently	asked	questions

At	the	end	of	this	chapter,	you	will	be	able	to	analyze	situations	where	the	Template
design	pattern	is	applicable	and	efficiently	use	them	to	solve	design-related	problems.	We
will	also	summarize	the	entire	discussion	on	the	Template	Method	pattern	as	a	takeaway.

Defining	the	Template	Method	pattern
As	we	saw	in	the	previous	chapter,	Behavioral	patterns	focus	on	the	responsibilities	that
an	object	has.	It	deals	with	the	interaction	among	objects	to	achieve	larger	functionality.
The	Template	Method	pattern	is	a	behavioral	design	pattern	that	defines	the	program
skeleton	or	an	algorithm	in	a	method	called	the	Template	Method.	For	example,	you	could
define	the	steps	to	prepare	a	beverage	as	an	algorithm	in	a	Template	Method.	The
Template	Method	pattern	also	helps	redefine	or	customize	certain	steps	of	the	algorithm
by	deferring	the	implementation	of	some	of	these	steps	to	subclasses.	This	means	that	the
subclasses	can	redefine	their	own	behavior.	For	example,	in	this	case,	subclasses	can
implement	steps	to	prepare	tea	using	the	Template	Method	to	prepare	a	beverage.	It	is
important	to	note	that	the	change	in	the	steps	(as	done	by	the	subclasses)	don’t	impact	the
original	algorithm’s	structure.	Thus,	the	facility	of	overriding	by	subclasses	in	the
Template	Method	pattern	allows	the	creation	of	different	behaviors	or	algorithms.

To	talk	about	the	Template	Method	pattern	in	software	development	terminology,	an
abstract	class	is	used	to	define	the	steps	of	the	algorithm.	These	steps	are	also	known	as
primitive	operations	in	the	context	of	the	Template	Method	pattern.	These	steps	are
defined	with	abstract	methods,	and	the	Template	Method	defines	the	algorithm.	The
ConcreteClass	(that	subclasses	the	abstract	class)	implements	subclass-specific	steps	of
the	algorithm.

The	Template	Method	pattern	is	used	in	the	following	cases:

When	multiple	algorithms	or	classes	implement	similar	or	identical	logic
The	implementation	of	algorithms	in	subclasses	helps	reduce	code	duplication
Multiple	algorithms	can	be	defined	by	letting	the	subclasses	implement	the	behavior
through	overriding

Let’s	understand	the	pattern	with	a	very	simple	day-to-day	example.	Think	of	what	all	you
do	when	you	prepare	tea	or	coffee.	In	the	case	of	coffee,	you	perform	the	following	steps
to	prepare	the	beverage:

1.	 Boil	water.
2.	 Brew	coffee	beans.
3.	 Pour	it	in	the	coffee	cup.
4.	 Add	sugar	and	milk	to	the	cup.
5.	 Stir,	and	the	coffee	is	done.

Now,	if	you	want	to	prepare	a	cup	of	tea,	you	will	perform	the	following	steps:

1.	 Boil	water.
2.	 Steep	the	tea	bag.
3.	 Pour	the	tea	in	a	cup.
4.	 Add	lemon	to	the	tea.
5.	 Stir,	and	the	tea	is	done.

If	you	analyze	both	the	preparations,	you	will	find	that	both	the	procedures	are	more	or
less	the	same.	In	this	case,	we	can	use	the	Template	Method	pattern	effectively.	How	do
we	implement	it?	We	define	a	Beverage	class	that	has	abstract	methods	common	to
preparing	tea	and	coffee,	such	as	boilWater().	We	also	define	the	preparation()
Template	Method	that	will	call	out	the	sequence	of	steps	in	preparing	the	beverage	(the
algorithm).	We	let	the	concrete	classes,	PrepareCoffee	and	PrepareTea,	define	the
customized	steps	to	achieve	the	goals	of	preparing	coffee	and	tea.	This	is	how	the
Template	Method	pattern	avoids	code	duplication.

Another	easy	example	is	that	of	the	compiler	used	by	computer	languages.	A	compiler
essentially	does	two	things:	collects	the	source	and	compiles	to	the	target	object.	Now,	if
we	need	to	define	a	cross	compiler	for	iOS	devices,	we	can	implement	this	with	the	help
of	the	Template	Method	pattern.	We	will	read	about	this	example	in	detail	later	in	the
chapter.

Understanding	the	Template	Method	design
pattern
In	short,	the	main	intentions	of	the	Template	Method	pattern	are	as	follows:

Defining	a	skeleton	of	an	algorithm	with	primitive	operations
Redefining	certain	operations	of	the	subclass	without	changing	the	algorithm’s
structure
Achieving	code	reuse	and	avoiding	duplicate	efforts
Leveraging	common	interfaces	or	implementations

The	Template	Method	pattern	works	with	the	following	terms—AbstractClass,
ConcreteClass,	Template	Method,	and	Client:

AbstractClass:	This	declares	an	interface	to	define	the	steps	of	the	algorithm
ConcreteClass:	This	defines	subclass-specific	step	definitions
template_method():	This	defines	the	algorithm	by	calling	the	step	methods

We	talked	about	the	example	of	a	compiler	earlier	in	the	chapter.	Consider	that	we	want	to
develop	our	own	cross	compiler	for	an	iOS	device	and	run	the	program.

We	first	develop	an	abstract	class	(compiler)	that	defines	the	algorithm	of	a	compiler.	The
operations	done	by	the	compiler	are	collecting	the	source	of	the	code	written	in	a	program
language	and	then	compiling	it	to	get	the	object	code	(binary	format).	We	define	these
steps	as	the	collectSource()	and	compileToObject()	abstract	methods	and	also	define
the	run()	method	that	is	responsible	for	executing	the	program.	The	algorithm	is	defined
by	the	compileAndRun()	method,	which	internally	calls	the	collectSource(),
compileToObject(),	and	run()	methods	to	define	the	algorithm	of	the	compiler.	The
iOSCompiler	concrete	class	now	implements	the	abstract	methods	and	compiles/runs	the
Swift	code	on	the	iOS	device.

Tip
The	Swift	programming	language	is	used	to	develop	applications	on	the	iOS	platform.

The	following	Python	code	implements	the	Template	Method	design	pattern:

from	abc	import		ABCMeta,	abstractmethod

class	Compiler(metaclass=ABCMeta):

				@abstractmethod

				def	collectSource(self):

								pass

				@abstractmethod

				def	compileToObject(self):

								pass

				@abstractmethod

				def	run(self):

								pass

				

				def	compileAndRun(self):

								self.collectSource()

								self.compileToObject()

								self.run()

class	iOSCompiler(Compiler):

				def	collectSource(self):

								print("Collecting	Swift	Source	Code")

				

				def	compileToObject(self):

								print("Compiling	Swift	code	to	LLVM	bitcode")

				

				def	run(self):

								print("Program	runing	on	runtime	environment")

iOS	=	iOSCompiler()

iOS.compileAndRun()

The	output	of	the	preceding	code	should	look	as	follows:

A	UML	class	diagram	for	the	Template	Method
pattern
Let’s	understand	more	about	the	Template	method	pattern	with	the	help	of	a	UML
diagram.

As	we	discussed	in	the	previous	section,	the	Template	method	pattern	has	the	following
main	participants:	the	abstract	class,	concrete	class,	Template	method,	and	client.	Let’s	put
these	in	a	UML	diagram	and	see	how	the	classes	look:

As	we	look	at	the	UML	diagram,	you’ll	realize	that	there	are	four	main	participants	in	this
pattern:

AbstractClass:	This	defines	the	operations	or	steps	of	an	algorithm	with	the	help	of
abstract	methods.	These	steps	are	overridden	by	concrete	subclasses.
template_method():	This	defines	the	skeleton	of	the	algorithm.	Multiple	steps	as
defined	by	abstract	methods	are	called	in	the	Template	method	to	define	the	sequence
or	the	algorithm	itself.
ConcreteClass:	This	implements	the	steps	(as	defined	by	the	abstract	methods)	to
perform	subclass-specific	steps	of	the	algorithm.

The	following	is	a	code	example	to	understand	the	pattern	with	all	the	participants
involved:

from	abc	import	ABCMeta,	abstractmethod

class	AbstractClass(metaclass=ABCMeta):

				def	__init__(self):

								pass

				@abstractmethod

				def	operation1(self):

								pass

				@abstractmethod

				def	operation2(self):

								pass

				

				def	template_method(self):

								print("Defining	the	Algorithm.	Operation1	follows	Operation2")

								self.operation2()

								self.operation1()

class	ConcreteClass(AbstractClass):

				def	operation1(self):

								print("My	Concrete	Operation1")

				

				def	operation2(self):

								print("Operation	2	remains	same")

class	Client:

				def	main(self):

								self.concreate	=	ConcreteClass()

								self.concreate.template_method()

client	=	Client()

client.main()

The	output	of	the	preceding	code	should	look	as	follows:

The	Template	Method	pattern	in	the	real
world
Let’s	take	a	very	easy-to-understand	scenario	to	implement	the	Template	method	pattern.
Imagine	the	case	of	a	travel	agency,	say,	Dev	Travels.	Now	how	do	they	typically	work?
They	define	various	trips	to	various	locations	and	come	up	with	a	holiday	package	for
you.	A	package	is	essentially	a	trip	that	you,	as	a	customer,	undertakes.	A	trip	has	details
such	as	the	places	visited,	transportation	used,	and	other	factors	that	define	the	trip
itinerary.	This	same	trip	can	be	customized	differently	based	on	the	needs	of	the
customers.	This	calls	for	the	Template	Method	pattern,	doesn’t	it?

Design	Considerations:

For	the	preceding	scenario,	based	on	the	UML	diagram,	we	should	create	an
AbstractClass	interface	that	defines	a	trip
The	trip	should	contain	multiple	abstract	methods	that	define	the	transportation	used,
places	visited	on	day1,	day2,	and	day3,	assuming	that	it’s	a	three-day	long	weekend
trip,	and	also	define	the	return	journey
The	itinerary()	Template	Method	will	actually	define	the	trip’s	itinerary
We	should	define	ConcreteClasses	that	would	help	us	customize	trips	differently
based	on	the	customer’s	needs

Let’s	develop	an	application	in	Python	v3.5	and	implement	the	preceding	use	case.	We
start	with	the	abstract	class,	Trip:

The	abstract	object	is	represented	by	the	Trip	class.	It	is	an	interface	(Python’s
abstract	base	class)	that	defines	the	details	such	as	the	transportation	used	and	places
to	visit	on	different	days.
The	setTransport	is	an	abstract	method	that	should	be	implemented	by
ConcreteClass	to	set	the	mode	of	transportation.
The	day1(),	day2(),	day3()	abstract	methods	define	the	places	visited	on	the	given
day.
The	itinerary()	Template	Method	creates	the	complete	itinerary	(the	algorithm,	in
this	case,	the	trip).	The	sequence	of	the	trip	is	to	first	define	the	transportation	mode,
then	the	places	to	visit	on	each	day,	and	the	returnHome.

The	following	code	implements	the	scenario	of	Dev	Travels:

from	abc	import	abstractmethod,	ABCMeta

class	Trip(metaclass=ABCMeta):

				@abstractmethod

				def	setTransport(self):

								pass

				@abstractmethod

				def	day1(self):

								pass

				@abstractmethod

				def	day2(self):

								pass

				@abstractmethod

				def	day3(self):

								pass

				@abstractmethod

				def	returnHome(self):

								pass

				

				def	itinerary(self):

								self.setTransport()

								self.day1()

								self.day2()

								self.day3()

								self.returnHome()

We	have	also	developed	certain	classes	that	represent	the	concrete	class:

In	this	case,	we	have	two	main	concrete	classes—VeniceTrip	and	MaldivesTrip—
that	implement	the	Trip	interface
Concrete	classes	represent	two	different	trips	taken	by	the	tourists	based	on	their
choice	and	interests
VeniceTrip	and	MaldivesTrip	both	implement	setTransport(),	day1(),	day2(),
day3(),	and	returnHome()

Let’s	define	the	concrete	classes	in	Python	code:

class	VeniceTrip(Trip):

				def	setTransport(self):

								print("Take	a	boat	and	find	your	way	in	the	Grand	Canal")

				

				def	day1(self):

								print("Visit	St	Mark's	Basilica	in	St	Mark's	Square")

				

				def	day2(self):

								print("Appreciate	Doge's	Palace")

				

				def	day3(self):

								print("Enjoy	the	food	near	the	Rialto	Bridge")

				

				def	returnHome(self):

								print("Get	souvenirs	for	friends	and	get	back")

class	MaldivesTrip(Trip):

				def	setTransport(self):

								print("On	foot,	on	any	island,	Wow!")

				

				def	day1(self):

								print("Enjoy	the	marine	life	of	Banana	Reef")

				

				def	day2(self):

								print("Go	for	the	water	sports	and	snorkelling")

				

				def	day3(self):

								print("Relax	on	the	beach	and	enjoy	the	sun")

				

				def	returnHome(self):

								print("Dont	feel	like	leaving	the	beach..")

Now,	let’s	talk	about	the	travel	agency	and	tourists	who	want	to	have	an	awesome
vacation:

The	TravelAgency	class	represents	the	Client	object	in	this	example
It	defines	the	arrange_trip()	method	that	provides	customers	with	the	choice	of
whether	they	want	to	have	a	historical	trip	or	beach	trip
Based	on	the	choice	made	by	the	tourist,	an	appropriate	class	is	instantiated
This	object	then	calls	the	itinerary()	Template	Method	and	the	trip	is	arranged	for
the	tourists	as	per	the	choice	of	the	customers

The	following	is	the	implementation	for	the	Dev	travel	agency	and	how	they	arrange	for
the	trip	based	on	the	customer’s	choice:

class	TravelAgency:

				def	arrange_trip(self):

								choice	=	input("What	kind	of	place	you'd	like	to	go	historical	or	

to	a	beach?")

								if	choice	==	'historical':

												self.trip	=	VeniceTrip()

												self.trip.itinerary()

								if	choice	==	'beach':

												self.trip	=	MaldivesTrip()

												self.trip.itinerary()

TravelAgency().arrange_trip()

The	output	of	the	preceding	code	should	look	as	follows:

If	you	decide	to	go	on	a	historical	trip,	this	will	be	the	output	of	the	code:

The	Template	Method	pattern	–	hooks
A	hook	is	a	method	that	is	declared	in	the	abstract	class.	It	is	generally	given	a	default
implementation.	The	idea	behind	hooks	is	to	give	a	subclass	the	ability	to	hook	into	the
algorithm	whenever	needed.	It’s	not	imperative	for	the	subclass	to	use	hooks	and	it	can
easily	ignore	this.

For	example,	in	the	beverage	example,	we	can	add	a	simple	hook	to	see	if	condiments
need	to	be	served	along	with	tea	or	coffee	based	on	the	wish	of	the	customer.

Another	example	of	hook	can	be	in	the	case	of	the	travel	agency	example.	Now,	if	we
have	a	few	elderly	tourists,	they	may	not	want	to	go	out	on	all	three	days	of	the	trip	as	they
may	get	tired	easily.	In	this	case,	we	can	develop	a	hook	that	will	ensure	day2	is	lightly
loaded,	which	means	that	they	can	go	to	a	few	nearby	places	and	be	back	with	the	plan	of
day3.

Basically,	we	use	abstract	methods	when	the	subclass	must	provide	the	implementation,
and	hook	is	used	when	it	is	optional	for	the	subclass	to	implement	it.

The	Hollywood	principle	and	the
Template	Method
The	Hollywood	principle	is	the	design	principle	that	is	summarized	by	Don’t	call	us,	we’ll
call	you.	It	comes	from	the	Hollywood	philosophy	where	the	production	houses	call	actors
if	there	is	any	role	for	the	actor.

In	the	object-oriented	world,	we	allow	low-level	components	to	hook	themselves	into	the
system	with	the	Hollywood	principle.	However,	the	high-level	components	determine	how
the	low-level	systems	are	needed	and	when	they	are	needed.	In	other	words,	high-level
components	treat	low-level	components	as	Don’t	call	us,	we’ll	call	you.

This	relates	to	the	Template	Method	pattern	in	the	sense	that	it’s	the	high-level	abstract
class	that	arranges	the	steps	to	define	the	algorithm.	Based	on	how	the	algorithm	is,	low-
level	classes	are	called	on	to	define	the	concrete	implementation	for	the	steps.

The	advantages	and	disadvantages	of	the
Template	Method	pattern
The	Template	Method	pattern	provides	you	with	the	following	advantages:

As	we	saw	earlier	in	the	chapter,	there	is	no	code	duplication.
Code	reuse	happens	with	the	Template	Method	pattern	as	it	uses	inheritance	and	not
composition.	Only	a	few	methods	need	to	be	overridden.
Flexibility	lets	subclasses	decide	how	to	implement	steps	in	an	algorithm.

The	disadvantages	of	Template	Method	patterns	are	as	follows:

Debugging	and	understanding	the	sequence	of	flow	in	the	Template	Method	pattern
can	be	confusing	at	times.	You	may	end	up	implementing	a	method	that	shouldn’t	be
implemented	or	not	implementing	an	abstract	method	at	all.	Documentation	and	strict
error	handling	has	to	be	done	by	the	programmer.
Maintenance	of	the	template	framework	can	be	a	problem	as	changes	at	any	level
(low-level	or	high-level)	can	disturb	the	implementation.	Hence,	maintenance	can	be
painful	with	the	Template	Method	pattern.

Frequently	asked	questions
Q1.	Should	a	low-level	component	be	disallowed	from	calling	a	method	in	a	higher-level
component?

A:	No,	a	low-level	component	would	definitely	call	the	higher-level	component	through
inheritance.	However,	what	the	programmer	needs	to	make	sure	is	that	there	is	no	circular
dependency	where	the	low-level	and	high-level	components	are	dependent	on	each	other.

Q2.	Isn’t	the	strategy	pattern	similar	to	the	Template	pattern?

A:	The	strategy	pattern	and	Template	pattern	both	encapsulate	algorithms.	Template
depends	on	inheritance	while	strategy	uses	composition.	The	Template	Method	pattern	is	a
compile-time	algorithm	selection	by	sub-classing	while	the	strategy	pattern	is	a	runtime
selection.

Summary
We	began	the	chapter	by	understanding	the	Template	Method	design	pattern	and	how	it	is
effectively	used	in	software	architecture.

We	also	looked	at	how	the	Template	Method	design	pattern	is	used	to	encapsulate	the
algorithm	and	provide	the	flexibility	of	implementing	different	behavior	by	overriding	the
methods	in	the	subclasses.

You	learned	the	pattern	with	a	UML	diagram	and	sample	code	implementation	in	Python
v3.5	along	with	the	explanation.

We	also	covered	a	section	on	FAQs	that	would	help	you	get	a	better	idea	of	the	pattern	and
its	possible	advantages/disadvantages.

We	will	now	talk	about	a	composite	pattern	in	the	next	chapter—the	MVC	design	pattern.

Chapter	9.	Model-View-Controller	–
Compound	Patterns
In	the	previous	chapter,	we	started	with	an	introduction	to	Template	Method	design
pattern,	in	which	subclasses	redefine	the	concrete	steps	of	the	algorithm,	thus	achieving
flexibility	and	code	reuse.	You	learned	about	the	Template	Method	and	how	it	is	used	to
construct	the	algorithm	with	a	sequence	of	steps.	We	discussed	the	UML	diagram,	its	pros
and	cons,	learned	more	about	it	in	the	FAQ	section,	and	summarized	the	discussion	at	the
end	of	the	chapter.

In	this	chapter,	we	will	talk	about	Compound	patterns.	We	will	get	introduced	to	the
Model-View-Controller	(MVC)	design	pattern	and	discuss	how	it	is	used	in	software
application	development.	We	will	work	with	a	sample	use	case	and	implement	it	in	Python
v3.5.

We	will	cover	the	following	topics	in	brief	in	this	chapter:

An	introduction	to	Compound	patterns	and	the	Model-View-Controller
The	MVC	pattern	and	its	UML	diagram
A	real-world	use	case	with	the	Python	v3.5	code	implementation
MVC	pattern—pros	and	cons
Frequently	asked	questions

At	the	end	of	the	chapter,	we	will	summarize	the	entire	discussion—consider	this	as	a
takeaway.

An	introduction	to	Compound	patterns
Throughout	this	book,	we	explored	various	design	patterns.	As	we	saw,	design	patterns	are
classified	under	three	main	categories:	structural,	creational,	and	behavioral	design
patterns.	You	also	learned	about	each	of	these	with	examples.

However,	in	software	implementation,	patterns	don’t	work	in	isolation.	Every	software
design	or	solution	is	not	implemented	with	just	one	design	pattern.	Actually,	patterns	are
often	used	together	and	combined	to	achieve	a	given	design	solution.	As	GoF	defines,	“a
compound	pattern	combines	two	or	more	patterns	into	a	solution	that	solves	a	recurring
or	general	problem.”	A	Compound	pattern	is	not	a	set	of	patterns	working	together;	it	is	a
general	solution	to	a	problem.

We’re	now	going	to	look	at	the	Model-View-Controller	Compound	pattern.	It’s	the	best
example	of	Compound	patterns	and	has	been	used	in	many	design	solutions	over	the
years.

The	Model-View-Controller	pattern
MVC	is	a	software	pattern	to	implement	user	interfaces	and	an	architecture	that	can	be
easily	modified	and	maintained.	Essentially,	the	MVC	pattern	talks	about	separating	the
application	into	three	essential	parts:	model,	view,	and	controller.	These	three	parts	are
interconnected	and	help	in	separating	the	ways	in	which	information	is	represented	to	the
way	information	is	presented.

This	is	how	the	MVC	pattern	works:	the	model	represents	the	data	and	business	logic
(how	information	is	stored	and	queried),	view	is	nothing	but	the	representation	(how	it	is
presented)	of	the	data,	and	controller	is	the	glue	between	the	two,	the	one	that	directs	the
model	and	view	to	behave	in	a	certain	way	based	on	what	a	user	needs.	Interestingly,	the
view	and	controller	are	dependent	on	the	model	but	not	the	other	way	round.	This	is
primarily	because	a	user	is	concerned	about	the	data.	Models	can	be	worked	with
independently	and	this	is	the	key	aspect	of	the	MVC	pattern.

Consider	the	case	of	a	website.	This	is	one	of	the	classical	examples	to	describe	the	MVC
pattern.	What	happens	on	a	website?	You	click	on	a	button,	a	few	operations	happen,	and
you	get	to	see	what	you	desired.	How	does	this	happen?

You	are	the	user	and	you	interact	with	the	view.	The	view	is	the	web	page	that	is
presented	to	you.	You	click	on	the	buttons	on	the	view	and	it	tells	the	controller	what
needs	to	be	done.
Controllers	take	the	input	from	the	view	and	send	it	to	the	model.	The	model	gets
manipulated	based	on	the	actions	done	by	the	user.
Controllers	can	also	ask	the	view	to	change	based	on	the	action	it	receives	from	the
user,	such	as	changing	the	buttons,	presenting	additional	UI	elements,	and	so	on.
The	model	notifies	the	change	in	state	to	the	view.	This	can	be	based	on	a	few
internal	changes	or	external	triggers	such	as	clicking	on	a	button.
The	view	then	displays	the	state	that	it	gets	directly	from	the	model.	For	example,	if	a
user	logs	in	to	the	website,	he/she	might	be	presented	with	a	dashboard	view	(post
login).	All	the	details	that	need	to	be	populated	on	the	dashboard	are	given	by	the
model	to	the	view.

The	MVC	design	pattern	works	with	the	following	terms—Model,	View,	Controller	and
the	Client:

Model:	This	declares	a	class	to	store	and	manipulate	data
View:	This	declares	a	class	to	build	user	interfaces	and	data	displays
Controller:	This	declares	a	class	that	connects	the	model	and	view
User:	This	declares	a	class	that	requests	for	certain	results	based	on	certain	actions

The	following	image	explains	the	flow	of	the	MVC	pattern:

To	talk	about	the	MVC	pattern	in	software	development	terminologies,	let’s	look	into	the
main	classes	involved	in	the	MVC	pattern:

The	model	class	is	used	to	define	all	the	operations	that	happen	on	the	data	(such	as
create,	modify,	and	delete)	and	provides	methods	on	how	to	use	the	data.
The	view	class	is	a	representation	of	the	user	interface.	It	will	have	methods	that	help
us	build	web	or	GUI	interfaces	based	on	the	context	and	need	of	the	application.	It
should	not	contain	any	logic	of	its	own	and	just	display	the	data	that	it	receives.
The	controller	class	is	used	to	receive	data	from	the	request	and	send	it	to	other
parts	of	the	system.	It	has	methods	that	are	used	to	route	requests.

The	MVC	pattern	is	used	in	the	following	cases:

When	there	is	a	need	to	change	the	presentation	without	changes	in	the	business	logic
Multiple	controllers	can	be	used	to	work	with	multiple	views	to	change	the
representation	on	the	user	interface
Once	again,	the	model	can	be	changed	without	changes	in	the	view	as	they	can	work
independently	of	each	other

In	short,	the	main	intention	of	the	MVC	pattern	is	as	follows:

Keeping	the	data	and	presentation	of	the	data	separate.
Easy	maintenance	of	the	class	and	implementation.
Flexibility	to	change	the	way	in	which	data	is	stored	and	displayed.	Both	are
independent	and	hence	have	the	flexibility	to	change.

Let’s	look	at	the	model,	view,	and	controller	in	detail	as	covered	in	Learning	Python
Design	Patterns,	Gennadiy	Zlobin,	Packt	Publishing	as	well.

Model	–	knowledge	of	the	application
Model	is	the	cornerstone	of	an	application	because	it	is	independent	of	the	view	and
controller.	The	view	and	controller	in	turn	are	dependent	on	the	model.

Model	also	provides	data	that	is	requested	by	the	client.	Typically,	in	applications,	the
model	is	represented	by	the	database	tables	that	store	and	return	information.	Model	has
state	and	methods	to	change	states	but	is	not	aware	of	how	the	data	would	be	seen	by	the
client.

It	is	critical	that	the	model	stays	consistent	across	multiple	operations;	otherwise,	the
client	may	get	corrupted	or	display	stale	data,	which	is	completely	undesirable.

As	the	model	is	completely	independent,	developers	working	on	this	piece	can	focus	on
maintenance	without	the	need	for	the	latest	view	changes.

View	–	the	appearance
The	view	is	a	representation	of	data	on	the	interface	that	the	client	sees.	The	view	can	be
developed	independently	but	should	not	contain	any	complex	logic.	Logic	should	still
reside	in	the	controller	or	model.

In	today’s	world,	views	need	to	be	flexible	enough	and	should	cater	to	multiple	platforms
such	as	desktop,	mobiles,	tables,	and	multiple	screen	sizes.

Views	should	avoid	interacting	directly	with	the	databases	and	rely	on	models	to	get	the
required	data.

Controller	–	the	glue
The	controller,	as	the	name	suggests,	controls	the	interaction	of	the	user	on	the	interface.
When	the	user	clicks	on	certain	elements	on	the	interface,	based	on	the	interaction	(button
click	or	touch),	the	controller	makes	a	call	to	the	model	that	in	turn	creates,	updates,	or
deletes	the	data.

Controllers	also	pass	the	data	to	the	view	that	renders	the	information	for	the	user	to	view
on	the	interface.

The	Controller	shouldn’t	make	database	calls	or	get	involved	in	presenting	the	data.	The
controller	should	act	as	the	glue	between	the	model	and	view	and	be	as	thin	as	possible.

Let’s	now	get	into	action	and	develop	one	sample	app.	The	Python	code	shown	next
implements	the	MVC	design	pattern.	Consider	that	we	want	to	develop	an	application	that
tells	a	user	about	the	marketing	services	delivered	by	a	cloud	company,	which	include	e-
mail,	SMS,	and	voice	facilities.

We	first	develop	the	model	class	(Model)	that	defines	the	services	provided	by	the	product,
namely,	e-mail,	SMS,	and	voice.	Each	of	these	services	have	designated	rates,	such	as
1,000	e-mails	would	charge	the	client	$2,	and	for	1,000	messages,	the	charges	are	$10,	and
$15	for	1,000	voice	messages.	Thus,	the	model	represents	the	data	about	the	product
services	and	prices.

We	then	define	the	view	class	(View)	that	provides	a	method	to	present	the	information
back	to	the	client.	The	methods	are	list_services()	and	list_pricing();	as	the	name
suggests,	one	method	is	used	to	print	the	services	offered	by	the	product	and	the	other	is	to
list	the	pricing	for	the	services.

We	then	define	the	Controller	class	that	defines	two	methods,	get_services()	and
get_pricing().	Each	of	these	methods	queries	the	model	and	gets	the	data.	The	data	is
then	fed	to	the	view	and	thus	presented	to	the	client.

The	Client	class	instantiates	the	controller.	The	controller	object	is	used	to	call
appropriate	methods	based	on	the	client’s	request:

class	Model(object):

				services	=	{

																	'email':	{'number':	1000,	'price':	2,},

																	'sms':	{'number':	1000,	'price':	10,},

																	'voice':	{'number':	1000,	'price':	15,},

				}

class	View(object):

				def	list_services(self,	services):

								for	svc	in	services:

												print(svc,	'	')

				

				def	list_pricing(self,	services):

								for	svc	in	services:

												print("For"	,	Model.services[svc]['number'],

																															svc,	"message	you	pay	$",

																											Model.services[svc]['price'])

class	Controller(object):

				def	__init__(self):

								self.model	=	Model()

								self.view	=	View()

				

				def	get_services(self):

								services	=	self.model.services.keys()

								return(self.view.list_services(services))

				

				def	get_pricing(self):

								services	=	self.model.services.keys()

								return(self.view.list_pricing(services))

class	Client(object):

				controller	=	Controller()

				print("Services	Provided:")

				controller.get_services()

				print("Pricing	for	Services:")

				controller.get_pricing()

The	following	is	the	output	of	the	preceding	code:

A	UML	class	diagram	for	the	MVC	design
pattern
Let’s	now	understand	more	about	the	MVC	pattern	with	the	help	of	the	following	UML
diagram.

As	we	discussed	in	the	previous	sections,	the	MVC	pattern	has	the	following	main
participants:	the	Model,	View,	and	Controller	class.

In	the	UML	diagram,	we	can	see	three	main	classes	in	this	pattern:

The	Model	class:	This	defines	the	business	logic	or	operations	attached	to	certain
tasks	from	the	client.
The	View	class:	This	defines	the	view	or	representation	that	is	viewed	by	the	client.
The	model	presents	the	data	to	the	view	based	on	the	business	logic.
The	Controller	class:	This	is	essentially	an	interface	that	is	between	the	view	and
model.	When	the	client	takes	certain	actions,	the	controller	directs	the	query	from	the
view	to	model.

The	following	is	a	code	example	to	understand	the	pattern	with	all	the	participants
involved:

class	Model(object):

				def	logic(self):

								data	=	'Got	it!'

								print("Model:	Crunching	data	as	per	business	logic")

								return	data

class	View(object):

				def	update(self,	data):

								print("View:	Updating	the	view	with	results:	",	data)

class	Controller(object):

				def	__init__(self):

								self.model	=	Model()

								self.view	=	View()

				

				def	interface(self):

								print("Controller:	Relayed	the	Client	asks")

								data	=	self.model.logic()

								self.view.update(data)

class	Client(object):

				print("Client:	asks	for	certain	information")

				controller	=	Controller()

				controller.interface()

The	following	is	the	output	of	the	preceding	code:

The	MVC	pattern	in	the	real	world
Our	good	old	web	application	frameworks	are	based	on	the	philosophies	of	MVC.	Take
the	example	of	Django	or	Rails	(Ruby):	they	structure	their	projects	in	the	Model-View-
Controller	format	except	that	it	is	represented	as	MTV	(Model,	Template,	View)	where
the	model	is	the	database,	templates	are	the	views,	and	controllers	are	the	views/routes.

As	an	example,	let’s	take	up	the	Tornado	web	application	framework
(http://www.tornadoweb.org/en/stable/)	to	develop	a	single-page	app.	This	application	is
used	to	manage	a	user’s	tasks	and	the	user	has	permissions	to	add	tasks,	update	tasks,	and
delete	tasks.

Let’s	see	the	design	considerations:

Let’s	start	with	the	controllers	first.	In	Tornado,	controllers	have	been	defined	as
views/app	routes.	We	need	to	define	multiple	views	such	as	listing	the	tasks,	creating
new	tasks,	closing	the	tasks,	and	handling	an	operation	if	a	request	could	not	be
served.
We	should	also	define	models,	the	database	operations	to	list,	create,	or	delete	the
tasks.
Finally,	the	views	are	represented	by	templates	in	Tornado.	Based	on	our	app,	we
would	need	a	template	to	show	tasks,	create	or	delete	tasks,	and	also	a	template	if	a
URL	is	not	found.

http://www.tornadoweb.org/en/stable/

Modules
We	will	use	the	following	modules	for	this	application:

Torando==4.3
SQLite3==2.6.0

Let’s	start	by	importing	the	Python	modules	in	our	app:

importtornado

import	tornado.web

import	tornado.ioloop

import	tornado.httpserver

import	sqlite3

The	following	code	represents	the	database	operations,	essentially,	the	models	in	MVC.	In
Tornado,	DB	operations	are	performed	under	different	handlers.	Handlers	perform
operations	on	the	DB	based	on	the	route	requested	by	the	user	in	the	web	app.	Here,	we
talk	about	the	four	handlers	that	we	have	created	in	this	example:

IndexHandler:	This	returns	all	the	tasks	that	are	stored	in	the	database.	It	returns	a
dictionary	with	key	tasks.	It	performs	the	SELECT	database	operation	to	get	these
tasks.
NewHandler:	As	the	name	suggests,	this	is	useful	to	add	new	tasks.	It	checks	whether
there	is	a	POST	call	to	create	a	new	task	and	does	an	INSERT	operation	in	the	DB.
UpdateHandler:	This	is	useful	in	marking	a	task	as	complete	or	reopening	a	given
task.	In	this	case,	the	UPDATE	database	operation	occurs	to	set	a	task	with	the	status	as
open/closed.
DeleteHandler:	This	deletes	a	given	task	from	the	database.	Once	deleted,	the	task	is
no	more	visible	in	the	list	of	tasks.

We	have	also	developed	an	_execute()	method	that	takes	a	SQLite	query	as	an	input	and
performs	the	required	DB	operation.	The	_execute()	method	does	the	following
operations	on	the	SQLite	DB:

Creating	a	SQLite	DB	connection
Getting	the	cursor	object
Using	the	cursor	object	to	make	a	transaction
Committing	the	query
Closing	the	connection

Let’s	look	at	the	handlers	in	the	Python	implementation:

class	IndexHandler(tornado.web.RequestHandler):

				def	get(self):

								query	=	"select	*	from	task"

								todos	=	_execute(query)

								self.render('index.html',	todos=todos)

class	NewHandler(tornado.web.RequestHandler):

				def	post(self):

								name	=	self.get_argument('name',	None)

								query	=	"create	table	if	not	exists	task	(id	INTEGER	\

												PRIMARY	KEY,	name	TEXT,	status	NUMERIC)	"

								_execute(query)

								query	=	"insert	into	task	(name,	status)	\

												values	('%s',	%d)	"	%(name,	1)

								_execute(query)

								self.redirect('/')

				

				def	get(self):

								self.render('new.html')

class	UpdateHandler(tornado.web.RequestHandler):

				def	get(self,	id,	status):

								query	=	"update	task	set	status=%d	where	\

												id=%s"	%(int(status),	id)

								_execute(query)

								self.redirect('/')

class	DeleteHandler(tornado.web.RequestHandler):

				def	get(self,	id):

								query	=	"delete	from	task	where	id=%s"	%	id

								_execute(query)

								self.redirect('/')

If	you	look	up	these	methods,	you’ll	notice	something	called	self.render().	This
essentially	represents	the	views	in	MVC	(templates	in	the	Tornado	framework).	We	have
three	main	templates:

index.html:	This	is	a	template	to	list	all	the	tasks
new.html:	This	is	the	view	to	create	a	new	task
base.html:	This	is	the	base	template	from	which	other	templates	are	inherited

Consider	the	following	code:

base.html

<html>

<!DOCTYPE>

<html>

<head>

								{%	block	header	%}{%	end	%}

</head>

<body>

								{%	block	body	%}{%	end	%}

</body>

</html>

index.html

{%	extends	'base.html'	%}

<title>ToDo</title>

{%	block	body	%}

<h3>Your	Tasks</h3>

<table	border="1"	>

<tralign="center">

<td>Id</td>

<td>Name</td>

<td>Status</td>

<td>Update</td>

<td>Delete</td>

</tr>

				{%	for	todo	in	todos	%}

<tralign="center">

<td>{{todo[0]}}</td>

<td>{{todo[1]}}</td>

												{%	if	todo[2]	%}

<td>Open</td>

												{%	else	%}

<td>Closed</td>

												{%	end	%}

												{%	if	todo[2]	%}

<td>Close	Task</td>

												{%	else	%}

<td>Open	Task</td>

												{%	end	%}

<td>X</td>

</tr>

				{%	end	%}

</table>

<div>

<h3>Add	Task</h3>

</div>

{%	end	%}

new.html

{%	extends	'base.html'	%}

<title>ToDo</title>

{%	block	body	%}

<div>

<h3>Add	Task	to	your	List</h3>

<form	action="/todo/new"	method="post"	id="new">

<p><input	type="text"	name="name"	placeholder="Enter	task"/>

<input	type="submit"	class="submit"	value="add"	/></p>

</form>

</div>

{%	end	%}

In	Tornado,	we	also	have	the	application	routes	that	are	controllers	in	MVC.	We	have	four
application	routes	in	this	example:

/:	This	is	the	route	to	list	all	the	tasks
/todo/new:	This	is	the	route	to	create	new	tasks
/todo/update:	This	is	the	route	to	update	the	task	status	to	open/closed
/todo/delete:	This	is	the	route	to	delete	a	completed	task

The	code	example	is	as	follows:

class	RunApp(tornado.web.Application):

				def	__init__(self):

								Handlers	=	[

												(r'/',	IndexHandler),

												(r'/todo/new',	NewHandler),

												(r'/todo/update/(\d+)/status/(\d+)',	UpdateHandler),

												(r'/todo/delete/(\d+)',	DeleteHandler),

]

								settings	=	dict(

												debug=True,

												template_path='templates',

												static_path="static",

)

								tornado.web.Application.__init__(self,	Handlers,	\

												**settings)

We	also	have	application	settings	and	can	start	the	HTTP	web	server	to	run	the
application:

if__name__	==	'__main__':

				http_server	=	tornado.httpserver.HTTPServer(RunApp())

				http_server.listen(5000)

				tornado.ioloop.IOLoop.instance().start()

When	we	run	the	Python	program:

1.	 The	server	gets	started	and	runs	on	port	5000.	The	appropriate	views,	templates,	and
controllers	have	been	configured.

2.	 On	browsing	http://localhost:5000/,	we	can	see	the	list	of	tasks.	the	following
screenshot	shows	the	output	in	the	browser:

3.	 We	can	also	add	a	new	task.	Once	you	click	on	add,	a	new	task	gets	added.	In	the
following	screenshot,	a	new	task	Write	the	New	Chapter	is	added	and	listed	in	the
task	list:

When	we	enter	the	new	task	and	click	on	the	ADD	button,	the	task	gets	added	to	the
list	of	existing	tasks:

4.	 We	can	close	tasks	from	the	UI	as	well.	For	example,	we	update	the	Cook	food	task
and	the	list	gets	updated.	We	can	reopen	the	task	if	we	choose	to:

5.	 We	can	also	delete	a	task.	In	this	case,	we	delete	the	first	task,	New	Task,	and	the
task	list	will	get	updated	to	remove	the	task:

Benefits	of	the	MVC	pattern
The	following	are	the	benefits	of	the	MVC	pattern:

With	MVC,	developers	can	split	the	software	application	into	three	major	parts:
model,	view,	and	controller.	This	helps	in	achieving	easy	maintenance,	enforcing
loose	coupling,	and	decreasing	complexity.
MVC	allows	independent	changes	on	the	frontend	without	any,	or	very	few,	changes
on	the	backend	logic,	and	so	the	development	efforts	can	still	run	independently.
On	similar	lines,	models	or	business	logic	can	be	changed	without	any	changes	in	the
view.
Additionally,	the	controller	can	be	changed	without	any	impact	on	views	or	models.
MVC	also	helps	in	hiring	people	with	specific	capabilities	such	as	platform	engineers
and	UI	engineers	who	can	work	independently	in	their	field	of	expertise.

Frequently	asked	questions
Q1.	Isn’t	MVC	a	pattern?	Why	is	it	called	a	Compound	pattern?

A:	Compound	patterns	are	essentially	groups	of	patterns	put	together	to	solve	large	design
problems	in	software	application	development.	The	MVC	pattern	is	the	most	popular	and
widely	used	Compound	pattern.	As	it	is	so	widely	used	and	reliable,	it	is	treated	as	a
pattern	itself.

Q2.	Is	MVC	used	only	in	websites?

A:	No,	a	website	is	the	best	example	to	describe	MVC.	However,	MVC	can	be	used	in
multiple	areas	such	as	GUI	applications	or	any	other	place	where	you	need	loose	coupling
and	splitting	of	components	in	an	independent	way.	Typical	examples	of	MVC	include
blogs,	movie	database	applications,	and	video	streaming	web	apps.	While	MVC	is	useful
in	many	places,	it’s	overkill	if	you	use	it	for	the	landing	pages,	marketing	content,	or	quick
single-page	applications.

Q3.	Can	multiple	views	work	with	multiple	models?

A:	Yes,	often	you’d	end	up	in	a	situation	where	the	data	needs	to	be	collated	from	multiple
models	and	presented	in	one	view.	One-to-one	mapping	is	rare	in	today’s	web	app	world.

Summary
We	began	the	chapter	by	understanding	Compound	patterns	and	looked	at	the	Model-
View-Controller	pattern	and	how	it	is	effectively	used	in	software	architecture.	We	then
looked	at	how	the	MVC	pattern	is	used	to	ensure	loose	coupling	and	maintain	a	multilayer
framework	for	independent	task	development.

You	also	learned	the	pattern	with	a	UML	diagram	and	sample	code	implementation	in
Python	v3.5	along	with	the	explanation.	We	also	covered	a	section	on	FAQs	that	would
help	you	get	more	ideas	on	the	pattern	and	its	possible	advantages/disadvantages.

In	the	next	chapter,	we	will	talk	about	the	Anti	patterns.	See	you	there!

Chapter	10.	The	State	Design	Pattern
In	this	chapter,	we	will	cover	the	State	design	pattern.	Like	the	Command	or	Template
design	patterns,	State	pattern	falls	under	the	hood	of	Behavioral	patterns.	You	will	be
introduced	to	the	State	design	pattern,	and	we	will	discuss	how	it	is	used	in	software
application	development.	We	will	work	with	a	sample	use	case,	a	real-world	scenario,	and
implement	this	in	Python	v3.5.

We	will	briefly	cover	these	topics	in	this	chapter:

Introduction	to	the	State	design	pattern
The	State	design	pattern	and	its	UML	diagram
A	real-world	use	case	with	the	Python	v3.5	code	implementation
State	pattern:	advantages	and	disadvantages

At	the	end	of	this	chapter,	you	will	appreciate	the	application	and	context	of	the	State
design	pattern.

Defining	the	State	design	pattern
Behavioral	patterns	focus	on	the	responsibilities	that	an	object	has.	They	deal	with	the
interaction	among	objects	to	achieve	larger	functionality.	The	State	design	pattern	is	a
Behavioral	design	pattern,	which	is	also	sometimes	referred	to	as	an	objects	for	states
pattern.	In	this	pattern,	an	object	can	encapsulate	multiple	behaviors	based	on	its	internal
state.	A	State	pattern	is	also	considered	as	a	way	for	an	object	to	change	its	behavior	at
runtime.

Tip
Changing	behavior	at	runtime	is	something	that	Python	excels	at!

For	example,	consider	the	case	of	a	simple	radio.	A	radio	has	AM/FM	(a	toggle	switch)
channels	and	a	scan	button	to	scan	across	multiple	FM/AM	channels.	When	a	user
switches	on	the	radio,	the	base	state	of	the	radio	is	already	set	(say,	it	is	set	to	FM).	On
clicking	the	Scan	button,	the	radio	gets	tuned	to	multiple	valid	FM	frequencies	or
channels.	When	the	base	State	is	now	changed	to	AM,	the	scan	button	helps	the	user	to
tune	into	multiple	AM	channels.	Hence,	based	on	the	base	state	(AM/FM)	of	the	radio,	the
scan	button’s	behavior	dynamically	changes	when	tuning	into	AM	or	FM	channels.

Thus,	the	State	pattern	allows	an	object	to	change	its	behavior	when	its	internal	state
changes.	It	will	appear	as	though	the	object	itself	has	changed	its	class.	The	State	design
pattern	is	used	to	develop	Finite	State	Machines	and	helps	to	accommodate	State
Transaction	Actions.

Understanding	the	State	design	pattern
The	State	design	patterns	works	with	the	help	of	three	main	participants:

State:	This	is	considered	to	be	an	interface	that	encapsulates	the	object’s	behavior.
This	behavior	is	associated	with	the	state	of	the	object.
ConcreteState:	This	is	a	subclass	that	implements	the	State	interface.
ConcreteState	implements	the	actual	behavior	associated	with	the	object’s	particular
state.
Context:	This	defines	the	interface	of	interest	to	clients.	Context	also	maintains	an
instance	of	the	ConcreteState	subclass	that	internally	defines	the	implementation	of
the	object’s	particular	state.

Let’s	take	a	look	at	the	structural	code	implementation	of	the	State	design	pattern	with
these	three	participants.	In	this	code	implementation,	we	define	a	State	interface	that	has
a	Handle()	abstract	method.	The	ConcreteState	classes,	ConcreteStateA	and
ConcreteStateB,	implement	the	State	interface	and,	thus,	define	the	Handle()	methods
specific	to	the	ConcreteState	classes.	So,	when	the	Context	class	is	set	for	a	state,	the
Handle()	method	of	this	state’s	ConcreteClass	gets	called.	In	the	following	example,
since	Context	is	set	to	stateA,	the	ConcreteStateA.Handle()	method	gets	called	and
prints	ConcreteStateA:

from	abc	import	abstractmethod,	ABCMeta

class	State(metaclass=ABCMeta):

				

				@abstractmethod

				def	Handle(self):

								pass

class	ConcreteStateB(State):

				def	Handle(self):

								print("ConcreteStateB")

class	ConcreteStateA(State):

				def	Handle(self):

								print("ConcreteStateA")

class	Context(State):

				

				def	__init__(self):

								self.state	=	None

				

				def	getState(self):

								return	self.state

				

				def	setState(self,	state):

								self.state	=	state

				

				def	Handle(self):

								self.state.Handle()

context	=	Context()

stateA	=	ConcreteStateA()

stateB	=	ConcreteStateB()

context.setState(stateA)

context.Handle()

We	will	see	the	following	output:

Understanding	the	State	design	pattern	with	a
UML	diagram
As	we	saw	in	the	previous	section,	there	are	three	main	participants	in	the	UML	diagram:
State,	ConcreteState,	and	Context.	In	this	section,	we	will	try	to	manifest	them	on	a
UML	class	diagram.

Let’s	understand	the	elements	of	UML	diagram	in	detail:

State:	This	is	an	interface	that	defines	the	Handle()	abstract	method.	The	Handle()
method	needs	to	be	implemented	by	ConcreteState.
ConcreteState:	In	this	UML	diagram,	we	have	defined	two	ConcreteClasses:
ConcreteStateA,	and	ConcreteStateB.	These	implement	the	Handle()	method	and
define	the	actual	action	to	be	taken	based	on	the	State	change.
Context:	This	is	a	class	that	accepts	the	client’s	request.	It	also	maintains	a	reference
to	the	object’s	current	state.	Based	on	the	request,	the	concrete	behavior	gets	called.

A	simple	example	of	the	State	design
pattern
Let’s	understand	all	three	participants	with	a	simple	example.	Say,	we	want	to	implement
a	TV	remote	with	a	simple	button	to	perform	on/off	actions.	If	the	TV	is	on,	the	remote
button	will	switch	off	the	TV	and	vice	versa.	In	this	case,	the	State	interface	will	define
the	method	(say,	doThis())	to	perform	actions	such	as	switching	on/off	the	TV.	We	also
need	to	define	ConcreteClass	for	different	states.	In	this	example,	we	have	two	major
states,	StartState	and	StopState,	which	indicate	when	the	TV	is	switched	on	and	the
state	in	which	the	TV	is	switched	off,	respectively.

For	this	scenario,	the	TVContext	class	will	implement	the	State	interface	and	keep	a
reference	to	the	current	state.	Based	on	the	request,	TVContext	forwards	the	request	to
ConcreteState,	which	implements	the	actual	behavior	(for	a	given	state)	and	performs	the
necessary	action.	So,	in	this	case,	the	base	state	is	StartState	(as	defined	earlier)	and	the
request	received	by	the	TVContext	class	is	to	switch	Off	the	TV.	TVContext	class
understands	the	need	and	accordingly	forwards	the	request	to	StopState	concrete	class
which	inturn	calls	the	doThis()	method	to	actually	switch	off	the	TV:

from	abc	import	abstractmethod,	ABCMeta

class	State(metaclass=ABCMeta):

				

				@abstractmethod

				def	doThis(self):

								pass

class	StartState	(State):

				def	doThis(self):

								print("TV	Switching	ON..")

class	StopState	(State):

				def	doThis(self):

								print("TV	Switching	OFF..")

class	TVContext(State):

				

				def	__init__(self):

								self.state	=	None

				

				def	getState(self):

								return	self.state

				

				def	setState(self,	state):

								self.state	=	state

				

				def	doThis(self):

								self.state.doThis()

context	=	TVContext()

context.getState()

start	=	StartState()

stop	=	StopState()

context.setState(stop)

context.doThis()

Here	is	the	output	for	the	preceding	code:

The	State	design	pattern	with	v3.5	implementation
Let’s	now	take	a	look	at	a	real-world	use	case	for	the	State	design	pattern.	Think	of	a
computer	system	(desktop/laptop).	It	can	have	multiple	states	such	as	On,	Off,	Suspend,	or
Hibernate.	Now,	if	we	want	to	manifest	these	states	with	the	help	of	State	design	pattern,
how	will	we	do	it?

Say,	we	start	with	the	ComputerState	interface:

The	state	should	define	two	attributes,	which	are	name	and	allowed.	The	name
attribute	represents	the	state	of	the	object,	and	allowed	is	a	list	that	defines	the	state’s
object,	which	it	is	allowed	to	get	into.
The	state	must	define	a	switch()	method,	which	will	actually	change	the	state	of	the
object	(in	this	case,	the	computer).

Let’s	take	a	look	at	the	code	implementation	of	the	ComputerState	interface:

class	ComputerState(object):

				name	=	"state"

				allowed	=	[]

				

				def	switch(self,	state):

								if	state.name	in	self.allowed:

												print('Current:',self,'	=>	switched	to	new	state',state.name)

												self.__class__	=	state

								else:

												print('Current:',self,'	=>	switching	to',state.name,'not	

possible.')

				

				def	__str__(self):

								return	self.name

Let’s	now	take	a	look	at	ConcreteState,	which	implements	the	State	interface.	We	will
define	four	states:

On:	This	switches	on	the	computer.	The	allowed	states	here	are	Off,	Suspend,	and
Hibernate.
Off:	This	switches	off	the	computer.	The	allowed	state	here	is	just	On.
Hibernate:	This	state	puts	the	computer	in	the	hibernate	mode.	The	computer	can
only	get	switched	on	when	it’s	in	this	state.
Suspend:	This	state	suspends	the	computer,	and	once	the	computer	is	suspended,	it
can	be	switched	on.

Let’s	now	take	a	look	at	the	code:

class	Off(ComputerState):

				name	=	"off"

				allowed	=	['on']

class	On(ComputerState):

				name	=	"on"

				allowed	=	['off','suspend','hibernate']

class	Suspend(ComputerState):

				name	=	"suspend"

				allowed	=	['on']

class	Hibernate(ComputerState):

				name	=	"hibernate"

				allowed	=	['on']

Now,	we	explore	the	context	class	(Computer).	The	context	does	two	main	things:

__init__():	This	method	defines	the	base	state	of	the	computer
change():	This	method	will	change	the	state	of	the	object,	and	the	actual	change	in
behavior	is	implemented	by	the	ConcreteState	classes	(on,	off,	suspend,	and
hibernate)

Here	is	the	implementation	of	the	preceding	methods:

class	Computer(object):

				def	__init__(self,	model='HP'):

								self.model	=	model

								self.state	=	Off()

				

				def	change(self,	state):

								self.state.switch(state)

The	following	is	the	code	for	the	client.	We	create	the	object	of	the	Computer	class
(Context)	and	pass	a	state	to	it.	The	state	can	be	either	of	these:	On,	Off,	Suspend,	and
Hibernate.	Based	on	the	new	state,	the	context	calls	its	change(state)	method,	which
eventually	switches	the	actual	state	of	the	computer:

if	__name__	==	"__main__":

				comp	=	Computer()

				#	Switch	on

				comp.change(On)

				#	Switch	off

				comp.change(Off)

				

				#	Switch	on	again

				comp.change(On)

				#	Suspend

				comp.change(Suspend)

				#	Try	to	hibernate	-	cannot!

				comp.change(Hibernate)

				#	switch	on	back

				comp.change(On)

				#	Finally	off

				comp.change(Off)

Now,	we	can	observe	the	following	output:

__class__	is	a	built-in	attribute	of	every	class.	It	is	a	reference	to	the	class.	For	instance,
self.__class__.__name__	represents	the	name	of	the	class.	In	this	example,	we	use
__class__	attribute	of	Python	to	change	the	State.	So,	when	we	pass	the	state	to	the
change()	method,	the	class	of	the	objects	gets	dynamically	changed	at	runtime.	The
comp.change(On)	code,	changes	the	object	state	to	On	and	subsequently	to	different	states
like	Suspend,	Hibernate,	and	Off.

Advantages/disadvantages	of	the	State
pattern
Here	are	the	benefits	of	the	State	design	pattern:

In	the	State	design	pattern,	an	object’s	behavior	is	the	result	of	the	function	of	its
state,	and	the	behavior	gets	changed	at	runtime	depending	on	the	state.	This	removes
the	dependency	on	the	if/else	or	switch/case	conditional	logic.	For	example,	in	the
TV	remote	scenario,	we	could	have	also	implemented	the	behavior	by	simply	writing
one	class	and	method	that	will	ask	for	a	parameter	and	perform	an	action	(switch	the
TV	on/off)	with	an	if/else	block.
With	State	pattern,	the	benefits	of	implementing	polymorphic	behavior	are	evident,
and	it	is	also	easier	to	add	states	to	support	additional	behavior.
The	State	design	pattern	also	improves	Cohesion	since	state-specific	behaviors	are
aggregated	into	the	ConcreteState	classes,	which	are	placed	in	one	location	in	the
code.
With	the	State	design	pattern,	it	is	very	easy	to	add	a	behavior	by	just	adding	one
more	ConcreteState	class.	State	pattern	thus	improves	the	flexibility	to	extend	the
behavior	of	the	application	and	overall	improves	code	maintenance.

We	have	seen	the	advantages	of	state	patterns.	However,	they	also	have	a	few	pitfalls:

Class	Explosion:	Since	every	state	needs	to	be	defined	with	the	help	of
ConcreteState,	there	is	a	chance	that	we	might	end	up	writing	many	more	classes
with	a	small	functionality.	Consider	the	case	of	finite	state	machines—if	there	are
many	states	but	each	state	is	not	too	different	from	another	state,	we’d	still	need	to
write	them	as	separate	ConcreteState	classes.	This	increases	the	amount	of	code	we
need	to	write,	and	it	becomes	difficult	to	review	the	structure	of	a	state	machine.
With	the	introduction	of	every	new	behavior	(even	though	adding	behavior	is	just
adding	one	more	ConcreteState),	the	Context	class	needs	to	be	updated	to	deal	with
each	behavior.	This	makes	the	Context	behavior	more	brittle	with	every	new
behavior.

Summary
To	summarize	what	we’ve	learned	so	far,	in	State	design	patterns,	the	object’s	behavior	is
decided	based	on	its	state.	The	state	of	the	object	can	be	changed	at	runtime.	Python’s
ability	to	change	behavior	at	runtime	makes	it	very	easy	to	apply	and	implement	the	State
design	pattern.	The	State	pattern	also	gives	us	control	over	deciding	the	states	that	objects
can	take	up	such	as	those	in	the	computer	example	that	we	saw	earlier	in	the	chapter.	The
Context	class	provides	an	easier	interface	for	clients,	and	ConcreteState	makes	sure	it	is
easy	to	add	behaviors	to	the	objects.	Thus,	the	State	pattern	improves	cohesion,	flexibility
to	extend,	and	removes	redundant	code	blocks.	We	academically	studied	the	pattern	in	the
form	of	a	UML	diagram	and	learned	about	the	implementation	aspects	of	the	State	pattern
with	help	of	the	Python	v3.5	code	implementation.	We	also	took	a	look	at	the	few	pitfalls
you	might	encounter	when	it	comes	to	the	State	pattern,	and	the	code	which	can
significantly	increase	when	it	comes	to	adding	more	states	or	behaviors.	I	hope	you	had	a
nice	time	going	through	this	chapter!

Chapter	11.	AntiPatterns
In	the	previous	chapter,	we	started	with	an	introduction	to	Compound	patterns.	You
learned	how	design	patterns	work	together	to	solve	a	real-world	design	problem.	We	went
further	to	explore	the	Model-View-Controller	design	pattern—the	king	of	Compound
patterns.	We	understood	that	the	MVC	pattern	is	used	when	we	need	loose	coupling
between	components	and	separation	of	the	way	in	which	data	is	stored	from	the	way	data
is	presented.	We	also	went	through	the	UML	diagram	of	the	MVC	pattern	and	read	about
how	the	individual	components	(model,	view,	and	controller)	work	among	themselves.	We
also	saw	how	it’s	applied	in	the	real	world	with	the	help	of	the	Python	implementation.	We
discussed	the	benefits	of	the	MVC	pattern,	learned	more	about	it	in	the	FAQs	section,	and
summarized	the	discussion	at	the	end	of	chapter.

In	this	chapter,	we	will	talk	about	AntiPatterns.	This	is	different	from	all	the	other	chapters
in	the	book;	here,	we	will	cover	what	we	shouldn’t	do	as	architects	or	software	engineers.
We	will	understand	what	AntiPatterns	are	and	how	they	are	visible	in	software	design	or
development	aspects	with	the	help	of	theoretical	and	practical	examples.

In	brief,	we	will	cover	the	following	topics	in	this	chapter:

An	introduction	to	AntiPatterns
AntiPatterns	with	examples
Common	pitfalls	during	development

At	the	end	of	the	chapter,	we	will	summarize	the	entire	discussion—consider	this	as	a
takeaway.

An	introduction	to	AntiPatterns
Software	design	principles	represent	a	set	of	rules	or	guidelines	that	help	software
developers	make	design-level	decisions.	According	to	Robert	Martin,	there	are	four
aspects	of	a	bad	design:

Immobile:	An	application	is	developed	in	such	a	way	that	it	becomes	very	hard	to
reuse
Rigid:	An	application	is	developed	in	such	a	manner	that	any	small	change	may	in
turn	result	in	moving	of	too	many	parts	of	the	software
Fragile:	Any	change	in	the	current	application	results	in	breaking	the	existing	system
fairly	easily
Viscose:	Changes	are	done	by	the	developer	in	the	code	or	environment	itself	to
avoid	difficult	architectural	level	changes

The	above	aspects	of	bad	design,	if	applied,	result	in	solutions	that	should	not	be
implemented	in	the	software	architecture	or	development.

An	AntiPattern	is	an	outcome	of	a	solution	to	recurring	problems	so	that	the	outcome	is
ineffective	and	becomes	counterproductive.	What	does	this	mean?	Let’s	say	that	you	come
across	a	software	design	problem.	You	get	down	to	solving	this	problem.	However,	what	if
the	solution	has	a	negative	impact	on	the	design	or	causes	any	performance	issues	in	the
application?	Hence,	AntiPatterns	are	common	defective	processes	and	implementations
within	software	applications.

AntiPatterns	may	be	the	result	of	the	following:

A	developer	not	knowing	the	software	development	practices
A	developer	not	applying	design	patterns	in	the	correct	context

AntiPatterns	can	prove	beneficial	as	they	provide	an	opportunity	for	the	following
reasons:

Recognize	recurring	problems	in	the	software	industry	and	provide	a	detailed	remedy
for	most	of	these	issues
Develop	tools	to	recognize	these	problems	and	determine	the	underlying	causes
Describe	the	measures	that	can	be	taken	at	several	levels	of	improving	the	application
and	architecture

AntiPatterns	can	be	classified	under	two	main	categories:

1.	 Software	development	AntiPatterns
2.	 Software	architecture	AntiPatterns

Software	development	AntiPatterns
When	you	start	software	development	for	an	application	or	project,	you	think	of	the	code
structure.	This	structure	is	consistent	with	the	product	architecture,	design,	customer	use
cases,	and	many	other	development	considerations.

Often,	when	the	software	is	developed,	it	gets	deviated	from	the	original	code	structure
due	to	the	following	reasons:

The	thought	process	of	the	developer	evolves	with	development
Use	cases	tend	to	change	based	on	customer	feedback
Data	structures	designed	initially	may	undergo	change	with	functionality	or
scalability	considerations

Due	to	the	preceding	reasons,	software	often	undergoes	refactoring.	Refactoring	is	taken
with	a	negative	connotation	by	many,	but	in	reality,	refactoring	is	one	of	the	critical	parts
of	the	software	development	journey,	which	provides	developers	an	opportunity	to	relook
the	data	structures	and	think	about	scalability	and	ever-evolving	customer’s	needs.

The	following	examples	provide	you	with	an	overview	of	different	AntiPatterns	observed
in	software	development	and	architecture.	We	will	cover	only	a	few	of	them	along	with
causes,	symptoms,	and	consequences.

Spaghetti	code
This	is	the	most	common	and	most	heard	of	AntiPattern	in	software	development.	Do	you
know	how	spaghetti	looks?	So	complicated,	isn’t	it?	Software	control	flows	also	get
tangled	if	structures	are	developed	in	an	ad	hoc	manner.	Spaghetti	code	is	difficult	to
maintain	and	optimize.

The	typical	causes	of	Spaghetti	include	the	following:

Ignorance	on	object-oriented	programming	and	analysis
Product	architecture	or	design	that	is	not	considered
Quick	fix	mentality

You	know	you’re	stuck	with	Spaghetti	when	the	following	points	are	true:

Minimum	reuse	of	structures	is	possible
Maintenance	efforts	are	too	high
Extension	and	flexibility	to	change	is	reduced

Golden	Hammer
In	the	software	industry,	you	would	have	seen	many	examples	where	a	given	solution
(technology,	design,	or	module)	is	used	in	many	places	because	the	solution	would	have
yielded	benefits	in	multiple	projects.	As	we	have	seen	with	examples	throughout	this
book,	a	solution	is	best	suited	in	a	given	context	and	applied	to	certain	types	of	problems.
However,	teams	or	software	developers	tend	to	go	with	one	proven	solution	irrespective	of
whether	it	suits	the	need.	This	is	the	reason	that	it’s	called	Golden	Hammer,	a	hammer	for
all	the	nails	possible	(a	solution	to	all	problems).

The	typical	causes	of	Golden	Hammer	include	the	following:

It	comes	as	a	recommendation	from	the	top	(architects	or	technology	leaders)	who
are	not	close	to	the	given	problem	at	hand
A	solution	has	yielded	a	lot	of	benefits	in	the	past	but	in	projects	with	a	different
context	and	requirements
A	company	is	stuck	with	this	technology	as	they	have	invested	money	in	training	the
staff	or	the	staff	is	comfortable	with	it

The	consequences	of	a	Golden	Hammer	are	as	follows:

One	solution	is	obsessively	applied	to	all	software	projects
The	product	is	described,	not	by	the	features,	but	the	technology	used	in	development
In	the	company	corridors,	you	hear	developers	talking,	“That	could	have	been	better
than	using	this.”
Requirements	are	not	completed	and	not	in	sync	with	user	expectations

Lava	Flow
This	AntiPattern	is	related	to	Dead	Code,	or	an	unusable	piece	of	code,	lying	in	the
software	application	for	the	fear	of	breaking	something	else	if	it	is	modified.	As	more	time
passes,	this	piece	of	code	continues	to	remain	in	the	software	and	solidifies	its	position,
like	lava	turning	into	a	hard	rock.	It	may	happen	in	cases	where	you	start	developing
software	to	support	a	certain	use	case	but	the	use	case	itself	changes	with	time.

The	causes	of	a	Lava	Flow	include	the	following:

A	lot	of	trial	and	error	code	in	the	production
Single-handedly	written	code	that	is	not	reviewed	and	is	handed	over	to	other
development	teams	without	any	training
The	initial	thought	of	the	software	architecture	or	design	is	implemented	in	the	code
base,	but	no	one	understands	it	anymore

The	symptoms	of	a	Lava	Flow	are	as	follows:

Low	code	coverage	(if	at	all	done)	for	developed	tests
A	lot	of	occurrences	of	commented	code	without	reasons
Obsolete	interfaces,	or	developers	try	to	work	around	existing	code

Copy-and-paste	or	cut-and-paste	programming
As	you	know,	this	is	one	of	the	most	common	AntiPatterns.	Experienced	developers	put
their	code	snippets	online	(GitHub	or	Stack	Overflow)	that	are	solutions	to	some
commonly	occurring	issues.	Developers	often	copy	these	snippets	as	is	and	use	in	their
application	to	move	further	in	the	application	development.	In	this	case,	there	is	no
validation	that	this	is	the	most	optimized	code	or	even	that	the	code	actually	fits	the
context.	This	leads	to	inflexible	software	application	that	is	hard	to	maintain.

The	causes	of	copy-and-paste	or	cut-and-paste	are	as	follows:

Novice	developers	not	used	to	writing	code	or	not	aware	how	to	develop
Quick	bug	fix	or	moving	forward	with	development
Code	duplication	for	need	of	a	code	structure	or	standardization	across	modules
A	lack	of	long-term	thinking	or	forethought

The	consequences	of	cut-and-paste	or	copy-and-paste	include	the	following:

Similar	type	of	issues	across	software	application
Higher	maintenance	costs	and	increased	bug	life	cycle
Less	modular	code	base	with	the	same	code	running	into	a	number	of	lines
Inheriting	issues	that	existed	in	the	first	place

Software	architecture	AntiPatterns
Software	architecture	is	an	important	piece	of	overall	system	architecture.	While	system
architecture	focuses	on	aspects	such	as	the	design,	tools,	and	hardware	among	other
things,	software	architecture	looks	at	modeling	the	software	that	is	well	understood	by	the
development	and	test	teams,	product	managers,	and	other	stakeholders.	This	architecture
plays	a	critical	role	in	determining	the	success	of	the	implementation	and	how	the	product
works	for	the	customers.

We	will	discuss	some	of	the	architecture-level	AntiPatterns	that	we	observe	in	the	real
world	with	development	and	implementation	software	architecture.

Reinventing	the	wheel
We	often	hear	technology	leaders	talking	about	NOT	reinventing	the	wheel.	What	does	it
essentially	mean?	For	some,	this	may	mean	code	or	library	reuse.	Actually,	it	points	to
architecture	reuse.	For	example,	you	have	solved	a	problem	and	come	up	with	an
architecture-level	solution.	If	you	encounter	a	similar	problem	in	any	other	application,	the
thought	process	(architecture	or	design)	that	was	developed	earlier	should	be	reused.
There	is	no	point	in	revisiting	the	same	problem	and	devising	a	solution,	which	is
essentially	reinventing	the	wheel.

The	causes	that	lead	to	reinventing	the	wheel	are	as	follows:

An	absence	of	a	central	documentation	or	repository	that	talks	about	architecture-
level	problems	and	solutions	implemented
A	lack	of	communication	between	technology	leaders	in	the	community	or	company
Building	from	scratch	is	the	process	followed	in	the	organization;	basically,	immature
processes	and	loose	process	implementation	and	adherence

The	consequences	of	this	AntiPattern	include	the	following:

Too	many	solutions	to	solve	one	standard	problem,	with	many	of	them	not	being	well
thought	out
More	time	and	resource	utilization	for	the	engineering	team	leading	to	overbudgeting
and	more	time	to	market
A	closed	system	architecture	(architecture	useful	for	only	one	product),	duplication	of
efforts,	and	poor	risk	management

Vendor	lock-in
As	the	name	of	the	AntiPattern	suggests,	product	companies	tend	to	be	dependent	on	some
of	the	technologies	provided	by	their	vendors.	These	technologies	are	so	glued	to	their
system	that	it	is	very	difficult	to	move	away.

The	following	are	the	causes	of	a	vendor	lock-in:

Familiarity	with	folks	in	authority	in	the	vendor	company	and	possible	discounts	in
the	technology	purchase
Technology	chosen	based	on	the	marketing	and	sales	pitch	instead	of	technology
evaluation
Using	a	proven	technology	(proven	indicates	that	the	return	on	investments	with	this
technology	were	really	high	in	the	previous	experience)	in	the	current	project	even
when	it’s	not	suited	for	project	needs	or	requirements
Technologists/developers	are	already	trained	in	using	this	technology

The	consequences	of	a	vendor	lock-in	are	as	follows:

Release	cycles	and	product	maintenance	cycles	of	a	company’s	product	releases	are
directly	dependent	on	the	vendor’s	release	time	frame
The	product	is	developed	around	the	technology	rather	than	on	the	customer’s
requirements
The	product’s	time	to	market	is	unreliable	and	doesn’t	meet	customer’s	expectations

Design	by	committee
Sometimes,	based	on	the	process	in	an	organization,	a	group	of	people	sit	together	and
design	a	particular	system.	The	resulting	software	architecture	is	often	complex	or
substandard	because	it	involves	too	many	thought	processes,	and	technologists	who	may
not	have	the	right	skillset	or	experience	in	designing	the	products	have	put	forward	the
ideas.

The	causes	of	design	by	committee	are	as	follows:

The	process	in	the	organization	involves	getting	the	architecture	or	design	approved
by	many	stakeholders
No	single	point	of	contact	or	architect	responsible	for	the	design
The	design	priorities	set	by	marketing	or	technologists	rather	than	set	by	customer
feedback

The	symptoms	observed	with	this	AntiPattern	include	the	following:

Conflicting	viewpoints	between	developers	and	architects	even	after	the	design	is
finalized
Overly	complex	design	that	is	very	difficult	to	document
Any	change	in	the	specification	or	design	undergoes	review	by	many,	resulting	in
implementation	delays

Summary
To	summarize	this	chapter,	you	learned	about	AntiPatterns,	what	they	are,	and	their
classifications.	We	understood	that	AntiPatterns	could	be	related	to	software	development
or	software	architecture.	We	looked	at	the	commonly	occurring	AntiPatterns	and	learned
about	their	causes,	symptoms,	and	consequences.	I	am	sure	you	will	learn	from	these	and
avoid	such	situations	in	your	project.

This	is	it	folks,	this	was	the	last	chapter	of	the	book.	Hope	you	enjoyed	it	and	the	book
helped	you	improve	your	skills.	Wish	you	all	the	very	best!

Index
A

Abstract	Factory	pattern
about	/	Understanding	the	Factory	pattern,	The	Abstract	Factory	pattern
implementing	/	Implementing	the	Abstract	Factory	pattern
versus	Factory	method	pattern	/	The	Factory	method	versus	Abstract	Factory
method

abstraction
features	/	Abstraction
about	/	Abstraction

Adapter	pattern
about	/	Understanding	Structural	design	patterns

AntiPattern
causes	/	Reinventing	the	wheel
consequences	/	Reinventing	the	wheel

AntiPatterns
defining	/	An	introduction	to	AntiPatterns
results	/	An	introduction	to	AntiPatterns
benefits	/	An	introduction	to	AntiPatterns
categories	/	An	introduction	to	AntiPatterns

aspects,	object-oriented	programming
encapsulation	/	Encapsulation
polymorphism	/	Polymorphism
inheritance	/	Inheritance
abstraction	/	Abstraction
composition	/	Composition

B
bad	design

Immobile	/	An	introduction	to	AntiPatterns
Rigid	/	An	introduction	to	AntiPatterns
Fragile	/	An	introduction	to	AntiPatterns
Viscose	/	An	introduction	to	AntiPatterns

Behavioral	patterns
properties	/	Behavioral	patterns

Bridge	pattern
about	/	Understanding	Structural	design	patterns

C
classes

about	/	Classes
client

about	/	Client
Command	design	pattern

defining	/	Understanding	the	Command	design	pattern
Command	pattern

defining	/	Introducing	the	Command	pattern
UML	class	diagram	/	A	UML	class	diagram	for	the	Command	pattern
implementing	/	Implementing	the	Command	pattern	in	the	real	world
design	considerations	/	Design	considerations
Redo	or	rollback	operations	/	Design	considerations
asynchronous	task	execution	/	Design	considerations
advantages	/	Advantages	and	disadvantages	of	Command	patterns
disadvantages	/	Advantages	and	disadvantages	of	Command	patterns

composition
about	/	Composition

compound	patterns
about	/	An	introduction	to	Compound	patterns

context,	design	patterns
participants	/	Context	–	the	applicability	of	design	patterns
non-functional	requirements	/	Context	–	the	applicability	of	design	patterns
trade-offs	/	Context	–	the	applicability	of	design	patterns
results	/	Context	–	the	applicability	of	design	patterns

copy-and-paste	or	cut-and-paste	programming
defining	/	Copy-and-paste	or	cut-and-paste	programming
causes	/	Copy-and-paste	or	cut-and-paste	programming
consequences	/	Copy-and-paste	or	cut-and-paste	programming

core	concepts,	object-oriented	programming
objects	/	Objects
classes	/	Classes
methods	/	Methods

Creational	patterns
properties	/	Creational	patterns:

D
Decorator	pattern

about	/	Understanding	Structural	design	patterns
design	by	committee

causes	/	Design	by	committee
symptoms	/	Design	by	committee

design	patterns
about	/	The	concept	of	design	patterns
features	/	The	concept	of	design	patterns
advantages	/	Advantages	of	design	patterns
taxonomy	/	Taxonomy	of	design	patterns
applicability	/	Context	–	the	applicability	of	design	patterns
classifying	/	Classifying	patterns
Creational	patterns	/	Creational	patterns:
Structural	patterns	/	Structural	patterns
Behavioral	patterns	/	Behavioral	patterns

dynamic	languages
patterns	/	Patterns	for	dynamic	languages

E
encapsulation

about	/	Encapsulation
features	/	Encapsulation

examples,	Structural	design	patterns
Adapter	pattern	/	Understanding	Structural	design	patterns
Bridge	pattern	/	Understanding	Structural	design	patterns
Decorator	pattern	/	Understanding	Structural	design	patterns

F
factory

advantages	/	Understanding	the	Factory	pattern
Factory	method	pattern

about	/	Understanding	the	Factory	pattern,	The	Factory	Method	pattern
implementing	/	Implementing	the	Factory	Method
advantages	/	Advantages	of	the	Factory	method	pattern
versus	Abstract	Factory	pattern	/	The	Factory	method	versus	Abstract	Factory
method

Factory	pattern
about	/	Understanding	the	Factory	pattern
Simple	Factory	pattern	/	Understanding	the	Factory	pattern,	The	Simple	Factory
pattern
Factory	method	pattern	/	Understanding	the	Factory	pattern,	The	Factory
Method	pattern
Abstract	Factory	pattern	/	Understanding	the	Factory	pattern,	The	Abstract
Factory	pattern

façade
about	/	Façade

Façade	design	pattern
about	/	Understanding	the	Façade	design	pattern
implementing,	in	real	world	/	Implementing	the	Façade	pattern	in	the	real	world

Façade	pattern
and	Proxy	pattern,	comparing	/	Comparing	the	Façade	and	Proxy	patterns

frequently	asked	questions
about	/	Frequently	asked	questions,	Frequently	asked	questions,	Frequently
asked	questions,	Frequently	asked	questions,	Frequently	asked	questions

G
GoF	(Gang	of	Four)

about	/	The	concept	of	design	patterns
Golden	Hammer

causes	/	Golden	Hammer
consequences	/	Golden	Hammer

H
handlers

defining	/	Modules
IndexHandler	/	Modules
NewHandler	/	Modules
UpdateHandler	/	Modules

Hollywood	principle
about	/	The	Hollywood	principle	and	the	Template	Method

I
inheritance

about	/	Inheritance
interface	segregation	principle

about	/	The	interface	segregation	principle
advantages	/	The	interface	segregation	principle

inversion	of	control	principle
about	/	The	inversion	of	control	principle
advantages	/	The	inversion	of	control	principle

L
Lava	Flow

about	/	Lava	Flow
causes	/	Lava	Flow
symptoms	/	Lava	Flow

Loose	coupling
about	/	Loose	coupling	and	the	Observer	pattern

loose	coupling	architecture
about	/	Loose	coupling	and	the	Observer	pattern

M
metaclasses

about	/	Singletons	and	metaclasses
methods

about	/	Methods
Model-View-Controller	pattern

defining	/	The	Model-View-Controller	pattern,	The	MVC	pattern	in	the	real
world
working	/	The	Model-View-Controller	pattern
Model	/	Model	–	knowledge	of	the	application
View	/	View	–	the	appearance
Controller	/	Controller	–	the	glue
UML	class	diagram	/	A	UML	class	diagram	for	the	MVC	design	pattern
design	considerations	/	The	MVC	pattern	in	the	real	world
benefits	/	Benefits	of	the	MVC	pattern

module-level	Singletons
defining	/	Module-level	Singletons

modules
defining	/	Modules

Monostate	Singleton	pattern
defining	/	The	Monostate	Singleton	pattern

MTV	(Model,	Template,	View)
about	/	The	MVC	pattern	in	the	real	world

O
object-oriented	design	principles

about	/	Object-oriented	design	principles
open/close	principle	/	The	open/close	principle
inversion	of	control	principle	/	The	inversion	of	control	principle
interface	segregation	principle	/	The	interface	segregation	principle
single	responsibility	principle	/	The	single	responsibility	principle
substitution	principle	/	The	substitution	principle

object-oriented	programming
about	/	Understanding	object-oriented	programming
core	concepts	/	Methods
aspects	/	Major	aspects	of	object-oriented	programming

objects
about	/	Objects

objects	for	states	pattern
about	/	Defining	the	State	design	pattern

Observer	pattern
about	/	Loose	coupling	and	the	Observer	pattern
advantages	/	The	Observer	pattern	–	advantages	and	disadvantages
disadvantages	/	The	Observer	pattern	–	advantages	and	disadvantages

Observer	pattern	methods
pull	model	/	The	pull	model
push	model	/	The	push	model

open/close	principle
about	/	The	open/close	principle
advantages	/	The	open/close	principle

P
participants,	State	design	pattern

State	/	Understanding	the	State	design	pattern
ConcreteState	/	Understanding	the	State	design	pattern
Context	/	Understanding	the	State	design	pattern

polymorphism
about	/	Polymorphism
features	/	Polymorphism

principle	of	least	knowledge
about	/	The	principle	of	least	knowledge

private	keyword	/	Encapsulation
protected	keyword	/	Encapsulation
Proxy	design	pattern

defining	/	Understanding	the	Proxy	design	pattern
UML	class	diagram	/	A	UML	class	diagram	for	the	Proxy	pattern

Proxy	pattern
using	/	Understanding	the	Proxy	design	pattern
defining	/	The	Proxy	pattern	in	the	real	world
advantages	/	Advantages	of	the	Proxy	pattern
and	Façade	pattern,	comparing	/	Comparing	the	Façade	and	Proxy	patterns

Proxy	types
defining	/	Understanding	different	types	of	Proxies
virtual	proxy	/	A	virtual	proxy
remote	proxy	/	A	remote	proxy
protective	proxy	/	A	protective	proxy
smart	proxy	/	A	smart	proxy

public	keyword	/	Encapsulation
pull	model	/	The	pull	model
push	model	/	The	push	model
Python

about	/	Patterns	for	dynamic	languages

S
Simple	Factory	pattern

about	/	Understanding	the	Factory	pattern,	The	Simple	Factory	pattern
single	responsibility	principle

about	/	The	single	responsibility	principle
advantges	/	The	single	responsibility	principle

Singleton	design	pattern
classical	singleton,	implementing	in	Python	/	Implementing	a	classical	Singleton
in	Python
lazy	instantiation	/	Lazy	instantiation	in	the	Singleton	pattern

Singleton	pattern
part	1,	defining	/	A	real-world	scenario	–	the	Singleton	pattern,	part	1
part	2,	defining	/	A	real-world	scenario	–	the	Singleton	pattern,	part	2
drawbacks	/	Drawbacks	of	the	Singleton	pattern

Singletons
about	/	Singletons	and	metaclasses,	Drawbacks	of	the	Singleton	pattern

software	architecture	AntiPatterns
about	/	Software	architecture	AntiPatterns
wheel,	reinventing	/	Reinventing	the	wheel
vendor	lock-in	/	Vendor	lock-in
design	by	committee	/	Design	by	committee

software	development	AntiPatterns
defining	/	Software	development	AntiPatterns
spaghetti	code	/	Spaghetti	code
Golden	Hammer	/	Golden	Hammer
Lava	Flow	/	Lava	Flow
copy-and-paste	or	cut-and-paste	programming	/	Copy-and-paste	or	cut-and-paste
programming

Software	Development	Life	Cycle	(SDLC)	/	The	concept	of	design	patterns
Spaghetti	code

causes	/	Spaghetti	code
State	design	pattern

defining	/	Defining	the	State	design	pattern
working	/	Understanding	the	State	design	pattern
defining,	with	UML	diagram	/	Understanding	the	State	design	pattern	with	a
UML	diagram
example	/	A	simple	example	of	the	State	design	pattern
with	v3.5	implementation	/	The	State	design	pattern	with	v3.5	implementation
advantages	/	Advantages/disadvantages	of	the	State	pattern
disadvantages	/	Advantages/disadvantages	of	the	State	pattern

stock	trading	system
implementing	/	Design	considerations

Structural	design	patterns

about	/	Understanding	Structural	design	patterns
examples	/	Understanding	Structural	design	patterns

Structural	patterns
properties	/	Structural	patterns

substitution	principle
about	/	The	substitution	principle

system
about	/	System

T
taxonomy,	design	patterns

snippet	/	Taxonomy	of	design	patterns
design	/	Taxonomy	of	design	patterns
standard	/	Taxonomy	of	design	patterns
pattern	/	Taxonomy	of	design	patterns

Template	Method
about	/	Defining	the	Template	Method	pattern

Template	Method	design	pattern
defining	/	Understanding	the	Template	Method	design	pattern

Template	Method	pattern
defining	/	Defining	the	Template	Method	pattern,	The	Template	Method	pattern
in	the	real	world
using	/	Defining	the	Template	Method	pattern
UML	class	diagram	/	A	UML	class	diagram	for	the	Template	Method	pattern
about	/	The	Template	Method	pattern	in	the	real	world,	The	Hollywood	principle
and	the	Template	Method
design	considerations	/	The	Template	Method	pattern	in	the	real	world
hook,	defining	/	The	Template	Method	pattern	–	hooks
advantages	/	The	advantages	and	disadvantages	of	the	Template	Method	pattern
disadvantages	/	The	advantages	and	disadvantages	of	the	Template	Method
pattern

Tornado	web	application	framework
URL	/	The	MVC	pattern	in	the	real	world

U
UML	class	diagram

about	/	A	UML	class	diagram
façade	/	A	UML	class	diagram,	Façade
system	/	A	UML	class	diagram,	System
client	/	A	UML	class	diagram,	Client

V
vendor	lock-in

causes	/	Vendor	lock-in
consequences	/	Vendor	lock-in

	Learning Python Design Patterns Second Edition
	Credits
	Foreword
	About the Author
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Introduction to Design Patterns
	Understanding object-oriented programming
	Objects
	Classes
	Methods
	Major aspects of object-oriented programming
	Encapsulation
	Polymorphism
	Inheritance
	Abstraction
	Composition
	Object-oriented design principles
	The open/close principle
	The inversion of control principle
	The interface segregation principle
	The single responsibility principle
	The substitution principle
	The concept of design patterns
	Advantages of design patterns
	Taxonomy of design patterns
	Context – the applicability of design patterns
	Patterns for dynamic languages
	Classifying patterns
	Creational patterns:
	Structural patterns
	Behavioral patterns
	Summary
	2. The Singleton Design Pattern
	Understanding the Singleton design pattern
	Implementing a classical Singleton in Python
	Lazy instantiation in the Singleton pattern
	Module-level Singletons
	The Monostate Singleton pattern
	Singletons and metaclasses
	A real-world scenario – the Singleton pattern, part 1
	A real-world scenario – the Singleton pattern, part 2
	Drawbacks of the Singleton pattern
	Summary
	3. The Factory Pattern – Building Factories to Create Objects
	Understanding the Factory pattern
	The Simple Factory pattern
	The Factory Method pattern
	Implementing the Factory Method
	Advantages of the Factory method pattern
	The Abstract Factory pattern
	Implementing the Abstract Factory pattern
	The Factory method versus Abstract Factory method
	Summary
	4. The Façade Pattern – Being Adaptive with Façade
	Understanding Structural design patterns
	Understanding the Façade design pattern
	A UML class diagram
	Façade
	System
	Client
	Implementing the Façade pattern in the real world
	The principle of least knowledge
	Frequently asked questions
	Summary
	5. The Proxy Pattern – Controlling Object Access
	Understanding the Proxy design pattern
	A UML class diagram for the Proxy pattern
	Understanding different types of Proxies
	A virtual proxy
	A remote proxy
	A protective proxy
	A smart proxy
	The Proxy pattern in the real world
	Advantages of the Proxy pattern
	Comparing the Façade and Proxy patterns
	Frequently asked questions
	Summary
	6. The Observer Pattern – Keeping Objects in the Know
	Introducing Behavioral patterns
	Understanding the Observer design pattern
	A UML class diagram for the Observer pattern
	The Observer pattern in the real world
	The Observer pattern methods
	The pull model
	The push model
	Loose coupling and the Observer pattern
	The Observer pattern – advantages and disadvantages
	Frequently asked questions
	Summary
	7. The Command Pattern – Encapsulating Invocation
	Introducing the Command pattern
	Understanding the Command design pattern
	A UML class diagram for the Command pattern
	Implementing the Command pattern in the real world
	Design considerations
	Advantages and disadvantages of Command patterns
	Frequently asked questions
	Summary
	8. The Template Method Pattern – Encapsulating Algorithm
	Defining the Template Method pattern
	Understanding the Template Method design pattern
	A UML class diagram for the Template Method pattern
	The Template Method pattern in the real world
	The Template Method pattern – hooks
	The Hollywood principle and the Template Method
	The advantages and disadvantages of the Template Method pattern
	Frequently asked questions
	Summary
	9. Model-View-Controller – Compound Patterns
	An introduction to Compound patterns
	The Model-View-Controller pattern
	Model – knowledge of the application
	View – the appearance
	Controller – the glue
	A UML class diagram for the MVC design pattern
	The MVC pattern in the real world
	Modules
	Benefits of the MVC pattern
	Frequently asked questions
	Summary
	10. The State Design Pattern
	Defining the State design pattern
	Understanding the State design pattern
	Understanding the State design pattern with a UML diagram
	A simple example of the State design pattern
	The State design pattern with v3.5 implementation
	Advantages/disadvantages of the State pattern
	Summary
	11. AntiPatterns
	An introduction to AntiPatterns
	Software development AntiPatterns
	Spaghetti code
	Golden Hammer
	Lava Flow
	Copy-and-paste or cut-and-paste programming
	Software architecture AntiPatterns
	Reinventing the wheel
	Vendor lock-in
	Design by committee
	Summary
	Index

