
www.allitebooks.com

http://www.allitebooks.org

Learning Python Design
Patterns
Second Edition

Leverage the power of Python design patterns to solve
real-world problems in software architecture and design

Chetan Giridhar

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Python Design Patterns
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Second edition: February 2016

Production reference: 1080216

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-803-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Chetan Giridhar

Reviewer
Maurice HT Ling

Commissioning Editor
Kunal Parikh

Acquisition Editor
Denim Pinto

Content Development Editor
Merint Thomas Mathew

Technical Editor
Chinmay S. Puranik

Copy Editor
Tasneem Fatehi

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

"Controlling complexity is the essence of computer programming."

 – Brian Kernighan

"All problems in computer science can be solved by another level of indirection
(abstraction)."

 – David Wheeler

The preceding two quotes by two well known computer scientists illustrate the
problem faced by the modern software designer—coming up with a good, stable,
reusable, flexible solution to a software design problem.

Design patterns solve the preceding problems in the most elegant way. Design
patterns abstract and present in neat, well-defined components and interfaces the
experience of many software designers and architects over many years of solving
similar problems. These are solutions that have withstood the test of time with
respect to reusability, flexibility, scalability, and maintainability.

There have been many books on design patterns with the well-known Gang of Four
(GoF) book forming the cornerstone of nearly the entire domain.

However, in this era of web and mobile computing, where programs tend to
get written in high-level languages such as Python, Ruby, and Clojure, there is
often a need for books that translate the rather esoteric language used in such
books into more familiar terms, with reusable code written in these newer, more
dynamic programming languages. This is especially true when it comes to newbie
programmers who often tend to get lost in the complexities of design versus
implementation and often require an expert helping hand.

www.allitebooks.com

http://www.allitebooks.org

This book fulfills that role very well. It uses the template of design patterns as laid
out in the GoF book and adds a few others as well for completion—but before
jumping into the patterns itself, gives the young and inexperienced reader the
fundamentals of software design principles that have gone into the thinking behind
the creation and evolution of these design patterns. It doesn't walk the gentle reader
blindly into the maze of the pattern world, but lays out the fundamentals well before
opening that door and carrying the reader along that path of learning.

The book is written with Python as the language for implementing the sample
code for the patterns—and this makes excellent sense. As someone who has spent
more than 12 years in the company of this wonderful programming language, I can
attest to its beauty and simplicity and its effectiveness in solving problems ranging
from routine to the most complex. Python is ideally suited to the rookie and young
programmer, and with the ease of learning it, it is also a lot of fun to code in. The
young programmer would find their time spent in the company of Python along in
this book very rewarding and fruitful.

Chetan Giridhar has been working and contributing to Python for well over 7 years.
He is ideally suited for the job of penning a book like this, as he has gone through
some of the cycles of learning the complexities of implementation and design
himself and has learned well through that process. He is a well-known speaker
on a number of varied topics in Python and has delivered well-attended talks at
Python conferences, such as PyCon India. He was amongst the invited speakers for
conferences in the USA, Asia-Pacific, and New Zealand.

I believe this book, Learning Python Design Patterns, Second Edition, would be an
excellent addition to the Learning series by Packt Publishing and would provide
a set of skills to the toolbox of the young Python programmer that would take
them gently and expertly to being able to design modular and efficient programs
in Python.

Anand B Pillai
CTO—Skoov.com
Board Member—Python Software Foundation
Founder—Bangalore Python User's Group

www.allitebooks.com

http://www.allitebooks.org

About the Author

Chetan Giridhar is a technology leader, open source enthusiast, and Python
developer. He has written multiple articles on technology and development practices
in magazines such as LinuxForYou and Agile Record, and has published technical
papers in the Python Papers journal. He has been a speaker at PyCon conferences
such as PyCon India, Asia-Pacific, and New Zealand and loves working on real-time
communications, distributed systems, and cloud applications. Chetan has been a
reviewer at Packt Publishing and has contributed to books on IPython Visualizations
and Core Python.

I'd like to thank the Packt Publishing team, especially Merint
Thomas Mathew, and the technical reviewer, Maurice HT Ling,
for bringing out the best content in this book. Special thanks to my
mentor, Anand B Pillai, for graciously accepting to review this book
and writing the foreword. This book wouldn't be possible without
the blessings of my parents, Jyotsana and Jayant Giridhar, and
constant support and encouragement from my wife, Deepti,
and my daughter, Pihu!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Maurice HT Ling has been programming in Python since 2003. Having completed
his Ph D in bioinformatics and B Sc (honors) in molecular and cell biology from The
University of Melbourne, he is currently a research fellow in Nanyang Technological
University, Singapore, and an honorary fellow at The University of Melbourne,
Australia. Maurice is the chief editor for computational and mathematical biology,
and co-editor for The Python Papers. Recently, Maurice cofounded the first
synthetic biology startup in Singapore, AdvanceSyn Pte. Ltd., as a director and chief
technology officer. He is also the principal partner of Colossus Technologies LLP,
Singapore. His research interests lie in life—biological life, artificial life, and artificial
intelligence—using computer science and statistics as tools to understand life and
its numerous aspects. In his free time, Maurice likes to read, enjoy a cup of coffee,
write his personal journal, or philosophize on various aspects of life. You can reach
him at his website and on his LinkedIn profile at http://maurice.vodien.com and
http://www.linkedin.com/in/mauriceling, respectively.

www.allitebooks.com

http://maurice.vodien.com
http://www.linkedin.com/in/mauriceling
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Introduction to Design Patterns 1

Understanding object-oriented programming 2
Objects 2
Classes 2
Methods 3

Major aspects of object-oriented programming 3
Encapsulation 3
Polymorphism 4
Inheritance 4
Abstraction 5
Composition 6

Object-oriented design principles 6
The open/close principle 6
The inversion of control principle 7
The interface segregation principle 7
The single responsibility principle 8
The substitution principle 8

The concept of design patterns 8
Advantages of design patterns 10
Taxonomy of design patterns 10
Context – the applicability of design patterns 10

Table of Contents

[ii]

Patterns for dynamic languages 11
Classifying patterns 11

Creational patterns 11
Structural patterns 12
Behavioral patterns 12

Summary 12
Chapter 2: The Singleton Design Pattern 13

Understanding the Singleton design pattern 14
Implementing a classical Singleton in Python 14

Lazy instantiation in the Singleton pattern 15
Module-level Singletons 16
The Monostate Singleton pattern 16
Singletons and metaclasses 18
A real-world scenario – the Singleton pattern, part 1 19
A real-world scenario – the Singleton pattern, part 2 21
Drawbacks of the Singleton pattern 23
Summary 24

Chapter 3: The Factory Pattern – Building Factories
to Create Objects 25

Understanding the Factory pattern 25
The Simple Factory pattern 26
The Factory Method pattern 28

Implementing the Factory Method 29
Advantages of the Factory method pattern 32

The Abstract Factory pattern 32
Implementing the Abstract Factory pattern 34

The Factory method versus Abstract Factory method 36
Summary 37

Chapter 4: The Façade Pattern – Being Adaptive with Façade 39
Understanding Structural design patterns 40
Understanding the Façade design pattern 40
A UML class diagram 41

Façade 42
System 42
Client 43

Implementing the Façade pattern in the real world 43
The principle of least knowledge 47
Frequently asked questions 47
Summary 48

Table of Contents

[iii]

Chapter 5: The Proxy Pattern – Controlling Object Access 49
Understanding the Proxy design pattern 50
A UML class diagram for the Proxy pattern 52
Understanding different types of Proxies 53

A virtual proxy 53
A remote proxy 53
A protective proxy 54
A smart proxy 54

The Proxy pattern in the real world 54
Advantages of the Proxy pattern 58
Comparing the Façade and Proxy patterns 58
Frequently asked questions 58
Summary 59

Chapter 6: The Observer Pattern – Keeping Objects in the Know 61
Introducing Behavioral patterns 62
Understanding the Observer design pattern 62

A UML class diagram for the Observer pattern 64
The Observer pattern in the real world 65
The Observer pattern methods 69

The pull model 69
The push model 70

Loose coupling and the Observer pattern 70
The Observer pattern – advantages and disadvantages 71
Frequently asked questions 71
Summary 72

Chapter 7: The Command Pattern – Encapsulating Invocation 73
Introducing the Command pattern 74
Understanding the Command design pattern 74

A UML class diagram for the Command pattern 76
Implementing the Command pattern in the real world 79

Design considerations 79
Advantages and disadvantages of Command patterns 83
Frequently asked questions 83
Summary 84

Table of Contents

[iv]

Chapter 8: The Template Method Pattern – Encapsulating
Algorithm 85

Defining the Template Method pattern 86
Understanding the Template Method design pattern 88
A UML class diagram for the Template Method pattern 90

The Template Method pattern in the real world 92
The Template Method pattern – hooks 96
The Hollywood principle and the Template Method 97
The advantages and disadvantages of the Template Method pattern 97
Frequently asked questions 98
Summary 98

Chapter 9: Model-View-Controller – Compound Patterns 99
An introduction to Compound patterns 100
The Model-View-Controller pattern 100

Model – knowledge of the application 102
View – the appearance 103
Controller – the glue 103

A UML class diagram for the MVC design pattern 105
The MVC pattern in the real world 107

Modules 107
Benefits of the MVC pattern 114
Frequently asked questions 115
Summary 115

Chapter 10: The State Design Pattern 117
Defining the State design pattern 117

Understanding the State design pattern 118
Understanding the State design pattern with a UML diagram 120

A simple example of the State design pattern 120
The State design pattern with v3.5 implementation 122

Advantages/disadvantages of the State pattern 125
Summary 126

Table of Contents

[v]

Chapter 11: AntiPatterns 127
An introduction to AntiPatterns 128
Software development AntiPatterns 129

Spaghetti code 129
Golden Hammer 130
Lava Flow 131
Copy-and-paste or cut-and-paste programming 131

Software architecture AntiPatterns 132
Reinventing the wheel 132
Vendor lock-in 133
Design by committee 133

Summary 134
Index 135

[vii]

Preface
Design patterns are among the most powerful methods of building large software
systems. With an increasing focus on optimized software architecture and design,
it is important that software architects think about optimizations in object creation,
code structure, and interaction between objects at the architecture or design level.
This makes sure that the cost of software maintenance is low, and code can be easily
reused and is adaptable to change. Moreover, providing frameworks for reusability
and separation of concerns is key to software development today.

What this book covers
Chapter 1, Introduction to Design Patterns, goes through the basics of object-oriented
programming and discusses object-oriented design principles in detail. This chapter
gives a brief introduction to the concept of design patterns so that you will be able to
appreciate the context and application of design patterns in software development.

Chapter 2, The Singleton Design Pattern, covers one of the simplest and well-known
Creational design patterns used in application development—the Singleton design
pattern. The different ways in which we can create a Singleton pattern in Python
are also covered in this chapter along with examples. This chapter also covers the
Monostate (or Borg) design pattern, which is a variant of the Singleton design pattern.

Chapter 3, The Factory Pattern – Building Factories to Create Objects, discusses another
creational pattern, the Factory pattern. You will also learn about the Factory Method
pattern and Abstract Factory pattern with a UML diagram, real-world scenarios, and
Python v3.5 implementations.

Preface

[viii]

Chapter 4, The Façade Pattern – Being Adaptive with Façade, shows you another type of
design pattern, the Structural design pattern. We will be introduced to the concept of
Façade and learn how it is applicable to software design with the help of the Façade
design pattern. You'll also learn its implementation with a sample Python application
using a real-world scenario.

Chapter 5, The Proxy Pattern – Controlling Object Access, deals with the Proxy pattern
that falls into the category of Structural design patterns. We will be introduced to the
Proxy as a concept and discuss the design pattern and see how it is used in software
application development. You'll also learn about the different variants of the Proxy
pattern—Virtual Proxy, Smart Proxy, Remote Proxy, and Protective Proxy.

Chapter 6, The Observer Pattern – Keeping Objects in the Know, talks about the third
type of design pattern—the behavioral design pattern. We will be introduced to
the Observer design pattern with examples. In this chapter, you'll learn how to
implement the Push and Pull models of the Observer pattern and the principles of
loose coupling. We'll also see how this pattern is critical when it comes to applying it
to cloud applications and distributed systems.

Chapter 7, The Command Pattern – Encapsulating Invocation, tells you about the
Command design pattern. We will be introduced to the Command design pattern
and discuss how it is used in software application development with a real-
world scenario and Python implementation. We will also study two main aspects
of the Command pattern—an implementation of redo/rollback operations and
asynchronous task execution.

Chapter 8, The Template Method Pattern – Encapsulating Algorithm, discusses the
Template design pattern. Like the Command pattern, the Template pattern falls into
the category of Behavioral patterns. Here, we discuss the Template method pattern,
and you will learn about Hooks with an implementation. We'll also cover the
Hollywood principle that helps us appreciate this pattern better.

Chapter 9, Model-View-Controller – Compound Patterns, talks about Compound
patterns. We will be introduced to the Model-View-Controller design pattern and
discuss how it is used in software application development. MVC is easily one of
the most used design patterns; in fact, many Python frameworks are based on this
principle. You will learn about the details of MVC implementation with an example
application written in Python Tornado (a framework used by Facebook).

Chapter 10, The State Design Pattern, introduces you to the State design pattern, which
falls into the category of Behavioral patterns just like the Command or Template
design patterns. We will discuss how it is used in software application development.

Chapter 11, AntiPatterns, tells you about AntiPatterns—what we shouldn't do as
architects or software engineers.

Preface

[ix]

What you need for this book
All you need is Python v3.5, and you can download it from
https://www.python.org/downloads/.

Who this book is for
This book is for Python developers and software architects who care about software
design principles and details of application development aspects in Python. It
requires a basic understanding of programming concepts and beginner-level Python
development experience. It will also be helpful for students and teachers in live
learning environments.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The Car object will have attributes such as fuel level, isSedan, speed, and
steering wheel and coordinates."

A block of code is set as follows:

class Person(object):
 def __init__(self, name, age): #constructor
 self.name = name #data members/ attributes
 self.age = age
 def get_person(self,): # member function
 return "<Person (%s, %s)>" % (self.name, self.age)

p = Person("John", 32) # p is an object of type Person
print("Type of Object:", type(p), "Memory Address:", id(p))

https://www.python.org/downloads/

Preface

[x]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In Python,
the concept of encapsulation (data and method hiding) is not implicit, as it doesn't
have keywords such as public, private, and protected (in languages such as C++ or
Java) that are required to support encapsulation."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Introduction to
Design Patterns

In this chapter, we will go through the basics of object-oriented programming and
discuss the object-oriented design principles in detail. This will get us prepared for
the advanced topics covered later in the book. This chapter will also give a brief
introduction to the concept of design patterns so that you will be able to appreciate
the context and application of design patterns in software development. Here we
also classify the design patterns under three main aspects—creational, structural, and
Behavioral patterns. So, essentially, we will cover the following topics in this chapter:

• Understanding object-oriented programming
• Discussing object-oriented design principles
• Understanding the concept of design patterns and their taxonomy

and context
• Discussing patterns for dynamic languages
• Classifying patterns—creational pattern, structural pattern,

and behavioral pattern

Introduction to Design Patterns

[2]

Understanding object-oriented
programming
Before you start learning about design patterns, it's always good to cover the basics
and go through object-oriented paradigms in Python. The object-oriented world
presents the concept of objects that have attributes (data members) and procedures
(member functions). These functions are responsible for manipulating the attributes.
For instance, take an example of the Car object. The Car object will have attributes
such as fuel level, isSedan, speed, and steering wheel and coordinates,
and the methods would be accelerate() to increase the speed and takeLeft() to
make the car turn left. Python has been an object-oriented language since it was first
released. As they say, everything in Python is an object. Each class instance or variable
has its own memory address or identity. Objects, which are instances of classes,
interact among each other to serve the purpose of an application under development.
Understanding the core concepts of object-oriented programming involves
understanding the concepts of objects, classes, and methods.

Objects
The following points describe objects:

• They represent entities in your application under development.
• Entities interact among themselves to solve real-world problems.
• For example, Person is an entity and Car is an entity. Person drives Car to

move from one location to the other.

Classes
Classes help developers to represent real-world entities:

• Classes define objects in attributes and behaviors. Attributes are data
members and behaviors are manifested by the member functions

• Classes consist of constructors that provide the initial state for these objects
• Classes are like templates and hence can be easily reused

For example, class Person will have attributes name and age and member function
gotoOffice() that defines his behavior for travelling to office for work.

Chapter 1

[3]

Methods
The following points talk about what methods do in the object-oriented world:

• They represent the behavior of the object
• Methods work on attributes and also implement the desired functionality

A good example of a class and object created in Python v3.5 is given here:

class Person(object):
 def __init__(self, name, age): #constructor
 self.name = name #data members/ attributes
 self.age = age
 def get_person(self,): # member function
 return "<Person (%s, %s)>" % (self.name, self.age)

p = Person("John", 32) # p is an object of type Person
print("Type of Object:", type(p), "Memory Address:", id(p))

The output of the preceding code should look as follows:

Major aspects of object-oriented
programming
Now that we have understood the basics of object-oriented programming, let's dive
into the major aspects of OOP.

Encapsulation
The key features of encapsulation are as follows:

• An object's behavior is kept hidden from the outside world or objects keep
their state information private.

• Clients can't change the object's internal state by directly acting on them;
rather, clients request the object by sending messages. Based on the type of
requests, objects may respond by changing their internal state using special
member functions such as get and set.

Introduction to Design Patterns

[4]

• In Python, the concept of encapsulation (data and method hiding)
is not implicit, as it doesn't have keywords such as public, private,
and protected (in languages such as C++ or Java) that are required to
support encapsulation. Of course, accessibility can be made private by
prefixing __ in the variable or function name.

Polymorphism
The major features of polymorphism are as follows:

• Polymorphism can be of two types:
 ° An object provides different implementations of the method based on

input parameters
 ° The same interface can be used by objects of different types

• In Python, polymorphism is a feature built-in for the language. For example,
the + operator can act on two integers to add them or can work with strings
to concatenate them

In the following example, strings, tuples, or lists can all be accessed with an integer
index. This shows how Python demonstrates polymorphism in built-in types:

a = "John"
b = (1,2,3)
c = [3,4,6,8,9]
print(a[1], b[0], c[2])

Inheritance
The following points help us understand the inheritance process better:

• Inheritance indicates that one class derives (most of its) functionality from
the parent class.

• Inheritance is described as an option to reuse functionality defined in
the base class and allow independent extensions of the original software
implementation.

• Inheritance creates hierarchy via the relationships among objects of different
classes. Python, unlike Java, supports multiple inheritance (inheriting from
multiple base classes).

Chapter 1

[5]

In the following code example, class A is the base class and class B derives its
features from class A. So, the methods of class A can be accessed by the object of
class B:

class A:
 def a1(self):
 print("a1")

class B(A):
 def b(self):
 print("b")

b = B()
b.a1()

Abstraction
The key features of abstraction are as follows:

• It provides you with a simple interface to the clients, where the clients can
interact with class objects and call methods defined in the interface

• It abstracts the complexity of internal classes with an interface so that the
client need not be aware of internal implementations

In the following example, internal details of the Adder class are abstracted with the
add() method:

class Adder:
 def __init__(self):
 self.sum = 0
 def add(self, value):
 self.sum += value

acc = Adder()
for i in range(99):
 acc.add(i)

print(acc.sum)

Introduction to Design Patterns

[6]

Composition
Composition refers to the following points:

• It is a way to combine objects or classes into more complex data structures or
software implementations

• In composition, an object is used to call member functions in other modules
thereby making base functionality available across modules without
inheritance

In the following example, the object of class A is composited under class B:

class A(object):
 def a1(self):
 print("a1")

class B(object):
 def b(self):
 print("b")
 A().a1()

objectB = B()
objectB.b()

Object-oriented design principles
Now, let's talk about another set of concepts that are going to be crucial for us.
These are nothing but the object-oriented design principles that will act as a
toolbox for us while learning design patterns in detail.

The open/close principle
The open/close principle states that classes or objects and methods should be open for
extension but closed for modifications.

What this means in simple language is, when you develop your software application,
make sure that you write your classes or modules in a generic way so that whenever
you feel the need to extend the behavior of the class or object, then you shouldn't
have to change the class itself. Rather, a simple extension of the class should help you
build the new behavior.

Chapter 1

[7]

For example, the open/close principle is manifested in a case where a user has to
create a class implementation by extending the abstract base class to implement the
required behavior instead of changing the abstract class.

Advantages of this design principle are as follows:

• Existing classes are not changed and hence the chances of regression are less
• It also helps maintain backward compatibility for the previous code

The inversion of control principle
The inversion of control principle states that high-level modules shouldn't be dependent
on low-level modules; they should both be dependent on abstractions. Details should depend
on abstractions and not the other way round.

This principle suggests that any two modules shouldn't be dependent on each other
in a tight way. In fact, the base module and dependent module should be decoupled
with an abstraction layer in between.

This principle also suggests that the details of your class should represent the
abstractions. In some cases, the philosophy gets inverted and implementation details
itself decide the abstraction, which should be avoided.

Advantages of the inversion of control principle are as follows:

• The tight coupling of modules is no more prevalent and hence no
complexity/rigidity in the system

• As there is a clear abstraction layer between dependent modules (provided
by a hook or parameter), it's easy to deal with dependencies across modules
in a better way

The interface segregation principle
As the interface segregation principle states, clients should not be forced to depend on
interfaces they don't use.

This principle talks about software developers writing their interfaces well. For
instance, it reminds the developers/architects to develop methods that relate to
the functionality. If there is any method that is not related to the interface, the class
dependent on the interface has to implement it unnecessarily.

For example, a Pizza interface shouldn't have a method called add_chicken().
The Veg Pizza class based on the Pizza interface shouldn't be forced to implement
this method.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Design Patterns

[8]

Advantages of this design principle are as follows:

• It forces developers to write thin interfaces and have methods that are
specific to the interface

• It helps you not to populate interfaces by adding unintentional methods

The single responsibility principle
As the single responsibility principle states, a class should have only one reason
to change.

This principle says that when we develop classes, it should cater to the given
functionality well. If a class is taking care of two functionalities, it is better to split
them. It refers to functionality as a reason to change. For example, a class can
undergo changes because of the difference in behavior expected from it, but if a class
is getting changed for two reasons (basically, changes in two functionalities), then
the class should be definitely split.

Advantages of this design principle are as follows:

• Whenever there is a change in one functionality, this particular class needs to
change, and nothing else

• Additionally, if a class has multiple functionalities, the dependent classes will
have to undergo changes for multiple reasons, which gets avoided

The substitution principle
The substitution principle states that derived classes must be able to completely substitute
the base classes.

This principle is pretty straightforward in the sense that it says when application
developers write derived classes, they should extend the base classes. It also suggests
that the derived class should be as close to the base class as possible so much so that
the derived class itself should replace the base class without any code changes.

The concept of design patterns
Finally, now is the time that we start talking about design patterns! What are
design patterns?

Chapter 1

[9]

Design patterns were first introduced by GoF (Gang of Four), where they
mentioned them as being solutions to given problems. If you would like to know
more, GoF refers to the four authors of the book, Design Patterns: Elements of Reusable
Object-Oriented Software. The book's authors are Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, with a foreword by Grady Booch. This book covers
software engineering solutions to the commonly occurring problems in software
design. There were 23 design patterns first identified, and the first implementation
was done with respect to the Java program language. Design patterns are discoveries
and not an invention in themselves.

The key features of design patterns are as follows:

• They are language-neutral and can be implemented across
multiple languages

• They are dynamic, as new patterns get introduced every now and then
• They are open for customization and hence useful for developers

Initially, when you hear about design patterns, you may feel the following:

• It's a panacea to all the design problems that you've had so far
• It's an extraordinary, specially clever way of solving a problem
• Many experts in software development world agree to these solutions
• There's something repeatable about the design, hence the word pattern

You too must have attempted to solve the problems that a design patterns intends to,
but maybe your solution was incomplete, and the completeness that we're looking
for is inherent or implicit in the design pattern. When we say completeness, it can
refer to many factors such as the design, scalability, reuse, memory utilization, and
others. Essentially, a design pattern is about learning from others' successes rather
than your own failures!

Another interesting discussion that comes up on design patterns is—when do I use
them? Is it in the analysis or design phase of Software Development Life Cycle
(SDLC)?

Interestingly, design patterns are solutions to known issues. So they can be very
much used in analysis or design, and as expected, in the development phase
because of the direct relation in the application code.

Introduction to Design Patterns

[10]

Advantages of design patterns
The advantages of design patterns are as follows:

• They are reusable across multiple projects
• The architectural level of problems can be solved
• They are time-tested and well-proven, which is the experience of developers

and architects
• They have reliability and dependence

Taxonomy of design patterns
Not every piece of code or design can be termed as a design pattern. For example, a
programming construct or data structure that solves one problem can't be termed as
a pattern. Let's understand terms in a very simplistic way below:

• Snippet: This is code in some language for a certain purpose, for example,
DB connectivity in Python can be a code snippet

• Design: A better solution to solve this particular problem
• Standard: This is a way to solve some kind of problems, and can be very

generic and applicable to a situation at hand
• Pattern: This is a time-tested, efficient, and scalable solution that will resolve

the entire class of known issues

Context – the applicability of design patterns
To use design patterns efficiently, application developers must be aware of the
context where design patterns apply. We can classify the context into the following
main categories:

• Participants: They are classes that are used in design patterns. Classes play
different roles to accomplish multiple goals in the pattern.

• Non-functional requirements: Requirements such as memory optimization,
usability, and performance fall under this category. These factors impact the
complete software solution and are thus critical.

• Trade-offs: Not all design patterns fit in application development as it is,
and trade-offs are necessary. These are decisions that you take while using a
design pattern in an application.

• Results: Design patterns can have a negative impact on other parts of the
code if the context is not appropriate. Developers should understand the
consequences and use of design patterns.

Chapter 1

[11]

Patterns for dynamic languages
Python is a dynamic language like Lisp. The dynamic nature of Python can be
represented as follows:

• Types or classes are objects at runtime.
• Variables can have type as a value and can be modified at runtime.

For example, a = 5 and a = "John", the a variable is assigned at
runtime and type also gets changed.

• Dynamic languages have more flexibility in terms of class restrictions.
• For example, in Python, polymorphism is built into the language, there

are no keywords such as private and protected and everything is public
by default.

• Represents a case where design patterns can be easily implemented in
dynamic languages.

Classifying patterns
The book by GoF on design patterns spoke about 23 design patterns and classified
them under three main categories:

• Creational patterns
• Structural patterns
• Behavioral patterns

The classification of patterns is done based primarily on how the objects get created,
how classes and objects are structured in a software application, and also covers
the way objects interact among themselves. Let's talk about each of the categories in
detail in this section.

Creational patterns:
The following are the properties of Creational patterns:

• They work on the basis of how objects can be created
• They isolate the details of object creation
• Code is independent of the type of object to be created

An example of a creational pattern is the Singleton pattern.

Introduction to Design Patterns

[12]

Structural patterns
The following are the properties of Structural patterns:

• They design the structure of objects and classes so that they can compose to
achieve larger results

• The focus is on simplifying the structure and identifying the relationship
between classes and objects

• They focus on class inheritance and composition

An example of a behavior pattern is the Adapter pattern.

Behavioral patterns
The following are the properties of Behavioral patterns:

• They are concerned with the interaction among objects and responsibility
of objects

• Objects should be able to interact and still be loosely coupled

An example of a behavioral pattern is the Observer pattern.

Summary
In this chapter, you learned about the basic concepts of object-oriented
programming, such as objects, classes, variables, and features such as
polymorphism, inheritance, and abstraction with code examples.

We are also now aware of object-oriented design principles that we, as developers/
architects, should consider while designing an application.

Finally, we went on to explore more about design patterns and their applications and
context in which they can be applied and also discussed their classifications.

At the end of this chapter, we're now ready to take the next step and study design
patterns in detail.

[13]

The Singleton Design Pattern
In the previous chapter, we explored design patterns and their classifications. As we
are aware, design patterns can be classified under three main categories: structural,
behavioral, and creational patterns.

In this chapter, we will go through the Singleton design pattern—one of the simplest
and well-known Creational design patterns used in application development. This
chapter will give you a brief introduction to the Singleton pattern, take you through
a real-world example where this pattern can be used, and explain it in detail with
the help of Python implementations. You will learn about the Monostate (or Borg)
design pattern that is a variant of the Singleton design pattern.

In this chapter, we will cover the following topics in brief:

• An understanding of the Singleton design pattern
• A real-world example of the Singleton pattern
• The Singleton pattern implementation in Python
• The Monostate (Borg) pattern

At the end of the chapter, we have a short summary on Singletons. This will help you
think independently about some of the aspects of the Singleton design pattern.

The Singleton Design Pattern

[14]

Understanding the Singleton design
pattern
Singleton provides you with a mechanism to have one, and only one, object of a
given type and provides a global point of access. Hence, Singletons are typically
used in cases such as logging or database operations, printer spoolers, and many
others, where there is a need to have only one instance that is available across the
application to avoid conflicting requests on the same resource. For example, we may
want to use one database object to perform operations on the DB to maintain data
consistency or one object of the logging class across multiple services to dump log
messages in a particular log file sequentially.

In brief, the intentions of the Singleton design pattern are as follows:

• Ensuring that one and only one object of the class gets created
• Providing an access point for an object that is global to the program
• Controlling concurrent access to resources that are shared

The following is the UML diagram for Singleton:

A simple way of implementing Singleton is by making the constructor private and
creating a static method that does the object initialization. This way, one object gets
created on the first call and the class returns the same object thereafter.

In Python, we will implement it in a different way as there's no option to create
private constructors. Let's take a look at how Singletons are implemented in the
Python language.

Implementing a classical Singleton in Python
Here is a sample code of the Singleton pattern in Python v3.5. In this example, we
will do two major things:

1. We will allow the creation of only one instance of the Singleton class.
2. If an instance exists, we will serve the same object again.

Chapter 2

[15]

The following code shows this:

class Singleton(object):
 def __new__(cls):
 if not hasattr(cls, 'instance'):
 cls.instance = super(Singleton, cls).__new__(cls)
 return cls.instance

s = Singleton()
print("Object created", s)

s1 = Singleton()
print("Object created", s1)

The output of the preceding snippet is given here:

In the preceding code snippet, we override the __new__ method (Python's special
method to instantiate objects) to control the object creation. The s object gets created
with the __new__ method, but before this, it checks whether the object already exists.
The hasattr method (Python's special method to know if an object has a certain
property) is used to see if the cls object has the instance property, which checks
whether the class already has an object. Till the time the s1 object is requested,
hasattr() detects that an object already exists and hence s1 allocates the existing
object instance (located at 0x102078ba8).

Lazy instantiation in the Singleton pattern
One of the use cases for the Singleton pattern is lazy instantiation. For example, in
the case of module imports, we may accidently create an object even when it's not
needed. Lazy instantiation makes sure that the object gets created when it's actually
needed. Consider lazy instantiation as the way to work with reduced resources and
create them only when needed.

In the following code example, when we say s=Singleton(), it calls the __init__
method but no new object gets created. However, actual object creation happens
when we call Singleton.getInstance(). This is how lazy instantiation is achieved.

class Singleton:
 __instance = None
 def __init__(self):
 if not Singleton.__instance:

The Singleton Design Pattern

[16]

 print(" __init__ method called..")
 else:
 print("Instance already created:", self.getInstance())
 @classmethod
 def getInstance(cls):
 if not cls.__instance:
 cls.__instance = Singleton()
 return cls.__instance

s = Singleton() ## class initialized, but object not created
print("Object created", Singleton.getInstance()) # Object gets created
here
s1 = Singleton() ## instance already created

Module-level Singletons
All modules are Singletons by default because of Python's importing behavior.
Python works in the following way:

1. Checks whether a Python module has been imported.
2. If imported, returns the object for the module. If not imported, imports and

instantiates it.
3. So when a module gets imported, it is initialized. However, when the same

module is imported again, it's not initialized again, which relates to the
Singleton behavior of having only one object and returning the same object.

The Monostate Singleton pattern
We discussed the Gang of Four and their book in Chapter 1, Introduction to Design
Patterns. GoF's Singleton design pattern says that there should be one and only one
object of a class. However, as per Alex Martelli, typically what a programmer needs
is to have instances sharing the same state. He suggests that developers should be
bothered about the state and behavior rather than the identity. As the concept is
based on all objects sharing the same state, it is also known as the Monostate pattern.

Chapter 2

[17]

The Monostate pattern can be achieved in a very simple way in Python. In the
following code, we assign the __dict__ variable (a special variable of Python) with
the __shared_state class variable. Python uses __dict__ to store the state of every
object of a class. In the following code, we intentionally assign __shared_state to
all the created instances. So when we create two instances, 'b' and 'b1', we get two
different objects unlike Singleton where we have just one object. However, the object
states, b.__dict__ and b1.__dict__ are the same. Now, even if the object variable
x changes for object b, the change is copied over to the __dict__ variable that is
shared by all objects and even b1 gets this change of the x setting from one to four:

class Borg:
 __shared_state = {"1":"2"}
 def __init__(self):
 self.x = 1
 self.__dict__ = self.__shared_state
 pass

b = Borg()
b1 = Borg()
b.x = 4

print("Borg Object 'b': ", b) ## b and b1 are distinct objects
print("Borg Object 'b1': ", b1)
print("Object State 'b':", b.__dict__)## b and b1 share same state
print("Object State 'b1':", b1.__dict__)

The following is the output of the preceding snippet:

Another way to implement the Borg pattern is by tweaking the __new__ method
itself. As we know, the __new__ method is responsible for the creation of the
object instance:

class Borg(object):
 _shared_state = {}
 def __new__(cls, *args, **kwargs):
 obj = super(Borg, cls).__new__(cls, *args, **kwargs)
 obj.__dict__ = cls._shared_state
 return obj

The Singleton Design Pattern

[18]

Singletons and metaclasses
Let's start with a brief introduction to metaclasses. A metaclass is a class of a
class, which means that the class is an instance of its metaclass. With metaclasses,
programmers get an opportunity to create classes of their own type from the
predefined Python classes. For instance, if you have an object, MyClass, you can
create a metaclass, MyKls, that redefines the behavior of MyClass to the way that
you need. Let's understand them in detail.

In Python, everything is an object. If we say a=5, then type(a) returns <type
'int'>, which means a is of the int type. However, type(int) returns <type
'type'>, which suggests the presence of a metaclass as int is a class of the type type.

The definition of class is decided by its metaclass, so when we create a class with
class A, Python creates it by A = type(name, bases, dict):

• name: This is the name of the class
• base: This is the base class
• dict: This is the attribute variable

Now, if a class has a predefined metaclass (by the name of MetaKls), Python creates
the class by A = MetaKls(name, bases, dict).

Let's look at a sample metaclass implementation in Python 3.5:

class MyInt(type):
 def __call__(cls, *args, **kwds):
 print("***** Here's My int *****", args)
 print("Now do whatever you want with these objects...")
 return type.__call__(cls, *args, **kwds)

class int(metaclass=MyInt):
 def __init__(self, x, y):
 self.x = x
 self.y = y

i = int(4,5)

The following is the output of the preceding code:

Chapter 2

[19]

Python's special __call__ method gets called when an object needs to be created
for an already existing class. In this code, when we instantiate the int class with
int(4,5), the __call__ method of the MyInt metaclass gets called, which means
that the metaclass now controls the instantiation of the object. Wow, isn't this great?!

The preceding philosophy is used in the Singleton design pattern as well. As the
metaclass has more control over class creation and object instantiation, it can be
used to create Singletons. (Note: To control the creation and initialization of a class,
metaclasses override the __new__ and __init__ method.)

The Singleton implementation with metclasses can be explained better with the
following example code:

class MetaSingleton(type):
 _instances = {}
 def __call__(cls, *args, **kwargs):
 if cls not in cls._instances:
 cls._instances[cls] = super(MetaSingleton, \
 cls).__call__(*args, **kwargs)
 return cls._instances[cls]

class Logger(metaclass=MetaSingleton):
 pass

logger1 = Logger()
logger2 = Logger()
print(logger1, logger2)

A real-world scenario – the Singleton
pattern, part 1
As a practical use case, we will look at a database application to show the use of
Singletons. Consider an example of a cloud service that involves multiple read and
write operations on the database. The complete cloud service is split across multiple
services that perform database operations. An action on the UI (web app) internally
will call an API, which eventually results in a DB operation.

The Singleton Design Pattern

[20]

It's clear that the shared resource across different services is the database itself.
So, if we need to design the cloud service better, the following points must be
taken care of:

• Consistency across operations in the database—one operation shouldn't
result in conflicts with other operations

• Memory and CPU utilization should be optimal for the handling of multiple
operations on the database

A sample Python implementation is given here:

import sqlite3
class MetaSingleton(type):
 _instances = {}
 def __call__(cls, *args, **kwargs):
 if cls not in cls._instances:
 cls._instances[cls] = super(MetaSingleton, \
 cls).__call__(*args, **kwargs)
 return cls._instances[cls]

class Database(metaclass=MetaSingleton):
 connection = None
 def connect(self):
 if self.connection is None:
 self.connection = sqlite3.connect("db.sqlite3")
 self.cursorobj = self.connection.cursor()
 return self.cursorobj

db1 = Database().connect()
db2 = Database().connect()

print ("Database Objects DB1", db1)
print ("Database Objects DB2", db2)

The output of the preceding code is given here:

Chapter 2

[21]

In the preceding code, we can see following points being covered:

1. We created a metaclass by the name of MetaSingleton. Like we explained in
the previous section, the special __call__ method of Python is used in the
metaclass to create a Singleton.

2. The database class is decorated by the MetaSingleton class and starts
acting like a Singleton. So, when the database class is instantiated, it creates
only one object.

3. When the web app wants to perform certain operations on the DB, it
instantiates the database class multiple times, but only one object gets
created. As there is only one object, calls to the database are synchronized.
Additionally, this is inexpensive on system resources and we can avoid the
situation of memory or CPU resource.

Consider that instead of having one webapp, we have a clustered setup with
multiple web apps but only one DB. Now, this is not a good situation for Singletons
because, with every web app addition, a new Singleton gets created and a new
object gets added that queries the database. This results in unsynchronized database
operations and is heavy on resources. In such cases, database connection pooling is
better than implementing Singletons.

A real-world scenario – the Singleton
pattern, part 2
Let's consider another scenario where we implement health check services (such
as Nagios) for our infrastructure. We create the HealthCheck class, which is
implemented as a Singleton. We also maintain a list of servers against which the
health check needs to run. If a server is removed from this list, the health check
software should detect it and remove it from the servers configured to check.

In the following code, the hc1 and hc2 objects are the same as the class in Singleton.

Servers are added to the infrastructure for the health check with the addServer()
method. First, the iteration of the health check runs against these servers. The
changeServer() method removes the last server and adds a new one to the
infrastructure scheduled for the health check. So, when the health check runs
in the second iteration, it picks up the changed list of servers.

The Singleton Design Pattern

[22]

All this is possible with Singletons. When the servers get added or removed,
the health check must be the same object that has the knowledge of the changes
made to the infrastructure:

class HealthCheck:
 _instance = None
 def __new__(cls, *args, **kwargs):
 if not HealthCheck._instance:
 HealthCheck._instance = super(HealthCheck, \
 cls).__new__(cls, *args, **kwargs)
 return HealthCheck._instance
 def __init__(self):
 self._servers = []
 def addServer(self):
 self._servers.append("Server 1")
 self._servers.append("Server 2")
 self._servers.append("Server 3")
 self._servers.append("Server 4")
 def changeServer(self):
 self._servers.pop()
 self._servers.append("Server 5")

hc1 = HealthCheck()
hc2 = HealthCheck()

hc1.addServer()
print("Schedule health check for servers (1)..")
for i in range(4):
 print("Checking ", hc1._servers[i])

hc2.changeServer()
print("Schedule health check for servers (2)..")
for i in range(4):
 print("Checking ", hc2._servers[i])

Chapter 2

[23]

The output of the code is as follows:

Drawbacks of the Singleton pattern
While Singletons are used in multiple places to good effect, there can be a few
gotchas with this pattern. As Singletons have a global point of access, the following
issues can occur:

• Global variables can be changed by mistake at one place and, as the
developer may think that they have remained unchanged, the variables
get used elsewhere in the application.

• Multiple references may get created to the same object. As Singleton
creates only one object, multiple references can get created at this point
to the same object.

• All classes that are dependent on global variables get tightly coupled
as a change to the global data by one class can inadvertently impact the
other class.

As part of this chapter, you learned a lot on Singletons. Here are a few
points that we should remember about Singletons:

• There are many real-world applications where we need to create
only one object, such as thread pools, caches, dialog boxes,
registry settings, and so on. If we create multiple instances
for each of these applications, it will result in the overuse of
resources. Singletons work very well in such situations.

• Singleton; a time-tested and proven method of presenting a global
point of access without many downsides.

• Of course, there are a few downsides; Singletons can have an
inadvertent impact working with global variables or instantiating
classes that are resource-intensive but end up not utilizing them.

The Singleton Design Pattern

[24]

Summary
In this chapter, you learned about the Singleton design pattern and the context in
which it's used. We understood that Singletons are used when there is a need to
have only one object for a class.

We also looked at various ways in which Singletons can be implemented in Python.
The classical implementation allowed multiple instantiation attempts but returned
the same object.

We also discussed the Borg or Monostate pattern, which is a variation of the
Singleton pattern. Borg allows the creation of multiple objects that share the
same state unlike the single pattern described by GoF.

We went on to explore the webapp application where Singleton can be applied for
consistent database operations across multiple services.

Finally, we also looked at situations where Singletons can go wrong and what
situations developers need to avoid.

At the end of this chapter, we're now comfortable enough to take the next step and
study other creational patterns and benefit from them.

In the next chapter, we'll take a look at another creational pattern and the Factory
design pattern. We'll cover the Factory method and Abstract Factory patterns and
understand them in the Python implementation.

[25]

The Factory Pattern – Building
Factories to Create Objects

In the previous chapter, you learned about Singleton design patterns—what they are
and how they are used in the real world along with the Python implementation. The
Singleton design pattern is one of the Creational design patterns. In this chapter, we
move ahead and learn about another creational pattern, the Factory pattern.

The Factory pattern is arguably the most used design pattern. In this chapter, we will
understand the concept of Factory and go through the Simple Factory pattern. You
will then learn about the Factory method pattern and Abstract Factory pattern with
a UML diagram, real-world scenarios, and Python v3.5 implementations. We'll also
compare the Factory method and Abstract Factory method.

In this chapter, we will cover the following topics in brief:

• Understanding the Simple Factory design pattern
• Discussing the Factory method and Abstract Factory method and

their differences
• Implementing real-world scenarios with the Python code implementation
• Discussing the advantages and disadvantages of the patterns and

their comparisons

Understanding the Factory pattern
In object-oriented programming, the term factory means a class that is responsible
for creating objects of other types. Typically, the class that acts as a factory has an
object and methods associated with it. The client calls this method with certain
parameters; objects of desired types are created in turn and returned to the client
by the factory.

The Factory Pattern – Building Factories to Create Objects

[26]

So the question here really is, why do we need a factory when the client can
directly create an object? The answer is, a factory provides certain advantages
that are listed here:

• The first advantage is loose coupling in which object creation can be
independent of the class implementation.

• The client need not be aware of the class that creates the object which, in turn,
is utilized by the client. It is only necessary to know the interface, methods,
and parameters that need to be passed to create objects of the desired type.
This simplifies implementations for the client.

• Adding another class to the factory to create objects of another type can be
easily done without the client changing the code. At a minimum, the client
needs to pass just another parameter.

• The factory can also reuse the existing objects. However, when the client does
direct object creation, this always creates a new object.

Let's consider the situation of a manufacturing company that manufactures toys—
cars or dolls. Let's say that a machine in the company is currently manufacturing toy
cars. Then, the CEO of the company feels that there is an urgent need to manufacture
dolls based on the demand in the market. This situation calls for the Factory pattern.
In this case, the machine becomes the interface and the CEO is the client. The CEO
is only bothered about the object (or the toy) to be manufactured and knows the
interface—the machine—that can create the object.

There are three variants of the Factory pattern:

• Simple Factory pattern: This allows interfaces to create objects without
exposing the object creation logic.

• Factory method pattern: This allows interfaces to create objects, but defers
the decision to the subclasses to determine the class for object creation.

• Abstract Factory pattern: An Abstract Factory is an interface to create related
objects without specifying/exposing their classes. The pattern provides
objects of another factory, which internally creates other objects.

The Simple Factory pattern
For some, Simple Factory is not a pattern in itself. It is more of a concept that
developers need to know before they know more about the Factory method and
Abstract Factory method. The Factory helps create objects of different types rather
than direct object instantiation.

Chapter 3

[27]

Let's understand this with the help of the following diagram. Here, the client class
uses the Factory class, which has the create_type() method. When the client calls
the create_type() method with the type parameters, based on the parameters
passed, the Factory returns Product1 or Product2:

A UML Diagram of Simple Factory

Let's now understand the Simple Factory pattern with the help of a Python v3.5 code
example. In the following snippet, we create an Abstract product called Animal.
Animal is an abstract base class (ABCMeta is Python's special metaclass to make a
class Abstract) and has the do_say() method. We create two products (Cat and
Dog) from the Animal interface and implement do_say() with appropriate sounds
that these animals make. ForestFactory is a factory that has the make_sound()
method. Based on the type of argument passed by the client, an appropriate Animal
instance is created at runtime and the right sound is printed out:

from abc import ABCMeta, abstractmethod

class Animal(metaclass = ABCMeta):
 @abstractmethod
 def do_say(self):
 pass

class Dog(Animal):
 def do_say(self):
 print("Bhow Bhow!!")

class Cat(Animal):
 def do_say(self):

www.allitebooks.com

http://www.allitebooks.org

The Factory Pattern – Building Factories to Create Objects

[28]

 print("Meow Meow!!")

forest factory defined
class ForestFactory(object):
 def make_sound(self, object_type):
 return eval(object_type)().do_say()

client code
if __name__ == '__main__':
 ff = ForestFactory()
 animal = input("Which animal should make_sound Dog or Cat?")
 ff.make_sound(animal)

The following is the output of the preceding code snippet:

The Factory Method pattern
The following points help us understand the factory method pattern:

• We define an interface to create objects, but instead of the factory being
responsible for the object creation, the responsibility is deferred to the
subclass that decides the class to be instantiated.

• The Factory method creation is through inheritance and not
through instantiation.

• The Factory method makes the design more customizable. It can return the
same instance or subclass rather than an object of a certain type (as in the
simple factory method).

Chapter 3

[29]

A UML diagram for the Factory method

In the preceding UML diagram, we have an abstract class, Creator, that contains
factoryMethod(). The factoryMethod() method has the responsibility of creating
objects of a certain type. The ConcreteCreator class has factoryMethod() that
implements the Creator abstract class, and this method can change the created
object at runtime. ConcreteCreator creates ConcreteProduct and makes sure that
the object it creates implements the Product class and provides implementation for
all the methods in the Product interface.

In brief, factoryMethod() of the Creator interface and the ConcreteCreator
class decides which subclass of Product to create. Thus, the Factory method pattern
defines an interface to create an object, but defers the decision ON which class to
instantiate to its subclasses.

Implementing the Factory Method
Let's take a real-world scenario to understand the Factory method implementation.
Consider that we would like to create profiles of different types on social networks
such as LinkedIn and Facebook for a person or company. Now, each of these profiles
would have certain sections. In LinkedIn, you would have a section on patents that
an individual has filed or publications s/he has written. On Facebook, you'll see
sections in an album of pictures of your recent visit to a holiday place. Additionally,
in both these profiles, there'd be a common section on personal information. So, in
brief, we want to create profiles of different types with the right sections being added
to the profile.

The Factory Pattern – Building Factories to Create Objects

[30]

Let's now take a look at the implementation. In the following code example, we will
start by defining the Product interface. We will create a Section abstract class that
defines how a section will be. We will keep it very simple and provide an abstract
method, describe().

We now create multiple ConcreteProduct classes, PersonalSection,
AlbumSection, PatentSection, and PublicationSection. These classes implement
the describe() abstract method and print their respective section names:

from abc import ABCMeta, abstractmethod

class Section(metaclass=ABCMeta):
 @abstractmethod
 def describe(self):
 pass

class PersonalSection(Section):
 def describe(self):
 print("Personal Section")

class AlbumSection(Section):
 def describe(self):
 print("Album Section")

class PatentSection(Section):
 def describe(self):
 print("Patent Section")

class PublicationSection(Section):
 def describe(self):
 print("Publication Section")

We create a Creator abstract class that is named Profile. The Profile [Creator]
abstract class provides a factory method, createProfile(). The createProfile()
method should be implemented by ConcreteClass to actually create the profiles
with appropriate sections. The Profile abstract class is not aware of the sections
that each profile should have. For example, a Facebook profile should have personal
information and album sections. So we will let the subclass decide this.

Chapter 3

[31]

We create two ConcreteCreator classes, linkedin and facebook. Each of these
classes implement the createProfile() abstract method that actually creates
(instantiates) multiple sections (ConcreteProducts) at runtime:

class Profile(metaclass=ABCMeta):
 def __init__(self):
 self.sections = []
 self.createProfile()
 @abstractmethod
 def createProfile(self):
 pass
 def getSections(self):
 return self.sections
 def addSections(self, section):
 self.sections.append(section)

class linkedin(Profile):
 def createProfile(self):
 self.addSections(PersonalSection())
 self.addSections(PatentSection())
 self.addSections(PublicationSection())

class facebook(Profile):
 def createProfile(self):
 self.addSections(PersonalSection())
 self.addSections(AlbumSection())

We finally write client code that determines which Creator class to instantiate in
order to create a profile of the desired choice:

if __name__ == '__main__':
 profile_type = input("Which Profile you'd like to create?
[LinkedIn or FaceBook]")
 profile = eval(profile_type.lower())()
 print("Creating Profile..", type(profile).__name__)
 print("Profile has sections --", profile.getSections())

The Factory Pattern – Building Factories to Create Objects

[32]

If you now run the complete code, it'll first ask you to enter the name of the profile
that you'd like to create. In the following screenshot, we say Facebook. It then
instantiates the facebook [ConcreateCreator] class. This internally creates
ConcreteProduct(s), that is, it instantiates PersonalSection and AlbumSection.
If Linkedin is chosen, then PersonalSection, PatentSection,
and PublicationSection are created.

The following is the output of the preceding code snippet:

Advantages of the Factory method pattern
As you have now learned the Factory method pattern and how to implement Factory
methods, let's see the advantages of the Factory method pattern:

• It brings in a lot of flexibility and makes the code generic, not being tied to
a certain class for instantiation. This way, we're dependent on the interface
(Product) and not on the ConcreteProduct class.

• There's loose coupling, as the code that creates the object is separate from the
code that uses it. The client need not bother about what argument to pass and
which class to instantiate. The addition of new classes is easy and involves
low maintenance.

The Abstract Factory pattern
The main objective of the Abstract Factory pattern is to provide an interface to create
families of related objects without specifying the concrete class. While the factory
method defers the creation of the instance to the subclasses, the goal of Abstract
Factory method is to create families of related objects:

Chapter 3

[33]

A UML Diagram for the Abstract Factory pattern

As shown in the diagram, ConcreteFactory1 and ConcreteFactory2 are
created from the AbstractFactory interface. This interface has methods to
create multiple products.

ConcreteFactory1 and ConcreteFactory2 implement AbstractFactory and create
instances of ConcreteProduct1, ConcreteProduct2, AnotherConcreteProduct1,
and AnotherConcreteProduct2.

ConcreteProduct1 and ConcreteProduct2 are in turn created from
the AbstractProduct interface, and AnotherConcreteProduct1 and
AnotherConcreteProduct2 are created from the AnotherAbstractProduct interface.

In effect, Abstract Factory patterns make sure that the client is isolated from
the creation of objects but allowed to use the objects created. The client has the
ability to access objects only through an interface. If products of one family
are to be used, Abstract Factory pattern helps the client use the objects from
one/ family at a time. For example, if an application under development is
supposed to be platform-independent, then it needs to abstract dependencies
such as OS, file system calls, among others. Abstract Factory pattern takes care
of creating the required services for the entire platform so that the client doesn't
have to create platform objects directly.

The Factory Pattern – Building Factories to Create Objects

[34]

Implementing the Abstract Factory pattern
Consider the case of your favorite pizza place. It serves multiple types of pizzas,
right? Wait, hold on, I know you want to order one right away, but let's just get
back to the example for now!

Now, imagine that we create a pizza store where you are served with delicious Indian
and American pizzas. For this, we first create an abstract base class, PizzaFactory
(AbstractFactory in the preceding UML diagram). The PizzaFactory class has two
abstract methods, createVegPizza() and createNonVegPizza(), that need to be
implemented by ConcreteFactory. In this example, we create two concrete factories,
namely, IndianPizzaFactory and USPizzaFactory. Look at the following code
implementation for the concrete factories:

from abc import ABCMeta, abstractmethod

class PizzaFactory(metaclass=ABCMeta):

 @abstractmethod
 def createVegPizza(self):
 pass

 @abstractmethod
 def createNonVegPizza(self):
 pass

class IndianPizzaFactory(PizzaFactory):

 def createVegPizza(self):
 return DeluxVeggiePizza()

 def createNonVegPizza(self):
 return ChickenPizza()

class USPizzaFactory(PizzaFactory):

 def createVegPizza(self):
 return MexicanVegPizza()

 def createNonVegPizza(self):
 return HamPizza()

Chapter 3

[35]

Now, let's move ahead and define AbstractProducts. In the following code, we
create two abstract classes, VegPizza and NonVegPizza (AbstractProduct and
AnotherAbstractProduct in the preceding UML diagram]. They individually
have a method defined, prepare() and serve().

The thought process here is that vegetarian pizzas are prepared with an appropriate
crust, vegetables, and seasoning, and nonvegetarian pizzas are served with
nonvegetarian toppings on top of vegetarian pizzas.

We then define ConcreteProducts for each of the AbstractProducts. Now, in
this case, we create DeluxVeggiePizza and MexicanVegPizza and implement the
prepare() method. ConcreteProducts1 and ConcreteProducts2 would represent
these classes from the UML diagram.

Later, we define ChickenPizza and HamPizza and implement the serve() method—
these represent AnotherConcreteProducts1 and AnotherConcreteProducts2:

class VegPizza(metaclass=ABCMeta):
 @abstractmethod
 def prepare(self, VegPizza):
 pass

class NonVegPizza(metaclass=ABCMeta):
 @abstractmethod
 def serve(self, VegPizza):
 pass

class DeluxVeggiePizza(VegPizza):
 def prepare(self):
 print("Prepare ", type(self).__name__)

class ChickenPizza(NonVegPizza):
 def serve(self, VegPizza):
 print(type(self).__name__, " is served with Chicken on ",
type(VegPizza).__name__)

class MexicanVegPizza(VegPizza):
 def prepare(self):
 print("Prepare ", type(self).__name__)

class HamPizza(NonVegPizza):
 def serve(self, VegPizza):
 print(type(self).__name__, " is served with Ham on ",
type(VegPizza).__name__)

The Factory Pattern – Building Factories to Create Objects

[36]

When an end user approaches PizzaStore and asks for an American nonvegetarian
pizza, USPizzaFactory is responsible for preparing the vegetarian pizza as the base
and serving the nonvegetarian pizza with ham on top!

class PizzaStore:
 def __init__(self):
 pass
 def makePizzas(self):
 for factory in [IndianPizzaFactory(), USPizzaFactory()]:
 self.factory = factory
 self.NonVegPizza = self.factory.createNonVegPizza()
 self.VegPizza = self.factory.createVegPizza()
 self.VegPizza.prepare()
 self.NonVegPizza.serve(self.VegPizza)

pizza = PizzaStore()
pizza.makePizzas()

The following is the output of the preceding code example:

The Factory method versus Abstract
Factory method
Now that you have learned the Factory method and Abstract Factory method,
let's see the comparison of the two:

Factory method Abstract Factory method
This exposes a method to the client to create
the objects

Abstract Factory method contains one or
more factory methods to create a family
of related objects

This uses inheritance and subclasses to decide
which object to create

This uses composition to delegate
responsibility to create objects of
another class

The factory method is used to create
one product

Abstract Factory method is about creating
families of related products

Chapter 3

[37]

Summary
In this chapter, you learned about the Factory design pattern and the context in
which it's used. We understood the basics of the Factory, and how it is effectively
used in software architecture.

We looked at Simple Factory, where an appropriate instance is created at runtime
based on the type of the argument passed by the client.

We also discussed the Factory method pattern, which is a variation of Simple
Factory. In this pattern, we defined an interface to create objects, but the creation
of objects is deferred to the subclass.

We went on to explore the Abstract Factory method, which provides an interface to
create families of related objects without specifying the concrete class.

We also worked out a real-world Python implementation for all the three patterns,
and compared the Factory method with Abstract Factory method.

At the end of this chapter, we're now ready to take the next step and study other
types of patterns, so stay tuned.

[39]

The Façade Pattern – Being
Adaptive with Façade

In the previous chapter, you learned about the Factory design pattern. We discussed
about three variations—Simple Factory, Factory method, and Abstract Factory
pattern. You also learned how each of them is used in the real world and looked
at Python implementations. We also compared the Factory method with Abstract
Factory patterns and listed the pros and cons. As we are now aware, both the Factory
design pattern and Singleton design pattern (Chapter 2, The Singleton Design Pattern)
are classified as Creational design patterns.

In this chapter, we will move ahead and learn about another type of design pattern,
the Structural design pattern. We will get introduced to the Façade design pattern
and how it is used in software application development. We will work with a sample
use case and implement it in Python v3.5.

In brief, we will cover the following topics in this chapter:

• An introduction to Structural design patterns
• An understanding of the Façade design pattern with a UML diagram
• A real-world use case with the Python v3.5 code implementation
• The Façade pattern and principle of least knowledge

The Façade Pattern – Being Adaptive with Façade

[40]

Understanding Structural design patterns
The following points will help us understand more about Structural patterns:

• Structural patterns describe how objects and classes can be combined to form
larger structures.

• Structural patterns can be thought of as design patterns that ease the design
by identifying simpler ways to realize or demonstrate relationships between
entities. Entities mean objects or classes in the object-oriented world.

• While the Class patterns describe abstraction with the help of inheritance
and provide a more useful program interface, Object patterns describe how
objects can be associated and composed to form larger objects. Structural
patterns are a combination of Class and Object patterns.

The following are a few examples of different Structural design patterns. You'd
notice how each of these involve interaction between objects or classes to achieve
high-level design or architectural goals.

Some of the examples of Structural design patterns are as follows:

• Adapter pattern: Adapting an interface to another one so that it meets the
client's expectations. It tries to match interfaces of different classes based on
the client's needs.

• Bridge pattern: This decouples an object's interface from its implementation
so that both can work independently.

• Decorator pattern: This defines additional responsibilities for an object
at runtime or dynamically. We add certain attributes to objects with an
interface.

There are a few more Structural patterns that you will learn in this book. So, let's
start by first taking up the Façade design pattern.

Understanding the Façade design pattern
The façade is generally referred to as the face of the building, especially an attractive
one. It can be also referred to as a behavior or appearance that gives a false idea
of someone's true feelings or situation. When people walk past a façade, they can
appreciate the exterior face but aren't aware of the complexities of the structure
within. This is how a façade pattern is used. Façade hides the complexities of the
internal system and provides an interface to the client that can access the system in a
very simplified way.

Chapter 4

[41]

Consider the example of a storekeeper. Now, when you, as a customer, visit a
store to buy certain items, you're not aware of the layout of the store. You typically
approach the storekeeper, who is well aware of the store system. Based on your
requirements, the storekeeper picks up items and hands them over to you. Isn't this
easy? The customer need not know how the store looks and s/he gets the stuff done
through a simple interface, the storekeeper.

The Façade design pattern essentially does the following:

• It provides a unified interface to a set of interfaces in a subsystem and defines
a high-level interface that helps the client use the subsystem in an easy way.

• Façade discusses representing a complex subsystem with a single interface
object. It doesn't encapsulate the subsystem but actually combines the
underlying subsystems.

• It promotes the decoupling of the implementation with multiple clients.

A UML class diagram
We will now discuss the Façade pattern with the help of the following
UML diagram:

The Façade Pattern – Being Adaptive with Façade

[42]

As we observe the UML diagram, you'll realize that there are three main participants
in this pattern:

• Façade: The main responsibility of a façade is to wrap up a complex group of
subsystems so that it can provide a pleasing look to the outside world.

• System: This represents a set of varied subsystems that make the whole
system compound and difficult to view or work with.

• Client: The client interacts with the Façade so that it can easily communicate
with the subsystem and get the work completed. It doesn't have to bother
about the complex nature of the system.

You will now learn a little more about the three main participants from the data
structure's perspective.

Façade
The following points will give us a better idea of Façade:

• It is an interface that knows which subsystems are responsible for a request
• It delegates the client's requests to the appropriate subsystem objects

using composition

For example, if the client is looking for some work to be accomplished, it need not
have to go to individual subsystems but can simply contact the interface (Façade)
that gets the work done.

System
In the Façade world, System is an entity that performs the following:

• It implements subsystem functionality and is represented by a class. Ideally,
a System is represented by a group of classes that are responsible for
different operations.

• It handles the work assigned by the Façade object but has no knowledge of
the façade and keeps no reference to it.

For instance, when the client requests the Façade for a certain service, Façade chooses
the right subsystem that delivers the service based on the type of service.

Chapter 4

[43]

Client
Here's how we can describe the client:

• The client is a class that instantiates the Façade
• It makes requests to the Façade to get the work done from the subsystems

Implementing the Façade pattern in the
real world
To demonstrate the applications of the Façade pattern, let's take an example that
we'd have experienced in our lifetime.

Consider that you have a marriage in your family and you are in charge of all the
arrangements. Whoa! That's a tough job on your hands. You have to book a hotel or
place for marriage, talk to a caterer for food arrangements, organize a florist for all
the decorations, and finally handle the musical arrangements expected for the event.

In yesteryears, you'd have done all this by yourself, for example by talking to
the relevant folks, coordinating with them, negotiating on the pricing, but now life
is simpler. You go and talk to an event manager who handles this for you. S/he will
make sure that they talk to the individual service providers and get the best deal
for you.

Putting it in the Façade pattern perspective:

• Client: It's you who need all the marriage preparations to be completed in
time before the wedding. They should be top class and guests should love
the celebrations.

• Façade: The event manager who's responsible for talking to all the folks that
need to work on specific arrangements such as food, and flower decorations,
among others

• Subsystems: They represent the systems that provide services such as
catering, hotel management, and flower decorations

Let's develop an application in Python v3.5 and implement this use case. We start
with the client first. It's you! Remember, you're the one who has been given the
responsibility to make sure that the marriage preparations are done and the event
goes fine!

The Façade Pattern – Being Adaptive with Façade

[44]

Let's now move ahead and talk about the Façade class. As discussed earlier, the
Façade class simplifies the interface for the client. In this case, EventManager acts as
a façade and simplifies the work for You. Façade talks to the subsystems and does
all the booking and preparations for the marriage on your behalf. Here is the Python
code for the EventManager class:

class EventManager(object):

 def __init__(self):
 print("Event Manager:: Let me talk to the folks\n")

 def arrange(self):
 self.hotelier = Hotelier()
 self.hotelier.bookHotel()

 self.florist = Florist()
 self.florist.setFlowerRequirements()

 self.caterer = Caterer()
 self.caterer.setCuisine()

 self.musician = Musician()
 self.musician.setMusicType()

Now that we're done with the Façade and client, let's dive into the subsystems.
We have developed the following classes for this scenario:

• Hotelier is for the hotel bookings. It has a method to check whether the
hotel is free on that day (__isAvailable).

• The Florist class is responsible for flower decorations. Florist has the
setFlowerRequirements() method to be used to set the expectations on
the kind of flowers needed for the marriage decoration.

• The Caterer class is used to deal with the caterer and is responsible for the
food arrangements. Caterer exposes the setCuisine() method to accept the
type of cuisine to be served at the marriage.

• The Musician class is designed for musical arrangements at the marriage.
It uses the setMusicType() method to understand the music requirements
for the event.

Chapter 4

[45]

Let us now look at the Hotelier object, followed by Florist object and their methods:

class Hotelier(object):
 def __init__(self):
 print("Arranging the Hotel for Marriage? --")

 def __isAvailable(self):
 print("Is the Hotel free for the event on given day?")
 return True

 def bookHotel(self):
 if self.__isAvailable():
 print("Registered the Booking\n\n")

class Florist(object):
 def __init__(self):
 print("Flower Decorations for the Event? --")

 def setFlowerRequirements(self):
 print("Carnations, Roses and Lilies would be used for
Decorations\n\n")

class Caterer(object):
 def __init__(self):
 print("Food Arrangements for the Event --")

 def setCuisine(self):
 print("Chinese & Continental Cuisine to be served\n\n")

class Musician(object):
 def __init__(self):
 print("Musical Arrangements for the Marriage --")

 def setMusicType(self):
 print("Jazz and Classical will be played\n\n")

The Façade Pattern – Being Adaptive with Façade

[46]

However, you're being clever here and passing on the responsibility to the event
manager, aren't you? Let's now look at the You class. In this example, you create an
object of the EventManager class so that the manager can work with the relevant
folks on marriage preparations while you relax.

class You(object):
 def __init__(self):
 print("You:: Whoa! Marriage Arrangements??!!!")
 def askEventManager(self):
 print("You:: Let's Contact the Event Manager\n\n")
 em = EventManager()
 em.arrange()
 def __del__(self):
 print("You:: Thanks to Event Manager, all preparations done!
Phew!")

you = You()
you.askEventManager()

The output of the preceding code is given here:

Chapter 4

[47]

We can relate to the Facade pattern with the real world scenario, in the
following way:

• The EventManager class is the Façade that simplifies the interface for You
• EventManager uses composition to create objects of the subsystems such as

Hotelier, Caterer, and others

The principle of least knowledge
As you have learned in the initial parts of the chapter, the Façade provides a unified
system that makes subsystems easy to use. It also decouples the client from the
subsystem of components. The design principle that is employed behind the
Façade pattern is the principle of least knowledge.

The principle of least knowledge guides us to reduce the interactions between
objects to just a few friends that are close enough to you. In real terms, it means
the following:

• When designing a system, for every object created, one should look
at the number of classes that it interacts with and the way in which the
interaction happens.

• Following the principle, make sure that we avoid situations where there are
many classes created that are tightly coupled to each other.

• If there are a lot of dependencies between classes, the system becomes hard
to maintain. Any changes in one part of the system can lead to unintentional
changes to other parts of the system, which means that the system is exposed
to regressions and this should be avoided.

Frequently asked questions
Q1. What is the Law of Demeter and how is it related to the Factory pattern?

A: The Law of Demeter is a design guideline that talks about the following:

1. Each unit should have only limited knowledge of other units in the system
2. A unit should talk to its friends only
3. A unit should not know about the internal details of the object that

it manipulates

The Façade Pattern – Being Adaptive with Façade

[48]

The principle of least knowledge and Law of Demeter are the same and both point to
the philosophy of loose coupling. The principle of least knowledge fits the use case of
the Façade pattern as the name is intuitive and the word principle acts as a guideline,
not being strict, and being useful only when needed.

Q2. Can there be multiple Façades for a subsystem?

A: Yes, one could implement more than one façade for a group of
subsystem components.

Q3. What are the disadvantages of the principle of least knowledge?

A: A Façade provides a simplified interface for the clients to interact with
subsystems. In the spirit of providing a simplified interface, an application
can have multiple unnecessary interfaces that add to the complexity of the
system and reduce runtime performance.

Q4. Can the client access the subsystems independently?

A: Yes, in fact, the Façade pattern provides simplified interfaces so that the client
need not be bothered about the complexity of the subsystems.

Q5. Does the Façade add any functionality of its own?

A: A Façade can add its "thinking" to the subsystems, such as making sure that the
order of innovation for subsystems can be decided by the Façade.

Summary
We began the chapter by first understanding the Structural design patterns.
You then learned about the Façade design pattern and the context in which
it's used. We understood the basis of Façade and how it is effectively used in
software architecture. We looked at how Façade design patterns create a simplified
interface for clients to use. They simplify the complexity of subsystems so that the
client benefits.

The Façade doesn't encapsulate the subsystem, and the client is free to access
the subsystems even without going through the Façade. You also learned the
pattern with a UML diagram and sample code implementation in Python v3.5.
We understood the principle of least knowledge and how its philosophy governs
the Façade design patterns.

We also covered a section on FAQs that would help you get more ideas on the
pattern and its possible disadvantages. We're now geared up to learn more
Structural patterns in the chapters to come.

[49]

The Proxy Pattern –
Controlling Object Access

In the previous chapter, we started with a brief introduction to Structural patterns
and went ahead to discuss about the Façade design pattern. We understood the
concept of Façade with a UML diagram and also learned how it's applied in the real
world with the help of Python implementations. You learned about the upsides and
downsides of the Façade pattern in the FAQs section.

In this chapter, we take a step forward and deal with the Proxy pattern that falls
under the hood of the Structural design patterns. We will get introduced to the Proxy
pattern as a concept and go ahead with a discussion on the design pattern and see
how it is used in software application development. We will work with a sample use
case and implement it in Python v3.5.

In this chapter, we will cover the following topics in brief:

• An introduction to proxy and Proxy design patterns
• A UML diagram for the Proxy pattern
• Variations of Proxy patterns
• A real-world use case with the Python v3.5 code implementation
• Advantages of the Proxy pattern
• Comparison - Façade and the Proxy pattern
• Frequently asked questions

The Proxy Pattern – Controlling Object Access

[50]

Understanding the Proxy design pattern
Proxy, in general terms, is a system that intermediates between the seeker and
provider. Seeker is the one that makes the request, and provider delivers the
resources in response to the request. In the web world, we can relate this to a proxy
server. The clients (users in the World Wide Web), when they make a request to the
website, first connect to a proxy server asking for resources such as a web page. The
proxy server internally evaluates this request, sends it to an appropriate server, and
gets back the response, which is then delivered to the client. Thus, a proxy server
encapsulates requests, enables privacy, and works well in distributed architectures.

In the context of design patterns, Proxy is a class that acts as an interface to real
objects. Objects can be of several types such as network connections, large objects
in memory and file, among others. In short, Proxy is a wrapper or agent object that
wraps the real serving object. Proxy could provide additional functionality to the
object that it wraps and doesn't change the object's code. The main intention of the
Proxy pattern is to provide a surrogate or placeholder for another object in order to
control access to a real object.

The Proxy pattern is used in multiple scenarios such as the following:

• It represents a complex system in a simpler way. For example, a system that
involves multiple complex calculations or procedures should have a simpler
interface that can act as a proxy for the benefit of the client.

• It adds security to the existing real objects. In many cases, the client is not
allowed to access the real object directly. This is because the real object can
get compromised with malicious activities. This way proxies act as a shield
against malicious intentions and protect the real object.

• It provides a local interface for remote objects on different servers. A clear
example of this is with the distributed systems where the client wants to run
certain commands on the remote system, but the client may not have direct
permissions to make this happen. So it contacts a local object (proxy) with the
request, which is then executed by the proxy on the remote machine.

• It provides a light handle for a higher memory-consuming object. Sometimes,
you may not want to load the main objects unless they're really necessary.
This is because real objects are really heavy and may need high resource
utilization. A classic example is that of profile pictures of users on a website.
You're much better off showing smaller profile images in the list view, but of
course, you'll need to load the actual image to show the detailed view of the
user profile.

Chapter 5

[51]

Let's understand the pattern with a simple example. Consider the example of an
Actor and his Agent. When production houses want to approach an Actor for a
movie, typically, they talk to the Agent and not to the Actor directly. Based on the
schedule of the Actor and other engagements, the Agent gets back to the production
house on the availability and interest in working in the movie. Now, in this scenario,
instead of production houses directly talking to the Actor, the Agent acts as a Proxy
that handles all the scheduling & payments for the Actor.

The following Python code implements this scenario where the Actor is the Proxy.
The Agent object is used to find out if the Actor is busy. If the Actor is busy, the
Actor().occupied() method is called and if the Actor is not busy, the Actor().
available() method gets returned.

class Actor(object):
 def __init__(self):
 self.isBusy = False

 def occupied(self):
 self.isBusy = True
 print(type(self).__name__ , "is occupied with current movie")

 def available(self):
 self.isBusy = False
 print(type(self).__name__ , "is free for the movie")

 def getStatus(self):
 return self.isBusy

class Agent(object):
 def __init__(self):
 self.principal = None

 def work(self):
 self.actor = Actor()
 if self.actor.getStatus():
 self.actor.occupied()
 else:
 self.actor.available()

if __name__ == '__main__':
 r = Agent()
 r.work()

The Proxy Pattern – Controlling Object Access

[52]

The Proxy design pattern essentially does the following:

• It provides a surrogate for another object so that you can control access to the
original object

• It is used as a layer or interface to support distributed access
• It adds delegation and protects the real component from undesired impact

A UML class diagram for the Proxy
pattern
We will now discuss the Proxy pattern with the help of the following UML diagram.
As we discussed in the previous paragraph, the Proxy pattern has three main actors:
the production house, Agent, and the Actor. Let's put these in a UML diagram and
see how the classes look:

As we observe the UML diagram, you'll realize that there are three main participants
in this pattern:

• Proxy: This maintains a reference that lets the Proxy access the real object.
It provides an interface identical to the Subject so that Proxy can substitute
the real subject. Proxies are also responsible for creating and deleting the
RealSubject.

• Subject: It provides a representation for both, the RealSubject and
Proxy. As Proxy and RealSubject implement Subject, Proxy can be
used wherever RealSubject is expected.

• RealSubject: It defines the real object that the Proxy represents.

Chapter 5

[53]

From the data structure's perspective, the UML diagram can be represented
as follows:

• Proxy: It is a class that controls access to the RealSubject class. It handles
the client's requests and is responsible for creating or deleting RealSubject.

• Subject/RealSubject: Subject is an interface that defines what
RealSubject and Proxy should look like. RealSubject is an actual
implementation of the Subject interface. It provides the real functionality
that is then used by the client.

• Client: It accesses the Proxy class for the work to be accomplished. The
Proxy class internally controls access to RealSubject and directs the work
requested by Client.

Understanding different types of Proxies
There are multiple common situations where Proxies are used. We talked about
some of them in the beginning of this chapter. Based on how the Proxies are used,
we can categorize them as virtual proxy, remote proxy, protective proxy, and smart
proxy. Let's learn a little more about them in this section.

A virtual proxy
Here, you'll learn in detail about the virtual proxy. It is a placeholder for objects
that are very heavy to instantiate. For example, you want to load a large image on
your website. Now this request will take a long time to load. Typically, developers
will create a placeholder icon on the web page suggesting that there's an image.
However, the image will only be loaded when the user actually clicks on the icon
thus saving the cost of loading a heavy image in memory. Thus, in virtual proxies,
the real object is created when the client first requests or accesses the object.

A remote proxy
A remote proxy can be defined in the following terms. It provides a local
representation of a real object that resides on a remote server or different address
space. For example, you want to build a monitoring system for your application that
has multiple web servers, DB servers, celery task servers, caching servers, among
others. If we want to monitor the CPU and disk utilization of these servers, we need
to have an object that is available in the context of where the monitoring application
runs but can perform remote commands to get the actual parameter values. In such
cases, having a remote proxy object that is a local representation of the remote object
would help.

The Proxy Pattern – Controlling Object Access

[54]

A protective proxy
You'll understand more about the protective proxy with the following points. This
proxy controls access to the sensitive matter object of RealSubject. For example, in
today's world of distributed systems, web applications have multiple services that
work together to provide functionality. Now, in such systems, an authentication
service acts as a protective proxy server that is responsible for authentication and
authorization. In this case, Proxy internally helps in protecting the core functionality
of the website for unrecognized or unauthorized agents. Thus, the surrogate object
checks that the caller has access permissions required to forward the request.

A smart proxy
Smart proxies interpose additional actions when an object is accessed. For example,
consider that there's a core component in the system that stores states in a centralized
location. Typically, such a component gets called by multiple different services
to complete their tasks and can result in issues with shared resources. Instead of
services directly invoking the core component, a smart proxy is built-in and checks
whether the real object is locked before it is accessed in order to ensure that no other
object can change it.

The Proxy pattern in the real world
We will take up a payment use case to demonstrate a real-world scenario for the
Proxy pattern. Let's say that you go to shop at a mall and like a nice denim shirt
there. You would like to purchase the shirt but you don't have enough cash to do so.

In yesteryears, you'd go to an ATM, take out the money, then come to the mall, and
pay for it. Even earlier, you had a bank check for which you had to go to the bank,
withdraw money, and then come back to pay for your expense.

Thanks to the banks, we now have something called a debit card. So now, when you
want to purchase something, you present your debit card to the merchant. When
you punch in your card details, the money is debited in the merchant's account for
your expense.

Let's develop an application in Python v3.5 and implement the above use case.
We start with the client first. You went to the shopping mall and now would like
to purchase a nice denim shirt. Lets see how Client code is written:

• Your behavior is represented by the You class—the client
• To buy the shirt, the make_payment() method is provided by the class
• The special __init__() method calls the Proxy and instantiates it

Chapter 5

[55]

• The make_payment() method invokes the Proxy's method internally to make
the payment

• The __del__() method returns in case the payment is successful

Thus, the code example is as follows:

class You:
 def __init__(self):
 print("You:: Lets buy the Denim shirt")
 self.debitCard = DebitCard()
 self.isPurchased = None

 def make_payment(self):
 self.isPurchased = self.debitCard.do_pay()

 def __del__(self):
 if self.isPurchased:
 print("You:: Wow! Denim shirt is Mine :-)")
 else:
 print("You:: I should earn more :(")

you = You()
you.make_payment()

Now let's talk about the Subject class. As we know, the Subject class is an interface
that is implemented by the Proxy and RealSubject.

• In this example, the subject is the Payment class. It is an abstract base class
and represents an interface.

• Payment has the do_pay() method that needs to be implemented by the
Proxy and RealSubject.

Let's see these methods in action in the following code:

from abc import ABCMeta, abstractmethod

class Payment(metaclass=ABCMeta):

 @abstractmethod
 def do_pay(self):
 pass

The Proxy Pattern – Controlling Object Access

[56]

We also developed the Bank class that represents RealSubject in this scenario:

• Bank will actually make the payment from your account in the
merchant's account.

• Bank has multiple methods to process the payment. The setCard() method
is used by the Proxy to send the debit card details to the bank.

• The __getAccount() method is a private method of Bank that is used to get
the account details of the debit card holder. For simplicity, we have enforced
the debit card number to be the same as the account number.

• Bank also has the __hasFunds() method to see if the account holder has
enough funds in the account to pay for the shirt.

• The do_pay() method that is implemented by the Bank class (from the
Payment interface) is actually responsible for making the payment to the
merchant based on available funds:

class Bank(Payment):

 def __init__(self):
 self.card = None
 self.account = None

 def __getAccount(self):
 self.account = self.card # Assume card number is account
number
 return self.account

 def __hasFunds(self):
 print("Bank:: Checking if Account", self.__getAccount(),
"has enough funds")
 return True

 def setCard(self, card):
 self.card = card

 def do_pay(self):
 if self.__hasFunds():
 print("Bank:: Paying the merchant")
 return True
 else:
 print("Bank:: Sorry, not enough funds!")
 return False

Chapter 5

[57]

Let's now understand the last piece, which is the Proxy:

• The DebitCard class is the Proxy here. When You wants to make a payment,
it calls the do_pay() method. This is because You doesn't want go to the bank
to withdraw money and pay the merchant.

• The DebitCard class acts as a surrogate for the RealSubject, Bank.
• The payWithCard() method internally controls the object creation of

RealSubject, the Bank class, and presents the card details to Bank.
• Bank goes through the internal checks on the account and does the payment,

as described in previous code snippet:

class DebitCard(Payment):

 def __init__(self):
 self.bank = Bank()

 def do_pay(self):
 card = input("Proxy:: Punch in Card Number: ")
 self.bank.setCard(card)
 return self.bank.do_pay()

For a positive case, when funds are enough, the output is as follows:

For a negative case—insufficient funds—the output is as follows:

The Proxy Pattern – Controlling Object Access

[58]

Advantages of the Proxy pattern
As we've seen how the Proxy pattern works in the real world, let's browse through
the advantages of the Proxy pattern:

• Proxies can help improve the performance of the application by caching
heavy objects or, typically, the frequently accessed objects

• Proxies also authorize the access to RealSubject; thus, this pattern helps in
delegation only if the permissions are right

• Remote proxies also facilitate interaction with remote servers that can
work as network connections and database connections and can be used to
monitor systems

Comparing the Façade and Proxy
patterns
Both the façade and proxy patterns are structural design patterns. They are similar
in the sense that they both have a proxy/façade object in front of the real objects.
Differences are really in the intent or purpose of the patterns, as shown in the
following table:

Proxy pattern Façade pattern
It provides you with a surrogate or
placeholder for another object to control
access to it

It provides you with an interface to large
subsystems of classes

A Proxy object has the same interface as that
of the target object and holds references to
target objects

It minimizes the communication and
dependencies between subsystems

It acts as an intermediary between the client
and object that is wrapped

A Façade object provides a single,
simplified interface

Frequently asked questions
Q1. What is the difference between the Decorator pattern and Proxy pattern?

A: A Decorator adds behavior to the object that it decorates at runtime, while a Proxy
controls access to an object. The relationship between Proxy and RealSubject is at
compile time and not dynamic.

Chapter 5

[59]

Q2. What are the disadvantages of the Proxy pattern?

A: The Proxy pattern can increase the response time. For instance, if the Proxy is not
well-architectured or has some performance issues, it can add to the response time of
RealSubject. Generally, it all depends on how well a Proxy is written.

Q3. Can the client access RealSubject independently?

A: Yes, but there are certain advantages that Proxies provide such as virtual, remote,
and others, so it's advantageous to use the Proxy pattern.

Q4. Does the Proxy add any functionality of its own?

A: A Proxy can add additional functionality to RealSubject without changing the
object's code. Proxy and RealSubject would implement the same interface.

Summary
We began the chapter by understanding what Proxies are. We understood the basics
of a Proxy and how it is used effectively in software architecture. You then learned
about the Proxy design pattern and the context in which it's used. We looked at how
the Proxy design patterns control access to the real object that provides the required
functionality.

We also saw the pattern with a UML diagram and sample code implementation in
Python v3.5.

Proxy patterns are implemented in four different ways: virtual proxy, remote
proxy, protective proxy, and smart proxy. You learned about each of these with
a real-world scenario.

We compared the Façade and Proxy design patterns so that the difference between
their use cases and intentions are clear to you.

We also covered a section on FAQs that would help you get more ideas on the
pattern and its possible advantages/disadvantages.

At the end of this chapter, we're now geared up to learn more Structural patterns in
the chapters to come.

[61]

The Observer Pattern –
Keeping Objects in the Know

In the previous chapter, we started with a brief introduction to Proxy and went
ahead to discuss the Proxy design pattern. We understood the concept of the Proxy
pattern with a UML diagram and also learned how it's applied in the real world with
the help of Python implementations. You learned about the ups and downs of the
Proxy pattern with the FAQ section.

In this chapter, we will talk about the third type of design pattern—the behavioral
design pattern. We will be introduced to the Observer design pattern, which falls
under the hood of Behavioral patterns. We will discuss how the Observer design
pattern is used in software application development. We will work with a sample
use case and implement it in Python v3.5.

In this chapter, we will cover the following topics in brief:

• An introduction to behavioral design patterns
• The Observer pattern and its UML diagram
• A real-world use case with the Python v3.5 code implementation
• The power of loose coupling
• Frequently asked questions

At the end of the chapter, we will summarize the entire discussion—consider this
a takeaway.

The Observer Pattern – Keeping Objects in the Know

[62]

Introducing Behavioral patterns
In the previous chapters of the book, you learned about creational patterns
(Singleton) and structural patterns (Façade). In this section, we will get a brief
idea of Behavioral patterns.

Creational patterns work on the basis of how objects can be created. They isolate
the details of object creation. Code is independent of the type of object to be created.
Structural patterns design the structure of objects and classes so that they can work
together to achieve larger results. Their main focus is on simplifying the structure
and identifying relationships between classes and objects.

Behavioral patterns, as the name suggests, focus on the responsibilities that an object
has. They deal with the interaction among objects to achieve larger functionality.
Behavioral patterns suggest that while the objects should be able to interact with
each other, they should still be loosely coupled. We will learn about the principle of
loose coupling later in this chapter.

The Observer design pattern is one of the simplest Behavioral patterns. So, let's gear
up and understand more about them.

Understanding the Observer design
pattern
In the Observer design pattern, an object (Subject) maintains a list of dependents
(Observers) so that the Subject can notify all the Observers about the changes that it
undergoes using any of the methods defined by the Observer.

In the world of distributed applications, multiple services interact with each other
to perform a larger operation that a user wants to achieve. Services can perform
multiple operations, but the operation they perform is directly or heavily dependent
on the state of the objects of the service that it interacts with.

Consider a use case for user registration where the user service is responsible for
user operations on the website. Let's say that we have another service called e-mail
service that observes the state of the user and sends e-mails to the user. For example,
if the user has just signed up, the user service will call a method of the e-mail service
that will send an e-mail to the user for account verification. If the account is verified
but has fewer credits, the e-mail service will monitor the user service and send an
e-mail alert for low credits to the user.

Chapter 6

[63]

Thus, if there's a core service in the application on which many other services are
dependent, the core service becomes the Subject that has to be observed/monitored
by the Observer for changes. The Observer should, in turn, make changes to the state
of its own objects or take certain actions based on the changes that happen in the
Subject. The above scenario, where the dependent service monitor's state changes
in the core service, presents a classical case for the Observer design pattern.

In the case of a broadcast or publish/subscribe system, you'll find the usage of the
Observer design pattern. Consider the example of a blog. Let's suppose that you're
a tech enthusiast who loves to read about the latest articles on Python on this blog.
What will you do? You subscribe to the blog. Like you, there would be multiple
subscribers that are also registered with the blog. So, whenever there is a new blog,
you get notified, or if there is a change on the published blog, you are also made
aware of the edits. The way in which you're notified of the change can be an e-mail.
Now if you apply this scenario to the Observer pattern, the blog is the Subject that
maintains the list of subscribers or Observers. So when a new entry is added to the
blog, all Observers are notified via e-mail or any other notification mechanism as
defined by the Observer.

The main intentions of the Observer pattern are as follows:

• It defines a one-to-many dependency between objects so that any change in
one object will be notified to the other dependent objects automatically

• It encapsulates the core component of the Subject

The Observer pattern is used in the following multiple scenarios:

• Implementation of the Event service in distributed systems
• A framework for a news agency
• The stock market also represents a great case for the Observer pattern

The following Python code implements the Observer design pattern:

class Subject:
 def __init__(self):
 self.__observers = []

 def register(self, observer):
 self.__observers.append(observer)

 def notifyAll(self, *args, **kwargs):
 for observer in self.__observers:
 observer.notify(self, *args, **kwargs)

The Observer Pattern – Keeping Objects in the Know

[64]

class Observer1:
 def __init__(self, subject):
 subject.register(self)

 def notify(self, subject, *args):
 print(type(self).__name__,':: Got', args, 'From', subject)

class Observer2:
 def __init__(self, subject):
 subject.register(self)

 def notify(self, subject, *args):
 print(type(self).__name__, ':: Got', args, 'From', subject)

subject = Subject()
observer1 = Observer1(subject)
observer2 = Observer2(subject)
subject.notifyAll('notification')

The output of the preceding code is as follows:

A UML class diagram for the Observer pattern
Let's now understand more about the Observer pattern with the help of the
following UML diagram.

As we discussed in the previous paragraph, the Observer pattern has two main
actors: the Subject and Observer. Let's put these in a UML diagram and see how
the classes look:

Chapter 6

[65]

As we look at the UML diagram, you'll realize that there are three main participants
in this pattern:

• Subject: The Subject class is aware of the Observer. The Subject class has
methods such as register() and deregister() that are used by Observers
to register themselves with the Subject class. A Subject, thus can handle
multiple Observers.

• Observer: It defines an interface for objects that are observing the Subject. It
defines methods that need to be implemented by the Observer to get notified
of changes in the Subject.

• ConcreteObserver: It stores the state that should be consistent with that of
the Subject's state. It implements the Observer interface to keep the state
consistent with changes in the Subject.

The flow is straightforward. ConcreteObservers register themselves with the
Subject by implementing the interface provided by the Observer. Whenever there is
a change in state, the Subject notifies all ConcreteObservers with the notify method
provided by the Observers.

The Observer pattern in the real world
We will take up a news agency case to demonstrate the real-world scenario for the
Observer pattern. News agencies typically gather news from various locations and
publish them to the subscribers. Let's look at the design considerations for this
use case.

The Observer Pattern – Keeping Objects in the Know

[66]

With information being sent/received in real time, a news agency should be able to
publish the news as soon as possible to its subscribers. Additionally, because of the
advancements in the technology industry, it's not just the newspapers, but also the
subscribers that can be of different types such as an e-mail, mobile, SMS, or voice
call. We should also be able to add any other type of subscriber in the future and
budgeting for any new technology.

Let's develop an application in Python v3.5 and implement the preceding use case.
We will start with the Subject, which is the news publisher:

• Subject behavior is represented by the NewsPublisher class
• NewsPublisher provides you with an interface so that subscribers can work

with it
• The attach() method is used by the Observer to register with

NewsPublisher and the detach() method helps in deregistering
the Observer

• The subscriber() method returns the list of all the subscribers that have
already registered with the Subject

• The notifySubscriber() method iterates over all the subscribers that have
registered with NewsPublisher

• The addNews() method is used by the publisher to create new news
and getNews() is used to return the latest news, which is then notified
to the Observer

Let's first look at the NewsPublisher class:

class NewsPublisher:
 def __init__(self):
 self.__subscribers = []
 self.__latestNews = None

 def attach(self, subscriber):
 self.__subscribers.append(subscriber)

 def detach(self):
 return self.__subscribers.pop()

 def subscribers(self):
 return [type(x).__name__ for x in self.__subscribers]

 def notifySubscribers(self):
 for sub in self.__subscribers:
 sub.update()

Chapter 6

[67]

 def addNews(self, news):
 self.__latestNews = news

 def getNews(self):
 return "Got News:", self.__latestNews

Let's talk about the Observer interface now:

• In this example, Subscriber represents the Observer. It is an abstract base
class and represents any other ConcreteObserver.

• Subscriber has the update() method that needs to be implemented by
ConcreteObservers.

• The update() method is implemented by ConcreteObserver so that
they get notified by the Subject (NewsPublishers) about any news
getting published.

Lets us now look at the code for the Subscriber abstract class:

from abc import ABCMeta, abstractmethod

class Subscriber(metaclass=ABCMeta):

 @abstractmethod
 def update(self):
 pass

We also developed certain classes that represent ConcreteObserver:

• In this case, we have two main observers: EmailSubscriber and
SMSSubscriber that implement the subscriber interface

• In addition to these two, we have another Observer, AnyOtherObserver,
that demonstrates the loose coupling of Observers with the Subject

• The __init__() method of each of these ConcreteObservers registers them
with NewsPublisher with the attach() method

• The update() method of ConcreteObserver is used internally by
NewsPublisher to notify about the news additions

Here's how the SMSSubscriber class is implemented:

class SMSSubscriber:
 def __init__(self, publisher):
 self.publisher = publisher
 self.publisher.attach(self)

The Observer Pattern – Keeping Objects in the Know

[68]

 def update(self):
 print(type(self).__name__, self.publisher.getNews())

class EmailSubscriber:
 def __init__(self, publisher):
 self.publisher = publisher
 self.publisher.attach(self)

 def update(self):
 print(type(self).__name__, self.publisher.getNews())

class AnyOtherSubscriber:
 def __init__(self, publisher):
 self.publisher = publisher
 self.publisher.attach(self)

 def update(self):
 print(type(self).__name__, self.publisher.getNews())

Now that all the required subscribers have been implemented, lets look at the
NewsPublisher and SMSSubscribers class in action:

• The client creates an object for NewsPublisher that is used by
ConcreteObservers for various operations.

• SMSSubscriber, EmailSubscriber, and AnyOtherSubscriber classes are
initialized with publisher objects.

• In Python, when we create objects, the __init__() method gets called. In
the ConcreteObserver class, the __init__() method internally uses the
attach() method of NewsPublisher to register itself for news updates.

• We then print the list of all the subscribers (ConcreteObservers) that got
registered with the Subject.

• The object of NewsPublisher (news_publisher) is then used to create new
news with the addNews() method.

• The notifySubscribers() method of NewsPublisher is used to notify
all subscribers of the news addition. The notifySubscribers() method
internally calls the update() method implemented by ConcreteObservers
so that they get the latest news.

• NewsPublisher also has the detach() method that removes the subscriber
from the list of registered subscribers.

The following code implementation represents the interactions between the Subject
and Observers:

if __name__ == '__main__':
 news_publisher = NewsPublisher()

Chapter 6

[69]

 for Subscribers in [SMSSubscriber, EmailSubscriber,
AnyOtherSubscriber]:
 Subscribers(news_publisher)
 print("\nSubscribers:", news_publisher.subscribers())

 news_publisher.addNews('Hello World!')
 news_publisher.notifySubscribers()

 print("\nDetached:", type(news_publisher.detach()).__name__)
 print("\nSubscribers:", news_publisher.subscribers())

 news_publisher.addNews('My second news!')
 news_publisher.notifySubscribers()

The output of the preceding code is as follows:

The Observer pattern methods
There are two different ways of notifying the Observer of the changes that happen
in the Subject. They can be classified as push or pull models.

The pull model
In the pull model, Observers play an active role as follows:

• The Subject broadcasts to all the registered Observers when there is
any change

• The Observer is responsible for getting the changes or pulling data from the
subscriber when there is an amendment

• The pull model is ineffective as it involves two steps—the first step where
the Subject notifies the Observer and the second step where the Observer
pulls the required data from the Subject

The Observer Pattern – Keeping Objects in the Know

[70]

The push model
In the push model, the Subject is the one that plays a dominant role as follows:

• Unlike the pull model, the changes are pushed by the Subject to
the Observer.

• In this model, the Subject can send detailed information to the Observer
(even though it may not be needed). This can result in sluggish response
times when a large amount of data is sent by the Subject but is never
actually used by the Observer.

• Only the required data is sent from the Subject so that the performance
is better.

Loose coupling and the Observer pattern
Loose coupling is an important design principle that should be used in software
applications. The main purpose of loose coupling is to strive for loosely-coupled
designs between objects that interact with each other. Coupling refers to the degree
of knowledge that one object has about the other object that it interacts with.

Loosely-coupled designs allow us to build flexible object-oriented systems that can
handle changes because they reduce the dependency between multiple objects.

The loose coupling architecture ensures following features:

• It reduces the risk that a change made within one element might create an
unanticipated impact on the other elements

• It simplifies testing, maintenance, and troubleshooting problems
• The system can be easily broken down into definable elements

The Observer pattern provides you with an object design where the Subject and
Observer are loosely coupled. The following points will explain this better:

• The only thing that the Subject knows about an Observer is that it
implements a certain interface. It need not know the ConcreteObserver class.

• Any new Observer can be added at any point in time (as we saw in the
sample example earlier in this chapter).

• The Subject need not be modified at all to add any new Observer. In the
example, we saw that AnyOtherObserver can be added/removed without
any changes in the Subject.

• Subjects or Observers are not tied up and can be used independently of each
other. So the Observer can be reused anywhere else, if needed.

Chapter 6

[71]

• Changes in the Subject or Observer will not affect each other. As both are
independent or loosely coupled, they are free to make their own changes.

The Observer pattern – advantages and
disadvantages
The Observer pattern provides you with the following advantages:

• It supports the principle of loose coupling between objects that interact with
each other

• It allows sending data to other objects effectively without any change in the
Subject or Observer classes

• Observers can be added/removed at any point in time

The following are the disadvantages of the Observer pattern:

• The Observer interface has to be implemented by ConcreteObserver,
which involves inheritance. There is no option for composition, as the
Observer interface can be instantiated.

• If not correctly implemented, the Observer can add complexity and lead to
inadvertent performance issues.

• In software application, notifications can, at times, be undependable and
result in race conditions or inconsistency.

Frequently asked questions
Q1. Can there be many Subjects and Observers?

A: There can be a case for a software application to have multiple Subjects and
Observers. For this to work, Observers need to be notified of changes in the
Subjects and which Subject underwent a change.

Q2. Who is responsible for triggering the update?

A: As you learned earlier, the Observer pattern can work in both push and pull
models. Typically, the Subject triggers the update method when there are changes,
but sometimes based on the application need, the Observer can also trigger
notifications. However, care needs to be taken that the frequency should not be too
high, otherwise it can lead to performance degradation, especially when the updates
to the Subject are less frequent.

The Observer Pattern – Keeping Objects in the Know

[72]

Q3. Can the Subject or Observer be used for access for any other use case?

A: Yes, that's the power of loose coupling that is manifested in the Observer pattern.
The Subject/Observer can both be independently used.

Summary
We began the chapter by understanding the behavioral design patterns. We
understood the basis of the Observer pattern and how it is effectively used in
software architecture. We looked at how Observer design patterns are used to notify
the Observer of the changes happening in the Subject. They manage the interaction
between objects and manage one-to-many dependencies on the objects.

You also learned the pattern with a UML diagram and sample code implementation
in Python v3.5.

Observer patterns are implemented in two different ways: push and pull models.
You learned about each of these and discussed their implementation and
performance impact.

We understood the principle of loose coupling in software design and how the
Observer pattern leverages this principle in application development.

We also covered a section on FAQs that would help you get more ideas about the
pattern and its possible advantages/disadvantages.

At the end of this chapter, we're now geared up to learn more Behavioral patterns in
the chapters to come.

[73]

The Command Pattern –
Encapsulating Invocation

In the previous chapter, we started with an introduction to behavioral design
patterns. You learned the concept of Observers and discussed the Observer design
pattern. We understood the concept of the Observer design pattern with a UML
diagram and also learned how it's applied in the real world with the help of Python
implementations. We discussed the pros and cons of the Observer pattern. You
also learned about the Observer pattern with an FAQ section and summarized the
discussion at the end of the chapter.

In this chapter, we will talk about the Command design pattern. Like the Observer
pattern, the Command pattern falls under the hood of Behavioral patterns. We
will get introduced to the Command design pattern and discuss how it is used
in software application development. We will work with a sample use case and
implement it in Python v3.5.

In this chapter, we will cover the following topics in brief:

• An introduction to Command design patterns
• The Command pattern and its UML diagram
• A real-world use case with the Python v3.5 code implementation
• The Command pattern's pros and cons
• Frequently asked questions

The Command Pattern – Encapsulating Invocation

[74]

Introducing the Command pattern
As we saw in the previous chapter, Behavioral patterns focus on the responsibilities
that an object has. It deals with the interaction among objects to achieve larger
functionality. The Command pattern is a behavioral design pattern in which an
object is used to encapsulate all the information needed to perform an action or
trigger an event at a later time. This information includes the following:

• The method name
• An object that owns the method
• Values for method parameters

Let's understand the pattern with a very simple software example. Consider the case
of an installation wizard. A typical wizard may contain multiple phases or screens
that capture a user's preferences. While the user browses through the wizard,
s/he makes certain choices. Wizards are typically implemented with the Command
pattern. A wizard is first launched with an object called the Command object. The
preferences or choices made by the user in multiple phases of the wizard are then
stored in the Command object. When the user clicks on the Finish button on the
last screen of the wizard, the Command object runs an execute() method, which
considers all the stored choices and runs the appropriate installation procedure.
Thus, all the information regarding the choices are encapsulated in an object that
can be used later to take an action.

Another easy example is that of the printer spooler. A spooler can be implemented
as a Command object that stores information such as the page type (A5-A1), portrait/
landscape, collated/non-collated. When the user prints something (say, an image),
the spooler runs the execute() method on the Command object and the image is
printed with the set preferences.

Understanding the Command design
pattern
The Command pattern works with the following terms—Command, Receiver,
Invoker, and Client:

• A Command object knows about the Receiver objects and invokes a method
of the Receiver object.

• Values for parameters of the receiver method are stored in the Command object

Chapter 7

[75]

• The invoker knows how to execute a command
• The client creates a Command object and sets its receiver

The main intentions of the Command pattern are as follows:

• Encapsulating a request as an object
• Allowing the parameterization of clients with different requests
• Allowing to save the requests in a queue (we will talk about this later

in the chapter)
• Providing an object-oriented callback

The Command pattern can be used in the following multiple scenarios:

• Parameterizing objects depending on the action to be performed
• Adding actions to a queue and executing requests at different points
• Creating a structure for high-level operations that are based on

smaller operations

The following Python code implements the Command design pattern. We talked
about the example of the wizard earlier in the chapter. Consider that we want to
develop a wizard for installation or, popularly, installer. Typically, an installation
implies the copying or moving of files in the filesystem based on the choices that
a user makes. In the following example, in the client code, we start by creating the
Wizard object and use the preferences() method that stores the choices made by
the user during various screens of the wizard. On the wizard, when Finish button
is clicked, the execute() method is called. The execute() method picks up the
preference and starts the installation:

class Wizard():

 def __init__(self, src, rootdir):
 self.choices = []
 self.rootdir = rootdir
 self.src = src

 def preferences(self, command):
 self.choices.append(command)

 def execute(self):
 for choice in self.choices:

The Command Pattern – Encapsulating Invocation

[76]

 if list(choice.values())[0]:
 print("Copying binaries --", self.src, " to ", self.
rootdir)
 else:
 print("No Operation")

if __name__ == '__main__':
 ## Client code
 wizard = Wizard('python3.5.gzip', '/usr/bin/')
 ## Users chooses to install Python only
 wizard.preferences({'python':True})
 wizard.preferences({'java':False})
 wizard.execute()

The output of the preceding code is as follows:

A UML class diagram for the Command
pattern
Let's now understand more about the Command pattern with the help of the
following UML diagram.

As we discussed in the previous paragraph, the Command pattern has these main
participants: the Command, ConcreteCommand, Receiver, Invoker, and Client.
Let's put these in a UML diagram and see how the classes look:

Chapter 7

[77]

As we look at the UML diagram, you'll realize that there are five main participants in
this pattern:

• Command: This declares an interface to execute an operation
• ConcreteCommand: This defines a binding between the Receiver object

and action
• Client: This creates a ConcreteCommand object and sets its receiver
• Invoker: This asks ConcreteCommand to carry out the request
• Receiver: This knows how to perform the operations associated with

carrying out the request

www.allitebooks.com

http://www.allitebooks.org

The Command Pattern – Encapsulating Invocation

[78]

The flow is straightforward. The client asks for a command to be executed.
The invoker takes the command, encapsulates it, and places it in a queue. The
ConcreteCommand class is in charge of the requested command and asks the receiver
to perform the given action. The following code example is to understand the pattern
with all the participants involved:

from abc import ABCMeta, abstractmethod

class Command(metaclass=ABCMeta):
 def __init__(self, recv):
 self.recv = recv

 def execute(self):
 pass

class ConcreteCommand(Command):
 def __init__(self, recv):
 self.recv = recv

 def execute(self):
 self.recv.action()

class Receiver:
 def action(self):
 print("Receiver Action")

class Invoker:
 def command(self, cmd):
 self.cmd = cmd

 def execute(self):
 self.cmd.execute()

if __name__ == '__main__':
 recv = Receiver()
 cmd = ConcreteCommand(recv)
 invoker = Invoker()
 invoker.command(cmd)
 invoker.execute()

Chapter 7

[79]

Implementing the Command pattern in
the real world
We will take up an example of the stock exchange (much talked about in the Internet
world) to demonstrate the implementation of the Command pattern. What happens
in a stock exchange? You, as a user of the stock exchange, create orders to buy or
sell stocks. Typically, you don't buy or sell them; it's the agent or broker who plays
the intermediary between you and the stock exchange. The agent is responsible for
taking your request to the stock exchange and getting the work done. Imagine that
you want to sell a stock on Monday morning when the exchange opens up. You
can still make the request to sell stock on Sunday night to your agent even though
the exchange is not yet open. The agent then queues this request to be executed on
Monday morning when the exchange is open for the trading. This presents a classical
case for the Command pattern.

Design considerations
Based on the UML diagram, you learned that the Command pattern has four
main participants—Command, ConcreteCommand, Invoker, and Receiver. For the
preceding scenario, we should create an Order interface that defines the order that
a client places. We should define ConcreteCommand classes to buy or sell a stock. A
class also needs to be defined for the stock exchange. We should define the Receiver
class that will actually execute the trade and the agent (known as the invoker) that
invokes the order and gets it executed by the receiver.

Let's develop an application in Python v3.5 and implement the preceding use case.
We start with the Command object, Order:

• The Command object is represented by the Order class
• Order provides you with an interface (Python's abstract base class) so that

ConcreteCommand can implement the behavior
• The execute() method is the abstract method that needs to be defined by

the ConcreteCommand classes to execute the Order class

The following code represents the abstract class Order and the abstract
method execute():

from abc import ABCMeta, abstractmethod

class Order(metaclass=ABCMeta):

 @abstractmethod
 def execute(self):
 pass

The Command Pattern – Encapsulating Invocation

[80]

We have also developed certain classes that represent ConcreteCommand:

• In this case, we have two main concrete classes: BuyStockOrder and
SellStockOrder that implement the Order interface

• Both the ConcreteCommand classes use the object of the stock trading system
so that they can define appropriate actions for the trading system

• The execute() method of each of these ConcreteCommand classes uses the
stock trade object to execute the actions to buy and sell

Let's now look at concrete classes that implement the interface:

class BuyStockOrder(Order):
 def __init__(self, stock):
 self.stock = stock

 def execute(self):
 self.stock.buy()

class SellStockOrder(Order):
 def __init__(self, stock):
 self.stock = stock

 def execute(self):
 self.stock.sell()

Now, let's talk about the stock trading system and how it's implemented:

• The StockTrade class represents the Receiver object in this example
• It defines multiple methods (actions) to execute the orders placed by

ConcreteCommand objects
• The buy() and sell() methods are defined by the receiver which are called

by BuyStockOrder and SellStockOrder respectively to buy or sell the stock
in the exchange

Chapter 7

[81]

Let's take a look at the StockTrade class:

class StockTrade:
 def buy(self):
 print("You will buy stocks")

 def sell(self):
 print("You will sell stocks")

Another part of the implementation is the invoker:

• The Agent class represents the invoker.
• Agent is the intermediary between the client and StockExchange and

executes the orders placed by the client.
• Agent defines a data member, __orderQueue (a list), that acts as a queue.

Any new orders placed by the client are added to the queue.
• The placeOrder() method of Agent is responsible for queuing the orders

and also executing the orders.

The following code depicts the Agent class which performs the role of Invoker:

class Agent:
 def __init__(self):
 self.__orderQueue = []

 def placeOrder(self, order):
 self.__orderQueue.append(order)
 order.execute()

Let us now put all the above classes into perspective and look at how the client
is implemented:

• The client first sets its receiver, the StockTrade class
• It creates orders to buy and sell stocks with BuyStockOrder and

SellStockOrder (ConcreteCommand) that executes the action on StockTrade
• The invoker object is created by instantiating the Agent class
• The placeOrder() method of Agent is used to get the orders that the

client places

The Command Pattern – Encapsulating Invocation

[82]

The following is the code for the client is implemented:

if __name__ == '__main__':
 #Client
 stock = StockTrade()
 buyStock = BuyStockOrder(stock)
 sellStock = SellStockOrder(stock)

 #Invoker
 agent = Agent()
 agent.placeOrder(buyStock)
 agent.placeOrder(sellStock)

The following is the output of the preceding code:

There are multiple ways in which the Command pattern is used in software
applications. We will discuss two specific implementations that are very relevant
to the cloud applications:

• Redo or rollback operations:
 ° While implementing the rollback or redo operations, developers can

do two different things.
 ° These are to create a snapshot in the filesystem or memory, and when

asked for a rollback, revert to this snapshot.
 ° With the Command pattern, you can store the sequence of

commands, and when asked for a redo, rerun the same set of actions.

• Asynchronous task execution:

 ° In distributed systems, we often need the facility to perform the
asynchronous execution of tasks so that the core service is never
blocked in case of more requests.

 ° In the Command pattern, the invoker object can maintain a queue of
requests and send these tasks to the Receiver object so that they can
be acted on independent of the main application thread.

Chapter 7

[83]

Advantages and disadvantages of
Command patterns
The Command pattern has the following advantages:

• It decouples the classes that invoke the operation from the object that knows
how to execute the operation

• It allows you to create a sequence of commands by providing a queue system
• Extensions to add a new command is easy and can be done without changing

the existing code
• You can also define a rollback system with the Command pattern, for

example, in the Wizard example, we could write a rollback method

The following are the disadvantages of the Command pattern:

• There are a high number of classes and objects working together to
achieve a goal. Application developers need to be careful developing
these classes correctly.

• Every individual command is a ConcreteCommand class that increases the
volume of classes for implementation and maintenance.

Frequently asked questions
Q1. Can there be no Receiver and ConcreteCommand implement execute method?

A: Yes, it is definitely possible to do so. Many software applications use the
Command pattern in this way too. The only thing to note here is the interaction
between the invoker and receiver. If the receiver is not defined, the level of
decoupling goes down; moreover, the facility to parameterize commands is lost.

Q2. What data structure do I use to implement the queue mechanism in the
invoker object?

A: In the stock exchange example that we studied earlier in the chapter, we used
a list to implement the queue. However, the Command pattern talks about a stack
implementation that is really helpful in the case of redo or rollback development.

The Command Pattern – Encapsulating Invocation

[84]

Summary
We began the chapter by understanding the Command design pattern and how it is
effectively used in software architecture.

We looked at how Command design patterns are used to encapsulate all the
information needed to trigger an event or action at a later point in time.

You also learned the pattern with a UML diagram and sample code implementation
in Python v3.5 along with the explanation.

We also covered an FAQ section that would help you get more ideas on the pattern
and its possible advantages/disadvantages.

We will now take up other behavioral design patterns in the chapters to come.

[85]

The Template Method Pattern
– Encapsulating Algorithm

In the previous chapter, we started with an introduction to the Command design
pattern in which an object is used to encapsulate all the information needed to
perform an action or trigger an event at a later time. We understood the concept of
the Command design pattern with a UML diagram and also saw how it's applied in
the real world with the help of the Python implementation. We discussed the pros
and cons of Command patterns, explored more in the FAQ section, and summarized
the discussion at the end of the chapter.

In this chapter, we will talk about the Template design pattern, such as the
Command pattern and Template pattern that falls under the hood of Behavioral
patterns. We will get introduced to the Template design pattern and discuss how it is
used in software application development. We will also work with a sample use case
and implement it in Python v3.5.

In this chapter, we will cover the following topics in brief:

• An introduction to the Template Method design pattern
• The Template pattern and its UML diagram
• A real-world use case with the Python v3.5 code implementation
• The Template pattern – pros and cons
• The Hollywood principle, Template Method, and Template hook
• Frequently asked questions

The Template Method Pattern – Encapsulating Algorithm

[86]

At the end of this chapter, you will be able to analyze situations where the Template
design pattern is applicable and efficiently use them to solve design-related
problems. We will also summarize the entire discussion on the Template Method
pattern as a takeaway.

Defining the Template Method pattern
As we saw in the previous chapter, Behavioral patterns focus on the responsibilities
that an object has. It deals with the interaction among objects to achieve larger
functionality. The Template Method pattern is a behavioral design pattern that
defines the program skeleton or an algorithm in a method called the Template
Method. For example, you could define the steps to prepare a beverage as an
algorithm in a Template Method. The Template Method pattern also helps redefine
or customize certain steps of the algorithm by deferring the implementation of some
of these steps to subclasses. This means that the subclasses can redefine their own
behavior. For example, in this case, subclasses can implement steps to prepare tea
using the Template Method to prepare a beverage. It is important to note that the
change in the steps (as done by the subclasses) don't impact the original algorithm's
structure. Thus, the facility of overriding by subclasses in the Template Method
pattern allows the creation of different behaviors or algorithms.

To talk about the Template Method pattern in software development terminology, an
abstract class is used to define the steps of the algorithm. These steps are also known
as primitive operations in the context of the Template Method pattern. These steps
are defined with abstract methods, and the Template Method defines the algorithm.
The ConcreteClass (that subclasses the abstract class) implements subclass-specific
steps of the algorithm.

The Template Method pattern is used in the following cases:

• When multiple algorithms or classes implement similar or identical logic
• The implementation of algorithms in subclasses helps reduce

code duplication
• Multiple algorithms can be defined by letting the subclasses implement the

behavior through overriding

Chapter 8

[87]

Let's understand the pattern with a very simple day-to-day example. Think of what
all you do when you prepare tea or coffee. In the case of coffee, you perform the
following steps to prepare the beverage:

1. Boil water.
2. Brew coffee beans.
3. Pour it in the coffee cup.
4. Add sugar and milk to the cup.
5. Stir, and the coffee is done.

Now, if you want to prepare a cup of tea, you will perform the following steps:

1. Boil water.
2. Steep the tea bag.
3. Pour the tea in a cup.
4. Add lemon to the tea.
5. Stir, and the tea is done.

If you analyze both the preparations, you will find that both the procedures are
more or less the same. In this case, we can use the Template Method pattern
effectively. How do we implement it? We define a Beverage class that has abstract
methods common to preparing tea and coffee, such as boilWater(). We also define
the preparation() Template Method that will call out the sequence of steps in
preparing the beverage (the algorithm). We let the concrete classes, PrepareCoffee
and PrepareTea, define the customized steps to achieve the goals of preparing coffee
and tea. This is how the Template Method pattern avoids code duplication.

Another easy example is that of the compiler used by computer languages. A
compiler essentially does two things: collects the source and compiles to the target
object. Now, if we need to define a cross compiler for iOS devices, we can implement
this with the help of the Template Method pattern. We will read about this example
in detail later in the chapter.

The Template Method Pattern – Encapsulating Algorithm

[88]

Understanding the Template Method design
pattern
In short, the main intentions of the Template Method pattern are as follows:

• Defining a skeleton of an algorithm with primitive operations
• Redefining certain operations of the subclass without changing the

algorithm's structure
• Achieving code reuse and avoiding duplicate efforts
• Leveraging common interfaces or implementations

The Template Method pattern works with the following terms—AbstractClass,
ConcreteClass, Template Method, and Client:

• AbstractClass: This declares an interface to define the steps of
the algorithm

• ConcreteClass: This defines subclass-specific step definitions
• template_method(): This defines the algorithm by calling the step methods

We talked about the example of a compiler earlier in the chapter. Consider that we
want to develop our own cross compiler for an iOS device and run the program.

We first develop an abstract class (compiler) that defines the algorithm of a
compiler. The operations done by the compiler are collecting the source of the
code written in a program language and then compiling it to get the object
code (binary format). We define these steps as the collectSource() and
compileToObject() abstract methods and also define the run() method
that is responsible for executing the program. The algorithm is defined by
the compileAndRun() method, which internally calls the collectSource(),
compileToObject(), and run() methods to define the algorithm of the compiler.
The iOSCompiler concrete class now implements the abstract methods and
compiles/runs the Swift code on the iOS device.

The Swift programming language is used to develop applications
on the iOS platform.

Chapter 8

[89]

The following Python code implements the Template Method design pattern:

from abc import ABCMeta, abstractmethod

class Compiler(metaclass=ABCMeta):
 @abstractmethod
 def collectSource(self):
 pass

 @abstractmethod
 def compileToObject(self):
 pass

 @abstractmethod
 def run(self):
 pass

 def compileAndRun(self):
 self.collectSource()
 self.compileToObject()
 self.run()

class iOSCompiler(Compiler):
 def collectSource(self):
 print("Collecting Swift Source Code")

 def compileToObject(self):
 print("Compiling Swift code to LLVM bitcode")

 def run(self):
 print("Program runing on runtime environment")

iOS = iOSCompiler()
iOS.compileAndRun()

The Template Method Pattern – Encapsulating Algorithm

[90]

The output of the preceding code should look as follows:

A UML class diagram for the Template Method
pattern
Let's understand more about the Template method pattern with the help of a
UML diagram.

As we discussed in the previous section, the Template method pattern has the
following main participants: the abstract class, concrete class, Template method,
and client. Let's put these in a UML diagram and see how the classes look:

Chapter 8

[91]

As we look at the UML diagram, you'll realize that there are four main participants
in this pattern:

• AbstractClass: This defines the operations or steps of an algorithm with the
help of abstract methods. These steps are overridden by concrete subclasses.

• template_method(): This defines the skeleton of the algorithm. Multiple
steps as defined by abstract methods are called in the Template method to
define the sequence or the algorithm itself.

• ConcreteClass: This implements the steps (as defined by the abstract
methods) to perform subclass-specific steps of the algorithm.

The following is a code example to understand the pattern with all the
participants involved:

from abc import ABCMeta, abstractmethod

class AbstractClass(metaclass=ABCMeta):
 def __init__(self):
 pass

 @abstractmethod
 def operation1(self):
 pass

 @abstractmethod
 def operation2(self):
 pass

 def template_method(self):
 print("Defining the Algorithm. Operation1 follows Operation2")
 self.operation2()
 self.operation1()

class ConcreteClass(AbstractClass):

 def operation1(self):
 print("My Concrete Operation1")

 def operation2(self):

The Template Method Pattern – Encapsulating Algorithm

[92]

 print("Operation 2 remains same")

class Client:
 def main(self):
 self.concreate = ConcreteClass()
 self.concreate.template_method()

client = Client()
client.main()

The output of the preceding code should look as follows:

The Template Method pattern in the real
world
Let's take a very easy-to-understand scenario to implement the Template method
pattern. Imagine the case of a travel agency, say, Dev Travels. Now how do they
typically work? They define various trips to various locations and come up with
a holiday package for you. A package is essentially a trip that you, as a customer,
undertakes. A trip has details such as the places visited, transportation used,
and other factors that define the trip itinerary. This same trip can be customized
differently based on the needs of the customers. This calls for the Template Method
pattern, doesn't it?

Design Considerations:

• For the preceding scenario, based on the UML diagram, we should create an
AbstractClass interface that defines a trip

• The trip should contain multiple abstract methods that define the
transportation used, places visited on day1, day2, and day3, assuming that
it's a three-day long weekend trip, and also define the return journey

Chapter 8

[93]

• The itinerary() Template Method will actually define the trip's itinerary
• We should define ConcreteClasses that would help us customize trips

differently based on the customer's needs

Let's develop an application in Python v3.5 and implement the preceding use case.
We start with the abstract class, Trip:

• The abstract object is represented by the Trip class. It is an interface
(Python's abstract base class) that defines the details such as the
transportation used and places to visit on different days.

• The setTransport is an abstract method that should be implemented by
ConcreteClass to set the mode of transportation.

• The day1(), day2(), day3() abstract methods define the places visited on
the given day.

• The itinerary() Template Method creates the complete itinerary (the
algorithm, in this case, the trip). The sequence of the trip is to first define
the transportation mode, then the places to visit on each day, and the
returnHome.

The following code implements the scenario of Dev Travels:

from abc import abstractmethod, ABCMeta

class Trip(metaclass=ABCMeta):

 @abstractmethod
 def setTransport(self):
 pass

 @abstractmethod
 def day1(self):
 pass

 @abstractmethod
 def day2(self):
 pass

 @abstractmethod
 def day3(self):
 pass

The Template Method Pattern – Encapsulating Algorithm

[94]

 @abstractmethod
 def returnHome(self):
 pass

 def itinerary(self):
 self.setTransport()
 self.day1()
 self.day2()
 self.day3()
 self.returnHome()

We have also developed certain classes that represent the concrete class:

• In this case, we have two main concrete classes—VeniceTrip and
MaldivesTrip—that implement the Trip interface

• Concrete classes represent two different trips taken by the tourists based on
their choice and interests

• VeniceTrip and MaldivesTrip both implement setTransport(), day1(),
day2(), day3(), and returnHome()

Let's define the concrete classes in Python code:

class VeniceTrip(Trip):
 def setTransport(self):
 print("Take a boat and find your way in the Grand Canal")

 def day1(self):
 print("Visit St Mark's Basilica in St Mark's Square")

 def day2(self):
 print("Appreciate Doge's Palace")

 def day3(self):
 print("Enjoy the food near the Rialto Bridge")

 def returnHome(self):
 print("Get souvenirs for friends and get back")

class MaldivesTrip(Trip):
 def setTransport(self):

Chapter 8

[95]

 print("On foot, on any island, Wow!")

 def day1(self):
 print("Enjoy the marine life of Banana Reef")

 def day2(self):
 print("Go for the water sports and snorkelling")

 def day3(self):
 print("Relax on the beach and enjoy the sun")

 def returnHome(self):
 print("Dont feel like leaving the beach..")

Now, let's talk about the travel agency and tourists who want to have an
awesome vacation:

• The TravelAgency class represents the Client object in this example
• It defines the arrange_trip() method that provides customers with the

choice of whether they want to have a historical trip or beach trip
• Based on the choice made by the tourist, an appropriate class is instantiated
• This object then calls the itinerary() Template Method and the trip is

arranged for the tourists as per the choice of the customers

The following is the implementation for the Dev travel agency and how they arrange
for the trip based on the customer's choice:

class TravelAgency:
 def arrange_trip(self):
 choice = input("What kind of place you'd like to go historical
or to a beach?")
 if choice == 'historical':
 self.trip = VeniceTrip()
 self.trip.itinerary()
 if choice == 'beach':
 self.trip = MaldivesTrip()
 self.trip.itinerary()

TravelAgency().arrange_trip()

The Template Method Pattern – Encapsulating Algorithm

[96]

The output of the preceding code should look as follows:

If you decide to go on a historical trip, this will be the output of the code:

The Template Method pattern – hooks
A hook is a method that is declared in the abstract class. It is generally given a
default implementation. The idea behind hooks is to give a subclass the ability to
hook into the algorithm whenever needed. It's not imperative for the subclass to use
hooks and it can easily ignore this.

For example, in the beverage example, we can add a simple hook to see if
condiments need to be served along with tea or coffee based on the wish of
the customer.

Another example of hook can be in the case of the travel agency example. Now, if we
have a few elderly tourists, they may not want to go out on all three days of the trip
as they may get tired easily. In this case, we can develop a hook that will ensure day2
is lightly loaded, which means that they can go to a few nearby places and be back
with the plan of day3.

Basically, we use abstract methods when the subclass must provide the
implementation, and hook is used when it is optional for the subclass to
implement it.

Chapter 8

[97]

The Hollywood principle and the
Template Method
The Hollywood principle is the design principle that is summarized by Don't call us,
we'll call you. It comes from the Hollywood philosophy where the production houses
call actors if there is any role for the actor.

In the object-oriented world, we allow low-level components to hook themselves
into the system with the Hollywood principle. However, the high-level components
determine how the low-level systems are needed and when they are needed. In other
words, high-level components treat low-level components as Don't call us, we'll
call you.

This relates to the Template Method pattern in the sense that it's the high-level
abstract class that arranges the steps to define the algorithm. Based on how the
algorithm is, low-level classes are called on to define the concrete implementation
for the steps.

The advantages and disadvantages of
the Template Method pattern
The Template Method pattern provides you with the following advantages:

• As we saw earlier in the chapter, there is no code duplication.
• Code reuse happens with the Template Method pattern as it uses inheritance

and not composition. Only a few methods need to be overridden.
• Flexibility lets subclasses decide how to implement steps in an algorithm.

The disadvantages of Template Method patterns are as follows:

• Debugging and understanding the sequence of flow in the Template
Method pattern can be confusing at times. You may end up implementing
a method that shouldn't be implemented or not implementing an abstract
method at all. Documentation and strict error handling has to be done by
the programmer.

• Maintenance of the template framework can be a problem as changes at
any level (low-level or high-level) can disturb the implementation. Hence,
maintenance can be painful with the Template Method pattern.

The Template Method Pattern – Encapsulating Algorithm

[98]

Frequently asked questions
Q1. Should a low-level component be disallowed from calling a method in a
higher-level component?

A: No, a low-level component would definitely call the higher-level component
through inheritance. However, what the programmer needs to make sure is that
there is no circular dependency where the low-level and high-level components are
dependent on each other.

Q2. Isn't the strategy pattern similar to the Template pattern?

A: The strategy pattern and Template pattern both encapsulate algorithms.
Template depends on inheritance while strategy uses composition. The Template
Method pattern is a compile-time algorithm selection by sub-classing while the
strategy pattern is a runtime selection.

Summary
We began the chapter by understanding the Template Method design pattern and
how it is effectively used in software architecture.

We also looked at how the Template Method design pattern is used to encapsulate
the algorithm and provide the flexibility of implementing different behavior by
overriding the methods in the subclasses.

You learned the pattern with a UML diagram and sample code implementation in
Python v3.5 along with the explanation.

We also covered a section on FAQs that would help you get a better idea of the
pattern and its possible advantages/disadvantages.

We will now talk about a composite pattern in the next chapter—the MVC
design pattern.

[99]

Model-View-Controller –
Compound Patterns

In the previous chapter, we started with an introduction to Template Method design
pattern, in which subclasses redefine the concrete steps of the algorithm, thus
achieving flexibility and code reuse. You learned about the Template Method and
how it is used to construct the algorithm with a sequence of steps. We discussed
the UML diagram, its pros and cons, learned more about it in the FAQ section, and
summarized the discussion at the end of the chapter.

In this chapter, we will talk about Compound patterns. We will get introduced
to the Model-View-Controller (MVC) design pattern and discuss how it is used
in software application development. We will work with a sample use case and
implement it in Python v3.5.

We will cover the following topics in brief in this chapter:

• An introduction to Compound patterns and the Model-View-Controller
• The MVC pattern and its UML diagram
• A real-world use case with the Python v3.5 code implementation
• MVC pattern—pros and cons
• Frequently asked questions

At the end of the chapter, we will summarize the entire discussion—consider this as
a takeaway.

Model-View-Controller – Compound Patterns

[100]

An introduction to Compound patterns
Throughout this book, we explored various design patterns. As we saw, design
patterns are classified under three main categories: structural, creational, and
behavioral design patterns. You also learned about each of these with examples.

However, in software implementation, patterns don't work in isolation. Every
software design or solution is not implemented with just one design pattern.
Actually, patterns are often used together and combined to achieve a given design
solution. As GoF defines, "a compound pattern combines two or more patterns into a
solution that solves a recurring or general problem." A Compound pattern is not a set
of patterns working together; it is a general solution to a problem.

We're now going to look at the Model-View-Controller Compound pattern. It's the
best example of Compound patterns and has been used in many design solutions
over the years.

The Model-View-Controller pattern
MVC is a software pattern to implement user interfaces and an architecture that
can be easily modified and maintained. Essentially, the MVC pattern talks about
separating the application into three essential parts: model, view, and controller.
These three parts are interconnected and help in separating the ways in which
information is represented to the way information is presented.

This is how the MVC pattern works: the model represents the data and business
logic (how information is stored and queried), view is nothing but the representation
(how it is presented) of the data, and controller is the glue between the two,
the one that directs the model and view to behave in a certain way based on what
a user needs. Interestingly, the view and controller are dependent on the model but
not the other way round. This is primarily because a user is concerned about the
data. Models can be worked with independently and this is the key aspect of the
MVC pattern.

Consider the case of a website. This is one of the classical examples to describe the
MVC pattern. What happens on a website? You click on a button, a few operations
happen, and you get to see what you desired. How does this happen?

• You are the user and you interact with the view. The view is the web page
that is presented to you. You click on the buttons on the view and it tells the
controller what needs to be done.

Chapter 9

[101]

• Controllers take the input from the view and send it to the model. The model
gets manipulated based on the actions done by the user.

• Controllers can also ask the view to change based on the action it receives
from the user, such as changing the buttons, presenting additional UI
elements, and so on.

• The model notifies the change in state to the view. This can be based on a few
internal changes or external triggers such as clicking on a button.

• The view then displays the state that it gets directly from the model. For
example, if a user logs in to the website, he/she might be presented with a
dashboard view (post login). All the details that need to be populated on the
dashboard are given by the model to the view.

The MVC design pattern works with the following terms—Model, View, Controller
and the Client:

• Model: This declares a class to store and manipulate data
• View: This declares a class to build user interfaces and data displays
• Controller: This declares a class that connects the model and view
• User: This declares a class that requests for certain results based on

certain actions

The following image explains the flow of the MVC pattern:

Model-View-Controller – Compound Patterns

[102]

To talk about the MVC pattern in software development terminologies, let's look into
the main classes involved in the MVC pattern:

• The model class is used to define all the operations that happen on the data
(such as create, modify, and delete) and provides methods on how to use
the data.

• The view class is a representation of the user interface. It will have methods
that help us build web or GUI interfaces based on the context and need of
the application. It should not contain any logic of its own and just display
the data that it receives.

• The controller class is used to receive data from the request and send it to
other parts of the system. It has methods that are used to route requests.

The MVC pattern is used in the following cases:

• When there is a need to change the presentation without changes in the
business logic

• Multiple controllers can be used to work with multiple views to change the
representation on the user interface

• Once again, the model can be changed without changes in the view as they
can work independently of each other

In short, the main intention of the MVC pattern is as follows:

• Keeping the data and presentation of the data separate.
• Easy maintenance of the class and implementation.
• Flexibility to change the way in which data is stored and displayed. Both are

independent and hence have the flexibility to change.

Let's look at the model, view, and controller in detail as covered in Learning Python
Design Patterns, Gennadiy Zlobin, Packt Publishing as well.

Model – knowledge of the application
Model is the cornerstone of an application because it is independent of the view and
controller. The view and controller in turn are dependent on the model.

Model also provides data that is requested by the client. Typically, in applications,
the model is represented by the database tables that store and return information.
Model has state and methods to change states but is not aware of how the data
would be seen by the client.

Chapter 9

[103]

It is critical that the model stays consistent across multiple operations; otherwise, the
client may get corrupted or display stale data, which is completely undesirable.

As the model is completely independent, developers working on this piece can focus
on maintenance without the need for the latest view changes.

View – the appearance
The view is a representation of data on the interface that the client sees. The view can
be developed independently but should not contain any complex logic. Logic should
still reside in the controller or model.

In today's world, views need to be flexible enough and should cater to multiple
platforms such as desktop, mobiles, tables, and multiple screen sizes.

Views should avoid interacting directly with the databases and rely on models to get
the required data.

Controller – the glue
The controller, as the name suggests, controls the interaction of the user on the
interface. When the user clicks on certain elements on the interface, based on the
interaction (button click or touch), the controller makes a call to the model that in
turn creates, updates, or deletes the data.

Controllers also pass the data to the view that renders the information for the user to
view on the interface.

The Controller shouldn't make database calls or get involved in presenting the data.
The controller should act as the glue between the model and view and be as thin
as possible.

Let's now get into action and develop one sample app. The Python code shown
next implements the MVC design pattern. Consider that we want to develop an
application that tells a user about the marketing services delivered by a cloud
company, which include e-mail, SMS, and voice facilities.

We first develop the model class (Model) that defines the services provided by the
product, namely, e-mail, SMS, and voice. Each of these services have designated
rates, such as 1,000 e-mails would charge the client $2, and for 1,000 messages, the
charges are $10, and $15 for 1,000 voice messages. Thus, the model represents the
data about the product services and prices.

Model-View-Controller – Compound Patterns

[104]

We then define the view class (View) that provides a method to present the
information back to the client. The methods are list_services() and list_
pricing(); as the name suggests, one method is used to print the services offered
by the product and the other is to list the pricing for the services.

We then define the Controller class that defines two methods, get_services()
and get_pricing(). Each of these methods queries the model and gets the data.
The data is then fed to the view and thus presented to the client.

The Client class instantiates the controller. The controller object is used to call
appropriate methods based on the client's request:

class Model(object):
 services = {
 'email': {'number': 1000, 'price': 2,},
 'sms': {'number': 1000, 'price': 10,},
 'voice': {'number': 1000, 'price': 15,},
 }

class View(object):
 def list_services(self, services):
 for svc in services:
 print(svc, ' ')

 def list_pricing(self, services):
 for svc in services:
 print("For" , Model.services[svc]['number'],
 svc, "message you pay $",
 Model.services[svc]['price'])

class Controller(object):
 def __init__(self):
 self.model = Model()
 self.view = View()

 def get_services(self):
 services = self.model.services.keys()
 return(self.view.list_services(services))

 def get_pricing(self):

Chapter 9

[105]

 services = self.model.services.keys()
 return(self.view.list_pricing(services))

class Client(object):
 controller = Controller()
 print("Services Provided:")
 controller.get_services()
 print("Pricing for Services:")
 controller.get_pricing()

The following is the output of the preceding code:

A UML class diagram for the MVC design
pattern
Let's now understand more about the MVC pattern with the help of the following
UML diagram.

As we discussed in the previous sections, the MVC pattern has the following main
participants: the Model, View, and Controller class.

Model-View-Controller – Compound Patterns

[106]

In the UML diagram, we can see three main classes in this pattern:

• The Model class: This defines the business logic or operations attached to
certain tasks from the client.

• The View class: This defines the view or representation that is viewed by the
client. The model presents the data to the view based on the business logic.

• The Controller class: This is essentially an interface that is between the
view and model. When the client takes certain actions, the controller directs
the query from the view to model.

The following is a code example to understand the pattern with all the
participants involved:

class Model(object):
 def logic(self):
 data = 'Got it!'
 print("Model: Crunching data as per business logic")
 return data

class View(object):
 def update(self, data):
 print("View: Updating the view with results: ", data)

class Controller(object):
 def __init__(self):
 self.model = Model()
 self.view = View()

 def interface(self):
 print("Controller: Relayed the Client asks")
 data = self.model.logic()
 self.view.update(data)

class Client(object):
 print("Client: asks for certain information")
 controller = Controller()
 controller.interface()

Chapter 9

[107]

The following is the output of the preceding code:

The MVC pattern in the real world
Our good old web application frameworks are based on the philosophies of MVC.
Take the example of Django or Rails (Ruby): they structure their projects in the
Model-View-Controller format except that it is represented as MTV (Model,
Template, View) where the model is the database, templates are the views,
and controllers are the views/routes.

As an example, let's take up the Tornado web application framework
(http://www.tornadoweb.org/en/stable/) to develop a single-page app.
This application is used to manage a user's tasks and the user has permissions
to add tasks, update tasks, and delete tasks.

Let's see the design considerations:

• Let's start with the controllers first. In Tornado, controllers have been defined
as views/app routes. We need to define multiple views such as listing the
tasks, creating new tasks, closing the tasks, and handling an operation if a
request could not be served.

• We should also define models, the database operations to list, create, or
delete the tasks.

• Finally, the views are represented by templates in Tornado. Based on our
app, we would need a template to show tasks, create or delete tasks, and
also a template if a URL is not found.

Modules
We will use the following modules for this application:

• Torando==4.3
• SQLite3==2.6.0

http://www.tornadoweb.org/en/stable/
http://www.tornadoweb.org/en/stable/

Model-View-Controller – Compound Patterns

[108]

Let's start by importing the Python modules in our app:

importtornado
import tornado.web
import tornado.ioloop
import tornado.httpserver
import sqlite3

The following code represents the database operations, essentially, the models in
MVC. In Tornado, DB operations are performed under different handlers. Handlers
perform operations on the DB based on the route requested by the user in the web
app. Here, we talk about the four handlers that we have created in this example:

• IndexHandler: This returns all the tasks that are stored in the database.
It returns a dictionary with key tasks. It performs the SELECT database
operation to get these tasks.

• NewHandler: As the name suggests, this is useful to add new tasks.
It checks whether there is a POST call to create a new task and does
an INSERT operation in the DB.

• UpdateHandler: This is useful in marking a task as complete or reopening
a given task. In this case, the UPDATE database operation occurs to set a task
with the status as open/closed.

• DeleteHandler: This deletes a given task from the database. Once deleted,
the task is no more visible in the list of tasks.

We have also developed an _execute() method that takes a SQLite query as an
input and performs the required DB operation. The _execute() method does the
following operations on the SQLite DB:

• Creating a SQLite DB connection
• Getting the cursor object
• Using the cursor object to make a transaction
• Committing the query
• Closing the connection

Let's look at the handlers in the Python implementation:

class IndexHandler(tornado.web.RequestHandler):
 def get(self):
 query = "select * from task"

Chapter 9

[109]

 todos = _execute(query)
 self.render('index.html', todos=todos)

class NewHandler(tornado.web.RequestHandler):
 def post(self):
 name = self.get_argument('name', None)
 query = "create table if not exists task (id INTEGER \
 PRIMARY KEY, name TEXT, status NUMERIC) "
 _execute(query)
 query = "insert into task (name, status) \
 values ('%s', %d) " %(name, 1)
 _execute(query)
 self.redirect('/')

 def get(self):
 self.render('new.html')

class UpdateHandler(tornado.web.RequestHandler):
 def get(self, id, status):
 query = "update task set status=%d where \
 id=%s" %(int(status), id)
 _execute(query)
 self.redirect('/')

class DeleteHandler(tornado.web.RequestHandler):
 def get(self, id):
 query = "delete from task where id=%s" % id
 _execute(query)
 self.redirect('/')

If you look up these methods, you'll notice something called self.render().
This essentially represents the views in MVC (templates in the Tornado framework).
We have three main templates:

• index.html: This is a template to list all the tasks
• new.html: This is the view to create a new task
• base.html: This is the base template from which other templates

are inherited

Model-View-Controller – Compound Patterns

[110]

Consider the following code:

base.html
<html>
<!DOCTYPE>
<html>
<head>
 {% block header %}{% end %}
</head>
<body>
 {% block body %}{% end %}
</body>
</html>

index.html

{% extends 'base.html' %}
<title>ToDo</title>
{% block body %}
<h3>Your Tasks</h3>
<table border="1" >
<tralign="center">
<td>Id</td>
<td>Name</td>
<td>Status</td>
<td>Update</td>
<td>Delete</td>
</tr>
 {% for todo in todos %}
<tralign="center">
<td>{{todo[0]}}</td>
<td>{{todo[1]}}</td>
 {% if todo[2] %}
<td>Open</td>
 {% else %}
<td>Closed</td>
 {% end %}
 {% if todo[2] %}
<td>Close Task</td>
 {% else %}
<td>Open Task</td>
 {% end %}

Chapter 9

[111]

<td>X</td>
</tr>
 {% end %}
</table>

<div>
<h3>Add Task</h3>
</div>
{% end %}

new.html

{% extends 'base.html' %}
<title>ToDo</title>
{% block body %}
<div>
<h3>Add Task to your List</h3>
<form action="/todo/new" method="post" id="new">
<p><input type="text" name="name" placeholder="Enter task"/>
<input type="submit" class="submit" value="add" /></p>
</form>
</div>
{% end %}

In Tornado, we also have the application routes that are controllers in MVC.
We have four application routes in this example:

• /: This is the route to list all the tasks
• /todo/new: This is the route to create new tasks
• /todo/update: This is the route to update the task status to open/closed
• /todo/delete: This is the route to delete a completed task

The code example is as follows:

class RunApp(tornado.web.Application):
 def __init__(self):
 Handlers = [
 (r'/', IndexHandler),
 (r'/todo/new', NewHandler),
 (r'/todo/update/(\d+)/status/(\d+)', UpdateHandler),

Model-View-Controller – Compound Patterns

[112]

 (r'/todo/delete/(\d+)', DeleteHandler),
]
 settings = dict(
 debug=True,
 template_path='templates',
 static_path="static",
)
 tornado.web.Application.__init__(self, Handlers, \
 **settings)

We also have application settings and can start the HTTP web server to run
the application:

if__name__ == '__main__':
 http_server = tornado.httpserver.HTTPServer(RunApp())
 http_server.listen(5000)
 tornado.ioloop.IOLoop.instance().start()

When we run the Python program:

1. The server gets started and runs on port 5000. The appropriate views,
templates, and controllers have been configured.

2. On browsing http://localhost:5000/, we can see the list of tasks.
the following screenshot shows the output in the browser:

http://localhost:5000/

Chapter 9

[113]

3. We can also add a new task. Once you click on add, a new task gets added. In
the following screenshot, a new task Write the New Chapter is added and
listed in the task list:

When we enter the new task and click on the ADD button, the task gets
added to the list of existing tasks:

4. We can close tasks from the UI as well. For example, we update the Cook
food task and the list gets updated. We can reopen the task if we choose to:

Model-View-Controller – Compound Patterns

[114]

5. We can also delete a task. In this case, we delete the first task, New Task,
and the task list will get updated to remove the task:

Benefits of the MVC pattern
The following are the benefits of the MVC pattern:

• With MVC, developers can split the software application into three major
parts: model, view, and controller. This helps in achieving easy maintenance,
enforcing loose coupling, and decreasing complexity.

• MVC allows independent changes on the frontend without any, or very few,
changes on the backend logic, and so the development efforts can still run
independently.

• On similar lines, models or business logic can be changed without any
changes in the view.

• Additionally, the controller can be changed without any impact on views
or models.

• MVC also helps in hiring people with specific capabilities such as platform
engineers and UI engineers who can work independently in their field
of expertise.

Chapter 9

[115]

Frequently asked questions
Q1. Isn't MVC a pattern? Why is it called a Compound pattern?

A: Compound patterns are essentially groups of patterns put together to solve large
design problems in software application development. The MVC pattern is the most
popular and widely used Compound pattern. As it is so widely used and reliable, it
is treated as a pattern itself.

Q2. Is MVC used only in websites?

A: No, a website is the best example to describe MVC. However, MVC can be used
in multiple areas such as GUI applications or any other place where you need loose
coupling and splitting of components in an independent way. Typical examples of
MVC include blogs, movie database applications, and video streaming web apps.
While MVC is useful in many places, it's overkill if you use it for the landing pages,
marketing content, or quick single-page applications.

Q3. Can multiple views work with multiple models?

A: Yes, often you'd end up in a situation where the data needs to be collated from
multiple models and presented in one view. One-to-one mapping is rare in today's
web app world.

Summary
We began the chapter by understanding Compound patterns and looked at
the Model-View-Controller pattern and how it is effectively used in software
architecture. We then looked at how the MVC pattern is used to ensure loose
coupling and maintain a multilayer framework for independent task development.

You also learned the pattern with a UML diagram and sample code implementation
in Python v3.5 along with the explanation. We also covered a section on FAQs
that would help you get more ideas on the pattern and its possible advantages/
disadvantages.

In the next chapter, we will talk about the Anti patterns. See you there!

[117]

The State Design Pattern
In this chapter, we will cover the State design pattern. Like the Command or
Template design patterns, State pattern falls under the hood of Behavioral patterns.
You will be introduced to the State design pattern, and we will discuss how it is used
in software application development. We will work with a sample use case, a
real-world scenario, and implement this in Python v3.5.

We will briefly cover these topics in this chapter:

• Introduction to the State design pattern
• The State design pattern and its UML diagram
• A real-world use case with the Python v3.5 code implementation
• State pattern: advantages and disadvantages

At the end of this chapter, you will appreciate the application and context of the State
design pattern.

Defining the State design pattern
Behavioral patterns focus on the responsibilities that an object has. They deal with
the interaction among objects to achieve larger functionality. The State design pattern
is a Behavioral design pattern, which is also sometimes referred to as an objects for
states pattern. In this pattern, an object can encapsulate multiple behaviors based on
its internal state. A State pattern is also considered as a way for an object to change
its behavior at runtime.

Changing behavior at runtime is something that Python excels at!

The State Design Pattern

[118]

For example, consider the case of a simple radio. A radio has AM/FM (a toggle
switch) channels and a scan button to scan across multiple FM/AM channels. When
a user switches on the radio, the base state of the radio is already set (say, it is set
to FM). On clicking the Scan button, the radio gets tuned to multiple valid FM
frequencies or channels. When the base State is now changed to AM, the scan button
helps the user to tune into multiple AM channels. Hence, based on the base state
(AM/FM) of the radio, the scan button's behavior dynamically changes when tuning
into AM or FM channels.

Thus, the State pattern allows an object to change its behavior when its internal state
changes. It will appear as though the object itself has changed its class. The State
design pattern is used to develop Finite State Machines and helps to accommodate
State Transaction Actions.

Understanding the State design pattern
The State design patterns works with the help of three main participants:

• State: This is considered to be an interface that encapsulates the object's
behavior. This behavior is associated with the state of the object.

• ConcreteState: This is a subclass that implements the State interface.
ConcreteState implements the actual behavior associated with the object's
particular state.

• Context: This defines the interface of interest to clients. Context also
maintains an instance of the ConcreteState subclass that internally
defines the implementation of the object's particular state.

Let's take a look at the structural code implementation of the State design pattern
with these three participants. In this code implementation, we define a State
interface that has a Handle() abstract method. The ConcreteState classes,
ConcreteStateA and ConcreteStateB, implement the State interface and, thus,
define the Handle() methods specific to the ConcreteState classes. So, when the
Context class is set for a state, the Handle() method of this state's ConcreteClass
gets called. In the following example, since Context is set to stateA, the
ConcreteStateA.Handle() method gets called and prints ConcreteStateA:

from abc import abstractmethod, ABCMeta

class State(metaclass=ABCMeta):

 @abstractmethod
 def Handle(self):

Chapter 10

[119]

 pass

class ConcreteStateB(State):
 def Handle(self):
 print("ConcreteStateB")

class ConcreteStateA(State):
 def Handle(self):
 print("ConcreteStateA")

class Context(State):

 def __init__(self):
 self.state = None

 def getState(self):
 return self.state

 def setState(self, state):
 self.state = state

 def Handle(self):
 self.state.Handle()

context = Context()
stateA = ConcreteStateA()
stateB = ConcreteStateB()

context.setState(stateA)
context.Handle()

We will see the following output:

The State Design Pattern

[120]

Understanding the State design pattern with a
UML diagram
As we saw in the previous section, there are three main participants in the UML
diagram: State, ConcreteState, and Context. In this section, we will try to
manifest them on a UML class diagram.

Let's understand the elements of UML diagram in detail:

• State: This is an interface that defines the Handle() abstract method.
The Handle() method needs to be implemented by ConcreteState.

• ConcreteState: In this UML diagram, we have defined two
ConcreteClasses: ConcreteStateA, and ConcreteStateB. These
implement the Handle() method and define the actual action to be
taken based on the State change.

• Context: This is a class that accepts the client's request. It also maintains
a reference to the object's current state. Based on the request, the concrete
behavior gets called.

A simple example of the State design
pattern
Let's understand all three participants with a simple example. Say, we want to
implement a TV remote with a simple button to perform on/off actions. If the TV is on,
the remote button will switch off the TV and vice versa. In this case, the State interface
will define the method (say, doThis()) to perform actions such as switching on/off
the TV. We also need to define ConcreteClass for different states. In this example,
we have two major states, StartState and StopState, which indicate when the
TV is switched on and the state in which the TV is switched off, respectively.

Chapter 10

[121]

For this scenario, the TVContext class will implement the State interface and keep
a reference to the current state. Based on the request, TVContext forwards the
request to ConcreteState, which implements the actual behavior (for a given state)
and performs the necessary action. So, in this case, the base state is StartState (as
defined earlier) and the request received by the TVContext class is to switch Off the
TV. TVContext class understands the need and accordingly forwards the request to
StopState concrete class which inturn calls the doThis() method to actually switch
off the TV:

from abc import abstractmethod, ABCMeta

class State(metaclass=ABCMeta):

 @abstractmethod
 def doThis(self):
 pass

class StartState (State):
 def doThis(self):
 print("TV Switching ON..")

class StopState (State):
 def doThis(self):
 print("TV Switching OFF..")

class TVContext(State):

 def __init__(self):
 self.state = None

 def getState(self):
 return self.state

 def setState(self, state):
 self.state = state

 def doThis(self):
 self.state.doThis()

context = TVContext()
context.getState()

The State Design Pattern

[122]

start = StartState()
stop = StopState()

context.setState(stop)
context.doThis()

Here is the output for the preceding code:

The State design pattern with v3.5
implementation
Let's now take a look at a real-world use case for the State design pattern. Think of
a computer system (desktop/laptop). It can have multiple states such as On, Off,
Suspend, or Hibernate. Now, if we want to manifest these states with the help of
State design pattern, how will we do it?

Say, we start with the ComputerState interface:

• The state should define two attributes, which are name and allowed. The
name attribute represents the state of the object, and allowed is a list that
defines the state's object, which it is allowed to get into.

• The state must define a switch() method, which will actually change the
state of the object (in this case, the computer).

Let's take a look at the code implementation of the ComputerState interface:

class ComputerState(object):
 name = "state"
 allowed = []

 def switch(self, state):
 if state.name in self.allowed:
 print('Current:',self,' => switched to new state',state.
name)
 self.__class__ = state
 else:
 print('Current:',self,' => switching to',state.name,'not
possible.')

 def __str__(self):
 return self.name

Chapter 10

[123]

Let's now take a look at ConcreteState, which implements the State interface.
We will define four states:

• On: This switches on the computer. The allowed states here are Off, Suspend,
and Hibernate.

• Off: This switches off the computer. The allowed state here is just On.
• Hibernate: This state puts the computer in the hibernate mode. The computer

can only get switched on when it's in this state.
• Suspend: This state suspends the computer, and once the computer is

suspended, it can be switched on.

Let's now take a look at the code:

class Off(ComputerState):
 name = "off"
 allowed = ['on']

class On(ComputerState):
 name = "on"
 allowed = ['off','suspend','hibernate']

class Suspend(ComputerState):
 name = "suspend"
 allowed = ['on']

class Hibernate(ComputerState):
 name = "hibernate"
 allowed = ['on']

Now, we explore the context class (Computer). The context does two main things:

• __init__(): This method defines the base state of the computer
• change(): This method will change the state of the object, and the actual

change in behavior is implemented by the ConcreteState classes (on, off,
suspend, and hibernate)

Here is the implementation of the preceding methods:

class Computer(object):
 def __init__(self, model='HP'):
 self.model = model
 self.state = Off()

 def change(self, state):
 self.state.switch(state)

The State Design Pattern

[124]

The following is the code for the client. We create the object of the Computer class
(Context) and pass a state to it. The state can be either of these: On, Off, Suspend,
and Hibernate. Based on the new state, the context calls its change(state) method,
which eventually switches the actual state of the computer:

if __name__ == "__main__":
 comp = Computer()
 # Switch on
 comp.change(On)
 # Switch off
 comp.change(Off)

 # Switch on again
 comp.change(On)
 # Suspend
 comp.change(Suspend)
 # Try to hibernate - cannot!
 comp.change(Hibernate)
 # switch on back
 comp.change(On)
 # Finally off
 comp.change(Off)

Now, we can observe the following output:

__class__ is a built-in attribute of every class. It is a reference to the class. For
instance, self.__class__.__name__ represents the name of the class. In this
example, we use __class__ attribute of Python to change the State. So, when
we pass the state to the change() method, the class of the objects gets dynamically
changed at runtime. The comp.change(On) code, changes the object state to On and
subsequently to different states like Suspend, Hibernate, and Off.

Chapter 10

[125]

Advantages/disadvantages of the State
pattern
Here are the benefits of the State design pattern:

• In the State design pattern, an object's behavior is the result of the
function of its state, and the behavior gets changed at runtime depending
on the state. This removes the dependency on the if/else or switch/case
conditional logic. For example, in the TV remote scenario, we could have also
implemented the behavior by simply writing one class and method that will
ask for a parameter and perform an action (switch the TV on/off) with an
if/else block.

• With State pattern, the benefits of implementing polymorphic behavior are
evident, and it is also easier to add states to support additional behavior.

• The State design pattern also improves Cohesion since state-specific
behaviors are aggregated into the ConcreteState classes, which are
placed in one location in the code.

• With the State design pattern, it is very easy to add a behavior by just
adding one more ConcreteState class. State pattern thus improves the
flexibility to extend the behavior of the application and overall improves
code maintenance.

We have seen the advantages of state patterns. However, they also have a
few pitfalls:

• Class Explosion: Since every state needs to be defined with the help of
ConcreteState, there is a chance that we might end up writing many
more classes with a small functionality. Consider the case of finite state
machines—if there are many states but each state is not too different from
another state, we'd still need to write them as separate ConcreteState
classes. This increases the amount of code we need to write, and it
becomes difficult to review the structure of a state machine.

• With the introduction of every new behavior (even though adding behavior
is just adding one more ConcreteState), the Context class needs to be
updated to deal with each behavior. This makes the Context behavior
more brittle with every new behavior.

The State Design Pattern

[126]

Summary
To summarize what we've learned so far, in State design patterns, the object's
behavior is decided based on its state. The state of the object can be changed at
runtime. Python's ability to change behavior at runtime makes it very easy to apply
and implement the State design pattern. The State pattern also gives us control over
deciding the states that objects can take up such as those in the computer example
that we saw earlier in the chapter. The Context class provides an easier interface
for clients, and ConcreteState makes sure it is easy to add behaviors to the objects.
Thus, the State pattern improves cohesion, flexibility to extend, and removes
redundant code blocks. We academically studied the pattern in the form of a UML
diagram and learned about the implementation aspects of the State pattern with
help of the Python v3.5 code implementation. We also took a look at the few pitfalls
you might encounter when it comes to the State pattern, and the code which can
significantly increase when it comes to adding more states or behaviors. I hope you
had a nice time going through this chapter!

[127]

AntiPatterns
In the previous chapter, we started with an introduction to Compound patterns. You
learned how design patterns work together to solve a real-world design problem.
We went further to explore the Model-View-Controller design pattern—the king of
Compound patterns. We understood that the MVC pattern is used when we need
loose coupling between components and separation of the way in which data is
stored from the way data is presented. We also went through the UML diagram of
the MVC pattern and read about how the individual components (model, view, and
controller) work among themselves. We also saw how it's applied in the real world
with the help of the Python implementation. We discussed the benefits of the MVC
pattern, learned more about it in the FAQs section, and summarized the discussion
at the end of chapter.

In this chapter, we will talk about AntiPatterns. This is different from all the other
chapters in the book; here, we will cover what we shouldn't do as architects or
software engineers. We will understand what AntiPatterns are and how they are
visible in software design or development aspects with the help of theoretical and
practical examples.

In brief, we will cover the following topics in this chapter:

• An introduction to AntiPatterns
• AntiPatterns with examples
• Common pitfalls during development

At the end of the chapter, we will summarize the entire discussion—consider this as
a takeaway.

AntiPatterns

[128]

An introduction to AntiPatterns
Software design principles represent a set of rules or guidelines that help software
developers make design-level decisions. According to Robert Martin, there are four
aspects of a bad design:

• Immobile: An application is developed in such a way that it becomes very
hard to reuse

• Rigid: An application is developed in such a manner that any small change
may in turn result in moving of too many parts of the software

• Fragile: Any change in the current application results in breaking the existing
system fairly easily

• Viscose: Changes are done by the developer in the code or environment itself
to avoid difficult architectural level changes

The above aspects of bad design, if applied, result in solutions that should not be
implemented in the software architecture or development.

An AntiPattern is an outcome of a solution to recurring problems so that the
outcome is ineffective and becomes counterproductive. What does this mean? Let's
say that you come across a software design problem. You get down to solving this
problem. However, what if the solution has a negative impact on the design or
causes any performance issues in the application? Hence, AntiPatterns are common
defective processes and implementations within software applications.

AntiPatterns may be the result of the following:

• A developer not knowing the software development practices
• A developer not applying design patterns in the correct context

AntiPatterns can prove beneficial as they provide an opportunity for the
following reasons:

• Recognize recurring problems in the software industry and provide a
detailed remedy for most of these issues

• Develop tools to recognize these problems and determine the
underlying causes

• Describe the measures that can be taken at several levels of improving the
application and architecture

Chapter 11

[129]

AntiPatterns can be classified under two main categories:

1. Software development AntiPatterns
2. Software architecture AntiPatterns

Software development AntiPatterns
When you start software development for an application or project, you think of the
code structure. This structure is consistent with the product architecture, design,
customer use cases, and many other development considerations.

Often, when the software is developed, it gets deviated from the original code
structure due to the following reasons:

• The thought process of the developer evolves with development
• Use cases tend to change based on customer feedback
• Data structures designed initially may undergo change with functionality or

scalability considerations

Due to the preceding reasons, software often undergoes refactoring. Refactoring
is taken with a negative connotation by many, but in reality, refactoring is one of
the critical parts of the software development journey, which provides developers
an opportunity to relook the data structures and think about scalability and ever-
evolving customer's needs.

The following examples provide you with an overview of different AntiPatterns
observed in software development and architecture. We will cover only a few of
them along with causes, symptoms, and consequences.

Spaghetti code
This is the most common and most heard of AntiPattern in software development.
Do you know how spaghetti looks? So complicated, isn't it? Software control flows
also get tangled if structures are developed in an ad hoc manner. Spaghetti code is
difficult to maintain and optimize.

The typical causes of Spaghetti include the following:

• Ignorance on object-oriented programming and analysis
• Product architecture or design that is not considered
• Quick fix mentality

AntiPatterns

[130]

You know you're stuck with Spaghetti when the following points are true:

• Minimum reuse of structures is possible
• Maintenance efforts are too high
• Extension and flexibility to change is reduced

Golden Hammer
In the software industry, you would have seen many examples where a given
solution (technology, design, or module) is used in many places because the
solution would have yielded benefits in multiple projects. As we have seen with
examples throughout this book, a solution is best suited in a given context and
applied to certain types of problems. However, teams or software developers tend
to go with one proven solution irrespective of whether it suits the need. This is the
reason that it's called Golden Hammer, a hammer for all the nails possible (a solution
to all problems).

The typical causes of Golden Hammer include the following:

• It comes as a recommendation from the top (architects or technology leaders)
who are not close to the given problem at hand

• A solution has yielded a lot of benefits in the past but in projects with a
different context and requirements

• A company is stuck with this technology as they have invested money in
training the staff or the staff is comfortable with it

The consequences of a Golden Hammer are as follows:

• One solution is obsessively applied to all software projects
• The product is described, not by the features, but the technology used

in development
• In the company corridors, you hear developers talking, "That could have

been better than using this."
• Requirements are not completed and not in sync with user expectations

Chapter 11

[131]

Lava Flow
This AntiPattern is related to Dead Code, or an unusable piece of code, lying in the
software application for the fear of breaking something else if it is modified. As more
time passes, this piece of code continues to remain in the software and solidifies its
position, like lava turning into a hard rock. It may happen in cases where you start
developing software to support a certain use case but the use case itself changes
with time.

The causes of a Lava Flow include the following:

• A lot of trial and error code in the production
• Single-handedly written code that is not reviewed and is handed over to

other development teams without any training
• The initial thought of the software architecture or design is implemented in

the code base, but no one understands it anymore

The symptoms of a Lava Flow are as follows:

• Low code coverage (if at all done) for developed tests
• A lot of occurrences of commented code without reasons
• Obsolete interfaces, or developers try to work around existing code

Copy-and-paste or cut-and-paste
programming
As you know, this is one of the most common AntiPatterns. Experienced developers
put their code snippets online (GitHub or Stack Overflow) that are solutions to some
commonly occurring issues. Developers often copy these snippets as is and use in
their application to move further in the application development. In this case, there is
no validation that this is the most optimized code or even that the code actually fits
the context. This leads to inflexible software application that is hard to maintain.

The causes of copy-and-paste or cut-and-paste are as follows:

• Novice developers not used to writing code or not aware how to develop
• Quick bug fix or moving forward with development
• Code duplication for need of a code structure or standardization

across modules
• A lack of long-term thinking or forethought

AntiPatterns

[132]

The consequences of cut-and-paste or copy-and-paste include the following:

• Similar type of issues across software application
• Higher maintenance costs and increased bug life cycle
• Less modular code base with the same code running into a number of lines
• Inheriting issues that existed in the first place

Software architecture AntiPatterns
Software architecture is an important piece of overall system architecture. While
system architecture focuses on aspects such as the design, tools, and hardware
among other things, software architecture looks at modeling the software that is
well understood by the development and test teams, product managers, and other
stakeholders. This architecture plays a critical role in determining the success of the
implementation and how the product works for the customers.

We will discuss some of the architecture-level AntiPatterns that we observe in the
real world with development and implementation software architecture.

Reinventing the wheel
We often hear technology leaders talking about NOT reinventing the wheel. What
does it essentially mean? For some, this may mean code or library reuse. Actually, it
points to architecture reuse. For example, you have solved a problem and come up
with an architecture-level solution. If you encounter a similar problem in any other
application, the thought process (architecture or design) that was developed earlier
should be reused. There is no point in revisiting the same problem and devising a
solution, which is essentially reinventing the wheel.

The causes that lead to reinventing the wheel are as follows:

• An absence of a central documentation or repository that talks about
architecture-level problems and solutions implemented

• A lack of communication between technology leaders in the community
or company

• Building from scratch is the process followed in the organization; basically,
immature processes and loose process implementation and adherence

Chapter 11

[133]

The consequences of this AntiPattern include the following:

• Too many solutions to solve one standard problem, with many of them not
being well thought out

• More time and resource utilization for the engineering team leading to
overbudgeting and more time to market

• A closed system architecture (architecture useful for only one product),
duplication of efforts, and poor risk management

Vendor lock-in
As the name of the AntiPattern suggests, product companies tend to be dependent
on some of the technologies provided by their vendors. These technologies are so
glued to their system that it is very difficult to move away.

The following are the causes of a vendor lock-in:

• Familiarity with folks in authority in the vendor company and possible
discounts in the technology purchase

• Technology chosen based on the marketing and sales pitch instead of
technology evaluation

• Using a proven technology (proven indicates that the return on investments
with this technology were really high in the previous experience) in the
current project even when it's not suited for project needs or requirements

• Technologists/developers are already trained in using this technology

The consequences of a vendor lock-in are as follows:

• Release cycles and product maintenance cycles of a company's product
releases are directly dependent on the vendor's release time frame

• The product is developed around the technology rather than on the
customer's requirements

• The product's time to market is unreliable and doesn't meet
customer's expectations

Design by committee
Sometimes, based on the process in an organization, a group of people sit together
and design a particular system. The resulting software architecture is often complex
or substandard because it involves too many thought processes, and technologists
who may not have the right skillset or experience in designing the products have put
forward the ideas.

AntiPatterns

[134]

The causes of design by committee are as follows:

• The process in the organization involves getting the architecture or design
approved by many stakeholders

• No single point of contact or architect responsible for the design
• The design priorities set by marketing or technologists rather than set by

customer feedback

The symptoms observed with this AntiPattern include the following:

• Conflicting viewpoints between developers and architects even after the
design is finalized

• Overly complex design that is very difficult to document
• Any change in the specification or design undergoes review by many,

resulting in implementation delays

Summary
To summarize this chapter, you learned about AntiPatterns, what they are, and
their classifications. We understood that AntiPatterns could be related to software
development or software architecture. We looked at the commonly occurring
AntiPatterns and learned about their causes, symptoms, and consequences.
I am sure you will learn from these and avoid such situations in your project.

This is it folks, this was the last chapter of the book. Hope you enjoyed it and the
book helped you improve your skills. Wish you all the very best!

[135]

Index
A
Abstract Factory pattern

about 26, 32, 33
implementing 34-36
versus Factory method pattern 36

abstraction
about 5
features 5

Adapter pattern 40
AntiPattern

benefits 128
categories 129
causes 132
consequences 133
defining 128
results 128

aspects, object-oriented programming
abstraction 5
composition 6
encapsulation 3
inheritance 4
polymorphism 4

B
bad design

Fragile 128
Immobile 128
Rigid 128
Viscose 128

Behavioral patterns
properties 12

Bridge pattern 40

C
classes 2
client 43
Command design pattern

defining 74-76
Command pattern

advantages 83
asynchronous task execution 82
defining 74
design considerations 79-82
disadvantages 83
implementing 79
Redo or rollback operations 82
UML class diagram 76-78

composition 6
Compound patterns 100
context, design patterns

non-functional requirements 10
participants 10
results 10
trade-offs 10

copy-and-paste or cut-and-paste
programming

causes 131
consequences 132
defining 131

core concepts, object-oriented programming
classes 2
methods 3
objects 2

Creational patterns
properties 11

[136]

D
Decorator pattern 40
design by committee

causes 134
symptoms 134

design patterns
about 8
advantages 10
applicability 10
Behavioral patterns 12
classifying 11
Creational patterns 11
features 9
Structural patterns 12
taxonomy 10

dynamic languages
patterns 11

E
encapsulation

about 3
features 3

examples, Structural design patterns
Adapter pattern 40
Bridge pattern 40
Decorator pattern 40

F
façade 42
Façade design pattern

about 40, 41
and Proxy pattern, comparing 58
implementing, in real world 43-47

factory
advantages 26

Factory method pattern
about 26-29
advantages 32
implementing 29-32
versus Abstract Factory pattern 36

Factory pattern
about 25
Abstract Factory pattern 26, 32, 33

Factory method pattern 26-29
Simple Factory pattern 26-28

G
GoF (Gang of Four) 9
Golden Hammer

causes 130
consequences 130

H
handlers

defining 108
IndexHandler 108
NewHandler 108
UpdateHandler 108

Hollywood principle 97

I
inheritance 4
interface segregation principle

about 7
advantages 8

inversion of control principle
about 7
advantages 7

L
Lava Flow

about 131
causes 131
symptoms 131

Loose coupling 70

M
metaclasses 18
methods 3
Model-View-Controller (MVC)

about 99
benefits 114
Controller 103-105
defining 100-102, 107
design considerations 107
Model 102

[137]

UML class diagram 105-107
View 103
working 100

module-level Singletons
defining 16

modules
defining 107-113

Monostate Singleton pattern
defining 16, 17

MTV (Model, Template, View) 107

O
object-oriented design principles

about 6
interface segregation principle 7
inversion of control principle 7
open/close principle 6
single responsibility principle 8
substitution principle 8

object-oriented programming
about 2
aspects 3
core concepts 3

Observer pattern
about 70
advantages 71
disadvantages 71

Observer pattern methods
pull model 69
push model 70

open/close principle
about 6
advantages 7

P
participants, State design pattern

ConcreteState 118
Context 118
State 118

polymorphism
about 4
features 4

principle of least knowledge 47
private keyword 4
protected keyword 4

Proxy design pattern
defining 50, 51
UML class diagram 52, 53

Proxy pattern
advantages 58
and Façade pattern, comparing 58
defining 54-57
using 50

Proxy types
defining 53
protective proxy 54
remote proxy 53
smart proxy 54
virtual proxy 53

public keyword 4
pull model 69
push model 70
Python 11

S
Simple Factory pattern 26-28
single responsibility principle

about 8
advantages 8

Singleton design pattern
classical singleton, implementing

in Python 14, 15
drawbacks 23
lazy instantiation 15
part 1, defining 19-21
part 2, defining 21-23

Singletons 18, 23
software architecture AntiPatterns

about 132
design by committee 133
vendor lock-in 133
wheel, reinventing 132

software development AntiPatterns
copy-and-paste or cut-and-paste

programming 131
defining 129
Golden Hammer 130
Lava Flow 131
spaghetti code 129

Software Development Life Cycle (SDLC) 9

[138]

Spaghetti code
causes 129

State design pattern
advantages 125
defining 117, 118
defining, with UML diagram 120
disadvantages 125
example 120, 121
with v3.5 implementation 122-124
working 118, 119

stock trading system
implementing 80, 81

Structural design patterns
about 40
examples 40
properties 12

substitution principle 8

T
taxonomy, design patterns

design 10
pattern 10
snippet 10
standard 10

Template Method 86

Template Method design pattern
about 92-97
advantages 97
defining 86-90, 95
design considerations 92, 93
disadvantages 97
hook, defining 96
UML class diagram 90-92
using 86

Tornado web application framework
URL 107

U
UML class diagram

about 41
client 42, 43
façade 42
system 42

V
vendor lock-in

causes 133
consequences 133

Thank you for buying
Learning Python Design Patterns

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Python Design Patterns
ISBN: 978-1-78328-337-8 Paperback: 100 pages

A practical and fast-paced guide exploring python
design patterns

1. Explore the Model-View-Controller pattern and
learn how to build a URL shortening service.

2. All design patterns use a real-world
example that can be modified and applied
in your software.

3. No unnecessary theory! The book consists of
only the fundamental knowledge that you need
to know.

Expert Python Programming
ISBN: 978-1-84719-494-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1. Learn Python development best practices
from an expert, with detailed coverage
of naming and coding conventions.

2. Apply object-oriented principles, design
patterns, and advanced syntax tricks.

3. Manage your code with distributed
version control.

Please check www.PacktPub.com for information on our titles

Building Machine Learning
Systems with Python
ISBN: 978-1-78216-140-0 Paperback: 290 pages

Master the art of machine learning with Python and
build effective machine learning systems with this
intensive hands-on guide

1. Master Machine Learning using a broad set
of Python libraries and start building your
own Python-based ML systems.

2. Covers classification, regression, feature
engineering, and much more guided by
practical examples.

Learning Python Data
Visualization
ISBN: 978-1-78355-333-4 Paperback: 212 pages

Master how to build dynamic HTML5-ready SVG
charts using Python and the pygal library

1. A practical guide that helps you break into the
world of data visualization with Python.

2. Understand the fundamentals of building
charts in Python.

3. Packed with easy-to-understand tutorials for
developers who are new to Python or charting
in Python.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Design Patterns
	Understanding object-oriented programming
	Objects
	Classes
	Methods

	Major aspects of object-oriented programming
	Encapsulation
	Polymorphism
	Inheritance
	Abstraction
	Composition

	Object-oriented design principles
	The open/close principle
	The inversion of control principle
	The interface segregation principle
	The single responsibility principle
	The substitution principle

	The concept of design patterns
	Advantages of design patterns
	Taxonomy of design patterns
	Context – the applicability of design patterns

	Patterns for dynamic languages
	Classifying patterns
	Creational patterns:
	Structural patterns
	Behavioral patterns

	Summary

	Chapter 2: The Singleton Design Pattern
	Understanding the Singleton design pattern
	Implementing a classical Singleton in Python

	Lazy instantiation in the Singleton pattern
	Module-level Singletons
	The Monostate Singleton pattern
	Singletons and metaclasses
	A real-world scenario – the Singleton pattern, part 1
	A real-world scenario – the Singleton pattern, part 2
	Drawbacks of the Singleton pattern
	Summary

	Chapter 3: Factory Pattern – Building Factories to Create Objects
	Understanding the Factory pattern
	The Simple Factory pattern
	The Factory Method pattern
	Implementing the Factory Method
	Advantages of the Factory method pattern

	The Abstract Factory pattern
	Implementing the Abstract Factory pattern

	The Factory Method versus Abstract Factory
	Summary

	Chapter 4: The Façade Pattern – Being Adaptive with Façade
	Understanding Structural design patterns
	Understanding the Façade design pattern
	A UML class diagram
	Façade
	System
	Client

	Implementing the Façade pattern in the real world
	The principle of least knowledge
	Frequently asked questions
	Summary

	Chapter 5: The Proxy Pattern – Controlling Object Access
	Understanding the Proxy design pattern
	A UML class diagram for the Proxy pattern
	Understanding different types of Proxies
	A virtual proxy
	A remote proxy
	A protective proxy
	A smart proxy

	The Proxy pattern in the real world
	Advantages of the Proxy pattern
	Comparing the Façade and Proxy patterns
	Frequently asked questions
	Summary

	Chapter 6: The Observer Pattern – Keeping Objects in the Know
	Introducing Behavioral patterns
	Understanding the Observer design pattern
	A UML class diagram for the Observer pattern

	The Observer pattern in the real world
	The Observer pattern methods
	The pull model
	The push model

	Loose coupling and the Observer pattern
	The Observer pattern – advantages and disadvantages
	Frequently asked questions
	Summary

	Chapter 7: The Command Pattern – Encapsulating Invocation
	Introducing the Command pattern
	Understanding the Command design pattern
	A UML class diagram for the Command pattern

	Implementing the Command pattern in the real world
	Design considerations

	Advantages and disadvantages of Command patterns
	Frequently asked questions
	Summary

	Chapter 8: The Template Method Pattern – Encapsulating Algorithm
	Defining the Template Method pattern
	Understanding the Template Method design pattern
	A UML class diagram for the Template Method pattern

	The Template Method pattern in the real world
	The Template Method pattern – hooks
	The Hollywood principle and the Template Method
	The advantages and disadvantages of the Template Method pattern
	Frequently asked questions
	Summary

	Chapter 9: Model-View-Controller – Compound Patterns
	An introduction to compound patterns
	The Model-View-Controller pattern
	Model–knowledge of the application
	View – the appearance
	Controller – the glue

	A UML class diagram for the MVC design pattern
	The MVC pattern in the real world
	Modules

	Benefits of the MVC pattern
	Frequently asked questions
	Summary

	Chapter 10; The State Design Pattern
	Defining the State design pattern
	Understanding the State design pattern
	Understanding the State design pattern with a UML diagram

	A simple example of the State design pattern
	The State design pattern with v3.5 implementation

	Advantages/disadvantages of the State pattern
	Summary

	Chapter 11: AntiPatterns
	An introduction to AntiPatterns
	Software development AntiPatterns
	Spaghetti code
	Golden Hammer
	Lava Flow
	Copy-and-paste or cut-and-paste programming

	Software architecture AntiPatterns
	Reinventing the wheel
	Vendor lock-in
	Design by committee

	Summary

	Index

