
www.allitebooks.com

http://www.allitebooks.org

Learning SQLite for iOS

Extend SQLite with mobile development skills to build
great apps for iOS devices

Gene Da Rocha, MSc, BSc (Hons)

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning SQLite for iOS

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1180316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-897-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Gene Da Rocha, MSc, BSc (Hons)

Reviewers
Alvaro Franco

Ting Xiao

Acquisition Editors
Larissa Pinto

Subho Gupta

Content Development Editor
Rashmi Suvarna

Technical Editor
Anushree Arun Tendulkar

Copy Editors
Charlotte Carneiro

Yesha Gangani

Ameesha Green

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Gene Da Rocha, MSc, BSc (Hons) in mobile and computer science is an
experienced IT professional with over 25 years in the IT industry. He has worked
for a variety of companies nationally and internationally, in different industries
including corporate, start-up, pharmaceutical, finance, banking, and the NHS.

Gene is also the owner and founder of a mobile solutions company, Voxstar
(www.voxstar.com), based in London and Buckinghamshire. He comes from
a programming and development background, and has worked with database
technology, iOS, Android, Windows mobile, and a variety of other technologies.

He has been helping and advising, programming, and recently testing software for a
number of companies such as DigitasLBI, Oxfam, News UK, QAWorks, Reuters, and
the Association for Project Management, among many others.

www.allitebooks.com

www.voxstar.com
http://www.allitebooks.org

About the Reviewers

Alvaro Franco is an iOS engineer and web developer. He has contributed to the
iOS and OS X open source community. He has also been a part of Aluana, building
Mindrop, and companies such as Mozilla, where he contributed to delivering Firefox
for iOS. Alvaro is also a motorsport fan and guitarist.

Ting Xiao, is a frontend developer focusing on how to make things good on the
webpage; she is also working on the development of a mobile app simultaneously.
She is interested in any brain technology. According to Ting, thanks to the
technology, we can know this world much better.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Introduction to SQL and SQLite 1

About SQL 2
Where does SQLite stand in today's industry? 3
iOS with SQLite 4
Embedded databases 6
The architecture of the SQLite database 8
Features 10
The advantages of using SQLite 11
Working with SQLite 14
The examples of using SQLite with iOS 15
Summary 19

Chapter 2: Database Design Concepts 21
Database essentials 21
Reasons for using SQLite 25
Database connections 30
Preparing queries 30
Parameterized SQL 32
Error handling 33
Queries within the db.exec statement 34
SQL injection attacks 34
Creating user-defined functions 34
Transactions and locks 35
Transactions – reading/writing 36
Designing for SQLite 36
Summary 37

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Administering the Database 39
Creating a database 41

Creating a table 42
Inserting data 42
Selecting data 43
Creating an index 43
Exporting data 44

Viewing database schema data 44
Index data 45
Schema data 45

Backing up the database 46
Database tools 46
Database file information 47
Summary 48

Chapter 4: Essentials of SQL 49
Transactions 50
Query plan 50
SQL basics 52

Insert with a subselect clause 52
Update with a subselect clause 53
Select with a subselect clause 53

Data integrity 54
Default values 54

Constraint checking 54
Foreign keys 55

Updating Views 55
Index use 56
Triggers 57
Synchronous writes 57
Database locking and deadlocks 58
FMDB SQLite wrapper 59
Database creation and opening 59
SQL in iOS 60
Summary 60

Chapter 5: Exposing the C API 61
SQLite C components' functionality 61

sqlite3_open() 61
sqlite3_prepare() 62
sqlite3_step() 62
sqlite3_column() 63

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

sqlite3_finalize() 64
sqlite3_close() 64

Using the C API with the open database statement 64
Using Swift with the open database statement 65

load_extension() 67
sqlite3_exec() 68
sqlite3_config() 68
The prepare statement 70

Summary 71
Chapter 6: Using Swift with iOS and SQLite 73

Basic requirements 74
Starting an Xcode Project with Swift 74
Using the SQLite 3 Library 80

Using FMDB 87
Summary 94

Chapter 7: iOS Development with PhoneGap and HTML5 95
HTML5 and PhoneGap development 95
An HTML5 framework 97
Hybrid applications 98
An Xcode project with PhoneGap, HTML5, and Swift 98
Summary 118

Chapter 8: More Features and Advances in SQLite 119
PhoneGap plugins 120
Extensions to the C API 122
Write Ahead Logging with SQLite 124
The B-tree usage with SQLite 125
Creating a simple Swift 125
Summary 132

Index 133

www.allitebooks.com

http://www.allitebooks.org

[v]

Preface
SQLite is still a widely used database for mobile applications on smartphones and
tablets. For those with SQL experience, it will be easier to understand and learn what
it has to offer and the applications it can be used for. SQLite was released in 2000 has
grown to be a well-used database for mobile device development.

Mr. D. Richard Hipp developed it on a battleship while he was at a company called
General Dynamics. Initially used as storage, it was then developed using a B-tree
implementation, which enhanced it and enabled the storage of rows and transactions.

This book gives you the opportunity to learn elements of SQLite, the mobile
database; its interaction with the MAC operating system, Xcode; and the developer
IDE for Apple apps and PhoneGap, which enables HTML5. It outlines how easy
it is to work with SQLite.

What this book covers
Chapter 1, Introduction to SQL and SQLite, introduces you to the background of
Structured Query Language (SQL) and the mobile database SQLite.

Chapter 2, Database Design Concepts, talks about the database concepts in SQLite.

Chapter 3, Administering the Database, introduces you to administering the SQLite
database and makes you aware of the different components of this relational database.

Chapter 4, Essentials of SQL, this chapter talks about the essentials of SQL. It will
outline the major possibilities with SQL and how it can be used properly on SQLite.
This is essential so that you understand how SQL can be used and its limitations
and advantages.

Chapter 5, Exposing the C API, deals with the C API and how you can extend its
application use and produce the applications that you require using code.

Preface

[vi]

Chapter 6, Using Swift with iOS and SQLite, looks at using the new programming
language from Apple, Swift, with SQLite.

Chapter 7, iOS Development with PhoneGap and HTML5, looks at how to use Xcode
with PhoneGap to integrate and compile with source code, including HTML5.

Chapter 8, More Features and Advances in SQLite, deals with how SQLite has changed
in recent years, how it has advanced to be integrated into a variety of existing
technologies, and how its simple easy-to-use formula has guaranteed its popularity
with others.

What you need for this book
In this book, the software required will be the following:

• Mac Operating System:
 ° OS X 10.9 or later

• Software:
 ° Xcode IDE software development environment (version 7.0-7.1.1+)

with Swift support
 ° Latest version of PhoneGap from PhoneGap.com
 ° Latest version of Node.js from https://nodejs.org/en/

Who this book is for
This book is intended for those who want to learn about the most powerful and
flexible mobile database for developing apps in Swift or Objective-C the right way.
If you are an expert Objective-C programmer or new to this platform, you'll learn
quickly, grasping the code of real-world apps to use Swift effectively.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation
of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This language has a variety of statements but most would recognize the INSERT,
SELECT, UPDATE and DELETE statements."

PhoneGap.com
https://nodejs.org/en/

Preface

[vii]

A block of code is set as follows:

SELECT parameter1, STTDEV(parameter2)
FROM Table1 Group by parameter1
HAVING parameter1 > MAX(parameter3)

Any command-line input or output is written as follows:

$ sqlite3 testdatabase.db

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " Then
at the bottom of the page, within the Linked Frameworks and Libraries, click on
the + and a modal window will appear."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[viii]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand
the changes in the output. You can download this file from https://www.
packtpub.com/sites/default/files/downloads/Learning_SQLite_for_iOS_
ColoredImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/Learning_SQLite_for_iOS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Learning_SQLite_for_iOS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Learning_SQLite_for_iOS_ColoredImages.pdf

Preface

[ix]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Introduction to SQL
and SQLite

In this chapter, I will introduce you the Structured Query Language (SQL) and the
mobile database SQLite. Whether you are an experienced technologist at SQL or a
novice, using this book will help you understand this cool subject, which is gaining
momentum. SQLite is a database that is used on a mobile smartphone or tablet,
which is local to the device. SQLite has been modified by different vendors to harden
and secure it for a variety of uses and applications.

SQLite was released in 2000 and has now grown to be de facto database on a mobile or
smartphone. It is an open source piece of software with a low footprint and overheads,
which is packed with a RDBMS (relational database management system).

Mr. D. Richard Hipp is the inventor and author of SQLite, which was designed and
developed on a battleship while he was with a company called General Dynamics
in the US Navy. The programming was built for the HP-UX operating system with
Informix as the database engine. It took many hours in the data to upgrade or install
the database software, and was an over-the-top database for this experienced DBA
(database administrator). Mr. Hipp wanted a portable, self-contained, easy-to-use
database, which could be mobile, quick to install, and not dependent on the operating
system.

Initially, SQLite 1.0 used gdbm as its storage system, but later, it was replaced
with its own B-tree implementation and technology for the database. The B-tree
implementation was enhanced to support transactions and store rows of the data
with key order. From 2001 onwards, open source family extensions for other
languages, such as Java, Python, and Perl, were written to support their applications.
The database and its popularity within the open source community and others
started growing.

Introduction to SQL and SQLite

[2]

As described in Wikipedia, SQL was as follows:

Originally based upon relational algebra and tuple relational calculus, SQL
consists of a data definition and manipulation language. The scope of SQL includes
data insert, query, update and delete, schema creation and modification, and data
access control. Although SQL is often described as, and to a great extent is, a
declarative language (4GL), it also includes procedural elements.

Internationalization supported UTF-16 and UTF-8 and included text-collating
sequences in versions 2 and 3 in 2004. It was funded by AOL (America Online) in
2004. It works with a variety of browsers that sometimes have in-built support for
this technology. For example, there are many extensions that use Chrome or Firefox
that allow you to manage the database.

There have been many features added to this product. The future with the growth
in mobile phones sets this quick and easy relational database system to quantum
leap, where this database's use within the mobile and tablet application space will
increase.

SQLite is based on PostgreSQL as a point of reference. SQLite does not enforce any
type checking. The schema does not constrain it since the type of value is dynamic,
and a trigger will be activated by converting the datatype.

About SQL
In June 1970, a research paper was published by Dr. E.F. Codd called A Relational
Model of Data for Large Shared Data Banks. The Association of Computer Machinery
(ACM) accepted Codd's data and technology model, which has become the standard
of the RDBMS today. IBM Corporation had invented the language called Structured
English Query Language (SEQUEL), where the word "English" was dropped to
become SQL.

SQL has become the standard for the RDMS, which is used by databases such as
Oracle, Sybase, and Microsoft's SQL Server.

Today, there are American National Standards Institute (ANSI) standards for
SQL, and there are many variations of this technology. Among the mentioned
manufacturers, there are also others available in the open source world, for
example, an SQL query engine, such as Presto.

Presto is the distribution engine for SQL under open source, which is made
to execute interactive analytic queries. Presto queries are run under databases
from a variety of data source sizes—gigabytes to petabytes.

Chapter 1

[3]

Companies such as Facebook and Dropbox use the Presto SQL engine for their
queries and analytics in data warehouse and related applications.

SQL is made up of data manipulation and definition language built with tuple and
algebra calculation in a relational format. This language has a variety of statements
but most would recognize the INSERT, SELECT, UPDATE, and DELETE statements. These
statements form a part of the database schema management process and aid the data
and security accesses. SQL includes procedural elements as a part of its setup.

Where does SQLite stand in today's
industry?
Companies may use applications, but they are not aware of the SQL engines that
drive their data storage and information. Although it had become a standard with
the ANSI in 1986, SQL features and functionalities are not 100% portable among
different SQL systems. They also require code changes to be useful. These standards
are always up for revision to ensure that ANSI is maintained.

There are many industrial and commercial databases, such as Oracle, SQL Server,
or DB2, but none of them are as flexible, light, or open source as SQLite. Although
smartphones are getting more powerful, you cannot compare them to the processing
power of a modern desktop or laptop. SQLite, as its names suggests, is an SQL in a
light environment, which is also flexible and versatile. So, at present, the best, light,
fully functional, and customized database for mobile, is SQLite.

SQLite cannot be compared to enterprise database engines, such as SQL Server,
Oracle, and MySQL. These enterprise database systems provide a centralized and
controlled position, whereas SQLite provides local storage on a mobile device.
SQLite is effectively based on the economy of size and reliability. It is simple
to use, small, robust, and does not compete with these enterprise databases.

SQLite works well with "Internet of Things" as well, because of the no-need-for-
human input or administration feature. So, for applications that deal with drones,
medical equipment, robots, and sensors, SQL makes an ideal candidate for usage
on a variety of mobile applications.

Introduction to SQL and SQLite

[4]

iOS with SQLite
Out of the hundreds of thousands of apps in all the app stores, it would be difficult
to find the one that does not require a database of some sort to store or handle data
in a particular way. There are different formats of data and datafeeds, but they
all require some sort of temporary or permanent storage. A small amount of data
may not be applicable, but a medium or large amount of data will require a storage
mechanism, such as a database to assist the app.

Using a database such as SQLite with iOS will enable developers to use their existing
skills to run their DBMS. For SQLite, there is a C-library that is embedded and
available to use with iOS with the Xcode IDE.

Apple fully supports SQLite, which uses an include statement as a part of the library
call, but developers can also use FMDB, which is a cocoa/objective-C wrapper
around SQLite.

A few advantages of SQLite are that it is fast, lightweight, reliable, uses existing SQL
knowledge, is supported by Apple on Mac OS and iOS and by many developers, as
well as being integrated without much outside involvement.

The SQLite 3 library is under the general tab once the main project name is
highlighted on the left-hand side of the page. Then, at the bottom of the page, within
Linked Frameworks and Libraries, click on the + for a modal window to appear.
Enter the word sqlite and select the libsqlite3.dylib library, as shown in the
following screenshot:

Chapter 1

[5]

In effect, it is the C++ wrapper, called the libsqlite3.dylib library, within the
framework section that allows the API to work with SQLite commands.

Before any SQL processes can take place, the database should be opened and ready
for querying, and, upon the success of data retrieval, the constant called SQLITE_OK
should be set to 0.

Once the C++ wrapper is used and the access to SQLite commands is available, it is
an easier process to use SQLite with iOS.

Introduction to SQL and SQLite

[6]

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.
You can download the code files by following these steps:

• Log in or register to our website using your e-mail address and
password.

• Hover the mouse pointer on the SUPPORT tab at the top.
• Click on Code Downloads & Errata.
• Enter the name of the book in the Search box.
• Select the book for which you're looking to download the code

files.
• Choose from the drop-down menu where you purchased this

book from.
• Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Embedded databases
SQLite has been designed and developed to work and coexist with other applications
and processes in its area. RDBMS is tightly integrated with the native application
software that requires storing information but is masked, which is hidden from
users, and it requires minimal administration or maintenance.

SQLite can work with different APIs hidden from users, and it requires minimal
administration or maintenance areas.

The RDMS SQLite will also work with other applications:

• It requires minimal supervision
• There is no network traffic and access is faster since it is a file-based system

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[7]

• There are no network access conflicts or configurations
• There are no access limitations with privileges or permissions
• There is much reduced overheads

These make it easier and quicker to deploy your applications to app stores or other
locations.

Figure 1, seen in this section, shows how different components work seamlessly
together in a harmonized way to link up data with the SQLite library and other
processes. These show how the Apache and C/C++ processes work together with
the SQLite-C library to interface and link with it, so it becomes seamless and
integrates with the operating system.

SQLite has been developed and integrated in such a way that it will interface and
gel with a variety of applications and multiple solutions. As a lightweight RDBMS, it
can stand on its own due to its versatility and is not cumbersome or too complex to
benefit your application. It can be used on many platforms, and comes with a binary
compatible format, which is easier to dovetail within your mobile application.

The different types of IT professionals will be involved with SQLite, since it holds
the data, affects performance, and involves database design, user or mobile interface
design specialists, analysts, and consultancy types. These professionals can use
their existing knowledge of SQL to quickly grasp SQLite. SQLite can act as both
data processor for information, or deal with data in the memory, to perform in an
excellent manner.

Figure 1 also outlines how the different software pieces of a jigsaw can interface
properly using the C API interface for SQLite with some other programming
language code. For example, C or C++ code can be programmed to communicate
with the SQLITE C API, which will then talk to the operating system and
communicate with the database engine. Another language, such as PHP, can
communicate using its own language data objects, which will, in turn, communicate
with the SQLite C API and the database.

SQLite is a great database to learn, especially for computer scientists who want to
use a tool that can open their minds to investigate caching, B-Tree structures and
algorithms, database design architecture, and other concepts.

Introduction to SQL and SQLite

[8]

For more information of how SQLite sits within the other applications on a mobile
device, see Figure 1:

Perl Code PHP Code

PHP
Objects

Pphp

PcSqlite PcSqlite

PcPerl Pc C/C++App process

C/C++

SQLITE C
API SQLITE C

API

Operating System

PcSqlite

SQLITE C
API

Figure 1: C API interface to SQLite

The architecture of the SQLite database
As a library within the OS-Interface, SQLite will have many functions implemented
through a program called tclsqlite.c. Many technologies and reserved words are
used in different languages, but here we have used C language. The core functions
are to be found in main.c, legacy.c, and vmbeapi.c. There is also a source code file
in C for the TCL language, to avoid any confusion; the prefix of sqlite3 is used at
the beginning of the SQLite library.

The Tokenizer code base is found within tokenize.c. Its task is to look at the strings
that are passed to it and partition or separate them into tokens, which are then
passed to the parser. The tokenize.c file is included in the code with an include
statement and is located in the sqlite/src/tokenize.c directory area.

The Parser code base is found within parse.y. The Lemon LALR(1) parser generator
is the parser for SQLite; it takes the concept of tokens and assigns them a meaning.
To keep within the low-sized footprint of RDBMS, only one C file is used for the
parse generator.

The Code Generator is then used to create SQL statements from the outputted
tokens of the parser. It will produce some virtual machine code that will carry out
the work of SQL statements. Several files, such as attach.c, build.c, delete.c,
select.c, and update.c, will handle the SQL statements and syntax.

Chapter 1

[9]

Virtual machines execute the code that is generated from the Code Generator. It has
in-built storage, where each instruction may have up to three additional operands
as a part of each code. The source file is called vdbe.c, which is a part of the SQLite
database library. Built in is also a computing engine that has been specially created to
integrate with the database system.

There are two header files for virtual machines. The header files that interface a
link between the SQLite libraries are vdbe.h and vdbeaux.c, which have utilities
used by other modules. The vdbeapi.c file also connects to virtual machines with
sqlite3_bind and other related interfaces. C language routines are called from
SQL functions to reference them to the header files. For example, functions such as
count() are defined in func.c, and date functions are located in date.c.

B-tree is a type of table implementation used in SQLite, and the C source file is
btree.c. The btree.h header file defines the interface of the B-tree system. There is
a different B-tree setup for every table and index held within the same file. There is a
header portion within btree.c, which will have details of B-tree in a large comment
field.

Pager or Page Cache using B-tree will ask for data in a fixed size format. The default
size is 1024 bytes, but it can be between 512 and 65536 bytes. Commit and Rollback
operations, coupled with the caching, reading, and writing of the data, are handled
by Page Cache or Pager. Data locking mechanisms are also handled by Page Cache.
The C file called page.c is implemented to handle requests within the SQLite library
and the header file is pager.h.

The OS Interface C file is defined in os.h. It addresses how SQLite can be used on
different operating systems, and it becomes transparent and portable to the user,
thus becoming a valuable solution for any developer. An abstract layer to handle
Win32 and POSIX compliant systems is also kept in place. Different operating
systems have their own C file. For example, os_win.c is for Windows, os_unix.c is
for Unix; both are coupled with their own os_win.h and os_unix.h header files.

Util.c is the C file that will handle memory allocation and string comparisons. The
Utf.c C file will hold Unicode conversion subroutines.

Introduction to SQL and SQLite

[10]

For more information on the architecture of SQLite, see Figure 2:

OS Interface

Tokenizer

Parser

Code Gen

B-Tree

Pager

Interface

SQL Cmd

Virt Machine

Figure 2: Architecture diagram of SQLite

The Utf.c C file will hold the Unicode data, sort it within the SQL engine, and use
the engine as a mechanism for computing data. Since the memory of the device is
limited and the database size has the same constraints, the developer has to think
outside the box to use these techniques.

These types of memory and resource management formed a part of the approach when
the overlay techniques were used in the past and the disk and memory was limited:

 SELECT parameter1, STTDEV(parameter2)
 FROM Table1 Group by parameter1
 HAVING parameter1 > MAX(parameter3)

Features
As part of its standards, SQLite uses and implements most of the SQL-92 standards,
but not all the potential features or parts of functionality are used or realized. For
example, SQLite uses and implements most of the SQL-92 standards but not all potent
columns. The support for triggers is not 100% as it cannot write output to the views.

Chapter 1

[11]

As mentioned previously, the use of a common datatype for a column is different;
most relational database systems assign them to individual values. SQLite will
convert a string to an integer if the column's preferred type is an integer. It is a
good piece of functionality when bound to this type of scripting language, but the
technique is not portable to other RDBMS systems. It also has its criticisms for not
having a good data integrity mechanism compared to others, in relation to statically
typed columns.

There are some major differences between the two approaches of data: one is Core
Data and the SQLite way Core Data is similar to having a layer of information
between the user interface and the database itself. It does have the advantage of
speeding up database interactivity read/write process and saves writing huge
queries. While SQLite is a local relational database with its own efficiencies and
limitations, it may not suit all applications. Sometimes, due to the speed of a device,
Core Data may have the advantage of SQLite directly.

Briefly, your application will have model layer objects, and these are held and
managed in a framework, namely, Core Data. It manages the life cycle of an object
within iOS. This is just some background information to show how data can be read
from databases and the speed at which this takes place.

The advantages of using SQLite
A few advantages of using SQLite are listed here:

• SQLite does have a data constraints feature and can edit or drop tables
without loading them into memory.

• SQLite works on the data stored on the disk and is slower compared to
Core Data.

• Core Data, on the other hand, does not have data constraints, and can be
implemented using the app's business logic instead.

• In order to update or drop a table, the entire table has to be loaded up.
• Core Data is quick to create records/rows but slower to save the data.
• Core Data does have another advantage where it operates and works in the

memory, and the data has to be loaded from the disk to memory.
• Core Data works with objects based in the memory, or can be accessed using

the standard slower disk method.
• Core Data will work on non-transactional, single user, or single-threaded

methods. SQLite's function is to fetch and store data using its file database
system. It operates by storing the data on the disk where the data is
incrementally or minimally loaded.

Introduction to SQL and SQLite

[12]

• Effectively, the data can be transactional, multiuse, and thread-safe. It saves
data to the disk and is mostly resilient to crashes. It is slower if you have
to create hundreds of thousands of rows, but it does have data constraints,
such as unique keys.

• SQLite has bindings to many languages such as Basic, C, C#, C++, Java,
JavaScript, Lua, PHP, Objective-C, Python, Ruby, and TCL. Its popularity
with the open source community and usage by customers and developers
has enabled its growth to continue.

• This lightweight RDMS can be used on Google Chrome, Firefox, Safari,
Opera, and Android browsers and has middleware support using ADO.
NET, ODBC, COM (ActiveX), and XULRunner. It also has a support for web
application frameworks, such as Django (Python based), Ruby on Rails, and
Bugzilla (Mozilla). There are other applications, such as Adobe Photoshop
Light and Skype that use SQLite. It is also a part of Windows 8, Symbian OS,
Android, and OpenBSD operating systems.

• Apart from not having the large overheads of other database engines,
SQLite has a major enhancement, known as the EXPLAIN keyword, with its
manifest typing.

• For controlling constraint conflicts, the REPLACE and ON CONFLICT statements
are used.

• Within the same query, multiple independent databases can be accessed
using the DETACH and ATTACH statements.

• New SQL functions and collating sequences can be created using the
predefined APIs, which offer much more flexibility.

• As there is no configuration required, SQLite just does the job and works.
• No lists, such as the REPLACE and ON CONFLICT procedures, are required.
• There is no need to initialize, stop, restart, or start server processes, and no

administrator is required to create the database with proper access controls
or security permits.

• After any failure, no user actions are required to recover the database, since it
is self-repairing.

• SQLite is more advanced than previously thought. Unlike other RDMS, it
does not require a server setup via a server to serve up data or incur network
traffic costs. There is no TCP/IP calls, nor frequent communication backward
or forward.

• SQLite is direct; the operating system process deals with database access to
its file and controls database writes and reads with no middle-man process
handshaking.

ADO.NET
ADO.NET

Chapter 1

[13]

• By having no server backend, the process of installation, configuration, or
administration is reduced significantly, and access to the database is granted
to programs that require this type of data operation. This is an advantage in
one way, but it is also a disadvantage for security and protection from data-
driven misuse, data concurrency, or data row locking mechanisms.

• It also allows the database to be accessed several times by different
applications at the same time.

• It supports a form of portability for the cross platform database file that can
be located with the database file structure. The database file can be updated
on one system and copied to another on either 32 bit or 64 bit with different
architectures; this does not make a difference to SQLite.

• The usage of different architectures and the promises of developers to keep
the file system stable and compatible with previous, current, and future
developments will allow this database to grow and thrive. SQLite databases
do not need to upload old data to new, formatted, and upgraded databases;
it just works.

• By having a single disk file for the database, the information can be copied on
a USB and shared or just reused on another device very quickly by keeping
all the information intact.

• Another feature of this portable database, SQLite, is its size, which can
start on a single 512-byte page and expand to 2,147,483,646 pages at 65,536
bytes per page, or in bytes 140,737,488,224,256, which equates to about 140
terabytes. Most other RDBMS are much larger, but IBM's Cloudscape is
small, with a 2 MB jar file, but still larger than SQLite.

• The Firebird alternative's client (frontend) library is about 350 KB, whereas
the Berkeley Oracle database is around 450 KB, without the SQL support,
and with one simple key/value pair's option.

• This advanced portable database system and its source code is in the public
domain. However, there are open source license issues and controls for some
test code and documentation.

• This is great news for developers who might want to code up new extensions
or database functionality that works with their programs, which could be
made into a "product extension" for SQLite.

• You cannot have this sort of access to SQL source code around since
everything has a patent, limited access, or just no access.

• There are signed affidavits by developers to disown any copyright interest in
the SQLite code. SQLite is different because it is just not governed or ruled
by copyright law, which monitors the way a software should really work or
be used.

www.allitebooks.com

http://www.allitebooks.org

Introduction to SQL and SQLite

[14]

Using the small allocation with variable length records, applications run faster,
database access is quicker, manifest typing is used, and the database is small
and nimble.

The ease of using this RDBMS makes it easier for most programmers at an
intermediate level to create applications using this technology, with its detailed
documentation and examples.

Other RDBMS are internally complex, with links to data structures and objects.
SQLite comprises a virtual machine language that uses the EXPLAIN reserved word
in front of a query.

The virtual machine has increased and benefitted this database engine by providing an
excellent process or controlled environment between the backend (where the results
are computed and outputted), and frontend (where the SQL is parsed and executed).

The SQL implementation language is comparable to other RDBMS, especially with
its lightweight base, and it supports recursive triggers and requires the FOR/EACH
ROW behavior. The FOR EACH statement is not currently supported, but functionality
cannot be ruled out in the future.

As described so far in this chapter, SQLite is a nimble and easy-to-use database
that developers can engage with quickly, use existing skills, and output systems
to mobile devices and tablets far easier than ever before. With the help of HTML5
and other JavaScript frameworks, the advancement of SQL and number of SQLite
installations will take a quantum leap.

Working with SQLite
The website for SQLite is available at www.sqlite.org, where you can download
all the binaries for the database, documentation, and source code, which works on
operating systems such as Linux, Windows, and MAC OS X.

The SQLite share library or DLL is the library to be used for the Windows operating
system and can be installed or seen via Visual Studio with the C++ language. So, the
developer can write the code using the library that is presently linked in reference
via the application. When the execution has taken place, the DLL will load and all the
references in the code will link to those in the DLL at the right time.

The SQLite3 command-line program—CLP—is a self-contained program that has all
the components to run at the command line.

It also comes with an extension for TCL. So within TCL, you can connect and
update the SQLite database. SQLite downloads come with the TAR version for Unix
systems, and the ZIP version for Windows systems.

www.sqlite.org

Chapter 1

[15]

The examples of using SQLite with iOS
The following is a simple application on how to use iOS with the SQLite database
with Xcode. It outlines the basic steps of creating an application and database, and
selecting data.

To get started, let's start Xcode and create a template using the Single View
Application choice, as shown in the following screenshot:

Introduction to SQL and SQLite

[16]

Click on the Next button to proceed to the next screen in this process. In the product
name field, enter SimpleCalculator for the language, and select Swift. For the
devices field, select iPhone. Then, click on the Next button to move onto the next
screen, as shown in the following screenshot:

In the following screenshot, select the directory where the code will reside. Now, we
can view what the Xcode developer tool has created. Then, select a device to display
the information; in our case, use the iPhone 6s.

Chapter 1

[17]

See the directory for the source code, as shown in the following screenshot:

The following is a screenshot showing the SimpleCalculator application opened in
Xcode. Select the iPhone 6s option as the device to develop on:

Introduction to SQL and SQLite

[18]

Next, click on the Play button that will compile and build the application as shown
here in both images, and a blank screen will appear:

The preceding screenshot shows the application to be built, and the following
screenshot shows a blank screen after the image is compiled and run.

This method gets you to the basics of an iOS application with Swift working as
a canvas.

In this brief example, we will use SQLiteDB.swift and String-Extras.swift to
work with the SQLite database, including the Bridging-Header.h file. In the Build
Settings option, view Objective-C Bridging Header and double-click on it, and
bridge it to Bridging-Header.h, and you can also drag it to show that it is linked.

As mentioned previously, add libsqlite3.0.dylib to the linked frameworks
by navigating to General | Linked Frameworks and Libraries; then, add
Libsqlite3.0.dylib.

Now, rebuild the project to show that it's working:

Chapter 1

[19]

Click on the Simulator button, and then click on Quit to stop the current compiled
simulator program. The program will compile with no problems. Next, a database
instance has to be created as shown in the following code. The SQLite.DB.query
method is used to execute these commands:

• First an instance is required:
let testdb = SQLiteDB.sharedInstance()

• To run this query, the following code is used with the SQLiteDB.query way:
var theresult = testdb.query("select * from people where county =
'Berks'", parameters: nil)
for row in result
{
 println(row["name"]!.asString())
}

• To delete a record for example, follow the following piece of code:

testdb.execute("delete from people where county =
'Bucks' ", parameters: nil)

Summary
In this chapter, you read the history of SQL, the impact of relational databases, and
the use of a mobile SQL database, namely, SQLite. This chapter outlined the history
and beginnings of SQLite and how it has grown to be the most used database on
mobile devices so far. In the next chapter, you will learn about the components of
database concepts and how to design an SQLite database. The next chapter will show
you the basic elements of design for an SQLite database.

[21]

Database Design Concepts
In this chapter, you will learn about SQLite's database concepts. Just as with most
databases, SQLite too can add data using the SQL command called INSERT. It can
also modify data using the UPDATE command and remove data using the DELETE
command. It can also retrieve data using the SELECT command.

These four commands form the base line for any SQL database RDMS in the market.
This set of commands manipulate the data, and this type of searching is called a query.

Database essentials
This persistent and structured way of storing data is simply called a database, and
the data itself is stored using tables. Each table consists of columns and rows, with a
look and feel similar to Microsoft Excel.

SQLite is based on the C language and a related API (RDBMS) in the market. The C
language, for example, is easy to understand and is based on the fundamentals of
database design with RDBMS. However, learning the actual API will benefit your
skills and understanding.

In order to understand the API, you will have to learn the components that make
up the database to improve your knowledge. Understanding data structures,
SQL transactions, concurrency, and data-locking mechanisms, and creating good
optimized queries will help you design great database systems.

Lastly, you need to put this understanding into some software code for the app you
write and see how it is integrated and executed. The API language extension will be
discussed further in this chapter.

The design objective of SQLite was to keep the role of administration and operation
easy to use and simple to manage. SQLite is ACID (atomicity, consistency, isolation,
and durability) compliant, and is fully transactional using T-SQL.

Database Design Concepts

[22]

As a part of the design, the SQLite database has a variety of datatypes like most
databases. One of the types is the INTEGER type that has 64 bit numeric values. This
database uses 64 bit numeric values and the data is stored in 1, 2, 3, 4, 5, 6, or 8 bytes.
The TEXT type encoding uses UTF-8 for storing it in the database. The BLOB datatype
can be stored directly, with a default size of 1,000,000,000 bytes.

SQLite also uses the REAL type, which is a 64 bit floating point value,
and there is the standard NULL value as well. The REAL type will be
applied to the FLOAT, DOUBLE, and REAL datatypes. The TEXT type
applies to the NCHAR, NVARCHAR, TEXT, and VARCHAR datatypes. The
NUMERIC type applies to DATE, DATETIME, and BOOLEAN. SQLite also
uses CRUD (Create, Read, Update, and Delete), and this database is
not case sensitive.

The statements are shown as follows:

• The CREATE statement is used to create new tables in the SQLite database.
The basic syntax and a simple example of CREATE TABLE is shown here. The
CREATE TABLE statement has a database name that is fixed. It is followed by
a table name, which has a start and close bracket. Within this statement, there
is a list of column(s) to be created, starting with their names and datatypes,
as shown in the following:

 ° CREATE table database-name. table-name(column1
datatype, column2 datatype, column3, datatype, PRIMARY
KEY column1);

• The INSERT statement will have a table name followed by a set of columns on
the first half. The second half will have the variables, where the data coming
from that will be inserted into the table. It is important to ensure that the
programmer uses the same datatype as the column created; otherwise, there
will be an error or a warning:

 ° INSERT into table-name(column1,column2,column3) VALUES(v
ariable1,variable2,variable3);

• The UPDATE statement is used to update records or rows within a table. The
UPDATE statement will have a table name, followed by a set of columns to
update on the left-hand side, and some data variables on the right-hand side,
as shown in the following:

 ° UPDATE table-name SET column1=variable1,
column2=variable2, column3=variable3) [where variable4 =
10];

Chapter 2

[23]

• The SELECT statement is used to select information, records, or rows within
a table. This is shown in Figure 7. The SELECT statement will have a set of
columns on the first half, followed by a table name and a condition, as
shown here:

 ° SELECT column1, column2, column3 FROM table-name WHERE
column1 > 10;

• The DELETE statement is used to delete records or rows within a table. This
is shown here. The DELETE statement will have a set of columns on the first
half, followed by a table and any condition:

 ° DELETE from table-name where column1 >10;

The extension and core APIs are the sections that form the API made with the C
language. The core database carries out functions such as processing SQL syntax and
connecting to the database. Other tasks, such as error trapping and string formatting,
are also dealt with the core API. As mentioned earlier, the extension API allows
programmers to add or extend the current API with a new functionality that will
add the functionality that does not exist presently or as a current definition with the
SQLite program.

Although data structures are outlined, as mentioned previously, using the tokenizer
or parser, their importance is reduced, since coders are interested in other parts, such
as the connectivity syntax, parameters, or current functions, and not the internals of
the products. In order to write some good code, programmers must be clued up on
SQLite locks, transactions, and the API itself.

Although not a part of the API itself, the pager and B tree parts of the SQLite system
contribute heavily as a part of locking and transactions mechanisms.

There are eight methods and two objects that make up the C/C++ interface part of the
SQLite database system. The two objects are: sqlite3, which is the actual database
connection object, and sqlite3_stmt, which is the prepare statement object.

The eight methods comprise the following:

• sqlite3_exec(): This is a wrapper function
• sqlite3_close(): This is a destructor for sqlite3
• sqlite3_finalize():This is a destructor for sqlite3_stmt
• sqlite3_column(): This holds the column values for sqlite3_stmt
• sqlite3_step():This allows you to step to the next result row and is an

advancement of sqlite3_stmt

Database Design Concepts

[24]

• sqlite3_bind(): This is how SQL is broken down into parameters from the
stored application data

• sqlite3_prepare():This is a part of the constructor for sqlite3_stmt,
where byte code is produced from SQL that has been compiled, so it can
carry out the SQL statements (SELECT, UPDATE)

• sqlite3_open(): This is the constructor of sqlite3, which allows a
connection to an existing or a new SQLite database

Initially, SQLite was easy to learn and had only five C/C++ interfaces, but now, it
has grown in size, functionality, and interfaces to over 200 APIs. It can be daunting
to use 200 APIs, but SQLite has been designed in such a way that you only use the
API, but now, it has grown in size and function.

These six core interfaces, once mastered, will give programmers a great
understanding of SQLite. They are listed here:

• SQLite3_open(): This function makes a connection to the SQLite database
and, once successful, a database connection object will be returned. None of
the other interfaces will be available until the SQLite3_open() interface has
been set up. They require a starting point, or a reference to a database, and a
database connection object.

• SQLite3_prepare(): This function will convert and set up SQL statements
into a formatted object, and the output will be a pointer that will be stored in
reference to that object. In order to progress, this interface requires a database
connection object produced by the SQLite3_open() function.

• SQLite3_column(): This interface does not interrogate the SQL, it just
produces a prepared statement. This interface is now not the preferred choice
for new applications, but the alternative SQLite3_prepare_V2() interface
must be used.

• SQLite3_step(): This interface will look at the prepared statement as set
up by the SQLite3_prepare() function and will return a single column
from the current record set. This is not purely a function, but a placeholder
for the type of functions that return values with different datatypes. These
form a part of the results set. There are other functions that are a part of
the sqlite3_column() setup, and they are, sqlite3_column_blob(),
sqlite3_column_bytes(), sqlite3_column_bytes16(), sqlite3_column_
count(), sqlite3_column_double(), sqlite3_column_int(), sqlite3_
column_int64(), sqlite3_column_text(), sqlite3_column_type(), and
sqlite3_column_value().

• SQLite3_finalize(): This function is the interface that destroys the
prepared statement to stop any memory leaks in the system.

Chapter 2

[25]

• SQLite3_close(): This interface will shut any database connection and
prepared statements before closing or ceasing operations.

There are other routines, such as sqlite3_bind() and sqlite3_reset(), that
enable prior statements to be used again and again. Usually, statements are created,
prepared, and destroyed once, but the aforementioned routines can be used at
multiple instances.

SQLite has the sqlite3_config() interface that is first selected before any
connections to the database are initiated. This interface will have the ability to set
global changes for the database. It can also allocate memory, set up allocators for
real-time embedded systems, and page caching for a predefined application usage.
It can also make adjustments for different treading models.

This database system is flexible, and using sqlite3_create_collation(),
sqlite3_create_function(), sqlite3_create_module(), and sqlite3_vfs_
register() functions will allow the SQLite system to have a new proprietary
functionality on the RDBMS. For example, the sql_create_function() function
will create additional functionality for aggregate or scalar purposes. These are
sqlite3_agreegate_context(), sqlite3_result(), sqlite3_user_data(),
and sqlite3_value().

These are the standard built-in functionalities of the SQLite system that prove how
flexible the system can be to programmers. It is this flexibility, together with the
technology that has helped it grow and cultivate to a place where it has become the
best SQL database for mobiles today.

In addition, there are many other interfaces and functions that are too many to
include in this book. They can be found under the C/C++ interface specification of
this product.

SQLite, by default, will do most of the tasks required by programmers, users, or
DBAs. Programmers are always looking to go beyond the normal bounds of the
relational database system, or take advantage of these extensions to fulfill their
solution requirements.

Reasons for using SQLite
There are many features that make SQLite a great database for mobile technologies.
For example, there is no administration or configuration involved, the transactions
are atomic, the database is self-contained in a single cross-platform file, and it holds
advanced features, such as table expressions and partial indexes. The reasons for
using SQLite are listed here:

Database Design Concepts

[26]

It has a small, versatile, and easy-to-use API. It is very standard-compliant and is
written using the ANSI-C compliant. There are no external dependencies on any
external programs or services, and the code is well commented. The source code
is in the public domain and has a standalone CLI (command-line interface) at its
disposal. It is cross-platform compliant, works with Mac, Linux, BSD, Android,
Solaris, VxWorks, and Windows (WinCE, Win32, WinRT).

Its code footprint is very small, less than 500 kB when configured. The amount of
application range that uses this database is huge. Almost all the products can have or
have the need for a database that SQLite can handle.

It may not have all the bells and whistles of an enterprise system, but it is very
flexible and easily available. SQLite is used by a variety of companies such as Adobe,
Dropbox, Skype, and many more users.

SQLite is tested independently with its own test facilities and criteria. There are tests
for memory usage, crash and power loss, fuzz tests boundary value and disable
optimization tests, regression tests, and behavior checks among others. The test
harnesses are also independently developed and verified.

The testing process for SQLite is well tested and matured, and the TCL tests are built
using the TCL Scripting language. The test harnesses are made using the C code
that creates the TCL interface. There are over 800 files of test scripts that hold over
10 gigabytes of data and over 30,000 test cases.

There are also SQL logic tests that run SQL statements against other database
engines, such as SQL Server, PostgreSQL, Oracle, and SQLite itself. These form a part
of the SLT (SQL Logic Test) that runs over 7 million queries and 1 gigabyte of test
data as a part of the testing load.

Also, there are many types of stress and performance testing, including anomaly
tests, which include the behavior of SQLite on a variety of checks and see how it
performs when errors occur. All the tests are run on all the platforms that SQLite
works with. There is a subset of testing scripts that are used as a quick test; however,
over 200,000 test cases—enough to capture any errors, or misfit code—can still be
executed quickly.

There are also tests for checking the memory usage that look at memory allocation
and the use of the malloc() function. All the SQL databases use the malloc()
function to allocate and release memory. Since SQLite is heavily used in embedded
systems, it is required to handle errors in a graceful manner.

Chapter 2

[27]

I/O testing is carried out to ensure that I/O errors are handled and dealt with
properly. These issues maybe with regard to network errors, configuration, disk
issues, or permissions. Errors are created to see their effects and to see how the
software handles them.

A virtual file system (VFS) is also used to simulate the database crashing as part
of the testing procedures. There are also simulations using power failures, so any
measurement can be recorded. The crash test processes are completed separately.

There are also fuzz tests that take care to see that SQLite works with odd and
different inputs and all the results are checked. Processes are spawned and the VFS is
used to simulate crashes. In addition to the standard fuzz test, there are fuzz tests for
SQL that look at the syntax and inputting to the database to check the responses and
results. These form a part of the TCL testing, and there are over 100,000 fuzz tests.
All the results are recorded and analyzed.

All branch tests for this database are 100% tested and measured. There are also
measurements and tests to ensure that any automatic resource leaks are detected,
noted, and dealt with. Usually, resource leaks occur when, in certain circumstances,
resources are allocated by the malloc() function; but they are not released when other
processes may require the same resource or some form of shared resource. When the
resource is not freed or released as instructed, then it leads to resource leakage.

SQLite also has dynamic analysis that checks the internal and external SQLite code
while the code is being executed or is in use online. This type of analysis is used to
ensure that SQLite has the best availability and quality for users.

Valgrind is the simulator of the Linux binary and x86 environments. As a simulator,
it is much slower, but it is effective. Memsys2 has a memory allocation system that
is pluggable; it uses the malloc() and free() functions. If SQLite is compiled with
the SQLite_MEMDEBUG compile-time option, then, as a part of the debugging memory
allocator, a larger wrapper is used around the malloc(), realloc(), and free()
functions. If Memsys2 is used, it looks for memory allocation errors at runtime.

There are the mutex subsystems in SQLite that use the sqlite3_mutex_held() and
sqlite3_mutex_ notheld() function. This is a pluggable subsystem, and these two
interfaces detect whether a mutex subsystem has a particular thread. SQLite uses the
assert() set of functions to ensure that multithreaded applications work correctly
within the database system.

Database Design Concepts

[28]

SQLite uses a rollback journal to ensure that all the changes on the database are
recorded before actually making changes to the database. SQLite has to work
with different conditions so that it does not conflict or cause undetermined or odd
behavior that must be managed. Since the code is developed in C, it may work with
many implementations and libraries during development, but in the production
area, it must confirm and may not work sometimes.

So, checks such as a shifting using a negative number may be tried, or trying the
memcpy() function to copy buffers that are overlapping and checking that unsigned
or signed variables apply to char datatypes. To cope with, and cater for these issues,
the compiler (GCC) may use the -fraction to within the test suites.

Before the code is released, it goes through a ping and checks that unsigned or
signed, or analyzed and compile time errors will be checked before going forward.
Both the connections—Connection 1 and Connection 2—are shown as follows:

Connection 1 Connection 2

Stmt1

VDBE

Cursor

Stmt2

VDBE

Cursor

Stmt1

VDBE

Cursor

Stmt2

VDBE

Cursor

B- TREE B- TREE

PAGER PAGER

OPERATING
SYSTEM

DATABASE
FILE

JOURNAL
FILE

Figure 9: SQLite object model with C API

Figure 9 outlines the views that a programmer will look at—B-tree and pager, rather
than components such as tokenizers or parser. Figure 9 outlines the relationship
between the components. To know SQLite properly, programmers must understand
the locks, API, and transactions of SQLite.

Chapter 2

[29]

As Figure 9 illustrates, pager and B-tree access is forbidden, but important within
locks and transactions. The connection to the database and SQL statements is most
important when the API has many data structures. For example, a connection to any
SQLite database is held as one transaction and also as one connection to the RDMS.
A SQL statement is internally represented in the form of a virtual database of engine
(VDBE) byte code.

With the B-tree and pager components of SQLite, it will support many database
objects within each connection, as shown in Figure 9. Every database object has
a B-tree object, which has a relationship with a pager object. The SQL code (SQL
statements) within each connection are shown in Figure 9. Every database object
has a B-tree object, which has a relationship.

When B-tree requires information, it prompts the pager component to get the data
from the database. The pager component will move the data into its memory buffer,
and the B-tree component will then associate it via its cursor to retrieve and view
the data.

Executing SQL statements and commands is a part of the main piece of the API
that has two methods, which are either prepared or wrapped queries. If the page is
modified by the cursor, the original page/data must be kept just in case of a database
rollback. The pager is very important and has to deal with write and read events to
and from the RDBMS.

A transaction is set up once an operation is in place. For example, a database
connection setup will effectively be considered as one transaction. Also remember
that a connection cannot have more than one transaction open or available at any
given time.

Therefore, SQL statements from a standard connection will work on the same
transaction. If the conditions of your program require more than one statement
in different transactions, you have to engage in using multiple connections, as
illustrated in Figure 9.

It is very important to know how to set up a database connection from the application
to the SQLite database. If there is no connection, then any of the commands used to
retrieve, update, or insert data are useless. The connection statement will define the
data process and its name and will set up a transaction to allow the data to pass to
the database and back. Once a connection is made, the rest of the process sets up the
database interactivity. It is not a difficult task to complete, but setting up a database
is important to learn, because it is the starting point of all database activities and
applications.

Database Design Concepts

[30]

Database connections
The sqlite3_open() C API function is used to open a connection to the database
and is held in a single operating system file. This function actually opens the file,
and thus, a secure connection is made that is not shared. If the memory option is
used, then the database will be created in random access memory (RAM), once
the connection is established. The database will then be removed and deleted from
RAM when the connection closed.

SQLite will attempt to open an existing database, and if an entered database name
does not exist, then it will assume that the programmer wants to create one. SQLite is
clever if you want to create a database and then close it without any operation, such
as creating a table: it will not actually spend resources creating the database, only an
empty file will exist:

sqlite3 aFile.db "create table aTable(field1 int); drop table aTable;"

The preceding statement will create the required default file with a table and will
then drop/delete it, leaving a clean database without any tables. This is possibly the
neatest way to show an empty database.

When opening the SQLite database, the programmer or database administrator can
specify the size of the page in different ranges from 512 to 32,768 bytes. By default,
SQLite will use a 1,024 byte page size. For a better performance, the developer may
consider a page size of his SQLite database equal to the operating system's page size,
which will make operations much more efficient.

It all depends on the type of application you are going to design; paying attention
to the detail on the type of columns, sizes, and types, which will gear a table and
database design to be more efficient and perform well. If the application you are
dealing with has large binary data for example, the database page size will increase
to match the loading or selecting of data. The page_size parameter is used as a part
of the database page sizing for each database.

Preparing queries
These are the eight methods and two objects that form the SQLite interface. These are
the basic list of functions that each user/reader must be aware of when using SQLite
in code. These statements don't change, nor does their functionality. These are the
key statements to ensure that users are aware of the name, format, and where these
functions are used:

• sqlite3: Database connection object, made by sqlite3_open(), killed by
sqlite3_close()

Chapter 2

[31]

• sqlite3_stmt: Preparation statement object, made by sqlite3_prepare(),
killed by sqlite3_finalize()

• sqlite3_open(): Opens the database (new or existing) and uses constructor
sqlite3

• sqlite3_prepare(): Compiles some SQL text into byte code to perform
updating or querying tasks and is the constructor of sqlite3_stmt

• sqlite3_bind(): Application data is stored into the parameters of the
original SQL

• sqlite3_step(): The further advancement of sqlite3_stmt onto the next
row or completion

• sqlite3_column(): The current row result outlining column values for
sqlite3_stmt

• sqlite3_finalize(): sqlite3_stmt destructor
• sqlite3_close(): sqlite3 destructor
• sqlite3_exec(): A wrapper function that works for one or many SQL

statements using sqlite3_prepare(), sqlite3_step(), sqlite3_
finalize(), and sqlite3_column()

The sqlite3_prepare_v2() function is the one used to prepare and execute SQL
statements. The prepare function is the method that SQLite uses as a part of the
following three-stage process:

1. First is the preparation stage, next the execution stage, and then the
finalization stage. On the preparation side (first step), the components, as
explained in Chapter 1, Introduction to SQL and SQLite, outline the parser,
tokenizer, and code maker to investigate the SQL and make a statement
using the sqlite3_prepare_v2() function working with the compiler. Then,
a handle is created with byte code from the sqlite3_stmt function that
collates and uses relevant resources for the statement to execute.

2. Secondly, VDBE within SQLite will take the byte code and execute it using
the C API. The SQLite3_step() will work with (VDBE) to go through the
byte code looking at locking resources as required. Different statements will
work differently in VDBE, but for the SELECT statements as an example,
using sqlite3_step() as part of a result set, SQLITE_ROW() will be set and
the process will go through the whole dataset until SQLITE_DONE is reached.
Other statements in the set including UPDATE, INSERT, and DELETE will be
directly executed within VDBE.

Database Design Concepts

[32]

3. The third step is the final one where the resources to VDBE are closed; the
sqlite3_finalize()function does this. Once the sqlite3_finalize()
function is executed and resources are free, the program comes to an end
via the VDBE and the statement handle is closed as well.

Parameterized SQL
Using SQL within C code and the API will involve parameterized SQL—the way
to include data placeholders in an SQL statement. These are the two types of
parameterized binding: named and positional. See Figure 10 for more details on
how these types of parameterized binding are used. The first statement is positional
where its position is located or marked by a question mark, and these positions are
based on the number of columns.

The real variable names setup in the programmable language, such as C or Java, as
shown in the second insert statement in Figure 10, outlines the named parameters
that use a colon as a prefix to indicate it on an SQL statement. By default, NULL is
used as a default value if there is no value for it to be bound to.

Once a statement is bound, you can call on it again more than once without wasting
the performance or time to recompile it again.

The whole idea of using parameterized SQL is to reuse the same code with different
parameters without recompiling. It saves on resources and time, and improves
efficiency. This allows the existing code to be reused several times if the design
allows it, to save on more code and improve efficiency. If you use quotes or
characters for plurals as an example, SQLite, by default, will escape the characters
and insert the right data and convert it properly.

It also stops SQL injections, SQL penetrations, and easy syntax issues or errors. The
SQL injection to a company is a security vulnerability, which allows a hacker to trick
the system into adding or modifying data where access is not granted. On a browser
where the address of a website is seen, the data input is sometimes added without
any encryption, or no data checking is carried out at the backend or frontend to
allow penetration. SQL injections, as illustrated and explained in Figure 12, show that
an open piece of code that relies on an input using a %s string, can be regarded as
opened, and can impact the data in the database:

Chapter 2

[33]

Figure 10: Using parameterized SQL

The following snippet shows how a statement can be compiled using one set of
parameters; using the function _reset() method will allow the same compiled
SQL code to be used again with different parameters:

example of using reset - START
db1= open('property.db')
sql_statement= db1.prepare('insert into property_info(id,property_
id,desc) values(:id,:pr_id,:desc)')
sql_statement.bind('id','100')
sql_statement.bind('property_id','1')
sql_statement.bind('desc','this is a test')
sql_statement.step()
Reuse existing compiled parameters
sql_statement.reset()
sql_statement.bind('id','200')
sql_statement.bind('property_id','2')
sql_statement.bind('desc','this is a test again')
End
statement_sql.finalize()
db1.close()

Error handling
Handling errors is mandatory when writing systems, especially if it is for
mobile devices; so, attention to detail and catching issues with code is vital. The
SQLITE_BUSY and SQLITE_ERROR functions are used by programmers to notify
and trap errors, and store them for a later analysis.

For example, SQL_ERROR is activated when resources such as locks cannot be
granted or are not available, whereas the SQL_BUSY covers issues with transactions
and related matters. Another function called sqlite3_errcode() will handle any
general SQLite error. These methods and functions are the standard way of handling
errors with SQLite.

www.allitebooks.com

http://www.allitebooks.org

Database Design Concepts

[34]

Queries within the db.exec statement
The sqlite3_get_table() function is used to execute SQL statements that actually
return data, such as the SELECT statement, but the sqlite3_exec() function is a
one-way traffic execution and does not return any data, for example, the INSERT
statement. See the following code for more information:

db1= open('property.db')
sql_statement= db1.exec("insert into
property_info(id,property_id,desc) values(1,2,'Property Description
1')")
sql_statement= db1.exec("insert into
property_info(id,property_id,desc) values(2,2,'Property
Description 2')")

SQL injection attacks
Another issue with SQLite and SQL statements generally is SQL injection attacks.
These can deface websites, result in data corruption, and also affect the reputation
of your website and its customers. If the input to SQL parameters is direct, then a
weakness could be penetrable. SQL data input must be checked and filtered to allow
no one to change the current statement with data elements or even replace SQL
statements to perform corrupt acts. This can be done using this statement:

SELECT * from property where property_name='%s';

The preceding code shows that an injection can take place where %s is the input
string, and it can be changed to be something else, thus changing the outcome result.
To protect SQL, constrain the input, use parameters with stored procedures, and use
parameters with dynamic SQL to reduce the threats.

To prevent your website from being used for XSS or XSRF attacks, disallow the
HTML tags in text input provided by users by using functions to find and strip tags.

Creating user-defined functions
The benefit of using SQLite over other small databases is its flexibility to engage
with the extension API side by creating your own user-defined function. If you
are familiar with creating your own function in a language such as Java or C, for
example, then extending the natural SQLite database will not be difficult. The
following code outlines how this can be done using the C API:

void test_function(sqlite3_content* tmp_value, int tmp_assign,
sqlite3_value** values)

Chapter 2

[35]

{
/* Respond back Text or reply */
 const char *tmp_string ="Test String - Hello World";

/* Set value to be returned */
sqlite3_result_text(tmp_value,tmp_string,strlen(tmp_string),SQL_
STATIC);
}
Execute it by creating function using - sqlite3_create_
function(db1,"test_function", 0,test_function);

Transactions and locks
Transactions and lock states form a part of the makeup of the API and its functions.

Although difficult to control in their entirety, locks and transactions are interlinked
with queries within SQLite and most database systems. The key to better transactions
involves the programmer writing good SQL code, ensuring that it will perform well,
and catering for possible errors and issues during the journey so that the application
does not crash or leave the user in the lurch. Another issue with locks will relate to
which resources you need. Sometimes, it could be a badly written code that does
not use autocommit or is holding an exclusive lock to a table and another part of
your process, and you can't update it, as an example. So, it is very important for the
programmer to gauge, learn the API, and understand how locking and transaction
strategies will work to produce a smooth and good app.

By default, autocommit is used in SQLite where transactions cycles start and end,
which are controlled by programmers and statements used for the app. Each SQL
command will run in its own transaction since autocommit is used. However, within
a transaction, especially using a begin command, the programmer has to manually
call a rollback, or a commit to update the database. Sometimes, a locking strategy
such as this may cause SQL violations or errors, which has to be handled by the error
handling code within the app.

In terms of passwords, as a programmer or designer, do not store password, such as
database passwords, in any clear text or script that may be accessed by any user. For
example, in a directory to a web server, a source file can be compromised.

Application authentication should be done on two levels with heavy type password
formats so that access is not compromised, especially with technology, such as
spyware that looks into compromising your system. The data can be encrypted
when database authorization provisions do not offer sufficient protection, which is
initially required.

Database Design Concepts

[36]

Transactions – reading/writing
When a SELECT statement is used within SQLite, it moves from a default status of
UNLOCKED to SHARED, and once the statement is committed, it reverts to UNLOCKED.
There are several states for transaction lock states and locking works when there is
autocommit on or transactional control with autocommit off within a begin/end
statement arrangement. When there is some contention, the transactional locking
states may alter from UNLOCKED to SHARED, RESERVED, or EXCLUSIVE.

If an update is to take place, the programmer may code it so that an EXCLUSIVE lock
is used. This stops updates from other processes, just until the job has been done
and the lock is released. In this case, the programmer must also code and put up a
message or write to the log file; if this happens, auditors or database administrators
will have an audit trail of events during the lifetime of an application. It is a very
good practice to do so.

Designing for SQLite
Generally, programmers will think that because database systems are huge or
work best in enterprise, it will be the same for SQLite and the mobile environment.
Remember when the app is released; ensure that SQLite is built in with some basic
data for the user to start. Ensure that the data can be dynamically populated easily.
This will form a part of a great data access strategy and format, which should be
replicated across all of your applications.

As mentioned previously, security to your data is mandatory, and requirements
around privacy and access, including a form of encryption, must be considered to
protect information.

Another important factor in designing a good database for SQLite is the performance
and the ability of the software to work efficiently and quickly among the operating
system on a small device and app that has more demands on it today.

Testing both, manual and automatic, using products such as Appium for mobiles,
is a must, because it can find out relevant bugs, issues, and problems, that manual
testing may not have uncovered. The usage of SQLite in your application can be as
complicated or as simple as you require, and the freedom and accessibility of code
and experts are plentiful, to ensure that your app delivers what it sets out to achieve.

Chapter 2

[37]

Summary
In this chapter, you learned how to design a database system for an application using
SQLite. You learned the details of how to approach the design and outline certain
concepts. The next chapter will show you how to administer an SQLite database and
make use of this functionality.

[39]

Administering the Database
In this chapter, we are going to introduce you to administering the SQLite database
and make you aware of the different components of this relational database system
that best suits the mobile or tablet devices. SQLite is an embedded SQL engine and
simply reads and writes to ordinary disk files instead of having a separate server
process. It was designed for this purpose and is much easier to maintain and
look after.

Apart from being a great database for programmers, SQLite is also an easier
database to administer and maintain. There is no configuration or setup required to
administer this database. It comes with a standard command-line interface (CLI)
client that is available to administer the database(s).

There is a variety of languages that work with SQLite which are easier to maintain
and add new functionality.

The following are the features of SQLite:

• SQLite is one of the most easy-to-learn databases, is easy to interact with, and
gets on with the task of building a new database from scratch

• Its ability to integrate database engine itself into the code is a major boost for
code development, performance, and interfacing

• It is easy to start, learn, perform, and get practical with how a relational
database system, functions, glued together and is a store for your
application's data

In the market, there are a variety of tools that can be used to make database
administration on SQLite even easier to use, more practical to install and go
and develop. In our case, only the command-line program (CLP) will be used.

Administering the Database

[40]

These are some of the tools in the market:

• RazorSQL, located at http://www.razorsql.com/features/sqlite_
features.html, is a tailored piece of software that works in a browser
environment. It can highlight syntax and comes with an editor to write and
update code, some visual administrator tools, and functionality unique to
SQLite.

• Another tool is SQLite Maestro, located at http://www.sqlmaestro.com/
products/sqlite/maestro/, which is a superior product aimed at the
database management market for the creation, updation, and deletion of data
using SQLite. For example, it includes a database designer, SQLite syntax
checking, administrator tools, and a data exporter.

• Navicat is another database management tool for SQLite, located at http://
www.navicat.com/products/navicat-for-sqlite. Their product comes
with some good visual tools, database maintenance functionality, reporting,
and data exporting, for example.

CLP is actually a separate program that has the SQLite engine compiled in it. CLP
operates both as a command line tool and interactive shell. The command line
mode is the facility database administrators (DBAs) can use to create tables for an
application, upload data to the skeleton tables, and modify information so that it
is ready for development, testing, and releasing. To start using the command, in
terminal monitor, type sqlite3:

If you type sqlite3 <database name>, the system will be loaded into the named
database and will be ready to do work. For example, you can also type sqlite3 –
help, as shown in the following screenshot, which will outline the commands
available as part of the help. As shown in the following screenshot, there are a
variety of options that will help the DBA or user perform tasks as required. Within
sqlite3, to exit at the prompt, type .exit to leave the program. At the terminal
prompt, $, type sqlite3 –help to get a list of commands, as shown here:

http://www.razorsql.com/features/sqlite_features.html
http://www.razorsql.com/features/sqlite_features.html
http://www.sqlmaestro.com/products/sqlite/maestro/
http://www.sqlmaestro.com/products/sqlite/maestro/
http://www.navicat.com/products/navicat-for-sqlite
http://www.navicat.com/products/navicat-for-sqlite

Chapter 3

[41]

The preceding steps are manual and can be used by the database administrator. Shell
scripts to automate database processes can ideally use the format, which can improve
database performance.

Creating a database
To start, a database must be created. By using the following command to create
the database, although it will be created, nothing will be physically stored in the
database yet. There is no default place to store the SQLite database once it has been
created. The location could be your home directory, a working directory, or a
pre-created database directory:

$ sqlite3 testdatabase.db

By default, an environment is prepared ready effectively, for database objects, as
defined by the preceding statement. SQLite was designed with the distinct policy
of avoiding any size limits. To have a policy that would easily fit in the device's
memory and be a 32-bit integer would work, but was not the best option. It proved
to create problems since the product was pushed to extremes and the exploitation
of security loopholes may have made the product vulnerable. The default settings
of objects are generous and adequate for most applications. There are also different
settings statements such as SQLITE_MAX_COLUMN that controls the maximum number
of columns in a table, indexes, or view.

Administering the Database

[42]

It is only when tables and indexes are created that the physical creation of the
database actually starts. This allows the DBA to alter different page settings before
the disk parameters and allocations are created. Thereafter, it is more difficult to
change the settings.

Creating a table
To create a table in the new database, use the following commands:

After the preceding command is run to create a database, the create table temp
statement is executed to make a temporary table. It has three columns, id which is
a primary key whose value is automatically incremented; name, which is text; and
address; which is also of text.

Inserting data
To insert data into the new table, use the following command. It is a simple operation
to insert data into the table with the columns listed on the left-hand side, and the
values and parameters, or data on the right-hand side of the same format type:

Chapter 3

[43]

Data is input into the temp table using data for two columns: name and address.
Please note that no values are required for the id field since its value is provided
internally by SQLite, which automatically increments its value.

Selecting data
To select data from the new table, follow the next command. It is a simple operation
to fetch the information for display on the screen:

Data is selected from the temp table using all columns, hence the character *,
otherwise, a column name could have been specified instead, retrieving only
that column data.

Creating an index
To create an index for the temp table, which will allow faster selection using the id
field and also have a small overhead, which may be overtaken by the performance
gain, use the following command:

An index called temp_idx is created in the name column, which will allow faster
access with a minimal overhead for data access.

Administering the Database

[44]

Exporting data
To export data from SQLite, the .dump command is used, as shown in the following
screenshot. No arguments are required and the complete database can be exported in
this way. If an argument is added like a table name, then only their contents will be
exported. By default, the .dump command will output the data to the screen. If you
want to direct the output to a filesystem, use the .output statement plus a space, and
then the file name, as shown in the following screenshot.

After the commands are used, a file is created in your current directory. To get back
to outputting the data back to the screen, use the .output stdout command, as
shown here.

Using these methods allows more flexibility, control, and better formatting output:

As shown in the preceding screenshot, there is an output to the temp.sql file.
The .dump command is issued to output all the information about the database to
the temp.sql file. To put the output back to the screen, use the .output stdout
command.

Viewing database schema data
SQLite offers several commands as part of a command set to get information
about the contents of a database. For example, to get a list of tables, use the .table
command. To find a specific table name, use a % symbol and text as a pattern to find
the result, for example, .tables [pattern], as shown in the following screenshot.
By issuing the .tables command and appending a %te% text to it, is a request to
SQLite to list all its tables within the database that has the word te (in our case temp)
in their name which are displayed correctly:

Chapter 3

[45]

Index data
Prior to the following example, a temp_idx index has been created, to get a list of
indexes for the temp table, at the sqlite3 prompt .indices temp, which is actually
the .indices command followed by the table name, as shown here:

By using the preceding command, the temp table's index can be seen.

Schema data
To view the schema of the database, the following command can be issued, .schema,
but type the .schema <table name> command to get specific information on a name
database object. See the following screenshot for more information:

The preceding command shows the output from the temp set of tables and index
from the database. The next command shows the whole database schema:

The SQLite master schema table shows tables and indexes that exist on the
SQLite database.

Administering the Database

[46]

Backing up the database
There are a couple of ways to back up your SQLite database. To make it portable,
use the .dump statement as part of the CLP, which can export the entire database
and scripts to the filesystem. An example can be seen as follows:

The preceding statement shows how to invoke SQLite with a database name and
pipe the output to a file called temp.sql.

Following is another way to invoke SQLite and then perform a backup interactively.

User can directly import the data, by the following set of commands:

The following command will open SQLite and the temp.db database, and import the
temp.sql file to it. Within the temp.sql file, there will be scripts to read the source
files and import data back to database (existing or new version):

There is another way, just copy the temp.db file to a version called temp.backup, but
the aforementioned methods are much better and portable, and there may be binary
compatibility issues since SQLite does not have a great reputation for backward
compatibility.

Database tools
There is a vast array of SQLite administration tools, and one of them is SQL Browser
(http://sqlitebrowser.org/), which works on different platforms. Databases
can be managed, tables can be exported or imported, and queries can be created,
updated, and executed. The other tools are listed as follows:

• RazorSQL
• Navicat

http://sqlitebrowser.org/

Chapter 3

[47]

• SQL Maestro
• SQL Browser
• phpSQLiteAdmin
• SQLiteManager
• SQLite Expert

Another previous or abandoned project for SQLite administration is
phpSQLiteAdmin. This is now abandoned and the last update was in 2008. It is
available at http://phpsqliteadmin.sourceforge.net/. phpSQLiteAdmin is a
web interface for the administration of SQLite databases. It allows users to drop,
create, and manage databases, and view database information like the schema,
tables, indexes, and file metadata. There is a similar project in the market, namely;
Bitbucket (available at https://bitbucket.org/phpliteadmin/public/).

SQLiteManager is a product that can manage databases to create, update, and import
or export data; SQLiteManager is available at http://www.sqlitemanager.org/. This
is a web-based administration tool for SQLite. Rows in the tables can be managed and
user functions can be created as required. Again, this project and product is not active
at present and there have been no updates since 2013. This product has now moved
to Bitbucket and is no longer valid as SQLiteManager. However, since moving to
Bitbucket in 2013, there have been no updates.

There is an additional tool, namely SQLite Expert (available at http://www.
sqliteexpert.com/) that has a personal and a professional edition. For example,
it has a built-in SQL Query Builder, facilities to import and export data, and
data editing.

Database file information
The sqlite_master view outlines the details of all the database objects within
SQLite. In SQLite, the maximum size for a database would be 2,147,483,646 pages at
65,536 bytes per page or 140,737,488,224,256 bytes (about 140 terabytes), While the
minimum size for an SQLite database is a single 512-byte page. The best way to see
which tables exist is by performing an SQL statement on the master table, as shown
in the following set of commands:

http://phpsqliteadmin.sourceforge.net/
https://bitbucket.org/phpliteadmin/public/
http://www.sqlitemanager.org/
http://www.sqliteexpert.com/
http://www.sqliteexpert.com/

Administering the Database

[48]

Effectively, download the sqlite3_analyzer program from the SQLite website.
The program performs many functions, such as interrogating the database file and
outputs a summary in text format showing the database structure, its environment,
tables, indexes, the page sizes, entries, storage in bytes consumed, pages used,
overflow pages, and unused bytes on primary pages.

The amount of detail available is impressive and useful when it comes to analyzing
resources, components, and structure of a database.

The sqlite3_analyzer program can also be used in a variety of ways to use the
statistics gained from using it. sqlite3_analyzer is a TCL script and is available at
http://www.sqlite.org/src/artifact/8e50b217c56a6a08.

Summary
In this chapter, you learned how to administer and look after the SQLite relational
database system, which has shown you in a simple way how to look after the
database for your application. This chapter showed some of the basic elements of
the SQLite database. It has covered the essentials of table creation and viewing
tables that make up the schema. The topics are enough to get a grasp of the subject
and master the basics. This chapter covers the basic elements and gave a helping
hand to administer this easy-to-use database for mobile development. This chapter
also summarizes how easy it is to administer as compared to other databases in the
market. There are additional tools for SQLite Administration that can be found on
the web. There are many more commands and not all have been shown as examples
in this chapter. These are some of the methods of using and administering SQLite.
This chapter showed you what is possible when you learn a few commands and how
it can help use this simple, mobile database.

In the next chapter, you will learn all about the essentials of SQL. The chapter will
outline how SQL can be used properly on this mobile database. It will show you how
to use the SQLite method of using SQL compared to other databases and how easy it
is to pick up SQL with SQLite.

http://www.sqlite.org/src/artifact/8e50b217c56a6a08

[49]

Essentials of SQL
In this chapter, you will learn all about the essentials of SQL. It will outline what the
major possibilities with SQL are and how it can be used properly on SQLite. SQL is
fundamental to using SQLite and is mandatory for utilizing the benefits of SQL. It is
relevant in many ways, because it is the way data is passed through, interrogated,
and displayed, using variables.

We will discuss how the language is used with subclauses like "having", for example.
Once you come to know and learn the essentials of how SQL is used in SQLite, it will
make the whole subject easier.

SQL is also pronounced sequel in the industry and is the de facto standard for data
retrieval using these commands and syntaxes. The instruction in this chapter will
use a style and format that is easy to understand and follow. It makes use of the
idea of replaying the code, repeating it, and remembering it well, for your
knowledge and experience.

You will also see what data retrieval options and techniques are available to sort,
collate, and order information as required. The examples shown in this chapter will
provide easy-to-follow and useful instructions with advanced SQL commands. The
results will be quick, or even instantaneous and can be practiced over and over again
to gain the necessary knowledge. There will be tables such as customers or salary
and different trigger names and SQL statements in this chapter.

The examples in this chapter will be ANSI compliant and should work with SQL
databases such as SQLite, Oracle, Ingres, SQL Server, mySQL, MS Access, Informix,
Sybase, and other ANSI SQL compliant databases. This chapter aims to give you that
critical information, which will advance your skills as well. It will also act as a simple
refresher and reminder of when you first learned them.

Essentials of SQL

[50]

To start off, the SELECT statement is the easiest of the general commands, but it is also
the core one of the pact. It allows the data inside the system to be visible by the end
user in the choice of format and style requested, assuming it is syntactically correct.

There are many subcommands and clauses with the SELECT statement and some of
those clauses are discussed in this chapter. The SELECT statement will have more
focus due to its importance, and many options for data selection. As a developer or
a DBA, it is always good to have the knowledge of possible options, which enable
efficient queries to be written. This chapter will enable that knowledge and, for
experts, refresh it. Although SQLite commands work and look the same for Oracle or
MySQL, some of the SQLite ones are actually different.

Let's get started!

Transactions
A database transaction is a logical unit of work that contains several operations
within. By definition, it will have four ACID properties: atomic, consistent, isolated,
and durable.

A transaction must provide a sense of a full commitment to performing the work,
or a way to rollback and not complete the work. It must also keep each transaction
separate and isolated from the others, and ensure that transactions are completed, and
information is written to the database. It must also reduce any amounts of database
inconsistency and allow the best and proper way to recover from any failures.

Query plan
When a query is to be executed, a query plan is used by the database to forge a data
path where the best and the most efficient types of routes are created. If there are
table join, indexes, and a number of rows in the tables, a variety of mathematical
calculations using different algorithms are prepared. Having an execution plan is
useful when there are issues with SQL, and to debug multiple table joins and index
setups, and follow a path to solve a data or programming issue.

Apart from the straightforward SQL statements in a plain format, there will be those
statements that will be used within iOS and wrapped in one of the languages such as
Objective-C or Swift.

When the query execution plan is executed, the data, the information, is geared for
debugging only and should be used as guidance. Every SQLite release will have
different updates that affect the product. The whole idea of a plan is to outline the
strategy path an SQL command takes.

Chapter 4

[51]

A keyword called EXPLAIN, or a phrase, namely, EXPLAIN QUERY PLAN, is
required to be used for obtaining the details of a table. These commands are for
debugging and analysis only. These commands are partially documented and the
behavior is not always 100%:

Next, we see what an SQL statement with a salary selection will look like. Using the
EXPLAIN QUERY PLAN command with the SELECT statement, the basic plan outlines the
order of the table with its name. By learning the query execution plans effectively, you
get a view of how SQLite accesses your data and see how it is committed:

The EXPLAIN QUERY PLAN command exists as a guidance and plan for executing the
SQL Query. It will report and provide information that relates to how the database
indices are effectively used to access the data.

Essentials of SQL

[52]

The system catalog is also the master place where all tables and indexes are listed.
For example, the sqlite_master table is the, as shown here:

SQL basics
SQLite also has some other features for using SQL, such as finding the greatest id
from a column, and also the last insert and its id, as shown in the following:

Insert with a subselect clause
The INSERT statement is the one used to add data into the database. However, the
example to date has only shown data from fixed information or program variables.
There is another way to insert data, which comes from another table based on the
select criteria and data/column matching. This is an insert with a subselect clause;
see the following example:

SQLite> Insert into Salary values (Select id, name, salary from
salary_import where name='Smith');

SQLite> Select * from Salary where name like '%smith%';

There are several variations available on the format, as shown in the preceding
example. The SQL is flexible and there are options to select different data and
offer computations on the last row of IDs.

Chapter 4

[53]

Update with a subselect clause
As discussed in the previous chapters, the UPDATE statement is used to change existing
data in a table from variables in a program or from fixed data. However, there is
another way to update data to the destination table from a source table where there is
a match and link, as shown in the following. The UPDATE statement will modify more
than one column. The Where clause will identify which column(s) are to be updated.
This is one of the simplest and easiest SQL commands to understand:

SQLite> Update salary = 15000
Where name='John Smith';

SQLite> Select * from Salary where name like '%smith%';

Select with a subselect clause
As discussed in the previous chapters, the SELECT statement is used to retrieve and
display information from the core of the database to the user. The SELECT statement
is a very popular and powerful command with a variety of options and choices
to retrieve the data. A subselect or subquery is a nested piece of SQL within the
original SQL, that is embedded near a WHERE clause. The subquery or subselect will
only be used to retrieve information that links up to the main select query using the
specific column names.

These subselect clauses can be used within the DELETE, INSERT, UPDATE, and SELECT
SQL commands, with operators such as =, <, >, >=, <=, IN, or BETWEEN, for example.
There are some rules that apply to subqueries, for example, the subcommand must
only have one column in the SELECT clause, unless multiple columns are selected in
the main SQL statement.

The subselect queries must use parentheses as part of their syntax, to outline the
subquery itself. The main part of the query can have the ORDER BY syntax, but
it cannot be in the subquery. If multiple rows are returned using these types of
queries, then operators such as IN must be used. The BETWEEN word can be used
in a subquery as long as it is not the BETWEEN operator itself:

sqlite> SELECT * FROM PERSONNEL WHERE ID IN (SELECT ID FROM SALARY
WHERE SALARY > 15000);

Essentials of SQL

[54]

Data integrity
Data integrity is very important in maintaining how tables and data relationships
are defined and protected. There are four types of integrity: user defined, referential,
entity, and domain.

The mastering of data manipulation, database design, development, and
administration is key to ensure that applications built using SQLite perform well,
and are kept free from data crashes, data corruptions, and security issues.

When a column's datatype is set, it is a form of data integrity. Data integrity can be
enhanced by only allowing certain values.

When a mechanism is designed to maintain the primary keys in a table by a unique
tuple or row identifier, it is known as entity integrity.

Referential integrity occurs when, for example, two tables are linked by a common
column datatype and no new data can be added to one table without being added to
the second. Referential integrity ensures that data is cleaned and linked properly.

Default values
The default values for columns is valuable because it enforces data integrity
and ensures that a value is entered on the database. It also means that some SQL
statements are smaller than others. A standard type of statement without its column
being added is an id field, where the primary key is defined, and when an INSERT
statement is used, the id field is not required, as shown in the following.

The DBA can create columns to store current_timestamp in the database
automatically, which is good for logging and time stamping.

sqlite> INSERT into salary (name, salary, bonus) values ('John
Smith',15000,2000); sqlite> SELECT * FROM salary;

id name salary bonus
----- -------- --------- --------
1 Peter Jones 10000 3000
2 Sam Smith 15000 1000
3 John Smith 15000 2000

Constraint checking
To ensure that the right data is inputted into columns on a table, certain rules are
imposed, and these are called constraints. These rules enforce data accuracy, limit
corruption, and format issues and data reliability are increased and maintained.

Chapter 4

[55]

At table level, it will apply to the whole table, but at column level, it will apply only
to one certain column level. How they can be used is given as follows:

• The .UNIQUE constraint will make sure column data information is not
the same

• The .PRIMARY key, each data row in the table is identified in SQLite
• .NOT NULL makes sure that no column has a NULL value stored
• DEFAULT will sets up a default value, when no value is specified or entered

Foreign keys
When two or more tables need to link together on a common column, it is known as
a referencing key or foreign key. SQLite supports relation integrity and supports
foreign key constraints, like other databases. It is usually designed by the DBA and
involves a column ID, for example, to match an ID on the second or third table.

There must be a logical reference between the table columns and actual data for it to
perform well. SQLite will use the foreign key as part of the create table statement; an
example is shown in the following:

CREATE Table Salary (
id integer primary key,
name text,
salary
};

Updating Views
A VIEW is a command that can use a combination of tables and joins to show the
user or program a set of predefined data, as required. Effectively, it gives you a view
of the data. You cannot DELETE, UPDATE, or INSERT from a view.

As a view is defined with a specific name, which is stored in the database, it can be
effectively referenced as a table to another SQL statement, as part of a statement to be
manipulated.

If a keyword such as Temporary or Temp exists within the create and view words,
then that view is only seen by that database connection and is removed upon the
connection closing, hence the temp/temporary name.

If a database name is referenced when the view is created, it will reside within that
specific database.

Essentials of SQL

[56]

Index use
After a table is created with its column and datatypes, it is almost ready to use. The
primary columns for data linking are done, but it is not quite ready as defined by
a DBA. Instead, an index can be created to speed up SQL queries and act as special
lookup tables that SQLite will use as a way of getting information faster.

An index has a data pointer, which will quickly reference the data and bring it
back, thus making access quicker without much overhead generally. By definition,
indexes do have an overhead in their own right, but the overheads of the index are
dwarfed by the performance and efficiency gained. This could be useful for mobile
applications because of their limited resource and network access.

A database index as an example is similar to the one located in a book, where you
can find what you want because you know what it is, and just opens the book to
right page, after reading the index.

The index is slow on data input but fast on the SELECT queries, with or without the
WHERE clause. Once an index is created, it can also be dropped without affecting the
core data of a table. The following is a simple example of an index called table_
index_name being created on the customer table:

CREATE INDEX table_index_name ON customer;

A second example shows how an index is created to reference a column called
salary, which is used multiple times in many queries:

CREATE INDEX table_index_salary ON customer (salary);

Here, an index will speed up access. An index called table_index_salary is created
on the customer table, which is created on the salary column.

There are also indexes called composite indexes, which actually index more than one
column on a database for further performance gains, but also an overhead on data
input. As shown in the following, an index is created and is linked to two columns:
salary and bonus. Rather than having two indexes with more overhead issues, a
composite index maybe better, since it is one index with a reference to two columns:

CREATE INDEX table_index_salary ON customer (salary, bonus);

When creating indexes, the database server will also create implicit indexes that are
automatic. If, as a DBA, you wish to see them, use the following example:

sqlite> .indices customer;

Chapter 4

[57]

Triggers
Triggers are an efficient way of using SQL commands to interact efficiently with the
database. They are quick, and are embedded within the create trigger command.

A trigger is made up of a trigger name, references to the tables involved, an event of
time (like before, or after value changes), the type of operation (like insert, update, or
delete), with a variety of tables and columns to complete the operation.

The syntax has to be right and the tests should ensure that the updates and changes
are correct to ensure data concurrency and stability with no corruptions.

This trigger is called update_customer_trigger, which performs an UPDATE query
on the customers table. The update is going to affect the tel_no column. So, the
current telephone column tel_no is going to be updated, where it will equal the
value from the new table, and its column tel_no—(tel_no = new.tel_no), where
the link of customer name (customer_name), equals the old.name column.

Updated triggers must use specific columns for a table, which are predefined, unlike
the insert or delete ones

sqlite> select sql from sqlite_master where name='update_customer_
trigger';

CREATE TRIGGER update_customer_trigger UPDATE OF tel_no ON customers
BEGIN UPDATE orders SET tel_no = new.tel_no WHERE customer_name =
old.name; END

Synchronous writes
Synchronous writes are part of the SQL engine, which will ensure that data
changes are written to the disk area, as required, for transaction reasons and the
way databases work. In the case of SQLite, these operate under different statuses or
settings of NORMAL, FULL, or OFF. For performance reasons, SQLite commits can be
switched off by the DBA as required.

The OFF setting carries on its tasks quickly without much slowing down, minimal
interruptions, and increased performance. However, in the case of a database crash,
the data integrity will remain okay, but in the case of system crash and power loss,
there is a good chance that corruption of the database itself may occur. There are
performance gains to be made, but there are also risks associated with this move.

Essentials of SQL

[58]

The FULL setting has to ensure that data is saved to disk properly and in good time
before carrying on. This method is not good for performance, but is the most robust
and the safest. If there are data corruptions or system crashes, users can be assured
that no database corruption will occur.

The NORMAL setting will slow down at intervals to protect the data and commit
transactions to disk. A database crash or a power failure could damage the database,
but a more serious hardware error could be worse.

Database locking and deadlocks
A deadlock occurs when one or many actions or SQL statements compete for data
access and table updates or manipulation at the same time as another process or action.
Since it works with a transaction, one process can't move forward or complete because
the other process or action holds, and is waiting for a resource, hence a deadlock.

So, in a database, records of process one would attempt to update, but process
two would like to update some of the same rows, or a conflict of another table in
which the transaction occurs. Some form of data locking mechanism to manage and
reduce conflict must happen. Code around the transaction can be added with a retry
indicator of three, for example, so if there is a deadlock, it will retry, and after the
third attempt, it would roll back or give the user an opportunity to retry.

Deadlocking is a common occurrence in multithreaded and multiprocessing
operating systems, which are performing a variety of tasks and attempting to
complete with positive results.

See the following example on how SQL transactions will end up in a deadlock. In
this case, both transactions/sessions will be in a deadlock state. Session 2 will try to
insert/write to the database and create a locking to get exclusive rights to protect,
and ensure it can insert the record without any problem. Session 1 tries to write as
well, which also causes a deadlock situation. Effectively, we have a situation where
Session 1 and Session 2 do not want to lose access or control until the other leaves,
which lets the deadlock continue, as shown here:

Session 1 Session 2
sqlite3> sqlite3>

sqlite3>insert into
temp(name,address)
values('Gene','London');

sqlite3> select * from temp;

sqlite3> commit;

Chapter 4

[59]

Session 1 Session 2
SQL Error Message: database
locked

sqlite3> insert into
temp(name,address)
values('Gene','London');

SQL Error Message: database locked

FMDB SQLite wrapper
In addition to using standard SQL, the FMDB SQLite wrapper, written in
Objective-C, can be of assistance to those who prefer an alternative and
easier way to work with SQLite.

For more information on the FMDB specification and code examples, refer to
https://github.com/ccgus/fmdb.

There are three main classes in FMDB:

• FMDatabase: This is the single SQLite database that executes your SQL
statements

• FMResultSet: This will hold and display the output and results from the
FMDatabase

• FMDatabaseQueue: This will enable you to update and use many
threads within this class if you want to perform queries and updates
on multiple threads

Database creation and opening
The database is defined and allocated to a location and directory:

FMDatabase *db = [FMDatabase databaseWithPath:@"/tmp/atmp.db"];

To engage with the database, you must connect and open it up, as shown in
the following:

if (![db open]) { [db release]; return; }

https://github.com/ccgus/fmdb

Essentials of SQL

[60]

SQL in iOS
To select data, methods like executeQuery can be used to return the FMResultSet
object if successful, or 0 upon failure. There are methods, such as lastErrorMessage
or lastErrorcode, to find out if the query has worked or failed:

FMResultSet *s = [db executeQuery:@"SELECT * FROM aTable"]; while ([s
next]) { //retrieve values for each record }

For multiple rows, [FMResultSet next] must be used to see or read the values
returned from the query, even if the recordset is one, for example.

The following command shows how to use FMResultSet to select multiple queries
as required:

FMResultSet *s = [db executeQuery:@"SELECT COUNT(*) FROM aTable"]; if
([s next]) { int totalCount = [s intForColumnIndex:0]; }

FrmresultSet offers several methods to the programmer to retrieve; some examples
are as follows:

• intForColumn:

• longForColumn:

• longLongIntForColumn:

Some of the aforementioned methods by default will have the {type}
ForColumnIndex: variant, which will be used to get the data based on the position
of the column in the rows and not the name itself.

The preceding code using FMDatabase comes from GitHub and is the standard code
used for these types of operations. It has been used to improve the ease of interacting
with SQLite, instead of the conventional standard method.

Summary
In this chapter, you learned about the essentials of SQL in relation to the SQLite
database, and also what you need to be aware of, and the knowledge required, to
build SQL statements and interactions with SQLite and iOS as a basic start.

In the next chapter, you will learn all about exposing the C API, its impact and uses
within IOS, and how it works as part of SQLite. The next chapter will also mention
how the C API is at the core of SQLite and how it is used.

[61]

Exposing the C API
In this chapter, you will learn all about the C API (C application programming
interface) and, through code, make use of it in your application. By having over 200
API calls to this light, small, and expanding API set, SQLite will surprise you with
how it can achieve what you want from a mobile and flexible database.

You will look at some of the syntax and usage and see how to actually extend the
functionality of SQLite by using its vast arsenal of API calls.

SQLite C components' functionality
SQLite has been written using C language, and its creator has enabled it to be
exposed and has enhanced its functionality by having an API, the C API. In general,
SQLite has many different API calls, for example, about 200 APIs for different
functionalities. As a programmer, you may find it hard to accept, but the APIs are
designed for specific tasks, for example, the sqlite3_reset() function clears the
object connected with the SQLite prepared statement and resets it to its original state
and value.

To start with, the two core objects are the database connection and the prepared
statement objects. The order and the types of functions give you an idea of how to
write an SQL transaction to connect to a database, create a table and an index, and
populate it with an insert statement. These functions form the main elements of
the SQL-C interface functions, allowing data to be connected and passed from code
to SQLite.

sqlite3_open()
The sqlite3_open(const char *filename, sqlite ** Db_name) will open a
connection to the SQLite database file at your chosen location and return the database
connection object, which will be used by other SQLite components or functions.

Exposing the C API

[62]

The sqlite3_open() function is required to make a connection before any other
operation can take place. It will enable the rest of the operations to follow.

If, in the sqlite3_open function, the filename does not contain a NULL, the function
will use a value from the provided values, or if no database file already exists, SQLite
will attempt to open a new database using the name. Once a database connection
via the sqlite_open() function had been achieved, commands such as sqlite_
prepare() can go forward. An example of sqlite3_open() is shown here:

sqlite3_prepare()
With a new database connection, we will get a pointer address that will serve as the
input for the sqlite_prepare() command. The statements will compile the source
SQL statements into the object code. The functionality of the sqlite3_prepare()
function is to bind and set up the relevant parameters to link up your query
strings as part of the data process. Here is a brief example outlining the process
for sqlite3_prepare():

sqlite3_step()
The sqlite3_step() statement will analyze, inspect, and evaluate the output object
code from the previous the sqlite3_prepare() statement. It will execute a prepare
statement and will return an SQLite status code. If there is data, then the SQLITE_ROW
status code will be returned. When the statement has finished executing, the SQLITE_
DONE status code will be returned. Any other returned value will be regarded as an
error. SQLite3_step() must be reset for it to be used again.

Chapter 5

[63]

This method is mainly used for the SELECT statement. Other statements such as
DELETE, UPDATE, or INSERT will execute to completion from the first record to
the last:

sqlite3_column()
As the SQLITE3_prepare statement is being evaluated, the SQLITE3_column
statement displays a single column as part of the result set. SQLITE3_column
performs a placeholder function within the SQLITE API and is the centerpoint
for a variety of other functions, such as SQLite_column_count().

See the following for more information:

Exposing the C API

[64]

sqlite3_finalize()
As the name suggests, this statement will finalize and seal all prepared statements.
Once the sqlite3_finalize statement has been executed, any memory is
deallocated and internal process resources are released. Once completed, the
statement cannot be reused and is not valid internally. See the following command
for more information:

sqlite3_close()
This is the last component to be executed, namely the sqlite3_close command,
which will close the database using the pointer and reference from the database
connection, and previously created prepared statements will have to be finished
before the connection is closed.

As mentioned previously, in order to call or run SQL statements within SQLite or
any other database, you must connect to the database and once you finish your work,
you must disconnect.

The preceding SQLite_open() statement is a way of using the C API directly
without any implementation of the Swift language. The following are two methods
for using the open database statement, in C API and in Swift. There are two types of
approach:

• Using the C API with the open database statement
• Using Swift with the open database statement

Using the C API with the open database statement
Have a look at the following code:

var db1 = SQLiteDatabase();
db1.open("/path/to/database1.sqlite");

A variable of db1 is defined to call the SQLiteDatabase() function. Then the db1.
open() method is used with the data within the brackets to point to the database1
database, as shown in the preceding code.

Chapter 5

[65]

Using Swift with the open database statement
An alternative way to open the database using Swift is as follows:

let datadocuments = NSSearchPathForDirectoriesInDomains(.
DocumentDirectory,
.UserDomainMask, true)[0] as String

let databasepath = documents.stringByAppendingPathComponent("tester.
sqlite")

// open the database

var databasedb: DBPointer = nil

if sqlite3_open(path, &databasedb) != SQLITE_OK
{
 println("error opening database")
}

Remember that for Swift, you have to import the sqlite3.h file and add the
libsqlite3.0.dylib SQLite library to your project.

To add this libsqlite3.0.dylib to your project, follow these steps:

1. Select the target and framework within the project editor.
2. Click on Build Phases at the top of the editor and open the link with the

libraries section.

Exposing the C API

[66]

3. Click on + to add the framework or, in our case, the libsqlite3.0.dylib
SQLite library.

4. A search NSSearchPAthForDirectoriesinDomains is used to set up the
datadocuments variable, and then the databasepath variable is set up as a
place for the sqlite file.

5. A variable of databasedb is set up and a check is performed to see if the
sqlite3_open() function with the input parameters actually works to open
the database, otherwise an error message is shown.

The beauty of SQLite is its flexibility and the extensions of the product, which
include extendable SQL features such as collating sequences, and SQL functions that
enable your application to be different and unique. The range of change and ability
to extend the app is growing.

Chapter 5

[67]

The extension you build can be linked to your app and you can use of a function
such as SQLite_extension_init as a pointer or address to ensure names don't
conflict.

The SQLite extension is classed as a DLL (a dynamic link library—a collection of
programs that are used when required by larger applications).

DLLs by definition require an entry or starting point to engage with a program. It
is where processes attach themselves to the DLL and a join or connection is made
to exchange information and use functionality. The entry point function is used to
perform cleanup tasks or initialization when engaged. When a process uses the entry
point function, it can be used for allocating memory or virtual address space.

SQLite can use load extensions, which are coded outside SQLite and tested and
deployed as necessary. Once developed, these extensions can easily link up to
SQLite. If there was some functionality SQLite did not have, a third party could
develop it and make it available to potential customers or users in a particular
industry, for example.

When creating an extension for SQLite, the extension differs for each operating
system:

• Some Unix systems use the .so file extension
• Windows systems use the .dll extension
• OS X (Mac) systems use the .Dylib extension

This shows the great flexibility of the software, which can cater to a variety of
operating systems and, therefore, allow the SQLite database to be applied to different
systems and technologies.

load_extension()
The load_extension(X,Y) function is another capable function that allows
functions/extensions to be loaded. Its methods are similar to that of the sqlite3_
load_extension() C interface. Both these methods use entry points, and a name is
required as an identifier. Null pointers can be passed in for the input argument.

There are commands that change the database and don't return any results, such as
the Update statement. The function that carries out this task is sqlite3_exec().
This method is faster and is not difficult to learn or execute.

Exposing the C API

[68]

sqlite3_exec()
The sqlite3_exec() process has a pointer to an open database, a single or a list of
SQL statements using a pointer to the callback function as part of its functionality.
It will use one or several SQL statements combined with a null-terminated string for
processing. Each row of the query will have a pointer to a callback function. There
will also be a pointer sent ahead as part of the first argument to a callback function.
A pointer to an error string variable is included.

sqlite3_config()
The functionality of sqlite3_config() is useful for allowing changes to be made at
a global level. The sqlite3_config() must be called before opening the database.
The sqlite3_config() interface will allow SQLite's memory allocation to be
adjusted, producing an error log for the whole process. It sets up and configures the
SQLite library, controlling many aspects of memory allocation and related resources.

To extend SQLite, further functions and routines such as sqlite3_create_
collation(), sqlite3_create_function(), sqlite3_create_module(), and
sqlite3_vfs_register() are investigated and used as necessary to improve the
product functionality. Maintenance of these systems will be limited to those who
know and use the technology.

The following is an example of using some of the database functions using the
select, update, delete, and insert commands with Apple's new language, Swift.

As mentioned previously, there are different SQLite wrappers out there, some
specifically written for Swift (not many), but the most common one is FMDB,
which has been tested for different apps:

1. In order to bring Objective-C into Swift, a "bridging header" is required,
namely sqlite3.h. To use this header, use the following command:
#import <sqlite3.h>

2. Add the libsqlite3.0.dylib SQLite library to your project, as discussed
previously.

3. Once the libsqlite3.0.dylib library has been added to the project, the
next task is to create the database.

4. Next, use the sqlite3_exec functionality to perform the create table...
SQL statement, for example, as part of using Swift:
if sqlite3_exec(databasedb,
 "create table if not exists test table (id integer
 primary key autoincrement, name2 text)", nil, nil, nil)
 != SQLITE_OK {

Chapter 5

[69]

 let errmsg = String.fromCString(sqlite3_errmsg(db))

 println("error creating new table: \(errmsg)") }

5. The next statement to use is an Insert statement to enter data into the newly
created test table. The following information will show how to prepare,
bind, and step the SQL statement. The sqlite3_prepare_v2 function will be
used to prepare the SQL using a placeholder of ? to bind the required value:
var statement: DBPointer = nil
if sqlite3_prepare_v2(databasedb, "insert into test (name)
 values (?)", -1, &statement, nil) != SQLITE_OK
{
 let errmsg = String.fromCString(sqlite3_errmsg(databasedb))
 println("error preparing insert: \(errmsg)")
}

if sqlite3_bind_text(statement, 1, "data", -1,
 SQLITE_TRANSIENT) != SQLITE_OK
{
 let errmsg = String.fromCString(sqlite3_errmsg(databasedb))
 println("failure binding record data: \(errmsg)") }

if sqlite3_step(statement) != SQLITE_DONE
{
 let errmsg = String.fromCString(sqlite3_errmsg(databasedb))
 println("failure inserting record data: \(errmsg)") }

6. A constant, SQLITE_TRANSIENT, can be used as a part of the following
process:

let SQLITE_STATIC =
 sqlite3_destructor_type(DBPointer(bitPattern: 0))
let SQLITE_TRANSIENT =
 sqlite3_destructor_type(DBPointer(bitPattern: -1))

This is the standard way of using these variables. Sometimes these variables don't
work if they have not been included as part of the .h file or as defined in the
following section. They are not supported in Swift because of "unsafe pointer casting."

Exposing the C API

[70]

The prepare statement
As part of the prepare statement, the functionality of sqlite3_prepare_v2 is used
with the SQL statement, using the question mark (?) as a placeholder to bind input
values. This is shown in the following example:

var statement: DBPointer = nil
if sqlite3_prepare_v2(databasedb, "insert into testtable (name)
 values (?)", -1, &statement, nil) != SQLITE_OK
{
 let errmsg = String.fromCString(sqlite3_errmsg(db))
 println("error preparing the insert: \(errmsg)")
}
if sqlite3_bind_text(statement, 1, "Bind1", -1, SQLITE_TRANSIENT)
 != SQLITE_OK
{
 let errmsg = String.fromCString(sqlite3_errmsg(db))
 println("failure binding this statement: \(errmsg)")
}
if sqlite3_step(statement) != SQLITE_DONE

{

 let errmsg = String.fromCString(sqlite3_errmsg(db))
 println("failure on inserting data : \(errmsg)") }

The standard was of using the SQLITE_STATIC and SQLITE_TRANSIENT as setup is
as follows:

#define SQLITE_STATIC((sqlite3_destructor_type)0)
#define SQLITE_TRANSIENT((sqlite3_destructor_type)-1)4

In Swift 2, the code could change, as shown in the following:

"Internal let SQLITE_STATIC = unsafeBitCast(0,
 sqlite3_destructor_type.self) internal let SQLITE_TRANSIENT =
 unsafeBitCast(-1, sqlite3_destructor_type.self)"

Next, let's perform an insert statement using a NULL value to prove that SQL
does work:

if sqlite3_reset(statement) != SQLITE_OK
{
 let errmsg = String.fromCString(sqlite3_errmsg(databasedb))

 println("error resetting prepared statement: \(errmsg)")
}

if sqlite3_bind_null(statement, 1) != SQLITE_OK

Chapter 5

[71]

{
 let errmsg = String.fromCString(sqlite3_errmsg(databasedb))

 println("failure binding the null value: \(errmsg)")
}

if sqlite3_step(statement) != SQLITE_DONE
{
 let errmsg = String.fromCString(sqlite3_errmsg(databasedb))

 println("failure inserting null: \(errmsg)")
}

As mentioned previously, SQLite can work by allowing each SQL statement to be
prepared once, evaluated, executed, and then destroyed, but it also has the facility
to prepare the same system and be evaluated several different times by using the
routines like the sqlite3_reset() and sqlite3_bind() functions. SQLite is a good
and functional database that would work for different applications without any
adjustments.

The following code is then used to close the database after the work has been done:

if sqlite3_close(databasedb) != SQLITE_OK

{

 println("error closing the database")

}databasedb = nil

This is the advantage of the language having built-in SQL functionality.

The information in this chapter has focused on the functionality of the C API.
Developers today will extend and use different types of functionalities, as required,
for their apps, but embedding the use of Swift, Objective-C, Java, or other languages.

Summary
In this chapter, you learned how to extend the C API and produce code, which
can be used to build some interesting, exciting, new, and intelligent data-driven
applications and promote the use of SQLite. The language used is Swift. In the next
chapter, you will learn briefly how to use Swift with IOS and SQLite, and you will
be shown how to install Xcode and work with Swift and an SQLite library.

[73]

Using Swift with iOS
and SQLite

In this chapter, you will look at using the new programming language from Apple
called Swift. It is a new language created by Apple and has very powerful features
to perform a variety of tasks and is now open source. Apple released it, and it has
grown so fast that in the months and years to come, it will be the de facto standard
for coding using Apple devices. You will see how Swift works with iOS, Xcode,
and SQLite.

It has been an extraordinary journey since Swift was announced at the WWDC 2014
in San Francisco. In 2015, Apple announced that Swift would be open source. The
language itself allows you to write high-level code and even low-level code with
ease. It is a culmination of languages, such as Python, C, and Objective-C, making
it faster and easier, and it's available on a number of platforms.

Can you imagine what is going to happen in the next few years? Design patterns and
skills are developing at a fast rate, and applications will be rewritten and deployed
using the new language.

We will show you how to install Xcode to work with Swift and any SQLite libraries.
There will be a few examples of how to get the new language to work with SQLite
and Xcode. The examples and information given in this chapter will allow you, as a
beginner, to get to grips with learning this new language and gaining new skills.

Using Swift with iOS and SQLite

[74]

Basic requirements
All f#Apple development is completed on a Mac. You will require the following:

• A MAC computer with the Maverick or Yosemite operating system
• The Xcode application development environment
• A good understanding of object-oriented programming
• A basic understanding of the Swift language, from the Swift reference guide

For reference information, you can check out the Apple Developer
Guide at https://developer.apple.com/library/ios/
navigation/#section=Resource%20Types&topic=Guides.
A positive attitude to learning and developing your skills is very
important.

Starting an Xcode Project with Swift
Xcode has been impacted with release fixes and enhances to the Swift language. So,
sometimes, code that used to work easily now requires some coding changes before
the compiler is happy with it. This is something that will always happen with a
changing code base for a new language.

Start by opening Xcode. The best version of Xcode is the latest one, available from
the Apple App Store at https://developer.apple.com/xcode/download/. Install
Xcode, and when everything is set up, launch Xcode and follow these steps:

1. Create a new project (Cmd+Shift+N).
2. In the template selector, make sure iOS | Application is selected. Choose the

Single View Application template to start the process:

https://developer.apple.com/library/ios/navigation/#section=Resource%20Types&topic=Guides
https://developer.apple.com/library/ios/navigation/#section=Resource%20Types&topic=Guides
https://developer.apple.com/xcode/download/

Chapter 6

[75]

3. You are then prompted to add the project name, so add a name like Test
Swift Project.

4. Next, add in the company name as Voxstar Ltd or your company's name.
5. Next, add in the organizer identifier, in our case com.voxstar.

testswiftproject, which will identify a name for your apps and that is
how it will be recognized by Apple.

6. Next, for the computer language, select Swift instead of Objective-C, which is
what we are using in this chapter.

Using Swift with iOS and SQLite

[76]

7. For the devices, select iPhone, also ensure that the Use Core Data option is
not selected. See the following screenshot as an example:

8. Click on the Next button to continue this process. Thereafter, you have to
store the location of your project files; we suggest you use the location where
the main .swift directory is stored, as shown in the following screenshot.
For this example, use the Documents directory, select and click on Next,
and a new directory called Test Swift App will be created. The following
screenshots show the directory and project information within:

Chapter 6

[77]

9. Once the Create button is clicked on, the project details page is displayed,
as shown in the following screenshot. A set of standard files, templates, and
components are used as part of Xcode:

Using Swift with iOS and SQLite

[78]

10. To show what the standard app using an iPhone would look like, click
on the Play button and watch the default screen and the output from the
iPhone 6 simulator:

However, the first main entry place for the Swift application is the AppDelegate.
swift file. This file is located in the application directory. Under the application
directory, there will be a directory with the name of the app, and this is where the
AppDelegate.swift file is located. In Xcode, click on it to open and you will find an
array of information. This information will start with the standard comments that
use your name and company details as part of the setup.

The main piece of information thereafter is the import UIKit statement. If you
have developed in Objective-C before, this statement will be obvious and very
familiar and reconcilable.

The UIKit will provide the essential infrastructure and backbone to manage and
build these iOS Swift applications. It will contain the necessary user interface and
other architecture to even handle and interact with the rest of the app. It provides
support for motion-based events and handling touch events as well.

Chapter 6

[79]

It will also support a model for iCloud support in addition to handling web and text
content. It will support Apple and a push notification service. Further information
can be obtained from the Developer Apple site:

Unlike Objective-C or other standard programming languages, Swift does not have a
main function or file. Instead, you just mention the @UIApplicationMain statement
in the main Swift file and all the relevant components are included. This line of code
may never need to change, unless there is a major update or change.

Using Swift with iOS and SQLite

[80]

Using the SQLite 3 Library
Before starting to code, you must add a specific library for SQLite. Within Xcode,
ensure that the General tab is selected and visible. At the end of the page, look out
for the Linked Frameworks and Libraries section. View and click on the icon with
the plus sign, as shown in the following screenshot:

A modal window will appear; please enter the word sqlite, and from the list of
information, select the libsqlite3.dylib option, as shown in the following screenshot:

Chapter 6

[81]

After selecting it, click on the Add button to move forward.

As part of this chapter, we will use FMDB and an Objective-C wrapper around
SQLite to show the database SQLite with Swift. FMDB stands for Flying Meat
Database, and it easily interacts with SQLite and actually saves time and effort. For
example, the FMDB will be linked to one SQLite database and will be there for the
execution of SQL queries. The output is FMResultsSet, which shows results for
queries executed on the FMDB.

The class of FMDatabaseQueue is there to handle updates, queries, and
multiple threading.

The FMDB approach with an application that performs the SQL commands of
Insert, Select, Delete, and Update will be used on a table called Mortgage. The
Mortgage table will have a Name field and a Mortgage Roll Number field for the
account details, as a very simple example.

The following is a screenshot of the actual user design using the View controller
scene tool within Xcode to create the basic screen layout. This will outline and show
the resulting action to be followed and executed when a button is clicked:

Using Swift with iOS and SQLite

[82]

There are many tools to manage the SQLite database, and one of these is the SQLite
Manager Add-on in the Firefox browser, to administer the database. The add-on can
be obtained from https://addons.mozilla.org/en-US/firefox/addon/sqlite-
manager/.

The add-on product has some of the following features for administrators:

• Manage the SQLite database on your machine
• Get a tree view of database objects
• There are easy and helpful dialogs that are easy to manage as well, for

example, triggers, views, and tables
• A platform to execute SQL queries
• Export tables or views in UTF-8/UTF-16
• It is also possible to execute multiple SQL statements in the Execute tab

Open Firefox and install the extensions from the aforementioned link. The following
screenshot shows how the extension is installed:

https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/

Chapter 6

[83]

When you click on the Install Now button, the add-on is installed. Then go to Tools
| Menu Option and you will find SQLite Manager. Once you click on that option,
the following screen will appear:

In order to add data to the system, the database must be created.

When you click on the Install Now button, the add-on is installed. Once you go to
Tools | Menu Option, you will see the SQLite Manager option. When you click on
that option, the following screen is seen.

Create the new database and ensure that a table is created for this small test
application with SQLite. In this scenario, we have a database called Mortgagedata.
sqlite, and a table called Mortgage_data with two fields: mortgage_rollno and
mortgage_name.

www.allitebooks.com

http://www.allitebooks.org

Using Swift with iOS and SQLite

[84]

The following screenshot shows the screens to call up SQL Manager in Firefox:

Chapter 6

[85]

When you click on the SQL Manager option to create a database, a pop up will
be displayed where the user enters the database name, as shown in the following
screenshot:

Next, after the database is created, the user has to select a disk directory to store the
database in, as shown in the next screenshot:

Using Swift with iOS and SQLite

[86]

Next, you need to create a table, as shown in the preceding screenshot, with
two rows:

The preceding screenshot now shows what the table structure looks like before
further work is carried out.

Next, a class, that is a subclass of NSObject, has to be created. Call this class
Mortgage_data and set up its properties as per the requirements of this test scenario.
These properties will form part of the database schema and foundations for your
small database and table:

Class Mortgage_data: NSObject {
 Varmortgage_rollno: String = String()
 Varmortgage_name: String = String()
}

Chapter 6

[87]

Using FMDB
FMDB is a SQLite library written on top of SQLite to handle database operations
easier.

Since FMDB is built in Objective-C, a bridging header is required to link it up with
the simple app. A .h file has to be included, which is FMDatabase.h.

This is required to ensure that the linking works for the Objective-C and Swift
technology produce the results we want. Next, we need to create a database
in SQLite Manager and copy it to the right place.

In the following code, we show the function to copy a database. In this instance, we
need to create and use a function called copyFile, which will copy the files to the
application's document directory. Methods such as applicationDidFinishLaunch
work with AppDelegate by passing the database name in, as part of the
requirements argument.

See the following class:

class func copyFile(fileName:NSString){
 var database_path:NSString=getPath(fileName)
 var MortgageManager=NSFileManager.defaultManager()
 if !MortageManager.fileExistsAtPath(database_path){
 var fromthePath:NSString= NSBundle.mainBundle().resourcePath.strin
gByAppendingPathComponent(fileName)
 MortgageManager.copyItemAtPath(fromPath,toPath:database_path,
error: nil)
}
}

When using the FMDB way of interacting with SQLite, a class called ModelManager
is created as part of NSObject{}, so that a variety of functions can reside, or be
inserted, within it. This is mandatory and is shown in the next code snippet.

In the following code, you will see that after the database object has been copied, it
needs to be initialized, a Swift file has to be named and added to the ModelManager,
and a shared instance of the type of ModelManager has to be defined out of the
class block, as shown in the following:

let mortgage_instance=ModelManager()

Using Swift with iOS and SQLite

[88]

Then, set up the database object for the FMDB, namely, the FMDatabase object, and
together with the database object, set up and reset it as shown in the following:

var database:FMDatabase?= nil
class var instance:ModelManager{
mortgage_instance.database=FMDatabase(path:Util.getPath("Mortgagedata.
sqlite"))
var Mydatapath=Util.getPath("Mortgagedata.sqlite")
println("The Current Path is> : \(Mydatapath)")
return mortgage_instance
}

The next part of the process is to interrogate the database with the following
command, the insert command, as an example wrapped in the assigned value
Mortage_Inserted. The other class, like ModelManager, will have the Mobile_data
method added to it. The ModelManager method is then trying to open the Mortgage
database by using the method for opening, namely, the FMDatabase class. Then
the executeUpdate method is allocated and used as part of the FMDatabase class
to push and pass down the SQL query and the input parameters. To finish this off,
part of the operation, the close method, is used. See the following code on how the
database is connected:

func addMortageData(Mortage_Data:Mortgage_data)-> Bool {
 mortgage_instance.database!.open()
 let Mortage_Inserted= Mortgage_instance.database!.
executeUpdate("INSERT INTO Mortgage_Data (mortgage_rollno, mortgage_
name) VALUES (?, ?)",withArgumentsInArray:[Mortgage_data.mortgage_
rollno,Mortgage_data.mortgage_name])
 mortgage_instance.database!.close()
 return isInserted
 }

The Insert Button has an action method; call this method to send through the
Mortage_data class, which holds the mortgage_rollno and mortgage_name field
names, as shown in the following:

@IBAction func btnInsertClicked(sender: AnyObject) {
var mortgage_data: Mortgage_data = Mortgage_data()
Mortgage_data.mortgage_rollno = tmp_ Mortgage_data.mortgage_rollno.
text
Mortgage_data.studentName = Mortgage_data.mortgage_name.text
var Mortgage_insert = ModelManager.instance.MortgageData(Mortgage)
if Mortgage_insert {
Util.invokeAlertMethod("", MortgageBody: " Data Inserted ", delegate:
nil)
 } else {

Chapter 6

[89]

Util.invokeAlertMethod("", MortgageBody: "Error in inserting data",
delegate: nil)
 }

 Mortgage_data.tmp_rollno.text = ""
 Mortgage_data.tmp_name.text = ""
 Mortgage_data.tmp_rollno =.becomeFirstResponder()
}

FMDB is well documented and popular on the Internet. Next, the actual SQL query
is passed through the executeUpdate method, which is part of the FMDatabase class
and is linked up as parameters, as part of an argument:

func Mortgage_Updatedata(Mortage_data: Mortgage_Data) -> Bool {
 ModelManager.instance.database!.open()
 let Mortgage_Info_Updated {
 = sharedInstance.database!.executeUpdate("UPDATE Mortgage_data
SET Mortgage_name=? WHERE Mortgage_rollno=?",withArgumentsInArray:
[Mortgage_data.Name, Mortgage_data.rollno])
Mortgageinstance.database!.close()
return Mortgage_Info_Updated
}

The following code shows how the @IBAction function is called using the
btnUpdateClicked function with the relevant fields and text information, to perform
the update based on the click of the button called btnUpdateClicked:

@IBActionfuncMortgage_UpdateClicked(sender:AnyObject){
 var Mortgage_data:Mortgage_data=Mortgage_data()
 Mortgage_data.mortgage_rollno =tmp_mortgage_rollno.text
 Mortgage_data.mortgage_name=tmp_mortgage_name.text

 var Mortgage_Data:Mortgage_data=Mortgage_data()
 var tmp_roll_no: String ="mortgage_rollno"
 var tmp_name: String ="mortgage_name"

var Mortgage_Info_Updated = ModelManager.instance.
updateStudentData(Mortgage_data)
if Mortgage_Info_Updated {
Util.invokeAlertMethod("", strBody: "Mortgage Record has been updated
", delegate: nil)
} else {
Util.invokeAlertMethod("", strBody: "Error in updating the Mortgage
record", delegate: nil)
}

Using Swift with iOS and SQLite

[90]

 Mortgage_data.tmp_rollno.text=""
 Mortgage_data.tmp_name.text=""
 Mortgage_data.tmp_rollno=.becomeFirstResponder()
}

To perform the delete operation, use the DeleteMortgateData method. First, the
ModelManager class is used to open the database, using the FMDatabase class as
utilized previously. Thereafter, again use the executeUpdate method, and using an
argument, pass the SQL delete query and close the database by invoking the close
method, as defined in the FMDatabase class. Details of this operation are as follows:

func deleteStudentData(Mortgage_data:Mortgage_Data)-> Bool {
 Mortgageinstance.database!.open()
let Mortgage_isDeleted_var= Mortgageinstance.database!.
executeUpdate("DELETE FROM Mortgage_data WHERE Mortgage_data_rollno=?"
,withArgumentsInArray:[Mortgagedata.name])
sharedInstance.database!.close()
return Mortgage_isDeleted
}

As previously used, the same ModelManager method is used for SQL operations:

@IBAction func btnDeleteClicked(sender:AnyObject){
var Mortgage_data:Mortgage_data=Mortgage_data()
 Mortgage_data.mortgage_rollno =tmp_mortgage_rollno.text
Mortgage_data.mortgage_name=tmp_mortgage_name.text

var isDeleted_var=ModelManager.instance.deleteStudentData(studentInfo)
if isDeleted_var{
Util.invokeAlertMethod("",strBody:"Record Deleted", delegate: nil)
}else{
Util.invokeAlertMethod("",strBody:"Error- On Deleting Record",
delegate: nil)
}
 Mortgage_data.tmp_rollno.text=""
 Mortgage_data.tmp_name.text=""
 Mortgage_data.tmp_rollno=.becomeFirstResponder()
}

Chapter 6

[91]

The next operation is the SelectMortgageData operation, which will be added to
the ModelManager method. This will open the database by using the open method
within the FMDatabase class. This is then followed by the executeQuery method,
using the FMDatabase class, which accepts the input SQL query:

func SelectMortgageData (){
 Mortgageinstance.database!.open()
var mortgage_resultSet:FMResultSet!= Mortgageinstance.database!.
executeQuery("SELECT * FROM Mortgage_data",withArgumentsInArray: nil)
 var tmp_roll_no: String ="mortgage_rollno"
 var tmp_name: String ="mortgage_name"
if resultSet{
while mortgage_resultSet.next(){
 println("roll no data is : \(mortgage_resultSet.
stringForColumn(tmp_roll_no))")
 println("name data is : \(mortgage_resultSet.stringForColumn(tmp_
name))"
}
}Mortgageinstance.database!.close()
}

The following method is called from the previous action:

@IBAction func btnDisplayRecordClicked(sender:AnyObject){
 ModelManager.instance.MortgageData()
 }

Using Swift with iOS and SQLite

[92]

The SQLite scheme using Firefox can be viewed as shown in the following
screenshot. Go to Firefox, and under the Tools menu, invoke SQLite Manager. Click
on the Mortgage Manager table and you can see the structure of the table, as shown
in the following screenshot:

An alternate method for using FMDB this way is to use it directly in the Swift
programming language, as shown in the following code. When setting up Xcode
with Swift, you will be prompted for the bridging component for linking them up,
but it can be done as described here.

Chapter 6

[93]

The code is added in the place where the IBAction is set up. The method will require
the use of the SaveMortgageData action method, which will open the database,
take text/information from the data fields, build an SQL database, and execute the
statement. Once the operation is complete, the database will be closed. Then the text
fields will be initialized, ready for the next input. Therefore, the IBAction method
using the default template will have to be modified as follows:

@IBAction func SaveMortgageData(sender: AnyObject) {
let Mortgage_data_save = FMDatabase(path: Database_path as String)

if Mortgage_data_save.open() {

let insertdata = "INSERT INTO Mortgage_data (mortgage_rollno,
mortgage_name) VALUES ('\(tmp_mortgage_rollno.text)', '\(tmp_mortgage_
name.text)')"

let mortgage_result = Mortgage_data_save.executeUpdate(insertdata,
 withArgumentsInArray: nil)

 if !mortgage_result {
Msg_info.text = "Error inserting Mortgage Details"
println("Error: \(Mortgage_data_save.Mortgage_ErrorMessage())")
 } else {
Msg_info.text = "Mortgage Details inserted to system"
tmp_mortgage_rollno.text = ""
tmp_mortgage_name.text = ""}
 } else {
println("Error: \(Mortgage_data_save.Mortgage_ErrorMessage())")
 }
}

After using this creation process and method for an application that is created with
Swift and SQLite, you can see how the basic components and the SQLite 3 library
have been successfully added to the new project.

Using Swift with iOS and SQLite

[94]

Summary
In this chapter, you had a quick look at how Xcode works with Swift. This chapter
showed you some examples and ideas, and exposed the app development
environment Xcode to you. We used the FMDB classes and methods to access the
database and perform a variety of commands. There are some basic, but intuitive
examples of how Swift works with iOS. Apple wrote this language to become the
next leap in development for all developers in the next 20 years. It has also become
open source as well.

In the next chapter, you will find out how Xcode can be used with PhoneGap and
HTML5, and the use of SQL statements, embedded in HTML5, compiled with
PhoneGap, and run as an app.

[95]

iOS Development with
PhoneGap and HTML5

When PhoneGap was first introduced, Apple refused to accept apps created by
PhoneGap as genuine, because they were not native, and were interpreted. But this
has changed, partly because there are so many alternatives, partly because they were
losing out on hundreds or thousands of apps to competitors, and partly because of
the sheer ease of development compared to that of the past. These were the driving
forces behind the change.

When code is written using PhoneGap with HTML5, you can deploy it on a certain
target or platform, such as iOS or Android, or many versions are created by default,
for the Apple App Store or the Android store, among others. This is the benefit of
using a single code base, a newer and easier language such as HTML5, and a cross-
platform development tool such as PhoneGap.

In this chapter, we will look at how to use Xcode with PhoneGap to integrate and
compile with source code including HTML5. We will show you how to write code
using SQLite and SQL statements and enter code directly into HTML5, which is then
preprocessed by PhoneGap. We will cover all the aspects of creating a default Apple
Xcode application from start to finish using the SQLite database for data storage, and
using PhoneGap and HTML5 as a start.

HTML5 and PhoneGap development
Because it is easier to develop mobile and tablet apps using HTML5, PhoneGap,
and generally, cross-development tools, there seems to be software snobbery, where
some people think that HTML5 development is somewhat not as skilled as native
development. There have been some very bad native developments built so far, but
the same could apply to HTML5 or other mobile apps on the app stores.

iOS Development with PhoneGap and HTML5

[96]

Using these modern cross-development tools is a good and quick way if you want
to build prototypes from designs that give and show the look and feel, and show
some functionality too. Cross-browser technology will not perform as quickly or
efficiently as a native app and, as mentioned, it has a reputation for not being as real
as native apps. With the growth of mobile technology, there has been a high growth of
HTML5 apps available, because they are much faster to design, develop, and produce,
compared to native apps.

There are pitfalls for those web developers who think that they can just put an
app together for mobiles to produce something comparable to a desktop. Well,
they are wrong. Anyone who builds a mobile app for iOS, for example, must read
their human guidelines document, which will outline how to actually take into
consideration the user experience, the way to design buttons and journeys, and how
best to build something that fits in the iOS ecosystem. Google/Android has fewer
checks, but as their app store grows, I am sure there will be more or different types
of controls enforced.

Web developers must understand the limitations of their destination devices for
these apps. Mobiles, including smartphones, actually don't have the processing
power of a desktop, and web developers must be aware of how programming
principles can be applied within these types of developments.

It is great to try new software technology; if you have an idea, then try to create,
test it, and submit your app to the App Store. But if you take some person and get
them to try to create a native app, they have to learn a whole new language and way
of doing things. It's going to take a lot longer until they are even able to produce
a working mobile app, but by that time they will have quite a bit of experience.
There are applications that have a mixed mode of native code, combined with
cross-development code such as HTML5. In practice, although these work, there
are huge pitfalls in performance and they are limited as well.

There are advantages to building and using native apps and applications for specific
mobile devices or operating systems, which are usually installed on your phone via
an app store. These benefits include speed of development, the same app across the
product range, one set of code, and a change queue for the app. Native is the best
way to code ideally, but if you have web skills and you don't want to learn a new
programming language, and you want to create an HTML5 app, using PhoneGap
delivered on iOS, Android, or Windows may be an alternate way of using your skills.

With advances in HTML5 and PhoneGap API options, there are many new functions,
including those of camera manipulation, for example, which can be done via some
basic commands. With a good designer, a decent app using HTML5 can be made
quite quickly and economically.

Chapter 7

[97]

Mobile developers need to be educated on performance deliverables to build apps,
which are skills they can use again and again. The benefits will be used on all the
apps they produce.

The advantages of a mobile app surpass the straightforward usage of a mobile
website. Some advantages are listed here:

• A variety of programming languages such as Swift, Objective-C (iOS),
Java (Android), or C# (Windows Phone) can be used to deliver the end app,
for example

• All the "controls" and the API are native in design and development,
and are interrogated and approved by the app stores from Apple, Google,
or Windows

• The other benefit of using native is that there is no reliance on any outside
technology for it to work, and there is the possibility of working offline
if required

The mobile web application by definition would have less access to the low-level
functionalities of a device and system calls. Due to enhanced development of the
APIs and higher-level languages such as HTML5, CSS, or JavaScript, this is changing
through software updates and upgrades. By using the mobile web/app solutions
for mobile sites, app store approval is not required, and by ensuring proper code
design, the same application can work with a variety of devices and device sizes, and
different mobile or desktop operating systems or browsers. Information is served to
the app, and there are no offline facilities, unlike native.

HTML5 is praised as easy, unlike the native facilities offered by native code.

An HTML5 framework
Functionality, like memory allocation and usage, animations, and a variety of other
options, will define what a good HTML5 framework is. This framework does offer
good access to mobile phone devices, such as the camera, or some other internal
information that only a native app could previously access. These factors go far in
deciding the type of framework to use.

Just because some frameworks or JavaScript libraries are popular in one area does
not necessarily mean they are not required in another. For example, the jQuery
JavaScript framework is very popular due to many programmers having used
it in the past for large or small projects.

iOS Development with PhoneGap and HTML5

[98]

It will be difficult for an end user to distinguish native and HTML5 development when
the app is running. However, the way it is installed will determine whether it is a web
or native app. Not that it matters to the end user, but users expect a great look and feel,
richness in technology, easy and quick navigation, and that the app actually solves
their issue, which is the functionality of the application in the first place.

Hybrid applications
There are some misconceptions about the use of hybrid HTML5 apps. Users think
that hybrid applications cannot store offline data in a database such as SQLite.
Hybrid apps can work online and offline. They do not need to be connected all the
time for it to work. PhoneGap with HTML5 gives more facilities, functionalities,
and options.

The standard storage mechanism for HTML5 apps is the local storage on the device
itself, that is, the database used is SQLite. If you are not connected online, data can
be stored locally. Once the database is connected, it will upload data from the local
database.

A common thought is that HTML5 is out of its league when it comes to native.
However, today, in-app purchases, Game Centre, executing background tasks,
accessing the GPS and the camera, and even Bluetooth, can be accessed via HTML5.
PhoneGap is used where a native wrapper is required for an HTML5 app. There are
some differences in the way native and hybrid/cross-development apps work, like
PhoneGap compared to Objective-C. Hybrid/HTML5 apps are slower, and although
the functionality of HTML5 has increased, it does not match native yet.

An Xcode project with PhoneGap,
HTML5, and Swift
Before we start to do anything, you have to start by building the environment
and the software tools, and making some minor configurations to get everything
ready. The app itself will be simple, and outline the process of creating an app for
PhoneGap and HTML5.

You need to download the Xcode software to get the project working.

For Apple users, the Xcode command-line tool, and the Apache Cordova product
can be downloaded from: https://itunes.apple.com/us/app/xcode/
id497799835?mt=12.

https://itunes.apple.com/us/app/xcode/id497799835?mt=12
https://itunes.apple.com/us/app/xcode/id497799835?mt=12

Chapter 7

[99]

To get the command-lines tools for Xcode and other components, download them
from https://developer.apple.com/downloads/index.action. You need to be
a registered as an Apple developer to be able to download any extra components. A
second and easier method for PhoneGap is to just download the software from the
site and install it, as opposed to using the older, command-line way.

The following screenshot shows you Xcode in the iTunes Store:

https://developer.apple.com/downloads/index.action

iOS Development with PhoneGap and HTML5

[100]

The next screenshot shows the software available for a developer when you log
in through an Apple Developer account. Only the command-line Xcode tools are
required. It also shows you the command-line tools that can be downloaded
and installed:

The next part of the process is to download the Cordova module of the software, as
shown in the software in the following screenshot. This is the location of the latest
Apache/Cordova release. PhoneGap was acquired by Adobe in 2011, and the project
itself was donated to the Apache Software Foundation (ASF). There are two ways of
using PhoneGap. One is its cloud-based service to build apps and the second is the
local/manual version to build and package apps the PhoneGap CLI way. We will be
using the PhoneGap CLI way in our first setup, as follows:

Chapter 7

[101]

Download the Cordova software to the Downloads folder, unpack it, and within
the cordova-ios directory, you'll find all the necessary components to use
PhoneGap/Cordova with Xcode to create a simple app. The following screenshot
shows the directory structure for the Cordova/PhoneGap system. As you can see,
PhoneGap supports a variety of technologies and cross-platforms:

iOS Development with PhoneGap and HTML5

[102]

To proceed, we need to invoke the Terminal app. Initially, on your OS X machine,
click on Applications | Utilities, and then click on the Terminal application, as
shown in the following image:

Once you click on the image, the following window for the Terminal app can be
seen. It will allow you to carry on with the process of setting up the environment and
required components. This is where you can carry out the necessary commands to
install it:

Click on the Applications icon on the toolbar at the bottom of the screen, then
click on the Utilities folder, then click on the Terminal icon, as shown in the
following screenshot:

Chapter 7

[103]

After selecting the Applications icon, click on the Utilities folder:

iOS Development with PhoneGap and HTML5

[104]

Once the Terminal window is clicked, the following window is displayed:

Once you're in this directory, perform the following commands: the first one is to
create a project, and the second one is to create a directory with your app name:

$cd ~/Documents

$cordova create hello com.example.helloHelloWorld

A package for the Hello program has now been created using Cordova. Before you
start to build any projects, the system needs to know which platforms to target, for
example, Android, iOS, or Windows. Cordova now has the iOS platform added to it,
as shown in the following code:

$ cd hello

$ cordova platform add ios

Once a platform is added, performing the following command will outline the
platforms your application can work on:

$ cordova platforms ls

Installed platforms: ios 3.7.0

Available platforms: amazon-fireos, android, blackberry10, browser,
firefoxos

Within the Hello application, perform a directory listing with ls-l and you will
see a variety of directories, such as platforms. Set the platforms directory as the
default. Then perform an ls-l listing to see a variety of directories, including the
HelloWorld.xcodeproj file.

Chapter 7

[105]

Once you open the Hello.xcodeproj file, Xcode will wake up and you will see
the project name. You can enter a company identifier as well. See the following
screenshot.

You will be prompted for a simulator phone to be selected upon execution. Select
iOS simulator for iPhone 6.0. Next, select the simulator and click on the Run button
to compile, link, build, and execute the simple application. You will be presented
with the Cordova image, as shown in the following screenshot, and the Hello app
will then be displayed:

At this stage, you have set up an Xcode project with Cordova or PhoneGap and some
basic code. Now it is time to add some HTML5 code into the mix to show how both
aspects of PhoneGap/iOS and SQLite work together.

In addition to the method used previously to install Cordova, the easiest way is to
download and install PhoneGap directly, without going through the command-line
method. Click on the Download button on the PhoneGap download page at
http://phonegap.com/download.

http://phonegap.com/download

iOS Development with PhoneGap and HTML5

[106]

The process may alter for some of its versions, but will usually be the same for most
of them. Next, the .zip file is downloaded, so open it up and extract the files to
a directory. Then install the PhoneGap program, which will deliver the interface,
and once this step is complete, create an Xcode project, as shown in the following
screenshot. Since you have done this before, doing it this way is even easier:

When you've performed the preceding task, like with previous installations, an extra
icon for PhoneGap will appear. Since you have installed the components required for
Xcode and PhoneGap to work together, you are now ready to start developing.

The following screenshot shows how to select the PhoneGap app type:

Chapter 7

[107]

When creating a Cordova application, you must select the Cordova-based application
template, as shown in the following screenshot:

iOS Development with PhoneGap and HTML5

[108]

Next, choose the project name for this project—enter Hello:

The next field is for a company identifier ID. Like before, please add a unique
identifier, which is usually the reverse of the domain name.

This is a standard way to install the PhoneGap framework with Xcode. In your
browser, go to https://nodejs.org/ and press the Install button to download
the JavaScript library called node.js. Finally, enter the admin/username and
password details to install the software locally:

https://nodejs.org/

Chapter 7

[109]

Your successful installation message will be as follows:

iOS Development with PhoneGap and HTML5

[110]

Once it is installed, follow these steps:

1. Open up a terminal application and type in the following command:
$ sudo npm install –g phonegap

2. Enter the password for root as well to perform the actual installation. Once
this is done, you can use the PhoneGap command and prompt it for some
help or assistance.

3. The following is a screenshot of the PhoneGap program installing the
software using the preceding command:

4. Next, to actually set up your application, please perform the following
commands. First position and set the default to the right directory within
the terminal application program.

5. Run the $ phonegap create Hello command. (Hello is your app's name.)
Next, set the default to the application directory in which you just created
your PhoneGap app.

Chapter 7

[111]

The following screenshot shows the local directory and the creation of a new
Cordova project called Hello. A new project has been created with all the necessary
components for this new test app:

Next, at the prompt, perform the following command to run the application in iOS.
Run the $ phonegap run ios command. If you run the iOS project from anywhere,
the following error will be displayed. But if you set the default to the right directory
(Hello), then it will work:

1. In the next code, you can see the call to PhoneGap to get the app working.
The process has been made much smoother, to operate and work for the
benefit of creating apps.

iOS Development with PhoneGap and HTML5

[112]

2. Next, we will add some HTML5 to the source code:

3. Once the new Hello basic application has been compiled and built, the
following image will appear, showing the Cordova system. This is very
important, and it is key to know that PhoneGap and its Cordova
components are registered and working as intended:

4. We can now develop this app further by adding some SQLite and HTML5
code. It is very important to get the base of the product set up, tested, and
ready for further development:

Chapter 7

[113]

Further information about PhoneGap can be found
at docs.phonegap.com.

To open the code base using the Xcode project file (Hello World.xcodeproj),
follow these steps:

1. Click on the file in the Hello Directory | Platforms | iOS, which will then
bring up the Xcode, code, and source files.

docs.phonegap.com

iOS Development with PhoneGap and HTML5

[114]

2. The following is a screenshot of the Xcode source file area for our test
application. In order to add the SQLite library to your project, click on
the Build Phases tab, then select the Link Binary with Libraries menu
option and add one of the following libraries from libsqlite3.dylib or
libsqlite3.0.dylib:

Next, open the Hello Xcode project file as shown in the following screenshot. Within
the structure, expand the Xcode project to reveal the HTML file within. Then add
some of the following HTML5 code into the .html file, and compile, and run it:

Chapter 7

[115]

Add the following HTML5 code, which will perform some simple SQLite statements.
It will take a couple of input numbers; check for the existence of a local database/local
tables, create necessary tables, store the data, and retrieve it. This code will be part of
Xcode; use Cordova/PhoneGap to compile the source code, and execute the results to
run the mobile app. Once you enter the code into the index.html file within the Hello
app, save the file, and quit Xcode.

This is a simple HTML5 app, which creates a database called testdb. It checks to see
whether the BLOGS table is created. If not, then it will create the BLOGS table, enter
two records for blog information, and display the data on the screen. You can see the
following code and results:

<!DOCTYPE HTML>
<html>

<head>

<script type="text/javascript">

var db = openDatabase('testdb', '1.0', 'Test DB', 2 * 1024 *
1024);

iOS Development with PhoneGap and HTML5

[116]

var msg;

 db.transaction(function (tx) {
tx.executeSql('CREATE TABLE IF NOT EXISTS BLOGS (id unique,
log)');
tx.executeSql('INSERT INTO BLOGS (id, log) VALUES (1, "This is
test blog 1")');
tx.executeSql('INSERT INTO BLOGS (id, log) VALUES (2, "This is
test blog 2")');
 msg = '<p>Blog message created and row
inserted.</p>';
document.querySelector('#status').innerHTML = msg;
 });

 db.transaction(function (tx) {
tx.executeSql('SELECT * FROM BLOGS', [], function (tx, results) {
var len = results.rows.length, i;
 msg =
"<p>Found rows: " + len + "</p>";
document.querySelector('#status').innerHTML += msg;

for (i = 0; i < len; i++){
 msg =
"<p>" + results.rows.item(i).log + "</p>";
document.querySelector('#status').innerHTML += msg;
 }
 }, null);
 });

</script>

</head>

<body>
<div id="status" name="status">Status Message</div>
</body>

</html>

Chapter 7

[117]

1. Click on the Terminal app, and within the Terminal app, set the default to
the Hello app directory, as shown in the following code:

2. Perform the phonegap run ios command, which will bring up the
PhoneGap/Cordova start screen, as shown in the following screenshot. This
shows that the Cordova/PhoneGap environment has been set up properly,
and the application will start to execute:

iOS Development with PhoneGap and HTML5

[118]

3. The following is the output from the Hello app. It shows two records, which
are inserted, and then displayed. It is a simple process, but the workflow is
the same as we discussed:

After this exercise, you have learned how to install Node.js and Cordova, and how to
create a simple iOS application, run Xcode, and simulate a simple application using
an iPhone 6.

Summary
In this chapter, you learned how to use Xcode and PhoneGap with SQLite and
HTML5. Hopefully, it has helped you to perform iOS development with these
technologies, and showed you how using PhoneGap/SQLite can enhance how
quickly apps can be delivered to the end user.

It is also a cross-development platform, where the source is created once and
delivered to a variety of platforms in a quick-format generation method. HTML5
works with Xcode, Swift, and PhoneGap in a cohesive and quick way.

In the next chapter, we will talk about future advances, further features, and SQLite
functionality. This will be useful in the development process, to get better and more
controlled applications. The benefits of using one codebase for multiple platforms is
very beneficial to both developers and customers. The next chapter will also be an aid
and guide on how these features can be used in new and updated apps in the future.

[119]

More Features and Advances
in SQLite

This chapter will explore some new features in SQLite, and it will also cover the
recent advances made in this database. This chapter will show you how SQLite is
exposed to other languages and frameworks and discuss the extensions of the C API,
the usage of PhoneGap, and other cross-platform development environments. This
chapter will also outline SQLite's other features and how SQLite has advanced to
ensure that all those who use it can master it quickly.

You will also look at how SQLite has changed in recent years, how it has advanced
to be integrated with a variety of existing technologies, and how its simple, easy-to-
use formula has guaranteed its popularity to others. The amount of apps that use
database technology, without disclosing the backend or local database, is incredible.
SQLite, as will be shown later, has advanced to new levels and kept its simplicity but
with developers pushing it to achieve new heights and popularity.

Firefox and SQLite extensions to their browsers are available for administration
purposes. SQLite has gone through several code changes, and in the future, it will
continue to do so or be overtaken by something newer.

Adobe's Enterprise Management system works with PhoneGap, which uses
SQLite. Because of its simple setup, there are several cases of SQLite using
different technologies and integrating well.

More Features and Advances in SQLite

[120]

The growth of relational database management systems to this date have been
very strong, and if the data requires industrial strength, storage, and application,
SQLite is the right format. However, in more recent years, solutions such as NOSQL,
which purely rely on the data selected from technologies such as REST APIs or web
services, have not used RDBMS (relational database management system) to store
their data. It will be retrieved and held in a file type structure, in effect, as its own
version of RDMS. SQLite does not have the industrial support of tools like database
backup or database recovery. In a world of mobile devices where the growth has
been intensive and beating all types of expectation, SQLite is by far the easiest and
quickest one to use with a minimum time spent learning.

The Firefox SQLite Manager facility is a good software extension to the browser.
Once installed, it can serve as an aid to various processes of the database
administrator.

Its simplicity and flexibility make it great for developing and testing. There is no
mechanism to ensure performance, and it is possible to tune up the library. SQLite is
great for embedded applications that are somewhat fixed, single user, mobile users,
and gaming information storage.

It is easy to download and install SQLite. Once this is done, it gets fired up to work.

PhoneGap plugins
Before starting to develop a software for PhoneGap with SQLite, the environment
must be set up properly for the PhoneGap framework to work correctly with SQLite.
The PhoneGap environment will enable the SQLite database to be set up and
connected with Xcode, toward the end, to produce an iOS application.

There is also a native SQLite plugin for PhoneGap, called Brodysoft (refer to
https://build.phonegap.com/plugins/2368), that provides an interface for the
storage and usage of the standard Web SQL database standards.

As the demand for mobile technology, mobile apps, and mobile development
grows, the need for further advancement, with products such as PhoneGap, will be
demanding the following, for example:

• PhoneGap will have increased application size limits
• It will have support for different plugins, including the Cordova plugins

repository plugins.cordova.io
• Additional PhoneGap plugins may not have to go through an approval

process and can be approved easily

https://build.phonegap.com/plugins/2368

Chapter 8

[121]

• There will be a facility to upload your own plugins to your own development
area so that you can test them privately

To support additional plugins, which are more than 600 on the PhoneGap
environment, the source attribute can be used.

PhoneGap plugins, unlike before, can contain compiled components such as
frameworks, .jar files, and other related binaries. There is a lot of documentation
about this procedure on the PhoneGap site. PhoneGap is now moving ahead with
an Amazon Mobile Ad Network plugin, which will allow developers to monetize
their app. This is because the Amazon Ads API has been created to be used within
applications to facilitate advertising, and is a platform for this sole purpose. It will be
used across different tablets, mobile devices, different utilities, and game apps.

The cordova.xml file used by Cordova or PhoneGap is the main parameter file
where configuration changes are made to the environment.

For example, using the native Cordova/PhoneGap plugin for Android and iOS,
the HTML5 Web SQL API can be used to code directly, as shown in the following.
Here, the code is waiting to see if the API has been loaded before attempting to
open the database:

<gap:plugin name="com.phonegap.plugins.example" version="0.3.3"
source="plugins.cordova.io" />

// Wait for Cordova html5 plugin to load document.
addEventListener("deviceready", onDeviceReady, false); var db;
function onDeviceReady() { db1 =
 window.sqlitePlugin.openDatabase({name: "DB"}); }

There is a plugin available and developed for the PhoneGap system
https://github.com/litehelpers/Cordova-sqlite-
storage. In order to use this plugin, add the following code to your
config.xml file:

 <gap:plugin name="com.millerjames01.sqlite-plugin" version="1.0.1"/>

This plugin is compatible with both iOS and Android operating systems and also
works with Cordova.

The following piece of code is essential to ensure that a check is done, to see if the
device is ready and if Cordova is ready to load:

// Wait for Cordova to load document.addEventListener("deviceready",
onDeviceReady, false);

https://github.com/litehelpers/Cordova-sqlite-storage
https://github.com/litehelpers/Cordova-sqlite-storage

More Features and Advances in SQLite

[122]

// Cordova is ready function onDeviceReady()
{ var db = window.sqlitePlugin.openDatabase({name: "DB"
}

); // ... }

Using the preceding plugin, it makes the inclusion of SQL directly into HTML5
easier and faster, as shown in the following:

Db.transaction(function(Tx1) {
 Tx1.executeSql("Create table if not exists" + " test(id integer
primary key asc, newcolumn text, []);
});
}

It becomes easy to add the necessary HTML content, and this works with both iOS
and Android. The relationship between HTML5, SQLite, and PhoneGap to compile is
an advancement of technology.

Not all the aspects of the ALTER TABLE statement are implemented in SQLite, and
there is no support for the GRANT or REVOKE statements.

Extensions to the C API
SQLite binding functionality extends the popularity and diversity of the SQLite
language, but it is not supported by the core developers of the database. Instead, the
SQLite community takes care of these integrations, and is well-documented online.
Scripting languages, such as Perl, PHP, and Python or Java, work nicely with SQLite.

The C API interface specification for SQLite has several interface elements and can be
grouped into the following categories:

• Category one has a list of objects and datatypes utilized by the SQLite library.
There are over a dozen objects and datatypes in it. The most meaningful
and common ones are the database object called sqlite3 and the prepare
statement called sqlite3_stmt.

• Category two will have its list of constants used by SQLite and are referenced
by the usage of the #defines syntax in the sqlite3.h header file. These are
standard constants, such as SQLITE_OPEN_READONLY.

• Category three is a list of all the functions available and the methods they use
within the objects, for returning values and usage of standard constants.

For example, the int sqlite3_sleep(int); function is based on the number of
milliseconds that it will suspend the execution of an instruction.

Chapter 8

[123]

As mobiles become more powerful, there will always be an alteration to the amount
of memory resources that SQLite can handle or use. The technology that is used
within SQLite is called page cache. Now, page caching is important since this is how
memory is used and set up for the SQLite performance. It has one I/O algorithm
and two search algorithms. There is a binary search that uses the index of the table
and full on brutal attack to read the full table. Since the limited decisions were
made about how to write and implement them, and since it is more general and not
designed for any specific application, the performance generally may not be equal to
what is expected.

Although, SQLite does have an optimizer, it is not the most advanced of its type,
but it is practical. In the following example, we see the creation of two tables and a
join. We will use the EXPLAIN statement and then ask SQLite to see how it would get
the results. As the results will begin to show, it will use one of the category formats
discussed earlier in this section, which is just a major scan. It will only work properly
if there is a SELECT statement with JOIN but with an index or a key on a simple
query. On a complex query, you need to use the EXPLAIN statement. We just select
one column from the first table and a scan of the whole table takes place:

sqlite> CREATE TABLE one (y, z);
sqlite> CREATE TABLE two (a, b);
sqlite> EXPLAIN QUERY PLAN SELECT A FROM one JOIN two ON one.z = two.b
WHERE y = 30;

0|0|TABLE one
1|1|TABLE two

In terms of page cache, SQLite, as mentioned earlier, uses a disk with a page-based
format. The cache along with SQLite is pulled from disk. There is no automatic
recycling of pages; it can be reused once the page is empty. Also, if a page is reused
again and again, it will become fragmented, and its data will be spread across the
database file, which will decrease in terms of the performance.

As mentioned previously in this book, there is Core Data from Apple, standard for
iOS, but SQLite, which is free, is the dominant and cross-platform database solution
for mobile.

With the advancement of new frameworks, there is a new technology, which aims
to replace both: SQLite and Core Data. It is called Realm. It is free for both iOS
and Android and would be a good product to investigate. While the others maybe
limited, this product must ensure that it is easy to set up, use, and administer. So far,
it is being used by a variety of large e-commerce and data sites, such as Pinterest or
BBC. Realm.io is the location for this database software, is modern API for today's
changeable market.

Realm.io

More Features and Advances in SQLite

[124]

With Realm, there is a plugin for Xcode, which seems to hook in and work well as per
the demo. There is a complete API reference, which works with Objective-C, Swift,
and Java. Realm also has its own Realm Browser from the Apple app store, which is
used as an app to manage the databases, such as the Firefox plugin for SQLite.

Write Ahead Logging with SQLite
Write Ahead Logging with SQLite, also known as WAL, is the standard method
that states how SQLite implements the rollback and commit processes with this
mobile database system. The disk access and input and output operations are more
sequential, using the WAL methods. Using WAL will involve less of the fsync()
functions and operations. It means it is more likely to work properly on different
operating systems and smartphones. WAL is faster on most operations and provides
better concurrencies, as there are no conflicts with processes reading and writing at
the same time with a big reduction in any data block.

As much as there are advantages, there are also limitations to this method. WAL
does not work efficiently with very large transactions, but much better with smaller
transactions. For transactions of around 100 megabytes, it will work fine, but over
a gigabyte, it will start to reduce its efficiency. There is also another issue: WAL
could fail operations if it encounters a disk full error, although, an extra operation is
checkpointing, which is embedded as a part of the system. Developers need to be
aware of this checkpointing.

WAL and rollback may be slower than the current/traditional method of operation.
This is because of the amount of reads and low attempts of writes on the database.
This is only in the range of 1-2%. Another disadvantage is that the database page size
cannot be changed when using the WAL mode even if it is an empty database. To
resolve the problem, you have to restore from a backup using the provided BACKUP
API, and you must be in a rollback journal mode in order to succeed. There is also a
problem reading the read-only WAL databases.

Chapter 8

[125]

WAL works by creating and writing up a copy of the original database with no
changes into a new/separate rollback journal file. Changes are then directly made
to the database file. If there is a crash and the system has to perform the rollback
operation, then the unchanged original version is played back to the database file,
which will change to its original state. The commit operation is done when the
rollback journal is deleted. It is quite an effective procedure. Transactions writing to
disk are always fast because the content is written only once.

The B-tree usage with SQLite
The arbitrary storage of leaf nodes and its location on the actual disk will not link up
or respond to the index order or any logical positioning. Therefore, a database search
algorithm is used with the right structure, to change the position and quickly output
a balanced search tree or, in short, a B-tree. Each branch of data will have its leaf
nodes that link or refer to the memory location that is used to store each and every
table of the database.

B-tree allows sequential access, deletions, and insertions, based on the general binary
search tree in a node that can have two or more children. When data is removed or
added, the number of child nodes will change, and in order to maintain a specific
range, some internal nodes may join or split. Every internal node within a B-tree
structure will have a number of keys. Each of these keys will have a value and will
be divided into subtrees. B-tree is a good way to search for data with a key associated
to find the right data, but it is inefficient at search data with a query string; it uses an
index to speed up this searching. B-trees are an efficient way of searching data with
a key, and when executed correctly, they become very quick. This is an explanation
about B-tree and how it is applied with SQLite.

Creating a simple Swift
With the advent of Swift and Swift2, there is the use of an environment called a
playground now. It is a place where you can set up a quick environment with some
code and then see the results. It is a quick, new way to use the new setup. When you
start, it will have a main window and the results on the second, split one.

More Features and Advances in SQLite

[126]

In Xcode, navigate to New | Playground and the following screenshot will be
shown. Give a name to your playground. You can have several running of them
under different platforms, so a meaningful name would be useful:

Once this is created and the Next button is clicked on, the following screen will
appear. Here, you can create the code, test ideas and code snippets, and just try it
out. It is a great and simple idea, which will help motivate existing developers, and
create new developers for the future:

Chapter 8

[127]

As you can see from the preceding screenshot, there is a split page on the right-hand
side, which can be adjusted as per requirement. The code appears on the left-hand
side, and the results appear on the right-hand side. In the preceding code, a call to
UIKIT is made; the next line creates a variable called str and has a default string
value of Hello playground.

UIKit is the core foundation of iOS framework that is used for on app development.
After var is defined as str to equal Hello Playground in order to change, it should
be defined as str = New Playground, which will reassign the variable to a new
value. Creating a default system, using the var statement, and then assigning it,
shows that the default variable value can be changed. However, if you use the let
statement to say let str =new play and straight after that add str =newnewplay
line, the system would throw an error, because you cannot change the value of a
constant with the let command.

The playground can accept different types of data types, as you would imagine,
making it a fun but productive way to get into development or test new ideas. In the
next simple example, a variable called age, with a datatype of int, is set up.

A default value of 25 is given to this value. Then, take the value of age and multiply
it by 10, and you will get a new value of 250, as shown in the following screenshot.
This is the beauty of the playground:

More Features and Advances in SQLite

[128]

Swift has a good range of comparison operators, just as most languages, but you can
use the = and > ways or the < way as well, as shown the following screenshot:

The Swift interpolation is also easier with Swift. By creating a variable and then
using the command to print the name , for example, by using the \(name) where
name is variable name, as shown in the following screenshot. It is easy, but it is good
to practice this again and again so that the information is locked inside your mind:

As shown in the following screenshot, the usage of the + concatenation does
not work in Swift, especially the merging of string, doubles, or integers. But the
expression in the next image clearly shows how \ between the name, age, or
latitude can be a part of the correct syntax, expressing the output properly:

Chapter 8

[129]

The use of arrays is easier in Swift, and these arrays will store a collection of
data, such as a grid, as a part of a big collection of information. An array called
oddNumbers will have four figures, such as (3, 5, 7, 9). There will be another
array called songs, as shown here:

The Swift language is vast and has many examples, but we can't cover all of them in
this short chapter. This chapter will show you the updates from SQLite, PhoneGap,
and some updates on Swift.

For example, the for loop is an easier one to use, which is clearly shown in the
following screenshot. In this statement, the print statement would have run 10 times
as shown in the following screenshot:

More Features and Advances in SQLite

[130]

Here is another example of trying to use the for command where the number in
the loop is not required and _ is used instead. But, the str print command has
completed its execution five times because the word gone was sought, printed,
and concatenated, as shown in the following screenshot:

As mentioned previously, the use of playgrounds will be—as the name suggests—
Swift and fun to use.

Just cut and paste it in code and then run it. From Xcode 7 and beyond, the actual
code that you can put into playgrounds will be rich, have comments, and be much
more than pseudo coding, because it can be added into your apps.

You will be able to add rich text features, comments, and other necessary text that
will aid the development and creativity of the programming process.

Imagine that when an update of an API is released, it will be a great and fast way to
look at the API and write or hack some code to make it work in playground. Apart
from being informative and quick, it will also serve as a training tool for you and your
colleagues. It will boost training sessions, and enable developers to try new ideas and
programming code without hindrance to others and their common projects.

What a beautifully interactive and modern way to learn and use the existing
programming skills to gain new knowledge. The usage and availability of an
interactive debugging console in Swift allows a change/enhancement to the
product that modernizes its efforts.

Since it was designed from the ground up, Swift aimed to be quick, fast in action and
coding, and work with both the Objective-C interoperability and Swift to include
and shared libraries, code, and values, as modern 21st century compiler will aid its
dominance in the coming years. Objective-C and Swift code can co-exist and work
together or separately.

Chapter 8

[131]

The built-in high performance compiler has been created to maximize the Apple
hardware, protocols, and network availability. It is optimized to run very quickly
and improve development and compilation speeds.

As part of its portfolio, the Swift language is one of the most modern languages,
using the "best of" other scripting languages and removing problems such as poor
performance, or syntax related issues to move on from the C and Objective-C code
paradigm. There are many languages out there. But Swift is the only one where you
can code and learn in a modern way. By learning now, you are preparing for the near
future, where this language will be popular. It is a full successor to Objective-C and
C-related languages.

Swift has been designed to be modern and opt out of the functionality that would
actually stop a programmer developing. So, all the stops for slow development
are extinct. For example, all values are, by default, not null. The use of safety for
the language has been encouraged and built as part of the software, for example, a
variable uses the var statement, and the let statement will be there for constants.
When defining any "Swift" object for example, the value won't be nil because the
compiler will deal with it and set it as a part of the safety regime. Enforcing these
types of niceties encourages better, professional, cleaner, fun, and innovative code.

Swift has a superbly modern and much-improved error-handling model that will
provide a clear and concise way to develop and gain modern skills using state-of-
the-art, object-oriented technology. It also captures any necessary error so that the
program does not crash, and deal with it. It works nicely with NSError and other
related iOS frameworks. For example, see the following:

func UnloadData() throws { }

func zTest() {
 do {
 try UnloadData()
 } catch {
 print(error)
 }
}

Swift2 has now been made open source, which will encourage many more users, on
many different platforms, to architect, design, and develop software. It will enable
Apple to get into areas of development often used by their competitors in the market
place. It will have a huge following, and more so when those faithful Objective-C
programmers change to Swift.

More Features and Advances in SQLite

[132]

New, interesting, and heavy duty code can be written in Swift using some great
and powerful language/syntax, with commands such as repeat, defer, and guard.
Apple is also providing a migration tool to convert code to new playgrounds and
application development code for easy execution. These are some of the benefits
that await us for development using Swift2.

Swift is designed to be modern, Swift2 uses information, functionality, and the
compiler development from modern research, programming languages, and
previous experience of different Apple development, product and coding skills.
A modern approach, and the ability to structure extensions and protocols, will
ensure that it is around for some time.

Summary
In this chapter, you learned some advanced aspects and future advances of SQLite
and how it fits with the current cross-platform development. The chapter outlines
the changes of SQLite and its growth and links with PhoneGap. PhoneGap also has
integrated with content management systems, such as Adobe Enterprise Manager,
which has had several advances in technology, and client license purchases have
rocketed its popularity. In this chapter, you have also touched on what is possible in
the new Swift language and how it will affect the future of games, apps, and utilities.

[133]

Index
A
American National Standards Institute

(ANSI) 3
Apache Cordova product

reference link 98
Apache Software Foundation (ASF) 100
Appium 36
Apple Developer Guide

reference link 74
Apple development, on Mac

requisites 74
architecture, SQLite database

B-tree 9
Code Generator 8
header files 9
Lemon LALR(1) parser generator 8
OS-Interface 8
OS Interface C file 9
Page Cache 9
Pager 9
Parser code base 8
Tokenizer code base 8
Util.c file 9
virtual machine 9

Association of Computer Machinery
(ACM) 2

atomicity, consistency, isolation, and
durability (ACID) 21, 50

B
BACKUP API 124
Bitbucket

URL 47

Brodysoft
about 120
reference link 120

B tree
about 23
using, with SQLite 125

C
C application programming interface

(C API)
about 61
extensions 122
using, with open database statement 64

C/C++ interface part, SQLite database
system

sqlite3_bind() 24
sqlite3_column() 23
sqlite3_exec() 23
sqlite3_prepare() 24
sqlite3_step() 23
sqlite3_close() 23
sqlite3_finalize() 23
sqlite3_open() 24

checkpointing 124
cocoa/objective-C wrapper 4
command-line interface (CLI) 39
command-line program (CLP) 14, 39, 40
composite indexes 56
constraint checking 54, 55
Cordova

about 121
reference link 121

Core Data 123

[134]

core interfaces, SQLite
SQLite3_close() 25
SQLite3_column() 24
SQLite3_finalize() 24
SQLite3_open() 24
SQLite3_prepare() 24
SQLite3_step() 24

CREATE statement 22

D
data

exporting, from SQLite 44
inserting, into table 42, 43
selecting, from table 43

database
backing up 46
creating 41, 59
essentials 21-25
opening 59
table, creating in 42

database administrators (DBA) 1, 40
database connection 30
database file information 47, 48
database locking 58
database schema data

viewing 44
database tools 46, 47
data integrity 54
db.exec statement

queries 34
deadlock 58
default values

about 54
constraint checking 54, 55
foreign keys 55

DELETE statement 23
dynamic link library (DLL) 14, 67

E
embedded database 6, 7
error handling 33
EXPLAIN keyword 51
EXPLAIN QUERY PLAN 51

F
Firefox 119
Firefox SQLite Manager 120
Flying Meat Database (FMDB)

about 4, 68, 81
classes 59
specification, reference link 59

FMDB SQLite wrapper 59
foreign key 55

G
gdbm 1

H
HP-UX operating system 1
HTML5

and PhoneGap Development 95-97
HTML5 Framework 97
hybrid applications 98

I
index

about 56
creating, for temp table 43
data, viewing 45

Informix 1
INSERT statement 22
iOS, with SQLite

about 4, 5
example 15-19

L
load_extension() function 67
locks 35

M
Memsys2 27
Microsoft Excel 21

[135]

N
Navicat

about 40
URL 40

node.js
download link 108

NSError 131

O
open database statement

C API, using with 64
SWIFT, using with 65-67

P
pager 23
parameterized SQL 32, 33
PhoneGap

about 119
download link 105
plugins 120-122

PhoneGap development
and HTML5 95-97

phpSQLiteAdmin
URL 47

prepare statement 70
Presto 2

Q
query

about 21
plan 50-52
preparing 30-32
within db.exec statement 34

R
random access memory (RAM) 30
RazorSQL

about 40
URL 40

read-only WAL databases 124
Realm 123

Realm.io 123
referencing key 55
relational database management system

(RDBMS) 1, 120

S
schema data

viewing 45
SELECT statement 23
share library 14
simple Swift

creating 125-132
SQL basics

about 52
insert, with subselect clause 52
select, with subselect clause 53
update, with subselect clause 53

SQL injection
attacks 34

SQLite
about 1, 3, 21, 39
advantages 11-13
data, exporting from 44
designing for 36
features 10, 25-29
URL 14
working with 14

sqlite3_analyzer program
about 48
reference link 48

sqlite3_close() function
about 64
C API, using with open database

statement 64
SWIFT, using with open database

statement 66, 67
sqlite3_column() function 63
sqlite3_config() function 68, 69
sqlite3_exec() function 68
sqlite3_finalize() function 64
SQLite 3 Library

using 80-93
sqlite3_open() function 61, 62
sqlite3_prepare() function 62

[136]

sqlite3_step() function 62
SQLite C components' functionality

about 61
load_extension() 67
prepare statement 70
sqlite3_close() 64
sqlite3_column() 63
sqlite3_config() 68, 69
sqlite3_exec() 68
sqlite3_finalize() 64
sqlite3_open() 61, 62
sqlite3_prepare() 62
sqlite3_step() 62

SQLite database
about 39
architecture 8-10

SQLite Expert
URL 47

SQLite Maestro
about 40
URL 40

SQLiteManager
about 47
URL 47

SQLite Manager Add-on
about 82
reference link 82

SQL Query Builder 47
Structured Query Language (SQL) 1-3
subquery 53
subselect 53
Swift

about 73
using, with open database statement 65-67
Xcode Project, starting with 74-79

synchronous writes 57, 58
system catalog 52

T
table

creating, in database 42
data, inserting into 42, 43

temp table
index, creating for 43

transactions
about 35, 50
reading 36
writing 36

triggers 57
T-SQL 21

U
UIKit 127
UPDATE statement 22
user defined functions

creating 34

V
Valgrind 27
Views

updating 55
virtual database of engine (VDBE) 29
virtual file system (VFS) 27

W
Write Ahead Logging (WAL),

with SQLite 124

X
Xcode

about 124
download link 74

Xcode project
starting, with Swift 74-79
HTML5, using 98-118
PhoneGap, using 98-118
Swift, using 98-118

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to SQL and SQLite
	About SQL
	Where does SQLite stand in today's industry?
	iOS with SQLite
	Embedded databases
	The architecture of the SQLite database
	Features
	The advantages of using SQLite
	Working with SQLite
	The examples of using SQLite with iOS
	Summary

	Chapter 2: Database Design Concepts
	Database essentials
	Reasons for using SQLite
	Database connections
	Preparing queries
	Parameterized SQL
	Error handling
	Queries within the db.exec statement
	SQL injection attacks
	Creating user-defined functions
	Transactions and locks
	Transactions – reading/writing
	Designing for SQLite
	Summary

	Chapter 3: Administering the Database
	Creating a database
	Creating a table
	Inserting data
	Selecting data
	Creating an index
	Exporting data

	Viewing database schema data
	Index data
	Schema data

	Backing up the database
	Database tools
	Database file information
	Summary

	Chapter 4: Essentials of SQL
	Transactions
	Query plan
	SQL basics
	Insert with a subselect clause
	Update with a subselect clause
	Select with a subselect clause

	Data integrity
	Default values
	Constraint checking
	Foreign keys

	Updating Views
	Index use
	Triggers
	Synchronous writes
	Database locking and deadlocks
	FMDB SQLite wrapper
	Database creation and opening
	SQL in iOS
	Summary

	Chapter 5: Exposing the C API
	SQLite C components' functionality
	sqlite3_open()
	sqlite3_prepare()
	sqlite3_step()
	sqlite3_column()
	sqlite3_finalize()
	sqlite3_close()
	Using the C-API with the open database statement
	Using Swift with the open database statement

	load_extension()
	sqlite3_exec()
	sqlite3_config()
	The prepare statement

	Summary

	Chapter 6: Using Swift with iOS and SQLite
	Basic requirements
	Starting an Xcode Project with Swift
	Using the SQLite 3 Library
	Using FMDB

	Summary

	Chapter 7: iOS Development with PhoneGap and HTML5
	HTML5 and PhoneGap development
	An HTML5 framework
	Hybrid applications
	An Xcode project with PhoneGap, HTML5, and Swift
	Summary

	Chapter 8: More Features and Advances in SQLite
	PhoneGap plugins
	Extensions to the C API
	Write Ahead Logging with SQLite
	The B-tree usage with SQLite
	Creating a simple Swift
	Summary

	Index

