
www.allitebooks.com

http://www.allitebooks.org

Learning WordPress REST API

A practical tutorial to get you up and running with the
revolutionary WordPress REST API

Sufyan bin Uzayr

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning WordPress REST API

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2016

Production reference: 1180716

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-924-3

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors

Sufyan bin Uzayr

Mathew Rooney

Copy Editor

Safis Editing

Reviewer

Ahmad Awais

Project Coordinator

Ulhas Kambali

Commissioning Editor

Amarabha Banerjee

Proofreader

Safis Editing

Acquisition Editors

Anurag Banerjee

Reshma Raman

Indexer

Tejal Daruwale Soni

Content Development Editor

Prashanth G

Production Coordinator

Aparna Bhagat

Technical Editor

Shivani K. Mistry

Cover Work

Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Authors
Sufyan bin Uzayr is a writer and web developer with experience and an interest in a lot
of things related to web design and development. He has worked with numerous Content
Management Systems and frameworks, and writes about web design, web development,
content production, branding, and typography for several blogs and magazines of repute.
He also has a background in Linux administration, database management, cloud
computing, and web hosting.

Sufyan is an open source enthusiast. He can code in PHP, RoR, and Perl, and is also
proficient in JavaScript, jQuery, and HTML5/CSS3, as well as several other web
development trends.

Sufyan primarily uses WordPress and Drupal for both personal and client projects, and
often turns towards MODX for the deployment of cloud sites. He has been working with
Drupal, WordPress, and other CMSs for almost a decade by now.

Sufyan is a prolific author, and has written several books on a diverse range of topics,
including concrete5 for developers (published by Packt Publishing in 2014). He is associated
with various publications in the field of web design and development, both in writing and
editorial capacity. He has also served as the News Editor and Technical Supervisor, as well
as Editor-in-Chief, for multiple web development magazines, both online and in print.

Apart from technology and coding, Sufyan also takes a keen interest in topics such as
History, Current Affairs, Foreign Policy and Politics, and regularly appears on television
and radio shows around the world. He is also a featured columnist for multiple journals
and news publications focusing on foreign policy and international relations. Sufyan's
writings on contemporary issues are simultaneously translated into different languages,
and his works are cited in academic and critical journals on a regular basis.

Sufyan manages h t t p s : / / c o d e c a r b o n . c o m, which features an assortment of useful tools
and resources for web developers. Updated regularly, Code Carbon offers JavaScript
frameworks and libraries, as well as resources related to HTML/CSS, PHP, Python, Ruby,
and of course, WordPress.

You can learn more about Sufyan's writings and other non-technical works at the following
website: h t t p : / / s u f y a n i s m . c o m.

www.allitebooks.com

https://codecarbon.com
http://sufyanism.com
http://www.allitebooks.org

Mathew Rooney is a coder with multiple years of experience in the web development
industry. He works with PHP, JavaScript, and offers custom-coded WordPress themes and
plugins. Mathew is a firm believer in open source software and has been using WordPress
for nearly 5 years.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments
There are several people who deserve to be this page, because this book would not have
come into existence without their support.

Some names deserve a special mention, and I am genuinely indebted to:

Mathew Rooney, for the help he offered by co-authoring sections of this book. A good part
of the code in different segments and chapters of this book was handled by him. Reshma
Raman, for ensuring that the book stays on track, and the outline and chapter division is in
the best possible shape.

Prashanth G, for editing the book, and making sure that the content is in order, and also for
formatting the manuscript to make it adhere to the Packt style guide.

Shivani Mistry, for the technical edits, and for taking care of the book during the production
stage.

Joe Perkins, and all the great folks at Tap Managed WordPress hosting, for offering me a
free WordPress setup with no restrictions, wherein I could implement and debug the code.

Stelian Subotin, for helping me remain calm by keeping track of the theoretical aspects of
the book.

Ahmad Awais, for reviewing the manuscript, and for providing his helpful insight and
critical assessment.

And of course, the core contributors of WordPress, the team behind WP REST API, as well
as the millions within the WordPress community -- this book would not have existed had
WordPress not been there, and WordPress itself would not be so popular if it were not for
the amazing community.

-- Sufyan bin Uzayr

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer
Ahmad Awais is a senior full stack web and business development strategist with
substantial industrial experience in development, design, training, and writing everything
about WordPress.

He blogs at h t t p s : / / A h m a d A w a i s . c o m / and tweets at @MrAhmadAwais. He also
contributes to projects such as WP-API, WP Customize Component, WooCommerce,
TwentySixteen, Easy Digital Downloads, and the WordPress, PHP, and JS Communities.

Ahmad is also one of the keenest open source evangelists; a core contributor at
WordPress; a maker of lots of FOSS (Free and Open Source Software), especially WPGulp
Boilerplate being used by more than 100 developers, and Sublime Text WordPress
Customizer Package, helping about 1,000 developers write quality code with ease.

He is a published author and WordPress Content Lead at sites such as WPLift, Envato
Tuts+, Torque Mag by WPEngine, SitePoint, SmashingMagazine, CreativeMarket,
HongKiat, SpeckyBoy, wpMail, Post Status, WPBeginner, TheLayout by FlyWheel,
ProductHunt Maker, and so on.

I'd like to thank my parents, Maedah Batool (WP Journalist) for their never-ending
support; Packt Publishing, the WordPress Core Team, and the community (developers,
designers, and users), without whom none of this would have been possible.

www.allitebooks.com

https://ahmadawais.com/
http://www.allitebooks.org

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.packtpub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Chapter 1: Getting Started with REST API 6

Introducing REST API 6
Defining API 6
Defining REST 7
Defining JSON 8

Using REST API in real-world applications 9
Advantages of REST services 10

Key considerations when working with REST 11
Architectural components in REST 11
Design principles in REST 11

Getting started with REST implementation 12
Passing commands in SOAP versus REST 12
Handling data in REST 14

Using REST in different programming languages 14
Ruby 15
Python 15
Perl 16
C# 17
Java 19
PHP 21
JavaScript 22

REST API in WordPress 23
Universality 24
Remote management 25
Third-party support 25

Summary 26
Chapter 2: Interacting with REST API in WordPress 27

Getting started 27
Issuing requests via Postman 28
HTTP API in WordPress 32
Fetching GET post output in JSON objects 33

Issuing queries 35
Interacting REST API via PHP 36

Explanation of function 37

www.allitebooks.com

http://www.allitebooks.org

[ii]

Issuing POST requests 39
Implementing GET meta fields using REST API in WordPress 41
Implementing POST meta fields using REST API in WordPress 43

Summary 46
Chapter 3: Working with Taxonomies and Users with REST API 47

Working with taxonomies in WordPress using REST API 47
Basics 48
HTTP requests 48

Implementing REST API and JavaScript with taxonomies 50
How to send GET requests for taxonomies 50
How to send POST requests for taxonomies 51

Working with users in WordPress using REST API 55
How to GET user data using REST API in WordPress 55
GET public user data 55
GET privileged user data 56
How to POST (and edit) user data using REST API in WordPress 57

Summary 60
Chapter 4: Working with Forms Using REST API 61

Overview 61
Fundamentals 61
Setting up the plugin 62

Creating the form with HTML markup 63
Enqueueing your JavaScript file 64
Issuing requests for creating posts 66
OAuth authorization method 67
Issuing requests for editing posts 69

Summary 74
Chapter 5: Custom Routes in WordPress REST API 75

Overview 76
Adding custom routes to WordPress REST API 76
Setting up the custom route 76

Route namespace 77
URL after namespace 78
Endpoints to a route 78
Optional Boolean argument 78

Setting up the custom endpoints 78
Transport method 79
Defining our fields 79

[iii]

The callback function 81
The permissions callback 81

Processing requests (and responses) 82
WP_Query 83
WPDB 83
get_post_meta 84
Third-party plugins 84

Summary 86
Chapter 6: Creating a Simple Web App using WordPress REST API 87

Overview 87
Setting up your WordPress site 88

Cross origin problems and bugs 88
Handling multiple requests 90
Optimization measures 91

Steps to disable the default routes 93
More about WP REST API 94
The REST architecture 94

HTTP verbs 95
Endpoints and routes 96
JSON REST API for WordPress 97
JSON REST APIs in WordPress 97
WP REST API at the moment 97
Tools 98
Installing the plugin 98

Going further 99
WP REST API – setting up and using basic authentication 99

Authentication 100
WP REST API authentication 100
Basic authentication 100
Installing the plugin 101
Postman requests 101
Authenticated requests from the command line 101

JavaScript authenticated requests 102
WP HTTP API for authenticated requests 103

Status check 103
WP REST API – setting up and using advanced authentication 103

OAuth authentication 104
OAuth security concerns 104
OAuth 2.0 104

[iv]

OAuth authentication flow 104
Oauth_callback function 105
OAuth_verifier function 105

OAuth installation 105
Assessing the availability of the OAuth API 106

Application management 106
Generating OAuth credentials 107
User authorization 107
Token exchange 108
Status check 108

WP REST API – retrieving data 108
The GET request 109
Options request 110
Retrieving posts from the server 112
The filter[] syntax 113
Post revisions, categories, tags, and meta 114
Other resources 114
Status check 115

WP REST API: creating and editing posts 115
CRUD methods in routes 115
Creating and updating posts 116
Creating and updating post meta 117
Creating and updating data 117
Sending data as URL parameters 118
Sending data as a JSON object 118
Sending data using forms 119
Uploading media via multipart/form-data 120
Deleting data 122
Status check 122

WP REST API: internals and customization 122
Internal classes and methods of WP REST API 123
Infrastructure classes 123
WP_REST_Server 123
WP_REST_Request 124
WP_REST_Response 124
Modifying server responses 124
The register_rest_field() 124

Summary 125
Chapter 7: Mastering REST API for Your Projects 126

[v]

Backward compatibility 126
A universal API 127
Architectural structure 127
REST architectural constraints 128

The formal REST constraints 128
Stateless 129
Client-server 129
Layered system 130
Cacheable 130
Code on demand 130
Uniform interfaces 130

Resource identification 130
Representation and resources 131

Self-descriptive messages 131
HATEOS 131

Ever-growing REST API 131
REST API as a platform 132

Implementing REST API in apps 133
Custom data types in WordPress 133

REST API in later versions of WordPress 134
REST API and WordPress plugin development 135
REST API-based authentication 135

OAuth authentication 135
Basic authentication 136
Cookie authentication 137

REST API and security 137
REST API being used in WordPress plugins 138

Overview 139
Disabling REST API 140
Summary 140

Chapter 8: WordPress REST API in Practice 141
Key differences between v1 and v2 of the plugin 142
Internal changes 142
External changes 142
Future changes 143
Functions of APIs 143
The REST API in theory 144
A guide to HTTP and REST 145

HTTP 145
HTTP client libraries 146

[vi]

The WordPress REST API 146
The JSON REST API 146
Developers of WP REST API 147

Overall description 148
JSON 149
JavaScript 150
WP REST API and JavaScript 151
XML-RPC in WordPress 151

REST API revenue sources 152
Mobile applications 153
Wearable devices 153
SaaS services 154
Third-party apps 154
Web services 154

Competing architectures on the Web 155
RESTful architectures 155
RPC architectures 155
Combination of REST and RPC 156
Overview of architectures 156

JavaScript and WordPress 156
AJAX in WordPress 157
Things to consider when using REST API 158

Interacting with databases using REST API 159
Doing more with REST API 160

Current status of REST API 161
WordPress features 162
REST API conclusion 163

Progressive enhancement of WP REST API 163
WordPress Calypso and the REST API 164
Securing a REST API 165

OAuth protocol 165
WordPress API and regular users 166
Building your own API 167
Drawbacks of a custom API 168

REST API management 169
Implementation of custom services for REST API 170
Integration of REST API with mobile applications 171
Standards for custom REST APIs 171

Custom API tokens 172

[vii]

Summary 174
Chapter 9: Summing It Up 175

Comparison of REST API with XML-RPC 175
RPC versus REST 176
Keypoints 177
Disadvantages of XML-RPC 178

XML-RPC usage in WordPress 178
Usage of XML RPC 179

REST API token-based authentication 180
Making sure your apps and sites are backward-compatible 181

Backward compatibility in practice 181
New functionality 182
Preventing script breaking 182

The future of REST API 183
What will happen with REST in the future? 184

PHP and WordPress 184
Mobile integration 184
The backend 184

REST API plugin versions 185
Goals for REST API 185

Limitations of REST API 186
Summary 187

Index 188

Preface
The REST API is the next big thing in the world of WordPress development. Ever since its
inception, it has been gaining popularity, and more and more developers are turning
towards it.

Of course, the REST API comes with numerous benefits, such as the ability to interact with
third-party platforms and apps. Have an application coded in Ruby and want to interact
with a WordPress site based on PHP? The REST API is here to help you!

This book will help you get started with the REST API for WordPress. You will learn the
basics as well as the advanced details of this new API so that you can use it in your projects.

What this book covers
Chapter 1, Getting Started with REST API, gives you an overview of what the REST API is,
how it functions, and all that it is capable of doing. You will also find information about
other platforms if you are new to WordPress.

Chapter 2, Interacting with REST API in WordPress, is where you will learn the basics of the
REST API in WordPress. General POST and GET commands shall be covered here.

Chapter 3, Working with Taxonomies and Users with REST API, moves to taxonomies such as
categories and tags. Users and user roles will also be covered.

Chapter 4, Working with Forms Using REST API, will show you how the REST API can be
used to work with custom forms for your WP platform. This chapter will teach you how to
get the most out of it.

Chapter 5, Custom Routes in WordPress REST API, progresses beyond default roles and
teaches you how to add and work with custom routes using the REST API.

Chapter 6, Creating a Simple Web App Using WordPress REST API, is where you learn how
to create a web app. Plus, you will also learn how to pass commands to your web app.

Preface

[2]

Chapter 7, Mastering REST API for Your Projects, is where you will learn how to master the
REST API for your projects. Obviously, this chapter requires that you have a working
knowledge of the REST API, as well as experience with WordPress development.

Chapter 8, WordPress REST API in Practice, teaches you the practical aspects of the WP
REST API and its development.

Chapter 9, Summing It Up, wraps up our journey with the WordPress REST API. We will
have a recap of all that we have learned so far and an overview of what the REST API can
do for us.

What you need for this book
Obviously, you will need a working installation of WordPress to begin with. The latest
version of WordPress is recommended so that you do not miss out on security updates.

You will also need to install and activate the WordPress REST API plugin on your site. Free
download and installation instructions are here: h t t p s : / / w o r d p r e s s . o r g / p l u g i n s / r e s
t - a p i /.

At least PHP 5.4 or higher is recommended. The latest supported version of MySQL is
required as well, and enhancements such as MariaDB are also allowed.

You can run WP on a generic LAMP or WAMP stack. For further instructions, consider
reading the WordPress documentation.

Who this book is for
This book is for WordPress developers and designers who want to get a complete practical
understanding of the WordPress REST API and leverage it to create fully featured web
apps.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "HTTP
requests in JavaScript require the XMLHttpRequest object."

https://wordpress.org/plugins/rest-api/
https://wordpress.org/plugins/rest-api/

Preface

[3]

A block of code is set as follows:

require 'net/http'
url = 'http://www.example.com/database/1191'
resp = Net::HTTP.get_response(URI.parse(url))
resp_text = resp.body

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

require 'net/http'
url = 'http://www.example.com/database/1191'
resp = Net::HTTP.get_response(URI.parse(url))
resp_text = resp.body

Any command-line input or output is written as follows:

$url = "http://www.example.com/database/1191";
$response = file_get_contents($url);
echo $response;

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Hit Preview link in the pane
and you will see your remote WordPress site in the panel."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

Preface

[4]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u
b l i s h i n g / L e a r n i n g - W o r d P r e s s - R E S T - A P I. We also have other code bundles from our
rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /.
Check them out!

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-WordPress-REST-API
https://github.com/PacktPublishing/Learning-WordPress-REST-API
https://github.com/PacktPublishing/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Getting Started with REST API

Ever since the middle of 2015, the WordPress community has been busy talking about the
advent of REST API to the WordPress core. This is definitely a groundbreaking
development and will eventually lead to bigger and better things that we as developers can
accomplish using WordPress.

The WordPress REST API has been included in WordPress in a two-phase cycle, split across
two versions: WordPress 4.4 and WordPress 4.5; it is not completely there in the WordPress
core, but it is being added partially in a phase-wise manner.

Quite obviously, WordPress REST API (also called JSON REST API by some users) will
play a crucial role toward the future of WordPress development, and since WordPress is the
world's most popular content management system (CMS), it will contribute toward the
growth of web development in general.

That said, what is all the fuss about REST API? In fact, what is REST API and why should
you, as a developer, be concerned about it? Before we actually get started with coding and
development, in this chapter I will introduce you to REST API, its powers, and features and
what it can do for WordPress development.

Introducing REST API
Before going any further, we first need to be aware of what REST API is, why it is called so,
and so on. However, let us first try to understand the concept in a nontechnical manner and
then delve into the technical details.

Getting Started with REST API

[7]

Defining API
Since we are capitalizing the term REST API, it is obvious that it is just an acronym. The
three letters API stand for application programming interface.

In simple words, an application programming interface lets you establish a connection or
link between two different types of software. For instance, your computer has a USB port,
which is essentially meant for connecting USB storage devices such as flash drives or USB
hard disks. However, you can connect virtually any type of USB hardware to the port-
printers, smartphones, tablets, and so on. As such, think of the USB port as an API for
letting you connect different types of devices to your computer and allowing your
computer to interact with the concerned devices accordingly. Much like a USB port
facilitates the exchange of data between two physical devices, an API facilitates the
exchange of data between two different types of software.

APIs have been around for quite sometime and developers and programmers use them on a
daily basis. Have you ever used a third-party app to post to your social networking feed?
Say, using a plugin in WordPress to tweet about your new blog post as and when you
publish it? Yes, that is possible by means of API. In fact, many games and apps that rely on
social logins via Facebook or Google accounts use APIs to interact with the concerned social
networking services.

Therefore, the lesson here is that APIs allow developers to use content and features from a
different application, service, or platform in a service, platform, or application of their own,
in a secure and limited manner.

Defining REST
Much like API, REST is also an acronym, and it is sometimes written as ReST. It stands for
Representational State Transfer and refers to a given style of API-building. Almost all the
major web services, such as Google, Facebook, and Twitter, rely on REST for their APIs
simply because REST is based on HTTP (which happens to be the protocol that powers
nearly all of the Internet connections). Plus, REST is lightweight and flexible and can handle
large volumes of activity with ease.

Therefore, REST in itself is not a new trend and has been used on the web to power services
for quite a long time. Thus, for WordPress users, harnessing the power of REST API means
your applications can interact with a load of services right from within WordPress, with the
help of REST API.

Thus, REST is an architectural paradigm for web services, and services that use such an
architectural paradigm are known as RESTful services.

Getting Started with REST API

[8]

The underlying idea behind REST is that instead of relying on complex web services such as
SOAP or XML-RPC, a simple HTTP protocol is used for making connections. Therefore, all
RESTful applications make use of HTTP requests for handling all four CRUD operations,
namely create, read, update, and delete. This makes REST extremely versatile, and anyone
can roll out their own version of REST with standard library features using the
programming language of their choice, such as Perl or PHP.

Even more, REST is fully platform-independent, so you can use it in scenarios where the
server might be Linux but the client can be using Windows and so on. Since it is standard-
based and language-independent, a RESTful request carries with it all the information that
might be needed for its execution or completion.

However, such simplicity and versatility does not mean that RESTful applications are weak
in any regard. REST is powerful and can handle virtually every genre of action or request
that might be expected from any of its counterparts.

Lastly, it is worth noting that much like the other web services such as SOAP or RPC, REST
too does not offer encryption or session management features of its own. However, you can
build such features on top of HTTP within minutes. For example, for security, you can rely
on usernames/passwords and authentication tokens, whereas for encryption, REST can be
used on top of HTTPS (secure HTTP). RESTful applications can function in the presence of
firewalls as well.

Speaking of RESTful applications, what are some of the most common uses of REST in
practice?

Well, Twitter has had a REST API since the very beginning, and for all practical purposes, it
is still the most common API, being used by developers creating apps and tools that work
with Twitter. You can learn more about it at https://dev.twitter.com/rest/public.

Similarly, Amazon's S3 Cloud storage solution too relies on REST API; for more
information, refer
to http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html.

Flickr's API for external developers supports REST integration as well; for more
information, refer to https://www.flickr.com/services/api/request.rest.html.

And finally, the Atom feed services, an alternative to the otherwise more popular RSS, is
RESTful in its nature.

We will come back to REST later in this chapter, but first, let us familiarize ourselves with
another important term, JSON.

https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html

Getting Started with REST API

[9]

Defining JSON
JSON is an acronym for JavaScript Object Notation. As the name suggests, it is a form of
data exchange format that is based on JavaScript. With more and more JavaScript libraries
and services coming up, JSON is rising in popularity on the web.

The best part about JSON is that it is both machine and human-friendly in terms of reading
and comprehension. As a developer, you can read it and write it as much as you would
work with any other programming language, whereas computers can easily parse and
process it too. In fact, many popular programming languages offer their own interpreters
that can parse the output to JSON and back. This makes JSON ideal for cross-platform
interaction application A coded in one programming language and application B coded in
another programming language can interact by converting their data structures into JSON
and back, and so on.

This feature of JSON has made it a universal connector on the web. For WordPress users,
JSON can also be used to replace the nearly outdated XML-RPC standard (more on this in
detail in a subsequent chapter of this book).

Now that we are aware of what the terms API, REST, and JSON stand for, let us come back
to REST API and start by first learning more about the REST API in itself. Thereafter, we
will focus on what it can do for WordPress developers and then get started with is usage in
WordPress.

So, what can REST API do or, in other words, how has it been proving to be useful?

Using REST API in real-world applications
REST API has become the talk of the town in the WordPress community only fairly
recently. However, it has been around for quite a long while, and RESTful services are, in
fact, as old as the Internet itself.

We are aware that the Internet is made up of different computers and servers, speaking
different languages and running different services and processes. As such, a common
protocol has been evolved to enable such different services and processes to communicate
with each other. Such protocols can be described as a set of given standards that allow for
Internet communication in a given manner.

Getting Started with REST API

[10]

Now, REST API, in itself, sits on top of such protocols, and enables us to facilitate
communication between different services and machines and helps us interpret the data
exchange that might be ongoing between two different services. There are many other such
services that do the same job as REST, but with a difference of their own. For instance, JMS
is a similar technique exclusive to Java applications, whereas XML-RPC is a capable,
popular, but slightly dated and less secure methodology that can facilitate communication
between services, much like REST.

Advantages of REST services
So, what makes REST better? In simplest of terms, REST helps in data exchange with a set of
well-established mechanisms and protocols and focuses more on minimum workload,
unlike many other similar methods that are heavier and bulkier in terms of operation. As
such, REST focuses more on efficiency and speed and offers cross-platform data exchange.
This is, by far, the biggest advantage of using RESTful services.

Now, as the Internet expands, so do the devices and technologies associated with it. With
more and more mobile devices coming to the fore and coding standards being curated to
adhere to specific norms, REST APIs too are evolving in order to meet purer standards of
implementation. Thus, while the implementation of REST API remains more or less
uniform, the modus operandi of RESTful services coded in different languages or platforms
can have some minor differences. This is obvious to some extent because REST is an
architectural style and not an architectural standard, and unlike HTML5, you cannot expect
a W3C compliant guideline for REST API.

Now that we have covered the basic details about REST API and its major benefits, it is time
to actually get started with REST in practice. In the next section, I will now talk a bit about
how REST requests and responses work across different platforms and languages. Plus, the
coming section will also be discussing the basic functioning of REST, including how simple
and complex requests work. This, of course, is more of a practical consideration and less of
a puritan one, and you can skip the coming section and move straight on to WordPress
REST API if you want, but for the sake of information and for those who might be
interested in learning more about REST API across different services and platforms, let us
discuss REST properly before heading toward its relation with WordPress.

Getting Started with REST API

[11]

Key considerations when working with REST
Before we go any further ahead, let us discuss some key considerations that are useful to
bear in mind when working with RESTful applications and services.

Since REST is an architectural style and not a standard, the following are
considerations and not totally mandatory rules.

When working with WordPress, the following key considerations are something you
should bear in mind. The question is, why so?

It is because many times you will be using REST API to communicate with services that
may not be running on WordPress (for example, a third-party social network that your
plugin might interact with). As such, if you follow the following norms when working with
REST API in WordPress, you won't have to face issues with uniformity.

Architectural components in REST
The architecture of RESTful services is pretty straightforward and we can briefly summarize
its main components as follows:

Resources are the key components of RESTful services. They are identified by
logical URLs and are universally accessible by other parts of the system.
Resources should contain links to other information, much like web pages. Thus,
resources should be interconnected.
Resources can be cached.

Since HTTP is what RESTful services used, the HTTP cache-control
headers are sufficient for this task.

RESTful systems follow the client-server model.
Standard HTTP proxy servers can be used in RESTful architecture.
REST services can interact with non-REST services, and vice versa.

Getting Started with REST API

[12]

Design principles in REST
REST is more of a style and less of a standard, so there are not many design principles to
consider. In general, this is what you should follow:

GET requests should not cause a change in state or alter data. If you wish to
modify the state or data, use POST requests.
Pagination is always a good practice; if your GET query reads entries, let it read
the first N number of entries (for example, 20) and then use links to read more
entries.
Physical URLs are considered a bad practice, and logical URLs should be
preferred.
If the REST response is in XML, consider using a schema.

Also, for documenting a REST service, you can use Web Services Description Language
(WSDL) or Web Applications Description Language (WADL). Both are feature-rich, but
WSDL offers more flexibility as it does not bind itself to Simple Mail Transfer Protocol
(SMTP) servers, whereas WADL is easier to read and interpret. And if either of them does
not appeal to you, a simple HTML document too can suffice.

Getting started with REST implementation
We are now familiar with REST API and JSON. Plus, we also know that REST API is indeed
useful in many different ways. Let us now try to put it into practice.

Passing commands in SOAP versus REST
Say, we need to query a given database for user details of a user with ID 1191. Using web
services and Simple Object Access Protocol (SOAP), we will be doing something such as
the following:

<?xml version="1.1"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:body pb="http://www.example.com/database">
<pb:GetUserDetails>
<pb:UserID>1191</pb:UserID>
</pb:GetUserDetails>
</soap:Body>

Getting Started with REST API

[13]

</soap:Envelope>

The preceding code will give us an embedded XML file inside a SOAP response envelope.

And how will we do this using REST? The following way: h t t p : / / w w w . e x a m p l e . c o m / d a t
a b a s e / U s e r D e t a i l s / 1 1 9 1.

Yes, that is all. It is a simple URL with GET request, and the response will give us the raw
data, that is, the details of the user with ID 1191. While in SOAP, we needed multiple
libraries to parse the response, in REST, we just need to pass the simple URL. We can even
test the API directly right within the browser as a simple request.

Of course, the preceding example is a simplified case, and if need be, REST libraries do
exist. However, as it becomes clear, REST is way simpler than web services and other
counterparts.

Downloading the example code
You can download the example code files for this book from your account
at h t t p : / / w w w . p a c k t p u b . c o m. If you purchased this book elsewhere,
you can visit h t t p : / / w w w . p a c k t p u b . c o m / s u p p o r t and register to have
the files e-mailed directly to you.
You can download the code files by following these steps:

Log in or register to our website using your e-mail address and1.
password.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code5.
files.
Choose from the drop-down menu where you purchased this6.
book from.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button
on the book's webpage at the Packt Publishing website. This page can be
accessed by entering the book's name in the Search box. Please note that
you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

http://www.example.com/database/UserDetails/1191
http://www.example.com/database/UserDetails/1191
http://www.packtpub.com
http://www.packtpub.com/support

Getting Started with REST API

[14]

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u
b . c o m / P a c k t P u b l i s h i n g / L e a r n i n g _ W o r d P r e s s _ R E S T _ A P I. We also
have other code bundles from our rich catalog of books and videos
available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check them out!

Handling data in REST
For complex operations, the methodology remains similar. Let us refine the preceding
query and look for the user with first name Sample and last name User as
follows: http://www.example.com/database/UserDetails?firstName=Sample&las
tName=User.

As we can see, for longer parameters, we are including the parameters within the body of
the HTTP POST request. At this point, it is useful to discuss REST requests in themselves.

For simpler queries of a read-only nature, GET is the de facto standard. However, for read-
only queries that are complex in nature, POST requests can be used. Of course, POST
requests are also used for queries that can change the state of the data and deal with
creation, updating, and deletion of data.

If you are wondering how to distinguish a simple query from a complex one, consider this:
when reading a blog, you send a GET request as a simple query to open the page, but if you
decide to post a comment on the blog post or share it via any of the social networks, you
send a POST request with additional and more complex details.

And in terms of server responses, RESTful services can handle XML, CSV, and JSON. Each
of these formats has its own advantages: XML, for example, is pretty easy to expand, CSV is
compact and lightweight, whereas JSON is easy to parse. As you might have guessed by
now, for WordPress REST API, JSON is the way to go, all thanks to JavaScript.

Unless the response needs to be read by humans, HTML is not the de facto
choice for REST server responses. Of course, since almost everything on
the World Wide Web needs to be read by humans, HTML is being used as
a server response for RESTful services.

www.allitebooks.com

https://github.com/PacktPublishing/Learning_WordPress_REST_API
https://github.com/PacktPublishing/Learning_WordPress_REST_API
https://github.com/PacktPublishing/
http://www.allitebooks.org

Getting Started with REST API

[15]

Using REST in different programming
languages
As the final part of our discussion on REST and RESTful services, before we dive toward
WordPress and start the next chapter, let us take a look at usage and implementation of
REST in different programming languages. If you are an existing WordPress developer and
are well-versed with PHP, you might wish to skip this section and move ahead. However,
for the benefit of those who might have migrated to WordPress development or those who
are familiar with some other popular web development language, I have provided the
methods for sending GET and POST requests via HTTP in the programming languages that
I know of.

Let us begin with Ruby.

Ruby
In Ruby, you can send HTTP requests using the Net::HTTP class. Thus, for GET requests,
to look up the record number 1191 from the database of example.com, this is how you
should do it:

require 'net/http'
url = 'http://www.example.com/database/1191'
resp = Net::HTTP.get_response(URI.parse(url))
resp_text = resp.body

In the preceding example, we are using an object to handle the HTTP response code.

Similarly, for POST requests:

require 'net/http'
url = 'http://www.example.com/database/user'
params = {
firstName =>'Sample',
lastName =>'User'
}
resp = Net::HTTP.post_form(url, params)
resp_text = resp.body

Here again, we are using Net::HTTP class and using the post_form method for POSTing.

Getting Started with REST API

[16]

Python
In Python, we already have the urllib2 module, so for RESTful actions, we just need to
pass the GET request and then handle the response.

For example:

import urllib2
url = 'http://www.example.com/database/1191'
response = urllib2.urlopen(url).read()
And for POST requests, we will once again rely on the urllib2 module:
import urllib
import urllib2
url = 'http://www.example.com/database/user'
params = urllib.urlencode({
'firstName': 'Sample',
'lastName': 'User'
})
response = urllib2.urlopen(url, params).read()

In the preceding code, we are passing the request data as an extra parameter.

Perl
Personally, I have always relied on LWP, the library for WWW in Perl, for REST requests via
HTTP.

For example, a GET request would look something like the following:

 use LWP::Simple;
 my $url = 'http://www.example.com/database/1191';
 # sample request
 my $response = get $url;
 die 'Error getting $url' unless defined $response;

The preceding code is sufficient for a GET request without additional headers. For
something more complex, you should consider creating a browser object in Perl and then
handling it accordingly as follows:

 use LWP;
 my $browser = LWP::UserAgent->new;
 my $url = 'http://www.example.com/database/1191';
 my $response = $browser->get $url;
 die 'Error getting $url' unless $response->is_success;
 print 'Content type is ', $response->content_type;
 print 'Content is:';

Getting Started with REST API

[17]

 print $response->content;

Now, if you need to issue a POST request, you can follow the preceding approach again,
and create a browser object and then pass the POST request as follows:

 my $browser = LWP::UserAgent->new;
 my $url = 'http://www.example.com/database/1191';
 my $response = $browser->post($url,
 [
 'firstName' =>'Sample',
 'lastName' =>'User'
];
);
 die 'Error getting $url' unless $response->is_success;
 print 'Content type is ', $response->content_type;
 print 'Content is:';
 print $response->content;

In the preceding example, we are using the browser object for issuing the POST request and
then mapping the field names directly to the values.

For working with complex REST operations in Perl, you should consider learning more
about LWP (the library for www in Perl).

C#
C# as a programming language has structures and concepts of its own. For all practical
purposes, you will need to use the .NET classes HttpWebRequest and HttpWebResponse
for handling REST requests sent via HTTP.

For example, the following is what a typical GET request in C# would look like:

static string HttpGet(string url) {
HttpWebRequest req = WebRequest.Create(url)
as HttpWebRequest;
string result = null;
using (HttpWebResponse resp = req.GetResponse()
as HttpWebResponse)
{
StreamReader reader =
new StreamReader(resp.GetResponseStream());
result = reader.ReadToEnd();
}
return result;
}

Getting Started with REST API

[18]

What does the preceding code do? It simply passes a request and then returns the entire
response as one long string. For backward compatibility, I would suggest that if you are
passing parameters with your requests, it is advisable to properly encode them. You can use
any of the native C# classes or methods for such encoding.

For passing POST requests, the method is similar to GETing, as shown in the following:

static string HttpPost(string url,
string[] prName, string[] prVal)
{
HttpWebRequest req = WebRequest.Create(new Uri(url))
as HttpWebRequest;
req.Method = "POST";
req.ContentType = "application/x-www-form-urlencoded";

// Creating a string, encoded and with all parameters
// Assuming that the arrays prName and prVal are of equal length
StringBuilder przz = new StringBuilder();
for (int i = 0; i < prName.Length; i++) {
przz.Append(prName[i]);
przz.Append("=");
przz.Append(HttpUtility.UrlEncode(prVal[i]));
przz.Append("&");
}

// Encoding the parameters
byte[] frDat =
UTF8Encoding.UTF8.GetBytes(przz.ToString());
req.ContentLength = frDat.Length;

// Sending the request
using (Stream post = req.GetRequestStream())
{
post.Write(frDat, 0, frDat.Length);
}

// Getting the response
string result = null;
using (HttpWebResponse resp = req.GetResponse()
as HttpWebResponse)
{
StreamReader reader =
new StreamReader(resp.GetResponseStream());
result = reader.ReadToEnd();
}

return result;
}

Getting Started with REST API

[19]

Once again, we have encoded the parameters in the preceding code and have accepted a
request and returned the response.

Java
When using REST requests in Java, the concept is similar to that of C#, and an experience
Java coder can easily pick up the ropes. Basically, you use the HttpURLConnection class
and invoke its object type. Following is an example for a GET request:

public static String httpGet(String urlStr) throws IOException {
URL url = new URL(urlStr);
HttpURLConnection conn =
(HttpURLConnection) url.openConnection();
if (conn.getResponseCode() != 200) {
throw new IOException(conn.getResponseMessage());
}
// Buffering the result into a string
BufferedReader drdr = new BufferedReader(
new InputStreamReader(conn.getInputStream()));
StringBuilder sb = new StringBuilder();
String line;
while ((line = drdr.readLine()) != null) {
sb.append(line);
}
drdr.close();
conn.disconnect();
return sb.toString();
}

In the preceding code, we are issuing a GET request and then accepting the response as one
long string. If you wish to use it in your projects, you might wish to tweak it a bit, probably
with the help of try or catch. Plus, note that for backward compatibility, it is advisable to
encode the parameters that are passed with the request URL.

Now, for POST requests, this is how we will work:

public static String httpPost(String urlStr, String[] prName,
String[] prVal) throws Exception {
URL url = new URL(urlStr);
HttpURLConnection conn =
(HttpURLConnection) url.openConnection();
conn.setRequestMethod("POST");
conn.setDoOutput(true);
conn.setDoInput(true);
conn.setUseCaches(false);

Getting Started with REST API

[20]

conn.setAllowUserInteraction(false);
conn.setRequestProperty("Content-Type",
"application/x-www-form-urlencoded");

// Creating form content
OutputStream out = conn.getOutputStream();
Writer writer = new OutputStreamWriter(out, "UTF-8");
for (int i = 0; i < prName.length; i++) {
writer.write(prName[i]);
writer.write("=");
writer.write(URLEncoder.encode(prVal[i], "UTF-8"));
writer.write("&");
}
writer.close();
out.close();

if (conn.getResponseCode() != 200) {
throw new IOException(conn.getResponseMessage());
}

// Buffering the result into a string
BufferedReader drdr = new BufferedReader(
new InputStreamReader(conn.getInputStream()));
StringBuilder bsbs = new StringBuilder();
String line;
while ((line = drdr.readLine()) != null) {
bsbs.append(line);
}
drdr.close();

conn.disconnect();
return bsbs.toString();
}

Once again, we are accepting a POST request with a parameter and then passing the
response accordingly.

You will need to supplement this code with try/catch structures before
inserting it within your projects.

Getting Started with REST API

[21]

Also, an experienced Java coder will be aware that Java is not the most popular language
for web development and that its support for handlers for web connections is not at the top
of its league. It is, therefore, a good idea to make use of packages and handlers from the
Apache library for this purpose. However, we will evade this discussion now since it is
beyond the scope of this book, and Java code is of little merit for someone whose primary
focus might be on using RESTful services with WordPress.

PHP
Now, finally, we come to the language in which WordPress has been coded. Using REST in
PHP is very easy because even the most basic PHP functions with a file-access model can
work seamlessly with HTTP requests and URLs.

Therefore, for GET requests, virtually any file-reading function of PHP can do the job, such
as fopen, for example:

 $url = "http://www.example.com/database/1191";
 $response = file_get_contents($url);
 echo $response;

If you are passing parameters with GET requests, it might be a good idea to encode them.

However, while GET requests are pretty easy to handle, POST requests require a bit of
work because you need to open a connection to the target server and then send the HTTP
header information. For example, consider the following code:

function httpRequest($host, $port, $method, $path, $prms){
// prms is to map from name to value
$prmstr = "";
foreach ($prms as $name, $val){
$prmstr .= $name . "=";
$prmstr .= urlencode($val);
$prmstr .= "&";
}
// Assign defaults to $method and $port
if (empty($method)) {
$method = 'GET';
}
$method = strtoupper($method);
if (empty($port)) {
$port = 80; // Default HTTP port
}

// Create the connection
$sock = fsockopen($host, $port);

Getting Started with REST API

[22]

if ($method == "GET") {
$path .= "?" . $prmstr;
}
fputs($sock, "$method $path HTTP/1.1\r\n");
fputs($sock, "Host: $host\r\n");
fputs($sock, "Content-type: " .
"application/x-www-form-urlencoded\r\n");
if ($method == "POST") {
fputs($sock, "Content-length: " .
strlen($prmstr) . "\r\n");
}
fputs($sock, "Connection: close\r\n\r\n");
if ($method == "POST") {
fputs($sock, $prmstr);
}
// Buffer the result
$result = "";
while (!feof($sock)) {
$result .= fgets($sock,1024);
}
fclose($sock);
return $result;
}

Now, using the preceding sample function, we can issue a POST request as follows:

$resp = httpRequest("www.example.com",
80, "POST", "/Database",
array("firstName" =>"Sample", "lastName" =>"User"));

We can also use the client URL request library (cURL) when working with RESTful
requests in PHP.

JavaScript
Having covered all of that, let us finally discuss REST implementation in JavaScript. We will
be saving the JSON issue for detailed discussion during the course of this book, so let's just
focus on the traditional route now.

REST requests can be sent from client-side or in-browser JavaScript. If you have ever
worked with an AJAX application, you have followed the REST design principles to a great
extent, with the response being in JSON.

Getting Started with REST API

[23]

HTTP requests in JavaScript require the XMLHttpRequest object. The following function is
a simple way to create the object:

function createRequest() {
var result = null;
if (window.XMLHttpRequest) {
result = new XMLHttpRequest();
if (typeof xmlhttp.overrideMimeType != 'undefined') {
result.overrideMimeType('text/xml'); // Or anything else
}
}
else if (window.ActiveXObject) {
result = new ActiveXObject("Microsoft.XMLHTTP");
}
return result;
}

Now that you have created the object, you are ready to send HTTP requests. However, the
XMLHttpRequest object, while it can send requests, cannot return values by default. So it is
better to have a callback function that can be invoked when your request is completed.

Thereafter, you are ready to send the request. For a GET request, the approach is fairly
simple:

req.open("GET", url, true);
req.send();
And for POST requests:
req.open("POST", url, true);
req.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
req.send(form-encoded request body);

As you can see, sending HTTP requests in JavaScript is pretty easy and you just need to call
the appropriate function.

REST API in WordPress
So, now that we have seen the benefits and features of REST API and also learned a bit
about JSON, how exactly can it be useful for WordPress developers?

Well, there is a lot that REST API can do in WordPress.

Getting Started with REST API

[24]

To begin with, the WordPress REST API is revolutionary in the sense it can help us build
new applications with WordPress. Specialized editors, site management tools, and more can
be created and run even without a custom API and without a companion plugin being
installed on the WordPress website. As such, a WordPress theme can use the REST API to
load content dynamically, and practically speaking, WordPress in itself can function as a
full-fledged architectural framework.

Let us see some of the major benefits that REST API brings to the world of WordPress.

Universality
WordPress has had an API of its own for quite a while, and as such, the API part is nothing
new for WordPress developers. In fact, if you have ever coded a plugin for WordPress, you
might already be aware that WordPress uses its API to interact with the plugin.

However, the old WordPress API is ideal for internal processes such as a plugin, but hardly
useful for external services. REST API, on the other hand, is perfect for allowing WordPress
to interact with services outside of WordPress.

In other words, with REST API on board, WordPress can interact with services and websites
on the Internet, which may or may not use WordPress! Yes, WordPress REST API can
interact and exchange information with any service on the web that might be coded in a
different language, running a different code structure, or be of a different nature.

Similarly, you can also let external services interact with WordPress content with the help of
REST API. Thus, any service or website making use of REST API can now interact with your
WordPress website and its posts, pages, custom post types, taxonomies, users, and more
with ease, as long as it runs on the HTTP protocol (which is supported by nearly all of the
Internet nowadays).

In HTTP, the POST, GET, UPDATE, and DELETE requests will allow you to create, read,
update, and delete content, respectively. We shall revisit these steps with code examples in
later chapters of this book, as we progress through our journey with REST API in
WordPress.

Getting Started with REST API

[25]

Remote management
WordPress REST API comes with safety measures of its own, such as cookie-based and
OAuth authentication.

Cookie-based authentication is useful for plugins and themes, whereas OAuth
authentication (relying on http://oauth.net/) can be used to authenticate desktop,
mobile, and web clients. This will allow WordPress REST API to define limited and clearly
defined data exchange; the external service will be able to view and edit only that section of
data that is made available to it, nothing else.

Notice the terms desktop, mobile, and web clients in the preceding
paragraph; REST API enables remote management for WordPress. You
can manage your WordPress website from a desktop client installed on
your computer or a mobile application, without actually having to visit the
WordPress admin panel at all!

As such, you can build clients that let you create and publish a blog using WordPress, but
offer a minimal and more interactive interface than the WordPress admin panel. Since JSON
is natively supported by both Android and iOS, WordPress REST API is a special boon for
mobile developers who can build mobile applications that make use of REST API for
interacting with WordPress platforms while running on Android or iOS.

Third-party support
As already stated, REST API enables WordPress to interact with services and sites that
might not be built on WordPress, and vice versa. However, what can we expect from such
cross-platform and third-party support?

Well, this means we can now procure content and interact with data from any other
platform as long as we follow the HTTP route. For example, we can now allow Ruby on
Rails (RoR) applications to interact with WordPress websites, while WordPress too can
interact with systems that are otherwise not coded in PHP.

This is especially useful for folks who are working with third-party tools and need to
interact with WordPress regularly. Furthermore, frontend developers can now focus on the
frontend of their website without having to worry about the backend, all thanks to
WordPress REST API.

Even more so, REST API can be used by WordPress developers to take their plugin and
themes to non-WordPress platforms and other CMSs.

http://oauth.net/
http://oauth.net/
http://oauth.net/
http://oauth.net/
http://oauth.net/
http://oauth.net/

Getting Started with REST API

[26]

Summary
It is obvious that REST API is a path breaking and revolutionary innovation that has the
ability to transform how we code with WordPress. With better interaction and collaboration
across multiple platforms and services, REST API can help us build better and more useful
applications in WordPress and do more with our development workflow.

Over the course of the next chapters of this book, you will learn how to use REST API to
interact with WordPress and create, read, edit, and delete data. Plus, you will also learn
how to deal with taxonomies and users, as well as custom routes and create web apps using
WordPress REST API. We will discuss the basics of working with and extending the default
routes used by WordPress REST API, as well as creating our own endpoints.

I hope this book will prove useful in helping you learn more about and master WordPress
REST API as well as tapping its potential to the fullest in order to benefit from the many
new features that REST API brings to the table.

2
Interacting with REST API in

WordPress
In the previous chapter, we became familiar with the basics of REST API, how RESTful
services work, and how to issue and manage basic REST commands in different languages
and using different methods.

Now that the introduction is out of the way, it is time for us to actually get started with
REST API in WordPress. In the last chapter, we have seen the benefits of using REST API in
WordPress and all that it can bring to the table in terms of features.

Starting from this chapter, we will now be seeing how to use REST API when working with
WordPress. This chapter will introduce you to basic GET and POST requests and then will
teach you how to deal with posts in WordPress via REST API. Furthermore, you will also
learn how to handle posts, post metadata or meta fields, and then copy posts from one
remote site to another.

Getting started
First up, you will need to set up your WordPress website. Obviously, you should not use a
production site for learning purposes; therefore, I will strongly advise you to set up a test
installation of WordPress for experimenting and playing with REST API. Depending on
your mode of operation, you may choose to do it the way it suits you—some developers
prefer having a local version of WordPress running on their device, whereas others, such as
myself, set up WordPress live on a test server and access it accordingly.

You might also do it via Vagrant, if that suits you.

Interacting with REST API in WordPress

[28]

You may then install the WordPress REST API plugin much like any other normal plugin.
Find the latest version at h t t p s : / / w o r d p r e s s . o r g / p l u g i n s / r e s t - a p i /.

That said, let us get started with REST requests in WordPress. As we have seen in the last
chapter, REST requests generally revolve around the four common HTTP transport
methods: GET, PUT, POST, and DELETE. Plus, we have also learned that GET and POST
requests are used to obtain data and to update data, respectively.

Furthermore, we are, by now, aware that RESTful requests are pretty simple in nature, and
it is only a matter of passing the right URL string as the parameter in order to make GET or
POST queries. You can directly pass the URL strings, or place them within functions, or use
a service or tool such as Postman to do it. In this chapter, we will be discussing all three
methods.

Issuing requests via Postman
The biggest and most obvious advantage of Postman is that it allows you to turn requests
into code snippets that you can use and reuse within your code. Thus, Postman can be used
to export requests as JavaScript, and that makes it the perfect fit when working with REST
API for WordPress or web development.

Postman lets you send authenticated requests in a native manner. In Google Chrome, once
you have installed and activated the Postman extension, you can start sending HTTP
requests.

https://wordpress.org/plugins/rest-api/

Interacting with REST API in WordPress

[29]

Postman supports multiple HTTP requests, and you can see that directly in the drop-down
menu.

Of course, for our purpose, the GET and POST requests are the most important.

Interacting with REST API in WordPress

[30]

To issue an HTTP request via Postman, you need to enter the URL value and specify the
parameters, if any. For instance, a GET request to a sample URL would look like as shown
in the following screenshot:

Interacting with REST API in WordPress

[31]

The preceding requests give us raw response in HTML code. You can also see the same
response in JSON, XML, or text format. However, did our GET request actually fetch our
WordPress site? Simply hit the Preview link in the pane and you will see your remote
WordPress site in the panel.

This is a pretty basic HTTP request and you are just fetching the WordPress site as it is.
Since we will be using REST API for bigger and better queries, why not try such a request
using Postman?

Interacting with REST API in WordPress

[32]

Say, we wish to login to our remote WordPress site. You can access the wp-admin of your
site in a similar manner.

For all practical purposes, using Postman to authenticate you via HTTP requests is possible
and feasible. However, since our focus is on the usage of REST API in WordPress, let us
now get started with some actual code!

HTTP API in WordPress
As the name suggests, in WordPress, the HTTP API can be used to simplify HTTP requests.
It can let you make HTTP requests via PHP, either to the same site or to a different site. But
more importantly, HTTP API in WordPress lets you transform URL strings into JSON
objects.

Consider the following URL string: http://example.com/wp-json/wp/v2/posts.

It is like any other URL on the Internet. Now, with HTTP API, we can convert it into a JSON
object, making use of the wp_remote_get () function from the WordPress core:

$json = wp_remote_get ('http://example.com/wp-json/wp/v2/posts');

Now, $json will yield an array, and that is precisely the response that we need.

Interacting with REST API in WordPress

[33]

To understand it better, let us now put together a very small function that accepts a URL
string and then gives an array of post objects:

$response = wp_remote_get($url);
function get_json($url) {
//GET remote site
$response = wp_remote_get($url);
//Checking for errors
if (is_wp_error($response)) {
return sprintf('Your URL %1s could not be retrieved', $url);
//GET only body
$data = wp_remote_retrieve_body($response);
 }
//return if no error
if (! is_wp_error($response)) {
//Now, decode and return
return json_decode($response);
 }
}

What does the preceding code do? It makes a GET request and loads the URL string. To be
sure that we are doing everything alright, we check whether our parameter is part of the
WP_Error class or not because if it is, we have encountered an error. And if it is not, we can
proceed with the JSON object.

Now, to test the preceding function, you can just pass any URL string for $url. Why not
give it a shot and pass the URL to your test installation of WordPress, whatever it might be?

Ideally, the following is what your output should look like; it is pretty raw, but for a test
code, this should show you that it works:

Fetching GET post output in JSON objects
So far, we have seen how to GET posts and JSON objects. The preceding queries are
sufficient to fetch (or GET) data for you, but how will you output the posts?

Interacting with REST API in WordPress

[34]

In WordPress, we often output posts by using the get_post() function that uses the global
$post object. In a similar manner, we can use a loop that runs through all the posts
retrieved by REST API and outputs them accordingly. For example, consider the following
code:

$url = add_query_arg('per_page', 10, rest_url());
$posts = get_json($posts);
if (! empty($posts)) {
 foreach($posts as $post) { ?>
 <article id="<?php echo esc_attr($post->ID); ?>">
 <h1><?php echo $post->title; ?></h1>
 <div><?php wpautop($post->content); ?></div>

 </article>
<?php } //foreach
}

Looking at the outcome of this loop when used within a standard function, this is how it
will work (the test site has, for example, a post called Hello World!):

As you can see, the preceding code is very easy to use and we can make use of REST API to
return posts and output them accordingly. The preceding code is in PHP simply because
WordPress is coded in PHP. If you are coming from another programming language, the
logic behind the loop will remain the same, and on the basis of methods we have already
discussed in the previous chapter, you can implement it accordingly.

www.allitebooks.com

http://www.allitebooks.org

Interacting with REST API in WordPress

[35]

Issuing queries
WordPress developers generally use the WP_Query parameters for fetching posts or issuing
queries. When working with REST API in WordPress, we can still rely on a subset of
WP_Query parameters in order to query our site or other sites.

Now, on the basis of our requirements, we will need to alter the filters and parameters
accordingly. For example, you may wish to query the first N number of posts, or query on
the basis of post title, or query on the basis of post status (published, draft, pending review,
and so on).

Once more, assuming our WordPress site is hosted at example.com and we wish to query
five posts in alphabetical order, the following is how our URL string might look like:
http://example.com/wp-json/wp/v2/posts?per_page=5&order=ASC.

But do we really need to type out URLs? No we do not. WordPress has the
add_query_arg() function that can automate the task for you. Now, if we were to pass the
preceding condition or URL string to our function, the following is how it will look like:

$arg = array(
 'filter[orderby]' => 'title',
 'filter[per_page]' => 5,
 'filter[order]' => 'ASC'
);
$url = add_query_arg($arg, rest_url('posts'));

It gets easier to use this function with jQuery's AJAX API, and we will discuss it in detail in
a later chapter of this book.

Now, so far, you have learned how to issue basic queries in WordPress with REST API and
have even worked with the default REST API routes in WordPress. Of course, you can
make use of custom routes in REST API as well, but we shall save that discussion for a later
chapter.

That said, in the previous examples, we have chosen to rely on the default post types in
WordPress. What if you ever need to work with custom post types?

Basically, everything you can do with default post types in WordPress via REST API can be
accomplished with custom post types as well. If you are registering or creating custom post
types for your plugin or theme and you wish to add support for REST API for your custom
post types, simply set the show_in_rest variable to TRUE. This will allow you to create
routes and endpoints for REST API for that given custom post type.

Interacting with REST API in WordPress

[36]

On the other hand, if you wish to disallow usage of that custom post type via REST API,
you can set the show_in_rest variable to FALSE.

That is all that you need to bear in mind with respect to custom post types. Everything else,
in terms of routes and access permissions, remains the same as with default post types.

So far, you have learned how to issue basic requests in REST API over WordPress as well as
how to work with request responses. However, since REST API is something that is
generally used for remote access, you also need to know how to work between two different
WordPress sites using REST API.

Therefore, in this section, our focus will now shift to cross-site interaction. We will learn
how to copy posts from one site to another, as well as display and create posts on a remote
site.

As you might have guessed by now, these actions will need POST requests and you will be
passing JSON objects via these requests. In the previous section, we had setup functions for
generating GET requests and URL strings. We will build upon our existing knowledge of
those functions.

Interacting REST API via PHP
Let us now learn how to copy posts from one site to another site. Basically, we will be using
REST API to GET JSON post data and convert it into a PHP object. In the previous section,
we have already created a function for this and we will reuse the code. It is as simple as
passing the following request:

$url = 'http://example.com/wp-json/wp/v2/posts/1';
$post = get_json($url);

Now, to create a copy of the post, we just have to turn $post into an array and then pass it
to wp_insert_post().

To convert $post, we will follow a standard web development practice. Before the code, let
us first spend some time understanding what we need to do.

Interacting with REST API in WordPress

[37]

Explanation of function
As already stated, we have to ensure that the data being passed to the function is an array.
If the data is an object, we will need to typecast it as an array because the rest of the function
will require an array.

Thereafter, once we have an array, we will setup a second array because we will be
converting or copying the array keys. For instance, we will copy values from array key X to
array key post_X and then unset the old key values.

Lastly, we just need to pass the array to wp_insert_post(). This function will create a
new post for us and also return the ID of the new post.

Now that we know what we are trying to do, let us put it in practice. The following is what
the code should look like:

function insert_post_from_json($post) {
//checking to see if array or object; because we can work only with array
if (is_array($post) || (is_object($post) && ! is_wp_error($post))
) {
//ensure $post is an array; or force typecast
$post = (array) $post;
}
else {
return sprintf('%1s must be an object or array', __FUNCTION__);
}
//Create new array for conversion
//Set ID as post_id to try and use the same ID; note that leaving ID as ID
would //UPDATE an existing post of the same ID
$convert_keys = array(
 'title' => 'post_title',
 'content' => 'post_content',
 'slug' => 'post_name',
 'status' => 'post_status',
 'parent' => 'post_parent',
 'excerpt' => 'post_excerpt',
 'date' => 'post_date',
 'type' => 'post_type',
 'ID' => 'post_id',
);
//copy API response and unset old key
foreach ($convert_keys as $from => $to) {
if (isset($post[$from])) {
 $post[$to] = $post[$from];
 unset($post[$from]);
}
}

Interacting with REST API in WordPress

[38]

//remove all keys of $post that are disallowed and convert objects (if any)
to strings
$allowed = array_values($convert_keys);
foreach($post as $key => $value) {
if(! in_array($key, $allowed)) {
unset($post[$key]);
} else{
if (is_object($value)) {
$post[$key] = $value->rendered;
}
}
}
//All done. Create post and return its ID
return wp_insert_post($post);
}

The output of our function will result in copying a post from a remote site to our site. You
can see the new post, thereafter, on your WordPress site, as shown in the following
screenshot:

Interacting with REST API in WordPress

[39]

Issuing POST requests
So, in the previous section, we saw how to copy an existing post from a remote site to our
site. However, what if we wish to create a new post directly? For that purpose, we will need
to issue a POST request using the WordPress HTTP API.

We will be making use of the wp_remote_post() function that can be used to issue POST
requests. As you might already be aware, if you have ever developed for WordPress, this
function will ask you for two parameters: a URL to make the POST request and a
corresponding array of arguments to pass along with your request. Once again, we will get
an array and work with it, or if an array is not given, we will force typecast it to an array
form.

To authorize the object, we will use a code that looks similar to the following:

$url = 'http://example.com/wp-json/wp/v2/posts/1';
$body = get_json($url);
if (is_object($post)) {
 $body = $post;
 $headers = array (
 'Authorization' => 'Basic ' . base64_encode('admin' . ':' .
'password'),
);
$remote_url = 'http://example-remote.com/wp-json/wp/v2/posts';
}

Here, the example remote.com is the remote site URL.

In the preceding code sample, we are first getting an object and then verifying if it truly is
an object. Once verified, we just need to setup headers for authentication and provide the
authentication details. Next, we are putting the URL for the endpoint of the post of the
remote site in $remote_url so that we can actually make the POST request.

What next? We will carry on with the preceding code and send the request to
wp_remote_post(), along with the required arguments as follows:

//Authentication
$url = 'http://example.com/wp-json/wp/v2/posts/1';
$body = get_json($url);
if (is_object($post)) {
 $body = $post;
 $headers = array (
 'Authorization' => 'Basic ' . base64_encode('admin' . ':' .
'password'),
);
$remote_url = 'http://example-remote.com/wp-json/wp/v2/posts';

Interacting with REST API in WordPress

[40]

}

$headers = array ('Authorization' => 'Basic ' . base64_encode('admin' .
':' . 'password'),
);

//Copying response
$response = wp_remote_post($remote_url, array (
 'method' => 'POST',
 'timeout' => 45,
 'redirection' => 5,
 'httpversion' => '1.0',
 'blocking' => true,
 'headers' => $headers,
 'body' => json_encode($post),
 'cookies' => array ()
)
);

//Checking if error occurred.
if (is_wp_error($response)) {
 $error_message = $response->get_error_message();
 echo sprintf('<p>Error: %1s</p>', $error_message);
 }
else {
 echo 'Response:<pre>';
 print_r($response);
 echo '</pre>';
 }
}
else {
 $error_message = 'Data invalid!';
 echo sprintf('<p>Error: %1s</p>', $error_message);
}

Once you run the preceding code, your remote site will return a success code in the header,
meaning that the POST request completed successfully. For HTTP requests, 200OK is the
standard response that means everything went alright. If not, you will be presented with an
error with details of that error.

Interacting with REST API in WordPress

[41]

On successful completion of the code request, the response code will look like as shown in
the following screenshot:

We will now turn our attention towards post meta fields in WordPress. Every WordPress
developer is aware of the role of post metadata in development. However, how do we work
with, retrieve, or update post metadata in WordPress using REST API? The following
section will answer the question.

Also, note that while the following has been written with post metadata and meta fields in
mind, the logic can easily be applied to user metadata and meta fields as well.

Implementing GET meta fields using REST API in
WordPress
First up, let us start with GET requests. So far, we have been issuing GET requests to fetch
posts via REST API. However, with such queries, the post meta fields are not included.

Now, in order to successfully GET post meta fields using REST API, we will need an
endpoint with authentication.

Interacting with REST API in WordPress

[42]

Let us try to understand this with an example. Say, we have a post type called painter,
and an associated meta field named water_color. Now, say we wish to pass a GET
request to wp-json/wp/v2/painter, and with the results, we also want to GET the value
held by the water_color field.

For this purpose, we can use the register_api_field()function that can add an extra
meta field to the response. This function will require three arguments: the first, obviously,
will be the post type for which we need to add the field for, the second will be the name of
the meta field, and the third will be the array of arguments wherein you can define the
callback method to GET or POST the value of the meta field.

To begin, let us set some callback methods:

function get_post_meta_clbk($object, $field_name, $request) {
return get_post_meta($object['id'], $field_name);
}
function update_post_meta_clbk($value, $object, $field_name) {
return update_post_meta($object['id'], $field_name, $value);
}

And now, we can simply register our API fields, as follows:

add_action('rest_api_init', function() {
register_api_field('painter',
'water_color',
array(
'get_callback' => 'get_post_meta_clbk',
'update_callback' => 'update_post_meta_clbk',
'schema' => null,
)
);
});

After this, each time you make a GET request to wp-json/wp/v2/painter, you will also
be given the value of the corresponding meta field. The following is how it might look in
the raw output:

Interacting with REST API in WordPress

[43]

And in the proper preview mode, it will look like the following:

Note that the preceding GET requests will work only if the values of the
meta fields are unprotected. For protected meta fields (in WordPress, they
generally begin with an underscore (_)), the method is different, and
we shall turn to that method now.

Implementing POST meta fields using REST API
in WordPress
In our previous example, we saw how to get the value for the water_color field for a post
type painter. Now, what if we wish to edit or create new value for that meta field?

Much like working without REST API, we need to find the meta ID for the given meta field
and then pass that meta ID in order to tell WordPress that we wish to make changes or
update the values for the concerned meta ID.

Thus, assuming that the meta ID is 10 for the post type ID 1, we will pass the POST request
as such: wp-json/wp/v2/painter/01/meta/10.

Now, we can create the meta field and then issue the relevant requests, as shown in the
following code:

//GET URL request
$url = rest_url('wp/v2/posts/1/meta');
//ADD basic headers for authentication
$headers = array (
'Authorization' => 'Basic ' . base64_encode('admin' . ':' . 'password'),

Interacting with REST API in WordPress

[44]

);
//ADD meta value to body
$body = array(
'key' => 'water_color',
'value' => 'blue'
);
//POST request
$response = wp_remote_request($url, array(
'method' => 'POST',
'headers' => $headers,
'body' => $body
)
);
//if no error, we GET ID of meta key
$body = wp_remote_retrieve_body($response);
if (! is_wp_error($body)) {
$body = json_decode($body);
$meta_id = $body->id;
echo $body->value;
if ($meta_id) {
 //ADD meta ID to URL
$url .= '/' . $meta_id;
 //SEND value
$body = array(
'value' => 'blue'
);
$response = wp_remote_request($url, array(
'method' => 'POST',
)
);
'headers' => $headers,
'body' => $body
//if no error, then echo the value
$body = wp_remote_retrieve_body($response);
if (! is_wp_error($body)) {
$body = json_decode($body);
echo $body->value;
 }
 }
}

Interacting with REST API in WordPress

[45]

If the preceding code runs well, you will get status code 200, which implies that all is fine
with your HTTP request, as shown in the following screenshot:

What are we doing in the preceding code? We are issuing requests to get the meta field
value, and then editing it and passing the updated value. Simple!

As you can see from the preceding example, we can use the register_api_field()
function to work with meta fields and update any type of value we want. As you progress
with REST API in WordPress, you will notice that it is one of the most crucial functions
when working with REST API.

Interacting with REST API in WordPress

[46]

Summary
In this chapter, you covered a lot vis-à-vis REST API in WordPress. You have learnt how to
issue GET and POST requests via HTTP to WordPress sites. Plus, you also learnt how to
work with posts and post meta fields and metadata.

You also got an overview of the remote management abilities of REST API by learning how
to copy posts from one site to another or how to create new or edit existing posts.

In the next chapter, we will go a step ahead and start with taxonomies and users. We know
that taxonomies and users are important entities in WordPress and we will be using REST
API to manage and work with both of these in the next chapter.

3
Working with Taxonomies and

Users with REST API
In the previous chapter, you learned how to work with posts and post metadata in
WordPress using REST API. With the help of HTTP queries and requests, you can now
easily get posts, edit as well as delete posts, and also alter or modify the post metadata as
per our needs and requirements.

Such knowledge is enough if you wish to manage basic operations with posts using REST
API. But for bigger and proper development, such as themes, plugins, or applications
powered via REST API in WordPress, you need to dig deeper and learn more about other
WordPress concepts and how to work with them using REST API.

In this chapter, we will continue on our journey and now turn toward taxonomies and
users. You will learn how to manage and handle taxonomies and users in WordPress with
the help of REST API.

Working with taxonomies in WordPress
using REST API
Any user of WordPress knows that WordPress has some public and private taxonomies that
you can edit and work with. The public ones are category, tag, and post_format. Note that
REST API is not yet ready to support private taxonomies, though it might soon be in the
near future; so we will omit the discussion on private taxonomies here.

Working with Taxonomies and Users with REST API

[48]

We will first begin with a basic introduction as to how to work with taxonomies in
WordPress, followed by the usual GET and POST requests. Note that at this stage, it is
being assumed that you have mastered the code in the previous chapter, as we will be
reusing some code aspects from Chapter 2, Interacting with REST API in WordPress.
Furthermore, a basic knowledge of JavaScript and jQuery will be useful, especially because
nearly everything related to REST API in WordPress is modeled around JavaScript.

Basics
Working directly with taxonomies in WordPress is fairly easy, and there are two direct
ways in which you can work with taxonomies. First, you can list the terms of a given
taxonomy. Second, you can use taxonomy terms for a given post.

In the first case, say you have a category car, and you list all the posts associated with the
given category. In the second case, you have a post with the tags blue, diesel, and wheels.
You can list all the tags associated with this post. If you have ever set up a WordPress blog,
you surely must have used categories and tags to sort your posts, or display in sidebar
widgets, and so on.

HTTP requests
When working with REST API in WordPress, the concept remains the same. You can enlist
taxonomies and the posts associated with them, or posts and the taxonomies associated
with them. As always, you use GET requests to get data without modifying it, or POST
requests if you wish to edit or alter or modify the taxonomies or the terms. For example,
consider the following code that we have modified from the previous chapter:

$sites = wp_get_sites();
$the_list = arr();
foreach($sites as $site) {
$response = wp_remote_get(get_rest_url($site->site_id,
'wp/v2/terms/categories'));
if (! is_wp_error($response)) {
$terms = json_decode(wp_remote_retrieve_body($response));
$term_list = arr();
foreach($terms as $term) {
$term_list[] = sprintf('%2s', esc_url(
$term->link
),$term->name);
 }
if (! empty($term_list)) {
$site_info = get_blog_details($site->site_id);

Working with Taxonomies and Users with REST API

[49]

$term_list = sprintf('%1s', implode($term_list));
$the_list[] = sprintf('%2s%3s', $site_info-
>siteurl, $site_info->blogname, $term_list);
 }
 }
}
if (! empty($the_list)) {
echo sprintf('%1s', implode($the_list));
}

What does the preceding code do? Much like the previous chapter, we are using a function
to make the request and then running a loop through a PHP object.

Note that the preceding code will work in a WordPress multisite only. If
you wish to use it on a single site installation, modify it as follows:

$response = wp_remote_get(rest_url('wp/v2/terms/categories'));
if (! is_wp_error($response)) {
$terms = json_decode(wp_remote_retrieve_body($response));
$term_list = array();
foreach($terms as $term) {
$term_list[] = sprintf('%2s', esc_url(
$term->link
),$term->name);
 }
if (! empty($term_list)) {
echo sprintf('%1s', implode($term_list));
 }
}

Working with Taxonomies and Users with REST API

[50]

We have just replaced get_rest_url() with rest_url(). The raw output will be plain
text like this:

The preceding code will perform multiple HTTP requests and database queries and will
return the taxonomies as per request.

Implementing REST API and JavaScript with
taxonomies
Now that we have covered how to perform HTTP requests and query our database using
REST API, it is time to implement it. We will now be focusing on implementation of REST
API and JavaScript with taxonomies in WordPress.

How to send GET requests for taxonomies
In WordPress, you can query for posts by taxonomy. Alternatively, you can also list terms
in taxonomy for a given post.

It is fairly easy and is just a matter of few HTTP requests.

Working with Taxonomies and Users with REST API

[51]

To get posts from a given category, we pass the parameter category_name. For example,
for the category sample, we will pass the request as follows:

sample_url('wp/v2/posts?filter[category_name]=sample');

Similarly, to get posts with a given tag, use the tag parameter. For example, for the tag
sampletag, we will pass the following request:

sample_url('wp/v2/posts?filter[tag]=sampletag');

And if you wish to query multiple taxonomies, you can combine them in the same request:

sample_url('wp/v2/posts?[category_name]=sample&filter[tag]=sampletag');

As you can see, these are just basic URL strings that are being passed as GET requests to get
posts with the given taxonomies in WordPress via REST API.

How to send POST requests for taxonomies
If you recall the previous chapter, we learned how to send POST requests for updating and
creation of posts, as well as for working with post metadata. In terms of taxonomies too, the
case is no different, and the logic is the same. However, unlike post metadata, taxonomies
can exist independently of the post. For example, you can have a category with no posts
under it and so on. Thus, you need to work with the ID of the taxonomy term, rather than
the post ID, in order to send POST requests.

First, you can use a GET request to get the ID of the taxonomy terms that you want. The
code is as follows:

//GET request
$url = rest_url('wp/v2/posts/1/terms/category');
$response = wp_remote_request($url, array(
 'method' => 'GET'
)
);
$body = wp_remote_retrieve_body($response);
if (! is_wp_error($body)) {
//Decoding
$terms = json_decode($body);
$terms = array_combine(wp_list_pluck($terms, 'slug'), wp_list_pluck(
$terms, id));
}

Working with Taxonomies and Users with REST API

[52]

In the preceding GET request, we are just getting the categories of the post ID 1. This will
give us an array of associated terms.

Thereafter, by sending authenticated requests, we can list terms, create, delete, and so on, as
shown in the following:

//Checking for the taxonomy terms
if (isset($terms['example'])) {
//get term ID
$term_id = $terms['example'];
 //Adding ID to URL
$term_url = $url . '/' . $term_id;
//DELETE request
$headers = array(
'headers' => array(
'Authorization' => 'Basic ' . base64_encode('admin : password'),
)
);
$response = wp_remote_request($term_url,
 array(
'method' => 'DELETE',
'headers' => $headers
)
);
}

By using the preceding code, we can list taxonomy terms as well as update them. Of course,
as you can see, it is a multistep process, as we first need to get the term ID and then work
according to it. In WordPress, it is easier to accomplish such tasks via a combined function,
so that you can keep related code in one place and you do not have to worry about different
steps all the time.

Given in the following is a basic function that does all of the aforementioned tasks. It first
checks for the taxonomy term and then uses the ID of that term to add it to a post (using a
POST request), and if the taxonomy term does not exist, it creates and then adds it to the
post. Output follows the code:

<?php
function add_term_to_post($post_id, $taxonomy, $term_slug, $term_name,
$auth_header) {
//First, finding post type and if post exists
$post_type = get_post_type($post_id);
if (false == $post_type) {
 return;
 }
if ('post' == $post_type) {
$post_type = 'posts';

Working with Taxonomies and Users with REST API

[53]

 }
$term_url = rest_url('wp/v2/terms/' . $taxonomy);
//GET request for ID
$response = wp_remote_request($term_url,
 array(
 'method' => 'GET',
)
);
$body = wp_remote_retrieve_body($response);
if (! is_wp_error($body)) {
$terms = json_decode($body);
if (! empty($terms)) {
$term_id = false;
foreach ($terms as $term) {
 if ($term->slug == $term_slug) {
 $term_id = $term->id;
 break;
 }
 }
//Auth headers for POST request
$headers['Authorization'] = $auth_header;
//If term doesn't exist, we create it
if (! $term_id) {
//PUT term slug and name in request
$body = array(
'slug' => sanitize_title($term_slug),
'name' => $term_name
);
//POST request
$create_term_url = rest_url('wp/v2/terms/' . $taxonomy);
//Create term
$response = wp_remote_request($create_term_url,
 array(
'method' => 'POST',
'headers' => $headers,
'body' => $body,
)
);
wp_die(print_r($response));
 //Finding term ID
$body = wp_remote_retrieve_body($response);
if (! is_wp_error($body)) {
 $term = json_decode($body);
if (is_object($term) && isset($term->id)) {
$term_id = $term->id;
 }
 }
 }

Working with Taxonomies and Users with REST API

[54]

// Adding term ID to post
if ($term_id) {
// Create URL for request
$post_term_url = rest_url('wp/v2/' . $post_type . '/' . $post_id . '/
terms/' . $taxonomy . '/' . $term_id);
// POST request
$response = wp_remote_request($post_term_url,
 array(
'method' => 'POST',
'headers' => $headers
)
);
do_action('slug_post_term_update', $response, $post_id, $post_type,
$taxonomy, $term_slug)
 }
 }
 return $term_id;
 }
}

Upon successful completion, you can create a term and add it to the post, and if it already
exists, update it accordingly.

From this, we have learned how to send POST requests for taxonomies. The following will
teach you how to work with users in WordPress by using REST API.

Working with Taxonomies and Users with REST API

[55]

Working with users in WordPress using
REST API
Now that we have learned how to work with taxonomies in WordPress using the REST API,
it is time to turn our attention toward another useful concept-user management.

Since WordPress is a dynamic content management system that focuses also on blog
management, the role of user accounts is pretty well-defined. You can have website
administrators, editors, authors, contributors, and subscribers, each with their own set of
privileges and access roles. Thus, while administrators can edit or tweak any aspect of your
site, be it changing of themes or installation of plugins, authors can only work on their own
posts, whereas subscribers can only read content or manage their profile.

So, what will we be covering in this section? Basically, we will learn how to create, edit, and
work with user profiles using REST API. Starting now, there will not be much need for
a detailed explanation, as the code is consistent in regard to how we treat data in WordPress
using REST API. Thus, if you have followed the previous chapter and the previous section
of this chapter and have learned how to work with and edit or modify posts, and post
metadata and taxonomies in WordPress via REST API, user management too will be an
easy task for you and won't require much rocket science.

How to GET user data using REST API in
WordPress
Each user account in WordPress has two data types: public and protected/privileged.
Public user data is that which can be browsed by users who are not logged in, whereas
privileged data is that which only specific user accounts can access.

GET public user data
This is very simple to accomplish. Basically, with each post that can be viewed on your
WordPress site (this includes all published posts, unless you protect them with a password
or a custom plugin; this does not include draft posts or scheduled posts), there is some user
data associated with it. Generally, it includes the post author's username, the URL of their
author archive, author bio (if your active theme supports it), and user ID.

Working with Taxonomies and Users with REST API

[56]

Now, you just need to make a proper GET request for the specific user and you can find the
public user data easily.

For issuing a GET request for all the users with at least one published post, you can issue
the GET request to wp-json/wp/v2/users of your WordPress site.

Why did I mention “at least one published post” in the preceding line? Because
nonpublished posts cannot be accessed publicly.

However, for issuing a GET request for any specific user, you can use that user's user ID
and pass it with your GET request. For instance, say if we wish to issue a GET request for a
user with user ID 01: wp-json/wp/v2/users/01 is what it will look like.

And our output will be something like the following screenshot, in plain text and raw
format:

Naturally, the preceding example is fairly basic and raw. However, you can use it in your
REST API projects on WordPress to accomplish general fetch and GET requests for user
accounts without authentication. Thus, even visitors who are not logged in can enlist and
fetch such details with REST API.

GET privileged user data
You will need an authenticated request for privileged user data. If you are an administrator,
everything is viewable to you, whereas for other user accounts, it depends on the type of
user role and access rights that your account has.

Note that if you add a context set query parameter to your GET request,
you can forcibly authenticate your request.

Working with Taxonomies and Users with REST API

[57]

How to POST (and edit) user data using REST API
in WordPress
If you are serious about using REST API in WordPress development, simple GET requests
might not suffice for you, as you will also need to edit and update user accounts and user
data.

The logic, once again, is simple here. The requests that we used previously, GET requests,
can also be transformed as POST requests, when we wish to edit and update user data.
However, unlike GET requests, POST requests require authentication, so you will need to
pass the details such as username and password along with your request in order to verify
your login and then edit or update the required user data accordingly.

Let us try to understand this with different code examples. First up, we shall create a new
user with the help of a POST request to our WordPress website. We shall use jQuery to get
the job done (for additional details about jQuery and JavaScript, be sure to refer to the final
chapters of this book; since we are talking about WordPress development only, jQuery
basics are beyond the scope of this book, but these have been covered at length in other
Packt titles):

$.ajax({
url: Slug_API_Settings.root + 'wp/v2/users/',
method: 'POST',
beforeSend: function (xhr) {
xhr.setRequestHeader('X-WP-Nonce', Slug_API_Settings.nonce);
},
data:{
email: 'test@example.com',
username: 'usertest',
password: Math.random().toString(46).substring(8)
}
}).done(function (response) {
console.log(response);
})

The preceding code will create a user with the username usertest and also assign a
password.

If, however, you are using a different frontend than WordPress, you will need to
authenticate yourself differently:

add_action('wp_enqueue_scripts', function() {
wp_enqueue_scripts('user-editor', plugin_dir_url(__FILE__) .'user-
editor.js', array('jquery')
);

Working with Taxonomies and Users with REST API

[58]

wp_localize_scripts('user-editor', 'Slug_API_Settings', array(
'root' => esc_url_raw(rest_url()),
'nonce' => wp_create_nonce('wp_rest'),
'current_user_id' => (int) get_current_user_id()
));
});

Both the preceding samples will create the user on your WordPress site.

Note that the preceding samples require cookie-based authentication with
a nonce check. In other words, you will need to be logged in as a user or
administrator with sufficient privileges so as to be able to create a user
account.

As you can see, by issuing the required requests, we can create user accounts in WordPress.
Similarly, we can also update user data by pulling the required data and using a basic form
for the update process.

To create the form, we use the following very basic HTML code:

<form id="profile-form">
<div id="username"></div>
<input type="text" name="email" id="email">
<input type="submit">
</form>

Then, we use a jQuery request to fetch the current user data and insert it in this form:

jQuery(document).ready(function($) {
$.ajax({
url: Slug_API_Settings.root + 'wp/v2/users/' +

Working with Taxonomies and Users with REST API

[59]

Slug_API_Settings.current_user_id + '?context=edit',
method: 'GET',
beforeSend: function (xhr) {
xhr.setRequestHeader('X-WP-Nonce', Slug_API_Settings.nonce);
}
}).done(function (user) {
$('#username').html('<p>' + user.name + '</p>');
$('#email').val(user.email);
});
});

The following is what it will look like once we have accomplished the task:

You might have noticed, in the preceding code, we are using a GET request, not a POST
request. This is because we are just getting data, so a POST request is not required. Now, if
we were to update the current user data, a POST request can be used. Again, for the similar
structure and function, the following is what the POST request will look like in jQuery:

jQuery(document).ready(function($) {
var get_user_data;
(get_user_data = function () {
$.ajax({
url: Slug_API_Settings.root + 'wp/v2/users/' +
Slug_API_Settings.current_user_id +
'?context=edit',
method: 'GET',
beforeSend: function (xhr) {
xhr.setRequestHeader('X-WP-Nonce', Slug_API_Settings.nonce);
}
}).done(function (user) {
$('#username').html('<p>' + user.name + '</p>');
$('#email').val(user.email);
});
})();
$('#profile-form').on('submit', function(e) {
e.preventDefault();
$.ajax({

Working with Taxonomies and Users with REST API

[60]

url: Slug_API_Settings.root + 'wp/v2/users/' +
Slug_API_Settings.current_user_id,
method: 'POST',
beforeSend: function (xhr) {
xhr.setRequestHeader('X-WP-Nonce', Slug_API_Settings.nonce);
},
data:{
email: $('#email').val()
}
}).done(function (response) {
console.log(response)
})
});
});

The output will be similar to the preceding cases, with the user fields being updated
accordingly.

Summary
In this chapter, you learned how to work with users and taxonomies in WordPress with the
help of REST API.

You can now send GET and POST requests to create, edit, and modify taxonomies.
Similarly, you can also create and edit users on a WP site with such requests.

You also dealt with a fair bit of jQuery code in this chapter. In the following chapters, we
will proceed toward working with AJAX and how to accomplish tasks, such as the
processing of forms, in WordPress.

At this point, you can perform basic operations, and combined with the next few chapters,
we will soon be able to create bigger applications and perform more complicated requests.

4
Working with Forms Using

REST API
WordPress, being an ever-improving content management system, is now moving toward
becoming a full-fledged application framework, which brings up the necessity for new
APIs. The WordPress REST API has been created to create necessary and reliable APIs. The
plugin provides an easy-to-use REST API, available via HTTP that grabs your site's data in
the JSON format and further retrieves it.

WordPress REST API is now in its second version and has brought a few core differences,
compared to the previous one, including route registration via functions, endpoints that
take a single parameter, and all built-in endpoints that use a common controller.

Overview
In this chapter, you'll learn how to write a functional plugin to create and edit posts using
the latest version of the WordPress REST API. This chapter will also cover the process on
how to work efficiently with data to update your page dynamically based on results. This
tutorial comes to serve as a basis and introduction to processing form data using REST API
and AJAX and not as a redo of the WordPress post editor or a frontend editing plugin.

REST API's first task is to make your WordPress powered websites more dynamic, and for
this precise reason, I have created a thorough tutorial that will take you step by step
through this process. After you understand how the framework works, you will be able to
implement it on your sites, thus making them more dynamic.

Working with Forms Using REST API

[62]

Fundamentals
As we start with our tutorial, it is very important to firstly focus on the previous chapters of
this book and make sure you have fully understood your way through the process of
creating posts by making POST requests to the posts endpoint. In this chapter, you will be
doing something similar, but instead of using the WordPress HTTP API and PHP, you'll use
jQuery's AJAX methods. All of the code for that project should go in its plugin file. Another
important tip before starting is to have the required JavaScript client installed that uses the
WordPress REST API. You will be using the JavaScript client to make it possible to
authorize via the current user's cookies.

As a note for this tip would be the fact that you can actually substitute
another authorization method such as OAuth if you find it more suitable.

Setting up the plugin
During the course of this tutorial, you'll only need one PHP and one JavaScript file. Nothing
else is necessary for the creation of our plugin.

We will be starting off with writing a simple PHP file that will do the following three key
things for us:

Enqueue the JavaScript file
Localize a dynamically created JavaScript object into the DOM when you use the
said file
Create the HTML markup for our future form

All that is required of us is to have two functions and two hooks. To get this done, we will
be creating a new folder in our plugin directory with one of the PHP files inside it. This will
serve as the foundation for our future plugin. We will give the file a conventional name,
such as my-rest-post-editor.php.

In the following you can see our starting PHP file with the necessary empty functions that
we will be expanding in the next steps:

<?php
/*
Plugin Name: My REST API Post Editor
*/
add_shortcode('My-Post-EditorR', 'my_rest_post_editor_form');

Working with Forms Using REST API

[63]

function my_rest_post_editor_form() {
}
add_action('wp_enqueue_scripts', 'my_rest_api_scripts');
function my_rest_api_scripts() {
}

For this demonstration, notice that you're working only with the post title and post content.
This means that in the form editor function, you only need the HTML for a simple form for
those two fields.

Creating the form with HTML markup
As you will notice, we are only working with the post title and post content. This makes it
necessary only to have the HTML for a simple form for those two fields in the editor form
function. The necessary code excerpt is as follows:

function my_rest_post_editor_form() {
$form = '
<form id="editor">
<input type="text" name="title" id="title" value="My title">
<textarea id="content" ></textarea>
<input type="submit" value="Submit" id="submit">
</form>
<div id="results">
</div> ';
return $form;
}

Our aim is to show this only to those users who are logged in on the site and have the
ability to edit posts. We will be wrapping the variable containing the form in some
conditional checks that will allow us to fulfill the said aim. These tests will check whether
the user is logged-in in the system or not, and if he's not, he will be provided with a link to
the default WordPress login page.

The code excerpt with the required function is as follows:

function my_rest_post_editor_form() {
$form = '
<form id="editor">
<input type="text" name="title" id="title" value="My title">
<textarea id="content" ></textarea>
<input type="submit" value="Submit" id="submit">
</form>
<div id="results">
</div>

Working with Forms Using REST API

[64]

';
if (
is_user_logged_in()) {
if (user_can(get_current_user_id(), 'edit_posts')) {
return $form;
}
else {
return __('You do not have permissions to do this.', 'my-rest-post-editor'
);
}
}
else {
 return sprintf('%2s', wp_login_url(get_permalink(
get_
queried_object_id())), __('You must be logged in to do this, please
click here to log in.',
'my-rest-post-editor'));
}
}

To avoid confusion, we do not want our page to be processed automatically or somehow
cause a page reload upon submitting it, which is why our form will not have either a
method or an action set. This is an important thing to notice because that's how we are
avoiding the unnecessary automatic processes.

Enqueueing your JavaScript file
Another necessary thing to do is to enqueue your JavaScript file. This step is important
because this function provides a systematic and organized way of loading JavaScript files
and styles. Using the wp_enqueue_script function, you will tell WordPress when to load
a script, where to load it, and what are its dependencies. By doing this, everyone utilizes the
built-in JavaScript libraries that come bundled with WordPress rather than loading the
same third-party script several times. Another big advantage of doing this is that it helps
reduce the page load time and avoids potential code conflicts with other plugins.

We use this method instead of the wrong method of loading in the head section of our site
because that's how we avoid loading two different plugins twice, in case we add one more
manually.

Once the enqueuing is done, we will be localizing an array of data into it, which you'll need
to include in the JavaScript that needs to be generated dynamically. This will include the
base URL for the REST API, as that can change with a filter, mainly for security purposes.

Working with Forms Using REST API

[65]

Our next step is to make this piece as usable and user-friendly as possible, and for this, we
will be creating both a failure and success message in an array so that our strings will be
translation friendly. When this has been done, you'll need to know the current user's ID and
include that one in the code as well.

The result we have accomplished so far is due to the wp_enqueue_script() and
wp_localize_script()functions. It would also be possible to add custom styles to the
editor, and that can be achieved by using the wp_enqueue_style() function.

While we have assessed the importance and functionality of wp_enqueue_script(), let's
take a close look at the other ones as well.

The wp_localize_script() function allows you to localize a registered script with data
for a JavaScript variable. By this, we will be offered a properly localized translation for any
used string within our script. As WordPress currently offers a localization API in PHP; this
comes as a necessary measure. Though the localization is the main use of the function, it can
be used to make any data available to your script that you can usually only get from the
server side of WordPress.

The wp_enqueue_style function is the best solution for adding stylesheets within your
WordPress plugins, as this will handle all of the stylesheets that need to be added to the
page and will do it in one place. If you have two plugins using the same stylesheet and both
of them use the same handle, then WordPress will only add the stylesheet on the page once.

When adding things to wp_enqueue_style, it adds your styles to a list of stylesheets it
needs to add on the page when it is loaded. If a handle already exists, it will not add a new
stylesheet to the list. The function is as follows:

function my_rest_api_scripts() {
wp_enqueue_script('my-api-post-editor', plugins_url('my-api-post-
editor.js', __FILE__),
array('jquery'), false, true);
wp_localize_script('my-api-post-editor', 'my_post_editor', array(
'root' => esc_url_raw(rest_url()),
'nonce' => wp_create_nonce('wp_json'),
'successMessage' => __('Post Creation Successful.', 'my-rest-post-editor'
),
'failureMessage' => __('An error has occurred.', 'my-rest-post-editor'),
'userID' => get_current_user_id(),
));
}

Working with Forms Using REST API

[66]

That will be all the PHP you need as everything else is handled via JavaScript. Creating a
new page with the editor shortcode (MY-POST-EDITOR) is what you should be doing next
and then proceed to that new page. If you've followed the instructions precisely, then you
should see the post editor form on that page. It will obviously not be functional just yet, not
before we write some JavaScript that will add functionality to it.

Issuing requests for creating posts
To create posts from our form, we will need to use a POST request, which we can make by
using jQuery's AJAX method. This should be a familiar and very simple process for
you; however, if you're not familiar with it, you may want to take a look through the
documentation and guidelines offered by the guys at jQuery themselves (h t t p : / / a p i . j q u
e r y . c o m / j q u e r y . a j a x /). You will also need to create two things that may be new to you,
such as the JSON array and the authorization header. In the following, we will be walking
through each of them in details.

To create the JSON object for your AJAX request, you must firstly create a JavaScript array
from the input and then use the JSON.stringify() to convert it into JSON. The
JSON.strinfiy() method will convert a JavaScript value to a JSON string by replacing
values if a replacer function is specified or optionally including only the specified
properties if a replacer array is specified. The following code excerpt is the beginning of the
JavaScript file that shows how to build the JSON array:

(function($){
$('#editor').on('submit', function(e) {
 e.preventDefault();
var title = $('#title').val();
var content = $('#content').val();
 var JSONObj = {
"title" :title,
"content_raw" :content,
"status" :'publish'
};
 var data = JSON.stringify(JSONObj);
})(jQuery);

http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/

Working with Forms Using REST API

[67]

Before passing the variable data to the AJAX request, you will have first to set the URL for
the request. This step is as simple as appending wp.v2/posts to the root URL for the API,
which is accessible via _POST_EDITOR.root:

var url = _POST_EDITOR.root;
url = url + 'wp/v2/posts';

The AJAX request will look a lot like any other AJAX request you would make, with the
sole exception of the authorization headers. Because of REST API's JavaScript client, the
only thing that you will be required to do is to add a header to the request containing the
nonce set in the _POST_EDITOR object. Another method that could work as an alternative
would be the OAuth authorization method.

Nonce is an authorization method that generates a number for specific use, such as a
session authentication. In this context, nonce stands for number used once or number once.

OAuth authorization method
OAuth authorization method provides users with secure access to server resources on
behalf of a resource owner. It specifies a process for resource owners to authorize third-
party access to their server resources without sharing any user credentials. It is important to
state that it is has been designed to work with HTTP protocols, allowing an authorization
server to issue access tokens to third-party clients. The third party would then use the
access token to access the protected resources hosted on the server.

Using the nonce method to verify cookie authentication involves setting a request header
with the name X-WP-Nonce, which will contain the said nonce value. You can then use the
beforeSend function of the request to send the nonce. Following is what that looks like in
the AJAX request:

$.ajax({
 type:"POST",
url: url,
dataType : 'json',
data: data,
 beforeSend : function(xhr) {
 xhr.setRequestHeader('X-WP-Nonce', MY_POST_EDITOR.nonce);
},
});

Working with Forms Using REST API

[68]

As you might have noticed, the only missing things are the functions that would display
success and failure. These alerts can be easily created by using the messages that we
localized into the script earlier. We will now output the result of the provided request as a
simple JSON array so that we can see what it looks like.

Following is the complete code for the JavaScript to create a post editor that can now create
new posts:

(function($){
$('#editor').on('submit', function(e) {
 e.preventDefault();
var title = $('#title').val();
var content = $('#content').val();
 var JSONObj = {
"title" :title,
"content_raw" :content,
"status" :'publish'
};
 var data = JSON.stringify(JSONObj);
 var url = MY_POST_EDITOR.root;
 url += 'wp/v2/posts';
 $.ajax({
 type:"POST",
 url: url,
 dataType : 'json',
 data: data,
 beforeSend : function(xhr) {
 xhr.setRequestHeader('X-WP-Nonce', MY_POST_EDITOR.nonce);
},
success: function(response) {
 alert(MY_POST_EDITOR.successMessage);
 $("#results").append(JSON.stringify(response));
},
failure: function(response) {
 alert(MY_POST_EDITOR.failureMessage);
}
});
});
})(jQuery);

This is how we can create a basic editor in WP REST API.

Working with Forms Using REST API

[69]

If you are a logged in and the API is still active, you should create a new post and then
create an alert telling you that the post has been created. The returned JSON object would
then be placed into the #results container.

If you followed each and every step precisely, you should now have a basic editor ready.
You may want to give it a try and see how it works for you. So far, we have created and set
up a basic editor that allows you to create posts. In our next steps, we will go through the
process of adding functionality to our plugin, which will enable us to edit existing posts.

Issuing requests for editing posts
In this section, we will go together through the process of adding functionality to our editor
so that we can edit existing posts. This part may be a little bit more detailed, mainly because
the first part of our tutorial covered the basics and setup of the editor.

To edit posts, we need to have the following two things:

A list of posts by author, with all of the posts titles and post content
A new form field to hold the ID of the post you're editing

As you can understand, the list of posts by author and the form field would lay the
foundation for the functionality of editing posts.

Before adding that hidden field to your form, add the following HTML code:

<input type="hidden" name="post-id" id="post-id" value="">

In this step, we will need to get the value of the field for creating new posts. This will be
achieved by writing a few lines of code in the JavaScript function. This code will then allow
us to automatically change the URL, thus making it possible to edit the post of the said ID,
rather than having to create a new one every time we go through the process.

Working with Forms Using REST API

[70]

This can be easily achieved by writing down a simple code piece, like the following one:

var postID = $('#post-id').val();
if (undefined !== postID) {
url += '/';
 url += postID;
}

As we move on, the preceding code will be placed before the AJAX section of the editor
form processor. It is important to understand that the variable URL in the AJAX function
will have the ID of the post that you are editing only if the field has a value as well. The case
in which no such value is present for the field, it will yield in the creation of a new post,
which would be identical to the process you have been taken through previously.

It is important to understand that to populate the said field, including the post title and post
content field, you will be required to add a second form. This will result in all posts
being retrieved by the current user, by using a GET request. Based on the selection
provided in the said form, you can set the editor form to update. In the PHP, you will then
add the second form, which will look similar to the following:

<form id="select-post">
<select id="posts" name="posts">
</select>
<input type="submit" value="Select a Post to edit" id="choose-post">
</form>

REST API will now be used to populate the options within the #posts select. For us to
achieve that, we will have to create a request for posts by the current user. To accomplish
our goal, we will be using the available results. At this point, we are nearly finished with
our tutorial, but you might want to go back to Chapter 1, Getting Started with REST API,
and do a review on how to make GET requests to the REST API using PHP.

We will now have to form the URL for requesting posts by the current user, which will
happen if you will set the current user ID as a part of the _POST_EDITOR object during the
processes of the script setup.

A function needs to be created to get posts by the current author and populate the select
field. This is very similar to what we did when we made our posts update, yet it is way
simpler. This function will not require any authentication, and given the fact that you have
already been taken through the process of creating a similar function, creating this one
shouldn't be any more of a hassle for you.

Working with Forms Using REST API

[71]

The success function loops through the results and adds them to the post selector form as
options for its one field and will generate a similar code, something like the following:

function getPostsByUser(defaultID) {
 url += '?filter[author]=';
 url += my_POST_EDITOR.userID;
 url += '&filter[per_page]=20';
 $.ajax({
type:"GET",
url: url,
dataType : 'json',
success: function(response) {
var posts = {};
$.each(response, function(i, val) {
 $("#posts").append(new Option(val.title, val.ID));
});
 if (undefined != defaultID) {
 $('[name=posts]').val(defaultID)
}
}
});
}

You will notice that the function we have created has one of the parameters set for
defaultID, but this shouldn't be a matter of concern for you just now. The parameter, if
defined, would be used to set the default value of the select field, yet, for now, we will
ignore it. We will use the very same function, but without the default value, and will then
set it to run on document ready. This is simply achieved by a small piece of code like the
following:

$(document).ready(function()
{
 getPostsByUser();
});

Having a list of posts by the current user isn't enough, and you will have to get the title and
the content of the selected post and push it into the form for further editing.

This will ensure editing is done correctly and make it possible to achieve the projected
result. Moving on, we will need the other GET request to run on the submission of the post
selector form.

This should be similar to the following:

$('#select-post').on('submit', function(e) {
 e.preventDefault();
 var ID = $('#posts').val();

Working with Forms Using REST API

[72]

 var postURL = MY_POST_EDITOR.root;
 postURL += 'wp/v2/posts/';
 postURL += ID;
 $.ajax({
type:"GET",
url: postURL,
dataType : 'json',
success: function(post) {
var title = post.title;
var content = post.content;
 var postID = postID;
$('#editor #title').val(title);
$('#editor #content').val(content);
 $('#select-post #posts').val(postID);
}
});
});

In the form of <json-url>wp/v2/posts/<post-id>, we will build a new URL that will
be used to scrape post data for any selected post. This will result in us making an actual
request that will be used to take the returned data and then set it as the value of any of the
three fields there in the editor form.

Upon refreshing the page, you will be able to see all posts by the current user in a specific
selector. Submitting the data by a click will result in the following:

The content and title of the post that you have selected will be visible to the
editor, provided that you have followed the preceding steps correctly.
The hidden field for the post ID you have added should now be set.

Even though the content and title of the post will be visible, we would still be unable to edit
the actual posts as the function for the editor form was not set for this specific purpose, just
yet. To achieve that, we will need to make a small modification to the function that will
make it possible for the content to be editable. Besides, at the moment, we would only get
our content and title displayed in raw JSON data; however, applying the method described
previously will improve the success function for that request so that the title and content of
the post displays in the proper container, #results. In order to achieve this, you will need
a function that is going to update the said container with the appropriate data. The code
piece for this function will be something like the following:

function results(val) {
$("#results").empty();
 $("#results").append('<div class="post-title">' + val.title +
'</div>');
 $("#results").append('<div class="post-content">' + val.content +

Working with Forms Using REST API

[73]

'</div>');
}

The preceding code makes use of some very simple jQuery techniques, but it is still
sufficient in providing a proper introduction to updating page content by making use of
data from REST API. There are countless ways of getting a lot more detailed or creative
with this if you dive in the markup or start adding any additional fields. That will always
be an option for you if you're more of a savvy developer, but as an introductory tutorial,
we're trying not to keep this tutorial extremely technical, which is why we'll stick to the
provided example for now.

As we move forward, you can use it in your modified form procession function, which will
be something like the following:

$('#editor').on('submit', function(e) {
 e.preventDefault();
var title = $('#title').val();
var content = $('#content').val();
console.log(content);
 var JSONObj = {
"title"
"content_raw"
"status"
};
:title,
:content,
:'publish'
 var data = JSON.stringify(JSONObj);
 var postID = $('#post-id').val();
 if (undefined !== postID) {
url += '/';
 url += postID;
}
 $.ajax({

Working with Forms Using REST API

[74]

 type:"POST",
url: url,
dataType : 'json',
data: data,
 beforeSend : function(xhr) {
 xhr.setRequestHeader('X-WP-Nonce', MY_POST_EDITOR.nonce);
},
success: function(response) {
 alert(MY_POST_EDITOR.successMessage);
 getPostsByUser(response.ID);
results(response);
},
failure: function(response) {
 alert(MY_POST_EDITOR.failureMessage);
}
});
});

As you will have noticed, a few changes have been applied, and we will go through each of
them in specific detail:

The first thing that has changed is the Post ID that's being edited is now
conditionally added. This implies that we will make use of the form and it will
serve to create new posts by POSTing to the endpoint. Another change with the
POST ID is that it will now update posts via posts/<post-id>.
The second change regards the success function. A new result() function was
used to output the post title and content during the process of editing. Another
thing is that we also reran the getPostsbyUser() function, yet it has been set in
a way that posts will automatically offer the functionality of editing, just after you
create them.

Summary
With this, we have completed this chapter, and if you have followed each step with
precision, you should now have a simple yet functional plugin that can create and edit posts
by using the WordPress REST API.

This chapter also covered techniques on how to work with data in order to update your
page dynamically based on the available results. We will now progress toward further
complicated actions with REST API.

5
Custom Routes in WordPress

REST API
WordPress REST API, being treated as a consistent API, is mainly concerns the process of
querying the default routes. One similar example that could be brought up is the Twitter
API. It is important to set that WordPress REST API is made of a bunch of highly
customizable APIs that could further be used as tools for creating a more extensive list of
APIs.

Another key point to be mentioned in this regard is the fact that REST API is nothing like
the core API, just as WordPress isn't all about the global WP_Query object. It is important to
understand that we will go beyond the basics with our REST API project. While usual and
more or less primitive projects may be successfully fulfilled without much hassle or usage
of advanced techniques, you can't always go far with the basic techniques of REST API.

Another point is that the basic techniques are what the majority of sites will be based upon,
which is why we can consider some default routes as a compromise between a huge
amount amount of websites, including several ones that have not even been built yet.

Another example that would support this argument is the fact that sticking to defaults is
like working on a common WordPress project without overwriting the default query at
pre_get_posts or having any of your own WP_Query objects.

Custom Routes in WordPress REST API

[76]

Overview
In this chapter, we will go through the process of developing a custom route with two
endpoints that will display information regarding products on an e-commerce website. Of
course, the e-commerce part is just an example, and you can very well use this model to
display posts on a blog, photos from a portfolio site, and so on.

REST API, being in its second version, is split into two parts: the infrastructure for setting
up RESTful APIs and a part covering the default routes that would work as fantastic
examples that can guide you through creating your very own routes. The system used for
adding these routes and endpoints is amazingly well set.

In this chapter, we will be exposing the specific custom fields that will be used on the site.
In this implementation, a second route called docs will be incorporated, which will be set
around a custom post type that we are using for documentation purposes. We want to
make this as clear and thorough as possible, which is why our endpoints and routes are
used for explanatory reasons.

Adding custom routes to WordPress REST
API
In the second version of REST API, there is a new function called
register_rest_route() that deserves our attention. It lets you add a route to REST API
and then further pass it to an array of endpoints. For each endpoint provided, a defined
value for each field will be given in our query, including defaults, validation and callbacks,
sanitation, and separate permissions callback.

The focus will be put on the following three main key points:

Callback
Field arguments
Permissions check

They will provide us with an idea on how the architectural side of the API functions. It is
important to note that you will know that your requests are authorized, and your fields
sanitized, and everything is in place once we get to our callback. This very same
architectural structure is what will enforce separation of concerns and help maintain your
code modular.

Custom Routes in WordPress REST API

[77]

Setting up the custom route
We will be using the register_rest_route() function for defining a custom route in a
function that will be then hooked up to the rest_api_init action, which will run upon
the initialization of REST API. It will be equally important for an action, just like init and
plugin_loaded are.

This function will accept the following four arguments:

Route namespace
URL after namespace
Endpoints to a route
Optional Boolean argument

We will look into the four arguments briefly as follows.

Route namespace
The first argument would the namespace for the route. It is important to understand that
each and every route must be namespaced, which will further be used after the wp-JSON as
the next URL segment. All default routes are namespaced with wp. Every core route will
have URLs like wp-JSON/wp/posts, while custom route colors within the my-shirt-shop
namespace will have the attribute URL as wp-JSON/my-shirt-shop/colors.

Those acting like PHP namespaces or unique slugs as functions for a plugin will work as
the mean that is going to avoid clashes between routes. As you write, a plugin that adds a
route called menus will be used side by side with another plugin that adds a route called
menus, as long as namespaces that are different will further correspond to a plugin's name.
Another point is that namespaces for routes will be a common system, which will be
helpful, mainly because the chance is pretty high that several developers will use routes
with similar names.

Custom Routes in WordPress REST API

[78]

URL after namespace
Another argument is that the URL after the namespace for your route, being the second
route, will allow for a number like a post ID in the last segment of the URL. Our first route
in this example is /products and the second one is /products'. '/(?P<id>[\d]+).
Our second route URL will get joined to the namespace. Your URL will go to something like
/wp-JSON/Packt-API/products as long as your route is set as /products and then the
namespace will be Packt-API. A tip for you would be to include the version number
within your namespaces as that is considered to be a good practice:

register_rest_route('Packt-api', '/products', array());

Endpoints to a route
We will be discussing endpoints to routes in detail later on, rather than here itself. This is
because endpoints are very important in custom and default routes and deserve a separate
discussion of their own. Therefore, we will continue the talk on this topic further.

Optional Boolean argument
The argument that should set our final ideas on this matter would be the override, also
called an optional Boolean argument. The clashes that may occur with our already defined
routes, whether they are intentional or unintentional, should be dealt by the override. The
argument is usually set by default as false, and when this is the case, attempts to merge
the routes will be made. Alternatively, you can set them to true and replace already
declared routes.

Setting up the custom endpoints
We will now move on with some practical work, which will consist of us setting up our
endpoints. As we have previously stated, routes would only be useful if they have
endpoints, which is why the rest of this chapter will only cover the process of adding
endpoints to the route using our third argument of register_rest_route().

Custom Routes in WordPress REST API

[79]

Transport method
The transport method involves endpoints that need to define one or more HTTP transport
methods, such as DELETE, POST, PUT, and GET. With an endpoint that is defined as
working via a GET request, the REST API will receive the correct data and the way to create
errors for invalid requests.

The array that defines your endpoint will further define the transport methods in a key
named method. The following code example will provide you with the method of defining
an endpoint that is going to allow only for GET requests and will underline the process on
how the WP_REST_Server class provides constants for defining transport methods and
types of JSON bodies to the request:

register_rest_route('Packt-api', '/products', array(

'methods' => WP_REST_Server::READABLE,
));

This is the way you would add a route that is going to accept all transport methods:

register_rest_route('Packt-api', '/products', array(

'methods' => WP_REST_Server::ALLMETHODS,
));

By making use of these constants, it is assured that the REST server will evolve and your
routes will be properly set up and ready for it.

Defining our fields
The specification of the fields will regard what their defaults are and the method of
sanitizing them which is something that's going to be helpful for us when we are about to
define our endpoints. The callback function will then be allowed to process the request to
trust the data that it is going to retrieve. The REST API will then handle everything for you,
just like per the example, including the collection of products that will return the main field
endpoint:

register_rest_route("{$root}/{$version}", '/products', array(
 array(
'methods' => \WP_REST_Server::READABLE,
'callback' => array($cb_class, 'get_items'),
'args' => array(
'per_page' => array(
'default' => 10,

Custom Routes in WordPress REST API

[80]

'sanitize_callback' => 'absint',
),
'page' => array(
'default' => 1,
'sanitize_callback' => 'absint',
),
'soon' => array(
'default' => 0,
'sanitize_callback' => 'absint',
),
'slug' => array(
'default' => false,
'sanitize_callback' => 'sanitize_title',
)
),
),
)
'permission_callback' => array($this, 'permissions_check')
);

If you take a closer look, you will notice that most of these are actually Boolean fields or
numbers. The purpose of them being set up this way is that they will be sanitized by using
the absint() field. The sanitize_title field that is used for querying the post slug will
follow the same process of sanitization before being written to the database.

The other route is used for displaying the product by its ID. In this route's endpoint, we
have not specified any fields. Why have we not done so? Well, the logic behind not
specifying any fields to this endpoint is simple; we just need to pass the ID in the last URL
segment, and that will be enough for our goal. Another point is that we are not trying to
over-complicate this process, so while we are still getting into technical details, the boredom
or deep technicality will be avoided when possible:

register_rest_route("{$root}/{$version}", '/products' . '/(?P<id>[\d]+)',
array(
array(
 'methods' => \WP_REST_Server::READABLE,
 'callback' => array($cb_class, 'get_item'),
 'args' => array(
),
 'permission_callback' => array($this, 'permissions_check')
),
)
);

Custom Routes in WordPress REST API

[81]

The examples provided can be easily used for crafting our routes, and all you have to do is
remember that they were written in an object context, meaning that they are going to be
used inside a method of class, which brings up the necessity for them to be attached to the
rest_api_init action.

The callback function
As a reminder, I would like to reiterate that functions are first-class objects that we then
further pass a function through, something like an argument in a different function that is
later executed then passed into a function or even returned for its later execution. This is the
purpose of using callback functions, which are probably the most widely used in functional
programming, this technique being found in nearly every piece of jQuery or JavaScript
coding.

The request that will be dispatched if the permissions callback passes is manifested for each
route in the key, and the callback function specifically. In our previous example, the main
route has been passed to a method of the callback class named get_items, whose single
product route to a method called get_item was used. The callback class extents the class in
the core API, WP_REST_Post_Controller, which later allows us to absorb a lot of its
functionality while providing us with the possibility to use our routes. This also follows the
conventions set out in the core post query class.

The permissions callback
Our authentication scheme makes use of parts of the request, and similar to the main
callback, the permissions callback is passed by an object of WP_Request_Class. The
permissions callback will just return either true or false results, and it's totally up to you
how you get there. The method we will be using here is to make use of the traditional check
of our current user capabilities logic that is used during WordPress development. The
permissions check will then run after the user is set and our use of any of the authentication
methods will be already run.

What we will do is add a specific authorization for our custom routes and check the specific
parts of the request for the corresponding right keys, thus avoiding any reliance on
WordPress' authentication or current user.

If there are social logins implemented on your site, you could try and perform checks for
the OAuth keys and then authenticate them against that network. If they pass, you would
then login with the user who's account is directly associated with the said account. This is
just one of the strategies that we will be covering more thoroughly in future.

Custom Routes in WordPress REST API

[82]

In our example here, we will go through the path of creating a read-only API that is public,
which we could then either create a function that always returns true to use as our
permissions callback or to use the _return_true that is available in WordPress. We went
with the first option as it will be a necessity for our subsequent steps when the
authenticated POST requests are added.

Processing requests (and responses)
The WP_REST_Request class will receive as an object the callback function of each
endpoint, which will then further be passed as an object. To receive the parameters from the
request, which are mapped from any transport method provided, we will be using the
efficient method of get_params() to get all the data from the validated and sanitized
request, with all of the correspondent defaults filled in. Instead of using the method of
accessing the global GET or POST variables, we will be using the method described
previously, and the reasons for that are the following:

The array that is returned is validated and sanitized and will handle the switches
between the transport method. Even if we choose to switch the endpoints
definition from GET to PUT, which is a one—line change, then the code will
suffer no consequences and will be functional and will as expected.
Better abstraction is also acquired by using this method. Even within our basic
version of the API add-on plugin that is used in this chapter—the source code for
the plugin it is based on—the queries for the products' and docs' endpoints
would still be handled by an abstract class that then further handles the creation
of WP_Query arguments by looping through the available results and then
returning them.

I hope we have assessed the importance and functionality of the method we have chosen to
go with, and as that was set, it is important to understand our final necessity, which is the
need to end with an instance of the WP_REST_Response class. Our best way of achieving
that is by using the ensure_rest_response() function, which would then further return
an instance of this class, which can also handle errors well.

The following class will ensure that our response is a properly formed JSON with the
minimum amount of headers necessary while also providing methods for adding extra
headers.

Custom Routes in WordPress REST API

[83]

In the following example, you can see how it was used to add headers based on the core
post routes and headers for the total results, pages and links like prev/next:

protected function create_resp($reqst, $argz, $data) {
$response
= rest_ensure_response($data);
 $count_query = new \WP_Query();
 unset($argz['paged']);
 $query_result = $count_query->query($argz);
 $total_posts = $count_query->found_posts;
 $response->header('X-WP-Total', (int) $total_posts);
 $max_pages = ceil($total_posts / $reqst['per_page']);
 $response->header('X-WP-TotalPages', (int) $max_pages);
 if ($reqst['page'] > 1) {
 $prev_page = $reqst['page'] - 1;
 if ($prev_page > $max_pages) {
 $prev_page = $max_pages;
}
 $prev_link = add_query_arg('page', $prev_page, rest_url($this->base
));
 $response->link_header('prev', $prev_link);
}
 if ($max_pages > $reqst['page']) {
 $next_page = $reqst['page'] + 1;
 $next_link = add_query_arg('page', $next_page, rest_url($this->base
));
 $response->link_header('next', $next_link);
}
return $response;
}

While in this tutorial we are trying to assess quite a few technical methods, it's solely up
to you how you want to get your data together for the response. Because the API and the
project are solely yours, you have the availability of using any of the following methods,
which I will briefly go through.

WP_Query
WP_Query is a defined class that deals with the intricacies of a page or post request sent to a
WordPress blog. It is mainly used in one of the following two scenarios. The first is when
you find out what type of request WordPress is currently dealing with. The second and
more common scenario is when plugin developers use the WP_Query class in their loops to
provide numerous functions for common tasks within it.

Custom Routes in WordPress REST API

[84]

WPDB
WordPress defines a class named WPDB, which contains within itself some functions that are
further used for the interaction with one of the databases, whose primary purpose is to
provide an interface with the WordPress database that can be used to communicate with
any other corresponding database.

get_post_meta
The get_post_meta function will be used to retrieve post meta field for a post that will be
an array if the return is false or will be a value of the meta_data field if the return is
true.

Third-party plugins
This one is a pretty obvious method, and it would suppose that you will rely on the
functions that would then be part of a third-party plugin and its built-in functions.

Moving on from the method you will be using, we will recall the fact that you should
already have classes for getting the required data if you're adding a RESTful API to any of
the existing plugins or websites.

The REST API could then be used to get parameters for those classes from an HTTP request,
which would then pass the results to the response class of the very same REST API. Within
our example, in the API, we have used the WP_Query function to get the posts and the
following provide the code piece for the method we used to loop through the WP_Query
object and get the data we need:

protected function perform_query($reqst, $argz, $respond = true) {
 $posts_query = new \WP_Query();
 $query_result = $posts_query->query($argz);
 $data = array();
if (! empty($query_result)) {
foreach ($query_result as $post) {
 $image = get_post_thumbnail_id($post->ID);
if ($image) {
$_image = wp_get_attachment_image_src($image, 'large');
if (is_array($_image)) {
 $image = $_image[0];
}
}
 $data[$post->ID] =

www.allitebooks.com

http://www.allitebooks.org

Custom Routes in WordPress REST API

[85]

 'name' =>
 'link' =>
 'image_markup' =>
 'image_src' =>
 'excerpt' =>
 'tagline' =>
 'price' =>
 'slug' =>
);
array(
$post->post_title,
get_the_permalink($post->ID),
get_the_post_thumbnail($post->ID, 'large'),
$image,
$post->post_excerpt,
get_post_meta($post->ID, 'product_tagline', true),
edd_get_variable_price($post->ID),
$post->post_name,
 for ($i = 1; $i <= 3; $i++) {
foreach(array(
 'title',
 'text',
 'image'
) as $field) {
 if ('image' != $field) {
 $field = "sample_{$i}_{$field}";
 $data[$post->ID][$field] = get_post_meta($post->ID,
$field, true);
}else{
 $field = "sample_{$i}_{$field}";
 $_field = get_post_meta($post->ID, $field, true);
$url = false;
 if (is_array($_field) && isset($_field['ID'])) {
 $img = $_field['ID'];
$img = wp_get_attachment_image_src($img, 'large');
if (is_array($img)) {
 $url = $img[0];
}
}
 $_field['image_src'] = $url;
 $data[$post->ID][$field] = $_field;
}
}
}
}
}
return $data;
if ($respond) {

Custom Routes in WordPress REST API

[86]

 return $this->create_resp($reqst, $argz, $data);
} else {
return $data;
}
}

From the preceding example, you can easily notice that it is a mix of post and meta fields, as
well as functions that will have to defined by a parent e-commerce plugin.

Summary
While creating custom routes, we are getting a fantastic RESTful API server that will give us
powerful tools for creating our custom APIs, and the fact that WordPress REST API is
adding a useful set of default routes to our site is only in our favor.

I would also advise you to make your own default route to make use of any method that
you would find suitable or usable.

You have now mastered how to create and add custom routes using REST API in
WordPress. Now, our next step will be to power full-fledged applications using WordPress
and harness the potential of REST API for that purpose.

6
Creating a Simple Web App
using WordPress REST API

So far, we have learnt how to send and receive POST and GET requests in REST API using
WordPress, as well as working with posts and post metadata, categories and tags, among
other things. As we proceed further with our learning guide, we will now focus on how to
create a frontend for our website or app.

Overview
The whole process of content rendering from frontend content to JavaScript or other
programming languages that are relatable to frontend is provided by the WordPress REST
API, which provides us with the ability to transfer the said process of frontend. JavaScript
will then provide us with the opportunity to increase the interactivity and its performance,
thus the arisen necessity of making use of it.

This chapter will mainly focus on the process of creating the front-end system for an
application or website, all this without disrupting the use of WordPress for managing the
content, accomplished by making use of the WordPress REST API. The following chapters
will then cover the creation of single page websites, which are powered by the very same
WordPress REST API architecture in such a way that its entire frontend capabilities are
divided from WordPress.

Creating a Simple Web App using WordPress REST API

[88]

Setting up your WordPress site
To get started with our site and set it up as the backend for a WordPress-separated kind of
frontend we will need to install the WordPress REST API plugin, which would represent
the only technical aspect of this whole process.

WordPress, being an ever-growing Content Management System (CMS) that is moving
towards a fully-fledged application framework, brings up the requirement and necessity for
new APIs. The REST API Plugin is an easy to use and understand foundation framework
that will help you create these APIs, including the core APIs as well.

The plugin provides an accessible and hassle-free way of using the REST APIs, including
APIs for the core. The plugin provides an easy to use REST API, which will then be
available via HTTP. You will then grab your site's data in some simple JSON format which
would include users, posts, taxonomies, and so on. Updating or retrieving data will be as
easy as sending an HTTP request. To get site posts using this plugin, you will have to send
a GET request, update the user ID and then make use of a PUT request.

The WP API includes an easy-to-use, backbone models-based JavaScript API that allows
plugin developers to get up and running without having any need to know the details of
how to get connected. It also displays a simple and accessible interface to WP Query, post
meta API, the posts API, users API and revisions API, and so on. Chances are that if you can
do it with WordPress, then you can do it with WP API.

WP API also includes an easy-to-use JavaScript API based on Backbone models, allowing
plugin and theme developers to get up and running without needing to know anything
about the details of getting connected. And in case you run into a trouble, you have the
documentation at your fingertips, at all times.

We will then proceed to setup our simple application in WordPress with the help of REST
API. As you have probably guessed by now, we will be using JSON to interact with our
project. We will call it remotely, and focus on AJAX requests to carry data back and forth.

Cross origin problems and bugs
One of the most common issues that developers run into when working with a separate
front-end are the restrictions of cross-origins, which place various restraints, and which you
can read more about here (h t t p s : / / d e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / H T T P /
A c c e s s _ c o n t r o l _ C O R S). Most browsers will most likely not let you load content from one
site to another if they are served from two separate domains, the reason for this being some
very understandable security concerns that might relate to exploitation that can happen

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Creating a Simple Web App using WordPress REST API

[89]

during this process. The AJAX requests would then be prevented from succeeding when
requesting data form a separate domain, and to avoid an issue of that kind we would have
to be sure that all of the Cross-Origin Resource Sharing (CORS) headers are set in place
correctly.

CORS is a spec of the W3C, which allows cross-domain communication straight away from
the browser. It builds on top of the HTTP request object and then allows idioms like same-
domain requests to happen. It's pretty easy to use CORS, which is manifested by adding a
few special response headers that will allow a site to access another's data. CORS allows
coordination between the client and the server, and if you're a client-side developer, then
you are shielded from this kind of detail.

Theoretical approach aside, it is important to see that CORS headers can be set in a global
manner for any WordPress site, which will lead you to set the header to apply only to the
REST API's output. All of the headers, which would include CORS headers, have got to be
output before any HTML content. Another point is that by default all of the CORS headers
are set by the REST API at the rest_pre_serve_request filter, which will then change
the headers you sent there, and should remove the function of rest_send_cors_headers
that are hooked by default and will provide the same CORS default headers.

What we will do here is to allow requests to come from any origin by simply setting the
appropriate CORS header correctly, which would be accomplished like this:

remove_filter('rest_pre_serve_request', 'rest_send_cors_headers');
add_filter('rest_pre_serve_request', function($value) {

header('Access-Control-Allow-Origin: *');

header('Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE');

header('Access-Control-Allow-Credentials: true');
return $value;
});

Different situations require different technical approaches, and while we have chosen one of
the easiest methods for this one, it is important to admit that it might not be the best way to
go in other situations. In the code above, the asterisk will be replaced with a specific URL
that will allow access to that site via a remote REST API.

To add more than one CORS header, you will have to detect the referring site before setting
the header, as otherwise the access will be fully denied. Applying the preceding exposed
method, however, will let you set the header if you want to allow requests to originate from
the referring site.

Creating a Simple Web App using WordPress REST API

[90]

This will be done by defining an array of acceptable domains, which checks the origin
domain (like in $_SERVER['HTTP_ORIGIN'];) within the array, and if that is it-that's what
will be set as the allowed domain. Preview the code below for how to achieve that:

remove_filter ('rest_pre_serve_request', 'rest_send_cors_headers');

add_filter ('rest_pre_serve_request', function($value){
$origin = get_http_origin();
if ($origin && in_array($origin, array('example_content', 'example2'
))) {
header('Access-Control-Allow-Origin:'.esc_url_raw($origin));
header('Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE');
header('Access-Control-Allow-Credentials:true');
}
return $value;
});

The preceding example makes use of a safe way to get the value key of HTTP_ORIGIN in the
global $_SERVER, which is the function within WordPress named get_http_origin().

Your next step will be to check whether the originated URL request is contained in the array
of allowed domains, and if that is the case, it will check if the domains are used for the
CORS header. If it's not there, it means that the CORS header is simply not set.

One thing to be noticed is that there's the probability of security issues if you have a lot of
content on your website, as requesting too many posts at once could be used as an exploit
within a DDoS attack on your website.

Handling multiple requests
Regarding potential security issues, we have briefly discussed these above; we will now try
to look over a few effective security measures. It might be a concern if you have set a CORS
header to allow any domain to access the REST API remotely, and even if you haven't,
issues might arise because of how origin headers can be faked.

All parameters for making post queries by the REST API will have a filter, which is
dynamically creating using the pattern of rest_query_var-<name-of-filter>. This
supposes that you can override almost any value that is set for the posts_per_page
filter, which would then be hooked up to rest_query_var-posts_per_page.

Creating a Simple Web App using WordPress REST API

[91]

There is a recommendation to limit the maximum amount you intend on using in your app,
and for an example, take a look at the following code where we used 20 posts per page:

add_filter('rest_query_var-posts_per_page', function($posts_in_page) {
if (20 < intval($posts_per_page)) {
$posts_in_page = 20;
}
return $posts_in_page;
});

This filter will only work if the number of posts per page will exceed 20, and if it does, the
value is changed to the corresponding number, 20. As a result of this, a request to
wp/v2/posts?filter[post_in_page]=7 will return seven posts, as you might have
noticed, and any request greater than our pre-defined value of 20 will still return 20, not
the larger number used as a value.

Now that we have covered most of the learning process, we will focus on some further
optimization measures to make sure our websites and apps work faster and well.

Optimization measures
In this part of our tutorial, we will overview some methods that will help us to improve the
optimization of our sites. The REST API uses WP_Query for posts and WP_User_Query for
users, and as a result most of the same methods that are used to improve the optimization
of our sites will be mentioned here. The REST API doesn't reinvent how posts or any other
kind of information will be queried within the database, but instead makes use of the
techniques mentioned previously. WP_Query will leverage object caching, thus, using any
persistent object cache, will improve its performance no matter how it was used.

One of the most common WordPress optimization strategies is page caching. This, however,
has no effect here because it will serve static HTML files of users to the frontend of your
website. The REST API will come through with a filter that will allow us to intercept
requests, and will correspondingly serve a response directly, as the file serving requests are
not generating frontend HTML.

By using the WP-TLC-Transients library for cache handling, we will be creating a caching
system that will then check if it has already served a request for that URL, and if it has
returned a response. If these were not the server, however, REST API will build the
response and then cache it before serving the response.

Creating a Simple Web App using WordPress REST API

[92]

The json_pre_dispatch filter makes this possible by exposing two variables, $result
and $server. $result is false by default, and if it doesn't return a false value, it is then
used as the response and the rest of the plugin is skipped. The second variable, $server,
will be the JSON server itself, which will then allow you to provide a proper format for all
your results, for example:

add_filter (rest_pre_dispatch', 'rest_cache_get', 10, 2);
function rest_cache_get($result, $server) {
 //Checking to see if rebuild callback exists, if it does not then
return unmodified.

if (! function_exists('rest_cache_rebuild')) {
return $result;
}

//get the REST request and hash it to make the transient key
$request_uri = $_SERVER['REQUEST_URI'];
$key = md5($request_uri);

//return the cache or build cache
$result = transient(__FUNCTION__ .$key)

->updates_with('rest_cache_rebuild', array($server))

->expires_in(600)

->get();
return $result;
}

An existent transient called transient library was called for the hashed value of the URL
that was requested. If it is not found, the function of rest_cache_rebuild will be called,
which will then generate the cached value and pass the variable of the $server to it. The
dispatch method is used for this function of the server's class, to set in motion the REST
API's default behavior, and to create a response that will be something like this:

function rest_cache_rebuild($server) {

return $server->dispatch();
}

Creating a Simple Web App using WordPress REST API

[93]

Steps to disable the default routes
The WordPress REST API provides a set of standard routes, but they might not all be
required for your app, as the default routes were not all specifically designed for it. The
REST API will make it simple to add custom endpoints that will have absolutely no limit on
how they will be used. In our next chapter, we will be covering the process of creating
custom routes that, for application development, will work better than using the usual
default routes method.

When working with default routes, you should be careful about doing so as that
will be counted on several third-party tools.
There is a possibility that the WordPress admin will start utilizing the REST API,
which will remove the default routes and will break the admin.
The registration of default routes will be removed, which, by getting rid of the
hook where the endpoints, in a manner similar to following code:

remove_action('rest_api_init', 'create_initial_rest_routes', 0);

Another technical aspect is understanding that getting rid of a particular endpoint is not
always that easy, and might require somewhat more advanced techniques. To achieve our
desired result, we will have to use the filter called rest_endpoints, which will then
expose all of the registered endpoints before requests are served. If you wanted to remove
all endpoints for fun, you would need to look for URLs for the endpoints in the wp/v2
namespace that include fun somewhere in the URL, like this:

add_filter('rest_endpoints',function($endpnts) {
 foreach($endpnts as $endpoint => $args) {
 if(isset($args['namespace']) && 'wp/v2' == $args['namespace']) {
 $parsed_route = explode('/',$endpoint);
if (in_array('fun', $parsed_route)) {
 unset($endpnts[$endpoint]);
}
}
}
return $endpnts;
});

No custom routes for fun will be affected, as we will only be working with the namespace
for the default routes.

Creating a Simple Web App using WordPress REST API

[94]

More about WP REST API
It has now been well over a decade since Matt Mullenweg brought the blogging content
management system to the world that we know so well today. Since the beginning, it has
grown well to become the most used CMS, which no longer only covers blogging, but has
come to serve all kinds of needs including e-commerce and corporate websites.

REST API has grown to serve as one of the latest features being added to WordPress, which
provides more room for interaction and communication between applications and
WordPress itself. Because the REST API provides us with the ability to add and then
retrieve content from any client without having WordPress installed, it will provide us with
an amazing possibility to build custom apps. Overall, we would consider that development
inside and in pair with WordPress can now be done without much coding.

Within this set of series, we will be going through the methods for making use of this great
API that will provide better user experiences for both developers and end-users, which
were probably either impossible, or way harder, to create back in the day.

Within this chapter, we will be making use of some basic resources and concepts that you
should already be familiar with, such as the HTTP, JSON and REST itself.

The REST architecture
In order to take a closer look at the REST architecture we shall assess the basics of how it
works and is set up, this being one of the first steps in our further encounters that will
provide a path for application development and pairing by making use of the REST
architectural style.

In its essence, REST is built in a way that helps to distribute the hypermedia application that
will further link resources and make it possible for communication to happen by
exchanging various representations of its resource state. The resources we are talking about
are what the REST architecture is made of, and will be considered to be at the foundation of
all websites and scripts overall. In regard to WordPress, the resources are pages, posts,
users and comments that interact with provided resources that are in turn used to identify a
resource. When a RESTful service is used, it will then make it a first task to address one of
the underlying resources, which in its manifestation can have different representations (file
format for some file types, and so on). In regard to the connection with URIs, these URIs can
only be pointed at a single resource even if one of these resources can have several URIs
within it.

Creating a Simple Web App using WordPress REST API

[95]

The resources that are currently supported by the WP REST API are posts, pages, user
databases and media. Such data as post metas and post types would also be considered to
be a part of the resources that are supported. HTTP verbs would then be used in order to
apply a set of various actions upon the previously mentioned resources.

HTTP verbs
Within the REST API, operations of the C-R-U-D type are allowed by making use of the
HTTP, which in turn is used by REST, which will set a limited number of request verbs that
will be used to perform an action of creating, updating, deleting, checking or retrieving data
exclusively to provided resources and its verbs, if that is the case.

The verbs will be very well described and, as mentioned above, are used to perform a
CRUD action in one instance, or to assist a client in determining if a resource exists and
what exactly HTTP verbs are, which will provide a clear idea of what actions can be further
applied. In this state, a GET request of a kind shall retrieve information, and no matter how
many times a client performs calls upon it, the state of a resource might not even get
affected.

For us to get all posts using the WP REST API, we will make use of this endpoint, which in
turn will return a set of all post entities that are there:

 GET wp/v2/posts

If we would like a particular entity to be returned, and a post with a unique ID, we will
apply the following endpoint:

GET wp/v2/posts/150

Requests such as PUT and POST will replace and create entities with new versions,
respectively. If we want to create a new post and send the request body that will be looked
at throughout our series, we will apply the following POST request by using WP REST API:

POST wp/v2/posts

And this PUT request will provide the post with the ID of 100.

PUT wp/v2/posts/150

Creating a Simple Web App using WordPress REST API

[96]

A request such as delete will remove a resource from the system, but it will be repeatable
with the PUT request, and will have an identical effect upon the system. A RESTful service
will provide two more verbs for CRUD actions and those will be the OPTIONS and HEAD
verbs, which will come in handy when a client needs to check when a resource is available
on the system and what kind of actions will be supported by them, allowing further system
explorations and actions to be performed.

Endpoints and routes
Endpoints represent functions, which will then be available through the API and will
perform any kind of actions including, but not limited to, creating and retrieving posts and
users. The endpoints will rely upon the HTTP verb that is associated with them and will
make it retrieve all available posts. The route of the preceding endpoint will be as follows:

 wp/v2/posts

A route will then be assigned one or several endpoints, depending on the HTTP verbs. The
route we have just mentioned will need to have an endpoint similar to this if the aim is to
create a new posting:

 POST wp/v2/posts

The following route will have a post entity with an ID equal to 100, which will eventually
have three endpoints:

wp/v2/posts/150

GET wp/v2/posts/150: Will retrieve the post that has the ID of 150. It will
trigger the get_item() method.
PUT wp/v2/posts/150: Will update the post that is attributed the ID of 150.
This will trigger the update_item() method.
DELETE wp/v2/posts/500: Will delete the post with the ID of 150. This will
trigger the delete_item() method.

The HTTP response codes will be a part of our response to the requests by returning any
response that contains an HTTP status code of any kind. The codes with numbers will then
have predefined definitions linked to them. Another idea to assess is the fact that the
response of the server will depend on the HTTP verbs and their types or methods applied
to send a request. While working with the WP REST API, a bunch of common HTTP
response codes will be encountered, which you should look up if you're not yet familiar
with them.

Creating a Simple Web App using WordPress REST API

[97]

JSON REST API for WordPress
In this posting, we will cover the REST and JSON advantages that should make it clear why
we like to use them anyway. The basic theory is that an interlink is required between the
client and server, and the weight put upon the server connection is another, so JSON is used
to ensure a more lightweight method, unlike known XML methods. As long as JSON uses
text to store data, most programming languages will be friendly with it, and will pair easily
and seamlessly, working as a global connector in the mechanism of exchanging data
between platforms. When we are using APIs like the one that we are talking about now, the
content and other data of our WordPress website can be accessed by other clients that are
stored externally. Remote clients will then interact with our site to create and update new
content, and can retrieve some content from existing WordPress sites and any other ones.

There is unlimited room for constant improvement in how the WP REST API can be used,
such as mobile and desktop applications that will pair to your WordPress website, single
page applications, advanced server-side integration and so on.

JSON REST APIs in WordPress
Before there were APIs that relied on JSON, they used to interact with the XML-RPC API,
which was not as lightweight, easy-to-use, and flexible, which is why APIs have evolved to
REST ones. The JSON API has started to become one of the foundations that many plugin
developers have taken as their ammo and will be included in the core WordPress in one of
its future releases, stipulated to be 4.7. The REST API plugin is currently in continuous
development and will be supported as it keeps being improved.

WP REST API at the moment
The WP Rest API has been partially included in the 4.4 version, and will be merged in two
different phases: the infrastructure code merge and the endpoints merge. The first phase
will consist of the infrastructure code that will become the foundation of WP REST API,
which will then include linking and embedding of all the APIs, but will however not
include any endpoints or classes. In its second phase, the endpoints will merge and be
incorporated in the 4.7 version of WordPress and will map external data in JSON format
into native WordPress data types. This will then allow developers to implement custom
APIs within their plugins and themes. Not only will this provide advantages for
developers, but with the clear evolution of this technology, we will definitely see
development and improvement in all other areas that surround the APIs.

Creating a Simple Web App using WordPress REST API

[98]

Tools
During this tutorial series, we will be making use of HTTP clients that we will use to send a
request to the server and preview the received results. We will need a tool that we will use
to create quick HTTP requests that will let us view responses from the server and then test
configuration and authentication. A tool that will help us with this task is Postman for
Google Chrome, although there are other alternatives depending on the browser you're
using. The tool we have chosen, Postman, will allow us to create quick HTTP requests that
will provide us with different methods for making HTTP requests and will test the
configuration for the authentication.

Another tool required for our server is the WP-CLI, which will be used to manage our
WordPress installation remotely from within the console without needing to open the
browser window, which will be used in the WP-CLI in part with OAuth 1.0a authentication.
Some XML demo data will be used to create pages and posts.

Installing the plugin
Our next step will consist of setting up the plugin, which can be found in its official
repository. We will be using the REST API plugin that is currently in its 2.0 version, but in a
beta state. It is to be noted that developers do not recommend installing this on any server
that contains a website used for any other purpose than testing, as the plugin still has
several flaws and might be unstable in certain environments. The plugin can be installed on
its official page or the GitHub repository that will go to your /wp-content/plugins
directory. Fire up the terminal and install the plugin like this:

$git pull https://github.com/WP-API/WP-API.git

After following this procedure, the plugin will go to the WP-API/directory and will then
be activated from your WordPress administration panel.

After installing the plugin, we are not limited in how we use the API, and can use it on
several sites as long as they have the plugin enabled, and to perform a check on other sites
we will send a HEAD request to the site by using the HTTP client, like this:

$ HEAD http://myexample.com/

A response of the kind will then be received in the response header.

Creating a Simple Web App using WordPress REST API

[99]

The LINK header will further point to the routes located at the root of WP API, which for us
will be located at: http://localserver/wordpress-api/wp-json/

The API is then going to be discovered by making a query for the respective <link>
element within DOM, performed like this:

(function($) {
 var $link = $('link[rel="https://github.com/WP-API/WP-API"]');
 var api_root = $link.attr('href');
})(jQuery);

At this point, we will be ready to retrieve content from the site using the WP REST API
when a respective authenticated request is performed.

Going further
Within this part of our tutorial, we have assessed the foundation of WP REST API and how
it works. We have gone through the architectural foundation of REST, and the processes
that are its foundation. The development state, and how the plugin will evolve, has also
been part of our discussion, and will shed some light on the ongoing improvement behind
the plugin.

One matter of concern for us in our next section is going to be the methods used for
authentication that are supported by the API.

WP REST API – setting up and using basic
authentication
So far, we have started with the basics in regard to REST API's architecture and how it will
help us pair websites with applications, but now we will move on to creating a protocol that
will be used for basic authentication on the server and sending authenticated requests.
These requests will be used to perform further tasks in regard to the REST API.

In this section, we will overview the process of sending authenticated requests of various
kinds and methods that will be helpful and useful in the next parts of this tutorial.

Creating a Simple Web App using WordPress REST API

[100]

Authentication
Authentication is defined as the process that helps to identify individuals depending on the
unique nature of their credentials. It will ensure that the credentials provided correspond to
those stored in the database, and will not be of much help beyond this. In regard to WP
REST API, a user will be required to have privileges that will allow him to perform tasks,
yet because the identity has to undergo a check, this is where authentication will play its
role.

WP REST API authentication
There are currently three methods of authentication when talking about REST API. These
three solutions are basic authentication, cookie authentication and OAuth authentication.
Every method listed above has its concrete and precise purpose.

The method used by default by WordPress is authentication by cookies, which is how it
determines the prerogatives any user has. This provided, we can use this straight away with
WP REST API. Using the other two methods will require some plugins to be installed,
which are not available within the core of WordPress.

Basic authentication
This kind of authentication is the most common and basic way to authenticate HTPP, in
which a user's credentials are sent with the headers of the request from the server, and then
the request is received back, along with encoded credentials that are sent in the
Authorization header field as following:

Authorization: Basic {base64_encode(username:password)}

If the username is whatever and the password is set as 1111 a header field like this would
be sent with the request:

Authorization: Basic dHV0c3BsdXM6MTIzNDU2

However, this method is not used by open networks given its insecurities in terms of how
easy it would be to decode it.

Creating a Simple Web App using WordPress REST API

[101]

Installing the plugin
The plugin is available on the official GitHub repository, so all we have to do to install it is
just clone it in our plugins directory and simply activate it. Turn the sudo rights on in order
to run the command and clone our plugin at /wp-content/plugins:

$ sudo git clone https://github.com/WP-API/Basic-Auth.git

The terminal will then require your password, after which it will continue with the process
of cloning within the directory. Upon cloning, activate the plugin within your
administration panel.

Postman requests
In this section we will take a look at the process of sending authenticated requests by
making use of the tool I spoke of in a previous section—Postman. It will allow us to send a
request only using the basic authentication method we already briefly covered. In order to
fulfill an authenticated request you will have to go to the Authentication tab, from where
you have to use the basic authentication method, which will ask for credentials, yielding an
encoded version of those same credentials. A request can then be sent as a test, in our case
we would be deleting a post, like this:

DELETE http://something/wp-json/wp/v2/posts/25

If everything is performed successfully, a status code with the 200 OK ID will indicate the
post has been deleted.

Authenticated requests from the command line
If you are not fond of using the available browser tools, the command line can be used to
send the same requests, which would use the curl equivalent of a preceding request:

"curl --request DELETE -I --user admin:password
http://something/wp-json/wp/v2/posts/25"

The server will then respond with a success message that will indicate the action was
completed successfully and flawlessly. The request option will then specify the request
method that is going to be used, which in our case will be DELETE. The -x alternative is also
admitted for the --request option.

Creating a Simple Web App using WordPress REST API

[102]

JavaScript authenticated requests
In case you are using any client-side JavaScript framework, authorization headers can be
sent for the desired interaction with WP API. The DELETE request would then be sent by
another jQuery.ajax() method like this:

$.ajax({
 url: 'http://something/wp-json/wp/v2/posts/25',
 method: 'DELETE',
 crossDomain: true,
 beforeSend: function (xrh) {
 xrh.setRequestHeader('Authorization', 'Basic ' +
Base64.encode('username:password'));
 },
 success: function(data, txtStatus, xrh) {
 console.log(data);
 console.log(xrh.status);
 }
});

In this example, the BASE64 is considered to be an object used for encoding a string.

This is a way of cross-browser encoding of a string within JavaScript.

The Authorization header was used in the preceding example, and the
setRequestHeader() method within xhr object was passed as an argument to the
beforeSend() method.

Another thing to assess is whether headers with Access-Control-Allow-Headers will
always allow a field like Authorization on the server and can then be enabled by adding
a line of code within your WordPress .htaccess file:

Header always set Access-Control-Allow-Headers Authorization Header always
set

The response displayed will then be echoed within your browser's console.

Creating a Simple Web App using WordPress REST API

[103]

WP HTTP API for authenticated requests
If your aim is to interact remotely with any other WordPress site that is on our installation,
the best method for sending HTTP requests is thought to be the WP HTTP API. It is also
considered that the code provided will send a DELETE request to any other WordPress
installation that has the basic authentication turned on within WP REST API.

It's good that we have gone through how basic authentication works, as this will come in
very handy in further parts of the tutorial, in which we will mainly be using this method for
performing any kind of data manipulation.

Status check
Within this part of the tutorial, we have exclusively focused on the basic authentication
method supported by the WP REST API. As stipulated here, using this method on live
websites is dangerous and foolish, given how easily credentials can be decoded and then
further abused.

Another thing we have looked at in this article is the process of testing the authentication
method we discussed in detail, making us ready to move on to a more complicated method
of authentication named OAuth. We will be covering this in specific detail as we move on.

WP REST API – setting up and using
advanced authentication
Our previous section covered the basics of the WP REST API and the HTTP authentication
that were on the server, which let us install the plugin available on GitHub, courtesy of the
development team behind WP REST API. So far, we have only overviewed a method of
authentication that will let us use it in a testing environment, but the time has come for us to
look into more serious, advanced means of authentication that will be secure enough for us
to use on an actual server, and will not compromise the credentials exposed to the requests.

In this part of our tutorial, we will go through the process of setting up the OAuth
authentication method that will be used with the WP REST API plugin. We will install the
OAuth server plugin and then generate an access token that will help us with the pairing of
a conventional application, all this combined with a theoretical overview of the method
itself and how it functions.

Creating a Simple Web App using WordPress REST API

[104]

OAuth authentication
The OAuth authentication method is an open method of securing client application and the
access that it has to the resources located on the server. The authorization will then obtain
partial access to an HTTP service that is going to allow further access to an application to
obtain access on its behalf. With OAuth, the user will be able to have access to private data
from one server to another server's resource without needing to share their identities.

Besides users, mobile and desktop applications will also gain access to the resources on the
server, and the permissions that will be granted will be either of a limited kind or fully
permissive, which we will take a look at soon.

OAuth security concerns
The second version of OAuth will not support any encryption, client verification or
signature and there have been reports of major security flaws that have been addressed. The
biggest concern about OAuth's security failure is the vulnerability to phishing and that
there have been stolen emulations of credentials, which even two-factor authentication
cannot prevent. We are only mentioning this as we are looking to bring up any concerns
that have been heard, and leave you to take the decision that you consider to be correct.

OAuth 2.0
The second generation of OAuth is the newest protocol, which is not backward compatible
with OAuth 1.0. The second version will put a distinct focus upon simplicity in the process
of providing authorization for web, desktop, and mobile applications. It is currently used
by Facebook, Google and major other services, which recommend this authentication
mechanism for use with their APIs.

OAuth authentication flow
OAuth authorization makes use of token credentials, which are provided by the server
when an appropriate request is issued and authenticated. These tokens, which are linked to
the server, are then used by an application to receive access to protected resources
(credentials). These authorization tokens then have a particularly limited period in which
they are active, and are revoked by the server upon any request asking for this.

The process of OAuth authorization is broken down into several steps, which are:

Creating a Simple Web App using WordPress REST API

[105]

Oauth_callback function
The client sends a request to obtain one of the tokens, which are considered to be a
temporary credential at the endpoint URI. The server will then verify whether the received
request is legit, and if that seems to be the case, a request token will be provided as a result.
It moves forward with the client pointing the user towards the server for further request
authorization, which is concluded by adding an oauth_token that was obtained in the
previous step. A further authorization at server level takes place upon the provision of the
required credentials, which yields one of two things. In the case of an oauth_callback
URI provision, the server will redirect the client towards that specific URI, or if the
oauth_callback is not provided, the server would simply display a value of the
oauth_verifier that will let the resource handler manage client requests manually.

OAuth_verifier function
Upon receiving the oauth_verifier token, the client asks the server for token credentials
by sending another request to the token request endpoint URI. The server verifies whether
the request is valid and will grant any of the token credentials: oauth_token_secret. And
as a finale, the client makes use of the provided token credentials, which will be used to
access the protected resources on the server.

This more complex process is necessary when considering developing clients that would
connect with the API. The main task of a client would be to make the process easier for the
end-user, but given the fact that we will make the most of the WP REST API, we will start
with only the strictly necessary steps.

Endpoint URIs are exposed within the server response when checking for the API, and thus
the authentication with OAuth for WP REST API makes use of exposing URIs provided by
the server.

OAuth installation
Installing the OAuth authentication API within WordPress can sometimes be a tough task.
OAuth enables a temporary credential request endpoint that, using the wp_scope
parameter, will grant access to the client. The plugin, which is available on the official
GitHub repository will only support version 4.4 and above of WordPress.

Creating a Simple Web App using WordPress REST API

[106]

We will now move forward with cloning the plugin by navigating to the plugins directory
within /wp-content/plugins/:

$ git clone https://github.com/WP-API/OAuth1.git

Upon completing the download, we will activate the plugin by making use of the WP CLI:

$ wp plugin activate OAuth1

That is what we must do in order to set up OAuth as a workable authorization method.

Assessing the availability of the OAuth API
Our first check is to see whether the API is enabled on the server or not, and for this we will
be making use of a simple GET request that will be sent to the /wp-json/ endpoint, which
will then analyze the status of the response that has been received. A next step is to launch
an HTTP client and send another request to the /wp-json/ endpoint, which would be
something like this:

GET http://example-site/wp-json/

and will return a JSON response.

We have our focus upon on the oauth1 value that further sends us the authentication
property value, and has within its properties the following: request, access, version and
authorize.

Server responses will usually contain an empty authorization property if the OAuth API
is not enabled for the site, and the oauth1 defined object within the authentication
property will show that the OAuth API has successfully passed.

Application management
When we are done installing the OAuth plugin, we have to register an application, which is
possible within the admin dashboard of WordPress, that will then provide us with
corresponding generated OAuth credentials to use. The plugin will make use of the
functionality provided to create a consumer within the console through the WP CLI plugin,
which can be done in the terminal as well, like this:

wp oauth1 add --name=<c_name> --description=<c_description>

Creating a Simple Web App using WordPress REST API

[107]

After doing this, the consumer will appear within the registered applications page in the
plugin's dashboard, where it can be managed for further modification.

Generating OAuth credentials
Now that our application has been registered, we will move on to begin the OAuth
authorization process within the upcoming sections. The typical process of generating
OAuth credentials is to acquire temporary credentials, authorize the user, and then finish
by exchanging tokens. To implement this whole process we will continue with the tool we
started with at the beginning of this tutorial-Postman.

In order to acquire temporary credentials we will be sending a POST request to the
/oauth1/request endpoint that will be auto-discovered when the server replaces this
route with its own one. The POST request we mentioned earlier should cover the
oath_consumer_key and the oath_consumer_secret parameters that will include the
last parameter of oauth_callback, which should actually match the details of the callback
URL that was used when the application was registered.

When making use of the Postman, the oauth_signature will be generated automatically
and we only have to mention the oauth_signature_method parameters.

Make copies of the consumer secret and consumer key parameters, because they will be
needed further on, and now, by launching Postman, send a POST request to the temporary
credentials request endpoint. The Postman should send another POST request to the
temporary token credentials endpoint and then fill in the fields of consumer key and
consumer secret with the data that has just been copied in the preceding step. Updating the
request will finish the process and return a success code in the form of a dummy text string.

User authorization
For the user authorization step, we will have to pass the oauth_token and
oauth_token_secret tokens as query parameters:
http://example-com/oauth1/authorize?oauth_token=<token_here>&oauth_toke

n_secret=<secret_here>.

You will have to authorize the application, and once that is done, the application will
appear within your list of authorized apps within your plugin.

Creating a Simple Web App using WordPress REST API

[108]

Token exchange
The final step for OAuth authorization is exchanging tokens that were granted only
temporary access to ones that have a longer lifespan and are considered to be permanent. We
will start the process in which the exchange happens, the Postman will be launched and
configured so that POST requests are sent to the endpoint of the request token. After
making use of the OAuth 1.0 option, within the Authorization tab we will fill in with
consumer-provided data the fields for consumer keys and tokens that will be making use of
the oauth_token and oauth_token_secret parameters respectively.

The parameter of oauth_verifier has got to be appended to the URL:
http://example-com/oauth1/access?oauth_verifier=<oauth_verifier_value>.

Given everything in the process was fine, temporary tokens are no longer of use, given the
fact that they have been replaced with permanent ones.

Status check
In this part of the tutorial we have taken an in-depth overview of the OAuth authentication
solution and how it will interact with third-party applications. Not only have we looked at
the theoretical side of this authentication method, and the objective way that it works, we
have also taken a closer look at how to actually apply this method in practice.

WP REST API – retrieving data
After going through all the basics related to WP REST API, and assessing how it will
actually make it easier for us to develop applications for background pairing with
WordPress' backend, we also have to overview the authentication methodology that there is
and that should already be set and running to have the WP REST API plugin installed. We
have also taken an in-depth look at two methods for server-side authentication, a more
simple yet very insecure method of basic authentication, and a more complicated method
which is, however, secure enough to be used in real-world environments-namely OAuth.

During this part of the tutorial, we shall start generating authenticated requests, given our
progress so far. For testing purposes, we shall stick to basic authentication for the course of
this tutorial, but remember one more time that this method of authentication must never be
used in real-world examples and has got to be used only in scenarios like this one.

Creating a Simple Web App using WordPress REST API

[109]

We shall get started by analyzing the structure of a GET request and then move forward by
sending data retrieval request to the server, operating with OPTIONS requests and then
analyzing the received response on the server side.

The GET request
Starting off with the syntax we will be working with, we shall analyze a couple of syntax
requests that will be sent to the server, as it will explain the behavioral side of the servers
and its future encounters with the WP REST API plugin.

Analyzing this request:

$ GET http://localhost/wp-json/wp/v2/posts

In this request, we will be sending a GET request to the server, a request that is used to
retrieve data from the server it is being sent to. The response we will receive will be in the
form of JSON data and will consist of all the post objects.

Regarding its technical structure, the request could be divided into several parts, namely
the URL, endpoint prefix, namespace, version and resource. These prefixes and paths
would all indicate the location of the server, endpoint prefixes, and the namespace used,
including the version of the plugin that has been used along with the desired resource we
would like to receive from the server.

The version and namespace are new things in version 2.0 of the plugin, having not been
available in previous releases of the plugin, in which the very same request shown
previously would take a form similar to this:

$ GET http://localhost/wp-json/posts

In case we are not looking to retrieve all posts that we called with the request above, and
are only interested in receiving a single post, we would have to mention the ID of the
resource that we would like to retrieve. In the case presented below, the post with the ID of
100 will be looked for and then retrieved:

$ GET /wp/v2/posts/100

Creating a Simple Web App using WordPress REST API

[110]

Besides this, there's also the possibility to search for more specific data as well, like a filtered
post with some specific criteria for which we are going to use a filter[] syntax. This
request will retrieve all posts that have their corresponding category set with an ID of 1,
and could especially be of great help when querying different data at the same time (like
categories along posts) especially when there's a link between the two. Anyway, the request
would be similar to this:

$ GET /wp/v2/posts?filter[cat]=1

When working with arguments that take arrays as inputs within the filter[] syntax, it is
to be assessed.

$ GET /wp/v2/posts?filter[category__and][]=1&filter[category__and][]=2

Posts that are assigned both the ID of 1 and 2 will be retrieved by the GET request. We will
get into more details as to how the syntax of filtering works, but for now we shall take a
look at the OPTIONS request that will make it easy to navigate through the API and at the
same time makes it a more proficient way of documenting the HTTP methods. In the next
part of our tutorial we will look into the OPTIONS requests, and how to handle those.

Options request
The OPTIONS request includes all endpoints that correspond to a particular route and
provides a list of parameters; these endpoints will provide support for particular CRUD
operations.

By using the route of /wp/v2/posts and sending a corresponding OPTIONS request to it,
we will check whether it supports parameters that can then be passed along the GET
request to query data, for which you would use any of the tools that allow request sending.
We have mentioned Postman for Chrome in our previous series, and you could stick with
that. Anyway, back to our request:

$ curl -X OPTIONS wp/v2/posts

We will now perform another request that will return data in the JSON format and five of
its properties, which are endpoints; methods; namespaces; schema, and _links.

{
 "namespace": "wp/v2",
}

Creating a Simple Web App using WordPress REST API

[111]

As we move on with our tutorial, the namespace property will identify the namespace of
our current plugin, which in our case is determined to be wp/v2, the v2 within it clearly
representing the version of our plugin, which is 2.0.

{
 ...
 "methods": [
 "GET",
 "POST"
],
 ...
}

The main property here is named methods, and it contains an array that will contain all
methods supported by the current route, which obviously supports the POST and GET
methods, giving the possibility of using the route /wp/v2/posts to manipulate posts.

{
 ...
 "endpoints": [
 {
 "methods": [
 "GET"
],
 "args": {...}
 },
 {
 "methods": [
 "POST"
],
 "args": {...}
 }
],
 ...
}

The property of endpoints displayed in the preceding example contains another array of
the supported endpoints for the current route and lists all endpoints of the supported
methods. The property will then contain object values that will turn into the properties of
args and methods, which are properties, meant to contain all of the supported arguments,
contain the arrays of HTTP methods and provide supported arguments for such methods
respectively.

Creating a Simple Web App using WordPress REST API

[112]

The GET method supports arguments that are covered under two main properties, which
are default and required. It is understandable from the functionality point of view, as
the attributes would either provide or neglect some prerogatives to arguments (such as
showing whether an argument is required or is the default value), depending on the
property that it has been provided with.

"methods": [
 "GET"
],
"args": {
 "context": {
 "required": false,
 "default": "view"
 },
 "page": {
 "required": false,
 "default": 1
 },
 "per_page": {
 "required": false,
 "default": 10
 },
 "filter": {
 "required": false
 }
}

By making use of a GET request to the index route /wp-json we could easily check the
availability of an API, which would then list the routes present including the endpoints
along their supported arguments and methods. Making use of this will no longer make it
necessary to have the routes documented externally.

Retrieving posts from the server
We will move forward with post retrieving from the server by making good use of all the
knowledge and techniques we have overviewed over the course of this chapter. In this part,
we will be using the REST API to query posts via various filters. This is where we will use
the filtering syntax to retrieve posts via its top-level parameter, which is slightly different to
retrieving an individual post as we have done earlier.

Creating a Simple Web App using WordPress REST API

[113]

There are a bunch of common query variables that point by using the GET endpoint. By
making use of the context parameter we could easily fetch posts from the server, but as
there are more parameters, we won't run into much trouble. For example, the edit
parameter will be used for editing, and the view one will be used to list a series of posts.
While we could go into detail with an explanation of each parameter, the self-explanatory
nature of each will not represent a difficulty in working with them.

The filter[] syntax
One thing to assess about the filter[] syntax is the fact that it will work in pair with the
WP_Query() class of WordPress. The pairing, to be precise, does not happen on a
connection level, but it's more of an analogy of how we will use the filtering syntax,
implying that the querying of posts is concluded in a similar way to when it is done with
the WP_Query class.

A request that retrieves a specific number of posts per page makes use of the
posts_per_page variable, and that means that the parameters for pagination that are set in
place are among the most important ones, provided they help us by displaying a precise
amount of posts.

$ GET /wp/v2/posts?filter[posts_per_page]=5&filter[paged]=2

Take a look at the request above. It involves both the posts_per_page parameter that we
have mentioned, and the paged one, which is used in a pair with the first one in order to
help us navigate to a specific amount of pages.

Another important use of the filter[] syntax is to actually provide more detailed
querying, thus it is possible to add an extra parameter to the syntax that will narrow down
the desired fetching by any time unit (such as year, hour, minute and so on).

$ GET /wp/v2/posts?filter[year]=2016&filter[monthnum]=06&filter[day]=06

The preceding request will narrow our search of published posts to any date we set within
the time parameter of the request, in our case 2016-06-06.

It will also be possible to retrieve posts that correspond to various corresponding, and we
will trigger the ones we want by using unique IDs or even retrieve posts that exclude posts
within one category (also triggered by the category's unique ID). Overall it is to be
considered that the filter syntax, as it is supposed to, provides us with the possibility of
deep filtering for various details, and thus is another point for flexibility provided by the
WP REST API.

Creating a Simple Web App using WordPress REST API

[114]

Post revisions, categories, tags, and meta
By using querying endpoints of /posts/<id>/revisions we will be able to trigger the
endpoint to view and restore any edits that have been applied to a post. If we were to
retrieve all revisions of a post (having a conventional ID of 10), we would send this request,
which is going to return an array with the revision objects in itself:

$ GET /wp/v2/posts/10/revisions

As we have seen with the filtering syntax, it is mainly narrowed down to the unique ID of
the post or category, thus if we were to retrieve a post that has its revision ID set as 2, and
the ID of the post itself is set at 10, we would be sending the following request that is going
to return a single revision object:

$ GET /wp/v2/posts/10/revisions/2

By using the preceding example, in a similar way, we could retrieve categories tags and
metadata. We are going to perform a search that will retrieve post meta with an ID of 10,
for example purposes:

$ GET /wp/v2/posts/10/meta

Other resources
At this point, it should be pretty clear how the WP REST API works in retrieving data. The
basics we have looked at in the course of this tutorial will help us with our upcoming
practical examples, and will of course help you to have a better understanding of how the
system works. Overall, it is clear by now that most of the time we will be making use of the
OPTIONS and GET requests in order to retrieve a particular resource or to index endpoints
respectively, the process for which should be clear to you by now. One more thing to
mention is that over this course we will not be able to provide examples for each and every
possibility for the cases we are working with, but the thorough documentation the
developers have put in place will definitely help you to not get lost; after all the course itself
is pretty explanatory to help you get sorted if you are somehow stuck.

Creating a Simple Web App using WordPress REST API

[115]

Status check
Our tutorial has laid the foundations for you, providing a clear and understandable path
towards creating more unique applications as a final task. The diversity and flexibility WP
REST API provides will help in interacting with the entire WordPress ecosystem as a whole
and not limit you to small, trivial tasks. As we move forward, we will be looking at how to
update, create and delete resources, which should entirely conclude the process.

WP REST API: creating and editing posts
In the previous parts of our tutorial we have gone through the foundations of WP REST
API, different authentication methods and of course the process for us to retrieve content
from a server, including the retrieval of different resources like posts and categories, which
in turn could be narrowed down to even more specific details. We got familiar with the GET
and OPTIONS request that will provide even more insight into how the API works, which
should provide you with enough knowledge to be prepared for the more detailed steps that
we will be going through in this part.

Our next step is to learn how to work with resources and especially how to create, delete
and update them, and then analyze the yielded responses that would be provided by the
server.

CRUD methods in routes
CRUD methods are the actions of creating, reading, updating and deleting. As reading has
already been covered, we will be moving forward to the remaining three. One thing to
realize is that not all routes will support the update and create methods, and in order to
check which ones do, we will be sending separate requests to individual routes by using
either the OPTIONS request, which will be sent to individual routes, or sending a GET
request to the index route of the /wp-json. If we were to do the latter, we would receive an
object that contains all routes and their endpoints within the routes property.

So, if we wanted to check if the resource supports the POST, PUT, and DELETE method, we
would have to start by analyzing the Posts resource, which would display data in these two
routes:

/wp/v2/posts
/wp/v2/posts/(?P<id>[\d]+)

Creating a Simple Web App using WordPress REST API

[116]

The first route is going to direct us to the existing collection of posts; the method property
will show that the /posts route will support various methods, and a prolonged version of
the route like this /posts/(?P<id>[\d]+) will support five different methods, which
should be pretty clear:

"methods": [
 "GET",
 "POST",
 "PUT",
 "PATCH",
 "DELETE"
],

The /posts route is helpful if we are looking to either make or create content, but it
isn't helpful if we are looking into deeper editing, such as deletion or updating a resource,
for which we would have to make use of the /posts/(?P<id>[\d]+) route. One thing to
clear up is that a single entity can not be used to generate content, as it simply does not
support this action, yet they will help us to update the content. If we were to check which
routes will support the POST, GET, and DELETE methods, then we would send an OPTIONS
request.

Creating and updating posts
As we have stated previously, during the course of this tutorial we will only make use of
the basic authentication method, which is only a good solution for testing purposes and not
real-life usage. Right now we will check whether our user that we are going to perform
some actions on has the edit_posts rights attributed to him, and will then send a POST
request to the route of /posts.

If we send a request that is empty in its body, then the server would return a Bad Request
error given that our request is empty and there's no argument in the body of it that would
trigger an actual request and not the error. We would have to send an actual argument
along the request if we wanted to receive anything, and there are three main ways of
sending these arguments: as an URL parameter; by making use of forms; or our preferred
method, which is by sending a JSON object. You can choose your preferred method within
your HTTP client, but we will stick to the JSON one for the time being. Sending the request,
by performing a very intuitive process of clicking the Send button, should yield a post
whose status would be set as draft. After that we would have the returned post, it would
have an id attributed so we will be using that in our request to the endpoint:

$ POST /wp/v2/posts/21

Creating a Simple Web App using WordPress REST API

[117]

Now we will set our request body to make updates to the "content" and "status"
property that will be similar to this:

{
 "status": "publish",
 "content": "This is the sample content of the post"
}

In order to create a post, which was done by the preceding request, there are three main
arguments that will help us do so. The title argument will obviously set the title for the post.
The status argument, being self-explanatory, will set the article to be published or drafted,
whereas the content argument will require the content of the article to go there. As these
arguments are very clear and easy to understand, we will not go in deeper detail. If we
wanted to retrieve the supported arguments for creating a post, then we would use a
normal OPTIONS request that would be manifested like this:

$ OPTIONS /wp/v2/posts

Creating and updating post meta
The first thing to do is to use the companion plugin that is provided by the WP RESTAPI
developers and is available over at GitHub for you to install (h t t p s : / / g i t h u b . c o m / W P - A
P I / w p - a p i - m e t a - e n d p o i n t s).

In order to create a post meta, we would send a POST request to a route like so:

/wp/v2/posts/(?P<parent_id>[\d]+)/meta

In this, the ID of the parent post will be the unique ID of the post that was created earlier. If
we would like to create a post object, we would send another request, which in turn would
have a JSON object made of two properties (key; value) which can then be sent to create a
post meta.

{
 "key": "name",
 "value": "RockingName"
}

If you were to send this request to the server, it would return you a successful status code,
indicating that the post meta has been created successfully, yet this would only work as
long as you were to stick to the string format, which is the only supported format for now.

https://github.com/WP-API/wp-api-meta-endpoints
https://github.com/WP-API/wp-api-meta-endpoints

Creating a Simple Web App using WordPress REST API

[118]

Creating and updating data
Under this section of the tutorial, we will try to focus on using other forms that would help
us create and update resources, and they will be classified as follows:

Sending data as URL parameters
We are now sending a POST request for creating a post like this:

$ POST /wp/v2/posts?title=the+title&content=this+is+the+content

We have chosen this method because the easiest way of sending data along the request,
would be to send it as URL parameters. The above request features two parameters: title
and content, which are responsible for the appropriate sections within a post. We could
then make use of the post ID we have and use a POST request like this to have our post meta
created:

$ POST /wp/v2/posts/XXX/meta?key=name&value=MyName

Overall, this method comes in handy when the parameters are not very lengthy, so stick to
it when it is the case.

Sending data as a JSON object
By making use of this method, we will be taking the value pair within a JSON object, which
should help us pass them to the request. By using HTML and jQuery, we will try to
replicate the results we have been achieving by using an HTTP client so far.

<form name="post-form" id="post-form">
 <label for="title">Title</label>
 <input type="text" name="title" id="title">
 <label for="status">Status</label>
 <select name="status" id="status">
 <option value="publish">Publish</option>
 <option value="draft">Draft</option>
 </select>
 <label for="content">Content</label>
 <textarea name="content" id="content"></textarea>
 <input type="submit" name="submit" value="Submit">
</form>

Creating a Simple Web App using WordPress REST API

[119]

The preceding code will be made up of three main fields, for content, status and title. We
will then submit the form and will receive a piece of JavaScript code like this:

var postForm = $('#post-form');
var jsonData = function(form) {
 var arrData = form.serializeArray(),
 objData = {};
 $.each(arrData, function(index, element) {
 objData[element.name] = element.value;
 });
 return JSON.stringify(objData);
};
postForm.on('submit', function(e) {
 e.preventDefault();
 $.ajax({
 url: 'http://example/wp-json/wp/v2/posts',
 method: 'POST',
 data: jsonData(postForm),
 crossDomain: true,
 contentType: 'application/json',
 beforeSend: function (xhr) {
 xhr.setRequestHeader('Authorization', 'Basic
username:password');
 },
 success: function(data) {
 console.log(data);
 },
 error: function(error) {
 console.log(error);
 }
 });
});

The /wp/v2/posts route will be the one to receive the AJAX request that has been sent
upon submission of the previous code piece. Upon submission, the HTML form will be
converted to a JSON format, which is then used by the $.ajax() method and its data
property. By using the contentType property we will be setting the content type to
application/json. When the request is sent to the /wp/v2/posts route, a new post is
created, yet not before we include an Authorization header that is used by the basic
authentication method that we previously overviewed. This is the method of making use of
the JSON format to send data along the request where the source of this JSON object can be
practically anything except an HTML form. There might be the need to set the Access-
Control-Allow-Headers header field to have the Content-Type and Authorization
values, which can be done in the .htaccess file within WordPress.

Creating a Simple Web App using WordPress REST API

[120]

Sending data using forms
Another method of sending data along the request is to make use of HTML forms that must
contain fields with the attribute of name, which will be an argument name whose value of
fields will serve as the value of these arguments.

var postForm = $('#post-form');
postForm.on('submit', function(f) {
 e.preventDefault();
 $.ajax({
 url: 'http://example/wp-json/wp/v2/posts',
 method: 'POST',
 data: postForm.serialize(),
 crossDomain: true,
 beforeSend: function (xrh) {
 xhr.setRequestHeader('Authorization', 'Basic
username:password');
 },
 success: function(data) {
 console.log(data);
 }
 });
});

Here we have used the very same HTML form that we used in the previous instance,
including an extra piece that will help us create a new post. The key difference between the
preceding code and the one in a previous example is that the jsonData() method has been
removed and we are now sending the form data in some kind of string format by making
use of the serialize() method that is provided by jQuery. As a last step, we would have
to send form data within our HTTP Client, and for this you have to use an option of
format-data, which in the case of Postman is located under the Body tab. As a last
mention, the arguments will be defined in key pairs that are then going to be used to send
along the desired request.

Uploading media via multipart/form-data
The multipart/form-data content type will be used when dealing with binary data if
there's a need to upload images or other files to the server. Because the very same encoding
type makes use of binary data, it will be used to upload various file types to the server. The
following example will make use of a piece of jQuery code that will be responsible for the
functionality to upload images to the server and the input[type="file"], which will be
the foundation of our HTML.

Creating a Simple Web App using WordPress REST API

[121]

The following HTML form would be:

<form name="image-form" id="image-form">
 <label for="image-input">File</label>
 <input name="image-input" id="image-input" type="file">
 <input type="submit" value="Upload">
</form>

And upon the submission of the form, the following JavaScript would be executed:

var imageForm = $('#image-form'),
 fileInput = $('#file'),
 formData = new FormData();
imageForm.on('submit', function(m) {
 e.preventDefault();
 formData.append('file', fileInput[0].files[0]);
 $.ajax({
 url: 'http://example/wp-json/wp/v2/media',
 method: 'POST',
 data: formData,
 crossDomain: true,
 contentType: false,
 processData: false,
 beforeSend: function (xrh) {
 xhr.setRequestHeader('Authorization', 'Basic
username:password');
 },
 success: function(data) {
 console.log(data);
 },
 error: function(error) {
 console.log(error);
 }
 });
});

In this example, the FormData object is initialized, leading to providing interfaces in a way
that would construct a set of form fields that would use the exact same format as the
multipart/form-data encoding type, which upon submission will be prevented by the
.preventDefault() method.

Creating a Simple Web App using WordPress REST API

[122]

The data that is going to be passed in the data property of the jQuery.ajax() method
will be processed into a query string. We are giving a property of false to both
ContentType and processData with the purpose of preventing the passage of data into
the data property of jQuery and also preventing application/x-www-form-urlencoded
from reaching the server as a default content type. As discussed previously, an
authentication of a user with edit_posts privilege is required, thus we would set the
Authorization header.

Deleting data
As with deleting data, the WP REST API is a very simple system that is going to send a
DELETE request, which will be triggered towards a particular resource. In order to delete a
post with a unique ID, we will send a DELETE request as follows:

$ DELETE /wp/v2/posts/100?force=true

This request will permanently delete the post and not trash it., The force argument is
responsible for the permanent response, meaning that removing it from the preceding
request would result in the post being sent to trash, and not facing permanent deletion. This
is worth mentioning because the reasons behind performing deletions are unknown, so
everyone can easily decide for themselves whether they want the post to be permanently
gone or not.

Status check
This part of the tutorial has been dedicated to CRUD operations for various kinds of
resources by making good use of the WP REST API, and the various methods used as
alternatives that we have gone through in this section will come in handy. As we are
approaching the end of our tutorial, it is worth mentioning that in the last part of our
tutorial we will focus on the internal structure of the WP REST API and its classes, as well
as working with the API with the purpose of manipulating responses received from the
server.

WP REST API: internals and customization
In this last part of our tutorial series on WP REST API, we will be looking at how the
internals of the WP REST API work and modifying server responses for our default
endpoints to contain custom fields.

Creating a Simple Web App using WordPress REST API

[123]

Internal classes and methods of WP REST API
WP REST API has two main categories of classes, and those are endpoint and infrastructure
classes. The endpoint classes cover the CRUD actions over resources like posts and
comments that we overviewed in the last chapter. The infrastructure classes are covering
classes that lie at the foundation of the API. In the following example, we will be looking at
each of those two classes in detail.

The endpoint classes within the WP REST API are responsible for performing actions of
creating, reading, updating and deleting, which include different controllers like the
WP_REST_Posts_Controller and various others that are united within a more general
class named WP_REST_Controller.

This patterned class that provides the means for modifying data has different methods
included in itself, which end with _item() suffix but start with a CRUD-related operation,
so a typical method would be create_item() amongst others. These classes can be
thoroughly researched and understood if you address the available documentation.

Infrastructure classes
When bringing up infrastructure classes, we should mention that there are three main ones
in place, namely the WP_REST_SERVER; WP_REST_REQUEST, and WP_REST_RESPONSE
classes, which we will be looking at in a second.

WP_REST_Server
The WP_REST_Server core class is meant to server requests, register routes and prepare
appropriate responses that would then be passed over to the client in case an error pops up,
wrapping up the message body and the error code of the error, which in the last instance
would check whether the Authorization method was in place or not. The endpoint we
have been working with during this tutorial is /wp-on, and it is to be stated that it checks
for all the capabilities and admitted routes regarding a website. When it comes to serving
requests and responses, it makes use of WP_Rest_Response and WP_REST_Request
accordingly.

Creating a Simple Web App using WordPress REST API

[124]

WP_REST_Request
The WP_REST_Request class is referred to the object of WP REST API, which would contain
data from the request of headers and body, which is then passed over by the
WP_REST_Server class in order to perform the callback function and check if the set
parameters are passing along the request, and if not, it sanitizes the data where necessary.

WP_REST_Response
The WP_Rest_Response class, as is suggested by the name, contains favorable and
necessary data such as the response body and the status code of the response.

Modifying server responses
As we become more familiar with the internal classes and methods that the API has been
built upon, we will be analyzing the methods and classes that are the foundation of the API
and provide us with the flexible system that is the API we are using today. From a technical
standpoint, the WP REST API provides a way of changing the data that is returned by the
server for every default route that not every data (such as pages, posts, users, and so on) can
always accommodate. The way that the WP REST API functions is pretty straightforward
and clear, which is why when you are planning to make changes that would most likely not
be expected, developers encourage you to think twice. Among changes that would not be
very appropriate are changes of field from a response, or ever deleting a default field. All
this can lead to compatibility issues for clients, who expect standard behavior. Adding
fields to the returned responses from the server for multiple or single objects is encouraged.

The register_rest_field()
The register_rest_field() method relates to adding or updating fields within the
response that is returned by the server and will further accommodate three main
arguments, $object_type; $attribute, and $args.

Creating a Simple Web App using WordPress REST API

[125]

The $object type will not be a string or array that contains the names of all of the objects
that we intend to add the field for, but it will be a good fit if we are looking forward to
adding a custom field to a custom post type. The $atribute argument appears in the form
of a key when the server sends its response, while the $array is responsible for holding the
other three keys, which are $get_callback; $update_callback, and $schema. They are
set in place to be used when it is necessary to receive an update to a value of a custom field,
but that does not cover the $schema key, which covers the method and variable used to
provide a definition for the custom field. While the keys are not mandatory, the capability
will not be added in their absence.

Then there is also the register_rest_field() method, which will work so that the
$wp_rest_additional_fields variable will be modified. The array will then hold
registered fields by object type and will be returned via a form of response by the server
itself. The variable of $wp_rest_additional_fields will get added whenever a new
field is registered by the previously-mentioned method.

Summary
We have now come to the end of this chapter. Here, you learned how to prepare WordPress
to power a simple web app using REST API, as well as how to optimize your app using
page caching, and finally, how to modify end points just in case you wish to create
something custom.

As we have assessed several times during this chapter, not every specific technique applies
to each and every website. However, this does not imply that these methods cannot serve
you as general technical guidelines if not practical, technical advice. This chapter also
covered the use of the REST API to power another site or application or going through the
process of integrating with one or more sites or platforms.

In the next chapter, we will dig deeper and learn further details about the functioning of
REST API and its future as well as present usage. However, for now, you are good to go
and you can work with REST API in WordPress with your current knowledge. The
remaining two chapters will give you added information that you can make use of if you
wish to take REST API beyond WordPress.

7
Mastering REST API for Your

Projects
We have now covered all the coding bits and the details of REST API for WordPress. At this
stage, you are equipped to create simple apps using WordPress REST API, as well as to
work with GET and POST requests, perform AJAX queries, and do a lot more.

In this chapter and the next one, our focus will be on brushing up the technical details for
REST API. For the most part, some of the info here might not be truly useful for a
professional looking just to build apps, but it can serve usefully if you want to learn more
about REST API in depth.

We will try to follow the rise and growth as well as the usefulness of REST API here.

Ever since the release of REST API, it being at its 1.2 version of development as we write,
there has been much excitement from developers regarding it. The JSON API plugin is
among the key things to be incorporated in the core, but since it is proving to be bigger than
expected, full integration is awaited. The challenges the developer team is facing are
immense, and it will take a lot of time and effort until a universal API is built.

Backward compatibility
Backward compatibility has been one of the main tasks, ever since the release of the first
version of the plugin, and the developers behind it are trying to be committed to this aim.
The second version, which will be merged into the core, is not going to provide full
backward compatibility, but at least the plugin will continue to exist as a backward-
compatibility layer that will allow any plugin that was developed in the plugin's first
version with the ability to function properly.

Mastering REST API for Your Projects

[127]

It is obvious that developers are not going to be recreating the plugin from scratch and
would rather be porting things over from the first version to the second one.

Thus, the routes will have to be prefixed, and the core will make use of a wp prefix, and all
of the custom routes will be assigned their prefixes. The wp-JSON prefix that is currently
used for routes is most likely not going to be used, and instead websites that will be using
the plugin are going to get the old WP-JSON routes rerouted to their new routes as long as
they're within the core.

Another idea set by developers is that anyone will be able to make good use of the plugin,
and the compatibility layer will make it look very similar to the earlier version of the plugin,
which is regarded as a fixed point in this sense. It, however, will make use of its second
version and the core infrastructure so the key point in this is that the code written for
version 1 will immediately benefit from all the bug fixes that are there and still have
security maintenance that will avoid supporting two versions at the same time.

A universal API
Another aim is to create a universal API, given all the advancement of the REST API plugin.
When developers were asked about this, they stated that one of the biggest concerns out
there is the difficulty of creating a perfect balance, as adding default endpoints in the core
has a lot of complexity in terms of ensuring the correct data is in the proper place. Another
thing to set is that the balance varies, competing concerns might sometimes arise, and in
that case it represents a major challenge, which is why its development might take more
time than expected.

Another interesting point is that creating such an API will allow the further creation of
frontend websites by someone who doesn't know how to develop for WordPress, which
will expand its horizons in terms of how development for the Content Management
System (CMS) will evolve.

Another interesting case is the prediction of how WordPress-powered mobile applications
will evolve. In such cases, the primary goal is to make the API work as a consistent piece
across all existing websites, which creates an expectation that is impossible to fulfill, the
provision of data from every site. Most of these problems will probably be very hard to
handle, given how many apparent inconsistencies there are amongst such an outrageous
amount of websites. The correct aim here is the balance that is being tried to achieve, which
will allow plugin developers the right flexibility and strictness expected by clients.

Mastering REST API for Your Projects

[128]

Architectural structure
The architectural properties and constraints set by the REST architectural style is divided
into several parts, such as scalability, which is meant to provide proper support for a
numerous amount of significant components and interactions between components, the
main effect on scalability being considered as follows:

Performance is another key component that acts on the interactions which play a
significant role in user-perceived performance and network efficiency
Components are bound to modifications that meet changing needs, including
when the application runs
Portable components by a moving program code with the data
System level resistance at failure, which assures reliability and in the presence of
failures within components or data, prevention plays its role
Simple, efficient and transparent interfaces

The separation between concerns will create simpler component implementation and thus
will reduce the complexity in the connector semantics, which will then improve the
effectiveness and the performance tuning of the server components.

In a layered system, such constraints will allow intermediaries such as proxies, gateways
and firewalls to be introduced at various points in the communication without needing to
change the available interfaces between components, which will lead to the possibility of
communicating without having any issue in communication translation and performance
improvement by making good use of large-scale shared caching and will positively affect
the caching.

REST architectural constraints
The properties of architecture within REST are realized by applying specific interactions,
which will constrain to components, connectors and data elements that can describe
applications that are conforming to REST constraints such as RESTful. If any of these
constraints are not met, then the application can no longer be considered as a RESTful one.
If the compliance with these limitations is achieved, which would be the equivalent of
conforming to the REST architectural style, then the system will have non-functional
properties such as scalability and performance, simplicity, and portability with further
reliability. Under this section, we will cover the formal, known REST constraints in detail.

Mastering REST API for Your Projects

[129]

The formal REST constraints
There are a few formal REST constraints that we will get to know briefly, as follows:

Stateless
Client-server
Layered system
Cacheable
Code on demand
Uniform interfaces
Self descriptive messages

Stateless
The client-server communication is further restricted by the absence of any client context
that would store data between requests on the server. Any request that will be passed will
contain in it all the required information to service the request, and thus the sessions state
that will be held within the client. The state of a session, that is going to be transferred by
the server to any other service such as the database to maintain a continuous state, will
allow further authentication. The client will then start to send requests when it is ready to
pass to a transition that will allow this authentication. When the client starts sending such
requests, it is the appropriate time to make a move to a new state, and while requests are
outstanding, the client will be considered to be in the process of a transition. Any
consecutive initiation of state-transition will permit the use of links contained in the
application state.

Client-server
An interface that is uniform will separate the client from the server, which would mean that
clients are not concerned with data storage of any kind, and remain internal to each other in
a way that means the portability of the client code is improved. At this stage, servers are not
bothered with user interface or state, which makes them a lot simpler and more flexible
towards scalability. The servers and clients can also be replaced and developed
independently as long as the interface between them is not altered in any way.

Mastering REST API for Your Projects

[130]

Layered system
The tiered system that is in place implies that a client cannot tell in an ordinary manner
whether it is connected directly to the end server or via an intermediary method. The
intermediary solution comes to improve system's scalability by enabling balance load and
making use of shared caches that can further imply different security policies.

Cacheable
Clients and intermediaries will cache responses in a manner that must implicitly or
explicitly suggest a definition in themselves as cacheable that is going to prevent clients
from reusing any inappropriate data in response to further requests. Good management of
the cache will wholly or partially eliminate any client-server interaction that will affect
performance and scalability in a positive way.

Code on demand
Servers can make use of temporary extensions or customizations that will affect the
functionality of a client in the transfer of executable code that is an optional constraint of the
REST architecture.

Uniform interfaces
A uniform interface constraint is one of the basics of the design in a REST service in that the
uniform interface will simplify and decouple the architecture, which will then enable each
part of it independently, it being divided into few more consistent interfaces, which are:

Resource identification
Representation and resources

We will have brief information about these two parameters as follows:

Resource identification
Individual resources are identified within requests, and for this we will be using URLs in
web-based REST systems that in themselves are separate representations of conceptions
that are then returned to the client. An example of this is data sending by the server in a
format that does not correspond to the internal representation of the server.

Mastering REST API for Your Projects

[131]

Representation and resources
When there is a client that holds within itself a representation of a resource, including but
not limited to paired metadata, then it is considered that there's enough data to apply any
modifications to the resource.

Self-descriptive messages
There's sufficient information included within each of the messages, allowing us to receive a
description of how to process the messages, which can involve a parser to invoke it that
may be specified by an Internet media type file.

HATEOS
Hypermedia As The Engine Of Application State (HATEOS) states, for the hypermedia as
the engine of the application state, that clients make state transitions only through actions
that are considered to be dynamically identified in a hypermedia by the server and, except
for a simple fixed entry points to the application, a client should not make the assumption
that any action, in particular, is available for any individual resource that is beyond those
that have been described in a representation that has been previously received from the
server.

Ever-growing REST API
While work on REST API has started, the development of the project has since taken an
extended period because of the aim the project has nowadays—growing exponentially. In
the beginning, the REST API was just a method of underlying data in WordPress, and some
of the code found in the first version still exists nowadays. The limit is set at four core
objects such as the users, posts, taxonomies and metadata that were decided early on. Even
if this seems somewhat set on limitations, it will set the REST API to cover options and any
other kind of data types. The REST API, being identical to the core of WordPress, was built
with extensibility in mind and thus includes the infrastructure for handling the remaining
data types in doing anything that you'd like as a developer.

The infrastructure of the API will support nearly everything, and if the core endpoints are
taken away, it will be considered as a framework for building APIs that can be built any
way you'd like. It, however, is not going to solve all issues that there might be, but would
rather come as a supplement to the current technical advances and flexibility in such a
manner and regard. The REST API will not satisfy the need WordPress has for a generic
API.

Mastering REST API for Your Projects

[132]

To achieve this, developers would like to allow such flexibility to plugin developers, who
have to understand that when they're granted the desired flexibility there's a downside as
well, which might be the misuse that can result in removed endpoints and broken
applications.

Overall, this comes to work as a perfect API for millions of websites that work in different
ways. At this point, the REST API provides a fully-functional solution that is ready for
anyone to use, with all the power needed for site and plugin developers to easily customize.

REST API as a platform
The REST API at its 1.2.3 version adds some extensibility to the already flexible and robust
CMS that WordPress is considered to be. It provides the benefit of turning WordPress into
an entirely innovative application framework that will further adapt to custom data types
while still maintaining a natural note and way of maintaining. The REST API is meant to
not interfere with new data types and thus will not break them when any protocol is
changed. An API such as REST will let us extend the possibilities that we already have
regarding usage of WordPress and progress in its development.

REST, which is defined as the Representational State Transfer, uses the HTTP connection
to offer some advantages to WordPress, such as the ability to interact with more objects and
verbs, reuse interfaces no matter what the native protocol, such as JSON, and then provide
integration with various plugins. The stability and scalability of the framework also
provides more options regarding data type changing and the way new application
interfaces are developed.

It is to be understood that any application depends on the top of an operating system,
which has got to be implemented in pair with the API, after which the gathered data from
local storage is converted by the application and will regard pre-determined protocols,
rules, and procedures. Specific APIs are designed to interact with particular kinds of objects,
which are hypermedia data objects, that interact in the memory pool of the following code
specifications (PUT, GET, DELETE) and security methods such as OAuth and SSL.

A thing to set is that REST is different from other web application interfaces in the way the
objects are found in memory, as it does not put any constraint on the way the strict data
rules and definitions are set. Another point is that REST will eliminate any need to build
different APIs for each new project created, and also provides better improvement in
extensibility and future possible protocol changes.

Mastering REST API for Your Projects

[133]

REST itself is an interface that has no referenced links to other old protocols, which is why
we can have easy data shifts from any earlier hypertext focus to a newer one, this setting the
basis for future improvement as protocols and definitions change over time. REST will
parse a broad range of programming languages without any preconceptions, and it will
probably work as a solution that provides frequent interaction between your legacy pages
and your WordPress site. Another thing to notice is that thanks to REST developers can
now consider REST as a solution for applying the same operations to more open-ended
objects that will not result in technical issues or to them not functioning at all.

Implementing REST API in apps
One more thing to say is that the RESTful API manifests itself as the application framework
that it already is. The first point would be the taxonomies to custom post types transition,
which would provide code modifications upon activation that will give you the possibility
to create user-defined post types with their own taxonomies, which would only provide
changes to the WordPress core files. As was assessed before, REST API is only working its
way up to being implemented in the core of WordPress, and is not yet a completed
implementation.

Custom data types in WordPress
Another thing to notice is the transition from a CMS towards an Application framework,
which provides the typical WordPress CMS framework in applications with customized
data types, all this being achieved by the extended features of REST and its capability in
terms of specifications, protocols, and technologies like JSON and AJAX. The working
version of WP-REST-API v.2.0 might come in useful for some testing purposes, but given
its state, which is currently in production, considering it for installment on a production
website is not a good idea.

REST API is not to be considered a feature of the typical WordPress CMS with its standard
features and requests. It is more of a developer tool that is meant to provide flexible and
secure content management, but with more specialized and advanced needs. A reliable
framework is the primary necessity of every user, and REST API improves the reliability or
performance in this regard, making it a worthwhile measure with respect to development
and application pairing to WordPress. The REST API will additionally provide better
functionality and a stronger basis for application development, and installing such APIs
will grant the chance of accommodating further protocols, given the flexibility they are built
with.

Mastering REST API for Your Projects

[134]

REST API in later versions of WordPress
REST API within later versions of WordPress will provide the possibility of being able to
use the second version of the infrastructure of the API that is now a part of the core in
WordPress. The activation will lead to a REST API for the content of your site and will
expose your data in a JSON format. The response data that you will receive is going to be
similar to what you would get in the WordPress loop, with the sole difference being the
format, which is JSON, which will allow display in any way, and can even filter the API
calls in a similar manner to the loop.

We shall assess the fact that some API calls are going to require authentication and, just like
WordPress required authentication to get access to wp-admin or to create a new post, most
GET requests will not require authentication and will allow content to be displayed via the
API to a third-party external app without requiring a credentials request for the user.

WordPress is the content management system of preference for many people because it is
easy to add new content types to it, and another crucial benefit of the JSON API is how it
will work with the custom post types, which will require a new type parameter to the API
request to be accessed. Custom metadata is not going to be added for you, and if you would
like to include some custom metadata it would be relatively easy to do it with a set filter.

Most of the API endpoints and post JSON responses are filtered out by using the
get_posts functions. To add metadata to a post, a post request would be sent to supply a
value within the data parameter and calls of the authenticated API would be performed to
PUT or DELETE content.

Whether you question why you would need a JSON API in WordPress or not, the fact that it
allows access to data without any constraints remains, and thus permits those developers
who make use of it to create applications that will have custom and advanced functionality,
making it possible to access your website's data without having to reload the entire page.
Overall, great experiences can be created for both developers and end users when there's a
similar API data structure running on a multitude of websites.

Mastering REST API for Your Projects

[135]

REST API and WordPress plugin
development
Under this section of our chapter, we will discuss how REST API is going to, or has already,
influenced developers that revolve around WordPress, whose livings rely on building
plugins, themes, and so on. WordPress, being a massively used content management
system, has specific requirements and constantly growing needs given its constant
improvement.

The API requirements have to be placed first when thinking development-wise, as the
interaction of a plugin as the client is going to rely more on the API and such.

REST API routes are PHP code that has to have a stable and functional code. The real
potential of default routes within REST API potentially can be as a repurposed Software as
a Service (SAAS) service.

The REST API will make a dependency injection regarding class design, and backward
compatibility will probably arise for older plugins. These plugins have to deal with
backward compatibility issues, and existing plugins might require some improvement of
the code if they want to work with REST API. Plugins that will not commit to such an
improvement will risk their very existence, mainly because their functionality might be put
in question in a further version of WordPress. Easier interfaces and better experiences will
make it easier to build WordPress as an ever-growing content management system.

REST API-based authentication
Among the several options that are available for authenticating with the API, the primary
choice will cover one of these two options:

For a mobile, web or desktop client, that will be accessing the site externally, you
will be using the OAuth method of authentication with the application of
passwords or basic authentication
For themes or plugins that are running on a site, you will be making use of the
cookie authentication method.

In the following sections, we will try to cover both of the options and their particulars.

Mastering REST API for Your Projects

[136]

OAuth authentication
The OAuth authentication method is the primary handler in authentication that is used for
any external clients, making it go through the steps of a standard authentication and then
authorizing the clients to act on their behalf, which are then issued with corresponding
OAuth tokens that will give them access to the API that is revocable by the users at any
time.

Once the WP API and the OAuth server plugins are activated on your server, all you will
have to do is create a client that will work as an identifier for the application itself, which
will then include.

After you activate the OAuth and WP API plugin on your server, create a client that it
represents and an identifier for the application which will include a key and secret that
will both need a link to your website. The OAuth server plugin will now have a full admin
user-interface and will include a client application management and the ability to revoke
tokens. To generate a new client application, you should notice an Applications item
somewhere under the users menu where the OAuth clients are managed.

Basic authentication
Basic authentication is one of the optional handlers of authentication for external clients.
Given the complexity system of the OAuth authentication, a basic one can be useful during
development. It, however, will require the pass of credentials with each request and will
then provide them to clients, which makes it profoundly discouraged for mass usage.

Application passwords are used similarly, the difference being that you don't have to
provide a normal account password and you would rather be provided with a unique
revocable password that will be generated within WordPress admin. These passwords
are only available for the REST API, and its legacy of the XML-RPC API could not
necessarily be used to log into WordPress. Authentication and application passwords
require installation of either the application passwords plugin or the basic auth one, which
would need a pass of the username with each request that is passed through the
Authorization header.

Mastering REST API for Your Projects

[137]

Cookie authentication
The authentication method makes use of cookies the primary method included within
WordPress. This makes it so the cookies are set up correctly when you log in to your
dashboard, so that developers of plugins and themes only need the user to be logged in.
This is true, yet the REST API will make use of a technique called nonces, which will help to
avoid Cross-site Request Forgery (CSRF) issues. This will provide you with the possibility
of avoiding other sites to perform actions without needing to explicitly intend to do this,
which would require a kind of different way of handling the API.

Developers using the built-in JavaScript API will not have any issues in this regard; this is
mainly recommended for use relating to the API in plugins and themes. Using
wp.api.models.Base will extend the assurance that correct data is being sent for any
custom requests.

Nonce will be needed to pass with each request in the case of manual Ajax requests, which
would then make the API use nonces with the action set to wp_rest. Further passage to the
API will be performed via the data parameter of _wpnonce (POST data or the query for GET
requests) via the X-WP-Nonce header. One thing to assess is that supplying the nonce as a
header is probably the most reliable approach available at the moment, given that PHP
doesn't transform the request body of a DELETE request into a super global one.

The cookie authentication method relies strictly on WordPress cookies, which is why this
method will only be suitable when the REST API is used inside WordPress and the current
user is logged in within the system. Additionally, the user has got to have a corresponding
capability to perform the action.

REST API and security
As we have previously mentioned, the infrastructure of WordPress will be included within
the core of WordPress itself in version 4.4. The release of the upcoming WordPress version
will yield several endpoints for the REST API, which has brought up some debates
regarding how security will be handled.

REST, being the stateless client-server protocol that it is, will be used over HTTP most of the
time. REST is not a specific API for WordPress, and is mostly used for non-specific tasks
over the web as a standard protocol. The WordPress REST API will make your website a
web service that applications will be able to retrieve data from, and all this will happen on
an automated basis with no need to access the website from the browser.

Mastering REST API for Your Projects

[138]

Regarding how the WordPress REST API works, we will retrieve information from a
website that works as a target. This will send a specific HTTP GET request that will be
further conducted to the REST API. Your target website will not return any data that is not
already available publicly; it, however, will return an easy to understand format for the
APIs which can then send over other requests.

One thing to state is that anyone can query the WordPress API on your WordPress powered
website, and by this they can retrieve public info such as comments, pages, and posts.
Another method of use is to update and retrieve information regarding users or posts, yet
such tasks will only be achieved if an authentication is performed. The API will allow
similar functionality to a normal WordPress and is going to provide an install with no need
for any user-friendly interface, given the level at which these queries, requests and
operations are performed.

As an overall appreciation of security, it is to be admitted that the WordPress API might or
might not pose new security risks, which will be looked over. Overall, the only security
concern is the fact that the REST API, just like any API, represents a risk in itself because it
is an additional attack surface on WordPress, and the more attack surfaces there are, the
broader the chances for hackers to exploit or take advantage. In this regard it shall be
mentioned that no particular vulnerability within REST API has been found, so we are now
facing more of a generic or common security concern rather than something specific about
the REST API. Another thing to be mentioned is that the REST API will only make use of
the information that is publicly available, which other services like an RSS or the front-end
of the website itself would have access to, so you shouldn't look at REST as if it's an
incredibly innovative yet unknown thing in regard to how it works.

Overall, it should be considered that REST API is a secure and tested solution that is used
by millions, which is why if you keep up general maintenance of your site with timely
updates, for example, then no worries regarding security will concern you. As we have
looked at already, the upcoming changes to the REST API will provide developers with a
bigger pool of options for development choices and possibilities, which is always only a
good thing.

REST API being used in WordPress plugins
REST API, being considered as an ever-growing and reliable solution, has become the
backbone for a multitude of WordPress plugins that offer a wide range of functionality from
contact forms to menus and means of authentication. This proves that the future lies on
REST API, and developers have actively started making use of it.

Mastering REST API for Your Projects

[139]

Under this section, we will cover the Thermal API plugin, one of the main plugins built
with REST API.

Overview
Thermal API will allow you to elevate your WordPress content in a very familiar
WordPress manner. Thermal is the plugin that will give you the power of WP_QUERY in a
RESTful API way. Thermal will support client-based decisions and has a responsive design
framework that is going to allow for a responsive application that will leverage a
WordPress content source.

Thermal will be considered as a gateway between your WordPress-managed content and its
consumption. Thermal will expose your content for a variety of uses such as native
applications, syndication, embeds and mobile web interfaces. It will help you use your
WordPress content from anywhere, however you would like. Thermal will be particularly
useful if you are working with mobile applications or syndication networks. It will set your
WordPress-managed content, which will be free between numerous devices and platforms
that will let you do that with an interface that works and acts like you are expecting
WordPress to work.

These are the main reasons that you should consider regarding WordPress:

Thermal makes use of REST, so it follows the usual URL structure of other web
APIs
Thermal will use the exact query parameters such as WP_Query, and there is no
need to learn a new syntax
Thermal relies on top of WordPress' internal APIs where caching is assured
Thermal is provided with active maintenance
Thermal automatically supports all public custom post types and taxonomies.

To get started with Thermal, all you will have to do is download the plugin and then go
into the documentation. We will bypass that info, since it is beyond the scope of this book.
Because Thermal is a new API, it is yet to gain high popularity.

Mastering REST API for Your Projects

[140]

Disabling REST API
We have assessed, using numerous instances, the benefits of REST API and how it is
progressing, and we have also looked over the security concerns that might be bothering
you. In this regard, we will look over the practical method to disable the JSON REST API in
WordPress.

Some website owners might not be using all the features provided by the API, and if they
are skeptical about the security concerns that revolve around REST, and you would like to
secure themself from a DDoS attack, then similarly to disabling Extensible Markup
Language-Remote Procedure Call Protocol (XML-RPC), you could disable the REST API.

To disable the JSON REST API on your WordPress website, you will have to add a piece of
code within the functions.php file of your theme files.

add_filter('json_enabled', '__return_false');
add_filter('json_jsonp_enabled', '__return_false');

The code piece above will make use of the available built-in filters, which will then disable
the JSON and JSONP APIs. To manually add the code, you will have to install and then
activate the disable JSON API plugin, which will work out of the box with no settings
required for you to configure.

Summary
We have now covered the details of REST API, its background, and the larger role that it
can play in your WordPress projects. Our next and final stop will deal with all the
remaining coverage of REST API, and summarizing its usability for WP developers.

8
WordPress REST API in

Practice
WordPress is, step by step, becoming an application framework, which implies the need for
APIs that will allow new functionality. The REST API plugin is the physical manifestation
through which the REST API will be used, its functionality being described in brief would
be the retrieval of users, posts, taxonomies and other server-side data that by the means of
this plugin will be achieved more easily. WP API will provide a simple and standard
interface to the WP Query, the APIs of posts, users and post meta, which also includes an
alternative API based on Backbone models that provides developers of WordPress themes
and plugins with the possibility to get up and running, and retrieve data without knowing
any details about how to connect to the said server.

This chapter will give you a crash course in WordPress REST API itself. Yes, the API itself.
There is not much coding here, but if you need thorough background info about REST API
in WordPress, this is the chapter to read.

WordPress REST API is currently at its second version, and it is important to state that a
few key changes have been applied to the second version of the plugin, which we will go
through now.

WordPress REST API in Practice

[142]

Key differences between v1 and v2 of the
plugin
The stage of development of the second version of the plugin is now at the beta 1 of v2, and
while the developers team believes that the API is stable enough to be used in public
testing, they admit that they could still occasionally break it in order to have it further
improved, thus it is strongly suggested you only use the API in development contexts and
avoid production environments for version 2 of the plugin.

Internal changes
Endpoints will take a single parameter, as opposed to the previous version. The endpoint in
question is WP_REST_Request. The argument registration has been transferred to route
registration, and argument options are set to a default value.

Register_rest_route will now help with route registration, but requires the
use of a namespace. It is used with the plugin slug along the plugin version like
so wp/v2.
Built-in endpoints will now make use of a typical controller base class, which has
its standardized pattern. In version 2, this changed to become a public API for
developers, and the recommendation is that this is applied when working with
most use cases. While it is not mandatory in custom code, it will just embody best
practices in the core of the API.
Callbacks with permissions will now be registered in a separate manner towards
the response callback, which will allow better capability assertions for clients.
The server will now sanitize and validate arguments for us by making use of
validate_callback and sanitize_callback options at the time of
registering arguments. The callback for validation will then return truth values
for valid parameters, false ones for invalid parameters and errors respectively.

External changes
The external changes performed are as follows:

The core routes within WordPress have been transferred to the wp/v2
namespace.

WordPress REST API in Practice

[143]

To follow the Hypertext Application Language (HAL) standards, the
hypermedia links have been changed from meta.links to _links.
Links will be given an embeddable attribute that will indicate whether they can
or cannot be embedded within the response.
Defined content types will have a schema attributed to the endpoint in a way that
will follow the JSON Schema standard
Comments have also suffered a change in the way that they have been moved to
a top-level endpoint in the manner of /wp/v2/comments.

Future changes
There are expected future changes for the API, which would go beyond the second beta of
the plugin. Those changes would cover:

Auto-validation for schemes and improvement to their internal and external use
User meta access
Links from collections
Public user access to the data for authors

Improved handling of how deleting is covered

Functions of APIs
APIs are sets of protocols and routines that are used within building applications for PCs,
web or services. An API will specify the necessary interaction that is occurring within
components; it mainly provides a foundation for building an application. In short, the API
will help with sharing data between programs and thus improve interaction. The API will
provide access to the internal functions of applications so that other third-party software or
services can make use of this functionality. Most of the time, by the means of an API, the
developers are being provided with access to major services that provide some sort of
functionality, which is then used by developers to build even more extensive apps on top of
the primary ones, thus an open yet secure form of collaboration is occurring between the
parties involved.

WordPress REST API in Practice

[144]

The REST API in theory
The Representational State Transfer, which stands for REST, is an architectural style of API
that is intended to provide a lightweight form of communication between the parties
(consumer and producer) and thus create an optimal solution for services with a high
volume of operation like the WordPress CMS.

By combining an architectural style of REST and JSON, the WP API is composed, which
yields a great tool used by developers that can share data from their WordPress websites to
other applications or services. The WP API will allow the actions of creating, reading,
updating, and deleting data from a site, specifically posts, users, pages, media, comments,
and so on. Overall all kinds of possible content can be manipulated by using the WP API.

The WP API, being in its second version, is now a preferred method of development by
many. JavaScript based functionality will be the first aim, and through this opening large
room for operation for the said API, specifically content editing, validation of forms, and
operations relating to themes and plugins that are based on JavaScript. Content
manipulation in specific opens a lot of creative solutions within development possibilities,
thus promoting new development techniques, solving current problems and getting rid of
limitations that might still exist.

As WordPress is moving towards becoming a fully-fledged application framework, REST
API comes to prove the amount of control developers and users have been given with
regard to the content management system. New content experiences will now be built
thanks to this plugin, given the possibility of managing the content of a WordPress-
powered website from an application other than the official one. Third-party applications
could also be used in some other form with regard to your content, be that a new form of
integration of apps within your site, or your content within other applications, it is still a
new step forward for how we perceive content operations and development possibilities
overall.

The future of WordPress is also strongly tied to how we will utilize the functionality of WP
API, and it is believed that once the plugin gets out of the beta production state, its use will
proportionally increase. As WordPress has a broader use, the ways we will be making
applications interact with it will also increase, thus more interesting and creative
approaches will appear.

WordPress REST API in Practice

[145]

A guide to HTTP and REST
REST is a simple and easy way to assign interactions that happen between systems. It has
been implemented more and more within APIs, all because REST has a minimal overhead
regarding clients of all kinds (desktop computers, mobile phones, online services). REST,
being inspired by HTTP, is a system that is used either in pair with it or more likely in
places where you would make use of HTTP. It is considered that REST has a strong pair
with HTTP, given that building on top of HTTP requires the use of XML-based languages
like SOAP, which has totally different conventions and still has limitations. While making
use of SOAP is indeed useful in some particular scenarios, when working with HTTP it is a
better idea to refer to REST, given that it has been built upon it.

HTTP
HTTP is the protocol that allows the transfer of documents and data on the web by
determining exchanged messages that are appropriate to reply to others. The HTTP relies
on two roles, the server, and the client. The client will initiate the conversation and then a
related reply from the server will follow up. The messages within HTTP are text ones. Thus
they are either pieces of text and media of some types. The messages of HTTP are divided
into bodies and headers. The bodies will contain within themselves data that could be sent
over the network, yet they could also remain empty. The header will contain metadata and
the HTTP methods when this is requested. Contrary to this, REST will apply more
importance to the header data rather than the body.

The HTTP client and server will exchange information about identified resources by
making use of URLs. It is stated that the request and responses will contain a representation
of the resources, meaning a certain format regarding the state of the resource and how that
state should be in the future, including the pieces of representation that are the body and
the header.

The metadata is contained within HTTP headers and thus are tied by the specs of HTTP.
The body will then hold data in any formats and further send the media through requests
on metadata or different URLs. Applications are usually built in a manner that will change
the format of the data and then tailor themselves for various clients and preferences.

WordPress REST API in Practice

[146]

HTTP client libraries
To have the possibility of working with different request methods, you will need to have a
client that allows you to specify a method of use. As APIs are accessed by using a separate
client application, or the browser, it is important to have decent capabilities of the HTTP
client within the programming language you choose to work with. The HTTP client library
you would most likely make use of would be curl, which includes a library that can be
used by the majority of programming languages and also includes a standalone command
line program.

The HTTP protocol was made up to provide a mean of communication between systems
which would have as their common point the way they perceive the protocol. When
working with REST and HTTP, it is a good idea not to use PHP but rather use Ruby or
Python with their corresponding frameworks, as their support for REST is better.

The WordPress REST API
The WordPress REST API is a huge breakthrough in the evolutionary process of WordPress
as a CMS from one side, and as a fully-fledged application framework from another side.
We will try to cover most of the features and practical uses of this API so that there aren't
any unclear points left behind. At this very stage, the REST API has undergone a thorough
evolution phase from being just an idea supported by one person to a global API that is
considered to make it within the core in the nearest future, it being backed up not only a
solid team of developers constantly working on improving it but also by its separate mini-
community within the larger WordPress one.

The JSON REST API
The JSON REST API will now make it possible to manipulate and use code to ease up trivial
tasks like creating content and working with posts, pages and users with minimal effort.
The interface that was created by the core team makes it an easy and undaunting task.

JSON, the JavaScript Object Notation, is a preferred format for creating structures that will
then be used by our data, and thus applications will be able to make good use of it. JSON-
formatted data can be created from one programming language and then processed from
another, thus making communication between systems and languages way easier through a
common data format, which JSON is. This opens the room for a proper expansion of how
we perceive WordPress now and in the closest future.

WordPress REST API in Practice

[147]

REST, the Representational State Transfer, is an architectural preference that relies on HTTP
and thus has as its primary actions POST, GET, PUT and DELETE. In short, we now make
manipulations of data by using HTTP and relying on REST API.

Rest API would be considered so because it has a set of defined aspects, like the basic URI,
standard HTTP methods (GET/PUT/POST/DELETE), hypertext links that have reference to
the state and related resources, and an internet media type like JSON or XML.

The WordPress REST API is an interface for common data and programming that writes
and reads information from the WordPress applications as we used to know them.
Regarding the use of REST API, it is pretty obvious that its main purpose will cover data
reading and manipulations, including within third party applications.

Because of the functionality of REST API, we will now go beyond the common means of
writing, editing, retrieving and deleting data. This will be covered regarding the so-
common front-end of the WordPress we have been used to using with regard to data
manipulations. Now, we will only need to have access to the backend to successfully
complete actions of these kinds. Custom APIs could and are already used to accomplish the
very same result, yet custom APIs impose more restrictions and are way limited compared
to a global, core-integrated plugin, as REST API is about to become. It also imposes
limitations for the millions of users who do not have such custom-built APIs built. Because
the admin page will no longer be such a big necessity, applications of all kinds will pop up
and the importance put on the need to perform from the frontend will reduce.

Integrating applications with WordPress will become an even easier task than it is now as
the old way of pairing used to be by using XML-RPC. Now, with the REST API set in place,
the ability to allow and perform complex functions is way higher. The REST API will also
give the possibility of having direct communication with the database.

Developers of WP REST API
With the development of the REST API, and its incorporation within the core of WordPress,
it is pretty obvious that an end result like the said plugin requires a lot of work and effort,
with somebody being responsible for it.

Ryan McCue, the person behind the WordPress core, started contributing to the community
more than five years ago, and he is now the person responsible for creating the JSON REST
API, which is a platform that is very easy to work with and that can easily interact with any
programming language and thus benefit any program with an API access, including
support for a native iOS and Android system. Even if the development goes on, improved
website experiences are already resulting from this API as it leaves behind several

WordPress REST API in Practice

[148]

restrictions that current APIs impose. Matt Mullenweg, the main guy behind WordPress,
also considers that as WordPress continues to evolve, a bigger focus from the application
standpoint will be created once the API is implemented within the core. Functionalities like
infinite scroll and live reloading are already starting to become basics even for official
WordPress themes, and the flexibility of such APIs, compared to a more complicated
system like XML-RPC, solves a lot of issues and hassles.

Overall description
From an overall point of view, the REST API is a great innovation within the WordPress
development community, mainly because of its great features that permit content to be
saved from other apps and websites no matter if they use WordPress, and by this,
thoroughly extending the capabilities that WordPress currently has. By using the REST API,
developers will build new applications for site management and content editing that will be
something much different than the current admin panel located within WordPress.

Plugin and template developers will be able to do their job more easily, given that plugins
and themes will be able to load the content dynamically, and in this way a more
standardized way of handling AJAX from the frontend will become a norm.

The RESTful API, which remains the basis of the REST API, is also considered to overcome
the limitations that the current technology of the XML-RPC API imposes, regarding how
requests and responses are made. Thus the usage of JSON within the REST API will interact
better with the majority of programming languages as well.

In this way, we will no longer perceive WordPress as a content management tool alone, and
will look at it more as a new way of interacting with any data within WordPress such as
users, posts, and media. While the usages of REST API within WordPress are broad and
useful, the way it will find its use in other third-party applications such as mobile
applications is even more pleasantly surprising. The dynamicity and extensiveness of
plugins and themes that can result from making use of the REST API will also be pretty
great. It is to be considered that WordPress will benefit greatly from the REST API, as it will
only increase the demand for the CMS, considering that it will no longer be perceived as a
CMS alone given the technical possibilities surrounding it.

Considering the momentum that REST API has been gaining in the last three years, it now
no longer represents a simple plugin but more of a fascinating solution for thousands of
developers who have been forced to make use of less functional, hassle-full methods when
working with WordPress. The fact that a generic API will be added to all those websites
that are powered out there sounds like an impossible mission, yet it has been proven that
even if it's hard, progress will continue, and REST API is definitely the next cool thing about

WordPress REST API in Practice

[149]

WordPress and everything surrounding it. One more thing, is that given the constantly
increasing popularity and demand, developers will start paying more attention to it and
considering it for possible implementation of their projects. That's impressive progress,
considering the unimportance everyone was assigning to this plugin when just one single
developer was behind it, and not even he imagined such a fast core integration for his
product.

JSON
JSON, as in JavaScript Object Notation, is an open-standard format that makes use of
readable text to send data objects made of attribute value pairs. It is considered to be the
main alternative XML and is the most common data format used for the communication
between browsers-servers.

The JSON format data is available in many programming languages and because of the
common conventions with other programming languages like C, Java, and Python, it is a
perfect language for data interchanging.

JSON has two structures as its fundamentals:

A list of values that will be realized as arrays, vectors, lists or sequences
A collection of value pairs that will be realized as objects, associative arrays, and
so on.

Given the universality of these data structures, most modern programming languages can
easily support them in one form or another, and thus create easy interchangeable data
formats between languages that are also based on these structures. The JSON lies at the
foundation of REST API, and has become famous for the fact that by the REST API, and
thus JSON, a lot of new functionality will be brought to WordPress, such as:

Client-side applications powered by WordPress
Form processing using AJAX and the JSON REST API
Improved metadata sorting by REST API

WordPress REST API in Practice

[150]

JavaScript
JavaScript, as an ever-growing language used for front-end development, has started to
gather more and more popularity in the last year and has now started to cross lines with
WordPress. Whenever Matt Mullenweg himself throws a suggestion stating that it's worth
it for WordPress developers to learn JavaScript, something interesting is going to come our
way. While WordPress mainly consists of its Codex and PHP for fundamentals, JavaScript
does have a few similarities with them, so it is worth taking the opportunity to start
learning the language given the rise of how it is going to be implemented within themes
and plugins and its interaction with the WP REST API.

JavaScript, as a front-end language used for development, does a client-side communication
with the browser of the user who's visiting your website, while PHP does the server-side
communication. It is more than likely that you're acquainted with these notions, yet have
you ever thought about how JavaScript could improve the overall experience when
compared to PHP, especially by limiting those server requests sent by PHP. As we're all
about progress and improvement, speed has always been a concern and alternatives to PHP
as the backbone of WordPress could pop up faster than we might expect.

JavaScript has its downsides as well, as there's no ideal or perfect solution and more of a
perfect individual choice. The same goes for JavaScript: if you actually want those server
requests to happen, then you're out of luck. Also, there are some small concerns about how
JavaScript will interact with older browsers and thus compatibility might be brought up as
a reason not to consider JavaScript.

While the preceding text might sound a little bit pragmatic, it's a fact that JavaScript is
already a big part of WordPress and that manifests in the presence of JSON and jQuery
within it, along with a bunch of other JavaScript libraries that are present. Our main concern
in this topic is the interaction of JSON with the WP REST API, but that will be looked at in a
minute.

The biggest use of JavaScript within WordPress, besides the libraries lying at its base, is the
WordPress Admin panel, which couldn't be any more essential, at least for the time being.
Again, I believe its importance will drop drastically once the WP REST API starts taking
huge turnovers, but for time being, it still stays as the frontend core part of WordPress. All
changes on the admin screen are done by means of JavaScript, the only exception being
those changes that cover the server-side actions of CRUD: Creating, Updating or Deleting
posts.

JavaScript within WordPress is heavily used in the majority of those themes and plugins
that are present on your website and are responsible for the effects of sliders and dynamic
effects.

WordPress REST API in Practice

[151]

And to end the showcase of where JavaScript is used within WordPress, it should be stated
that the WP REST API is a clear example of how JavaScript gets to interact with WordPress.
The JSON objects would be used, thus granting interaction of JavaScript with the database.
This changes a lot, given how close we are getting to a full interaction of JavaScript with
WordPress.

The only difficulty in the way of JavaScript taking over the lead position for powering
WordPress is PHP, which is definitely a brave opponent. Overall, there are quite a few
familiar concepts found both in PHP and JavaScript that are helpful when learning either
one of those two. The main common points within JavaScript and PHP would be the syntax
(which has both common and distinct points), variables, operators, comments, strings,
arrays and functions.

WP REST API and JavaScript
The biggest advance of JavaScript in the WordPress field is the WP REST API, which lets
you do some backend magic such as interacting with the site database. JSON is responsible
for doing the backend actions of editing, writing and reading data by following JavaScript
concepts that lie at its foundation. Using JSON within the REST API would require you to
use an HTTP client, which will allow the interaction to happen between the API and client.
You will proceed to authenticate to your site, but one requirement is to have REST API
enabled, which on WordPress sites is set as active, by default. In case you're not sure
whether REST API is enabled or not, you should take a look through the official REST API
documentation to choose one of the available methods. Authentication will happen either
by OAuth authentication, cookie authentication or an active plugin or theme on the site. The
next step is to fetch, edit and post data, which will end up with manipulating the said
data—the main feature of WP REST API. The possibilities for avoiding PHP entirely or
mixing up PHP and JavaScript definitely open up the room for a lot of possible
combinations and development experiments.

XML-RPC in WordPress
XML-RPC is the remote protocol, which uses XML in order to encode the calls as a transport
method, which has caused a bit of a trouble within the WordPress community and to the
platform itself. The interface is said to be insecure given its bad means of encryption and
sending plain usernames and passwords in its requests. And it is known to be sending quite
a few requests in order to access your site, and with every access, especially when browsing
over unsecured HTTP connections, your credentials are put at risk. The risk of hacking has
brought up several WordPress plugins that have the intention of providing a new method
of authentication that wouldn't put your credentials at risk. These plugins work by creating

WordPress REST API in Practice

[152]

secret keys within the XML documents and then passing them through the Authorization
header when sending the request to WordPress.

The preceding approach is more of an optimistic way to look at how the things are without
ditching the XML-RPC solution of remotely connecting to a site altogether, yet there's a
different option that also has the right to be considered. That would be to admit that XML-
RPC is a vulnerable and inconsistent solution that works but creates too many
vulnerabilities such that at times developers would even refer to it as a Pyrrhic victory (a
victory which inflicts a devastating toll upon the winner) given how many websites have
been exploited, hacked and attacked by the means of XML-RPC.

An interesting thought has been flowing on the Web stating that security plugins for XML-
RPC are not helpful, simply because the users who are having their websites hacked are
precisely the ones who wouldn't make use of such a plugin, which really makes us look at
this concern in a different fashion. XML-RPC, with the provided functionality of remotely
connecting to websites, has definitely been usable, and actually used by the Jetpack plugin
and mobile applications. But with the previously mentioned concerns and the WP REST
API, which is taking over at a fast pace, we now have a safer and better alternative that will
slowly come to provide a more secure mean of remote connection. And while REST API has
not made its way into the core of WordPress yet, you could take precautionary steps and
disable the XML-RPC, as it is active by default on WordPress-powered websites, which
would yield an immediate improvement to the security and stability of your site.

REST API revenue sources
As REST API is evolving, and is so near the finish line in terms of core integration, new
possibilities for creating and receiving monetary incentives are popping up. Overall,
WordPress and different plugins and platforms are open source and thus have a big pool of
contributors and users who constantly improve and then use them. Most such products are
the results of common efforts where thousands of developers and enthusiasts put in their
time and then get to make use of a finished tool. This is probably one of the best things
about how open-source platforms work, yet even open-source tools cannot always be at the
ease of use for all users, and this is how premium products appear. Most of the time these
would be the initial product which has had its functionality enhanced, even more
improved, and with a very user-friendly interface that almost any non-technical user could
apply towards their needs. As this is clear, we will understand that REST API will also be
used for some commercial products that we can only predict about. Overall, the incentive to
help your fellow users, and get a piece of the cake, raises the motivation to create versatile
products.

WordPress REST API in Practice

[153]

Now that we are so close to REST API's blooming, we could probably review some of the
possible ways in which the API will be used, in a premium manner for which the end user
would be charged. Considering that the niche of premium WordPress plugins and themes
is pretty saturated and it's hard to come up with original ideas in this regard, considering as
a next step the WP REST API could be a very wise business decision.

Mobile applications
Mobile applications will most likely see a huge revamp in regard to REST API and how it
will be used for connecting remotely with your website. Given the technical possibilities
and the common API for all WordPress sites, generic applications that connect with your
site and somehow improve and manage your site from mobile devices are a niche that is
believed to have huge potential. As it has been a few years now since we realized that the
Web was making a huge move from desktops to mobile devices, we could consider this
market to probably be the one where a lot of money will be made. More specifically,
because the market is so big, as WordPress powers nearly 25% of all websites on the Web,
the users will most likely be interested in having even more control over their websites from
mobile devices. Besides the official WordPress application for mobiles, which has enough
functionality for what WordPress can offer, there is not much of an alternative, and this is
pretty easy to understand as the potential for remote control via the WP REST API and how
it connects to your site has not yet been uncovered. The first ones to create applications
covering this path will be those who will make the first revolutionary steps, and the
majority of the market will be more than likely to make use of this innovative and secure
solution.

Wearable devices
I consider wearable devices to be the second niche market after mobile applications to apply
the functionality of the REST API and make a market out of this. While wearables have not
yet proven to be as dominant as mobile devices, it is still pretty clear that the main
functionality these devices provide is fetching data from other applications and websites
and displaying it on more convenient smaller screens like those of watches. Because they
rely so much on retrieving and receiving data from other sources, REST API will be more
than useful for fetching user data from WordPress websites.

WordPress REST API in Practice

[154]

SaaS services
SaaS services are very likely to become heavily affected in a positive way when the REST
API strikes them. As WordPress is no longer used for blogging purposes only by companies
and is more and more tied to their products, the arrival of the API will create new ways for
software developers to provide integration of frontend and backend that will definitely
yield something that will provide a new foundation for further SaaS applications, given
how stable, safe, and (thanks to WP REST API) extensive a solution the REST API is.

Third-party apps
Third-party applications are probably another direction that the REST API will take in
regard to its use, given the new possibilities that will allow a more thorough integration of
WordPress with third-party applications by big players like Google and Facebook. I believe
there is little functionality in WordPress right now in this regard because of the absence of a
fully functioning API, which will be soon solved by the REST API. It will be interesting to
see how WordPress is able to provide extra functionality to these third-party applications,
and the other way around, meaning that the combination of two different platforms with
different functionality will result in a totally different product at the outcome, which in the
end will mean new possibilities for conducting business and product monetization.

Web services
Web services are a set of technologies, that power the Internet we know today, which are so
powerful that their outcomes are the software, programs and services we use today on the
Web. Given the flexible environment that the Internet is, and the continuous development it
has been undergoing for more than two decades, several solid foundations have been built,
which we developed even further in order to bring even broader functionality, better
services and platforms to our end users. Most of the standards that the Web has are built on
HTTP, and were designed for laying at the foundation of several web platforms and
services. Standards that would be compatible with REST are what we will go over, and we
will see how they are used in practice to bring the Remote Procedure Call implementation
of applications via HTTP. RPC styles might sometimes be appropriate and at times other
solutions have to be brought up.

One thing to consider is that our modern services and tools could create web services easily,
and thus programming languages such as Java or C# could prove this theory right. If you
are using these tools to create RPC-style web services then it is very likely that it won't
matter to you, as RESTful services are as simple as they could be. If you are providing
services or platforms of the types discussed previously, it is important to understand how

WordPress REST API in Practice

[155]

valuable these basic web protocols are, and that maintaining the same code structure and
standards is pretty valuable, including and not limited to RESTful web services.

REST was not thought of as architecture in its beginnings, and with it currently undergoing
transitions and improvements, REST has got to be perceived for what it is as a framework.
As the common practices and best way to apply them have not been so clear for REST, a
concrete architecture based on REST is needed as a set of guidelines and directions that will
show the potential of services fulfilling the Web.

Competing architectures on the Web
As a group of web services, it is important to outline the competition that is happening
between three main services, which are RESTful services, the RPC-style ones, and the
combination of these two, which are hybrid REST-RPC combinations.

RESTful architectures
Our main concern is the RESTful web service architectures, which is why we will start with
an overview of them. Within the architectures of the RESTful systems, information goes
straight to the HTTP method, while in resource-oriented architectures, the information goes
into the URL. Within the first line of the request sent to HTTP to a resource-oriented
RESTful web service lies the info about the desire of the client. The remaining details can be
made with one line of code and if the HTTP method does not correspond with the method
information, then it is to be considered that the service is not a RESTful one and if the
information isn't within the URI, the service will correspondingly not be thought of as a
resource-oriented one. To bring up a few examples, most common web services that rely on
RESTful, resource-oriented, would be static websites, storing services such as the Amazon
S3 one, and read-only websites like Yahoo or Google. As a method of exception we could
also say that web services that do not rely on SOAP could be RESTful.

RPC architectures
A web service of the RPC style is an architecture that will receive client data and then send
it back, all this while the information is kept within message formats like HTTP and SOAP.
The HTTP format is considered to be the most popular one, given how every web service
uses it in some way. One thing to note is that web services based on RESTful will share
familiar acronyms and names because they are built in a common way and thus have the
same interface that they rely on.

WordPress REST API in Practice

[156]

As XML-RPC is the most common protocol for web-services and as you can obviously
deduct it is based on the RPC architecture, it works as a legacy protocol that will model a
programming language in which you would call a function with arguments and then return
the value back. As an example, we could say that any service that relies on the HTTP POST
value is very likely to be an RPC-style service, and such examples actually tend to move
towards combined versions of REST and RPC.

Combination of REST and RPC
One interesting combination to highlight is the REST-RPC architectures (also named HTTP
+ POX), which are in their way a hybrid of not very well developed structures. Given
HTTP's way of functioning, an RPC service would use plain HTTP and its URIs would end
up being either RESTful ones or combinations, which is something that could cause
conflicting structures, or architectures that are not clearly defined, and in the end it would
all create confusion.

Overview of architectures
As there are a bunch of technologies relating to the Web, we should probably take a look at
web services and the architectures that are at the bottom of each.

HTTP is the most common architecture, as all web services make use of this. If we would
send a request towards a web service that is a RESTful one, the method information will be
put in the HTTP method and then looked after within the HTTP header, URI or body.

URIs, are strings of characters which are being used with the aim of identifying a resource
and then enabling further interaction with the resources of a network by making use of
protocols. In RPC architectures, an URI is exposed for every process of handing these
procedure calls, while in RESTful services the URI would be exposed for every piece of data
that operations will be performed upon.

JavaScript and WordPress
Ever since the rise of REST API, JavaScript has risen in popularity among WordPress users
and the WordPress developer circles. In this context, developers have started to enhance
their JavaScript skills so they can be ready whenever the REST API strikes, and in the words
of Mullenweg, a more JavaScript-oriented WordPress will rise.

WordPress REST API in Practice

[157]

JavaScript, being a front-end development language, runs on the client side (the user's
device) and can be used for different things such as creating visual interactions on the site
(through its jQuery library). In simple words, a library is just a code repository that can be
used to enhance the functionality of the fundamental language. Libraries rely on shortcuts
and functions to build upon the coding language. This is similar to a framework that also
works like a sort of an extension of the initial foundation, yet it wouldn't work like an
independent library in an isolated system, it would more be paired with these libraries.
Short-codes that are created with templating systems will allow the use of repeating code
chunks, thus avoiding the need to write code that has been already written twice.

As there are a bunch of JavaScript libraries, it might be difficult to set a specific one, which
is why you should always have an appreciation of the situation and understand what your
exact needs are and how you will apply the features of this library or framework within
your projects. It is possible to use two libraries at the same time and all of them are free to
use and open source.

jQuery is the most common and well-known library belonging to JavaScript. The chance is
you might have heard about jQuery many more times than you have heard about
JavaScript. WordPress also relies heavily on this library and it is understandable, given the
extended functionality for frontend effects that is achieved via jQuery.

AJAX in WordPress
AJAX is a flexible and versatile tool that provides developers the possibility of creating
improved applications, and an example of its functionality would be to check credentials
upon sending them to the server. Given the asynchronous way in which AJAX works, the
entire page doesn't have to be reloaded to receive new data, which is probably why
WordPress is so compatible with AJAX and how it interacts with it.

AJAX, in its essence, is a combination of several programming languages, which would be
XML and JavaScript. The name Asynchronous JavaScript and XML might or might not be
self-explanatory, yet its function is to send data to the server by the means of JavaScript and
then return this data in a different, now an XML format.

AJAX, in its manifestation, works to commit small changes or updates for the site visited by
the user, without having to send a request for a full page load, meaning that it will be a
more efficient way of committing locally rather than a global refresh, which could
obviously be more time and resource inefficient and overall not logical given the
availability of AJAX.

WordPress REST API in Practice

[158]

When talking about AJAX and its pair with WordPress, it is important to note that the
former is independent of the latter in the sense that there are no limitations imposed in
terms of how it can be implemented. It will be used for applying performance increases to
minor changes on the UI, and AJAX comes to play a significant role in applying not
necessarily the most significant changes. Given how un-bloated and easy AJAX in itself is,
there's no reason to not do some exploration in this direction. It is also worth noting that the
official plugin repository of WordPress has a good bunch of available plugins that you
could take a look at. One worthwhile thing to say is that given the basic dynamics of AJAX
within WordPress, it will yield even more smooth experiences for your users compared to
what you could have achieved with HTML for frontend and PHP for backend alone, mainly
because it uses WordPress as server-side code and JavaScript on the client side.

While the main function of AJAX is to create a local refresh of webpages, as in not having to
have your page refreshed to see updated front-end content, it is thus an easy way to fetch
data from a WordPress site and then use it in your frontend code, and it is the best solution
to take a more creative approach to the issue as in seeking for what interesting results can
possibly come up. A parallel for this would be REST API and how creatively we actually
could and do use it, way beyond its technical on-paper functionality.

Things to consider when using REST API
Whenever in the close future REST API lands in the core of WordPress, lots of innovative
movements will be made in this regard, including the solution of a bunch of issues that
have been around for quite a while and, given the technical limitations, we couldn't see
anything but temporary fixes or methods of bypassing them that were not very reliable.
While the WordPress REST API will bring many great things to WordPress as a CMS and as
a platform as a whole, it is to be understood that it is no magic pill that will put WordPress
on steroids and totally revamp the way we feel, build and present the Web overnight. While
I believe the transition over to REST will be achieved fairly easy and quickly, it is no secret
that it will still have issues and irregularities, moreover there will be times when you
probably wouldn't want to make use of REST API, even if you technically could. It's a
known psychological fact that once something is uncovered and revealed after a long
period of expectation and waiting, its use can easily go beyond its boundaries and even if
REST API becomes an established API, there will be situations in which you could and
should ignore its use.

The main point of REST API is hooking APIs provided by third-party platforms with
WordPress and then providing the functionality of either of those and improving its
functionality. Given that WordPress is based on PHP you could also take advantage of this
by making it the ground foundation for your application, and only using the REST API to

WordPress REST API in Practice

[159]

connect with this foundation. Examples of this use would be applications built in JavaScript
that in their turn would have complex data use, and all this without using anything but
WordPress, JavaScript and the REST API for interlinking.

Interacting with databases using REST API
REST API would be useful for mobile applications as well, in the way that they grab the
data on your website and deliver it on these mobile devices, which could be something
more than just some read-only kind of content and could literally recreate the desktop
experience on those devices. Provided that you are familiar with the basics of APIs, you
know that they already provide a one-way functionality in the way they receive
information from the source and then display it, but this is the basic kind of interaction we
have had since the beginning of APIs and is not much changed in this regard. With the
REST API, however, we will be creating real interactions at a whole other level, the API
level, where we could actually transfer and receive data both ways, meaning that you will
no longer have only the reading of data from one way, but something more complicated
and interesting.

The interesting part comes when completely static websites built in other languages, but
using PHP for the backend, start linking to WordPress in order to fetch data from that site.
This is good if your initial aim was to avoid building your site on PHP and then interlinking
it to one by means of REST API.

The use of WordPress REST API in applications is an entire topic of discussion with various
opinions about which cases you would need to use it for, and in which cases it is better
avoided. I will try to shorten this up to the most important topics of the discussion. The
most important thing to note is that REST API is meant to provide extensive functionality
that some basic solutions cannot provide. In this case, if you have a simple website, simple
application and everything is functional for you, it is very likely that you will not need the
REST API in one way or another. An interesting way to put it would be to think about
whether you ever missed anything relating to your site or application before hearing about
REST API. The API could be really useful for creating similar experiences to apps, and in
cases where you want to avoid building and working with PHP, except where you are
linking to a PHP-based website via the REST API. Most common examples of REST API for
possible use in applications would be e-commerce apps, which is something that most
online stores are concerned with right now. Mobile e-commerce is rising, the market is huge
for providing improved solutions, and thus something like the use of REST API within e-
commerce mobile applications will be very much used and welcome, given the possibilities
of better experiences that could be built for the mobile end-users.

WordPress REST API in Practice

[160]

Doing more with REST API
Another way of working with the REST API would be the default admin screen within
WordPress. Again, think about how extensive your needs for customization and change are,
because if you are just changing minor things or adding a hook or two, then it is very likely
you won't need the REST API and some online tutorials that will teach you how to do
modifications in this regard will cut it. A full revamp would, however, not be so possible
given the logical restrictions imposed. App-like dashboards and admin interfaces will be
possible to be built whenever the REST API hits the core of WordPress.

To be taken into the scope are single page applications that you might have not heard of yet.
Given how extensively JavaScript will be used within WordPress, we will no longer have
different pages that will be interlinked and will rather have a one-page application that will
update, refresh and load content by means of JavaScript. You might already be familiar
with such changes on a smaller scale, which were manifested in the admin page of
WordPress where certain changes could be made without the page having to refresh. This is
pretty innovative and will be thoroughly exploited, in a positive way, given how efficient,
easy and fast such websites will be. Such applications will be fun and user-friendly, but the
benefits of these services will end here, given that it is not possible for search engines to
properly index their content, and thus we can think of it as a coin with two sides. As
technology evolves, either websites or search engines will commit towards a change for a
friendly pairing, yet that is not the case right now and we may not be sure about what the
future holds for us, so at the time of writing, the biggest downside of such applications is
the lack of proper indexing by search aggregators.

One thing that I would like to cover, which has only been briefly mentioned before, is the
level of development of REST API, which will not be in its perfect state right from the
beginning. While there is a solid team of developers working on ever improving the REST
API, it is still a means of architecture, plugin, service, solution: no matter the name, it will
still be imperfect and have its ups and downs. The solutions that will be brought by the WP
REST API will be big, and it's never an easy task covering such things. You could start by
experimenting now with the beta v2 version of the plugin, yet you should be careful with
using that for anything beside testing purposes, as a real project might be ruined by the
unsustainability of the plugin, which is even admitted by the developers themselves.
Overall, WordPress as a CMS has been thoroughly examined, its biggest drawbacks and
pros are known, major security vulnerabilities have been addressed, and the huge pool of
plugins and themes available on the market can easily allow thorough customization if that
is what you are looking for. Not only will using the REST API in its first versions of the
release be tiresome and time-consuming, it might well raise unknown issues that will only
be fixed in upcoming versions.

WordPress REST API in Practice

[161]

There have been thoughts that the REST API will be a very good fit for enterprise solutions
and thus provide extensive functionality even for the big players, and while it can be hard
to disagree with this opinion, given how well we speak of the said API, I am pretty sure
websites and applications at such a scale will avoid its use in the first phases of official
release, precisely because of the reasons mentioned previously.

It is important to recall Matt Mullenweg's words about how JavaScript will play a big role
in WordPress' future development phases, and thus developers who are highly proficient in
both CMS and JavaScript will probably be the ones to bring the first examples of how far we
can take the REST API. Overall, it is just important to properly understand how extensive
your requirements and desires are in regard to your application or software, and decide
whether you actually need the functionality of REST API or you whether you don't, and if
you could just make use of the REST API from the beginning while other alternatives
address your needs, then I would reconsider this position, at least while the initial possible
bugs and irregularities are cleared.

Current status of REST API
The biggest yearly event about WordPress has recently taken place, the WordCamp US,
which was held in Philadelphia. Nearly 2000 WordPress enthusiasts, developers and fans
attended the event and quite a few ideas were noted there. First of all, Matt Mullenweg, the
founder of WordPress, said that up to 25% of the Web is powered by the CMS he founded,
and amongst other interesting stats, REST API was given some attention as well. He stated
that the opportunities that the WP REST API is bringing for the CMS, applications powered
by JavaScript, and third-party apps is immense given the innovation level that will be
brought. Calypso, the new architectural foundation for WordPress.com has not been left
without a notice, but we will cover that example a little later. Matt said that developers have
actually learned JavaScript in order to approach even more to the current state of
WordPress, and that he strongly believes that JavaScript and API-driven interfaces
represent the future of the Web and WordPress included. He also considers that backwards
compatibility (which in the latest version of the REST API is not that good) can be left
behind in cases like ours where progress is at stake.

While the emphasis on JavaScript and APIs has been big, it is believed that PHP will not go
away just yet, and that the success of WordPress is the foundation it has been built upon,
which is PHP. It might be the case for now, but the transition to JavaScript is fast and
consistent, so the thought that the importance of PHP will only continue to diminish
becomes more and more realistic.

The weakness of WordPress is the lack of extensive customization, in the words of Matt
Mullenweg. His encouragement for his fellow contributors was to consider learning

WordPress REST API in Practice

[162]

JavaScript and building JavaScript-powered interfaces specifically. He thinks it will
represent not only the future of WordPress but also the future of the Web and that
developers should consider taking such a direction. He also emphasized the freedom of the
Web and how important it is to keep improving open-source platforms and openness on the
Web, and that we could make use of the API-driven development to make progress in this
direction.

WordPress features
Now, moving from the creator of WordPress to the team behind WP REST API, who say
there are a few issues about the API, and in specific the post, term, user and comment
endpoints. These items cover autosaves, post previews, password-protected posts and meta
handling that the team looks to tackle via a feature plugin rather than holding back from
getting the API to merge. Ryan McCue, who is the project lead, said that these concerns will
not be supported as of yet and will be covered in a separate plugin that will come to be as
an additional enhancement to the API in future, so that the API isn't limited in its
development by this drawback.

Ryan also said that the core objects of read, create, update and delete would be merged in
the core as of now, with other features to come and they will be implemented when they are
ready. This doesn't make Matt Mullenweg very comfortable, as he considers a partial API is
not the best thing to be integrated within the core of WordPress, while in his turn McCue
stated that the API should be perceived as an ever-enhancing service rather than an
unfinished one. His point is that flexibility and a structure permitting progressive growth
would be the key difference in the current APIs.

In regard to how we could use the REST API for customization, we have stated that admin
page modifications would be one of the key features, and it is a bit surprising to state that
while the four core object types will provide some room for innovation in themes and
content editors, full replacements relating to wp-admin are not really possible at this stage.
While the hype is big around REST API, including a conference dedicated solely to it, most
of the developers who really build things with the REST API would be the contributors and
Matt Mullenweg has seconded this opinion, stating that while he does have huge interest in
it, considering it to be the most promising thing out there at this moment, his skepticism can
be understood given that he considers that there's not even XML-RPC pairing in regard to
features from the API. He also said that REST API somehow resembles doing something
that could already be done before. It all ends up with contributors disagreeing with Matt
Mullenweg over whether the WP REST API is an incomplete API or not, and that there
would be too many drawbacks in the current API for it to be included in the core right
away. The development of the plugin in this regard is slow, and it has insufficient testing
for it to become a core part.

WordPress REST API in Practice

[163]

REST API conclusion
The conclusion stated that Matt Mullenweg will probably not go ahead with a plugin with
partial endpoints in the core, and that for the REST API to make a move towards the core a
complete API must be built, given the millions of sites that will be affected, whether
positively or negatively. As a personal take on it, I would say that both parties do have
consistent arguments and it is to be understood why both of them are advocating for the
reasons that were brought up.

The main concern at this point is whether the endpoints are ready enough, and thus
whether the main purpose of the API has been fulfilled or not. It is the incomplete support
of the wp-admin features that brings up issues and limits the future movement of REST
API, for now. The proposal for solving this was to take a step towards progressive
enhancement, as that is the key solution to the related problems that would unblock the
REST API project and work done on it so far, and still provide a solid amount of support for
handling data types within WordPress. The discussion still continues amongst contributors
on the topic of iterative development within the core of WordPress, or the delivery of an
improved and complete API. Given that fact, adoption is surrounding the project because of
the dependency of the API on a plugin. It all comes down to whether the contributors will
agree with the opinion of Matt Mullenweg, that the plugin has to be polished and
improved, or whether they insist on inclusion of the endpoints against his
recommendations.

At the moment, it is clear that the REST API will make it towards the core at some point in
the near future, yet a firm date still cannot be set given the inconsistencies of the API that
Matt Mullenweg is concerned about.

Progressive enhancement of WP REST API
With the established progress within the REST API community, there is one perspective
that definitely deserves more attention and consideration, which is why we talk about the
progressive enhancement of the WordPress REST API, which is the development route
proposed by the contributor team behind the API for its future. With the imperfection that
Matt Mullenweg considers to be the problem holding up the REST API's integration in the
core, progressive enhancement comes as a proposed solution for forward-compatibility
with upcoming releases of WordPress and the way robust handling of data types is handled
in WordPress. It is said that progressive enhancement would unblock the REST API from its
state, as parity with every feature of the WordPress is admittedly considered to be the
wrong approach, says McCue.

WordPress REST API in Practice

[164]

Custom Post types have that freedom in regard to working with data and a robust system
that indicates feature support via the REST API. For example, post types that don't have the
editor support flag won't have their content registered, just as the admin will not show the
content editor to the aforementioned post types.

Progressive enhancement would also provide feature detection for future versions of
WordPress, so clients have a reliable paradigm to see if WordPress will support a certain
feature before putting it to use. The progressive enhancement that already exists within the
REST API is easily accessible by clients that would like to have robustness. McCue argues
the necessity for autosave support and post previews, which are not yet built in, by
arguing that WordPress admin already does this through localStorage for offline
connections, for which server-side support is not required.

A feature that will not be present for the time being in the API will still be worked on and
added in upcoming major WordPress releases, with a corresponding mark for feature
availability as mentioned above. Given the way REST API endpoints are registered with
two parts to their name, the route and the namespace, plugins that are available on the site
could also be detected.

As a final thought on the current state of REST API and WordPress, the contributors to the
API are sure that WordPress needs to move forward and they are being limited in
delivering a sustainable solution because of the absence of core integration. They say that in
their consideration the correct approach would be to continue the API development, and
that progressive enhancement is a paradigm that the project has got to adopt if it ever wants
to see the light of day in regard to progress.

WordPress Calypso and the REST API
While the mentioned lack of clarity regarding how REST API evolves as project for the time
being, there's also been an important event for WordPress last year, which was the release
of Calypso—the so-called new WordPress.com, which is a single interface that will let you
manage all your WordPress.com or JetPack websites. That interface will definitely bring
improvements to everyone who has their websites hosted on the previously-limited
WordPress.com platform. Calypso works as an entirely new application that will create
interactions with your site by using REST API, and will be available to everyone with a
website hosted at the .com version of the CMS or anyone who has the Jetpack plugin
installed.

WordPress REST API in Practice

[165]

Calypso will pretty much let you do anything in regard to your content and some minor
site edits and changes, with the exception of customizing your theme, but the limitation is
not that great given the innovation in remove control and speed that has been brought by
the means of Calypso. It probably also represents the potential and influence that the REST
API will have upon WordPress overall, and Calypso is just a small example of what heights
can be reached by the means of REST API.

Securing a REST API
In order to cover the best ways of securing the REST API, it would be a good idea to start
with the standard authentication protocols that make it easy to secure that API. As a general
rule it's always better to stick to these common protocols, as custom protocols should only
be used in certain situations.

The first protocol to be mentioned is basic authentication with TLS, which is the easiest one
to implement given that it requires no additional libraries for proper use as the standard
framework contains everything that is needed. The low security level compared to other
protocols that this method of authentication offers is probably the biggest drawback, with
no advanced options available for using this protocol as only the username and password
are encoded in Base64. It is also a requirement to use this method of authentication over a
secure connection or TLS encryption, given that the credentials could be easily decoded.

OAuth protocol
OAuth 2.0, which is the next version of the OAuth protocol, focuses on simplicity while
providing specific methods of authorization for applications, mobile phones and other
devices. This is a secure and tested signature-based protocol that will make a cryptographic
signature combined with secret token, nonce and other request information.

Another technique to make use of would be the generated API keys, which instead of
traditional credentials, use longer series of random characters that are not so easy to
randomly guess. These credentials are typically smaller in length and will make use of
common words that would generally be more insecure than subjects of brute force and
dictionary attacks. Passwords should be avoided when possible because with every
password change your API will fail.

WordPress REST API in Practice

[166]

In best practice it is stated that passwords have to be encrypted within the database to limit
a possible data breach, which would increase the overhead whenever a user sends an
authentication request. Avoiding sessions for the REST API has also proven to be a good
practice for improving the API server performance.

WordPress API and regular users
The main overviews of the REST API that we have looked at only concerned the
contributors and developer's side and how REST will improve their lives. We have stated
countless times how important the REST API is for the entire community, yet we haven't
gone into much detail about how these end users will specifically profit out of it. The idea of
REST API making the WordPress CMS move from being a content management system
towards becoming an application platform is heard very often, but it has some good
reasoning behind it. While the conversation on the topic of REST API is pretty loud, we
shall see how a simple end user is involved and even if they cares about how the REST API
is moving forward. It has been suggested that developers learn JavaScript, but what about
the regular Joe?

It is worth noting whether, even if there is so much hype about WordPress relying more on
JavaScript and it becoming an application rather than a CMS, it might concern the ultimate
user who is interested in some regular blogging. At its beginning, WordPress was also only
a blogging system that users made use of, yet at one stage the blogging system turned into a
whole new content management one, and that has not influenced those who were
interested just in blogging. Furthermore, they were actually provided with even better
blogging experiences, given the features a content management system has brought.

REST API moving WordPress from a CMS to an application platform will most likely not
impact you in any way if you're just a regular user who has no intention of using extensive
functionality. The main areas of development in this regard would be the admin
management screens and the JavaScript themes.

The very best example of how end users profit from the REST API would be the Calypso
desktop application, which actually showed how extensive modification changed the
default preview screens. The drastic improvement in content editing and interfaces has
improved the overall experience for all WordPress.com users, including for others who
have their websites on the self-hosted version of the CMS, as long as they have the Jetpack
plugin installed. In future versions of Calypso, it is probable that it will become
independent from Jetpack, and will provide even more extensive and versatile
functionality, including a merge between the REST API of WordPress.com and the self-
hosted version.

WordPress REST API in Practice

[167]

Other examples of this could be more bespoke admin systems that will emerge and could
eventually be run on desktops and mobile screens. Development of such admin screens
could and most likely will go beyond just the WordPress interfaces, given the fact that other
site management possibilities like the one within the hosting industry could be established.

Another direction that REST API could take to benefit the end users could be WordPress
expendables such as plugins and themes, which will use the REST API in pair with
JavaScript to provide single page application type sites. Given that every interaction will be
based on JavaScript alone, a lot of more extensive stuff could be built. This would cover
calendars, invoicing systems and budget management applications. Overall, this kind of
service and application would be time consuming and costly to build, especially in the
beginning phases of the REST API when not every developer will have the thorough
expertise to build such applications, and when not all bugs and issues will have been
addressed. Another thing to highlight would be the hype that is covering the surroundings
of REST API so well, such that huge progress will be made towards it and far less will be
focused on other services, APIs, development in other potential directions and eventually
supporting the current users that the CMS has. While it is to be understood that over the
past 13 years WordPress has grown well enough to not be some inflexible platform, and it
will obviously not be forgotten whichever API pops up on the scene, yet the REST API is
just one of the concerns and not the concern, no matter how much discussion is going on
around it.

Building your own API
When talking about APIs and building them, it is important to understand that the process
might be a little bit difficult at first if you're not acquainted with the patterns and best
practices that lie at the foundation of each API, yet the process is not as complicated as it
might seem at first glance. It is to be set that every API must connect to a server and then
return some kind of data, for which a corresponding code to back it up will be necessary.
Potential requirements could also include authentication and rate limiting. The endpoints
are the fundamental architecture that lies at the bottom of an API, which are responsible for
returning things with specific attributes. Making it as simple as possible is the key here. The
return type data is another consideration that has to be taken care of. The majority of web
users would expect some JSON content, and the alternative for this would be XML. The
Web developers however, have established JSON as the fundamental API return type, so
you are probably better off sticking with it for now.

WordPress REST API in Practice

[168]

When beginning with the development of the rather simple REST API, you would start by
using the REST packages and then defining the API, getting it to run a web framework,
creating the documentation and finally running the API in client libraries. The foundation
of a REST API is a resource that is defined by using one of the resource types from the
rest-core, it being the data type that will represent a singular resource. It is usually made
of two parameters, and specifically the context you would be getting from the parent
resource and the context that will be received upon resource identification. It can also be
used for sending data to other sub-resources that will have type parameters as their
identifiers for the resource. Upon defining the resource, you would have to cover other
kinds of handlers if there are more fields that are defining handlers for your resource.
Moving forward, you will have to work with more complicated identifiers and then take
care of error handling within the handlers. Once that resource has been defined completely,
you would combine it with others within the API and that will happen by composing
resources within the API. You will then provide a version that will be assigned to your API,
which will then be run and generate documentation along client code.

There have also been various spin-offs from building a normal API, and one would be the
creation of a REST API for a mobile application using Node.js, and how it will connect to
iOS and Android. Node.js has proven to be a reliable way of building mobile APIs and the
reasons for that are the ease of working with JSON in JavaScript, the light weight of the
Node.js library, and the control that is permitted over requests and responses. Handling
authentication is a big thing whenever building an API. Authentication would refer to the
practice of understanding who exactly accessed your data and securing this entire connect.
You would usually only need a runtime for your application, which would be the Node.js,
some framework for building the Node.js applications, an HTTP client that will permit the
making of custom requests to the REST API, and to finish off, some backend service that
will handle user authentication.

Drawbacks of a custom API
A downside of building your own custom API is the fact that figuring out a perfect API
strategy that will be really functional is hard at times, and here we will try and see what the
disadvantages of building your own REST API would be. RESTful approaches in
development are pretty hard given the fact that a client-side and server-side interaction is
required and that a single set of requirements is required for both sides, including testing
and actually building the client-side and server-side parts. There's also the fact that given
the plentitude of available, modern technologies, it's pretty tiresome to create an ideal
development cycle and process. Interface negotiation would have to happen between both
parties, and that consumes efforts from both sides, which makes it harder to see the project
finish line, yielding a lack of satisfaction for all parties.

WordPress REST API in Practice

[169]

Money and time consumption is not the only hassle that is very expensive and time
consuming, there is also the fact that the application has to run seamlessly and as designed.
A common case is when a project is moving forward but new requirements pop up that
were not anticipated, in which case going back and expanding the boundaries of the old
REST services is not possible because they will already be in development, in which case
new REST API services have to be created for every new project.

Depending on the size of the project, it might be a real-life situation in which the process of
building the API takes quite extended amounts of time, which also includes different
mechanisms for security, credential strategies and systems for management that in the end
will result in chaos or at least some inconsistent clutter.

This example mostly concerns businesses and similar enterprise projects covering REST
APIs, where there are big production teams working on one project or platform, yet this is
still an issue that has to be addressed somehow. It is probably a better idea to start by
identifying the data sources that would be accessed by the applications and then creating a
reusable REST API platform that will be able to support general purpose application
development.

Within some projects, there has been an attempt to address complex problems by making
use of API Management software pieces, which would allow existing REST APIs to be
linked with a proxy server which in turn would expose the APIs in a unified way, including
extra features like usage reporting and throttling of the API.

REST API management
One big problem is that companies do not rely on creating a unified API that would be
somewhat fundamentally generalist to be used for future applications and web services,
which is why it's necessary to have such a unified proxy for API management.

One more way of taking care of the complex data security issue is to implement the Mobile
Device Management, which will ignore the server-side mess and will control data access
straight from the client side, yet because more flexible solutions are expected to be
delivered, this particular one is not so good as it is harder to maintain.

In order solve the complexity that has been discussed, control access to the data should be
prioritized over the device, as this would permit developers to build any kind of client
applications that they might want with an existing architecture. This would represent a step
forward for efficiency, because it would unlink the server-side development from the client-
side one in a manner that would positively affect the speed and thus the development cycle.

WordPress REST API in Practice

[170]

Backend compatibility issues raise scalability, security and efficiency issues that would then
create powerful REST API creation tools as the API Management and Mobile Device
Management do not solve the root of the issue. They can only be considered as temporary
solutions, which would cover up for the inconsistencies for a while, yet in the long-term this
only causes drawbacks.

It would be worthwhile taking a moment to talk about the advantages that reusable web
services have in terms of application development. It is actually possible to create a reusable
REST API platform in the first place, even if the most common practice is to create new
services for each individual project. Reusable interfaces have got to be flexible by design
and that would be manifested via their filter string parameters, which would allow for
dynamic querying of any SQL database. The service would then provide support for arrays
of objects and anything related, which is returned in the same transaction. This would
support a large number of patterns, which will not need any customization. These services
will then cover several scenarios for which they are used, for example considering SQL
interfaces we would be in need of support for data pagination, array sorting, record-level
access control and so on. There could also be ANSI corner cases, where the date and time
formats need to be handled consistently across various types of SQL databases.

Implementation of custom services for REST API
There are also special cases that have to be taken care of in a special way, for example a
server-side scripting engine will have the responses and requests changed for it to handle
workflow triggers, field validation, custom usage limitations and so on. The engine used for
scripting can be used for implementation of custom services whenever this is necessary and
access to an external web service will be just another way of improving the functionality
that a reusable REST API service platform would have.

Whatever your aim is, it is important for a company to set a strategy that relies on reusable
interfaces, as this would be logical. This would only create consistency, eliminate clutter
and create a logical flow for further development. Unlinking development from the two
client-side and server-side phases would only provide room for improvement as the safety
of such applications would increase as well. Because client-side devs will have the
possibility of making use of the identical REST API for the same project, they will have a
broader mean of data access, which would power their applications. Data objects or
parameters could be all different, but the fact that the programming style would remain the
same is clear, and this will yield in an improved API that will be able to minimize the
differences between SQL, NOSQL and file storage. It is pretty hard not to agree that such a
level of consistency of services would only provide an easier way of learning the API and
thus writing applications, which could also benefit from the virtualization provided by the
service layer if they were written on a service platform. As services wouldn't be tied to a

WordPress REST API in Practice

[171]

specific piece of the backend infrastructure, the service could be installed anywhere, and
thus the movement of the application among places of storage could be easily performed.

Overall, the advantages would come to provide profound improvements for client-side
developers, server-side admins and anyone who will end up using this application, given
the improved structure, clean formatting and solid foundation.

Integration of REST API with mobile applications
One last approach to be noted here is the integration of REST API and mobile applications,
which has been covered in the points above. Here, I would like to outline a few more
specific details, which relate to the insufficiency of functionality that a REST API will
provide whenever integrating with a mobile app.

A complete solution representing a backend foundation for mobile or web applications
would face a few issues that have to be addressed. Every API has got to be backed up by
documentation if client developers want to understand how to make good use of the
service, and for that there would be several URLs for every application that is developed
and tested. Given the fact that every URL will have identifiers for various types of
resources, URL parameters might be required in order to take various arguments. Each
service will then have HTTP verbs that will set the permitted operations over the resource,
with a common return of JSON documents. Client developers need to grasp the formatting
of these requests and responses, which would be difficult to solve because the format is
different, being based on various parameters.

Custom platforms for the REST API are often administered with command-line operations
and server logs. Configuring services, uploading applications and managing permissions
might sometime require considerable tech knowledge and thus it is a better solution to
provide an administrative console that in turn would not have such great requirements for
technical knowledge to successfully change the backend platform. This would also create
the possibility for improved development, as in the absence of requiring master database
credentials that would then be used by other developers. While this does sound like a
correct solution, it is a tedious task to create an admin console of such a level that all its
capabilities are available as RESTful services as well. The way to go in this situation would
be to prepare a set of services for the backend developers that would then build this
administration console on the ready platform, which in its turn would need extra services
for administration.

WordPress REST API in Practice

[172]

Standards for custom REST APIs
If you were to build a REST API alone it wouldn't be the hardest task ever, but if you are
not doing this for personal skill development or just as a small work project, and it is a
major project instead, then extensive functionality might be required for the application.
Portability might be one of these requirements, and in that case you would have to switch
from an app towards other places of storage. A specific trait of REST APIs that have been
custom built is that they have hard-wired connections to different databases and pieces of
backend infrastructure, which again makes it more difficult. In an ideal environment, the
backend of your REST API would be installed on any place of storage, which would
provide portability during all phases of development and flexibility for all those involved in
the production, testing and eventually development of this application.

Custom REST APIs have a few issues that almost always surround them, and those are
concerns about reliability, security and flexibility/scalability. It is important that any piece
of software or web service follows the highest standards and only proceeds to apply the
best measures in regard to the three directions, yet there a few things to be outlined that I
would like to mention. The fact that the foundation has got to be really solid is without
question and thus checks against SQL attacks, record-level access control and management
of credentials, the process of sign-up and routing engine exploits have to be performed.
System reliability seems to be very important for transactional hosting and thus the
requirement for limits to be put on service transactions, which in turn cover the usage of a
particular client. Server outages and requests that take too long to be performed would be
another headache you would need to be aware of, and so you should actually realize how
much is needed in order for a scalable and more importantly secure RESTful service to see
the light of day. Overall, it is important to understand that building your own REST API
might result in a big clutter with eventual issues for your backend if you do not have the
proper expertise to tackle such issues in your projects. Another idea is that reusable REST
API services, which are proven to be the most efficient and reliable, would require time and
effort to be carefully crafted and built. Besides, the REST API is just a small part of the entire
system, and even if you get to develop a good API, it doesn't really mean that you managed
to create a secure RESTful foundation.

Custom API tokens
Authentication based on tokens has been around for quite a while and rightfully, given the
common use of APIs, tokens have proved to be one of the best ways of handling
authentication for a bunch of users. While there are other means of authentication, the main
features that this authentication provides are that it is mobile-application ready, and has
improved security and extensive scalability which when it works as implied is more than

WordPress REST API in Practice

[173]

enough for smooth authentication. Any significant web application that you might have
used, like any social media hub, makes use of token-based authentication and we will go
through the reasons why they took that path. Given that the protocol of HTT (HTTP) is
stateless, the authentication of a user just with his credentials will not produce any result, as
these details wouldn't have anything to be paired with to confirm the authentication, which
is why user information is stored server-wide and is used whenever somebody makes a
request for a session or a log-in within the system is attempted. Scalability is, however, not
the strong suit of this method, which is why we have slowly started to swim away from this
method. This method worked fine up to the point where there were no better alternatives,
yet the fact that such a method was hard on the speed and performance respectively, had
limited scalability and it was impossible to expand the data across several mobile devices
means it is no longer usable for us.

Differently to storing information on the server during a session, token-based
authentication is stateless and thus will not store any kind of information about a user on
the server during any session. Scalability is thus possible, given that no information is
stored during a session. Upon the request for access that is sent by means of credentials, the
application then validates these credentials and will further provide a signed token to the
client, who will store the provided token and send it along with every request relating to
him, which in the end will be checked by the server, which will respond with data. The
HTTP header will be responsible for holding the token with every request. After
authentication has been successfully completed, we could perform a multitude of things
with this token and even create permission-based tokens that could be paired with third-
party applications, which in turn would pass along the data granted by means of a concrete
token.

As for the benefits of tokens, their stateless state and scalability would be the first ones to
mark and note, as their load balancers can pass a user along to any server given that there is
no state or session information placed anywhere. Keeping information on a user that is
logged in could generate wrong traffic spikes for the same users, who would be repeatedly
sent to the same server that received their information upon log-in. As the token itself
works as an information holder, such issues no longer arise. As every request would have a
token sent as well and no cookie is sent along it, CSRF attacks are prevented and even in
case of specific implementation the token is stored within a cookie on the client side and
thus there is no information that could be manipulated. As tokens are meant to expire after
a set unit of time, a request to log in again might happen. There's a term of token revocation
that would allow the setting of certain tokens as invalid.

WordPress REST API in Practice

[174]

With regard to future development possibilities, the means of authentication with tokens
open, it should be stated that applications that share permissions with each other will
continue to expand and yield curious results. Tokens are the right solution for providing
selective permissions to third-party applications, and we could even hand out permission
tokens that our users wanted to provide access data.

Multiple platforms and domains would also be a concern if you were looking broadly in
terms of development of your applications and how many users would authenticate
through it. In this regard, access to several devices and applications has got to be provided
so as not to impose flexibility limits on end users. As the API will just be used to serve data,
making asset serving from a content delivery network would actually get rid of the issues
that CORS brings up, which we have mentioned earlier, so our data will be available for
access to anyone who is known to have a valid token for the purpose.

As a conclusion on how authentication tokens work, I would like to say that while token
authentication does have a few drawbacks, that is not our concern right now as the
drawbacks definitely do not overcome the positive parts that the token authentication
brings. Overall, the way tokens store credential data within them and the way we can
decline certain tokens is more than a solid solution, and its common use on the Web by big
services confirms this once more.

Summary
We have now covered REST API in theory and practice at length. Earlier chapters had
taught you a good deal about WordPress REST API and coding. You learnt how to build
and manage posts, metadata, apps and a lot more.

This chapter gave you a basic crash course in REST API and its history as well as its future.
Of course, for a pure developer, this might not be absolute mandatory to know. But if you
wish to know all that there is to know about REST API, this chapter provided useful
reading.

We shall now cover the remnants of WP REST API in the final chapter.

9
Summing It Up

In the previous chapter, we discussed in detail the theoretical aspects and origins, as well as
the usage and disabling of REST API.

In this final chapter of the book, we will talk about REST API vis a vis XML-RPC, and cover
some other theoretical and knowledge-worthy aspects of the same.

Comparison of REST API with XML-RPC
REST represents an architectural style that will set some constraints on interfaces to achieve
the desired goal. By using REST, we will enforce a server model where the client wants to
gain information and act on some data that would be managed by the server. The very same
server then sends a message to the client about the provided resources by a communication
between client and server that has got to be cacheable and stateless. All implementations of
a REST architectural project are supposed to be RESTful.

RPC, which is defined as the Remote Procedure Call, is a mechanism that will provide you
with the possibility of calling a procedure in another process and will exchange data by
passing some messages. It will process data on the server-side and is sometimes used as one
kind of an underlying protocol for message passing which is nothing like HTTP.

Summing It Up

[176]

RPC versus REST
When comparing RPC and REST architectural styles, it is not that wise from a technical
point of view to compare these two methods, as these services work in a form of pairing,
rather than comparison between them. On top of any RPC implementation, the RESTful
service can be built upon by using methods that will conform to the constraints of REST.
HTTP styles REST implementation on the top of an RPC implementation by creating
methods for GET, POST, PUT, and DELETE that take in metadata that will mirror some
HTTP headers and return a string that will reflect the exact HTTP request. As was admitted,
REST is a set of constraints that does not include aspects of the HTTP-specific
implementation, and this proves that our service could implement a RESTful interface that
would expose methods which are different to the ones that HTTP presents and would still
be RESTful.

It has to be admitted that RESTful interfaces can be built using XML-RPC, but there are
several reasons that will convince you that doing this is not the best idea, and why you
would actually want to make your RPC interface by making good use of XML-RPC
techniques, and those reasons would be:

Caching, versioning, and throttling have existing implementations and can be
utilized straight away
Actions are server-controlled instead of being hard coded within the client by
using procedure calls, thus simplifying development
If you make use of custom procedures , that will result in building narrow RPC
interfaces

You might ask yourself why would we even consider using XML-RPC when REST is
available to us, and why would we even keep it as an option? It has to be admitted that
there's more hassle in writing a client library for XML-RPC, yet every library is more than
likely to work with any similar service you would have to deal with, most users never
having to write one. As a counter idea, writing a REST client library is easier and has the
interpretation that almost everyone has a different idea of what REST is. A separate client
module is necessary for every service you use, and REST is of no help with this task. Some
interpretations of how REST is implemented do not even closely resemble general ideas
about how it is usually applied, which proves that while REST is a way easier solution, it is
not necessarily the right method or solution for a particular case.

Advantages of applying REST can be deduced from the points we have discussed above,
but nonetheless, we will go through them as well. Overall, it is considered that REST is a
way lighter solution compared to XML-RPC, and that supposes that is a better solution
when having to work with large datasets. The lightness of REST is especially noticeable
when working with JSON. XML-RPC client must load complete responses into the memory,

Summing It Up

[177]

thus it can be displayed as a return value whereas the REST client find it easier to process
the stream as it arrives. XML-RPC is going to limit the size of the response (and that is
considered to be a norm) while the REST call will respond with any number of records. The
XML-RPC will ignore HTTP semantics, being HTTP POSTs. It will benefit from the caching
infrastructure where all calls have got to be processed by the target server, enabling the
client to check for updates by making use of an HTTP request.

XML-RPC API will make use of the XML format to transfer the data. Being a commonly
used markup language and interchanging format, it will most likely support almost all
programming languages within standard libraries. The API of XML-RPC within WordPress
will pass user credentials as a part of every request, meaning that users will have to provide
the application with their account password, which in this instance is not encrypted,
meaning that XML-RPC is only totally secure when used over a secure connection (HTTPS)
where network users cannot gather sensitive data.

The JSON API, on the other site, will make use of the JSON format for data transfer, which,
in its substance, is a lightweight format for object serialization that is going to be limited in
syntax yet easy to use with most programming languages. It's very easy to pair it with
JavaScript, it being a derivation of its syntax, making it easy to attract the interactive web
applications. The JSON API plugin will support mechanisms that are going to allow
multiple authentications, including basic HTTP and OAuth 1.0a.

Keypoints
In comparing those two, it is said that REST is an HTTP-based protocol while XML-RPC is
XML based, which represents the fundamental difference that displays the further roots that
each one has during its processing. REST being an HTTP-based protocol, it will work best
when the client represents a browser, yet XML-RPC, being XML based, will make no
assumptions regarding the client that uses the protocol, meaning that it will take more
effort to process it compared to REST. Each object has its URL and can easily be copied and
bookmarked and then cached. The main advantage of XML-RPC is the fact that it is a client
independent, and will easily integrate with any application, a capability that does not
precisely correspond to REST.

In conclusion, it is important to say that every service provides a solution depending on the
problem that is set, the best APIs being considered those that will display a balance of REST
and RPC semantics, where the usage would be regarded as most appropriate.

Interacting with third-party services using XML-RPC basic authentication versus interacting
with REST API advanced authentication tokens.

Summing It Up

[178]

Disadvantages of XML-RPC
We will start our comparison with the main disadvantages that are common in the XML-
RPC system. The first disadvantage that we will look at is the fact that the subvert intent of
XML schema will be considered valid, no matter what the omissions or mistakes on an
application-level field. The second con of XML-RPC is the fact that it requires as much as
four times the estimated server bandwidth.

The broad availability of libraries that create automatic language-level objects, with the
libraries in turn being provided with an advantage over plain XML counterparts, is what
stands behind the success of XML-RPC. A more detailed overview of XmlRPC
disadvantages would be the following:

Several XML-RPC implementations will fail at producing language-level objects
and will instead require a run-time lookup of the fields or other syntaxes
The open XML support falls short and does not require integration with extensive
third-party libraries, and is expected instead to make use of automatically created
objects to the application's objects
The XML-RPC system in itself is bloated and not very flexible
The ability to check the application-level schema is lost if the definition document
is used for validating the RPC calls, which sets an unstandardized method for
validation protocol
The deployed HTTP proxies will not be leveraged, and no links from web pages
or e-mails will be available
There is no proper access to it from any browser

As a conclusion to the usage of XML-RPC, it is a fact that it will not provide a solution to
every problem, but will instead serve as an effective solution if your only requirement is
requesting and receiving information. It will be using XML to encode and decode the
remote procedure call, which will be used along with its parameter.

XML-RPC usage in WordPress
WordPress, in itself, is a flexible platform for blogging that is highly customizable and very
efficient for pairing with other systems and APIs. The XML-RPC system within WordPress
will be the topic of our discussion in this section. XML-RPC within WordPress will help this
by performing operations on the installation of WordPress, even remotely, which makes the
use of XML-RPC within WordPress natural for pairing with some software that does batch
tasking such as creating several posts from a single file.

Summing It Up

[179]

If we were to take a look at the official WordPress Codex, then we would find that
WordPress, being based on an XML-RPC interface, has its implementation for its specific
functionality that is called in the WP API. This is suggested for use when possible, as your
client should use the API variants that start with the wp prefix. It also supports other
different APIs. Given the WordPress XML-RPC support, you can post your WordPress blog
to several popular weblog clients and go further by expanding with WordPress plugins that
modify its behavior. The good thing is that the functionality of XML-RPC has been turned
on by default for a long time-WordPress version 3.5.

Usage of XML RPC
The XML-RPC system within WordPress is the API, which provides developers who make
applications for desktops and mobile devices with the possibility of making a connection
with the application and the WordPress-powered site. The beauty of XML-RPC API is that
it will provide the developers with a way to write applications that will permit several
actions (such as editing, publishing and deleting posts and comments) while being logged
into the WordPress panel via the web interface. If you plan on removing the XML-RPC
service on WordPress, then the ability to use any application that makes use of this API will
be null. Disabling XML-RPC comes with a significant cost, given the fact that it plays an
important role within WordPress nowadays. The possibility to disable XML-RPC has been
limited, considering what a major API it is in WordPress, so by disabling it users could
easily get confused and run into problems relating to applications that no longer work or
have been broken given the absence of API access. JetPack is one of the most popular
plugins for WordPress, which provides it with several essential functions, and this is
primarily based on XML-RPC and will affect its proper functioning if another third party is
used should you want to disable XML-RPC. While talking about these plugins, it is
important to say that there are several of them that are available in the official WordPress
repository, but as was previously stated, the functionality of applications that are highly
dependent on it will be severely affected.

Some voices within the community consider that the backend of WordPress is well enough
built, provided it can be accessed from any mobile device. This is why the majority of
WordPress sites do not have the necessity for trackbacks, pingbacks, and the XML-RPC
system implemented, which is why it deserves to be removed from WordPress. While we
are impartial in regard to this view, it deserves attention as it brings up a logical point of
view that states that it should be shifted towards a third-party that would no longer be set
as default, in order to provide an improvement in security, the level of scalability and the
stability of all WordPress sites and the platform itself.

Summing It Up

[180]

The XML-RPC are requests that will be sent to the xmlrpc.php file which are present
within the main WP installation directory . This simply does a bootstrap of loading which
then moves on to creating an object of the class that is located within wp-
includes/class-wp-xmlrpc-server.php, in this instance being responsible for
handling all XML-RPC requests coming from the XML-RPC clients.

As a conclusion on XML-RPC support on WordPress, we can say that it will successfully
enable automation of tasks on your WordPress or other client in performing remote tasks
and features of XML-RPC that help WordPress to be an ongoing open and extensible
platform.

REST API token-based authentication
Moving forward with developing REST APIs that require authentication, we will state that
because the authentication itself will occur by some external service over HTPP dispense
tokens will be used to avoid a repeated calling in the authentication service. In case you are
debating using this method for basic HTTP Auth requests it is important to say that the
advantage of a basic Auth solution is that you don't have to make a full-round request to
the server and back before the requests for content can begin. These tokens can potentially
be a lot more flexible and it will seem more appropriate to use the OAuth authentication in
some contexts. Going further with authentication, it is important to say that base auto has
the better advantage that it is a good solution at a protocol level, which means that
BaseAuth user agents will recognize a password as one, preventing them from caching it.

The server load of Auth is going to dispense a token to the user instead of caching the
authentication on your server, which you would be doing in this instance, with the key
difference being that you are turning the responsibility for the caching towards the user,
which is suggested should be handled with transparency on your server.

Regarding transmission security, it is important to say that if you can use an SSL connection
than that's everything that is required for a secure connection, and to prevent multiple
executions by accident you could filter out multiple URLs or ask users to include a random
component within the URL.

Summing It Up

[181]

Making sure your apps and sites are
backward-compatible
The presumption has it that a REST API should always be backward compatible with a
service that is being exposed to such interfaces, be those external or internal clients. In this
part of our tutorial we will go through the meaning of backward compatibility and what
exactly it means.

Backward compatibility implies the connection within two clients that have no conflicts of
compatibility between APIs. During the report of a service to another, if the clients are not
corresponding with their updates or versions of the API, then issues might arise.

It is perceived that client implementation will take some time to catch up with service
implementation, thus not breaking the existing version of the API, even though it has been
the subject of an upgrade. The purpose of backward compatibility implies that older clients
should still work fine with a new version of the same API. While the old client will miss out
the new features of the upgraded API, it will still be compatible with the features that
correspond to it.

To ensure that a REST API will not break the backward compatibility, there are several
steps we can take that could help us prevent this. The following are a few tips you might
want to consider to assure the backward compatibility we have discussed:

Additional HTTP response codes that will later be returned by the API
The root of the URL or any existing query string parameters shall never be
changed
Other query string parameters will help towards good compatibility
Mandatory or optional elements that are passed to the API will not be deleted
Additional information that is added to the REST API must be optional

Backward compatibility in practice
Backward compatibility will have two primary functions that are going to be the backbone
of the whole purpose of assuring backward compatibility:

New functionality
Preventing script breaking

We will see the preceding two functions briefly by the following:

Summing It Up

[182]

New functionality
Backward functionality will permit the partial use of the new feature by moving the new
API values, and if those are set as global within your scripts then it is very likely it will
impact multiple sets of REST APIs. The impact on your existing scripts will be avoided if
the new functionality will not be used, and for this, just stick to previous (existing) APIs. We
should mention, if new APIs are not used backward compatibility might not be guaranteed
from release to release and older functionality might be deprecated.

Preventing script breaking
To prevent our existing scripts from breaking and assure continuous functionality, we have
to use the same API value for the specific REST API. Doing so will ensure that the same set
of data will be sent and consecutively return in the response body during operations such
as POST and PUT.

Releases of new REST API versions are a rare thing, which is why backward compatibility
can often be assured by simply adding a new optional parameter or new method. If in your
API you had a method and you were not satisfied with the way it functioned, there would
be several ways to deal with it.

Adding a new parameter that would default to the initial one would make it backward
compatible, and if it's necessary, a proper if condition might be applied. Refactoring your
code is also a way by which old methods will call new ones internally but with modified
parameters (and will re-format the results accordingly). Major releases of REST APIs will
imply major changes in all of the methods used, and not just one. Most major REST APIs
have never released a second versions of their API, this meaning that they still use version
1, and if you're sure about releasing the second version of your API, then new entry points
have got to be created for all of your methods. This is what will cause you the biggest
headache and stress regarding the technical approach you decide to take on this.
Centralized APIs will usually increase only to indicate new features, and developers will
often increase their version number to denote a major backward incompatibility.

RESTful services will not make use of versioning to provide change, given that this will
reduce the ability to introduce new behaviors to clients. Maintaining compatibility with
older clients is definitely a concern, and the way to deal with this is to make as few things as
possible regarding your requirements in media type design and just add things that are
optional later.

Summing It Up

[183]

The future of REST API
In its current state, the REST API is used for a variety of purposes and is primarily meant to
solve technical gimmicks that developers encounter on a regular basis. REST is a preferred
choice for use in web applications where requests can be directed to any instance of a
component, and thus its stateless can be quickly redeployed if something goes in the wrong
direction. A cloud application is another direction that the REST API uses, and this is
especially helpful in binding to a service via an API, which is simply the method of
controlling the decoding process of a URL. If an application recognizes a micro-service by
the URL, a simple change of the IP address that has been paired with the URL will easily let
the request go towards a new instance if the component within the original one fails. The
algorithms will distribute the requests if the URL is made to point towards a load balancer,
as no request can handle the instance that keeps track of the state.

Another direction looking forward at REST API is the field of cloud computing and micro
services, which will most likely make the design of the RESTful API a rule in future, which
will favor developers who make use of the REST API.

Overall, REST is considered to be a secure method. However, there are voices that have
manifested their concerns about how the components of an application are addressed via an
open, VPN connection. The solution to this is the proper use of identity tokens, which can
be a part of the RESTful API data package or simply a secure HTTPS connection, which
should be more than enough. The scalability and integration with micro-services and REST
are pretty broad, especially in virtualized applications. The support that REST has started to
gain will provide you with the proof that the traction it has gained is more than enough to
secure it a spot in further use by developers.

At this time, REST API is still facing quite a few issues that must be addressed and fixed.
The team that is currently supporting REST says that they will fix the way comments, posts,
users and terms are managed, implying that constant improvements and fixes will come. It
is also stipulated that the REST API might become a way to store personal data, acting as a
sole storage place.

The future of WordPress will be defined by the REST API, which will provide the
possibility for WordPress to have even better integration with the rest of the Internet. The
REST API is also set to become a core part of WordPress, but we shall get into this a little bit
later.

Summing It Up

[184]

The integration of the JSON REST API into WordPress will definitely represent one of the
final steps in moving from a simple yet efficient blogging system to one fully-packed
platform for applications that will be achieved by creating a homogenous interface that
serves as a bridge between WordPress and any other software piece or application
development that is currently available.

What will happen with REST in the future?
The future looks strong for REST API, as it continues to evolve and develop further. Let us
see what the future holds for it.

PHP and WordPress
PHP has been and still is a veteran of the war relating to providing technical functionality
for websites, and while this is still very much a fact, other programming languages that
have proven their usability are now concurring with it. While PHP is a conservative,
effective and well-known solution for many endeavors, it will admit the positive parts of
other languages that will take its place, or at least be placed amongst it. REST API provides
languages like Python and Ruby on Rails with instant access to the native functionality of
WordPress, and with the frameworks available for those languages it is hard to imagine
PHP maintaining its dominance for much longer. These frameworks of Ruby we are talking
about allow amazing integration with other frameworks and will bring up some points for
consideration.

Mobile integration
With the mobile era being the only actual thing nowadays, it is really important to assess
how mobile integration and functionality play a huge role in the life of every application,
system or website. WordPress, being the most used CMS on the Internet, will provide
native applications that provide mobile integration with it, yet as it is common to be, third
party integration is common as well. It is believed that by using the REST API, developers
will manage to open a real backend for native mobile applications that will introduce new
ways for future integration.

The backend
It is believed that the WordPress backend will be re-written, and with the integration of
REST API in the core, the possibilities will be thought of in a different way, making it
possible for developers to define their own unique way of using the administration panel,

Summing It Up

[185]

which is currently powered by the independent WordPress API.

REST API plugin versions
One thing to admit is that the 1.2 version of the REST API plugin is set to be the latest
planned update that it will face, the focus being on the next, big version 2.0.

The team behind REST API is firmly committed to keeping the plugin as functional as
possible, meaning that it will be supported in terms of backward compatibility. Its
upcoming 2.0 version will emerge into the core of WordPress, and because of this the
backward compatibility will be somewhat more limited than it is right now, yet a layer
pattern of compatibility will be still maintained. Anything built using the plugin version
will continue to work once the REST API is set in its core. The developers supporting it state
that they will not be recreating the next version from scratch, and will try to keep things as
they are for as long as possible, meaning that an eventual port from the current version to
the new one would be a relatively simple process.

In its second version, the routes are supposed to be prefixed, and the core will use a wp
prefix-custom routes using their prefix. The current use of the wp-JSON prefix will most
likely be discarded, and older wp-on routes that are used by the client will be rerouted once
they're placed in the core.

Another thing to look at is the fact that a potential universal API might be a reality.
Furthermore, consistent behavior across different platforms needs to be ensured, so as to
avoid usage issues and compatibility problems. One more goal for developers is to assure
consistency across every platform and website for WordPress mobile applications.

Goals for REST API
One last goal that is set for the future of REST API is a solid foundation that has got to be
fixed as soon as possible. The contributors behind REST API are set with the task of adding
a RESTful API to millions of websites worldwide, while the structure and architectural
build of these websites remain uncommon and unknown in their specifics, making it a
daunting task. Besides creating a so-called ideal API that will work perfectly with an
outrageous number of websites, another task is to implement and add a set of tools that will
work as standard for anyone who's interested in making their own, functional yet generic
API. It is expected that WordPress will work as a tool that will provide a point for starting a
fully functional API that will be immediately ready to use, and whose customization will be
a breeze.

Summing It Up

[186]

The current state of progress with the JSON REST API will provide you with the ability to
work around existing technical necessities, and to continue improving your skills as we
wait for it to be implemented in the core of WordPress, representing the biggest update so
far.

Limitations of REST API
REST, as a system in itself, is very predictable regarding endpoints and the content of the
requests, being just an HTTP request. It is supposed that end-users can easily guess how to
fulfill their aim as long as the URL structure of the site is familiar to them, which can be
interpreted as a breach within the security system. This is considered one of the first
drawbacks/limitations of RESTful APIs, but we will get to this in a minute.

Regarding performance, it is considered that SOAP is more advanced in this regard, making
good use of event-based parsing, which adds to the scalability of SOAP stacks that use
normal HTTP processing along the XML parsing, while REST uses the HTTP processing
method alone.

Within the industry, there is a prolonged debate that denounces the security of REST
related to other methods like SOAP, which is why some developers or clients choose to
avoid REST. More technically-savvy developers or users would prefer REST, for the sole
reason that its simpler approach is more appealing to them, yet as was stated, this is not the
case for everyone. Overall, it is important to understand that absolute security cannot be
reached, and it's your duty to make your application as secure as possible and avoid relying
solely on the security measures of any of the APIs.

Given the architectural approach that is present within a RESTful system, we consider most
of its properties to be useful only when used appropriately and for the developer, yet every
positive point about REST has a drawback and limitation, which we will go over now.

In the client-server relationship, it is understood that the business logic is decoupled from
any presentation, which means that changing any of those will not have an impact over any
other, yet this adds some latency. The fact that REST by its form is stateless and the
messages exchanged between client and server have all the necessary context means routing
of messages is easy, but this again has a downside, which is more latency added and the
messages that are being sent by the client have redundant information. If you are more
technically savvy, REST provides you with the possibility to change many things server-
side without having to do any rewriting of the code within the client, yet the drawback of
this is the fact that if you commit mistakes during the implementation of the process, then
you might get stuck and technical issues might arise. Overall, given the structure of the
system, which is a layered one, you can change a lot of things and be provided with a lot of

Summing It Up

[187]

flexibility, yet, once again, this will add more latency on the server, so this is what you have
to consider when making a decision about whether you are in favor or against-prioritizing
what is more important for you, in the end.

At the end of the day, one of the biggest drawbacks there is in using REST is browsers that
only support GET and POST methods, yet most firewalls only allow the passage of POST
and GET methods. In case your app requires the possibility to run in these browsers you're
doomed again, given that you're limited by the support REST provides. Regarding technical
application, we understand that GET is used to retrieve information, PUT to update an
already existing entity, POST to create a new object and DELETE to delete an existing one.

Another key point is that REST will not prescribe any of the HTTP verbs, and you have to
build REST applications using HTTP only if you're cautious enough. It is thought that one
good use of REST would be for primarily simple services and anything of the kind, such as
a transformation service where the need for a lot of scalability and catching is not that great,
and is thus acceptable.

As a conclusion on the limitations for REST API we should mention that it is not a good
idea to use it for any applications that would imply retrieval and usage for real-time data.
Another issue is the fact that if you capture every object from a stream, then you're set to
have issues and difficulties as it is a tough job for REST to work with any high-throughput
types of streams.

Summary
This brings us to the end of this chapter, as well as the book.

We hope you have had a great time learning about REST API and its association with
WordPress. By now, you must have mastered how to send requests, read and modify data
as well as perform complex queries using REST API on your WordPress site.

However, this book is just the start of your journey towards REST API. As time goes by,
over the course of the coming years, REST API in WordPress will progress further, and
more and more themes or plugins will make good use of it. As such, preparing right now
and getting a command of it will help you get a head start in this domain.

As we close this book, it is advisable to implement REST API in your WordPress projects
wherever you need to, but as the last section of this chapter discussed, be sure to keep the
limitations in mind! That said, RESTful services are here to stay, and have been around for
years, so being familiar with them will work in your favor.

Happy coding!

Index

A
AJAX
 in WordPress 157, 158
application programming interface (API)
 building 167, 168
 defining 7
 functions 143
apps
 REST API, implementing in 133
architectural components, REST 11
architectures
 overview 156
Atom feed services 8
authentication 100

B
backward compatibility, REST API
 about 126
 new functionality 182
 script breaking, preventing 182
basic authentication 100
beta v2 version 160

C
C#
 REST, using in 17
client URL request library (cURL) 22
competing architectures, on Web
 about 155
 REST-RPC 156
 RESTful architectures 155
 RPC architectures 155
consumer 144
consumer key 107
consumer secret 107
content management system (CMS) 6, 55, 88,

127
Cross-Origin Resource Sharing (CORS) 89
Cross-site Request Forgery (CSRF) 137
CRUD operations 8
custom API tokens 172, 174
custom API, drawbacks
 about 168, 169
 implementation of custom services, for REST

API 170
 integration of REST API, with mobile applications

171
 REST API management 169, 170
 standards, for custom REST APIs 172
custom data types, WordPress 133
custom endpoints, setting up
 about 78
 callback function 81
 fields, defining 79, 81
 transport method 79
custom routes
 adding, to WordPress REST API 76
 setting up 77

D
data
 handling, in REST 14
default routes
 disabling, steps 93
DELETE method 79
design principles, REST 12

E
editor support flag 164

[189]

F
filter[] syntax 113
form
 creating, with HTML markup 63
frontend core 150
function 37

G
GET meta fields
 implementing, REST API used 41, 42
GET method 79
GET post output
 fetching, in JSON objects 33, 34
GET requests
 sending, for taxonomies 50, 51
get_post_meta function 84

H
HTML markup
 form, creating with 63
HTTP 145
HTTP + POX 156
HTTP API 32
HTTP API, in WordPress 32, 33
HTTP client 145
HTTP client library 146
HTTP request
 issuing, via Postman 29, 30, 31, 32
HTTP server 145
HTTP verbs 95
Hypermedia As The Engine Of Application State

(HATEOS) 131
Hypertext Application Language (HAL) 143

J
Java
 REST, using in 19
JavaScript authenticated requests 102
JavaScript file
 enqueueing 64
 enqueuing 65
JavaScript Object Notation (JSON)
 about 146, 149
 defining 9

JavaScript
 about 150, 151
 and WordPress 156, 157
 and WordPress REST API 151
 implementing, with taxonomies 50
 REST, implementing in 22, 23
JMS 10
jQuery 157
JSON objects
 GET post output, fetching in 33, 34
JSON REST API, for WordPress 97
JSON REST API
 about 6, 146
 in WordPress 97

K
key considerations, REST 11

N
nonces 137

O
OAuth 2.0 104, 165
OAuth API
 application management 106
 availability, accessing of 106
OAuth authentication API
 installing 105, 106
OAuth authentication
 about 25, 103, 104
 flow 104
 reference 25
OAuth authorization
 about 67
 oauth_callback function 105
 oauth_verifier function 105
 token exchange 108
OAuth credentials
 generating 107
OAuth protocol 165
OAuth
 security concerns 104
 user authorization 107
oauth_callback function 105

[190]

oauth_verifier function 105
one-way functionality 159

P
page caching 91
Perl
 REST, using in 16
permissions callback 81
PHP
 REST API, interacting via 36
 REST, using in 21
plugin
 installing 98, 99
 setting up 62
POST meta fields
 implementing, REST API used 43, 45
POST method 79
POST requests
 issuing 39, 41
 sending, for taxonomies 51, 52
Postman
 about 101
 HTTP request, issuing via 29, 30, 31, 32
 request, issuing via 28
privileged user data
 obtaining 56
producer 144
programming languages
 REST, using in 15
public user data
 obtaining 55, 56
PUT method 79
Python
 REST, using in 16

Q
queries
 issuing 35, 36

R
real-world applications
 REST API, using in 9
register_rest_field() method 124
register_rest_route() function

 endpoints, to route 78
 optional Boolean argument 78
 route namespace 77
 URL after namespace 78
requests
 issuing, for creating posts 66, 67
 issuing, for editing posts 69, 71
 issuing, via Postman 28
 processing 82, 83
REST API token-based authentication 180
REST API, revenue sources
 about 152, 153
 mobile applications 153
 SaaS services 154
 third-party apps 154
 wearable devices 153
 web services 154
REST API-based authentication
 about 135
 basic authentication 136
 Cookie authentication 137
 OAuth authentication 136
REST API
 about 6, 148
 and WordPress Calypso 164, 165
 as platform 132, 133
 backward compatibility, in practice 181
 backward-compatible 181
 conclusion 163
 considerations 158
 current status 161
 disabling 140
 ever-growing 131, 132
 external changes 142
 future 183, 184
 future changes 143
 goals 185
 implementing, in apps 133
 implementing, with taxonomies 50
 in later versions, of WordPress 134
 in theory 144
 interacting, via PHP 36
 interaction, with databases 159
 internal changes 142
 key differences, between v1 and v2 142

[191]

 limitations 186
 securing 165
 security 137, 138
 used, for implementing GET meta fields 41, 42
 used, for implementing POST meta fields 43, 45
 used, for obtaining user data 55
 used, for posting user data 57
 using, in real-world applications 9
 using, in WordPress plugins 138
 versions 185
 versus XML-RPC 175
 WordPress features 162
 working with 160, 161
REST architectural constraints 128
REST architectural structure 128
REST architecture
 about 94
 endpoints 96
 HTTP verbs 95, 96
 routes 96
REST constraints
 about 129
 cacheable 130
 client-server 129
 code on demand 130
 HATEOS 131
 layered system 130
 self-descriptive messages 131
 stateless 129
 uniform interfaces 130
REST integration, Flickr
 reference 8
REST services
 advantages 10
REST, future
 about 184
 backend 184
 mobile integration 184
 PHP and WordPress 184
REST, versus SOAP
 commands, passing 12
REST
 about 145, 147, 177
 architectural components 11
 data, handling in 14

 defining 7
 design principles 12
 implementing 12
 implementing, in JavaScript 22, 23
 key considerations 11
 using, in C# 17
 using, in different programming languages 15
 using, in Java 19
 using, in Perl 16
 using, in PHP 21
 using, in Python 16
 using, in Ruby 15
 versus RPC 176
RESTful architectures 155
RESTful services 7
RPC architectures 155
RPC
 about 175
 versus REST 176
Ruby on Rails (RoR) 25
Ruby
 REST, using in 15

S
S3 Cloud storage solution, REST API
 reference 8
Simple Mail Transfer Protocol (SMTP) 12
Simple Object Access Protocol (SOAP) 12
Software as a Service (SaaS) 135

T
taxonomies
 basics 48
 GET requests, sending for 50, 51
 HTTP requests 48
 JavaScript, implementing with 50
 POST requests, sending for 51, 52
 REST API, implementing with 50
 working with 47, 48
Thermal API 139
third-party plugins 84
transient library 92
transport methods
 DELETE 79
 GET 79

[192]

 POST 79
 PUT 79
Twitter, REST API
 reference 8

U
uniform interface, REST
 representation and resources 131
 resource identification 130
universal API 127
user data
 obtaining, REST API used 55
 posting, REST API used 57
users
 working with 55

W
Web Applications Description Language (WADL)

12
Web Services Description Language (WSDL) 12
WordPress Calypso
 and REST API 164, 165
WordPress plugin development 135
WordPress REST API plugin
 reference 28
WordPress REST API
 about 6, 23, 24, 94, 99, 146, 147
 advanced authentication, using 103
 and JavaScript 151
 and regular users 166, 167
 authenticated requests, from command line 101
 categories 114
 CRUD methods, in routes 115
 current phase 97
 data, creating 118
 data, deleting 122
 data, retrieving 108
 data, sending as JSON object 118, 119
 data, sending as URL parameters 118
 data, sending with forms 120
 data, updating 118
 developers 147
 filter[] syntax 113
 GET request 109, 110
 infrastructure classes 123

 internal classes 123
 media, uploading via multipart/form-data 120
 metadata 114
 methods 123
 options request 110, 111, 112
 post meta, creating 117
 post meta, updating 117
 post revisions 114
 Postman requests 101
 posts, creating 116
 posts, editing 115
 posts, retrieving from server 112, 113
 posts, updating 116
 progressive enhancement 163, 164
 remote management 25
 server responses, modifying 124
 setting up 103
 tags 114
 third-party support 25
 universality 24
 WP_REST_Request class 124
 WP_REST_Response class 124
 WP_REST_Server core class 123
WordPress site
 cross origin problems and bugs 88
 multiple requests, handling 90, 91
 optimization measures 91, 92
 setting up 88
WordPress
 and JavaScript 156, 157
 custom data types 133
 GET meta fields, implementing with REST API

41, 42
 POST meta fields, implementing with REST API

43, 45
 user data, obtaining with REST API 55
 user data, posting with REST API 57
 XML-RPC usage 178
WorPress REST API
 custom routes, adding to 76
WP HTTP API, for authenticated requests
 about 103
 status check 103
WP REST API authentication 100
WP-CLI 98

WP-REST-API v.2.0 133
WP_REST_Request class 124
WP_REST_Response class 124
WP_REST_Server class 123
WPDB class 84
WWW 16

X

XML-RPC
 about 10, 140
 disadvantages 178
 in WordPress 151
 usage 179, 180
 usage, in WordPress 178
 versus REST API 175

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with REST API
	Introducing REST API
	Defining API
	Defining REST
	Defining JSON

	Using REST API in real-world applications
	Advantages of REST services

	Key considerations when working with REST
	Architectural components in REST
	Design principles in REST

	Getting started with REST implementation
	Passing commands in SOAP versus REST
	Handling data in REST

	Using REST in different programming languages
	Ruby
	Python
	Perl
	C#
	Java
	PHP
	JavaScript

	REST API in WordPress
	Universality
	Remote management
	Third-party support

	Summary

	Chapter 2: Interacting with REST API in WordPress
	Getting started
	Issuing requests via Postman
	HTTP API in WordPress
	Fetching GET post output in JSON objects
	Issuing queries

	Interacting REST API via PHP
	Explanation of function

	Issuing POST requests
	Implementing GET meta fields using REST API in WordPress
	Implementing POST meta fields using REST API in WordPress

	Summary

	Chapter 3: Working with Taxonomies and Users with REST API
	Working with taxonomies in WordPress using REST API
	Basics
	HTTP requests

	Implementing REST API and JavaScript with taxonomies
	How to send GET requests for taxonomies
	How to send POST requests for taxonomies

	Working with users in WordPress using REST API
	How to GET user data using REST API in WordPress
	GET public user data
	GET privileged user data
	How to POST (and edit) user data using REST API in WordPress

	Summary

	Chapter 4: Working with Forms Using REST API
	Overview
	Fundamentals
	Setting up the plugin
	Creating the form with HTML markup
	Enqueueing your JavaScript file
	Issuing requests for creating posts
	OAuth authorization method
	Issuing requests for editing posts

	Summary

	Chapter 5: Custom Routes in WordPress REST API
	Overview
	Adding custom routes to WordPress REST API
	Setting up the custom route
	Route namespace
	URL after namespace
	Endpoints to a route
	Optional Boolean argument

	Setting up the custom endpoints
	Transport method
	Deﬁning our fields
	The callback function
	The permissions callback

	Processing requests (and responses)
	WP_Query
	WPDB
	get_post_meta
	Third-party plugins

	Summary

	Chapter 6: Creating a Simple Web App using WordPress REST API
	Overview
	Setting up your WordPress site
	Cross origin problems and bugs
	Handling multiple requests
	Optimization measures

	Steps to disable the default routes
	More about WP REST API
	The REST architecture
	HTTP verbs
	Endpoints and routes
	JSON REST API for WordPress
	JSON REST APIs in WordPress
	WP REST API at the moment
	Tools
	Installing the plugin

	Going further
	WP REST API – setting up and using basic authentication
	Authentication
	WP REST API authentication
	Basic authentication
	Installing the plugin
	Postman requests
	Authenticated requests from the command line

	JavaScript authenticated requests
	WP HTTP API for authenticated requests
	Status check

	WP REST API – setting up and using advanced authentication
	OAuth authentication
	OAuth security concerns
	OAuth 2.0
	OAuth authentication flow
	Oauth_callback function
	OAuth_verifier function

	OAuth installation

	Assessing the availability of the OAuth API
	Application management
	Generating OAuth credentials
	User authorization
	Token exchange
	Status check

	WP REST API – retrieving data
	The GET request
	Options request
	Retrieving posts from the server
	The filter[] syntax
	Post revisions, categories, tags, and meta
	Other resources
	Status check

	WP REST API: creating and editing posts
	CRUD methods in routes
	Creating and updating posts
	Creating and updating post meta
	Creating and updating data
	Sending data as URL parameters
	Sending data as a JSON object
	Sending data using forms
	Uploading media via multipart/form-data
	Deleting data
	Status check

	WP REST API: internals and customization
	Internal classes and methods of WP REST API
	Infrastructure classes
	WP_REST_Server
	WP_REST_Request
	WP_REST_Response
	Modifying server responses
	The register_rest_field()

	Summary

	Chapter 7: Mastering REST API for Your Projects
	Backward compatibility
	A universal API
	Architectural structure
	REST architectural constraints
	The formal REST constraints
	Stateless
	Client-server
	Layered system
	Cacheable
	Code on demand
	Uniform interfaces
	Resource identification
	Representation and resources

	Self-descriptive messages
	HATEOS

	Ever-growing REST API
	REST API as a platform
	Implementing REST API in apps
	Custom data types in WordPress

	REST API in later versions of WordPress
	REST API and WordPress plugin development
	REST API-based authentication
	OAuth authentication
	Basic authentication
	Cookie authentication

	REST API and security
	REST API being used in WordPress plugins
	Overview

	Disabling REST API
	Summary

	Chapter 8: WordPress REST API in Practice
	Key differences between v1 and v2 of the plugin
	Internal changes
	External changes
	Future changes
	Functions of APIs
	The REST API in theory
	A guide to HTTP and REST
	HTTP
	HTTP client libraries

	The WordPress REST API
	The JSON REST API
	Developers of WP REST API
	Overall description
	JSON
	JavaScript
	WP REST API and JavaScript
	XML-RPC in WordPress

	REST API revenue sources
	Mobile applications
	Wearable devices
	SaaS services
	Third-party apps
	Web services

	Competing architectures on the Web
	RESTful architectures
	RPC architectures
	Combination of REST and RPC
	Overview of architectures

	JavaScript and WordPress
	AJAX in WordPress
	Things to consider when using REST API
	Interacting with databases using REST API
	Doing more with REST API

	Current status of REST API
	WordPress features
	REST API conclusion

	Progressive enhancement of WP REST API
	WordPress Calypso and the REST API
	Securing a REST API
	OAuth protocol

	WordPress API and regular users
	Building your own API
	Drawbacks of a custom API
	REST API management
	Implementation of custom services for REST API
	Integration of REST API with mobile applications
	Standards for custom REST APIs

	Custom API tokens
	Summary

	Chapter 9: Summing It Up
	Comparison of REST API with XML-RPC
	RPC versus REST
	Keypoints
	Disadvantages of XML-RPC

	XML-RPC usage in WordPress
	Usage of XML RPC

	REST API token-based authentication
	Making sure your apps and sites are backward-compatible
	Backward compatibility in practice
	New functionality
	Preventing script breaking

	The future of REST API
	What will happen with REST in the future?
	PHP and WordPress
	Mobile integration
	The backend

	REST API plugin versions
	Goals for REST API

	Limitations of REST API
	Summary

	Index

