
Learning	Xcode	8

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents
Learning	Xcode	8

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

eBooks,	discount	offers,	and	more
Why	subscribe?

Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support
Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	Starting	Your	iOS	Journey

A	developer’s	responsibilities
Pre-production
Project	setup
Development
Deployment

Working	on	a	team
Designers
Other	programmers
Project	managers
Investors

The	Xcode	8	toolset
Xcode
iOS	and	watchOS	simulator
Instruments
Application	Loader

Understanding	Model-View-Controller	(MVC)
Model
View
Controller

www.allitebooks.com

http://www.allitebooks.org

MVC	on	the	web
MVC	on	iOS

Becoming	a	registered	developer
Which	account	do	you	need?
Registering	a	free	developer	account
Registering	a	paid	developer	account

Summary

2.	Welcome	to	Xcode

Getting	started
Installing	Xcode
Adding	your	developer	account
Creating	a	new	project

Navigating	Xcode
Editor
Navigator	sidebar
Debug	area
Utilities	sidebar

Exploring	the	editor
Standard	editor
Assistant	editor
Version	editor

Understanding	project	settings
Project	targets
The	General	tab
The	Capabilities	tab
The	Info	tab

Creating	and	managing	files
Resource	types
Creating	new	resources
Importing	existing	files
Groups	and	folders

Creating	builds
Build	and	run
Running	on	a	device

Applying	the	basics
Setting	up	the	workspace
Creating	the	model,	view,	and	controller
Testing	our	work	in	the	simulator

Summary

3.	Introduction	to	Swift	3

Discovering	playgrounds
Setting	up	a	playground

Using	previews
Resources,	pages,	and	rich	comments

www.allitebooks.com

http://www.allitebooks.org

Resources
Pages
Rich	comments

Understanding	Swift	basics
Data	types,	constants,	and	variables

Data	types
Constants
Variables

Optionals
Collection	types

Arrays
Dictionaries

Conditional	statements
if	statement
guard	statement
switch	statement

Loops
for	loop
for-in	loop
while	loop
repeat-while	loop

Functions
Comments	and	printing

Creating	classes,	structs,	and	enums
Classes
Structs
Enumerations

Using	important	Swift	features
Closures
Protocols
Class	extensions
Error	handling

Summary

4.	Using	Storyboards,	Auto	Layout,	and	Size	Classes

Storyboards
Getting	started
View	controllers	and	screen	flow
Understanding	segues

Auto	Layout
The	view	hierarchy

Constraints
Resolving	issues

Size	classes
Devices,	orientations,	and	size	classes
Size	classes	in	action

www.allitebooks.com

http://www.allitebooks.org

Summary

5.	Taking	Advantage	of	Source	Control	in	Xcode

Understanding	version	control
Introduction	to	Git
Setting	up	Git	in	Xcode
Creating	a	local	repository
Adding	Git	to	an	existing	project
Using	a	GitHub	hosted	repository

Using	version	control	in	Xcode
Pull,	push,	and	commit
The	version	editor
Creating	and	merging	branches

Summary

6.	Building	Your	First	iOS	App

Pre-production
Assembling	a	feature	list
Visual	design
Creating	a	development	plan

New	snippet
SnippetData	model
New	snippet	button

Select	snippet	type
Update	SnippetData	model
Create	an	alert	controller

Text	snippet	implementation
Update	SnippetData	model
Text	entry	view	controller

PhotoSnippet	implementation
Update	SnippetData	model
PhotoSnippet	data	entry

Scroll	through	snippets
Create	prototype	cells
Populate	table	view

Snippet	dates
Update	SnippetData	model
Save	data	to	model
Update	view	and	controller

Summary

7.	Integrating	Multitouch	and	Gestures

Human	interface	guidelines	–	gestures
Standard	gestures
Usage	guidelines
How	gestures	work

www.allitebooks.com

http://www.allitebooks.org

Adding	gestures	from	the	storyboard
Setting	up	the	storyboard
Flipping	the	image

Adding	gestures	from	code
Creating	a	gesture	through	code
Reading	the	gesture	data
Changing	the	scale	of	our	image
If	you’re	up	for	a	challenge…

Creating	3D	Touch	app	shortcuts
Setting	up	Info.plist
Handling	shortcuts	in	the	app	delegate

Summary

8.	Exploring	Common	iOS	Frameworks

Frameworks
What	is	a	framework?
Linking	frameworks	in	a	project

Understanding	UIKit	fundamentals
Application	management

The	UIDevice	class
Views

Drawing
Hierarchies
Coordinate	systems

Documents,	displays,	printing,	and	more
Documents
Displays
Printing
And	more!

Using	CoreLocation.framework
Setting	up	CoreLocation	permissions
Getting	the	user’s	location
Adding	location	data	to	Snippets

Using	Social.framework
Setting	up	the	views
Posting	to	Twitter

Summary

9.	Working	with	Core	Data

What	is	Core	Data?
Model	revisited
Entities,	attributes,	and	relationships

Entities
Attributes
Relationships

The	data	model	editor

www.allitebooks.com

http://www.allitebooks.org

Preparing	Snippets	for	Core	Data
Initializing	the	Core	Data	stack

Data	model	versus	object	graph
The	NSManagedObjectModel
The	NSPersistentStoreCoordinator
The	NSManagedObjectContext
Final	touches

Recreating	the	data	model	with	Core	Data
Persisting	data
Saving	data
Fetching	data
Deleting	data

Summary

10.	Creating	a	watchOS	Companion	App

Designing	for	the	Apple	Watch
Using	the	watch
Intended	experience
Apple’s	design	principles

Components	of	a	watchOS	app
The	watchOS	app

Dock	snapshots
Notifications
Complications

Architecture	of	a	watchOS	app
Target	bundles

Watch	App	bundle
Watch	Extension	bundle

Interface	controller
Extension	Delegate

Snippets	for	Apple	Watch
Setting	up	our	project

Creating	a	watchOS	storyboard
Programming	the	interface	controller
Connecting	to	iOS	with	Watch	Connectivity.framework
Adding	a	complication

Summary

11.	Advanced	Input	Using	Sensors

Device	status	with	UIDevice
Accessing	orientation	state
Checking	the	proximity	sensor
Getting	battery	status

Introduction	to	Core	Motion
Accelerometer

Gyroscope

www.allitebooks.com

http://www.allitebooks.org

CMDeviceMotion
User	acceleration
Gravity
Rotation	rate
Magnetic	field

Charting	motion	data
Charts

Importing	the	framework
Setting	up	the	storyboard
Filling	the	chart	with	data

Pedometer
Altitude

Sensors	on	Apple	Watch
Setting	up	an	extension
Getting	sensor	data	on	Apple	Watch
Sending	and	displaying	data	on	iOS

Summary

12.	Sending	Notifications

Introduction	to	user	notifications
Components	of	a	user	notification
Local	versus	remote	notifications

Adding	notification	support	to	Snippets
Getting	permission	to	send	notifications
Scheduling	a	local	notification

Advanced	notifications
Categories	and	actions
Badges
Custom	sounds
Receiving	notifications	while	in	the	app

Summary

13.	Writing	Unit	Tests

Introduction	to	unit	tests
What	is	a	unit?
Why	use	unit	testing	in	the	first	place?

Unit	tests	in	action
Setting	up	the	project
Writing	tests	with	XCTest
Running	tests

Implementing	tests	for	Snippets
Setting	up	the	Snippets	project
Preparing	our	testing	class
Writing	a	data	validation	unit	test
Checking	code	coverage

Testing	UI	in	Xcode	8

www.allitebooks.com

http://www.allitebooks.org

How	does	UI	testing	work?
Adding	the	UI	testing	target
Using	the	UI	recorder

Summary

14.	Debugging	an	iOS	Application

Basic	debugging	practices
print()
Breakpoints	and	the	debug	area

Variables	view
Console
Debug	toolbar

The	call	stack
Advanced	debugging	tools
Address	Sanitizer
Performance	gauges

CPU	and	memory	gauge
Disk	and	network	gauge
Energy	gauge

Visual	debugging
Summary

15.	Optimizing	Your	App

Introduction	to	Instruments
Time	Profiler	instrument

Anatomy	of	an	Instruments	document
Using	the	Time	Profiler

Allocations	instrument
Leaks	instrument
App	Thinning
Slicing
Bitcode
On-demand	Resources

Creating	tags
Loading	resources
Purging	resources

Summary

16.	Distributing	an	iOS	App

Preparing	iTunes	Connect
Registering	a	bundle	identifier
Creating	a	new	app	record	in	iTunes	Connect

Uploading	to	iTunes	Connect
Releasing	the	app
Finalizing	store	assets
Distributing	on	TestFlight

www.allitebooks.com

http://www.allitebooks.org

Submitting	to	the	App	Store
Summary

Index

www.allitebooks.com

http://www.allitebooks.org

Learning	Xcode	8

Learning	Xcode	8
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2016

Production	reference:	1111116

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-572-3

www.packtpub.com

http://www.packtpub.com

Credits
Author

Jak	Tiano

Reviewer

Vishal	Devrajbhai	Gabani

Commissioning	Editor

Kunal	Parikh

Acquisition	Editor

Tushar	Gupta

Content	Development	Editor

Deepti	Thore

Technical	Editor

Rupali	R.	Shrawane

Copy	Editor

Safis	Editing

Project	Coordinator

Shweta	H	Birwatkar

Proofreader

Safis	Editing

Indexer

Monica	Ajmera	Mehta

Production	Coordinator

Melwyn	Dsa

Cover	Work

Melwyn	Dsa

About	the	Author
Jak	Tiano	is	an	iOS	and	game	developer	living	in	Burlington,	VT.	In	2015	he	graduated
with	top	honors	from	the	game	development	program	at	Champlain	College,	and	is	now
programming	educational	robotics	games	at	Xemory	Software.	In	his	spare	time,	he
always	keeping	up	with	the	latest	iOS	technologies.

Jak	first	learned	how	to	code	as	a	freshman	in	high	school,	when	the	very	first	iPhone
SDK	was	released.	After	a	year	of	learning	the	basics	of	C++	and	Objective-C,	he	released
his	first	iPhone	app	in	the	summer	of	2009.	Since	then,	he	has	programmed	over	30	iOS
apps	and	games,	releasing	a	handful	along	the	way.	In	both	2013	and	2014,	he	attended
Apple’s	World	Wide	Developers’	Conference	in	San	Francisco	on	direct	scholarship	from
Apple.	He’s	been	programming	with	Swift	exclusively	since	its	release	in	2014,	and	has
served	as	a	technical	reviewer	on	Swift	2	Blueprints,	Cecil	Costa,	Packt	Publishing.

I	would	like	to	thank	my	parents	and	my	friend	Chas	for	giving	me	the	initial	nods	of
encouragement	to	start	writing	this	book,	with	a	special	thanks	to	my	mom	for	continuing
to	motivate	me	throughout.	I’d	also	like	to	thank	Zach	and	Zach	for	putting	up	with	me
skipping	out	on	plans	week	after	week	so	that	I	could	write;	thanks	for	still	being	my
friend!	I	wouldn’t	have	been	able	to	finish	the	book	without	the	coworking	space	managed
by	VCET	and	the	Starbucks	on	Church	Street,	which	gave	me	enough	space	to	shake	up
my	writing	spots	and	keep	me	focused.

Finally,	I’d	like	to	thank	all	of	the	teachers	who	have	taught,	encouraged,	and	inspired	me
throughout	my	education.	Without	them,	I	would	have	neither	the	technical	knowledge	nor
the	language	skills	needed	to	write	several	hundred	pages	about	iOS	development.

About	the	Reviewer
Vishal	Devrajbhai	Gabani	is	an	iOS	Developer	with	more	than	6	years	of	experience	in
iOS	application/framework	development.	He	has	45	developed	app	under	his	belt.

Vishal	has	started	his	carrier	as	a	Junior	iPhone	Developer	with	small	company	from
Ahmedabad,	Gujarat	(India).	He	worked	with	few	MNCs	during	his	5	years	stay	in
Bengaluru,	Karnataka	(India).	He	has	bachelors	degree	in	Information	Technology	from
Bhavnagar	University.

I	thank	my	family	for	their	support.	I	dedicate	this	effort	to	my	parents.

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
	

Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
In	today’s	mobile-oriented	world,	iOS	development	has	become	one	of	the	most	lucrative
skills	in	the	tech	industry.	Many	existing	companies	can	benefit	from	a	well-designed	app
(just	look	at	Starbucks),	and	mobile	apps	have	created	entirely	new	businesses	by
disrupting	existing	industries	(such	as	Uber)	or	creating	new	ones	(such	as	Snapchat).

Over	the	course	of	this	book,	we’ll	be	walking	through	the	basics	of	iOS	development	by
focusing	on	the	Xcode	suite	of	tools,	which	is	the	primary	software	package	used	to
develop	iOS	(and	watchOS,	tvOS,	and	OSX)	applications.	Along	the	way,	we’ll	touch
upon	many	subjects,	such	as	the	fundamental	concepts	behind	iOS	app	architecture,	the
Swift	3	programming	language,	creating	iOS	and	watchOS	applications	from	scratch,	and
much	more!

The	goal	of	this	book	is	to	give	you	a	wide	sampling	platter	of	the	many	different	sides	to
iOS	development.	By	the	end,	you	will	have	directly	touched	many	unique	aspects	of	app
development	and	will	have	built	your	first	app	from	concept	to	app	store!

Welcome	to	Learning	Xcode!

What	this	book	covers
Chapter	1,	Starting	your	iOS	Journey,	covers	the	developer’s	responsibilities,	an	overview
of	the	Xcode	8	toolset,	and	an	introduction	to	Model-View-Controller	application
architecture.

Chapter	2,	Welcome	to	Xcode,	looks	at	the	main	Xcode	application	in	detail,	covering
many	different	areas,	modes,	and	editors.

Chapter	3,	Introduction	to	Swift	3,	teaches	you	the	basics	of	the	Swift	programming
language,	from	variables	and	functions	to	brand	new	features,	such	as	error	handling.

Chapter	4,	Using	Storyboards,	Auto	Layout,	and	Size	Classes,	covers	the	visual
development	side	of	Xcode,	called	Interface	Builder,	in	detail.

Chapter	5,	Taking	Advantage	of	Source	Control	in	Xcode,	gets	you	up	to	speed	on	the
concept	behind	Git	version	control	and	how	to	enable	it	in	Xcode.

Chapter	6,	Building	your	First	iOS	App,	teaches	you	how	to	break	down	an	app	idea	into
actionable	chunks	and	then	walks	you	through	a	full	development	cycle	of	app
development	for	an	app	called	Snippets.

Chapter	7,	Integrating	Multitouch	and	Gestures,	looks	at	some	of	the	many	ways	to	use
advanced	touch	information	in	your	app	through	gestures	and	3D	touch	shortcuts.

Chapter	8,	Exploring	Common	iOS	Frameworks,	covers	the	concept	of	code	frameworks
and	then	dives	into	the	UIKit,	CoreLocation,	and	Social	frameworks.

Chapter	9,	Working	with	CoreData,	teaches	you	the	concept	behind	the	CoreData
framework	and	how	to	use	it	to	save	and	load	user	data	in	an	application.

Chapter	10,	Creating	a	watchOS	Companion	App,	looks	at	how	to	design	and	create	a
companion	app	for	the	Apple	Watch	by	using	the	Snippets	app	created	in	Chapter	6.

Chapter	11,	Advanced	Input	Using	Sensors,	covers	the	many	sensors	found	in	the	iPhone
using	third-party	charting	frameworks	and	accessing	sensors	on	Apple	Watch.

Chapter	12,	Sending	Notifications,	teaches	you	how	to	send	the	user	actionable
notifications	in	addition	to	displaying	application	badges	and	playing	alert	sounds.

Chapter	13,	Writing	Unit	Tests,	introduces	the	concept	of	writing	code	that	tests	your
application	code	and	teaches	you	how	to	implement	these	tests	in	Xcode.

Chapter	14,	Debugging	an	iOS	Application,	covers	the	different	ways	to	search	for	and
eliminate	bugs	in	your	application	code.

Chapter	15,	Optimizing	your	App,	gives	you	an	overview	of	the	tools	in	Xcode	that	help
speed	up	the	performance	of	your	code	and	reduce	the	file	size	of	your	app’s	resources.

Chapter	16,	Distributing	an	iOS	App,	walks	you	through	the	process	of	taking	a	finished
app	from	Xcode	to	the	App	Store.

What	you	need	for	this	book
In	order	to	follow	along	with	this	book,	you’ll	need	a	computer	running	Mac	OS	X	10.10
or	later	with	Xcode	8	installed	(free	on	the	Mac	App	Store).	In	Chapter	5,	we	will	also	be
using	GitHub	Desktop,	which	is	a	free	download	from	the	https://github.com/	website.

To	get	the	most	out	of	the	book,	you’ll	also	need	a	recent	iOS	device	(iPhone	6S	or	newer
for	the	3D	touch	segments)	and	a	lightning	cable	to	connect	it	to	your	computer.	In	the
final	chapter,	you	will	need	a	paid	($99)	Apple	Developer	Account	to	follow	along	with
submitting	an	app	to	TestFlight	and	the	App	Store.

https://github.com/

Who	this	book	is	for
Learning	Xcode	is	intended	for	programmers	looking	to	get	a	jump	start	into	the	world	of
iOS	development.	Whether	you’re	a	young	student,	who	has	only	spent	a	few	months	with
Java,	or	a	seasoned	developer,	who	has	spent	their	career	developing	for	a	different
platform,	all	that	is	expected	is	a	basic	understanding	of	a	programming	language,	such	as
C++,	C#,	or	Java.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive”.

A	block	of	code	is	set	as	follows:
struct	SnippetData	{

			

				init()	{

								print	(“new	snippet	created”)

				}

			

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:
func	textViewDidEndEditing(textView:	UITextView)	{

				saveText(text:	textView.text)

				dismissViewControllerAnimated(true,	completion:	nil)

}

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	”	At	the	bottom	of	the
window,	you	should	see	a	drop-down	menu	for	Command	Line	Tools.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

	
1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book’s
webpage	at	the	Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the
book’s	name	in	the	Search	box.	Please	note	that	you	need	to	be	logged	in	to	your	Packt
account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

	
WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/Learning-Xcode-8.	We	also	have	other	code	bundles
from	our	rich	catalog	of	books	and	videos	available	at
https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-Xcode-8
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
www.packtpub.com/sites/default/files/downloads/LearningXcode8	_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/LearningXcode8%20_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

www.allitebooks.com

mailto:questions@packtpub.com
http://www.allitebooks.org

Chapter	1.	Starting	Your	iOS	Journey
When	Steve	Jobs	announced	the	original	iPhone	in	January	of	2007,	he	referred	to	it	as	a
combination	of	three	product	categories:	a	widescreen	iPod	with	touch	controls,	a
revolutionary	mobile	phone,	and	a	breakthrough	Internet	communications	device.	When
he	first	announced	each	of	those	three	feature	sets	on	stage,	the	iPod	and	the	phone
received	tremendous	applause	from	the	crowd.	However,	the	Internet	communications
aspect	only	got	a	few	polite	claps.	In	2007,	the	iPhone	ran	on	EDGE	(2G)	cellular
networks.	There	was	no	iCloud.	The	App	Store	wouldn’t	exist	for	over	a	year;	iPhone	OS
was	a	closed	platform.	At	the	time,	there	just	wasn’t	anything	particularly	exciting	about
an	internet	communicator.

Fast-forward	to	the	present	day:	our	phones	are	running	the	10th	version	of	iOS,	and	each
year	iOS	developers	are	getting	paid	over	$10	B	from	app	sales	and	in-app-purchases.
Since	the	days	of	the	original	iPhone,	we’ve	seen	the	introduction	of	the	iPod	Touch,	the
iPad	Air,	iPad	Mini,	and	iPad	Pro,	and	in	the	last	year	or	so	the	Apple	Watch	and	Apple
TV	as	well.	.	If	it	hasn’t	been	made	clear	yet,	the	iOS	ecosystem’s	growth	has	been
explosive!	While	this	is	nothing	but	excitement	for	iOS	users,	for	someone	who	is	about	to
set	off	on	their	journey	as	an	iOS	developer,	all	of	these	facts	just	mean	that	there	is	much
more	to	learn!

While	the	iPod	and	the	mobile	phone	pieces	of	Steve’s	original	iPhone	pitch	are	still	there,
the	defining	aspect	of	the	iOS	success	story	is	its	internet	communicator	capabilities,
which	you	are	about	to	dive	into	with	iOS	app	development	using	Xcode.	In	this	first
chapter,	my	goal	is	to	make	sure	you	are	informed,	prepared,	and	excited	to	begin
developing	for	the	iOS	platform.	We’ll	be	covering	a	wide	variety	of	topics,	including:

	
A	developer’s	responsibilities
Working	on	a	team
An	overview	of	the	Xcode	8	suite	of	tools
Understanding	the	Model-View-Controller	paradigm
Signing	up	for	an	Apple	Developer	Account

So	without	any	further	delay,	let’s	go!

A	developer’s	responsibilities
Before	we	get	into	anything	too	technical,	let’s	go	into	a	little	detail	about	what	an	iOS
developer	does.	It’s	obvious	that	we’ll	be	doing	a	lot	of	coding,	but	that’s	not	the	whole
story!	As	a	developer,	you	might	be	responsible	for	many	different	technical	aspects	of	a
project	depending	on	the	team	structure,	which	we’ll	get	into	shortly.	But	for	now,	we’ll
take	a	look	at	the	general	items	that	end	up	on	a	developer’s	to-do	list.

Note
As	we	walk	through	the	next	few	sections,	don’t	be	alarmed	if	you	find	yourself	a	little
lost.	Everything	discussed	here	is	explored	in	much	more	detail	in	this	book,	but	for	now
we’re	going	to	jump	right	in	and	learn	through	immersion.	By	introducing	you	to	terms	in
a	meaningful	context,	you	should	hopefully	have	a	good	idea	of	how	they	relate	to	each
other	before	we	explore	them	individually.

Pre-production
Every	project	starts	with	an	idea;	that’s	the	easy	part.	Unfortunately,	you’re	not	the	idea
person,	but	the	one	in	charge	of	execution.	In	the	pre-production	phase	of	a	project,	your
responsibilities	are	to	take	an	idea	and	translate	it	from	wishful	thinking	into	a	plan	of
action.

The	first	thing	that	usually	happens	after	brainstorming	is	that	you’ll	write	out	a	list	of
features	that	the	application	will	have.	Using	your	programmer’s	point	of	view,	you	want
to	break	down	the	idea	into	all	of	the	technical	components	that	you	can.

As	you	become	more	experienced	it	will	become	easier	to	know	what	to	plan	for,	but	as	a
general	rule	of	thumb	you	will	only	want	to	focus	on	the	core	features	of	your	app	here.
What	features	are	needed	for	a	minimum	viable	product?	Again,	experience	here	will	help
you	figure	out	how	deep	you	should	go	into	your	plan,	but	once	you	have	a	good	idea	of
what	you	will	be	doing,	it’s	time	to	move	ahead.

Project	setup
Now,	before	you	can	even	write	one	line	of	code,	you	first	have	to	set	up	your
development	environment.	For	most	projects,	this	means	creating	a	new	Xcode	project
and	setting	up	your	preferred	method	of	source	control.

When	setting	up	a	new	project,	it’s	important	to	refer	back	to	the	technical	plan	you	made
during	pre-production	to	help	inform	your	decisions.	Are	you	going	to	be	using	any	of	the
Xcode	project	templates?	Where	will	your	repository	be	located?	Is	there	anyone	else	on
the	team	that	needs	access	to	the	source	code?	Does	the	app	need	any	services	enabled?
Are	there	pre-existing	code	libraries	that	you	need	to	import	for	your	project?

It	will	be	your	job	to	make	sure	that	Xcode	and	any	other	necessary	tools	are	configured
properly	and	optimized	for	the	job	ahead.	Once	you’ve	got	all	of	the	setup	out	of	the	way,
it’s	finally	time	to	start	writing	some	code!

Development
When	the	application	is	in	active	development,	it	is	your	time	to	shine.	In	this	phase	you’ll
be	having	the	most	fun,	but	you’ll	also	have	the	most	responsibilities.

When	developing	an	application,	you’ll	be	writing	code	to	handle	both	the	data	model	and
the	user	interface	of	the	program.	You’ll	also	be	using	storyboards	in	Xcode	to	layout	the
screens	of	an	application.	A	lot	of	your	time	will	be	spent	with	these	two	tasks	to	create
new	view	controllers	that	add	or	change	features	in	your	app.

In	addition	to	building	the	software,	you	will	need	to	do	routine	project	maintenance.	This
means	that	you	should	be	frequently	checking	in	with	source	control	and	reviewing	other
programmers’	code	additions.	You	will	also	be	writing	unit	tests	to	make	sure	your	code	is
functioning	as	expected.	On	top	of	all	of	that,	you	will	be	debugging	and	optimizing	your
code.

While	development	can	take	weeks,	months,	even	years	to	get	to	a	finished	state,	the
market	can’t	wait	that	long!	Usually,	once	your	app	has	all	of	its	core	features
implemented	and	tested,	you	will	polish	it	up	and	release	it	to	the	world	to	get	feedback.

Deployment
When	a	new	feature	is	complete,	or	when	a	predetermined	milestone	is	hit	in	a	project,
you	need	to	then	get	your	app	into	the	hands	of	people	who	actually	want	to	use	it!

For	you,	this	means	several	things.	First,	you’ll	want	to	create	a	release	build	of	the
application	that	removes	any	debug	features	that	an	end-user	doesn’t	need.	Then	you’ll	be
responsible	for	packaging	that	build	up	and	putting	it	somewhere	that	others	can	access	it;
if	you’re	still	beta	testing,	a	platform	like	TestFlight	might	make	sense,	or	if	you	have	a
finished,	tested	build,	it’s	time	to	get	ready	for	the	App	Store.

Working	on	a	team
In	the	previous	section,	we	started	to	touch	on	what	a	developer	can	be	expected	to	do
over	the	length	of	a	project.	More	importantly,	though,	we	should	also	be	able	to	see	how
even	with	all	of	those	responsibilities	there	are	still	many	things	unaccounted	for!	Who	is
designing	the	layout	of	the	screens	we	are	building?	Who	is	creating	the	assets	that	we
will	be	using	in	our	app?	Who	is	keeping	everything	on	schedule?

While	we	will	be	taking	a	lone	wolf	approach	to	development	as	we	learn	throughout	this
book,	the	real	world	of	software	development	doesn’t	work	that	way.	As	a	developer,	you
are	just	one	of	many	roles	on	a	team.	Depending	on	the	size	of	the	team,	you	may	even	be
splitting	the	technical	responsibilities	among	several	other	people.	Let’s	take	a	look	at	the
other	project	roles	you	may	interact	with	while	making	an	app.

Note
Remember:	every	team	is	different!	You	may	never	encounter	a	team	in	your	career	where
the	roles	resemble	the	descriptions	below.	(But	I	highly	doubt	that!)

Designers
If	you	think	of	the	developer	as	the	person	who	deals	with	the	How	of	a	project,	the
designer	is	the	person	who	actually	determines	the	What.	Designers	are	responsible	for
developing	what	the	application	looks	like,	and	the	content	that	is	inside	of	it.	They	will
often	approach	problems	from	both	a	psychological	and	aesthetic	point	of	view,	trying	to
tie	the	two	together	to	create	an	experience	that	is	seamless	and	intuitive.

When	working	with	a	designer,	communication	is	key.	You	are	both	trying	to	solve	the
same	problems,	but	from	very	different	angles;	it	is	common	to	not	understand	where	the
other	person	is	coming	from.	But	remember,	the	success	of	the	project	depends	on	your
cooperation.	Taking	a	moment	to	explain	a	technical	limitation	(or	to	listen	to	feedback
about	your	implementation	of	their	design)	will	not	only	help	avoid	similar	problems	in
the	future,	but	will	also	promote	trust	within	the	team.

Other	programmers
In	addition	to	designers,	the	other	role	you	will	be	spending	the	most	time	with	is…	more
programmers.	While	some	small	projects	can	get	by	with	a	single	programmer,	it	is	much
more	likely	that	you’ll	be	working	with	at	least	a	few	other	programmers.	With	multiple
programmers	on	one	team,	you’ll	be	split	up	in	all	kinds	of	ways.	Sometimes	you	will	be
evenly	split	between	different	major	features.	Other	times	each	developer	might	be	in
charge	of	different	tasks	(build	master,	unit	tests,	etc.).	It	all	depends	on	the	needs	of	the
project	and	the	size	of	the	team.

While	there	won’t	be	as	much	of	an	understanding	barrier	between	other	coders	as	there
might	be	with	designers,	there	are	still	plenty	of	issues	that	can	arise	from	working	with
other	developers.	It	is	common	for	every	programmer	to	have	his	or	her	own	unique	style
of	coding,	but	when	working	on	a	team	it	is	important	to	have	at	least	some	ground	rules
so	that	everybody	can	understand	everyone	else’s	code.

Sometimes,	you	will	also	be	working	with	developers	who	might	not	be	as	experienced	in
a	topic	as	you	are	(or	maybe	you	will	be	the	inexperienced	one!).	In	those	cases,	it’s	still
important	to	be	patient	and	help	those	people	understand	what’s	going	on.	Teams	thrive	on
trust,	and	you	never	know	what	that	person	might	be	able	to	teach	you	down	the	line.

Project	managers
A	project	manager’s	job	is	pretty	self-explanatory.	They	need	to	make	sure	that	everyone
on	the	team	is	making	progress	towards	whatever	goal	has	been	set.	Perhaps	more	than
any	other	role,	the	project	manager	can	come	in	many	different	shapes	and	sizes.	Every
company,	every	team,	every	project	even	will	approach	the	management	of	a	project
differently.

Many	teams	these	days	use	some	form	of	agile	development,	but	the	implementation
varies	greatly.	Generally,	the	goal	of	an	agile	team	is	to	work	in	short	bursts	called	sprints
that	last	for	a	week	or	two.	During	each	sprint	you’ll	be	working	on	only	a	handful	of
tasks,	with	the	intention	of	lightweight	and	rapid	iteration.

On	these	kinds	of	teams,	the	project	manager	might	be	a	dedicated	person,	or	even	a
hierarchy	of	individuals	responsible	for	leading	small	feature	teams.	Whatever
arrangement	you	find	yourself	in,	it’s	important	to	work	with	your	project	manager	(or
project	management	software)	to	make	sure	that	your	progress	is	being	tracked	properly.

Investors
An	investor	is	one	of	the	people	(or	perhaps	the	only	person)	who	has	a	financial	stake	in
your	project.	Investors	could	range	from	parents,	to	clients,	to	venture	capitalists.	The
important	thing	is	that	they	have	put	up	some	amount	of	cash	to	fund	the	project,	and	are
most	likely	expecting	to	get	a	return	on	that	investment.

Depending	on	your	seniority	in	a	team,	or	the	type	of	project	you’re	working	on,	you	may
or	may	not	ever	have	to	deal	directly	with	an	investor.	While	every	investor	you	have	to
deal	with	is	guaranteed	to	be	very	different	from	the	last,	it’s	always	important	to	treat
them	with	respect	and	honesty	(unless	the	honesty	will	compromise	the	respect!).
Remember,	they’re	the	ones	putting	food	on	your	table.

The	Xcode	8	toolset
At	this	point,	we’ve	taken	a	pretty	good	look	at	a	lot	of	the	general	things	that	an	iOS
developer	does	during	a	project,	and	how	they	work	with	a	team.	So,	with	all	of	that	out	of
the	way,	let’s	take	a	tour	of	the	main	event:	Xcode	8	(and	friends!).

We’ll	be	taking	a	much	deeper	look	at	Xcode	in	the	next	chapter	(Chapter	2,	Welcome	to
Xcode),	so	we’ll	mostly	be	skimming	through	the	big	pieces	here	to	get	an	understanding
of	how	they	all	fit	together.

Xcode
Xcode	is	Apple’s	full	IDE	(integrated	development	environment)	for	building	software	for
any	Apple	platform.	First	used	for	Mac	OS	X	development,	then	expanded	for	iOS,
watchOS,	and	tvOS,	if	you’re	making	apps	for	Apple	hardware	you’re	using	Xcode.
Luckily,	it’s	chock	full	of	features,	easy	to	use,	and	looks	great:

Figure	1.1:	The	main	Xcode	application	window

Xcode	has	several	primary	features.	As	an	IDE,	it	uses	a	custom	.xcodeproj	file	format	to
manage	all	of	the	code,	asset,	and	configuration	files	that	you	create	and	import.	It	also	has
a	fully-featured	source	code	editor	that	is	optimized	for	Objective-C	and	Swift	languages,
including	file	presets	made	for	macOS/iOS	development,	and	built-in	documentation
viewing.	Finally,	Xcode	compiles	your	code	and	makes	it	easy	to	deploy	the	resulting
packages	to	simulators,	test	devices,	and	even	the	App	Store.

There’s	no	reason	to	go	any	deeper	than	that	for	now,	since	the	rest	of	this	book	is	about
doing	exactly	that.	However,	I	would	like	to	introduce	you	to	some	other	major	tools	that

are	hidden	within	the	Xcode	application	that	you	will	be	seeing	again	later.

Note
If	you’d	like	to	actually	see	where	these	tools	reside	for	yourself,	first	navigate	to	the
Xcode.app	(most	likely	in	your	Applications	folder).	Then	right-click	on	the	icon	and
select	Show	Package	Contents.	Then,	navigate	to	Contents	|	Applications,	and
Contents	|	Developer	|	Applications	to	see	the	hidden	apps	we	are	about	to	explore.	And
don’t	worry!	We’ll	have	much	easier	access	to	them	from	within	Xcode,	so	there’s	no	need
to	remember	how	to	find	them	like	this.

iOS	and	watchOS	simulator
The	iOS	and	watchOS	simulators	are	small	applets	that	make	it	easy	to	test	the
applications	you	make	without	needing	a	dedicated	testing	device.	With	the	variety	of
screen	sizes	now	available	on	iOS	devices,	the	chances	are	slim	that	you	will	own	one	of
every	size	to	test	on;	luckily,	the	simulators	make	it	easy	to	check	your	app’s	layout	on
every	screen	size:

Figure	1.2:	The	iOS	and	watchOS	simulator	windows

The	Apple	watch	is	also	a	relatively	new	product.	Leading	up	to	its	launch	(and	shortly
after),	limited	availability	of	Apple	Watches	made	it	near	impossible	to	get	a	hold	of	one
for	testing.	Even	now,	it	isn’t	nearly	as	ubiquitous	as	an	iPhone,	and	not	every	developer
has	access	to	a	real	device.	Finally,	sometimes	your	devices	are	preoccupied,	and	you	just
need	to	test	some	code!

Note
Prior	to	Xcode	7,	to	test	an	app	on	a	real	device	required	a	paid	Apple	developer	license.
For	many	students	or	hobby	developers,	the	simulator	was	their	only	way	of	running	the
apps	they	made	without	paying	for	the	full	license.	In	2015,	however,	Apple	revamped	the
way	their	developer	accounts	work,	and	building	to	your	device	no	longer	requires	a	paid
account.

Instruments
When	creating	an	app,	you	spend	most	of	your	time	dealing	with	high-level	concepts,	like
the	sequential	logic	of	a	function,	or	the	layout	of	a	screen.	At	some	point,	though,	it	is
important	to	get	a	better	understanding	of	how	your	app	works	under	the	hood:

Figure	1.3:	The	Instruments	application’s	template	chooser

Instruments	is	an	analysis	and	profiling	tool	that	can	help	you	do	just	that.	It	is	made	to
help	you	understand	how	your	application’s	processes	are	running	on	the	CPU	to	help	you
reproduce	hard	to	find	logic	errors,	patch	memory	leaks,	and	stress	test	different	parts	of
your	app.

Application	Loader
Application	Loader	is	a	small	application	that	ships	with	Xcode	with	the	sole	purpose	of
uploading	data	to	the	App	Store	servers.	In	the	standard	workflow	of	iOS	development,
managing	the	App	Store	side	of	things	can	usually	be	taken	care	of	with	iTunes	Connect	in
conjunction	with	Xcode	directly:

Figure	1.4:	The	Application	Loader	template	chooser

However,	some	people	prefer	to	use	Application	Loader	to	upload	app	binaries	and	in-
app-purchase	content.	Essentially,	they	accomplish	the	same	tasks,	but	Application	Loader
tends	to	be	a	bit	clearer.

Understanding	Model-View-Controller
(MVC)
Developing	any	type	of	software	requires	logical	thinking	and	strong	problem-solving
skills.	However,	programmers	have	been	building	software	for	decades,	and	have
collectively	encountered	and	solved	a	great	number	of	the	common	problems	encountered
when	writing	code.

As	time	has	passed,	some	of	the	best	solutions	to	common	problems	that	have	been
developed	and	shared	are	in	the	form	of	patterns.	On	a	granular	level,	there	are	design
patterns	that	are	used	to	solve	common	problems	at	the	object	or	multi-object	level.	As	an
example,	the	Singleton	pattern	describes	a	class	that	may	only	have	one	instance,	with	a
global	access	point.	Since	it	isn’t	a	specific	set	of	instructions	for	any	given	language
(remember,	it’s	just	a	pattern),	the	Singleton	pattern	can	be	implemented	in	many	different
languages,	as	is	the	case	with	most	design	patterns.

In	addition	to	solving	smaller	issues	with	design	patterns,	programmers	have	also
developed	many	patterns	concerned	with	outlining	how	an	entire	program	should	be
structured;	these	are	called	architectural	patterns.	At	the	core	of	Cocoa	Touch,	Apple’s
native	API	for	building	apps	for	iOS,	is	the	architectural	pattern	called	Model-View-
Controller.

Figure	1.5:	The	Model-View-Controller	architectural	pattern

The	pattern	is	pretty	simple	to	understand:	the	code	of	an	MVC	program	is	separated	into
a	data	layer	(the	model),	a	user	presentation	layer	(the	view),	and	a	third	layer	that
connects	the	two	halves	(the	controller).	This	allows	for	a	very	logical	separation	of
functionality	in	your	code.

Note
Cocoa	Touch	is	based	on	the	original	Cocoa,	which	is	the	API	that	Apple	built	for
programming	OSX	apps.	There	is	a	very	fascinating	history	behind	Smalltalk,	Objective-
C,	NeXTSTEP,	and	how	all	of	that	led	to	OSX	and	ultimately	iOS.	Since	it	won’t	be
covered	in	this	book,	I	hope	you	will	research	and	understand	these	technologies	that	led
to	the	modern	iOS	development	environment.

Since	it	is	foundational	to	the	underlying	technology	of	Apple’s	development	frameworks,
using	MVC	when	building	your	applications	is	pretty	much	mandatory,	and	enforced	at
every	turn.	As	we	explore	Xcode	and	Swift,	you’ll	see	the	idea	of	MVC	everywhere:

www.allitebooks.com

http://www.allitebooks.org

CoreData	is	how	you	can	design	your	model;	Storyboards	are	quite	literally	where	you
create	views;	UIKit	has	many	types	of	built	in	view	controllers.	In	time,	we’ll	cover	all	of
these	individually	and	in	depth,	but	for	now	let’s	make	sure	we	have	a	firm	grasp	on	the
basics	of	Model-View-Controller.

Model
At	the	very	core	of	an	application	is	its	data.	In	a	music	app,	that	would	be	the	music	files
and	associated	metadata.	In	a	contacts	app,	it	would	be	a	database	of	your	saved	contacts.
In	Twitter,	it’s	the	tweets.	You	get	the	idea.	The	model	of	an	application	is	all	about	how
you	represent	and	manipulate	that	persistent	data.

Let’s	use	the	contacts	app	as	an	example,	and	assume	that	the	database	of	contacts	is
stored	locally	on	your	device.	The	model	for	that	data	would	need	to	do	several	things.
There	needs	to	be	a	way	to	load	contact	information	from	the	database	into	an	object	in
code.	There	should	also	be	ways	to	modify	and	save	that	data,	for	times	when	a	user	might
want	to	change	a	contact’s	information,	or	add	a	new	contact	altogether.	Finally,	the	model
needs	to	be	able	to	tell	a	controller	when	any	of	the	contact	data	has	changed:

Figure	1.6:	How	the	model	functions	and	interacts	with	a	controller

While	the	first	capability	(having	a	container	to	load	data	into)	is	an	internal	feature	of	the
model,	the	other	two	capabilities	are	essential	exposures	needed	for	the	model	to
communicate	with	the	controller.	The	controller	will	be	capable	of	sending	updated
information	to	the	model,	which	needs	to	be	able	to	receive	that	data,	format	it	correctly,
and	save	it	back	to	the	database.	Likewise,	the	model	needs	to	let	the	controller	know
when	its	data	has	changed,	so	that	the	controller	can	react	accordingly.

This	creates	a	clean,	separated	relationship;	the	controller	sends	simple	data	to	the	model
and	handles	general	update	events,	while	the	model	takes	care	of	all	the	saving,	loading,
manipulation,	and	formatting.

View
While	the	model	is	taking	care	of	the	raw	data,	the	view	is	in	charge	of	what	is	actually
being	seen	by	the	user.	Continuing	the	example	of	a	contact	management	app,	let’s	take	a
look	at	how	the	view	might	be	handled:

Figure	1.7:	The	view	of	a	contacts	app,	shown	interacting	with	a	controller

Here,	we	can	see	that	the	view	is	showing	the	user	some	nicely	formatted	contacts.	On	the
left	is	a	round	portrait	of	the	person,	followed	by	their	name,	and	less	important	on	the
right	is	a	greyed	out	word	that	signifies	if	the	contact	is	for	that	person’s	home	or	work
information.	You	can	also	see	that	the	controller	is	sending	the	view	the	information	to
display,	and	that	the	view	is	relaying	any	user	input	back	to	the	controller.

What’s	powerful	about	decoupling	your	view	from	all	of	the	other	application	logic	is	that
you	can	rapidly	iterate	how	your	app	looks	and	feels,	without	having	to	worry	about
breaking	any	of	the	important	logic	underneath.	It	also	keeps	the	amount	of	data	needed	in
your	model	to	a	minimum.	For	example,	our	model	has	no	idea	that	the	portrait	image	will
be	cropped	to	a	circle,	or	what	size	the	font	needs	to	be	on	a	contact’s	name.	The	view
keeps	track	of	everything	related	to	presentation,	often	in	a	way	that	is	highly	reusable.

Controller
We’ve	seen	how	the	controller	works	independently	with	both	the	model	and	the	view	and
we’ve	got	a	pretty	good	idea	of	how	everything	works	together,	but	let’s	look	at	a	little	bit
more	of	a	detailed	big	picture	to	really	see	what	the	controller	is	doing:

Figure	1.8:	How	the	controller	ties	everything	together

Looking	inside	the	controller,	you	can	see	that	we’ve	elaborated	a	bit	on	what’s	going	on.
You’ll	notice	that	the	controller	is	capable	of	receiving	notifications	from	both	the	model
and	the	view,	and	then	make	decisions	based	on	those	notifications.	It	is	also	capable	of
sending	updated	information	back	to	the	model	and	the	view.

Note
As	you’ll	see	later	in	the	book,	a	controller	can	(and	often	does)	do	a	lot	more	than	just
listen	for	changes.	It	is	also	responsible	for	setup	tasks,	supplementary	logic,	and	pretty
much	anything	else	that	doesn’t	fit	in	the	model	or	view.

This	cycle	repeats	for	the	duration	of	the	controller’s	existence.	Listen	for	changes.
Process	notifications.	Update	appropriate	objects.	Listen	for	changes.	Process
notifications.	Update	appropriate	objects.	It’s	a	very	elegant	solution	that	keeps	your	code
decoupled	while	still	making	it	easy	for	changes	on	both	sides	to	be	properly	dealt	with
throughout	the	application.

However,	this	diagram	shows	a	very	generic	representation	of	controller	logic.	Often	when
developing	an	app,	you’ll	write	many	unique	controllers	that	all	need	custom	logic,	and
each	handle	things	a	little	differently.	At	each	controller’s	core	though,	you’ll	find	that
they	all	need	to	implement	this	functionality	in	some	way.

MVC	on	the	web
Now,	we’ve	spent	some	quality	time	with	the	theory	of	the	Model-View-Controller
software	architectural	pattern,	but	I	find	the	best	way	to	learn	is	through	examples.	So	let’s
take	a	quick	look	at	how	MVC	is	used	on	an	Internet	browser,	something	most	people	use
every	single	day:

Figure	1.9:	HTML	is	used	to	define	the	“model”	of	a	web	page

One	of	the	most	interesting	parts	of	how	the	web	works	is	that	it	has	several	different
languages,	and	each	one	handles	a	different	function.	HTML	is	a	markup	language	that
defines	the	content	of	a	web	page.	This	means	that	HTML	defines	our	model.	There
usually	shouldn’t	be	any	formatting	in	an	HTML	file,	so	viewing	one	directly	will	be	an
unformatted	jumble	of	source	text	and	images.	In	Figure	1.9,	you	can	see	how	the	HTML
document	contains	the	data	for	the	website	title,	along	with	images	and	captions:

Figure	1.10:	The	CSS	files	define	the	formatting	of	a	web	page

Separate	from	HTML	is	a	style	sheet	language	called	CSS.	CSS	knows	nothing	about	the
data	in	your	HTML	files,	and	is	only	responsible	for	defining	the	visual	rules	for	how
HTML	elements	will	be	displayed.	It	determines	things	like	the	height	and	widths	of
different	elements,	color	information,	and	rules	for	how	text	should	be	displayed.	This
would	make	CSS	in	charge	of	our	view.	In	Figure	1.10,	you	can	see	how	the	CSS	file
results	in	a	basic	layout	of	a	web	page,	such	as	position	and	size	information.	However,	all
of	the	content	is	blank,	to	reinforce	that	it	does	not	know	anything	about	the	content	that
will	be	displayed:

Figure	1.11:	The	browser	is	the	controller,	and	uses	JavaScript	to	implement	additional
logic

Finally,	we	have	the	browser	itself,	which	loads	both	the	HTML	data	and	the	CSS	rules	to
give	us	the	final	rendered	page.	The	browser	uses	a	third	language,	JavaScript,	to	dictate
its	behavior.	It	can	receive	input	events	like	clicks	and	key-presses,	and	listens	for	changes
in	the	model.	It	can	then	respond	to	these	events	with	JavaScript	callbacks.	Our	browser	is
our	controller.

Note

If	you’re	well	versed	in	coding	the	web,	you’ll	know	that	there	is	a	lot	more	than	this
going	on	behind	the	scenes.	There	are	many	other	languages	and	technologies	that	keep
the	modern	web	afloat,	but	we’re	simplifying	it	for	educational	purposes.

Hopefully,	looking	at	MVC	through	a	piece	of	software	you	are	already	familiar	with	has
given	you	a	stronger	grasp	of	these	concepts,	in	addition	to	giving	you	a	bit	of	insight	into
how	the	web	works!	Now	let’s	jump	back	to	iOS	and	put	everything	together.

MVC	on	iOS
As	I	alluded	to	earlier,	Xcode	and	the	entire	iOS	toolset	and	APIs	are	built	around	the
concepts	of	Model-View-Controller.	I’d	like	to	point	out	a	few	of	the	more	obvious	ways
in	which	the	concepts	are	enforced,	but	as	you	read	through	the	book	and	eventually	go
out	to	explore	and	learn	on	your	own,	keep	an	eye	out	for	all	of	the	ways	that	MVC	is
present:

Figure	1.12:	A	sneak	peek	at	the	CoreData	model	editor	in	Xcode	8

As	we’ve	been	doing,	let’s	start	with	the	model.	Usually	when	working	on	an	iOS
application,	your	goal	is	to	represent	some	kind	of	data.	Sometimes	it	is	a	small	amount	of
simple	data,	like	in	a	weather	application,	and	you	can	just	retrieve	it	from	the	web	on
demand	each	time	you	load	the	app.	Other	times,	you’ll	be	storing	and	processing	large
amounts	of	data,	usually	in	some	type	of	database.

The	simple	cases	don’t	require	too	much	thought,	but	there	are	some	great	features	in
Swift	that	we’ll	cover	in	Chapter	3,	Introduction	to	Swift	3,	that	make	simple	models	easy
to	code,	and	easy	to	use.

For	the	more	complex	scenarios,	there	is	CoreData,	which	is	essentially	an	Apple-
developed	solution	for	building	data	models.	CoreData	is	built	into	iOS,	and	a	visual
CoreData	model	editor	is	built	right	into	Xcode	(see	Figure	1.12).	This	means	that
implementing	a	complex	data	model	is	fast,	easy,	and	native	to	the	development
environment.	We’ll	talk	more	about	CoreData	in	Chapter	9,	Working	with	Core	Data:

Figure	1.13:	Interface	builder	lets	us	create	the	views	for	iOS	apps

Next,	let’s	talk	about	views.	When	we	talked	about	a	web	browser	in	the	last	example,	we
looked	at	how	CSS	dictates	the	appearance	of	a	web	page.	On	iOS,	there’s	an	even	better
way	to	build	out	our	visual	layouts:	Interface	Builder	(see	Figure	1.13).	As	the	name
implies,	Interface	Builder	allows	us	to	directly	drag	and	drop	UI	elements	in	a	visual
What-You-See-Is-What-You-Get	(WYSIWYG)	editor.	We	can	move	things	around,	set
different	properties,	and	then	even	set	constraints	that	allow	us	to	dictate	how	they	should
look	when	the	screen	changes	orientation,	or	when	displayed	on	different	screen	sizes.
This	means	that	building	views	is	done	in	a	way	that	makes	the	most	sense:	visually.	We’ll
be	covering	Interface	Builder	in	Chapter	4,	Using	Storyboards,	Auto	Layout,	and	Size
Classes.

So	now	we’ve	discussed	how	to	build	models	and	views	for	iOS	apps,	and	we	haven’t
even	talked	about	coding	yet!	That’s	a	bit	of	a	lie	though,	since	there	is	a	little	more
programming	than	was	mentioned	in	the	model	section,	but	still!	If	we	think	about	how
MVC	works,	though,	this	should	make	sense.	Models	and	views	are	mostly	things	that
need	to	be	defined;	all	of	the	action	happens	in	the	controller.

On	iOS,	controllers	are	usually	implemented	by	creating	a	sub-class	of	a
UIViewController,	a	class	built	into	the	UIKit	framework.	We	could	talk	about
UIViewControllers	for	hours	(and	in	fact,	we	will	throughout	the	rest	of	the	book),	so	for
now	just	know	that	this	is	where	you	will	be	doing	a	good	chunk	of	your	coding:	handling

input	events,	updating	the	views,	and	running	supplementary	logic.

Becoming	a	registered	developer
Before	we	can	get	full	access	to	all	of	the	tools	we’ll	need	throughout	the	book,	we’re
going	to	have	to	enroll	in	the	Apple	developer	program.	There	are	two	options	we	can
choose	here:	we	can	sign	up	with	a	free	account,	or	we	can	pay	the	$99/year	fee	to	become
a	fully	licensed	Apple	developer.

Which	account	do	you	need?
The	free	account	will	be	good	for	those	just	starting	out,	as	it	provides	access	to	a	handful
of	important	features.	You	have	full	access	to	the	Xcode	developer	tools,	in	addition	to
beta	releases	of	new	versions	of	Xcode.	You’ll	also	have	access	to	the	developer	forums,
where	you	can	chat	with	other	developers	about	issues	you	might	be	facing.	Most
importantly,	however,	is	that	you	can	test	your	apps	on	a	real	device.

The	$99	account	gives	you	everything	else.	This	includes	access	to	betas	of	new	versions
of	iOS,	all	of	the	app	services	that	Apple	provides	(iCloud,	Game	Center,	and	so	on),	and
of	course	the	ability	to	publish	your	app	to	both	TestFlight	and	the	App	Store.

For	most	of	this	book,	you	will	be	able	to	get	by	just	using	a	free	account.	However,	there
will	be	some	parts	of	chapters	(in	addition	to	the	entire	chapter	about	distribution)	where
you	will	need	a	paid	account	to	be	able	to	follow	along.	So,	let’s	get	you	set	up	with	this
one	last	thing	before	we	embark	on	our	journey!

Registering	a	free	developer	account
Signing	up	for	a	free	developer	account	couldn’t	be	simpler.	First,	make	sure	you	have	an
Apple	ID.	If	you	already	have	an	iCloud	or	iTunes	account,	you	probably	already	have
one.	If	you’d	like	to	create	a	separate	Apple	ID	for	development,	you	can	do	that	at
https://appleid.apple.com/,	although	it	isn’t	really	necessary.

Once	you	have	determined	what	Apple	ID	you	want	to	use	for	your	developer	account,
head	over	to	http://developer.apple.com/membercenter,	and	log	in	with	those	Apple	ID
credentials.	You	should	end	up	on	the	following	screen:

Figure	1.14:	The	iOS	developer	member	center	home	page

If	so,	you’re	done!	In	the	next	chapter,	we’ll	be	covering	everything	you	need	to	know
about	getting	your	account	set	up	with	Xcode.

https://appleid.apple.com/
http://developer.apple.com/membercenter

Registering	a	paid	developer	account
Registering	a	paid	developer	account	is	quite	a	bit	more	tedious.	When	you	sign	up	for	a
paid	account,	there	are	legal	and	financial	formalities	involved	since	you	will	be	able	to
sign	contracts	and	sell	digital	products	on	the	App	Store	worldwide.

To	begin	the	process,	start	from	where	the	previous	section	left	off.	Make	sure	your	Apple
ID	is	set	up	properly,	and	log	in	at	http://developer.apple.com/membercenter.	Once	you’ve
done	that,	click	on	the	Join	the	Apple	Developer	Program	area	at	the	bottom	of	the	page
(the	arrow	in	Figure	1.14),	and	then	the	Enroll	button	in	the	upper-right	corner	on	the	next
page.

Follow	the	instructions	and	fill	out	the	information	that	it	asks	for	throughout	the	signup
process.	Finally,	you’ll	have	to	pay	the	$99	fee,	and	submit	your	application.	The
application	usually	has	to	go	through	a	review	period	before	you	are	approved.

Once	you’re	approved,	congratulations!	You’re	now	officially	licensed	to	create	and	sell
iOS,	watchOS,	and	even	Mac	OS	X	apps	on	all	of	Apple’s	App	Stores!	All	you	have	left
to	learn	is…	everything	else.

http://developer.apple.com/membercenter

Summary
Whew!	Take	a	deep	breath,	because	that	was	a	lot	of	information.	We	touched	on	many
different	subjects,	but	hopefully	you	are	now	in	the	right	mindset	to	begin	your	journey.
Let’s	do	a	quick	review	of	everything	we	learned	in	this	chapter.	First,	we	discussed	a
developer’s	responsibilities	throughout	a	normal	product	lifecycle.	Next,	we	outlined	how
a	team	might	look,	and	how	a	developer	would	interact	with	the	different	roles.	Perhaps
one	of	the	most	important	topics	that	we	covered	in	this	chapter	is	the	Model-View-
Controller	architectural	pattern	for	building	software.	Lastly,	we	looked	at	setting	up	an
Apple	Developer	Account.

In	the	next	chapter,	we’ll	be	taking	a	much	deeper	look	into	Xcode.	You’ve	already	seen
and	read	about	bits	and	pieces	of	Xcode,	but	now	we’ll	be	walking	through	all	of	the
major	features,	and	getting	a	feel	for	navigating	through	the	program.	As	we’re	exploring,
keep	in	mind	the	topics	of	this	chapter,	especially	MVC,	and	see	if	you	can	figure	out	how
they	manifest	throughout	Xcode.

Onwards!

Chapter	2.	Welcome	to	Xcode
For	the	uninitiated,	developing	for	the	iOS	platform	can	seem	a	little	daunting.	There	are
so	many	aspects	to	think	about	when	building	an	application:	interface	layout,	backend
data	manipulation,	managing	code	libraries	and	documentation,	creating	and	releasing
builds—the	list	goes	on	and	on.

As	you	probably	know	by	now,	Xcode	was	built	to	let	you	perform	all	of	these	tasks	in	a
single,	consistent	application.	It	is	a	true	integrated	development	environment	(IDE).
However,	with	so	many	features	and	capabilities,	it	can	take	a	while	to	learn	all	of	its
tricks.	In	this	chapter,	we’ll	be	walking	through	the	basics	and	getting	you	on	course	to	be
an	Xcode	master.	Topics	we’ll	cover	include:

	
Setting	up	Xcode	and	new	projects
Navigating	the	sections	of	the	Xcode	application
Configuring	a	project
Understanding	resource	files
Using	the	editor	to	modify	source	files
Creating	a	Hello	world	applet

By	the	end	of	this	chapter,	you’ll	be	able	to	create	and	configure	a	new	project,
create/import/edit	source	files,	and	build	your	project	to	a	simulator	or	device.

Getting	started
Before	we	can	jump	in	and	get	our	hands	dirty,	there	are	a	few	things	we	need	to	do.	We’ll
start	off	by	installing	Xcode	and	looking	at	where	you	can	access	beta	versions	of	the
software	when	they’re	available.	Then	we’ll	get	set	up	with	the	developer	accounts	we
made	in	Chapter	1,	Overview	of	iOS	Development.	Finally,	we’ll	look	at	setting	up	a	new
project.

Installing	Xcode
Really?	A	whole	subtopic	on	installing	an	application?	It	does	seem	a	little	silly,	but	you’ll
find	that	when	working	with	development	environments	there	is	a	lot	more	going	on	than
a	traditional	consumer-facing	application.	For	that	reason,	we’ll	take	a	little	time	to	make
sure	that	everything	is	installed	properly.

In	this	book,	we’ll	be	working	with	Xcode	8.	In	order	to	make	things	as	simple	as
possible,	Apple	distributes	the	latest	version	of	Xcode	through	the	Mac	App	Store
(MAS).	When	new	versions	of	iOS	are	released	(10.0,	10.1,	10.2,	and	so	on),	Xcode	will
be	updated	through	the	App	Store,	bundled	with	the	latest	SDK.

To	install	the	latest	stable	version	of	Xcode,	visit	the	MAS,	search	for	Xcode,	and	click
Install.	During	the	download	and	installation,	make	sure	that	you	allow	Xcode	to	install
any	additional	components,	especially	the	Command-Line	Tools.	These	tools	are
important	to	the	backbone	of	Xcode,	and	it’s	necessary	to	make	sure	they	are	installed:

Figure	2.1:	Ensuring	the	command-line	tools	are	installed	properly

A	quick	way	to	make	sure	the	command-line	tools	are	installed	is	to	open	Xcode,	navigate
to	the	menu	bar	item	Xcode	|	Preferences,	then	click	on	the	Locations	tab	all	the	way	to
the	right.	At	the	bottom	of	the	window,	you	should	see	a	drop-down	menu	for	Command-
Line	Tools.	If	it	is	filled	in,	like	in	the	previous	screenshot,	everything	should	be	working
properly.

Great!	Everything	should	be	installed	and	running	smoothly	now.	However,	as	a	developer
it	will	be	your	job	to	make	sure	your	apps	are	up	to	date	when	new	versions	of	iOS	launch
to	the	public.	In	order	to	let	developers	check	for	bugs	and	add	support	for	new	features,
Apple	frequently	releases	beta	versions	of	Xcode	on	their	developer	portal.	This	way
you’ll	be	a	few	months	ahead	of	major	releases,	and	your	app	can	be	up	to	date	and	bug
free	on	the	day	that	everyone	else	gets	the	new	OS.

Note
Apple	frequently	rearranges	their	developer	portal	to	make	it	easier	to	navigate,	so	while
these	instructions	are	valid	at	the	time	of	writing,	you	might	have	to	do	a	little	improvising
if	things	have	moved.	It’s	also	worth	noting	that	there	isn’t	always	a	current	beta;	if	you
don’t	see	one,	they	just	might	not	have	one.

To	download	Xcode	betas,	you	won’t	be	able	to	use	the	Mac	App	Store.	You’ll	have	to
navigate	to	the	Xcode	developer	portal	at	https://developer.apple.com/xcode/download/.	If
there	is	a	beta	version	available,	it	will	be	near	the	top	of	the	page.	Here	is	an	example
from	the	Xcode	8	beta	page:

https://developer.apple.com/xcode/download/

Figure	2.2:	The	Xcode	download	portal	on	the	Apple	developer	site

Remember	though,	we’re	using	Xcode	8!	If	there	is	an	Xcode	9+	beta	by	the	time	you
read	this,	it	might	be	fun	to	poke	around,	but	make	sure	you	are	on	8.x	for	the	rest	of	the
book	so	that	everything	lines	up.	(Most	of	what	you	learn	in	this	book	will	most	likely
apply	to	Xcode	9	and	higher,	though.)

Adding	your	developer	account
Once	you	have	Xcode	installed,	there’s	still	one	more	thing	you	have	to	do	to	complete	the
initial	setup.	When	I	first	started	using	Xcode	(version	3.0),	managing	your	developer
account	was	a	real	pain.	You	had	to	create	provisioning	profiles	and	register	App	IDs
manually	on	the	developer	portal,	and	then	download	and	import	certificates	into	Xcode.
Luckily,	pretty	much	the	entire	process	is	now	automated	and	integrated	into	Xcode	itself;
all	we	have	to	do	is	log	in	to	our	developer	account	from	inside	Xcode:

Figure	2.3:	Logging	in	to	our	developer	account	from	the	Xcode	8	account	preferences

First,	launch	Xcode.	You	should	see	the	Welcome	to	Xcode	dialog	box,	with	options	to
start	a	new	playground	or	a	new	project.	What	we	want	to	do	is	navigate	to	the	menu	bar

item	Xcode	|	Preferences,	and	then	in	the	resulting	window	click	on	the	second	tab,
labeled	Accounts.	Then	click	on	the	little	+	button	in	the	lower-left	of	the	window	and
select	Add	Apple	ID.	Then	simply	type	in	the	Apple	ID	and	password	you	used	to	register
your	account…	and	that’s	it!	Xcode	will	now	take	care	of	all	provisioning	profiles	and
App	IDs	automatically!

Tip
A	note	on	provisioning	profiles	and	signatures:

Provisioning	profiles	are	what	Xcode	uses	to	sign	your	application’s	executable	file;	a
valid	signature	is	required	to	load	and	run	an	app	on	an	iOS	device.	This	makes	it	so	that	it
is	very	hard	to	install	malware	on	a	device,	but	it	also	causes	a	lot	of	headaches	for	new
developers.	If	you	ever	run	into	errors	that	have	to	do	with	signatures,	there	are	tons	of
threads	all	over	the	Internet	that	can	help	you	figure	out	your	specific	problem.

Creating	a	new	project

Figure	2.4:	The	Xcode	launch	splash	screen

Now	we’re	installed,	logged	in,	and	ready	to	roll.	Launch	Xcode	(or	just	click	on	the	icon
in	your	dock)	to	bring	up	the	Welcome	to	Xcode	dialog	again.	On	the	right	will	be	a	list
of	recent	projects	you’ve	opened.	Since	this	is	the	first	time	you’ve	opened	Xcode,	yours
will	most	likely	be	empty.	In	Figure	2.4,	you	can	see	how	my	most	recent	projects	fill	that
space.	On	the	left	are	three	options:	Get	started	with	a	playground,	Create	a	new	Xcode
project,	and	Check	out	an	existing	project.	We’ll	get	to	all	of	these	options	in	time,	but
for	now,	go	ahead	and	select	Create	a	new	Xcode	project.

Figure	2.5:	Choosing	a	template	for	a	new	Xcode	project

In	the	next	dialog,	you	can	choose	a	template.	On	the	left,	you	can	select	the	platform	and
category	for	the	template,	and	on	the	right	you	can	choose	a	specific	template.	For	the
most	part,	we’ll	be	sticking	to	the	iOS	|	Application	category,	and	more	times	than	not
we’ll	be	working	with	a	Single	View	Application	template.	This	template	is	as	close	as
you	can	get	to	a	blank	project.	The	second	most	useful	template	here	is	the	Game
template,	which	allows	you	to	create	a	new	SpriteKit,	Metal,	or	OpenGL	project.	This
would	otherwise	be	very	difficult	to	manually	set	up	from	a	Single	View	Application.	If
you’re	interested	in	what	the	other	templates	do,	you	can	read	a	description	at	the	bottom
of	the	window	by	clicking	on	each	one.	But	for	our	purposes,	we’ll	be	selecting	Single
View	Application,	and	then	clicking	Next.

Figure	2.6:	Setting	the	options	for	our	new	project

The	next	screen	is	our	final	piece	of	setup.	In	the	first	text	field,	you	can	give	your	project
a	name.	I’ve	named	this	project	HelloWorld,	because	it’s	fitting	and	I’m	uncreative,	but
you	can	name	it	anything	you	like.	It’s	worth	noting	that	while	you	can	have	spaces	in
your	name,	it’s	usually	best	practice	to	avoid	them,	as	I	did.	Below	the	Product	Name	is	a
dropdown	for	the	Team	being	used:	this	is	your	Apple	Developer	account	(for	me,	it’s	my
name).

The	second	text	field	is	for	the	Organization	Name.	Here	you	should	type	in	either	your
own	name	or	the	name	of	the	company	you	are	working	for.	This	will	usually	be	the	same
as	your	team	name,	though	I’m	using	PacktPub	here	because	this	book	is	being	published
by	Packt	Publishing.

The	third	text	field,	Organization	Identifier,	is	a	bit	more	complicated.	When	publishing
to	the	App	Store,	every	app	needs	a	unique	bundle	ID.	To	ensure	this,	Apple	encourages	a
reverse-domain-name	format	for	IDs.	This	means	that	you	would	use	your	company	(or

personal)	website	domain	name,	since	every	domain	is	unique	and	has	one	owner.	You
would	then	use	the	format	of	domainExtension.domainName.productName.

Note
In	Figure	2.6,	you	can	see	I	used	the	website	of	this	book’s	publisher	packtpub.com,	but	I
reversed	it	to	read	com.packtpub.	If	you	don’t	own	a	website,	you	can	put	anything	in
there,	but	before	you	publish	to	the	app	store	it’s	a	good	idea	to	buy	a	domain	and	use	that.

Underneath	that	text	field,	you	can	see	some	grey	static	text	that	represents	your	final
bundle	identifier.	You’ll	see	it	uses	your	reverse-domain	Organization	Identifier,	with
your	Product	Name	appended	to	the	end.

The	next	option	is	a	drop-down	menu	to	select	the	programming	language	for	the	project
you’re	starting.	You	can	choose	from	Swift	or	Objective-C,	but	in	this	book	we	will	be
sticking	exclusively	to	the	new	Swift	programming	language,	so	keep	Swift	selected.

Below	that	is	another	dropdown	that	lets	you	select	the	devices	you	are	building	for.	You
can	choose	to	build	only	for	iPhone,	only	for	iPad,	or	create	a	Universal	build	for	all
devices.	Xcode	now	has	so	many	features	that	make	it	easy	to	create	universal	builds,	so
we’ll	be	using	that	option	exclusively	in	this	book,	so	again,	leave	it	selected.

The	last	three	options	are	checkboxes	that	enable	certain	features.	Each	one	is	self-
explanatory,	and	sets	up	your	project	with	the	files	needed	to	use	each	given	feature.	Later
in	the	book	there	is	a	chapter	dedicated	specifically	to	using	Core	Data,	and	another
chapter	covering	both	Unit	Tests	and	UI	Tests.	For	now,	we	don’t	need	any	of	these
features	so	leave	them	all	unchecked	and	click	Next.

The	next	and	final	screen	is	a	standard	OS	X	dialog	box	to	choose	where	to	save	your
project.	When	you	save,	Xcode	will	create	a	root	folder	with	the	name	you	gave	your
project,	so	you	don’t	need	to	create	a	new	folder	for	the	project.	I	use	a	folder	called	Xcode
Projects	in	my	Documents	folder,	but	where	you	save	it	is	up	to	you.	Once	you’ve
selected	a	location,	click	Create	in	the	lower	right	of	the	window,	and	we’ve	finished
creating	our	project.

Navigating	Xcode
Now	that	we’ve	finally	made	it	into	the	software,	let’s	take	a	look	around.	You’ll	notice
that	there	are	a	lot	of	subsections	in	the	application	window,	along	with	a	handful	of
toolbars	and	buttons.	To	make	sense	of	everything	that’s	going	on,	we’re	going	to	break
things	down	into	different	areas.	Before	we	begin,	in	the	top-right	corner	of	the	application
window	should	be	three	grouped	buttons.	Make	sure	they	are	all	blue	and	active	by
clicking	on	them.	This	will	make	all	of	Xcode’s	shelf	areas	visible:

Figure	2.7:	A	breakdown	of	the	main	components	of	the	Xcode	application	window

At	this	point,	your	window	should	look	similar	to	the	preceding	screenshot.	I’ve	broken
down	the	full	window	into	four	separate	sections:	section	A	is	the	editor	view,	section	B
is	the	navigator	sidebar,	section	C	is	the	debug	area,	and	section	D	is	the	utilities
sidebar.	At	the	very	top	is	the	Toolbar;	we’ll	be	using	the	buttons	on	the	far	right	of	the
toolbar	very	frequently	throughout	the	next	few	sections.	Each	of	these	separate	sections

has	its	own	characteristics	and	functionalities,	so	let’s	dive	into	each	one	individually.

Editor
The	editor	is	the	main	part	of	the	application	window,	and	is	the	only	area	you	cannot
hide.	Xcode’s	editor	window	is	equipped	to	handle	many	different	file	types.	A	little	later
on	in	the	chapter	we’ll	discuss	the	most	common	and	important	file	formats	that	Xcode
can	use,	but	the	one	thing	they	all	share	is	that	you	can	modify	them	in	the	editor	window.
The	most	common	uses	of	the	editor	are	to	write	source	code	and	build	out	application
views.	Since	the	editor	is	the	main	stage,	we’ll	cover	it	in	much	more	detail	in	the	next
section.

Navigator	sidebar
The	navigator	sidebar	(labeled	as	area	B	in	Figure	2.7)	is	used	for	a	large	amount	of	tasks.
You’ll	find	that	it	is	indispensable	during	development,	and	that	it	will	be	the	second	most
used	part	of	Xcode	after	the	editor.

The	initial	mode	of	the	navigation	sidebar	is	just	that:	a	project	navigator	view	that	lets
you	navigate	and	select	any	of	the	files	in	your	project.	However,	if	you	look	along	the	top
of	the	sidebar,	you’ll	see	eight	small	icons.	Clicking	each	icon	changes	the	functionality	of
the	navigator	sidebar.	Let’s	take	a	look	at	the	most	common	modes.

The	first	icon,	as	already	mentioned,	is	the	project	navigator.	It	lets	you	go	through	the
folders	and	files	that	make	up	your	project,	and	clicking	on	a	file	will	open	it	in	the	editor
view.	You	can	also	right-click	on	files	or	folders	in	the	project	navigator	to	add,	modify,	or
delete	them.

Tip
Navigator	shortcuts:

To	jump	quickly	between	the	different	navigators,	you	can	use	the	shortcuts	command	+	1
through	command	+	8,	respective	to	their	position	in	the	toolbar.	You	can	hide	the
navigator	completely	with	the	shortcut	command	+	0.

The	third	icon	(the	magnifying	glass)	is	the	find	navigator.	Simple	and	straightforward,	it’s
used	to	find	anything	you	might	be	looking	for	in	your	project.	It	also	has	find	and	replace
functionality	built	in,	in	addition	to	being	able	to	change	the	scope	of	a	search.

The	fourth	icon	(the	warning	sign)	is	the	issue	navigator.	When	your	code	has	warnings	or
errors,	they	will	show	up	here.	A	yellow	warning	icon	will	let	you	know	something	is
wrong,	but	your	code	will	still	compile	and	run.	A	red	error	icon	means	something	is
broken,	and	must	be	fixed	for	the	app	to	be	compiled.	Clicking	on	an	error	or	warning	in
the	issue	navigator	will	bring	you	to	the	source	of	the	issue	in	the	editor,	making	it	easy	to
find	the	issues.

The	sixth	icon	(it	almost	looks	like	a	sandwich)	is	the	debug	navigator.	When	you	are
testing	your	app	on	a	device	or	a	simulator,	the	debug	navigator	will	show	you	important
metrics,	such	as	CPU	and	memory	usage.	We’ll	cover	a	lot	more	of	the	debugging	features
in	Chapter	14,	Debugging	an	iOS	Application.

You	can	click	through	the	other	icons	and	explore	what	they	do,	but	for	the	most	part	they
are	used	less	frequently	than	the	rest.

All	the	way	at	the	bottom	of	the	navigator	sidebar	is	a	filter.	Different	from	the	find
navigator,	this	is	used	to	filter	the	contents	of	the	navigator	itself.	For	example,	head	back
to	the	project	navigator	and	type	in	view.	You	should	see	the	project	hierarchy	filtered	to
only	show	ViewController.swift.	You	can	see	how	this	will	be	useful	when	projects	get
larger.

Debug	area
The	debug	area	(labeled	as	area	C	in	Figure	2.7)	is	located	along	the	bottom	of	the
window	when	active.	To	show	the	debug	area,	you	can	click	the	middle	button	on	the
right-most	grouping	of	buttons	on	the	toolbar,	or	use	the	keyboard	shortcut	command	+
shift	+	Y.

The	debug	area	is	split	into	two	sections:	the	variables	view	on	the	left	and	the	console	on
the	right.	The	variable	view	is	useful	when	stepping	through	breakpoints	and	inspecting
the	values	of	variables.	The	console	is	where	all	of	your	print	statements	will	display,
along	with	any	other	errors	that	output	to	the	console.

If	you	don’t	understand	these	terms,	that’s	okay.	Like	the	debug	navigator,	we’ll	take	a
much	deeper	dive	into	the	debug	area	and	its	many	functionalities	in	Chapter	14,
Debugging	an	iOS	Application.

Utilities	sidebar
The	utilities	sidebar	(labeled	area	D	in	Figure	2.7)	is	located	on	the	right	side	of	the	screen
when	active.	Again,	you	can	use	the	buttons	on	the	very	right	of	the	toolbar	to	show	this
sidebar,	this	time	with	the	third	button	all	the	way	on	the	right.

The	utilities	sidebar	is	split	into	two	sections,	top	and	bottom.	The	top	is	a	context-
sensitive	utilities	drawer.	Like	the	navigator	sidebar,	there	are	icons	along	the	top	that
change	to	different	functionality	tabs.	Since	it	is	context-sensitive,	the	available	tabs	will
change	depending	on	the	type	of	file	that	is	currently	active	in	the	editor.	The	most	use
that	the	top	section	will	get	is	when	editing	storyboard	files.	We’ll	cover	these	in	more
detail	when	relevant	throughout	the	book.

The	bottom	half	of	the	utilities	sidebar	is	a	drag-and-drop	object	library.	The	first	tab	lets
you	create	new	files	by	dragging	them	into	the	project	navigator.	The	second	tab	lets	you
drag	predefined	code	snippets	to	your	source	code.	The	third	tab	is	the	object	library	for
Interface	Builder,	where	you	can	drag	items	such	as	buttons,	sliders,	and	text	fields	into
your	view.	On	the	bottom	of	the	utilities	sidebar	is	a	filter	for	the	object	library,	just	like	in
the	navigator	sidebar.

Exploring	the	editor
Now	we	have	a	pretty	good	idea	of	what	all	the	different	parts	of	the	Xcode	window	do
and	how	they	work	together.	We	covered	the	two	sidebars	and	the	debug	area	in	a	good
amount	of	detail,	but	now	let’s	take	a	closer	look	at	what	the	main	editor	can	do.

Standard	editor
Let’s	take	a	look	at	some	of	the	different	configurations	for	the	editor.	In	your	navigation
sidebar,	you	can	see	a	list	of	files.	Right	now,	the	HelloWorld	project	file	is	selected.
Clicking	on	a	file	will	make	that	the	active	file	and	open	it	in	the	editor.	Select	the
ViewController.swift	file	and	you’ll	see	the	editor	change	to	show	the	source	code:

Figure	2.8:	The	editor	view	when	a	.swift	file	is	active

You’ll	also	notice	that	at	the	very	top	of	the	editor	window	is	a	hierarchy	bar	view	starting
at	the	root	project	(the	blue	icon),	going	through	folders	and	files,	ending	at	No
Selection.	If	you	click	your	cursor	around	at	different	points	in	the	source	file,	you’ll	see
that	No	Selection	changes	depending	on	where	the	cursor	is,	always	being	the	closest
scoped	coding	block.

For	example,	if	you	click	at	the	end	of	super.viewDidLoad()	on	line	14,	the	cursor	will
move	inside	of	func	viewDidLoad(),	and	the	hierarchy	will	show	you	that

viewDidLoad()	is	the	current	method	selected.	If	you	click	on	the	viewDidLoad()	text	in
the	hierarchy	bar,	you’ll	see	a	list	of	all	the	classes	and	methods	in	the	file.	Right	now	we
only	have	two	methods,	but	when	your	classes	get	bigger,	this	is	an	easy	way	to	quickly
navigate	through	a	source	file	to	find	a	function.

Tip
To	turn	on	line	numbers	in	Xcode,	go	to	Xcode	|	Preferences	|	Text	Editing,	and	check
off	the	first	box	labeled	Line	numbers.

Next,	let’s	take	a	look	at	how	the	editor	responds	to	some	other	file	types.	Just	under
ViewController.swift	in	the	navigation	sidebar	is	Main.storyboard.	Select	that	file	and
see	how	the	editor	changes	completely	(it	may	take	a	second	or	two	to	load).	This	is	the
Interface	Builder	editor	window,	and	this	is	where	we’ll	be	creating	our	views:

Figure	2.9:	The	editor	view	when	a	.storyboard	file	is	active

Underneath	Main.storyboard	is	Assets.xcassets,	which	is	an	asset	catalog	file.	Select

that	file	and	again	take	note	of	how	the	editor	adapts.	Right	now,	the	only	item	in	the	asset
catalog	is	the	application’s	icon.	If	you	click	on	the	item	named	AppIcon,	you	can	see	all
of	the	different	versions	of	the	icon	that	the	asset	needs:

Figure	2.10:	The	editor	view	when	a	.xcassets	file	is	active

One	of	the	most	useful	features	of	the	Xcode	editor	is	the	ability	to	access	documentation
right	from	your	source	code.	To	try	this	out,	head	back	to	ViewController.swift.	This
class	is	already	partially	filled	out	by	default,	so	there	is	some	code	in	here	that	we	might
not	understand.	For	example,	on	line	14,	this	function	calls	another	function	in	its
superclass	named	viewDidLoad().	To	see	what	this	does,	press	and	hold	the	option	key;
you’ll	see	that	your	cursor	turns	into	a	crosshair.	While	still	holding	down	option,	drag	the
crosshair	over	that	viewDidLoad()	function	and	you’ll	see	the	crosshair	turn	into	a
question	mark.

Click	on	viewDidLoad()	and	a	documentation	popup	will	appear:

Figure	2.11:	Example	of	inline	documentation	references

Assistant	editor
We’ve	been	using	the	top-right-most	grouping	of	buttons	on	the	Xcode	toolbar	to	show
and	hide	all	of	the	secondary	areas,	but	the	group	of	buttons	to	their	left	are	just	as
important.	Unlike	the	secondary	area	toggles,	which	can	all	be	turned	on	and	off
independently,	this	set	of	buttons	(which	look	like	a	paragraph,	two	circles,	and	two
arrows)	toggle	the	editor	mode,	and	only	one	can	be	active	at	a	time.	The	default	mode
(the	paragraph	icon)	is	the	standard	editor	which	we	have	been	using	up	to	this	point.	The
second	icon	(two	circles)	is	called	the	assistant	editor.	Click	on	the	middle	button,	and	let’s
see	what	happens:

Figure	2.12	The	main	editor	window	in	assistant	editor	mode

Whoa!	It	split	our	editor	in	half!	(I	also	hid	all	of	the	secondary	areas	to	make	it	easier	to
read,	but	you’re	free	to	leave	them	open.)	On	the	left	side	of	the	screen	is	our	original
ViewController.swift	file,	and	on	the	right	hand	side	is…	something	else?	By	default	in

Xcode	8	what	you	should	be	seeing	here	is	the	Interface	view	of	your	swift	class.	Since
Swift	doesn’t	have	header	files,	this	is	a	sort	of	simulated	header	file	for	your	swift	class,
so	that	you	can	see	all	of	your	functions	and	variables	without	worrying	about	the
implementation	of	those	methods.	You’ll	notice	that	it’s	read-only,	and	that	you	can’t
make	any	edits	on	the	right	side	of	the	screen.	(If	you’ve	never	used	Obj-C	or	C++,	don’t
worry	about	what	a	header	file	is.

However,	that’s	not	all	the	assistant	editor	can	do!	If	you	look	at	the	top	of	the	assistant
(right)	side	of	the	editor,	you’ll	see	a	different	type	of	hierarchy	bar.	If	you	click	on	the
part	that	says	Counterparts,	you’ll	see	a	ton	of	other	categories	of	related	files	that	are
automatically	determined	by	Xcode.	Since	this	is	an	empty	project,	there	really	isn’t	much
here.	At	the	top,	you	can	see	that	there	is	an	option	for	a	manual	mode,	so	if	you	really
want	to	open	two	arbitrary	files	next	to	each	other,	this	would	be	the	way	to	do	it.

So	this	is	cool	and	all,	but	it’s	really	not	that	useful	to	us.	Not	so	fast!	Let’s	see	what
happens	when	we	open	the	Main.storyboard	file:

Figure	2.13:	The	assistant	editor	being	used	with	a	storyboard	file

Now	this	is	convenient!	On	the	left	side	of	the	screen,	we	can	see	the	visual	representation
of	our	view,	and	on	the	right	side	of	the	screen	we	can	see	the	code	for	our	controller.
Remember	how	we	talked	about	the	Model-View-Controller,	and	how	the	controller	needs
to	update	the	view?	With	this	setup,	we’ll	be	able	to	build	our	view	alongside	our
controller,	and	connect	things	back	and	forth	with	the	code.	This	will	be	one	of	the	most
important	uses	of	the	assistant	editor,	and	we’ll	be	back	soon	to	put	it	to	use.

Version	editor
Back	to	the	buttons	on	the	toolbar.	The	third	button	(the	two	arrows)	toggles	the	last	mode
of	the	editor,	known	as	the	version	editor.	I’m	only	touching	on	it	now	as	a	formality,
because	if	you	click	it	in	your	current	project	you’ll	get	a	No	Editor	message	on	the	other
side	of	the	screen.	This	is	because	the	version	editor	helps	you	see	changes	in	a	file	that	is
under	version	control,	which	we	haven’t	enabled	on	this	project.	We’ll	spend	a	lot	more
time	with	the	version	editor,	and	version	control	in	general,	in	Chapter	5,	Taking
Advantage	of	Source	Control	in	Xcode.

Understanding	project	settings
Now	that	you	have	a	good	understanding	of	navigating	Xcode	on	your	own,	let’s	head
back	to	the	file	that	was	open	when	we	first	started	our	project.	In	the	project	navigator,
this	is	the	very	topmost	file;	it	has	a	blue	icon,	and	is	named	the	same	as	your	project:

Figure	2.14:	The	General	tab	of	the	project	settings	file

This	file	represents	your	project’s	settings.	There	are	a	lot	of	important	sections	in	the
project	settings	file	that	you’ll	have	to	interact	with	in	pretty	much	every	project,	from	app
icons,	to	iCloud	capabilities,	to	custom	compiler	settings.	In	this	section,	we’re	going	take
a	tour	of	the	most	commonly	used	parts	of	the	project	settings	file.

Project	targets
Like	many	of	the	other	windows	we’ve	explored,	you’ll	notice	that	the	editor	for	the
project	settings	is	split	into	two	columns.	On	the	left,	you	can	see	the	projects	and	targets
in	your	app,	and	on	the	right	are	the	actual	settings.	Let’s	look	at	the	left	sidebar	for	now.

The	PROJECT	heading	seems	pretty	self-explanatory,	but	what	is	a	target?	Let’s	take	a
quick	detour	to	understand	this.

Essentially,	a	target	is	a	set	of	instructions	needed	to	create	a	single	build.	It	describes	for
the	compiler	what	all	the	source	files	are,	the	build	settings,	and	any	resources	or
frameworks	to	include.	In	our	current	project,	we	only	have	one	app	target,	which	will
build	an	iOS	app.	However,	if	wanted	to	also	make	a	build	for	the	Apple	Watch,	we’d
need	to	create	and	configure	a	new	app	target	(actually,	we’d	need	a	few).	We’ll	be	trying
that	later	on	in	the	book!

Sometimes	you	can	even	create	a	single	Xcode	project	that	builds	to	iOS	and	OS	X,	like
with	SpriteKit.	In	that	case,	you	could	have	all	of	your	game’s	SpriteKit	logic	and	assets
shared,	but	have	the	platform	specific	interface	code	separated.	Then	in	your	app	targets,
you	could	specify	which	source	files	to	use,	and	make	sure	each	one	builds	for	a	different
platform.	Then	you’d	have	a	single	project	that	shares	assets	to	build	for	two	completely
different	platforms!

What’s	important	to	understand	for	now	is	that	each	target	has	its	own	settings.	So	in	this
sidebar,	you’ll	need	to	select	each	build	target	and	configure	each	one	separately.	When
you	create	a	new	target,	you’ll	be	selecting	from	presets	so	they’ll	be	heavily	pre-
configured,	but	it’s	important	to	comb	through	yourself	and	make	sure	they	are	set	up
properly.

Generally,	you	won’t	really	be	changing	a	lot	of	the	project’s	settings;	what	you’re
actually	configuring	are	the	project’s	TARGETS	settings.	Go	ahead	and	click	on	the
HelloWorld	project	under	the	Project	heading	on	the	sidebar.	Notice	how	there’s	a	lot	less
going	on	here?	Now	let’s	go	back	to	the	HelloWorld	app	target	and	take	a	look	at	what	we
can	do	here.

The	General	tab
Along	the	top	of	the	editor	view	for	the	project	settings	file	is	a	row	of	different	tabs	for
groups	of	configuration	options.	The	General	tab	gives	you	the	ability	to	set	some,	well,
general	settings	for	your	app.	Most	of	this	page	isn’t	very	dangerous,	and	it’s	a	good	idea
to	run	through	it	before	starting	to	write	any	code.

Starting	at	the	top,	we	have	the	Identity	section.	In	here,	you’ll	see	the	Bundle	Identifier
we	gave	our	project	during	setup.	If	you	messed	it	up,	the	good	news	is	that	you	can
change	it	here!	This	might	be	useful	if	you	get	a	new	website	while	making	an	app,	or
change	its	name	part	way	through	development.	We’ve	also	got	some	text	fields	to	set	the
Version	and	Build	numbers.	We’re	going	to	leave	these	at	1.0	and	1,	respectively,	but	if
you	were	working	on	an	update	to	an	existing	app,	this	is	where	you	would	set	that
information.

After	the	Identity	section	is	the	Signing	area.	By	default,	you	should	have	the
Automatically	Manage	Signing	checkbox	enabled.	This	makes	Xcode	take	care	of	all
code	signing	responsibilities.	Make	sure	your	team	is	selected	from	the	dropdown.	If	you
are	registered	as	an	individual	developer,	this	should	be	your	name.

The	next	section	is	called	Deployment	Info.	This	section	allows	you	to	change	settings
regarding	the	way	the	app	will	run	on	a	device.	The	first	item	is	the	Deployment	Target,
which	means	the	lowest	version	of	iOS	that	the	app	will	run	on.	Right	now	it’s	set	to	10.x,
and	we’re	going	to	leave	it	there,	but	in	a	real-world	environment,	you	will	almost	always
need	to	target	older	devices.	The	next	option	is	Devices,	which	is	the	same	option	we	set
when	creating	the	project.	Next	is	Main	Interface,	which	lets	you	choose	the	default
storyboard	file	to	use	when	your	app	is	loaded.	By	default,	it	is	set	to	Main.storyboard,
but	if	you	wanted	to	create	a	new	storyboard	file	you	could	make	it	the	default	here.	The
next	four	checkboxes	for	Device	Orientation	will	either	enable	or	disable	those
orientations	for	your	app.	For	example,	if	you	only	left	portrait	checked,	the	app	wouldn’t
auto-rotate	to	any	other	orientation.	The	next	option,	Status	Bar	Style,	lets	you	change	the
visual	style	of	the	status	bar,	while	the	last	two	checkboxes,	Hide	status	bar	and
Requires	full	screen,	explain	themselves.

Below	the	deployment	settings	is	a	small	section	where	you	can	set	up	your	App	Icons
and	Launch	Images.	Earlier,	when	we	were	in	the	Assets.xcassets	file,	we	saw	that	we
had	an	AppIcon	asset	in	there.	You	can	add	as	many	icon	assets	as	you	want,	and	this	first
drop-down	menu	lets	you	pick	which	one	you	want	to	use	for	the	actual	app	icon.	The
next	two	options	have	to	do	with	the	launch	screen	for	your	app.	By	default,	the	launch
screen	is	determined	by	the	contents	of	LaunchScreen.storyboard,	a	file	in	the	root	of
your	project.	If	you	wish	to	use	images	instead	of	a	storyboard,	you	can	click	the	Use
Asset	Catalog	button,	and	if	you	want	to	change	the	storyboard	that	is	used,	you	can
select	it	from	Launch	Screen	File.

The	last	two	sections	let	you	import	embedded	binaries	and	link	frameworks	and	libraries.
We	won’t	be	using	these	features	right	now,	but	if	you	wanted	to	include	a	framework	that
someone	else	has	built,	you	could	use	the	little	+	buttons	in	the	lower-left	corner	of	these
sections	to	add	them	to	the	target’s	build	resources.	We’ll	start	covering	this	in	Chapter	8,

Exploring	Common	iOS	Frameworks.

The	Capabilities	tab
When	building	an	application,	sometimes	you	want	to	tap	into	some	iCloud	or	system
services	to	make	your	app	work	better	with	the	Apple	ecosystem,	or	just	provide	a	better
experience	for	the	user.	Since	having	all	of	these	services	on	by	default	would	waste	a	ton
of	resources,	you	need	to	manually	enable	the	capabilities	you	want	to	use	in	your	app.
You	can	do	this	from	the	Capabilities	tab,	found	next	to	General	in	the	navigation	tab	bar
along	the	top	of	the	editor:

Figure	2.15:	The	Capabilities	tab	of	the	project	settings	file

Here,	you	can	see	a	list	of	the	many	capabilities	that	you	can	enable	for	your	app.	By
clicking	on	the	drop-down	arrow	to	the	left	of	each	icon,	you	can	get	a	good	idea	of	what
each	service	does.	To	enable	a	capability,	just	flip	the	switch	on	the	right	side	of	that
capability’s	row.	Some	common	capabilities	you	might	use	are	the	iCloud,	Push
Notifications,	Game	Center,	and	In-App	Purchase	capabilities.

The	Info	tab
We’ve	looked	at	a	ton	of	settings	for	our	project	and	targets	so	far,	but	there	are	always
more	miscellaneous	settings	than	can	ever	be	fit	into	a	predetermined	menu!	For	those
settings,	we	have	the	Info	tab.	The	first	section	is	all	we’re	concerned	with,	titled	Custom
iOS	Target	Properties.	As	the	name	implies,	this	is	where	we	can	set	custom	properties
for	the	app	target	we	are	currently	editing:

Figure	2.16:	The	info	tab	of	the	project	settings	file

This	section	uses	a	key-value	dictionary	to	set	the	value	for	different	settings.	You	can	see
that	there	are	a	handful	of	custom	properties	already	in	the	dictionary,	and	some	are	even
borrowing	from	other	parts	of	our	target	settings;	for	example,	the	Supported	interface
orientations	item	is	just	pulling	from	the	Deployment	Info	section	of	the	General	tab.

If	you	select	any	of	the	fields	in	the	list,	you’ll	see	+	and	–	buttons	appear	in	the	center.	If
you	click	the	+	button,	it	will	create	a	new	entry	beneath	it.	You’ll	see	that	it	will	bring	up

an	autocomplete	form	to	select	one	of	the	many	custom	properties	you	can	set.	We	aren’t
actually	going	to	set	a	custom	property	right	now,	so	you	can	go	ahead	and	click	the	–
button	on	that	new	entry	to	delete	it.

There	are	far	too	many	custom	properties	for	it	to	make	any	sense	to	talk	about	them	here.
What’s	important	is	that	you	know	where	they	are	and	how	to	modify	them.

www.allitebooks.com

http://www.allitebooks.org

Creating	and	managing	files
So	far	on	our	tour	of	Xcode	we’ve	been	looking	at	and	fiddling	with	all	of	the	files	that
were	automatically	created	when	we	started	the	project.	Now	we’re	going	to	take	a	look	at
the	different	types	of	resources	that	are	used	in	a	typical	Xcode	project	and	how	to	create,
import,	and	manage	them.

Resource	types
While	the	number	of	resource	types	that	Xcode	can	handle	is	quite	large,	there	are	only
three	resource	types	that	you’ll	need	to	know	about	for	most	use	cases.	These	are	the	Swift
file,	the	Storyboard,	and	the	Asset	Catalog.	We’ve	already	seen	an	example	of	all	three
resource	types,	but	before	we	continue	we	should	get	a	better	understanding	of	what	they
are	used	for	and	how	they	work.

A	Swift	source	file	is	a	text	document	that	contains	source	code	written	in	the	Swift
programming	language.	Normally,	you’ll	have	one	class	per	file,	but	you	can	technically
declare	as	many	classes,	structs,	and	so	on	in	a	source	file	as	you	like.	We’ll	discuss	the
Swift	programming	language	at	length	in	Chapter	3,	Introduction	to	Swift	3.

A	Storyboard	file	is	a	special	resource	type	that	defines	an	application’s	views,	which	you
can	edit	visually.	A	Storyboard	file	is	edited	with	a	drag-and-drop	editor	called	Interface
Builder,	and	also	allows	you	to	visually	connect	UI	elements	to	code	blocks	in	your	view
controller.	We’ll	discuss	Storyboards	at	length	in	Chapter	4,	Using	Storyboards,	Auto
Layout,	and	Size	Classes.

An	Asset	Catalog	is	an	organized	collection	of	asset	resources.	These	can	be	images,	text
files,	you	name	it!	Anything	your	app	uses	as	an	asset	can	be	stored	and	recalled	from	an
asset	catalog.	There	are	even	some	great	features	you	can	use	with	an	asset	catalog	to
optimize	your	app	by	making	sure	that	only	the	relevant	resources	are	downloaded	on	the
device	you	are	using.	We’ll	learn	a	lot	more	about	asset	catalogs	(and	optimization	in
general)	in	Chapter	15,	Optimizing	Your	App.

Creating	new	resources
In	Xcode,	there	are	several	ways	to	create	a	new	resource	file.	The	quickest	and	most
useful	way	to	create	a	new	file	is	with	the	keyboard	shortcut	command	+	N.	This	will
immediately	bring	up	the	new	file	dialog	box:

Figure	2.17:	The	new	file	template	dialog	box

This	should	look	familiar,	since	it	follows	the	same	format	as	the	new	project	template
chooser.	On	the	left	you	can	see	the	categories,	with	the	resource	types	on	the	right.
Selecting	a	broad	category	on	the	left	(such	as	iOS,	shown	in	the	image)	will	show	you	all
available	resource	types	for	that	category.	You	can	also	select	a	more	specific	category	to
show	only	the	relevant	resource	types.	For	testing	purposes,	select	a	Swift	File	and	click
Next.

You’ll	be	asked	to	give	the	file	a	name,	and	choose	a	location	to	save	it.	Type	in

TestClass	as	the	file	name,	and	save	it	to	the	folder	with	the	same	name	as	your	project.
Click	Create	to	finish	the	process.

You’ll	notice	that	Xcode	will	immediately	bring	the	new	file	to	the	focus	in	the	editor,	and
that	it	was	given	some	comments	at	the	top	describing	the	file,	and	a	single	line	of	code
that	reads	import	Foundation.	Depending	on	what	file	was	selected	in	your	project
navigator,	Xcode	may	have	placed	the	new	file	in	a	strange	place	in	your	folder	hierarchy.
You	can	drag	it	to	a	better	location,	but	instead,	let’s	explore	a	different	way	to	create	a
file.	Select	the	TestClass.swift	file	in	the	project	navigator	and	press	command	+	delete
to	delete	the	file.	When	prompted,	click	Move	to	trash.

This	time,	instead	of	using	a	keyboard	shortcut,	right-click	on	the	folder	in	your	project
navigator	that	has	the	same	name	as	your	project.	For	me,	that	would	be	the	HelloWorld
folder.	In	the	drop-down	menu	that	pops	up,	select	New	File…

Figure	2.18:	Creating	a	new	file	by	right-clicking	in	the	project	navigator

You’ll	be	presented	with	the	same	resource	type	choosing	dialog.	Again,	choose	a	Swift
file,	name	it	TestClass.swift,	and	save	it	in	your	project	folder.	This	time,	no	matter
what	file	was	selected	in	the	project	navigator,	or	what	folder	you	saved	the	actual	file	to,
the	new	resource	will	show	up	as	a	child	of	the	folder	you	right-clicked	on	in	the
beginning.	Let’s	look	at	one	more	way	to	create	files,	so	this	time	right-click	on
TestClass.swift,	select	Delete,	and	again	click	Move	to	trash.	If	you	select	Remove
Reference,	the	file	will	still	exist	on	the	disk,	but	just	won’t	show	up	in	your	project:

Figure	2.19:	Moving	to	trash	versus	removing	the	reference	when	deleting	a	file

The	third	way	to	create	a	new	resource	is	a	more	visual	way	that’s	more	suitable	for
people	who	are	uncomfortable	with	keyboard	shortcuts.	First,	make	sure	your	Utilities
sidebar	is	open	and	that	the	bottom	section	is	set	to	the	first	tab,	the	File	Template
Library.	A	shortcut	to	bring	up	this	menu	is	control	+	option	+	command	+	1.	Now,	scroll
down	until	you	see	the	Swift	file	icon.	Click	and	drag	the	icon	from	the	file	template
library	over	to	the	project	navigator,	into	the	desired	place	in	the	file	hierarchy:

Figure	2.20:	Dragging	a	Swift	file	template	from	the	file	library	into	the	project	navigator

This	time,	when	you	let	go,	you	only	need	to	give	the	file	a	name	and	a	location,	since	you
already	chose	the	type.	Just	hit	Cancel,	since	we’ve	already	gone	through	this	process	a
few	times	and	we	don’t	really	need	this	file.

It’s	up	to	you	which	way	you	want	to	create	new	files.	No	one	way	is	the	best	solution,	as
long	as	the	method	you	choose	is	the	fastest	and	easiest	for	you.

Importing	existing	files
Sometimes,	you’ll	have	a	preexisting	file	that	you	need	to	add	to	your	project.	Just
dragging	a	file	into	the	project’s	folder	in	Finder	won’t	let	the	Xcode	project	know	that	the
file	is	actually	part	of	the	project.	To	import	a	file	into	your	project,	you	need	to	explicitly
let	Xcode	know	to	add	an	existing	file.	Let’s	try	this	out.

First,	select	ViewController.swift	in	the	project	navigator.	We’re	going	to	press	the
delete	key,	but	this	time	we	are	going	to	select	Remove	Reference.	What	we’ve	done	is
delete	Xcode’s	awareness	of	the	file,	but	not	the	file	itself.	The	file	is	still	in	our	project
folder	in	Finder,	but	Xcode	doesn’t	know	about	it	anymore.	Now	we	can	pretend	that	the
ViewController.swift	file	was	obtained	from	some	other	source,	and	see	how	we	can
add	this	file	to	our	project.	To	do	this,	right-click	on	the	yellow	folder	with	your	project
name	in	the	project	navigator.	From	the	drop-down,	select	Add	Files	to	(PROJECT
NAME):

Figure	2.21:	Adding	files	to	your	project	by	right-clicking	on	a	destination	folder

The	next	screen	should	be	a	file-select	window.	The	file-select	window	should	start	in	the
project’s	root	folder,	so	the	ViewController.swift	file	should	be	visible.	Click	on	it	to
select	it	as	the	file	to	add	to	the	project.	On	the	bottom	of	the	file	select	window,	click	the
Options	button;	this	will	give	you	more	control	on	the	file	you	are	about	to	import.	If
you’re	adding	the	file	from	a	location	other	than	your	project	folder	(for	example,	your
Downloads	folder),	then	checking	Copy	items	if	needed	will	make	a	copy	of	the	resource
and	make	sure	it’s	in	your	project	folder.	We’ll	cover	the	Added	folders	options	shortly.	At
the	bottom,	you	can	select	which	targets	the	file	should	be	added	to,	so	if	you’re	working
in	a	project	with	multiple	targets	you	can	make	sure	it’s	set	up	properly	from	the	start.

Click	on	Add,	and	you’re	done;	the	file	is	now	properly	imported	into	your	project.

Groups	and	folders
As	you	noticed	when	importing	that	file,	there	was	an	option	for	determining	how	folders
are	imported	into	your	Xcode	project:	as	Groups	or	Folder	References.	These	two
different	methods	of	organization,	while	similar,	have	some	important	distinctions	that	are
important	to	understand	when	organizing	and	managing	your	Xcode	project’s	files:

Figure	2.22:	Highlighting	the	visual	difference	between	a	group	(yellow)	and	a	folder
reference	(blue)

A	group,	which	shows	up	as	a	yellow	folder	icon	in	Xcode,	exists	only	within	Xcode	itself.
When	thinking	about	how	Xcode	manages	all	of	our	file	resources,	we	know	that	it	stores
references	to	files	on	your	disk.	What	a	group	does	is	make	a	group	of	these	file
references.	That	means	that	each	individual	file	has	its	own	reference,	and	that	the	group
folder	that	it	is	inside	is	strictly	for	visual	organization	only.	If	you	move	files	around
inside	a	folder	on	your	disk,	it	won’t	affect	how	the	group	in	Xcode	displays	them.	In	fact,
when	your	project	is	built,	all	the	contents	of	your	groups	get	dumped	into	a	single
directory.	The	benefit	of	this	is	that	you	can	select	which	target	each	file	belongs	to,	which
you	cannot	do	with	a	folder	reference.

A	folder	reference,	which	shows	up	as	a	blue	folder	icon	in	Xcode,	is	fairly
straightforward.	Instead	of	having	many	references	to	files	on	your	disk,	a	folder	reference
is	simply	a	reference	to	the	containing	folder.	The	benefit	of	not	keeping	track	of	the	child
files	is	that	moving	them	around	on	your	disk	is	automatically	reflected.	So,	basically,	a
folder	reference	just	points	at	a	folder	on	your	disk,	and	relays	the	contents	to	make	them
visible	in	Xcode.	Unfortunately,	this	means	that	you	can	either	have	a	whole	folder	as	part
of	a	target,	or	not.	You	can’t	pick	and	choose	which	files	are	part	of	which	targets.	You
also	must	specify	explicit	file	paths	if	a	file	is	inside	a	folder	reference,	since	it	retains	its
structure	in	a	build.

While	being	wary	of	the	pitfalls,	know	that	groups	are	usually	the	best	tool	for	the	job.

Creating	builds
When	the	time	comes	to	actually	build	your	project,	you’ll	find	there	are	a	number	of
features	and	options	to	think	about.	Later	in	the	book	we’ll	take	a	look	at	creating
distribution	builds,	but	for	now	let’s	look	at	what	it	takes	to	understand	the	basics,	and	get
development	builds	on	our	devices.

Build	and	run
First,	let’s	discuss	the	only	part	of	the	Xcode	window	we	haven’t	looked	at	yet:	the	main
toolbar.	Earlier	we	used	the	buttons	on	the	right	side	of	the	toolbar,	but	we	haven’t	looked
at	what’s	happening	on	the	left:

Figure	2.23:	The	build	options	and	commands	in	the	upper	left	of	the	Xcode	toolbar

The	four	buttons	along	the	top	(from	left	to	right)	are	the	build	and	run	button,	the	stop
process	button,	target	selection,	and	platform	selection.	With	these	buttons,	you	can	run
most	of	the	development	builds	you’ll	need.

To	test	this,	let’s	run	our	project	on	the	iPhone	SE	simulator.	First,	click	on	the	platform
selection	button.	You’ll	find	that	it’s	not	a	button,	but	a	drop-down	menu	that	allows	you
to	select	a	target	platform.	Select	the	iPhone	SE	option.	We	won’t	be	needing	it	at	the
moment,	but	the	target	selector	is	also	a	dropdown	that	lets	you	choose	the	target	you	wish
to	build.

Tip
In	the	next	step,	your	computer	might	ask	you	if	you	wish	to	enable	developer	mode	on
your	computer.	Make	sure	to	click	Enable	and	enter	your	password.

Now	that	our	target	and	platform	are	set,	all	we	need	to	do	is	click	the	build	and	run
button.	This	will	build	our	app,	launch	the	simulator,	and	then	deploy	and	run	the	app.	It
might	take	a	little	time	for	the	simulator	to	launch,	but	you	should	end	up	with	a	white
screen	on	the	simulator:

Figure	2.24:	This	is	what	your	project	and	simulator	should	look	like

Great!	It	doesn’t	look	like	much,	but	that’s	because	the	project	is	empty;	our	app	is	indeed
running	on	the	simulator.	Now,	to	stop	running	the	application,	you	can	press	the	stop
process	button.

To	speed	up	this	process,	you	can	use	the	keyboard	shortcut	command	+	R	to	build	and	run
your	project,	and	command	+	.	to	end	the	process.

Running	on	a	device
The	simulator	is	great	on	occasion,	but	most	of	the	time	we	are	going	to	want	to	test	our
apps	directly	on	our	devices.	Luckily,	Xcode	makes	this	dead	simple.

First,	make	sure	your	device	is	eligible	(running	the	most	recent	version	of	iOS)	and
plugged	into	your	computer.	After	a	few	moments,	you	should	see	your	device	name	show
up	in	the	platform	selection	dropdown	in	the	toolbar,	at	the	top	of	the	list.

Note
Resolving	device	issues:

If	you	have	any	issues,	go	to	the	menu	bar	and	select	Window	|	Device,	then	find	your
device	and	see	whether	there	are	any	issues	with	using	it	for	development.	You	should	be
able	to	use	information	on	this	screen	to	search	the	Web	for	solutions.

Then,	select	your	device	from	the	platform	selector.	Before	you	run,	make	sure	your
device	is	unlocked	if	it	has	a	passcode,	since	the	passcode	lock	will	prevent	code	from
being	deployed	to	the	device.	Finally,	to	run	your	project	on	your	device,	just	press	the
build	and	run	button,	or	use	the	shortcut	(command	+	R).	After	a	few	moments	of	building
and	deploying,	you	should	have	your	blank	white	screen	properly	running	on	your	device!

Applying	the	basics
At	this	point,	we’ve	covered	all	of	the	basic	features	of	the	Xcode	IDE	that	you	need	to
know	to	start	doing	some	real	work.	Throughout	the	rest	of	the	book,	we’ll	be	taking
closer	looks	at	many	different	aspects	of	the	editor.

However,	before	we	move	on,	let’s	put	our	new	knowledge	to	the	test,	and	put	everything
together	to	create	our	first	Hello	World!	iOS	application.	This	little	application	will	have
a	single	button	that	writes	text	on	the	screen.

Setting	up	the	workspace
The	current	project	that	we’ve	been	playing	around	with	throughout	this	chapter	should
still	be	a	blank	project.	As	long	as	you	were	able	to	get	the	blank	white	screen	to	show	up
in	the	simulator	when	we	were	building	in	the	last	section,	there’s	no	need	to	create	a	new
project.	If	you’d	like	though,	you	can	start	afresh	by	following	the	exact	same	instructions
from	the	beginning	of	the	chapter	to	create	a	new	project.

Once	we	have	a	project	to	work	with,	let’s	get	the	workspace	set	up	for	the	task	at	hand.
For	this	project,	we	are	going	to	want	to	see	both	our	Main.storyboard	file	and	our
ViewController.swift	file	at	the	same	time;	sounds	like	a	job	for	the	assistant	editor
mode.	Earlier	in	the	chapter,	we	looked	at	how	this	is	useful	for	developing	a	view	and	a
controller	simultaneously,	and	that’s	exactly	what	we’re	going	to	do	here.	Select	the
Main.storyboard	file	and	then	enter	assistant	editor	mode,	and	your	project	window
should	look	something	like	this:

Figure	2.25:	Configuring	the	assistant	editor	for	development

We’ve	got	our	storyboard	on	the	left	and	our	ViewController.swift	on	the	right.
However,	as	you	can	see	in	Figure	2.25,	my	storyboard	has	a	sidebar	on	the	left	taking	up
a	lot	of	space.	The	blue	arrow	is	pointing	to	a	little	icon	that	will	hide	the	sidebar.	If	your
sidebar	was	already	hidden,	you	can	click	the	same	button	to	show	it,	but	make	sure	you

end	up	leaving	it	hidden	for	now.

Another	possible	issue	you	might	run	into	is	that	the	file	on	the	right	is	a	file	other	than
our	ViewController.swift	file.	Remember	from	earlier	that	there	are	different	ways	to
display	the	second	file	in	the	assistant	editor.	To	fix	this,	the	red	arrow	is	pointing	at	the
drop-down	menu	that	lets	you	select	a	file.	From	that	dropdown,	select	Automatic	and
you	should	be	all	set.

Now,	just	drag	the	center	divider	of	the	assistant	editor	to	make	sure	the	full	Interface
Builder	view	is	visible.	One	final	thing:	on	the	Utilities	sidebar,	set	the	object	library	in
the	lower	half	to	the	third	tab	(or	just	press	control	+	option	+	command	+	3).	If	your	final
window	looks	like	Figure	2.26,	we’re	good	to	go:

Figure	2.26:	The	overall	look	of	our	application	window	after	being	set	up	for
development

Creating	the	model,	view,	and	controller
This	title	is	a	little	misleading	because	this	app	will	be	so	simple	that	it	doesn’t	have	any
data,	and	therefore	doesn’t	need	a	model!	However,	it’s	best	to	still	think	of	separating
your	apps	into	these	three	categories	when	developing	them,	and	most	apps	will	have
models.	So	with	the	model	taken	care	of,	let’s	move	on	to	the	view.

For	this	application,	we	are	only	going	to	have	a	button	that,	when	pressed,	will	make	text
appear.	In	iOS	terms,	we	need	a	UIButton,	which	we	can	press,	and	a	UILabel,	which	can
display	text.	To	add	these	to	our	view,	all	we	have	to	do	is	drag	them	from	the	object
library	into	our	storyboard.

We’ve	already	used	the	object	library	to	create	new	files,	so	you	should	be	somewhat
familiar	with	how	it	works.	Again,	make	sure	the	third	tab	is	selected	in	the	object	library,
since	this	is	where	the	interface	builder	objects	are.	You	can	scroll	through	the	library
looking	for	a	Button	and	a	Label,	or	you	can	use	the	search	bar	at	the	bottom	to	find	them
quicker:

Figure	2.27:	Using	the	search	bar	in	the	object	library	to	find	interface	elements

Once	you	find	each	object	in	the	library,	just	drag	it	out	into	the	storyboard.	We	need	one
of	each	element.	Place	the	label	towards	the	upper	left	of	the	view,	and	the	button	beneath
it.	If	you	double-click	on	the	button,	you	should	be	able	to	edit	the	text;	set	it	to	say	Press
Me.	Next,	do	the	same	with	the	label,	but	type	in	Hello	World!

Figure	2.28:	Our	simple,	completed	storyboard

Very	simple,	but	this	is	our	finished	view!	With	our	model	and	our	view	both	complete,	all
that	remains	is	the	controller.	Our	controller	is	going	to	need	to	have	control	over	our	label
so	that	it	can	change	the	text	inside	of	it,	and	it	is	also	going	to	need	to	know	when	the
button	has	been	pressed.

Xcode	has	two	really	great	features	that	make	connecting	storyboards	and	Swift	files
really	intuitive.	These	are	called	IBActions	and	IBOutlets,	where	the	IB	stands	for
Interface	Builder.	An	action	is	related	to	an	event	that	happens	in	the	view,	and	an	outlet
is	a	reference	to	an	object	in	the	view.	So	using	these	definitions,	we	want	to	create	an
IBOutlet	for	our	label,	and	an	IBAction	for	when	the	button	is	clicked.

Let’s	start	by	making	an	outlet	for	our	label.	Press	and	hold	the	control	key	on	your
keyboard,	and	then	click	and	drag	from	the	label	into	your	Swift	file.	You	should	have	a
blue	line	connection	from	the	label	in	your	view	to	a	line	in	the	code:

Figure	2.29:	Control	dragging	from	the	label	in	the	storyboard	to	the	code	in	the
controller

In	Figure	2.29,	you	can	see	that	there	is	a	horizontal	blue	line	in	the	Swift	file,	which
represents	the	line	that	code	will	be	generated.	Make	sure	it’s	below	the	class	definition,
and	above	the	viewDidLoad()	function,	on	just	about	line	12.	When	you	let	go,	you’ll	be
greeted	with	a	new	dialog	box	to	set	up	the	IBAction	or	IBOutlet:

Figure	2.30:	Configuring	the	label	outlet

Make	sure	the	Connection	is	set	to	Outlet	and	give	the	outlet	the	name	of	textLabel.
Click	Connect	and	you	should	see	that	Xcode	generated	a	line	of	code	for	you.	The	code
that	it	generated	is	a	variable	that	allows	you	to	access	that	text	label	in	your	view

controller’s	code.	Isn’t	that	awesome?	All	we’ve	done	so	far	is	click	and	drag	a	few	times,
and	we	have	objects	on	screen	that	we	can	manipulate.

Now	let’s	make	an	IBAction	for	when	the	button	is	clicked.	Just	like	making	an	outlet	for
the	label,	press	and	hold	control	and	then	drag	from	the	button	into	the	Swift	file:

Figure	2.31:	Configuring	the	button	action

This	time,	set	the	connection	type	to	Action,	and	give	the	action	a	name	of
buttonWasPressed.	Click	Connect,	and	you’ll	see	that	this	time	it	generated	a	whole
function!	Now	we’ve	connected	everything	from	our	storyboard,	so	our	controller	has	all
the	information	it	needs	from	the	view.	That	means	it’s	time	to	move	on	to	our	last	step:
writing	the	few	lines	of	code	that	make	everything	work!

The	first	thing	we	want	to	do	is	make	sure	the	label	has	no	text	in	it	when	the	application
starts.	That	way,	it	only	appears	once	we	press	the	button.	To	do	this,	we’re	going	to	want
to	place	a	line	of	code	in	the	viewDidLoad()	function	that	erases	the	text.	Here’s	what	the
final	function	should	look	like:
		override	func	viewDidLoad()	{

				super.viewDidLoad()

				textLabel.text	=	””

		}

You	can	see	that	we’re	able	to	access	the	label	in	our	view	using	the	textLabel	outlet	that
we	created	earlier.

Finally,	we	need	to	change	the	text	when	the	button	is	pressed.	It	should	be	pretty	obvious
that	we’ll	be	using	the	buttonWasPressed()	IBAction	function	we	made	earlier,	and	we’ll
be	using	a	very	similar	line	of	code	to	the	one	we	used	to	clear	out	the	text.	This	is	what
the	final	buttonWasPressed()	function	should	look	like:
		@IBAction	func	buttonWasPressed(sender:	AnyObject)	{

				if	textLabel.text	==	””	{

						textLabel.text	=	“Hello	World!”

}	else	{				

						textLabel.text	=	””

				}

		}

Stepping	through	this	code,	we	can	see	that	we	first	look	to	see	if	the	label	is	blank.	If	it	is
blank,	we	change	it	to	say	Hello	World!,	but	if	it	isn’t	empty,	we	set	it	back	to	blank.	That
way,	each	time	we	press	the	button,	it	will	toggle	back	and	forth	between	on	and	off.	And
remember,	this	function	will	be	automatically	called	whenever	the	button	is	pressed.	That
means	our	controller,	and	thus	our	entire	app,	is	finished!

Testing	our	work	in	the	simulator
You’re	welcome	to	try	this	on	your	device,	but	for	now,	select	the	iPhone	6	Simulator
from	the	platform	selector,	and	then	build	and	run	your	project.	You	should	see	the	button
that	says	Press	Me!	and	when	you	click	it,	the	text	Hello	World!	should	appear	above	it!
When	you	press	it	again,	it	should	disappear:

Figure	2.32:	An	overview	of	our	finished	project,	and	the	app	open	in	the	simulator

And	that’s	it!	We’ve	built	our	first	little	app	for	iOS.	It’s	not	much,	but	we’ve	taken	our
first	step	on	this	journey.	It	only	gets	better	from	here!

Summary
In	this	chapter,	we	learned	how	to	find	our	way	through	the	sometimes	intimidating
interface	of	Xcode.	We	broke	down	all	the	different	sections,	learned	about	the	many
different	toolbars	and	editors,	and	tested	our	knowledge	by	building	a	simple	iOS	app!	We
should	now	have	a	really	good	idea	of	what	different	parts	of	the	application	are	called,
and	we	even	have	a	few	handy	keyboard	shortcuts	to	speed	things	up.

In	the	next	chapter,	we’ll	be	taking	a	little	break	from	Xcode	and	diving	headfirst	into	the
world	of	Swift	programming.	We’ll	start	from	the	beginning,	looking	at	how	variables	and
functions	work	in	Swift,	but	quickly	work	our	way	up	to	some	of	the	powerful	and	unique
features	the	language	has	to	offer,	such	as	optional	types,	closures,	and	generics.	We’ll
also	take	a	look	at	the	new	features	that	Swift	3	has	to	offer,	such	as	error	handling	and
protocol	extensions.

Chapter	3.	Introduction	to	Swift	3
For	a	long	time,	developing	applications	on	an	Apple	platform	meant	you	had	to	know
how	to	use	Objective-C.	It	is	a	quirky	language,	but	it	has	adapted	over	the	years	to	be	a
powerful	tool	for	application	development	and	was	tied	to	the	core	of	the	Cocoa	and
Cocoa	Touch	frameworks.

As	everyone	knows	by	now,	Apple	changed	the	game	in	2014	when	they	introduced	Swift,
an	entirely	new	and	modern	language	meant	to	carry	app	development	into	the	next	few
decades.

Looking	back,	it’s	easy	to	see	why	a	new	language	was	necessary.	Swift	cleaned	up	a	lot
of	long-standing	problems	with	Objective-C,	and	has	enabled	Apple	to	really	blow	open
their	development	platforms.	Since	Swift	launched	in	2014,	we’ve	seen	a	huge	addition	of
functionality	to	iOS,	and	two	entirely	new	development	platforms	with	watchOS	and
tvOS.	It	is	clear:	Swift	is	here	to	stay.

In	this	chapter,	we’ll	be	getting	through	as	many	of	the	big,	important	features	of	Swift	as
we	can.	The	goal	is	to	get	you	up	to	speed	with	the	language	and	get	a	feel	for	how	it
works.	We’ll	be	using	it	throughout	the	rest	of	the	book,	but	within	the	context	of
developing	an	actual	app.	For	now,	let’s	learn	the	basics!	We’ll	be	covering	the	following
topics:

	
Using	Swift	playgrounds	in	Xcode	8
Data	types,	optionals,	variables,	and	collections
Functions	and	control	flow
Using	classes,	structs,	and	enumerations
Closures,	protocols,	class	extensions,	and	error	handling

That	may	look	like	a	lot	to	cover,	but	trust	me	when	I	tell	you	that	Swift	is	an	absolute
blast	to	learn,	and	even	more	fun	to	use.	Let’s	go!

Discovering	playgrounds
When	Apple	first	introduced	Swift,	they	created	an	interactive	book	where	developers
could	read	about	the	new	language	and	actually	use	the	language	all	in	one	document.	It
was	built	on	top	of	a	new	feature	in	Xcode	6	called	playgrounds.	The	idea	behind	the
playground	was	that	it	was	a	good	place	to	learn	and	experiment	with	the	new	language,
without	having	to	worry	about	setting	up	test	projects	in	Xcode.

Throughout	this	chapter,	we’re	going	to	be	using	playgrounds	as	we	learn	about	and	play
with	Swift.	However,	always	try	to	keep	them	in	mind,	since	they	can	be	an	invaluable
tool	for	rapid	prototyping	when	working	on	your	own	projects.

Setting	up	a	playground
One	of	the	things	that	makes	playgrounds	so	powerful	in	Xcode	is	that	they	are	not	a	part
of	a	project,	but	are	just	individual	files.	This	makes	using	them	extremely
straightforward.	You	don’t	have	to	worry	about	project	settings	or	dependencies;	you	can
just	jump	in	and	start	playing.

To	create	a	new	playground,	let’s	open	up	Xcode.	Previously,	we	learned	how	to	create	a
new	project	from	this	screen,	using	the	second	option.	This	time,	we’re	going	to	just	select
Get	started	with	a	playground:

Figure	3.1:	Creating	a	new	playground	from	the	Xcode	startup	screen

As	with	setting	up	an	Xcode	project,	there	is	some	minor	configuration	to	be	done.	In	the
next	window,	set	the	name	of	the	playground	to	LearningSwift,	and	make	sure	the
platform	is	set	to	iOS.	If	your	screen	looks	like	the	following	one,	we’re	good	to	go:

Figure	3.2:	Configuring	a	new	playground	environment

You’ll	be	asked	to	choose	where	to	save	the	file	next.	I	created	a	Playgrounds	folder,
inside	my	Xcode	folder,	inside	my	Documents	folder	(Documents	|	Xcode	|	Playgrounds),
but	you	may	save	it	wherever	you	wish.

Tip
Just	because	they	don’t	require	a	project,	that	doesn’t	mean	you	can’t	have	a	playground
inside	a	project.	When	working	in	a	normal	Xcode	project,	you	can	always	press
command	+	N	(to	create	a	new	file),	select	a	playground	file,	and	save	it	inside	your
project.

Now	that	we’re	set	up,	let’s	take	a	look	around	the	playground.	You’ll	notice	that	it	is	very
similar	to	the	standard	Xcode	window	we	already	know,	but	with	fewer	buttons.	We	still
have	our	editor	mode	toggles,	and	our	sidebar	toggles	in	the	upper	right	of	the	window,

but	that’s	about	it.

You’ll	notice	that	there’s	no	build	and	run	button.	That’s	because	in	a	playground,	the	code
is	automatically	being	run	as	you	type.	On	the	right	side	of	the	editor	window	is	a	large
grey	area.	As	your	code	is	being	run,	the	output	of	each	line	of	code	is	being	shown	in	this
area	as	shown	in	Figure	3.3:

Figure	3.3:	The	results	of	each	line	are	displayed	to	the	right	of	the	code	editor

On	the	left,	you	can	see	I	wrote	a	few	sample	lines	of	code.	On	line	7,	I	wrote	2	+	2,	and
then	on	the	right	you	can	see	that	the	playground	evaluated	that	line	to	the	value	of	4.
Underneath	that,	I	created	a	variable	called	x,	and	incremented	it	by	one.	The	last	line	I
created	an	instance	of	the	NSDate	class,	and	in	the	grey	sidebar	you	can	see	the	current
date	information	stored	inside	it.

Anyhow,	those	examples	are	just	to	illustrate	how	the	playground’s	editor	window	is	set

up.	You	write	code	on	the	left	and	the	results	are	displayed	on	the	right.

Using	previews
Being	able	to	see	how	something	works	so	quickly	and	easily	is	an	extremely	valuable
tool.	However,	playgrounds	don’t	stop	with	the	line	evaluation	previews	that	we	just
looked	at.	There	are	many	custom	visualizers	to	help	you	understand	your	code	better.
Let’s	take	a	look	at	a	few	of	the	most	useful	of	these	previews.

Sometimes	when	writing	code,	you’ll	want	to	see	how	something	changes	over	time.	This
can	be	real	time,	as	in	seconds,	or	maybe	just	the	number	of	iterations	a	loop	has	run
through.	In	these	cases,	Swift	playgrounds	have	visual	data	graph	previews	that	make	it
easy	to	see	how	values	have	changed	over	time.	To	test	this	out,	replace	the	code	in	your
playground	with	the	following:
var	time:	Float	=	0

var	position:	Float	=	0

while	time	<	1.0	{

				position	=	time*time

				time	+=	0.05

}

This	short	snippet	of	code	tracks	two	things:	a	time	variable	that	we	increase	linearly
until	it	reaches	1.0,	and	a	speed	value	that	is	calculated	as	the	elapsed	time	squared.	If
you’ve	spent	some	time	with	math	or	physics,	you	might	be	able	to	mentally	picture	how
these	two	values	relate	to	each	other.

Luckily,	computers	make	it	so	that	we	rarely	need	to	use	our	brains	at	all	anymore,	and	we
can	have	Xcode	visually	show	us	what	is	going	on:

Figure	3.4:	The	plus	button	enables	the	results	view	in	a	playground

If	you	hover	over	any	of	the	evaluation	previews	on	the	right,	you	will	get	two	little	icons
along	the	right	side	of	the	window:	a	quick	look	eye,	and	a	+	sign	which	turns	on	the
results	view.	The	quick	look	button	will	let	you	quickly	display	the	visual	preview,	and
the	plus	sign	will	display	the	visual	preview	inline	with	your	code.	Click	the	results	view
button	(+	sign,	see	Figure	3.4)	for	both	of	the	calculations	inside	our	while	loop,	and
you’ll	be	greeted	with	a	beautiful	visualization	of	the	data:

Figure	3.5:	The	results	view	shows	a	graph	of	our	values	over	time

Now,	regardless	of	our	math	background,	we	can	easily	see	how	these	two	values	increase
over	time!	This	can	be	extremely	useful	depending	on	what	you’re	programming.	I’ve
used	it	to	visually	check	how	interpolation	functions	work,	and	you	could	also	use	it	to
look	at	animation	curves.	Basically,	anytime	you	need	to	visualize	data,	this	is	a	fantastic
way	to	do	it.

Let’s	throw	a	little	more	code	at	our	playground.	Copy	the	following	lines	into	your
playground:
import	UIKit

var	view	=	UIView(frame:	CGRect(x:	0,	y:	0,	width:	100,	height:	100))

view.backgroundColor	=	UIColor.red()

view.layer.borderColor	=	UIColor.	green().cgColor

view

This	time,	we	are	prototyping	a	custom	view	for	an	app,	so	we	use	import	UIKit	at	the
top.	Then	we	create	our	view	by	initializing	it	with	a	frame	that	is	100	points	by	100
points.	Then	we	change	the	background	color	to	red	and	the	border	color	to	green.	This
should	be	a	little	easier	to	visualize	in	our	heads,	but	let’s	click	the	results	view	button
(plus	sign)	that	is	next	to	that	last	view	that	we	tacked	on:

Figure	3.6:	Visualizing	the	view	we	programmed	using	the	results	view	button

We	can	see	our	view	is	about	100px	square,	and	that	it	is	red,	but	what	happened	to	the
green	border	that	we	set?	Well,	we	actually	need	to	set	the	width	of	the	border	if	we	want
to	see	it,	since	it	defaults	to	a	width	of	0.	Luckily,	in	our	playground	it’s	very	easy	to	add
or	change	code	and	immediately	see	the	visual	changes:

Figure	3.7:	The	updated	view	code	now	shows	the	green	border

There	we	go!	Now	we	have	our	red	background	and	green	border.	Naturally,	you	can	try
out	the	results	view	button	on	all	kinds	of	things	and	see	what	works	and	what	doesn’t,	but
it’s	an	extremely	helpful	feature	to	test	visual	objects	and	to	visualize	data.

Resources,	pages,	and	rich	comments
Before	we	move	away	from	playgrounds,	it’s	worth	going	over	three	features	that	make
playgrounds	a	lot	more	useful,	especially	as	living	documentation	or	learning	tools.	These
three	features	are	resources,	pages,	and	rich	comments.

Resources
The	ability	to	have	resources	in	playgrounds	really	expands	what	you	can	do	with	them.
The	most	obvious	use	case	here	is	that	you	can	now	use	images	in	a	playground.	In	the
resources	folder	of	Chapter	3,	I’ve	included	a	file	named	wink.png.	To	add	this	to	your
playground,	first	open	the	navigator	sidebar	(shortcut:	command	+	1).	Then	drag	wink.png
into	the	resources	folder	of	your	playground.	Now	you	can	access	that	file	in	your
playground.	To	try	this	out,	copy	the	following	code	into	your	playground:
import	UIKit

var	winkImage	=	UIImage(named:	“wink”)

If	you	open	the	results	view	for	the	second	line	where	you	create	the	wink	image,	you’ll
see	that	it	loaded	the	file	just	fine!

Pages
The	next	feature,	pages,	is	pretty	self	explanatory.	With	this	feature,	you	can	now	add
multiple	pages	to	your	playgrounds.	To	create	a	new	page,	go	to	File	|	New	|	Playground
Page,	or	use	the	shortcut	command	+	option	+	N:

Figure	3.8:	Special	code	comments	(shown	on	the	left)	create	previous	and	next	buttons
(shown	on	the	right)

If	you	open	the	new	page	you	created,	you’ll	see	some	strange	comments	at	the	top	and
bottom	(the	left	side	of	Figure	3.8).	These	are	actually	part	of	the	rich	comments	system
we’ll	talk	about	next,	but	their	function	is	to	let	you	navigate	between	pages.	To	switch	out
of	edit	mode,	you’ll	need	to	go	to	Editor	|	Show	Rendered	Markup	from	the	menu	bar.
You	should	now	be	able	to	click	the	Next	and	Previous	buttons	to	navigate	through	pages
(right	side	of	Figure	3.8).	The	Next	and	Previous	buttons	will	cycle	you	through	the	pages
based	on	their	order	in	the	navigation	side	bar	(command	+1).	Play	around	with	this	and
see	what	you	can	do!

Rich	comments
Now	that	we’ve	taken	a	peek	at	what	rich	comments	can	do,	let’s	understand	them	a	little
better.	In	normal	Swift	code,	comments	are	used	to	make	notes	or	clarify	parts	of	your
code.	In	a	playground,	however,	we	can	use	rich	comments	to	create	visually	appealing
blocks	of	text	that	can	make	a	playground	look	more	like	an	interactive	textbook.
Combining	these	rich	comments	with	pages	and	resources,	you	can	make	some	amazing
coding	tutorials	or	training	programs	to	teach	others	how	to	use	your	Swift	code.

To	begin	using	rich	text	commenting,	you’re	going	to	make	a	standard	Swift	comment,
which	is	a	//	at	the	beginning	of	a	line,	followed	by	a	colon	(:).	The	end	result	should
look	like	this	//:.	You	can	also	make	a	multi-line	rich	comment	by	using	/*:	at	the
beginning	of	the	comment,	and	*/	at	the	end.

Once	you’ve	started	either	a	single	or	multi-line	comment,	playgrounds	use	the	Markdown
syntax	to	format	the	text.	You	can	read	all	about	Markdown	online,	but	here	is	an	example
of	a	Markdown	formatted	comment:
/*:

This	is	a	header

================

Here	is	some	sample	text	that	describes	this	page	in	our	playground.

*	this	is	a	list	item

*	this	is	another	list	item

Below	is	some	code

				func	main()	{

								let	x:	Int	=	0

				}

This	is	the	**end**	of	the	header.

*/

If	you	paste	this	somewhere	in	your	playground	while	in	raw	markup	mode,	then	enable
rendered	markup	(Editor	|	Show	Rendered	Markup),	you	can	see	that	it	translates
visually	to	this	comment:

Figure	3.9:	Some	examples	of	using	Markdown	to	create	rich	comments

There’s	a	lot	more	to	learn	about	Markdown,	but	there	are	better	places	to	read	about	it
than	here.	Go	online	and	do	some	research,	then	see	what	you	can	create	in	a	playground
using	pages	and	rich	comments!

Understanding	Swift	basics
Like	any	new	programming	language,	Swift	has	its	quirks.	But	as	with	most	languages,
the	building	blocks	are	pretty	simple	and	straightforward.	In	this	section,	we’re	going	to
start	with	the	features	of	Swift	that	nearly	every	programming	language	has,	so	that	you
can	get	a	feel	for	how	it	works.	If	you’ve	never	used	any	programming	language	before
then	there	may	be	some	terms	you	are	unfamiliar	with,	but	I	suggest	you	read	through	and
look	those	up	as	you	read	along.

Before	you	start,	open	up	a	fresh	playground	and	code	along	as	you	read!

Data	types,	constants,	and	variables
If	you	break	down	how	software	works	to	the	lowest	level	of	granularity,	all	that	really
ever	happens	is	that	data	on	your	computer	is	written,	manipulated,	and	moved.	When	you
go	up	a	level	of	granularity	and	look	at	the	source	code	for	that	software,	you’ll	see	a	lot
of	data	structures,	classes,	and	functions,	but	all	of	these	are	just	efficient	and	readable
vessels	for	chunks	of	code	that	create,	manipulate,	and	save	data.

Data	types
So	as	it	would	seem,	creating	and	manipulating	data	is	pretty	important.	Let’s	take	a	look
at	some	of	the	most	common	built-in	data	types	in	Swift	by	defining	some	constants:
let	integer:	Int												=	0

let	floatingPoint:	Float				=	0.0

let	string:	String										=	“Hello”

let	boolean:	Bool											=	true

Starting	from	the	top,	we	have	an	integer	(Int),	then	a	floating	point	number	(Float),	then
a	string	(String),	and	finally	a	Boolean	value	(Bool).	You’ll	notice	all	of	the	built-in	types
are	capitalized,	which	may	be	a	little	strange	if	you’re	coming	from	Objective-C.

Constants
While	we’re	here,	let’s	take	a	look	at	how	a	constant	is	defined	in	Swift:
let	constantName:	DataType	=	{Value}

First,	we	use	the	let	keyword	to	signify	that	we	are	defining	a	constant.	The	next	part	is
our	constant’s	name,	which	we	will	use	to	reference	it,	followed	by	a	colon.	After	the
colon	we	define	the	data	type	of	our	constant,	and	finally	we	set	it	equal	to	its	default
value.	Go	to	your	playground	and	try	to	define	some	of	your	own	constants	using	the	data
types	we	just	looked	at.	(This	example	won’t	work:	DataType	is	not	a	real	data	type!
Replace	that	with	a	real	data	type,	such	as	Int	or	String).

Variables
Since	Swift	has	a	strong	focus	on	speed	and	safety,	the	use	of	unchanging	constant	values
is	encouraged	as	frequently	as	possible.	However,	we	know	that	won’t	always	be	possible,
and	in	cases	where	a	value	needs	to	change	we	use	a	variable.	Defining	a	variable	is
exactly	the	same	as	defining	a	constant,	but	instead	of	using	let,	we	use	var:
var	variableName:	DataType	=	{Value}

Now	we	can	manipulate	and	rewrite	the	value	of	this	variable	as	much	as	we	need!

One	of	the	most	important	features	of	the	Swift	programming	language	is	that	it	is	type
safe.	This	means	that	all	of	the	constants	and	variables	you	define	must	have	a	type,	or
else	the	code	won’t	even	compile.	In	these	past	few	examples,	we’ve	defined	our	variables
and	constants	with	explicit	types,	meaning	we	wrote	the	type	right	next	to	them	to	make
sure	the	compiler	knows	about	it.	But	the	Swift	compiler	is	very	smart	and	can	also	figure
out	a	type	by	its	context,	therefore	giving	it	an	implicit	type.	Here’s	an	example:
var	value1:	Int	=	0

var	value2	=	0

On	value1,	we	explicitly	state	that	the	variable	is	of	the	type	Int.	On	value2,	we	just	set
an	un	typed	value	to	0,	but	the	compiler	knows	that	0	is	an	integer	and	deduces	that
value2	must	be	an	Int.	This	is	called	type	inference.	This	will	usually	make	more	sense
when	instantiating	objects	later	on,	since	it’s	more	readable:
var	myView	=	UIView()

Here,	it’s	very	clear	that	myView	will	be	of	the	type	of	the	UIView	class	(we’ll	get	to	classes
soon	enough):
var	value1,	value2,	value3:	String

You	can	also	declare	several	variables	on	one	line,	and	even	use	emojis	as	a	variable
name!	(Although,	it’s	really	only	useful	as	a	novelty;	I	don’t	recommend	using	emojis	in
real-world	code.)

Optionals
One	of	the	most	powerful	features	of	Swift	is	the	way	that	it	handles	the	absence	of	a
value.	So	far,	we’ve	been	using	data	types	that	are	guaranteed	to	have	a	value;	later	on
we’ll	see	how	the	compiler	will	require	those	data	types	to	have	a	value	before	an	object	is
finished	initializing.	This	means	that	you	are	guaranteed	that	a	variable	will	have	a	value,
which	makes	your	code	safer	and	less	prone	to	failure.

However,	sometimes	it’s	important	that	a	variable	doesn’t	have	a	value	at	all.	There	are
many	parts	of	the	Cocoa	Touch	framework	that	are	built	around	the	idea	of	an	object	being
nil,	which	in	Objective-C	means	that	there	is	nothing	there.	Swift	takes	this	concept	a
step	further	by	requiring	that	you	plan	ahead	and	let	the	compiler	know	which	variables
are	capable	of	not	having	a	value.	Because	of	their	functionality	of	being	able	to	have	or
not	have	a	value,	these	are	called	optionals:
var	normalInt:	Int	=	0

var	optionalInt:	Int?

The	normalInt	variable	is	declared	as	a	standard	Int,	and	assigned	a	value	of	0.	However,
the	optionalInt	is	defined	as	the	type	Int?.	The	question	mark	signifies	that	a	value	may
or	may	not	be	present.	Since	it’s	optional,	we	don’t	assign	it	a	value,	and	that’s	okay.	Now
we	have	an	issue,	though:	we	have	a	variable	running	around	our	code	with	no	value!
What	happens	if	we	try	to	use	it?	Let’s	see:
normalInt	=	optionalInt

If	we	tried	to	do	this,	we’d	get	a	compiler	error!	That’s	because	the	compiler	isn’t	sure	if
there	is	a	value	inside	optionalInt,	and	it	really,	really	doesn’t	want	the	code	to	crash
when	it	runs.	To	use	an	optional	value,	we	have	to	check	if	there	is	a	value	inside	or	not;
this	is	called	unwrapping.	Here’s	how	we	would	unwrap	an	optional:
if	let	unwrappedInt	=	optionalInt	{

				normalInt	=	unwrappedInt

}

The	if	let	statement	is	a	special	type	of	if	statement	which	checks	whether	an	optional
has	a	value.	In	this	case,	it	checks	to	see	whether	optionalInt	has	a	value,	and	if	it	does	it
assigns	the	value	to	unwrappedInt,	which	you	can	then	use	inside	the	brackets.	However,
if	optionalInt	didn’t	have	a	value,	the	code	would	be	skipped.	You	can	also	unwrap
multiple	optional	values	at	once	if	they	are	all	needed.

That	would	look	like	this:
var	normalString:	String	=	””

var	optionalString:	String?

if	let	unwrappedInt	=	optionalInt,	unwrappedString	=	optionalString	{

				normalInt	=	unwrappedInt

				normalString	=	unwrappedString

}

Here,	the	two	unwrapping	conditions	are	separated	by	a	comma,	and	the	if	branch	will
only	be	executed	if	both	values	can	be	unwrapped.

With	a	normal	optional	value,	you	can	force	it	to	be	unwrapped	using	an	exclamation
mark:
normalInt	=	optionalInt!

However,	this	can	be	dangerous,	because	you	are	overriding	the	compiler	and	telling	it
that	you	are	sure	that	the	optional	value	definitely	has	a	value.	If	you’re	wrong,	the	code
will	crash	at	runtime.	As	scary	as	that	sounds,	sometimes	you	are	sure.

In	cases	where	a	value	needs	to	be	assigned	after	the	init	function,	but	will	always	have	a
value	once	it’s	assigned,	you	can	declare	a	variable	as	an	implicitly	unwrapped	optional.
This	means	that	you	can	use	the	variable	like	a	normal	variable,	without	unwrapping	it
with	an	if	let	statement.	To	do	this,	simply	declare	the	variable	as	such:
var	implicitlyUnwrappedInt:	Int!

So,	instead	of	using	the	question	mark	to	denote	a	standard	optional,	we	use	an
exclamation	mark	to	show	that	it	should	be	treated	as	unwrapped.	To	use	it,	we	can	just	do
the	following:
normalInt	=	implicitlyUnwrappedInt

You	can	also	at	any	time	set	an	optional	value	back	to	being	empty	by	assigning	it	to	the
value	nil:
optionalInt	=	nil

This	has	just	been	a	brief	introduction	to	optionals	in	Swift,	but	we’ll	be	encountering
them	throughout	the	book	and	using	them	in	many	different	ways.

Collection	types
With	an	understanding	of	how	to	use	simple	data	types,	let’s	now	take	a	look	at	the
different	kinds	of	collection	built	into	Swift.	The	two	most	commonly	used	types	of
collection	are	arrays	and	dictionaries.	Both	of	these	are	native	to	the	Swift	language.

Arrays
An	array	in	Swift	is	a	simple	ordered	collection	of	values	of	a	certain	type.	If	you	want
your	array	to	be	immutable,	meaning	you	can’t	add/remove/change	values,	then	you
define	it	with	a	let	keywords.	To	make	it	mutable	(changeable),	define	it	with	var:
let	immutableArray:	[Int]	=	[1,	2,	3]

var	mutableArray:	[Int]	=	[Int]()

In	this	example,	you	can	see	that	the	immutable	array	is	initialized	with	default	values	of
1,	2,	and	3,	and	that	it	is	of	the	type	[Int].	The	square	brackets	around	a	data	type	let	the
compiler	know	that	it	is	an	array,	and	not	just	a	single	value.	Beneath	that,	we	did
something	similar,	but	instead	of	giving	the	mutableArray	starting	values,	we	just
initialized	a	new	empty	array	of	integers	to	use	later.	Using	what	we	learned	about	type
inference	in	the	last	section,	we	could	also	let	the	compiler	figure	out	the	types	and	shorten
these	declarations	to	the	following:
let	immutableArray	=	[1,	2,	3]

var	mutableArray	=	[Int]()

Let’s	take	a	look	at	some	of	the	basic	functionality	of	a	Swift	array.	Adding	an	element	to
the	end	of	an	array	looks	like	this:
mutableArray.append(1)

mutableArray.append(2)

mutableArray.append(3)

The	contents	of	the	array	would	now	look	like	this:	[1,	2,	and	3],	and	if	you’re	typing	this
into	a	playground,	you	should	be	able	to	see	that	in	the	results	sidebar.	To	remove	the	last
element,	you	can	use	dot-syntax	to	call	a	function	on	the	array:
mutableArray.removeLast()

You	can	also	use	dot-syntax	to	access	the	properties	of	the	array,	such	as	count	the
number	of	elements	the	array	contains:
mutableArray.count

Or	you	can	even	access	a	Bool	value	to	let	you	know	whether	the	array	is	empty	or	not:
mutableArray.isEmpty

You	can	access	elements	in	an	array	by	using	subscript	syntax,	where	you	put	the	index	of
the	element	you	are	looking	for	in	square	brackets	after	the	array	variable,	like	this:
mutableArray[0]

There	is	plenty	more	to	learn	about	the	Swift	arrays,	but	this	should	be	enough	to	get	us
started.	Feel	free	to	experiment	and	look	through	Apple’s	documentation.

Dictionaries

A	dictionary	is	a	collection	where	every	value	has	a	key	that	can	be	used	to	retrieve	it.	So
as	an	example,	if	I	put	the	number	05401	in	a	dictionary	with	the	key	zipCode,	then	later	I
would	ask	for	zipCode	and	it	would	return	05401:

Figure	3.10:	Dictionaries	use	keys	which	have	an	associated	value

This	has	many	use	cases	when	developing	software,	and	usually	has	the	benefit	of	being
easily	human-readable.	Let’s	take	a	look	at	how	to	create	a	dictionary:
var	myDict	=	[String:	Int]()

Here,	we	created	an	empty	dictionary	called	myDict,	where	it	uses	a	String	as	its	key,	and
stores	an	Int	value.	Again,	the	two	parentheses	show	that	we	are	creating	a	new	object
here.	To	add	a	value	for	a	key,	or	to	access	the	value	at	a	key,	you	can	use	subscript
notation	like	with	an	array,	but	instead	of	an	index	you	use	the	key:
myDict[“example”]	=	12345

let	test	=	myDict[“example”]

In	the	first	line,	we	are	creating	a	new	entry	in	the	dictionary	with	a	key	of	example	and
assigning	its	value	as	12345.	In	the	second	line,	we	retrieve	the	value	stored	at	the	key
example	and	assign	it	to	our	test	variable.	The	test	variable	will	now	store	the	value
12345.	Again,	there	is	a	lot	more	to	know	about	the	Swift	dictionary,	but	this	should	be
enough	to	get	you	started.

Conditional	statements
With	a	solid	understanding	of	the	different	ways	to	represent	data	in	Swift,	we	need	to
now	look	at	the	ways	that	we	can	control	the	execution	of	our	code.

if	statement
Starting	with	conditional	statements,	let’s	look	at	how	Swift	handles	a	standard	if
statement:
let	condition	=	true

if	condition	{

				//	condition	was	true

}	else	if	!condition	{

				//	condition	was	false

}	else	{

				//	this	would	honestly	never	happen

}

At	the	top,	we	just	declare	a	simple	Boolean	called	condition	and	set	it	to	true.
Remember,	Swift	is	using	type	inference	to	determine	that	the	condition	is	a	Boolean
value.	The	first	line	of	the	statement	uses	the	if	keyword,	followed	by	the	condition,	and
finishes	with	a	set	of	curly	braces	to	wrap	the	branch.

The	things	to	note	about	Swift’s	implementation	is	that	parentheses	around	the	condition
are	not	required,	but	the	curly	braces	always	are.	In	some	languages,	they	are	unnecessary
for	single-line	code	branches,	but	in	Swift	they	are	mandatory.

Underneath	the	first	if	statement	is	an	else	if	statement.	Like	other	languages,	if	an	if
statement’s	condition	is	not	met,	it	will	fall	through	to	any	number	of	else	if	statements
before	terminating	at	an	else	statement.	So	for	example,	if	our	condition	Boolean	was	set
to	false,	the	first	if	would	fail	and	the	else	if	condition	would	pass	(Swift	uses	the
exclamation	mark	to	invert	a	conditional	expression/Boolean,	like	many	other	languages).
Since	a	Boolean	can	only	be	true	or	false,	our	final	else	statement	would	never
realistically	be	hit,	and	is	only	there	to	show	you	what	it	looks	like.

guard	statement
Similar	to	the	if	is	the	guard	statement.	The	primary	difference	is	that	if	a	guard
statement’s	condition	is	true,	code	continues	after	the	braces,	instead	of	inside.	The
primary	use	case	for	a	guard	is	to	exit	code	early.	In	this	way,	the	guard	statement	is	a	way
of	saying	make	sure	these	conditions	are	true	before	we	continue:
let	age	=	25

guard	age	>	0	else	{

				//	invalid	age!

				return

}

In	this	example,	we	have	an	age	variable.	Then	we	use	guard	to	ensure	that	the	age	is
greater	than	0,	since	that	would	be	invalid.	If	the	condition	fails,	then	the	code	block	inside

the	else	is	executed.	There	must	always	be	an	else	statement	for	a	guard.

You	can	also	use	guard	to	unwrap	optionals:
guard	let	myInt	=	optionalInt,	myString	=	optionalString	else	{

				return

}

Sometimes	this	makes	more	sense	than	using	if	let	and	only	using	those	unwrapped
optionals	inside	the	scope	of	if	let.

switch	statement
In	addition	to	the	if/guard	conditionals,	we	also	have	the	switch	statement.	The	switch
takes	a	value,	matches	it	against	cases	until	it	finds	a	match,	and	then	executes	the	code
block	pertaining	to	that	case:
let	value	=	1

switch	value	{

case	0:

				print(“value	was	0”)

case	1:

				print(“value	was	1”)

case	2:

				print(“value	was	2”)

case	3,	4,	5:

				print(“value	was	between	3	and	5”)

default:

				print(“value	was	some	number”)

}

In	this	example,	the	value	that	the	switch	statement	is	considering	is	an	integer,	1.	It	then
checks	against	each	case	until	it	finds	one	that	matches.	You’ll	notice	one	case	has
multiple	matching	conditions,	separated	by	commas.	If	no	matches	are	found,	the	default
case	will	be	executed.

Unlike	some	other	languages,	there	is	no	implicit	fall-through	with	cases	in	a	Swift	switch
statement.	That	means	that	you	don’t	need	to	use	break	to	end	a	case.	In	addition,	a
switch	case	must	be	exhaustive,	meaning	that	every	possible	value	is	represented.	If	there
are	too	many	values	for	that	to	make	sense,	a	default	case	must	be	specified	at	the	end.

Loops
Swift	implements	many	of	the	standard	types	of	loop	found	in	most	programming
languages,	such	as	for,	for-in,	while,	and	repeat-while.	Similar	to	conditional
statements,	they	don’t	require	parentheses	for	their	input,	but	are	otherwise	comparable	to
other	C-like	languages.

for	loop
In	Swift	3,	the	old	C-style	for	loop	has	been	deprecated.	Now,	our	only	option	is	to	use
the	for	loop,	which	is	a	very	powerful	alternative.	This	is	how	we	can	use	a	for-in	loop
to	run	a	piece	of	code	5	times:
for	var	i	=	0;	i	<	5;	i++	{

				//	loop	code

}

Like	most	implementations,	you	have	the	first	expression	that	runs	before	the	loop	starts,
the	second	expression	which	is	the	condition	for	the	loop	to	run,	and	the	third	expression
that	runs	on	the	completion	of	the	loop.

for-in	loop
However,	in	Swift	the	for-in	loop	is	a	very	powerful	alternative.	Here	is	that	same	loop
above,	but	using	the	for-in	method:
for	i	in	0..<5	{

				//	loop	code

}

This	is	much	easier	to	read,	since	you	can	see	that	you	are	incrementing	through	a	range
from	0	to	5,	not	inclusive	(0…5	would	be	inclusive).	Using	for-in	with	collections	is
even	easier:
var	sum	=	0

var	values	=	[0,	1,	2,	3,	4,	5]

for	value	in	values	{

				sum	+=	value

}

Here	we	declare	a	small	array	of	integers	for	testing	purposes,	named	values.	Then,	in	the
for-in,	we	ask	it	to	loop	through	every	element	in	the	values	array,	and	give	us	access	to
those	elements	through	the	name	value.	Then	we	add	them	to	our	sum	variable.	This
makes	for-in	much	simpler	to	use,	and	much	easier	to	read	than	a	standard	for.

while	loop
The	while	loop	is	a	very	basic	loop.	At	the	top	is	a	condition	that	evaluates	to	true	or
false,	and	the	loop	will	run	forever	until	the	condition	is	no	longer	true.	We	used	one
earlier	in	the	chapter,	but	let’s	take	another	look:
var	time:	Float	=	0

var	position:	Float	=	0

while	time	<	1.0	{

				position	=	time*time

				time	+=	0.05

}

Here,	our	condition	is	that	the	loop	will	continue	until	the	time	is	over	one	second.	When
working	with	while	loops,	it’s	important	to	make	sure	that	the	condition	can	be	changed
from	inside	the	loop.	If,	for	example,	we	were	not	increasing	the	time	variable,	the
condition	would	never	be	false,	and	the	loop	would	run	forever	and	crash	our	program.

repeat-while	loop
Finally,	we	have	the	repeat-while,	which	is	the	same	as	the	while	loop,	except	that	it
runs	through	its	code	before	it	checks	the	condition:
var	x	=	0

repeat	{

				x	+=	1

}	while	x	<	0

In	this	example,	the	condition	is	always	false,	but	since	it	is	a	repeat-while,	the	code	in
the	loop	will	run	a	full	cycle	before	it	checks	the	condition	and	exits	the	loop.

Functions
Now	we	know	how	to	define	data,	check	conditions,	and	loop	through	logic,	but	we’re
missing	one	final,	major	piece:	functions.	Functions	are	used	to	group	code	into	logical
actions,	and	Swift	makes	writing	and	calling	functions	very	easy.	Let’s	jump	right	into
functions	by	taking	a	look	at	one:
func	findAverage(value1	v1:	Int,	value2	v2:	Int)	->	Float	{

				let	sum	=	Float(v1	+	v2)

				return	(sum/2.0)

}

We’ll	break	this	down	piece	by	piece.

First,	the	func	keyword	means	that	you	are	beginning	a	function	declaration.

Next,	we	have	the	name	of	the	function,	which	in	this	case	is	findAverage.

Inside	the	parentheses,	we	have	two	parameters	separated	by	a	comma.	Each	parameter
follows	the	format	externalParameterName	localParameterName:	Type.	So	in	this	case,
when	calling	the	function,	you	will	see	value1	and	value2,	but	inside	the	function	we
refer	to	the	parameters	by	their	short	names,	v1	and	v2.

After	the	parentheses,	we	have	an	arrow	(made	of	the	dash	and	less	than	signs)	and	finally
the	return	type	of	the	function.	We	then	use	curly	braces	to	contain	the	logic	of	the
function.

Functions	can	also	have	no	parameters	or	return	types:
func	doNothing()	{

				return

}

They	can	also	have	default	parameter	values:
func	someFunction(parameter1:	Int	=	0)	{}

Or	they	can	have	a	variable	number	of	parameters:
func	someOtherFunction(parameters:	Int…)	{

				for	param	in	parameters	{

								//	do	something

				}

}

Calling	a	function	is	very	straightforward.	Here	are	some	examples	of	a	function
declaration	and	then	its	invocation:
//	declaration

func	findAverage(value1	v1:	Int,	value2	v2:	Int)	->	Float	{…}

//	invocation

findAverage(value1:	3,	value2:	5)

//	declaration

func	someOtherFunction(parameters:	Int…)	{…}

//	invocation

someOtherFunction(parameters:	1,2,3,4,5)

You’ll	notice	that	in	the	both	examples,	when	we	call	the	function,	we	label	the	parameters
inside	the	parentheses.	The	names	we	use	here	are	the	external	parameter	names.	The
name	is	followed	by	a	colon	and	then	the	actual	value.	In	the	second	example,	there	was	a
variable	number	of	possible	parameters,	as	indicated	by	the	ellipsis	in	the	function
declaration.	When	we	called	the	function,	we	just	passed	it	as	many	values	as	necessary.

Every	function	you	use,	whether	written	by	you	or	another	developer,	is	going	to	be
different.	We’ll	get	plenty	of	exposure	to	many	different	kinds	of	function	over	the	course
of	the	book,	but	this	should	be	enough	of	a	primer	to	get	us	started.

Comments	and	printing
Before	we	move	on,	there	are	just	a	few	other	minor	features	that	we	should	discuss.
When	writing	code,	there	are	many,	many	instances	where	you	are	going	to	want	to	make
some	notes	in	your	code	or	test	things.	Two	of	your	most	valuable	tools	are	making
comments	and	printing	text	to	the	command	line.

Throughout	this	chapter,	I’ve	been	using	comments	to	act	as	notes	throughout	my	code.
We	also	briefly	talked	about	them	when	talking	about	rich	comments	in	a	playground:
//	they	look	like	this

/*

They	can	also	look	like	this

when	they	span	multiple	lines

*/

To	make	a	single	line	comment,	you	can	use	the	double-slash,	//,	to	cancel	out	all	code
for	the	rest	of	the	line.	To	be	more	specific,	you	can	use	the	open	and	close	comment
symbols,	/*	and	*/,	to	select	a	certain	range	for	your	comment,	which	can	span	multiple
lines.	Here	are	some	examples	that	show	how	you	can	comment	only	parts	of	lines	of
code:
var	i:	Int	//	=	0

var	j	/*	:	Int	*/	=	0

Comments	can	be	tremendously	useful,	not	only	to	explain	what	your	code	does,	but	to
turn	off	a	line	of	your	code	without	having	to	delete	it,	then	retype	it	again	when	you
realize	it	wasn’t	the	problem.	The	quickest	way	to	comment	out	a	line	of	code	in	Xcode	is
to	highlight	a	line	you	want	commented	and	use	the	keyboard	shortcut	command	+	/.

I’ve	also	snuck	a	few	print	statements	into	this	chapter	before	now.	A	print	statement	is
a	function	that	takes	a	String	as	an	argument	and	then	prints	that	string	out	to	the	console.
If	you	remember	from	Chapter	2,	Welcome	to	Xcode,	the	console	is	found	in	the	debug
area.	Using	print()	is	a	good	way	to	test	parts	of	your	code	by	printing	out	variable
contents,	or	just	checking	to	see	if	parts	of	your	code	have	been	hit:
var	pi	=	3.14159

print(“The	value	of	Pi	is	\(pi)”)

You	can	also	use	string	interpolation	(as	seen	above)	to	print	out	non-string	variables.	To
insert	a	numeric	value	into	a	string,	use	the	backslash	character	followed	by	opening	and
closing	parentheses,	\(),	and	put	your	variable	inside	the	parentheses.

Creating	classes,	structs,	and	enums
So	now	we’ve	covered	the	building	blocks	of	programming	in	Swift.	Our	next	step	is	to
understand	how	to	put	these	pieces	together	in	an	object-oriented	programming
environment.	To	do	that,	we’re	going	to	need	to	learn	about	classes,	structs,	and
enumerations	in	Swift.

Classes
Classes	in	Swift	are	composed	of	properties	and	methods	(functions).	Let’s	jump	right	into
an	example:
class	MyClass	{

			

				var	myInt:	Int

				var	myFloat:	Float

			

				private	var	myOptString:	String?

			

				init	()	{

								myInt	=	0

								myFloat	=	0

				}

			

				func	generateString()	->	String	{

								myOptString	=	“\(myInt)	\(myFloat)”

								return	myOptString!

				}

			

}

On	the	first	line,	you	see	the	beginning	of	the	class	declaration,	beginning	with	the	class
keyword,	followed	by	the	class	name.	Class	names	in	Swift	should	always	be	capitalized.
The	rest	of	the	class	declaration	is	inside	a	set	of	curly	braces.

At	the	top	of	the	class,	we	declare	our	properties,	in	this	case	myInt,	myFloat,	and
myOptString.	You’ll	notice	that	myOptString	is	set	to	private.	By	default,	properties	are
internal,	so	myInt	and	myFloat	will	be	accessible	from	other	classes.

Note
In	Swift,	source	code	is	separated	into	modules.	Here	is	the	definition	from	Apple’s
documentation:

A	module	is	a	single	unit	of	code	distribution—a	framework	or	application	that	is	built
and	shipped	as	a	single	unit	and	that	can	be	imported	by	another	module	with	Swift’s
import	keyword.

The	internal	access	keyword	means	that	it	can	be	accessed	only	from	that	module.
Usually,	you	can	think	of	it	as	public,	but	in	Swift	public	means	it	can	be	accessed	from
outside	of	its	defining	module	as	well.

Under	our	property	declarations,	we	have	our	init()	method.	This	method	is	called	when
the	class	instantiates	a	new	object.	In	Swift,	it	is	mandatory	to	give	all	properties	a	value
by	the	end	of	the	init()	method.	If	you	cannot	assign	a	value	to	a	property	until	after	the
init()	method,	it	should	be	an	made	an	optional	property	since	it	will	take	on	the	default
value	of	nil.	Since	our	first	two	properties	are	not	optionals,	they	are	initialized	in	our
init()	function.

Finally,	below	our	init(),	we	declare	our	class’s	methods.	In	this	case,	there	is	only	one
method,	which	creates	a	string	out	of	our	two	numbers,	saves	that	to	a	private	property,

and	returns	the	result.

Now	let’s	take	a	look	at	a	simple	inheritance	scenario	in	Swift:
class	MySubclass	:	MyClass	{

			

				var	myDouble:	Double

			

				init(doubleValue:	Double)	{

								myDouble	=	doubleValue

								super.init()

				}

			

				override	func	generateString()	->	String	{

								super.generateString()

								myOptString!	+=	”	\(myDouble)”

								return	myOptString!

				}

			

}

Again,	on	the	first	line	we	begin	the	class	declaration	with	the	class	keyword.	This	time,
since	we	are	creating	a	subclass,	we	write	the	new	class’s	name	followed	by	the	parent
class	and	separated	with	a	colon.

As	with	our	parent	class	declaration,	we	have	our	property	declarations	at	the	top,
followed	by	our	init(),	and	finally	our	methods.	In	this	class,	we	only	declare	one
additional	property	and	inherit	the	other	three.

Note
In	Swift,	private	properties	are	inherited	by	subclasses,	which	isn’t	always	the	case	in
other	languages.

Now	let’s	look	at	how	init()	has	changed.	You	can	see	that	in	this	init()	we	are	passing
in	a	parameter,	which	will	be	the	initial	value	of	the	myDouble	variable.	You	can	also	see
that	at	the	bottom	there	is	the	line	super.init(),	which	initializes	the	superclass.

Note
In	Swift,	we	call	methods	(public	functions	in	other	classes)	and	access	properties	using
dot	syntax.	In	this	example,	super	is	a	keyword	that	refers	to	the	object’s	superclass	(in
this	case	MyClass),	and	we	call	its	init()	function.

The	most	important	thing	to	note	about	this	initializer	is	that	the	order	in	which	we	do
things	is	important.	In	a	Swift	initializer,	a	class	must	always	initialize	all	of	its	own
properties	before	its	superclass	does	so.	That’s	why	we	assign	a	value	to	myDouble,	and
then	call	super.init().	It’s	also	worth	noting	that	we	can’t	customize	our	properties	until
after	our	superclass	initializes	everything.	So	first	we	initialize	all	properties,	then	pass	off
responsibility	up	the	class	hierarchy,	then	once	the	scope	comes	back	to	the	class	we	can
do	further	setup.

Finally,	let’s	take	a	look	at	the	new	method	in	our	subclass.	Here	you’ll	see	a	new
keyword,	override.	This	means	that	we	are	rewriting	the	functionality	of	a	function	from
our	superclass.	The	functionality	of	the	original	function	(generateString)	was	to

generate	a	string	from	its	two	properties,	but	now	we	have	a	new	property	to	add	to	that
string.	You	can	see	that	we	also	call	the	superclass’s	implementation	of	this	function	from
inside	our	new	version.	So	first	we	let	the	original	version	do	its	thing,	then	add	our	new
data	to	the	end,	and	finally	return	our	result.

Now	let’s	look	at	how	we	could	use	this	object:
let	myObj	=	MySubclass(doubleValue:	2)

myObj.myFloat	=	3.14

myObj.myInt	=	33

Here	you	can	see	how	initializers	work	in	practice.	Since	init()	isn’t	a	standard	method,
we	don’t	call	it	like	other	methods	or	functions.	Instead,	we	use	the	class	name	followed
by	parentheses,	which	contain	our	arguments.	Here	we	are	passing	in	the	value	of	2	to
initialize	our	myDouble	value,	then	we	set	some	public	variables	as	we	like:
let	str	=	myObj.generateString()

This	is	how	we	could	use	our	generateString()	method	to	get	a	description	of	the	values
in	our	object.	If	you’re	in	a	playground,	you’ll	see	that	the	str	constant	contains	a	value	of
33	3.14	2.0.

Again,	this	is	just	a	very	rough	overview	of	classes	in	Swift,	but	we’ll	be	using	them
extensively	throughout	the	rest	of	the	book,	so	we’ll	be	pros	by	the	time	we’re	finished.

Structs
Structs	are	similar	to	classes,	but	with	limited	functionality.	In	most	cases,	you’ll	be	using
structs	to	create	a	custom	data	type	that	can	store	related	information	in	a	single,	easily
digestible	package.

The	important	difference	between	a	struct	and	a	class	is	that	a	struct	is	a	value	type,	which
means	that	its	values	are	copied	when	assigned	or	passed	to	a	function.	Here	is	an
example:

Figure	3.11:	The	playground	results	view	shows	the	difference	between	a	class	and	a
struct

In	Figure	3.11,	you	can	see	that	on	the	left	I	define	a	new	struct	called	Size,	which	has	a
width	and	height	property.	Then	I	create	an	instance	called	mySize,	and	a	second	instance
called	myOtherSize	which	is	assigned	from	mySize.	On	the	right,	I	do	the	exact	same
thing	except	with	a	class.

Since	a	struct	copies	values,	myOtherSize	is	a	completely	new	set	of	data,	and	when	I
change	one	of	the	values,	the	other	one	doesn’t	change.	You	can	see	on	the	left	that	mySize
still	has	its	initial	values	of	3	and	3,	where	myOtherSize	has	the	modified	value	of	4	for	its
width.

With	a	class,	a	reference	to	an	object	is	passed	around,	so	when	we	modify	the	width	of
myOtherSize	as	a	class	(on	the	right),	you	see	the	mySize	object	also	changes.	That’s
because	they	actually	point	to	the	exact	same	data,	whereas	the	struct	creates	new,
separate	copies.

As	mentioned	earlier,	structs	are	usually	best	used	for	modeling	information	that	is	just	a
set	of	simple	data	types.	If	it	needs	special	behaviors	or	inheritance,	you	should	probably
be	using	a	class.

Enumerations
An	enumeration	(enum)	is	a	very	powerful	tool	in	Swift.	Since	the	language	focuses	on
being	thorough	and	specific,	an	enum	is	a	great	way	to	create	a	new	data	type	that	has	a
finite	number	of	possible	values.	This	lets	the	compiler	know	ahead	of	time	what	the
possible	values	can	be	so	that	it	can	protect	against	issues.

For	example,	since	switch	statements	must	have	exhaustive	cases,	the	compiler	knows
every	possible	value	of	an	enum,	and	can	make	sure	every	possible	value	is	accounted	for
with	a	case.

Let’s	take	a	look	at	how	we	would	create	a	new	enum:
enum	Season	{

				case	spring

				case	summer

				case	fall

				case	winter

}

Just	like	with	classes	and	structs,	we	begin	with	a	keyword,	this	time	enum,	followed	by
the	type	name	and	a	set	of	curly	braces.	However,	with	an	enum,	we	want	to	be	defining	a
set	of	possible	values	that	the	type	can	be	set	to,	which	we	do	using	the	case	keyword
followed	by	the	value.

To	use	an	enum,	we	use	dot	syntax:
let	favoriteSeason	=	Season.fall

let	leastFavoriteSeason:	Season	=	.summer

You	can	see	in	the	first	example	that	we	set	our	favoriteSeason	equal	to	Season.Fall.
The	type	Season	is	inferred.	However,	in	the	second	example,	we	can	see	that	if	the	type	is
explicitly	stated,	the	Swift	compiler	knows	that	we	are	dealing	with	a	Season
enumeration,	and	lets	us	use	a	shorthand	to	access	its	values	by	omitting	the	enum’s	type
name.

If	you’ve	used	enums	in	some	other	language,	such	as	Objective-C	or	C++,	you’ll	notice
that	in	Swift	there	is	no	backing	type	or	value	behind	our	cases.	That’s	because	enums	in
Swift	aren’t	redefined	integers,	as	in	other	languages.	We	can,	however,	give	an	enum	a
backing	value,	and	we’re	not	limited	to	integers:
enum	Season:	String	{

				case	spring	=	“Spring”

				case	summer	=	“Summer”

				case	fall	=	“Fall”

				case	winter	=	“Winter”

}

let	favoriteSeason	=	Season(rawValue:	“Fall”)!

print(favoriteSeason.rawValue)

Modifying	some	of	our	code	from	earlier,	we’ve	now	given	all	of	our	seasons	a	backing
value	of	the	type	String.	Note	the	differences	in	the	enum	declaration,	how	we	can	now
initialize	an	enum	value	by	using	its	rawValue,	and	how	we	can	also	access	the	raw	value

later.

Using	important	Swift	features
We’ve	now	covered	the	basics	of	Swift,	in	addition	to	the	building	blocks	we	need	to
create	robust	classes	and	organized	data	with	structs	and	enums.	With	these	tools,	you’d
be	able	to	accomplish	some	great	things,	but	there	are	a	few	other	important	features	of
Swift	that	can	save	you	a	lot	of	time,	and	help	you	squeeze	out	even	more	performance
from	your	code.	In	this	last	section,	we	are	going	to	introduce	closures,	protocols,	class
extensions,	and	Swift’s	error	handling	features.

Closures
We’ve	already	talked	about	functions,	where	we	can	take	a	chunk	of	code	and	turn	it	into	a
reusable	command.	However,	in	Swift	there	is	another	way	to	achieve	that	kind	of
functionality	(no	pun	intended):	closures.	Using	closures	is	a	great	way	to	pass	a	chunk	of
code	(sometimes	called	a	block)	into	a	function	as	an	argument,	and	they’re	commonly
used	as	completion	or	error	handers.	Let’s	take	a	look	at	an	example:
//	defining	a	simple	closure

let	myClosure:	()	->	Void	=	{

				print(“Hello	from	this	closure!”)

}

//	executing	a	simple	closure

myClosure()

//	using	closure	like	a	variable

someOtherFunction(closure:	myClosure)

In	the	first	part,	we	create	a	closure	in	a	way	that	is	similar	to	declaring	a	variable,	and
also	similar	to	declaring	a	function.	We	start	out	with	a	let	(or	var)	keyword	followed	by
the	name	of	the	closure.	Then	we	declare	the	closure’s	type,	which	is	composed	of	the
closure’s	input	and	output	type	signature.	Here	we	see	that	the	type	is	()	->	Void,
meaning	it	has	no	parameters,	and	a	void	return	type.	Finally,	we	set	the	closure	equal	to
a	code	block	surrounded	by	curly	braces.

Below	that,	you’ll	see	that	executing	a	closure	looks	exactly	the	same	as	calling	a
function.	The	fun	part,	however,	is	what	else	we	can	do	with	a	closure.	At	the	bottom	you
can	see	that	we’re	passing	our	closure	into	another	function,	like	a	variable.	That’s
because	as	long	as	we	don’t	use	the	()	at	the	end	of	the	closure’s	name,	it	behaves	just	like
a	variable.

Let’s	take	a	look	at	a	closure	with	a	more	interesting	type	signature:
let	convertIntToFloat	=	{	(value:	Int)	->	Float	in

				return	Float(value)

}

let	myNewFloat:	Float	=	convertIntToFloat(6)

The	first	thing	you	might	notice	here	is	that	we	don’t	define	the	type	signature	like	we	did
in	the	first	closure;	Swift	can	infer	the	type	here	as	well!	To	define	parameters	and	return
types	in	a	closure,	we	begin	the	closure	with	the	()	->	()	pattern	followed	by	the	in
keyword.	On	the	left	side	of	the	->	arrow,	we	put	our	parameters	inside	parentheses	in	the
same	format	we	do	for	a	function	declaration.	On	the	right	side	of	the	arrow,	we	do	the
same	for	our	return	value	types,	although	with	a	single	return	type	we	don’t	need
parentheses.

Note
Closures	(and	functions)	can	return	multiple	values	using	something	called	a	tuple.	A
tuple	is	a	grouping	of	several	values	into	a	single	value.	A	tuple	can	be	defined	as	follows:

let	myTuple:	(Float,	Int)	=	(3.14,	33)

The	two	(or	three,	or	four,	and	so	on)	values	in	a	tuple	don’t	have	to	be	the	same	type.
You’ll	see	them	fairly	frequently	when	coding	in	Swift,	and	I	encourage	you	to	play
around	with	them	in	a	playground!

So,	looking	at	this	new	closure,	we	can	see	that	the	first	line	reads	(value:	Int)	->
Float	in.	We	can	tell	that	the	closure	takes	one	parameter,	an	Int	named	value,	and
returns	a	Float.	Then	in	the	example	below	that,	we	see	that	when	we	execute	the	closure
we	pass	it	an	integer,	and	assign	the	result	to	a	Float.

Closures	are	used	extensively	throughout	iOS	frameworks,	so	you’ll	be	seeing	them	quite
often.	We	could	probably	spend	a	whole	chapter	just	looking	at	the	many	forms	they	can
take,	but	we	need	to	keep	moving	on	so	we	can	start	making	apps!

Protocols
Since	you’ll	be	making	a	lot	of	subclasses	of	common	objects	when	developing	for	iOS
apps	in	Swift	(such	as	UIViewControllers),	class	hierarchies	need	to	be	as	streamlined	as
possible.	Sometimes,	you	need	to	ensure	that	a	class	is	equipped	to	perform	a	certain	task,
but	class	inheritance	doesn’t	really	make	sense	or	the	object	already	inherits	from	another
object.	In	these	instances,	you	can	use	what	is	called	a	protocol.

As	you	might	be	able	to	guess,	a	protocol	is	a	set	of	instructions	that	a	class	must	adhere
to.	It	is	similar	to	a	class,	except	instead	of	programming	functionality	into	a	protocol,	you
only	describe	what	variables	and	methods	need	to	be	implemented;	it’s	up	to	the	actual
class	that	adopts	the	protocol	to	give	them	definitions.	Here’s	an	example:
protocol	MyProtocol	{

				var	value:	Float	{	get	set	}

				func	someMethod(someParameter:	Float)	->	Int

}

class	MyClass	:	MyProtocol	{

				var	value:	Float	=	10

			

				func	someMethod(someParameter:	Float)	->	Int	{

								return	Int(value	*	someParameter)

				}

}

First	we	define	a	new	protocol	just	like	a	class,	but	with	the	protocol	keyword.	Inside	the
curly	braces,	you	can	see	some	minor	differences.	First,	we	describe	a	property	by
assigning	it	a	type,	and	determining	if	it	should	have	a	getter	and/or	setter.	Then	we
describe	a	function	using	only	the	method	signature;	there	is	no	implementation	given	for
this	method.

Later	on,	we	make	a	simple	class	that	adopts	our	new	protocol.	You’ll	notice	that	it	looks
very	similar	to	the	way	we	specify	a	parent	class.	Inside	the	body	of	our	class,	you	can	see
that	we	actually	have	to	redefine	the	properties	and	methods	of	the	protocol	since	there
was	no	real	inheritance	involved.	If	you	don’t	implement	all	of	the	properties	and	methods
exactly	as	described	in	the	protocol,	the	compiler	will	complain.

While	it	is	a	very	useful	tool,	and	you	can	certainly	create	your	own	protocols,	most
beginners	will	usually	spend	a	lot	of	time	implementing	protocols	that	exist	in	iOS
frameworks.	Here’s	an	example	of	one	of	the	most	common	cases:
Class	MyViewController:	UIViewController,	UITableViewDataSource	{…}

Here	you	can	see	that	we	are	creating	a	new	subclass	of	UIViewController	named
MyViewController,	but	we	use	a	comma	after	UIViewController	to	show	that	we	are	also
adopting	the	UITableViewDataSource	protocol.	In	fact,	we	can	inherit	from	a	class	and
adopt	many	protocols	at	once	by	continuing	to	separate	them	with	commas.

Class	extensions
Sometimes	you	come	across	a	situation	where	you	need	something	to	have	a	bit	more
functionality.	In	some	cases,	it	might	make	sense	to	create	a	subclass,	but	in	Swift	there	is
a	smarter	and	cleaner	way	to	achieve	the	same	result.	With	extensions,	you	can	add
functionality	to	any	type,	even	to	a	class	that	isn’t	part	of	your	source	code.	Specifically,	in
Swift	2	and	Swift	3,	we	can	extend	classes.	There’s	not	much	else	to	say,	so	let’s	look	at
how	this	works:
class	BoringClass	{

				var	boringInt:	Int	=	0

				var	moreBoringInt:	Int	=	0

			

				func	add()	->	Int	{

								return	boringInt	+	moreBoringInt

				}

}

First	we	have	a	BoringClass,	which	stores	two	values	and	a	single	function	that	adds	the
two	values	together.	Now	let’s	imagine	that	we	didn’t	write	that	BoringClass,	so	we
couldn’t	add	functionality	directly.	Instead	we	could	extend	the	class,	like	so:
extension	BoringClass	{

				func	subtract()	->	Int	{

								return	boringInt	-	moreBoringInt

				}

				func	multiply()	->	Int	{

								return	boringInt	*	moreBoringInt

				}

				func	divide()	->	Float	{

								if	moreBoringInt	!=	0	{

												return	Float(boringInt	/	moreBoringInt)

								}	else	{

												fatalError(“tried	to	divide	by	zero”)

								}

				}

}

Now	our	class	is	decidedly	less	boring,	and	much	more	functional.

While	class	extensions	are	certainly	useful,	you	can	extend	a	lot	of	other	things	as	well.
For	example,	we	can	even	extend	an	Int:
extension	Int	{

				var	inches:	Int	{	return	self	}

				var	feet:	Float	{	return	Float(inches	/	12)	}

				var	yards:	Float	{	return	feet/3.0	}

				var	miles:	Float	{	return	feet/5280	}

}

let	distance	=	3392

print(distance.inches)		//		3,392

print(distance.feet)				//		282.0

print(distance.yards)				//			94.0

print(distance.miles)				//	0.0534

While	extensions	can	be	amazingly	useful,	you	should	always	think	about	all	the	ways	to
solve	a	problem	and	choose	the	best	fit	for	the	job.	Sometimes	it	is	just	better	to	use	a
subclass.

Error	handling
When	building	an	application	for	use	in	the	real	world,	sometimes	there	are	errors	that	will
occur	at	runtime	which	are	okay.	For	example,	if	you	tried	to	modify	a	message	that	had
been	deleted	since	that	page	had	last	refreshed,	or	if	a	network	connection	is	lost	while
transmitting	a	file.	These	are	the	kinds	of	error	that	you	can’t	prevent	from	a	programming
standpoint,	so	instead	you	just	need	to	know	how	to	react	and	alert	the	user.	For	these
instances,	we	can	use	the	error	handling	functionality	built	into	Swift.

Before	you	can	handle	an	error,	you	need	to	be	able	to	define	it.	In	Swift,	there	is	an	empty
protocol	called	ErrorProtocol	that	you	can	use	to	denote	that	some	value	represents	an
error	and	can	be	used	for	error	handling.	Adding	the	ErrorProtocol	protocol	to	an	enum
allows	you	to	create	some	very	simple	and	descriptive	error	types	for	the	problems	you
may	encounter.

Let’s	say	that	we’re	making	a	class	that	models	a	coffee	machine.	The	user	can	press	a
button	that	will	brew	them	a	cup	of	coffee,	but	we	need	to	make	sure	that	we	are	prepared
for	cases	in	which	the	machine	cannot	complete	the	task.	We’ll	create	an	enum	that	stores
all	the	possible	cases	for	failure:
enum	CoffeeMachineError:	Error	{

				case	NotEnoughWater

				case	NotEnoughGrounds

				case	ReplaceFilter

}

So,	here	we’ve	defined	a	new	enum	called	CoffeeMachineError,	which	adopts	the
protocol	Error:
class	CoffeeMachine	{

				let	groundsNeededPerCup:	Float	=	0.1

				let	waterNeededPerCup:	Float	=	0.33

			

				var	grounds:	Float	=	10.0

				var	water:	Float	=	10.0

			

				func	brewCup()	throws		{

								guard	grounds	>	groundsNeededPerCup	else	{

												throw	CoffeeMachineError.NotEnoughGrounds

								}

							

								guard	water	>	waterNeededPerCup	else	{

												throw	CoffeeMachineError.NotEnoughWater

								}

							

								grounds	-=	groundsNeededPerCup

								water	-=	waterNeededPerCup

								print(“coffee	is	brewed”)

				}

}

Here,	we’ve	modeled	the	rest	of	the	coffee	machine;	it	knows	how	much	coffee	and	water
it	needs	to	brew	a	cup,	the	current	levels	of	those	supplies,	and	a	function	that	attempts	to

brew.

In	this	example,	we	use	a	throwing	function	to	handle	errors.	At	the	end	of	the	brewCup
function	declaration,	you’ll	see	that	we	wrote	throws	instead	of	a	standard	return	type.
This	means	that	the	function	has	the	ability	to	throw	an	error.	You’ll	also	see	that	we	use
the	guard	keyword	that	we	looked	at	earlier	in	the	chapter.	Here	it	makes	a	bit	more	sense,
since	we	are	saying	guard	against	this	undesirable	condition	occurring;	otherwise,
complain.	As	long	as	the	code	makes	it	through	all	of	the	guards	there	won’t	be	a	problem,
but	if	the	guards	get	upset	they	can	throw	an	error.

So	this	is	what	it	would	look	like	to	call	this	function	that	might	throw	an	error:
let	coffeeMachine	=	CoffeeMachine()

do	{

				try	coffeeMachine.brewCup()

			

}	catch	CoffeeMachineError.NotEnoughWater	{

				print	(“Please	refill	the	water	container”)

			

}	catch	CoffeeMachineError.NotEnoughGrounds	{

				print	(“Please	add	more	coffee	grounds”)

			

}	catch	CoffeeMachineError.ReplaceFilter	{

				print	(“Please	replace	the	filter”)

}

To	handle	the	errors	that	can	be	thrown,	we	use	a	do-catch	statement,	and	call	our
throwing	function	with	a	try	statement	which	is	placed	in	the	do	block.	We	need	to	use	try
to	call	our	function	because	of	the	fact	that	it	might	return	an	error.	If	it	completes
successfully,	our	code	will	carry	on	outside	of	the	do-catch	statement.

In	order	to	handle	an	error,	we	need	to	catch	them.	After	the	_	block	that	we	wrote	here,
we	have	a	separate	catch	statement	for	each	of	our	possible	errors.	If	one	of	those	errors	is
caught,	it	will	execute	the	code	in	that	branch.	In	this	example,	we	are	just	printing	to	the
console,	but	in	theory	we	could	require	user	input	or	actually	fetch	new	materials,
whatever	will	best	resolve	the	error.

Summary
In	this	chapter,	we	sprinted	through	the	Swift	programming	language	and	learned	all	of	the
basics	we	need	to	start	creating	our	own	iOS	and	watchOS	applications.	First	we	took	a
look	at	Xcode	playgrounds,	before	we	jumped	into	Swift	itself,	where	we	covered	the
basic	data	types,	optional	values,	collections,	control	flow,	and	functions.	Once	we	had	the
basics	down	we	took	a	look	at	classes,	and	the	related	structs	and	enums.	We	finished	by
getting	an	overview	of	some	common	and	powerful	Swift	features	such	as	closures,
protocols,	extensions,	and	error	handling.

In	the	next	chapter,	we	take	one	of	our	final	steps	toward	being	able	to	create	our	first	app:
understanding	how	to	use	storyboards,	size	classes,	and	auto	layout.	This	is	where	we’ll
learn	all	about	the	view	portion	of	MVC.	We’ll	be	creating	layouts,	understanding	how
things	adjust	on	different	screen	sizes,	and	creating	future-proof	interfaces	that	can	adapt
for	devices	that	don’t	exist	yet!

Chapter	4.	Using	Storyboards,	Auto	Layout,
and	Size	Classes
As	we’ve	progressed	through	our	journey	so	far,	it’s	been	difficult	to	separate	the	different
pieces	of	app	development.	We’ve	already	looked	at	how	the	model,	view,	and	controller
interact	in	a	theoretical	way,	and	we’ve	explored	some	of	the	tools	in	Xcode	that	we	can
use	to	manipulate	them.

In	the	previous	chapter,	we	took	a	deeper	look	at	Swift,	the	language	we	will	use	to	define
our	models	and	write	our	controller	logic.	Now,	while	we’ve	already	looked	at	how	to	use
some	of	the	basic	functionality	of	storyboards	and	Interface	Builder,	it’s	time	to
understand	the	systems	at	play	when	developing	views	for	our	iOS	applications:
storyboards,	Auto	Layout,	and	size	classes.

In	this	chapter,	we	will	cover:

	
Mapping	screen	flow	with	storyboards
Storyboard	segues
The	view	hierarchy
Auto	Layout	constraints
Using	size	classes	to	create	flexible	interfaces

Storyboards
Back	in	Chapter	2,	Introduction	to	Xcode	IDE,	we	had	a	brief	encounter	with	a	storyboard
file.	We	dragged	some	interface	objects	out	of	the	object	library,	connected	them	to	our
ViewController’s	code,	and	moved	on.	In	this	section,	we	are	going	to	take	a	look	at	the
big	picture	of	what	is	happening	in	a	storyboard	file,	and	really	understand	its	namesake.
However,	before	we	can	get	to	that,	we’re	going	to	have	to	start	a	new	project!

Getting	started
Let’s	open	Xcode	and	create	a	new	project.	Select	the	Single	View	Application	from	the
iOS	|	Application	section	of	the	project	template	chooser,	and	match	your	settings	with
Figure	4.1:

Figure	4.1:	Setting	up	our	storyboards	test	project

Click	Next,	find	a	place	to	save	your	project,	and	complete	the	creation	of	a	new	project.
Once	your	project	is	created,	make	sure	your	Team	is	set	from	the	drop-down	menu	in	the
Signing	section	of	your	project	settings.	This	needs	to	be	set	correctly	in	order	for	you	to
test	the	app	on	your	device	later:

Figure	4.2:	The	team	option	should	be	set	to	your	name

Now,	let’s	head	over	to	the	main	storyboard	file	and	make	sure	it’s	ready	for	us	to	play
with.	First,	we’ll	shrink	our	navigator	sidebar	(on	the	left	edge	of	the	editor)	by	dragging
the	edge	in	a	bit	to	make	more	room	for	the	editor	window	in	the	center.	Then	we’ll	do	the
same	with	the	utility	sidebar	on	the	right.	Let’s	also	make	sure	the	debug	area	is	hidden
(remember:	command	+	shift	+	Y	will	hide/show	the	debug	area).

In	your	Utility	toolbar,	make	sure	the	top	section	is	set	to	the	fourth	tab,	the	attributes
inspector	(option	+	command	+	4),	and	the	bottom	section	is	set	to	the	third	tab,	the	object
library	(control	+	option	+	command	+	3).

The	last	step	is	to	either	maximize	or	full	screen	your	Xcode	window;	we’ll	be	working
with	a	lot	of	visuals	in	this	chapter,	so	we’re	going	to	need	as	much	screen	real	estate	as
we	can	get!

Figure	4.3:	Our	Interface	Builder	window;	highlighted	button	closes	the	document	outline

When	you’ve	done	all	this,	your	window	should	look	something	like	Figure	4.3.	Click	the
icon	at	the	red	arrow	in	Figure	4.3	to	close	the	document	outline	sidebar;	we	won’t	need
that	until	later,	when	we	cover	the	view	hierarchy.	Now	we’re	all	set	up	and	good	to	go!

View	controllers	and	screen	flow
When	you	think	of	the	word	storyboard,	what	comes	to	mind?	Usually	the	word	refers	to	a
literal	board	where	a	story	is	planned	out	for	a	movie,	comic	book,	or	TV	episode.	Artists
and	writers	will	come	together	and	pin	a	bunch	of	sketches	to	a	wall	to	quickly	visualize
how	a	story	should	play	out	and	interact,	while	being	able	to	add	new	ideas,	shuffle	the
order,	and	throw	out	the	things	that	don’t	work.

When	using	a	storyboard	file	in	Xcode,	we	have	the	same	functionality.	We	can	plan	out
the	many	different	screens	that	our	application	will	be	composed	of,	and	quickly	mock-up
and	edit	them.	Instead	of	boarding	a	story	here,	we’re	boarding	out	the	application’s
screens,	so	I	like	to	call	this	stage	screen	flow	planning.	Let’s	take	a	look	at	how	this
works.

Note
As	we	explore	storyboards,	Auto	Layout,	and	size	classes	for	the	rest	of	the	chapter,	we’re
going	to	be	building	out	the	views	for	a	timer	application.

We’re	going	to	be	building	a	timer	application	in	this	chapter,	so	before	we	begin,	let’s
take	a	second	to	think	about	what	we	want	to	accomplish.	The	built-in	timer	in	the	iOS
clock	app	is	pretty	bare	bones.	Every	time	we	wish	to	run	a	timer,	we	must	manually	set
the	number	of	hours	and	minutes.	In	our	solution,	we	think	it	would	make	sense	to	give
the	user	some	presets	on	the	main	screen	for	added	convenience.	We	also	need	to	make
sure	the	user	can	input	a	custom	time,	otherwise	there	would	be	very	limited	functionality.
Finally,	they’ll	need	to	be	able	to	see	the	timer	counting	down.

By	my	count,	I	think	we’ll	need	three	different	screens:	a	main	screen	with	shortcuts,	a
screen	to	set	a	custom	timer,	and	the	actual	timer	view	itself.

Let’s	begin	by	zooming	out	on	our	storyboard	view.	We’re	going	to	be	dragging	in	a	few
more	screens,	so	we’re	going	to	need	the	extra	space.	To	zoom	out	on	your	storyboard,
you	can	hold	option	and	scroll	in	and	out,	or	use	the	plus	and	minus	buttons	at	the	bottom
of	the	editor	window.	If	you	have	a	trackpad,	you	can	also	use	the	pinch	gesture	to	zoom
in	and	out.

Tip
As	a	new	feature	in	Xcode	8,	storyboards	can	be	fully	edited	at	any	zoom	level;	in	older
versions	you	would	have	to	be	fully	zoomed	in	to	edit	view	controllers.

Now	that	we’re	zoomed	out,	let’s	drag	in	two	more	view	controllers	from	our	object
library,	which	is	in	the	bottom	half	of	our	utility	sidebar.	Your	storyboard	should	now	look
similar	to	this	image:

Figure	4.4:	Our	zoomed	out	storyboard	with	three	blank	view	controllers

Next,	we’re	going	to	want	to	name	our	view	controllers	so	we	can	differentiate	between
them.	To	name	a	view	controller,	you	can	click	on	the	little	yellow	circle	on	the	top	of	the
view	to	select	the	view	controller,	and	then	from	the	Attributes	Inspector	(the	fourth	tab	on
the	top	half	of	the	utility	sidebar),	you	can	set	the	Title	of	the	view	controller	(see	Figure
4.5).	Let’s	name	the	top-left	one	Selection	View	Controller,	the	top-right	one	Timer
View	Controller,	and	the	bottom	one	Custom	Time	View	Controller:

Figure	4.5:	Using	the	Attributes	Inspector	to	name	a	view	controller

Now	that	we’ve	got	all	of	our	screens	in	the	storyboard	and	named,	we	should	go	in	and
flesh	them	out	a	bit.	To	zoom	back	in	on	your	storyboard,	you	can	double	click	on	one	of
the	view	controllers.	Let’s	start	with	Selection	View	Controller.

First,	let’s	drag	four	buttons	into	our	view	controller.	Three	of	these	will	be	our	timer
presets,	and	the	fourth	will	let	the	user	create	a	custom	timer.	Double-click	on	each	button
to	edit	the	text,	and	name	them	Preset	1,	Preset	2,	Preset	3,	and	Custom.

Now	let’s	give	them	a	bit	of	a	style	by	changing	some	of	the	attributes	for	each	button	in
the	Attribute	Inspector.	If	you	click	and	drag	a	selection	box	over	all	four	buttons,	you	can
edit	them	all	at	once.	Near	the	top	of	the	Attribute	Inspector,	change	the	Font	to	size	18	by
using	the	arrows	next	to	the	font	size.	Next,	we’ll	change	the	font	color	to	white,	by
changing	the	Text	Color	attribute	directly	beneath	the	font	size	attribute.	Then,	scroll
down	to	the	View	section	of	the	Attribute	Editor	and	change	the	Background	attribute	to
an	accent	color	of	your	choice;	I	chose	a	nice	purple.	At	this	point,	you	should	have
something	that	looks	similar	to	this:

Figure	4.6:	Some	loosely	styled	buttons

You’ll	notice	that	when	we	increased	the	font	size,	the	text	grew	too	large	for	the	bounding
rectangle	of	our	buttons.	Next,	we’re	going	to	make	our	buttons	bigger	so	our	words
should	be	visible	again	soon	enough.	To	modify	our	buttons’	sizes,	we	need	to	switch	to
the	Size	Inspector,	which	is	the	fifth	column	in	the	utility	sidebar	(command	+	option	+	5).
Select	all	of	the	buttons	again,	then	go	to	the	Size	Inspector	and	set	their	widths	and
heights	to	128.	Finally,	stack	the	boxes	vertically	along	the	left	side	of	the	screen	so	you
have	something	similar	to	the	following	figure:

Figure	4.7:	Our	large,	styled	buttons	lined	up	on	the	screen

We’ll	be	tweaking	the	layout	more	later	on,	so	that’s	good	enough	for	now!	Time	to	move
on	to	our	next	view,	the	Custom	Time	View	Controller,	which	should	be	below	the
Selection	View	Controller	that	we	just	finished.	In	this	view,	drag	in	three	labels,	and
three	stepper	controllers	(remember	that	you	can	search	the	object	library	at	the	bottom	of
the	sidebar).

The	labels	are	going	to	be	where	we	show	the	hours,	minutes,	and	seconds	of	our	custom
timer,	and	the	steppers	are	going	to	be	used	to	increment	those	values.	Finally,	drag	in	two
buttons,	which	will	be	used	to	confirm	and	cancel	our	timer.

Using	what	we	learned	on	the	last	view	controller,	set	the	three	labels	to	use	the	same
accent	color	for	their	text	Color	attribute,	set	their	font	size	to	32,	make	the	text	center
aligned,	and	give	them	the	names	Hours,	Mins,	and	Secs.	Then	use	the	Size	Inspector	to
set	their	sizes	to	90	width	and	40	height.

For	the	three	stepper	controls,	set	their	Tint	attribute	(under	the	View	section)	to	be	the
same	accent	color.

With	our	two	buttons,	name	one	Confirm	and	the	other	Cancel.	Next,	we	will	set	the	width

to	150	and	the	height	to	50.	On	our	Confirm	button,	set	the	background	color	to	our	accent
color,	and	the	text	color	to	white,	and	for	the	Cancel	button,	just	set	the	text	color	to	our
accent	color.

Once	everything	is	styled	visually,	you	can	lay	everything	out	as	shown	in	Figure	4.8:

Figure	4.8:	The	final	layout	for	the	Custom	Time	View	Controller

Now	we	just	need	to	lay	out	our	final	view,	the	Timer	View	Controller.	This	will	be	the
simplest	of	our	controllers,	and	will	actually	be	very	similar	to	the	Custom	Time	View
Controller.	In	fact,	you	can	just	select	all	of	the	elements	in	our	Custom	Time	View
Controller,	copy	them	(command	+	C),	and	paste	them	(command	+	V)	into	the	Timer
View	Controller.	Then,	just	select	and	delete	all	of	the	stepper	controls.	Finally,	change
the	Confirm	button	text	to	say	Pause,	and	our	last	view	controller	is	finished!

Figure	4.9:	Our	final	layout	for	the	Timer	View	Controller

Great!	We’ve	gone	through	our	storyboard	and	fleshed	out	each	screen	of	our	application.
If	you	zoom	out	on	your	storyboard	now,	you’ll	see	all	the	screens	of	your	app,	planned
out.	But	hold	on	a	minute…	it’s	a	little	difficult	to	see	what’s	going	on	here.	How	do	we
know	when	one	screen	moves	to	another,	and	which	ones	can	go	where?	The	answer	lies
with	segues.

Understanding	segues
In	any	given	iOS	app,	you	will	constantly	be	transitioning	to	different	screens	that	serve	a
variety	of	functions.	In	our	app,	we	have	a	quick	launch	view	controller,	a	detailed	timer
setting	view	controller,	and	a	data	viewing	view	controller.	A	segue	is	how	we	define	the
transitions	between	those	view	controllers.

Let’s	create	our	first	segue	now.	Zoom	in	on	your	storyboard,	and	make	sure	the	Custom
button	in	your	Selection	View	Controller	is	visible,	along	with	any	part	of	the	Custom
Time	View	Controller.	Much	like	several	other	Interface	Builder	actions,	hold	down	the
control	key,	then	click	and	drag	from	the	Custom	button	to	the	Custom	Time	View
Controller,	and	release:

Figure	4.10:	Creating	a	segue	from	a	button	to	another	view	controller

When	you	release	the	mouse	button,	you’ll	be	given	a	drop-down	menu	where	you	can
choose	the	type	of	segue	you’d	like	to	create.	Select	Show,	and	then	you’ll	see	the	segue
appear	connecting	the	two	view	controllers	together.

Repeat	this	process	for	each	of	the	pre-set	buttons,	but	instead	of	connecting	them	to	the
Custom	Time	View	Controller,	connect	them	to	the	Timer	View	Controller,	since	they
don’t	need	to	be	set	up.	Finally,	connect	the	Confirm	button	in	the	Custom	Time	View
Controller	to	the	Timer	View	Controller.

Your	storyboard	should	now	make	a	lot	more	sense:

Figure	4.11:	Our	storyboard	is	visualizing	our	application	segues

Our	app	now	has	all	of	its	forward-moving	segues	in	place,	but	what	about	our	Cancel
button	that	will	bring	us	backwards?	To	move	backwards	through	our	view	controller
hierarchy,	we	are	going	to	use	a	special	type	of	transition	called	an	unwind	segue.	To	do

this,	we’re	going	to	need	to	add	a	little	code.

Open	the	ViewController.swift	file	in	your	project.	Then,	replace	the	code	in	that	class
with	the	following	code:
import	UIKit

class	ViewController:	UIViewController	{

				override	func	viewDidLoad()	{

								super.viewDidLoad()

				}

				@IBAction	func	unwindToSelection(sender:	UIStoryboardSegue)	{

							

				}		

}

You’ll	notice	that	the	main	difference	with	this	code	is	that	we	added	the
unwindToSelection()	function,	which	defines	an	unwind	segue	that	we’ll	use	shortly.

Tip
If	you	followed	along	with	the	book,	your	Selection	View	Controller	should	be	the	view
controller	that	you	started	out	with,	which	means	that	it	is	already	linked	with	the
ViewController.swift	class.	If	Selection	View	Controller	has	a	little	arrow	next	to	it	in
the	storyboard,	you	should	be	fine.	If	not,	first	drag	that	arrow	from	the	view	controller
that	does	have	it	onto	Selection	View	Controller	(this	sets	it	as	the	initial	view
controller).	Then,	go	to	the	Identity	Inspector	in	the	utility	side	bar	(option	+	command	+
3),	and	set	the	custom	class	property	of	Selection	View	Controller	to	View	Controller
(this	lets	Xcode	know	what	code	is	associated	with	that	view	in	the	storyboard).	Finally,
make	sure	the	other	two	view	controllers	do	not	have	a	custom	class	set.

Now	that	we’ve	added	this	function,	head	back	to	the	storyboard	file.	On	our	Custom
Time	View	Controller,	we’re	going	to	connect	the	Cancel	button	to	the	unwind	segue	we
just	created.	To	do	this,	you	want	to	control	drag	from	the	Cancel	button	not	to	a	different
view	controller,	but	to	the	Exit	icon	at	the	top	of	its	own	view	controller:

Figure	4.12:	Control-dragging	to	the	exit	icon	will	show	the	unwind	segue

Then	from	the	dropdown,	select	unwindToSelection:,	the	unwind	segue	we	created	in	the
ViewController.swift	class.	This	will	make	the	view	hierarchy	unwind	to	the	view
controller	where	that	segue	was	created,	which	in	this	case	would	be	our	Selection	View
Controller.	Do	the	same	thing	for	our	Cancel	button	in	Timer	View	Controller,	and	then
all	of	the	segues	for	our	project	are	complete!

Now,	let’s	just	run	this	on	the	iPhone	6s	simulator	to	test	our	work,	and	check	it	out!

Auto	Layout
Now	let’s	try	it	out	on	some	other	devices,	like	the	iPhone	SE	simulator!	But…	hmm,	this
isn’t	right.	All	of	our	hard	work	is	spilling	outside	the	edges	of	the	screen!	We	can’t	see	all
of	the	UI	elements	we	added	to	our	view	controllers!	What’s	going	on?

If	you	take	a	look	at	the	view	controllers	that	we	were	populating	in	our	storyboard,	you’ll
notice	that	at	the	bottom	of	the	editor	it	says	that	it	was	specifically	laid	out	for	the	iPhone
6s.	How	does	our	view	controller	know	how	to	adjust	for	different	sized	screens?

The	bad	news	is	that	it	doesn’t	know	how	to	do	that	by	default.	The	good	news	is	that	we
have	Auto	Layout	to	solve	this	very	problem.	Auto	Layout	is	a	constraint	system	that	lets
us	set	rules	for	how	all	of	our	interface	elements	should	be	positioned,	and	with	some
clever	thinking	we	can	make	sure	our	views	can	adjust	for	any	size	screen.

The	view	hierarchy
Before	we	get	into	constraints,	let’s	go	back	and	take	a	look	at	the	view	hierarchy	that	we
minimized	earlier.	To	bring	that	back	up,	click	the	same	button	you	used	to	hide	it	in	the
lower	left	corner	of	the	storyboard	editor	window,	or	use	the	menu	bar	option	Editor	|
Show	Document	Outline:

Figure	4.13:	The	Xcode	window	with	the	document	outline	visible	in	the	storyboard	editor
view

Taking	a	quick	look	at	the	document	outline,	you	can	see	that	the	storyboard	document	is
split	up	into	different	scenes	for	each	view	controller.	Each	scene	has	a	number	of	objects
(like	the	segues	we	created),	but	what	we	are	interested	in	is	the	view	hierarchy	attached	to
the	view	controller	object.	All	of	the	UI	elements	that	we	added	to	our	view	controllers	are
visible	in	this	hierarchy,	with	their	name	defaulting	to	whatever	their	text	says.	If	the
object	doesn’t	have	text	associated	with	it	(like	the	steppers,	for	example),	you	can	assign
your	own	name	to	the	object	by	selecting	the	list	item	in	the	view	hierarchy	and	pressing
return	(or	enter).

It’s	also	important	to	understand	that	the	view	hierarchy	is	just	that:	a	hierarchy.	Objects
can	have	children	and	parents,	as	denoted	by	the	grey	triangles	which	step	down	into	the
hierarchy.	The	objects	are	also	drawn	in	the	order	they	are	listed	in	the	hierarchy;	if	you
have	an	element	that	is	on	top	of	another	element	when	it	should	be	behind	it,	rearrange
their	order	in	the	view	hierarchy	to	fix	the	draw	problems.

Finally,	once	we	start	adding	constraints	to	our	UI	elements,	they	will	show	up	as	children
of	their	associated	views	in	the	hierarchy.	This	can	make	it	easy	to	see	ownership	of
constraints,	and	quickly	identify	errors.

Constraints
The	powerhouse	behind	Auto	Layout	is	the	constraint	system.	Constraints	can	either	be
position	or	size	constraints.	Position	constraints	are	owned	by	the	parent	of	the	object	and
enforced	on	the	child,	where	size	constraints	are	both	owned	and	enforced	by	the	object
that	they	describe.	Let’s	get	our	hands	dirty	with	some	constraints	to	see	how	they	work.

We’ll	start	with	Selection	View	Controller.	Before	we	start	laying	out	constraints,	we
want	to	mentally	plan	out	what	we	are	going	to	do.	Right	now,	we’ve	got	a	stack	of
squares	along	the	left	side	of	our	screen.	What	we	want	to	do	is	have	a	stack	of	equal-
height	buttons	that	fills	the	entire	screen,	with	some	margins	around	each	button	so	that
they	don’t	overlap.	This	means	that	the	height	and	width	of	every	button	can	vary
depending	on	screen	size,	but	the	margins	should	remain	constant.

This	is	actually	a	fairly	straightforward	problem	to	solve.	We	can	set	all	of	the	margins	at
once	for	all	four	buttons,	and	then	add	an	Equal	Heights	constraint	to	make	sure	the
heights	are	distributed	evenly.	Now	that	we	have	a	plan,	let’s	add	these	constraints.

First,	let’s	select	all	of	the	elements	that	we	want	to	constrain.	Remember,	we	can	do	this
in	the	storyboard,	but	we	can	also	select	them	in	the	view	hierarchy	too.	Once	they’re
selected,	we	can	start	using	the	Auto	Layout	menus:

Figure	4.14:	The	Auto	Layout	menu	icons

At	the	bottom	right	hand	side	of	the	storyboard	editor	window	is	a	row	of	four	icons.	They

are	the	Stack,	Align,	Pin,	and	Resolve	Auto	Layout	Issues	menus.	The	most	useful
buttons	for	us	are	the	pin	and	resolve	issues	buttons,	and	right	now	we’re	going	to	open
the	Pin	menu	(the	third	icon):

Figure	4.15:	The	Pin	menu

Inside	the	Pin	menu,	you’ll	see	a	lot	going	on.	At	the	top,	you	have	a	bit	of	a	visual
constraint	setting	system,	with	a	bunch	of	strut	toggles,	checkboxes,	text	fields,	and
dropdowns.	The	bottom	half	is	a	bit	easier	to	read,	since	it	just	has	checkboxes.	Let’s
decode	the	top	part	of	the	Pin	menu,	since	that’s	what	we	need	to	use:

Figure	4.16:	Before	and	after	we	set	up	our	constraints	using	the	top-most	part	of	the	Pin
menu

This	top	part	of	the	Pin	menu	is	where	you	can	set	spacing	constraints.	These	constraints
will	let	you	say	how	many	points	of	space	there	should	be	between	an	object	and	its
nearest	neighbor	in	any	direction.	We	want	all	of	our	buttons	to	have	an	even	20	points	of
spacing	in	all	directions,	so	we	fill	that	in	for	every	direction.

Tip
You	can	see	that	near	the	bottom,	it	clarifies	the	neighbor	spacing	with	the	text	Spacing	to
nearest	neighbor.	If	you	want	to	set	a	spacing	constraint	relative	to	a	different	object
other	than	the	nearest	neighbor,	you	can	use	the	drop-down	menu	on	the	value	you	wish	to
adjust,	and	select	that	object	from	the	list.

Next,	you’ll	want	to	make	sure	that	you	click	on	all	the	red	struts	that	extend	from	the
white	square	out	to	the	values.	Activating	the	red	strut	is	what	tells	Auto	Layout	that	you
want	to	create	a	constraint	in	that	direction;	only	specifying	a	value	will	not	create	a
constraint	if	the	red	strut	isn’t	lit.

Finally,	we	are	going	to	uncheck	the	box	that	says	Constrain	to	margin.	When	that	box	is
checked,	it	will	be	positioning	elements	based	on	screen	margins,	not	the	actual
boundaries	of	the	screen.	But,	in	our	case	we	are	trying	to	set	our	own	margins,	so	we	are
going	to	ignore	the	defaults.	(Remember	that	all	four	buttons	in	the	storyboard	should	be
selected).

Once	your	spacing	constraints	are	set,	we	just	need	to	check	the	box	on	the	bottom	half
that	says	Equal	Heights.	You	might	want	to	try	setting	the	constraints	without	Equal
Heights	first,	just	so	you	can	see	why	it’s	important,	then	undo	the	constraints	and	apply
them	correctly.

Before	you	click	the	Add	Constraints	button	at	the	bottom	of	the	Pin	menu,	you’ll	want
to	set	the	Update	Frames	drop-down	option	to	All	Frames	in	Container.	If	you	skip
this	step,	you	will	apply	the	constraints,	but	none	of	your	buttons	will	move,	instead
opting	to	complain	about	how	they	are	not	positioned	according	to	their	constraints.

In	this	case,	you	can	manually	update	their	frames	to	fit	their	constraints	by	selecting	the
buttons	and	using	the	keyboard	shortcut	option	+	command	+	=:

Figure	4.17:	Our	fully	constrained	View	Controller

Great!	We	fully	constrained	our	first	view	controller,	and	have	no	issues.	If	you	try
running	this	in	the	simulator	now,	you’ll	have	no	issues.	Try	running	it	in	several	different
sized	simulators,	like	the	iPhone	SE	and	the	iPhone	7	Plus;	it	works	perfectly	in	both!

Let’s	move	onto	the	Timer	View	Controller.	On	this	screen,	the	size	of	the	elements	is
important,	and	not	fluid	like	in	the	Selection	View	Controller.	Right	away,	you	should
select	all	of	the	elements	and	constrain	their	widths	and	heights	from	the	Pin	menu,	by
checking	the	Width	and	Height	boxes.	This	will	make	it	so	the	widths	and	heights	cannot
change.	This	time,	however,	don’t	update	the	frames	when	you	apply	the	constraints,	since
we	still	need	to	set	more	constraints	for	our	elements	to	be	in	the	right	place.

Next,	we’re	going	to	use	the	Align	menu	(the	icon	to	the	left	of	the	Pin	menu).	Select	the
objects	in	the	center	of	the	view	controller	(the	Mins	label,	and	our	two	buttons),	and	then
open	the	Align	menu:

Figure	4.18:	The	Align	menu

Here,	you	can	see	all	of	the	alignment	constraint	options	for	UI	elements.	For	now,	we	are
just	going	to	center	these	three	objects	horizontally	in	their	container,	which	is	the	view.
Check	that	box,	and	add	the	three	constraints.

To	finish	this	view	controller,	we	just	need	to	apply	some	final	spacing	constraints.	Select
all	three	time	labels	and	apply	a	150-point	constraint	to	the	top	edge	of	the	view.	Then
select	just	the	Mins	label	and	apply	a	10-point	constraint	on	the	left	and	right	side,	making
sure	that	they	are	using	the	nearest	neighbor	(being	the	Hours	and	Secs	labels).	Finally,	on
the	Cancel	button,	apply	a	100-point	constraint	on	the	bottom,	and	a	10	point	constraint	on
the	top,	which	will	anchor	it	to	the	bottom	of	the	view,	and	then	pin	the	Pause	button	on
top	of	it.

Once	all	of	these	constraints	have	been	implemented,	you	should	be	able	to	select	all	of
the	elements	and	press	the	option	+	command	+	=	to	update	all	of	the	frames:

Figure	4.19:	The	final	layout	for	the	Timer	View	Controller

Beautiful!	Again,	try	testing	this	on	different	simulators	to	see	how	the	design	works
across	multiple	screen	sizes.	Now,	since	the	last	view	controller,	Custom	Time	View
Controller,	is	so	similar	to	this	one,	I	think	you	can	handle	it	on	your	own!	Make	sure	to
plan	ahead	of	time	how	you	want	to	handle	the	stepper	elements.

Note
If	you	can’t	figure	it	out	on	your	own:	apply	all	of	the	same	constraints	as	you	did	for	the
Timer	View	Controller,	then	horizontally	center	the	center	stepper,	give	all	steppers	a	30-
point	top	constraint,	and	finally	add	10-point	constraints	to	the	left	and	right	of	the	center
stepper.

Resolving	issues
Sometimes	when	creating	constraints,	you’ll	run	into	issues	with	Auto	Layout.	For	the

most	part,	an	issue	will	arise	when	two	constraints	conflict,	or	when	constraints	are
missing	and	Auto	Layout	does	not	have	enough	information	to	determine	an	element’s
position:

Figure	4.20:	Examples	of	Auto	Layout	issues	in	the	document	outline

When	this	happens,	you’ll	get	a	bunch	of	red	marks	everywhere,	and	a	little	red	arrow
next	to	your	scene	in	the	document	outline.	If	you	click	on	the	red	arrow,	Auto	Layout	will
walk	you	through	the	errors,	and	present	your	options	for	dealing	with	the	issues.

Size	classes
So	now	we’ve	built	out	all	of	our	views	in	our	storyboard,	connected	them	with	segues,
and	set	constraints	using	Auto	Layout,	and	everything	is	perfect!	Or…	is	it?	If	you’ve
tried	to	rotate	your	phone	into	landscape,	you	may	have	noticed	that	everything	is
decidedly	not	perfect.	Our	constraints	don’t	hold	up	particularly	well	when	the	screen
becomes	so	wide	and	short.

But	what	should	we	do?	It	would	be	nearly	impossible	to	come	up	with	a	set	of	constraints
that	are	so	robust	that	they	work	in	all	sizes	and	orientations	that	a	device	can	come	in.
Luckily,	there	is	one	last	feature	that	solves	this	very	problem:	size	classes.

Size	classes	are	a	way	to	group	constraints	into	categories	that	are	general	enough	that	you
don’t	have	to	design	for	each	individual	device,	but	specific	enough	to	change	rules
depending	on	the	heights	and	widths	of	a	device.	The	biggest	use	case	for	size	classes	are
for	when	you	switch	between	landscape	and	portrait	modes,	or	when	you	use	multitasking
views	on	the	iPad	in	iOS	10.

Devices,	orientations,	and	size	classes
New	in	Xcode	8	is	the	ability	to	work	directly	with	device	sizes.	In	earlier	versions	of
Xcode	you	would	have	to	work	with	general	size	class	shapes	like	squares	and	rectangles,
which	forced	you	to	always	think	about	the	general	shape	of	a	size	class,	and	not	a	specific
layout	for	a	given	device.	Now	we	have	a	much	better	visualization	in	interface	builder,
and	a	great	tool	for	working	with	size	classes–the	best	of	both	worlds.	Let’s	see	how	it
works:

Figure	4.21:	The	device	selection	bar	at	the	bottom	of	the	interface	builder	editor	window

First,	click	on	the	View	as:	{Device	Name}	button	on	the	bottom	of	the	window.	This
should	open	up	a	tray	full	of	devices,	as	shown	in	Figure	4.21.	Clicking	on	all	of	the
devices	on	the	left	half	of	the	tray	will	change	the	physical	size	of	the	interface	builder
view	controllers	to	match	the	size	of	those	devices.	Likewise,	you	can	use	the	orientation
buttons	to	switch	between	the	different	orientations	for	all	devices.

While	this	is	a	fantastic	visualization	tool,	the	most	important	piece	of	information	for	us
right	now	is	the	text	in	parenthesis	next	to	the	device	name	(in	Figure	4.21	it	reads	(wC
hR)	where	C	stands	for	Compact	and	R	stands	for	Regular).	This	is	letting	us	know	that
the	current	device	at	the	specified	orientation	has	a	certain	width	and	height	size	class.
Both	the	horizontal	and	vertical	size	classes	can	have	a	value	of	Compact	and	Regular.	So
using	the	example	from	Figure	4.21	the	iPhone	SE	has	a	width	size	class	of	Compact	and
a	height	size	class	of	Regular.

Tip
Here’s	an	interesting	note:	all	iPhones	have	compact	widths	in	both	orientations	with	one
exception–the	iPhone	6s	Plus	is	so	big	that	when	in	landscape,	it	has	a	Regular	width.
Keep	this	in	mind	when	developing	landscape	views	for	the	iPhone.

Once	you	know	the	size	class	of	the	device	and	orientation	you	are	targeting,	we’re	ready

to	put	them	to	work.

When	you	click	on	the	Size	Class	Selection	button,	you’ll	be	greeted	with	a	grid	that	lets
you	visually	select	the	size	class	that	you	want	to	work	with	(see	Figure	4.22),	along	with
a	description	of	the	types	of	devices	it	covers.	Since	we	want	to	fix	our	constraints	for
landscape	mode,	we	want	to	find	the	right	size	class	that	covers	iPhones	in	landscape
mode.	After	some	quick	searching,	it	looks	like	we	want	to	choose	the	Any	Width,
Compact	Height	size	class.

Size	classes	in	action
Now	that	we	know	how	to	find	our	size	classes,	it’s	time	to	edit	our	constraints.	Let’s	work
on	the	biggest	issue:	the	Custom	Time	View	Controller.	Figure	4.22	shows	what	it	looks
like	right	now	on	the	iPhone	6s	in	landscape	mode:

Figure	4.22:	The	Custom	Time	View	Controller	in	landscape	before	using	size	classes

Everything	is	overlapping!	The	issue	here	is	that	in	portrait	mode	we	have	more	vertical
space	to	work	with	than	we	do	in	landscape.	If	you	look	at	the	size	classes	for	the	two
different	orientations,	you’ll	see	that	we	go	from	a	Regular	height	to	a	Compact	height.	To
fix	this	issue,	we’re	going	to	want	to	implement	some	special	constraints	for	the	hC	size
class.

To	begin,	make	sure	you	have	selected	the	landscape	iPhone	6s	device	(technically,	any
configuration	with	a	hC	size	class	will	work).	Next,	click	on	the	button	on	the	far	right	of
the	device	bar	that	says	“Vary	for	Traits”	as	shown	in	the	figure	4.21.	It	will	ask	you	which
traits	you	would	like	to	make	variations	for,	and	in	this	case	we	want	to	check	off
variations	for	the	height	class.	Once	we	check	off	the	height	checkbox,	the	device	bar	will
turn	blue,	letting	you	know	that	you	are	now	editing	constraints	for	specific	size	classes:

Figure	4.23:	Beginning	to	edit	our	Custom	Time	View	Controller	for	the	hC	size	class

In	the	device	bar	in	Figure	4.23	we	can	see	that	four	devices	are	visible,	namely	all	four
iPhone	sizes	in	landscape.	This	is	letting	us	know	which	devices	are	being	affected	by	the
varying	traits.

To	modify	a	constraint	for	the	current	size	class,	hover	over	the	little	blue	strut	for	a
second	until	it	pops	out,	and	then	double	click	on	it.	Let’s	start	with	the	constraint	that	pins
the	Hour	label	to	the	top	of	the	screen.	First	click	on	the	Hour	label,	then	hover	and
double	click	on	the	top	pin	constraint	and	you	should	see	something	similar	to	Figure
4.24.

Figure	4.24:	Editing	a	constraint

We’ll	change	the	constraint	constant	from	150	to	30;	this	will	make	it	hug	the	top	of	the
screen	much	tighter.	Next	we’ll	do	the	same	for	the	top	pin	constraints	for	the	other	two
labels.	After	those	are	finished,	we’ll	do	the	same	for	the	bottom	pin	label	on	the	Cancel
button,	also	setting	the	Constant	to	30.

With	those	changes,	we	have	fixed	our	landscape	layout,	and	we	can	click	the	Done
Varying	button	in	the	device	bar	to	lock	in	our	modifications.

Figure	4.25:	Our	finished	landscape	view	for	the	Custom	Time	View	Controller

Now,	when	switch	between	portrait	and	landscape	mode	in	the	device	bar,	you	should	see
how	the	layouts	are	correct	in	both	modes	(see	Figure	4.25	for	the	final	landscape	layout).
Everything	looks	much	better	now!	To	get	another	perspective	on	what	we	just	did,	select
the	top	pin	constraint	on	the	Hours	label	again,	and	then	look	at	the	inspector	sidebar.

Figure	4.26:	The	added	constant	value	for	the	Compact	height	size	class

Looking	at	Figure	4.26,	we	can	see	that	underneath	the	default	constant	value	there	is
another	constant	defined	with	an	hC	next	to	it.	This	means	that	when	the	size	class	is	hC,
the	new	value	will	override	the	default.	If	you	wanted	to,	you	could	manually	add	new
constants	for	different	size	classes	using	the	plus	button	next	to	the	constant	field.	In	fact,
you	can	set	override	values	for	any	attributes	in	the	inspector	that	has	a	plus	sign	next	to	it.
This	means	you	can	change	things	like	font	size	and	background	color	based	on	size
classes	too.

For	a	final	challenge	to	test	your	new	skills,	go	ahead	and	try	to	fix	the	Timer	View
Controller	without	looking	at	the	instructions	for	the	Custom	Time	View	Controller	we	set
up.	For	an	even	bigger	challenge,	see	what	you	can	do	for	some	of	the	iPad	layouts!

Once	you’ve	done	that,	you	should	finally	have	a	completely	working	app	in	both	portrait
and	landscape	across	all	iPhone	models!

Summary
We	just	survived	a	crash	course	through	the	world	of	storyboards,	Auto	Layout,	and	size
classes.	We	learned	how	to	map	our	screen	flow	with	storyboards,	and	how	to	connect
view	controllers	with	segues.	Then	we	set	up	a	system	of	constraints	to	intelligently	scale
our	UI	depending	on	both	size	and	orientation.	It’s	a	bit	daunting	and	a	lot	to	take	in,	but
Auto	Layout	is	just	one	of	those	things	that	takes	time	and	practice	to	get	good	at.	Try
mocking	up	some	apps	with	placeholder	UI	elements,	and	setting	up	constraints	as
practice!

In	the	next	chapter	we’ll	be	learning	how	to	set	up,	integrate,	and	master	Git	source
control	in	Xcode	8.

Chapter	5.	Taking	Advantage	of	Source
Control	in	Xcode
In	the	field	of	software	development,	the	size	of	a	project	can	range	from	one	person
coding	away	on	his	or	her	laptop,	in	his	or	her	free	time,	to	hundreds	or	thousands	of
developers	spread	out	across	the	world	working	40	hour	weeks.	Unfortunately,	as	a	team
gets	larger,	the	chance	of	issues	increases	dramatically.	Files	may	get	corrupted	while
being	sent	from	one	developer	to	another;	hardware	failures	may	cause	teams	to	lose
weeks,	or	even	months,	of	progress;	coders	may	modify	the	same	file	at	the	same	time,
resulting	in	issues	down	the	line.	On	teams	of	any	size,	a	good	source	code	management
system	can	save	you	from	all	of	these	headaches.

In	Xcode,	we’ll	be	taking	advantage	of	a	source	control	(or	version	control)	system	called
Git.	We’ll	take	a	look	at	the	features	of	Git,	learn	how	it	interfaces	with	Xcode,	and	set	up
an	account	on	a	website	called	GitHub	that	allows	us	to	save	our	projects	online.	To	be
more	specific,	in	this	chapter	we’ll	be	covering:

	
What	is	Git,	and	how	is	it	used?
Creating	an	Xcode	project	with	Git
Working	with	remote	repositories	on	https://github.com/
Using	version	control	features	built	into	Xcode

Before	we	get	started,	I	just	want	to	offer	some	words	of	encouragement.	Git	(and	version
control	systems	in	general)	can	be	a	little	complex	and	overwhelming	to	understand,
especially	at	first.	Don’t	worry	if	it	doesn’t	click	right	away,	or	if	you	think	it	clicks	but
you	can’t	get	it	to	work	immediately.	It	will	come	with	practice!

https://github.com/

Understanding	version	control
The	purpose	of	this	chapter	is	to	make	sure	you	understand	how	to	manage	your	project	in
a	way	that	makes	it	easier	to	roll	back	changes	in	your	code	when	things	go	wrong,	and	to
facilitate	collaboration	with	other	coders.	It	would	be	easy	to	jump	right	into	Xcode	and
start	playing	with	the	features	that	let	us	accomplish	these	goals.

However,	it	will	be	much	more	rewarding	if	we	take	a	little	time	up	front	to	learn	the
basics	of	Git,	the	underlying	technology	for	Xcode’s	version	control	functionality.
Technically	speaking,	Git	is	a	distributed	version	control	system,	but	before	we	unpack
what	that	means,	we	should	take	a	look	at	what	a	generic	version	control	system	might
look	like.

There	are	many	version	control	solutions	that	have	been	created	for	software	development,
but	most	of	them	can	be	boiled	down	into	a	set	of	functionality	that	you	see	in	Figure	5.1:

Figure	5.1:	A	generic	approach	to	version	control

On	the	left,	we	have	the	instance	of	our	project	that	we	are	working	from.	This	is
sometimes	referred	to	as	a	working	directory,	or	a	working	copy,	and	is	usually	local	to
your	machine.

Then,	from	your	working	directory,	you	can	send	your	files	to	the	repository	on	the	right,
which	tracks	the	changes	you	made	to	the	files.	If	you’re	working	with	other	people,	the
repository	makes	sure	that	what	you	changed	doesn’t	interfere	with	changes	that	someone
else	has	made.	If	there	are	conflicts,	you’ll	have	to	solve	them	before	your	work	can	be
added	to	the	repository.	This	helps	to	prevent	two	people	from	overriding	each	others’
changes.

Finally,	the	repository	will	update	your	working	directory	with	any	changes	that	aren’t
present,	so	that	the	working	directory	is	fully	up-to-date.	Obviously,	if	you	are	the	only
person	using	the	repository,	this	won’t	really	happen.

Let’s	say	you	have	your	project	at	a	stable	point,	but	you	accidentally	ruined	a	big	chunk
of	your	code,	and	it	no	longer	compiles.	It	happens	sometimes!	The	power	of	a	version
control	system	is	that	you	can	just	revert	to	an	earlier	version	of	your	project,	like	hitting
a	giant	undo	button	that	works	on	everything!	If	you	also	use	a	remote	repository
(meaning	that	it	lives	somewhere	other	than	your	physical	computer),	then	you	can	also
guard	against	losing	your	work	when	hardware	is	damaged	or	lost:

Figure	5.2:	Client-server	model	of	version	control	systems

A	lot	of	version	control	systems	follow	a	client-server	model,	meaning	that	developers
have	their	own	machines	(clients)	which	then	send	all	of	their	files	over	a	network	to	a
central	repository	(server).	The	server	repository	manages	all	of	the	changes	made	by
everyone	that	contributes,	and	acts	as	a	gatekeeper.	This	system	works	fine,	but	over	the
years	has	proven	to	not	meet	the	demands	of	every	type	of	project.

Introduction	to	Git
Let	us	jump	back	a	bit	and	look	at	the	definition	of	Git:	a	distributed	version	control
system.	Differing	from	the	client-server	model,	there	doesn’t	have	to	be	a	central
repository	with	Git.	In	fact,	every	local	copy	is	also	a	full	repository,	complete	with
versioning	information.	The	repositories	then	sync	up	with	each	other:

Figure	5.3:	Git	model	of	repository	management

With	repositories	set	up	this	way,	each	user	has	complete	access	to	the	entire	project
history,	and	because	everything	is	local	on	their	drive	they	can	perform	repository
operations	very	quickly.

Now	that	we	have	a	big-picture	idea	of	how	Git	manages	everything,	let’s	look	at	what’s
going	on	in	one	of	those	rectangles	on	a	user’s	local	machine:

Figure	5.4:	The	anatomy	and	functions	of	a	Git	repository

First,	we	have	our	Working	Directory	where	we	are	editing	our	project	files.	In	Xcode,
this	will	be	all	of	our	source	code	files,	and	other	project	resources	like	storyboards.	Once
we	have	decided	that	we’ve	accomplished	a	task	and	that	our	code	is	in	good	standing,	we
want	to	begin	the	process	of	making	a	record	of	our	changes.

To	begin	this	process,	we	need	to	add	the	desired	files	to	the	Staging	Area.	This	lets	Git
know	that	it	should	make	a	record	of	those	changes.	Often,	all	of	the	files	that	have	been
changed	will	be	staged	automatically,	but	sometimes	you	want	to	be	a	little	pickier	with
what	will	be	added.	Once	we’ve	added	all	of	the	desired	files	to	the	staging	area,	we	can
commit	them	to	our	Local	Repository.

When	you	commit	to	your	local	repository,	you	are	creating	a	snapshot	of	your	project	at
that	point	in	time,	and	creating	an	official	record	of	all	the	changes	that	have	occurred
since	the	last	time	you	made	a	commit.	If	you’re	working	alone,	this	is	the	final	step,	but	if
you’re	working	with	others	(or	just	also	storing	your	project	on	a	remote	server	for	backup
purposes),	then	you	also	need	to	push	your	repository	to	the	Remote.	This	sends	your
local	repository	and	all	of	its	changes	to	the	remote	repository.

However,	if	you	want	to	push	to	a	remote	repository,	then	before	any	of	this	process	takes
place	you	must	pull	down	from	the	remote.	This	is	to	ensure	that	you	have	the	latest	work
from	the	remote	repository	and	it	gives	you	a	chance	to	resolve	conflicts	before	sending
your	work	over.	If	you	don’t	pull	the	latest	version	of	a	remote	before	pushing	your	work
(or	if	someone	else	pushed	their	work	before	you	could),	then	your	push	will	be	rejected,
and	you	must	pull	and	merge	again	before	being	allowed	to	push.	So	to	put	it	simply:	first
pull,	then	stage,	then	commit,	and	finally	push.

And	that’s	really	all	you	have	to	know	for	now	about	Git!	There	is	way	more	to	learn,	and
you	can	read	whole	books	about	it,	but	this	should	be	enough	information	to	begin	putting
it	to	use	in	your	Xcode	projects.

Setting	up	Git	in	Xcode
Now	that	we	have	some	theory	under	our	belts,	let’s	put	it	to	good	use.	In	this	section,	we
are	going	to	learn	several	ways	to	get	an	Xcode	project	set	up	with	version	control.	Let’s
launch	Xcode	and	get	to	work!

Creating	a	local	repository
To	begin,	create	a	new	project	in	Xcode.	Choose	a	Single	View	Application,	and	give	it
any	name	you	like.	Make	sure	your	settings	look	like	mine	do	in	Figure	5.5:

Figure	5.5:	Our	project	settings

Once	that’s	done,	click	Next,	and	choose	a	folder	to	save	your	project.	Before	you	finish
creating	your	project	though,	take	notice	of	the	checkbox	at	the	bottom	of	the	dialog	box
(see	Figure	5.6):

Figure	5.6:	The	Git	setup	checkbox	on	a	new	project

You	want	to	make	sure	you	check	the	box	so	that	Xcode	will	automatically	configure	the
project	folder	that	it	creates	as	a	Git	repository.	Now,	you	can	click	Create	and	enter	your
new	project.

Note
If	you	run	into	any	issues	with	Git	from	this	point	on,	you	should	double	check	that	you
installed	the	command-line	tools	for	Xcode.	Head	back	to	the	beginning	of	Chapter	2,
Welcome	to	Xcode,	to	see	how	we	installed	them.	It’s	possible	that	you	don’t	have	Git
installed	properly	on	your	machine.

You’ll	notice	that	not	much	is	visibly	different.	In	fact,	our	project	looks	exactly	the	same
as	all	of	the	new	projects	we’ve	created	previously!	Despite	this,	our	project	is	now
completely	under	Git	version	control.

As	a	test,	let’s	head	over	to	the	ViewController.swift	file.	Inside	the	viewDidLoad()
function,	let’s	add	a	comment	to	the	bottom	of	the	function	that	just	says	//test.	Now
check	out	the	file	navigator	sidebar:	next	to	our	ViewController.swift	file	name,	there
should	be	a	little	M.	This	means	that	Xcode	detected	a	change	in	that	file,	and	has
automatically	flagged	that	file	to	be	staged	when	we	commit	later	on	(the	M	means	the	file
has	been	modified).

And	that’s	all	there	is	to	it!	We’ve	set	up	a	new	project	with	a	Git	repository,	and	made
sure	that	it’s	working.	Let’s	look	at	a	few	other	ways	to	get	set	up	before	moving	on.

Adding	Git	to	an	existing	project
Sometimes,	you’ll	start	a	project	without	setting	up	a	Git	repository,	like	we	just	did.
There	are	several	ways	to	get	an	unversioned	project	set	up	with	Git.	We’re	going	to	look
at	two	ways	to	do	this:	using	Xcode	itself,	and	using	the	command	line.

First,	create	another	new	Xcode	project	with	the	exact	same	settings	as	the	last	one,	except
name	this	one	GitPractice2a,	and	make	sure	not	to	check	the	box	that	creates	a	Git
repository.

Now,	with	the	project	open,	all	we	have	to	do	is	go	to	the	menu	bar	item	Source	Control,
and	select	Create	Working	Copy…	from	the	dropdown,	and	in	the	resulting	dialog	box
click	Create:

Figure	5.7:	Create	Working	Copy…	will	turn	your	project	folder	into	a	Git	repository

If	you	go	back	and	modify	a	file,	you	should	see	the	M	appear,	letting	you	know	that	Git	is
properly	set	up!

At	some	point,	you’re	going	to	have	to	bite	the	bullet	and	learn	how	to	use	Git	from	the
command	line.	Why	not	start	early?	Now	we’re	going	to	do	the	same	thing	that	Xcode	just
did	for	us,	but	manually	using	command-line	tools	in	Terminal.

First	make	yet	another	new	project,	this	time	named	GitPractice2b	(and	don’t	check	off
the	Git	box!),	then	launch	the	Terminal	app.	The	easiest	way	to	do	this	is	by	searching
your	computer	with	Spotlight	by	pressing	command	+	space	button,	and	then	typing	in
Terminal,	and	selecting	the	application:

Figure	5.8:	Using	Spotlight	to	open	the	Terminal	app

Once	we’re	in	the	terminal,	we	want	to	navigate	to	the	folder	that	we	want	to	turn	into	a
Git	repository.	If	you’ve	never	used	the	command	line	before,	this	might	be	a	little
strange,	so	here’s	a	shortcut:	type	in	cd	(which	means	change	directory),	followed	by	a
space	character.	Then,	from	a	Finder	window,	drag	the	root	folder	of	your	Xcode	project
into	the	Terminal	window	and	release	it.	It	should	place	the	file	path	of	that	folder	into
your	command	line	as	text!

At	this	point,	your	Terminal	window	should	look	something	like	in	Figure	5.9	(keeping	in
mind	that	your	file	path	will	be	different):

Figure	5.9:	A	change	directory	command	in	the	Terminal	app

Press	enter	on	your	keyboard	to	execute	the	command	and	change	your	command	line’s
scope	to	that	of	the	Xcode	project	folder.	If	it	worked,	the	beginning	of	your	current	line
should	be	something	like	this:	{ComputerName}:GitPractice2b	{User}$,	where	each
piece	in	curly	brackets	matches	your	settings.

Now	that	we’re	inside	our	project	folder,	we	want	to	turn	it	into	a	Git	repository.	Luckily,
that’s	very	simple!	Type	in	the	command	git	init,	press	enter,	and	we’ve	done	it!

However,	that’s	not	all	we	have	to	do.	We	also	want	to	perform	our	first	commit,	so	that
our	repository	has	a	starting	point.	If	we	think	back	to	the	diagrams	from	earlier	though,
you’ll	remember	that	we	need	to	stage	our	files	before	we	commit	anything.	Since	all	of
the	files	begin	as	unversioned,	we	want	to	add	all	of	the	files	to	the	staging	area.	The
command	is	pretty	straightforward:	git	add.	We	also	need	to	specify	which	files	should
be	added,	but	in	this	case	we	can	just	add	a	.	to	the	end	of	the	command	to	tell	it	that	we
want	all	the	files.	So,	our	final	command	should	read	git	add	.	then	press	enter.

To	make	sure	that	we	added	all	of	our	files	to	the	staging	area,	use	the	command	git
status	to	see	what	changes	are	set	to	be	committed.	If	your	git	status	command	gives
you	results	that	look	like	Figure	5.10,	that	means	you	successfully	added	all	of	the	files	to
the	staging	area:

Figure	5.10:	The	files	were	successfully	staged

To	make	our	initial	commit,	we	are	going	to	use	the	git	commit	command.	When	making
a	commit,	we	always	need	to	include	a	message	describing	what	we	did.	To	add	this
commit	message,	we’ll	use	the	-m	flag,	followed	by	our	message	in	quotes.	The	final
command	should	look	something	like	this:
git	commit	–m	“Initial	commit”

Finally,	type	exit	into	your	Terminal	window,	hit	enter,	then	quit.

Note

If	you	accidentally	only	typed	git	commit	and	hit	enter,	Terminal	will	launch	vi,	a
command	line	text	editor	and	force	you	to	write	a	commit	message.	First	press	the	I	key	to
enter	insert	mode,	then	type	a	small	commit	message.	Next,	press	esc,	followed	by	:wq,
then	press	enter.	Don’t	worry	about	it…	just	remember	to	use	the	-m	flag	to	make	a
commit	message	from	the	standard	command	line.	Now	your	Xcode	project	should	be
under	Git	version	control.

Head	back	to	Xcode	where	our	project	should	now	be	under	version	control.	Xcode	is	a
little	slow,	though,	so	you’ll	need	to	quit	Xcode	and	then	relaunch	the	project	for	it	to
notice	the	new	Git	properties	of	our	project.	Once	you	do	that	however,	you’ll	notice	that
we	get	our	little	M’s	when	we	modify	and	save	files.	Success!

Using	a	GitHub	hosted	repository
For	this	last	part,	we’re	going	to	use	a	remotely	hosted	Git	repository.	To	do	this,	we’re
going	to	use	a	free	service	called	GitHub.	GitHub	is	one	of	the	most	popular	Git	hosting
services	in	the	industry,	and	it’s	a	great	resource	for	collaborative	coding.

Go	ahead	and	register	an	account	on	GitHub	now	if	you	don’t	already	have	one
(https://github.com/).	Once	your	account	is	all	set	up,	create	a	new	repository	and	set	it	up
so	that	it	looks	like	the	one	as	follows:

Figure	5.11:	Creating	a	new	GitHub	repository

https://github.com/

You’ll	notice	that	there	is	a	new	element	here	that	we	haven’t	yet	talked	about:	a
.gitignore	file.	A	.gitignore	file	is	a	hidden	file	in	your	Git	repository	that	tells	the
repository	to	ignore	certain	files.	There	are	many	reasons	why	you	wouldn’t	want	to	place
some	files	under	version	control,	and	the	.gitignore	is	where	you	list	those	files.	When
creating	a	new	repository	on	GitHub,	you	can	chose	from	a	bunch	of	premade	.gitignore
files,	and	you	can	see	that	I	chose	one	that	is	made	for	Swift:

Figure	5.12:	Finding	the	repository	link	on	GitHub

Once	you’ve	configured	the	repository,	hit	the	green	Create	Repository	button	to	finish
creating	it.	Now	you	should	be	brought	to	the	repository’s	page.	We	want	to	find	the	link
to	the	repository	so	that	we	can	access	it	in	Xcode.	If	you	click	the	green	Clone	or
download	button	(Figure	5.12)	on	the	repository	overview	page,	you	should	see	a	link	to
the	repository.	Make	sure	you	select	the	HTTPS	version	of	the	link,	before	copying	it	to
your	clipboard:

Figure	5.13:	Checking	out	a	Git	project	from	Xcode

Back	in	Xcode,	let’s	go	to	the	startup	window,	and	select	the	Check	out	an	existing
project	button	(Figure	5.13).	This	will	allow	us	to	use	the	link	we	copied	from	GitHub	to
access	our	repository	straight	from	GitHub.	In	the	checkout	window,	paste	in	the	link	from
GitHub,	click	on	the	Next	button,	and	select	a	location	to	save	the	project.	This	will
download	the	repository,	but	since	it’s	empty,	we	still	need	to	create	the	Xcode	project	that
will	go	in	it:

Figure	5.14:	Pasting	the	link	from	GitHub	to	check	out	the	project	from	Xcode

One	last	time,	let’s	create	a	new	project	(single	view	application)	named	GitPractice3,
and	save	it	into	the	folder	that	we	just	pulled	down	from	GitHub.	In	the	last	step,	the
checkbox	should	be	greyed	out,	letting	you	know	that	the	folder	is	already	a	Git
repository.	Click	Create,	and	you’re	finished!

We’ve	now	covered	many	different	ways	to	configure	a	new	or	existing	project	to	use	Git.
Now	let’s	see	what	we	can	do	with	it	in	Xcode!

Using	version	control	in	Xcode
Now	that	we	know	what	Git	does,	and	have	a	project	all	set	up	with	a	local	Git	repository,
in	addition	to	a	remote	Git	repository	hosted	on	https://github.com/,	let’s	take	a	look	at	the
version	control	tools	built	into	Xcode.

https://github.com/

Pull,	push,	and	commit
In	the	last	section,	we	left	off	with	a	newly	created	project	in	our	freshly	cloned	local
repository.	We	never	staged	or	committed	any	of	our	new	files	to	our	repository	that	we
pulled	down,	so	let’s	use	this	opportunity	to	look	at	how	we	use	commit	from	within
Xcode.

To	begin	a	commit,	press	option	+	command	+	C	on	the	keyboard,	or	navigate	to	Source
Control	|	Commit	in	the	menu	bar.	Once	you	do	that,	you’ll	see	the	commit	window:

Figure	5.15:	The	commit	window	in	Xcode

On	the	far	left	is	the	staging	area.	Each	file	that	is	eligible	to	be	staged	will	have	a
checkbox	next	to	it,	and	if	you	wish	to	add	it	to	the	commit	you	are	about	to	make,	you
need	to	make	sure	the	box	is	ticked.

On	the	right	side	of	the	window	is	a	split-view	of	the	selected	file’s	new	version	on	the	left
half,	and	the	last	committed	version	on	the	right	half.	In	this	case,	all	of	the	files	are	new,
so	there’s	nothing	to	see	on	the	right	half.

On	the	bottom	is	a	text	box	where	you	can	enter	a	commit	message.	Remember,	a	commit
message	is	necessary,	and	Xcode	won’t	let	you	finish	a	commit	without	writing	a	message
in	the	box.

Finally,	on	the	lower	left	hand	side,	is	a	checkbox	that	lets	you	automatically	push	your
work	to	a	remote	repository,	after	it	commits	to	the	local	repository.

For	now,	let’s	write	Added	new	project	as	the	commit	message,	and	then	click	the
Commit	{X}	Files	button	to	commit	our	changes.

Now	that	we’ve	committed	to	our	local	repository,	we	want	to	push	our	changes	up	to	our
remote	repository	on	GitHub.	Thinking	back	to	our	charts	earlier	in	the	chapter,	we
remember	that	before	we	can	push,	we	need	to	make	sure	we	pull	from	the	remote	first.	To
pull,	we	can	use	the	shortcut	option	+	command	+	X	or	navigate	to	Source	Control	|	Pull:

Figure	5.16:	Selecting	which	branch	to	pull

Before	you	pull,	you	have	to	select	a	branch	to	pull	from;	right	now,	we	only	have	the
master	branch,	but	more	on	that	later.	Click	Pull,	and	you	should	be	notified	that	your
local	repository	is	up	to	date.	Now	we’re	ready	to	push	our	changes	back	up	to	the	remote.

Navigate	to	Source	Control	|	Push	in	the	menu	bar,	then	click	Push	on	the	dropdown	that
appears.	Before	it	finishes	the	push,	you	will	probably	be	asked	for	your	GitHub	user
name	and	password.	Enter	these	in	the	dropdown	and	press	OK,	and	you’ll	see	your	push
go	through!

If	you	head	back	to	https://github.com/	and	look	at	the	page	for	your	repository,	you	can
see	that	the	changes	we	just	made	are	reflected	there.	Pretty	neat,	huh?

https://github.com/

The	version	editor
Remember	back	in	Chapter	2,	Welcome	to	Xcode,	when	we	were	exploring	the	different
editor	modes?	There	was	the	standard	editor	which	we	use	all	the	time,	and	there	was	the
assistant	editor	which	we’ve	used	on	occasion	so	far.	But	now,	it’s	finally	time	to	check
out	the	third	tab:	the	version	editor.	To	quickly	switch	to	the	version	editor,	use	the
shortcut	option	+	shift	+	command	+	enter.

The	name	of	the	version	editor	is	pretty	self-explanatory:	it	lets	you	edit	a	file	while
looking	at	its	version	history,	and	seeing	the	differences.	Try	opening	up
ViewController.swift	and	start	writing	some	blank	test	functions	to	see	how	it	works:

Figure	5.17:	The	version	editor	in	use

The	version	editor	does	its	best	to	show	you	where	parts	of	the	code	have	been	added	or
deleted	since	the	last	commit.	You	can	also	go	to	the	bottom	of	each	split	editor	window
and	select	which	revision	you	want	to	be	viewing,	to	compare	the	file	to	several	different
versions	of	itself.	You	can	also	click	on	the	dropdown	that	appears	in	the	middle	of	a
change	to	discard	that	change	if	you	realize	that	the	change	was	made	by	accident	or	in

error.

At	the	bottom	of	the	middle	bar	between	the	two	versions	is	a	timeline	button.	Click	it,
and	you’ll	be	given	a	graphical	timeline	that	will	let	you	scrub	through	all	of	the	commits
over	the	life	of	the	project	to	find	a	previous	version	of	the	code.	If	you	find	that
something	has	been	broken,	you	can	use	this	feature	to	go	back	through	code	to	find	an
older	version	that	still	works.

Creating	and	merging	branches
The	last	feature	that	we’re	going	to	look	at	in	this	chapter	is	one	of	Git’s	most	powerful.
When	working	on	a	large	project	with	other	developers,	it’s	important	to	have	a	stable
codebase.	But	sometimes,	you	need	to	add	big	new	features	that	may	hurt	the	stability	of
your	code	for	a	little	while.	In	situations	like	these,	you	can	create	a	branch	from	your
master	copy	of	the	project,	and	work	on	the	new	feature	without	worrying	about	breaking
the	main	application.	After	a	while,	once	the	feature	is	complete	and	the	stability	has
returned,	you	can	merge	the	branch	back	in	with	the	master	copy.	Let’s	look	at	how	we
would	do	this.

We’re	going	to	create	a	new	branch	where	we	can	make	some	new	test	functions	for	our
app.	To	do	this,	navigate	to	the	Source	Control	menu-bar	item,	then	select	your	working
copy,	and	click	New	Branch:

Figure	5.18:	Creating	a	new	branch	in	Xcode	from	the	Source	Control	menu

Once	you	select	New	Branch…,	give	the	branch	a	name	(no	spaces).	We’ll	call	our
branch	New-Test-Functions.	Now	that	we’ve	got	a	new	branch,	we	can	go	around	and
make	changes	to	our	code	without	worrying	about	breaking	anything	in	the	master	branch.

To	test	this	out,	let’s	go	back	to	ViewController.swift,	and	make	a	couple	test	functions.
Change	out	your	ViewController	class	so	that	it	contains	this	code:
class	ViewController:	UIViewController	{

			

				override	func	viewDidLoad()	{

								super.viewDidLoad()

				}

			

				func	testFunction1	()	{

								print	(“test	1”)

				}

			

				func	testFunction2	()	{

								print	(“test	2”)

				}

}

Now	commit	the	code	(option	+	command	+	C)	to	the	New-Test-Functions	branch.	If	you
go	back	to	the	Source	Control	menu-bar	item,	then	select	your	working	copy	again,	but
this	time	choose	Switch	to	branch,	you	can	jump	back	to	the	master	and	see	that	it’s	just
how	you	left	it.

In	the	real	world,	this	means	that	if	you	are	hard	at	work	on	version	2.0	of	a	product,	but	a
small	bug	is	found	in	the	previous	version,	you	can	save	your	work,	jump	back	to	the	old
version	to	patch	the	bug,	and	then	go	right	back	to	the	new	branch	and	resume	work	on
2.0.

Now	to	wrap	this	all	together,	let’s	merge	our	New-Test-Functions	branch	back	in	with
the	master.	Head	to	the	Source	Control	menu-bar	item,	then	select	your	working	copy
again,	and	this	last	time	choose	the	Merge	from	branch	option.	When	given	the	option,
choose	the	New-Test-Functions	branch	to	merge	from.	You	will	be	brought	to	the	branch
merge	window:

Figure	5.19:	The	branch	merge	window

The	branch	merge	window	is	very	similar	to	the	commit	window,	but	instead	of	the
commit	message	area,	it	has	some	toggles.	On	the	left	side	of	the	window	is	a	list	of	all	the
files	that	need	to	be	merged	together.	If	you	click	on	a	file,	it	will	show	you	the	final
version	of	the	file	on	the	left,	and	the	branch’s	version	of	the	file	on	the	right.	The	toggles
along	the	bottom	allow	you	to	choose	how	each	individual	difference	is	merged.

Note
Remember,	the	file	on	the	left	is	how	the	file	will	end	up	after	the	merge.	Make	sure	that
the	left	hand	side	is	how	you	want	the	resulting	file	to	be!

Once	you	have	gone	through	every	file	and	selected	all	the	correct	points	for	merging,	you
can	hit	the	Merge	button	in	the	lower	right	part	of	the	window.	That’s	it!	You	created	a
new	branch,	switched	between	branches,	and	merged	it	back	into	the	master	branch.

Summary
In	this	chapter,	we	covered	a	lot	of	material.	We	learned	about	what	version	control	is,
how	Git	differs	from	other	solutions,	and	what	its	strengths	are.	We	created	new	Git
repositories	for	our	Xcode	projects	in	several	different	ways,	including	using	the
command	line,	and	then	we	made	a	GitHub	account	and	set	up	a	remote	repository.
Finally,	we	spent	some	quality	time	with	the	version	control	features	built	into	Xcode,	and
used	our	knowledge	of	Git	to	commit,	push,	and	pull	changes	to	our	local	and	remote
repositories.

In	the	next	chapter,	we’ll	be	putting	to	the	test	everything	we’ve	learned	so	far	in	this
book:	it’s	time	to	make	our	first	real	app.

Chapter	6.	Building	Your	First	iOS	App
For	the	last	five	chapters,	we’ve	been	covering	many	different	aspects	of	iOS
development.	We’ve	learned	how	to	navigate	Xcode,	we’ve	explored	the	basics	of	Swift	3,
and	we’ve	practiced	creating	storyboards	for	apps.	We’ve	even	looked	at	responsible	ways
to	manage	a	project	with	source	control.	There’s	not	much	left	to	procrastinate	about:	it’s
time	to	make	our	first	app.

We’ve	got	all	the	skills	we	need	to	build	out	the	model,	views,	and	controllers	of	a	real
iOS	application.	Now,	we’re	going	to	use	all	of	these	skills	together	to	create	a	simple
note-making	application	called	Snippets.	Let’s	break	it	down.	In	this	chapter	we’re	going
to:

	
Breakdown	an	app	idea	into	a	feature	list
Create	a	plan	for	app	development
Develop	model	code	for	the	application
Lay	out	the	app	in	a	storyboard
Build	and	connect	our	view	controllers
Deploy	the	app	to	our	devices

That’s	a	lot	of	ground	to	cover!	However,	you’ll	notice	that	most	of	these	things	we’ve
done	already.	As	we	learn	how	to	break	down	our	app	into	a	feature	list	and	a
development	plan,	we’ll	see	that	building	an	app	isn’t	really	so	hard.	Let’s	go!

Pre-production
As	much	fun	as	it	would	be	to	just	dive	in	and	start	writing	code,	things	usually	go	a	bit
smoother	if	we	spend	a	little	time	thinking	about	what	we	are	about	to	do.	First,	we’re
going	to	go	on	a	mental	journey	through	using	the	app	to	determine	all	of	the	features	that
will	be	present	in	the	finished	product.	Then	we’re	going	to	consult	a	designer	(that’s
going	to	be	me)	to	determine	what	the	app	will	look	like,	and	collect	any	assets	we	might
need.	Finally,	we’re	going	to	break	that	feature	list	down	into	a	development	plan	that
gives	us	an	idea	of	the	actual	tasks	that	will	need	to	be	completed	to	deliver	each	feature.

Assembling	a	feature	list
As	I	mentioned	earlier,	the	app	we’re	going	to	create	is	a	notes-style	application	called
Snippets.	The	core	feature	of	the	app	is	that	it	lets	the	user	make	little	snippets	of	life	to
save	for	later,	which	consist	of	text	or	images,	or	maybe	later	even	web	links	or	audio.
Then	the	user	can	scroll	through	their	snippets	in	reverse	chronological	order.	Down	the
line,	we	might	end	up	with	a	product	that	resembles	the	popular	organization	software
Evernote,	or	maybe	it	will	evolve	into	a	private	journaling	app.

Notice	how	I	said	it	might	end	up	some	way,	and	it	will	maybe	have	certain	features.
When	developing	software	in	a	lean,	agile	manner,	it’s	often	best	not	to	think	too	far
ahead.	Right	now,	we	have	our	big	goal:	create	an	app	that	lets	users	take	little	notes.	But
once	we	show	the	app	to	potential	users,	they	might	have	a	completely	different	idea	of
what	they	like	about	our	app,	and	we	might	pivot	our	development	goals	to	meet	the	needs
of	the	customer.

To	avoid	spending	a	lot	of	time	developing	features	that	we	might	remove	from	our	app,
we	use	a	strategy	that	has	us	build	an	MVP,	or	minimum	viable	product.	That	means
that	in	our	v1.0	feature	list,	we	only	want	to	build	the	most	basic	and	essential	features	of
our	app,	so	that	we	can	test	them	and	see	what	people	like.	So	with	that	in	mind,	let’s	nail
down	our	intended	experience.

When	a	user	opens	our	app,	there	should	be	a	very	clear	and	simple	way	to	create	a	new
snippet.	Creating	a	new	snippet	is	going	to	be	an	urgent	task	for	the	user;	there	will
usually	be	some	time	pressure	as	they	try	to	capture	a	moment	or	thought	as	quickly	as
possible.	When	they	tap	the	button	that	creates	a	new	snippet,	there	needs	to	be	a	way	to
select	if	they	are	making	a	Text	snippet	or	a	Photo	snippet,	which	are	going	to	be	the	two
post	types	we	allow	in	our	MVP.	If	the	user	selects	text,	they	should	be	able	to	type	in	text
and	save.	If	they	select	photo	they	should	be	able	to	take	a	square	photo	with	the	camera
and	save.	All	posts	should	save	the	date	and	time	they	were	created.

So	far,	our	feature	list	for	snippet	creation	looks	like	this:

	
New	snippet	button
Snippet-type	selection	menu
Text	snippet	data	entry
Photo	snippet	data	entry
Log	date	posts	were	made

Now,	the	other	half	of	this	app	is	the	ability	to	view	the	timeline	of	our	snippets.	Similar	to
apps	like	Twitter	or	Tumblr,	we	want	to	be	able	to	infinitely	scroll	through	all	of	our
snippets	in	reverse	chronological	order,	meaning	we’ve	got	the	newest	snippets	at	the	top
of	the	screen.	Each	snippet	should	show	the	content	data	along	with	the	date	and	time	the
snippet	was	created.

Let’s	append	the	new	features	we	need,	and	look	at	our	final	list:

	

New	snippet	button
Snippet-type	selection	menu
Text	snippet	data	entry
Photo	snippet	data	entry
Log	date	posts	were	made
Display	a	list	of	scrollable	snippets
Snippet	displays	content	and	timestamp

Alright!	We’ve	got	seven	features	to	implement	to	hit	our	v1.0	features	goal.	Now	let’s
explore	what	the	app	should	look	like	when	completed	to	help	guide	our	development
plan.

Visual	design
So	we’ve	got	a	solid	feature	list	nailed	down	for	our	v1.0	release.	At	this	point	in	the
process,	we’re	going	to	get	a	simple	pre-visualization	of	the	app	from	a	designer.	We’ll
give	them	our	feature	list,	and	see	what	kind	of	ideas	they	come	back	with.

In	this	case,	I’ve	taken	it	upon	myself	to	do	a	really	quick	mockup	of	what	our	app	should
look	like	given	our	features	and	restrictions.	Since	design	isn’t	the	main	focus	of	this
project,	it’s	a	bit	on	the	safe	side,	but	it	should	give	us	a	good	idea	of	what	we’re	shooting
for,	and	the	kinds	of	view	controllers	we’ll	have	to	be	developing.

Let’s	take	a	look	at	the	visual	designs	in	Figure	6.1	and	get	acquainted	with	some	common
iOS	UI	elements:

Figure	6.1:	A	visual	target	for	v1.0	of	Snippets

In	our	first	screen,	we	have	a	customized	UITableView.	UITableViews	are	used	in	almost
every	iOS	application,	since	they	are	the	best	way	to	present	tables	(or	lists)	to	a	user.	This
might	be	a	list	of	options	in	the	settings	application,	or	a	list	of	tweets	in	a	Twitter	client.
In	Snippets,	we’re	going	to	use	a	UITableView	to	show	a	scrollable	timeline	of	our
individual	snippets.

In	the	second	screen,	we	can	see	a	popover	set	of	options	that	will	show	up	when	we	press
the	New	Snippet	button.	This	is	called	a	UIAlertController,	which	lets	the	user	know
that	their	input	is	needed	to	continue.	Here,	we’re	using	an	Action	Sheet	style	where	the

actions	come	up	from	the	bottom	of	the	screen,	but	alert	controllers	can	also	display
information	in	a	floating	window	in	the	center	of	the	screen.

Finally,	on	the	third	screen,	we’re	using	a	modal	view	controller	that	will	slide	up	from	the
bottom	of	the	screen	to	allow	you	to	create	a	new	snippet.	In	this	image,	we’re	using	a
UITextField	to	input	text,	but	we’ll	also	allow	the	use	of	a	UIImagePickerController,
which	lets	the	user	take	or	add	a	picture.

We’ve	now	got	a	list	of	features,	and	a	visual	target	for	our	app.	Now	we	just	have	to	put
together	our	development	plan	and	we’ll	be	ready	to	start	coding!

Creating	a	development	plan
In	the	world	of	software	development,	you’ll	hear	about	many	different	project	planning
methods.	With	names	like	Scrum	and	Kanban,	they	can	seem	daunting	and	foreign	to
novice	developers	who	just	want	to	code!	There’s	no	reason	to	become	deeply	educated	in
a	specific	project	planning	philosophy	this	early,	because	every	team	that	you	end	up
working	on	is	going	to	operate	a	little	differently.

However,	there	are	a	few	concepts	that	are	proven	to	be	effective,	and	we’re	going	to
apply	them	loosely	to	create	our	development	plan.	Most	teams	in	software	have	adopted
an	agile	method	of	development.	Agile	development	refers	to	the	fact	that	projects	are	not
planned	from	0-100%	at	the	beginning,	but	are	instead	highly	iterative	endeavors.	Earlier,
we	went	over	the	idea	of	a	minimum	viable	product.	The	MVP	is	a	product	of	this	iterative
thinking:	we	haven’t	planned	out	the	entire	app	all	at	once,	since	we’re	just	going	to	build
our	core	features	and	then	see	if	people	like	them.

Another	common	feature	of	these	agile	development	methods	is	that	they	focus	on
delivering	features	for	the	user,	instead	of	creating	functionality	we	think	we	need	as	a
developer.	For	example,	we	as	developers	might	say,	“This	week,	I	am	going	to	program	a
database	management	system.	However,	when	we	think	from	the	end	user’s	perspective,
we	get	a	different	idea	of	our	development	priorities.	The	user	might	say,	“I’d	like	to	be
able	to	view	my	posted	photos”	(this	is	commonly	referred	to	as	a	user	story).	Now,	when
focused	on	delivering	that	feature	to	the	user,	you	will	have	more	direction	on	what	your
database	manager	will	need	to	do,	and	which	aspects	are	most	important	to	develop	first.
To	summarize,	agile	development	tends	to	be	user-centric.

Finally,	we	want	to	take	our	user-centric	features	and	break	them	down	into	smaller	tasks.
To	keep	our	project	lean	and	agile,	these	tasks	should	be	as	clear	and	granular	as	possible;
a	single	task	should	not	take	more	than	an	hour	or	two,	and	sometimes	much	less.

So	now,	with	an	understanding	of	how	we	want	to	manage	this	project,	let’s	create	a
development	plan	for	Snippets.	Earlier,	we	created	a	feature	list	that	looked	like	this:

	
New	snippet	button
Snippet-type	selection	menu
Text	snippet	data	entry
Photo	snippet	data	entry
Log	date	posts	were	made
Display	a	list	of	scrollable	snippets
Snippet	displays	content	and	timestamp

This	is	a	great	start	for	our	set	of	user	stories,	but	we’ll	need	to	do	a	little	clean	up	so	that
everything	makes	sense	under	our	new	guidelines:

	
“I	want	to	be	able	to	create	a	new	snippet”
“I	want	to	select	the	type	of	snippet	I	am	creating”

“I	want	to	enter	text	when	creating	a	snippet”
“I	want	to	attach	a	photo	to	a	snippet”
“I	want	to	scroll	through	my	snippets”
“I	want	to	see	the	date	a	snippet	was	made”

Perfect!	Now	we	have	a	list	of	user-centric	features	that	describe	everything	a	user	wants
to	do	with	our	MVP	application.	The	last	step	is	to	break	these	stories	down	into	tasks.
The	more	projects	you	work	on,	the	better	you’ll	get	at	mentally	breaking	down	stories,	so
for	now	I’ll	just	show	you	how	my	final	task	list	ended	up:

	
Story:	“I	want	to	be	able	to	create	a	new	snippet”

Tasks:	Create	a	model	class	for	bare-bones	SnippetData;	create	a	toolbar	with	a
button	that,	when	pressed,	creates	new	SnippetData	and	adds	it	to	an	array

Story:	“I	want	to	select	the	type	of	snippet	I	am	creating”

Tasks:	Append	the	SnippetData	model	to	allow	for	Text	and	Photo	types;	create	an
alert	controller	that	allows	the	user	to	select	the	type	of	Snippet	that	is	created

Story:	“I	want	to	enter	text	when	creating	a	snippet”

Tasks:	Create	a	new	subclass	of	SnippetData	that	represents	the	TextSnippet;	create
a	new	view	controller	with	a	UITextField	that	saves	the	text	input	in	the
TextSnippet

Story:	“I	want	to	attach	a	photo	to	a	snippet”

Tasks:	Create	a	new	subclass	of	SnippetData	that	represents	the	PhotoSnippet;
create	a	new	view	controller	with	a	UIImagePickerController	that	allows	the	user	to
take	a	picture	and	save	the	data	to	the	PhotoSnippet

Story:	“I	want	to	scroll	through	my	snippets”

Tasks:	Add	a	UITableView	to	our	first	scene,	with	two	prototype	cells	for	the
TextSnippet	and	the	PhotoSnippet;	program	the	view	controller	to	display	the
information	from	our	data	array	in	our	UITableView

Story:	“I	want	to	see	the	date	a	snippet	was	made”

Tasks:	Append	our	base	SnippetData	to	hold	a	date;	when	a	snippet	is	created,	save
the	current	date	to	our	data	model;	add	a	UILabel	to	our	prototype	cells	to	hold	date
information,	and	assign	the	text	in	our	view	controller

Whew!	By	my	count,	that’s	13	individual	tasks	that	we	need	to	complete	to	reach	our
MVP.	That’s	not	so	bad!	Hopefully	you	can	see	how	much	easier	it	will	be	to	move
quickly	through	our	project	once	we	have	a	clear	direction	of	where	we	are	going.	It’s	an
important	step	in	every	project.

Throughout	the	rest	of	the	chapter,	we’re	going	to	be	working	through	each	story,	task	by
task.	If	you	ever	get	stuck,	the	completed	project	can	be	found	in	the	Resources	folder	for
Chapter	6,	Building	Your	First	iOS	App.

At	this	point,	you’ve	created	several	new	Xcode	projects,	so	I	trust	that	you	can	create	a
new	project	called	Snippets	using	the	Single	View	Controller	template	(iPhone	device
target,	Swift	language).	Make	sure	you	enable	Git,	like	we	went	over	in	Chapter	5,	Taking
Advantage	of	Source	Control	in	Xcode.

Finally,	it’s	time	to	code.

New	snippet
Our	first	story	is	“I	want	to	be	able	to	create	a	new	snippet”.	For	this	feature,	we	have	two
tasks:

	
Create	a	model	class	for	bare-bones	SnippetData
Create	a	toolbar	with	a	button	that,	when	pressed,	creates	new	SnippetData	and	adds
it	to	an	array

For	the	first	task,	we	are	going	to	create	a	simple	Swift	struct	that	will	hold	the	data	for
our	snippet.	There	won’t	be	a	whole	lot	going	on	here!	For	the	second	task,	we’ll	be	going
into	our	storyboard	and	adding	some	UI	elements,	then	adding	some	code	for	our	button	to
execute	when	pressed.	Remember,	the	goal	is	just	to	have	a	button	create	a	new	instance
of	a	data	structure,	nothing	more.

SnippetData	model
Current	task:	Create	a	model	class	for	bare-bones	SnippetData.

For	the	time	being,	we’re	not	really	sure	what	is	going	to	go	into	our	SnippetData	model.
Looking	at	our	project	specs,	we	know	that	we’re	eventually	going	to	want	to	store	text,
photos,	and	timestamps,	but	for	now	we	just	know	that	it	will	be	a	struct,	and	that	we	need
to	create	a	new	one	when	we	press	a	button.	For	that	reason,	the	implementation	we	go
with	at	first	may	surprise	you.

First,	create	a	new	Swift	file	(command	+	N),	and	call	it	SnippetData.swift.	Then,	inside
the	file,	we’re	going	to	create	the	SnippetData	struct,	like	so:
struct	SnippetData	{

			

				init()	{

								print	(“new	snippet	created”)

				}

			

}

If	that’s	not	bare-bones,	then	I	don’t	know	what	is!	We	declare	a	struct	called
SnippetData,	and	then	we	tell	it	what	to	do	when	we	create	a	new	instance	of	it	using	the
init	function.	In	this	case,	we	put	in	a	simple	print	statement	that	will	write	to	the
console	when	a	SnippetData	struct	is	created,	so	we	can	see	if	our	code	is	working
properly.	And	that’s	it.	Seriously.	We’ll	add	to	the	data	model	over	the	next	few	user
stories,	but	that’s	all	we	need	for	now.

New	snippet	button
Current	task:	Create	a	toolbar	with	a	button	that,	when	pressed,	creates	new	SnippetData
and	adds	it	to	an	array.

Now	that	we’ve	built	out	the	model	side	of	this	feature,	we	need	to	implement	the	view
and	controller.	Let’s	start	with	the	view.

Head	over	to	your	storyboard	and	drag	a	toolbar	onto	the	screen	from	the	object	library
(control	+	option	+	command	+	3).	We’re	going	to	want	it	anchored	to	the	bottom	of	our
view,	so	we’re	going	to	use	a	little	bit	of	Auto	Layout	magic.

First,	select	the	toolbar,	and	then	from	the	pin	constraints	(lower-right	of	the	storyboard
window,	shaped	like	an	H	with	a	square	in	the	middle)	give	it	left,	right,	and	bottom
margins	of	0.	Uncheck	the	box	that	says	Constrain	to	margins	so	that	it	is	0	pixels	from
the	edge	of	the	screen,	not	the	margins.	Then	select	the	All	frames	in	container	option
from	the	Update	Frames	dropdown,	and	hit	Add	Constraints.	You	can	always	refer	back
to	Chapter	4,	Using	Storyboards,	Size	Classes,	and	Auto	Layout,	to	review	Auto	Layout,	if
you	feel	a	little	lost.

Now	we	want	to	add	a	button	to	the	middle	of	our	toolbar.	To	do	this,	we	aren’t	going	to
use	Auto	Layout	to	position	the	button,	but	a	special	form	of	bar	button	item	called
Flexible	Space.	In	the	object	library,	search	for	flex	and	you	should	see	it	immediately.
Drag	two	of	them	onto	our	toolbar.	Then,	find	a	Bar	Button	Item	in	the	object	library,
and	drag	it	in	between	the	two	flex	space	items.	Change	the	text	of	the	bar	button	item	to
say	New:

Figure	6.2:	Our	toolbar	with	flexible	space	items	and	a	New	bar	button	item

Try	running	the	project	in	the	simulator	to	make	sure	all	of	our	layout	constraints	are
working.	If	they	are,	the	toolbar	should	be	situated	nicely	along	the	bottom	of	the	screen,
with	our	New	button	centered	in	the	middle.

Now	that	our	view	is	complete,	it’s	time	to	create	the	controller.	Open	the	Assistant	Editor
(option	+	command	+	return),	and	make	sure	that	our	ViewController.swift	file	is	in	the
assistant	view.	Hold	the	control	key	and	drag	from	our	New	button	into	our	view	controller
file,	then	release.	Set	the	connection	type	as	Action,	and	give	it	the	name
createNewSnippet.

If	you	remember	from	earlier,	this	creates	a	new	function	in	our	view	controller	that	gets
called	when	the	user	presses	the	button:

Figure	6.3:	Creating	an	IBOutlet	for	the	New	button

You	should	now	see	a	function	stub	that	looks	like	this:
				@IBAction	func	createNewSnippet(_	sender:	AnyObject)	{

				}

All	we	have	left	to	do	is	to	create	a	new	SnippetData	struct	when	the	button	is	pressed,
and	store	it	in	an	array.	At	the	top	of	our	ViewController	class,	we’ll	declare	a	new	array
of	SnippetData	as	such:
var	data:	[SnippetData]	=	[SnippetData]()

Then,	inside	our	createNewSnippet()	function,	we’ll	add	two	lines	of	code	to	create	the
new	data,	and	then	save	it	into	our	array.	Our	final	ViewController	should	look	like	this:
import	UIKit

class	ViewController:	UIViewController	{

			

				var	data:	[SnippetData]	=	[SnippetData]()

				override	func	viewDidLoad()	{

								super.viewDidLoad()

				}

			

				@IBAction	func	createNewSnippet(sender:	AnyObject)	{

							

								let	newSnippet	=	SnippetData()

								data.append(newSnippet)

				}

}

You	can	see	that	we	created	a	new	instance	of	SnippetData	and	assigned	it	to	a
newSnippet	variable,	and	then	we	append	it	to	our	data	array.

When	you	run	this	in	the	simulator,	you	should	see	that	when	you	press	the	New	button	on
the	toolbar,	you	get	a	console	output	that	says	new	snippet	created,	just	like	we	wrote	in
the	init	function.

And	that’s	it!	Our	first	user	story	is	completed.	We	have	successfully	made	a	button	that
creates	a	new	SnippetData.	Only	five	more	stories	to	go.	Before	we	move	on,	make	sure
to	commit	(option	+	command	+	C)	your	changes	to	your	Git	repository	now	that	you’ve
completed	a	user	story,	and	give	it	a	good	description	describing	the	work	you	did.

Select	snippet	type
Our	next	story	is	“I	want	to	select	the	type	of	snippet	I	am	creating”.	The	tasks	are:

	
Append	the	SnippetData	model	to	allow	for	Text	and	Photo	types
Create	an	alert	controller	that	allows	the	user	to	select	the	type	of	snippet	that	is
created

For	this	feature,	we’re	going	to	expand	on	our	SnippetData	model	to	include	the	ability	to
have	a	type	using	an	enum.	Then	we’re	going	to	create	and	present	an	alert	controller	to
the	user	that	allows	them	to	choose	a	type.	Finally,	we’re	going	to	update	our	view
controller	to	respond	to	the	different	options	the	user	can	select,	and	create	the	correct	type
of	data.

Update	SnippetData	model
Current	task:	Append	the	SnippetData	model	to	allow	for	Text	and	Photo	types.

When	we	created	our	SnippetData	model,	it	was	a	very	simple	Swift	struct	that	didn’t
hold	any	data.	Now	we	want	to	add	a	type	property	to	the	struct	so	that	it	knows	what	kind
of	data	it	is	holding.	We’re	going	to	create	an	enum	to	describe	the	possible	types	that	can
exist	for	our	SnippetData,	and	use	a	String	as	a	backing	type	for	our	enum.	This	means
that	our	enum	will	be	built	on	top	of	String	values.	Let’s	add	this	enum	to	our
SnippetData.swift	file:
enum	SnippetType:	String	{

				case	text	=	“Text”

				case	photo	=	“Photo”

}

At	the	top,	we	declared	a	new	enum	called	SnippetType,	and	then	said	that	it	is	built	on
top	of	the	String	class.	This	syntax	is	similar	to	the	way	we	use	inheritance	in	Swift,
which	makes	sense,	since,	in	a	way,	we	are	inheriting	and	writing	on	top	of	a	string.	Inside
the	enum,	we	define	two	possible	cases,	Text	and	Photo.	We	then	assign	a	String	value	to
our	cases,	which	is	the	backing	(or	raw)	value	of	that	case.

Then,	inside	our	SnippetData	struct,	we	add	a	new	property	to	hold	our	new	SnippetType
information,	and	update	the	initializer	to	take	an	argument	for	the	type:
struct	SnippetData	{

			

				let	type:	SnippetType

			

				init	(snippetType:	SnippetType)	{

								type	=	snippetType

								print	(“\(type.rawValue)	snippet	created”)

				}

}

At	the	top	of	our	struct,	we	declare	type	with	the	let	keyword,	which	means	it	is	a
constant.	This	makes	sense	because,	once	we	initialize	a	snippet,	its	type	should	never
change.	Then,	in	our	init	function,	we	updated	it	to	accept	a	parameter	for	our
SnippetType,	and	then	we	assign	the	parameter	value	to	our	type	constant.

Finally,	you’ll	see	that	we	changed	our	print()	function.	We	replaced	the	word	new	with
the	expression	\(type.rawValue).	If	you	remember	from	earlier,	the	\()	syntax	allows	us
to	splice	data	values	into	a	string.	In	this	case,	we	are	inserting	the	rawValue	property	of
our	type	enum.	Remember	how,	when	we	created	our	SnippetType	enum,	we	assigned
each	case	a	backing	value?	That	is	the	rawValue	we’re	using	here.	So	if	we	create	a	new
SnippetData	with	the	type	SnippetType.Text,	then	our	type.rawValue	will	equal	the
Text	string	we	assigned	in	our	enum,	and	it	will	print	out	Text	snippet	created	when	it
is	initialized.

Now	our	SnippetData	model	has	the	capability	to	support	multiple	types.	Let’s	enable	our
user	to	select	which	type	they	want	to	make.

Create	an	alert	controller
Current	task:	Create	an	alert	controller	that	allows	the	user	to	select	the	type	of	snippet.

In	our	basic	pre-visualization	of	the	app,	we	saw	that	we	were	using	an	action	sheet	with	a
few	options	that	let	the	user	select	the	type	of	snippet	they	were	creating.	Now	we’re
going	to	walk	through	the	process	of	creating	an	action	sheet	like	that	using	the
UIAlertController.

Since	we	want	to	give	the	user	this	option	after	pressing	the	new	button,	we’re	going	to
delete	the	code	we	have	in	our	createNewSnippet()	function,	and	replace	it	with	some
new	code	that	presents	an	action	sheet.	Let’s	take	a	look:
@IBAction	func	createNewSnippet(_	sender:	AnyObject)	{

				

				let	alert	=	UIAlertController(title:	“Select	a	snippet	type”,	message:

nil,	preferredStyle:	.actionSheet)

				let	textAction	=	UIAlertAction(title:	“Text”,	style:	.default)	{

(alert:	UIAlertAction!)	->	Void	in

								self.data.append(SnippetData(snippetType:	.text))

				}

				let	photoAction	=	UIAlertAction(title:	“Photo”,	style:	.default)	{

(alert:	UIAlertAction!)	->	Void	in

								self.data.append(SnippetData(snippetType:	.photo))

				}

				let	cancelAction	=	UIAlertAction(title:	“Cancel”,	style:	.cancel,

handler:	nil)

				

				alert.addAction(textAction)

				alert.addAction(photoAction)

				alert.addAction(cancelAction)

				present(alert,	animated:	true,	completion:nil)

}

First,	we	create	a	new	UIAlertController,	and	initialize	it	with	a	title	and	a	preferred
style	of	.actionSheet.	The	title	property	is	what	goes	at	the	top	of	the	action	sheet	and
describes	what	the	alert	is	for,	while	the	message	property	is	for	giving	more	detail.	Since
our	alert	is	pretty	simple,	we	don’t	need	both,	so	we	set	the	message	to	nil.

Note
UIAlertController	is	also	used	to	show	you	alerts	in	the	middle	of	the	screen,	so	if	you
set	the	preferred	style	to	.alert,	it	will	take	that	form.	Try	it	out!

Next,	we	create	new	UIAlertActions.	These	are	going	to	be	the	actual	options	that	the
user	can	select	from	the	action	sheet.	The	first	two	UIAlertActions	are	very	similar,	since
they	are	both	used	to	create	a	new	Text	snippet	and	Photo	snippet,	respectively.

When	creating	a	UIAlertAction,	we	need	to	pass	in	three	things:	a	title,	a	button	style,
and	a	completion	handler.	The	title	is	the	text	on	the	button,	the	style	is	the	formatting	of
the	button,	and	the	completion	handler	is	the	code	that	runs	when	the	button	is	pressed.
let	textAction	=	UIAlertAction(title:	“Text”,	style:	.default)	{	(alert:

UIAlertAction!)	->	Void	in

				self.data.append(SnippetData(snippetType:	.text))

}

For	our	text/photo	actions,	we	pass	in	the	title,	set	the	style	to	.default,	and	then	use
what’s	called	a	trailing	closure	tacked	on	to	the	end.	Inside	the	completion	handler	closure
are	two	parts:	the	definition	of	the	parameters	being	passed	into	the	closure,	and	the	body
of	the	closure.

The	first	part	is	the	(alert:	UIAlertAction!)	->	Void	in	line,	which	tells	the	closure
that	we	are	passing	in	a	parameter	named	alert	that	is	the	type	of	an	explicitly	unwrapped
optional	UIAlertAction,	and	returns	Void	(nothing).

In	the	body	of	our	completion	handler	we	have	the	following	line:
self.data.append(SnippetData(snippetType:	.text))

Here	we	are	initializing	and	appending	a	new	SnippetData	struct	to	our	data	array.	We	use
the	new	initializer	we	wrote	for	our	SnippetData	struct,	and	let	it	know	that	its	snippet
type	is	.text.	In	our	photo	action	completion	handler,	we’d	write	.photo.

Note
Also	notice	that	we	have	to	write	self.	at	the	beginning	of	the	line.	In	a	closure,	we	need
to	be	explicit	about	the	scope,	so	by	letting	the	closure	know	exactly	what	we’re	talking
about	with	self.data,	it	can	capture	the	scope	of	the	function	and	use	it	later	on	whenever
the	completion	handler	is	run.

Further	down,	you’ll	see	our	cancelAction	is	a	little	different.	Since	our	cancel	button
doesn’t	really	do	anything,	we	can	pass	in	nil	for	the	completion	handler,	instead	of	using
a	trailing	closure	like	the	other	actions.

Finally,	we	add	all	of	our	UIAlertActions	to	our	UIAlertController	by	writing
alert.addAction(UIAlertAction)	for	each	action.	Then	we	present	our
UIActionController	like	this:
presentViewController(alert,	animated:	true,	completion:nil)

This	presents	our	alert	controller	to	the	user.

And	that’s	it!	Build	and	run	the	project	on	the	simulator,	and	try	out	our	new	type
selection.	In	the	debug	area,	you’ll	see	that	the	console	now	says	Text	snippet	created
and	Photo	snippet	created,	depending	on	which	button	you	press.	Before	we	move	on
to	the	next	user	story,	remember	to	commit	your	changes	to	the	local	Git	repository	now
that	we’ve	finished	a	story	and	the	project	is	stable.

Text	snippet	implementation
The	next	user	story	is	“I	want	to	enter	text	when	creating	a	snippet”.	The	tasks	we	need	to
complete	for	this	feature	are:

	
Create	a	new	subclass	of	SnippetData	that	represents	the	TextSnippet
Create	a	new	view	controller	with	a	UITextField	that	saves	the	text	input	in	the
TextSnippet

Now	it’s	time	to	start	building	out	useful	snippet-creation	tools.	Right	now	we	spawn
some	empty	SnippetData	structs,	but	there’s	no	user	data	in	there.	First	we’re	going	to
add	to	our	SnippetData	struct	to	allow	it	to	hold	user	data,	and	then	build	an	interface	that
allows	the	user	to	enter	and	save	the	data.

Update	SnippetData	model
Current	task:	Create	a	new	subclass	of	SnippetData	that	represents	the	TextSnippet.

So	far,	our	data	model	doesn’t	do	much	aside	from	hold	a	type	identifier.	Now	we	want	to
create	a	subclass	of	our	data	model	that	gives	us	the	ability	to	store	information	for	our
text	data.	There’s	only	one	problem…	you	can’t	subclass	a	struct.	You	can	only	subclass	a
class	(makes	sense,	doesn’t	it?).

So,	while	a	struct	will	usually	serve	you	well	when	creating	an	application’s	data	model,
it’s	not	going	to	work	for	us	here.	Luckily,	all	we	have	to	do	to	change	our	struct	to	a	class
is	just	swap	the	keyword.	Here’s	our	newly	upgraded	SnippetData	class:
class	SnippetData	{

				let	type:	SnippetType

			

				init	(snippetType:	SnippetType)	{

								type	=	snippetType

								print	(“\(type.rawValue)	snippet	created”)

				}

}

Like	I	said,	not	a	huge	change.	Now	that	it’s	a	class,	we	can	create	a	subclass	called
TextData.	We’re	going	to	add	a	new	property	to	hold	a	string,	and	give	it	a	new	initializer.
Here	it	is:
class	TextData:	SnippetData	{

				let	textData:	String

			

				init	(text:	String)	{

								textData	=	text

								super.init(snippetType:	.text)

								print	(“Text	snippet	data:	\(textData)”)

				}

}

At	the	top,	we	define	the	new	class	as	a	subclass	of	SnippetData	by	using	the	colon.
Then,	we	add	a	new	textData	property,	which	is	a	string.	Then	we	create	a	new	initializer
that	takes	a	string	as	an	argument,	which	will	be	stored	inside.	Inside	the	initializer,	we
also	call	our	super	class’s	initializer,	which	is	the	SnippetData	initializer.	Since	we	know
that	a	TextData	class	will	always	be	of	SnippetType	.text,	we	can	just	pass	that	to	the
super	class.	Finally,	we	just	print	out	the	string	so	we	can	check	to	see	if	it	worked	later
on.

Now	our	model	is	updated	and	ready	to	hold	some	string	data.

SnippetData.swft:
import	Foundation

enum	SnippetType:	String	{

				case	Text	=	“text”

				case	Photo	=	“photo”

}

class	SnippetData	{

				let	type:	SnippetType

			

				init	(snippetType:	SnippetType)	{

								type	=	snippetType

								print	(“\(type.rawValue)	snippet	created”)

				}

}

class	TextData:	SnippetData	{

				let	textData:	String

			

				init	(text:	String)	{

								textData	=	text

								super.init(snippetType:	.text)

								print	(“Text	snippet	data:	\(textData)”)

				}

}

Text	entry	view	controller
Current	task:	Create	a	new	view	controller	with	a	UITextField	that	saves	the	text	input	in
the	TextSnippet.

Next	on	our	list	is	to	create	a	new	view	controller	that	allows	us	to	actually	enter	text	and
save	it	to	a	new	TextData	object.	This	task	has	a	few	subtasks	related	to	it.	We	need	to	do
the	following:

	
Create	a	new	TextSnippetEntryViewController	class
Set	up	a	UITextView	in	a	new	view	controller	in	our	storyboard
Update	our	initial	ViewController	class	to	present	the
TextSnippetEntryViewController.

Let’s	start	with	creating	a	new	Swift	file	(command	+	N)	named
TextSnippetEntryViewController.swift,	and	then	create	a	new	class	with	the	same
name,	that	inherits	from	UIViewController.	We’ll	also	need	to	import	UIKit	at	the	top	of
the	file.	Then,	we’re	going	to	use	a	class	extension	to	implement	the	UITextViewDelegate
protocol	to	keep	our	code	neat	and	compartmentalized:
import	Foundation

import	UIKit

class	TextSnippetEntryViewController:	UIViewController	{

			

				override	func	viewDidLoad()	{

								super.viewDidLoad()

				}

			

extension	TextSnippetEntryViewController	:	UITextViewDelegate	{

				func	textViewDidEndEditing(textView:	UITextView)	{

				}

}

So	again,	at	the	top,	we	declare	the	new	class	as	a	subclass	of	UIViewController	by	using
the	colon,	then	below	that	we	create	an	extension	to	implement	the	protocol.	We’re	going
to	be	adding	a	UITextView	later	on,	so	we	need	to	make	sure	the	class	implements	the
UITextViewDelegate	protocol.	We	are	also	adding	a	function	stub	that	will	be	called	when
the	text	view	finishes	editing,	which	is	a	part	of	that	protocol.	There’s	not	much	more	we
can	do	in	our	Swift	file	until	we	do	some	work	in	our	storyboard,	so	let’s	move	over	to	our
Main.storyboard	file	now.

From	the	object	library,	drag	in	a	new	view	controller.	First,	we	need	to	change	the	class
of	the	view	controller	to	reference	the	new	class	we	just	made.	Click	on	the	little	yellow
view	controller	icon	on	top	of	the	VC	in	the	storyboard	(it’s	a	yellow	circle	with	a	white
square)	to	select	the	VC.	Then,	go	to	the	identity	inspector	(option+	command	+	3)	and
change	the	Class	attribute	to	TextSnippetEntryViewController:

Figure	6.4:	Changing	the	custom	class	of	the	view	controller	in	a	storyboard

Directly	underneath	the	Custom	Class	section	is	the	Identity	section.	Here,	we’re	going
to	set	the	Storyboard	ID	to	textSnippetEntry.	Later,	we’ll	use	this	ID	to	move	to	this
view	controller	via	code.	I	think	it’s	time	to	add	a	little	color	to	the	project,	so	click	inside
the	new	view	controller	to	select	the	view,	then	set	the	background	color	to	a	nice	orange,
like	in	our	pre-visualizations	(and	while	you’re	at	it,	set	our	old	view	controller’s
background	color	to	the	same	color).	To	set	the	color,	go	to	the	attributes	inspector	on	the
right	sidebar	(fourth	column,	or	option	+	command	+	4).

Next,	drag	a	UITextView	(note:	not	a	UITextField)	onto	the	new	view	controller.	Go	to
the	pin	menu	to	set	the	Auto	Layout	constraints.	Again,	uncheck	the	Constrain	to
margins	checkbox,	then	set	the	top	to	8,	the	bottom	to	20,	and	the	sides	to	0.	Set	the
update	frames	dropdown	to	All,	and	add	the	constraints.	It	should	now	fill	most	of	the
screen,	leaving	a	little	room	at	the	top	and	bottom.

Next,	we	need	to	tell	the	UITextView	that	our	view	controller	is	going	to	be	its	delegate.
Hold	the	control	key	and	click	on	Text	View,	then	drag	to	the	view	controller	icon,	like	in
the	following	image.	Then	select	delegate	from	the	Outlets	dropdown:

Figure	6.5:	Control-dragging	from	our	text	view	to	the	view	controller	to	set	the	delegate

Before	we	leave	the	storyboard,	we	need	to	create	an	outlet	to	our	UITextView	in	our	view
controller	class.	To	do	this,	enter	the	assistant	editor	(command	+	option	+	return),	make
sure	our	TextSnippetEntry…	class	is	visible	in	the	assistant	view,	then	control-drag	from
the	UITextView	into	the	top	of	our	TextSnippetEntry…	class.	Name	the	outlet	textView:

Figure	6.6:	Control	dragging	from	the	text	view	to	the	view	controller	to	create	an	outlet

Now	that	everything	is	set	up	in	our	storyboard,	let’s	go	back	to
TextSnippetEntryViewController.swift	to	finish	adding	the	view	controller	logic.	We
need	this	view	controller	to	do	a	few	things.	First,	it	needs	to	immediately	present	the
keyboard.	Then	we	need	a	button	that	completes	text	entry.	Finally,	we	need	to	dismiss	the
view	controller	when	text	has	finished	editing.

The	first	part	is	very	simple.	In	iOS,	there	is	something	known	as	the	responder	chain.
Basically,	it	lets	the	app	know	which	part	of	the	app	is	directly	responding	to	input	events.
In	this	case,	we	want	our	Text	View	to	be	the	first	responder,	which	will	bring	up	the
keyboard.	To	do	this,	we	just	have	to	write	textView.becomeFirstResponder()	in	our
viewDidLoad()	function.	Now,	once	the	view	controller	loads,	it	will	automatically	bring
up	the	keyboard:
override	func	viewDidLoad()	{

				super.viewDidLoad()

				textView.becomeFirstResponder()

Next,	we	want	to	allow	the	user	to	tell	the	app	they	are	done	entering	text.	To	do	this,	we
are	going	to	add	a	toolbar	above	our	keyboard	that	has	a	Done	button.	When	finished,	it
will	look	like	this:

Figure	6.7:	A	keyboard	accessory	toolbar	with	a	Done	button

We’re	going	to	build	this	toolbar	using	code.	Create	a	new	function	in	our	view	controller
called	createKeyboardToolbar(),	which	returns	a	UIView.	The	function	will	look	like
this:
func	createKeyboardToolbar	()	->	UIView	{

				let	keyboardToolbar	=	UIToolbar(frame:	CGRect(x:	0,	y:	0,	width:

UIScreen.main.bounds.width,	height:	44))

				

				let	flexSpace	=	UIBarButtonItem(barButtonSystemItem:	.flexibleSpace,

target:	nil,	action:	nil)

				let	doneButton	=	UIBarButtonItem(barButtonSystemItem:	.done,	target:

self,	action:	#selector(doneButtonPressed))

				keyboardToolbar.setItems([flexSpace,	doneButton],	animated:	false)

				

				return	keyboardToolbar

}

In	the	first	line,	we	create	a	new	UIToolbar	and	give	it	a	width	that	is	equal	to	the	screen
width,	and	a	height	of	44.	Next,	we	create	a	few	new	UIBarButtonItems	to	put	on	our
toolbar.	If	you	remember	from	earlier,	we	used	a	Flexible	Space	bar	button	item	to
center	our	New	Snippet	button.	Here,	we	create	one	through	code	and	call	it	flexSpace.
Then	we	create	a	Done	button,	which	has	a	target	of	self	and	a	selector	called
doneButtonPressed.	This	means	that	when	someone	presses	our	Done	button,	it	will	look
for	a	function	called	doneButtonPressed	on	the	target	object	of	self.	Finally,	we	add	the
bar	button	items	to	our	toolbar,	and	return	it.

The	doneButtonPressed	function	needs	to	undo	what	we	did	at	the	beginning	of	the	view
controller.	The	opposite	of	becomeFirstResponder(),	we’ll	be	using
resignFirstResponder()	to	let	the	TextView	know	that	it’s	no	longer	being	interacted
with.	The	function	should	look	like	this:
func	doneButtonPressed()	{

				textView.resignFirstResponder()

}

Now	that	we’ve	built	a	functional	toolbar,	we	need	to	add	it	to	our	keyboard.	To	do	this,
we’ll	be	using	the	inputAccessoryView	property	of	our	UITextView	in	the
viewDidLoad()	function.	Our	final	viewDidLoad()	should	now	look	like	this:
override	func	viewDidLoad()	{

				super.viewDidLoad()

				textView.inputAccessoryView	=	createKeyboardToolbar()

				textView.becomeFirstResponder()

}

It	assigns	the	keyboard	toolbar,	and	then	tells	the	TextView	it	is	the	first	responder,
bringing	up	the	keyboard.	Then,	when	you	tap	the	Done	button	on	the	top	of	the	keyboard,
the	keyboard	is	dismissed.

Once	the	keyboard	is	dismissed	and	the	user	has	finished	editing	text,	we	want	to	dismiss
the	view	controller	and	return	to	the	main	screen.	This	is	as	easy	as	one	line	of	code	in	the
function	stub	we	created	earlier	in	our	UITextFieldDelegate	extension:
func	textViewDidEndEditing(textView:	UITextView)	{

				dismiss(animated:	true,	completion:	nil)

}

Since	we	set	our	view	controller	to	be	the	delegate	of	our	UITextView,	the	text	view	will
call	specific	functions	in	our	view	controller	during	certain	events.	Those	functions	are
outlined	in	the	UITextViewDelegate	protocol,	which	our	view	controller	implements.	The
textViewDidEndEditing(textView:	UITextView)	function	is	one	of	those	functions,	and
is	called	when	the	text	view	leaves	edit	mode.

Note
Using	delegate	protocols	is	pretty	common	in	iOS,	and	this	won’t	be	the	last	time	we	use
one	in	this	book.	If	you	forget	what	a	protocol	is,	you	can	go	back	and	brush	up	on	the
features	of	Swift	in	Chapter	3,	Introduction	to	Swift	3.

Now,	when	our	view	controller	is	presented,	it	will	automatically	present	the	keyboard
with	a	toolbar	on	top,	and	when	you	press	the	Done	button	the	keyboard	will	be	dismissed,
and	then	the	view	controller	itself	will	be	dismissed.	All	we	have	left	to	do	is	connect	this
view	controller	to	our	initial	view	controller	and	grab	the	text	data.

Let’s	head	back	to	the	original	view	controller.	First,	we	want	to	change	what	happens
when	we	select	the	text	option	from	our	snippet	type	action	sheet.	We’re	going	to	change
it	so	that	it	only	calls	a	single	(new)	function	called	createNewTextSnippet().	Our
definition	for	our	textAction	in	the	createNewSnippet()	function	should	now	look	like
this:
let	textAction	=	UIAlertAction(title:	“Text”,	style:	.default)	{	(alert:

UIAlertAction!)	->	Void	in

				self.createNewTextSnippet()

}

Now	we	have	to	actually	write	that	createNewTextSnippet()	function.	The	function	will
instantiate	our	TextSnippetEntryViewController,	then	set	it	up,	and	finally	present	it:

func	createNewTextSnippet	()	{

				guard	let	textEntryVC	=

storyboard?.instantiateViewController(withIdentifier:	“textSnippetEntry”)

as?	TextSnippetEntryViewController	else	{

								print(“TextSnippetEntryViewController	could	not	be	instantiated

from	storyboard”)

								return

				}

				

				textEntryVC.modalTransitionStyle	=	.coverVertical

				present(textEntryVC,animated:true,	completion:nil)

}

The	first	line	we	instantiate	a	new	view	controller	using	a	storyboard	ID	(remember	that
from	earlier?).	We’re	also	using	a	guard	statement	here,	so	that	if	our	instantiation	fails,
we	can	catch	the	issue	and	write	out	the	error	to	the	console,	and	assume	that	our
textEntryVC	is	valid	throughout	the	rest	of	the	function.

Then,	we	set	up	the	textEntryVC.	First	we	set	its	modalTransitionStyle	to
.coverVertical,	which	makes	it	slide	up	from	the	bottom	when	presented.	Finally,	we
just	present	the	view	controller!

If	you	build	and	run,	you	can	press	the	New	button,	select	Text,	enter	text	into	the	text
field,	press	Done,	and	return	to	the	main	screen.	Awesome!	However,	you’ll	notice	we
don’t	have	anything	being	written	to	the	command	line	confirming	that	we	created	a	new
TextData	object!	Let’s	fix	that.

Head	back	to	the	TextSnippetEntryViewController.swift	file.	We	are	going	to	create	a
new	property,	but	the	type	of	the	property	is	going	to	be	a	closure.	To	do	this,	add	the
following	line	to	the	top	of	the	class:
var	saveText:	(_	text:	String)	->	Void	=	{	(text:String)	in	}

Here,	we’re	creating	a	new	closure,	called	saveText,	that	takes	one	String	parameter
called	text,	and	returns	nothing.	Then	we	are	giving	it	a	default	value	of	a	closure	with	no
body.	Now,	go	down	to	the	textViewDidEndEditing()	function,	and	just	before	we
dismiss	the	view	controller,	we’re	going	to	execute	our	closure	and	pass	in	our
UITextView’s	text:
func	textViewDidEndEditing(textView:	UITextView)	{

				saveText(textView.text)

				dismiss	(true,	completion:	nil)

}

That’s	great,	but	what	exactly	is	this	doing?	Right	now,	nothing.	We’ve	got	an	empty
closure,	but	the	closure	is	now	taking	the	text	from	our	TextView	as	an	input.	All	we	have
to	do	is	modify	the	body	of	our	closure	to	use	that	text	to	create	a	TextData	snippet	object,
which	is	exactly	what	we’re	going	to	do.

Go	back	to	our	ViewController.swift	file,	to	our	createNewTextSnippet()	function.
Just	below	the	line	where	we	set	the	modalTransitionStyle,	we	are	going	to	redefine	the
body	of	the	other	view	controller’s	saveText	closure:
textEntryVC.modalTransitionStyle	=	.CoverVertical

textEntryVC.saveText	=	{	(text:	String)	in

				let	newTextSnippet	=	TextData(text:	text)

				self.data.append(newTextSnippet)

}

As	you	can	see,	we	modified	the	body	of	the	closure	to	use	the	input	to	create	a	new	text
snippet,	and	save	it	to	our	data	array!	There	are	other	ways	to	accomplish	this	task,	but	we
took	this	route	to	see	an	interesting	way	that	closures	can	be	used	to	accomplish	our	goals.

Now	if	you	build	and	run,	when	you	enter	text	and	hit	done,	the	closure	we	just	wrote	will
be	executed	and	a	new	TextData	object	will	be	created	with	the	contents	of	the
UITextView,	and	it	will	be	saved.

Another	story	completed!	Commit	your	work	(option	+	command	+	C),	and	let’s	move	on.
(You	can	also	remove	the	lorem	ipsum	placeholder	text	from	the	text	view	in	the
storyboard,	if	you	haven’t	done	so	already.)

Here’s	the	current	state	of	our	view	controllers,	if	you	are	having	any	issues:

TextSnippetEntryViewController.swift:
import	Foundation

import	UIKit

class	TextSnippetEntryViewController:	UIViewController	{

				

				@IBOutlet	weak	var	textView:	UITextView!

				

				var	saveText:	(_	text:	String)	->	Void	=	{	(text:String)	in	}

				

				override	func	viewDidLoad()	{

								super.viewDidLoad()

								textView.inputAccessoryView	=	createKeyboardToolbar()

								textView.becomeFirstResponder()

				}

				func	createKeyboardToolbar	()	->	UIView	{

								let	keyboardToolbar	=	UIToolbar(frame:	CGRect(x:	0,	y:	0,	width:

UIScreen.main.bounds.width,	height:	44))

								

								let	flexSpace	=	UIBarButtonItem(barButtonSystemItem:

.flexibleSpace,	target:	nil,	action:	nil)

								let	doneButton	=	UIBarButtonItem(barButtonSystemItem:	.done,

target:	self,	action:	#selector(doneButtonPressed))

								keyboardToolbar.setItems([flexSpace,	doneButton],	animated:	false)

								

								return	keyboardToolbar

				}

				func	doneButtonPressed()	{

								textView.resignFirstResponder()

				}

}

extension	TextSnippetEntryViewController	:	UITextViewDelegate	{

				

				func	textViewDidEndEditing(_	textView:	UITextView)	{

								saveText(textView.text)

								dismiss(animated:	true,	completion:	nil)

				}

}

ViewController.swift:

import	UIKit

class	ViewController:	UIViewController	{

				var	data:	[SnippetData]	=	[SnippetData]()

				

				override	func	viewDidLoad()	{

								super.viewDidLoad()

				}

				@IBAction	func	createNewSnippet(_	sender:	AnyObject)	{

								

								let	alert	=	UIAlertController(title:	“Select	a	snippet	type”,

message:	nil,	preferredStyle:	.actionSheet)

								let	textAction	=	UIAlertAction(title:	“Text”,	style:	.default)	{

(alert:	UIAlertAction!)	->	Void	in

												self.createNewTextSnippet()

								}

								let	photoAction	=	UIAlertAction(title:	“Photo”,	style:	.default)	{

(alert:	UIAlertAction!)	->	Void	in

												self.data.append(SnippetData(snippetType:	.photo))

								}

								let	cancelAction	=	UIAlertAction(title:	“Cancel”,	style:	.cancel,

handler:	nil)

								

								alert.addAction(textAction)

								alert.addAction(photoAction)

								alert.addAction(cancelAction)

								present(alert,	animated:	true,	completion:nil)

				}

				

			func	createNewTextSnippet	()	{

								guard	let	textEntryVC	=

storyboard?.instantiateViewController(withIdentifier:	“textSnippetEntry”)

as?	TextSnippetEntryViewController	else	{

												print(“TextSnippetEntryViewController	could	not	be	instantiated

from	storyboard”)

												return

								}

								

								textEntryVC.modalTransitionStyle	=	.coverVertical

								textEntryVC.saveText	=	{	(text:	String)	in

												let	newTextSnippet	=	TextData(text:	text)

												self.data.append(newTextSnippet)

								}

								present(textEntryVC,animated:true,	completion:nil)

				}

}

PhotoSnippet	implementation
Now	that	we’ve	added	text	snippets,	let’s	allow	the	user	to	create	photo	snippets.	This	user
story	says	“I	want	to	attach	a	photo	to	a	snippet”.	The	associated	tasks	are:

	
Create	a	new	subclass	of	SnippetData	that	represents	the	PhotoSnippet
Create	a	new	view	controller	with	a	UIImagePickerController	that	allows	the	user
to	take	a	picture	and	save	the	data	to	the	PhotoSnippet.

Just	like	our	last	story,	we’re	first	going	to	update	our	data	model	to	support	the	new
snippet	we	are	creating.	Then	we’re	going	to	build	another	data	entry	view	controller,	but
this	time	it	will	let	the	user	take	a	picture.	Don’t	worry,	though;	it	might	be	easier	than	you
think.

Update	SnippetData	model
Current	task:	Create	a	new	subclass	of	SnippetData	that	represents	the	PhotoSnippet.

For	our	photo	snippet,	we’ll	be	creating	another	subclass	of	the	SnippetData	class.
However,	instead	of	holding	a	String	property,	it’s	going	to	hold	a	UIImage.	To	start,	head
over	to	our	SnippetData.swift	file,	and	add	a	new	import	to	the	top	of	the	file,
underneath	the	existing	Foundation	import:
import	Foundation

import	UIKit

This	allows	us	to	use	the	UIImage	class	in	our	new	data	structure.	Next,

create	a	new	class	below	our	TextData	class	called	PhotoSnippet:

class	PhotoData:	SnippetData	{

				let	photoData:	UIImage

			

				init	(photo:	UIImage)	{

								photoData	=	photo

								super.init(snippetType:	.Photo)

								print	(“Photo	snippet	data:	\(photoData)”)

				}

}

This	should	look	almost	exactly	like	our	TextData	class,	except	we	are	replacing	most	of
the	instances	of	the	word	Text	with	the	word	Photo,	for	obvious	reasons.	Like	I	said
earlier,	the	most	important	change	is	that	we	are	now	storing	a	UIImage	instead	of	a
String.

PhotoSnippet	data	entry
Current	task:	Create	a	new	view	controller	with	a	UIImagePickerController	that	allows
the	user	to	take	a	picture	and	save	the	data	to	the	PhotoData	snippet.

With	our	data	model	updated,	we	now	need	to	create	a	way	for	the	user	to	take	a	photo	and
save	it.	To	do	this	we	are	going	to	use	a	UIImagePickerController,	which	is	a	very
convenient	class	that	allows	us	to	let	the	user	take	a	picture	or	select	a	photo	from	their
library.	Because	UIImagePickerController	inherits	from	UIViewController,	we	don’t
even	need	to	create	a	new	view	controller	class	of	our	own!

To	get	started,	let’s	go	to	our	base	view	controller	class,	ViewController.swift.	Like	in
the	last	section,	we	are	going	to	be	adding	an	extension	to	our	ViewController	class	to
handle	a	delegate	protocol	so	that	it	can	implement	some	callback	functions	of	the
UIImagePickerController.	Let’s	update	our	class	declaration	to	include	the	necessary
extension	below	the	main	class:
extension	ViewController	:	UIImagePickerControllerDelegate,

UINavigationControllerDelegate	{

				

}

Here,	we	added	UIImagePickerControllerDelegate	and
UINavigationControllerDelegate,	to	a	UIViewController	class	extension.	While	we
won’t	be	using	any	Navigation	Controller	delegate	functions,	we	still	need	to	include	it,
since	UIImagePickerController	inherits	from	UINavigationController.

At	the	top	of	our	class,	we	are	going	to	create	a	new	instance	of	the	image	picker	so	that
we	can	use	it	throughout	our	code.	Just	below	the	line	where	we	initialize	our	array	of
SnippetData,	we’ll	add	our	image	picker:
var	data:	[SnippetData]	=	[SnippetData]()

let	imagePicker	=	UIImagePickerController()

Then,	we	need	to	assign	its	delegate,	so	it	knows	which	object	is	responsible	for	handling
the	functions	that	it	is	delegating.	In	this	case,	we	are	just	going	to	handle	the	delegate
functions	right	here	in	our	ViewController	class,	so	we’ll	assign	the	image	picker’s
delegate	in	the	viewDidLoad().	Our	updated	viewDidLoad()	function	should	now	look
like	this:
override	func	viewDidLoad()	{

				super.viewDidLoad()

				imagePicker.delegate	=	self

}

Great!	Now	we	have	created	a	new	UIImagePickerController,	and	set	up	our
ViewController	class	to	be	its	delegate.	Next,	let’s	create	a	createNewPhotoSnippet()
function,	much	like	we	did	with	the	text	snippet.	Then,	in	our	photoAction	completion
handler,	we’ll	have	it	call	the	new	function:
let	photoAction	=	UIAlertAction(title:	“Photo”,	style:	.default)	{	(alert:

UIAlertAction!)	->	Void	in

			self.createNewPhotoSnippet()

}

As	for	the	createNewPhotoSnippet()	function	itself,	it	needs	to	perform	two	tasks:	set	up
our	image	picker,	and	present	the	view	controller:
func	createNewPhotoSnippet	()	{

				guard	UIImagePickerController.isSourceTypeAvailable(.camera)	else	{

								print	(“Camera	is	not	available”)

								return

				}

			

				imagePicker.allowsEditing	=	true

				imagePicker.sourceType	=	.camera

			

				present(imagePicker,	animated:	true,	completion:	nil)

}

At	the	top	of	the	function,	we	use	another	guard	statement	to	check	if	the	camera	source
type	is	available.	If	the	camera	is	unavailable	(for	example,	if	you	try	to	run	this	in	the
simulator),	then	our	code	can	print	out	the	issue,	and	return	gracefully.

Then,	we	do	some	basic	setup	on	our	image	picker.	First,	we	set	allowsEditing	to	true,
which	lets	the	user	crop	the	photo	they	take	into	a	square.	Then	we	set	the	sourceType	of
our	image	picker	to	camera	(other	source	types	include	the	user’s	photo	library,	or	the
user’s	saved	photos).	Finally,	we	present	the	Image	Picker	View	controller.

Before	we	can	use	the	camera,	however,	we	need	to	add	some	information	to	our	app’s
Info.plist	file.	When	the	device	asks	the	user	if	it	can	use	the	camera,	it	needs	some	text
to	show	the	user	so	they	know	why	the	camera	is	being	used.	To	add	this,	select	the
Info.plist	file	from	the	project	navigator.	Add	a	row	by	hovering	over	an	existing	row,
and	clicking	the	little	plus-button	that	shows	up.	For	the	key,	write	Privacy	-	Camera
Usage	Description	(it	should	autocomplete).	Then	for	the	description,	you	can	write
whatever	you	like—I	wrote	Snippets	needs	to	access	the	camera	to	create	photo
snippets.

Figure	6.8:	Adding	a	camera	privacy	usage	description	to	our	app’s	info	file

At	this	point,	you	should	be	able	to	run	the	project	on	your	device	(with	a	camera!),	and
see	the	UIImagePickerController	in	action.	Tap	the	New	button,	then	select	Photo,	and	a
familiar	image-taking	interface	should	slide	up,	allowing	you	to	take	a	picture.	Make	sure
to	allow	the	app	to	access	the	camera	when	prompted	!	Now	all	that	is	left	to	do	is	to
implement	a	delegate	function	that	tells	the	app	what	to	do	with	the	pictures	that	we	take:

Figure	6.9:	Snippets	asking	for	permission	to	use	the	camera.

Inside	our	class	extension,	we’re	going	to	implement	a	function	that	will	be	called	when
we	finish	taking	our	picture.	As	part	of	the	image	picker	delegate	protocol,	it	will	be	called
automatically:
func	imagePickerController(_	picker:	UIImagePickerController,

didFinishPickingMediaWithInfo	info:	[String	:	Any])	{

				guard	let	image	=	info[UIImagePickerControllerEditedImage]	as?	UIImage

else	{

								print(“Image	could	not	be	found”)

								return

				}

			

				let	newPhotoSnippet	=	PhotoData(photo:	image)

				self.data.append(newPhotoSnippet)

			

				dismiss(animated:	true,	completion:	nil)

}

The	first	thing	we	do	is	use	another	guard	statement	to	make	sure	we	can	find	a	valid
edited	photo	from	our	image	picker.	To	find	the	image,	we’re	looking	inside	the	info
array	that	the	function	is	passed,	which	contains	a	handful	of	information.

Note
When	dealing	with	delegate	protocols	like	this,	it’s	best	to	check	out	the	Apple

documentation	to	see	what	is	going	on	inside.	That’s	how	we	learn	about	what	functions
exist	to	implement,	and	what	might	be	inside	something	like	the	“info”	array	we	used
previously.

After	we	make	sure	that	we	have	a	valid	image,	we	create	a	new	photo	snippet	by
initializing	it	with	said	image.	Then,	we	add	the	photo	snippet	to	our	data	array.	Finally,
we	tell	the	image	picker	that	it	can	be	dismissed.

If	you	try	running	the	app	again,	you’ll	notice	that	when	you	finish	taking	the	photo,	the
app	will	write	out	the	console,	letting	us	know	that	we	created	a	new	PhotoData	object.
Success!

Hopefully	you’ve	seen	how	powerful	classes	can	be	hidden	throughout	the	iOS	SDK.	It
took	significantly	less	effort	to	take,	crop,	and	save	a	picture	than	it	did	to	enter	and	save
some	text	in	the	last	part.

Again,	make	sure	to	commit	your	work	(option	+	command	+	C)	before	moving	on.
Here’s	the	new	code	we	added	to	ViewController,	in	case	you	have	any	issues:
class	ViewController:	UIViewController,

			

				var	data:	[SnippetData]	=	[SnippetData]()

				let	imagePicker	=	UIImagePickerController()

				override	func	viewDidLoad()	{

								super.viewDidLoad()

								imagePicker.delegate	=	self

				}

			

			@IBAction	func	createNewSnippet(_	sender:	AnyObject)	{

								

								let	alert	=	UIAlertController(title:	“Select	a	snippet	type”,

message:	nil,	preferredStyle:	.actionSheet)

								let	textAction	=	UIAlertAction(title:	“Text”,	style:	.default)	{

(alert:	UIAlertAction!)	->	Void	in

												self.createNewTextSnippet()

								}

								let	photoAction	=	UIAlertAction(title:	“Photo”,	style:	.default)	{

(alert:	UIAlertAction!)	->	Void	in

												self.createNewPhotoSnippet()

								}

								let	cancelAction	=	UIAlertAction(title:	“Cancel”,	style:	.cancel,

handler:	nil)

								

								alert.addAction(textAction)

								alert.addAction(photoAction)

								alert.addAction(cancelAction)

								present(alert,	animated:	true,	completion:nil)

				}

				

				func	createNewPhotoSnippet	()	{

								guard	UIImagePickerController.isSourceTypeAvailable(.camera)	else	{

												print	(“Camera	is	not	available”)

												return

								}

								

								imagePicker.allowsEditing	=	true

								imagePicker.sourceType	=	.camera

								

								present(imagePicker,	animated:	true,	completion:	nil)

				}

}

			

extension	ViewController	:	UIImagePickerControllerDelegate,

UINavigationControllerDelegate	{

				

				func	imagePickerController(_	picker:	UIImagePickerController,

didFinishPickingMediaWithInfo	info:	[String	:	Any])	{

								guard	let	image	=	info[UIImagePickerControllerEditedImage]	as?

UIImage	else	{

												print(“Image	could	not	be	found”)

												return

								}

								

								let	newPhotoSnippet	=	PhotoData(photo:	image)

								self.data.append(newPhotoSnippet)

								

								dismiss(animated:	true,	completion:	nil)

				}

}

Scroll	through	snippets
All	this	time,	we’ve	been	building	out	our	data	model	and	adding	ways	to	input	new
information.	However,	we	still	can’t	see	any	of	the	snippets	we’ve	been	making!	Now	it’s
time	to	actually	let	the	user	see	what	they’ve	been	saving.

The	next	story	is	“I	want	to	scroll	through	my	snippets”.	The	tasks	that	we	need	to
complete	are:

	
Adding	a	UITableView	to	our	first	scene,	with	two	prototype	cells	for	the
TextSnippet	and	the	PhotoSnippet
Programming	the	view	controller	to	display	the	information	from	our	data	array	in
our	UITableView

To	satisfy	our	user	story,	we’re	going	to	use	a	UITableView,	which	allows	us	to	scroll
through	cells	of	data.	We’re	also	going	to	create	our	own	custom	cells	(called	prototype
cells)	to	define	a	distinct	look	for	both	the	Text	and	Photo	type	cells.	Then,	we	are	going
to	populate	the	table	view	with	data	from	our	data	array.

Create	prototype	cells
Current	task:	Add	a	UITableView	to	our	first	scene,	with	two	prototype	cells	for	the
TextSnippet	and	the	PhotoSnippet.

The	first	part	of	this	story	has	us	building	out	custom	views	to	display	the	snippet	data
we’ve	been	creating.	As	we	just	discussed,	we’ll	be	using	a	UITableView	with	prototype
cells.	The	table	view	is	a	special	type	of	view	that	will	manage	and	display	a	list	of	data
cells	that	the	user	can	scroll	through.	However,	in	order	to	use	a	table	view,	we	are	going
to	once	again	use	a	protocol.

Head	over	to	ViewController.swift,	and	let’s	add	yet	another	extension	to	implement	a
protocol:
extension	ViewController:	UITableViewDataSource	{

				

}

The	new	protocol	that	we	added	is	UITableViewDataSource,	which	lets	the	table	view
know	which	object	is	responsible	for	telling	it	what	its	data	is.	In	the	next	task	we	will
actually	implement	some	of	that	protocol’s	functions,	but	for	now	we	just	need	to	let	the
class	know	that	it	implements	that	protocol.

Let’s	go	back	to	Main.storyboard.	On	our	initial	view	controller	(the	one	with	the	New
snippet	button),	we’re	going	to	add	a	Table	View	(not	a	Table	View	Controller)	from	the
object	library.	Just	drag	it	out	to	the	center	and	resize	it	so	the	sides	touch	the	edges	of	the
screen,	the	top	touches	the	bottom	of	the	status	bar,	and	the	bottom	touches	the	top	of	the
toolbar.

Now	we’re	going	to	use	Auto	Layout	to	configure	our	table	view.	Select	the	table	view,
and	then	go	to	the	pin	menu.	On	the	top	area,	we’re	going	to	set	constraints	for	all	four
sides.	Again,	first	uncheck	the	box	that	says	Constrain	to	margins,	then	set	all	four	sides
to	0.	Remember	to	click	on	the	little	red	lines	next	to	the	numbers	to	create	that	constraint.
Then	set	Update	frames	to	All,	and	click	Add	Constraints.

Now	that	our	table	view	is	in	our	view	and	set	up	with	Auto	Layout,	we	want	to	set	up	its
data	source.	Earlier,	we	set	our	ViewController	class	to	implement	the
UITableViewControllerDataSource	protocol,	so	we	want	to	let	our	new	table	view	know
that	ViewController	will	manage	its	data	source.	To	do	this,	control-drag	from	the	table
view	up	to	the	view	controller	icon	on	the	top	of	our	view	controller:

Figure	6.10:	Control-dragging	from	the	table	view	to	the	view	controller	to	set	the	data
source

When	you	let	go,	it	should	show	two	outlets:	delegate,	and	data	source.	Select	the
dataSource	outlet	to	connect	the	two	objects	together.

To	finish	up	with	the	table	view	itself,	select	the	table	view	and	check	out	the	Attributes
Inspector	(option	+	command	+	4).	In	the	second	section,	you	should	set	the	Separator
attribute	to	None.	This	will	get	rid	of	the	little	lines	that	show	up	between	each	cell.
Finally,	scroll	down	toward	the	bottom	to	the	View	category.	Change	the	background	color
to	Clear	color.	This	will	let	us	see	through	to	the	orange	background	color	of	the	app.

Next,	it’s	time	to	create	our	custom	cells.	Before	we	create	the	visual	parts,	we’re	going	to
need	some	very	simple	custom	classes	to	back	them	up.	Create	two	new	files	(command	+
N),	and	name	the	first	one	TextSnippetCell,	and	the	second	PhotoSnippetCell.	In	each
file,	we’re	going	to	create	a	very	simple	subclass	of	the	UITableViewCell,	which	is	the
default	cell	type	in	Table	View:

TextSnippetCell.swift:
import	UIKit

class	TextSnippetCell:	UITableViewCell	{

			

				@IBOutlet	var	label:	UILabel!

}

PhotoSnippetCell.swift:

import	UIKit

class	PhotoSnippetCell:	UITableViewCell	{

			

				@IBOutlet	var	photo:	UIImageView!

}

In	each	subclass,	we’re	only	adding	one	interface	builder	outlet,	which	will	point	to	the	UI
element	where	we’ll	be	displaying	our	data.

Back	in	the	storyboard,	we	are	going	to	create	the	two	cells	that	represent	the	classes	we
just	made.	In	the	object	inspector,	search	for	the	UITableViewCell,	and	drag	two	into	our
table	view:

Figure	6.11:	Two	blank	table	view	cells	in	our	table	view

Right	now,	each	of	these	cells	represents	the	standard	UITableViewCell,	but	we	have	to
assign	them	a	custom	class	type	using	our	new	TextSnippetCell	and	PhotoSnippetCell
classes.	Let’s	set	up	the	text	cell	first.

Select	the	first	cell,	then	go	to	its	Identity	Inspector	(option	+	command	+	3).	In	the
Custom	Class	section,	set	its	class	to	TextSnippetCell.	Now	the	prototype	cell	knows
that	it	is	actually	of	the	class	TextSnippetCell.	Next,	go	to	the	Attributes	Inspector,	and
change	the	Identifier	attribute	to	textSnippetCell.	This	is	unrelated	to	the	class,	but
we’ll	be	using	it	later	as	an	ID	to	reference	the	type	of	cells	we	want	to	use.

Next,	we’ll	follow	the	same	instructions	as	above,	but	for	the	second	prototype	cell.
Instead,	we’ll	set	the	class	to	PhotoSnippetCell,	and	the	identifier	to	photoSnippetCell.

Now	it’s	time	to	add	custom	UI	elements	to	our	cells,	so	that	they	can	display	our	user
data.	Drag	a	UILabel	out	onto	our	top	(text)	cell,	and	a	UIImageView	onto	our	bottom
(photo)	cell.

For	the	UILabel,	in	the	Attributes	Inspector,	set	the	Lines	attribute	to	0.	Setting	Lines	to	0
allows	the	label	to	have	as	many	lines	as	it	needs	without	a	cutoff.	We	need	this,	since	our
users	are	allowed	to	write	as	much	text	as	they	want.	Our	UILabel	needs	to	grow	to
accommodate	the	user’s	text.

To	finish	setting	up	the	UILabel,	we	need	to	configure	its	Auto	Layout	constraints.	These
are	going	to	be	pretty	simple.	Select	the	label,	and	go	to	the	Pin	menu.	At	the	top,	enable
all	four	directional	constraints,	and	set	them	all	to	0.	This	time,	you	can	leave	the
Constrain	to	margins	checkbox	enabled,	since	we	actually	want	to	use	the	margins	this
time.	Set	Update	Frames	to	All	and	press	Add	Constraints	to	finish	setup.	Our	UILabel
is	now	complete.

Basically,	what	we	did	was	anchor	the	height	of	the	table	view	cell	to	our	label.	As	more
lines	are	added	to	the	label,	the	cell	will	expand,	since	its	edges	are	constrained	to	the
label’s	edges.

Next	we’ll	set	up	the	UIImageView	in	our	photo	cell.	The	photo	doesn’t	need	any	attributes
changed,	so	we	can	get	right	to	setting	the	auto	layout	constraints.	From	the	Pin	menu,	we
are	once	again	going	to	set	all	four	directional	pins	to	0,	and	we’re	going	to	uncheck	the
Constrain	to	margins	box,	since	we	want	the	image	to	stretch	to	the	edge	of	the	screen.
This	time,	we	are	also	going	to	use	the	Aspect	Ratio	constraint	further	down,	so	check
that	off	as	well.	Now	set	Update	Frames	to	All	and	press	Add	Constraints	to	set	the
constraints.

There	are	still	more	constraints	to	add,	however!	Select	the	image	view	again,	and	go	to
the	Align	menu	(directly	to	the	left	of	the	Pin	menu).	Here,	we’re	going	to	add
Horizontally	in	Container	with	a	value	of	0,	and	Vertically	in	Container	with	a	value
of	0.	Set	Update	Frames	to	All	and	press	Add	Constraints	to	set	the	constraints.

So	far	what	we’ve	done	is	tell	the	image	view	to	expand	all	the	way	to	the	edges	of	its
containing	cell,	and	to	stay	centered	vertically	and	horizontally.	However,	what	we	want	is
for	the	image	to	be	perfectly	square,	and	stretch	the	cell	to	be	as	tall	as	it	is	wide.

That’s	where	the	aspect	ratio	constraint	comes	in.	If	the	pin	constraints	are	pulling	our
image	view	to	the	edges	of	the	cell,	but	the	image	is	then	forcing	itself	to	be	the	same
height	as	its	width,	it	will	stretch	the	cell	out	vertically,	too.	For	this	to	work,	we	need	to
set	the	aspect	ratio	constraint	to	be	1:1.	Find	the	aspect	ratio	constraint	in	the	document
outline	(underneath	our	image	view),	and	then	in	the	Inspector	set	its	multiplier	to	1:1:

Figure	6.12:	Finding	the	aspect	ratio	constraint	in	the	document	outline	(left);	setting	its
multiplier	(right)

If	everything	went	well,	your	constraints	should	be	all	set	up	now!	However,	it’s	worth
noting	that	the	cell	height	won’t	automatically	update	live	in	your	storyboard,	so	the	image
will	go	off	the	bottom	of	the	cell.	When	you	run	the	app	later,	though,	everything	will	be
fine!

Now	that	all	of	our	Auto	Layout	is	set	up,	we	have	one	last	thing	to	do:	we	need	to
connect	the	outlets	in	our	TextSnippetCell	and	PhotoSnippetCell	to	our	storyboard.
Click	on	the	textSnippetCell	object	in	the	document	outline,	and	then	navigate	to	the
Connections	Inspector	(option	+	command	+	6).	Find	the	label	outlet	in	the	Outlets
section,	then	click	and	drag	from	the	circle	onto	the	label	in	the	cell	to	connect	them:

Figure	6.13:	Connecting	the	label	outlet	to	the	UILabel	in	the	storyboard

Do	the	same	with	the	photo	cell	and	its	photo	outlet	with	the	image	view:

Figure	6.14:	Connecting	the	photo	outlet	to	the	UIImage	in	the	storyboard

And	now	our	views	are	fully	configured!

Populate	table	view
Current	task:	Program	the	view	controller	to	display	the	information	from	our	data	array	in
our	UITableView.

With	our	custom	table	view	cells	configured,	we	now	have	to	set	up	the	table	view’s	data
source.	The	prototype	cells	we	built	in	our	storyboard	were	just	visual	blueprints	for	cells.
When	our	application	is	running,	the	table	view	will	ask	its	data	source	to	tell	it	what
information	it	should	present	to	the	user.	The	data	source	is	responsible	for	choosing	what
type	of	cell	to	use,	and	what	data	to	fill	those	cells	with.

Let’s	open	up	the	ViewController.swift	file,	since	that	is	the	class	that	is	our	table
view’s	data	source.	First,	we’re	going	to	need	a	reference	to	our	table	view,	so	at	the	top	of
the	class,	add	an	@IBOutlet	for	the	table	view,	like	so:
@IBOutlet	weak	var	tableView:	UITableView!

Then,	in	Main.storyboard,	use	the	assistant	editor	to	connect	the	outlet	to	our	table	view:

Figure	6.15:	Dragging	from	the	IBOutlet	in	the	view	controller	into	the	storyboard	to
make	a	connection

Now,	in	our	viewDidLoad()	function,	we	can	set	some	properties	on	our	table	view.	Right
now,	if	you	were	to	run	the	app,	the	cells	on	the	table	view	wouldn’t	expand	vertically	to
match	the	content.	That’s	because	by	default,	UITableViewCells	have	a	standard	height	of
44	points.	You	can	set	a	custom	height	in	the	storyboard,	but	we	don’t	want	a	single
custom	height,	we	want	a	dynamic	height	based	on	the	content.	We	have	to	tell	the	table
view	that	we	want	that	behavior:
override	func	viewDidLoad()	{

				super.viewDidLoad()

				imagePicker.delegate	=	self

			

				tableView.estimatedRowHeight	=	100

				tableView.rowHeight	=	UITableViewAutomaticDimension

}

In	our	viewDidLoad()	function,	we	added	two	lines;	the	first	one	gives	the	table	view	an
estimated	height	(this	mostly	just	has	to	not	be	0),	and	the	second	line	tells	the	table	view
that	the	row	height	will	be	automatic.	Now	our	table	view	will	let	Auto	Layout
dynamically	resize	each	cell	based	on	the	content	and	our	Auto	Layout	constraints.

Next,	we	are	going	to	implement	some	functions	from	the	UITableViewDataSource
protocol	class	extension	that	we	added	a	little	while	ago.	The	functions	that	we	are	going
to	add	are	as	follows:
func	numberOfSections(in	tableView:	UITableView)	->	Int	{

}

func	tableView(_	tableView:	UITableView,	numberOfRowsInSection	section:

Int)	->	Int	

			

}

func	tableView(_	tableView:	UITableView,	cellForRowAt	indexPath:	IndexPath)

->	UITableViewCell	{

			

}

The	first	function	needs	to	return	an	Int	that	tells	the	table	view	how	many	sections	it	will
have.	A	section	in	a	table	view	is	used	to	group	different	parts	of	the	table	(think	about	the
Settings.app),	and	each	section	can	have	a	header.	In	our	app,	we	are	just	going	to	have
one	big	section	with	no	header,	so	we’re	just	going	to	return	1:
func	numberOfSections(in	tableView:	UITableView)	->	Int	{

				return	1

}

The	second	function	tells	the	table	how	many	rows	are	in	a	given	section.	Since	we	only
have	one	section,	we	don’t	have	to	take	into	account	which	section	it	is	asking	about;	we
only	have	to	return	a	single	value.	Since	our	table	is	going	to	store	all	of	our	snippets,	the
number	of	rows	will	be	equal	to	the	number	of	snippet	data	objects	we	have.	That	means
it’s	as	simple	as	returning	the	length	of	our	data	array:
func	tableView(_	tableView:	UITableView,	numberOfRowsInSection	section:

Int)	->	Int	{

				return	data.count

}

At	this	point,	our	table	knows	how	many	sections	and	rows	it	has.	Now	it	just	needs	to
know	what	goes	in	each	cell.	For	that,	we’re	going	to	use	the	last	function,	tableView(
cellForRowAtIndexPath:).	This	function	gives	us	an	index,	and	asks	for	us	to	give	it	a
cell.

Before	we	look	at	the	code,	let’s	talk	about	how	this	will	work.	We’re	going	to	use	the
index	to	ask	our	data	array	what	data	is	at	that	index.	Then	we’re	going	to	check	what	type
of	data	it	is,	and	then	configure	a	new	cell	based	on	that	information:

func	tableView(_	tableView:	UITableView,	cellForRowAt	indexPath:	IndexPath)

->	UITableViewCell	{

				

				let	cell:	UITableViewCell

				let	sortedData	=	data.reversed()	as	[SnippetData]

				let	snippetData	=	sortedData[indexPath.row]

				switch	snippetData.type

				{

				case	.text:

								cell	=	tableView.dequeueReusableCell(withIdentifier:

“textSnippetCell”,	for:	indexPath)

								(cell	as!	TextSnippetCell).label.text	=	(snippetData	as!

TextData).textData

				case	.photo:

								cell	=	tableView.dequeueReusableCell(withIdentifier:

“photoSnippetCell”,	for:	indexPath)

								(cell	as!	PhotoSnippetCell).photo.image	=	(snippetData	as!

PhotoData).photoData

				}

				

				return	cell

}

Let’s	start	from	the	top.	First,	we	declare	a	cell	that	will	be	a	UITableViewCell.	We	don’t
assign	it	a	value	just	yet.	Then,	underneath	that,	we	sort	our	data.	Since	we	want	our	table
view	to	list	our	snippets	in	reverse	chronological	order,	we	need	get	the	reversed	version
of	our	data	array.	Now	that	we	have	a	sorted	data	array,	we	ask	for	the	specific	data	at	the
specified	row.	(Note	how	this	functions	passes	in	an	indexPath	value	as	a	parameter.)

Once	we	have	the	specific	data	that	we	are	making	a	cell	for,	we	need	to	know	what	kind
of	data	it	is,	so	we	can	create	the	right	kind	of	cell.	To	do	that,	we	use	a	switch	statement
with	the	snippetData’s	type,	which	is	an	enum.	Then	we	make	two	cases,	depending	on	if
the	type	enum	was	.text,	or	.photo.

In	the	case	that	the	type	was	.text,	we	want	to	create	a	cell	using	the	textSnippetCell
prototype	cell	from	our	storyboard.	To	do	that,	we	call	the	function
dequeueReusableCell(),	and	pass	in	the	String	identifier	for	the	prototype	cell	we	want
to	use.

Note
UITableView	is	smart,	and	doesn’t	create	and	delete	new	table	view	cells	all	the	time.
Instead,	it	only	has	a	handful	of	cells	that	it	reuses	as	cells	go	off	the	screen,	and	new	ones
come	on	screen.	Imagine	if	we	had	tens	of	thousands	of	pieces	of	data…	we’d	run	out	of
memory	trying	to	create	that	many	cells!	So	when	you	use	dequeueReusableCell(),	you
are	actually	just	asking	the	table	view	for	an	already	existing	and	available	cell	of	the	right
type.

After	we	dequeue	the	cell,	we	want	to	take	the	text	from	our	data,	and	put	it	into	the	label
in	our	cell.	However,	since	cell	thinks	it	is	a	UITableViewCell	class,	and	snippetData
thinks	it	is	a	SnippetData	class,	we	need	to	cast	the	data	to	the	appropriate	subclass:

(cell	as!	TextSnippetCell).label.text	=	(snippetData	as!	TextData).textData

We	tell	the	cell	that	it	should	be	read	as	a	TextSnippetCell,	and	the	snippetData	that	it
should	be	read	as	a	TextData	object.	Then	we	can	access	their	properties,	because	the
compiler	knows	what	type	they	are.	The	exclamation	point	(!)	forces	the	cast,	otherwise
we’d	end	up	with	an	optional	value.

Underneath	all	that,	we	just	do	the	same	thing,	except	for	the	photo	cell.	Here	we	use	the
cell	identifier	photoSnippetCell,	and	then	cast	cell	as	PhotoSnippetCell	and
snippetData	as	PhotoData.	Also,	instead	of	setting	the	label’s	text	property	in	the	cell,	we
are	setting	the	image	property	of	the	photo	(which	is	a	UIImageView).

At	the	end,	we	just	return	the	cell.

If	you	were	to	build	and	run	on	your	device	and	create	a	new	snippet…	nothing	happens.
Where	is	our	snippet?	Well,	our	table	view	has	a	data	source,	but	it	doesn’t	know	when	to
load	the	data	from	the	data	source.	Naturally,	it	tries	to	load	the	data	when	the	app	starts,
but	in	our	case	there’s	no	data	yet.

Luckily,	this	is	a	quick	fix.	We	want	to	refresh	the	data	whenever	one	of	our	popover	view
controllers	is	dismissed.	To	do	this,	add	this	function	to	the	class,	near	the	top	(under
viewDidLoad()	is	a	good	place	for	it):
override	func	viewWillAppear(_	animated:	Bool)	{

				tableView.reloadData()

}

The	viewWillAppear()	function	is	called	just	before	the	view	controller	becomes	visible
to	the	user,	making	it	the	perfect	time	to	tell	our	tableView	to	reload	its	data.

Build	and	run	the	project	now,	create	a	new	snippet…	and	it	works!	We	can	now	create	as
many	snippets	as	we	want,	and	scroll	through	them.	Our	app	is	almost	complete!
Remember	to	commit	your	work	(option	+	command	+	C),	and	now	let’s	move	on	to	our
final	user	story.

Snippet	dates
Our	last	story	is	a	pretty	simple	one:	“I	want	to	see	the	date	a	snippet	was	made”.	To	do
this,	we’re	going	to	have	to	accomplish	the	following	tasks:

	
Appending	our	base	SnippetData	to	hold	a	date
When	a	snippet	is	created,	saving	the	current	date	to	our	data	model
Adding	a	UILabel	to	our	prototype	cells	to	hold	date	information,	and	assign	the	text
in	our	view	controller

This	should	be	a	fairly	straightforward	feature	to	add,	especially	since	we	set	up	the	rest	of
our	code	pretty	neatly.	Let’s	get	to	it.

Update	SnippetData	model
Current	task:	Append	our	base	SnippetData	to	hold	a	date.

First,	let’s	make	a	quick	update	to	our	data	model,	in	SnippetData.swift.	In	our	base
class	of	SnippetData,	we	want	to	add	a	new	property	called	date,	of	the	type	Date.	We
then	also	need	to	update	all	of	our	initializers	to	accept	a	value	for	the	date,	and	we	then
assign	that	date	to	our	date	property.	Here	is	the	updated	source	code	for	our	data	model,
with	the	changed	lines	highlighted:
class	SnippetData	{

				let	type:	SnippetType

				let	date:	Date

			

				init	(snippetType:	SnippetType,	creationDate:	Date)	{

								type	=	snippetType

								date	=	creationDate

								print	(“\(type.rawValue)	snippet	created	at	\(date)”)

				}

}

class	TextData:	SnippetData	{

				let	textData:	String

			

				init	(text:	String,	creationDate:	Date)	{

								textData	=	text

								super.init(snippetType:	.text,	creationDate:	creationDate)

								print	(“Text	snippet	data:	\(textData)”)

				}

}

class	PhotoData:	SnippetData	{

				let	photoData:	UIImage

			

				init	(photo:	UIImage,	creationDate:	Date)	{

								photoData	=	photo

								super.init(snippetType:	.photo,	creationDate:	creationDate)

								print	(“Photo	snippet	data:	\(photoData)”)

				}

}

Simply	enough,	our	updated	data	model	is	complete.

Save	data	to	model
Current	task:	When	a	snippet	is	created,	save	the	current	date	to	our	data	model.

Next,	we	need	to	actually	assign	the	current	date	to	our	data	when	we	create	it.	Luckily,
this	is	also	pretty	easy.	If	you	create	a	new	Date	object	with	no	arguments,	it	will	default
to	storing	the	current	date.	So	a	simple	line	like	this	will	give	you	the	current	date:
let	now	=	Date()

Taking	this	into	account,	we	need	to	go	into	our	ViewController.swift	file,	find	the	two
places	where	we	create	our	new	TextData	and	PhotoData	objects,	and	update	the
initializers	to	pass	in	the	current	date.	In	the	createNewTextSnippet()	function,	we	are
going	to	change	this	line:
let	newTextSnippet	=	TextData(text:	text)

…	to	this:
let	newTextSnippet	=	TextData(text:	text,	creationDate:	NSDate())

Since	Date()	creates	a	new	instance	of	an	Date	object	with	the	current	date,	we	can	just
create	it	and	pass	it	into	our	TextData	object	at	the	same	time.

Now,	if	we	go	down	to	our	imagePickerController(
didFinishPickingMediaWithInfo:)	function	where	we	create	our	PhotoData	object,	we
can	update	it	in	a	similar	way:
let	newPhotoSnippet	=	PhotoData(photo:	image,	creationDate:	Date())

Now	both	of	our	snippet	data	structures	are	aware	of	the	date	they	were	created,	and	we
just	need	to	give	them	a	place	to	be	seen	in	our	cells.

Update	view	and	controller
Current	task:	Add	a	UILabel	to	our	prototype	cells	to	hold	date	information,	and	assign	the
text	in	our	view	controller.

This	is	the	last	task	we	need	to	complete	to	finish	our	MVP,	so	let’s	jump	to	it!

To	show	the	user	the	date	the	snippet	was	created,	we’re	going	to	create	a	little	date	bar
underneath	our	main	content	view	in	each	snippet	using	a	new	UIView	and	a	UILabel.
Open	Main.storyboard,	and	let’s	get	to	work	on	the	textSnippetCell	first.

To	begin,	we’re	going	to	delete	the	bottom	constraint	on	our	label	in	the
textSnippetCell.	That’s	because	we’re	going	to	add	a	new	view	underneath	the	label,
and	constrain	it	to	that	instead.	To	delete	that	constraint,	click	on	the	label	and	then	from
the	Size	Inspector	(option	+	command	+	5),	double	click	the	constraint	that	goes	from	the
bottom	margin	to	Superview:

Figure	6.16:	Selecting	the	bottom	constraint	from	the	Size	Inspector

This	should	highlight	the	constraint	in	the	Document	Outline,	where	you	can	then	delete
it	by	pressing	the	delete	key	(remember,	you	can	show	the	document	outline	from	the
Editor	menu	on	the	menu	bar).

Next,	from	the	object	library,	drag	in	a	UIView	into	the	text	snippet	cell	prototype.	From
the	Attributes	Inspector,	set	the	background	color	of	the	view	to	Light	Gray.	Then,	from
the	Pin	menu,	turn	off	Constrain	to	margins	and	set	the	following	constraints:	Left:	0,
Bottom:	0,	Right:	0,	Height:	24.	Set	it	to	update	the	frames,	and	click	Add	Constraints.
Resize	our	big	label	so	that	its	bottom	is	above	our	gray	view	(If	the	cell	is	too	small,	you
can	select	the	cell	from	the	Document	Outline,	then	from	the	Size	Inspector	increase	the
height	to	around	80	points):

Figure	6.17:	Our	new	gray	view	along	the	bottom	of	the	cell,	with	the	label	resized	without
overlap

Now	select	the	label	again,	and	go	to	the	Pin	menu.	Turn	off	Constrain	to	margins,	and
set	a	new	bottom	margin	constraint	with	a	value	of	8.	This	will	set	the	bottom	of	the	label
relative	to	the	top	of	our	gray	view.	Set	it	to	update	frames,	and	click	Add	Constraints
(see	Figure	6.17).

Finally,	drag	a	new	UILabel	out	from	the	object	library	and	onto	our	grey	view	so	that	it
becomes	a	subview.	Then,	with	the	new	label	selected,	go	to	the	Pin	menu	to	set	up	the
Auto	Layout	constraints.	Turn	off	Constrain	to	margins,	then	set	Left:	8,	Bottom:	0,
Right:	8,	Top:	0.	Set	it	to	update	frames,	and	click	Add	Constraints:

Figure	6.18:	The	final	layout	for	the	text	snippet	cell

Now,	select	the	new	label	again,	and	from	its	Attributes	Inspector,	set	the	font	color	to
white.	And	with	that,	our	date	footer	is	complete.

Note
At	this	point,	we	should	set	up	the	same	date	footer	on	our	photoSnippetCell,	but	due	to
the	size	of	the	cell	and	the	way	the	interface	builder	works,	the	Auto	Layout	constraints
are	very	difficult	to	set	up,	especially	for	a	novice.	So	instead,	we’ll	continue	on	without
doing	so;	but	in	the	final	project	that	is	included	with	this	chapter,	you	can	see	how	the
photo	cell	looks	with	the	date	footer.

Our	view	is	set	up,	but	we	still	need	to	let	the	backing	class	know	that	the	new	label	exists.
Open	the	TextSnippetCell.swift	file,	and	add	a	new	line	to	the	class:
class	TextSnippetCell	:	UITableViewCell	{

				@IBOutlet	var	label:	UILabel!

				@IBOutlet	var	date:	UILabel!

}

Then,	back	in	the	storyboard,	select	the	textSnippetCell	in	the	Document	Outline.

Open	the	Connections	Inspector	(option	+	command	+	6)	and	connect	the	new	date	outlet
to	the	date	label	in	our	cell	by	dragging	from	the	circle	to	the	label:

Figure	6.19:	Connecting	the	date	label	outlet	to	the	new	label	in	the	storyboard

And	with	that,	we	now	have	a	code	outlet	to	access	our	date	label.	The	last	thing	we	need
to	do	is	assign	the	text	to	our	date	label	when	we	create	the	cell	in	our	ViewController.

Open	ViewController.swift,	and	navigate	to	the	tableView(cellForRowAt:)
function.	Here	we	want	to	accomplish	two	things:	we	want	to	format	the	date	stored	in	the
Date	to	something	readable,	and	then	we	want	to	assign	the	string	to	our	date	label.

Just	above	our	switch	statement,	put	these	three	lines	of	code:
let	formatter	=	DateFormatter()

formatter.dateFormat	=	“MMM	d,	yyyy	hh:mm	a”

let	dateString	=	formatter.stringFromDate(snippetData.date)

Here,	we	are	creating	a	DateFormatter,	which	lets	us	create	a	custom	way	of	formatting	a
date	string.	Then,	we	create	a	date	string	by	telling	the	formatter	to	format	a	string	with	the
date	from	our	snippet	data.

Then	we	just	need	to	assign	the	date	string	to	our	date	label’s	text	field.	Inside	our	switch
statement,	in	the	case	for	our	.Text	snippet	type,	add	this	line	to	the	bottom	of	our	cell	set
up	code:
case	.Text:

				cell	=	tableView.dequeueReusableCellWithIdentifier	…	.

				(cell	as!	TextSnippetCell).label.text	…	.

				(cell	as!	TextSnippetCell).date.text	=	dateString

Now	our	cell	should	display	the	date	in	the	date	label	we	created!	Build	and	run	the
project	to	check	that	this	is	the	case.

Note
At	this	point,	you	can	commit	your	work	(option	+	command	+	C).	If	you	want,	you	can
try	to	figure	out	how	to	set	up	the	photo	cell	with	the	same	date	footer.	If	you	can’t	figure
it	out	(it	is	hard,	so	don’t	feel	bad	if	you	can’t!),	then	you	can	look	at	the	finished	project
to	see	how	it	looks	on	the	photo	cell.

And	that’s	it!	We’ve	successfully	completed	every	user	story	we	laid	out	at	the	beginning
of	the	chapter,	and	we’ve	built	an	entire	MVP	for	an	app	that	allows	the	user	to	create
multiple	types	of	snippets,	and	then	view	them	in	a	reverse	chronological	order	timeline.
It’s	a	little	rough	around	the	edges,	but	it	works,	and	we	can	get	it	in	users’	hands	to	see
what	they	like	and	dislike.

Tip
If	you	had	any	trouble	during	this	chapter,	you	can	look	at	the	final	project	included	with
this	chapter	to	see	how	your	project	may	have	differed.	Look	through	the	source	code	and
storyboards	to	see	if	you	can	solve	any	problems	you	may	have	had.	If	it	all	worked	okay,
then	great	job!

Summary
This	was	quite	the	ride!	We	walked	through	every	step,	from	app	idea	to	visual
development	to	project	planning,	all	the	way	through	six	user	stories,	and	ended	up	with	a
functioning	minimum	viable	product.	Now	we	get	to	keep	testing	and	building	on	this	app
for	the	remainder	of	the	book!

In	the	next	chapter,	we’re	going	to	take	a	look	at	multitouch	and	gestures.	We’ll	learn
about	some	fun	ways	to	integrate	those	touch	features	into	the	next	version	of	Snippets.

At	this	point	in	the	book,	we’ve	reached	a	bit	of	a	turning	point.	We’ve	made	a	functioning
app!	The	training	wheels	are	off!	But	that	also	means	we’re	going	to	stop	spending	so
much	time	discussing	how	to	do	some	things.	From	now	on,	I’m	going	to	assume	you
know	what	the	different	areas	of	Xcode	are	called,	so	I	won’t	give	you	the	keyboard
shortcut	every	time	we	navigate	to	a	new	area.	I’m	also	going	to	assume	that	you	know
how	to	create	a	new	storyboard	outlet,	and	link	a	storyboard	element	to	a	code	class.

If	these	things	still	seem	unfamiliar	to	you,	feel	free	to	review	the	first	five	chapters	of	the
book	now,	since	we’re	going	to	be	putting	all	of	this	knowledge	to	use	simultaneously
from	here	on	out.

Chapter	7.	Integrating	Multitouch	and
Gestures
When	the	iPhone	was	first	released	in	2007,	the	world	of	consumer	electronics	was
accustomed	to	the	resistive	touchscreen,	which	required	the	use	of	a	stylus	and	was	limited
to	a	single	contact	point.	Because	of	these	limitations,	the	multitouch	capabilities	of	the
original	iPhone	were	a	major	selling	point,	and	its	operating	system	(now	in	its	tenth
iteration)	was	built	around	the	idea	of	finger-based	touch	and	gestures.

As	the	smartphone	industry	has	evolved,	all	phones	have	moved	toward	this	model	of
interaction.	Capacitive	touchscreens	and	gesture-based	navigation	is	standard.	With	the
exception	of	3D	touch	in	the	2015	iPhone	models,	the	topic	of	multitouch	hasn’t	changed
since	its	inception.

However,	as	a	developer,	it	is	still	your	job	to	understand	these	aspects	of	app
development.	In	this	chapter,	we’re	going	to	cover	the	following	topics:

	
The	human	interface	guidelines	for	gestures	in	iOS
Adding	gestures	to	your	app	from	the	storyboard
Adding	gestures	through	code
Setting	up	3D	touch	shortcuts

For	the	beginning	of	this	chapter,	we’re	going	to	take	a	little	break	from	our	app,
Snippets,	and	focus	on	how	and	when	to	use	gestures.	Since	our	app	has	plenty	of	built-in
gesture	control	from	using	the	UITableView,	we’ll	be	working	in	a	new	project	to
experiment,	before	coming	back	and	adding	3D	touch	shortcut	support	to	Snippets.

Human	interface	guidelines	–	gestures
When	we	use	software,	we	expect	it	to	act	a	certain	way	based	on	convention.	When	we
see	something	that	looks	like	a	button,	we	expect	to	be	able	to	tap	it,	and	for	some	event	to
happen	when	it	is	tapped.	Part	of	this	comes	from	the	fact	that	some	methods	of
interaction	are	universally	intuitive,	and	have	been	established	for	a	long	time.	However,
most	application	development	environments	come	with	a	set	of	Human	Interface
Guidelines	(HIG),	which	outline	the	intended	look,	feel,	and	use	of	the	software	being
created.

Apple,	famous	for	its	strict	policies	over	design,	has	a	very	thorough	set	of	HIG	available
for	developers	that	make	it	easy	to	understand	how	they	expect	your	software	to	function.
While	the	full	set	of	documentation	covers	many	aspects	of	app	interactions,	we’re	going
to	focus	on	the	standard	gestures	and	what	users	expect	from	them.

Standard	gestures
When	using	a	touch	screen	device,	there	are	only	a	handful	of	basic,	intuitive	gestures	that
a	user	can	perform.	These	basic	gestures	are	based	on	physical	metaphor,	and	so	most
people	have	an	expectation	of	how	an	app	should	react	to	their	input.	The	gestures,	as
outlined	in	Apple’s	HIG,	are	as	follows:

	
Tap:	The	simple	single	tap	is	used	to	select	items,	or	press	buttons.	The	tap	is	the
most	widely	used	gesture	in	the	entire	operating	system	and	can	almost	always	be
thought	of	as	a	do	something	gesture.	When	tapping	on	an	element,	the	user	will
almost	always	expect	something	to	happen.	If	an	element	would	normally	perform	an
action,	but	the	action	can’t	happen	when	the	user	taps	it,	there	should	at	least	be	a
visual	indication	that	the	tap	was	received.
Double	Tap:	The	double	tap	gesture	is	used	to	focus	and	un-focus	on	elements.
Usually,	the	double	tap	will	zoom	to	fill	the	screen	with	the	double	tapped	area,	as	in
web	browsers,	or	mapping	applications.	When	applicable,	a	second	double	tap	will
zoom	back	out	to	the	default	view.
Drag:	When	the	user	places	their	finger	down	on	the	screen	and	moves	it	around,	it	is
referred	to	as	a	drag.	Dragging	is	primarily	used	to	move	the	view	vertically	and
horizontally.	For	example,	in	our	app	Snippets,	the	UITableView	automatically	uses
the	drag	gesture	to	let	you	scroll	up	and	down.	In	web	browsers	and	map	views,	you
can	drag	both	vertically	and	horizontally	to	move	the	view	in	all	directions.	This
gesture	can	also	be	referred	to	as	a	pan.
Flick:	Similar	to	the	drag	gesture,	a	flick	is	a	drag	that	is	executed	quickly.	Unlike	a
drag,	a	flick	has	momentum	associated	with	it	when	the	user	finishes	the	gesture.
That	means	that	the	movement	of	the	view	can	continue	after	the	user	stops	touching
the	screen,	allowing	them	to	flick	quickly	through	lists.
Swipe:	A	swipe	gesture	has	several	use	cases.	In	a	table	view,	it	can	bring	up	the
Delete	button	on	a	cell.	In	apps	with	navigation	controllers,	swiping	from	the	side	of
the	screen	can	navigate	back	through	the	navigation	stack.	On	an	iPad,	four	fingers
swiping	up	allow	you	to	switch	apps.	Swiping	is	one	of	the	most	versatile	gestures	in
iOS,	and	thus	doesn’t	have	much	of	a	standard	use.	However,	swiping	is	usually	used
to	move	objects	on	screen	to	reveal	new	information.
Pinch:	The	pinch	gesture	is	almost	always	used	to	zoom	in	and	out.	The	most	logical
uses	are	again	in	web	browsers,	and	map	views,	but	it	can	be	used	in	any	situation
where	you	might	want	to	change	the	scaling	of	objects	on	screen.
Shake:	The	shake	gesture	is	unique,	since	it	doesn’t	use	the	screen	at	all,	and	only
uses	the	accelerometer	data.	The	shake	gesture	is	used	throughout	iOS	to	initiate	an
undo	or	redo	action.

While	all	of	these	gestures	are	possible	on	a	touch	screen,	when	using	UIKit	(classes	with
the	UI	prefix,	like	UITableView)	there’s	a	good	chance	that	you	will	get	this	functionality
for	free.	Since	Apple	wants	to	make	sure	that	their	gestures	are	consistent,	most	of	these
UI	classes	have	gestures	built	right	in,	like	how	UITableView	in	our	app	already	supports
tapping,	dragging,	and	flicking	automatically.

Usage	guidelines
When	implementing	support	for	these	basic	gestures,	Apple	has	several	recommendations,
or	usage	guidelines,	for	how	these	gestures	should	behave	to	maintain	consistency.

The	most	important	rule	that	should	be	followed	is	that	you	should	never	associate
different	actions	to	these	standard	gestures.	No	matter	how	intuitive	you	might	think	it
would	be	to	swap	one	of	these	gestures	with	a	different	activity,	users	of	iOS	software
expect	a	standard	method	of	interaction,	and	even	the	slightest	changes	can	confuse	users.

Second,	try	not	to	create	alternate	gestures	that	perform	the	same	tasks	as	one	of	the
standard	gestures.	This	will	also	confuse	users	who	might	not	understand	why	a	certain
task	is	now	being	completed	in	a	different	way.

Third,	complex	gestures	should	only	be	used	to	expedite	tasks,	and	should	not	be	the	only
way	to	perform	a	given	action.	While	you	as	a	developer	might	not	understand	why
someone	would	go	out	of	their	way	to	perform	a	task	when	they	could	just	use	a	custom
gesture,	it	is	still	important	to	provide	alternative	ways	to	accomplish	tasks.

Finally,	it	is	usually	not	a	great	idea	to	create	new	custom	gestures	at	all.	Obviously	there
are	exceptions	to	this	rule,	especially	if	you’re	making	a	game.	However,	if	you	are
making	a	custom	gesture	to	perform	a	task,	you	should	really	consider	why	it	is	necessary
and	if	there	are	other	ways	to	implement	the	feature.

With	a	good	understanding	of	what	the	standard	set	of	gestures	are,	in	addition	to	the
usage	guidelines	set	forth	by	Apple,	we	are	now	in	a	good	place	to	start	learning	how	to
implement	these	gestures	in	a	development	environment.

How	gestures	work
So	far,	we’ve	discussed	the	theory	of	gestures:	what	they	consist	of,	what	they	are
expected	to	do,	and	how	to	use	them.	However,	we	should	also	take	a	little	bit	of	time	to
understand	how	they	work	in	practice.	Even	though	you’ll	see	that	a	lot	of	the	basic
gestures	have	an	abstracted	implementation	provided	by	Apple,	it’s	worth	understanding
how	they	work	below	the	surface.

To	understand	the	technical	side	of	gestures,	we	need	to	first	take	a	look	at	how	the	view
hierarchy	interprets	touches.	At	the	top	of	the	inheritance	chain	is	the	simple	UIView	class.
Essentially,	UIView	is	a	rectangle	that	can	draw	itself	to	the	screen.	However,	it	can	also
receive	touch	events.	A	UIView	class	contains	a	userInteractionEnabled	property,	which
lets	the	view	know	whether	it	can	receive	touch	information.

If	interaction	is	enabled,	UIView	is	alerted	every	time	a	touch	begins,	moves,	and	ends
inside	of	it.	You	can	actually	override	the	methods	that	handle	these	events	in	any	UIView
subclass	with	touchesBegan(_	touches:	Set<UITouch>,	with	Event	event:
UIEvent?),	touchesMoved	(_	touches:	Set<UITouch>,	with	Event	event:	UIEvent?),
and	touchesEnded	(_	touches:	Set<UITouch>,	with	Event	event:	UIEvent?).

In	the	very	early	days	of	iOS	programming,	app	developers	had	to	override	those	methods
manually	and	track	the	movement	of	touches	to	identify	gestures.	As	you	can	imagine,
every	developer	had	different	ideas	about	how	to	implement	those	gestures,	and
functionality	varied	from	app	to	app,	breaking	the	consistency	of	interactions.	It	was	also
difficult	to	reuse	gestures	because	you	had	to	program	the	gesture	recognition	right	into
the	UIView	subclass.

To	solve	these	issues,	Apple	created	a	UIGestureRecognizer	class.	This	class	provides
those	same	touchesBegan()	(and	so	on)	methods,	but	decouples	them	from	a	specific
view.	This	means	you	can	write	your	gesture	code	once,	and	then	attach	the	recognizer	to
different	views.	To	make	it	even	easier,	Apple	also	provided	subclasses	for	most	of	the
basic	gestures;	UITapGestureRecognizer,	UISwipeGestureRecognizer,	and
UIPinchGestureRecognizer	are	some	examples.

For	the	next	two	sections,	we’ll	be	looking	at	the	ways	that	we	can	implement	these
UIGestureRecognizer	classes	into	an	app.	Using	these	provided	gesture	classes	means
that	adding	gestures	is	not	only	quick	and	easy,	but	consistent	with	the	way	Apple	(and
users!)	expect	the	gestures	to	behave.

Adding	gestures	from	the	storyboard
So	far,	we’ve	seen	how	to	add	interface	elements	to	a	storyboard,	and	then	how	to	add
constraints	to	keep	the	elements	in	their	correct	place.	However,	we	can	also	add	and
configure	gestures	in	our	storyboard,	and	for	simple	gestures	this	can	be	quite	powerful.	In
this	section,	we	are	going	to	add	a	double	tap	gesture	to	an	image	that	will	flip	it	upside
down.

Before	we	get	started,	let’s	create	a	little	test	project	for	us	to	explore	gesture	input.	Create
a	new	Single	View	Application	Xcode	project	(Swift/Universal),	and	name	it
Gestures.	Don’t	bother	creating	a	git	repository	for	it.	Before	we	start	working,	you’ll
also	want	to	add	the	wink.png	file	in	the	resources	folder	of	this	chapter	to	your	project
folder,	and	then	add	the	file	to	the	Xcode	project	(option	+	command	+	A).

Setting	up	the	storyboard
As	per	usual	when	working	with	the	storyboard,	we	are	going	to	implement	most	of	our
functionality	without	having	to	write	any	code.

To	start,	go	to	the	storyboard	and	drag	an	image	view	onto	our	view	controller.	From	the
Attribute	Inspector,	set	the	image	to	wink.png.	Give	it	a	size	of	200	x	200,	add	a
width	constraint,	and	then	a	1:1	aspect	constraint.	Finally,	give	it	a	vertical	center	and
horizontal	center	constraint,	and	we	should	have	a	square,	centered	image	to	play	with.

Next,	we’re	going	to	add	a	gesture	to	our	storyboard.	In	the	object	library,	search	for	tap,
and	you	should	see	the	UITapGestureRecognizer.	Drag	the	gesture	from	the	library	onto
the	image	view;	this	will	create	a	link	between	the	two.

Before	we	move	on,	remember	earlier	when	we	talked	about	how	UIView	has	a
userInteractionEnabled	property?	Well,	while	most	default	to	true,	UIImageView	is	set
to	false	by	default.	That	means	that	our	gesture	isn’t	going	to	receive	touch	information.
To	change	this,	go	to	the	Attributes	Inspector,	and	check	the	box	that	says	User
Interaction	Enabled,	as	shown	by	the	red	arrow	in	Figure	7.1:

Figure	7.1:	Blue	arrow	–	the	gesture	in	the	storyboard;	Red	arrow	–	the	User	Interaction

Enabled	property

Next,	we	want	to	configure	the	gesture	itself.	If	you	look	at	the	top	of	the	view	controller,
you’ll	see	a	new	icon	that	represents	our	tap	gesture	(the	blue	arrow	in	Figure	7.1).	Like
we	said	before,	gesture	recognizers	are	reusable,	so	they	aren’t	added	to	specific	views	but
to	the	view	controller	itself.

Click	on	the	tap	gesture	icon	in	the	view	controller	icon	bar;	you’ll	see	its	properties	show
up	in	the	Attribute	Inspector.	Since	we	want	to	configure	the	tap	gesture	to	be	used	as
a	double	tap,	we	set	it	to	recognize	2	Taps	from	1	Touch:

Figure	7.2:	Configuring	the	tap	gesture	from	the	Attribute	Inspector

The	last	step	in	the	storyboard	is	to	link	up	our	objects	to	our	view	controller	code.	Go	into
the	Assistant	Editor	view	and	create	an	@IBOutlet	for	the	UIImageView	with	the	name
imageView.	We	are	also	going	to	create	an	@IBAction	for	the	gesture.	Just	like	creating
outlets	or	actions	for	UI	elements,	you	can	control	drag	from	the	tap	gesture	icon	into	the
view	controller	code:

Figure	7.3:	Control-dragging	from	the	gesture	in	the	storyboard	to	our
ViewController.swift	file

Here,	you’ll	want	to	create	an	action	named	flipImage.	This	is	the	function	that	will	be
called	when	the	gesture	is	recognized.	With	that,	the	double	tap	gesture	is	completely	set
up	in	the	storyboard,	and	we	just	need	to	write	a	little	code	to	actually	make	the	image
flip.

Flipping	the	image
If	you	build	and	run	the	app	on	your	device,	you’ll	see	the	wink	image	in	the	middle	of	the
screen.	We’ve	set	up	the	gesture,	but	when	you	double	tap	on	the	image	nothing	happens!
Let’s	add	a	little	functionality	so	we	can	see	that	our	gesture	is	working	properly.

First,	we’re	going	to	add	two	properties	to	the	top	of	our	view	controller	class,	a	UIImage
and	a	Bool:
var	image	=	UIImage(named:	“wink”)

var	flipped:	Bool	=	false

The	image	stores	a	reference	to	the	same	wink	image	that	we	used	in	the	storyboard,
which	we’ll	need	when	we	flip	the	image	later.	The	Boolean	will	be	used	to	keep	track	of
the	state	of	the	image.

Then,	inside	the	flipImage()	function,	we	are	just	going	to	switch	the	Bool	to	the
opposite	of	its	current	state:
@IBAction	func	flipImage(sender:	AnyObject)	{

				flipped	=	!flipped

}

All	that’s	left	is	to	change	the	image	when	the	Bool	value	changes.	To	do	this,	we’re	going
to	use	a	cool	feature	of	Swift	that	lets	us	run	some	code	whenever	a	value	of	a	property	is
changed.	Let’s	update	our	flipped	property	to	look	like	this:
var	flipped:	Bool	=	false	{

				didSet	{

								if	flipped	{

												let	temp	=	UIImage(cgImage:	image!.cgImage!,	scale:

1.0,orientation:	.downMirrored)

												imageView.image	=	temp

								}	else	{

												imageView.image	=	image

								}

				}

}

After	the	property	declaration,	we’ll	add	a	set	of	brackets	and	then	define	a	code	block	that
runs	after	the	property’s	value	changes	using	the	didSet	keyword.	Inside,	we’ll	check	to
see	if	flipped	is	true,	and	if	so,	we	change	our	the	image	of	imageView	to	be	the	flipped
version	of	the	image.	Otherwise,	we	use	the	standard	one.

So	now	when	we	double	tap	the	image,	we	flip	our	flipped	Bool,	which	then
automatically	changes	the	image	in	our	UIImageView.	Build	and	run	on	your	device,	and
then	double	tap	the	wink	image	to	see	our	gesture	recognizer	in	action.

Here’s	all	of	the	code	for	the	view	controller.	Look	how	much	we	accomplished	with	such
a	small	amount	of	code:
import	UIKit

class	ViewController:	UIViewController	{

			

				@IBOutlet	weak	var	imageView:	UIImageView!

				var	image	=	UIImage(named:	“wink”)

				var	flipped:	Bool	=	false	{

								didSet	{

												if	flipped	{

																let	temp	=	UIImage(cgImage:	image!.cgImage!,	scale:	1.0,

orientation:	.downMirrored)

																imageView.image	=	temp

												}	else	{

																imageView.image	=	image

												}

								}

				}

			

			override	func	viewDidLoad()	{

								super.viewDidLoad()

				}

				@IBAction	func	flipImage(_	sender:	AnyObject)	{

								flipped	=	!flipped

				}

}

Adding	gestures	from	code
While	implementing	gestures	from	the	storyboard	is	a	simple	and	visual	way	to	set	up
gestures,	sometimes	you’ll	need	to	get	into	the	details	and	create	them	purely	with	code.	In
this	section,	we’re	going	to	look	at	how	to	do	just	that,	by	adding	a	pinch	gesture
recognizer	that	allows	us	to	scale	our	image	up	and	down.

Creating	a	gesture	through	code
The	first	thing	we’re	going	to	need	to	do	is	create	a	property	to	hold	our	gesture.	Since	the
gesture	is	going	to	be	created	outside	of	initialization,	we	are	going	to	have	to	make	it	an
implicitly	unwrapped	optional	value	(remember,	that	is	shown	with	the	exclamation	mark
after	the	variable	name).

Note
Here’s	a	quick	refresher	on	optional	values	in	Swift:

First,	there’s	a	standard	variable,	which	must	always	contain	a	value:
var	view:	UIView

Then,	there’s	an	optional	variable,	which	may	or	may	not	have	a	value:
var	view:	UIView?

This	means	we	need	to	unwrap	the	value	every	time	we	use	it,	to	make	sure	there	is	a
value	inside,	using	the	if	let	syntax:
if	let	unwrappedView	=	view	{	/*	do	something	*/}

Finally,	an	implicitly	unwrapped	optional	value,	which	tells	the	compiler	that	there	is
definitely	a	value	inside,	means	we	don’t	need	to	unwrap	it:
var	view:	UIView!

In	our	ViewController.swift	file	at	the	top	of	our	class,	create	the	property	like	so:
var	pinchGesture:	UIPinchGestureRecognizer!

Next,	we	have	to	create	the	gesture	recognizer	itself.	When	using	the	storyboard,	you’ll
remember	that	the	gesture	recognizer	didn’t	belong	to	any	specific	view,	and	was	instead
shown	at	the	top	of	the	view	controller.	Behind	the	scenes,	the	storyboard	knows	how	to
register	and	unregister	the	gesture	recognizer	with	its	associated	views,	since	issues	can
occur	if	a	gesture	recognizer	is	connected	to	a	view	that	gets	deleted.	Now,	however,	we’re
going	to	have	to	do	this	manually.

To	do	this,	we	are	going	to	use	the	viewWillAplear()and	viewDidDisappear()	functions
that	are	inherited	from	the	UIViewController	class.	These	are	called	(quite	obviously)	just
before	a	view	is	presented,	and	then	just	after	it	is	dismissed	from	the	user.	This	is	the
perfect	time	to	create	and	destroy	gestures,	since	the	views	still	exist,	but	the	user	can’t	see
them:
override	func	viewWillAppear(_	animated:	Bool)	{

				super.viewWillAppear(animated)

			

				pinchGesture	=	UIPinchGestureRecognizer(target:	self,	action:

#selector(ViewController.pinch(_:)))

				view.addGestureRecognizer(pinchGesture)

}

In	the	viewWillAppear()	function,	we	first	call	our	superclass’s	implementation	to	make
sure	everything	executes	properly.	Then,	we	create	a	new	UIPinchGestureRecognizer,

passing	in	the	target	object	that	will	handle	the	gesture	(self),	and	the	method	that	will	be
called	on	that	object.	The	#selector	operator	is	a	way	of	specifying	that	we’re	passing	a
function,	in	this	case	ViewController.pinch(_:).	Finally,	we	tell	our	view	to	add	our
pinch	gesture:
override	func	viewDidDisappear(_	animated:	Bool)	{

				super.viewDidDisappear(animated)

			

				view.removeGestureRecognizer(pinchGesture)

				pinchGesture	=	nil

}

In	the	viewDidDisappear()	function,	we’ll	be	doing	the	same	thing	in	reverse.	Again,	first
we	call	the	superclass’s	function.	Then	we	remove	the	gesture	from	the	view,	before
setting	the	pinchGesture	to	nil.	At	this	point,	we’ve	configured	and	managed	the	lifetime
of	our	pinch	gesture.

Reading	the	gesture	data
Now	that	our	gesture	is	set	up,	we	want	to	process	the	data	that	it	provides.	In	the	last	part,
we	registered	the	gesture	to	call	a	function	called	pinch(_:).	Now,	we	need	to	create	that
function	and	process	the	data.

The	first	thing	we	need	to	do	is	create	some	variables	to	track	the	scale	that	we	get	out	of
the	gesture.	Create	these	variables	at	the	top	of	the	file:
var	lastScale:	CGFloat	=	1;

var	currentScale:	CGFloat	=	1;

We’ll	update	the	lastScale	value	at	the	end	of	each	cycle	so	that	we	can	use	it	in	the	next
frame.	Then,	we’ll	assign	the	new	scale	to	the	currentScale	value,	and	ultimately	use	that
to	set	the	size	of	our	image.	Now	let’s	create	the	pinch	function	itself:
func	pinch(_	pinch:	UIPinchGestureRecognizer)	{

			

				if	(pinch.state	==	.began)	{

								lastScale	=	1

				}	else	if	(pinch.state	==	.changed)	{

								let	delta	=	pinch.scale	-	lastScale

								currentScale	+=	delta

								lastScale	=	pinch.scale

				}

				print(currentScale)

}

The	most	important	part	of	this	function	is	that	we’re	taking	in	the	actual	pinch	gesture	as
an	argument.	First,	we	ask	the	gesture	what	state	it’s	in;	if	it	just	started,	we	reset	the
lastScale	variable,	and	if	it	changed	we	update	the	scale.	To	do	that,	we	get	the	delta
(change)	of	the	scale	by	subtracting	the	last	scale	from	the	current	scale.	Then	we	add	the
delta	to	the	current	scale,	and	then	update	the	last	scale.	Finally,	we	print	out	the	current
scale.

If	you	build	and	run,	then	pinch	on	the	screen,	you	can	see	the	scale	changing	in	the
console.	Now	we	have	our	scale	data,	and	we’re	ready	to	apply	the	scale	to	our	image.

Changing	the	scale	of	our	image
To	change	the	size	of	our	image,	we’re	going	to	leverage	the	power	of	auto	layout.	The
image	is	already	locked	to	the	center	of	the	screen,	and	is	forced	to	maintain	a	1:1	aspect
ratio.	Therefore,	all	we	have	to	do	is	modify	its	width	constraint,	and	it	will	automatically
make	all	the	necessary	adjustments.

To	do	this,	we’ll	create	a	new	property	to	store	the	starting	width	of	our	image:
var	startWidth:	CGFloat	=	0

Then,	we’ll	implement	the	viewDidAppear()	function,	where	we’ll	grab	the	initial	value.
We	need	to	use	viewDidAppear	instead	of	viewWillAppear,	because	the	image	view	won’t
be	properly	sized	yet	inside	the	viewWillAppear	function:
override	func	viewDidAppear(_	animated:	Bool)	{

				

				startWidth	=	imageView.frame.size.width

}

Here,	we’re	setting	the	startWidth	to	be	the	width	of	the	frame	of	imageView.

Before	we	move	on,	we’re	going	to	have	to	make	it	so	that	we	can	access	the	width
constraint	on	our	image	view	so	we	can	update	it.	In	the	Main.storyboard	file,	find	our
Image	View	in	the	document	outline,	and	then	select	its	width	constraint:

Figure	7.4:	Selecting	the	width	constraint,	and	giving	it	an	identifier	string

With	the	width	constraint	selected,	find	the	Identifier	field	in	the	Attribute
Inspector,	and	set	it	to	widthConstraint.	This	string	will	be	used	as	an	ID	so	we	can
find	this	constraint	in	the	next	step.

Next,	we’re	going	to	write	a	function	that	actually	handles	updating	the	constraint.	Back	in
the	ViewController.swift	file,	add	a	new	function	to	our	class:
func	updateImageSize()	{

				for	constraint	in	imageView.constraints	{

								if	constraint.identifier	==	“widthConstraint”	{

												constraint.constant	=	startWidth	*	currentScale

												break

								}

				}

}

First,	we	start	running	a	for	loop	that	looks	for	every	constraint	in	our	image’s
constraints	array.	Then	for	each	constraint,	we	check	to	see	if	its	identifier	is
widthConstraint,	which	we	just	set	in	the	last	step.	If	it’s	the	correct	constraint,	we
update	the	constraint’s	constant	value	to	equal	our	starting	width	multiplied	by	our	current

scale,	then	we	break	out	of	the	loop.

Great!	Now	we’ve	got	a	function	that	will	update	our	image’s	constraints,	and	therefore	its
whole	size!	We’ll	need	to	call	this	function	every	time	we	change	the	scale,	so	let’s	call	it
right	at	the	end	of	our	pinch()	function:
func	pinch(pinch:	UIPinchGestureRecognizer)	{

				if	(pinch.state	==	.Began)	{

								lastScale	=	1

				}	else	if	(pinch.state	==	.Changed)	{

								let	delta	=	pinch.scale	-	lastScale

								currentScale	+=	delta

								lastScale	=	pinch.scale

				}

				updateImageSize()

}

If	you	build	and	run,	you’ll	see	that	when	we	pinch	in	and	out,	our	image	grows	and
shrinks.	Try	double	tapping	the	image,	and	you’ll	see	it	still	flips	in	place	too!

Here’s	the	final	look	at	our	new	(slightly	more	code	heavy!)	ViewController	class:
class	ViewController:	UIViewController	{

				@IBOutlet	weak	var	imageView:	UIImageView!

				

				var	pinchGesture:	UIPinchGestureRecognizer!

				var	image	=	UIImage(named:	“wink”)

				var	flipped:	Bool	=	false	{

								didSet	{

												if	flipped	{

																let	temp	=	UIImage(cgImage:	image!.cgImage!,	scale:	1.0,

orientation:	.downMirrored)

																imageView.image	=	temp

												}	else	{

																imageView.image	=	image

												}

								}

				}

				var	lastScale:	CGFloat	=	1;

				var	currentScale:	CGFloat	=	1;

				var	startWidth:	CGFloat	=	0

				

				override	func	viewDidLoad()	{

								super.viewDidLoad()

				}

				override	func	viewWillAppear(_	animated:	Bool)	{

								super.viewWillAppear(animated)

								

								pinchGesture	=	UIPinchGestureRecognizer(target:	self,	action:

#selector(ViewController.pinch(_:)))

								view.addGestureRecognizer(pinchGesture)

				}

				

				override	func	viewDidAppear(_	animated:	Bool)	{

								

								startWidth	=	imageView.frame.size.width

				}

				

				override	func	viewDidDisappear(_	animated:	Bool)	{

								super.viewDidDisappear(animated)

								

								view.removeGestureRecognizer(pinchGesture)

								pinchGesture	=	nil

				}

				func	pinch(_	pinch:	UIPinchGestureRecognizer)	{

								

								if	(pinch.state	==	.began)	{

												lastScale	=	1

								}	else	if	(pinch.state	==	.changed)	{

												let	delta	=	pinch.scale	-	lastScale

												currentScale	+=	delta

												lastScale	=	pinch.scale

								}

								updateImageSize()

				}

				

				func	updateImageSize()	{

								for	constraint	in	imageView.constraints	{

												if	constraint.identifier	==	“widthConstraint”	{

																constraint.constant	=	startWidth	*	currentScale

																break

												}

								}

				}

				

				@IBAction	func	flipImage(_	sender:	AnyObject)	{

								flipped	=	!flipped

				}

}

If	you’re	up	for	a	challenge…
Now	that	you’ve	seen	how	to	set	up	these	gestures	both	with	code	and	the	storyboard,	see
if	you	can	use	Apple’s	documentation	to	use	other	gestures	and	come	up	with	your	own
functionality!	I	recommend	trying	to	use	the	UISwipeGestureRecognizer.

Creating	3D	Touch	app	shortcuts
One	of	the	coolest	new	features	of	the	2015	models	of	iPhones	(iPhone	6s	and	6s+)	is	their
3D	Touch	capabilities.	In	this	section,	we’re	going	to	take	a	look	at	how	to	implement	the
new	Quick	Action	app	shortcuts	in	our	app,	Snippets.	We’re	going	to	create	two	shortcut
actions	that	allow	us	to	create	both	a	text	snippet	and	photo	snippet	by	using	a	hard	press
on	the	app	icon.

Note
Unfortunately,	as	of	this	writing,	Apple	only	allows	3D	touch	capabilities	in	their	iOS	10
simulator	if	you	have	a	force	touch	trackpad	built	into	your	mac	laptop,	or	a	new	magic
trackpad.	This	means	that	unless	you	have	a	physical	3D	Touch-capable	device	or	a	force
touch	trackpad,	you	won’t	be	able	to	test	the	code	in	this	section.	You	can	(and	should!)
still	follow	along	and	learn	how	to	add	this	functionality	for	the	future.

For	this	section,	you’ll	want	to	open	up	the	Snippets	Xcode	project	that	is	in	the	Chapter
6,	Building	Your	First	iOS	App,	resources	folder	(since	the	project	in	current	chapter	will
have	the	completed	code	from	the	end	of	this	section).	The	project	in	the	resources	folder
will	have	the	finished	auto	layout	constraints,	just	in	case	you	weren’t	able	to	get	the	date
bar	to	work	on	the	photo	snippet	at	the	end	of	Chapter	6,	Building	Your	First	iOS	App.

Setting	up	Info.plist
To	let	our	app	know	about	the	possible	shortcuts	it	can	perform,	we’re	going	to	have	to
add	some	information	to	our	Info.plist	file.

To	get	there,	select	the	Xcode	project	in	the	Project	Navigator	sidebar	(the	blue	file	at
the	top),	and	then	click	on	the	Info	tab	along	the	top	of	the	editor	window:

Figure	7.5:	Navigating	to	the	Info.plist	file	from	the	Xcode	project	settings	file

This	file	is	used	to	define	certain	capabilities	and	other	assorted	information	about	your
application.	Right	now,	we’re	going	to	add	some	new	elements	to	the	property	list	that
describe	the	3D	touch	shortcut	actions.

First,	we	need	to	add	a	new	row	to	the	list.	To	do	this,	hover	over	any	of	the	existing	rows
and	click	the	+	button	that	shows	up	near	the	middle	to	create	a	new	row	below	it.	In	the
Key	column	of	the	new	row,	type	UIApplicationShortcutItems.	In	the	Type	column,	set
the	type	to	Array.

Now	we	want	to	add	two	items	to	the	array.	To	do	this,	first	click	the	arrow	next	to	the	row
to	make	it	drop	down,	even	though	there	are	no	elements	yet.	Now	when	you	press	the
plus	button	on	that	row,	it	will	create	child	elements	within	the	array,	instead	of	new
elements	below	it.	Do	this	twice	to	create	two	children,	and	then	change	their	types	to
Dictionary:

Figure	7.6:	What	our	finished	Info.plist	file	should	look	like

In	both	the	children	items	(Item	0	and	Item	1),	create	three	children	of	their	own,	all	of
type	String.	These	three	children	should	have	the	following	keys:
UIApplicationShortcutItemTitle,	UIApplicationShortcutItemIconType,	and
UIApplicationShortcutItemType.	The	first	element	will	be	the	text	displayed	in	the
shortcut,	the	second	element	will	be	the	icon	that	is	used,	and	the	third	element	will	be
used	as	an	ID	in	our	code	to	process	which	shortcut	was	used.

Item	0	will	describe	our	New	Photo	Snippet	action.	In	the	first	element,	the	ItemTitle
element,	type	New	Photo	Snippet.	This	will	be	the	exact	text	displayed	when	the	user
sees	the	shortcut	options.	Next,	for	the	ItemIconType	element,	we’re	going	to	use	the
UIApplicationShortcutIconTypeCapturePhoto,	which	is	a	built-in	system	icon	that
looks	like	a	camera.	Finally,	for	the	ItemType	element,	type
com.PacktPub.Snippets.createPhotoSnippet.	You’ll	notice	that	this	is	our	app’s	bundle

identifier,	followed	by	createPhotoSnippet,	which	describes	our	action.

In	Item	1,	we’re	doing	very	similar	work.	The	title	will	be	New	Text	Snippet,	the	icon
type	will	be	UIApplicationShortcutIconTypeCompose,	and	the	item	type	will	be
com.PacktPub.Snippets.createTextSnippet.

At	this	point,	if	you	build	and	run	the	app	on	a	3D	touch-capable	device,	you	should	be
able	to	force	press	on	the	app	icon	and	see	our	shortcuts!	See	the	following	image	if	you
don’t	have	a	3D	touch	device	to	test	for	yourself:

Figure	7.7:	3D	touch	shortcuts	on	the	Snippets	application	icon

If	you	do	have	a	3D	touch	device	and	you’re	not	getting	the	same	results,	you	should	go
back	and	double	check	all	of	your	spelling.	There’s	no	code	hinting	in	the	Info.plist	file,
and	everything	is	very	sensitive	to	proper	spelling.	Check	the	earlier	image	that	shows	the
final	.plist	file	to	make	sure	the	parenting	is	correct,	and	don’t	forget	that	you	can
compare	to	my	finished	chapter	project	in	the	resources	folder	for	this	chapter.	Once
everything	is	spelled	and	parented	correctly,	you	should	get	the	same	results	as	the	image
above	when	you	force	press	the	app	icon.

Handling	shortcuts	in	the	app	delegate
Next,	we’re	going	to	journey	into	another	unexplored	part	of	our	Xcode	project:	the
AppDelegate.swift	file.	What	is	the	app	delegate?	Essentially,	it	is	the	highest	level	of
control	over	your	app.	The	app	delegate	is	where	you	take	care	of	launching,	entering,	and
exiting	the	app,	in	addition	to	other	functionality,	like	handling	shortcuts.

First,	let’s	lay	some	groundwork	for	what	we	need	to	do.	Create	an	empty	function	stub	at
the	top	of	the	AppDelegate	class,	like	so:
func	handleShortcut(shortcutItem:	UIApplicationShortcutItem)	{

}

This	first	function,	handleShortcut(),	is	where	we’re	going	to	write	the	logic	to
determine	what	shortcut	was	executed,	and	what	to	do	about	it.	This	next	function	is	part
of	the	UIApplicationDelegate	protocol,	and	will	get	automatically	called	when	we
launch	the	app	from	the	shortcut	menu.	For	now,	we	just	need	to	implement	this	function,
and	call	our	handleShortcut()	function	from	there:
func	application(_	application:	UIApplication,	performActionFor

shortcutItem:	UIApplicationShortcutItem,	completionHandler:	@escaping

(Bool)	->	Void)	{

				handleShortcut(shortcutItem)

}

Inside	our	handleShortcut()	function,	we	receive	a	UIApplicationShortcutItem	object.
This	object	contains	the	string	we	wrote	in	our	Info.plist	file	for	each	shortcut,	so	we’re
going	to	process	that	string	to	see	which	shortcut	to	run.

In	order	to	reduce	the	possibility	of	spelling	errors,	we’re	going	to	use	an	enum.	At	the	top
of	the	class,	create	a	new	enum	called	ShortcutItems,	which	uses	String	as	a	backing
type:
enum	ShortcutItems	:	String	{

				case	newText	=	“com.PacktPub.Snippets.createTextSnippet”

				case	newPhoto	=	“com.PacktPub.Snippets.createPhotoSnippet”

}

Now,	as	long	as	we	spelled	everything	properly	here,	we	no	longer	have	to	write	out	these
strings	again.	Instead,	we	can	access	them	by	writing	ShortcutItems.NewText.rawValue.
Remember,	accessing	the	rawValue	of	an	enum	gives	you	its	backing	data.

Inside	our	handleShortcut()	function	now,	we	can	use	a	switch	statement	to	process	the
shortcut	command.	We’ll	be	using	shortcutItem.type	as	our	switch	condition	(this	is
the	input	string),	and	then	we’ll	create	a	case	for	each	of	our	ShortcutItem	types.	We’ll
also	need	a	default	case,	which	we’ll	leave	blank:
func	handleShortcut(shortcutItem:	UIApplicationShortcutItem)	{

				switch	shortcutItem.type	{

								case	ShortcutItems.newText.rawValue:

											

								case	ShortcutItems.newPhoto.rawValue:

											

								default:

												break

				}

}

So,	now	we’ve	got	a	place	to	write	some	code	depending	on	which	shortcut	was	called,
but	what	do	we	do	with	it?	Well,	if	we	used	the	text	shortcut,	we	want	to	start	a	new	text
snippet	automatically,	and	the	same	for	a	photo	shortcut.	But	how	do	we	do	this?	Luckily,
there’s	already	code	to	do	this	in	our	ViewController	class:	we	have
createNewTextSnippet()	and	createNewPhotoSnippet()	functions	already	there!	Let’s
look	at	how	to	call	those	functions.

In	the	app	delegate,	we	have	access	to	our	application’s	window	(UIWindow),	which	in	turn
has	a	root	view	controller.	In	this	case,	the	root	view	controller	is	our	ViewController
class.	Here’s	an	example	of	how	we’d	get	access	to	the	ViewController	from	the	app
delegate:
let	vc	=	self.window!.rootViewController	as!	ViewController

Here,	we	are	accessing	our	window	(and	forcefully	unwrapping	that	optional),	then
accessing	its	rootViewController.	Then,	we	(forcefully)	cast	the	rootViewController	to
our	ViewController	class	type,	since	we	know	that	it	is	that	type.	This	lets	the	compiler
know	about	our	class	specific	functions	like	createNewTextSnippet().

Now	that	we’ve	got	a	reference	to	our	view	controller,	we	just	call	the	function	we	want	to
use:
vc.createNewTextSnippet()

Let’s	put	this	in	the	context	of	our	handleShortcut()	function:
func	handleShortcut(_	shortcutItem:	UIApplicationShortcutItem)	{

				switch	shortcutItem.type	{

								case	ShortcutItems.newText.rawValue:

												let	vc	=	self.window!.rootViewController	as!	ViewController

												vc.createNewTextSnippet()

											

								case	ShortcutItems.newPhoto.rawValue:

												let	vc	=	self.window!.rootViewController	as!	ViewController

												vc.createNewPhotoSnippet()

											

								default:

												break

				}

}

And	that’s	how	simple	it	is!	When	we	open	our	app	from	the	shortcuts	that	we	made,	it
will	automatically	open	inside	the	correct	snippet	creation	view	controller.

Unfortunately,	there’s	a	big	issue	here.	What	happens	if	the	user	was	already	in	the	middle
of	creating	a	new	snippet,	then	left	the	app	for	some	reason	without	finishing	their	entry.
Then	they	forgot	about	it,	and	later	tried	to	create	a	new	snippet	from	a	shortcut.	What
happens?

Actually,	right	now	nothing	would	happen.	Our	root	view	controller	wouldn’t	be	able	to
present	a	new	snippet	creation	controller,	because	the	existing	snippet	creation	controller

would	have	control	over	the	view.	But	that’s	not	great	either;	users	might	think	the
shortcut	is	broken.

Here’s	what	we	want	to	happen:	if	the	user	launches	from	a	shortcut,	but	the	app	is	already
in	the	middle	of	creating	a	new	snippet,	we	should	present	the	user	with	an	alert	that	asks
if	they	want	to	continue	the	old	one,	or	erase	it	and	start	a	new	one.

To	begin,	we	want	to	check	the	status	of	the	app	when	the	shortcut	is	called	in	the
application(….)	function.	To	do	that,	we’re	going	to	check	to	see	if	our	root	view
controller	has	presented	a	view	controller	on	top	of	it.	Let’s	look	at	the	code	and	go
through	it:
func	application(_	application:	UIApplication,	performActionFor

shortcutItem:	UIApplicationShortcutItem,	completionHandler:	@escaping

(Bool)	->	Void)	{

				let	vc	=	self.window!.rootViewController!

				if	vc.presentedViewController	!=	nil	{

								let	alert	=	UIAlertController(title:	“Unfinished	Snippet”,	message:

“Do	you	want	to	continue	creating	this	snippet,	or	erase	and	start	a	new

snippet?”,	preferredStyle:	.alert)

								let	continueAction	=	UIAlertAction(title:	“Continue”,	style:

.default,	handler:	nil)

								let	eraseAction	=	UIAlertAction(title:	“Erase”,	style:

.destructive)	{	(alert:	UIAlertAction!)	->	Void	in

												vc.dismiss(animated:	true,	completion:	nil)

												self.handleShortcut(shortcutItem)

								}

								

								alert.addAction(continueAction)

								alert.addAction(eraseAction)

								vc.presentedViewController!.present(alert,	animated:	true,

completion:	nil)

				}	else	{

								handleShortcut(shortcutItem)

				}

}

First,	we	create	a	reference	to	our	root	view	controller	named	vc,	for	future	reference.
Next	we	check	to	see	if	presentedViewController	of	vc	exists	by	checking	if	it’s	not
nil.	If	there	is	no	presented	view	controller	on	top,	then	in	the	else	we	just	handle	the
shortcut	as	normal.	However,	if	there	is	a	presented	view	controller,	then	we	create	a	new
alert	view.

We	give	the	alert	a	title	and	message	describing	that	there	is	an	unfinished	snippet,	and
then	create	two	buttons:	one	which	lets	the	user	continue	editing	the	old	snippet,	and	one
that	deletes	the	unfinished	snippet	and	continues	creating	the	new	snippet	they	expected
from	the	shortcut.	It’s	important	to	note	that	the	eraseAction	has	its	style	set	to
.destructive,	which	gives	it	the	red	coloring.

The	continue	action	has	no	completion	handler,	since	it	essentially	just	lets	the	user
continue	editing	the	old	snippet	without	changing	anything.	The	erase	action	does	have	a
completion	handler	though,	because	it	needs	to	tell	the	root	view	controller	to	dismiss
whichever	snippet	creating	view	is	on	top,	and	then	finally	tell	the	app	delegate	to	call
handleShortcut().

At	the	bottom	of	the	if	statement,	we	finish	setting	up	the	alert,	and	then	present	it	to	the
user:

Figure	7.8:	A	user	attempting	to	create	a	new	snippet	while	a	photo	snippet	was	already
being	created

However,	we	have	one	last	issue	to	solve	here.	If	this	alert	is	presented	while	the
TextSnippetEntryViewController	is	on	screen,	the	text	field	will	lose	its	first	responder
status,	and	textViewDidEndEditing()	will	be	called,	triggering	it	to	save	unwanted	data.
To	fix	this,	we	want	to	make	sure	that	data	is	only	saved	when	we	press	the	Done	button.

In	the	TextSnippetEntryViewController.swift	file,	create	a	new	Bool	variable	at	the
top	of	the	class,	named	shouldExit,	and	set	the	default	to	false:
var	shouldExit	=	false

Then,	below	in	the	doneButtonPressed()	function,	set	the	shouldExit	variable	to	true:
func	doneButtonPressed()	{

				shouldExit	=	true

				textView.resignFirstResponder()

}

Finally,	in	the	textViewDidEndEditing()	function,	first	check	that	the	Done	button	was
pressed	before	saving	data:
func	textViewDidEndEditing(_	textView:	UITextView)	{

			

				guard	shouldExit	else	{	return	}

			

				saveText(text:	textView.text)

				dismiss(animated:true,	completion:	nil)

}

Now,	our	save	code	will	only	run	when	we	press	the	Done	button,	not	for	any	other	reason
that	the	text	might	finish	editing.	This	should	be	a	lesson:	try	to	make	sure	your	code	is
built	keeping	in	mind	that	other	circumstances	may	trigger	the	same	function,	especially
when	working	with	protocols	and	delegates.

But	now	we’re	really	done!	You	can	leave	the	app	in	any	state	when	you	exit,	but	we	have
a	graceful	way	to	handle	our	shortcuts	when	we	re-enter	the	app.	And	again,	now	that
we’ve	added	a	new	feature,	don’t	forget	to	commit	your	work	(option	+	command	+	C).

Summary
In	this	chapter,	we	took	a	crash	course	on	touch.	We	looked	at	the	expected	uses	of	the
common	set	of	multitouch	gestures	in	iOS,	and	then	learned	how	to	implement	them	in	an
app	from	the	storyboard,	and	purely	with	code.	Then	we	went	back	to	our	app	Snippets
and	added	some	really	useful	3D	Touch	app	icon	shortcuts.	While	doing	that,	we	learned	a
bit	more	about	the	Info.plist	file,	and	got	introduced	to	the	App	Delegate,	and	even
learned	how	to	clean	up	some	old	code	to	fit	with	a	new	feature.

Next,	in	Chapter	8,	Exploring	Common	iOS	Frameworks,	we’re	going	to	get	introduced	to
some	of	the	more	common	Apple-provided	frameworks,	and	we	will	also	see	how	to	apply
them	to	our	Snippets	application.	We’ll	be	reviewing	some	UIKit	(which	we’ve	been
using	a	lot	of!),	and	getting	acquainted	with	the	CoreLocation	and	Social	frameworks.

Chapter	8.	Exploring	Common	iOS
Frameworks
Up	to	this	point	in	the	book,	we’ve	been	focused	on	learning	about	the	different	aspects	of
iOS	development,	and	then	applying	those	concepts	to	sketch	out	the	rough	features	and
interactions	of	an	app.	Now	that	we’ve	built	our	app	up	to	a	pretty	decent	point,	let’s	take
some	time	to	explore	the	kinds	of	functionality	that	we	can	add	to	our	app	using	some	of
the	commonly	used	frameworks	built	into	the	iOS	SDK.

In	the	last	two	chapters,	we’ve	been	using	the	framework	UIKit	almost	every	step	of	the
way.	In	this	chapter	we’ll	take	a	deeper	look	at	this	essential	iOS	framework,	in	addition	to
learning	about	the	CoreLocation	and	the	Social	frameworks.	We	will	cover	the	following
topics:

	
What	is	a	framework,	and	how	do	we	use	them?
The	basics	of	UIKit
Using	CoreLocation	to	integrate	location	data
Using	the	Social	framework	to	share	content	with	social	media

Frameworks
Before	we	get	to	coding,	it’s	important	that	we	talk	about	what	a	framework	is,	and	how
we	use	frameworks	in	iOS	programming.

What	is	a	framework?
When	writing	software,	you’ll	find	that	you	need	to	do	the	same	things	in	almost	every
project.	On	a	lower	level,	iOS	itself	handles	a	lot	of	the	most	fundamental	functionality,
like	drawing	pixels	to	the	screen,	or	connecting	to	wireless	networks.

However,	as	we	move	to	higher	levels	of	functionality	we	start	to	see	the	need	for	reusable
sets	of	code,	but	only	around	certain	types	of	functionality.	These	reusable,	(mostly)	self-
contained	blocks	of	code	that	focus	on	specific	functionality	are	called	frameworks.

For	example,	if	we	want	to	work	with	the	photos	on	a	user’s	device,	we’d	have	to	create
the	functionality	to	load	the	user’s	photos,	build	an	interface	to	view	the	photos,	allow	the
user	to	edit	and	save	photos,	and	so	on.	In	cases	like	this,	we	can	create	a	framework
which	does	all	of	these	things,	and	then	import	that	framework	in	any	project	that	needs	to
access	photos.	In	fact,	Apple	has	already	created	Photos.framework	for	these	exact	needs.

When	using	a	framework	in	this	way,	we	reduce	the	amount	of	code	we	have	to	write.
However,	most	of	the	time	you	won’t	even	be	writing	your	own	frameworks;	the	iOS
ecosystem	is	very	mature,	and	Apple	(along	with	third-party	developers	like	Facebook)
provide	many	frameworks	for	us	to	use.	To	get	a	sense	of	how	many	frameworks	are
included	in	the	standard	iOS	SDK,	check	out	Apple’s	overview	at	this	link:

https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html

https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html

Linking	frameworks	in	a	project
Now	that	we	have	a	basic	understanding	of	what	framework	are,	we	need	to	learn	how	to
use	them	in	practice.	As	a	quick	test,	create	a	new	Xcode	project;	the	settings	don’t	matter,
since	we	won’t	be	using	it	for	more	than	a	minute	or	so:

Figure	8.1:	The	blue	arrow	points	to	the	button	that	allows	you	to	add	a	framework	to
your	project

First,	on	the	General	tab	of	our	project	settings,	scroll	to	the	bottom	to	see	the	section
labelled	Linked	Frameworks	and	Libraries.	You	should	see	that	by	default,	no
frameworks	are	included,	but	if	you	click	the	plus	button	at	the	bottom	(Figure	8.1),	you
can	add	frameworks	to	your	project.	For	this	example,	let’s	choose	the	same
Photos.framework	from	our	earlier	example.	You	should	now	see	that	the	photos
framework	has	been	linked	to	our	project	(Figure	8.2):

Figure	8.2:	Choosing	Photos.framework	from	the	drop-down	list	adds	it	to	our	Linked
Frameworks

Now,	we’re	ready	to	use	the	framework	in	our	code,	so	head	over	to	the
ViewController.swift	file.	In	order	to	use	the	classes	and	functions	inside
Photos.framework,	we	need	to	include	it	in	this	file.	To	do	so,	we	just	write	this	at	the	top
of	the	file:
import	Photos

That’s	right;	we’ve	been	importing	frameworks	many	times	throughout	the	book	already,
though	we’ve	mostly	been	sticking	to	the	foundation	and	UIKit	frameworks.

Now	that	we’ve	linked	Photos.framework	to	our	app,	and	imported	the	framework	into
our	ViewController.swift	file,	we	are	free	to	use	any	of	the	functionality	found	within
the	photos	framework.

And	that’s	it!	We’ve	linked	and	imported	a	framework.	Feel	free	to	delete	this	test	project
before	we	move	on	to	more	fun	with	frameworks.

Understanding	UIKit	fundamentals
At	this	point	in	the	book,	we’ve	heard	a	lot	about	UIKit.	We’ve	seen	it	at	the	top	of	our
Swift	files	in	the	form	of	import	UIKit.	We’ve	used	many	of	the	UI	elements	and	classes
it	provides	for	us.	Now	it’s	time	to	take	an	isolated	look	at	the	biggest	and	most	important
framework	in	iOS	development.

In	this	section	we’re	going	to	be	talking	about	mostly	concepts	rather	than	concrete	code
examples.	Since	we’ve	been	using	UIKit	throughout	the	whole	book	(and	will	continue	to
do	so),	I’m	going	to	do	my	best	to	elaborate	on	some	things	we’ve	already	seen,	and	give
you	new	information	that	you	can	apply	to	what	we	do	in	the	future.

Application	management
Unlike	most	other	frameworks	in	the	iOS	SDK,	UIKit	is	deeply	integrated	into	the	way
your	app	runs.	That’s	because	UIKit	is	responsible	for	some	of	the	most	essential
functionalities	of	an	app.

It	provides	the	event	handling	for	user	input	(like	touch	and	gestures),	which	we	covered
in	depth	in	the	last	chapter.	It	also	manages	your	application’s	window	and	view
architecture,	which	we’ll	be	talking	about	next.	It	also	drives	the	main	run	loop,	which
basically	means	that	it	is	executing	your	program.

The	UIDevice	class
In	addition	to	these	very	important	features,	UIKit	also	gives	you	access	to	some	other
useful	information	about	the	device	the	app	is	currently	running	on	through	the	UIDevice
class.

Tip
Using	online	resources	and	documentation:	Since	this	chapter	is	about	exploring
frameworks,	it	is	a	good	time	to	remind	you	that	you	can	(and	should!)	always	be
searching	online	for	anything	and	everything.	For	example,	if	you	search	for	UIDevice,
you’ll	end	up	on	Apple’s	developer	page	for	the	UIDevice	class	where	you	can	see	even
more	bits	of	information	that	you	can	pull	from	it.	As	we	progress,	keep	in	mind	that
searching	the	name	of	a	class	or	framework	will	usually	give	you	quick	access	to	the	full
documentation.

Here	are	some	code	examples	of	the	information	you	can	access:
UIDevice.current.name

UIDevice.current.model

UIDevice.current.orientation

UIDevice.current.batteryLevel

UIDevice.current.systemVersion

Some	developers	have	a	little	bit	of	fun	with	this	information:	for	example,	Snapchat	gives
you	a	special	filter	to	use	for	photos	when	your	battery	is	fully	charged.	Always	keep	an
open	mind	about	what	you	can	do	with	data	you	have	access	to!

Views
One	of	the	most	important	responsibilities	of	UIKit	is	that	it	provides	views	and	the	view
hierarchy	architecture.	We’ve	talked	before	about	what	a	view	is	within	the	MVC
programming	paradigm,	but	here	we’re	referring	to	the	UIView	class	that	acts	as	the	base
for	(almost)	all	of	our	visual	content	in	iOS	programming.	While	it	wasn’t	too	important	to
know	about	when	just	getting	our	feet	wet,	now	is	a	good	time	to	really	dig	in	a	bit	and
understand	what	UIViews	are,	and	how	they	work	both	on	their	own	and	together.

Let’s	start	from	the	beginning:	a	view	(UIView)	defines	a	rectangle	on	your	screen	that	is
responsible	for	output	and	input,	meaning	drawing	to	the	screen	and	receiving	touch
events.	It	can	also	contain	other	views,	known	as	subviews,	which	ultimately	creates	a
view	hierarchy.	As	a	result	of	this	hierarchy,	we	have	to	be	aware	of	the	coordinate
systems	involved.	Now	let’s	talk	about	each	of	these	three	functions:	drawing,	hierarchies,
and	coordinate	systems.

Drawing
Each	UIView	is	responsible	for	drawing	itself	to	the	screen.	In	order	to	optimize	drawing
performance,	the	views	will	usually	try	to	render	their	content	once	and	then	reuse	that
image	content	when	it	doesn’t	change.	It	can	even	move	and	scale	content	around	inside	of
it	without	needing	to	redraw,	which	can	be	an	expensive	operation.

Figure	8.3:	An	overview	of	how	UIView	draws	itself	to	the	screen

With	the	system’s	provided	views,	all	of	this	is	handled	automatically.	However,	if	you

ever	need	to	create	your	own	UIView	subclass	that	uses	custom	drawing,	it’s	important	to
know	what	goes	on	behind	the	scenes.	To	implement	custom	drawing	in	a	view,	you	need
to	implement	the	draw(_	rect:)	function	in	your	subclass.	When	something	changes	in
your	view,	you	need	to	call	the	setNeedsDisplay()function,	which	acts	as	a	marker	to	let
the	system	know	that	your	view	needs	to	be	redrawn.	During	the	next	drawing	cycle,	the
code	in	your	draw(_	rect:)	function	will	be	executed	to	refresh	the	content	of	your	view,
which	will	then	be	cached	for	performance.

Note
A	code	example	of	this	custom	drawing	functionality	is	beyond	the	scope	of	this	book,	but
discussing	this	will	hopefully	give	you	a	better	understanding	of	how	drawing	works,	in
addition	to	giving	you	a	jumping	off	point	should	you	need	to	do	this	in	the	future.

Hierarchies
Now	let’s	discuss	view	hierarchies.	In	earlier	chapters,	when	we	would	use	a	view
controller	in	a	storyboard,	we	would	drag	UI	elements	onto	the	view	controller.	However,
what	we	were	actually	doing	is	adding	a	subview	to	the	base	view	of	the	view	controller.
And	in	fact,	that	base	view	was	a	subview	of	the	UIWindow,	which	is	also	a	UIView.	So
though	we	haven’t	really	acknowledged	it,	we’ve	already	put	view	hierarchies	to	work
many	times.

The	easiest	way	to	think	about	what	happens	in	a	view	hierarchy	is	that	you	set	one	view’s
parent	coordinate	system	relative	to	another	view.	By	default,	you’d	be	setting	a	view’s
coordinate	system	to	be	relative	to	the	base	view,	which	is	normally	just	the	whole	screen.
But	you	can	also	set	the	parent	coordinate	system	to	some	other	view,	so	that	when	you
move	or	transform	the	parent	view,	the	children	views	are	moved	and	transformed	along
with	it:

Figure	8.4:	Example	of	how	“parenting”	works	with	a	view	hierarchy

It’s	also	important	to	note	that	the	view	hierarchy	impacts	the	draw	order	of	your	views.
All	of	a	view’s	subviews	will	be	drawn	on	top	of	the	parent	view,	and	the	subviews	will	be
drawn	in	the	order	they	were	added	(the	last	subview	added	will	be	on	top).	To	add	a
subview	through	code,	you	can	use	the	addSubview()function.	Here’s	an	example:
var	view1	=	UIView()

var	view2	=	UIView()

view1.addSubview(view2)

Finally,	we	briefly	touched	on	this	in	the	last	chapter,	but	this	is	a	good	time	to	reiterate
that	touches	are	processed	depending	on	their	order	in	the	view	hierarchy.	The	top-most
views	will	intercept	a	touch	first,	and	if	it	doesn’t	respond	it	will	pass	it	down	the	view
hierarchy	until	a	view	does	respond.

Coordinate	systems
With	all	of	this	drawing	and	parenting,	we	need	to	take	a	minute	to	look	at	how	the
coordinate	system	works	in	UIKit	for	our	views.	The	origin	(0,0	point)	in	UIKit	is	the	top
left	of	the	screen,	and	increases	along	X	to	the	right,	and	increases	on	the	Y	downward.

Each	view	is	placed	in	this	upper	left	positioning	system	relative	to	its	parent	view’s
origin.

Note
Be	careful!	Other	frameworks	in	iOS	use	different	coordinate	systems.	For	example,
SpriteKit	uses	the	lower	left	corner	as	the	origin.

Each	view	also	has	its	own	set	of	positioning	information.	This	is	composed	of	the	view’s
frame,	bounds,	and	center.	The	frame	rectangle	describes	the	origin	and	the	size	of	view
relative	to	its	parent	view’s	coordinate	system.	The	bounds	rectangle	describes	the	origin
and	size	of	the	view	from	its	local	coordinate	system.	The	center	is	just	the	center	point	of
the	view	relative	to	the	parent	view.

When	dealing	with	so	many	different	coordinate	systems,	it	can	seem	like	a	nightmare	to
compare	positions	from	different	views.	Luckily,	the	UIView	class	provides	a	simple
convert(point:	to:)	function	to	convert	points	between	systems.

Try	running	this	little	experiment	in	a	playground	to	see	how	the	point	gets	converted
from	one	view’s	coordinate	system	to	the	other:
import	UIKit

let	view1	=	UIView(frame:	CGRect(x:	0,	y:	0,	width:	50,	height:	50))

let	view2	=	UIView(frame:	CGRect(x:	10,	y:	10,	width:	30,	height:	30))

view1.addSubview(view2)

let	pointFrom1	=	CGPoint(x:	20,	y:	20)

let	pointFromView2	=	view1.convert(pointFrom1,	to:	view2)

Hopefully	you	now	have	a	much	better	understanding	of	some	of	the	underlying	workings
of	the	view	system	in	UIKit.	Try	to	keep	this	in	mind	as	we	continue	to	work	with	UIKit
throughout	the	rest	of	the	book.

Documents,	displays,	printing,	and	more
In	this	section,	I’m	going	to	do	my	best	to	introduce	you	to	the	many	additional	features	of
the	UIKit	framework.	Descriptions	of	these	features	could	take	up	a	whole	chapter	each,
so	I	won’t	be	covering	them	in	depth.	The	idea	is	to	give	you	a	better	understanding	of
what	is	possible	with	UIKit,	and	if	anything	sounds	interesting	to	you,	you	can	go	off	and
explore	these	features	on	your	own.

Documents
UIKit	has	built-in	support	for	documents,	much	like	you’d	find	on	a	desktop	operating
system.	Using	the	UIDocument	class,	UIKit	can	help	you	save	and	load	documents	in	the
background,	in	addition	to	saving	them	to	iCloud.	This	could	be	a	powerful	feature	for	any
app	that	allows	the	user	to	create	content	that	they	expect	to	save	and	resume	working	on
later.

Displays
On	most	new	iOS	devices,	you	can	connect	external	screens	using	HDMI.	You	can	take
advantage	of	these	external	displays	by	creating	a	new	instance	of	the	UIWindow	class,	and
associating	it	with	the	external	display	screen.	You	can	then	add	subviews	to	that	window
to	create	a	second	screen	experience	for	devices	like	a	big-screen	TV.	While	most
consumers	don’t	ever	use	HDMI	connected	external	displays,	this	is	a	great	feature	to
keep	in	mind	when	working	on	internal	applications	for	corporate	or	personal	use.

Printing
Using	the	UIPrintInteractionController,	you	can	set	up	and	send	print	jobs	to
AirPrint	enabled	printers	on	the	user’s	network.	Before	you	print,	you	can	also	create
PDFs	by	drawing	content	off	screen	to	make	printing	easier.

And	more!
There	are	many	more	features	of	UIKit	that	are	just	waiting	to	be	explored!	To	be	honest,
UIKit	seems	to	be	pretty	much	a	dumping	ground	for	any	general	features	that	were	just	a
bit	too	small	to	deserve	their	own	framework.	If	you	do	some	digging	in	Apple’s
documentation	you’ll	find	all	kinds	of	interesting	things	you	can	do	with	UIKit,	like
creating	custom	keyboards,	creating	share	sheets,	and	custom	cut-copy-paste	support.

Using	CoreLocation.framework
With	today’s	always	on,	always	tracking	social	media	apps,	using	and	tracking	the	user’s
location	has	become	a	standard	feature	of	many	apps.	In	this	section	we’re	going	to
explore	a	new	framework	from	the	inside	out,	by	jumping	straight	to	coding.	This
framework	is	CoreLocation,	which	as	the	name	might	imply	is	going	to	give	us	the	tools
we	need	to	access	location	services	on	a	user’s	device.

We’re	going	to	be	switching	back	to	our	Snippets	application	and	adding	the	functionality
for	the	user	to	attach	their	current	location	to	a	new	snippet	when	they	create	it.	You	can
continue	to	work	from	your	old	Snippets	project,	or	if	you	had	any	problems	with	yours
you	can	grab	the	final	version	from	the	resources	folder	of	this	chapter,	because	again,	the
folder	will	have	the	finished	work	from	this	chapter.

Note
Before	we	get	started,	make	sure	to	link	CoreLocation.framework	to	your	Snippets
project	like	we	did	in	the	test	project	earlier	in	the	chapter.

Setting	up	CoreLocation	permissions
Apple	has	always	trumpeted	iOS’s	security	and	respect	for	user	privacy.	Before	iOS	8,	the
first	time	your	app	tried	to	access	location	services,	an	alert	would	show	up	for	the	user
asking	them	if	it	was	okay	to	enable	location	services.	However,	in	iOS	8	and	newer,	the
developer	is	now	responsible	for	explicitly	asking	the	user	for	permission	to	use	location
services.	Before	we	can	access	user	location	data	we’ll	have	to	do	that	ourselves,	so	let’s
get	to	it.

There	are	two	types	of	authorization	that	we	can	ask	for:	when	in	use	and	always
authorization.	These	should	be	pretty	self-explanatory.	When	in	use	authorization	allows
us	to	access	location	services	when	the	app	is	active	and	being	used,	while	always	lets	our
app	use	location	data	even	when	it	is	running	in	the	background.	It	can	be	tempting	to	just
ask	the	user	to	always	access	their	location,	but	some	users	may	wonder	why	you	need
access	to	that	information,	or	be	worried	about	battery	life	and	deny	your	request.

Note
Here’s	a	tip/warning:	if	a	user	denies	your	request	to	access	location	data	the	first	time	you
ask,	the	only	way	for	them	to	change	this	is	to	manually	go	into	the	settings	app	and
change	the	toggle	for	your	app.	It	is	very	important	that	you	gain	the	user’s	trust	before
asking,	since	their	denial	of	your	request	may	very	well	be	the	last	chance	you	get	to	ask
for	permission.

To	give	the	user	a	good	idea	of	why	we	need	location	data	in	the	first	place,	we	can
include	a	description	of	what	location	data	is	being	used,	for	that	will	be	included	in	the
permissions	prompt.	This	is	where	we’ll	start	with	our	own	permissions	setup.	Open	the
Info.plist	file	like	we	did	in	Chapter	7,	Integrating	Multitouch	and	Gestures,	and	add	a
new	row	using	one	of	the	+	buttons.	Set	the	key	to	Privacy	-	Location	When	In	Use
Usage	Description,	and	set	the	value	to	Adds	location	information	to	a	new
snippet	when	it	is	created.

What	we’re	doing	here	is	letting	the	app	know	that	when	location	permissions	of	the	type
when	in	use	are	requested,	the	user	should	be	given	our	description	string	so	they	know
why	the	location	is	needed.

Next,	we’re	going	to	head	over	to	the	ViewController.swift	file	and	add	the	code	that
actually	asks	for	permissions.	At	the	top	of	the	file,	add	a	new	import	for	CoreLocation:
import	CoreLocation

Now	we	can	create	an	instance	of	CLLocationManager,	which	is	what	we	are	going	to	use
to	ask	for	permissions,	and	later	on	use	to	actually	get	the	user’s	location.	Inside	the	class,
near	the	top	with	the	other	properties,	create	a	new	property	for	the	location	manager:
var	data:	[SnippetData]	=	[SnippetData]()

let	imagePicker	=	UIImagePickerController()

let	locationManager	=	CLLocationManager()

@IBOutlet	weak	var	tableView:	UITableView!

We’re	also	going	to	need	to	add	yet	another	class	extension	to	our	ViewController	class
extension	to	implement	a	protocol,	this	time	the	CLLocationManagerDelegate	protocol.

Our	class	declaration	should	now	look	like	this,	at	the	bottom	of	the	file:
extension	ViewController:	CLLocationManagerDelegate	{

}

Now,	we	need	to	actually	set	the	delegate	of	our	locationManager	to	the	view	controller
object,	so	it	knows	what	object	should	be	handling	location	requests.	In	our
viewDidLoad()	function,	we’ll	add	a	new	line	to	set	the	delegate:
override	func	viewDidLoad()	{

				super.viewDidLoad()

				imagePicker.delegate	=	self

				locationManager.delegate	=	self

			

				tableView.estimatedRowHeight	=	100

				tableView.rowHeight	=	UITableViewAutomaticDimension

}

Our	location	manager	should	be	all	set	up	at	this	point,	and	we’ve	added	a	description
string	to	the	Info.plist	file.	All	that	we	have	to	do	now	is	request	permission	to	use
location	services.	To	do	that,	we’re	going	to	create	a	small	function	that	first	checks	to
make	sure	we’re	not	already	authorized,	and	then	asks	the	user	if	we	can	use	location
services	when	in	use.	Let’s	create	a	function	in	the	main	class	body	called
askForLoacationPermissions():
func	askForLocationPermissions	()	{

				if	CLLocationManager.authorizationStatus()	==	.NotDetermined	{

								locationManager.requestWhenInUseAuthorization()

				}

}

Here,	we	first	check	to	make	sure	the	authorization	status	is	Not	Determined	(because	if	it
is	already	determined,	then	we	don’t	need	to	do	anything).	If	the	status	is	undetermined,
then	we	tell	the	location	manager	to	request	when	in	use	authorization,	which	will	tell	the
system	to	present	an	alert	to	the	user	using	the	description	we	provided	in	Info.plist.

Finally,	we	need	to	call	this	function	on	startup,	so	we’ll	put	this	at	the	bottom	of	our
viewDidLoad()	function:
override	func	viewDidLoad()	{

				super.viewDidLoad()

				imagePicker.delegate	=	self

				locationManager.delegate	=	self

			

				tableView.estimatedRowHeight	=	100

				tableView.rowHeight	=	UITableViewAutomaticDimension

			

				askForLocationPermissions()

}

If	you	build	and	run	the	app	now,	you	should	be	greeted	with	a	permissions	box	like	so:

Figure	8.5:	Snippets	will	now	ask	the	user	if	it	can	access	their	location,	using	the
description	from	Info.plist

If	this	didn’t	work,	then	aside	from	double	checking	your	code	is	correct,	make	sure	that
everything	in	the	Info.plist	file	is	correct.	If	the	system	can’t	find	a	valid	description
key	in	the	Info.plist	file,	it	will	ignore	your	request	for	permissions!	Your	entry	should
look	like	this:

Figure	8.6:	The	correct	Info.plist	entry	for	location	usage	permissions	(the	last	row)

Again,	make	sure	that	the	key	says	Privacy	-	Location	When	In	Use	Usage
Description,	and	the	type	is	set	to	string.	Spelling	mistakes	in	the	value	string	don’t
matter,	since	it	will	just	be	displayed	to	the	user	as	is,	but	double	check	the	key	is	spelled
correctly.

Alright!	It	should	be	a	given	that	you	press	Allow	on	that	alert	window.	Now	that	our	app

is	authorized	to	access	location	data,	it’s	time	to	move	on	to	the	exciting	parts.

Note
If	you	(or	the	user)	denies	permission,	you	(or	they)	will	need	to	reinstall	the	app,	or	go	to
the	Settings.app	to	manually	change	the	location	permissions.

Getting	the	user’s	location
To	obtain	the	user’s	location,	we’re	going	to	need	to	do	a	few	things.	First,	we	need	to	set
the	parameters	for	our	location	manager.	Then,	we	need	to	tell	it	to	start	updating	the
user’s	location.	Finally,	we	need	to	handle	both	successful	and	unsuccessful	update	cases.

To	start,	let’s	go	back	to	our	viewDidLoad()	function	and	set	some	properties	for	our
loactionManager,	highlighted	as	follows:
override	func	viewDidLoad()	{

				super.viewDidLoad()

				imagePicker.delegate	=	self

				locationManager.delegate	=	self

				locationManager.desiredAccuracy	=	kCLLocationAccuracyBest

				locationManager.distanceFilter	=	50.0

				tableView.estimatedRowHeight	=	100

				tableView.rowHeight	=	UITableViewAutomaticDimension

				askForLocationPermissions()

}

First,	we	set	the	desired	accuracy	to	a	constant	called	kCLLocationAccuracyBest,	which
sets	the	desired	accuracy	of	the	location	manager	to	its	highest	setting.	After	that,	we	set
the	distance	filter	to	50.0.	The	distance	filter	tells	the	location	manager	how	far	away	from
the	previous	location	the	user	must	move	in	order	to	update	the	location	(in	meters).	So	in
this	case	we	are	letting	the	location	manager	know	that	when	the	user	moves	50	meters	or
more,	it	should	update	their	location.

Next,	we	need	to	tell	the	location	manager	to	start	updating	the	user’s	location.	To	add
functionality	to	the	location	manager,	we’re	going	to	start	working	with	the	delegate
pattern	again.	We’re	going	to	add	these	delegate	methods	to	the
CLLocationManagerDelegate	class	extension	we	made	earlier.

Note
Remember,	the	delegate	pattern	uses	a	protocol	to	define	a	set	of	functions	that	a	class
should	implement.	Then,	the	object	calls	those	functions	in	its	linked	delegate	object,
which	implements	the	protocol.	Here,	the	CLLocationManager	object	has	a	delegate	that
follows	the	CLLocationManagerDelegate	protocol,	which	is	the	ViewController	class.

First,	we’ll	implement	the	locationManager	(didChangeAuthorizationStatus:)	delegate
function:
func	locationManager(_	manager:	CLLocationManager,	didChangeAuthorization

status:	CLAuthorizationStatus)	{

				if	status	==	.authorizedWhenInUse	{

								locationManager.startUpdatingLocation()

				}

}

This	function	is	called	in	two	different	scenarios:	when	the	location	manager	first	starts
up,	and	again	if	the	authorization	status	is	ever	changed	while	running.	That	means	that
the	first	time	our	app	starts	up	this	function	will	be	called.	In	that	case,	the	status	will	not

equal	.authorizedWhenInUse,	so	the	location	manager	will	not	start	updating.

However,	once	the	user	gives	the	app	permission	to	use	the	location,	the	function	will	be
called	again,	and	this	time	it	will	start	updating.	Then,	every	other	time	you	start	up	the
app,	the	authorization	status	will	still	equal	.authorizedWhenInUse,	and	location	updates
will	begin	immediately.

Now	that	the	location	manager	has	been	told	to	start	updating	its	location,	it	will	do	so
based	on	the	parameters	we	set	earlier	(every	time	a	change	of	50	meters	is	detected).	It’s
up	to	us	to	handle	these	update	events	with	more	delegate	functions,	one	to	handle	a
successful	location	update,	and	one	to	handle	an	error.

First,	we’ll	implement	the	locationManager(didFailWithError:)	function:
func	locationManager(_	manager:	CLLocationManager,	didFailWithError	error:

Error)	{

				print(“Location	manager	could	not	get	location.	Error:	\

(error.localizedDescription)”)

}

This	gets	called	when	the	location	manager	cannot	get	a	proper	location	due	to	an	error.	To
keep	things	simple,	we’re	just	going	to	print	to	the	console	that	an	error	occurred,	along
with	the	description	of	the	error.	In	a	final	production	app,	we’d	want	to	handle	these
errors	a	bit	more	elegantly,	but	this	is	fine	for	testing.

Next,	we’ll	actually	handle	what	happens	when	the	location	update	is	successful,	with	the
locationManager	(didUpdateLocations:)	function:
//	main	class

var	currentCoordinate:	CLLocationCoordinate2D?

//	CLLocationManagerDelegate	extension

func	locationManager(_	manager:	CLLocationManager,	didUpdateLocations

locations:	[CLLocation])	{

				if	let	currentLocation	=	locations.last	{

								currentCoordinate	=	currentLocation.coordinate

								print(“\(currentCoordinate!.latitude),	\

(currentCoordinate!.longitude)”)

				}

}

At	the	top	of	our	main	(non	extension)	class	we’re	going	to	declare	a	new	variable,	which
is	an	optional	CLLocationCoordinate2D	type.	This	data	type	stores	a	latitude	and
longitude	coordinate,	and	we’re	going	to	use	it	to	keep	track	of	the	most	recent	coordinate
the	app	has	detected.

Then	back	in	the	extension,	we	implement	the	location	update	handler.	Inside	our	location
update	handler,	we	are	being	passed	in	an	array	of	the	locations	that	have	been	processed,
with	the	most	recent	location	at	the	end.	We	use	the	if	let	syntax	to	unwrap	the	optional
value	from	the	end	of	the	array	(locations.last)	into	currentLocation.	Since	the
locations	array	may	be	empty,	the	.last	property	returns	an	optional	value	that	we	must
unwrap.	If	we	are	successful	in	unwrapping	the	optional	value,	we	then	pull	the	coordinate
out	of	the	currentLocation,	and	use	it	to	update	our	currentCoordinate	variable.	Now,

at	any	point	in	our	code	we	can	access	the	currentCoordinate	property	to	get	the	most
recent	valid	coordinate.

Following	that	(in	the	highlighted	code),	I	made	a	print	statement	that	outputs	the	latitude
and	longitude	coordinate	to	the	console	so	you	can	see	how	that	works.	At	this	point,	you
can	build	and	run	the	project	on	your	device.	If	you	see	the	latitude	and	longitude
coordinates	in	the	console	(shift	+	command	+	C),	everything	worked!	Feel	free	to	delete
the	highlighted	print	statement.

Adding	location	data	to	Snippets
Okay,	so	we’ve	imported	the	CoreLocation	framework,	gotten	permission	to	use	location
services,	and	set	up	a	location	manager	that	updates	the	most	recent	location	coordinate	of
the	device;	now	it’s	time	to	bring	it	all	back	into	our	SnippetData	model!	In	this	case,	we
are	just	going	to	add	the	location	information	as	metadata	to	the	data	model.	Later	on	we
may	choose	to	do	something	fun	with	it,	like	display	it	on	a	map	or	find	nearby	points	of
interest	to	display	on	the	snippet,	but	for	now	it	will	live	only	as	data.

First,	let’s	open	up	our	SnippetData.swift	file,	and	make	some	amendments	to	our	base
data	type,	SnippetData.	Before	we	begin,	remember	to	import	CoreLocation	at	the	top
of	the	SnippetData.swift	file.
class	SnippetData	{

				let	type:	SnippetType

				let	date:	Date

				let	coordinate:	CLLocationCoordinate2D?

			

				init	(snippetType:	SnippetType,	creationDate:	Date,

creationCoordinate:	CLLocationCoordinate2D?)	{

								type	=	snippetType

								date	=	creationDate

								coordinate	=	creationCoordinate

								print	(“\(type.rawValue)	snippet	created	on	\(date)	at	\

(coordinate.debugDescription)”)

				}

}

At	the	top	of	the	SnippetData	class,	we’ll	add	a	new	CLLocationCoordinate2D?	property
to	hold	the	optional	coordinate	data.	Then,	we’ll	pass	that	data	in	through	the	init
function,	and	we’ll	assign	it	in	the	body.	Finally,	we’ll	add	the	coordinate	data	to	our
debug	print	statement	so	we	can	check	to	see	if	it	worked	later.

Now	that	the	base	type	is	updated,	we	need	to	update	the	text	and	photo	types	to	also	add
the	coordinate	into	the	init	functions:
class	TextData:	SnippetData	{

				let	textData:	String

				init	(text:	String,	creationDate:	Date,	creationCoordinate:

CLLocationCoordinate2D?)	{

								textData	=	text

								super.init(snippetType:	.text,	creationDate:	creationDate,

creationCoordinate:	creationCoordinate)

								print	(“Text	snippet	data:	\(textData)”)

				}

}

class	PhotoData:	SnippetData	{

				let	photoData:	UIImage

				init	(photo:	UIImage,	creationDate:	Date,	creationCoordinate:

CLLocationCoordinate2D?)	{

								photoData	=	photo

								super.init(snippetType:	.photo,	creationDate:	creationDate,

creationCoordinate:	creationCoordinate)

								print	(“Photo	snippet	data:	\(photoData)”)

				}

}

Here,	you	can	see	that	we	updated	the	init	functions	for	both	data	types	to	also	include
the	creationCordinate	parameter	at	the	end,	and	that	they	both	pass	that	data	into	the
initializer	for	their	super	class	(SnippetData).	Now	we	can	pass	in	a	coordinate	to	any	of
our	SnippetData	classes,	so	let’s	go	update	our	ViewController,	which	is	where	we	are
actually	creating	this	data!

In	the	ViewController	class,	we	create	new	SnippetData	objects	in	two	different	places:
the	createNewTextSnippet()	function,	and	the	imagePickerController(didFinish…:)
function:
func	createNewTextSnippet	()	{

				guard	let	textEntryVC	=

storyboard?.instantiateViewController(withIdentifier:	“textSnippetEntry”)

as?	TextSnippetEntryViewController	else	{

								print(“TextSnippetEntryViewController	could	not	be	instantiated

from	storyboard”)

								return

				}

			

				textEntryVC.modalTransitionStyle	=	.coverVertical

				textEntryVC.saveText	=	{	(text:	String)	in

								let	newTextSnippet	=	TextData(text:	text,	creationDate:	Date(),

creationCoordinate:	self.currentCoordinate)

								self.data.append(newTextSnippet)

				}

				present(textEntryVC,animated:true,	completion:nil)

}

In	createNewTextSnippet(),	we	have	to	update	the	line	where	we	create	a	new	TextData
object.	You	can	see	at	the	end	of	its	initializer	that	we	are	passing	in	the
currentCoordinate	property	that	we	created	and	updated	in	the	last	section:
func	imagePickerController(_	picker:	UIImagePickerController,

didFinishPickingMediaWithInfo	info:	[String	:	Any])	{

				guard	let	image	=	info[UIImagePickerControllerEditedImage]	as?	UIImage

else	{

								print(“Image	could	not	be	found”)

								return

				}

				

				let	newPhotoSnippet	=	PhotoData(photo:	image,	creationDate:	Date(),

creationCoordinate:	self.currentCoordinate)

				self.data.append(newPhotoSnippet)

				

				dismiss(animated:	true,	completion:	nil)

}

Again,	in	the	imagePickerController(didFinishPickingMediaWithInfo:)	function,	we
are	going	to	update	the	initializer	of	the	PhotoData	object	with	the	same
currentCoordinate	parameter.

Now,	we’ve	updated	our	data	model	to	support	coordinate	data	and	we	updated	our

controller	to	track	location	and	pass	the	data	into	our	data	model.	If	you	build	and	run	the
app,	you	should	see	that	when	you	create	a	new	snippet	the	console	should	output	the
coordinate	that	the	snippet	was	created	at(Figure	8.7):

Figure	8.7:	The	debug	output	when	creating	a	new	snippet	with	location	data

And	that	concludes	our	crash	course	on	CoreLocation!	Like	I	said	earlier,	now	that	we’ve
added	location	information	to	our	data	model,	later	on	we	can	come	back	and	do	all	kinds
of	fun	things	with	it.	For	now,	I	think	we’ve	demonstrated	a	basic	way	to	integrate	some
location	data	in	an	application.	Commit	your	work,	and	let’s	move	on.

Using	Social.framework
When	building	an	app	where	the	user	generates	their	own	content,	it	is	usually	a	good	idea
to	include	the	ability	for	them	to	post	what	they’ve	made	to	an	external	social	media
service.	Luckily,	Apple	has	integrated	some	of	the	most	popular	social	media	services
(like	Facebook	and	Twitter)	right	into	iOS.	In	this	section,	we’re	going	to	get	our	feet	wet
with	the	Social.framework,	and	let	users	post	their	snippets	straight	to	Twitter.

Note
Again,	before	we	get	started,	link	the	Social.framework	to	your	Snippets	project	so	that
we	can	use	the	social	APIs	included	within.

Setting	up	the	views
The	first	thing	we’ll	need	to	do	to	post	our	snippets	to	Twitter	is	to	add	a	new	button	to	the
actual	snippets	for	the	user	to	press.	We’ll	be	adding	a	Tweet	button	to	the	right	side	of	the
grey	bar	that	sits	at	the	bottom	of	each	snippet.	Let’s	open	up	Main.storyboard	and	get
started:

Figure	8.8:	The	Tweet	button	added	to	the	right	of	the	grey	bar	on	the	text	snippet

First,	drag	a	button	from	the	object	library	onto	the	grey	bar	of	the	text	snippet	cell.	Set	the
text	to	read	Tweet,	then	set	its	color	to	our	orange	color.	Finally,	add	a	Center	Vertically
constraint,	and	a	Right	Edge	Pin	constraint	set	to	10.

Next,	we’re	going	to	do	the	same	thing	for	the	grey	bar	on	our	photo	snippet	cell.
However,	due	to	strange	auto	layout	constraints,	our	grey	bar	is	not	visible	since	it	is	off
the	bottom	of	the	screen!	We’re	going	to	have	to	take	a	leap	of	faith	here,	and	set	this	up
blind.	If	we	make	it	to	the	other	side,	we	will	be	auto	layout	ninjas!

Figure	8.9:	Dragging	a	button	from	the	object	library	directly	into	the	storyboard
document	outline

Here’s	what	we	need	to	do:

	
1.	 Drag	a	button	from	the	object	library	straight	onto	our	photo	cell’s	grey	bar	view	in

the	document	outline	(see	preceding	image).
2.	 Select	it	from	the	document	outline	and	set	its	color	and	name	property	in	the

Attribute	Inspector.
3.	 While	still	selected	in	the	document	outline,	use	the	Align	and	Pin	menus	to	set	the

same	Auto	Layout	constraints	(Vertical	Center/Right	Pin	10).

If	you	build	and	run	and	then	create	a	photo	and	text	snippet,	you	should	see	two	identical
grey	bars	(Figure	8.10)!	If	the	photo	one	didn’t	come	out	right,	try	following	the
instructions	again	until	it	does.	Once	it	works,	you	are	officially	an	auto	layout	master.

Figure	8.10:	The	finished	Tweet	button	on	both	types	of	snippets

Next,	let’s	set	up	the	@IBActions	that	will	be	called	when	the	buttons	are	pressed.	Open
up	TextSnippetCell	and	add	a	function	stub:
@IBAction	func	shareButtonPressed()	{

				print(“Tweet	button	pressed”)

}

Then	go	over	to	PhotoSnippetCell	and	do	the	same.	Finally,	open	up	the	Assistant
Editor	and	connect	the	@IBAction	from	TextSnippetCell	to	the	Tweet	button	in	the	text
cell,	and	then	do	the	same	for	the	photo	cells.

Note
If	you	forget	how	to	link	@IBActions	to	UI	elements,	revisit	Chapter	4,	Using
Storyboards,	Size	Classes,	and	Auto	Layout,	section	on	storyboards.	(Hint:	use	the
Connections	Inspector).	I	could	tell	you	here,	but	you’ll	learn	more	from	having	to	work
for	it!

Once	your	Tweet	buttons	are	linked	to	their	respective	@IBActions,	if	you	run	the	app	and
click	the	buttons,	you	should	see	Tweet	button	pressed	printed	to	the	console.	If	that’s	all
working,	then	it’s	time	to	post	to	Twitter!

Posting	to	Twitter
Now	that	we’ve	got	buttons	set	up	to	make	tweets,	it’s	time	to	get	into	the
Social.framework.	What	we’re	going	to	do	next	is	create	an	instance	of	and	present	a
SLComposeViewController,	which	lets	our	user	post	a	tweet.	We’re	also	going	to	pre-
populate	it	with	our	snippet’s	data	to	make	it	easy	for	the	user	to	post	their	snippets.
Before	we	can	do	that	though,	we	need	to	make	some	changes	to	our
shareButtonPressed()	functions	in	TextSnippetCell	and	PhotoSnippetCell.

Since	we	need	to	present	a	view	controller	(SLComposeViewController)	from	another
view	controller,	we’re	going	to	need	to	run	our	Social.framework	logic	in	our
ViewController	class.	However,	our	button	handling	function	is	inside	our	Cell	classes.
How	can	we	fix	this?	The	short	answer	is	by	using	a	closure.	In	both	the	TextSnippetCell
and	PhotoSnippetCell	classes,	update	your	shareButtonPressed()	function	to	look	like
this,	while	also	adding	a	new	shareButton	closure	as	a	property.	We’re	going	to	set	up	the
closure’s	code	from	our	view	controller,	and	then	when	we	tap	the	button	we’re	going	to
run	that	code.	Pretty	cool,	huh?
var	shareButton:	(()	->	Void)?

@IBAction	func	shareButtonPressed()	{

				if	let	callback	=	shareButton	{

								callback()

				}

}

Note	how	the	shareButton	property	is	an	optional	closure.	This	is	why	we	use	the	if	let
syntax	to	unwrap	the	option,	and	then	call	the	closure.

Now,	all	that	we	have	left	to	do	is	to	write	the	code	that	gets	passed	into	the	two	closures.
Back	in	ViewController.swift,	first	add	import	Social	to	the	top	of	the	file.	Then	head
to	the	tableView(_:,	cellForRowAt:)	function,	and	let’s	take	a	look	at	where	we	set	up
our	two	cells.	First,	the	text	cell:
case	.text:

				cell	=	tableView.dequeueReusableCell(withIdentifier:	“textSnippetCell”,

for:	indexPath)

				(cell	as!	TextSnippetCell).label.text	=	(snippetData	as!

TextData).textData

				(cell	as!	TextSnippetCell).date.text	=	dateString

				(cell	as!	TextSnippetCell).shareButton	=	{

								if	SLComposeViewController.isAvailable(forServiceType:

SLServiceTypeTwitter)	{

												let	text	=	(snippetData	as!	TextData).textData

												guard	let	twVC	=	SLComposeViewController(forServiceType:

SLServiceTypeTwitter)	else	{

																print(“Couldn’t	create	twitter	compose	controller”)

																return

												}

												if	text.characters.count	<=	140	{

																twVC.setInitialText(“\(text)”)

												}	else	{

																let	tweetLengthIndex	=	text.index(text.startIndex,

offsetBy:	140)

																let	tweetChars	=	text.substring(to:	tweetLengthIndex)

																twVC.setInitialText(“\(tweetChars)”)

												}

												self.present(twVC,	animated:	true,	completion:	nil)

								}

								else	{

												let	alert	=	UIAlertController(title:	“You	are	not	logged	into

twitter”,	message:	“Please	log	into	Twitter	from	the	iOS	Settings	app.”,

preferredStyle:	.alert)

												let	dismissAction	=	UIAlertAction(title:	“OK”,	style:	.default,

handler:	nil)

												alert.addAction(dismissAction)

												self.present(alert,	animated:	true,	completion:	nil)

								}

				}

Here,	you	can	see	that	we	are	setting	the	.shareButton	closure	to	a	chunk	of	code	that
will	be	executed	when	the	Tweet	button	is	pressed	on	a	text	cell.

First,	we	check	to	see	if	the	Twitter	service	is	available.	If	the	user	hasn’t	logged	into
Twitter	from	the	iOS	settings	app,	the	user	won’t	be	able	to	post	to	Twitter,	and	they	will
be	given	the	error	message,	which	is	presented	in	the	else	block	towards	the	bottom.

If	Twitter	is	available,	we	get	the	text	out	of	our	TextData	object,	and	save	it	in	a	text
constant	for	later.	Then	we	create	the	view	controller	for	creating	a	tweet,	and	store	it	in	a
twVC	constant.	We	place	this	in	a	guard	statement	to	ensure	that	we	have	a	value,	since	it	is
an	optional.

Finally,	we	have	to	check	the	length	of	our	message;	since	Twitter	can	only	support	140
characters	or	less,	it’s	up	to	us	to	cut	down	the	string	if	it’s	too	long.	Then,	we	can	use	the
setInitialText()	function	on	our	SLComposeViewController	to	pre-populate	the	text
field.	Finally,	we	present	the	view	controller.	If	all	goes	well,	your	app	should	look
something	like	this	when	you	post	to	Twitter:

Figure	8.11:	Tapping	the	Tweet	button	lets	us	send	the	contents	of	our	snippet	to	Twitter

To	wrap	things	up,	we’ll	create	a	similar	closure	to	send	to	the	PhotoSnippetCell.	Since
we	don’t	have	to	check	character	length,	this	one	is	a	bit	easier	to	put	together:
case	.photo:

				cell	=	tableView.dequeueReusableCell(withIdentifier:

“photoSnippetCell”,	for:	indexPath)

				(cell	as!	PhotoSnippetCell).photo.image	=	(snippetData	as!

PhotoData).photoData

				(cell	as!	PhotoSnippetCell).date.text	=	dateString

				(cell	as!	PhotoSnippetCell).shareButton	=	{

								if	SLComposeViewController.isAvailable(forServiceType:

SLServiceTypeTwitter)	{

												let	photo	=	(snippetData	as!	PhotoData).photoData

												guard	let	twVC	=	SLComposeViewController(forServiceType:

SLServiceTypeTwitter)	else	{

																print(“Couldn’t	create	twitter	compose	controller”)

																return

												}

												twVC.setInitialText(“Sent	from	Snippets™”)

												twVC.add(photo)

												self.present(twVC,	animated:	true,	completion:	nil)

								}

								else	{

												let	alert	=	UIAlertController(title:	“You	are	not	logged	into

twitter”,	message:	“Please	log	into	Twitter	from	the	iOS	Settings	app.”,

preferredStyle:	.alert)

												let	dismissAction	=	UIAlertAction(title:	“OK”,	style:	.default,

handler:	nil)

												alert.addAction(dismissAction)

												self.present(alert,	animated:	true,	completion:	nil)

								}

				}

}

Again,	first	we	are	checking	to	see	if	Twitter	is	available,	and	if	not,	we	give	the	user	the
same	alert	box.	Then,	we	pull	out	the	image	data	to	the	photo	constant,	and	again	create
the	twVC	view	controller.	This	time	we	manually	set	the	text	to	a	little	tag	line,	and	use	a
new	function	add(image:)to	attach	our	photo	to	the	tweet	template.	Finally,	we	present
the	view	controller.	If	this	all	worked	out,	you	should	have	a	similar	result:

Figure	8.12:	Tapping	the	Tweet	button	on	a	photo	snippet	sets	up	a	photo	post	for	Twitter

And	that’s	how	you	share	text	and	images	to	social	networks!	See	if	you	can	figure	out
Facebook.	Don’t	forget	to	git	commit	your	work!

Summary
In	this	chapter,	we	learned	about	frameworks	from	many	different	angles.	We	talked	about
what	they	are,	and	how	to	add	them	to	your	projects.	We	looked	at	the	biggest	and	most
important	iOS	framework,	UIKit,	and	learned	about	some	of	the	most	important	system
processes,	like	the	view	hierarchy.	Then	we	looked	at	some	more	specific	frameworks	and
added	location	data	using	CoreLocation.framework,	and	social	media	integration	with	the
Social.framework.	Now	it’s	up	to	you	to	explore	the	documentation,	and	see	what	you
can	do	with	other	frameworks	in	the	iOS	SDK!

If	you	haven’t	noticed	yet,	when	we	quit	our	app,	none	of	our	data	gets	saved,	and	we
have	to	start	over	every	time	we	launch	the	app.	In	the	next	chapter,	we’re	going	to	dive
into	the	world	of	CoreData,	which	will	allow	us	to	save	and	persist	our	data	models	across
multiple	sessions.

Chapter	9.	Working	with	Core	Data
We’ve	now	spent	three	chapters	working	on	building	up	the	functionality	for	our	note
taking/journaling	application,	Snippets.	However,	while	we’ve	demonstrated	a	good
amount	of	the	core	features	such	as	content	creation,	3D	touch	support,	location	tracking,
and	social	sharing,	we	still	don’t	have	an	application	that	a	user	can	carry	around	with
them	and	use.

We	are	lacking	a	key	feature:	persistence.

When	a	user	closes	our	app	or	turns	off	their	phone,	they	lose	all	of	the	snippets	they’ve
created.	To	me	that	sounds	like	a	pretty	terrible	journaling	application.	In	this	chapter
we’re	going	to	finally	give	our	app’s	model	the	attention	it	deserves!

To	accomplish	our	goal	of	persistent	app	data	across	multiple	launches,	we’re	going	to	be
using	the	Core	Data	framework	and	its	associated	data	containers.	In	this	chapter,	we’re
going	to	cover:

	
What	is	Core	Data?
The	data	model	components	(entities,	attributes,	and	relationships)
Using	the	data	model	editor
Adding	Core	Data	support	to	an	existing	application
Saving,	fetching,	and	deleting	data	from	our	object	graph

What	is	Core	Data?
So	what	exactly	is	Core	Data	used	for,	and	what	is	it	capable	of?	To	be	technical,	it	is	an
object	graph	and	persistence	framework.	To	be	less	technical,	it	is	a	framework	that	makes
it	easy	to	save,	change,	track,	and	sort	lots	of	data.

In	this	section,	we’re	going	to	cover	the	model	aspect	of	Model-View-Controller	(MVC)
again,	and	look	at	how	Core	Data	ties	into	those	ideas	of	separating	data	from	views.
Then,	we’re	going	to	look	at	how	Core	Data	represents	data	relationships,	and	finally,
we’ll	learn	how	we	can	create	our	own	specific	descriptions	of	the	data	our	app	needs	to
manage.

Model	revisited
In	the	very	first	chapter	of	this	book,	we	took	some	time	discussing	the	concept	of	MVC,
and	how	we	separate	an	application’s	data	from	its	interface,	and	connect	it	through	the
controller.	We’ve	come	a	long	way	since	then,	and	we’ve	learned	a	ton	about	creating
views	and	programming	controllers.

However,	as	it	stands	now,	our	ViewController	class	is	completely	owning	the	model:	it
holds	onto	an	array	of	data	that	it	adds	to	and	reads	from.	Let’s	go	back	and	look	at	how
the	model	is	supposed	to	work	in	an	MVC	application	(see	Figure	9.1):

Figure	9.1:	Diagram	of	model	functionality

As	you	can	see,	we	want	to	completely	encapsulate	our	model.	This	will	allow	us	to	make
changes	to	the	model,	without	significant	code	changes	in	the	controller,	and	down	the	line
it	will	make	it	much	easier	to	move	the	data.	Right	now,	everything	is	stored	locally	on	the
device,	but	maybe	in	six	months	when	we	have	100,000	users	we	might	want	to	start
storing	data	in	the	cloud.	No	matter	what	your	reasoning,	proper	model	encapsulation	will
keep	your	app	much	easier	to	manage,	and	save	you	plenty	of	headaches	in	the	future.

Note
Throughout	the	rest	of	this	chapter,	we’ll	be	exploring	every	aspect	of	Figure	9.1.	I
recommend	that	you	continue	to	refer	back	to	this	diagram	as	you	read	through,	and	make
mental	notes	about	where	the	different	parts	of	this	chapter	line	up	with	it.	It’s	very
important	to	have	a	solid	grasp	of	how	your	data	is	moving	through	your	app!

So,	looking	at	Figure	9.1,	where	does	Core	Data	fit	in	with	things?	Actually,	it	takes	care
of	the	entire	model	box	for	us.	On	the	backend,	Core	Data	will	interface	with	the	saved

data	on	the	disk,	and	uses	SQLite	as	its	database	to	manage	data.	However,	it	also	allows
us	to	interface	with	this	data	at	run	time	with	instances	of	the	data	in	a	managed	context
(which	we’ll	discuss	in	a	bit),	and	deals	with	a	lot	of	the	in-between	parts	automatically.

Now,	this	isn’t	a	book	on	database	programming,	so	for	our	purposes	we	don’t	have	to
look	any	deeper	than	that,	and	Core	Data	is	abstract	enough	that	we	really	don’t	need	to
know	any	more!	But	if	you’re	intrigued	and	want	to	know	what’s	going	on	behind	the
scenes	of	Core	Data,	there	is	plenty	of	information	about	it	online.

Entities,	attributes,	and	relationships
Now,	let’s	take	a	look	at	how	Core	Data	works	when	it	comes	to	defining	our	model.	As	I
mentioned	a	bit	earlier,	Core	Data	manages	an	object	graph.	The	object	graph	is	the
runtime	version	of	a	data	model,	which	is	a	way	of	describing	how	different	pieces	of
complex	data	are	composed	and	relate	to	each	other.	This	data	model	has	three	main	parts:
entities,	attributes,	and	relationships.

Entities
The	easiest	way	to	think	about	an	entity	is	as	if	it	were	an	object.	An	entity	has	a	name
(like	person)	and	is	composed	of	the	other	two	pieces,	attributes	and	relationships.	In	our
case,	we’ll	create	entities	like	TextSnippet,	which	will	have	attributes	like	date,
coordinate,	and	text.

Attributes
While	entities	are	the	objects,	attributes	can	be	seen	as	the	properties.	An	attribute	is	a
piece	of	data	with	a	certain	data	type.	For	example,	our	person	entity	might	have	a	name
attribute,	which	is	of	the	string	type,	and	an	age	attribute	which	is	an	integer.	With	Core
Data,	we	can	also	set	an	attribute	to	be	optional	(the	default)	or	required.	If	an	attribute	is
required	but	isn’t	set,	Core	Data	will	throw	an	error.	Attributes	can	also	have	default
values.

Relationships
Finally,	we	have	relationships	which	are	pretty	self-explanatory:	they	describe	how	two
entities	relate	to	one	another.	Going	back	to	the	person	entity,	let’s	imagine	we	also	have	a
house	entity.	We	can	create	a	new	relationship	named	address	in	the	person	entity,	and
connect	it	to	the	house.	We	can	also	create	an	inverse	relationship	by	creating	an	owner
relationship	in	the	house	and	connecting	it	to	the	person.

Relationships	can	also	be	one	of	two	types:	to-one,	and	to-many.	Our	house/person
example	were	both	examples	of	to-one	relationships,	since	each	house	had	one	owner,	and
each	person	had	one	address.	However,	multiple	people	can	live	in	a	house,	so	we	can
change	the	name	of	the	owner	relationship	to	be	resident,	and	set	it	as	a	to-many
relationship.	Then	the	house	can	have	as	many	residents	as	is	needed.

It’s	also	important	to	set	rules	for	deletion	with	relationships.	There	are	several	things	that
can	happen	when	an	object	gets	deleted:	it	can	nullify	its	relationship	with	related	objects;
it	can	cascade	the	deletion,	deleting	the	connected	object	with	it;	or	it	can	deny	the
deletion	of	the	original	object	if	the	connected	object	exists.

With	our	person/house	example,	if	a	house	gets	deleted	we	shouldn’t	delete	the	people,
since	they	might	have	other	houses,	but	we	should	nullify	their	relationship	to	each	other.
How	about	a	company/employee	relationship?	If	the	employee	is	deleted	we	should
nullify	the	relationship	with	the	company,	but	if	the	company	itself	is	deleted,	we	should
cascade	that	deletion	down	to	the	employee	since	they	can	no	longer	be	employed	if	the
company	is	gone.

Relationships	are	a	very	powerful	tool,	but	are	usually	only	useful	when	dealing	with	more

complex	data	models.	For	our	purposes	they	won’t	be	used	much,	but	it’s	good	to
understand	how	they	work	for	future	projects.

The	data	model	editor
Now	that	we’ve	learned	about	the	three	main	components	of	the	data	model	in	Core	Data,
let’s	take	a	look	at	the	editor!	Let’s	create	a	little	throwaway	Xcode	project	to	cut	our	teeth
on	Core	Data	before	we	set	it	up	in	our	Snippets	project.	When	starting	this	project,	make
sure	to	(finally)	check	off	the	box	that	says	Use	Core	Data	(Figure	9.2):

Figure	9.2:	Check	off	the	Use	Core	Data	option

If	you	take	a	look	at	the	project,	you’ll	see	some	minor	changes.	In	the	AppDelegate,
there’s	a	bunch	of	new	boilerplate	code	that	sets	up	our	managed	context,	but	most
interesting	to	us	right	now	is	the	new	.xcdatamodeld	type	file	in	our	project	navigator.
This	file	is	what	describes	our	data	model,	and	it	uses	a	custom	editor	view	to	create
entities,	attributes,	and	relationships.	Click	on	the	file	to	open	it	and	take	a	look:

Figure	9.3:	The	Core	Data	data	model	editor

To	start,	there’s	not	much	going	on.	Let’s	add	our	first	entity	by	clicking	the	Add	Entity
button	on	the	bottom	of	the	window,	shown	in	Figure	9.3.	We	should	now	see	a	new	entity
named	Entity	under	the	Entities	section	on	the	left	sidebar.	In	the	middle	of	the	editor
window	we	have	the	ability	to	add	new	attributes,	relationships,	and	fetched	properties
(don’t	worry	about	these	for	now).

For	this	example,	let’s	use	the	Company/Employee	model	from	the	end	of	the	last	section
to	get	us	acquainted	to	the	data	model	editor.	First,	change	the	name	of	our	boring	Entity
to	be	Company.	Then,	in	the	attributes	section,	click	the	plus	button	to	create	a	new
attribute	and	call	it	name.	Next	to	the	attribute’s	name	is	a	drop-down	menu	for	the
attribute’s	data	type;	select	String.	Now	create	another	string	attribute	and	call	it
industry:

Figure	9.4:	Our	Company	entity	soso	with	its	attributes	set

Next,	let’s	create	another	entity,	this	time	named	Employee.	We’ll	add	a	name	attribute	of
type	String,	and	a	salary	attribute	of	type	Integer16.	If	you	select	the	salary	attribute,
and	look	in	the	attribute	inspector	(option	+	command	+	3),	you	can	see	that	we	can	set
some	data	validation	and	default	values.	Let’s	enable	a	minimum	of	40000	and	a
maximum	of	200000,	with	the	default	value	of	40000.	This	will	ensure	that	our	salary
attribute	always	falls	within	one	of	these	values,	which	can	be	useful	in	some	scenarios.

Now	that	we	have	two	entities,	we	can	also	create	a	relationship.	Add	a	new	relationship
with	the	plus	button,	and	name	it	employer.	Next	to	its	name,	set	the	Destination	of	the
relationship	to	our	Company	entity.	For	now,	we’ll	leave	the	Inverse	column	blank:

Figure	9.5:	The	Employee	entity	and	its	salary	attribute	selected	with	data	validation	edits
made

Now	that	we	have	our	Employee	entity	finished,	let’s	head	back	to	the	Company	entity	and
add	a	new	relationship.	Create	the	new	relationship	and	name	it	employee,	with	the
destination	set	to	our	Employee	entity.	This	time,	we	will	set	the	Inverse	to	the	other
relationship	we	made	in	the	Employee	entity;	the	employer	relationship	should	be	visible
in	the	Inverse	column	dropdown.

The	last	relationship	we	made	used	the	default	values	for	its	type	and	delete	rule	(to-one
and	nullify,	respectively),	so	we	didn’t	need	to	change	them.	However,	our	employee
relationship	needs	to	be	of	the	type	to-many,	and	the	delete	rule	needs	to	be	set	to	cascade.

To	change	these	settings,	click	on	the	employee	relationship	in	our	Company	entity,	and
then	take	a	look	at	the	attribute	editor.	You	should	see	a	set	of	dropdown	options,	below
the	name	field.	Set	Delete	Rule	to	cascade,	and	Type	to	to-many.	Now	the	Company	can
relate	to	several	employees,	and	when	the	Company	is	deleted,	all	of	the	employees	are
deleted	with	it.

Finally,	let’s	take	a	look	at	the	data	model	visualization	feature.	If	you	look	in	the	lower
right	corner	of	the	editor,	there’s	a	toggle	called	Editor	Style.	Toggle	the	style	to	the	other
mode,	and	you’ll	see	a	visual	representation	of	your	data	model:

Figure	9.6:	A	visual	representation	of	our	data	model

You	can	imagine	how	useful	this	can	be	later	on	when	dealing	with	more	complex	data
models!	At	this	point,	you	know	all	of	the	basic	tools	for	creating	entities,	attributes,	and
relationships,	so	play	around	a	bit	and	see	what	kind	of	data	you	can	model.

Preparing	Snippets	for	Core	Data
In	the	last	section,	we	learned	about	how	to	start	using	Core	Data	in	a	project	that	already
has	the	feature	enabled	from	the	beginning.	However,	our	Snippets	project	was	started
without	Core	Data	enabled	so,	before	we	can	continue,	we’re	going	to	have	to	prepare	our
project	for	use	with	Core	Data.	There	are	two	things	we	need	to	do:	set	up	the	managed
context	and	the	rest	of	the	Core	Data	stack	in	our	AppDelegate.swift	file,	and	then
create	the	data	model	for	Snippets	using	the	editor	we	just	covered.	Before	we	get	started,
open	your	Snippets	Xcode	project	(or	use	my	final	version	from	Chapter	8,	Exploring
Common	iOS	Frameworks),	and	import	the	CoreData	framework.

Initializing	the	Core	Data	stack
So	far,	we’ve	only	looked	at	how	to	create	a	data	model	in	Core	Data.	Now,	we	need	to	set
up	the	code	that	will	let	us	load,	manipulate,	and	save	our	data.	The	objects	that	help	us	to
do	this	are	referred	to	as	the	Core	Data	stack.	This	is	composed	of	three	pieces:	the
managed	object	model,	the	persistent	store	container,	and	the	managed	object	context.

Note
Most	of	the	code	in	this	section	is	taken	from	the	boilerplate	code	added	to	a	project	when
you	enable	Core	Data	using	the	checkbox	at	project	creation	time.

This	section	might	have	some	code	that	is	a	little	tough	to	understand,	but	that’s	okay!	The
important	part	is	that	you	understand	what	each	part	of	the	stack	does,	and	why	it’s
important.

Data	model	versus	object	graph
Before	we	can	understand	how	this	stack	works	together,	we	need	to	understand	some
other	concepts.	A	few	times	throughout	this	chapter,	I’ve	mentioned	something	known	as
the	object	graph,	and	how	Core	Data	is	used	to	manage	it.	We’ve	also	spent	a	good
amount	of	time	learning	about	the	data	model,	which	Core	Data	is	also	responsible	for.	So
before	we	move	forward,	let’s	look	at	how	the	two	are	related.

The	data	model	is	a	description	of	a	piece	of	data.	The	data	model	tells	us	that	a	Person
must	have	a	name	and	an	age,	and	can	have	a	resident	relationship	with	a	House.	The	data
model	is	effectively	a	blueprint.

The	object	graph	is	a	set	of	real	data.	It	tells	us	that	we	have	three	actual	people	named
Emma,	Tyler,	and	Natasha,	along	with	their	ages	and	what	House	they	each	live	in.	The
object	graph	is	an	implementation	of	a	data	set	that	follows	the	rules	set	by	the	data	model.
This	is	actually	what	is	being	loaded	and	saved	by	Core	Data.

The	NSManagedObjectModel
Armed	with	this	information,	let’s	now	take	a	look	at	what	is	going	on	in	the	Core	Data
stack.	The	NSManagedObjectModel	(usually	abbreviated	to	mom)	loads	in	a	data	model
that	we	created	in	the	data	model	editor.	The	mom	is	pretty	much	only	used	as	a	way	for
the	NSPersistentStoreCoordinator	to	know	what	kind	of	data	is	being	loaded.	To	create
an	instance	of	the	NSManagedObjectModel,	we	need	to	load	in	the	model	from	a	file.	While
a	bit	counterintuitive,	we	are	not	actually	going	to	load	in	the	.xcdatamodeld	file,	but	a
file	with	the	same	name	but	a	different	extension:	momd.

Navigate	to	your	AppDelegate.swift	file	and	add	an	import	CoreData	command	to	the
top	of	the	file.	Then,	scroll	to	the	bottom	of	the	class,	and	add	the	following	code	to	create
our	NSManagedObjectModel:
//	MARK:	-	Core	Data	stack

lazy	var	managedObjectModel:	NSManagedObjectModel	=	{

				let	modelURL	=	Bundle.main.url(forResource:	“SnippetData”,

withExtension:	“momd”)!

				return	NSManagedObjectModel(contentsOf:	modelURL)!

}()

Note
Here,	we’re	declaring	a	lazy	property	with	the	lazy	keyword.	What	this	means	is	that	the
code	inside	the	block	will	only	initialize	this	property	the	first	time	some	other	object
comes	looking	for	it,	not	during	initialization.	This	makes	initialization	much	faster,	and
has	the	added	benefit	of	making	sure	that	time	isn’t	spent	initializing	this	property	if	no
other	object	ends	up	needing	it	at	runtime.

First,	we	get	the	location	of	our	data	model	file	from	our	application’s	resources	using
Bundle.main.url(forResource:),	again	using	the	filename	from	our	.xcdatamodeld	file,
but	with	the	momd	extension	instead.	From	there	we	can	just	instantiate	the
NSManagedObjectModel	using	that	URL,	and	return	it.

The	NSPersistentStoreCoordinator
The	next	part	of	the	Core	Data	stack	is	the	NSPersistentStoreCoordinator.	This	object
uses	the	managed	object	model	to	actually	read	and	instantiate	instances	of	objects	from
the	persistent	store	based	on	the	blueprints	of	the	mom	(the	managed	object	model,	not	the
mother).	A	simple	way	to	think	about	the	persistent	store	is	that	it	is	the	saved	data	that
exists	on	disk	(it’s	not	always	that	simple,	but	don’t	worry	about	that	for	now).

So,	essentially,	the	NSPersistentStoreCoordinator	uses	the	data	model	to	know	what
the	data	should	look	like,	and	then	coordinates	creating	new	data	and	saving	data	to	the
disk.	In	practice,	the	managed	context	(which	we	will	cover	next)	will	do	most	of	the
heavy	lifting	with	the	persistent	store	coordinator,	but	we	still	need	to	set	it	up.	Let’s	do
that	now:
llazy	var	persistentStoreCoordinator:	NSPersistentStoreCoordinator	=	{

				let	coordinator	=	NSPersistentStoreCoordinator(managedObjectModel:

self.managedObjectModel)

				let	urls	=	FileManager.default.urls(for:	.documentDirectory,	in:

.userDomainMask)

				let	url	=

urls.last!.appendingPathComponent(“SingleViewCoreData.sqlite”)

				do	{

								try	coordinator.addPersistentStore(ofType:	NSSQLiteStoreType,

configurationName:	nil,	at:	url,	options:	nil)

				}	catch	{

								//	Replace	this	to	handle	the	error	appropriately.

								let	nserror	=	error	as	NSError

								print	(“Unresolved	error	\(nserror),	\(nserror.userInfo)”)

								abort()

				}

				return	coordinator

}()

First,	we	instantiate	a	new	NSPersistentStoreCoordinator	by	passing	in	the	managed
object	model.	Again,	this	is	so	that	the	persistent	store	coordinator	knows	what	the	data
will	look	like.

Next,	we	play	around	in	the	file	system	for	a	few	lines	of	code	in	order	to	get	the	location

of	the	database	(the	actual	persistent	store)	that	will	be	coordinated.	Once	we	have	that
URL,	we	use	a	do/try/catch	block	to	load	the	database	from	the	URL.	If	it	fails,	we’ll
catch	the	error	and	need	to	handle	it,	but	otherwise	our	NSPersistentStoreCoordinator
is	set	up	and	ready	to	go!

The	NSManagedObjectContext
Lastly,	we	have	our	NSManagedObjectContext,	which	is	mainly	what	we’ll	be	working
with	in	our	code.	The	purpose	of	the	managed	context	is	to	provide	an	area	to	play	with
our	data.	It	is	here	that	we	will	edit	data	and	create	new	instances	of	data;	Apple	describes
the	managed	context	as	an	intelligent	scratchpad.	When	we	are	done	creating,	editing,	and
deleting	data,	the	managed	context	can	be	used	to	tell	the	system	to	save	our	data,	which
flushes	it	through	the	persistent	store	and	down	onto	the	disk.

Let’s	set	up	our	managed	context	now:
lazy	var	managedObjectContext:	NSManagedObjectContext	=	{

				let	coordinator	=	self.persistentStoreCoordinator

				var	managedObjectContext	=	NSManagedObjectContext(concurrencyType:

.mainQueueConcurrencyType)

				managedObjectContext.persistentStoreCoordinator	=	coordinator

				return	managedObjectContext

}()

First,	we	get	a	reference	to	our	persistent	store	coordinator.	Then	we	create	a	new	instance
of	the	NSManagedObjectContext	class	and	pass	in	the	concurrency	type.	Don’t	worry
about	this	for	now,	but	we’re	passing	in	.mainQueueConcurrencyType.	Finally,	after
initializing	the	managedObjectContext,	we	assign	its	persistentStoreCoordinator	to	be
our	instance	that	we	grabbed	in	the	first	line.	This	lets	the	managed	object	context	know
what	database	it	is	working	with.	Now	we	can	return	the	fully	set	up	context.

Final	touches
We’ve	now	completely	set	up	the	Core	Data	stack	in	our	AppDelegate.	The	managed
object	model	describes	our	data,	the	persistent	store	coordinator	interfaces	with	the
database,	and	the	managed	object	context	lets	us	create,	edit,	and	save	data.

However,	we	can	still	do	a	little	more	in	our	AppDelegate	to	make	using	the	stack	a	bit
easier.	Let’s	create	a	helper	function	at	the	bottom	of	our	AppDelegate	class	that	makes	it
really	simple	to	save	our	data:
//	MARK:	-	Core	Data	Saving	support

func	saveContext	()	{

				if	managedObjectContext.hasChanges	{

								do	{

												try	managedObjectContext.save()

								}	catch	{

												//	Replace	this	to	handle	the	error	appropriately.

												let	nserror	=	error	as	NSError

												print(“Unresolved	error	\(nserror),	\(nserror.userInfo)”)

												abort()

								}

				}

}

The	first	thing	we	do	in	this	saveContext()	function	is	check	to	see	if	we’ve	made	any
changes	to	our	data.	If	not,	then	there	is	no	point	in	saving!	If	changes	have	been	made,
then	we	try	to	save	the	data	by	calling	the	save()function	in	our	managed	object	context.
If	the	save	is	unsuccessful,	we’ll	have	to	handle	the	error.

This	helper	function	will	make	it	easier	down	the	line	to	save	our	data.	Now,	with	one
function	call,	we	can	make	sure	we	are	not	saving	data	that	doesn’t	need	to	be	saved,	in
addition	to	handling	errors.

Let’s	put	our	new	saveContext()	function	to	use.	In	your	AppDelegate	class,	you	should
have	several	empty	function	stubs	still	in	the	class	from	when	the	project	was	created.
Many	of	these	are	places	where	you	can	add	code	to	run	when	the	application	enters	and
exits	different	states,	like	entering	and	exiting	the	background.	There	should	also	be	a
function	called	applicationWillTerminate(),	which	is	called	when	an	app	is	closed.
This	is	a	great	time	to	make	sure	that	the	user’s	data	is	saved,	so	let’s	call	our
saveContext()	function	from	here:
func	applicationWillTerminate(_	application:	UIApplication)	{

				self.saveContext()

}

This	will	make	it	so	that	if	any	data	accidentally	goes	unsaved,	then	our	app	will	save	it
just	before	shutdown	so	that	information	is	not	lost.

Now	we’ve	got	our	stack	set	up,	and	some	easy	saving	functionality	ready	to	go!

Recreating	the	data	model	with	Core	Data
The	only	thing	left	to	do	before	we	can	start	saving	data	in	our	Snippets	app	is	to	recreate
our	data	model	for	Core	Data.	Right	now	we	have	SnippetData.swift,	which	uses	classes
to	model	our	data.	In	this	section,	we’re	going	to	make	a	new	.xcdatamodeld	file	that	will
take	the	place	of	our	SnippetData.swift	file.

To	begin,	create	a	new	file	(command	+	N),	and	from	the	template	chooser	search	for,	and
then	choose	Data	Model.	This	will	create	a	new	.xcdatamodeld	file	in	your	project.	Make
sure	to	name	it	SnippetData,	since	this	is	what	we	told	our	NSManagedObjectModel	our
model	file	would	be	called.

Since	we’ve	already	been	over	how	to	use	the	data	model	editor,	I’m	just	going	to	give
you	some	descriptions	of	the	entities,	and	leave	it	up	to	you	to	create	them	and	their
attributes.	However,	one	thing	we	didn’t	cover	earlier	was	that	you	can	have	subentities,
which	act	like	subclasses.	Since	our	existing	SnippetData.swift	data	model	uses
subclassing	to	carry	over	redundant	data,	we’re	going	to	use	subentities	in	our	model.	To
create	a	subentity,	select	an	entity	from	the	entity	sidebar	and	set	the	parent	property	from
the	attribute	inspector.	The	entity	will	then	inherit	all	of	the	parent	entity’s	attributes	and
relationships.

Figure	9.7:	A	close	up	of	the	attribute	inspector	showing	the	parent	entity	option

As	you	can	see,	you’ll	be	able	to	select	the	Parent_Entity	from	a	drop-down	menu	which
contains	all	existing	entities	in	your	model.	This	means	you’ll	have	to	create	the	parent
entities	first.	Remember	that	you	can	also	use	the	attribute	inspector	to	set	whether	or	not
an	attribute	is	optional	or	required.

First,	let’s	create	our	base	snippet	type,	which	will	be	the	parent	of	our	other	snippet	data
types.	Here	are	the	specifications	for	this	entity:

Entity	Name:	Snippet Parent:	No	Parent	Entity

Attributes

Key Type 	

date Date REQUIRED

latitude Double OPTIONAL

longitude Double OPTIONAL

type String REQUIRED

Next,	we’ll	create	and	set	up	the	text	snippet	entity:

Entity	Name:	Snippet Parent:	Snippet

Attributes

Key Type 	

text String REQUIRED

Finally,	we’ll	create	our	photo	snippet	entity:

Entity	Name:	Snippet Parent:	Snippet

Attributes

Key Type 	

photo Binary	Data REQUIRED

Make	sure	to	double	check	all	of	your	entities	and	attributes	are	set	up	correctly	with	the
correct	types,	and	the	keys	have	no	spelling	mistakes.	Once	we	start	coding	in	the	next
section,	any	spelling	mistakes	here	in	the	data	model	will	give	you	errors	when	trying	to
retrieve	data.	If	you	set	everything	up	the	same	way,	your	visual	data	model	hierarchy
should	look	like	this:

Figure	9.8:	Our	completed	data	model,	represented	in	visual	form

And	with	our	data	model	completed,	our	Snippets	project	is	completely	ready	to	start
using	the	persistence	features	of	Core	Data.

Persisting	data
In	order	to	implement	persistence	for	our	application’s	data,	we	need	to	do	three	things:
save	data,	load	data,	and	delete	data.	In	this	section,	we’re	going	to	go	through	our
ViewController	class	and	remove	all	of	the	references	to	our	old	data	model,	and	instead
begin	using	our	new	Core	Data	compatible	data	model.	As	we	go,	we’ll	be	introducing
new	ways	of	saving	and	loading	our	snippet	data,	and	adding	the	ability	to	delete	snippets.

Saving	data
With	our	old	data	model,	saving	data	consisted	of	two	steps:	create	a	new	instance	of	a
SnippetData	subclass,	and	then	add	it	to	our	data	array.	Now,	with	Core	Data,	the	process
is	pretty	similar	but	it	takes	a	few	more	lines	of	code	and	uses	some	new	concepts.

Before	we	can	get	started	with	our	new	save	mechanisms,	we’re	going	to	make	two	small
changes.	First,	add	an	import	CoreData	command	at	the	top	of	the
ViewController.swift	file,	with	the	other	import	statements.	Then,	change	the	type	of
our	data	array	so	that	instead	of	[SnippetData]	type,	it	is	[NSManagedObject]	type.
var	data	=	[NSManagedObject]()

NSManagedObject	is	the	type	of	data	that	Core	Data	will	load	our	entities	into,	as	you
will	see	shortly.

Tip
Changing	the	type	of	our	data	array	will	result	in	giving	your	file	several	errors,	since	the
complier	is	now	expecting	different	data	types	everywhere.	This	is	fine,	since	we’re	about
to	remove	the	rest	of	the	references	to	SnippetData,	and	transition	to	using
NSManagedObject	for	all	of	our	needs.

With	these	changes	made,	let’s	move	on	to	our	first	save	function.	Create	a	new	function
called	saveTextSnippet(text:	String),	and	place	it	below	the
createNewPhotoSnippet()function.

Inside	this	function,	we	are	doing	three	things:	getting	access	to	the	Core	Data	stack,
creating	a	new	instance	of	an	entity,	and	then	configuring	that	entity.	Let’s	start	with
getting	access	to	the	Core	Data	stack:
func	saveTextSnippet(text:	String)	{

				

				let	delegate	=	UIApplication.shared.delegate	as!	AppDelegate

				let	managedContext	=	delegate.managedObjectContext

}

On	the	first	line	we	are	getting	access	to	our	application’s	delegate	and	then	force	casting
it	to	our	AppDelegate	class,	which	is	where	we	defined	our	Core	Data	stack	in	the	last
section.	Now	we	can	use	delegate	to	get	access	to	the	managedObjectContext	property	in
our	AppDelegate	class,	which	you’ll	remember	is	our	main	point	of	entry	to	Core	Data
functionality.	It’s	a	bit	confusing	to	read	it	all,	but	basically	what	we	did	is	create	a
shortcut	to	our	AppDelegate	with	delegate,	and	to	NSManagedObjectContext	with
managedContext.	We’ll	be	using	both	of	these	shortly.

Next,	we	are	going	to	create	a	new	data	container.	Earlier,	we	changed	our	data	array	from
storing	SnippetData	objects,	and	instead	made	it	hold	NSManagedObject	objects.	So	what
is	this	NSManagedObject	anyway?	To	put	it	simply,	it	is	a	shape	shifting	container	that	we
can	fill	with	any	data	that	we	want.	To	make	sure	that	it	works	the	way	we	want	it	to,	we
tell	it	what	entity	from	our	model	that	it	is	supposed	to	represent	using	what	is	called	a
descriptor	object.	Let’s	create	the	descriptor,	and	then	the	new	data	container:
func	saveTextSnippet(text:	String)	{

				

				let	delegate	=	UIApplication.shared.delegate	as!	AppDelegate

				let	managedContext	=	delegate.managedObjectContext

								let	desc	=	NSEntityDescription.entity(forEntityName:	“TextSnippet”,

in:	managedContext)

				let	textSnippet	=	NSManagedObject(entity:	desc!,	insertInto:

managedContext)

Here	you	can	see	that	we	first	create	the	descriptor	by	passing	in	the	name	of	the	entity	it
represents,	along	with	the	managedContext	that	it	will	be	a	part	of.	Then,	we	create
textSnippet	which	is	an	NSManagedObject.	In	the	initializer,	we	pass	in	the
NSEntityDescription	object	so	that	it	knows	what	type	of	entity	it	represents,	and	then
again	we	pass	in	the	managedContext	so	it	can	be	inserted	into	our	scratchpad.

Now	that	we’ve	created	the	new	data	object	and	added	it	to	the	scratchpad,	we	need	to
fill	it	with	data	and	then	save	the	changes	to	disk.	In	order	to	set	all	of	the	attributes	that
we	defined	in	our	TextSnippet	entity	in	our	data	model,	we’ll	need	to	use	what	is	known
as	key/value	encoding.	This	means	that	we	will	set	properties	of	the	object	using	the
names	of	the	properties	instead	of	accessing	them	directly	through	code.	To	do	this,	we
use	the	setValue(_:	,	forKey:)	function.	Let’s	look	at	how	that	works	as	follows:
func	saveTextSnippet(text:	String)	{

				

				let	delegate	=	UIApplication.shared.delegate	as!	AppDelegate

				let	managedContext	=	delegate.managedObjectContext

				let	desc	=	NSEntityDescription.entity(forEntityName:	“TextSnippet”,	in:

managedContext)

				let	textSnippet	=	NSManagedObject(entity:	desc!,	insertInto:

managedContext)

				textSnippet.setValue(SnippetType.text.rawValue,	forKey:	“type”)

				textSnippet.setValue(text,	forKey:	“text”)

				textSnippet.setValue(NSDate(),	forKey:	“date”)

				if	let	coord	=	self.currentCoordinate	{

								textSnippet.setValue(coord.latitude,	forKey:	“latitude”)

								textSnippet.setValue(coord.longitude,	forKey:	“longitude”)

				}

				

				delegate.saveContext()

}

First,	we	are	setting	the	value	for	our	type	attribute.	In	our	data	model,	we	defined	this	as
a	string,	and	we	are	setting	its	value	to	the	raw	string	behind	the	text	value	from	the
SnippetType	enum	(which	is	located	in	SnippetData.swift).

Note
Remember,	you	can	access	the	backing	data	for	an	enum	case	by	using	.rawValue.	We’re
using	the	enum	data	because	it	is	safer	than	just	writing	Text,	since	we	can	just	write
SnippetType.text.rawValue	anywhere	in	code	to	point	to	the	same	string,	and	spelling
mistakes	can’t	break	anything.

Then,	we	are	setting	the	value	for	our	text	attribute,	and	here	we	just	set	it	to	the	string
that	is	passed	into	the	saveTextSnippet()	function.	After	that,	we	set	the	value	for	our

date	attribute,	which	we	set	to	the	current	date	by	instantiating	a	new	Date()	object,	just
like	we	did	in	the	old	data	model.

If	you	think	back	to	when	we	set	up	our	data	model,	we	made	the	latitude	and	longitude
properties	optional.	That’s	because	the	user	may	not	have	allowed	location	services,	or
maybe	the	phone	wasn’t	able	to	get	a	lock	onto	the	user’s	location.	In	either	case,	the	data
model	needed	to	support	location	data	not	being	available.	So,	after	we	set	the	date	we
check	to	see	if	the	currentCoordinate	property	has	a	value.	If	so,	we	set	our	latitude	and
longitude,	but	if	not,	that’s	okay	too,	we	just	don’t	set	those	values.

Finally,	we	call	the	saveContext()	helper	function	that	we	wrote	in	our	AppDelegate
class.

Now	that	the	save	function	is	finished	for	our	text	snippet,	let’s	hook	it	up.	Find	the
createNewTextSnippet()function,	and	let’s	change	the	lines	of	code	where	we	set	the
saveText	closure.
textEntryVC.saveText	=	{	(text:	String)	in

				self.saveTextSnippet(text:	text)

}

Instead	of	creating	a	new	TextSnippetData	object,	we	are	just	calling	the	save	function
we	just	made,	and	passing	in	the	text	we	want	to	save.

Great!	Now	let’s	tackle	saving	the	photo	snippet.	For	the	most	part,	we’re	going	to	be
doing	a	lot	of	the	same	things,	with	one	major	difference:	we	need	to	convert	the	image
into	a	format	suitable	for	saving.	Let’s	create	a	new	savePhotoSnippet(photo:	UIImage)
function:
func	savePhotoSnippet(photo:	UIImage)	{

				

				let	delegate	=	UIApplication.shared.delegate	as!	AppDelegate

				let	managedContext	=	delegate.managedObjectContext

				let	desc	=	NSEntityDescription.entity(forEntityName:	“PhotoSnippet”,

in:	managedContext)

				let	photoSnippet	=	NSManagedObject(entity:	desc!,	insertInto:

managedContext)

				let	photoData	=	UIImagePNGRepresentation(photo)

				

				photoSnippet.setValue(SnippetType.photo.rawValue,	forKey:	“type”)

				photoSnippet.setValue(photoData,	forKey:	“photo”)

				photoSnippet.setValue(Date(),	forKey:	“date”)

				if	let	coord	=	self.currentCoordinate	{

								photoSnippet.setValue(coord.latitude,	forKey:	“latitude”)

								photoSnippet.setValue(coord.longitude,	forKey:	“longitude”)

				}

				

				delegate.saveContext()

}

Aside	from	the	obvious	change	to	the	name	of	the	entity	we	create	(photoSnippet	instead
of	textSnippet),	there	are	only	a	few	differences	from	the	saveTextSnippet()	function.
First,	we	are	telling	the	NSEntityDescription	that	the	entity	it	is	describing	is	the
PhotoSnippet	entity.	Then,	we	are	creating	a	new	piece	of	data	called	photoData.	This
photoData	is	the	raw	data	representation	of	our	image,	which	we	get	by	passing	in	our

UIImage	to	the	function	UIImagePNGRepresentation().	Now	that	we	have	the	raw	.PNG
data,	we	can	use	it	to	set	the	photo	property	of	our	photoSnippet.

To	use	the	new	save	function,	we’re	going	to	make	some	changes	to	the
imagePickerController()	function.	The	updated	function	should	look	like	this:
func	imagePickerController(_	picker:	UIImagePickerController,

didFinishPickingMediaWithInfo	info:	[String	:	Any])	{

				guard	let	image	=	info[UIImagePickerControllerEditedImage]	as?	UIImage

else	{

								print(“Image	could	not	be	found”)

								return

				}

				savePhotoSnippet(photo:	image)

				dismiss(animated:	true,	completion:	nil)

}

And	with	that,	we’ve	completely	moved	over	to	our	new	Core	Data	way	of	saving	data!
Unfortunately,	we	still	have	to	load	(or	fetch)	the	data	before	it	can	be	of	any	use	to	us.
Let’s	do	that	now.

Fetching	data
Right	now,	we	have	our	data	array	which	is	expected	to	hold	all	of	our	snippet	data.
However,	nowhere	in	our	code	do	we	populate	our	array	with	data!	Let’s	fix	this	now.

Create	a	new	function	called	reloadSnippetData(),	and	put	it	right	below	the
viewWillAppear()	function:
func	reloadSnippetData	()	{

				

				let	delegate	=	UIApplication.shared.delegate	as!	AppDelegate

				let	managedContext	=	delegate.managedObjectContext

}

Before	we	start,	we	need	to	get	our	delegate	and	managed	context	so	that	we	can	ask	the
managed	context	to	fetch	our	data.	To	do	this,	we	need	to	use	something	called	a	fetch
request.	You	can	think	of	a	fetch	request	as	a	way	for	us	to	describe	what	information	we
want	from	our	database.	In	this	case,	we	are	going	to	set	up	our	fetch	request	to	ask	for	a
certain	type	of	entity	ordered	in	a	certain	way:
func	reloadSnippetData	()	{

				

				let	delegate	=	UIApplication.shared.delegate	as!	AppDelegate

				let	managedContext	=	delegate.managedObjectContext

				

				

				let	request	=	NSFetchRequest<NSFetchRequestResult>(entityName:

“Snippet”)

				let	sortDescriptor	=	NSSortDescriptor(key:	“date”,	ascending:	false)

				request.sortDescriptors	=	[sortDescriptor]

Here,	we’ve	created	a	new	NSFetchRequest,	and	passed	in	the	entity	name	that	we	want	to
retrieve.	We	pass	in	the	Snippet	entity	name	since	that’s	the	base	entity	of	both	our
TextSnippet	and	PhotoSnippet	entities;	using	the	base	entity	name	will	return	both.

After	we	create	the	fetch	request,	we	also	create	a	sort	descriptor;	a	sort	descriptor	is
attached	to	the	fetch	request	and	tells	the	database	how	we	want	the	data	sorted.	When	we
create	the	NSSortDescriptor,	we	tell	it	that	we	want	to	sort	the	data	based	on	the	date
attribute	of	the	returned	entities,	and	that	the	dataset	should	be	descending	(so,	the
ascending	parameter	is	false).	To	attach	the	sort	descriptor	to	our	fetch	request,	we	need
to	place	it	inside	an	array	and	then	assign	it	to	the	fetch	request’s	sortDescriptors
property.	We	need	to	put	it	in	an	array	since	it’s	possible	to	attach	multiple	sort	descriptors.

Finally,	we	need	to	execute	the	fetch	request:
func	reloadSnippetData	()	{

				

				let	delegate	=	UIApplication.shared.delegate	as!	AppDelegate

				let	managedContext	=	delegate.managedObjectContext

				

				let	request	=	NSFetchRequest<NSFetchRequestResult>(entityName:

“Snippet”)

				let	sortDescriptor	=	NSSortDescriptor(key:	“date”,	ascending:	false)

				request.sortDescriptors	=	[sortDescriptor]

								

				do	{

								let	fetchResults	=	try	managedContext.fetch(request)

								self.data	=	fetchResults	as!	[NSManagedObject]

				}	catch	{

								let	e	=	error	as	NSError

								print(“Unresolved	error	\(e),	\(e.userInfo)”)

				}

}

To	retrieve	our	data,	we	send	the	fetch	request	off	to	the	managed	context	using	the
fetch()	function,	and	put	the	results	inside	fetchResults.	Since	the	fetch	request	can	fail
and	throw	an	error,	we	place	it	inside	a	do/try/catch	block,	and	handle	any	error	that
might	occur.	If	there	is	no	error,	then	we	assign	the	results	to	our	data	array.	So	to	recap,
we	got	a	reference	to	our	managed	context,	set	up	a	fetch	request	to	grab	Snippet	entities
ordered	by	date,	and	then	fetched	data	from	the	managed	context	and	stored	it	in	the	data
array.

So	now	we’ve	got	a	function	that	updates	our	data,	but	when	should	we	use	it?	To	keep
things	efficient,	we	should	only	fetch	data	when	it	changes.	Right	now,	we	are	reloading
our	table	view	in	the	viewWillAppear()	function.	Let’s	reload	our	snippet	data	right
before	we	reload	the	table	view,	so	that	its	data	is	always	fresh:
override	func	viewWillAppear(animated:	Bool)	{

				reloadSnippetData()

				tableView.reloadData()

}

Now,	right	before	our	view	controller	is	about	to	come	back	on	screen	from	a	snippet
creation	view	controller,	we	refresh	our	data,	then	refresh	our	table.

However,	when	our	table	reloads	its	data	it	still	doesn’t	know	how	to	handle	the	new	Core
Data	objects	in	our	data	array!	Let’s	update	tableView(cellForRowAt:)	so	that	it	can
read	information	out	of	the	NSManagedObjects:
func	tableView(_	tableView:	UITableView,	cellForRowAt	indexPath:	IndexPath)

->	UITableViewCell	{

				

				let	cell:	UITableViewCell

								let	snippetData	=	data[indexPath.row]

								let	snippetDate	=	snippetData.value(forKey:	“date”)	as!	Date

								let	snippetType	=	SnippetType(rawValue:	snippetData.value(forKey:

“type”)	as!	String)!

				let	formatter	=	DateFormatter()

				formatter.dateFormat	=	“MMM	d,	yyyy	hh:mm	a”

							let	dateString	=	formatter.string(from:	snippetDate)

				

				(…Additional	code…)

}

At	the	top	of	the	function,	we’re	going	to	pull	out	all	of	the	data	that	we	need.	First,	we
grab	the	relevant	NSManagedObject	out	of	the	data	array	by	grabbing	the	object	at	the
index	with	the	same	row	as	our	cell.	So,	if	we’re	on	row	3	of	our	table	view,	we	pull	out

the	NSManagedObject	at	index	3.

Now	we	have	to	extract	data	from	our	NSManagedObjects.	When	we	were	setting	up	the
objects	in	our	save	functions,	we	used	the	setValue(_:,	forKey:)function	to	insert	data.
Now,	we	can	use	the	value(forKey:)	function	to	extract	data.	First	we	pull	out	the	date
by	getting	the	value	for	the	key	date,	and	force	cast	it	to	the	Date	type.	After	that	we	pull
out	the	type	string,	and	use	that	as	the	raw	data	to	instantiate	a	SnippetType	enum.	Finally,
we	update	our	dateString	to	use	the	new	snippetDate	value	we	just	made,	instead	of	the
old	snippetData.date	value	we	were	using	before:
func	tableView(_	tableView:	UITableView,	cellForRowAt	indexPath:	IndexPath)

->	UITableViewCell	{

				(…additional	code…)

				switch	snippetType

				{

				case	.text:

								let	snippetText	=	snippetData.value(forKey:	“text”)	as!	String

								cell	=	tableView.dequeueReusableCell(withIdentifier:

“textSnippetCell”,	for:	indexPath)	as!	TextSnippetCell

								(cell	as!	TextSnippetCell).label.text	=	snippetText

		(…additional	code…)

}

If	we	continue	down	the	function,	we	get	to	the	switch	statement	where	we	set	up	our	Text
and	Photo	snippet	cells.	At	the	beginning	of	our	.text	case,	we	are	going	to	use	the	same
value(forKey:)	function	to	pull	out	the	string	for	the	text	attribute,	and	assign	it	to	a
constant	named	snippetText.	Now,	we	have	to	replace	all	instances	of	(snippetData	as!
TextData).textData	with	just	snippetText.	The	first	place	we	do	that	can	be	seen	here,
where	we	set	the	label	text	to	snippetText,	but	there	are	a	few	more	places	where	you
should	change	this.

Once	we’ve	cleaned	up	our	.text	case,	we	should	move	on	to	the	.photo	case:
func	tableView(tableView:	UITableView,	cellForRowAtIndexPath	indexPath:

NSIndexPath)	->	UITableViewCell	{

				

				(…additional	code…)

				case	.photo:

								let	snippetPhoto	=	UIImage(data:	snippetData.value(forKey:	“photo”)

as!	Data)								

								cell	=	tableView.dequeueReusableCell(withIdentifier:

“photoSnippetCell”,	for:	indexPath)

								(cell	as!	PhotoSnippetCell).photo.image	=	snippetPhoto

		(…additional	code…)	

}

When	we	saved	our	image,	remember	that	we	first	had	to	convert	it	to	Data	before	we
could	send	it	off	to	Core	Data	to	be	saved.	Now	that	we’ve	loaded	it	back	in,	we	need	to
undo	that	process.	Here,	you	can	see	that	we	are	doing	this	by	pulling	out	the	raw	data
from	the	photo	attribute,	and	passing	it	into	a	UIImage	constructor	that	builds	the	image
from	Data.

Like	in	our	.text	case,	we	now	have	a	much	simpler	snippetPhoto	constant	that	we	can
use	in	place	of	the	old	(snippetData	as!	PhotoData).photoData	that	we	were	using
before.	Make	sure	to	comb	through	the	rest	of	the	.photo	case	and	replace	all	of	these.

Once	you’ve	done	that,	our	table	view	is	now	set	up	to	load	in	all	the	data	it	needs	from
NSManagedObjects.	So	with	saving	and	loading	completely	working	through	Core	Data,
everything	should	be	working!	To	test	it	out,	run	the	application	on	your	device	and	make
a	few	snippets.	Then	completely	close	the	app,	open	it	up	again,	and	your	snippets	are	still
there!

Deleting	data
While	the	prospect	of	retaining	data	across	sessions	is	pretty	awesome,	we’ve	now	got	a
problem,	we’re	stuck	with	every	snippet	we’ve	ever	made.	Now	that	we	can	create	and
save	new	data,	it	only	makes	sense	that	we	add	the	ability	to	delete	saved	data	too.

Luckily	for	us,	most	of	this	functionality	is	built	into	the	table	view	itself.	If	you’ve	ever
used	an	app	that	uses	a	table	view	(like	Mail),	you’ll	know	that	you	can	swipe	on	a	cell	to
reveal	a	Delete	button.	Right	now,	our	table	view	doesn’t	respond	to	a	swipe,	but	we	can
change	that	by	implementing	a	single	function.

By	implementing	the	tableView(_:,	commit:,	forRowAt:)	function,	our	application
knows	that	it	can	be	edited,	and	in	turn	will	enable	the	swipe	to	delete	functionality.	First,
we’ll	start	by	creating	an	empty	function	stub	in	the	UITableViewDataSource	extension	to
see	if	the	swipe	is	working.:
func	tableView(_	tableView:	UITableView,	commit	editingStyle:

UITableViewCellEditingStyle,	forRowAt	indexPath:	IndexPath)	{

				

}

After	adding	this	function,	run	the	app	and	then	swipe	from	right	to	left	on	an	existing
Snippet.	You	should	now	see	that	you	are	able	to	delete	the	Snippet	(Figure	9.9).
However,	tapping	the	delete	button	won’t	do	anything…	yet:

Figure	9.9:	A	snippet	table	view	cell	that	has	been	swiped,	exposing	a	Delete	button

Now,	let’s	look	at	what	we	have	to	do	to	actually	delete	the	data.	First,	we	need	to	delete
the	data	from	our	managed	context,	and	then	we	need	to	delete	the	actual	table	view	cell
that	is	presenting	it.	Let’s	fill	out	the	function	to	do	this	now:
func	tableView(_	tableView:	UITableView,	commit	editingStyle:

UITableViewCellEditingStyle,	forRowAt	indexPath:	IndexPath)	{

				

				let	delegate	=	UIApplication.shared.delegate	as!	AppDelegate

				let	managedContext	=	delegate.managedObjectContext

				

				let	currentObject	=	data[indexPath.row]

				managedContext.delete(currentObject)

				delegate.saveContext()

				reloadSnippetData()

				

				tableView.beginUpdates()

				tableView.deleteRows(at:	[indexPath],	with:	.automatic)

				tableView.endUpdates()

}

At	the	top,	we	are	again	grabbing	the	delegate	and	managedContext	for	our	Core	Data
stack.	Then,	we	get	the	current	object	that	we	are	dealing	with,	by	asking	for	the	object	at
the	same	index	as	our	selected	row	(just	like	we	did	when	setting	up	our	cells).	Once	we
have	a	reference	to	the	current	NSManagedObject,	we	pass	it	to	our	managedContext	and
tell	it	to	delete	the	object.	Once	the	object	is	deleted,	we	save	the	context	to	keep	the
change,	and	then	finally	reload	our	snippet	data	since	it	has	changed.

Before	we	are	finished,	we	also	want	to	run	a	little	animation	to	remove	the	cell	from	our
table.	To	do	this,	we	first	call	tableView.beginUpdates().	Then	we	tell	the	table	view	to
delete	the	row	at	our	current	index	path	using	the	.automatic	animation,	before	telling	the
table	view	to	endUpdates().

Now,	when	we	actually	press	the	Delete	button	that	shows	up	when	we	slide,	it	will
remove	the	associated	object	from	our	database,	and	then	remove	the	cell	from	our	table.

And	now	our	journey	with	Core	Data	is	complete!	Our	Snippets	app	has	a	brand	new	data
model	that	can	save,	load,	and	delete	data	from	a	persistent	store.	Every	time	a	user	opens
the	app	now,	their	data	will	still	be	there.	We	are	one	big	step	closer	to	finishing	our	first
application!	Before	we	leave,	remember:	git	commit.

Summary
In	this	chapter,	we	learned	a	lot	about	Core	Data.	First	we	revisited	the	concept	of	the
model	within	an	MVC	application,	and	learned	about	how	entities,	attributes,	and
relationships	work	in	Core	Data.	We	became	acquainted	with	the	Core	Data	model	editor,
and	then	used	the	editor	to	build	up	a	real	data	model	for	our	app.	We	also	learned	about
the	Core	Data	stack,	which	makes	persistence	work.	Finally,	we	took	all	of	this	knowledge
to	implement	saving,	loading,	and	deleting	permanent	data	in	our	app.

In	the	next	chapter,	we’re	going	to	take	one	more	huge	jump	forward:	learning	how	to	use
watchOS	to	create	an	Apple	Watch	companion	app	for	your	app.	I	could	say	more,	but
let’s	not	spoil	any	of	the	fun.

Chapter	10.	Creating	a	watchOS	Companion
App
One	of	the	most	exciting	development	opportunities	of	the	last	few	years	became	a	reality
when	Apple	officially	announced	they	were	making	a	smart	watch	companion	to	their	iOS
ecosystem:	the	Apple	Watch.	Since	the	watch	released	in	April	2015,	developers	have
been	testing	the	limits	of	the	wrist	worn	device,	trying	to	overcome	many	of	the
interesting	restrictions	that	result	from	its	small	size	and	limited	computing	ability.

The	Apple	Watch	is	very	different	from	iOS	devices.	In	this	chapter,	we’re	going	to	spend
some	time	learning	about	what	makes	the	Apple	Watch	different,	and	where	its	strengths
lie.	The	focus	will	be	on	how	to	think	small.	To	be	more	specific,	we	will	be	covering:

	
How	to	design	for	the	Apple	Watch
The	components	of	a	watchOS	application
How	a	watchOS	app	differs	from	an	iOS	app
Building	a	full	watchOS	experience

Designing	for	the	Apple	Watch
While	it	may	seem	obvious	from	looks	alone,	it	can	be	very	easy	to	misunderstand	the
way	that	an	Apple	Watch	differs	from	an	iOS	device	like	an	iPhone.	Many	make	the
mistake	of	only	focusing	on	how	to	shrink	the	user	interface	of	their	app	into	a	smaller
form	factor,	instead	of	really	understanding	how	the	Apple	Watch	is	actually	used.

Before	we	can	move	on	to	the	more	technical	aspects	of	creating	an	Apple	Watch
companion	app,	it’s	important	to	look	at	these	differences	in	use	and	expectations.

Using	the	watch
The	most	obvious	difference	between	an	Apple	Watch	and	an	iPhone,	and	I’ve	already
touched	on	this	a	few	times,	is	the	size.	There	is	no	way	around	it.	The	amount	of	screen
real	estate	severely	limits	how	much	information	can	be	presented,	and	how	many	inputs
can	be	accepted.

A	lot	of	developers	also	seem	to	underestimate	how	important	it	is	that	the	watch	is	worn;
it’s	not	a	device	that	comes	out	of	a	pocket	when	needed.	There’s	a	level	of	intimacy	not
present	with	an	iPhone	owing	to	the	fact	that	the	watch	is	in	contact	with	your	skin	all	day.
It	can	also	be	tiring	to	hold	a	watch	up	to	your	face	for	more	than	15	seconds!

Another	big	departure	from	the	traditional	iOS	experience	is	the	introduction	of	a	new
input	method,	which	is	the	digital	crown.	This	scroll	wheel	on	the	side	of	the	watch	allows
users	to	scroll	through	lists	without	touching	the	screen,	and	clicking	the	crown	acts	as	a
home	button	that	lets	the	user	perform	navigation	commands	depending	on	context.

Overall,	using	the	watch	can	be	distilled	to	three	points:	small,	invisible,	and	intimate.	It’s
a	small	device	and	there’s	no	room	for	unneeded	clutter.	It’s	at	its	best	when	invisible;	the
user	shouldn’t	have	to	constantly	be	remembering	to	interact	with	it.	Finally,	the	watch	is
intimate	and	personal;	it	is	highly	customizable,	and	it	touches	and	taps	the	user	on	the
wrist.

Intended	experience
With	a	better	idea	of	what	makes	the	Apple	Watch	different	from	an	iOS	device,	let’s	now
talk	about	how	those	differences	change	the	experience	that	a	watchOS	app	should
provide.

Owing	to	the	size	of	the	screen,	and	the	difficulty	of	holding	up	your	wrist	for	extended
periods	of	time,	the	optimal	time	for	using	a	watchOS	app	is	only	a	few	seconds.
Remember,	at	its	core	the	Apple	Watch	is	still	a	watch.	Traditionally,	people	have	only
ever	glanced	at	their	wrists	for	a	second	or	two	to	read	the	time,	or	check	the	date.	Just
because	we	have	a	touch	screen,	doesn’t	mean	we	should	require	its	use	to	get	access	to
the	information	we	are	looking	for.

This	ties	nicely	into	the	second	point:	an	Apple	Watch	companion	app	is	not	meant	to
recreate	the	iOS	experience	on	your	wrist.	It	should	really	be	used	to	put	the	most
important	data	in	your	app,	in	a	place	that	is	more	accessible	than	your	pocket.

Some	of	the	best	apps	on	the	watch	are	the	simplest.	For	example,	a	budgeting	app	that
only	tells	you	how	much	you	can	spend	on	food	that	day.	It	doesn’t	make	sense	to	give
you	the	ability	to	look	at	transaction	lists,	or	make	budget	edits	on	your	wrist,	but	it’s	great
to	quickly	check	it	if	you	should	stop	for	a	treat	on	the	way	home	from	work.

Similarly,	some	of	the	worst	apps	on	the	watch	are	the	ones	that	try	to	do	too	much.	Some
apps	try	to	squeeze	the	entire	iOS	experience	onto	the	wrist,	complete	with	multiple	view
controllers.	Even	Apple’s	Mail	and	Messages	apps	are	a	bit	too	bloated–scrolling	through
lists	of	messages	is	a	pain.	However,	these	apps	are	redeemed	through	their	excellent	use
of	notifications,	since	most	users	will	probably	never	open	the	actual	apps	themselves	but
interface	exclusively	through	their	notifications.

Finally,	it’s	worth	noting	that	not	every	app	needs	a	watchOS	companion!	The	platform	is
still	in	its	infancy,	and	it’s	clear	that	a	lot	of	the	apps	on	the	watch	are	the	result	of	very
eager	developers	wanting	to	play	with	a	new	toy.	But,	as	I’ve	reiterated	many	times,	the
watch	is	small	and	intimate,	and	there’s	no	room	for	unnecessary	information.	If	your	app
doesn’t	have	a	real	reason	to	live	on	a	wrist,	don’t	force	it	there.

To	recap,	a	watchOS	app	should	take	no	more	than	a	few	seconds	to	use,	and	should
display	only	the	most	essential	information	from	your	app.	If	you	can’t	do	something	that
fits	this	description,	it’s	okay	to	conclude	that	a	watchOS	companion	is	not	needed	for
your	app.

Apple’s	design	principles
While	everything	up	to	this	point	has	come	from	my	extensive	use	of	and	development	for
Apple	Watch,	it’s	also	a	good	idea	to	take	a	look	at	how	Apple	themselves	expects	us	to
design	for	the	platform.	Their	design	principles	ultimately	reflect	what	has	already	been
discussed,	so	it	also	serves	as	a	good	wrap	up.	Apple’s	three	design	principles	for	Apple
Watch	are:	Glanceable,	Actionable,	and	Responsive.	Watch	apps	should	be	glanceable,
providing	the	most	relevant	information	to	the	user	as	seamlessly	as	possible,	weather
from	a	complication,	the	dock,	or	the	app	itself.	Applications	are	actionable	when	they
think	ahead	for	the	user,	presenting	them	with	information	they	can	act	on	just	when	they
need	it.	Finally,	apps	should	be	responsive	and	quick	to	navigate	through–unnecessary
taps	and	wait	times	are	eliminated.

Components	of	a	watchOS	app
Unlike	iOS,	where	an	app	is	mostly	considered	a	single	cohesive	entity,	watchOS
applications	have	many	different	forms.	There	is	the	base	app,	which	lives	on	the	home
screen,	but	there	are	also	additional	ways	to	interact	with	an	app	through	notifications	and
a	special	watchOS	interface	known	as	complications,	and	finally	by	glancing	at	it	in	the
dock.	Each	component	of	a	watchOS	app	has	its	own	strengths,	and	it’s	important	to	have
a	thorough	understanding	of	how	they	all	work	together.

The	watchOS	app
The	app	on	watchOS	is	the	closest	analog	to	what	is	traditionally	seen	as	an	app	on	iOS.	It
has	a	circular	icon	on	the	watch’s	home	screen,	and	when	you	tap	it	you	enter	the	full
watchOS	application.	In	a	watchOS	app,	you	can	let	the	user	tap	buttons,	scroll	through
content,	and	navigate	through	view	controller	hierarchies	like	in	an	iOS	app.	Later	on,
we’ll	talk	about	the	features	you	have	access	to	on	the	watch,	but	know	that	in	the	app	you
have	access	to	everything:

Figure	10.1:	The	watchOS	home	screen,	and	the	open	Weather	app

In	watchOS	2.0	and	onward,	the	watch	applications	will	run	directly	on	the	device.	In
earlier	versions,	the	iPhone	would	actually	run	the	application	and	connect	to	the	watch
wirelessly.	Running	directly	on	the	device	gave	the	app	better	performance,	but
unfortunately	apps	were	still	quite	slow.	However,	in	watchOS	3.0	performance	has	been
given	top	priority,	and	a	user’s	favorite	apps	now	always	stay	in	memory	making	app
launches	instantaneous.	Any	app	that	has	an	active	complication,	or	is	kept	in	the	dock	is
determined	to	be	a	favorite.

The	main	watch	application	is	an	important	piece	of	your	development	efforts,	but	as
you’ll	see	shortly,	it	is	not	the	most	important	part	of	the	package.	This	is	a	pretty	big
departure	from	what	we	expect	of	iOS,	but	I	think	you’ll	see	why	this	is	true.

Dock	snapshots
Different	from	the	dock	found	on	iOS,	the	watchOS	dock	is	a	live	application	view	of
your	favorite	apps	just	below	the	watch	face.	From	the	dock	view,	the	app	snapshot	must
be	a	single	screen	of	information,	because	they	cannot	be	scrolled	from	the	dock.	Buttons
and	interactions	won’t	work	either,	because	tapping	on	the	app	snapshot	from	the	dock
launches	the	full	app.	To	make	your	application’s	dock	snapshot	as	useful	as	possible,	it
should	display	only	the	most	relevant	information.:

Figure	10.2:	The	Weather	application’s	dock	snapshot,	found	below	the	watch	face

When	on	the	watch	face	screen,	the	user	can	press	the	long	side	button	on	the	watch	to
bring	up	the	dock.	All	of	the	user’s	docked	applications	are	presented	in	a	card-like
format,	swiping	left	and	right	to	see	their	different	apps.

Now,	if	you	follow	good	watchOS	design	principles,	a	dock	snapshot	may	be	the	primary
use	case	for	your	application.	Applications	in	the	dock	are	very	easy	to	get	to,	and	the	user
can	swipe	through	several	apps	very	quickly.	If	you	are	displaying	simple	information
(such	as	a	gate	number	and	boarding	time	for	a	flight),	a	dock	snapshot	will	be	more	than
enough	for	a	user	to	quickly	get	the	information	they	need.

Creating	a	good	dock	snapshot	for	your	app	presents	an	interesting	challenge:	you	are
required	to	cut	down	your	whole	watchOS	application	even	further,	presenting	only	the
most	essential	information	on	a	single	screen.	In	practice,	I	find	that	I	very	rarely	open	an
application	from	the	home	screen,	and	because	of	this	I	believe	that	earning	a	spot	on	a
user’s	dock	(only	10	apps	can	be	docked)	can	make	or	break	the	usefulness	of	your
watchOS	application.

Notifications
While	the	dock	is	great	for	quickly	finding	passive	information,	notifications	on	Apple
Watch	are	the	primary	method	for	dealing	with	active	information.	The	common	examples
are	e-mails	and	text	messages.	I	rarely	(or	never)	go	into	the	messages	or	mail	app	on	my
Apple	Watch	to	compose	new	messages.	However,	I	interact	with	dozens	of	messages	and
e-mail	notifications	every	day.	Right	from	the	notification,	I	can	respond	to	a	text	with
some	pre-set	answers,	or	use	Siri	dictation	to	respond	with	a	simple	answer.	Usually,
though,	I	just	screen	the	texts	and	pull	out	my	phone	if	they	are	urgent.

Notifications	are	a	great	way	to	present	actionable	information	to	your	users.	It’s
important	to	remember	the	intimacy	of	the	watch	here;	if	you’re	overloading	your	user’s
wrist	with	notifications	that	they	don’t	care	about,	they	will	disable	them	altogether.

Complications

Finally,	we	have	complications.	The	word	is	a	term	carried	over	from	traditional	watches,
which	would	have	sub-dials	for	stopwatches	or	little	date	markers	that	were	referred	to	as
complications.	The	term	is	used	well,	since	complications	on	the	Apple	Watch	are	little
icons	or	labels	that	you	can	optionally	place	on	your	watch	face:

Figure	10.3:	The	Weather	complication	(in	the	upper	left	corner)	displaying	the	current
temperature

A	complication	can	be	seen	as	the	ultimate	summary	of	your	application:	you	only	get	a
very	tiny	rectangle	to	display	information	directly	on	the	user’s	watch	face.	A	great
example	is	the	complication	for	the	built-in	weather	app,	which	displays	the	current
temperature	and	nothing	more.	Tapping	on	the	temperature	launches	the	full	weather
application,	making	it	very	useful	to	not	only	get	a	quick	gist	of	the	weather,	but	to	also
bypass	the	home	screen	or	dock	to	get	more	useful	information.

One	of	the	greatest	new	features	in	watchOS	2.0	is	Time	Travel,	which	allows	you	to	turn
the	digital	crown	to	look	at	the	future.	In	addition	to	spinning	the	clock	hands	on	the	watch
face,	Time	Travel	will	also	update	all	of	a	user’s	complications	to	display	the	pre-
computed	future	value,	provided	the	developer	supports	the	functionality.	Using	our
weather	example,	spinning	the	watch	a	few	hours	into	the	future	will	change	the
temperature	to	read	as	the	predicted	temperature	for	that	time:

Figure	10.4:	The	Weather	complication	showing	the	future	temperature	during	Time
Travel

As	you	can	imagine,	this	is	tremendously	useful	for	people,	and	in	my	personal	opinion	is
one	of	the	greatest	selling	points	of	the	watch.	If	you	have	an	app	that	has	any	time
sensitive	information,	supporting	a	Time	Travel	complication	is	the	best	way	to	make	your
app	a	must-have	for	Apple	Watch	owners.

Just	as	every	iOS	app	doesn’t	need	a	watchOS	app,	not	every	watchOS	app	needs	a
complication.	Sometimes	the	information	in	your	app	is	not	the	right	fit	for	such	a	time-
oriented	and	compact	summary,	and	a	dock	snapshot	would	serve	you	better.	However,	I
believe	that	if	you	cannot	come	up	with	a	useful	dock	snapshot,	notification,	or
complication,	there	may	be	very	little	need	for	an	app	at	all.

Architecture	of	a	watchOS	app
At	this	point,	we’ve	explored	what	an	Apple	Watch	app	is	composed	of,	how	it	differs
from	iOS,	and	how	it	should	function.	Now	it’s	time	to	take	a	look	at	how	we	actually
write	a	watchOS	app.

Before	you	get	too	worried,	most	of	what	we’ve	learned	so	far	will	carry	over	to	watchOS.
We’re	still	using	Xcode,	we’re	still	using	storyboards,	and	we’re	still	using	Swift.
However,	since	battery	life	is	a	much	bigger	concern	on	watchOS,	there	are	some	pieces
of	the	process	that	work	a	bit	differently	in	order	to	keep	the	amount	of	actual	processing
time	to	a	minimum.	We’re	also	working	with	considerably	less	performance	than	we	are
used	to	on	iOS,	so	there	is	also	going	to	be	a	bit	more	magic	going	on	to	ensure	smooth
operation—there	isn’t	a	lot	of	room	for	complex	animations	and	the	like.

Target	bundles
First,	let’s	talk	about	the	different	target	bundles	that	are	part	of	the	Apple	Watch	target.
Earlier	in	the	book,	we	touched	on	what	targets	are,	but	as	a	quick	recap:	a	target	is	a
configuration	for	building	a	project,	usually	for	a	specific	device.	For	a	watchOS	app,	we
have	two	target	bundles	that	we	need	to	put	together;	the	Watch	App	bundle,	and	the
Watch	Extension	bundle.

Watch	App	bundle
The	Watch	App	bundle	is	a	bit	misleading;	it	contains	all	of	the	storyboards	and	assets
needed	to	run	your	application.	In	the	days	of	watchOS	1.0,	this	Watch	App	bundle	is
what	would	actually	be	installed	on	the	watch	itself,	allowing	quick	loading	of	heavy
assets	like	images.	The	Watch	App	bundle	is	where	we	will	store	the	storyboard	file
containing	our	main	app	storyboard,	as	well	as	our	storyboards	for	notifications.	To	store
assets,	we	will	use	asset	catalogs.

Watch	Extension	bundle
Unlike	the	Watch	App	bundle,	the	Watch	Extension	bundle	is	what	actually	runs	your
application’s	logic.	This	is	where	we	are	going	to	be	writing	all	of	the	code	that	drives	our
watchOS	application,	as	well	as	its	glances,	notifications,	and	complications.

The	Watch	Extension	also	existed	in	the	watchOS	1.0	days,	but	it	used	to	be	loaded	and
run	on	the	iOS	device	itself,	streaming	information	between	iOS	and	watchOS.	After	the
upgrade	to	watchOS	2.0,	the	Watch	Extension	was	then	installed	on	the	watch	and	run
natively,	giving	apps	an	increase	in	performance.	Now	in	watchOS	3.0,	the	most
frequently	used	extensions	are	kept	in	memory,	making	application	launches	that	much
faster.	Hopefully,	at	some	point	in	the	future,	Apple	will	consolidate	the	two	targets	into	a
single	target	like	with	iOS	apps	now	that	they	are	both	installed	on	the	same	device.	While
it	doesn’t	really	make	a	huge	difference	(we	don’t	have	to	do	anything	special	to	access
storyboards	in	the	Watch	App	bundle),	it	would	be	a	bit	cleaner	and	less	confusing	to
newcomers.

Interface	controller
Over	the	course	of	the	book,	we’ve	become	very	familiar	with	the	View	Controller,	and	its
UIKit	implementation	UIViewController.	We’ve	built	many	custom	view	controllers	to
manage	all	of	the	different	screens	in	our	Snippets	application,	and	have	come	to	know
them	as	the	point	of	entry	for	building	functionality	in	our	test	projects.

In	Chapter	8,	Exploring	Common	iOS	Frameworks,	we	learned	about	UIKit	and	how	it
handles	our	application’s	view	hierarchy.	Unfortunately,	watchOS	does	not	operate	in	the
same	way.	On	the	bright	side,	understanding	how	it	does	work	is	not	important,	so	you
don’t	have	to	learn	a	new	system.	What	you	do	have	to	know	is	that	the	operating	system
itself	is	taking	care	of	your	views,	and	because	of	this	we	do	not	use	UIViewController	on
watchOS.	In	its	place,	we	have	the	WKInterfaceController	(the	WK	prefix	refers	to
WatchKit).

In	order	to	keep	things	simple	for	developers,	the	WKInterfaceController	class	is
designed	very	similarly	to	the	UIViewController	that	we	already	know	how	to	use,	even
though	it	works	differently	behind	the	scenes.	Instead	of	viewDidLoad(),	we	now	have
awake(withContext:),	and	instead	of	willAppear()	and	didDisappear(),	we	now	have
willActivate()	and	didDeactivate(),	respectively.	The	name	changes	refer	to	the	way
the	watchOS	application	life	cycle	works	(which	is	outside	the	scope	of	this	book),	but
you	can	think	of	them	as	functionally	similar	to	the	old	UIViewController	methods.

The	Interface	Controller	is	intended	to	be	used	in	a	pretty	specific	way.	First,	you	should
perform	any	set-up	code	in	the	awake(withContext:)	function.	Then,	almost	all
subsequent	functionality	should	be	in	response	to	button	presses	or	other	user	interface
element	actions.	Remember,	the	Apple	Watch	is	not	very	powerful	and	shouldn’t	be	doing
complex	computations.

Extension	Delegate
While	we	haven’t	spent	as	much	time	with	the	App	Delegate	as	we	have	with	the	View
Controller,	we	are	at	least	familiar	with	how	it	manages	the	life	cycle	of	an	iOS
application.	On	our	watchOS	app,	we	have	the	Extension	Delegate	in	the	place	of	the	App
Delegate.

The	Extension	Delegate	contains	familiar	methods	like
applicationDidFinishLaunching(),	and	similarly	manages	the	life	cycle	of	our
watchOS	application.	The	Extension	Delegate	is	created	automatically	by	the	system,
based	on	a	key	in	the	extension’s	Info.plist	file.	This	is	important	to	know	if	you	choose
to	change	the	name	of	your	WKExtensionDelegate	subclass,	and	it	is	why	I	recommend
that	you	use	the	pre-made	extension	delegate	class	that	is	given	to	you	when	you	create	a
new	watch	kit	extension.

The	Extension	Delegate	also	only	works	for	the	application.	The	Extension	Delegate	does
not	control	any	life	cycle	functionality	for	notifications	or	complications;	those	are	all
managed	by	the	operating	system	itself.

Snippets	for	Apple	Watch
Finally,	it’s	time	to	begin	development	of	our	very	own	Apple	Watch	app!	For	our	app,	we
are	going	to	create	a	very	simple	feature:	we	will	let	users	create	a	new	text	snippet	using
voice	dictation.	First	we’ll	build	the	core	application,	and	then	we’ll	make	a	small
complication	to	allow	us	to	access	the	app	right	from	the	watch	face.

Setting	up	our	project
Before	we	get	started,	we	have	to	set	up	our	Snippets	project	to	be	ready	for	Apple	Watch
development.	Open	up	your	Snippets	Xcode	project	again,	or	as	always,	you	can	grab	my
completed	version	from	the	last	chapter	(the	Chapter	9,	Working	with	CoreData,	resources
folder)	if	your	project	isn’t	quite	up	to	speed	yet.

To	get	our	project	ready	for	an	Apple	Watch	app,	we	have	to	create	the	two	new	target
bundles	we	discussed	earlier.	Go	to	File	|	New	|	Target,	and	then	from	the	top	bar	select
watchOS,	and	finally	select	the	WatchKit	App	target	type.	Check	out	Figure	10.5	to
confirm	you	have	the	correct	template:

Figure	10.5:	Creating	a	new	WatchKit	App	target,	and	adjusting	its	settings

After	you	click	Next,	you’ll	be	asked	to	finish	setting	up	the	new	target.	Name	it
Snippets-Watch,	and	then	make	sure	you	check	off	the	Include	Complication	checkbox.
We	don’t	need	the	notification	scene,	since	we	won’t	be	making	a	notification	for	our	app.
Click	Finish.	If	you	are	asked	to	activate	a	scheme,	do	it.

Back	in	your	project,	you	should	see	two	new	folders	in	your	Project	Navigator:
Snippets-Watch	and	Snippets-Watch	Extension.	The	first	folder	is	for	the	Watch	App
bundle,	which	you’ll	remember	is	for	your	storyboards	and	assets.	The	second	folder	is	for
the	Watch	Extension	bundle,	which,	again,	is	for	all	of	your	code.

Creating	a	watchOS	storyboard
Building	up	a	storyboard	for	an	Apple	Watch	app	uses	the	same	tools	that	we	used	for
iOS.	We’re	still	dragging	objects	out	of	our	library	onto	our	screens	and	then	editing	the
objects’	attributes;	however,	watchOS	apps	look	considerably	different	than	iOS	apps	and

their	UI	elements	use	some	new	conventions.	Let’s	learn	about	these	differences	as	we
walk	through	the	process	of	building	a	screen	for	a	watchOS	app	now.

First,	navigate	to	the	Interface.storyboard	file	inside	the	Snippets-Watch	folder:	you
should	see	a	storyboard	labelled	Interface	Controller.	Let’s	open	up	the	object	library	and
look	around.	You’ll	notice	that	there	are	fewer	objects	than	there	are	in	the	iOS	library.
The	Apple	Watch	UI	is	very	minimal,	which	makes	sense	for	a	device	so	small.

We’ll	mostly	be	dealing	with	the	familiar	buttons,	labels,	and	images,	but	the	new	Group
object	is	one	of	the	most	important	elements	for	watchOS	storyboards.	As	its	name
implies,	it	allows	us	to	group	objects	together	in	bunches.	Unlike	iOS	storyboards	where
we	can	place	UI	elements	anywhere	on	the	screen,	watchOS	storyboards	require	us	to
place	objects	underneath	the	previous	element.	We	can	also	change	their	horizontal	(left,
center,	right)	and	vertical	(top,	middle,	bottom)	alignment,	but	that’s	it.

Groups	are	important	because	they	allow	us	to	treat	multiple	objects	as	one	anchored
element,	and	also	let	us	set	padding	and	change	the	layout	from	vertical	to	horizontal.	If
you	were	a	bit	of	a	wizard	with	Auto	Layout	you	may	find	the	watchOS	method	a	bit
limiting,	but	I	find	the	watchOS	method	to	be	much	simpler	with	practice.

For	our	interface,	we’re	going	to	have	a	label	along	the	top	of	the	screen,	with	a	big	button
beneath	it	that	allows	the	user	to	create	a	new	text	snippet.	Drag	a	label	out	onto	the
storyboard	(notice	how	it	gets	placed	automatically).	Inside	the	label,	type	New	Text
Snippet.

Next,	drag	a	button	out	below	the	label.	From	the	Attribute	Editor,	change	its	content	from
Text	to	Group.	This	will	allow	us	to	place	an	image	inside	the	button.	To	do	that,	just	drag
an	image	from	the	object	library	straight	into	the	group.	Now,	from	the	Attribute	Inspector,
set	the	image’s	horizontal	alignment	to	Center,	so	that	it	is	centered	inside	the	group.
Finally,	set	both	the	height	and	width	to	Fixed	with	values	of	130.	You	should	now	have	a
130	x	130	square	image	centered	inside	your	group,	inside	the	button.	Check	Figure	10.6
to	see	the	Interface	Controller	as	it	is	now:

Figure	10.6:	Our	interface	controller	storyboard	so	far

To	finish	up	this	interface	controller,	let’s	give	it	a	title.	The	title	will	be	displayed	in	the
upper	left	hand	corner	of	the	screen.	We	won’t	have	many	screens,	so	let’s	just	give	it	the
title	Snippets	so	that	the	app	name	is	always	on	the	screen.	Click	on	the	Interface
Controller	icon	(the	yellow	circle	on	top	of	the	controller),	and	then	from	the	Attribute
Inspector,	set	the	Title	attribute	to	Snippets.

Next	we’ll	create	another	interface	controller	for	confirming	the	user’s	text	input.	Drag	a
new	interface	controller	out	from	the	object	library,	and	place	it	next	to	our	existing	one.
Then,	add	a	label	to	the	top	of	the	screen	and	add	a	group	underneath	that.	Place	a	another
label	inside	the	group,	and	then	put	three	buttons	underneath	the	group.

For	the	first	label,	set	the	text	to	say	Is	this	right?.	Next,	select	the	group	and	set	it	to
have	custom	insets,	and	then	set	all	four	insets	to	6.	Change	the	background	of	the	group
to	be	dark	gray.	Select	the	label	inside	the	group	and	set	the	Lines	attribute	to	0;	this	will
make	the	label	automatically	adjust	to	the	necessary	number	of	lines	depending	on	its
contents.	For	the	first	button,	set	the	text	to	Yes,	create	it.	Set	the	second	button	to	read
No,	try	again.	Finally,	set	the	third	button	to	say	Cancel,	and	change	the	text	color	to
red.	Finally,	set	the	title	of	the	new	interface	controller	to	Snippets.	When	you’re	done,
your	interface	controllers	should	look	like	they	do	in	Figure	10.7.

Later,	we’ll	fill	the	empty	label	with	the	text	that	gets	recorded	from	dictation,	and	then
use	the	buttons	to	confirm	if	they	are	correct:

Figure	10.7	Both	interface	controllers	set	up

Before	we’re	finished,	we	need	to	import	and	attach	an	image	for	our	button.	I’ve	already
included	an	image	named	PlusButton.png	in	the	Resources	folder	for	Chapter	10,
Creating	a	WatchOS	Companion	App.	To	include	it	in	or	watchOS	app,	we	need	to	create
an	image	asset	inside	the	Assets.xcassets	file	that	is	a	part	of	the	Snippets-Watch
folder.

Open	up	that	asset	catalog,	and	then	click	the	+	button	at	the	bottom	of	the	file	navigator
in	the	left	column	of	the	asset	catalog	editor	window.	Choose	New	Image	Set,	name	the
asset	PlusIcon,	and	then	drag	the	PlusButton.png	into	the	2x	slot	for	the	image	(Figure
10.8):

Figure	10.8:	Setting	up	our	button	image

Now,	with	the	PlusIcon	asset	still	selected,	open	up	the	Attribute	Inspector.	Near	the	top
of	the	Attribute	Inspector,	you	should	see	a	drop-down	menu	called	Render	As.	Select

Template	Image.	What	this	does	is	it	lets	the	app	know	that	our	image	shouldn’t	be
interpreted	as	an	image,	but	rather	as	a	binary	stencil	where	all	the	black	pixels	can	be
colored	with	a	tint.

With	the	image	asset	set	up,	let’s	go	back	to	the	storyboard	and	select	the	image	inside	our
button	again.	From	the	attribute	inspector,	set	the	image’s	Image	attribute	to	use	our	new
PlusIcon	asset,	and	then	right	below	that,	set	its	Tint	Color	to	a	nice	orange	to	match	our
Snippets	color	scheme.	The	image	wont	show	in	Interface	Builder,	but	when	you	run	the
app	it	should	be	visible	with	the	color	you	selected.

At	this	point,	we’ve	finished	building	our	basic	user	interface!	Select	one	of	the	simulators
that	includes	an	Apple	Watch,	then	build	and	run	the	project	to	see	our	storyboard	running
in	the	simulator.	Next,	we’re	going	to	add	functionality	to	the	app	by	programming	the
interface	controller.

Programming	the	interface	controller
Our	interface	controller	is	going	to	be	pretty	simple.	We	need	to	create	an	action	that	gets
called	when	we	tap	the	new	snippet	button.	Then	we	need	to	present	the	dictation
controller	and	pass	the	result	text	into	our	confirmation	controller.	Depending	on	what	the
user	chooses	to	do,	we’ll	send	the	text	back	to	our	root	controller.	Let’s	start	with
programming	the	first	controller.

Before	we	start,	we’re	going	to	create	an	IBAction	by	control-dragging	from	the	New
Snippet	button	into	the	InterfaceController.swift	file,	and	call	the	action
createNewTextSnippet().	You	may	have	to	drag	from	the	document	outline	to	get	the
action	from	the	button,	because	it	might	try	creating	an	outlet	for	the	image	if	you	drag
right	from	the	storyboard.	Then	inside	the	default	InterfaceController.swift	file,
delete	the	built-in	willActivate()	and	didDeactivate()	functions.	At	this	point,	your
InterfaceController	class	should	look	like	this:
import	WatchKit

import	Foundation

class	InterfaceController:	WKInterfaceController	{

				override	func	awake(withContext	context:	Any?)	{

								super.awake(withContext:	context)

								

								//	Configure	interface	objects	here.

				}

				

				@IBAction	func	createNewTextSnippet()	{

								

				}

}

Next,	we’re	going	to	make	it	so	that	when	we	press	the	new	snippet	button	it	presents	the
text	dictation	input	controller.	We’re	going	to	place	that	in	a	function	called
tryToGetText():
@IBAction	func	createNewTextSnippet	()	{

				tryToGetText()

}

To	present	the	text	input	controller,	we	use	a	built	in	function	called
presentTextInputController().	The	first	parameter	takes	an	array	of	strings	that	are
used	as	predetermined	test	options,	but	we	don’t	want	that	here	so	we	pass	in	nil.	The
second	parameter	describes	the	type	of	input	we	want	to	allow.	Since	we	don’t	want	any
emoji,	we	just	use	the	.plain	input	mode.	Finally,	we	pass	in	a	completion	handler,	which
we’ll	call	processResults.	Here’s	the	final	tryToGetText()	function:
func	tryToGetText()	{

				presentTextInputController(withSuggestions:	nil,	allowedInputMode:

.plain,	completion:	processResults)

}

Now	we	need	to	create	the	completion	handler,	processResults().	This	function	needs	to
be	able	to	accept	an	optional	array	of	Any	([Any]?),	since	that	is	what	our	text	controller
returns.	In	this	function	we’re	going	to	see	if	we	can	find	a	string	in	the	first	element	of	the
results	array,	which	means	that	our	text	entry	was	successful.	If	we	find	the	string,	we’re
going	to	present	our	confirmation	interface	controller:
func	processResults(results:	[Any]?)	{

				guard	let	r	=	results?[0],	let	string	=	r	as?	String	else	{

								return

				}

				pushController(withName:	“confirmation”,	context:	nil)

}

There’s	still	some	work	to	be	done	in	our	root	InterfaceController	class,	but	first	we’re
going	to	need	to	jump	over	and	flesh	out	our	confirmation	interface	controller.	To	start,
let’s	create	a	new	class	for	it.	Right	click	on	the	Snippets-Watch	Extension	folder,	then
click	New	File.	From	the	template	selection	dialog	box,	navigate	to	the	watchOS	|	Source
section,	and	choose	WatchKit	Class.	On	the	next	screen,	set	the	name	to
ConfirmationInterfaceController,	and	make	sure	you	set	the	subclass	to
WKInterfaceController	(compare	with	Figure	10.9):

Figure	10.9:	Creating	a	new	subclass	of	WKInterfaceController

Finish	up	the	creation	of	the	new	file,	and	then	head	over	to	the	storyboard	in	our	Watch
App	bundle,	so	we	can	connect	this	new	class	to	the	storyboard.	Select	the	confirmation

interface	controller	that	we	made	in	the	storyboard,	and	from	the	Identity	Inspector	(option
+	command	+	3)	change	the	class	to	the	ConfirmationInterfaceController	that	we	just
made.	Then,	from	the	Attributes	Inspector	(option	+	command	+	4),	set	the	Identifier	to
Confirmation.	The	storyboard	is	now	connected	to	our	code.

From	the	storyboard,	pull	up	the	Assistant	Editor	so	we	can	make	some	connections.
Create	an	outlet	for	the	label	inside	the	group,	and	call	it	resultsLabel.	Then,	create	an
IBAction	for	each	of	the	three	buttons,	named	confirmText(),	tryAgain(),	and
cancel()respectively.	Here’s	what	the	class	should	look	like	at	this	point:
class	ConfirmationInterfaceController:	WKInterfaceController	{

			

				@IBOutlet	var	resultsLabel:	WKInterfaceLabel!

			

				override	func	awakeWithContext(context:	AnyObject?)	{

								super.awakeWithContext(context)

				}

			

				@IBAction	func	confirmText()	{

							

				}

				@IBAction	func	tryAgain()	{

							

				}

				@IBAction	func	cancel()	{

							

				}

}

Next,	we	need	to	transfer	information	from	our	root	interface	controller	into	this	one.
What	we	need	to	do	is	use	the	context	parameter	from	awake(withContext:)	to	bundle	up
and	transmit	that	data.	First,	let’s	create	a	new	class	named	ConfirmationContext	at	the
top	of	the	ConfirmationInterfaceController.swift	file	that	will	be	used	to	store	all	the
data:
class	ConfirmationContext	{

				let	textString	:	String

				let	confirmAction:	(String)	->	Void

				let	tryAgainAction:	()	->	Void

				

				init	(textString:	String,	confirmAction:	@escaping	(String)	->	Void,

tryAgainAction:	@escaping	()	->	Void)	{

								self.textString	=	textString

								self.confirmAction	=	confirmAction

								self.tryAgainAction	=	tryAgainAction

				}

}

We’ve	given	it	the	ability	to	hold	a	string	for	the	text	data	we	are	gathering,	in	addition	to
two	closures	that	will	be	used	in	the	button	callbacks.	We	also	add	an	init	function	to	set
up	those	values.	Let’s	update	our	awake(withContext:)	function	to	unpack	this
information	from	the	context	it	receives:

var	currentContext:	ConfirmationContext?

override	func	awakeWithContext(context:	AnyObject?)	{

				super.awakeWithContext(context)

			

				if	let	c	=	context	as?	ConfirmationContext	{

								currentContext	=	c

								resultsLabel.setText(c.textString)

				}

}

Above	the	function,	we	first	create	a	new	variable	to	store	the	current	context	so	that	we
can	access	it	later.	Then,	inside	the	awake(withContext:)function,	we	try	to	cast	the
incoming	context	to	our	ConfirmationContext	class.	If	it’s	successful,	we	save	that
context	to	the	currentContext	variable,	and	set	our	label	to	the	text	that	was	inside.

Now	that	we	have	some	closures	from	the	context,	let’s	use	them	to	finish	setting	up	our
button	callbacks:
@IBAction	func	confirmText()	{

				popToRootController()

				if	let	context	=	currentContext	{

								context.confirmAction(context.textString)

				}

}

@IBAction	func	tryAgain()	{

				popToRootController()

				if	let	context	=	currentContext	{

								context.tryAgainAction()

				}

}

@IBAction	func	cancel()	{

				popToRootController()

}

In	the	confirmText()	action,	we	first	pop	back	to	our	root	interface	controller,	and	then
execute	the	confirm	action	that	was	passed	to	the	context,	if	it	exists,	and	pass	in	the	text
string	for	that	closure	to	process.	We	do	something	very	similar	in	the	tryAgain()	action,
but	this	time	we	run	the	try	again	action	from	our	context,	if	it	exists.	Finally,	in	our
cancel()	action,	we	just	pop	back	to	the	root	controller,	without	running	any	additional
code.

With	those	buttons	finished,	our	confirmation	interface	controller	is	now	complete.	Now
we	just	have	to	jump	back	to	the	original	InterfaceController.swift	file	to	set	up	the
context	that	the	ConfirmationInterfaceController	is	expecting:

Let’s	take	a	look	at	what	the	final	InterfaceController	class	will	look	like:
class	InterfaceController:	WKInterfaceController	{

class	InterfaceController:	WKInterfaceController	{

				override	func	awake(withContext	context:	Any?)	{

								super.awake(withContext:	context)

				}

				

				@IBAction	func	createNewTextSnippet()	{

								tryToGetText()

				}

				

				func	tryToGetText()	{

								presentTextInputController(withSuggestions:	nil,	allowedInputMode:

.plain,	completion:	processResults)

				}

				

				func	processResults(results:	[Any]?)	{

								guard	let	r	=	results?[0],	let	string	=	r	as?	String	else	{

												return

								}

								let	processText	=	{	(text:	String)	in

												print	(“processText:	\(text)”)

								}

								

							let	confirmContext	=	ConfirmationContext(textString:	string,

confirmAction:	processText,	tryAgainAction:	tryToGetText)

								pushController(withName:	“confirmation”,	context:	confirmContext)

				}

}

Inside	the	processResults()	function,	we	create	a	new	instance	of	the
ConfirmationContext	class,	and	then	initialize	it	with	the	processed	string,	the
tryToGetText()	function	for	the	tryAgain	action,	and	a	new	closure	called
processText()	for	the	confirmAction.

Right	now,	we	are	just	going	to	print	some	debug	text	to	the	console	when	our	text	is
processed;	in	the	next	section	we’ll	be	dealing	with	sending	that	back	to	iOS.	We	set	the
processText	closure	to	take	a	single	string	parameter,	and	write	it	out	to	the	console.

Now	our	watchOS	app	has	a	fully	functioning	interface!	If	you	build	and	run	this	on	a	real
Apple	Watch,	you’ll	be	able	to	navigate	through	the	entire	app.	However,	the	simulator
doesn’t	support	dictation,	so	you	won’t	be	able	to	use	it	there.	As	a	workaround,	let’s	add	a
text	suggestion	that	you	can	click	on	in	the	simulator	to	bypass	the	need	for	dictation:
func	tryToGetText()	{

				presentTextInputController(withSuggestions:	[“Test”],	allowedInputMode:

.plain,	completion:	processResults)

}

In	the	tryToGetText()	function,	if	we	update	the	text	input	controller	to	have	an	array
with	a	single	string	value	you’ll	see	that	that	Test	string	will	show	up	on	the	text	selection
menu	when	you	run	the	app	now.	This	should	allow	you	to	test	the	app	on	the	simulator	if
you	don’t	own	an	Apple	Watch.

Connecting	to	iOS	with	Watch	Connectivity.framework
In	order	to	have	more	robust	communication	between	the	Apple	Watch	and	its	connected
iOS	device,	Apple	introduced	a	new	framework	in	watchOS	2.0	called	Watch
Connectivity.	This	framework	allows	us	to	send	all	kinds	of	information	back	and	forth
between	devices,	in	many	different	ways.

For	our	purposes,	we	are	going	to	need	to	send	a	message	to	our	iOS	app	telling	it	that	we

have	a	new	text	snippet	to	create.	This	requires	setting	up	a	Watch	Connectivity	session	on
both	the	watchOS	and	iOS	side	of	things,	and	then	sending	a	message	from	watchOS	and
receiving	it	in	iOS.	We’ll	begin	by	setting	up	Watch	Connectivity	on	the	watch.

Note
Make	sure	to	link	the	WatchConnectivity.framework	file	to	your	app	from	the	main
app’s	target.

Head	over	to	the	InterfaceController.swift	file,	and	add	an	import
WatchConnectivity	statement	to	the	top.	Next,	set	our	InterfaceController	class	to
implement	the	WCSessionDelegate	protocol:
class	InterfaceController:	WKInterfaceController,	WCSessionDelegate	{

Now	that	our	class	is	set	up	with	Watch	Connectivity,	we	need	to	create	a	WCSession
object,	which	is	what	manages	the	communications	between	the	two	devices.	We’re	going
to	create	a	new	WCSession	property,	and	under	that	we	add	a	function	that	the
WCSessionManager	protocol	requires,	but	we	don’t	need	it	so	it	just	returns.	Finally,	we
then	set	up	our	session	when	our	interface	controller	starts	up:
var	session:	WCSession?

func	session(_	session:	WCSession,	activationDidCompleteWith

activationState:	WCSessionActivationState,	error:	Error?)	{

				return

}

override	func	awake(withContext	context:	Any?)	{

				super.awake(withContext:	context)

				session	=	WCSession.default()

				session?.delegate	=	self

				session?.activate()

}

First,	we	get	the	default	session	from	the	WCSession	class	and	store	it	in	our	session
property.	Then	we	set	the	current	class	to	be	the	session’s	delegate,	and	finally	we	activate
the	session.

With	our	session	set	up	and	active,	we	can	now	send	messages	to	our	iOS	app.	Inside	the
processResults()	function,	we	need	to	change	the	closure	that	handles	our	final	string.
Now,	we’re	going	to	bundle	it	up	in	a	dictionary	and	send	it	off	to	our	paired	iOS	device:
func	processResults(results:	[Any]?)	{

				guard	let	r	=	results?[0],	let	string	=	r	as?	String	else	{

								return

				}

			

				let	processText	=	{	(text:	String)	in

								let	info	=	[“textData”:text]

								self.session?.sendMessage(info,	replyHandler:	nil,	errorHandler:

nil)

				}

			

				let	confirmContext	=	ConfirmationContext(textString:	string,

confirmAction:	processText,	tryAgainAction:	tryToGetText)

				pushController(withName:	“confirmation”,	context:	confirmContext)

}

Before	we	send	the	string	to	iOS,	we	need	to	put	it	into	a	dictionary.	We	create	a	new
dictionary	with	a	single	key/value	pair,	with	the	key	textData	containing	a	value	with	our
final	text	string.	Then	we	can	tell	our	session	to	send	a	message	with	our	info.

Note
I’m	not	using	a	reply	handler	or	an	error	handler	here,	so	that	I	don’t	bore	you	with
formalities,	but	I	encourage	you	to	try	to	think	about	how	you	might	handle	error	cases,	or
how	you	might	display	syncing	progress	before	the	app	replies	with	a	success.	In	a	final
shipping	application,	you	want	to	make	sure	your	app	is	prepared	to	handle	whatever
might	get	thrown	its	way!

Now	that	watchOS	is	bundling	up	our	string	and	sending	it	over	to	iOS,	we	need	to	get	our
iOS	app	ready	to	receive	the	data	that	is	being	sent	to	it.

Open	up	our	AppDelegate.swift	file,	and	add	an	import	WatchConnectivity	statement	to
the	top.	We	need	to	also	make	our	AppDelegate	class	implements	the	WCSessionDelegate
protocol,	just	like	our	InterfaceController:
class	AppDelegate:	UIResponder,	UIApplicationDelegate,	WCSessionDelegate	{

At	the	top	of	the	class,	we’re	going	to	add	another	session	property:
var	session:	WCSession?

Then	we	need	to	add	some	required	functions:
func	session(_	session:	WCSession,	activationDidCompleteWith

activationState:	WCSessionActivationState,	error:	Error?)	{

				return

}

func	sessionDidBecomeInactive(_	session:	WCSession)	{

				return

}

func	sessionDidDeactivate(_	session:	WCSession)	{

				return

}

Finally	we	can	set	up	our	session.	In	the	application	(didFinishLaunching:)	function,	we
are	going	to	that	like	so:
func	application(_	application:	UIApplication,

didFinishLaunchingWithOptions	launchOptions:	[UIApplicationLaunchOptionsKey

:	Any]?	=	nil)	->	Bool	{

				

				if	WCSession.isSupported()	{

								session	=	WCSession.default()

								session?.delegate	=	self

								session?.activate()

				}

				return	true

}

This	time	we	check	to	see	if	WCSession	is	supported	first,	to	make	sure	everything	is	ready
to	go	with	Watch	Connectivity.

Now	that	WC	is	set	up	and	our	session	is	activated,	we	just	have	to	wait	for	the	message	to
come	through!	In	order	to	receive	the	message,	we	need	to	implement	a	function	from	the
WCSessionDelegate	protocol,	session	(didRecieveMessage):
func	session(_	session:	WCSession,	didReceiveMessage	message:	[String	:

Any])	{

				if	let	textData	=	message[“textData”]	as?	String,	let	vc	=

self.window!.rootViewController!	as?	ViewController	{

								DispatchQueue.main.async(execute:	{

												vc.saveTextSnippet(text:	textData)

												vc.reloadSnippetData()

												vc.tableView.reloadData()

								})

				}

}

First	we	try	to	pull	out	the	text	data	from	the	dictionary,	and	we	also	try	to	get	a	reference
to	our	root	view	controller.	If	both	of	those	succeed,	then	we	move	on.	Inside	the	function
we	call	the	saveTextSnippet()	function	and	pass	in	the	string	from	the	watch,	and	then
we	reload	the	data	and	refresh	our	table.

Note
You’ll	notice	that	there’s	a	bit	of	new	code	wrapping	the	saving	and	reload	code,	which	is
DispatchQueue.main.async(execute:	{},	{}).	What	this	does	is	make	sure	that	code
inside	the	block	is	being	executed	on	the	main	thread.	Since	Watch	Connectivity	can	be
run	in	the	background,	this	code	block	may	be	run	on	a	background	thread,	and	we	can’t
adjust	our	views	from	a	background	thread.

Now	that	our	iOS	app	can	receive	a	message,	extract	the	text	and	save	it	to	our	Core	Data
persistent	store,	our	functionality	is	complete!	Figure	10.10	shows	the	final	app	running
on	an	Apple	Watch…

Figure	10.10:	Using	the	app	on	our	Apple	Watch

And	Figure	10.11	shows	the	snippet	we	created	showing	up	inside	the	iOS	counterpart!

Figure	10.11:	The	resulting	snippet	created	on	our	iOS	device

Adding	a	complication
To	complete	our	app,	we’re	going	to	add	a	complication	for	our	app.	It’s	worth	noting	here
that	there	isn’t	actually	a	great	reason	to	add	a	complication	to	our	app.	Having	a	small
button	on	the	watch	face	to	create	a	new	text	snippet	is	pretty	useful,	but	it’s	not
particularly	timely	or	worth	the	space	it	takes	up.	Then	again,	that	decision	is	up	to	the
user!	Just	remember	that	this	is	not	a	great	example	of	when	to	make	a	complication,	but
should	be	used	as	an	example	of	how	to	make	one.

First,	let’s	go	to	the	Xcode	project	settings,	and	select	our	Snippets-Watch	Extension
target,	and	select	which	complications	are	valid.	We’re	only	going	to	support	Circular
Small,	Modular	Small,	and	Utilitarian	Small.	Your	checkboxes	should	look	like	this:

Figure	10.12:	The	complication	configuration	for	our	watch	extension	target

Next,	we’re	going	to	configure	the	icon	images	that	will	be	displayed	in	our
complications.	Inside	the	watch	extension	folder	(Snippets-Watch	Extension)	there
should	be	another	asset	catalog	with	a	built	in	folder	for	complications,	containing	three
empty	image	assets	for	Circular,	Modular,	and	Utilitarian.	Inside	the	resources	folder	for

Chapter	10,	I’ve	included	the	correctly	sized	plus	button	images	for	all	six	slots,	so	drag
those	into	the	asset	catalog	now:

Figure	10.13:	Our	asset	catalog	filled	with	complication	images

Like	we	did	earlier,	select	all	the	image	assets	inside	the	asset	catalog,	and	from	the
attribute	inspector	set	the	Render	As	attribute	to	Template	Image.

Now	that	our	app	knows	which	complications	it	supports,	and	has	the	assets	it	needs,	the
rest	of	our	work	will	be	done	in	the	ComplicationController.swift	file.	This	file
contains	a	class	that	implements	the	CLKComplicationDataSource	protocol,	which	lets	the
Apple	Watch	request	the	data	for	the	complication.

The	first	thing	we’ll	do	in	here	is	set	the	Time	Travel	capabilities.	Since	our	app	doesn’t
have	any	time-sensitive	data,	we	are	not	going	to	use	Time	Travel,	and	so	we’ll	need	to
change	the	supported	Time	Travel	directions	by	changing	the	first	function	like	so:
func	getSupportedTimeTravelDirectionsForComplication(complication:

CLKComplication,	withHandler	handler:	(CLKComplicationTimeTravelDirections)

->	Void)	{

				handler(nil)

}

Next,	we	need	to	return	the	correct	data	when	the	app	asks	for	it.	We’ll	be	doing	that	in	the
getCurrentTimelineEntry(for	complication:)	function.	Let’s	take	a	look	at	the	code,
and	then	break	it	down:
func	getCurrentTimelineEntry(for	complication:	CLKComplication,	withHandler

handler:	@escaping	(CLKComplicationTimelineEntry?)	->	Void)	{

				

				var	template:	CLKComplicationTemplate

				

				switch	complication.family

				{

				case	.circularSmall:

								let	t	=	CLKComplicationTemplateCircularSmallSimpleImage()

								let	image	=	UIImage(named:	“Circular”)!

								t.imageProvider	=	CLKImageProvider(onePieceImage:	image)

								template	=	t

								

				case	.modularSmall:

								let	t	=	CLKComplicationTemplateModularSmallSimpleImage()

								let	image	=	UIImage(named:	“Circular”)!

								t.imageProvider	=	CLKImageProvider(onePieceImage:	image)

								template	=	t

								

				case	.utilitarianSmall:

								let	t	=	CLKComplicationTemplateUtilitarianSmallSquare()

								let	image	=	UIImage(named:	“Circular”)!

								t.imageProvider	=	CLKImageProvider(onePieceImage:	image)

								template	=	t

								

				default:

								handler(nil)

								return

				}

				

				template.tintColor	=	UIColor.white

				handler(CLKComplicationTimelineEntry(date:	Date(),

complicationTemplate:	template))

}

So	basically,	what	we	are	doing	in	this	function	is	setting	up	a	template	for	the
complication	and	then	returning	that	template	at	the	end.	So	at	the	top	we	declare	a
template	variable,	which	is	of	the	type	CLKComplicationTemplate.	This	is	actually	just	a
generic	parent	class,	and	we’ll	use	specific	subclasses	to	actually	define	the	template.

To	determine	what	template	we	should	use,	we	run	a	switch	statement	on	the	family
property	of	the	complication	that	was	passed	into	the	function.	If	the	family	is
.circularSmall,	we	set	the	template	to	the	SimpleImage	type	for	that	family.	If	the
family	is	.modularSmall,	we	set	the	template	to	the	SimpleImage	type	for	the	modular
family.	And	finally	if	the	family	is	.utilitarianSmall,	we	set	the	template	to
SmallSquare	for	that	family.	In	all	cases,	we	grab	the	image	from	our	asset	catalog,	put	it
inside	a	special	Image	Provider	class	that	the	watch	uses,	and	then	assign	our	template	to
the	generic	version.	At	the	end	we	have	a	default	case	to	catch	any	other	family	types	(like
.utilitarianLarge	and	.modularLarge,	which	we	disabled).

Once	we’ve	set	up	each	template,	we	set	the	tintColor	to	white.	This	makes	sure	our
template	images	that	are	added	are	colored	white	instead	of	black.	Otherwise,	we	wouldn’t
be	able	to	see	them	on	the	black	background!

Finally,	we	return	a	CLKComplicationTimelineEntry	using	the	current	date	and	our
template	by	using	the	handler	that	was	passed	into	the	function.	In	order	to	check	out	the
complications	we	made,	switch	the	scheme	(like	we	did	with	glances)	to	be	the
Complication	–	Snippets-Watch	scheme,	and	run.

You	should	be	able	to	just	tap	on	the	complication	on	the	watch	face	to	jump	straight	into
the	app.	For	power	users,	this	might	be	a	great	shortcut	to	launch	the	app	and	record	a
quick	memo.	Check	out	Figure	10.14	to	see	the	complication	across	all	the	different
templates	we	created:

Figure	10.14:	Our	final	complication	running	on	several	different	watch	faces
(Utilitarian,	Modular,	Circular)

You	might	also	want	to	look	at	other	watch	faces	and	set	them	to	use	our	new
complication.	To	do	that	press	(command	+	shift	+	2)	in	the	watch	simulator	to	switch	to
force	touch	mode,	and	force	touch	on	the	watch	face.	Then	use	(command	+	shift	+	1)	to
switch	back	to	normal	touch	and	swipe	to	select	a	new	watch	face.	Try	customizing	some
of	the	watch	face	complications	to	display	our	new	Snippets	complication.

Summary
And	with	that,	we’ve	built	up	a	pretty	solid	Apple	Watch	companion	app	for	our	Snippets
app!	There’s	still	a	lot	more	to	learn	about	watchOS,	and	the	platform	will	only	be
expanding	in	the	future,	but	in	this	chapter	we’ve	got	a	decent	grasp	of	the	basic	design
ideas	behind	watchOS,	we	learnt	about	the	architecture	of	an	app,	and	we	learnt	how	to
build	an	app	complete	with	a	glance	and	a	complication!	You	should	have	enough
experience	at	this	point	to	use	any	part	of	this	chapter	that	interested	you	as	a	diving	board
into	Apple’s	documentation	to	learn	even	more	about	watchOS	development.	Go	ahead
and	see	what	else	you	can	do!

In	the	next	chapter	we’re	going	to	pull	back	from	our	Snippets	app	a	bit	and	learn	about
some	of	the	different	sensors	available	in	iOS.	While	they	might	not	be	particularly	useful
for	this	app,	they’re	still	an	important	part	of	a	developer’s	toolkit	(and	a	lot	of	fun	to	play
with,	too).

Chapter	11.	Advanced	Input	Using	Sensors
When	the	iPhone	was	first	announced,	the	multi-touch	screen	was	the	focal	point	of	its
high-tech	appeal.	However,	it	has	always	had	a	fantastic	user	interface	due	to	the	many
other	sensors	that	are	built	in,	smoothing	out	every	aspect	of	the	user	experience.	The
accelerometer	knew	when	you	tilted	your	device	and	rotated	web	pages	automatically.	A
proximity	sensor	knew	when	your	phone	was	up	to	your	face	so	it	would	turn	off	the
screen.	An	ambient	light	sensor	would	automatically	adjust	the	backlight	based	on	the
room	you	were	in.

Since	those	early	days,	each	new	iteration	of	the	iPhone	hardware	has	introduced	more
and	more	sensors	that	allow	new	generations	of	apps	to	provide	even	better	experiences.
Earlier	in	the	book,	we	looked	at	very	common	input	methods	like	multi-touch	gestures,
and	positioning	sensors	like	GPS	with	Core	Location.	In	this	chapter,	we’re	going	to	take
a	look	at	some	of	the	more	advanced	sensors,	covering:

	
Device	information	through	UIDevice
The	basics	of	the	Core	Motion	framework
Using	third-party	charting	frameworks	to	plot	data
Getting	accelerometer	data	from	the	Apple	Watch

In	this	chapter,	we’ll	be	taking	a	break	from	our	Snippets	project,	so	get	ready	to	take	a
bit	of	a	breather	by	learning	some	fun	new	ways	to	interact	with	an	iOS	device!

Note
Due	to	the	subject	nature	of	this	chapter,	most	of	the	code	we’ll	be	writing	will	not	be
possible	to	run	in	a	simulator.	If	you	don’t	have	a	device	plugged	in	you	can	still	follow
along	and	learn,	but	you’ll	make	the	most	of	this	chapter	if	you	have	the	actual	hardware.

Device	status	with	UIDevice
Many	of	the	simpler	sensors	available	in	iOS	are	exposed	to	us	through	the	UIDevice
class.	Responsible	for	keeping	track	of	the	overall	device	state,	this	class	has	a	bunch	of
little	features	that	make	it	actually	quite	fun	to	poke	around!

If	you	haven’t	already,	create	a	new	single	view	Xcode	project;	I	called	mine	Sensors.
Then,	head	over	to	your	default	view	controller,	and	at	the	top	of	the	class	let’s	grab	a
reference	to	our	current	device	to	make	it	easier	to	get	information	later.	Our	class	should
start	off	looking	like	this:
class	ViewController:	UIViewController	{

				let	device	=	UIDevice.currentDevice()

				

				override	func	viewDidLoad()	{

								super.viewDidLoad()

				}

}

Now	let’s	see	what	we	can	do!

Accessing	orientation	state
One	of	the	more	important	pieces	of	sensory	information	that	you	might	need	when
developing	your	own	apps	is	checking	the	current	state	of	the	device’s	orientation.	In
recent	years,	auto	layout	has	made	it	less	necessary	to	manually	check	for	device
orientation,	but	it’s	still	a	useful	trick	to	know!

Let’s	start	off	by	talking	about	how	iOS	represents	orientation	data.	The	device’s
orientation	is	defined	using	an	enum	called	UIDeviceOrientation,	of	which	all	the	cases
are	self-explanatory:
enum	UIDeviceOrientation	:	Int	{

				case	unknown

				case	portrait

				case	portraitUpsideDown

				case	landscapeLeft

				case	landscapeRight

				case	faceUp

				case	faceDown

}

To	check	the	current	orientation	of	the	device,	you	can	just	access	the	orientation
property	like	so:
device.orientation

However,	usually	it	makes	the	most	sense	to	not	check	what	the	orientation	is,	but	to	be
notified	when	it	changes.	To	detect	orientation	changes	we	have	two	options:	be	notified
when	the	screen	auto-rotates,	or	register	directly	to	receive	notifications	when	the
orientation	changes.

The	first	option	works	well	when	you	need	to	know	about	orientation	changes	in	the	UI,
since	it	is	only	called	when	the	interface	actually	rotates.	This	is	great	because	the
orientation	you	get	will	match	the	orientation	of	the	user	interface,	and	can	only	ever	be
one	of	the	supported	orientations:
override	func	viewWillTransition(to	size:	CGSize,	with	coordinator:

UIViewControllerTransitionCoordinator)	{

				switch	device.orientation

				{

				case	.landscapeLeft:

								print(“Landscape	Left”)

				case	.landscapeRight:

								print(“Landscape	Right”)

				case	.portrait:

								print(“Portrait”)

				case	.portraitUpsideDown:

								print(“Portrait	Upside	Down”)

				default:

								print(“Other	orientation”)

				}

}

To	do	this,	we	use	the	the	viewWillTransition(toSize:)function,	which	lets	us	know
when	our	screen	is	about	to	change	sizes	during	a	rotation	event.	Here,	you	can	see	that

inside	the	function	we’re	running	a	switch	statement	on	device.orientation,	which
prints	out	the	orientation	based	on	the	value.

The	other	option	(being	notified	directly	on	device	orientation	change)	is	nice	because	it
fires	immediately,	and	doesn’t	care	about	what	the	supported	orientations	are.	It	also
doesn’t	care	what	the	user	interface	is	doing,	so	it’s	perfect	for	when	you	really	just	need
to	know	the	orientation	of	the	device.

To	implement	this,	we	need	to	register	our	view	controller	to	receive	the	orientation
change	notifications.	We’ll	do	that	right	before	our	view	is	shown	to	the	user:
override	func	viewWillAppear(_	animated:	Bool)	{

				let	nc	=	NotificationCenter.default

				let	oriSel	=	#selector(ViewController.onOrientationChange)

				let	oriNot	=	NSNotification.Name.UIDeviceOrientationDidChange

				nc.addObserver(self,	selector:	oriSel,	name:	oriNot,	object:	nil)

}

Then	we	need	to	remove	our	class	as	an	observer	right	after	the	view	is	taken	away	from
the	user:
override	func	viewWillDisappear(_	animated:	Bool)	{

				let	nc	=	NotificationCenter.default

				let	oriNot	=	NSNotification.Name.UIDeviceOrientationDidChange

				nc.removeObserver(self,	name:	oriNot,	object:	nil)

}

We’re	using	a	new	class	here	called	NSNotificationCenter.	This	is	not	the	same
notification	center	that	is	used	to	manage	alerts	that	you	get	from	apps	on	your	iPhone.
The	NSNotificationCenter	class	processes	notifications,	which	are	essentially	strings.	It
also	manages	lists	of	objects	that	are	listening	to	each	one	of	those	notifications.	When	an
object	posts	a	notification	to	the	notification	center,	it	alerts	all	of	the	objects	that	are
listening	for	that	notification	that	it	has	been	posted,	and	then	all	of	those	objects	can	react
accordingly.	So	here,	we	are	telling	the	notification	center	that	our	view	controller	wants
to	be	alerted	when	the	UIDeviceOrientationDidChangeNotification	gets	posted,	and
that	when	it	does	it	should	call	the	onOrientationChange	function.	So	let’s	create	that
function	now:
func	onOrientationChange()	{

				switch	device.orientation

				{

				case	.landscapeLeft:

								print(“Landscape	Left”)

				case	.landscapeRight:

								print(“Landscape	Right”)

				case	.portrait:

								print(“Portrait”)

				case	.portraitUpsideDown:

								print(“Portrait	Upside	Down”)

				case	.faceUp:

								print(“Face	Up”)

				case	.faceDown:

								print(“Face	Down”)

				default:

								print(“Other	orientation”)

				}

}

This	function	is	very	similar	to	the	viewWillTransition(toSize:)	function	we	created
earlier,	except	that	we	can	now	detect	the	.faceUp	and	.faceDown	orientations	which	do
not	trigger	UI	auto-rotation.

Try	running	this	project	on	your	device	with	one	method	enabled,	and	then	the	other.	Spin
your	device	around	and	see	what	results	are	spit	out	to	the	console!

Checking	the	proximity	sensor
The	proximity	sensor	is	one	of	the	little	black	circles	near	the	earpiece	on	your	iPhone.	It
detects	when	your	face	is	close	to	the	phone	so	that	it	can	turn	off	the	screen	during	calls.
However,	the	same	functionality	is	also	available	to	developers	to	do	with	as	they	please.

Setting	up	proximity	state	changes	is	very	similar	to	the	way	we	used	the	notification
center	to	check	for	orientation	changes.	Before	we	register	for	notifications,	though,	we
need	to	tell	the	device	to	start	monitoring	the	proximity	sensor:
override	func	viewDidLoad()	{

				super.viewDidLoad()

				

				device.isProximityMonitoringEnabled	=	true

}

Always	remember	to	turn	off	the	proximity	sensor	when	you’re	done	with	it;	there’s	no
sense	running	the	sensor	if	we	don’t	need	it!

Next	we	have	to	register	for	a	new	notification	related	to	the	proximity	sensor.	Let’s
update	our	viewWillAppear()	and	viewWillDisapper()	functions	to	make	our	view
controller	listen	for	UIDeviceProximityStateDidChangeNotification	,	and	call	a
function	called	onProximityChange:
override	func	viewWillAppear(_	animated:	Bool)	{

				let	nc	=	NotificationCenter.default

				let	oriSel	=	#selector(ViewController.onOrientationChange)

				let	prxSel	=	#selector(ViewController.onProximityChange)

				let	oriNot	=	NSNotification.Name.UIDeviceOrientationDidChange

				let	prxNot	=	NSNotification.Name.UIDeviceProximityStateDidChange

				nc.addObserver(self,	selector:	oriSel,	name:	oriNot,	object:	nil)

				nc.addObserver(self,	selector:	prxSel,	name:	prxNot,	object:	nil)

}

Getting	the	hang	of	NSNotificationCenter?	Next	we	have	to	create	our	callback
function,	onProximityChange():
func	onProximityChange()	{

				let	proximity	=	device.proximityState	?	“Near”	:	“Far”

				print(proximity)

}

Here,	we’re	just	checking	to	see	what	the	new	state	is.	If	it’s	true	(activated),	we	create	a
string	that	reads	Near,	and	if	it’s	false	(not	activated)	we	set	it	to	Far.	Then	we	print	out
the	string.

Note
In	that	last	function,	we’re	using	what	is	known	as	the	ternary	conditional	operator.
It	is	composed	of	three	parts	(the	condition,	the	true	return	value,	and	the	false	return
value)	and	is	structured	like	this:
(conditional	statement)	?	(if	true	return	this)	:	(if	false	return	this)

The	ternary	conditional	is	usually	useful	in	assignment	cases	like	this	one,	where	you	want
to	assign	one	value	if	something	is	true,	and	something	else	if	it	is	false.

If	you	build	and	run	the	app	now,	you	should	see	that	when	you	cover	the	proximity
sensor	with	your	finger,	the	screen	will	turn	off	and	you’ll	get	your	Near/Far	string	printed
out	to	the	console.	Unfortunately,	the	screen	will	always	turn	off	with	the	proximity
sensor,	and	there	isn’t	anything	you	can	do	about	it.	(Also,	some	devices	don’t	have	a
proximity	sensor,	like	the	iPod	Touch,	so	keep	that	in	mind!)

Getting	battery	status
One	of	the	most	fun	pieces	of	data	you	can	access	is	the	user’s	battery	level.	In	most	cases
there	isn’t	anything	particularly	useful	to	do	with	this	information,	but	with	a	little
creativity	anything	is	possible!	For	example,	maybe	you’re	making	a	game	and	you	can
add	an	achievement	called	risk	taker	if	the	user	beats	a	difficult	level	when	the	battery	is
below	5%	charge.

Anyway,	accessing	this	information	is	very	similar	to	the	way	we	access	the	proximity
state.	However,	this	time	there	are	two	different	notifications	we	can	subscribe	to:	when
the	battery	level	changes,	and	when	the	battery	state	changes.	The	first	one	is	just	the
percentage,	but	the	second	one	is	an	enum,	UIDeviceBatteryState,	that	looks	like	this:
enum	UIDeviceBatteryState	:	Int	{

				case	unknown

				case	unplugged

				case	charging

				case	full

}

In	this	example,	we’re	going	to	subscribe	to	changes	in	the	state,	but	you’re	welcome	to
check	out	the	documentation	and	try	to	subscribe	to	changes	in	the	battery	level.

Since	we’ve	seen	most	of	this	code	before,	let’s	just	lay	it	all	out:
override	func	viewDidLoad()	{

				super.viewDidLoad()

				

				device.proximityMonitoringEnabled	=	true

				device.batteryMonitoringEnabled	=	true

}

override	func	viewWillAppear(_	animated:	Bool)	{

				let	nc	=	NotificationCenter.default

				let	oriSel	=	#selector(ViewController.onOrientationChange)

				let	prxSel	=	#selector(ViewController.onProximityChange)

				let	batSel	=	#selector(ViewController.onBatteryStateChange)

				let	oriNot	=	NSNotification.Name.UIDeviceOrientationDidChange

				let	prxNot	=	NSNotification.Name.UIDeviceProximityStateDidChange

				let	batNot	=	NSNotification.Name.UIDeviceBatteryStateDidChange

				nc.addObserver(self,	selector:	oriSel,	name:	oriNot,	object:	nil)

				nc.addObserver(self,	selector:	prxSel,	name:	prxNot,	object:	nil)

				nc.addObserver(self,	selector:	batSel,	name:	batNot,	object:	nil)

}

override	func	viewWillDisappear(_	animated:	Bool)	{

				let	nc	=	NotificationCenter.default

				let	oriNot	=	NSNotification.Name.UIDeviceOrientationDidChange

				let	prxNot	=	NSNotification.Name.UIDeviceProximityStateDidChange

				let	batNot	=	NSNotification.Name.UIDeviceBatteryStateDidChange

				

				nc.removeObserver(self,	name:	oriNot,	object:	nil)

				nc.removeObserver(self,	name:	prxNot,	object:	nil)

				nc.removeObserver(self,	name:	batNot,	object:	nil)

}

override	func	viewWillDisappear(animated:	Bool)	{

				let	nc	=	NSNotificationCenter.defaultCenter()

				let	oriNot	=	UIDeviceOrientationDidChangeNotification

				let	proNot	=	UIDeviceProximityStateDidChangeNotification

				let	batNot	=	UIDeviceBatteryStateDidChangeNotification

				nc.removeObserver(self,	name:	oriNot,	object:	nil)

				nc.removeObserver(self,	name:	proNot,	object:	nil)

				nc.removeObserver(self,	name:	batNot,	object:	nil)

}

Again,	first	we	set	battery	monitoring	to	Enabled.	Then	we	register	our	battery	state
change	notification	in	viewWillAppear,	and	unregister	in	viewWillDisappear.	Finally,	we
need	to	create	our	callback	function,	onBatteryStateChange:
func	onBatteryStateChange()	{

				switch	device.batteryState

				{

				case	.unplugged:

								print(“Battery	Unplugged”)

				case	.charging:

								print(“Battery	Charging”)

				case	.full:

								print(“Battery	Full”)

				default:

								print(“Battery	State	Unknown”)

				}

}

Here,	we	check	the	device’s	battery	state,	and	print	out	some	results	depending	on	its
current	state.	We	could	also	use	device.batteryLevel	to	get	the	exact	charge	of	the
battery.

Introduction	to	Core	Motion
Many	applications,	games	in	particular,	love	to	use	the	accelerometer	sensor	in	the	iPhone
to	let	the	user	precisely	tilt	their	device	as	an	interaction	mechanism.	In	the	last	section	we
used	UIDevice	to	get	notifications	about	general	orientation	changes	of	the	device,	but
there	is	a	way	to	get	much	more	precise	data:	the	Core	Motion	framework.	In	this	section,
we’ll	be	taking	a	look	at	some	of	the	sensory	data	available	through	the	CMMotionManager
class.

Before	we	get	started,	let’s	reset	our	ViewController	class	to	get	rid	of	our	UIDevice
experiments,	and	start	with	our	Core	Motion	experiments	(you	can	create	a	new	project	if
you	don’t	want	to	get	rid	of	the	old	code):
import	UIKit

import	CoreMotion

class	ViewController:	UIViewController	{

				let	motionManager	=	CMMotionManager()

				

				override	func	viewDidLoad()	{

								super.viewDidLoad()

				}

}

Remember	to	link	the	CoreMotion	framework	before	you	import	at	the	top	of	the	view
controller.	We’ve	also	initialized	a	CMMotionManager	object	at	the	top	of	the	class	so	that
we	have	access	to	it	throughout	the	next	few	examples.

Accelerometer
Let’s	first	begin	by	setting	up	and	pulling	data	from	the	accelerometer.	If	you’ve	never
heard	of	an	accelerometer	before,	or	don’t	know	what	it	does,	it’s	quite	simple:	it	measures
linear	acceleration	from	both	gravity	and	movement.	This	means	we	can	not	only	get
orientation	information	from	the	accelerometer,	but	also	process	how	its	movement
changes	over	time:

Figure	11.1:	Linear	motion	along	the	x,	y,	and	z	axes	of	the	device

Note
The	kind	of	math	and	algorithms	that	would	be	necessary	to	really	analyze	this	raw	data
would	be	far	outside	the	scope	and	subject	matter	of	this	book,	so	we’re	just	going	to
focus	on	how	to	get	the	raw	data.

In	order	to	get	the	data	from	the	accelerometer,	we’re	going	to	need	to	do	three	things:
create	a	function	that	handles	data	updates;	create	a	new	operation	queue	to	run	the	data
processing;	and	configure	the	motion	manager	and	begin	updates.

First,	we’ll	create	a	new	function	called	onAccelerometerUpdate(),	which	will	be

notified	every	time	the	accelerometer	updates.	Since	this	function	will	be	sent	to	the
CMMotionManager	to	be	used	as	a	handler,	it	needs	to	conform	to	the
CMAccelerometerHandler	signature,	which	is	defined	as:
(CMAccelerometerData?,	Error?)	->	Void

func	onAcelerometerUpdate(data:	CMAccelerometerData?,	error:	Error?)	{

				if	error	==	nil,	let	d	=	data	{

								print(“x	\(d.acceleration.x)”)

								print(“y	\(d.acceleration.y)”)

								print(“z	\(d.acceleration.z)”)

				}	else	{

								print(“Error:	\(error?.localizedDescription)”)

				}

}

We	check	to	see	that	there	is	no	error,	and	then	we	unwrap	the	CMAccelerometerData
optional	value.	Inside	the	if	statement,	we	are	printing	out	the	x,	y,	and	z	component	of
the	accelerometer	data	(all	three	values	range	from	-1.0	to	1.0).	If	we	detect	an	error,	we
print	it	out	in	the	else	statement.

Next,	we	need	to	create	a	new	OperationQueue	for	our	updates	to	run	on.	The	easiest	way
to	think	about	an	operation	queue	is	that	it	is	a	separate	area	to	execute	commands.	By
default,	our	code	runs	on	the	main	operation	queue.	Since	the	accelerometer	data	may
update	many	times	per	second,	we	create	a	different	queue	for	it	to	run	on	so	that	it
doesn’t	slow	down	the	main	queue.

At	the	top	of	the	class,	we’ll	create	a	new	operation	queue	like	this:
let	motionQueue	=	OperationQueue()

Finally,	we	need	to	configure	our	CMMotionManager	for	accelerometer	updates,	and	then
tell	it	to	begin	running	those	updates:
override	func	viewDidLoad()	{

				super.viewDidLoad()

				if	motionManager.isAccelerometerAvailable	{

								motionManager.accelerometerUpdateInterval	=	0.25

								motionManager.startAccelerometerUpdates(to:	motionQueue,

withHandler:	onAccelerometerUpdate)

				}

}

In	the	viewDidLoad()	function,	we	first	need	to	check	if	the	accelerometer	is	available	by
checking	the	isAccelerometerAvailable	property	of	our	motionManager.	If	it	returns
true,	then	we	continue	with	the	setup	by	setting	the	frequency	that	the	updates	are	run.	In
this	example	I’m	setting	the	update	interval	to	0.25	(in	seconds),	which	gives	us	four
updates	per	second.	If	we	were	doing	real	processing	on	the	accelerometer,	this	would	be
far	too	slow,	but	it’s	fine	just	for	looking	at	the	values	coming	out.

Finally,	we	begin	polling	the	sensor	by	telling	it	to	start	updating	the	accelerometer	and
passing	in	our	motionQueue,	and	the	name	of	our	handler	function.	Let’s	take	a	look	at	all
of	this	together	before	running	the	project	on	our	device:
let	motionManager	=	CMMotionManager()

let	motionQueue	=	OperationQueue()

override	func	viewDidLoad()	{

				super.viewDidLoad()

				if	motionManager.isAccelerometerAvailable	{

								motionManager.accelerometerUpdateInterval	=	0.25

								motionManager.startAccelerometerUpdates(to:	motionQueue,

withHandler:	onAccelerometerUpdate)

				}

}

func	onAccelerometerUpdate(data:	CMAccelerometerData?,	error:	Error?)	{

				if	error	==	nil,	let	d	=	data	{

								print(“x	\(d.acceleration.x)”)

								print(“y	\(d.acceleration.y)”)

								print(“z	\(d.acceleration.z)”)

				}	else	{

								print(“Error:	\(error?.localizedDescription)”)

				}

}

Again,	our	motion	manager	is	set	up,	then	sent	a	new	operation	queue	and	a	reference	to	a
handler	function	that	can	process	the	accelerometer	data.	If	you	build	and	run	this	project
on	your	device,	you	should	see	the	x,	y,	and	z	values	being	printed	out	to	the	console.

Gyroscope
The	accelerometer	is	similar	to	the	gyroscope.	While	the	accelerometer	detects	translation
along	the	x,	y,	and	z	axes,	the	gyroscope	detects	rotation	around	those	axes:

Figure	11.2:	Rotational	motion	along	the	x,	y,	and	z	axes

Using	the	gyroscope	is	very	similar	to	using	the	accelerometer;	we	still	need	to	set	up	our
motionManager	with	an	operation	queue	and	a	handler	to	process	the	data.	Let’s	take	a
look	at	what	the	code	looks	like:
class	ViewController:	UIViewController	{

				let	motionManager	=	CMMotionManager()

				let	motionQueue	=	OperationQueue()

				override	func	viewDidLoad()	{

								super.viewDidLoad()

								

								if	motionManager.isAccelerometerAvailable	{

												motionManager.accelerometerUpdateInterval	=	0.25

												motionManager.startAccelerometerUpdates(to:	motionQueue,

withHandler:	onAccelerometerUpdate)

								}

								

								if	motionManager.isGyroAvailable	{

												motionManager.gyroUpdateInterval	=	0.25

												motionManager.startGyroUpdates(to:	motionQueue,withHandler:

onGyroUpdate)

								}

				}

				

				func	onAccelerometerUpdate(data:	CMAccelerometerData?,	error:	NSError?)

{

								if	error	==	nil,	let	d	=	data	{

												print(“x	\(d.acceleration.x)”)

												print(“y	\(d.acceleration.y)”)

												print(“z	\(d.acceleration.z)”)

								}	else	{

												print(“Error:	\(error?.description)”)

								}

				}

				

				func	onGyroUpdate(data:	CMGyroData?,	error:	Error?)	{

								if	error	==	nil,	let	d	=	data	{

												print(“x	\(d.rotationRate.x)”)

												print(“y	\(d.rotationRate.y)”)

												print(“z	\(d.rotationRate.z)”)

								}	else	{

												print(“Error:	\(error?.localizedDescription)”)

								}

				}

}

To	read	information	from	the	gyroscope,	we	needed	to	add	two	chunks	of	code.	In	the
viewDidLoad()	function,	we	create	a	similar	check	to	see	if	a	gyroscope	is	available	on
the	current	device,	then	set	up	an	update	interval,	and	then	start	the	update	process.

Here,	we’re	using	the	same	OperationQueue	as	last	time;	we’ve	already	moved	the
processing	of	the	main	queue	that	was	the	primary	concern,	so	there’s	no	reason	to	create
another	one.

Finally,	we	create	a	new	data	handler	function,	this	time	called	onGyroUpdate().	Similar
to	the	accelerometer	data	handler,	this	function’s	signature	follows	the	CMGyroHandler
definition,	which	is	as	follows:
typealias	CMGyroHandler	=	(CMGyroData?,	Error?)	->	Void

Inside	our	data	handler,	we	are	checking	for	errors	and	then	printing	out	the	relevant
information	to	the	console.	Here	we	are	printing	out	the	x,	y,	and	z	components	of	the
rotationRate	property	inside	the	CMGyroData	object	that	gets	passed	into	the	function.
These	are	all	represented	as	radians	per	second	along	their	respective	axis.

Before	you	build	and	run,	comment	out	the	line	with	startAccelerometerUpdates	so	that
the	accelerometer	data	isn’t	also	being	printed	out	to	the	console.	Then	run	the	project,	and
have	a	look	at	the	raw	gyroscope	data	being	reported.	With	this	gyroscope	information,
you	could	create	a	pretty	accurate	steering	wheel	for	a	driving	game!	Try	to	think	about
the	other	things	you	could	do	with	the	raw	rotation	information.

CMDeviceMotion
Now,	these	last	two	sections	are	really	great	to	get	some	low	level	data	from	your	iPhone’s
sensors,	but	the	CMMotionManager	provides	a	great	way	to	get	calibrated	data	with	bias
removed	automatically	by	Core	Motion:	CMDeviceMotion.	This	class	contains	a	handful	of
sensory	data	that	has	already	been	processed	by	algorithms	in	Core	Motion.

Since	we’re	already	familiar	with	the	way	we	configure	CMMotionManager	to	begin	polling
sensors,	I’ll	just	leave	the	code	here	for	you	to	look	at;	you	should	already	know	how	it
works:
class	ViewController:	UIViewController	{

				

				let	motionManager	=	CMMotionManager()

				let	motionQueue	=	OperationQueue()

				

				override	func	viewDidLoad()	{

								super.viewDidLoad()

								

								if	motionManager.isDeviceMotionAvailable	{

												motionManager.deviceMotionUpdateInterval	=	0.25

												motionManager.startDeviceMotionUpdates(to:	motionQueue,

withHandler:	onMotionUpdate)

								}

				}

				

				func	onMotionUpdate(data:	CMDeviceMotion?,	error:Error?)	{

								if	error	==	nil,	let	d	=	data	{

												print(“Acceleration	X:	\(d.userAcceleration.x)”)

												print(“Acceleration	Y:	\(d.userAcceleration.y)”)

												print(“Acceleration	Z:	\(d.userAcceleration.z)”)

												

												print(“Gravity	X:	\(d.gravity.x)”)

												print(“Gravity	Y:	\(d.gravity.y)”)

												print(“Gravity	Z:	\(d.gravity.z)”)

												

												print(“Rotation	X:	\(d.rotationRate.x)”)

												print(“Rotation	Y:	\(d.rotationRate.y)”)

												print(“Rotation	Z:	\(d.rotationRate.z)”)

												

												print(“Magnetic	Field	X:	\(d.magneticField.field.x)”)

												print(“Rotation	X:	\(d.rotationRate.x)”)

												print(“Rotation	Y:	\(d.rotationRate.y)”)

												print(“Rotation	Z:	\(d.rotationRate.z)”)

												

												print(“Magnetic	Field	X:	\(d.magneticField.field.x)”)

												print(“Magnetic	Field	Y:	\(d.magneticField.field.y)”)

												print(“Magnetic	Field	Z:	\(d.magneticField.field.z)”)

								}	else	{

												print(“Error:	\(error?.localizedDescription)”)

								}

				}

}

This	time,	in	the	onMotionUpdate()	function,	we’re	printing	out	a	lot	more	data.	That’s
because	the	CMDeviceMotion	class	captures	a	full	snapshot	of	all	of	the	device’s	motion
(hence	the	name).	This	makes	CMDeviceMotion	really	useful	for	when	you	need	to	get	a
lot	of	clean	motion	data	from	your	device,	which	is	great	if	you	don’t	plan	on	writing	any
of	your	own	data	processing	algorithms.	Let’s	look	at	each	piece	of	data	that
CMDeviceMotion	provides.

User	acceleration
Since	the	accelerometer	data	is	being	processed	by	Core	Motion,	it	is	able	to	separate	the
forces	that	are	being	detected.	User	acceleration	is	the	component	of	the	accelerometer
data	that	represents	what	the	user	is	doing	to	the	device.

Gravity
As	a	continuation	of	user	acceleration,	gravity	is	the	component	of	the	accelerometer
forces	that	(obviously)	represent	gravity.	When	the	phone	is	upright	in	portrait	mode,
you’ll	see	close	to	a	-1	value	on	the	y	axis,	meaning	straight	down.

Rotation	rate
The	rotation	rate	property	is	similar	to	the	rotation	rate	property	of	the	CMGyroData	class
we	used	earlier,	however	this	data	has	had	its	bias	removed	by	Core	Motion.

Magnetic	field
The	magnetic	field	property	gives	you	the	total	magnetic	field	vector	that	surrounds	the
device,	excluding	the	device’s	bias.

Charting	motion	data
We’ve	been	learning	how	to	access	a	lot	of	cool	information	from	the	sensors	in	our	iOS
devices,	but	we	haven’t	really	been	putting	that	information	to	use.	Since	the	data
processing	involved	in	using	that	data	is	beyond	the	scope	of	this	book,	let’s	do	something
a	bit	more	visual:	charting	it.

Displaying	information	through	charts	is	a	really	useful	feature	you	can	add	to	an	app	that
collects	or	generates	any	kind	of	data.	Charts	are	simple,	visual	ways	to	communicate
complex	information,	and	can	really	create	new	meaning	for	a	user.	In	this	section,	we’ll
be	learning	about	a	third-party	open	source	charting	library	called	iOS	Charts,	and	then
we’ll	apply	it	to	some	new	sensor	data	that	we’ll	pull	from	Core	Motion.

Charts
Included	in	the	resources	folder	of	this	chapter,	is	an	open	source	charting	library	called
iOS	Charts.	The	library	was	ported	by	Daniel	Gindi	from	an	Android	charting	framework
by	Philipp	Jahoda,	and	you	can	find	the	original	GitHub	repository	here:
https://github.com/danielgindi/Charts.	I’ve	included	a	copy	of	the	version	I	used	with	the
resource	files	just	in	case	it	changes	by	the	time	you	read	this,	and	things	work	differently.

Importing	the	framework
Since	we’re	using	a	third-party	framework,	importing	it	will	be	a	bit	different	than	when
we	import	Apple	provided	frameworks.	The	first	thing	we	need	to	do	is	drag	the
Charts.xcodeproj	file	into	our	existing	Xcode	project.	This	file	can	be	found	in	the
resources	folder	of	this	chapter	under	Resources/Charts/Charts.xcodeproj:

Figure	11.3:	Another	Xcode	project	nested	in	our	Xcode	project

Now,	click	in	our	original	Xcode	project	(Sensors)	and	then	scroll	down	to	the	bottom	of
the	general	settings	page.	You	should	see	a	section	called	Embedded	Binaries,	which	is
above	the	Linked	Frameworks	and	Libraries	section	we’ve	been	using	to	add	Apple
frameworks	to	our	project.	If	you	click	the	+	button,	you	should	see	some	Charts
frameworks	to	import	from	inside	the	Charts.xcodeproj	file;	choose	the	iOS	one:

Figure	11.4:	We’ve	added	an	embedded	binary	from	the	Charts.xcodeproj

Now	that	we’ve	added	the	binary	to	our	project,	we	actually	need	to	build	the	project	once
so	that	the	binary	gets	loaded.	You	can	press	command	+	B	to	just	build	the	project
without	running.

With	the	framework	loaded,	we	are	now	free	to	import	the	Charts	framework	inside	our
code	just	like	the	Apple	frameworks	we’ve	been	using	up	to	this	point.	Open	up	our
ViewController.swift	file,	and	at	the	top	add:

https://github.com/danielgindi/Charts

import	UIKit

import	CoreMotion

import	Charts

Now	we’re	ready	to	start	charting!

Setting	up	the	storyboard
To	display	a	graph	on	screen,	we’re	going	to	create	a	custom	view	using	one	of	the	classes
that	exists	inside	the	new	Charts	framework	we	just	imported:	LineChartView.	To	begin,
open	up	the	Main.storyboard	file,	and	add	a	new	UIView	to	the	view	controller,	and	then
pin	all	four	sides	to	the	edges	(set	edge	pin	constraints	with	a	value	of	0).

Next,	select	the	view	in	the	storyboard	and	open	up	the	Identity	Inspector.	In	the	past,
we’ve	set	storyboard	objects	to	be	custom	subclasses	of	UI	classes,	but	this	is	the	first	time
we’re	going	to	set	a	storyboard	object	to	be	a	class	from	inside	a	framework.	To	do	this,
first	set	the	class	to	LineChartView.	Next,	we	need	to	set	the	module	(right	underneath	the
custom	class)	to	Charts.	If	you	don’t	tell	the	Identity	Inspector	which	module
(framework)	the	class	is	from,	it	will	look	in	the	default	module	and	throw	an	error	at	run
time:

Figure	11.5:	Our	configured	Identity	Inspector	with	custom	class	and	module

Finally,	we	must	create	an	outlet	for	LineChartView.	Open	the	Assistant	Editor	and
control	drag	from	the	view	in	your	storyboard	to	the	ViewController	class,	and	create	an
IBOutlet	for	it	named	lineChartView.	If	everything	worked	out,	you	should	now	have	a
line	of	code	like	this	at	the	top	of	the	class:
@IBOutlet	weak	var	lineChartView:	LineChartView!

Our	line	chart	view	is	now	set	up	in	Interface	Builder,	and	ready	to	be	programmed!

Filling	the	chart	with	data
Before	we	move	on	to	some	new	types	of	sensor	data	in	Core	Motion,	let’s	test	our	new
line	chart	using	DeviceMotion	data	we’re	already	capturing	from	the	onMotionUpdate()
function.	This	will	also	give	us	a	chance	to	understand	how	the	line	chart	needs	to	have	its
data	formatted.

The	iOS	Charts	framework	requires	us	to	set	up	data	in	a	very	specific	way.	First,	we
have	a	Data	Entry	object,	which	represents	a	single	point	of	information,	and	consists	of
the	data	value,	and	the	x-index.	Then,	when	we	have	a	bunch	of	these	entries	we	put	them
together	and	give	them	a	label	and	it	becomes	a	Data	Set.	Finally,	we	take	the	data	set
and	a	list	of	labels	for	each	x	value	to	create	a	Chart	Data	object.	This	full	chart	data	gets
sent	to	the	chart	view,	which	then	renders	the	data.

To	start,	let’s	create	a	new	property	at	the	top	of	the	class,	underneath	the	label	outlet	we
just	made.	It	will	be	a	new	data	set,	which	we	will	add	to	as	we	get	new	data	points:
@IBOutlet	weak	var	lineChartView:	LineChartView!

var	dataSet	=	LineChartDataSet(yVals:	[],	label:	“Values”)

Next,	we’ll	add	a	new	function	stub	called	addChartPoint(),	which	takes	in	a	double
value,	and	a	string	name.	Then,	in	our	onMotionUpdate()	function	from	earlier,	we’ll
clear	out	all	of	the	print	statements	and	instead	just	add	a	chart	point	using	the	x	value
from	the	gravity	information:
func	onMotionUpdate(data:	CMDeviceMotion?,	error:Error?)	{

				if	error	==	nil,	let	d	=	data	{

								addChartPoint(data:	d.gravity.x)

Finally,	we’ll	fill	out	the	addChartPoint()	function.	First,	we	add	a	new	data	entry	to	the
data	set	by	using	the	index	of	the	current	number	of	entries	as	the	x	value,	and	using	the
data	we	pass	in	as	the	y	value.	We	then	add	that	data	point	to	your	data	set.	Next,	we
create	a	new	LineChartData	object,	attach	our	updated	data	set	to	it,	and	then	set	that	to
the	data	property	of	our	lineChartView.	Now	our	line	chart	has	updated	data.
func	addChartPoint(data:	Double)	{

				let	newDataPoint	=	ChartDataEntry(x:	Double(dataSet.entryCount),	y:

data)

				dataSet.addEntry(newDataPoint)

				

				let	chartData	=	LineChartData()

				chartData.addDataSet(dataSet)

				lineChartView.data	=	chartData

				

				DispatchQueue.main.async(execute:	{

								self.lineChartView.notifyDataSetChanged()

								self.lineChartView.setNeedsDisplay()

				})

}

The	last	thing	we	need	to	do	is	tell	the	line	chart	that	it	needs	to	redraw	itself.	Normally,
we	would	just	need	to	call	the	two	lines:
lineChartView.notifyDataSetChanged()

lineChartView.setNeedsDisplay()

However,	the	setNeedsDisplay()function	is	part	of	UIKit,	and	all	user	interface	function
calls	need	to	happen	on	the	main	thread.	Now,	multi-threading	is	a	bit	beyond	the	scope	of
what	we’re	covering	in	this	book,	but	we’re	calling	addChartPoint()	from	the
onMotionUpdate()	function	which	is	being	run	on	the	motionQueue,	which	exists	on	a
separate	thread.	So,	like	earlier	in	the	book,	we	use	DispatchQueue.main.async()	to
execute	those	two	lines	on	the	main	thread.

If	this	is	all	over	your	head,	that’s	fine!	The	main	takeaway	is	that	setNeedsDisplay()
needs	to	be	inside	that	code	block	for	it	to	work	properly	and	redraw	the	chart.	Let’s	take	a
look	at	the	final	updated	code	for	our	new	view	controller:
import	UIKit

import	CoreMotion

import	Charts

class	ViewController:	UIViewController	{

				

				let	motionManager	=	CMMotionManager()

				let	motionQueue	=	OperationQueue()

				

				

				@IBOutlet	weak	var	lineChartView:	LineChartView!

				var	dataSet	=	LineChartDataSet(values:	[],	label:	“Values”)

				

				override	func	viewDidLoad()	{

								super.viewDidLoad()

								

								if	motionManager.isDeviceMotionAvailable	{

												motionManager.deviceMotionUpdateInterval	=	0.25

												motionManager.startDeviceMotionUpdates(to:	motionQueue,

withHandler:	onMotionUpdate)

								}

				}

				

				func	onMotionUpdate(data:	CMDeviceMotion?,	error:Error?)	{

								if	error	==	nil,	let	d	=	data	{

												addChartPoint(data:	d.gravity.x)

								}	else	{

												print(“Error:	\(error?.localizedDescription)”)

								}

				}

				func	addChartPoint(data:	Double)	{

								let	newDataPoint	=	ChartDataEntry(x:	Double(dataSet.entryCount),	y:

data)

								dataSet.addEntry(newDataPoint)

								

								let	chartData	=	LineChartData()

								chartData.addDataSet(dataSet)

								lineChartView.data	=	chartData

								

								DispatchQueue.main.async(execute:	{

												self.lineChartView.notifyDataSetChanged()

												self.lineChartView.setNeedsDisplay()

								})

				}

}

At	this	point	you	should	be	able	to	build	and	run	the	project,	and	see	a	live	updating	chart
that	shows	the	values	of	gravity	forces	on	the	x	axis.	Still	not	something	that’s	too	useful,
but	we’ll	start	charting	some	more	useful	information	next!

Figure	11.6:	Our	finished	line	chart	outputting	the	live	values	of	gravity	from	our	device’s
accelerometer

Pedometer
Now	that	we’ve	got	a	system	set	up	to	chart	data,	let’s	start	looking	at	more	interesting
information.	While	iOS	has	always	given	developers	access	to	the	low-level	sensor	data,
over	the	years	Apple	has	started	to	process	more	and	more	motion	data,	especially	since
dedicated	motion	co-processors	(the	M7/M8/M9/M10	chips)	were	added	to	the	iPhone
starting	with	the	5s.	One	of	the	new	pieces	of	data	that	came	along	with	the	new	motion
co-processors	was	the	pedometer	data.	Let’s	dive	into	the	pedometer	and	chart	the	number
of	steps	the	user	has	taken	each	day	over	the	last	week.

Before	we	get	started,	let’s	strip	out	all	of	the	old	DeviceMotion	tracking	that	we	had,	but
leave	in	all	of	the	Chart	functions.	Our	starting	view	controller	should	look	like	this:
import	UIKit

import	CoreMotion

import	Charts

class	ViewController:	UIViewController	{

				

				@IBOutlet	weak	var	lineChartView:	LineChartView!

				var	dataSet	=	LineChartDataSet(values:	[],	label:	“Values”)

				

				override	func	viewDidLoad()	{

								super.viewDidLoad()

								

				}

				func	addChartPoint(data:	Double)	{

								let	newDataPoint	=	ChartDataEntry(x:	Double(dataSet.entryCount),	y:

data)

								dataSet.addEntry(newDataPoint)

								

								let	chartData	=	LineChartData()

								chartData.addDataSet(dataSet)

								lineChartView.data	=	chartData

								

								DispatchQueue.main.async(execute:	{

												self.lineChartView.notifyDataSetChanged()

												self.lineChartView.setNeedsDisplay()

								})

				}

}

Before	we	get	started,	we’re	going	to	need	to	add	a	privacy	description	to	the	project’s
Info.plist	–	you	know	the	drill.	In	Info.plist,	create	a	new	key	named	Privacy	-	Motion
Usage	Description,	and	for	the	value,	put	Needs	to	access	pedometer	data.”.	Now	our	app
will	be	allowed	to	ask	the	user	for	permission	to	use	pedometer	data.

To	access	this	pedometer	data,	we	need	to	use	a	Core	Motion	class	called	CMPedometer.	At
the	top	of	our	ViewController	class,	let’s	instantiate	a	new	CMPedometer	object	that	we
can	use	to	access	this	information:
let	pedometer	=	CMPedometer()

Next,	in	the	viewDidLoad()	function,	we	need	to	check	to	see	if	the	current	device	has
step	counting	capabilities	available.	To	do	this,	we	use	a	class	method	of	the	CMPedometer
class	called	isStepCountingAvailable().	A	class	method	is	a	method	that	we	call	on	the
class	itself;	we	don’t	need	an	instance	of	an	object.	Here’s	what	that	looks	like:
if	CMPedometer.isStepCountingAvailable()	{

				loadHistoricPedometerData()

}

If	step	counting	is	available,	we’re	going	to	call	a	function	named
loadHistoricPedometerData,	which	we’re	going	to	create	right	now!
func	loadHistoricPedometerData()	{

				

				let	now	=	Date()

				let	secPerDay	=	TimeInterval(60	*	60	*	24)

				let	secPerWeek	=	secPerDay	*	7

				let	lastWeek	=	Date(timeInterval:	-secPerWeek,	since:	now)

				let	lastWeekTime	=	lastWeek.timeIntervalSince1970

				

				for	i	in	1…7	{

								let	startTime	=	lastWeekTime	+	(secPerDay	*	Double(i	-	1))

								let	endTime	=	lastWeekTime	+	(secPerDay	*	Double(i))

								let	startDate	=	Date(timeIntervalSince1970:	startTime)

								let	endDate	=	Date(timeIntervalSince1970:	endTime)

								pedometer.queryPedometerData(from:	startDate,	to:	endDate,

withHandler:	processPedometerData)

				}

}

This	function	plays	around	with	Date	and	TimeInterval	to	query	the	pedometer	for	data
for	each	day	in	the	last	week.	First	we	grab	the	current	date,	and	then	create	some	simple
variables	to	hold	the	number	of	seconds	in	a	day,	and	number	of	seconds	in	a	week.	After
that,	we	get	the	Date	representation	of	exactly	a	week	ago	by	passing	in	the	negative
amount	of	seconds	in	a	week	with	the	since	parameter	set	to	now.	Finally,	we	get	the
TimeInterval	representation	of	last	week	from	the	lastWeek	Date.

After	we	have	all	these	starting	values,	we	do	some	fancy	work	inside	a	for	loop.	Each
iteration	passes	through	the	loop,	and	our	goal	is	to	get	the	starting	date	and	ending	date	of
a	specific	day,	starting	from	a	week	ago.	So	if	it	is	Sunday	night,	first	we	get	the	date
starting	from	last	Sunday	night	and	ending	on	last	Monday	night.	By	repeating	this	seven
times,	we	get	the	last	seven	days.

At	the	end	of	each	iteration	through	the	for	loop,	we	call	a	function	from	the	pedometer
called	queryPedometerData(),	where	we	then	pass	in	the	start	date	and	end	date	for	that
day,	along	with	a	handler	function	called	processPedometerData,	which	looks	like	the
other	motion	data	handlers	we’ve	created	earlier	in	the	chapter.	Calling	this	query	function
will	give	us	all	of	the	pedometer	data	that	lies	in	between	the	date	ranges:
func	processPedometerData(data:	CMPedometerData?,	error:	Error?)	{

				if	error	==	nil,	let	d	=	data		{

								addChartPoint(data:	d.numberOfSteps.doubleValue)

				}	else	{

								print(“Error:	\(error?.localizedDescription)”)

				}

}

The	processPedometerData()	function	is	pretty	straightforward.	We	check	to	see	if	there
was	an	error,	and	if	not	we	try	to	unwrap	the	data	that	gets	passed	in.	If	we	successfully
unwrap	the	data,	we	just	add	a	chart	point	using	the	numberOfSteps	property	of	the
CMPedometerData	that	gets	passed	into	the	function.	Remember,	this	CMPedometerData
only	contains	data	that	was	created	between	the	start	and	end	dates	we	gave	the
pedometer.	The	end	result	of	all	this	is	that	we	create	a	data	point	for	each	of	the	last	seven
days	containing	the	number	of	steps	walked	that	day.

In	addition	to	just	numberOfSteps,	the	pedometer	data	also	keeps	track	of	the	distance	the
user	had	walked/ran	(using	the	distance	property),	their	cadence,	which	is	the	number	of
steps	per	second	(using	the	currentCadence	property),	and	the	user’s	pace,	which	is
measured	as	the	number	of	seconds	per	meter	(using	the	currentPace	property).

If	you	try	to	build	and	run	the	project	on	your	device,	the	app	will	ask	for	permission	to
access	your	pedometer	data;	allow	it.	What	you	should	see	is	something	like	this:

Figure	11.7:	A	chart	that	shows	the	user’s	step	count	over	the	last	seven	days

Now,	even	if	you’re	running	this	on	a	device,	there’s	a	possibility	that	it	doesn’t	track
pedometer	data	and	your	chart	will	be	empty.	Even	if	it	does	track	steps	there’s	still	a
possibility	that	there	won’t	be	a	step	count,	especially	if	you’re	trying	this	on	a
development	only	device	that	sits	on	a	desk	all	day!	My	chart	is	actually	showing	my	own

step	count,	since	I’m	using	my	day-to-day	phone	that	has	all	of	my	movement	data.

Altitude
One	of	the	coolest	sensors	that	exists	in	the	newest	iPhones	(the	6,	6s	and	7)	is	the
barometer.	The	barometer	measures	air	pressure,	which	allows	us	to	measure	the	relative
changes	in	altitude	of	a	device.	Before	we	get	started,	let’s	again	clear	out	the	functionality
we	just	added	with	the	pedometer.

At	the	top	of	our	class	now,	let’s	get	a	reference	to	the	CMAltimeter	class,	which	is	what
interfaces	with	the	barometer	to	get	altitude	data.	We’re	also	going	to	need	another
OperationQueue	to	process	data	like	with	the	accelerometer	earlier,	so	create	one	of	those
too:
let	altimeter	=	CMAltimeter()

let	altimeterQueue	=	OperationQueue()

Then,	in	the	viewDidLoad()	function,	we	need	to	check	to	see	if	the	current	device
supports	the	altimeter,	so	we	use	another	class	method	like	so:
if	CMAltimeter.isRelativeAltitudeAvailable()	{

				altimeter.startRelativeAltitudeUpdates(to:	altimeterQueue,	withHandler:

processAltimeterData)

}

If	the	device	supports	the	altimeter	functionality,	then	we	start	running	updates	on	the
altimeterQueue	just	like	we	were	doing	earlier	with	the	accelerometer	and	gyroscope.
Here	we	pass	in	processAltimeterData	as	the	data	handler,	which	should	look	familiar:
func	processAltimeterData(data:	CMAltitudeData?,	error:	Error?)	{

				if	error	==	nil,	let	d	=	data	{

								addChartPoint(data:	d.relativeAltitude.doubleValue)

				}	else	{

								print(“Error:	\(error?.localizedDescription)”)

				}

}

Here,	we	create	a	new	chart	point	that	uses	the	relativeAltitude	property	of	our
CMAltitudeData,	and	give	it	the	name	relative	altitude.	Now,	every	time	our	app	gets
a	new	altitude	reading,	it	will	plot	the	point	on	our	line	chart.

Here’s	how	the	final	code	should	look	for	reading	the	altimeter	data:
class	ViewController:	UIViewController	{

				let	altimeter	=	CMAltimeter()

				let	altimeterQueue	=	OperationQueue()

				

				@IBOutlet	weak	var	lineChartView:	LineChartView!

				var	dataSet	=	LineChartDataSet(values:	[],	label:	“Values”)

				

				override	func	viewDidLoad()	{

								super.viewDidLoad()

								

								if	CMAltimeter.isRelativeAltitudeAvailable()	{

												altimeter.startRelativeAltitudeUpdates(to:	altimeterQueue,

withHandler:	processAltimeterData)

								}

				}

				

				func	processAltimeterData(data:	CMAltitudeData?,	error:	Error?)	{

								if	error	==	nil,	let	d	=	data	{

												addChartPoint(data:	d.relativeAltitude.doubleValue)

								}	else	{

												print(“Error:	\(error?.localizedDescription)”)

								}

				}

				func	addChartPoint(data:	Double)	{

								<<	This	code	has	not	changed	since	we	wrote	it	>>

				}

}

If	you	don’t	have	a	device	that	has	the	proper	hardware	to	test	on,	this	is	what	the	app
would	look	like	as	the	phone	is	moved	up	and	down:

Figure	11.8:	The	relative	altitude	data	charted	as	I	move	my	iPhone	up	and	down

At	this	point	we’ve	played	with	almost	all	of	the	sensors	available	to	us	on	iOS.	As	I’m
sure	you	can	tell,	most	sensors	are	interfaced	in	similar	ways,	so	I	encourage	you	to	dig
around	the	documentation	and	see	what	other	sensors	you	can	play	with!

Sensors	on	Apple	Watch
Now,	while	we’ve	exhausted	most	of	our	sensory	options	on	iOS,	there’s	still	plenty	of
room	to	explore	on	watchOS!	In	this	section,	we’ll	combine	what	we’ve	learned	about
sensors	in	this	chapter	with	the	watchOS	development	we	learned	in	the	last	chapter.	The
end	goal	is	to	get	information	from	the	Apple	Watch’s	accelerometer,	and	then	bring	it
back	to	iOS	and	display	it	on	a	chart.	Let’s	do	it!

Once	again,	before	we	start	let’s	clear	out	our	ViewController	class	to	get	rid	of	the
altimeter	processing	that	we	were	playing	with	in	the	last	section.	Your
ViewController.swift	file	should	look	like	this	as	we	begin	our	Apple	Watch
experiment:
import	UIKit

import	CoreMotion

import	Charts

class	ViewController:	UIViewController	{

				

				@IBOutlet	weak	var	lineChartView:	LineChartView!

				var	dataSet	=	LineChartDataSet(values:	[],	label:	“Values”)

				

				override	func	viewDidLoad()	{

								super.viewDidLoad()

				}

				

				func	addChartPoint(data:	Double)	{

								let	newDataPoint	=	ChartDataEntry(x:	Double(dataSet.entryCount),	y:

data)

								dataSet.addEntry(newDataPoint)

								

								let	chartData	=	LineChartData()

								chartData.addDataSet(dataSet)

								lineChartView.data	=	chartData

								

								DispatchQueue.main.async(execute:	{

												self.lineChartView.notifyDataSetChanged()

												self.lineChartView.setNeedsDisplay()

								})

				}

}

Setting	up	an	extension
Before	we	can	start	programming,	we	need	to	create	the	watchOS	extension	targets.	(I
won’t	go	into	full	detail	here,	so	if	you	need	some	more	detail,	feel	free	to	refer	to	Chapter
10,	Creating	a	WatchOS	Companion	App).	Create	a	new	app	target	(File	|	New	|	Target),
select	WatchKit	App,	from	the	watchOS	tab,	name	it	Sensors-Watch,	and	activate	the
scheme	when	prompted.

At	this	point,	run	the	app	in	a	joint	simulator	like	iPhone	6s	+	Apple	Watch	-	38mm	just
to	make	sure	that	the	extension	is	set	up	and	running	properly.	If	the	simulator	launches,
we’re	all	set	to	go!

Getting	sensor	data	on	Apple	Watch
With	watchOS	2,	Apple	opened	up	a	bunch	of	iOS	APIs	to	the	watchOS	development
platform	(and	even	more	in	watchOS	3!).	On	watchOS	we	also	have	access	to	Core
Motion	API,	which	means	that	getting	accelerometer	data	is	going	to	be	pretty	much
exactly	the	same	as	getting	it	on	iOS!	Open	up	the	InterfaceController.swift	file
inside	the	Sensors-Watch	Extension	folder,	and	let’s	set	up	accelerometer	polling:
import	WatchKit

import	Foundation

import	CoreMotion

class	InterfaceController:	WKInterfaceController	{

				let	motionManager	=	CMMotionManager()

				let	motionQueue	=	OperationQueue()

				

				override	func	awake(withContext	context:	Any?)	{

								super.awake(withContext:	context)

								

								if	motionManager.isAccelerometerActive	{

												motionManager.accelerometerUpdateInterval	=	0.5

												motionManager.startAccelerometerUpdates(to:	motionQueue,

withHandler:	onAccelerometerUpdate)

								}

				}

				

				func	onAccelerometerUpdate(data:	CMAccelerometerData?,	error:	Error?)	{

								if	error	==	nil,	let	d	=	data	{

												print(“acceleration	x	\(d.acceleration.x)”)

								}	else	{

												print(“Error:	\(error?.localizedDescription)”)

								}

				}

				

				override	func	willActivate()	{

								super.willActivate()

				}

				override	func	didDeactivate()	{

								super.didDeactivate()

}

At	this	point,	this	code	should	look	very	familiar	to	you.	Remember	to	import	the	Core
Motion	framework.	At	the	top	of	the	class	we	create	a	CMMotionManager	object,	and	a	new
OperationQueue	to	process	the	data	on.	Then,	inside	the	awake(withContext:)	function,
we	check	to	see	if	the	accelerometer	is	available,	and	if	so	we	set	the	update	interval	and
begin	updating	the	accelerometer.

I’ve	called	attention	to	the	update	interval,	since	I’m	setting	it	to	0.5.	Since	we’re	running
on	the	Apple	Watch,	we	are	running	it	a	bit	slower	so	we	don’t	overload	it.	If	you	truly
need	a	higher	sampling	rate	you	can	set	it	to	be	faster,	but	since	we’re	just	experimenting
I’ve	set	it	to	two	updates	per	second.

Finally,	we	create	the	onAccelerometerUpdate()	function	which	processes	the	data	that

gets	sent	from	the	accelerometer.	For	now,	we’re	just	printing	it	out	to	the	console.

And	that’s	it!	Pretty	much	exactly	the	same	as	we	do	on	iOS,	which	is	what	makes	the
Core	Motion	API	so	great.	Now	let’s	bundle	up	that	data	and	send	it	back	to	iOS.

Sending	and	displaying	data	on	iOS
In	order	to	get	the	data	back	to	iOS,	we’re	going	to	use	the	Watch	Connectivity	framework
that	we	explored	in	the	last	chapter.	We’ll	start	by	sending	it	out	from	the	watchOS	app,
and	then	go	back	to	the	iOS	AppDelegate	to	receive	the	data	we	send:
import	WatchKit

import	Foundation

import	CoreMotion

import	WatchConnectivity

class	InterfaceController:	WKInterfaceController,	WCSessionDelegate	{

				let	motionManager	=	CMMotionManager()

				let	motionQueue	=	NSOperationQueue()

				var	session:	WCSession?

				

				

				public	func	session(_	session:	WCSession,	activationDidCompleteWith

activationState:	WCSessionActivationState,	error:	Error?)	{

								return

				}

				let	motionManager	=	CMMotionManager()

				let	motionQueue	=	OperationQueue()

				

				override	func	awake(withContext	context:	Any?)	{

								super.awake(withContext:	context)

								session	=	WCSession.default()

								session?.delegate	=	self

								session?.activate()

								if	motionManager.isAccelerometerAvailable	{

												motionManager.accelerometerUpdateInterval	=	0.5

												motionManager.startAccelerometerUpdates(to:	motionQueue,

withHandler:	onAccelerometerUpdate)

								}

				}

				

				func	onAccelerometerUpdate(data:	CMAccelerometerData?,	error:	Error?)	{

								if	error	==	nil,	let	d	=	data	{

												sendDataToiOS(data:	d.acceleration.x)

								}	else	{

												print(“Error:	\(error?.localizedDescription)”)

								}

				}

				

				func	sendDataToiOS(data:	Double)	{

								let	info:	[String:	Any]	=	[“data”	:	data]

								session?.sendMessage(info,	replyHandler:	nil,	errorHandler:	nil)

				}

				

				override	func	willActivate()	{

								super.willActivate()

				}

				override	func	didDeactivate()	{

								super.didDeactivate()

				}

}

First,	we	need	to	link	the	WatchConnectivity	framework,	and	then	import	it	at	the	top	of
the	file.	Then,	we	set	our	InterfaceController	class	to	implement	the
WCSessionDelegate	protocol.	Next,	we	create	a	variable	property	to	hold	a	reference	to
the	watch	connectivity	session,	and	implement	a	required	function	of	the
WCSessionDelegate	protocol.	After	that,	we	create	and	set	up	the	session	in	the
awake(withContext:)	function.

With	our	session	set	up,	we	can	jump	down	to	the	bottom	of	the	class	and	create	a	new
function	called	sendDataToiOS(),	which	takes	a	Double	as	a	parameters.	Inside	the
function,	we	create	a	new	dictionary	that	holds	the	data	and	the	string,	and	then	we	use	the
sendMessage()	function	of	the	session	to	send	that	dictionary	off	to	iOS:
import	UIKit

import	WatchConnectivity

@UIApplicationMain

class	AppDelegate:	UIResponder,	UIApplicationDelegate,	WCSessionDelegate		{

				var	session:	WCSession?

				

				func	session(_	session:	WCSession,	activationDidCompleteWith

activationState:	WCSessionActivationState,	error:	Error?)	{

								return

				}

				func	sessionDidDeactivate(_	session:	WCSession)	{

								return

				}

				func	sessionDidBecomeInactive(_	session:	WCSession)	{

								return

				}

				

				var	window:	UIWindow?

				func	application(_	application:	UIApplication,

didFinishLaunchingWithOptions	launchOptions:

[UIApplicationLaunchOptionsKey:	Any]?)	->	Bool	{

								session	=	WCSession.default()

								session?.delegate	=	self

								session?.activate()

								return	true

				}

				func	session(_	session:	WCSession,	didReceiveMessage	message:	[String	:

Any])	{

								if	let	data	=	message[“data”]	as?	Double	{

												let	vc	=	window?.rootViewController	as!	ViewController

												vc.addChartPoint(data:	data)

								}

				}

}

Like	in	the	last	file,	we	have	to	implement	some	empty	functions	that	are	required	by	the
WCSessionDelegate	protocol.

Once	we’ve	finished	implementing	all	of	the	highlighted	required	methods,	we	can
implement	the	session(didReceiveMessage:)	function	which	is	what	receives	the
dictionary	we	sent	from	watchOS.	In	there,	we	try	to	unwrap	the	data	the	elements	from
the	dictionary	as	the	correct	types.	If	it	succeeds,	we	get	a	reference	to	our	root	view
controller	and	then	call	the	addChartPoint()function	to	add	the	data	from	our	Apple
Watch’s	accelerometer	to	the	chart.

At	this	point,	everything	should	be	set	up!	We	pulled	the	accelerometer	data	on	the	watch,
then	packaged	it	up	and	sent	it	off	to	iOS	where	the	AppDelegate	received	and	unwrapped
the	data,	before	sending	it	off	to	our	chart.	Here’s	me	flailing	my	wrist:

Figure	11.9:	The	accelerometer	data	being	pulled	from	the	Apple	Watch	on	my	wrist

Hopefully,	this	demonstrated	how	simple	it	should	be	to	get	all	the	other	sensory	data	off
the	Apple	Watch	and	into	an	iOS	app.

Summary
We	just	learnt	a	ton	about	sensors,	in	addition	to	a	handful	of	other	good	stuff!	We	learnt
about	UIDevice,	and	the	basic	device	state	sensory	information	it	contains.	Then	we
discovered	Core	Motion,	and	learnt	how	to	create	new	operation	queues	to	process
sensory	data.	After	that	we	learnt	how	to	link	a	third-party	library,	and	charted	data	from
the	iPhone’s	pedometer	and	altimeter.	Finally,	we	took	all	of	our	sensory	knowledge	to
watchOS	by	pulling	accelerometer	data	from	an	Apple	Watch	into	a	chart	on	our	iPhone.

In	the	next	chapter,	we’ll	be	looking	at	our	last	major	element	of	iOS	programming	in	this
book:	notifications.	We’re	on	the	home	stretch,	and	we’re	just	about	ready	to	start	diving
into	the	tools	Xcode	provides	to	test,	debug,	optimize,	and	wrap	up	our	project.	Let’s	keep
going!

Chapter	12.	Sending	Notifications
When	building	an	application,	most	of	the	interactions	will	take	place	while	users	are
actually	inside	the	app.	Users	are	interacting	with	user	interface	elements,	and	your	app
can	respond	to	their	input	in	real	time.

However,	sometimes	your	app	may	receive	information	from	a	server,	or	be	alerted	that
some	scheduled	action	is	happening	while	the	user	isn’t	inside	the	app.	A	lot	of	times,
your	app	can	just	process	these	things	the	next	time	the	app	launches,	like	when	your
Facebook	feed	refreshes	when	you	enter.	However,	other	times	the	information	coming	in
is	time-sensitive,	or	of	higher	importance,	and	you	need	to	let	the	user	know	what’s	going
on,	even	if	the	app	is	closed

In	these	situations,	you	can	send	the	user	a	notification.	Notifications	are	presented	to	the
user	in	many	forms,	and	can	provide	a	handful	of	ways	for	the	user	to	respond	to	the
information	being	presented.	In	this	chapter,	we’re	going	to	cover:

	
Local	versus	remote	notifications
Scheduling	local	notifications
Creating	categories	and	actions	for	notifications
Using	badges	and	sounds
Writing	code	to	handle	incoming	notifications

Introduction	to	user	notifications
Chances	are	that	if	you’ve	used	an	iOS	device,	you’re	very	familiar	with	the	user
notification	system.	We’ll	review	the	components	of	notifications	so	that	we’re	refreshed
prior	to	coding,	but	before	we	do	that	it’s	worth	taking	a	second	to	talk	about	notifications
in	iOS.

If	you	remember	in	the	last	chapter,	when	we	were	getting	orientation	changes,	we	used	a
class	called	NotificationCenter	to	register	for	notifications.	These	system	notifications
are	completely	different	from	user	notifications,	which	are	visual	elements	that	alert	a	user
about	things	going	on	inside	an	app.	Those	system	notifications	were	strictly	code,
notifying	us,	as	a	programmer,	about	things	going	on	in	other	parts	of	our	application’s
code.

You’ll	see	later	on	when	we	start	coding	that	we	are	dealing	with	the
UUNNotificationContentandUNNotificationTrigger	objects	for	user	alerts,	as	opposed
to	the	Notification	objects	we	used	to	be	notified	of	coding	events.	It	can	be	a	little
confusing	to	new	programmers,	so	just	keep	it	in	mind	that	there	are	different	meanings
for	the	word	notification.

Components	of	a	user	notification
A	user	notification	can	take	many	forms,	depending	on	what	makes	sense	for	your	app	and
what	the	user	allows	in	their	notification	preferences.	One	of	the	most	common	forms	is
the	banner,	where	the	notification	is	presented	at	the	top	of	the	screen:

Figure	12.1:	A	banner	notification

Some	apps	also	use	what	are	known	as	badges,	the	little	red	circles	that	appear	in	the
corner	of	an	app	icon	with	a	number	letting	the	user	know	how	many	notifications	are
waiting	for	them.	For	apps	that	hold	a	number	of	actionable	objects	(like	a	mail	or	to-do
app),	a	badge	can	add	a	lot	of	value:

Figure	12.2:	A	badge	being	shown	in	the	corner	of	the	built	in	messages	app

Notifications	that	are	received	when	the	user’s	phone	is	locked	can	also	be	presented	on
the	lock	screen	of	the	device.	Lock	screen	notifications	can	also	include	a	slide	to	reply
action.	These	notifications	allow	the	user	to	slide	the	notification	to	jump	to	a	state	of	the
application	where	they	can	act	on	the	notification:

Figure	12.3:	A	notification	on	the	lock	screen	with	a	slide	action

Users	can	also	swipe	down	from	the	top	of	their	screen	to	access	the	notification	center,
which	keeps	a	chronological	list	of	all	notifications	that	have	not	been	read,	and	also	lets
them	slide	to	act:

Figure	12.4:	A	notification	in	the	notification	center

As	we	move	through	the	chapter,	we’ll	learn	how	all	of	these	capabilities	are	designed	and
implemented	through	the	code	in	your	application.

Local	versus	remote	notifications
When	working	with	notifications,	there	are	two	different	types	that	we	can	use:	local	and
remote	notifications.	Both	look	identical	to	the	user,	taking	the	forms	we	just	discussed.
The	difference	lies	in	how	the	notifications	are	created:	local	notifications	are	created	and
scheduled	on	the	device,	while	remote	notifications	are	delivered	to	the	device	from	a
server	through	a	network	connection.

Remote	notifications	are	a	bit	complex;	handling	them	as	a	notification	is	pretty	much	the
same	as	a	local	notification,	but	actually	setting	up	a	server	to	create	the	notification	and
communicate	with	the	Apple	Push	Notification	(APN)	service	is	beyond	the	scope	of
what	we’re	covering	in	this	book.	Instead,	we’ll	focus	on	local	notifications.

By	the	end	of	the	chapter	you’ll	have	the	front	end	skills	to	handle	notifications,	so	that
later	on	in	your	career	you	could	easily	learn	the	additional	skills	required	to	fully	use
remote	notifications.

Adding	notification	support	to	Snippets
It’s	time	to	jump	back	into	our	Snippets	project!	In	this	section,	we’ll	be	adding	a	daily
notification	that	reminds	the	user	to	capture	snippets	from	their	day.	To	do	this	we	need	to
register	our	app	with	the	system	to	receive	notifications,	and	then	we	need	to	schedule	it.

As	always,	feel	free	to	open	your	existing	Snippets	project,	or	use	the	completed	project
from	Chapter	10,	Creating	WatchOS	Companion	App,	since	we	didn’t	use	it	in	Chapter	11,
Advanced	Input	Using	Sensors.

Getting	permission	to	send	notifications
In	order	for	your	app	to	use	notifications,	you	need	to	register	the	app	with	the	system.
Much	like	earlier	in	the	book,	when	getting	permission	to	use	location	and	other	services,
this	will	prompt	an	alert	for	the	user	to	accept	or	decline.

To	set	up	our	app	with	proper	permissions,	we	need	to	request	authorization	from	the
system.	This	makes	the	most	sense	to	do	in	the	AppDelegate’s
application(didFinishLaunchingWithOptions:)	function,	so	let’s	go	there	and	update
our	code:
func	application(_	application:	UIApplication,

didFinishLaunchingWithOptions	launchOptions:	[UIApplicationLaunchOptionsKey

:	Any]?	=	nil)	->	Bool	{

				

				if	WCSession.isSupported()	{

								session	=	WCSession.default()

								session?.delegate	=	self

								session?.activate()

				}

				

				let	center	=	UNUserNotificationCenter.current()

				center.requestAuthorization(options:	[.alert,	.badge,	.sound])	{

granted,	error	in

								if	!granted	{

												print(“Notifications	are	not	allowed”)

								}

				}

				return	true

}

First,	we	grabbed	a	reference	to	the	UNUserNotificationCenter,	which	is	what	manages
the	device’s	user	notifications.	Then,	we	request	authorization	for	our	app	to	schedule
notifications	with	the	options	alert,	badge,	and	sound.	This	means	our	application	will	be
allowed	to	present	alert/banner	notifications,	app	icon	badges,	and	notification	sounds.

If	you	build	and	run	the	app	now,	you	should	get	a	prompt	that	asks	if	Snippets	can	send
the	user	notifications	(make	sure	to	press	Allow):

Figure	12.5:	Our	app	asking	for	permission	to	send	the	user	notifications

Our	app	is	now	configured	to	schedulenotifications.

Scheduling	a	local	notification
To	schedule	a	notification,	we	are	going	to	need	to	configure	a	new
UNNotificationRequest	object.	The	notification	request	itself	is	composed	of	two	main
pieces:	Content	and	a	Trigger.	Let’s	write	a	new	function	in	our	AppDelegateto	create
and	configure	everything	we	need	to	schedule	a	notification:
func	scheduleReminderNotification()	{

				let	center	=	UNUserNotificationCenter.current()

				center.getPendingNotificationRequests()	{	pendingRequests	in

								

								guard	!pendingRequests.contains(where:	{	r	in	r.identifier	==

“Snippets.Reminder”})	else	{

												print(“Notification	already	exists”)

												return

								}

								

								let	content	=	UNMutableNotificationContent()

								content.title	=	“Reminder”

								content.body	=	“Have	you	snipped	anything	lately?”

								content.sound	=	UNNotificationSound.default()

								

								var	fireDate	=	DateComponents()

								fireDate.hour	=	12

								let	trigger	=	UNCalendarNotificationTrigger(dateMatching:	fireDate,

repeats:	true)

								

								let	request	=	UNNotificationRequest(identifier:

“Snippets.Reminder”,	content:	content,	trigger:	trigger)

								

								center.add(request,	withCompletionHandler:	nil)

				}

}

First	we	get	a	reference	to	the	current	UNUserNotificationCenter,	which	we	will	use	to
schedule	the	notification	later.	Then	we	check	to	see	if	there	are	already	any	scheduled
notifications	in	our	app	by	calling	the	getPendingNotificationRequests()	function.	If
there	are	notifications,	we	check	to	see	if	it	contains	a	notification	whose	identifier
matches	Snippets.Reminder.	If	there	is	no	reminder	notification,	then	it’s	time	for	us	to
make	one.

We	start	off	by	creating	a	new	instance	of	UNMutableNotificationContent.	Then	we	give
the	content	an	alert	title,	body	text,	and	a	sound	to	play.

After	that,	we	create	a	trigger,	which	dictates	when	the	notification	will	be	presented	to	the
user.	There	are	several	different	kinds	of	notification	triggers,	such	as	a	time	interval,	a
calendar	date,	or	even	a	location.	In	this	case,	we’re	going	to	use	a	calendar	trigger,	asking
the	notification	to	be	sent	every	time	it	is	12	o’clock.	To	do	that	is	simple:	we	create	a
DateComponents()	object,	and	set	the	hour	property	to	12.	Then,	we	create	a
UNCalendarNotificationTrigger	object,	pass	in	the	fireDate,	and	tell	it	to	repeat.	Now
the	notification	is	set	to	trigger	every	day	at	12.

Finally,	we	create	a	notification	request	using	an	identifier	(Snippets.Reminder),	along
with	the	notification	content	and	the	trigger.	Then	we	add	the	notification	request	to	our
UNUserNotificationCenter,	which	registers	the	notification	with	the	system.

To	wrap	up	our	scheduling,	we	just	call	our	scheduling	function	in	our
application(didFinishLaunchingWithOptions:)	function	after	we	check	the
authorization	status:
func	application(_	application:	UIApplication,

didFinishLaunchingWithOptions	launchOptions:	[UIApplicationLaunchOptionsKey

:	Any]?	=	nil)	->	Bool	{

				

				if	WCSession.isSupported()	{

								session	=	WCSession.default()

								session?.delegate	=	self

								session?.activate()

				}

				

				let	center	=	UNUserNotificationCenter.current()

				center.requestAuthorization(options:	[.alert,	.badge,	.sound])	{

granted,	error	in

								if	granted	{

												self.scheduleReminderNotification()

								}

				}

				return	true

}

Figure	12.6:	The	remindernotification	on	the	lock	screen

Advanced	notifications
So	right	now,	we’ve	got	our	notification	registered	to	be	delivered	every	day	at	noon.	But
that’s	only	scratching	the	surface	with	what	we	can	do	with	notifications.	In	this	section
we’ll	add	actions,	badges,	and	custom	sounds.

Categories	and	actions
When	you	receive	a	notification	in	iOS,	sometimes	you	can	3D	touch	on	the	notification
or	pull	it	down	to	reveal	quick	response	actions.	We	can	add	our	own	notification	actions
by	creating	UNNotificationAction	objects,	adding	them	to	a	UNNotificationCategory,
and	then	assigning	a	category	to	a	notification’s	content.

To	begin,	let’s	create	a	new	function	that	will	take	care	of	setting	up	all	of	the	categories
and	actions.	We’ll	modify	our	application(didFinishLaunchingWithOptions:)
function	like	so:
let	center	=	UNUserNotificationCenter.current()

center.requestAuthorization(options:	[.alert,	.badge,	.sound])	{	granted,

error	in

				if	granted	{

								center.setNotificationCategories(self.getNotificationCategories()

)

								self.scheduleReminderNotification()

				}

}

Now	let’s	get	to	work	setting	up	those	categories.	We’ll	create	the
getNotificationCategories()	function	(which	returns	a	Set	of	categories),	and	then
implement	our	first	action:
func	getNotificationCategories	()	->	Set<UNNotificationCategory>	{

				

				let	textAction	=	UNNotificationAction(identifier:

“Snippets.Action.NewText	“,	title:	“New	Text	Snippet”,	options:

[.authenticationRequired,	.foreground])

}

Here,	we’re	creating	a	new	action	called	textAction,	which	will	ultimately	allow	us	to
create	a	new	text	snippet	right	from	the	notification	banner.	We	give	it	an	identifier	of
Snippets.Action.NewText,	and	a	title	of	NewTextSnippet.	In	the	options	array,	we	give	it
the	.authenticationRequired	option	to	make	sure	the	user’s	phone	is	unlocked	to	be
allowed	to	use	the	action.	We	also	add	the	.foreground	option	to	let	the	app	know	to
launch	the	app	when	the	action	is	pressed.

Next,	we	need	to	create	another	action	for	creating	a	photo	snippet.	The	parameters	are	all
pretty	much	the	same,	except	that	we	replace	the	word	Text	with	Photo	throughout:
func	getNotificationCategories	()	->	Set<UNNotificationCategory>	{

				

				let	textAction	=	UNNotificationAction(identifier:

“Snippets.Action.NewText	“,	title:	“New	Text	Snippet”,	options:

[.authenticationRequired,	.foreground])

}

Finally,	we	need	to	create	a	category	to	hold	these	actions.	We	first	create	an	instance	of
UNNotificationCategory,	and	set	the	identifier	to	Snippets.Category.Reminder.	We’ll
be	using	this	identifier	later	to	assign	categories	to	our	notifications.	Then,	we	just	pass	in
the	actions	as	an	array.	We	aren’t	using	any	intent	identifiers	(which	are	related	to	Siri),	or
any	options	so	we	leave	those	arrays	blank:

func	getNotificationCategories	()	->	Set<UNNotificationCategory>	{

				

				let	textAction	=	UNNotificationAction(identifier:

“Snippets.Action.NewText	“,	title:	“New	Text	Snippet”,	options:

[.authenticationRequired,	.foreground])

				

				let	photoAction	=	UNNotificationAction(identifier:

“Snippets.Action.NewPhoto”,	title:	“New	Photo	Snippet”,	options:

[.authenticationRequired,	.foreground])

				

				let	reminderCategory	=	UNNotificationCategory(identifier:

“Snippets.Category.Reminder”,	actions:	[textAction,	photoAction],

intentIdentifiers:	[],	options:	[])

				

				return	Set<UNNotificationCategory>([reminderCategory])

}

Once	the	category	is	fully	set	up,	we	create	a	set	of	UNNotificationCategory	objects,	and
then	return	it.

With	our	new	Snippets.Category.Reminder	category	set	up,	we	just	need	to	assign	this
category	to	our	daily	reminder	notification’s	content:
let	content	=	UNMutableNotificationContent()

content.title	=	“Reminder”

content.body	=	“Have	you	snipped	anything	lately?”

content.sound	=	UNNotificationSound.default()

content.categoryIdentifier	=	“Snippets.Category.Reminder”

Now,	the	next	time	you	get	your	daily	reminder,	you	can	pull	down	or	3D	touch	to	see	two
buttons	to	create	a	text	or	photo	snippet!

Note
If	you	don’t	feel	like	waiting	until	noon	to	see	if	it	worked,	see	if	you	can	figure	out	how
to	add	a	new	BarButtonItem	to	your	storyboard	(next	to	the	New	button),	and	have	it	call
an	IBAction	in	ViewController.swift	that	creates	a	new	test	notification	with	the
category	set	to	Snippets.Category.Reminder.	(This	is	how	I	took	the	photos	below).

Here	is	what	this	should	look	like	in	a	banner	notification:

Figure	12.7:	The	reminder	notification	with	actions	being	displayed	from	a	banner

These	are	the	actions	in	the	notification	center:

Figure	12.8:	The	reminder	notification	with	actions	being	displayed	from	the	notification
center

Finally,	this	is	what	our	actions	look	like	on	the	lock	screen:

Figure	12.9:	The	reminder	notification	with	actions	being	displayed	from	the	lock	screen

Awesome!	The	only	problem	now	is	that	these	buttons	don’t	do	anything	yet.	In	order	to
respond	to	the	action,	we	need	to	create	an	extension	of	the	AppDelegate	class	that
implements	the	UNUserNotificationCenterDelegate	protocol,	and	then	write	a	function
that	receives	action	responses.

To	start,	let’s	create	the	extension	at	the	bottom	of	the	AppDelegate.swift	file,	and	add
the	empty	handler	function:
extension	AppDelegate:	UNUserNotificationCenterDelegate	{

				

				func	userNotificationCenter(_	center:	UNUserNotificationCenter,

didReceive	response:	UNNotificationResponse,	withCompletionHandler

completionHandler:	@escaping	()	->	Void)	{

								}

				}

}

This	function	passes	in	a	handful	of	parameters,	but	we’re	mostly	concerned	with	the
response	here.	We’re	going	to	look	at	the	action	identifier	of	the	response	to	see	what	we
should	do:
func	userNotificationCenter(_	center:	UNUserNotificationCenter,	didReceive

response:	UNNotificationResponse,	withCompletionHandler	completionHandler:

@escaping	()	->	Void)	{

				

				switch	response.actionIdentifier	{

								case	“Snippets.Action.NewText”:

												let	vc	=	self.window!.rootViewController	as!	ViewController

												vc.createNewTextSnippet()

								case	“Snippets.Action.NewPhoto”:

												let	vc	=	self.window!.rootViewController	as!	ViewController

												vc.createNewPhotoSnippet()

								default:

												break

				}

				

				completionHandler()

}

Finally,	we	need	to	call	the	completionHandler()	closure	that	is	passed	in,	otherwise	the
app	will	crash.	Then	to	finish	everything	off,	we	set	the	delegate	of	the
UNUserNotificationCenter	back	up	in	the
application(didFinishLaunchingWithOptions:)	function.
let	center	=	UNUserNotificationCenter.current()

center.delegate	=	self

center.requestAuthorization(options:	[.alert,	.badge,	.sound])	{	granted,

error	in

				if	granted	{

		center.setNotificationCategories(self.getNotificationCategories())

								self.scheduleReminderNotification()

				}

}

Try	pressing	the	buttons	on	the	notifications	now,	and	you’ll	launch	the	app	into	the
correct	snippet	creation	view	controller!

Note
Before	we	move	on,	lets	acknowledge	that	this	code	is	very	similar	to	the	code	we	wrote
much	earlier	in	the	book	that	handled	the	3D	touch	shortcuts.	As	a	little	challenge,	see	if
you	can	go	back	to	that	earlier	code,	and	separate	it	a	bit	better	into	smaller	functions,	so
that	we	can	reuse	that	code	here	in	our	notification	handlers.

We	also	dealt	with	an	edge	case	with	the	shortcuts:	if	the	user	was	already	creating	a
snippet	when	the	shortcut	was	used,	the	app	asked	the	user	if	they	wanted	to	throw	away
the	other	snippet,	or	continue	editing	it.	See	if	you	can	also	get	that	functionality	working
with	the	notification	handlers!

Badges
In	most	apps	where	detail	is	paid	attention	to,	badges	on	the	app	icon	correspond	to	the
number	of	items	awaiting	the	user’s	action	inside	the	app.	Our	application	is	pretty	simple
and	doesn’t	have	particularly	urgent	notifications,	so	we	normally	wouldn’t	implement
icon	badges	for	our	current	feature	set.	However,	for	the	sake	of	learning,	let’s	do	it
anyway!

Here’s	the	good	news	about	icon	badges:	they’re	ridiculously	easy	to	implement.	We	only
need	to	add	one	line	of	code	to	our	notification	set	up:
func	scheduleReminderNotification()	{

				let	center	=	UNUserNotificationCenter.current()

				center.getPendingNotificationRequests()	{	pendingRequests	in

								

								guard	!pendingRequests.contains(where:	{	r	in	r.identifier	==

“Snippets.Reminder”})	else	{

												print(“Notification	already	exists”)

												return

								}

								

								let	content	=	UNMutableNotificationContent()

								content.title	=	“Reminder”

								content.body	=	“Have	you	snipped	anything	lately?”

								content.sound	=	UNNotificationSound.default()

								content.categoryIdentifier	=	“Snippets.Category.Reminder”

								content.badge	=	1

								

								var	fireDate	=	DateComponents()

								fireDate.hour	=	12

								let	trigger	=	UNCalendarNotificationTrigger(dateMatching:	fireDate,

repeats:	true)

								

								let	request	=	UNNotificationRequest(identifier:

“Snippets.Reminder”,	content:	content,	trigger:	trigger)

								

								center.add(request,	withCompletionHandler:	nil)

				}

}

Now,	when	our	notification	comes	in,	it	will	set	the	badge	number	to	1.	In	order	to	clear
the	number	when	the	user	comes	back	into	the	application,	we’ll	implement	the
applicationDidBecomeActive()	function,	and	set	the	badge	number	to	zero	when	the
application	is	opened:
func	applicationDidBecomeActive(_	application:	UIApplication)	{

				application.applicationIconBadgeNumber	=	0

}

Try	this	out	and	see	how	the	badge	number	changes!

Figure	12.10:	Our	snippets	app	with	a	notification	badge	displayed

Now,	the	bad	news	about	badge	numbers:	we	are	hardcoding	the	number	to	set	the	badge
number.	This	obviously	won’t	work	if	there	are	more	kinds	of	notifications	that	can	show
up!

In	the	event	that	you’re	using	remote	notifications	that	are	pushed	from	a	server,	you’ll
have	to	keep	track	of	those	numbers	yourself	on	the	server,	and	send	them	in	with	the
notification.	If	using	local	notifications,	you’ll	have	to	do	some	fancy	tracking	to	keep
updating	the	numbers	of	all	pending	notifications.	Every	situation	is	different,	and	it’s	up
to	you	to	figure	out	the	best	solution	for	managing	the	badge	number	associated	with
notifications	for	your	app.

Custom	sounds
Adding	sound	to	a	notification	can	really	add	some	weight	to	the	alert.	Using	a	custom
sound	is	also	a	great	way	to	give	your	app	some	character.	Like	badges,	adding	sound	is	a
pretty	simple	task.

First,	drag	in	the	CustomSound.caf	file	from	the	chapter	12	resources	folder	into	your
Xcode	project.	When	importing,	make	sure	you	copy	the	files	and	include	them	in	your
app	target.	The	settings	should	look	like	this:

Figure	12.11:	The	import	settings	for	our	CustomSound.caf	file

Once	the	sound	is	imported	into	the	project,	we	use	the	UNNotificationSound(named:)
initializer,	instead	of	UNNotificationSound.default()	like	before:
func	scheduleReminderNotification()	{

				let	center	=	UNUserNotificationCenter.current()

				center.removeAllPendingNotificationRequests()

				center.getPendingNotificationRequests()	{	pendingRequests	in

								

								guard	!pendingRequests.contains(where:	{	r	in	r.identifier	==

“Snippets.Reminder”})	else	{

												print(“Notification	already	exists”)

												return

								}

								

								let	content	=	UNMutableNotificationContent()

								content.title	=	“Reminder”

								content.body	=	“Have	you	snipped	anything	lately?”

								content.sound	=	UNNotificationSound(named:	“CustomSound”)

								content.categoryIdentifier	=	“Snippets.Category.Reminder”

								content.badge	=	1

								

								var	fireDate	=	DateComponents()

								fireDate.hour	=	17

								fireDate.minute	=	13

								fireDate.second	=	40

								let	trigger	=	UNCalendarNotificationTrigger(dateMatching:	fireDate,

repeats:	true)

								

								let	request	=	UNNotificationRequest(identifier:

“Snippets.Reminder”,	content:	content,	trigger:	trigger)

								

								center.add(request,	withCompletionHandler:	nil)

				}

}

Now,	build	and	run	the	project,	and	you	should	get	a	custom	sound	when	the	notification
arrives!	(Make	sure	to	turn	your	sound	on).

If	you	prefer	to	use	the	default	sound,	you	can	use	the	following	code	instead:
reminderNotification.soundName	=	UILocalNotificationDefaultSoundName

Note
If	your	custom	sound	isn’t	playing,	you	might	have	to	uninstall	the	app,	reboot	your
phone,	clean	the	Xcode	project	(command	+	shift	+	K),	and	reinstall	the	app.	Sometimes
things	get	a	little	finicky!	!	Also	worth	noting	is	that	as	of	the	writing	of	this	book,	iOS
10.0	is	the	current	version	of	iOS,	and	this	issue	should	be	fixed	in	iOS	10.1.

Receiving	notifications	while	in	the	app
We’ve	got	a	pretty	solid	set	of	notification	functionality	going	right	now,	but	there’s	still
one	big	piece	missing:	what	happens	if	a	notification	is	received	while	the	user	is	currently
inside	the	app?

iOS	responds	to	notifications	differently	when	the	app	is	in	the	foreground	vs	the
background.	So	far,	all	of	our	code	has	been	telling	the	notification	what	to	display	on	the
banner,	what	sounds	to	play,	what	to	change	the	badge	number	to.	However,	we	don’t	need
to	do	any	of	this	when	inside	the	app,	since	we	can	much	more	effectively	tell	the	user
something	important	just	happened!

As	I	mentioned	with	the	badges,	there’s	no	real	reason	to	interrupt	the	user	to	remind	them
to	make	a	snippet	when	they’re	already	in	the	app,	but	we’ll	look	at	how	to	do	this	for
educational	purposes.

What	we	are	going	to	do	is	present	the	user	with	an	alert	to	let	them	know	what	is	going
on	with	the	notification.	We’ll	be	using	the	UIAlertController	to	display	the	notification
information,	and	let	the	user	act.

To	receive	notifications	while	the	application	is	in	the	foreground,	we	need	to	implement	a
different	handler	in	our	UNUserNotificationCenterDelegate	class	extension.	Let’s	head
to	the	extension	and	add	this	new	function:
func	userNotificationCenter(_	center:	UNUserNotificationCenter,	willPresent

notification:	UNNotification,	withCompletionHandler	completionHandler:

@escaping	(UNNotificationPresentationOptions)	->	Void)	{

				let	content	=	notification.request.content

				if	content.categoryIdentifier	==	“Snippets.Category.Reminder”{

		}

}

First,	we’re	creating	an	if	statement	to	see	what	category	the	notification	belongs	to.	Right
now	we	only	have	the	Snippets.Category.Reminder	category,	but	later	on	we	might	have
more;	it’s	best	to	plan	ahead	to	prevent	bugs	in	the	future:

Next	we	are	going	to	create	an	alert	to	present	to	the	user:
func	userNotificationCenter(_	center:	UNUserNotificationCenter,	willPresent

notification:	UNNotification,	withCompletionHandler	completionHandler:

@escaping	(UNNotificationPresentationOptions)	->	Void)	{

				let	content	=	notification.request.content

				if	content.categoryIdentifier	==	“Snippets.Category.Reminder”{

								let	vc	=	self.window!.rootViewController	as!	ViewController

								

								let	alert	=	UIAlertController(title:	content.title,	message:

content.body,	preferredStyle:	.alert)

								

								let	newTextSnippetAction	=	UIAlertAction(title:	“New	Text	Snippet”,

style:	.default)	{	(action:	UIAlertAction)	in

												vc.createNewTextSnippet()

								}

								let	newPhotoSnippetAction	=	UIAlertAction(title:	“New	Photo

Snippet”,	style:	.default)	{	(action:	UIAlertAction)	in

												vc.createNewPhotoSnippet()

								}

								let	cancelAction		=	UIAlertAction(title:	“Cancel”,	style:	.cancel,

handler:	nil)

								

								alert.addAction(newTextSnippetAction)

								alert.addAction(newPhotoSnippetAction)

								alert.addAction(cancelAction)

								vc.present(alert,	animated:	true,	completion:	nil)

				}

}

vc.present(alert,	animated:	true,	completion:	nil)

				}

}

				}

}

First	we	grab	a	reference	to	the	root	view	controller.	Then	we	instantiate	the	alert	itself,
using	the	notification	content’s	title	and	body	for	the	alert’s	title	and	message,	respectively.
After	that,	we	create	the	three	actions	we	want	to	allow	the	user	to	do:	create	a	new	text
snippet,	create	a	new	photo	snippet,	or	cancel.	To	wrap	things	up,	we	add	our	actions	and
present	the	alert	controller	to	the	user:

Figure	12.12:	The	alert	letting	us	know	we	received	a	notification	while	inside	the	app

And	with	that,	we’ve	implemented	a	pretty	basic	way	to	let	the	user	know	of	a	notification
that	was	received.

Summary
In	this	chapter,	we	learned	about	the	user	notification	system	in	iOS.	We	looked	at	handful
of	ways	that	notifications	are	presented	to	users,	and	then	added	notification	support	to	our
Snippets	app.	Along	the	way,	we	learned	a	bit	more	about	the	Date	and	DateComponents
classes,	and	scheduled	a	daily	reminder	for	the	user	to	check	in	with	the	app.	We	also
looked	at	how	to	add	badge	numbers	to	our	notifications,	and	how	to	play	custom	sounds
with	them	as	well.	Finally,	we	built	a	simple	alert	to	relay	information	to	the	user	when	a
notification	is	received	while	the	app	is	in	the	foreground.

From	here,	you	should	have	a	solid	base	with	the	notification	system	to	venture	out	and	try
your	hand	at	implementing	remote	notifications.	You’ll	need	to	look	into	the	APN	service,
and	learn	how	to	handle	the	server	side	of	things,	but	once	the	notifications	make	it	to	the
iOS	device,	you	should	have	a	decent	handle	of	how	to	implement	them	into	your	app!

With	this	chapter,	we’ve	finished	the	development	of	our	app.	In	the	last	four	chapters,
we’ll	be	jumping	back	into	the	tools	that	Xcode	gives	us	to	wrap	things	up.	In	the	next
chapter,	we’ll	be	taking	a	look	at	unit	testing	in	Xcode,	which	allow	us	to	make	sure	that
each	part	of	our	app	is	functioning	as	expected.

Chapter	13.	Writing	Unit	Tests
We’ve	finished	building	our	app!	We’ve	implemented	a	handful	of	features,	and
everything	works	as	expected.	And	we	had	no	real	setbacks	along	the	way!	However,	this
is	not	the	norm:	you	usually	don’t	have	a	guide	helping	you	through	your	project.

When	working	on	a	software	project,	your	code	base	can	sometimes	get	a	bit	unruly.
When	a	project	gets	big	enough,	you	might	start	touching	old	code	to	add	new
functionality,	when	suddenly,	your	whole	app	is	broken!	Something	you	had	been
fumbling	with	must	have	been	important,	because	now	you’ve	got	a	mess	on	your	hands.

In	this	chapter,	we’ll	be	covering	the	concept	of	unit	tests,	and	code	testing	in	general.	The
goal	of	writing	tests	for	your	code	is	to	make	sure	that	all	of	your	code	is	performing	its
intended	function,	and	to	let	you	know	as	soon	as	that	stops	being	the	case.	Specifically,
we’ll	learn	about:

	
What	are	unit	tests?
Testing	tools	provided	by	Xcode
Using	the	XCTest	framework
Setting	up	and	writing	tests	in	an	Xcode	project
Testing	interface	elements	with	UI	Tests

Introduction	to	unit	tests
Depending	on	how	and	when	you	began	learning	about	software	development,	the	concept
of	unit	testing	may	or	may	not	be	a	part	of	your	vocabulary.	Often	used	in	bigger	projects
with	larger	teams,	unit	testing	can	be	seen	as	a	waste	of	time	for	smaller	developers	who
don’t	have	the	time	or	resources	to	spend	on	writing	tests.

Regardless	of	your	past	experiences	with	unit	tests,	they’re	a	great	tool	and	an	important
part	of	Xcode’s	toolset,	and	it	will	be	up	to	you	to	decide	when	to	use	them.	Before	we	get
into	how	they	work	in	Xcode,	let’s	first	talk	a	bit	about	unit	tests	in	general.

What	is	a	unit?
So,	the	idea	of	testing	seems	pretty	clear,	but	what	exactly	is	a	unit?	It’s	up	for	a	bit	of
interpretation,	but	generally	you	should	think	of	a	unit	as	the	smallest	piece	of	code	that
performs	a	discernible	function.	For	example,	if	I	have	a	function	that	processes	some	data
and	outputs	some	result,	that	could	be	a	unit	that	we	could	test.	In	other	cases,	an	entire
class	may	be	a	unit,	if	it	only	serves	one	purpose.

Once	we	break	down	our	program	into	its	discernable	units,	what	exactly	are	we	testing?
There	are	many	opinions	on	the	subject	of	what	percentage	of	units	you	should	test:	20%?
50%?	100%?	Ultimately,	it’s	up	to	you.	Sometimes	there	are	clear	problem	areas	in	your
source	code,	with	high	complexity	and	a	lot	of	room	for	things	to	go	wrong.	If	you’ve	only
got	a	handful	of	developers	on	your	team,	creating	some	good	tests	for	those	problem
areas	can	save	a	lot	of	headaches	down	the	line.	On	the	other	hand,	if	you’re	a	company
like	Uber	and	your	app	is	the	lifeblood	of	a	billion	dollar	company,	maybe	you	should
focus	on	some	more	thorough	testing!

Why	use	unit	testing	in	the	first	place?
The	purpose	of	unit	testing	is	to	double	check	that	your	code	is	doing	what	you	meant	it	to
do	in	the	first	place.	For	example,	let’s	say	we	have	a	function	that	takes	in	two	integers
and	returns	their	sum.	We	could	write	a	unit	test	where	we	pass	in	2	and	2,	and	make	sure
that	it	returns	4.	If,	later	on,	we	implement	the	new	Addition	Engine	Turbo	2017™®,	we
may	find	that	our	unit	test	starts	failing	because	it	returns	5.

Assuming	that	we	are	running	our	tests	quite	frequently,	we	will	be	alerted	to	the	fact	that
parts	of	our	code	base	are	no	longer	acting	as	intended.	We’ll	also	know	that	the	problem
is	with	our	addition	function.

These	two	reasons	are	some	of	the	most	compelling	arguments	to	implement	unit	testing:
early	detection,	and	isolated	issues.	Every	programmer	can	see	the	value	in	finding	issues
early	and	easily,	but	these	aren’t	the	only	reasons	to	use	unit	tests.	By	writing	tests	you
must	critically	think	about	the	components	of	your	source	code,	which	forces	you	to	think
about	the	design	of	your	code.	This	additional	pass	can	also	help	you	identify	problems	in
your	architecture.

In	the	end,	taking	the	time	to	write	out	unit	tests	will	force	you	to	write	code	that	is	cleaner
and	less	prone	to	fail,	and	if	it	does	fail	you’ll	know	exactly	when	and	where.

Unit	tests	in	action
Let’s	get	started	with	writing	our	first	unit	tests	in	Xcode.	First,	we’ll	start	off	in	a	clean
project	while	we	learn	the	basics,	and	then	later	on	we’ll	integrate	unit	testing	into	our
Snippets	project.

In	this	section,	we’ll	start	by	learning	how	to	set	up	a	project	with	unit	testing	capabilities.
Then	we’ll	take	a	look	at	how	to	write	a	unit	test	using	the	XCTest	framework.	Finally,
we’ll	take	a	look	at	how	to	run	our	tests	and	measure	their	results.

Setting	up	the	project
Time	to	set	up	a	new	project,	you	know	the	drill.	But	not	so	fast!	This	time	we’re	going	to
be	exploring	the	last	two	settings	that	we	haven’t	yet	used	in	the	project	creation	process:
the	Include	Unit	Tests	and	Include	UI	Tests	options	(seen	in	Figure	13.1):

Figure	13.1:	We’ve	enabled	the	two	testing	checkboxes	during	project	setup

Checking	off	these	two	boxes	will	make	sure	that	the	new	project	you’re	about	to	create
will	have	all	of	the	necessary	set	up	taken	care	of	to	begin	writing	unit	tests	right	out	of	the
gate.	We’re	also	including	UI	tests,	but	we	won’t	be	touching	those	until	later	in	the
chapter.	We’re	just	including	them	now	to	speed	things	up	later.

Once	you	finish	setting	up	the	project,	take	a	look	around	and	notice	the	differences.	Most
notably,	we	have	two	new	targets	in	our	app:	the	UnitTestsTests	target	and	the
UnitTestsUITests	target,	each	with	their	own	folder	in	the	project	hierarchy.	If	we	look
inside	the	UnitTestsTests	folder,	we	have	a	single	UnitTestsTests.swift	file,	which	is
where	we’ll	be	writing	our	tests	later	on.

To	finish	our	project	setup,	let’s	create	a	basic	model	class	with	a	few	example	functions
that	we	can	write	tests	for.	Create	a	new	file	called	TestModel.swift,	and	define	it	like	so:
import	Foundation

class	TestModel	{

				func	example1()	->	Int	{

								return	1

				}

				func	example2()	->	Int	{

								return	2

				}

			

				func	example3()	->	Int	{

								return	2

				}

}

Also,	take	care	when	creating	this	new	file	that	you	are	including	it	with	the	application
target,	and	not	the	unit	testing	target.	If	you	had	a	file	open	from	the	testing	targets	(like
the	UnitTestsTests.swift	file)	when	you	created	the	new	file,	it	will	try	to	default	the
new	file’s	target	to	the	testing	target.	To	give	you	a	visual,	make	sure	your	target	checkbox
is	similar	to	the	one	shown	in	Figure	13.2	when	you	create	the	file:

Figure	13.2:	Creating	the	new	TestModel.swift	file	with	the	correct	UnitTests	target
selected

If	you’re	not	sure	if	you	selected	the	correct	target,	you	can	open	the	file	inspector	(option
+	command+	1)	to	see	the	same	set	up	of	checkboxes	for	what	targets	the	file	belongs	to.

Once	the	new	file	is	created,	filled	out,	and	belonging	to	the	correct	target,	our	new	project

should	be	fully	set	up	with	unit	test	capabilities	and	some	simple	code	to	run	tests	on.
Let’s	get	to	testing!

Writing	tests	with	XCTest
Before	we	start	writing	tests,	we	should	take	a	look	at	the	testing	navigator,	which	will	be
our	base	of	operations	when	it	comes	to	unit	testing.	It’s	the	fifth	tab	on	our	navigation
sidebar,	so	you	can	jump	to	it	with	the	keyboard	shortcut	command	+	5.	It	should	look
similar	to	Figure	13.3	right	now:

Figure	13.3:	Our	test	navigator	at	the	start	of	our	project

Here,	you	can	see	our	two	testing	targets	represented	by	little	white	blocks.	We	have	the
UnitTestsTests	target	and	the	UnitTestsUITests	target	that	were	created	when	we	started
the	project.	Underneath	these	two	targets	are	all	of	the	classes	within	the	target,	and
underneath	each	class	are	all	of	the	testing	methods.	The	testing	class	template	comes	with
two	example	tests,	named	testExample()	and	testPerformanceExample().	It	also	has
two	setUp()and	tearDown()functions,	which	allow	you	to	do	any	set	up	for	the	tests	that
will	be	run	in	that	class,	but	they	aren’t	tests	and	don’t	show	up	in	the	test	navigator.

However,	a	class	named	UnitTestsTests	isn’t	very	descriptive,	so	let’s	jump	back	to	the
project	navigator,	delete	the	UnitTestsTests.swift	file,	and	then	come	back	to	the	test
navigator.	If	you	look	at	the	bottom	of	the	test	navigator,	you	should	see	a	search	field,	and
to	the	left	a	little	plus	button.	This	lets	us	add	new	testing	targets	and	testing	classes	to	our
project.	If	you	click	it	and	select	new	Unit	Test	Class,	you	can	create	a	new	testing	class
to	replace	the	one	we	just	deleted.

However,	we	can	also	just	create	one	from	scratch.	Create	a	new	file	(command	+	N),
choose	a	Swift	file,	then	select	the	UnitTestsTests	group,	and	add	it	to	the	UnitTestsTests
target:

Figure	13.4:	The	correct	file	settings	for	creating	a	new	testing	class

Inside	our	new	testing	class,	we’re	going	to	want	to	import	the	XCTest	framework,	and	fill
in	our	file	with	a	class	declaration	that	inherits	from	XCTestCase:
import	XCTest

@testable	import	UnitTests

class	BasicTests	:	XCTestCase	{

}

We	need	to	import	the	XCTest	framework,	which	is	what	allows	our	code	to	interface	with
Xcode’s	testing	capabilities.	This	is	where	the	XCTestCase	class	comes	from,	which	our
class	needs	to	inherit	from	to	enable	testing.	You’ll	see	that	it’s	ready	for	testing	since
there	will	be	a	little	diamond	in	the	editor	margin	next	to	the	class	name.	We	also	have
something	new	at	the	top	of	our	file:	a	@testable	import	statement.	This	allows	us	to	have
access	to	all	parts	of	the	imported	module;	even	internal/private	pieces.	This	is	convenient,
because	it	lets	us	keep	the	correct	access	on	our	code,	while	still	being	able	to	test	it.

Note

Remember	that	our	project	name	is	UnitTests.	By	default,	our	project	is	defining	a	new
Swift	module	with	the	same	name	as	our	project,	so	when	we	import	UnitTests,	we	are
importing	our	project’s	code	module,	not	a	unit	testing	framework…	it’s	a	bit	confusing,	I
know.	To	make	things	a	bit	clearer,	if	our	project	name	was	CoolProject,	then	our	Swift
module	would	also	be	called	that,	and	we’d	use	@testable	import	CoolProject.

In	order	for	@testable	to	work,	you	need	to	ensure	your	main	app	target	enables
testability.	To	check,	click	on	the	Xcode	project	in	the	project	navigator,	make	sure	the
UnitTests	target	is	selected	in	the	sidebar,	then	select	the	Build	Settings	tab,	and	search
for	Enable	Testability.	You	should	see	something	similar	to	Figure	13.5.	Make	sure	that
your	app	target	has	testability	enabled	on	Debug,	and	not	for	Release.	Your	project	may
already	be	set	properly:

Figure	13.5:	Enabling	testability	in	the	build	settings	for	our	main	app	target

So	with	our	base	class,	we’ve	imported	the	necessary	testing	features	with	import
XCTest,	then	we	imported	our	application’s	code	module	with	@testable	import
UnitTests.	Finally,	we	set	up	our	class	to	be	testable	by	making	sure	it	inherits	from	the
XCTestCase	class.

Time	to	write	our	first	test.	A	unit	test	is	written	like	any	other	function,	but	with	two
rules:	the	function	name	must	start	with	test,	and	it	should	use	an	XCTAssert	function	if
you	actually	want	it	to	do	anything.	To	try	this	out,	let’s	write	a	test	for	our	first	example
function	in	our	TestModel()	class:
func	testExample1()	{

				let	model	=	TestModel()

				XCTAssertEqual(model.example1(),	1)

}

First,	we	create	an	instance	of	our	model.	Then	we	use	an	XCTAssert	function,	in	this	case
XCTAssertEqual(),	which	takes	two	inputs.	If	the	result	is	true,	then	the	test	continues.	If
a	test	method	makes	it	to	the	end	without	hitting	an	XCTAssert	function	that	fails,	then	the
test	is	considered	passed.	So,	in	this	case,	our	test	will	pass	if	our	Example1()	function
returns	1.	If	everything	worked	out	properly,	your	code	should	look	like	Figure	13.6.	The
diamonds	next	to	the	class	and	test	methods	indicate	that	Xcode	has	detected	a	test	that
will	be	run:

Figure	13.6:	A	simple	test	for	a	simple	function,	with	the	testing	diamonds	shown	in	the
margin

Next,	let’s	create	a	test	for	our	other	two	example	functions	in	our	model:
class	BasicTests	:	XCTestCase	{

				var	model:	TestModel!

			override	func	setUp()	{

								model	=	TestModel()

				}

				}

				func	testExample1()	{

								XCTAssertEqual(model.example1(),	1)

				}

			

				func	testExample2()	{

								XCTAssertEqual(model.example2(),	2)

				}

			

				func	testExample3()	{

								XCTAssertEqual(model.example3(),	3)

				}

			

}

We	now	have	three	individual	tests	that	will	run,	testing	all	components	of	our	model.	We
check	to	make	sure	that	example1()	returns	1,	that	example2()	returns	2,	and	example3()
returns	3.	Now,	we	could	have	also	written	a	test	like	this:
func	testExamples()	{

				XCTAssertEqual(model.example1(),	1)

				XCTAssertEqual(model.example2(),	2)

				XCTAssertEqual(model.example3(),	3)

}

This	would	check	all	three	examples,	and	fail	if	any	one	of	the	examples	failed.	Since	our
functions	are	so	simple	this	might	be	okay,	but	this	is	a	great	time	to	remember	the	idea	of
units.	If	one	of	our	example	functions	fails,	will	it	be	easy	to	find	out	exactly	which
function	failed?	In	this	case	not	really,	so	we’ll	keep	them	separate.

We	also	use	the	setUp()	function	to	initialize	our	TestModel,	since	the	setUp()	function
gets	called	before	each	test.	This	ensures	we	have	a	fresh	version	of	our	model	for	each
test.	In	this	case	it	doesn’t	matter,	but	it’s	a	good	habit	to	develop.

Running	tests
Now	that	we	have	a	completed	testing	class	with	unit	tests	for	our	model	code,	let’s	get	to
running	the	tests!	There	are	several	ways	to	run	tests,	both	from	the	testing	navigator,	and
from	the	test	class	code	editor	itself.	You	can	also	use	command	+	U	to	run	all	of	your
tests	at	once.	But	first,	let’s	try	from	the	test	navigator.

From	the	test	navigator,	you	can	select	any	target,	class,	or	test	method	individually	and
click	the	play	button	that	appears	on	the	far	right	side	of	the	navigator	to	run	that	test	(or
all	the	tests	in	that	class,	or	all	the	tests	in	that	target).	Let’s	run	the	tests	in	our
BasicTests	class	by	clicking	the	play	button,	shown	in	Figure	13.7:

Figure	13.7:	The	BasicTests	testing	class	highlighted	in	the	test	navigator

Running	the	test	will	launch	the	simulator	(or	launch	on	your	device,	if	it’s	plugged	into
Xcode),	and	begin	running	the	app,	before	finally	executing	the	tests.	Once	they’ve
completed,	you	should	see:

Figure	13.8:	The	test	navigator	after	running	tests,	showing	that	one	test	failed

Oops!	One	of	our	tests	failed.	It	looks	like	our	example3	test	isn’t	working	as	expected.
Let’s	first	check	to	see	that	the	test	we	wrote	is	correct.	We’re	checking	to	see	that
example3()	is	returning	a	value	of	3,	so	our	test	is	in	fact	working	properly,	so	there	must
be	an	issue	with	our	example3()	code.	Let’s	jump	into	our	TestModel	class	to	see	what	the
issue	is:

func	example3()	->	Int	{

				return	2

}

There’s	the	issue!	The	example3()	function	is	returning	2	instead	of	3.	We	must	have	copy
and	pasted,	or	mistyped	somewhere.	Luckily	we	caught	the	error	early.	Let’s	fix	that	up:
func	example3()	->	Int	{

				return	3

}

Now,	let’s	head	back	to	our	testing	class.	If	we	go	down	to	the	textExample3()	function
and	hover	over	the	failed	testing	diamond,	it	will	turn	into	a	run	test	button	(see	Figure
13.9).	Since	we	think	we	fixed	the	issue,	lets	click	that	button	to	rerun	that	test:

Figure	13.9:	The	red	x’s	become	run	test	buttons	in	the	margin	of	the	editor	for	our	test
class

In	our	current	project,	our	tests	are	really	light,	so	there’s	no	reason	to	not	just	run	them	all
again.	But	in	bigger	projects,	tests	may	be	a	bit	heavier,	so	running	only	one	at	a	time	can

be	quite	the	time	saver.	So,	once	you	run	the	failed	test	again,	you	should	find	that
everything	worked!

Figure	13.10:	Our	test	class	with	all	tests	passing!

Great!	We’ve	now	run	all	of	our	tests,	fixed	the	errors,	and	have	a	clean	slate	of	passed
tests.	Writing	new	tests	as	we	add	functionality	to	the	app,	and	running	tests	frequently
can	help	to	make	sure	any	possible	bugs	are	caught	early	and	often.

Implementing	tests	for	Snippets
Now	that	we’ve	cut	our	teeth	on	unit	testing	in	Xcode,	let’s	apply	our	new	skills	back	in
our	Snippets	application.	In	this	section,	we’ll	learn	how	to	set	up	unit	tests	in	an	existing
project	that	didn’t	start	with	testing	targets,	and	then	write	some	tests	for	our	application	to
ensure	everything	is	working	as	expected.

Setting	up	the	Snippets	project
Setting	up	our	project	with	unit	tests	is	relatively	simple.	Since	we’re	starting	out	without
anything,	we’re	going	to	need	to	create	a	new	unit	testing	target,	and	then	make	sure	all	of
our	build	settings	are	set	properly:

Figure	13.11:	Creating	a	new	unit	test	target	from	the	test	navigator

To	begin,	open	up	the	test	navigator,	and	then,	from	the	plus	button	at	the	bottom	(Figure
13.11),	choose	new	Unit	Test	Target….	From	there,	we’ll	give	the	new	target	a	name	of
SnippetsTests,	and	set	the	project	to	be	Snippets	and	the	target	to	be	tested	as	Snippets
(see	Figure	13.12):

Figure	13.12:	Setting	up	the	new	unit	testing	target

Next,	we	need	to	make	sure	that	our	project’s	module	is	testable.	Like	in	the	last	section,
head	to	the	main	app	target’s	build	settings,	search	for	Enable	Testability,	and	make	sure
it	is	turned	on	for	Debug:

Figure	13.13:	Making	sure	our	Snippets	project	is	testable

Preparing	our	testing	class
Now	that	our	project	is	set	up	with	a	testing	target,	let’s	make	sure	our	testing	class	has
everything	it	needs	to	run	tests.	Before	we	can	do	that,	however,	we	need	to	know	what
kind	of	tests	we	are	going	to	write.

One	of	the	most	important	parts	of	our	app	is	that	it	is	saving	data	correctly.	We	are	going
to	write	a	test	that	checks	to	make	sure	that	there	is	no	data	loss	from	when	our	view
controller	saves	a	text	snippet	to	when	it	loads	that	data	back	in	later.	To	do	this,	we	are
going	to	need	access	to	our	view	controller,	and	we’re	also	going	to	need	to	make	sure	that
our	core	data	model	is	ready	to	interface	with	our	tests.

To	start,	open	the	new	SnippetsTests	folder,	and	then	select	the	SnippetsTests.swift	file
and	let’s	get	our	imports	set	up,	along	with	the	setUp()	function	stub:
import	XCTest

import	CoreData

@testable	import	Snippets

class	SnippetsTests:	XCTestCase	{

				var	vc:	ViewController!

				var	moc:	NSManagedObjectContext!

				override	func	setUp()	{

								super.setUp()

				}

}

At	the	top,	we’re	making	sure	we	have	XCTest,	in	addition	to	CoreData,	which	we’ll	be
using	quite	often,	and	finally	our	Snippets	module.	Then,	inside	the	class,	we	are	creating
references	to	our	ViewController	and	our	ManagedObjectContext.

Next,	we	have	to	actually	set	up	the	references	in	the	setUp()	function.	We’re	also	going
to	have	to	clear	out	our	CoreData	information	before	each	test	so	that	we	can	be	sure
everything	is	working	correctly:
class	SnippetsTests:	XCTestCase	{

			

				var	vc:	ViewController!

				var	moc:	NSManagedObjectContext!

			

				override	func	setUp()	{

								super.setUp()

							

								let	sb	=	UIStoryboard(name:	“Main”,	bundle:	Bundle.main)

								vc	=	sb.instantiateInitialViewController()	as!	ViewController

							

								let	delegate	=	UIApplication.shared.delegate	as!	AppDelegate

								moc	=	delegate.managedObjectContext

							

								clearOutCoreData()

				}

			

				func	clearOutCoreData()	{

								//	to	do	next

				}

}

Here,	we’re	getting	a	reference	to	our	storyboard,	then	instantiating	our	root	view
controller	and	setting	it	to	our	vc	reference.	After	that,	we	get	our	AppDelegate	and	then
pull	out	a	reference	to	our	managed	object	context	from	the	core	data	stack,	and	save	that
into	our	moc	variable	for	later.	Finally,	we	call	our	clearOutCoreData()function,	which
we’ll	fill	out	now:
func	clearOutCoreData()	{

				var	data:	[NSManagedObject]!

				

				let	fetchRequest	=	NSFetchRequest<NSFetchRequestResult>(entityName:

“Snippet”)

				do	{

								let	fetchResults	=	try	moc.fetch(fetchRequest)

								data	=	fetchResults	as!	[NSManagedObject]

				}	catch	{

								let	e	=	error	as	Error

								print(“Unresolved	error	\(e.localizedDescription)”)

				}

				

				for	d	in	data	{

								moc.delete(d)

				}

}

For	this	function,	we	are	essentially	creating	a	fetch	request	that	will	grab	all	of	our
snippet	data,	store	it	in	an	array,	and	then	loop	through	the	data	and	delete	each	entry	from
our	object	context.

Now,	before	each	test,	our	setUp()	function	will	create	a	fresh	instance	of	our	view
controller,	grab	a	reference	to	the	managed	object	context,	and	then	clear	out	the	core	data
database.	Now	let’s	put	it	to	use!

Writing	a	data	validation	unit	test
In	our	test,	we’re	going	to	call	the	saveTextSnippet()	function	of	our	ViewController	to
write	out	a	new	text	snippet,	and	then	read	that	data	back	in	and	make	sure	it	is	correct.

We’ll	start	by	creating	a	new	function	called	testSaveTextSnippet().	At	the	top	of	the
function,	we’ll	define	the	string	we’re	passing	in,	and	then	call	the	function	on	our	view
controller;
func	testSaveTextSnippet()	{

				

				let	testString	=	“test”

				vc.saveTextSnippet(text:	testString)

}

That’s	the	easy	part!	Now	we	need	to	load	in	the	NSManagedObject	that	was	created,	and
check	the	data	that	was	saved.	To	start,	we’ll	pull	out	all	of	the	snippet	data	from	our	core
data	model.	Since	we	just	cleared	it	out,	it	should	be	empty	except	for	the	new	data	we	just
created:
func	testSaveTextSnippet()	{

				

				let	testString	=	“test”

				vc.saveTextSnippet(text:	testString)

				

				//	get	data	from	core	data

				var	data:	[NSManagedObject]!

				let	fetchRequest	=	NSFetchRequest<NSFetchRequestResult>(entityName:

“Snippet”)

				do	{

								let	fetchResults	=	try	moc.fetch(fetchRequest)

								data	=	fetchResults	as!	[NSManagedObject]

				}	catch	{

								let	e	=	error	as	Error

								print(“Unresolved	error	\(e.localizedDescription)”)

								XCTFail()

				}

}

First,	we	define	an	array	of	NSManagedObjects,	and	create	an	NSFetchRequest	that	asks
for	all	Snippet	entities.	We	try	to	run	the	fetch	request,	and	if	it	succeeds	we	store	it	in	the
data	array.	However,	if	it	fails,	we	are	calling	a	function	called	XCTFail().	As	you	can
probably	guess,	this	causes	the	test	to	fail	immediately.	If	we	can’t	read	back	the	data	we
just	saved,	then	something	has	definitely	gone	wrong	so	it	makes	sense	to	automatically
fail	the	test.

After	we	have	the	information	loaded	into	the	data	array,	it’s	time	to	validate	the	data	that
is	inside	our	Snippet:
func	testSaveTextSnippet()	{

				

				let	testString	=	“test”

				vc.saveTextSnippet(text:	testString)

				

				//	get	data	from	core	data

				var	data:	[NSManagedObject]!

				let	fetchRequest	=	NSFetchRequest<NSFetchRequestResult>(entityName:

“Snippet”)

				do	{

								let	fetchResults	=	try	moc.fetch(fetchRequest)

								data	=	fetchResults	as!	[NSManagedObject]

				}	catch	{

								let	e	=	error	as	Error

								print(“Unresolved	error	\(e.localizedDescription)”)

								XCTFail()

				}

				//	validate	data

				let	snippet	=	data[0]

				if	let	rawType	=	snippet.value(forKey:	“type”)	as?	String,	let	string	=

snippet.value(forKey:	“text”)	as?	String	{

								XCTAssertEqual(SnippetType(rawValue:	rawType),	SnippetType.text)

								XCTAssertEqual(string,	testString)

				}	else	{

								XCTFail()

				}

}

We	first	pull	out	the	first	element	in	the	data	array:	this	is	our	snippet.	Then	we	try	to
access	values	inside	the	NSManagedObject	using	value(forKey:)and	cast	them	to	the
expected	type.	If	any	of	these	operations	fail	it	will	fall	through	to	the	else	statement,	and
we’ll	call	the	XCTFail()	function	again	to	fail	the	test.

However,	if	we’re	able	to	read	all	the	data	properly,	then	we	run	it	through	some
XCTAssertEqual()	functions.	First,	we	check	to	see	that	the	type	is	correct	(we	expect	the
type	to	be	.text),	and	then	we	check	to	see	if	the	text	is	correct	by	using	the	testString
that	we	passed	in	initially.

If	you	run	the	test,	you	should	(hopefully)	see	that	everything	is	working	as	expected!

Figure	13.14:	Our	unit	test	is	passing!

Checking	code	coverage
Earlier	in	the	chapter	when	we	were	discussing	the	concepts	behind	unit	testing,	we
touched	on	the	idea	of	how	much	of	your	code	you	should	test.	This	is	called	code
coverage.	In	Xcode	7,	we	can	actually	gather	data	to	see	exactly	what	the	code	coverage
of	our	tests	are.	This	can	be	very	useful	to	you	when	writing	tests,	for	obvious	reasons.	As
I	mentioned	the	last	time	we	talked	about	this,	your	target	for	code	coverage	is	up	to	you.

To	enable	your	project	to	collect	code	coverage	data,	we	need	to	update	the	settings	for
our	testing	scheme.	To	open	the	scheme	editor,	use	the	keyboard	shortcut	command	+	<
(which	is	actually	command	+	shift	+	,),	or	navigate	from	the	menu	bar	to	Product	|
Scheme	|	Edit	Scheme:

Figure	13.15:	Enabling	coverage	data	collection	in	our	test	scheme

Once	we	open	the	scheme	editor,	select	the	Test	scheme	from	the	sidebar,	and	then
underneath	the	Build	Configuration	dropdown,	check	the	box	for	Gather	coverage	data
(Figure	13.15).	This	makes	it	so	that	when	we	run	our	tests,	Xcode	looks	to	see	what	code
is	being	run	during	tests,	and	reports	that	information	back	to	us.

The	best	way	to	understand	this	is	to	see	it	in	action.	With	code	coverage	data	now	being
gathered,	lets	run	our	tests	again	(command	+	U).	Once	the	tests	have	been	completed,
open	the	Results	Navigator	(command	+	8),	and	then	select	the	most	recent	test

operation	(Figure	13.16):

Figure	13.16:	Selecting	the	results	from	the	most	recent	test

Once	the	test	is	selected,	you	should	see	the	editor	window	fill	with	information	about	the
tests	that	were	run.	However,	there	is	also	a	tab	along	the	top	of	the	editor	window,	and	in
the	middle	there	should	be	a	Coverage	tab.	Click	on	it,	and	you	should	see	detailed
information	about	what	parts	of	your	code	are	covered	by	your	last	execution	of	tests
(Figure	13.17):

Figure	13.17:	Selecting	the	results	from	the	most	recent	test

Testing	UI	in	Xcode	8
Writing	unit	tests	helps	to	make	sure	your	application’s	model	and	controller	code	are
working	properly,	but	as	apps	get	more	and	more	complex	views,	it’s	becoming
increasingly	important	to	test	the	interface	of	our	apps	as	well.	In	Xcode	7,	Apple
introduced	a	new	UI	testing	feature	that	allows	us	to	do	just	that.

How	does	UI	testing	work?
When	building	an	app,	we	have	a	certain	way	that	our	logic	is	expected	to	function.
Earlier,	we	expected	that	by	passing	an	input	string	to	our	save	function	we	would	get	a
data	representation	of	a	new	snippet	on	disk,	so	we	wrote	a	test	to	ensure	this	was
happening.	This	same	idea	can	be	applied	to	the	actual	user	interface,	instead	of	the	logic
behind	it.

For	example,	in	our	app,	we	want	to	make	sure	that	when	the	New	button	is	tapped,	the
user	is	presented	with	an	action	sheet	for	them	to	choose	an	option	from.	We	could	write	a
unit	test	to	check	the	button	code,	but	that	won’t	check	to	make	sure	that	the	button	event
is	firing	properly	in	the	first	place,	and	that	we’re	getting	the	proper	UI	response.	UI
testing	aims	to	fix	these	shortcomings	by	essentially	letting	us	code	a	fake	user	who	taps
on	the	screen,	and	letting	us	check	to	see	what	happens.

Adding	the	UI	testing	target
Before	we	can	start	writing	UI	tests,	we	need	to	create	a	separate	UI	test	target,	which
must	be	separate	from	the	unit	test	target	we	made	earlier.	This	can	be	accomplished	from
the	same	plus	button	at	the	bottom	of	the	test	navigator	(Figure	13.18):

Figure	13.18:	Creating	a	new	UI	test	target	from	the	test	navigator

Make	sure	the	new	target	settings	are	correct;	check	with	Figure	13.19	before	creating	it:

Figure	13.19:	The	correct	settings	for	the	new	UI	test	target

We	now	have	our	UI	test	target	added	to	the	project,	and	we’ve	been	given	a	testing	class
to	write	our	tests	in,	named	SnippetsUITests.swift.	It	starts	off	a	bit	bloated,	so	let’s	cut
that	down	to	something	a	bit	more	manageable	before	moving	on:
import	XCTest

class	SnippetsUITests:	XCTestCase	{

							

				override	func	setUp()	{

								super.setUp()

								continueAfterFailure	=	false

								XCUIApplication().launch()

				}

			

}

Using	the	UI	recorder
Now	that	we’ve	got	a	testing	class	set	up,	we	begin	the	daunting	task	of	programming	our
fake	user	to	play	with	our	app,	or	do	we?	As	a	part	of	Xcode’s	robust	testing	suite,	Apple
has	included	a	feature	called	the	UI	recorder	that	is	built	right	into	our	UI	testing	class.

As	the	name	implies,	it	is	quite	literally	a	record	button	that	allows	us	to	show	Xcode	what
we	want	it	to	do	by	doing	it	ourselves!	It	then	watches,	and	translates	our	actions	into	code
that	allows	our	test	to	repeat	our	actions	later.	To	get	a	better	idea	of	how	this	all	works,
it’s	best	to	see	it	in	action:	let’s	make	a	test!

Earlier,	we	said	that	we	would	want	to	check	to	make	sure	that	when	we	tap	the	new
button,	our	action	sheet	is	presented.	That’s	what	we’ll	test	now.	Create	a	new	function	for
this	test:
func	testSnippetSelectionOnNewPress()	{

			

}

Now	comes	the	fun	part;	click	inside	the	brackets	of	the	function,	and	then	look	along	the
bottom	bar	of	the	editor	window.	You	should	see	a	little	record	button	(the	red	circle)	next
to	the	blue	breakpoint	icon.	If	you	click	the	record	button,	your	app	will	be	launched,	and
then	Xcode	will	start	tracking	your	input	and	translating	it	to	code	on	the	fly!

Figure	13.20:	The	UI	recorder	button	on	the	bottom	bar

Try	clicking	around	on	your	application	screen	to	see	what	happens	in	Xcode.	Watch	as	it
creates	code	based	on	what	you’re	doing.	Once	you’ve	had	your	fill,	click	the	record
button	again	to	stop	recording.	Now	delete	all	of	the	junk	code	you	created,	run	the
recorder	again,	and	this	time,	just	click	New	and	stop	the	recording.	You	should	be	left	with
something	like	this:
func	testSnippetSelectionOnNewPress()	{

				XCUIApplication().toolbars.buttons[“New”].tap()

			

}

This	is	the	code	that	Xcode	generated	for	us	when	we	clicked	that	button.	As	you	can	see,
it’s	very	readable,	and	after	a	bit	of	practice	you	could	easily	write	these	tests	by	hand!	But
for	now,	the	UI	recorder	is	an	invaluable	tool	to	get	our	tests	up	and	running	as	quickly	as

possible.

So,	now	that	we	have	tapped	our	button,	we	need	to	check	to	make	sure	that	the	action
sheet	was	presented	to	the	user.	However,	this	presents	an	issue:	UI	changes	don’t	happen
instantaneously.	We	need	a	way	to	wait	a	little	bit	to	see	what	happens.	To	do	this,	we’ll
create	an	expectation	then	wait	for	a	set	amount	of	time	to	see	if	expectations	are	met:
func	testSnippetSelectionOnNewPress()	{

				

				//	reference	to	application

				let	app	=	XCUIApplication()

				

				//	create	and	set	expectation

				let	selectionAlert	=	app.staticTexts[“Select	a	snippet	type”]

				let	exists	=	NSPredicate(format:	“exists	==	true”)

				expectation(for:	exists,	evaluatedWith:	selectionAlert,	handler:	nil)

				

				//	tap	button	and	wait	for	expectation

				app.toolbars.buttons[“New”].tap()

				waitForExpectations(timeout:	1,	handler:	nil)

}

First,	we	are	getting	a	reference	to	the	application.	Next,	we	create	an	XCUIElementQuery
for	something	with	the	text	Select	a	snippet	type	(which	is	the	title	of	our	action
sheet),	and	then	we	create	an	NSPredicate	for	checking	if	the	exists	property	is	true.
Then,	we	set	an	expectation	for	the	selectionAlert	to	have	exists	==	true.	To	finish
our	test,	we	tap	the	new	button,	and	then	give	the	test	one	second	to	see	if	the	expectation
becomes	true:

Figure	13.21:	Our	final	passing	UI	test

If	you	run	UI	tests,	you’ll	see	that	the	app	is	launched	in	the	simulator,	and	the	actions	you
performed	are	mimicked	(buttons	will	be	virtually	tapped,	etc.).	There’s	still	a	lot	for	you
to	go	out	and	learn	about	UI	testing,	but	this	short	primer	should	give	you	enough	of	a
footing	to	understand	the	basics	and	get	your	feet	wet.

Summary
In	this	chapter,	we	learnt	about	the	subtle	art	of	testing	your	code	with	more	code.	It’s	a
very	useful	skill,	and	can	save	plenty	of	headaches	throughout	the	development	process.
We	looked	at	what	unit	tests	are	and	why	they’re	important,	and	then	spent	some	time
learning	how	to	use	them	in	Xcode.	Once	we	were	comfortable,	we	added	unit	tests	to	our
Snippets	project,	and	wrote	a	somewhat	more	complicated	test	that	worked	with	Core
Data.	From	there,	we	talked	about	code	coverage	and	learnt	how	to	use	Xcode	to	visualize
how	thorough	our	tests	are	on	our	codebase.	Finally,	we	dipped	our	toes	into	the	water	of
UI	testing	in	Xcode	7,	and	tested	a	button	in	our	Snippets	app.

In	the	next	chapter,	we	continue	the	theme	of	cleaning	up	our	project,	and	making	the	code
safer	and	less	prone	to	failure.	We’ll	be	covering	the	many	debugging	tools	available	in
Xcode	8	that	help	you	make	sure	that	your	apps	are	running	smoothly	and	error	free.
Combined	with	the	testing	features	we	covered	in	this	chapter,	understanding	the
debugging	tools	will	make	sure	your	code	is	rock	solid.

Chapter	14.	Debugging	an	iOS	Application
In	the	previous	chapter,	we	learned	about	how	to	use	unit	tests	to	prevent	problems	in	your
code	from	occurring	in	the	first	place.	While	preventative	measures	are	great,	what
happens	when	you	can’t	prevent	an	issue?	Your	unit	test	fails,	your	new	feature	isn’t
working	as	intended,	the	app	is	crashing	for	an	unknown	reason,	any	way	you	slice	it,
you’ve	got	a	bug!

With	unit	tests	and	debugging	under	your	belt,	by	the	end	of	this	chapter	you’ll	be	well	on
your	way	to	building	clean,	efficient,	bug-free	applications	that	prevents	both	user	and
developer	frustration.

In	this	chapter,	we’re	going	to	cover:

	
Debugging	with	print(),	breakpoints,	and	the	call	stack
Using	advanced	debug	tools	like	the	Address	Sanitizer
Fixing	visual	issues	with	the	View	Debugger

Basic	debugging	practices
When	programming	an	app,	you	will	no	doubt	encounter	many	little	snags	along	the	way.
After	some	time,	you	might	not	even	notice	some	of	the	smaller	issues	you	run	into
because	of	how	quickly	you	can	resolve	them.	In	this	section,	we’ll	look	at	some	of	the
most	basic	ways	to	look	at	what	is	going	on	inside	your	app	so	that	you	can	navigate
around	the	issues	you	may	encounter.

print()
Sometimes,	the	simplest	answer	is	the	best	answer.	Using	a	print	statement	to	write	a
string	out	to	the	console	can	be	a	quick	and	effective	way	to	get	a	status	report	from	inside
your	app.	The	print()	function	is	defined	in	the	Swift	standard	library	of	functions,	and
lets	you	write	strings	to	the	console	with	some	minor	formatting	options:
print(“hello	world!”)

The	print	function,	while	usually	used	to	print	a	single	string,	can	also	accept	several
string	parameters	to	print,	along	with	a	separator	and	a	terminator	string:
print(“apple”,“orange”,“banana”,	separator:”##”)

output	->“apple##orange##banana?

print(“apple”,“orange”,“banana”,	terminator:”!”)

output	->“apple	orange	banana!”

print(“apple”,“orange”,“banana”,	separator:”##”,	terminator:”!”)

output	->“apple##orange##banana!”

The	print()	function	can	be	a	useful	way	to	send	out	messages	to	the	console	when
execution	reaches	a	certain	point	of	your	code,	or	to	check	to	see	how	many	times
something	is	looping	through	a	certain	part	of	code.

However,	even	though	it	is	a	basic	tool,	mastering	the	art	of	when	to	use	a	print	statement
can	take	a	bit	of	time.	For	most	beginners,	what	they	really	mean	to	do	is	use	breakpoints.

Breakpoints	and	the	debug	area
Breakpoints	are	the	bread	and	butter	of	any	good	debugging	tool	kit.	At	its	core,	a
breakpoint	system	allows	you	to	place	a	marker	on	a	line	of	code,	then	run	the	code	until	it
hits	that	line	before	it	pauses.	Once	the	code	is	paused,	you’re	able	to	step	through	the
code	line	by	line	to	see	how	the	code	executes,	and	look	at	how	the	variables	change.	This
is	all	done	in	the	debug	area:

Figure	14.1:	The	debug	navigator

The	debug	area	is	composed	of	three	main	parts	(Figure	14.1),	the	variables	view	on	the
left	(in	blue),	the	console	view	on	the	right	(in	green),	and	the	debug	toolbar	on	top	(in
red).

Variables	view
In	the	variables	view,	we	can	see	the	values	inside	all	of	the	variables	that	are	in	the	scope
of	our	break	point.	So,	if	we	place	a	break	point	inside	a	function	and	the	debugger	pauses
there,	we	can	see	all	of	the	variables	inside	that	function	here.	In	Figure	14.2,	you	can	see
the	value	of	a	variable	x	is	0,	which	was	just	an	Int.	that	I	threw	into	a	test	function.

You	can	also	see	the	self	variable,	which	represents	the	current	class	instance	(in	this
case,	a	ViewController).	Since	this	is	a	complex	object	and	not	a	basic	data	type,	there	is
a	dropdown	arrow	next	to	it	that	allows	us	to	inspect	its	properties:

Figure	14.2:	The	variables	view

Along	the	bottom	of	the	variables	view	there	are	a	few	more	options.	From	the	left,	we
first	have	a	dropdown	to	change	the	mode;	by	default	it	is	set	to	Auto,	but	it	can	also	be
changed	to	only	show	local	(which	is	similar	to	Auto,	but	more	strict),	and	a	third	option
that	gives	you	much	more	detailed	information	that	we	really	won’t	be	needing	to	use.

Next	to	the	dropdown	is	an	eye	icon	that	lets	you	quick	look	a	variable	that	is	selected	in
the	variable	list.	This	can	be	useful	for	certain	data	types	like	images;	using	quick	look	on
a	UIImage	will	show	you	that	image.	The	little	information	icon	next	to	the	eye	prints	out	a
description	of	the	selected	variable	to	the	console.

Finally,	on	the	far	right	of	the	variable	view	is	a	filter	that	allows	you	to	search	through	the
variables	in	the	view.	In	this	screenshot	it’s	not	particularly	useful,	but	when	code	gets
more	complicated	and	we	have	more	variables	it	can	be	quite	useful.

Console
Next	to	the	variables	view	is	the	console.	We’ve	been	using	the	console	throughout	the
book,	but	it’s	worth	giving	it	a	bit	of	extra	attention	now.	Most	of	the	console	area	is
dedicated	to	outputting	text	from	inside	your	application,	usually	from	print()
statements,	or	from	inside	the	iOS	SDK.	When	your	app	crashes,	you’ll	also	see	some
output	in	the	console:

Figure	14.3:	The	debug	console

In	Figure	14.3,	you	can	see	a	line	that	says	Printing	description	of	x:	0.	This	is
actually	the	result	of	me	pressing	the	information	button	while	the	x	variable	was	selected
in	the	variables	view	that	we	just	looked	at.	The	1	on	the	last	line	was	the	result	of	me
placing	a	print(1)	statement	in	my	program.

Along	the	bottom	of	the	console,	you	can	see	a	dropdown	that	switches	between	debugger
mode,	and	target	mode.	Debugger	mode	only	shows	output	from	the	debugger,	which
would	be	output	like	the	Printing	description…	text	that	was	written	by	interacting	with
the	debugger.	Target	mode	only	shows	output	that	came	from	our	application	target;	in
other	words,	this	is	the	output	straight	from	your	code.	All	Output	will	show	you	both
types	of	console	output.

On	the	bottom	right	there	is	a	trash	can	that	clears	the	console,	in	addition	to	two	little
icons	that	are	not	actually	a	part	of	the	console,	but	which	toggle	the	variables	view	and
console	from	being	shown.

Debug	toolbar
The	debug	toolbar	is	your	home	base	for	debugging.	It	is	from	the	debug	toolbar	that	you
can	enable	and	disable	breakpoints,	and	step	through	code.	The	debug	toolbar	will	only
show	up	while	your	application	is	running.	Looking	at	Figure	14.4,	you	can	see	a	row	of
icons	going	from	left	to	right;	let’s	step	through	each	one:

Figure	14.4:	The	debug	toolbar

First,	we	have	a	downward	arrow:	this	just	closes	(and	opens)	the	debug	area	below	the
toolbar.	You	can	also	use	command	+shift+	Y	to	accomplish	the	same	thing.

Next,	we	have	the	breakpoint	icon.	This	enables	and	disables	breakpoints.	If	it	is	filled	in,
and	blue,	that	means	breakpoints	are	enabled,	and	your	code	will	stop	and	wait	at
breakpoints	that	you	have	specified.	Click	it	and	it	will	become	an	outline,	meaning	that
the	debugger	ignores	the	breakpoints	in	your	code.	Just	after	the	breakpoint	icon	is	the
continue	button.	Once	your	program	is	stopped	at	a	breakpoint,	you	can	click	this	button
to	continue	the	execution.

The	next	three	buttons	let	you	navigate	through	your	code	when	paused	at	a	breakpoint.
When	your	app	is	running	but	not	paused	at	a	breakpoint,	the	buttons	will	be	greyed	out
and	disabled.	The	first	angled	arrow	is	the	step	over	button,	which	lets	you	go	to	the	next
line	of	code	by	stepping	over	any	function	calls.	Similarly,	the	down	arrow	after	that	is	the
step	in	button,	which	lets	you	go	into	a	function	on	the	current	line	if	one	exists.	The	third
button	(up	arrow)	is	a	step	out	button,	which	allows	you	to	go	up	one	level	of	code.	So,	if
you	step	into	a	function	and	press	the	step	out	button,	you’ll	pop	back	out	to	the	scope	of
the	original	function.

After	the	codestepping	buttons	is	the	View	Debugger	button,	which	we’ll	be	covering	in
detail,	later	on	in	the	chapter.	Next	is	the	debug	memory	graph	button,	which	is	a	very
useful	advanced	debugging	tool,	but	a	little	too	advanced	for	us	to	talk	about	right	now.
The	location	icon	next	to	the	memory	graph	button	allows	you	to	simulate	a	location	for
an	app	running	in	the	simulator.	Finally,	the	last	piece	of	the	toolbar	lets	you	choose	the
stack	frame	navigator	for	a	paused	application.	We’ll	be	talking	about	the	call	stack	in	the
next	section.

Now	that	we’ve	looked	at	every	component	of	the	debug	toolbar,	lets	put	it	to	use	by
stepping	through	the	process	of	using	a	breakpoint.	Open	up	the	Snippets	project,	and
navigate	to	the	ViewController.swift	file.	We’re	going	to	place	a	breakpoint	inside	the
viewDidLoad()	function,	since	that	runs	right	at	the	beginning	of	execution.	To	place	the
breakpoint,	just	click	in	the	left	margin	of	the	editor	window	with	the	line	numbers.	(If
you’re	using	your	own	project	file	and	not	the	one	from	the	resources	folder,	you	might	be
on	different	line	numbers):

Figure	14.5:	The	viewDidLoad()	function	with	a	breakpoint	placed	on	line	31

Once	you	place	the	breakpoint,	build	and	run	the	project.	The	code	should	stop	at	the
breakpoint,	and	the	debug	toolbar	should	now	allow	you	to	use	the	code	stepping	buttons:

Figure	14.6:	The	program	execution	is	paused	on	line	31

If	you	press	the	step	over	button	a	few	times	(the	angled	one),	you	should	be	able	to	step
through	each	line	of	code,	one	at	a	time.	Once	you	get	to	line	34	(in	my	project,	maybe
different	on	yours)	which	has	the	askForLocationPermissions()	function	call,	click	the
step	in	button.	You	should	see	that	the	code	jumps	into	that	function,	and	your	execution
is	now	at	the	beginning	of	the	askForLocationPermissions()	function:

Figure	14.7:	The	execution	has	stepped	into	the	askForLocationPermissions()	function

Now,	if	you	click	the	step	out	button,	you’ll	see	that	the	execution	will	eject	you	out	of	the
askForLocationPermissions()	function,	and	back	out	to	the	viewDidLoad()	function.
Finally,	click	the	continue	button	next	to	the	breakpoint	icon	to	continue	running	the

program	as	normal.

Sometimes	you	get	unexpected	behavior	when	your	app	is	running,	and	you	suspect	that
values	are	not	being	assigned	correctly.	In	this	case,	it	would	be	very	useful	to	know	how
your	variable	is	changing.	Before	we	move	on	from	breakpoints,	let’s	see	how	we	can	use
breakpoints	to	inspect	how	a	variable	can	change	at	runtime.	Let’s	create	a	temporary
function	to	test	this	functionality	with,	and	call	it	inside	the	viewDidLoad()	function:
override	func	viewDidLoad()	{

				super.viewDidLoad()

				imagePicker.delegate	=	self

				locationManager.delegate	=	self

				locationManager.desiredAccuracy	=	kCLLocationAccuracyBest

				locationManager.distanceFilter	=	50.0

				

				tableView.estimatedRowHeight	=	100

				tableView.rowHeight	=	UITableViewAutomaticDimension

				

				askForLocationPermissions()

				variableViewTest()

}

func	variableViewTest()	{

				var	x	=	0

				x	=	1

				x	=	2

}

Next,	let’s	place	a	breakpoint	on	the	first	line	of	the	variableViewTest()	function,	and
run	the	project.	You	should	see	the	program	execution	break	on	that	first	line.	However,
take	note	of	the	variables	view	shown	as	follows:

Figure	14.8:	The	first	line	of	our	variableViewTest(),	with	x	still	unassigned

On	this	first	line,	our	variable	view	is	showing	x	having	a	value	of	4295259004,	which
means	that	it	hasn’t	been	initialized	yet.	It’s	important	to	know	that	if	the	debugger	is
paused	on	a	line,	it	means	that	that	line	hasn’t	been	executed	yet.	Let’s	click	the	step
over	button	to	see	another	example:

Figure	14.9:	The	second	line	of	our	variableViewTest(),	with	x	set	to	the	value	of	the	last
line

Now,	with	the	program	on	the	second	line	(x	=	1),	we	can	see	in	the	variables	view	that	x
is	set	to	0	right	now.	Again,	that’s	because	we	executed	the	last	line,	but	have	not	yet
executed	the	current	line.	Now	let’s	step	over	two	more	lines	until	we’re	at	the	end:

Figure	14.10:	The	end	of	the	variableViewTest()	function,	where	x	has	its	final	value

In	Figure	14.10,	you	can	now	see	that	at	the	end	of	the	function,	all	of	the	lines	have	been
executed	and	that	x	is	equal	to	2.

When	debugging	your	own	applications,	you	can	use	this	technique	to	place	breakpoints
and	inspect	a	variable	(or	the	property	of	an	object)	by	stepping	through	code	and	seeing
how	things	change.

The	call	stack
One	of	the	last	core	pieces	of	a	good	debugging	suite	is	the	call	stack.	The	call	stack	lets
you	see	what	functions	have	been	called	(in	order)	to	get	to	the	point	in	the	program’s
execution	that	you	are	in	now:

Figure	14.11:	Call	stack	(on	the	left)	while	we	are	stepping	through	the	variableViewTest()
function

Found	in	the	Debug	Navigator	(command	+	6),	the	call	stack	shows	you	the	current
execution	point	of	your	code	on	every	thread	of	your	application.	Since	we	aren’t	dealing
with	multithreading	concepts	in	this	book	we’ll	just	stick	to	Thread	1,	which	is	the	main
thread	and	where	your	application	code	is	being	executed.

With	the	first	line	of	the	variableViewTest()	function	still	set	up	with	a	breakpoint,	let’s
run	the	program	again,	but	this	time	look	at	what	is	going	on	with	the	call	stack:

Figure	14.12:	The	call	stack	while	the	program	execution	is	paused	at	a	breakpoint	inside
variableViewTest()

At	the	top	of	the	call	stack,	we	see	that	we	are	inside	a	dropdown	labeled	Thread	1.	As	I
said,	this	is	our	main	thread,	and	this	is	where	all	of	our	application	and	UI	code	is	run
(unless	we	choose	to	do	otherwise).	From	there,	we	have	a	list	of	stack	frames,	each
numbered	by	how	far	away	they	are	from	the	current	stack	frame.

Notice	how	there	is	a	dotted	line	after	stack	frame	1,	and	then	it	jumps	to	19.	By	default,
Xcode	collapses	a	bunch	of	frames	that	aren’t	important,	because	they	don’t	have	debug
information	and	are	mostly	inside	other	libraries	like	UIKit.	Click	the	little	blue	sandwich
button	at	the	bottom	of	the	debug	navigator	to	see	the	full	stack:

Figure	14.13:	The	full	call	stack,	showing	the	full	list	of	stack	frames

This	information	is	good	to	see	to	understand	how	your	app	is	running,	starting	by	calling
the	main	function,	and	then	drilling	down	through	function	calls	until	you	hit	your	current
function,	but	usually	we	can	leave	this	turned	off.

But	wait,	what	is	a	stack	frame	in	the	first	place?	Essentially,	every	time	you	call	a
function,	you	dig	down	into	the	stack	and	create	a	new	frame	of	reference	for	program
execution.	Imagine	you	had	a	piece	of	paper	with	text	on	it.	Calling	a	function	is	like
cutting	that	piece	of	paper	between	two	lines	of	text,	pulling	them	apart,	and	putting
another	full	piece	of	paper	between	the	two	pieces.	Then	you	do	that	again	on	the	new
piece	of	paper,	etc.	Each	time	we	do	this	we	create	a	new	stack	frame,	creating	a	big
nested	list	describing	how	our	program	got	to	the	current	line	of	execution.

Now,	this	is	great	for	learning,	but	it	can	also	be	very	useful	when	debugging	a	program
crash.	Sometimes	a	function	is	being	called	from	several	places	in	your	code,	but	only	one
or	some	of	those	function	calls	are	creating	a	crash.	Instead	of	trying	to	mentally	figure	out
all	of	the	reasons	a	line	of	code	might	crash	in	a	function,	we	can	look	at	the	call	stack	to
see	exactly	how	we	got	to	this	line	of	code	and	give	us	a	better	idea	of	what’s	going	on.

To	test	this	out,	let’s	get	rid	of	the	breakpoint	(right	click	on	the	breakpoint	and	select
delete),	and	manually	add	a	program	ending	error	to	our	variableViewTest()	function:
func	variableViewTest()	{

				var	x	=	0

				x	=	1

				fatalError()

				x	=	2

}

Using	the	fatalError()	function	can	be	very	useful	to	make	sure	your	program	doesn’t
get	to	very	bad	places	in	your	code	while	testing,	but	here	we’re	just	using	it	to	induce	a
program	failure.	When	your	program	crashes,	you’ll	see	that	the	call	stack	shows	up
telling	you	exactly	where	the	program	crashed.

It	also	gives	you	information	about	the	crash	in	the	console,	and	captures	the	state	of
variables	in	the	variables	view:

Figure	14.14:	The	state	of	debug	information	after	a	program	crash

With	this	crash	information,	we	can	look	at	the	call	stack	to	see	how	we	got	to	this	point	of
the	program.	If	we	click	on	higher	stack	frames,	we	can	actually	jump	to	those	frames	and
see	the	state	of	the	local	variables	there	as	well.

Advanced	debugging	tools
With	these	basic	practices	under	your	belt,	you’re	in	a	good	position	to	deal	with	most	of
the	issues	that	will	come	your	way	on	a	normal	day.	But	sometimes,	you	have	to	deal	with
bugs	that	are	anything	but	normal.	In	this	section,	we’ll	cover	two	advanced	features	in
Xcode	8	that	allow	you	to	find	some	hidden	bugs.

Don’t	think	of	these	as	the	only	advanced	techniques	you	need	to	know,	but	as	the
beginning	of	a	long	education	in	how	to	deal	with	unruly	code.

Address	Sanitizer
The	Address	Sanitizer	was	one	of	the	best	new	debugging	features	added	to	Xcode	7.	If
you’re	new	to	programming,	you	might	not	have	had	enough	coding	experiences	to	truly
feel	the	pain	that	the	Address	Sanitizer	solves.

With	Swift,	the	language	is	designed	to	be	safer	with	memory	management,	and	in	most
cases	you	don’t	have	to	think	about	memory	allocations	at	all.	However,	in	C	and	Obj-C
code,	memory	(mis)management	can	cause	all	kinds	of	trouble.

For	example,	in	C,	it	is	perfectly	valid	to	allocate	a	new	array	with	a	size	of	four	elements,
and	then	try	to	access	the	fifth	element.	Not	only	is	it	valid,	but	that	code	will	actually	run.
When	used,	it	will	overflow	the	size	of	the	array	and	grab	whatever	data	might	be	sitting
just	outside	of	that	array	in	memory.	It	can	also	change	those	bits,	meaning	that	if	a	value
isn’t	reading	properly,	there	may	be	a	memory	issue	anywhere	in	your	program	that	is
accessing	something	it	shouldn’t	be.

As	you	can	imagine,	this	is	a	nightmare.	Luckily,	though,	the	Address	Sanitizer	solves
these	kinds	of	problems.	Even	though	you	might	be	using	only	Swift	right	now,	you	may
start	using	others’	code	(or	writing	your	own	code)	written	in	C	or	Obj-C,	so	this	may	very
well	save	you	many	headaches	down	the	line.

To	test	the	Address	Sanitizer,	let’s	quickly	make	a	new	test	project.	However,	this	time,	set
the	language	to	Objective-C.	Scary,	I	know!	Once	you	open	up	the	project,	things	might
look	a	little	different,	but	let’s	open	up	the	file	called	ViewController.m	and	rewrite	the
viewDidLoad()	method	like	so:
-	(void)viewDidLoad	{

				[super	viewDidLoad];

				

				int*	myArray	=	malloc(sizeof(int)	*	2);

				myArray[0]	=	0;

				myArray[1]	=	1;

				myArray[2]	=	2;

				

				NSLog(@”%i”,	myArray[3]);

}

This	may	look	a	little	strange	if	you’ve	never	used	C	or	Obj-C	before,	but	you	should	still
be	able	to	understand	that	we	are	creating	an	array	of	ints	(with	a	size	of	2	ints).	We	then
set	values	for	index	0,	1,	and	2.	That	last	index	is	invalid,	since	we	only	have	two	ints,
and	thus	only	index	0	and	1	are	valid.	After	that,	we	use	NSLog	(which	is	similar	to
print()	in	Swift)	to	write	out	the	value	at	index	3	of	the	array.

Here’s	the	really	scary	part:	build	and	run	the	project,	and	it	works!	Let’s	look	at	the
console	to	see	what’s	going	on:

Figure	14.15:	Our	app	is	printing	out	some	memory	garbage	for	the	value	at	index	3	of
our	array

The	app	runs	fine	without	any	crashes,	and	our	log	statement	even	printed	out	a	number	to
the	console.	In	this	case	it’s	reading	out	0,	which	is	extra	dangerous	because	that	can	seem
like	a	perfectly	valid	value.	You	can	see	how	this	can	cause	unpredictable	behavior!

Let’s	get	the	Address	Sanitizer	up	and	running	to	see	how	it	handles	these	issues.	To	do
that,	you’ll	need	to	edit	our	debug	scheme	(command	+	shift	+	,).	Go	to	the	diagnostics
tab	of	the	scheme	editor	(Figure	14.16)	and	check	the	Address	Sanitizer	box:

Figure	14.16:	Enabling	Address	Sanitizer	for	our	debug	scheme

Now	that	the	Address	Sanitizer	is	running,	build	and	run	the	project	one	more	time,	and:

Figure	14.17:	The	Address	Sanitizer	catches	our	memory	bugs

That’s	more	like	it!	When	our	program	is	running,	the	Address	Sanitizer	is	running	on	top
of	the	application	to	check	how	the	memory	is	being	managed,	and	is	able	to	spot	issues
like	this	one.	As	you	can	see	on	the	side,	not	only	does	it	tell	you	where	it	found	an	issue,
but	it	also	says	what	the	issue	is.	In	this	case,	it’s	letting	us	know	that	there	was	a	heap
buffer	overflow,	which	means	we	went	outside	of	the	boundaries	of	the	array	we	defined.

When	catching	an	error	like	this,	the	Address	Sanitizer	also	captures	a	full	snapshot	of	our
program,	so	we	can	inspect	variables	in	the	variables	view,	and	look	through	the	call	stack
too.

If	we	delete	the	line	of	code	causing	the	issue,	you’ll	see	that	it	catches	our	invalid	access
in	the	NSLog	function	too.

As	an	advanced	feature,	the	Address	Sanitizer	offers	some	more	functionality	for	more
advanced	users.	For	example,	from	the	call	stack,	we	can	look	at	the	blocks	of	memory
directly	(Figure	14.18)	when	the	Address	Sanitizer	finds	an	error,	but	this	is	a	bit	beyond
the	scope	of	this	book:

Figure	14.18:	Viewing	the	heap	memory	allocation	from	the	debug	navigator	with	the
Address	Sanitizer

Performance	gauges
While	we’ll	be	covering	performance	profiling	in	more	detail	in	the	next	chapter	on
optimization,	the	simple	performance	gauges	found	in	the	debug	sidebar	can	also	be	used
to	keep	an	eye	on	app	vitals	for	debug	reasons	(hence	their	location	in	the	debug	sidebar):

Figure	14.19:	The	performance	gauges	at	the	top	of	the	debug	navigator

These	performance	gauges	include	the	CPU,	memory,	disk,	and	network	gauges,	in
addition	to	the	energy	gauge	that	only	appears	when	testing	on	a	physical	device.

CPU	and	memory	gauge
The	CPU	and	memory	gauges	let	you	see	the	hardware	resources	your	app	is	using.	High
CPU	or	memory	usage	is	not	necessarily	a	bad	thing	if	your	app	is	doing	intensive	work,
but	if	you’re	seeing	high	readings	or	spikes	in	these	gauges	when	you	don’t	think	there
should	be	any,	it	may	be	indicative	of	a	bug	somewhere	in	your	code:

Figure	14.20:	The	editor	view	of	the	CPU	gauge

This	is	a	simple	view	of	what	our	Snippets	app	looks	like	at	rest.	We’re	not	doing
anything,	so	this	is	justifiably	using	zero	percent	of	the	CPU.	However,	what	happens	if	I
create	a	function	that	runs	a	for	loop	that	increments	an	integer	to	1,000,000	every	frame?

Figure	14.21:	The	CPU	gauge	with	an	intense	loop	running	every	frame

That’s	a	bit	more	intense!	Not	really	a	good	use	of	that	processing	power,	but	it’s
definitely	more	laborious.

The	memory	gauge	is	pretty	similar	to	the	CPU	gauge,	but	obviously	measures	your
memory	usage	instead	of	CPU:

Figure	14.22:	The	memory	gauge	while	running	Snippets	in	the	simulator

Remember	to	check	in	on	these	gauges	occasionally	to	see	if	there	are	any	spikes	so	that
you	can	catch	resource	issues	early.

Disk	and	network	gauge
While	the	CPU	and	memory	gauges	are	helpful	to	gauge	the	amount	of	resources	your	app
is	using,	the	disk	and	network	gauges	are	helpful	to	check	in	on	data	activity,	which	is	a
term	I	just	made	up	to	describe	data	flowing	in	and	out	of	your	app:

Figure	14.23:	The	disk	read/write	gauge

The	disk	gauge	shows	you	the	rate	of	the	data	being	written	to	your	local	storage,	and	the
data	being	read	from	local	storage.	Here	you	can	see	that	we	had	32.6	MB	read	from	the
disk,	which	was	mostly	in	the	boot	up	process	of	the	application,	and	then	reading	our
CoreData	information.	There’s	also	1MB	of	write	activity,	which	happened	when	I	created
and	saved	a	few	snippet	while	running	the	application.

Underneath	these	gauges,	we	can	see	a	histogram	of	when	the	data	was	read	and	written:

Figure	14.24:	The	network	read/write	gauge

The	network	gauge	shows	the	same	information,	except	for	data	sent	and	received	over	a
network	connection.	Since	our	app	doesn’t	use	a	network	connection	at	all,	we’re	seeing
zeroes	across	the	board.

These	two	gauges	are	a	good	place	to	check	to	see	if	your	app	is	needlessly	reading,
writing,	sending,	or	receiving	data.	These	operations	are	usually	somewhat	costly,	so	it’s	a
good	idea	to	make	sure	they	are	under	control.

Energy	gauge
Unlike	the	other	four	gauges,	the	energy	impact	gauge	is	only	usable	when	you	are	testing
on	an	actual	device.	When	running	your	app	on	a	device,	Xcode	automatically	tracks	the
energy	impact	of	the	different	components	of	an	app,	and	then	gives	you	an	overall	energy
impact	rating:

Figure	14.25:	The	energy	impact	gauge	while	on	the	home	screen	of	Snippets

When	developing	an	app,	you	should	make	sure	that	there	is	no	Energy	Impact	while	the
user	isn’t	actively	interacting	with	it.	If	they	are	actively	interacting,	the	Energy	Impact
should	still	be	low,	unless	the	user	knowingly	started	an	intensive	process.

These	guidelines	can	help	you	find	unexpected	bugs	in	your	code.	If	your	app	is	sitting
idle	and	you	see	any	energy	impact,	it	can	be	a	warning	that	some	part	of	your	codebase
isn’t	working	as	intended.

Visual	debugging
As	app	development	has	become	more	and	more	visual	with	the	use	of	storyboards,	we,	as
developers,	have	an	increasing	number	of	places	that	things	can	go	wrong	outside	of	our
actual	code.	In	the	last	chapter	we	looked	at	how	UI	tests	allow	us	to	test	user	interaction
scenarios,	but	we	can	also	debug	our	interfaces	when	things	go	wrong.	To	do	that,	we’re
going	to	use	Xcode’s	View	Debugger.

When	we	were	looking	at	the	debug	toolbar	earlier	in	the	chapter,	we	looked	at	the	View
Debugger	button,	but	didn’t	use	it.	(It’s	the	one	that	looks	like	three	rectangles.)	Let’s	build
and	run	our	project,	and	then	click	it	to	launch	the	View	Debugger:

Figure	14.26:	The	View	Debugger	paused	on	a	frame	of	our	Snippets	app

So	what	just	happened?	Xcode	paused	our	app,	and	then	loaded	the	entire	view	hierarchy
into	the	editor.	Along	the	left	side	of	the	screen	(in	the	debug	navigator)	we	can	see	all	of
the	UI	elements	in	their	hierarchy,	much	like	the	document	outline	in	a	storyboard.
However,	these	are	all	the	real	objects	that	are	created	at	runtime	and	are	captured	straight
from	the	device.	In	addition	to	the	hierarchy,	we	have	a	visualizer	in	the	main	editor
window	on	the	right.

Along	the	bottom	of	the	editor	we	have	some	buttons	that	allow	us	to	get	a	better	idea	of

what	is	going	on	in	our	views.	The	first	button	will	let	you	see	clipped	content,	and	the
third	button	(two	intersecting	boxes	with	lines	inside)	is	actually	a	dropdown	that	lets	you
switch	to	a	wireframe	mode:

Figure	14.27:	The	View	Debugger	in	wireframe	mode

The	wireframe	mode	can	be	helpful	to	quickly	see	if	your	bounding	boxes	have	gotten
mixed	up	from	Auto	Layout	at	runtime,	while	also	giving	you	a	better	idea	of	how	your	UI
is	actually	structured.	In	addition	to	this,	one	of	the	most	useful	features	of	the	View
Debugger	is	its	3D	mode:

Figure	14.28:	The	View	Debugger	in	3D	view	mode

The	3D	mode	can	be	activated	by	clicking	the	cube	button	at	the	center	of	the	bottom	of
the	editor,	or	by	simply	dragging	on	the	white	space	in	the	editor.	When	in	3D	view	mode,
the	layers	of	your	application’s	hierarchy	become	much	easier	to	understand.	If	you	have
layering	issues	with	your	app’s	UI,	this	can	be	a	lifesaver	(coupled	with	the	clipping	views
toggle).

The	slider	on	the	bottom	left	of	the	window	allows	you	to	spread	the	layers	closer	and
farther	away	from	each	other,	while	the	range	slider	on	the	bottom	right	lets	you	clip
which	parts	of	the	hierarchy	you	want	to	see.

You	can	also	click	on	elements	in	the	hierarchy	to	highlight	them	in	the	editor	window,
and	vice	versa.	If	you	double-click	on	an	element,	you	will	hide	all	of	the	elements	higher
on	the	hierarchy,	and	only	show	that	element	and	its	children.	This	can	be	useful	for
isolating	parts	of	the	UI	to	investigate	small	pieces:

Figure	14.29	An	isolated	element	in	the	View	Debugger

With	these	tools,	you	can	quickly	investigate	and	spot	issues	in	your	view	hierarchies	by
inspecting	a	real	snapshot	of	your	running	app’s	UI.

Summary
In	this	chapter,	we	looked	at	many	ways	to	debug	applications	that	are	misbehaving,	in
addition	to	learning	some	ways	to	check	on	the	overall	health	of	the	app.	First,	we	looked
at	some	basic	debugging	practices	such	as	printing,	using	breakpoints,	and	understanding
the	call	stack.	Then	we	looked	at	some	advanced	debugging	tools	like	Address
Sanitization,	which	helped	us	solve	hard	to	find	bugs	in	C	and	Objective-C	code.	We	also
learned	about	the	performance	gauges	in	the	debug	navigator,	which	help	us	stay	alert	to
any	major	issues	that	don’t	necessarily	cause	a	crash.	Finally,	we	looked	at	the	View
Debugger,	which	helps	us	visualize	any	bugs	that	we	may	have	in	our	view	hierarchies.

In	the	next	chapter,	we’ll	be	looking	at	some	of	the	tools	that	Xcode	provides	for
optimizing	our	app’s	performance	and	file	size.	After	we	look	at	optimization,	we’re	going
to	put	some	final	touches	on	our	app	and	declare	it	a	finished	v1.0	app!

Chapter	15.	Optimizing	Your	App
So	here	we	are	with	an	app	that	is	feature	complete	(for	this	first	release),	tested,	and
debugged.	What’s	left	to	do?	A	lazier	developer	would	call	it	done	and	just	ship	the	app,
but	there’s	still	some	performance	we	can	squeeze	out	of	our	app,	and	detail	work	to	be
done.

To	do	this,	we’re	going	to	look	at	the	features	in	Xcode	that	help	us	optimize	our	app’s
performance.	There	are	also	tools	to	help	us	optimize	the	amount	of	space	the	app	takes	up
on	the	user’s	device.	In	this	chapter,	we’re	going	to	cover:

	
The	Instruments	performance	analysis	toolset
Asset	slicing	using	asset	catalogs	in	Xcode
Bitcode	compiling
On-demand	resources

Introduction	to	Instruments
When	writing	and	debugging	code,	you	can	often	get	caught	up	in	the	frustrations	of
questions	like	why	isn’t	this	working	and	how	can	I	make	this	feature	more	obvious	to	the
user?	However,	once	you’ve	got	everything	functioning	in	the	way	you	like,	it’s	time	to
ask	some	questions	that	have	less	visible	and	less	immediate	impact.	How	can	we	make
our	app	run	faster?	Is	this	function	as	simple	as	it	needs	to	be?	Are	we	wasting	any
processor	time?

These	are	questions	of	optimization:	once	our	product	is	functionally	complete,	we	need	to
go	back	and	make	sure	we	did	everything	right.	Because	these	questions	don’t	have	easily
visible	answers,	we’re	going	to	have	to	use	some	tools	to	get	the	job	done.	In	the	case	of
optimization,	that	tool	is	Instruments.

Instruments	is	an	analysis	and	profiling	tool	that	gives	a	detailed	look	at	what	is	going	on
under	the	hood	of	your	app.	(You	may	remember	that	we	took	a	very	quick	look	at	it	all
way	back	in	Chapter	1,	Starting	Your	iOS	Journey).	Instruments	is	a	collection	of	profiling
tools,	each	of	which	are	a	different	instrument	of	analysis,	hence	the	name.	There	are	tons
of	these	little	tools	inside	the	Instruments	app,	but	for	now	we’re	going	to	explore	three	of
the	most	commonly	used	instruments	for	profiling	the	performance	of	your	apps:	the	Time
Profiler	instrument,	the	Allocations	instrument,	and	the	Leaks	instrument.

Time	Profiler	instrument
Arguably	one	of	the	most	straightforward	and	intuitive	tools,	the	Time	Profiler	does	just
what	it	says	it	will:	it	looks	to	see	how	long	your	app	takes	to	run.	However,	it	does	so	at	a
high	granularity	by	checking	to	see	how	much	time	your	app	spends	executing	all	of	the
functions	inside	your	code.	This	allows	you	to	quickly	see	which	parts	of	your	code	are
using	up	the	most	time,	and	helps	you	have	a	good	idea	of	where	the	best	place	to	start
optimizing	may	be.

Let’s	get	to	it.	Open	up	Snippets	(as	always,	there’s	a	fresh	copy	of	the	Xcode	project	in
the	resources	folder	of	the	last	chapter	if	you	need	it),	and	then	build	our	app	for	profiling.
To	do	this,	we’ll	use	command	+	I	(instead	of	command	+	R),	or	Product	|	Profile	from
the	menu	bar.	This	will	build	the	app,	and	then	launch	Instruments.	You	should	see	a
screen	like	this,	asking	you	to	choose	a	profiling	template:

Figure	15.1:	The	profile	template	chooser	for	Instruments

Like	I	said,	there	are	a	lot	of	these!	They’re	listed	in	alphabetical	order,	so	scroll	down	a
bit,	select	the	Time	Profiler,	and	click	Choose.	This	will	open	a	new	Instruments
document	that	is	ready	to	use	the	Time	Profiler.

Anatomy	of	an	Instruments	document
Before	we	learn	about	the	Time	Profiler	specifically,	lets	take	a	little	time	to	get	a	feel	for
what	is	going	on	inside	this	Instruments	document:

Figure	15.2:	A	fresh	Instruments	document,	ready	to	profile	time

At	the	top	(box	1	in	Figure	15.2),	we	have	the	toolbar.	Starting	from	the	left,	we	have	the
record	and	pause	buttons.	Clicking	the	record	button	will	actually	begin	profiling	your	app
by	launching	it	and	recording	the	activity.	Likewise,	pause	will	pause	the	profiling.	Then
we	have	some	information	on	the	device	and	process	being	monitored.	On	the	right,	the
plus	button	allows	you	to	add	additional	instruments	to	your	document	(though	we	will
just	stick	to	one	at	a	time).

In	box	number	2,	we	have	the	actual	instrument	data	that	is	processed	from	the	device.	We
just	have	the	Time	Profiler	active,	so	that’s	all	we	see	for	now.	Once	it	starts	running,	we’ll

have	metrics	running	across	the	view	horizontally.

In	box	3,	we	have	the	Detail	window.	This	window	will	look	different	for	each	specific
instrument	that	is	used.	In	this	case,	it	is	going	to	show	us	something	similar	to	the	call
stack	that	we	used	when	debugging,	but	it	will	be	telling	us	how	much	time	was	spent	in
each	part	of	the	stack.

Finally,	in	box	4,	we	have	the	Detail	Inspector.	You	can	jump	around	between	the	tabs
along	the	top	using	command	+	1,	command	+	2,	and	command	+	3.	There	are	some	useful
tools	in	these	inspectors,	but	the	second	tab	(Display	Settings,	command	+	2)	is	really	the
only	one	we	care	about	right	now,	because	it	allows	us	to	configure	some	settings	for	our
detail	window.	Before	we	move	on	from	the	display	settings,	check	off	the	boxes	for
Invert	Call	Tree	(this	shows	us	the	bottom	of	the	stack	first,	instead	of	the	top),	and	Hide
System	Libraries	(we	don’t	care	about	time	spent	in	system	library	code;	we	can’t	fix	any
of	that!).

Using	the	Time	Profiler
Now	that	we’ve	got	our	bearings	on	the	Instruments	document	window,	let’s	get	to
profiling!	Press	the	record	button	on	the	toolbar	to	launch	the	app,	and	begin	profiling.
Make	sure	that	your	device	is	plugged	in	and	unlocked	first.

Note
It	is	always	recommended	to	test	directly	on	your	device.	Since	the	simulator	is	just	that,	a
simulator,	there’s	not	really	much	of	a	point	to	testing	performance	with	it.	Always	test
directly	on	a	device	to	get	a	better	idea	of	how	things	are	working.

Figure	15.3:	The	Time	Profiler	after	fiddling	with	Snippets	for	about	30	seconds

In	the	instrument	data	view	along	the	very	top,	we	can	see	the	CPU	usage	over	time,
including	spikes	at	different	points	in	time.	Below	that,	we	can	see	the	life	cycle	of	the
app,	where	it	is	mostly	running	active	in	the	foreground.	If	we	look	at	the	detail	window
below,	we	can	see	a	list	of	all	the	functions	in	our	app	as	a	Call	Tree,	showing	us	which
functions	used	the	most	percentage	of	our	app’s	time.

Figure	15.4:	The	detail	view	of	the	Time	Profiler,	showing	the	amount	of	time	that	was
spent	in	each	function

In	my	case,	the	most	used	function	was	the	getter	for	persistentStoreCoordinator	in	the
AppDelegate	class,	so	I	clicked	on	the	little	arrow	that	shows	up	on	the	far	right	of	a	row
when	you	hover	over	it	to	see	more	details.	From	there,	I	could	see	all	the	function	calls
that	happen	inside	that	function:

Figure	15.5:	More	information	about	a	high-use	function	call

Once	there,	I	could	see	that	the	most	time	consuming	part	of	this	function	was	another
function	call	to	my	reloadSnippetData()	function.	By	right	clicking	on	that	function	call,
I	selected	the	option	Reveal	in	Xcode.	This	opened	my	Xcode	document	to	show	me	the
reloadSnippetData()	function,	allowing	me	to	look	through	it	for	performance	issues
myself.

Figure	15.6:	Inspecting	my	reloadSnippetData()	function	after	seeing	its	performance	in
Instruments

After	looking	through	the	function,	it	seems	that	there	isn’t	much	we	can	do	to	optimize	it;
the	big	time	sink	appears	to	be	the	fetch	request	we	send	to	our	Core	Data	database.
Luckily,	even	though	this	was	taking	up	a	big	percentage	of	our	app’s	run	time,	it	wasn’t
really	causing	any	major	performance	issues,	or	causing	any	noticeable	lag.

Let’s	take	a	quick	look	at	another	way	to	connect	the	Time	Profiler	to	your	code.	Heading
back	to	the	Call	Tree	from	Figure	15.5,	when	I	double	click	on	the	reloadSnippetData()
line,	I’m	presented	with	a	look	of	what’s	going	on	in	Xcode	directly	inside	Instruments:

Figure	15.7:	Double	clicking	on	a	row	in	the	Call	Tree	gives	us	a	look	at	the	code	from
inside	Instruments

This	is	a	great	way	to	preview	the	code	without	leaving	Instruments.	However,	we	can’t
edit	any	code	from	Instruments,	and	will	ultimately	have	to	go	back	to	Xcode	if	we	want
to	make	any	changes.

Normally,	you	should	be	able	to	tell	pretty	quickly	if	there	is	a	major	issue	with	your	code

by	skimming	the	most	time-consuming	functions.	They’re	measured	in	milliseconds	(1000
ms	in	1	second),	so	if	you	see	a	lot	of	time	being	spent	in	a	function	that	you	don’t	think
should	be	taking	that	long,	you	should	investigate	it.

Allocations	instrument
From	a	programmer’s	standpoint,	memory	usage	is	one	of	the	most	important	things	to
keep	in	mind	when	trying	to	optimize	your	app.	When	in	iterative	development	mode,	you
might	not	be	thinking	too	much	about	what	is	happening	with	your	device’s	memory,
because	you’re	not	even	sure	if	the	feature	you’re	working	on	is	going	to	make	it	into	the
final	build!

However,	eventually	you	will	need	to	go	through	your	code	and	make	sure	that	you	aren’t
creating	a	huge	memory	mess	by	creating	new	objects	all	the	time	when	it	isn’t	necessary.
The	allocations	tool	is	a	great	way	to	get	a	quick	idea	of	what	your	memory	allocations
look	like	in	your	code,	and	it	can	help	you	spot	messy	patches.

Figure	15.8:	Creating	a	new	allocations	profiling	document

To	try	this	out,	let’s	build	our	app	for	profiling	again	(command	+	I).	Make	sure	you
closed	the	old	Instruments	document	first.	This	time,	we’re	going	to	select	the	Allocations
profiler,	and	click	Choose.	Once	we	have	our	Instruments	document	open,	press	the
record	button	to	begin	profiling	it.	Once	running,	create	and	save	a	new	text	snippet,	and
then	do	the	same	for	a	photo	snippet	before	stopping	the	profiling	session.	You	should
have	an	instrument	view	that	looks	similar	to	this:

Figure	15.9:	Example	of	an	Allocations	profiling	session

You	can	see	two	spikes	from	memory	allocations	where	we	present	the	text	snippet	view
controller	(arrow	1	in	Figure	15.9)	and	where	we	present	the	photo	snippet	view	controller
(arrow	2	in	Figure	15.9).	Here,	you	can	see	that	memory	goes	up	when	the	controller	is
presented,	and	then	goes	back	down	once	it	is	dismissed.	This	is	the	first	sign	that	things
are	working	pretty	well.	Next,	let’s	take	a	deeper	look	at	the	detail	view:

Figure	15.10:	The	detail	view	during	an	allocations	Instruments	session

In	the	detail	view	we	can	see	all	of	the	memory	that	was	allocated	during	the	session.	The
category	is	the	object	type,	which	is	then	followed	by	all	types	of	memory	information.
The	most	important	number	to	us	(for	now)	is	the	Persistent	Bytes	column,	which	lets	us
know	how	much	memory	is	actually	staying	used	for	each	category.	To	continue	keeping
things	simple	for	beginners,	the	All	Heap	Allocations	category	is	the	best	place	to	focus,
since	that	is	mostly	where	the	objects	you	create	will	go.

So	this	information	is	great,	but	what	are	we	supposed	to	do	with	it?	It	would	be	more
useful	to	have	some	data	at	different	points	in	the	program	to	compare	along	the	way.
Using	a	tool	called	Generation	Analysis,	we	can	do	just	that!	First,	from	the	Display
Settings	Inspector	(command	+	2),	set	the	allocation	type	to	All	Heap	Allocations,	then
hit	the	record	button	to	begin	a	new	round	of	profiling.

Above	the	Allocation	Type	section	of	the	Display	Settings	Inspector	is	another	section
called	Generation	Analysis	with	a	single	button	called	Mark	Generation.	With	the	app
running	under	the	Allocation	instrument,	here’s	what	we’re	going	to	do:

	
1.	 Click	the	Mark	Generation	button	in	Instruments.
2.	 Tap	the	New	button	in	the	running	Snippets	app;	select	Text.
3.	 Write	Hi	and	the	press	Done.
4.	 Repeat	steps	1	through	3	five	times.

Now	let’s	talk	about	what	we	just	did,	and	take	a	look	at	the	data	we	got	back	from	this
process:

Figure	15.11:	The	detail	view	during	an	allocations	instruments	session

Every	time	we	clicked	the	Mark	Generation	button,	we	were	making	a	little	flag	that
held	all	of	the	memory	allocations	from	that	generation.	Then	we	executed	a	task	before
marking	a	new	generation.	By	doing	this	several	times,	we	get	a	good	idea	of	whether	our
memory	usage	is	staying	the	same	through	the	tasks,	or	increasing	over	time.

In	the	Detail	Inspector	(as	seen	in	Figure	15.11),	we	can	see	an	overview	of	each
generation,	including	the	amount	of	memory	growth	between	generations.	We	can	also
scrub	through	the	instrument	view	to	get	a	number	representing	the	allocated	memory	at
any	point	on	the	timeline.	From	looking	at	all	of	these	numbers,	I	can	see	that	the	overall
memory	fluctuates	between	17.8	MB	and	18.3	MB	across	all	of	my	generations,	so	I	think
it’s	safe	to	say	that	there	are	no	major	issues	with	our	memory	allocations.

Leaks	instrument
While	the	Allocations	instrument	tracks	all	memory	allocations,	the	Leaks	instrument	is
specifically	tailored	to	finding	memory	leaks	in	your	code.	Like	the	Address	Sanitizer	that
we	looked	at	in	the	last	chapter,	the	Leaks	instrument	is	mostly	useful	when	profiling	older
Obj-C	and	C	code,	since	memory	management	can	be	a	bit	trickier.	We’ll	take	a	brief	look
at	it	anyway	though,	since	you’ll	inevitably	touch	some	old	code	at	some	point!

Note
A	memory	leak	is	when	you	create	space	in	your	device’s	memory,	but	lose	the	address	for
that	memory	without	clearing	it	first.	This	means	that	there	is	still	data	in	the	memory,	but
you	have	no	way	to	access	it	anymore.

Again,	close	your	old	Instruments	document,	then	build	your	project	for	profiling	with
command	+	I.	This	time	select	Leaks	from	the	profiling	template	picker:

Figure	15.12:	Choosing	the	Leaks	instrument	from	the	profiling	template	picker

Once	the	document	is	created,	you’ll	notice	that	this	template	also	gives	you	an
Allocations	instrument!	In	the	future,	you	could	just	use	this	single	template	to	check	for

both	allocation	issues	and	memory	leaks.

Click	record	to	begin	profiling	the	app,	and	then	create	some	snippets	like	we	did	earlier.
Then,	let’s	click	on	the	Leaks	instrument,	and	check	out	our	Details	view.

Figure	15.13:	Viewing	Leaks	in	the	Instruments	and	detail	views

Luckily,	we	don’t	have	any	leaks	in	our	current	application.	However,	fixing	anymemory
issues	that	would	arise	here	is	a	bit	beyond	the	scope	of	this	book,	and	not	all	too
interesting.	The	important	takeaway	is	that	you	get	acquainted	with	setting	up	this	tool,
and	knowing	that	it	exists	to	help	you	find	these	memory	issues	when	they	arise.

App	Thinning
While	code	performance	is	an	obvious	area	to	focus	our	optimization	efforts,	it’s	not	the
only	one.	When	building	our	application	for	distribution	(as	we’ll	be	doing	very	soon!),	it
becomes	important	to	start	thinking	about	the	file	size	that	the	app	will	take	up	on	the
device.	In	this	case,	we’re	not	talking	about	optimizing	the	speed	at	which	the	app	runs,
but	optimizing	how	the	actual	assets	that	make	up	the	app	are	packaged.

To	keep	apps	lean,	Apple	has	introduced	a	new	strategy	called	App	Thinning	that	makes
sure	your	app	download	contains	only	the	assets	and	information	that	it	needs.	App
Thinning	has	three	main	components:	asset	slicing,	bitcode	compilation,	and	on-demand
resources.

Slicing
When	Apple	introduced	Universal	builds	for	applications,	there	was	only	one	version	of
the	iPhone	and	one	version	of	the	iPad.	This	meant	that	when	downloading	a	universal
app,	you	were	getting	two	versions	of	the	app,	which	isn’t	too	bad.	However,	since	then,
things	have	changed	considerably.	We	now	have	three	different	versions	of	the	iPhone
with	different	screen	resolutions	(iPhone	SE,	7s	and	7s	Plus),	two	sizes	of	iPad,	and	two
sizes	of	iPad	Pro.	Not	to	mention	two	versions	of	the	Apple	Watch,	and	the	Apple	TV	to
top	it	off!	If	we	let	people	download	real	universal	builds	for	applications	now,	they’d	be
huge	bloated	messes	that	had	a	lot	of	information	that	devices	didn’t	need.

The	concept	of	slicing	removes	the	unnecessary	files,	and	makes	sure	that	only	the
resources	that	each	specific	device	needs	is	downloaded.	Here’s	how	it	works:

	
You	categorize	resources	using	asset	catalogs	in	Xcode
The	full	app	gets	uploaded	to	iTunes	Connect
Apple’s	servers	take	care	of	splitting	up	resources	based	on	devices
A	user	downloads	the	app	from	the	app	store,	only	receiving	the	resources	needed	for
their	device

As	you	can	see,	most	of	the	heavy	lifting	is	taken	care	of	on	Apple’s	end,	which	makes	our
lives	much	easier.	However,	we	do	have	to	do	a	bit	of	work	up	front	by	placing	all	of	our
resources	into	asset	catalogs	and	flagging	them	properly.	Let’s	open	up	Snippets	and	see
how	this	works	by	adding	some	app	icon	resources	to	an	asset	catalog.

Start	by	opening	the	Assets.xcassets	file	inside	your	main	Snippets	folder	(not	the
watch	extension	ones).	Inside	should	be	two	assets,	AppIcon	and	Brand	Assets.	Click	on
the	AppIcon	image	set,	and	you	should	see	the	following:

Figure	15.14:	The	empty	app	icon	asset

You’ll	notice	that	there	are	a	ton	of	slots	for	many	different	image	sizes	(and	detail	levels).
This	is	the	beginning	of	our	slicing	journey:	setting	up	the	app	icon	for	all	of	the	different
resolutions	of	phones!	In	the	resources	folder	of	this	chapter,	I’ve	included	a	folder	of
icons	at	different	resolutions	and	detail	levels.	For	example,	in	the	first	slot	you	should	put
icon_29@2x.png,	since	it’s	looking	for	the	2x	size	of	the	29pt	icon.	Drag	each	image	into
the	asset	catalog,	and	you’ll	have	something	that	looks	more	like	this:

Figure	15.15:	The	filled	app	icon	image	set	asset

It	should	be	fairly	obvious	that	each	image	in	this	set	is	registered	with	a	specific	device
type	and	screen	size.	This	means	that	an	iPhone	7	won’t	be	downloading	the	iPhone	7	Plus
images.	In	fact,	it	will	only	be	downloading	the	2x	versions	of	the	iPhone	images.	So	even
though	we’ve	got	8	icons	in	the	asset	catalog,	the	iPhone	6s	will	only	end	up	with	4.

While	we’re	at	it,	let’s	go	ahead	and	add	all	the	Apple	Watch	icon	images	to	the
Assets.xcassets	file	inside	the	Snippets-watch	folder,	using	the	icons	I	have	provided
in	the	icons-watch	folder	in	the	Chapter	15	resources	folder:

Figure	15.16:	The	filled	apple	watch	icon	image	set	asset

Now,	this	is	great	for	app	icons,	but	what	about	other	images?	Or	even	assets	that	aren’t
images?	Well,	asset	catalogs	let	us	create	our	own	sliced	assets.	Let’s	try	it	out.	Go	back	to
the	main	application	catalog,	then	at	the	bottom	of	the	asset	catalog’s	set	list	on	the	left,
there	is	a	plus	button	to	create	a	new	asset.	Click	it,	then	select	New	Image	Set.	Rename
the	image	set	to	Example:

Figure	15.17:	Creating	a	new	image	set	asset

Once	created,	the	image	set	will	be	configured	for	a	universal	app.	However,	we	can	add
more	information	to	give	more	specific	data	for	different	devices.	If	you	open	the
Attribute	Inspector	while	the	image	set	is	selected,	you’ll	see	more	options	for	the	asset
(Figure	15.18):

Figure	15.18:	Checking	the	options	for	the	asset	in	the	Attribute	Inspector

In	the	Attribute	Inspector,	you’ll	see	that	we	can	set	a	number	of	flags	that	we	can	support.
We	can	choose	from	a	set	of	devices,	some	permutations	of	size	classes,	the	amount	of
memory	a	device	has,	and	the	type	of	graphics	performance	available	on	the	device.

Let’s	say	we’re	building	an	app	for	iPhone,	iPad,	and	Apple	TV,	and	this	image	asset
doesn’t	care	about	anything	else.	We	can	uncheck	Universal	then	check	off	all	three
platforms,	and	see	the	asset	change	accordingly:

Figure	15.19:	A	more	specific	configuration	for	our	new	image	asset

At	this	point,	we	can	drag	in	our	images,	and	know	that	we’ll	have	tailored	images	for
each	platform	without	worrying	about	bloating	our	app’s	file	size.	To	access	the	correct
image	from	code,	we	only	need	to	reference	the	base	name	(in	this	case,	Example),	and	the
asset	catalog	will	make	sure	the	correct	version	is	used	at	run	time.

In	addition	to	custom	images,	we	can	also	use	asset	catalogs	to	slice	any	type	of	file.	Let’s
say	we	have	a	custom	configuration	file	that	we	load	in	at	run	time	to	set	up	our	graphics
pipeline.	But	we	have	a	different	file	depending	on	the	graphics	available,	and	the	amount
of	RAM	the	device	has.

Create	a	new	asset,	but	this	time	choose	New	Data	Set,	and	name	the	asset
GraphicsConfig.	Select	the	asset,	and	then	check	off	the	4GB	option,	along	with	the
Metal	2v2	and	Metal	3v2	options	in	the	Attribute	Inspector	(Figure	15.20):

Figure	15.20:	A	custom	configuration	asset	for	different	graphics	capabilities

With	these	options	enabled,	we	now	have	a	grid	of	six	possible	configurations	to	load,
depending	on	the	device.	I’ve	also	included	a	set	of	.txt	files	in	the	resources	folder	of
this	chapter	(called	graphics	configs)	that	you	can	drag	into	the	data	set.	Right	now
these	are	just	tiny	example	files,	but	in	a	bigger	production	app,	you	might	have	a	ton	of
files	like	this	that	can	now	be	customized	per	device	without	sacrificing	app	file	size.

Bitcode
When	you	compile	your	app,	your	code	gets	translated	into	machine	code	that	runs	on
your	device’s	processor.	Usually,	once	complied	for	a	specific	processor	architecture,	that
executable	can	only	be	run	on	that	processor.	However,	with	Bitcode,	Apple	compiles
your	app	to	an	intermediate	state,	which	Apple	can	then	re-compile	at	their	end	for
specific	devices.

What	this	means	for	you	is	that	if	Apple	changes	their	processors	in	future	devices,	Apple
can	recompile	your	app	for	the	new	processors,	and	your	app	will	just	work.	You	don’t
have	to	recompile	and	reupload	your	app	to	work	with	the	new	processors.	It	also	allows
them	to	optimize	builds	for	each	individual	device.	Bitcode	isn’t	so	much	a	feature	for	you
to	use	as	much	as	it	is	a	new	way	for	your	code	to	be	deployed	easily	to	many	different
devices.

Figure	15.21:	Enabling	bitcode	from	the	Xcode	project’s	build	settings

By	default,	Bitcode	is	enabled	on	an	iOS	project.	If	you’re	working	on	a	different	type	of
project	or	just	want	to	double	check,	you	can	go	to	the	build	settings	of	the	Xcode	project
and	search	for	bitcode.	Just	make	sure	that	the	Enable	Bitcode	flag	is	set	to	Yes.

On-demand	Resources
Sometimes	when	building	an	app,	there	is	no	way	around	requiring	a	large	amount	of	asset
resources.	For	example,	if	you	are	building	an	advanced	3D	game,	you	may	have	many
levels	worth	of	3D	meshes	and	textures,	in	addition	to	audio.	Instead	of	downloading
several	hundred	or	thousands	of	megabytes	of	data	at	the	initial	download	time,	you	can
store	some	of	those	assets	in	the	cloud	and	pull	them	down	as	needed.	These	assets	are
called	On-demand	Resources	(ODR).

When	creating	an	app	that	has	some	assets	that	are	only	used	occasionally,	like	an	app
tutorial,	or	levels	in	a	game,	offloading	those	assets	to	the	cloud	until	you	need	them	can
save	a	ton	of	space	in	your	app’s	file	size.	To	use	ODR,	we	are	going	to	tag	assets	in	our
asset	catalog,	and	then	pull	down	resources	associated	with	that	tag.	We	first	need	to
create	and	set	up	our	tags,	then	we’ll	load	the	resources,	and	finally	we’ll	purge	them.

Creating	tags
Let’s	take	the	graphics	config	files	that	we	created	earlier	and	set	them	as	resources	to	be
downloaded	on	demand.	First,	we	need	to	create	a	tag	for	this	resource	group	so	that	we
can	use	it	to	download	the	resource	later.	Go	to	the	Xcode	project	settings,	and	open	the
Resource	Tags	tab,	which	should	be	two	to	the	right	of	the	default	General	tab.	Click	the
+	button	along	the	top	to	create	a	new	tag,	and	call	it	Graphics	(Figure	15.22):

Figure	15.22:	We	created	an	empty	Graphics	tag	for	on	demand	resources

From	inside	the	tag,	we	can	use	the	plus	button	at	the	bottom	to	add	files	to	the	tag,	which
then	become	part	of	that	ODR	bundle.	However,	if	we	want	to	get	more	specific,	we	can
go	inside	our	asset	catalogs	to	tag	specific	assets.

Open	up	the	Assets.xcassets	catalog,	and	select	the	GraphicsConfig	asset.	From	the
Attribute	Inspector,	you	should	see	a	section	called	On-demand	Resource	Tags.	If	you
type	in	the	name	of	the	tag	we	just	made,	it	should	autocomplete	and	you	should	have	a
tag	that	looks	just	like	Figure	15.23:

Figure	15.23:	A	resource	in	an	asset	catalog	using	an	ODR	tag

If	we	go	back	to	the	resource	tags	in	the	Xcode	project	editor,	we	should	now	see	that
we’ve	added	a	new	resource	to	the	Graphics	tag:

Figure	15.24:	The	Graphics	tag	now	contains	an	asset	from	our	asset	catalog

At	this	point,	we’re	now	ready	to	load	the	resource	from	code.

Loading	resources
To	load	the	resources,	we	need	to	fetch	the	resources	from	the	app	store.	We	do	this	using
an	NSBundleResourceRequest	object.	Let’s	open	our	ViewController.swift	file	and
make	some	changes	to	load	in	our	ODR.
var	resourceRequest:	NSBundleResourceRequest!

override	func	viewDidLoad()	{

				super.viewDidLoad()

				imagePicker.delegate	=	self

				locationManager.delegate	=	self

				locationManager.desiredAccuracy	=	kCLLocationAccuracyBest

				locationManager.distanceFilter	=	50.0

				

				tableView.estimatedRowHeight	=	100

				tableView.rowHeight	=	UITableViewAutomaticDimension

				

				askForLocationPermissions()

				

				fetchODR()

}

func	fetchODR()	{

				let	tags	=	Set(arrayLiteral:	“Graphics”)

				resourceRequest	=	NSBundleResourceRequest(tags:	tags)

				resourceRequest.beginAccessingResources	{	(error:	Error?)	in

						if	error	!=	nil	{

								print(“graphics	resources	were	not	loaded”)

								return

						}

						print(“resources	can	now	be	accessed	as	usual”)

				}

}

Here,	we’ve	created	a	new	function	called	fetchODR().	It	first	creates	a	new	set	of	tags,	in
this	case	just	the	Graphics	tag	that	we’ve	made.	Then	we	initialize	an
NSBundleResrouceRequest	object	using	the	tags.	Finally,	we	request	to	download	the
resources,	and	create	a	completion	handler	that	prints	out	whether	or	not	the	download
was	successful.

Once	our	download	succeeds,	the	resources	will	be	a	part	of	our	application	bundle,	and
can	be	accessed	just	as	if	they	had	been	part	of	our	app	the	whole	time.

Purging	resources
To	get	rid	of	ODRs	that	we	no	longer	need,	we	just	need	to	tell	the
NSBundleResourceRequest	that	we	are	no	longer	using	it.	This	is	why	we	need	to	keep	a
reference	to	the	bundle	resource	request.
resourceRequest.endAccessingResources()

Calling	the	endAccessingResources()	function	from	anywhere	in	your	code	will	tell	the
bundle	resource	request	that	we	no	longer	need	the	associated	assets,	and	that	it	can
remove	them	from	the	system	when	necessary.

If	you’re	interested	in	learning	more	about	ODR,	then	you	should	check	out	Apple’s
documentation.	There’s	enough	information	to	spend	a	whole	chapter	just	discussing	the
many	ways	to	interact	with	ODR,	like	getting	download	progress	information,	setting
download	priority,	and	managing	multiple	tags.	However,	here	we	learnt	just	enough	to
get	up	and	running.

Summary
In	this	chapter,	we	learnt	about	how	to	use	the	Instruments	set	of	tools	to	profile	our	code
in	multiple	ways.	We	used	the	Time	Profiler	to	see	which	parts	of	our	code	took	the	most
amount	of	time	to	run,	and	then	we	used	the	Allocations	and	Leaks	instruments	to	see
which	parts	of	our	app	were	using	the	most	memory.	Then,	we	looked	at	other	ways	to
optimize	our	app’s	file	size	and	assets,	instead	of	its	code.	To	cut	down	our	app’s	file	size,
we	reviewed	Apple’s	guidelines	for	App	Thinning,	including	slicing,	Bitcode,	and	ODRs.

In	the	next	chapter,	we	take	our	final	application	and	learn	how	to	deploy	it	to	TestFlight
for	beta	testing,	and	finish	our	journey	by	pushing	the	final	version	of	Snippets	to	the
App	Store!

Chapter	16.	Distributing	an	iOS	App
We’ve	done	it	all.	We	learned	the	tools,	designed	and	built	an	application,	and	now	it	is
tested,	debugged,	and	optimized.	The	only	thing	that	is	left	to	do	is	put	it	somewhere	that
people	can	download	it!	To	distribute	our	app,	we’ll	be	using	Apple’s	distribution	platform
called	iTunes	Connect.	There’s	not	much	else	to	say,	so	let’s	get	straight	to	it.	In	this
chapter	we	will	cover:

	
Creating	a	new	app	page	in	iTunes	Connect
Archiving	your	app	and	uploading	to	iTunes	Connect
Using	iTunes	Connect	to	distribute	TestFlight	builds
Submitting	final	builds	to	the	App	Store	for	download

Preparing	iTunes	Connect
While	we’ve	been	able	to	spend	the	majority	of	this	book	in	the	Xcode	suite	of
development	tools,	it’s	time	to	jump	into	something	new.	iTunes	Connect	is	a	web	portal
that	allows	you,	the	developer,	to	set	up	all	of	the	app	information	that	is	necessary	to	have
a	store	page	on	the	App	Store.

Note
For	this	part	of	the	process,	iTunes	Connect	is	going	to	be	our	new	home	base.	We’ll	head
back	to	Xcode	to	do	our	final	export	of	our	application,	but	otherwise	we’ll	be	in	iTC.
Here’s	the	downside:	you	must	be	a	paid	developer	to	access	iTunes	Connect	and
distribute	applications.	If	you	don’t	have	a	paid	developer	license,	you	should	either	buy	it
now,	or	just	read	through	this	chapter	and	wait	to	follow	it	when	you	have	your	own	app
ready	to	distribute.

Registering	a	bundle	identifier
When	we	first	began	developing	our	application,	we	had	to	give	our	app	a	Bundle	ID.
This	ID	was	in	reverse	domain	syntax,	and	gave	our	app	a	unique	identifying	string.	When
setting	up	your	app	for	distribution,	you	need	to	register	that	specific	ID	with	your
developer	account.	To	do	this,	we	actually	have	to	visit	the	Developer	Member	Center
first,	which	is	where	we	signed	up	for	our	developer	account	all	the	way	back	in	the	first
chapter.	Here’s	the	link:	http://developer.apple.com/membercenter/:

Figure	16.1:	Accessing	certificates,	identifiers,	and	profiles	from	the	Developer	Member
Center.

Once	you	sign	in,	you	should	see	a	screen	like	in	Figure	16.1;	this	is	the	Member	Center
dashboard.	From	here,	you	want	to	click	on	the	highlighted	link	in	Figure	16.1,	which	will
bring	you	to	the	Certificates,	Identifiers	&	Profiles	area.	This	is	where	you	will	be
registering	your	Bundle	ID:

http://developer.apple.com/membercenter/

Figure	16.2:	How	to	create	a	new	bundle	identifier	from	the	member	center.

On	the	next	screen,	you’ll	want	to	click	on	the	App	IDs	link	underneath	the	Identifiers
section	of	the	navigator	on	the	left	of	the	page	(pointed	out	by	arrow	number	1	in	Figure
16.2).	You	can	see	that	my	account	has	a	ton	of	App	IDs,	but	yours	will	be	empty	if
you’ve	never	done	this	before.	To	create	a	new	ID,	click	the	plus	button	in	the	upper	right
of	the	window,	as	shown	from	arrow	2	in	Figure	16.2.

This	will	start	guiding	you	along	the	App	ID	creation	process.	In	the	App	ID	Description
box,	you	can	give	this	any	label	you	want,	it’s	only	for	your	own	personal	organizational
purposes.	Leave	the	App	ID	Prefix	at	its	default	setting	(you	should	only	have	one
anyway).	The	important	part	is	the	App	ID	Suffix	category.	Here,	you	have	to	make	sure
to	use	the	same	Bundle	ID	that	is	in	your	Xcode	project.	(This	is	very	important.	You	can
find	this	information	near	the	top	of	the	General	tab	of	your	Xcode	project’s	settings.):

Figure	16.3:	Setting	the	correct	App	ID	Suffix	for	the	new	ID

Again,	we	need	to	do	this	so	that	we	have	a	unique	ID	tied	to	our	account	for	our	app.
Below	the	suffix	is	an	area	where	you	can	check	off	what	services	you	want	to	enable	for
this	App	ID.	We	aren’t	using	any	of	these	services	in	our	app,	so	we	can	leave	them	as	they
are.	Hit	Continue	at	the	bottom	of	the	page,	and	you’ll	be	presented	with	an	overview	of
the	new	App	ID:

Figure	16.4:	Register	the	new	ID	from	the	bottom	of	the	review	page

To	finish	creating	the	new	ID,	scroll	to	the	bottom	of	the	page	and	click	the	Register
button.

Figure	16.5:	We’ve	successfully	set	up	our	new	App	ID

That’s	all	there	is	to	it!	Time	to	head	over	to	iTunes	Connect.

Creating	a	new	app	record	in	iTunes	Connect
Now	that	we	have	an	App	ID,	we	can	create	a	new	app	record.	Before	we	can	upload	our
app	to	the	app	store	servers,	we	need	to	set	up	a	landing	pad	on	iTunes	Connect	that	has	an
app	name	and	a	Bundle	ID	associated	with	it.	That’s	what	our	app	record	is.	Later	on,	this
is	where	we’ll	put	our	app	icon,	screenshots,	and	description	that	will	be	shown	on	the
App	Store:

Figure	16.6:	Logging	into	the	iTunes	Connect	dashboard

To	begin,	head	over	to	http://itunesconnect.apple.com	and	log	in	with	your	developer
credentials.	Once	inside,	we’re	going	to	navigate	to	the	My	Apps	section;	the	others	aren’t
important	to	us	right	now	(but	they	will	be	once	you	start	selling	your	own	apps!).

http://itunesconnect.apple.com

Figure	16.7:	Click	on	the	My	Apps	icon	to	view	and	create	app	records

The	next	screen	will	be	empty	for	you,	but	in	Figure	16.8	you	can	see	what	your	apps
dashboard	will	look	like	once	you’ve	built	enough	of	your	own	apps!	To	create	your	first
app	record,	click	the	plus	button	in	the	upper	left	corner,	and	then	select	New	App:

Figure	16.8:	Use	the	plus	icon	to	create	a	New	App	record.

From	there,	you’ll	be	shown	a	popup	box	that	lets	you	fill	in	the	details	of	your	app.
Check	the	iOS	box,	give	it	a	name,	and	select	the	default	language:

Figure	16.9:	Setting	up	a	new	app	record	in	iTunes	Connect.

Here’s	the	first	tricky	part:	the	name	needs	to	be	completely	unique	from	every	other	app
on	the	app	store.	So	even	though	our	app’s	name	is	Snippets,	that	name	had	already	been
taken,	so	I	needed	to	add	a	little	subtitle.	Once	you’ve	given	the	app	a	name,	we	need	to
select	the	Bundle	ID	that	this	app	uses.	From	the	dropdown,	select	the	App	ID	we	just
made	in	the	last	section;	this	is	why	we	needed	to	register	the	App	ID	first!	Finally,	we
need	an	SKU	ID.	This	string	is	a	unique	product	code	identifying	your	app,	and	isn’t	shown
anywhere	in	the	app	store.	I	used	JTPP2016001,	because	it’s	JT	(my	initials)	followed	by
PP	(for	Packt	Publishing)	then	2016	(for	the	current	year)	and	then	a	001	for	good	measure.

Once	you’ve	filled	out	all	of	the	details,	you	can	click	Create	at	the	bottom	of	the	box.	We
have	now	completed	the	initial	set	up	of	the	app	record	for	Snippets.	There’s	still	a	lot
more	to	do	in	here	later,	but	let’s	head	back	to	Xcode	one	last	time,	package	up	our	build,
and	upload	it	to	our	app	record!

Uploading	to	iTunes	Connect
With	the	app	record	set	up,	we’re	ready	to	make	the	final	build	of	our	app	and	upload	it	to
iTunes	Connect.	Due	to	the	possibility	of	this	section	being	very	tricky,	I	recommend	you
use	my	final	version	of	the	Snippets	project	which	is	located	in	the	Chapter	16	resources
folder,	to	minimize	the	possibility	of	bugs:

Figure	16.10:	Setting	our	code	signing	properties	for	our	build

With	the	Snippets	project	open,	on	the	Xcode	toolbar	change	the	destination	device	to
Generic	iOS	Device	(as	seen	in	Figure	16.10).	This	makes	it	so	that	when	we	build,	it	is
for	a	generic	device,	instead	of	for	a	specific	device	or	simulator.

Next,	we	need	to	archive	our	app.	This	is	a	different	type	of	build	that	can	be	uploaded	to
the	app	store.	To	do	this,	go	to	Product|Archive	on	the	menu	bar	(the	second	arrow	in
Figure	16.10):

Figure	16.11:	The	organizer	window

Once	the	archive	is	complete,	Xcode	will	open	the	Organizer	window,	showing	you	the
completed	archive.	The	Organizer	window	is	composed	of	three	sections:	the	app	browser
on	the	left	(labeled	area	1	in	Figure	16.11);	the	archive	browser	in	the	middle	(labeled	area
2	in	Figure	16.11);	the	archive	information	inspector	on	the	right	(labeled	area	3	in	Figure
16.11).	On	the	left	we	want	to	make	sure	we	have	selected	the	Snippets	app,	and	then	in
the	center	we’ve	selected	the	most	recent	(and	only)	archive	that	has	been	made:

Figure	16.12:	The	archive	inspector	options

On	the	right,	in	the	inspector,	we	have	a	couple	of	options.	We	can	Upload	to	App
Store…,	Validate…,	or	Export…	the	archive.	While	we	could	just	immediately	try	to
upload,	it’s	always	a	good	idea	to	validate	the	archive	first:

Figure	16.13:	Select	your	development	team	to	validate	the	archive

Once	you	click	Validate…,	you’ll	be	asked	to	choose	your	team.	Normally,	you’ll	just
pick	your	developer	name	from	the	drop-down	list.	Once	you	click	Choose,	the	archive
will	be	processed	for	a	little	bit,	and	then	present	you	with	a	summary	screen,	detailing
how	the	archive’s	components	and	settings	(Figure	16.14):

Figure	16.14:	The	archive	validation	summary	screen

Click	on	Validate,	and	the	process	will	begin.	This	may	take	a	few	minutes,	but	once	it’s
done,	you	should	be	shown	a	confirmation	screen	like	in	Figure	16.15:

Figure	16.15:	The	archive	was	validated	successfully

Once	your	archive	validation	is	complete,	you’re	ready	to	upload	to	the	app	store.	Click	on
Upload	to	App	Store…	in	the	archive	information	inspector,	and	you’ll	be	greeted	by	a
very	similar	process	to	the	validation.	Select	the	team,	and	confirm	the	summary	screen,
and	your	app	will	begin	the	process	of	uploading	to	the	App	Store:

Figure	16.16:	The	archive	uploading	to	the	App	Store

Once	it’s	done,	you’ll	be	greeted	by	a	success	screen	similar	to	the	validation	one.	Now,
even	though	the	validation	may	have	succeeded,	your	upload	might	not.	There	are	a	lot	of
errors	that	may	occur	here,	and	there	is	really	no	way	for	me	to	help	you	troubleshoot
them	all	from	here.	If	you’re	getting	an	issue,	my	first	recommendation	is	to	try	this
section	again	with	my	version	of	the	project	if	you	were	using	your	own.	This	is	because	I
got	my	project	100%	through	this	process.	If	my	project	isn’t	working,	then	Apple	may
have	changed	some	of	the	upload	requirements,	and	you	might	have	to	search	the	web	a
bit	to	find	a	solution.	(If	you	were	using	a	different	Bundle	ID	in	your	project,	make	sure
to	update	my	projects	Bundle	ID	to	match.)

Note
It	might	take	a	few	minutes	for	your	archive	to	finish	processing	on	iTunes	Connect	after
uploading	it	in	the	last	step.	You’ll	get	an	email	when	it’s	done.

Releasing	the	app
The	app	is	uploaded	and	ready	to	go	on	iTunes	Connect.	Next,	we’ll	put	the	final	touches
on	the	app	record	by	uploading	screenshots	and	icons,	and	filling	out	the	necessary
descriptions.	Finally,	we’ll	push	out	builds	on	TestFlight,	and	submit	for	review	to	the	App
Store.

Finalizing	store	assets
So	we’ve	got	an	app,	but	how	do	we	let	customers	learn	about	it	before	they	download	it?
From	iTunes	Connect,	we	can	upload	a	video,	screenshots,	description	text,	and	icons	to
help	potential	customers	get	an	idea	of	what	the	app	is	about.	I’ve	included	a	folder	inside
this	chapter’s	resources	called	iTunes	Connect	Resources	that	you	can	use	to	fill	out	the
information	in	this	section:

Figure	16.17:	Our	build	is	now	available	in	iTunes	Connect

First,	let’s	go	back	to	the	app	record	in	iTunes	Connect.	Once	your	archive	has	finished
uploading	and	is	processed,	it	will	show	up	in	the	sidebar	of	the	app	record	with	the
version	number	and	status	(Figure	16.17).	Click	on	it	to	go	to	the	information	for	that
build.	It	is	there	that	we	will	set	the	screenshots,	icons,	and	descriptions	for	that	version.
At	first,	it	should	look	something	like	Figure	16.18:

Figure	16.18:	Our	app’s	version	settings

Now,	since	our	app	supports	iPhone,	we	need	to	include	screenshots	for	all	four	versions
of	iPhone.	Inside	the	iTunes	Connect	Resources	folder	I	gave	you,	there	is	a	single
screenshot	for	each	device	size.	You	can	drag	those	screenshots	right	into	the	gray	box	to
upload	them.	Below	the	screenshots,	we	have	a	box	for	the	app	description.	In	the	iTC
Resource	folder	is	a	text	file	containing	an	app	description	that	I	wrote,	if	you	don’t	want
to	write	your	own.	Copy	and	paste	the	description	into	iTunes	Connect.	You’ll	also	need	to
fill	in	some	keywords	and	a	support	URL	for	a	real	app	submission:

Figure	16.19:	Filling	out	the	app	description

Below	the	description	is	the	area	where	we	can	set	up	the	Apple	Watch	information	for	our
app.	We	can	include	an	icon	for	the	watch	app,	in	addition	to	screenshots.	Again,	I	have	an
icon	file	and	an	Apple	Watch	screenshot	available	in	the	iTC	Resources	folder.	Just	drag
them	into	the	browser	window:

Figure	16.20:	Filling	out	the	apple	watch	app	information

After	the	Apple	Watch	settings,	we	have	to	choose	the	actual	build	associated	with	this
version.	Click	the	Select	a	build	text	to	bring	up	a	box	to	select	the	build,	shown	in	Figure
16.21.	Select	the	build,	and	click	done:

Figure	16.21:	Selecting	the	1.0	build	we	uploaded	in	out	archive

Below	the	build	selection,	we	have	to	upload	the	app	icon	that	will	be	displayed	on	the
store	page.	You	can	drag	in	the	same	icon_1024.png	file	from	the	iTC	Resources	folder
for	the	icon.	Make	sure	you	also	fill	out	the	Copyright	section.

Finally,	all	the	way	at	the	bottom	of	the	page,	we	have	the	ability	to	select	how	the	app
gets	released.	Since	the	app	needs	to	go	through	approval,	we	can	have	the	app
automatically	go	on	sale	when	it	is	approved	or	we	can	manually	release	the	app	ourselves
after	it’s	approved.	We	can	also	set	a	date	for	the	app	to	automatically	release,	assuming	it
has	been	approved	by	then.	We’re	just	going	to	leave	this	at	Automatic	release	this
version:

Figure	16.22:	Selecting	the	option	for	how	the	version	gets	released	once	approved

Click	the	Save	button	in	the	upper	right	corner	of	the	window	to	save	all	our	changes.	At
this	point,	we’re	finished	setting	up	the	app	version	settings,	but	before	we	can	move	on	to
distribution	we	need	to	set	some	info	on	pricing	and	availability.	On	the	sidebar	above	the
version	tab,	click	on	the	Pricing	and	Availability	tab	(Figure	16.23):

Figure	16.23:	Moving	the	Pricing	and	Availability	tab

Once	in	the	pricing	tab,	we	need	to	set	a	pricing	tier,	and	the	territories	where	the	app	will
be	available.	By	default,	the	app	is	available	in	all	territories	(countries),	so	we’ll	leave
that	as	is:

Figure	16.24:	Choosing	the	free	pricing	tier	for	Snippets

To	set	the	initial	pricing	tier,	click	on	the	dropdown	that	says	Choose	and	pick	a	price	that
makes	sense	for	your	app.	In	this	case,	I’m	choosing	the	free	tier.

Note
To	release	paid	applications,	you’ll	need	to	sign	some	contracts	in	the	Contracts	section
of	iTunes	Connect.	Due	to	the	legal	nature	of	this,	I’ll	let	you	do	this	on	your	own,	if	you
choose	to	use	a	paid	tier.

One	last	thing	before	we	move	on:	we	need	to	set	a	category	for	our	app.	Head	back	to	the
App	Information	tab,	scroll	down	a	bit,	and	change	the	Category	to	something	that
makes	sense.	I	chose	Lifestyle	in	this	case:

Figure	16.25:	Setting	the	category	for	the	app

Now	our	app	is	ready	for	distribution.

Distributing	on	TestFlight
The	first	method	of	distribution	that	we	will	look	at	is	TestFlight.	This	is	a	platform	that	is
used	for	beta-testing	applications	with	a	limited	number	of	users.	Once	your	app	is
finished,	it	is	usually	a	good	idea	to	distribute	it	to	a	small	number	of	people	first	to	check
for	bugs.	No	matter	how	thoroughly	you	check	your	own	app	for	bugs,	there	will	always
be	things	you	miss,	and	the	best	way	to	find	them	is	to	put	your	app	in	the	hands	of	other
people.

To	distribute	your	app	through	TestFlight,	click	on	the	TestFlight	tab	along	the	top	of	the
window	(Figure	16.26):

Figure	16.26:	Moving	to	the	TestFlight	tab

Once	in	the	TestFlight	tab,	you’ll	see	some	fields	asking	for	a	feedback	email,	and	some
marketing/privacy	URLs.	Fill	those	in	with	some	placeholders	for	now,	but	when	running
a	real	app	beta,	you’ll	want	to	make	sure	you	have	a	good	system	for	dealing	with	beta
users.

Along	the	sidebar	in	the	TestFlight	section,	you	should	see	tabs	for	Internal	Testing	and
External	Testing.	Let’s	set	up	an	internal	test,	since	it’s	a	bit	quicker	than	an	external	test:

Figure	16.27:	Setting	up	an	internal	test

To	set	up	an	internal	test,	you	need	to	select	a	build	and	add	testers.	To	select	a	build,	click
the	Select	Version	to	Test	button	(arrow	1	in	Figure	16.27),	and	then	choose	our	1.0	build
from	the	resulting	dialog	box.	Next,	add	an	internal	tester	to	the	build.	Internal	testers
must	be	people	that	are	part	of	your	app	development	team	on	iTunes	Connect,	so	right
now	that	means	only	you.	If	you	click	on	the	text	that	says	Add	at	least	1	internal	tester
(arrow	2	in	Figure	16.27),	you’ll	be	given	a	list	of	eligible	members.	Select	yourself.	Now,
if	you	look	in	the	upper	right	corner,	you	can	click	the	Start	Testing	button	(Figure
16.28).	This	will	send	an	email	to	you	(and	any	other	testers	that	might	be	added	in	the
future)	alerting	them	that	a	new	TestFlight	build	is	available	to	you/them.

Figure	16.28:	Start	testing	an	internal	build

External	testing	works	in	almost	the	exact	same	way,	except	that	when	you	add	a	build
you	need	to	answer	a	few	more	questions	and	submit	the	app	to	a	beta	review,	which	is

similar	to	the	app	store	review	process	(except	usually	faster).	With	external	testing,
you’re	allowed	to	add	anyone	to	the	test	with	just	their	email,	they	don’t	need	to	be	an
iTunes	Connect	team	member.	You	are	also	allowed	up	to	2,000	external	testers,	making	it
a	great	platform	to	get	some	widespread	feedback	without	releasing	to	the	full	app	store.

Submitting	to	the	App	Store
Actually	submitting	the	app	for	review	is	pretty	easy	at	this	point.	Back	in	the	App	Store
section	(not	TestFlight),	if	you	click	on	your	version	in	the	sidebar,	there	will	be	a	button
in	the	upper	right	corner	that	says	Submit	for	Review.	If	you	click	this	button,	you’ll	be
notified	of	any	issues	with	your	information.	You	may	have	to	fill	out	some	reviewer
information,	or	clean	up	some	fields	you	may	have	missed.	However,	if	everything	is	in
order,	that’s	it.	It’s	off	to	be	reviewed,	and	in	about	a	week	your	app	will	be	live	on	the
App	Store,	as	long	as	it	passes	review.

Summary
In	this	chapter	we	brought	our	iOS	development	journey	to	a	close.	We	learned	about	how
to	register	an	App	ID	to	our	developer	account,	and	then	used	that	to	create	an	app	record
on	iTunes	Connect.	Then,	we	uploaded	the	archive	to	iTunes	Connect,	we	filled	out	the
app’s	store	page	information.	We	wrapped	everything	up	by	learning	how	to	distribute	our
app	on	TestFlight,	and	ultimately	submitted	our	app	to	be	reviewed	for	the	App	Store.

Thanks	for	coming	along	on	this	journey	with	me!	I	hope	you	learned	a	ton,	and	had	a
great	time	learning	about	the	many	facets	of	iOS	development.	If	you	ever	have	any
questions,	feel	free	to	tweet	at	me	(@jakintosh).

You	are	now	an	iOS	developer!

Index
A
	

Address	Sanitizer	/	Address	Sanitizer
allocations	instrument

about	/	Allocations	instrument
app

releasing	/	Releasing	the	app
store	assets,	finalizing	/	Finalizing	store	assets
TestFlight,	distributing	on	/	Distributing	on	TestFlight
App	Store,	submitting	to	/	Submitting	to	the	App	Store

Apple	Watch
designing	for	/	Designing	for	the	Apple	Watch
using	/	Using	the	watch
experience	/	Intended	experience
sensors	/	Sensors	on	Apple	Watch

Apple	Watch,	snippets
about	/	Snippets	for	Apple	Watch
project,	setting	up	/	Setting	up	our	project
watchOS	storyboard,	creating	/	Creating	a	watchOS	storyboard
interface	controller,	programming	/	Programming	the	interface	controller
iOS	connecting	to,	WatchConnectivity.frameworlk	used	/	Connecting	to	iOS
with	Watch	Connectivity.framework
complication,	adding	/	Adding	a	complication

application	loader	/	Application	Loader
application	management,	UIKit	fundamentals

about	/	Application	management
UIDevice	class	/	The	UIDevice	class

app	thinning
about	/	App	Thinning
slicing	/	Slicing
Bitcode	/	Bitcode
On	Demand	Resources	(ODR)	/	On-demand	Resources

arrays
about	/	Arrays

auto	layout
about	/	Auto	Layout
view	hierarchy	/	The	view	hierarchy
constraints	/	Constraints
issues,	resolving	/	Resolving	issues

B
	

badges	/	Badges
basics

applying	/	Applying	the	basics
bitcode	/	Bitcode
breakpoints

about	/	Breakpoints	and	the	debug	area
variables	view	/	Variables	view
console	/	Console
debug	toolbar	/	Debug	toolbar

builds
creating	/	Creating	builds
and	run	/	Build	and	run
device,	running	on	/	Running	on	a	device

C
	

call	stack	/	The	call	stack
classes

creating	/	Classes
class	extensions	/	Class	extensions
closures	/	Closures
CMDeviceMotion

about	/	CMDeviceMotion
user	acceleration	/	User	acceleration
gravity	/	Gravity
rotation	rate	/	Rotation	rate
magnetic	field	/	Magnetic	field

code
gestures,	adding	from	/	Adding	gestures	from	code
gestures,	creating	through	/	Creating	a	gesture	through	code
gesture	data,	reading	/	Reading	the	gesture	data
image	scale,	changing	/	Changing	the	scale	of	our	image

collection	types
about	/	Collection	types
arrays	/	Arrays
dictionaries	/	Dictionaries

Command	Line	Tools	/	Installing	Xcode
comments	/	Comments	and	printing
complications,	watchOS	app

about	/	Complications
adding	/	Adding	a	complication

conditional	statement
if	statement	/	if	statement
guard	statement	/	guard	statement
switch	statement	/	switch	statement

conditional	statements
about	/	Conditional	statements

constants
about	/	Constants

constraints
about	/	Constraints

controller
creating	/	Creating	the	model,	view,	and	controller

Core	Data
about	/	What	is	Core	Data?
model	/	Model	revisited
entities	/	Entities,	attributes,	and	relationships,	Entities
attributes	/	Entities,	attributes,	and	relationships,	Attributes

relationships	/	Entities,	attributes,	and	relationships,	Relationships
data	model	editor	/	The	data	model	editor
snippets,	preparing	for	/	Preparing	Snippets	for	Core	Data
stack,	initializing	/	Initializing	the	Core	Data	stack
data	model,	recreating	/	Recreating	the	data	model	with	Core	Data

Core	Data	stack,	initializing
about	/	Initializing	the	Core	Data	stack
data	model,	versus	object	graph	/	Data	model	versus	object	graph
NSManagedObjectModel	/	The	NSManagedObjectModel
NSPersistentStoreCoordinator	/	The	NSPersistentStoreCoordinator
NSManagedObjectContext	/	The	NSManagedObjectContext
final	touches	/	Final	touches

CoreLocation.framework
using	/	Using	CoreLocation.framework
CoreLocation	permissions,	setting	up	/	Setting	up	CoreLocation	permissions
users	location,	getting	/	Getting	the	user’s	location
location	data,	adding	to	Snippets	/	Adding	location	data	to	Snippets

Core	Motion
about	/	Introduction	to	Core	Motion
accelerometer,	using	/	Accelerometer
gyroscope,	using	/	Gyroscope
CMDeviceMotion	/	CMDeviceMotion

CPU	and	memory	gauge	/	CPU	and	memory	gauge

D
	

3D	touch	app	shortcuts
creating	/	Creating	3D	Touch	app	shortcuts
Info.plist,	setting	up	/	Setting	up	Info.plist
handling,	in	app	delegate	/	Handling	shortcuts	in	the	app	delegate

data
persisting	/	Persisting	data
saving	/	Saving	data
fetching	/	Fetching	data
deleting	/	Deleting	data

data	model
versus	object	graph	/	Data	model	versus	object	graph

data	model	editor
about	/	The	data	model	editor

data	types
about	/	Data	types

data	validation	unit	test
writing	/	Writing	a	data	validation	unit	test

debugging,	practices
about	/	Basic	debugging	practices
print()	function	/	print()
and	breakpoints	/	Breakpoints	and	the	debug	area

debugging,	tools
about	/	Advanced	debugging	tools
Address	Sanitizer	/	Address	Sanitizer
performance	gauges	/	Performance	gauges
CPU	and	memory	gauge	/	CPU	and	memory	gauge
disk	and	network	gauge	/	Disk	and	network	gauge
energy	gauge	/	Energy	gauge

debug	navigator	/	Navigator	sidebar
debug	toolbar	/	Debug	toolbar
developer

about	/	A	developer’s	responsibilities
pre-production	/	Pre-production
project	setup	/	Project	setup
development	/	Development
deployment	/	Deployment

developer	account
adding	/	Adding	your	developer	account

development	plan
creating	/	Creating	a	development	plan

device	status,	checking	with	UIDevice
about	/	Device	status	with	UIDevice

orientation	state,	accessing	/	Accessing	orientation	state
proximity	sensor,	checking	/	Checking	the	proximity	sensor
battery	status,	obtaining	/	Getting	battery	status

dictionaries
about	/	Dictionaries

disk	and	network	gauge	/	Disk	and	network	gauge
displays,	UIKit	fundamentals	/	Displays
distributed	version	control	system

about	/	Understanding	version	control
documents,	UIKit	fundamentals	/	Documents

E
	

editor
about	/	Exploring	the	editor
standard	editor	/	Standard	editor
assistant	editor	/	Assistant	editor
version	editor	/	Version	editor

energy	gauge	/	Energy	gauge
entities

about	/	Entities
enumerations	(enum)	/	Enumerations
error	handling	/	Error	handling
explicit	type	/	Variables

F
	

feature	list
assembling	/	Assembling	a	feature	list

files
managing	/	Creating	and	managing	files
creating	/	Creating	and	managing	files
resource	types	/	Resource	types
new	resources,	creating	/	Creating	new	resources
existing	files,	importing	/	Importing	existing	files
groups	and	folders	/	Groups	and	folders

for	in	loop	/	for-in	loop
frameworks

about	/	Frameworks,	What	is	a	framework?
linking,	in	project	/	Linking	frameworks	in	a	project

functions	/	Functions

G
	

gestures
adding,	from	storyboard	/	Adding	gestures	from	the	storyboard
adding,	from	code	/	Adding	gestures	from	code

gestures,	human	interface	guidelines
about	/	Human	interface	guidelines	–	gestures
standard	gestures	/	Standard	gestures
usage	guidelines	/	Usage	guidelines
working	/	How	gestures	work

Git
about	/	Introduction	to	Git
setting	up,	in	Xcode	/	Setting	up	Git	in	Xcode
local	repository,	creating	/	Creating	a	local	repository
adding,	to	local	repository	/	Adding	Git	to	an	existing	project
Hub	hosted	repository,	using	/	Using	a	GitHub	hosted	repository

GitHub	hosted	repository
using	/	Using	a	GitHub	hosted	repository

guard	statement	/	guard	statement

H
	

Human	Interface	Guidelines	(HIG)	/	Human	interface	guidelines	–	gestures

I
	

IBActions	/	Creating	the	model,	view,	and	controller
IBOutlets	/	Creating	the	model,	view,	and	controller
if	statement	/	if	statement
implicitly	unwrapped	/	Optionals
implicit	type	/	Variables
Info.plist

setting	up	/	Setting	up	Info.plist
instruments

about	/	Introduction	to	Instruments
time	profiler	instrument	/	Time	Profiler	instrument
allocation	instrument	/	Allocations	instrument
leaks	instrument	/	Leaks	instrument

iOS	Charts
about	/	Charts
reference	link	/	Charts
framework,	importing	/	Importing	the	framework
storyboard,	setting	up	/	Setting	up	the	storyboard
filling,	with	data	/	Filling	the	chart	with	data

iTunes	Connect
preparing	/	Preparing	iTunes	Connect
bundle	identifier,	registering	/	Registering	a	bundle	identifier
new	app	record,	creating	/	Creating	a	new	app	record	in	iTunes	Connect
uploading	to	/	Uploading	to	iTunes	Connect

iTunes	Connect,	uploading	to
about	/	Uploading	to	iTunes	Connect
archiving	/	Uploading	to	iTunes	Connect

L
	

leaks	instrument
about	/	Leaks	instrument

local	notification
versus,	remote	notifications	/	Local	versus	remote	notifications

local	repository
creating	/	Creating	a	local	repository

loops
about	/	Loops
for-in	loop	/	for-in	loop
while	loop	/	while	loop
repeat-while	loop	/	repeat-while	loop

M
	

Mac	App	Store	(MAS)	/	Installing	Xcode
minimum	viable	product	(MVP)	/	Assembling	a	feature	list
model

creating	/	Creating	the	model,	view,	and	controller
Model-View-Controller	(MVC)

about	/	Understanding	Model-View-Controller	(MVC)
Model	/	Model
View	/	View
Controller	/	Controller
on	web	/	MVC	on	the	web
on	iOS	/	MVC	on	iOS

/	What	is	Core	Data?
motion	data

charting	/	Charting	motion	data
iOS	Charts	/	Charts
pedometer	/	Pedometer
altitude	/	Altitude

N
	

New	Snippet
about	/	New	snippet
SnippetData	model	/	SnippetData	model
button	/	New	snippet	button

notifications
support,	adding	to	Snippets	/	Adding	notification	support	to	Snippets
sending,	permission	getting	for	/	Getting	permission	to	send	notifications

notifications,	advanced
categories	and	actions	/	Categories	and	actions
badges	/	Badges
sounds	/	Custom	sounds
notifications,	receiving	while	in	app	/	Receiving	notifications	while	in	the	app

notifications,	watchOS	app
about	/	Notifications

NSManagedObjectContext	/	The	NSManagedObjectContext
NSManagedObjectModel	/	The	NSManagedObjectModel
NSPersistentStoreCoordinator	/	The	NSPersistentStoreCoordinator

O
	

On	Demand	Resources	(ODR)
about	/	On-demand	Resources
tags,	creating	/	Creating	tags
resources,	loading	/	Loading	resources
resources,	purging	/	Purging	resources

optionals
about	/	Optionals

/	Optionals

P
	

pages
about	/	Pages

performance	gauges
about	/	Performance	gauges
CPU	and	memory	gauge	/	CPU	and	memory	gauge
disk	and	network	gauge	/	Disk	and	network	gauge
energy	gauge	/	Energy	gauge

Photo	snippet
about	/	Assembling	a	feature	list

Photo	Snippet,	implementing
about	/	PhotoSnippet	implementation
SnippetData	model,	updating	/	Update	SnippetData	model
data	entry	/	PhotoSnippet	data	entry

playgrounds
about	/	Discovering	playgrounds
setting	up	/	Setting	up	a	playground
previews,	using	/	Using	previews

pre-production
about	/	Pre-production
feature	list,	assembling	/	Assembling	a	feature	list
visual	design	/	Visual	design
development	plan,	creating	/	Creating	a	development	plan

print()	function	/	print()
printing	/	Comments	and	printing
printing,	UIKit	fundamentals	/	Printing
project,	settings

about	/	Understanding	project	settings
project	targets	/	Project	targets
general	tab	/	The	General	tab
capabilities	tab	/	The	Capabilities	tab
info	tab	/	The	Info	tab

protocols	/	Protocols

R
	

registered	developer
about	/	Becoming	a	registered	developer,	Which	account	do	you	need?
free	developer	account,	registering	/	Registering	a	free	developer	account
paid	developer	account,	registering	/	Registering	a	paid	developer	account

relationships
about	/	Relationships

repeat-while	loop	/	repeat-while	loop
resources

about	/	Resources
results	view	/	Using	previews
rich	comments

about	/	Rich	comments

S
	

segues
about	/	Understanding	segues

Select	Snippet	type
about	/	Select	snippet	type
SnippetData	model,	updating	/	Update	SnippetData	model
alert	controller,	creating	/	Create	an	alert	controller

sensors,	Apple	Watch
obtaining	/	Sensors	on	Apple	Watch,	Getting	sensor	data	on	Apple	Watch
extension,	setting	up	/	Setting	up	an	extension
data,	sending	in	iOS	/	Sending	and	displaying	data	on	iOS
data,	displaying	in	iOS	/	Sending	and	displaying	data	on	iOS

size	classes
about	/	Size	classes
selecting	/	Devices,	orientations,	and	size	classes
in	action	/	Size	classes	in	action

slicing
about	/	Slicing

Snippet	dates
about	/	Snippet	dates
SnippetData	model,	updating	/	Update	SnippetData	model
data,	saving	to	model	/	Save	data	to	model
view	and	controller,	updating	/	Update	view	and	controller

Snippets
scrolling	through	/	Scroll	through	snippets
prototype	cells,	creating	/	Create	prototype	cells
table	view,	populating	/	Populate	table	view
notification	support,	adding	/	Adding	notification	support	to	Snippets

Social.framework
using	/	Using	Social.framework
views,	setting	up	/	Setting	up	the	views
Twitter,	posting	to	/	Posting	to	Twitter

sounds	/	Custom	sounds
standard	gestures	/	Standard	gestures
storyboard

gestures,	adding	from	/	Adding	gestures	from	the	storyboard
setting	up	/	Setting	up	the	storyboard
image,	flipping	/	Flipping	the	image

storyboards
about	/	Storyboards
getting	started	/	Getting	started
view	controllers	/	View	controllers	and	screen	flow
screen	flow	/	View	controllers	and	screen	flow

segues	/	Understanding	segues
structs

creating	/	Structs
Swift	basics

about	/	Understanding	Swift	basics
Swift	Features

about	/	Using	important	Swift	features
closures	/	Closures
protocols	/	Protocols
class	extensions	/	Class	extensions
error	handling	/	Error	handling

switch	statement	/	switch	statement

T
	

team,	working	on
about	/	Working	on	a	team
designers	/	Designers
other	developers	/	Other	programmers
project	managers	/	Project	managers
investors	/	Investors

TestFlight	/	Deployment
Text	snippet

about	/	Assembling	a	feature	list
Text	Snippet,	implementing

about	/	Text	snippet	implementation
SnippetData	model,	updating	/	Update	SnippetData	model
Text	entry	View	Controller	/	Text	entry	view	controller

time	profiler	instrument
about	/	Time	Profiler	instrument
document,	anatomy	/	Anatomy	of	an	Instruments	document
using	/	Using	the	Time	Profiler

type	inference	/	Variables

U
	

UIButton	/	Creating	the	model,	view,	and	controller
UIDevice

used,	for	checking	device	status	/	Device	status	with	UIDevice
UIKit	fundamentals

about	/	Understanding	UIKit	fundamentals
application	management	/	Application	management
views	/	Views

UILabel	/	Creating	the	model,	view,	and	controller
UI	testing

in	Xcode	7	/	Testing	UI	in	Xcode	8
working	/	How	does	UI	testing	work?
target,	adding	/	Adding	the	UI	testing	target
UI	recorder,	using	/	Using	the	UI	recorder

unit	tests
about	/	Introduction	to	unit	tests
unit	/	What	is	a	unit?
uses	/	Why	use	unit	testing	in	the	first	place?
in	action	/	Unit	tests	in	action
project,	setting	up	/	Setting	up	the	project
writing,	XCTest	used	/	Writing	tests	with	XCTest
running	/	Running	tests

unit	tests,	implementing	for	Snippets
about	/	Implementing	tests	for	Snippets
Snippets	project,	setting	up	/	Setting	up	the	Snippets	project
testing	class,	preparing	/	Preparing	our	testing	class
data	validation	unit	test,	writing	/	Writing	a	data	validation	unit	test
code	coverage,	checking	/	Checking	code	coverage

unwind	segue	/	Understanding	segues
unwrapping	/	Optionals
user	notifications

about	/	Introduction	to	user	notifications
components	/	Components	of	a	user	notification
local,	versus	remote	notifications	/	Local	versus	remote	notifications

utilities	sidebar	/	Utilities	sidebar

V
	

variables
about	/	Variables

version	control
about	/	Understanding	version	control
using,	in	Xcode	/	Using	version	control	in	Xcode
pull,	push,	and	commit	/	Pull,	push,	and	commit
version	editor	/	The	version	editor
branches,	merging	/	Creating	and	merging	branches
branches,	creating	/	Creating	and	merging	branches

view
creating	/	Creating	the	model,	view,	and	controller

views,	UIKit	fundamentals
about	/	Views
drawing	/	Drawing
hierarchies	/	Hierarchies
coordinate	systems	/	Coordinate	systems

visual	debugging
about	/	Visual	debugging

W
	

Watch	App	bundle	/	Watch	App	bundle
WatchConnectivity.framework

used,	for	connecting	to	iOS	/	Connecting	to	iOS	with	Watch
Connectivity.framework

Watch	Extension	bundle	/	Watch	Extension	bundle
watchOS	app

components	/	Components	of	a	watchOS	app
about	/	The	watchOS	app
notifications	/	Notifications
complications	/	Complications
architecture	/	Architecture	of	a	watchOS	app

watchOS	app,	architecture
target	bundles	/	Target	bundles
Watch	App	bundle	/	Watch	App	bundle
Watch	Extension	bundle	/	Watch	Extension	bundle
interface	controller	/	Interface	controller
extension	delegate	/	Extension	Delegate

while	loop	/	while	loop
work

testing,	in	simulator	/	Testing	our	work	in	the	simulator
workspace

setting	up	/	Setting	up	the	workspace

X
	

Xcode	/	Xcode
installing	/	Installing	Xcode
developer	account,	adding	/	Adding	your	developer	account
new	project,	creating	/	Creating	a	new	project
navigating	/	Navigating	Xcode

Xcode,	navigating
editor	/	Editor
navigator	sidebar	/	Navigator	sidebar
debug	area	/	Debug	area
utilities	sidebar	/	Utilities	sidebar

Xcode	7	toolset
about	/	The	Xcode	8	toolset
Xcode	/	Xcode
iOS	and	watchOS	simulator	/	iOS	and	watchOS	simulator
instruments	/	Instruments
Application	Loader	/	Application	Loader

Xcode	developer	portal
URL	/	Installing	Xcode

XCTest
used,	for	writing	tests	/	Writing	tests	with	XCTest

Table	of	Contents
Learning	Xcode	8

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Starting	Your	iOS	Journey

A	developer’s	responsibilities

Pre-production

Project	setup

Development

Deployment

Working	on	a	team

Designers

Other	programmers

Project	managers

Investors

The	Xcode	8	toolset

Xcode

iOS	and	watchOS	simulator

Instruments

Application	Loader

Understanding	Model-View-Controller	(MVC)

Model

View

Controller

MVC	on	the	web

MVC	on	iOS

Becoming	a	registered	developer

Which	account	do	you	need?

Registering	a	free	developer	account

Registering	a	paid	developer	account

Summary

2.	Welcome	to	Xcode

Getting	started

Installing	Xcode

Adding	your	developer	account

Creating	a	new	project

Navigating	Xcode

Editor

Navigator	sidebar

Debug	area

Utilities	sidebar

Exploring	the	editor

Standard	editor

Assistant	editor

Version	editor

Understanding	project	settings

Project	targets

The	General	tab

The	Capabilities	tab

The	Info	tab

Creating	and	managing	files

Resource	types

Creating	new	resources

Importing	existing	files

Groups	and	folders

Creating	builds

Build	and	run

Running	on	a	device

Applying	the	basics

Setting	up	the	workspace

Creating	the	model,	view,	and	controller

Testing	our	work	in	the	simulator

Summary

3.	Introduction	to	Swift	3

Discovering	playgrounds

Setting	up	a	playground

Using	previews

Resources,	pages,	and	rich	comments

Resources

Pages

Rich	comments

Understanding	Swift	basics

Data	types,	constants,	and	variables

Data	types

Constants

Variables

Optionals

Collection	types

Arrays

Dictionaries

Conditional	statements

if	statement

guard	statement

switch	statement

Loops

for	loop

for-in	loop

while	loop

repeat-while	loop

Functions

Comments	and	printing

Creating	classes,	structs,	and	enums

Classes

Structs

Enumerations

Using	important	Swift	features

Closures

Protocols

Class	extensions

Error	handling

Summary

4.	Using	Storyboards,	Auto	Layout,	and	Size	Classes

Storyboards

Getting	started

View	controllers	and	screen	flow

Understanding	segues

Auto	Layout

The	view	hierarchy

Constraints

Resolving	issues

Size	classes

Devices,	orientations,	and	size	classes

Size	classes	in	action

Summary

5.	Taking	Advantage	of	Source	Control	in	Xcode

Understanding	version	control

Introduction	to	Git

Setting	up	Git	in	Xcode

Creating	a	local	repository

Adding	Git	to	an	existing	project

Using	a	GitHub	hosted	repository

Using	version	control	in	Xcode

Pull,	push,	and	commit

The	version	editor

Creating	and	merging	branches

Summary

6.	Building	Your	First	iOS	App

Pre-production

Assembling	a	feature	list

Visual	design

Creating	a	development	plan

New	snippet

SnippetData	model

New	snippet	button

Select	snippet	type

Update	SnippetData	model

Create	an	alert	controller

Text	snippet	implementation

Update	SnippetData	model

Text	entry	view	controller

PhotoSnippet	implementation

Update	SnippetData	model

PhotoSnippet	data	entry

Scroll	through	snippets

Create	prototype	cells

Populate	table	view

Snippet	dates

Update	SnippetData	model

Save	data	to	model

Update	view	and	controller

Summary

7.	Integrating	Multitouch	and	Gestures

Human	interface	guidelines	–	gestures

Standard	gestures

Usage	guidelines

How	gestures	work

Adding	gestures	from	the	storyboard

Setting	up	the	storyboard

Flipping	the	image

Adding	gestures	from	code

Creating	a	gesture	through	code

Reading	the	gesture	data

Changing	the	scale	of	our	image

If	you’re	up	for	a	challenge…

Creating	3D	Touch	app	shortcuts

Setting	up	Info.plist

Handling	shortcuts	in	the	app	delegate

Summary

8.	Exploring	Common	iOS	Frameworks

Frameworks

What	is	a	framework?

Linking	frameworks	in	a	project

Understanding	UIKit	fundamentals

Application	management

The	UIDevice	class

Views

Drawing

Hierarchies

Coordinate	systems

Documents,	displays,	printing,	and	more

Documents

Displays

Printing

And	more!

Using	CoreLocation.framework

Setting	up	CoreLocation	permissions

Getting	the	user’s	location

Adding	location	data	to	Snippets

Using	Social.framework

Setting	up	the	views

Posting	to	Twitter

Summary

9.	Working	with	Core	Data

What	is	Core	Data?

Model	revisited

Entities,	attributes,	and	relationships

Entities

Attributes

Relationships

The	data	model	editor

Preparing	Snippets	for	Core	Data

Initializing	the	Core	Data	stack

Data	model	versus	object	graph

The	NSManagedObjectModel

The	NSPersistentStoreCoordinator

The	NSManagedObjectContext

Final	touches

Recreating	the	data	model	with	Core	Data

Persisting	data

Saving	data

Fetching	data

Deleting	data

Summary

10.	Creating	a	watchOS	Companion	App

Designing	for	the	Apple	Watch

Using	the	watch

Intended	experience

Apple’s	design	principles

Components	of	a	watchOS	app

The	watchOS	app

Dock	snapshots

Notifications

Complications

Architecture	of	a	watchOS	app

Target	bundles

Watch	App	bundle

Watch	Extension	bundle

Interface	controller

Extension	Delegate

Snippets	for	Apple	Watch

Setting	up	our	project

Creating	a	watchOS	storyboard

Programming	the	interface	controller

Connecting	to	iOS	with	Watch	Connectivity.framework

Adding	a	complication

Summary

11.	Advanced	Input	Using	Sensors

Device	status	with	UIDevice

Accessing	orientation	state

Checking	the	proximity	sensor

Getting	battery	status

Introduction	to	Core	Motion

Accelerometer

Gyroscope

CMDeviceMotion

User	acceleration

Gravity

Rotation	rate

Magnetic	field

Charting	motion	data

Charts

Importing	the	framework

Setting	up	the	storyboard

Filling	the	chart	with	data

Pedometer

Altitude

Sensors	on	Apple	Watch

Setting	up	an	extension

Getting	sensor	data	on	Apple	Watch

Sending	and	displaying	data	on	iOS

Summary

12.	Sending	Notifications

Introduction	to	user	notifications

Components	of	a	user	notification

Local	versus	remote	notifications

Adding	notification	support	to	Snippets

Getting	permission	to	send	notifications

Scheduling	a	local	notification

Advanced	notifications

Categories	and	actions

Badges

Custom	sounds

Receiving	notifications	while	in	the	app

Summary

13.	Writing	Unit	Tests

Introduction	to	unit	tests

What	is	a	unit?

Why	use	unit	testing	in	the	first	place?

Unit	tests	in	action

Setting	up	the	project

Writing	tests	with	XCTest

Running	tests

Implementing	tests	for	Snippets

Setting	up	the	Snippets	project

Preparing	our	testing	class

Writing	a	data	validation	unit	test

Checking	code	coverage

Testing	UI	in	Xcode	8

How	does	UI	testing	work?

Adding	the	UI	testing	target

Using	the	UI	recorder

Summary

14.	Debugging	an	iOS	Application

Basic	debugging	practices

print()

Breakpoints	and	the	debug	area

Variables	view

Console

Debug	toolbar

The	call	stack

Advanced	debugging	tools

Address	Sanitizer

Performance	gauges

CPU	and	memory	gauge

Disk	and	network	gauge

Energy	gauge

Visual	debugging

Summary

15.	Optimizing	Your	App

Introduction	to	Instruments

Time	Profiler	instrument

Anatomy	of	an	Instruments	document

Using	the	Time	Profiler

Allocations	instrument

Leaks	instrument

App	Thinning

Slicing

Bitcode

On-demand	Resources

Creating	tags

Loading	resources

Purging	resources

Summary

16.	Distributing	an	iOS	App

Preparing	iTunes	Connect

Registering	a	bundle	identifier

Creating	a	new	app	record	in	iTunes	Connect

Uploading	to	iTunes	Connect

Releasing	the	app

Finalizing	store	assets

Distributing	on	TestFlight

Submitting	to	the	App	Store

Summary

Index

	Learning Xcode 8
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Starting Your iOS Journey
	A developer's responsibilities
	Pre-production
	Project setup
	Development
	Deployment
	Working on a team
	Designers
	Other programmers
	Project managers
	Investors
	The Xcode 8 toolset
	Xcode
	iOS and watchOS simulator
	Instruments
	Application Loader
	Understanding Model-View-Controller (MVC)
	Model
	View
	Controller
	MVC on the web
	MVC on iOS
	Becoming a registered developer
	Which account do you need?
	Registering a free developer account
	Registering a paid developer account
	Summary
	2. Welcome to Xcode
	Getting started
	Installing Xcode
	Adding your developer account
	Creating a new project
	Navigating Xcode
	Editor
	Navigator sidebar
	Debug area
	Utilities sidebar
	Exploring the editor
	Standard editor
	Assistant editor
	Version editor
	Understanding project settings
	Project targets
	The General tab
	The Capabilities tab
	The Info tab
	Creating and managing files
	Resource types
	Creating new resources
	Importing existing files
	Groups and folders
	Creating builds
	Build and run
	Running on a device
	Applying the basics
	Setting up the workspace
	Creating the model, view, and controller
	Testing our work in the simulator
	Summary
	3. Introduction to Swift 3
	Discovering playgrounds
	Setting up a playground
	Using previews
	Resources, pages, and rich comments
	Resources
	Pages
	Rich comments
	Understanding Swift basics
	Data types, constants, and variables
	Data types
	Constants
	Variables
	Optionals
	Collection types
	Arrays
	Dictionaries
	Conditional statements
	if statement
	guard statement
	switch statement
	Loops
	for loop
	for-in loop
	while loop
	repeat-while loop
	Functions
	Comments and printing
	Creating classes, structs, and enums
	Classes
	Structs
	Enumerations
	Using important Swift features
	Closures
	Protocols
	Class extensions
	Error handling
	Summary
	4. Using Storyboards, Auto Layout, and Size Classes
	Storyboards
	Getting started
	View controllers and screen flow
	Understanding segues
	Auto Layout
	The view hierarchy
	Constraints
	Resolving issues
	Size classes
	Devices, orientations, and size classes
	Size classes in action
	Summary
	5. Taking Advantage of Source Control in Xcode
	Understanding version control
	Introduction to Git
	Setting up Git in Xcode
	Creating a local repository
	Adding Git to an existing project
	Using a GitHub hosted repository
	Using version control in Xcode
	Pull, push, and commit
	The version editor
	Creating and merging branches
	Summary
	6. Building Your First iOS App
	Pre-production
	Assembling a feature list
	Visual design
	Creating a development plan
	New snippet
	SnippetData model
	New snippet button
	Select snippet type
	Update SnippetData model
	Create an alert controller
	Text snippet implementation
	Update SnippetData model
	Text entry view controller
	PhotoSnippet implementation
	Update SnippetData model
	PhotoSnippet data entry
	Scroll through snippets
	Create prototype cells
	Populate table view
	Snippet dates
	Update SnippetData model
	Save data to model
	Update view and controller
	Summary
	7. Integrating Multitouch and Gestures
	Human interface guidelines – gestures
	Standard gestures
	Usage guidelines
	How gestures work
	Adding gestures from the storyboard
	Setting up the storyboard
	Flipping the image
	Adding gestures from code
	Creating a gesture through code
	Reading the gesture data
	Changing the scale of our image
	If you're up for a challenge…
	Creating 3D Touch app shortcuts
	Setting up Info.plist
	Handling shortcuts in the app delegate
	Summary
	8. Exploring Common iOS Frameworks
	Frameworks
	What is a framework?
	Linking frameworks in a project
	Understanding UIKit fundamentals
	Application management
	The UIDevice class
	Views
	Drawing
	Hierarchies
	Coordinate systems
	Documents, displays, printing, and more
	Documents
	Displays
	Printing
	And more!
	Using CoreLocation.framework
	Setting up CoreLocation permissions
	Getting the user's location
	Adding location data to Snippets
	Using Social.framework
	Setting up the views
	Posting to Twitter
	Summary
	9. Working with Core Data
	What is Core Data?
	Model revisited
	Entities, attributes, and relationships
	Entities
	Attributes
	Relationships
	The data model editor
	Preparing Snippets for Core Data
	Initializing the Core Data stack
	Data model versus object graph
	The NSManagedObjectModel
	The NSPersistentStoreCoordinator
	The NSManagedObjectContext
	Final touches
	Recreating the data model with Core Data
	Persisting data
	Saving data
	Fetching data
	Deleting data
	Summary
	10. Creating a watchOS Companion App
	Designing for the Apple Watch
	Using the watch
	Intended experience
	Apple's design principles
	Components of a watchOS app
	The watchOS app
	Dock snapshots
	Notifications
	Complications
	Architecture of a watchOS app
	Target bundles
	Watch App bundle
	Watch Extension bundle
	Interface controller
	Extension Delegate
	Snippets for Apple Watch
	Setting up our project
	Creating a watchOS storyboard
	Programming the interface controller
	Connecting to iOS with Watch Connectivity.framework
	Adding a complication
	Summary
	11. Advanced Input Using Sensors
	Device status with UIDevice
	Accessing orientation state
	Checking the proximity sensor
	Getting battery status
	Introduction to Core Motion
	Accelerometer
	Gyroscope
	CMDeviceMotion
	User acceleration
	Gravity
	Rotation rate
	Magnetic field
	Charting motion data
	Charts
	Importing the framework
	Setting up the storyboard
	Filling the chart with data
	Pedometer
	Altitude
	Sensors on Apple Watch
	Setting up an extension
	Getting sensor data on Apple Watch
	Sending and displaying data on iOS
	Summary
	12. Sending Notifications
	Introduction to user notifications
	Components of a user notification
	Local versus remote notifications
	Adding notification support to Snippets
	Getting permission to send notifications
	Scheduling a local notification
	Advanced notifications
	Categories and actions
	Badges
	Custom sounds
	Receiving notifications while in the app
	Summary
	13. Writing Unit Tests
	Introduction to unit tests
	What is a unit?
	Why use unit testing in the first place?
	Unit tests in action
	Setting up the project
	Writing tests with XCTest
	Running tests
	Implementing tests for Snippets
	Setting up the Snippets project
	Preparing our testing class
	Writing a data validation unit test
	Checking code coverage
	Testing UI in Xcode 8
	How does UI testing work?
	Adding the UI testing target
	Using the UI recorder
	Summary
	14. Debugging an iOS Application
	Basic debugging practices
	print()
	Breakpoints and the debug area
	Variables view
	Console
	Debug toolbar
	The call stack
	Advanced debugging tools
	Address Sanitizer
	Performance gauges
	CPU and memory gauge
	Disk and network gauge
	Energy gauge
	Visual debugging
	Summary
	15. Optimizing Your App
	Introduction to Instruments
	Time Profiler instrument
	Anatomy of an Instruments document
	Using the Time Profiler
	Allocations instrument
	Leaks instrument
	App Thinning
	Slicing
	Bitcode
	On-demand Resources
	Creating tags
	Loading resources
	Purging resources
	Summary
	16. Distributing an iOS App
	Preparing iTunes Connect
	Registering a bundle identifier
	Creating a new app record in iTunes Connect
	Uploading to iTunes Connect
	Releasing the app
	Finalizing store assets
	Distributing on TestFlight
	Submitting to the App Store
	Summary
	Index

