
www.allitebooks.com

http://www.allitebooks.org

Lift Application
Development
Cookbook

Over 50 practical recipes to build web applications using
Lift, the most secure web framework available

Gilberto T. Garcia Jr.

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Lift Application Development Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1190913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-588-7

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Gilberto T. Garcia Jr.

Reviewers
Diego Medina

Peter Petersson (karma4u101)

Peter Robinett

Paulo Suzart

Acquisition Editor
Vinay Argekar

Lead Technical Editor
Azharuddin Sheikh

Technical Editors
Jalasha D'costa

Akashdeep Kundu

Proshonjit Mitra

Shiny Poojary

Copy Editors
Brandt D'Mello

Mradula Hegde

Gladson Monteiro

Project Coordinator
Angel Jathanna

Proofreaders
Simran Bhogal

Ameesha Green

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Gilberto T. Garcia Jr. has a Bachelor's degree in Philosophy from USP, and has been
working with Internet-related technologies since 1999. He had worked with different
programming languages in several projects with different sizes and complexities.

As a person who enjoys learning new things, he started to study and work with Scala and
Lift in 2010.

I want to thank my wife, Lavinia, for all the love and encouragement to write
this book, and for her support and patience during the writing process. I also
want to thank my family and friends.

Thanks to David Pollak for creating Lift, and thanks to the Lift committers
and everyone who makes the Lift community such a nice place to
be around.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Diego Medina lives on the mountains of North Carolina with his wife, daughter, and their
three cats. He has been a developer for the past 12 years, and his focus has been on web
development and more specifically, web security.

He is a proud Lift committer and a very active member of the Lift community, answering
questions on the mailing list as well as writing articles on his personal blog.

Peter Petersson lives in the south of Sweden with his wife and one-year-old boy.

He has been a developer for 18 years. He started his developer career at Ericsson Software
Technology mostly using C++, but at the time Java was emerging, he soon jumped onto that
bandwagon. He has been a co-owner in a tour operator information system company and is
currently a system developer and consultant at Avalon Innovation.

He started looking at Scala and functional programing at the beginning of 2011, about the
same time he found Lift to be an awesome web framework. He is a proud Lift committer and
creator of the Lift FoBo, Front End Toolkit Module, as well as the jQuery module.

www.allitebooks.com

http://www.allitebooks.org

Peter Robinett is a web and mobile developer based in Amsterdam. He is passionate
about Scala and is a committer to the Lift project. He works under the name Bubble Foundry,
and blogs occasionally at www.bubblefoundry.com.

Paulo Suzart worked in different types of companies in the last 10 years, from e-commerce
to insurance, as a Java programmer and lately as an SOA specialist. He currently runs a digital
media startup as CTO.

He truly believes that startups are open fields for new technologies and functional
programming languages, such as Scala and Clojure.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Lift Basics 5

Introduction 5
Creating a Lift application using SBT 5
Creating a Lift application using Maven 8
Defining a SiteMap 10
Logging using logback 14
Sending e-mails using Gmail's SMTP server 17

Chapter 2: Working with HTML 23
Introduction 23
Transforming HTML elements using their IDs 24
Creating an HTML list using CSS selectors 26
Creating an HTML table with dynamically defined columns 29
Nesting snippets 32
Dynamic menu rendering 35
Localizing templates 39
Testing snippets using Specs2 43
Creating custom error pages 46
Sending JavaScript commands from the server 50
Invoking server-side functions from the client 57

Chapter 3: Working with Forms 63
Introduction 63
Creating forms 63
Validating forms 67
Creating an Ajax form 71
Creating multipage forms 77
Defining a relation between form fields 83

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 4: Working with REST 89
Introduction 89
Getting data from the server 90
Creating data using the REST service 97
Modifying data using the REST service 102
Deleting data using the REST service 105
Testing a REST service using Specs2 108
Uploading a file using the REST service 111
Creating an RSS feed 114

Chapter 5: Working with Databases 119
Introduction 119
Configuring a connection to the database 120
Mapping a table to a Scala class 123
Creating one-to-many relationships 128
Creating many-to-many relationships 132
Creating CRUD features with CRUDify 137
Paginating result sets 140
Using an in-memory database in application tests 143

Chapter 6: Working with Record 147
Introduction 147
Configuring a connection to a database using Squeryl 148
Mapping a table to a Scala class 151
Migrating the database using Liquibase 157
Creating one-to-many relationships 160
Creating many-to-many relationships 165
Paginating result sets using Record 172
Testing your application using an in-memory database 174

Chapter 7: Working with MongoDB 179
Introduction 179
Connecting to MongoDB using record 179
Mapping a MongoDB collection to a Scala class 181
Mapping embedded objects 183
Mapping referenced objects 187
Querying with Rogue 190

Chapter 8: Integrating Lift with Social Media 195
Introduction 195
Signing up using a Facebook account 196
Fetching a user's Facebook data 203
Signing up using a Gmail account 208

iii

Table of Contents

Fetching a user's Gmail data 214
Signing up using a LinkedIn account 218
Fetching a user's LinkedIn data 221
Signing up using a Twitter account 224
Fetching a user's Twitter data 229

Index 235

Preface
Lift is a web framework built in Scala. Its main goal is to be a secure framework that helps
developers to build scalable web applications in a concise and maintainable way.

There are six things—according to the official website, http://liftweb.net/—that makes
Lift different from any other web framework available today:

 f Secure: Lift apps are resistant to common vulnerabilities, including many of the
OWASP Top 10 projects

 f Developer-centric: Lift apps are fast to build, concise, and easy to maintain
 f Designer-friendly: Lift apps can be developed in a totally designer-friendly way
 f Scalable: Lift has a number of high-performance apps, and they scale in the real

world to handle insane traffic levels
 f Modular: Lift apps can benefit from easy-to-integrate, pre-built modules
 f Interactive like a desktop app: Lift's Comet support is unparalleled, and Lift's Ajax

support is super easy and very secure

The goal of this book is to introduce you to the basics of Lift, and teach you everything that
you need to know to build applications using Lift.

By providing you with hands-on examples, we hope that you find this book useful as your first
introduction to Lift, and also as a reference guide when building your own web applications.

What this book covers
Chapter 1, Getting Started with Lift Basics, covers the basics of Lift which include how to start
a new application using build tools such as SBT and Maven. It also explains how to define the
application structure using SiteMap object and how to use the Mailer object to send e-mails.

Chapter 2, Working with HTML, introduces the reader to CSS selectors and shows how to use
them to transform the HTML that will be rendered in the browser. It also covers how to test
snippets, how to generate a JavaScript code from the server, and how to invoke server-side
functions using JavaScript. It also explains how to localize templates.

Preface

2

Chapter 3, Working with Forms, covers the different ways the reader can work with forms,
such as how to create a single page form and a wizard-like form. It also explains how to submit
forms using Ajax and how to wire form fields.

Chapter 4, Working with REST, introduces Lift's RestHelper object and how to use it to
create a REST API. It also explains how to test the REST API, how to upload files, and how to
create an RSS feed.

Chapter 5, Working with Databases, explains how to use Mapper to integrate the application
with a database. It also covers the basics of ORM mapping and how to use an in-memory
database to test an application that uses Mapper.

Chapter 6, Working with Record, explains how to integrate a Lift application with a database
using Record and Squeryl. It also covers how to test an application that uses Record and
Squeryl using an in-memory database.

Chapter 7, Working with MongoDB, covers the integration of a Lift application with
MongoDB, how to use Record to create such an integration, and explains how to query
MongoDB using Rogue.

Chapter 8, Integrating Lift with Social Media, explains how to use social login to authenticate
users and how to get their data from their Facebook, Gmail, Twitter, or LinkedIn accounts.

What you need for this book
To be able to follow the recipes, you will need to have Java 7 installed on your computer.

Who this book is for
This book is for developers who want to learn how to develop web applications using the Lift
framework. However, we assume that the reader at least knows the basics of Scala, HTML,
and JavaScript.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The bigger
difference lies in the snippet code. You can see that after getting the user data, we've invoked
a method called fetchUserData and used its result to change the contents of a li tag."

Preface

3

A block of code is set as follows:

import code.lib.googleSession
import net.liftweb.util.BindHelpers._
import net.liftweb.common.Full

object GmailData {
 def render = {
 googleSession.get match {
 case Full(email) => ".email" #> email
 case _ => "*" #> "Not authorized"
 }
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 <pubDate> {longDate(Calendar.getInstance().getTimeInMillis)}
</pubDate>
 {ClientCache.clients.flatMap {
 c =>
 <item>
 <title>Client: {c.id}</title>
 <description>Name: {c.name} - E-mail:
{c.email}</description>

Any command-line input or output is written as follows:

scala> val transformSpanContent = "span *" #> "Some Text"

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "If you select a name in the
combobox and click on the Delete Selected button, you'll see an alert saying that the name
you selected was deleted."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

Preface

4

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded on our
website, or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started
with Lift Basics

In this chapter, we will learn about:

 f Creating a Lift application using SBT

 f Creating a Lift application using Maven

 f Defining a SiteMap

 f Logging using logback

 f Sending e-mails using Gmail's SMTP server

Introduction
In this chapter, we will learn how to install Lift, which is a very secure web framework written in
Scala; how to configure the basics of a Lift application such as how to define the SiteMap which
is a comprehensive representation of the pages of a Lift application; and how to configure a log
engine. We will also learn how to create an application using Simple Build Tool (SBT) or Maven.

Creating a Lift application using SBT
SBT is a build tool for Scala and Java projects. The idea of using a build tool such as SBT is
to make it easier to manage all of the project dependencies. Also, it helps to ensure that the
application generated by the build process is always the same. This means that it doesn't matter
whether the application is built on my computer or yours, the end result will be the same.

The easiest way to start with Lift and SBT is by downloading them from the official website.
There, you can find a list of tar.gz and .zip files containing everything you need to start
using Lift.

Getting Started with Lift Basics

6

Getting ready
Scala, and in turn, the Lift development requires a JVM and because of this, you'll need to
install Java 7 on your computer. However, you can skip this step if you already have it installed.
If not then go to http://java.com and click on the Free Java Download button. Then,
download and install the JDK appropriate for your OS.

How to do it...
Carry out the following steps:

1. First of all, to install and run Lift on Windows, you will need to download the Lift 2.5
ZIP file, which is the latest stable release, from http://liftweb.net/download.

2. After the download is complete, open Windows Explorer and extract the contents
from the file.

3. Then, go to scala_210/ift_basic, double click on the sbt.bat file to run SBT,
and wait until SBT finishes downloading the required libraries. This process can take
a while depending on the speed of your internet connection.

When the download part is completed, you will get the SBT prompt that can be
recognized by the > character.

4. After getting into the SBT prompt, type the following command to start the basic
Lift application:
> container:start

5. At this point, we have a running Lift application. So, open up your favorite browser
and go to http://localhost:8080. Then you should see a welcome window
similar to the following screenshot:

6. To exit SBT, you just need to type the following command in the SBT prompt:
> exit

Chapter 1

7

How it works...
The ZIP file contains some examples of Lift applications such as a blank application that you
can use to start your application from scratch. It also contains a basic Lift application that
contains Blueprint CSS and ready-to-use Mapper models, which you can use as the start
point when building your own application.

The lift_basic folder contains a working Lift application. This means that you have SBT
and a configured, ready-to-use project in it.

When we ran SBT, it started to download all the required libraries that the application needs
(these dependencies are defined in the build.sbt file). Once this step is done, we can start
the application.

After downloading the required libraries, we ran the container:start command provided
by the sbt-web-plugin that deploys the Lift application into an embedded Jetty server.

You can see that inside the lift_basic application, there is a folder called project which
contains a file called project.sbt. In that file, you will see that it defines three plugins for
SBT. The first defined plugin is the XSBT plugin. After the XSBT plugin, there is the sbt-idea
plugin and the sbteclipse plugin. The former is to enable SBT to be integrated with IntelliJ
IDEA, and the latter enables SBT to be integrated with Scala IDE. Another thing to notice in
the plugins.sbt file is that it matches the version of SBT to select the correct version of the
sbt-web-plugin.

There's more...
To install and run Lift on Linux or Mac, perform the following steps:

1. Download the Lift 2.5 ZIP or the tar.gz file from
http://liftweb.net/download.

2. Once you've got the file, open a shell tool and expand it.

3. Then, go to scala_210/lift_basic, and start SBT by running the
following command:
./sbt

4. You can then continue from step 4 of the How to do it… section.

See also
 f You can read the README.md file and explore each sample application folder to learn

more about what is bundled within Lift's ZIP file

 f You can find more about the sbt-web-plugin at the following URL:
https://github.com/JamesEarlDouglas/xsbt-web-plugin

Getting Started with Lift Basics

8

 f Please navigate to https://github.com/mpeltonen/sbt-idea to get to know
more about the SBT plugin for IntelliJ IDEA

 f Please navigate to https://github.com/typesafehub/sbteclipse to learn
more about the SBT plugin for ScalaIDE/Eclipse

 f To find more about SBT, please go to http://www.scala-sbt.org/

Creating a Lift application using Maven
In the previous recipe, we learned how to use SBT to create and run a Lift application. Now I will
show you how to set up and run a Lift application using Maven, which is another build tool.

Getting ready
If you don't have Maven installed and configured on your computer, go to http://maven.
apache.org/download.cgi, download Maven 3.1.0, and follow the installation instructions.

How to do it...
We will use a Maven archetype that will create a ready-to-use Lift application for us.

1. Open a cmd window and run the following command:
mvn archetype:generate ^

 -DarchetypeGroupId=net.liftweb ^

 -DarchetypeArtifactId=lift-archetype-basic_2.9.1 ^

 -DarchetypeVersion=2.5 ^

 -DarchetypeRepository=https://oss.sonatype.org
 /content/repositories/releases

^

 -DgroupId=lift.cookbook ^

 -DartifactId=chap01-mvn ^

 -Dversion=1.0

After running the previous command, Maven will start to download all the required
libraries to create the project.

2. Once the download is complete, Maven will ask you to confirm some information
about the project. Confirm them by typing Y and pressing return.

Chapter 1

9

3. Change the following tags in the pom.xml file:

From:
<scala.version>2.9.1</scala.version>

To:
<scala.version>2.10</scala.version>

From:
<artifactId>lift-mapper_2.9.1</artifactId>

To:
<artifactId>lift-mapper_2.10</artifactId>

From:
<artifactId>lift-jquery-module_2.9.1</artifactId>
<version>2.5-2.0</version>

To:
<artifactId>lift-jquery-module_2.5_2.10</artifactId>
<version>2.4</version>

From:
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<version>2.15.2</version>

To:
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.1.5</version>

From:
<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<version>6.1.26</version>

To:

<groupId>org.eclipse.jetty</groupId>
<artifactId>jetty-maven-plugin</artifactId>

4. When you have finished editing the pom.xml file, open a cmd window, go to the
folder containing the pom.xml file, and run the following command to update and
compile the project:
mvn compile

Getting Started with Lift Basics

10

5. Once Maven finishes the compilation, you will be able to start the application by
running the following command:
mvn jetty:run

6. Now that you have the application up and running, you can access
http://localhost:8080 in your favorite browser, and you should
see a welcome page similar to the following:

How it works...
When you create a project using the Lift archetype, you get a fully working application
containing everything you need to build your own application. This means that Maven will
create an application with its default directory structure, a pom.xml file, with everything
needed by the sample application. It will also include the jetty plugin that will allow us to run
the application by running the jetty:run command.

The application created by Maven is a sample application that contains Blueprint CSS and a
Mapper model. One more thing to notice is that this archetype also includes plugins for IntelliJ
IDEA and Scala IDE.

See also
To learn more about Maven, please go to http://maven.apache.org/.

Defining a SiteMap
Lift offers several ways for programmers to define which pages their applications will have.
SiteMap is one of these ways. Besides defining the pages of your application, you can also
control the access of each URL. This means that you can, for example, control whether a URL
will have access restrictions or not and even control the restriction level of any given URL.

Chapter 1

11

What does this mean? This means that you can think of SiteMap as the defined structure of
your application containing every URL that will be accessible and the policies that are applied
for each one of them.

Another thing that SiteMap does is automatic mapping between URLs and XHTML templates.

In this recipe, we will see how to configure SiteMap for a simple application. For this, let's
suppose we want to create an application to store and manage contacts.

We will need one URL for each of the following actions:

 f List contacts

 f Create contacts

 f Edit contacts

 f Delete contacts

 f View contacts' details

Getting ready
Copy the contents of the lift_blank folder from the scala_29 folder to a new directory
called contacts-app.

How to do it...
Carry out the following steps:

1. Edit the Boot.scala file by adding a function, LocParam, just before the
declaration of the entries value:
val canManage_? = If(() => {
 true
}, () => RedirectResponse("/"))

This is to verify whether the user accessing the URL has management permission and
is allowed to access it.

2. Then, add another LocParam to check whether the user has administrative privileges:
val isAdmin_? = If(() => {
 false
}, () => RedirectWithState("/contacts/list",
 MessageState("Authorized personnel only" ->
 NoticeType.Warning)))

Getting Started with Lift Basics

12

3. After creating the functions, we'll define SiteMap by adding new menu items between
the Menu.i("Home") / "index" and the Menu(Loc("Static", … entries.

Menu items that need to be added are as follows:
Menu.i("List Contacts") / "contacts" / "list",
Menu.i("Create") / "contacts" / "create" >> canManage_?,
Menu.i("Edit") / "contacts" / "edit" >> canManage_?,
Menu.i("Delete") / "contacts" / "delete" >> isAdmin_?,
Menu.i("View") / "contacts" / "view" >> canManage_?,

4. Create a folder called contacts inside the webapp folder.

5. Create five HTML files, one for each menu item defined in SiteMap:

 � list.html

 � create.html

 � edit.html

 � delete.html

 � view.html

6. Then run the application and go to the URL http://localhost:8080 in your
browser. The following screen will be displayed:

How it works...
Lift will build the SiteMap object during the application boot process as a result of the
invocation of the method, LiftRules.setSiteMap.

When a user tries to access, for example /contacts/list, Lift will use SiteMap to decide
whether the resource is defined or not by matching the URL against the link list defined by the
menu entries in SiteMap. Since we've defined it, Lift will serve the page to the user. However, if
the user tries to access /contacts/lists, the match will fail and Lift will return a 404 error.

Chapter 1

13

We still need to understand what the LocParam functions are that were mentioned in steps 1
and 2. LocParam is something that modifies how Lift handles the given entry of SiteMap. In
our case, it is a function that redirects the user to a different URL if the condition being tested
fails. So, if someone tries to access /contacts/create, Lift will execute the canManage_?
function after matching the URL. If the function returns true, Lift will serve the page to the
user; otherwise, it will redirect the user to /. The same logic applies to the view and edit URLs.

The same logic applies to the delete link; the only difference being the fact that the
isAdmin_? function not only redirects the user to /, but also passes a message that will
be displayed in the page. This happens because we've used If LocParam that takes two
arguments. The first is a test function. If it returns true, the page can be accessed; and if the
return value is false, the result of evaluating the second parameter, FailMsg, will be sent to
the browser.

There's more...
The entries variable is a list of menu items that will be processed when the application is
started by Jetty.

Each menu item has a structure as shown in the following image.

 f Unique identifier

 f Link object

 f Text

 f Parameters

The unique identifier is used by Lift to keep a track of all the menu entries in SiteMap.

The Link contains the list that will be used to match the requested URL to check if it is
defined or not.

The match head parameter, which is a Boolean value, defines whether Lift will match the
exact URL or everything beginning with the given path. Notice that if you pass true, Lift will
serve URLs containing /contacts/create or /contacts/create/*, where * is any HTML
file existing inside webapps/contacts/create. If no such folder exists, Lift will return a
404 error. If you pass false, Lift will only serve /contacts/create and will return the 404
error for any other URL containing /contacts/create.

Getting Started with Lift Basics

14

The URL that will be used to create the link on the page will be the value rendered in the href
attribute of the anchor tag,

text is the text that will be shown when the link is displayed.

The parameters are functions, LocParam, that you want to execute when rendering the link or
accessing the page.

Lift comes with several types of the LocParam functions, such as MenuCssClass to add a
CSS class to the Menu and Title to define the title of the page.

See also
To learn more about SiteMap, Menu, and the LocParam functions, please go to
https://www.assembla.com/wiki/show/liftweb/SiteMap.

Logging using logback
Logback is a log engine that is intended to be a better version of the popular log4j. You might
want to check the project website to understand the reasons you should consider Logback
over log4j. But, you might ask why we need a log engine at all?

Logging is a useful tool that allows us to track what happens with the applications we build
that are running on environments which we, as developers, cannot easily debug. That's why
it is important that the tools we use to build applications support logging in an easy way.
Lift does support logging in an easy and flexible manner. So, let us see how to log and what
happens with our application.

Downloading the example code

You can download the example code files for all Packt
books you have purchased from your account at
http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Getting ready
We will use the code from the last section to re-use the SiteMap we have defined.

Chapter 1

15

How to do it...
Don't worry if you don't fully understand the following code. We will get back to it later in
the book.

1. Create a new Scala class called ListUser inside the snippet package with the
following code:
class ListUser extends Logger {
 def log(text: String) {
 text match {
 case str if str.length == 0 =>
 error("user with no name")
 case str if str == "Forbidden" =>
 warn("this user shouldn't have access")
 case str =>
 debug("User name: " + str)
 }
 }
 def list = {
 val users = List("John", "Sarah", "Peter", "Sam", "",
 "Forbidden")
 info("listing users")
 "li .name *" #> users.map {
 user => {
 log(user)
 Text(user)
 }
 }
 }
}

2. Add the following HTML snippet in /webapp/contacts/list.html:
<ul data-lift="ListUser.list">
 <li class="name"><!-- user names will be in here -->

3. Change the code.snippet logger in src/main/resources/logback.xml to
debug the level as follows:
<logger name="code.snippet" level="debug" />

4. Start the application and go to http://localhost:8080/contacts/list in
your browser.

Getting Started with Lift Basics

16

In your browser, you will see, a page similar to the one shown in the
following screenshot:

In the SBT console, you will see a log similar to the following screenshot:

How it works...
We configured the log in the logback.xml file. You might notice that there was an appender
already configured. Appenders are the components that actually do the task of writing log
events. There are several types of appenders and one of them is the ConsoleAppender that
just prints the log entries in the standard output—the console in this case.

The class ListUser is a Lift snippet that traverses the list of strings defined by variable
users. For each string, it does two things:

 f Invokes the log method

 f Adds the string inside the li tag

Then it returns the modified HTML to be rendered in the browser.

The log method will create a log entry with different log levels depending on the string's
content, by invoking the method from the Logger trait which includes info, debug, error,
warning, and so on.

The Logger trait's methods are accessible from the snippet because we mixed them in
our snippet by extending them using extends Logger. Then the snippet is invoked by the
instruction ListUser.list that we added in the data-lift attribute in the HTML file.

Chapter 1

17

There's more...
When you use the Logger trait, Lift will create one logger per class or object. That is why we
can see the object or class where the log entry was created. You can see in our example that
the log was created by the ListUser snippet by extending the trait.

This is a nice feature since we can have more control of how our application creates the log
entries. We can, for example, set packages with different log levels. As you can see in the
logback.xml file, the code.snippet has the debug level while net.liftweb has the
warn level and bootstrap.liftweb has the info level.

Logback is not the only log engine available. If you want to use log4j, you will need to change
the dependency in the build.sbt file from:

"ch.qos.logback" % "logback-classic" % "1.0.6",

To:

"org.slf4j" % "slf4j-log4j12" % "1.6.1",

Also, you will need to create src/main/resources/log4j.xml, which is log4j's
configuration file.

See also
 f You can find more about log4j at the following URL:

http://logging.apache.org/log4j/1.2/

 f Check this URL if you want to learn more about Logback:

http://logback.qos.ch/

 f At last, you can find more information about other ways to use Lift's log engine, such
as how to create a singleton logger object for the entire application, as shown here:

https://www.assembla.com/spaces/liftweb/wiki/Logging

Sending e-mails using Gmail's SMTP server
It does not matter if you are building your company website, an application that will be used
only inside the company you work at, or an e-commerce solution. Eventually, you will need
to send e-mails. It is fair to say that every web application has the need, at some point, to
send e-mails.

In this recipe, we will learn how to send plain text e-mails using Gmail's SMTP server.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Lift Basics

18

Getting ready
You can use the code of the examples we have used in the previous recipe, or you can start
a new project.

How to do it...
Carry out the following steps:

1. You will need to add the following properties into src/main/resources/default.
props:
mail.user=your_email@gmail.com
mail.password=your_password

2. Change the mail.user and mail.password properties to match your
Gmail account.

3. Then create a method in the Boot class to configure the Mailer object as follows:
def configureMailer() {
 import javax.mail{PasswordAuthentication, Authenticator}

 System.setProperty("mail.smtp.starttls.enable", "true")
 System.setProperty("mail.smtp.ssl.enable", "true")
 System.setProperty("mail.smtp.host", "smtp.gmail.com")
 System.setProperty("mail.smtp.auth", "true")

 Mailer.authenticator = for {
 user <- Props.get("mail.user")
 pass <- Props.get("mail.password")
 } yield new Authenticator {
 override def getPasswordAuthentication =
 new PasswordAuthentication(user, pass)
 }
}

4. Then, you need to call the configureMailer method from within the boot method:
def boot {
 // where to search snippet
 LiftRules.addToPackages("code")

 configureMailer()
 ….
}

Now, we have the Mailer object configured, and we are ready to send e-mails.

Chapter 1

19

5. Inside the lib package src/main/scala/code/, create an object called
SendEmail that will be responsible for sending e-mails:
import net.liftweb.util.Mailer
import net.liftweb.util.Mailer._

object SendEmail {
 def send_!(from: String,
 recipient: String,
 subject: String,
 body: String) {
 val mailTypes = List(PlainMailBodyType(body),
 To(recipient))

 Mailer.msgSendImpl (
 From(from),
 Subject(subject),
 mailTypes)
 }
}

6. At last, we will create a snippet to render a link to send e-mails when clicked. For this,
you will need to create a class called EmailSnippet inside the snippet package,
src/main/scala/code/:
import net.liftweb.http.SHtml
import net.liftweb.util. Helpers._
import code.lib.SendEmail
import xml.Text
import net.liftweb.util.Props

class SEmail {
 def sendNow() = {
 SendEmail.send_!(
 Props.get("mail.user").get,
 "to_email@example.com",
 "Sending e-mail using GMail",
 "Here is the body content."
)
 }

 def sendEmail = {
 "*" #> SHtml.link("#", () => sendNow(), Text("Send
 e-mail"))
 }
}

7. Change to_email@example.com to match your Gmail account.

Getting Started with Lift Basics

20

8. You will also need to create the following menu item in the entries list, just after the
index entry:
Menu.i("Send Email") / "send"

9. Create a file called send.html inside src/main/webapp as follows:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/
 xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta content="text/html; charset=UTF-8"
 http-equiv="content-type"/>
 <title>Home</title>
 </head>
 <body class="lift:content_id=main">
 <div id="main"
 class="lift:surround?with=default;at=content">
 <h2>Sending e-mail using GMail's SMTP server.</h2>

 <p>
 <!-- there
 will be a button here -->
 </p>
 </div>
 </body>
</html>

10. Start the application and go to http://localhost:8080/send.

You should see a page containing a link called Send e-mail, similar to the
following screenshot:

11. Click on the link to send the email, and you will receive an email in your Gmail inbox.

Chapter 1

21

How it works...
First of all, we have set a few mail properties that will be used by the Java Mail API, such as
mail.smtp.ssl.enable and mail.smtp.starttls.enable. These properties will
enable SSL and TLS, meaning that we will use a secure channel to send the e-mail, and
mail.smtp.host to set the SMTP server address. Then, we set mail.smtp.auth to
true to use the SMTP authentication.

The next thing we did was to create an authenticator to use the Mailer object.

Mailer is a built-in Lift object that contains utilities to
send e-mails.

When creating the authenticator, we used the Props object to get the user and password
values from the default.props file.

Props is a Lift helper object that can be used to get values
from properties files.

Then, we created the EmailSnippet class that creates a link which when clicked, invokes
the sendNow() method. This method has no parameters and calls the SendEmail's send_!
method, passing information such as from, to, subject, and body that will be used to
send the e-mail. We had to wrap the call to send_! to keep the code easy to read. Then
SendEmail's send_! invokes Mailer object's sendMail method, which is the method that
will send the e-mail.

There's more...
Why did we do all of this in the Boot class? Well, we just needed to configure the Mailer
object once. This is because it's a singleton, which means that only one instance of the object
will be created, and we can use it throughout the application once it is configured. So, Boot
is the perfect place to do this, since it is called only once when the server, in our case Jetty, is
starting the application.

Note that we configured the Mailer object in a programmatic way. However, if you want to
use The Java Naming and Directory Interface (JNDI) to configure the Mailer object, you
will need to do two things.

Getting Started with Lift Basics

22

By using JNDI to configure the Mailer object, you can rely on
the fact that the configurations will be set on the server; your
application only needs to know the JNDI name to be able to use
a given resource. This means that if you need to change the
application server where your application will run, you won't have
problems with different settings causing your application to break.

1. First you need to call the following code instead of using the configureMailer()
method:
Mailer.jndiName = Full("mail/Session")

2. Second, you need to configure the server to provide a mail session via JNDI. You do
this by creating a file called jetty-env.xml inside the WEB-INF folder:
<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN"
 "http://www.eclipse.org/jetty/configure.dtd">
<Configure class="org.eclipse.jetty.webapp.WebAppContext">
 <New id="mail"
 class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg>mail/Session</Arg>
 <Arg>
 <New
 class="org.eclipse.jetty.jndi.factories.
 MailSessionReference">
 <Set name="user">your_email@gmail.com</Set>
 <Set name="password">your_password</Set>
 <Set name="properties">
 <New class="java.util.Properties">
 <Put name="mail.transport.protocol">smtp</Put>
 <Put name="mail.smtp.host">smtp.gmail.com</Put>
 <Put name="mail.smtp.auth">true</Put>
 <Put
 name="mail.smtp.starttls.enable">true</Put>
 <Put name="mail.smtp.ssl.enable">true</Put>
 <Put name="mail.debug">true</Put>
 </New>
 </Set>
 </New>
 </Arg>
 </New>
</Configure>

See also
You can get more information about the Mailer objects at the following addresses:

 f https://www.assembla.com/spaces/liftweb/wiki/Mailer

 f http://exploring.liftweb.net/master/index-F.html

2
Working with HTML

In this chapter, we will cover the following topics:

 f Transforming HTML elements using their IDs

 f Creating an HTML list using CSS selectors

 f Creating an HTML table with dynamically defined columns

 f Nesting snippets

 f Dynamic menu rendering

 f Localizing templates

 f Testing snippets using Specs2

 f Creating custom error pages

 f Sending JavaScript commands from the server

 f Invoking server-side functions from the client

Introduction
In the previous chapter, we learned how to create a Lift project using both SBT and Maven.
We also learned how to do basic things such as sending e-mails and configuring the SiteMap.

We also created few pages and examples to demonstrate some of the features of this
amazing framework called Lift.

As, Lift is a framework used to build websites and applications using Scala, we need to learn
how to create pages, how to manipulate HTML to create dynamic pages, how to localize our
website, and a lot of other useful things that are necessary while building a website.

Working with HTML

24

Another neat feature that you will see in the following recipes, is that Lift templates are
designer friendly. That is because bindings between HTML and Lift snippets are made by
adding markups inside the data-lift attribute of HTML tags. Since this is all you need to
create the binding, your HTML file will be valid and designers working on the same project
won't have a hard time editing them.

These are the topics that we will learn in this chapter.

Transforming HTML elements using their IDs
Suppose you are building a page and you want to show some unique information, such as the
user name and the total amount of a shopping cart; what would you do?

You will probably need to add the information that you want to show into some tags with
a unique identifier.

This is exactly what we will learn to do in this recipe.

Getting ready
You can use the code from the examples we used in the recipes of the previous chapter or you
can start a new project.

How to do it...
An HTML element can be transformed by using the following steps:

1. Add the following code into the index.html file:
<div data-lift="Calculator.plus">
 2 + 2 = some number
</div>

2. Create a Calculator object inside the snippet folder with the following code:
import net.liftweb.util.BindHelpers._
object Calculator {
 def plus = "#result *" #> (2 + 2)
}

Chapter 2

25

3. Start the application and access http://localhost:8080. You should see a page
similar to the following screenshot:

How it works...
When working on a Lift application, the data-lift attribute in an HTML tag will search for a
snippet to do the job.

If Lift does not find a snippet object or if the snippet object
doesn't have the invoked method, Lift will show an error message
when you try to access the page.

The text before the dot, Calculator, is the name of the snippet class or object and the text
after the dot, plus, is the method that will be invoked.

In this example, we are telling Lift to invoke the Calculator object's plus method. Let's
take a look at the plus method to see what it does.

The plus method has no parameters and its return type is CssSel.

The CssSel trait performs HTML transformations using CSS selectors. Its job is to get
some HTML (scala.xml.NodeSeq), transform it, and then return the transformed HTML
(a new NodeSeq).

Therefore, what is really happening here is that the plus method gets the content of the div
tag and changes it.

When the plus method is invoked, it will search for the HTML tag that has id equal to
"result", and change it by replacing the tag with result as the value of id, with the result
of the evaluation of the expression 2 + 2.

You can see this by looking at the resulting HTML in your browser. The original snippet was:

<div data-lift="Calculator.plus">
 2 + 2 = some number
</div>

Working with HTML

26

It was then changed to:

<div>
 2 + 2 = 4
</div>

Another thing you'll notice, is that there is no mention of the snippet in the resulting HTML.

See also
 f To learn more about CSS selectors, please visit the following URL: http://simply.

liftweb.net/index-7.10.html

Creating an HTML list using CSS selectors
In the previous recipe, we learned how to show data that should be unique using a CSS
selector and the id attribute of HTML tags. However, there are a lot of times when we need to
show collections of data, such as the names of students in a given classroom, the list of items
in a shopping cart, or a list of whatever else you can think of.

This is exactly what we will learn how to do in this recipe.

Getting ready
You can use the code from the examples we used in the previous recipe or you can start a
new project.

How to do it...
A HTML list can be created by following these steps:

1. Add the following section in the index.html file:
<div data-lift="Animals.list">

 - <span
 class="sname">

</div>

2. Create a file called Animals.scala in the snippets folder with the following code:
import net.liftweb.util.BindHelpers._
import xml.Text

Chapter 2

27

object Animals {
 def list = {
 val animals = List(
 ("Dog", "(Canis lupus familiaris)"),
 ("Cat", "(Felis catus)"),
 ("Giraffe", "(Giraffa camelopardalis)"),
 ("Lion", "(Panthera leo)"),
 ("Horse", "(Equus ferus caballus)")
)

 "li *" #> animals.map {
 a =>
 ".name *" #> Text(a._1) &
 ".sname *" #> Text(a._2)

 }
 }
}

3. Start the application and access http://localhost:8080. You'll see a page
with a list of common names and scientific names of five animals, as shown in the
following screenshot:

How it works...
There are no secrets in HTML. We added the markup to invoke the snippet that will render the
HTML file. We did this by adding l:Animals.list in the div tag.

We also added two span tags, one with class name and the other with class sname to mark
where we want the content to be added when Lift transforms the HTML.

But, how did Lift change the original HTML file into a list of animal names?

As I said before, we tell Lift to invoke a method in a snippet when we add l:..... inside
the class attribute of a given HTML tag. In this case, we invoked the method list of the
snippet Animals.

Working with HTML

28

This method receives a NodeSeq object, creates a list of tuples, and then changes the
content of the tag for each element in the animal list by changing the content of any tag
with the name or sname classes. What we are saying to Lift is that, for each element in my list,
create an tag and put the first element of the tuple into a tag containing the name class
and the tuple's second element into a tag containing the sname class.

You can see that the span tags are in the final HTML rendered by Lift. Why didn't Lift remove
the span tags as it did in the previous recipe?

As it happens, we used #result as the CSS selector in the first example and li *, .name
*, and .sname * in this one. The difference is just that of one character; that is, *.

The difference between using the character * and not using it is that when you use it, you tell
Lift to change the content of the tag that matches with the CSS selector, and when you don't use
it, you tell Lift to replace the tag itself. While ".name *" #> Text(...) replaces the content
of a tag containing the class name with some text, ".name" #> Text(...) replaces the
tag containing the class name with some text. So, the HTML for the first case will be <span
class="name">some text</name>, while for the second, it will be just some text.

There's more...
You should note that, in the first recipe, we passed an integer as an argument for the #>
method, while in this recipe's example, we've passed a list of CssSel. You might wonder
how this is possible.

As it turns out, Lift comes with several transformation rules that are each passed as an
implicit parameter to the #> method. These transformation rules "know" how to convert the
parameter passed to the #> method to the correct type.

For example, if you pass an integer, the intTransform method will be used, and if you pass
a list of strings, the iterableStringTransform method will be used.

Another neat and useful tool to try out while developing a Lift application is the CSS selector
in the Scala REPL. You can open the Scala REPL by entering the console command in the
SBT session.

Once you get the Scala REPL, import the content of Lift's Helper object, net.liftweb.
util.Helper, and you are ready to start experimenting.

As a quick example, type the following code in the Scala REPL:

scala> val transformSpanContent = "span *" #> "Some Text"

scala> transformSpanContent(this text will be replaced)

You'll get this result:

res0: scala.xml.NodeSeq = NodeSeq(Some text)

Chapter 2

29

As you can see, we did a quick experiment to check what happens with a scala.xml.
NodeSeq object after being transformed by the CssSel we've defined.

See also
Visit http://simply.liftweb.net/index-7.10.html to learn more about CSS selectors.

Creating an HTML table with dynamically
defined columns

We often need to display tabular data while building websites. Sometimes we know
beforehand all of the columns we will need to display, but sometimes we don't.

Handling tabular data with dynamically defined columns is a bit harder than handling data
with a fixed number of columns because you will need to dynamically render the columns
and the rows. On the other hand, when dealing with a fixed number of columns, you need to
render just the rows.

I chose to work with dynamically defined columns for two reasons. First, it is more complex,
and secondly, once you learn how to deal with dynamically defined columns, you will be able
to work on the simpler case; that is, fixed columns.

Getting ready
First, we are going to create the HTML table. It's regular HTML—meaning that it has no special
tags or any markup that is not HTML markup—with a thead section to hold the column
headers and a tbody section to hold the data, and of course, it will invoke a Lift snippet.

1. Create a new project.

2. Create a table as follows:
<table data-lift="Table.dynamic">
 <thead>
 <tr>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td></td>
 </tr>
 </tbody>
</table>

Working with HTML

30

How to do it...
The snippet structure should look familiar to you at this point, but there are a couple of things
to learn. Let's check what the code looks like and then we'll see how it does its magic.

1. Create a snippet with the following code:
import net.liftweb.util.Helpers._
object Table {
 def dynamic = {
 val headers = (1 to 10)
 // creates a 10 x 10 matrix
 val table = headers.map(n => (1 to 10).map(in => n *
 in))

 "th *" #> headers
 &
 "tbody tr *"*" #> table.map {
 r => {
 "td *" #> r
 }
 }
 }
}

2. Start the app and access http://localhost:8080. You should see a screen
similar to the one in the following screenshot:

Chapter 2

31

How it works...
There is nothing new in the HTML, just the call to the snippet using the data-lift notation,
and we were still able to create a table with a dynamic number of columns and rows. This is
amazing and shows how powerful CSS selectors are.

All the magic happens in the snippet, so let's take a look at it. As far as one can tell, it's a
regular snippet with no super powers, and this is the case indeed.

There are two things that made this task feasible. The first one is the & operator which lets us
perform chain binding operations. In this case, we chained together the th and tbody bindings.
The second is the nesting of bindings. If you take a closer look at the tbody binding, you'll see
that we first bound the tr tags and in this binding we created another one for the td tags.

So, what we are doing here is telling Lift to create a table's header columns with the th
binding, just as we did for the list in the previous recipe; each element of the collection
headers will generate a th tag. Then, using the same technique, we told Lift to create a row
for each element of the table collection. But, each element of the table collection is another
collection. Look at the following figure, and you will see why we nest another bind inside the
tr binding. The nested binding uses the same technique as the previous binds, th and tr.
So, it will create a list of td elements.

elements of table collection

element 1

element 2
element 1

0 bind for tr’s

element 1 holds another collection

element 2 holds another collection

nested bind for td’s

element 10 holds another collection

1

1

2

3

4

5

6

7

8

9

10

2

2

4

6

8

10

12

14

16

18

20

3

3

6

9

12

15

18

21

24

27

30

4

4

8

12

16

20

24

28

32

36

40

5

5

10

15

20

25

30

35

40

45

50

6

6

12

18

24

30

36

42

48

54

60

7

7

14

21

28

35

42

49

56

63

70

8

8

16

24

32

40

48

56

64

72

80

9

9

18

27

36

45

54

63

72

81

90

10

10

20

30

40

50

60

70

80

90

100

This is how we were able to create a table with both columns and rows dynamically defined.

Working with HTML

32

See also
 f The Transforming HTML elements using their IDs recipe

 f The Creating an HTML list using CSS selectors recipe

 f The Simply Lift website: http://simply.liftweb.net/index-7.10.html

 f The Exploring Lift website: http://exploring.liftweb.net/master/
index-5.html#toc-Subsection-5.3.2

 f The Assembla webpage for Binding via CSS Selectors: https://www.assembla.
com/spaces/liftweb/wiki/Binding_via_CSS_Selectors

Nesting snippets
Snippets are lazily evaluated, which means that the Inner snippet will not be invoked until
the Outer snippet is evaluated. By using this neat feature, we can nest snippet invocations
in our HTML templates, and thus gain a powerful tool to dynamically generate HTML with a
fine-grained control. For example, you can use this feature to show different things to your
users depending on whether they are logged in or not and on their authorization level. We'll
learn how to do this in this recipe.

Getting ready
Create a new project and add the following designer-friendly HTML code into the index.html
file to invoke the snippet and trigger all of the mechanisms to render snippets recursively:

<div data-lift="Outer.choose">
 <div class="inner-div"></div>
</div>

How to do it...
Nesting snippets can be done by following these steps:

1. Create a file called Outer.scala in the snippet package with the
following content:
import net.liftweb.util.Helpers._
import net.liftweb.http.S
import net.liftweb.util.BasicTypesHelpers._
import net.liftweb.common.Full

object Outer {
 def choose = {
 val loggedIn = S.param("loggedin").flatMap(asBoolean)

Chapter 2

33

 loggedIn match {
 case Full(b) if b => ".inner-div [class+]" #>
 "lift:Inner.logged"
 case _ => ".inner-div [class+]" #>
 "lift:Inner.nonlogged"
 }
 }
}

After building the Outer snippet, we'll build the Inner one.

2. Create a file called Inner.scala in the snippet package with the
following content:
import net.liftweb.util.Helpers._

object Inner {
 def logged = {
 "div *" #> "Should only be visible when user is
 logged in"
 }

 def nonlogged = {
 "div *" #> "Should only be visible when user is not
 logged in"
 }
}

3. Access the following URLs to test this example:

 � http://localhost:8080?loggedin=true

 � http://localhost:8080?loggedin=false

 � http://localhost:8080

You will see the following output, as shown in the following screenshot:

Working with HTML

34

How it works...
As you can see, the only snippet invocation in the HTML file is the invocation of the Outer
snippet; the rest of the HTML is just plain HTML markup—nothing special or new. But we
have two snippets and only one invocation in the HTML file. As it turns out, when Lift starts to
process HTML, it will find the snippet invocation and will pass the HTML code to it.

The Outer snippet will check for the presence of the loggedin parameter. It does this by
using the param method of the S object; it then uses this parameter to choose which snippet
will be rendered next.

S is an object that holds the HTTP requests/responses and HTTP
session state.

When we invoke the S object's param method, it will try to get a
query string—having the key passed as parameter to the param
method—from the URL.

The S.param method returns Box[String]; it will return
Full[String] if it successfully gets the query string, or
Empty if the key doesn't exist.

Box is a container class that can be empty or full. If Box contains
a value different from null, the box's value is Full(value);
otherwise, the value of Box will be Empty. Other possible values
for an empty box are Failure and ParamFailure, which can
include the reason why the box is empty.

If the parameter is true, it will append lift:Inner.logged to the class attribute of the
div tag with inner-div as value of the class attribute; if the parameter is false or non-
existent, it will append lift:Inner.nonlogged to the class attribute.

How does Lift know that we want to append something to the
class attribute of a tag? By using the [attr+] selector, we
tell Lift to append the result of the right-hand side of the #>
operator to the tag attribute. Since we used [class+], we
told Lift to append lift:... to the class attribute.

You can read more about CSS Selector Transforms at
http://simply.liftweb.net/index-7.10.html.

Chapter 2

35

Once the Outer snippet finishes its job, the transformed HTML—if the value of the loggedin
parameter is true—will look like the following code:

<div>
 <div class="inner l:Inner.logged"></div>
</div>

We no longer have the invocation of the Outer snippet. The HTML will now invoke the Inner
snippet, which is a snippet that will render some text inside the div tag. The final HTML will
look the following code:

<div>
 <div class="inner">
 Should only be visible when user is logged in
 </div>
</div>

What we did is:

1. Invoke the Outer snippet.

2. Choose which snippet should be called, based on some condition.

3. Return HTML that contains in itself an invocation to another snippet—the Inner
snippet.

4. Process the HTML in the Inner snippet.

5. Return the transformed HTML.

That's all you need to create nested calls to snippets in Lift.

See also
You can read more about snippets at:

 f http://simply.liftweb.net/index-3.4.html

 f http://simply.liftweb.net/index-7.1.html#sec:snippets

Dynamic menu rendering
Menus are an important part of an application. They show a hierarchical structure and how
the application is organized. Users will use them to navigate through the application.

Lift does offer a good built-in snippet for creating menus, as I briefly said before. In this recipe,
I'll show you how to use this snippet to create complex menu structures, and how to render
them with fine-grained control.

Working with HTML

36

Getting ready
Create a new project and add the following code in the Boot class to create the SiteMap:

Val isAdmin_? = If(() => {
 S.param("admin").flatMap(asBoolean).openOr(false)
 }, () => RedirectWithState("/", MessageState(
 "Authorized personnel only" -> NoticeType.Warning))
)
val entries = List(
 Menu.i("Home") / "index" >> LocGroup("content"), // the
 simple way to declare a menu

 Menu("Admin") / "admin" >> Hidden
 submenus(
 Menu(Loc("List", List("list"), "List Contacts",
 isAdmin_?, LocGroup("admin"))),
 Menu(Loc("Create", List("create"), "Create Contact",
 isAdmin_?, LocGroup("admin"))),
 Menu(Loc("Edit", List("edit"), "Edit Contact",
 isAdmin_?, LocGroup("admin"))),
 Menu(Loc("Delete", List("delete"), "Delete Contact",
 isAdmin_?, LocGroup("admin"))),
 Menu(Loc("View", List("view"), "View Contact",
 isAdmin_?, LocGroup("admin")))
),
 Menu("Search") / "search" >> LocGroup("content"),
 Menu("Contact Us") / "contact" >> LocGroup("footer"),
 Menu("About Us") / "about" >> LocGroup("footer"),

 // more complex because this menu allows anything in the
 // /static path to be visible
 Menu(Loc("Static", Link(List("static"), true,
 "/static/index"),
"Static Content", LocGroup("content"))))

How to do it...
Rendering a menu dynamically can be done by following these steps:

1. In the default.html file, change the invocation to the MenuBuilder
snippet from to <span
class="lift:Menu.builder?group=content">.

Chapter 2

37

2. Add the following code snippet after the div tag with content as the value of
the id field:
<div>

</div>

3. Then remove the h4 tag and the tag within the div tag and containing the class
last, and add the following code:

4. Start the application and access http://localhost:8080 and
http://localhost:8080?admin=true. You should see a page
similar to the one shown in the following screenshot:

How it works...
I'll start with the Scala code because it will be easier to first understand what this code does
before trying to understand the HTML code. In fact, once you grasp how the SiteMap was built
and how it works, the HTML code becomes pretty simple.

If you pay attention to the code, you'll see that we are creating a list of menu items, just like
we discussed earlier, but this code is different from the previous one as it uses LocGroup
and hidden, and has a submenu. The former can be used to place together menu items in
logical groups, while the latter creates hierarchical menu structures, like the one appearing in
the following screenshot:

Footer 1 | Footer 2

Group

Item 1 | Item 2 | Item 3

Subitem 1
Subitem 2
Subitem 3

Group

Submenu hierarchy

www.allitebooks.com

http://www.allitebooks.org

Working with HTML

38

We used the hidden property to prevent the menu from being shown on the page when
the MenuBuilder snippet gets invoked. The submenu is shown only for users who are
administrators. We did this by invoking the isAdmin_? function. This function evaluates the
admin parameter and returns true or false depending upon the value of the parameter
which could either be true or false. If the function returns true, the menu item will be both
visible and accessible. However, it will not be visible if the function returns false, and if you
try to access the URL directly, Lift will call the isAdmin_? function, which will redirect the
user to / if the function returns false.

We also used LocGroup to divide the SiteMap into three logical groups: content, footer,
and admin. So, the SiteMap has three groups, and one of them is hidden and has a submenu
that is only visible to users with the right credentials. We now need to understand how this
structure is transformed into HTML by Lift.

Looking closely at the HTML snippet, you'll find invocations to the MenuBuilder snippet. But,
we are not just invoking snippets here. We are invoking and passing parameters to them.

You can pass parameters to snippets like you would with URL
parameters—a question mark and a bunch of key-value pairs.
For example, ?key1=value1&key2=value2....

Lift uses these parameters as filters and will render only the items that have LocGroup
specified by the parameter. When we say ?group=content, we are telling Lift to render only
the items with LocGroup("content").

The final point to cover is the menu with LocGroup("admin") which we defined as hidden;
a menu item defined as hidden is not rendered by Lift when the MenuBuilder snippet is
invoked. If the menu item is not rendered, how will we access the items in the admin menu?
As it turns out, the only item that is hidden is the one defined as hidden. Submenus are not
affected. But we still want to let only users with the right credentials access the admin menu.
To accomplish this, I created a function to tell Lift whether or not it should render the admin
submenu items. Lift will only show it if we pass the admin parameter in the URL as true.

The isAdmin_? function is executed on every request and will be evaluated as true if
you pass the admin parameter, and then Lift will render the menu. In this case, I used
LocGroup("admin") to group all items together, so I can render them in a different
area of the page.

If you call Menu.builder with no parameter, Lift will
render a complete SiteMap hierarchically. However, there
is one catch—it will not render submenus hierarchically
when LocGroup classes are used.

Chapter 2

39

See also
 f The Defining a SiteMap recipe in Chapter 1, Getting Started with Lift Basics

Localizing templates
Sometimes, applications or websites we build need to support multiple languages. Lift
supports this requirement by allowing us to localize templates, and offers a powerful yet
simple way to choose which template to use when rendering the page.

In this recipe, we'll learn how to localize templates and texts that will be loaded dynamically
for our applications or websites.

Getting ready
1. Create a new project and the following three bundle files in the

src/main/resources/i18n folder:

 � The resources.properties file

 � The resources_de.properties file

 � The resources_fr_FR.properties file

2. The resources.properties file will have the following content:
menu.home=Home
menu.static=Static
dynamic.text=Some dynamic text
welcome.text= Welcome to your project!

3. While the file resources_de.properties will have the content shown in the
following code:
menu.home=Zuhause
menu.static=Statisch
dynamic.text=einige dynamischen Text
welcome.text= Willkommen in Ihrem Projekt!

4. And the file resources_fr_FR.properties will have the content shown in the
following code:
menu.home=Page d'accueil
menu.static=Statique
dynamic.text=Un texte dynamique
welcome.text= Bienvenue à votre projet!

Working with HTML

40

How to do it...
1. We first need to tell Lift where it can find the files with the texts in different

languages, also known as bundle files. You can do this by adding the following
code in the Boot class:
LiftRules.resourceNames = "i18n/resources" ::
 LiftRules.resourceNames

2. Consider the following menu in the Boot.scala file:
Menu.i("Home") ….
…. "Static Content")))

You will need to change it to:

Menu("menu.home") ….
…. S ? "menu.static")))

We are also going to change the index.html file so that Lift can localize the
static text.

3. Replace the content of the div tag with main as the value of the id field in the
index.html file to:
<h2 data-lift="Loc.i">welcome.text</h2>

<p></p>

4. At last, we will need to create a file called Localization.scala in the snippet
package to dynamically load localized text, as shown in the following code:
import net.liftweb.util.BindHelpers._
import net.liftweb.http.S

class Localization {
 def dynamic = {
 "*" #> S.?("dynamic.texttext")
 }
}

Chapter 2

41

5. Start the application and access http://localhost:8080. You should see the
page loaded in English, assuming English is the default language set in your browser,
as shown in the following screenshot:

6. If you change your browser's language to German, you should see the page loaded
in German, as shown in the following screenshot:

7. Finally, if you change your browser's language to French, you should see the page
loaded in French, as shown in the following screenshot:

How it works...
We localized our application or website by doing two things. We first localized our templates
so that we can have the static content translated into the correct language. We achieve this
by using the built-in snippet called Loc. This snippet uses the string inside the tag—welcome.
text, in our case—as a key and tries to find a resource in the bundle files defined by that key.

Working with HTML

42

Lift has a built-in locale calculator that will try to find the correct bundle based on the
language set in your browser, which is passed to the server via a parameter in the HTTP
header request. For example, if the language set in your browser is German, Lift will try
to find a resources_de.properties file. Three things can happen here:

 f Lift finds the bundle file and renders the template in the correct language

 f Lift doesn't find the file and then tries to find the default bundle—resources.
properties in this case—and renders the text in the language set in the
default bundle

 f Lift doesn't find any bundles and then renders the template with welcome.text
as the key—in our case

The same mechanism is applied to our Localization snippet and MenuBuilder snippet.
When you use S ? ("key"), you are invoking the ? method in the S object. This method will
try to get the value defined by the key in a property file. The trick here is that the ? method
loads a localized string, which means that it will try to find a resource bundle file that best fits
the locale defined in the request. How does Lift know which resource bundle file to use and
where to find it?

Lift knows where to find the resource bundle file because we have already told it where they are
when we added LiftRules.resourceNames in the Boot class, and it knows which file to use,
because it uses the same resolution system used to find HTML templates—locale ISO codes.

In short, by calling the ? method from the S object and using the built-in snippet called Loc,
we localized the menu and the text loaded dynamically using resource bundles.

This will not work when using localization with Comet actors
because parameters in the HTTP request will be empty. In this
case, it's better to keep localization information in SessionVars.

There's more...
The resolutions of both templates and bundle files follow the same logic. This means that Lift
will try to find the template and bundle files starting in the most specific locale and moving
toward the most generic one, as shown in the following example:

8. baseName + "_" + language1 + "_" + country1 + "_" + variant1

9. baseName + "_" + language1 + "_" + country1

10. baseName + "_" + language1
11. baseName + "_" + language2 + "_" + country2 + "_" + variant2
12. baseName + "_" + language2 + "_" + country2
13. baseName + "_" + language2
14. baseName

Chapter 2

43

See also
 f You can learn more about template localization at:

 � http://simply.liftweb.net/index-8.1.html

 � http://exploring.liftweb.net/master/index-D.html

 � https://www.assembla.com/spaces/liftweb/wiki/
Internationalization

 f In addition, to learn more about resource bundles, visit: http://docs.
oracle.com/javase/6/docs/api/java/util/ResourceBundle.
html#getBundle(java.lang.String,%20java.util.Locale,%20java.
lang.ClassLoader)

Testing snippets using Specs2
We cannot dilute the importance of testing software. The only way we can guarantee that our
software works and will keep working after we have changed, refactored, and applied new
features to it, is by testing it.

Getting ready
We'll use the code from the Creating an HTML list using CSS selectors recipe.

How to do it...
1. Create a file called AnimalsSpec in src/test/scala/code/snippet with the

following content:
import org.specs2.mutable._

class AnimalsSpec extends Specification {
 "Animals list" should {
 "contains 5 animals" in {
 val result = Dog - <span
class="sname">(Canis lupus familiaris)<span
class="name">Cat - (Felis catus)</
span>Giraffe - <span
class="sname">(Giraffa camelopardalis)<span
class="name">Lion - (Panthera
leo)Horse - <span
class="sname">(Equus ferus caballus)

Working with HTML

44

 val nodeSeq = Animals.list(</
span> -)

 nodeSeq.toString must ==/(result)
 }
 }
}

2. Run the test in the SBT session by running the following command:
~test

You should see SBT executing the test and printing the result, as displayed in the
following screenshot:

How it works...
Specs2 is a framework to create executable specifications. Each specification in Specs2 has
the following format:

"Specification description" should
 "example one" in
 "another example" in

The first line defines Fragment, which is a trait defined by the Specs2 framework. What's
happening here, is that Specs2 uses the string before the should method as description,
and the string just after the opening of the should method as Fragment. The Fragment
instance is, in this case, a set of examples that are constructed by the in method. Each block
defined by the in method will be a test that will run during the execution of the tests.

An example will have one description, the string before the in method, and a body, which
is the block between the curly braces. So, when the test runs, Specs2 executes the code
defined in the body of every example and prints the description of the example with a green
plus sign in case of success. If the execution fails, Specs2 prints a yellow X followed by the text
fail test; it also prints the reason why the test failed. The printing will be different for cases
when the example is skipped, pending, or erroneous.

Chapter 2

45

Getting back to our test, we have created a specification for the Animals snippet, which
contains one example that invokes the list method of the Animals snippet. The list
method takes a NodeSeq object as a parameter and returns another NodeSeq object. Since
we know what the output should be, we can compare the output produced by the method
invocation with a fragment of HTML code. And that's all that the test is doing.

The result variable is the output we are expecting, and it will be compared with the output
produced by the list method, stored in NodeSeq val.

Now that we have both fragments—the expected HTML and the HTML returned by the
snippet—we can compare both of them using the DSL defined by the Specs2 framework.
To compare both fragments, we invoked the must method, which takes a matcher as its
parameter. The matcher is the code before and after the must method. The ==/ matcher
compares two XML literals, and in this case, it will compare the values of the NodeSeq and
result variables; if the values match, it returns Success.

There's more...
As you can see, testing snippets is just like unit testing any Scala code. And that makes
testing snippets quite easy. But sometimes, the snippets might depend on HTTP variables and
sessions. For such cases, you can mock an HTTP request using MockWeb or WebSpec.

For example, if you try to test a snippet that uses the S.? method and don't mock an HTTP
request, you'll get the following error:

Cause: java.lang.IllegalStateException: Attempted to use resource bundles
outside of an initialized S scope. S only usable when initialized

In such cases, you'll need to do something like this:

val expectedResult = MockWeb.testS("/someUrl") {
 // do something that requires having the context of an HTTP
 request or
 // such as using session variable and returns a value that can
 be
 // tested.
 1
}

What happens in this case is that the testS method sets up the required context for
accessing /somePath as if you accessed the URL via a browser. So, you'll have access to
session and request variables, for example.

Since testing snippets is just like unit testing Scala code, you can use any framework you
want, such as JUnit, TestNG, and ScalaTest.

Working with HTML

46

See also
 f To learn more about Specs2 and ScalaTest, please access the following addresses:

 � http://www.scalatest.org/

 � http://etorreborre.github.com/specs2/

 f To learn more about mocking HTTP requests, please visit:
 � https://www.assembla.com/spaces/liftweb/wiki/Mocking_

HTTP_Requests

Creating custom error pages
Even if we do test the applications we build, there are aspects and situations that we can't
control—the user may type the wrong URL, we could have a problem with the network, or
something that we didn't predict may happen and cause the application to fail.

That is why it is important to have a way to create pages to inform the user that something
went wrong. Fortunately, Lift allows you to configure error pages based on HTTP response
status codes.

Getting ready
You will need to perform the following steps before you begin creating custom error pages:

1. Create a new project.

2. Create a file called 404.html by duplicating the index.html file.

3. Replace the content of the div tag with main as the value of id with the
following code:
<h2>Error: 404</h2>
<p>Page not found!</p>

4. Create a new file called 403.html by duplicating the 404.html file.

5. Replace the content of div with main as the value of id with the following code:
<h2>Error: 403</h2>
<p>You don't have permission!</p>

6. Create a new file called 500.html by duplicating the 404.html file.

7. Replace the content of the div tag with main as the value of id with the
following code:
<h2>Error: 500</h2>
<p>Something went wrong!</p>

Chapter 2

47

8. We will add a dispatcher, which is a partial function whose pattern matches the
request and executes a function of type () => Box[LiftResponse], to simulate
errors 500 and 403 by adding the following code into the Boot.scala file:
LiftRules.dispatch.append {
 case Req("error-500" :: Nil, _, _) => {
 () => {
 Full(InternalServerErrorResponse())
 }
 }
 case Req("error-403" :: Nil, _, _) => {
 () => {
 Full(ForbiddenResponse())
 }
 }
}

How to do it...
1. You first need to add the following menu items in the Boot.scala file:

Menu(Loc("403", "403" :: Nil, "403", Hidden)),
Menu(Loc("404", "404" :: Nil, "404", Hidden)),
Menu(Loc("500", "500" :: Nil, "500", Hidden)),

2. Then, you need to add response redirects for each custom error. You do this by
adding the following code in the Boot.scala file:
LiftRules.responseTransformers.append {
 case r if r.toResponse.code == 403 =>
 RedirectResponse("/403")
 case r if r.toResponse.code == 404 =>
 RedirectResponse("/404")
 case r if r.toResponse.code == 500 =>
 RedirectResponse("/500")
 case r => r
}

3. Start the application and access http://localhost:8080/dont-exist; you will
see a page similar to that shown in the following screenshot:

Working with HTML

48

4. If you access http://localhost:8080/error-500, you will see the error 500
page, as shown in the following screenshot:

5. If you access http://localhost:8080/error-403, you will see the error 403
page, as shown in the following screenshot:

How it works...
We achieved the goal of having custom error pages by creating a function that takes a
LiftResponse value as its argument and returns LiftResponse, and appends it to
reponseTransformers.

Our function pattern matches the LiftResponse value and checks its status code. If
the response has an error status code—403, 403, or 500—the function returns a redirect
response whose purpose is to redirect the user to the correct customized error page. But, if
none of the error codes match, our function just returns the same LiftResponse value that
was passed as parameter.

Since we are redirecting the user to a customized page, based on the HTTP status code, we
need to create menu entries for these pages. This is necessary because if there are no entries
in the SiteMap for these pages, Lift will return a 404 error, and since there is no 404 status
code defined in the menu, we'll enter an infinity loop.

Chapter 2

49

I have also defined a custom dispatcher to automatically return ForbiddenReponse
and InternalServerErrorResponse if the user tries to access the /error-403
or /error-500 URL, because I wanted to show you what would happen in case of your
application returning such responses due to an error or business logic that prevents the
user from accessing some resources.

The downside to this approach is that the original error code is swallowed by Lift. This is
because, when the response hits the responseTransforms rule, we just do a redirect.
This means that you'll get a 302 code for the first path and then a 200 code for the custom
error page.

In other words, if you access /error-403, you'll get response code 302 and then the 403
page will be loaded with response code 200.

There's more...
You can also fine-tune the error handling to catch exceptions and treat them accordingly. Let's
say you want to redirect the user to a different page when a SQLException exception occurs.

To do this you would add the following code to the Boot.scala file:

LiftRules.exceptionHandler.prepend {
 case(_, Req(_, _, _), SQLException) =>
 RedirectResponse("/someCustomErrorPage")
}

What we are doing here is prepending to the exception handler a function that matches any
URL for any type of request—GET, POST, and so on—in case of a SQLException exception
and redirects the user to /someCustomErrorPage.

The first underscore (_) means that this rule will be applied to all run modes, such as
production, development, test, and so on. You can change it to match only one run mode,
if you want, by changing(_)for a string with the corresponding run mode—production—to
match the production run mode.

The second underscore (_) is the URL that will have the exception handler. You can say that this
exception handler will be attached to every URL in your application by using the underscore (_)
character. However, you can define a specific URL by changing the underscore (_) character for
the URL you want to attach the exception handler to, that is, some :: path :: Nil.

In Lift, paths are usually represented as a list of strings. So this list, some ::
path :: Nil, represents /somepath.

The fourth underscore (_) is the placeholder for the request type, such as GetRequest
and PostRequest.

Working with HTML

50

Sending JavaScript commands from
the server

Sometimes there is a need to call a JavaScript function—to update the UI or for some other
reason—depending on the result of some business logic that runs in the server.

If you are not using Ajax, the only way to achieve this is by redirecting the user to add a
parameter in the URL, so you can check for its existence and decide whether to call the
given function or not. For example, let's say that you need to execute a JavaScript function
depending on the parameter foo. If you are not using Ajax, you'll have to redirect the user to
/somePage?foo=valueOfFoo, and depending on the value of foo, decide whether your
application should execute the JavaScript function or not.

Fortunately, Lift gives us a practical and easy way to accomplish this without the need to
redirect the user, and this is what we will learn how to do in this recipe.

Getting ready
Perform the following steps before you start sending JavaScript commands from the server:

1. Create a new project.

2. Add the following code inside the div tag with main as the value of id in the
index.html file:
<script>
 var myFunction = function() {
 $("#cmd1").html("function to show how to send js
 commands from the server.");
 }
</script>

3. Then, just after the script tag, add the following code:

<h2>Sending a js command from the server</h2>
<p>

 <hr />

 <hr />

 <script data-lift="JsCommand.jsCommand"></script>
</p>

Chapter 2

51

How to do it...
1. Add the following code inside the div tag with main as the value of id in the

index.html file:
<script>
 var myFunction = function() {
 $("#cmd1").html("function to show how to send js
 commands from the server.");
 }
</script>

2. Then, just after the script tag, add the following code:
<h2>Sending a js command from the server</h2>
<p>

 <hr />

 <hr />

 <script data-lift="JsCommand.jsCommand"></script>
</p>

3. Now, in the snippet package, create a file called JsCommand.scala with the
following code:
import net.liftweb.util.BindHelpers._
import net.liftweb.http.js.JsCmds.{JsCrVar, Script}
import net.liftweb.http.js.JE.{JsFunc, JsRaw}
import net.liftweb.http.js.JsCmds
import xml.Text

object JsCommand {
 def jsCommand = {
 val command1 = JsCrVar("fromServer",
 JsRaw("""$("#cmd2").html("this string was sent from
 the server")"""))
 val command2 = JsFunc("myFunction").cmd
 val command3 = JsCmds.SetHtml("cmd3", Text("changing
 element content using Lift's JsCmds"))

 "*" #> Script(command1 & command2 & command3)
 }
}

Working with HTML

52

4. Start the application and access http://localhost:8080. You should see a page
similar to that shown in the following screenshot:

How it works...
The HTML we have created has nothing new in terms of concept or techniques. It's a regular
HTML file with a JavaScript function, myFunction, which when invoked adds some text into
the tag with cmd1 as the value of id, and also invokes the JsCommand snippet.

The JsCommand snippet is also a regular snippet, in the sense that it defines a function that
takes NodeSeq as a parameter and it returns a new, modified NodeSeq value. The difference
lies in the fact that we are modifying the span tag for a script tag. We do this with the bind
"*" #> Script(...).

As you can see, we are passing command1, command2, and command3 to the Script object.
But, the Script object takes a JsCmd object as its argument. So, how are we passing three
different things to it? As it turns out, the & character is a method—defined in the JsCmd
trait—that takes a JsCmd object and returns a new JsCmd object. This new object contains
the original object plus the one that was passed as argument. It is as if we are appending two
JsCmd objects and creating a new one that contains both of them.

Chapter 2

53

The object returned by the & method is a special kind of the JsCmd object called CmdPair.
The following diagram is a UML diagram showing the hierarchy between JsCmd and CmdPair:

<<Trait>>

JsCmd

+ &(JsCmd): JsCmd

CmdPair

Extends

So, what is happening here is that command1 & command2 produces a CmdPair object,
which we use to call its & method, passing command3 as the argument of the & method to
create a new CmdPair object that will be passed to the Script object. In other words, we
are concatenating JsCmd objects by using the & method. Let's take a look at each one of the
commands to find out what they do.

The command1 variable uses the JsCrVar method, which takes a string and the JsExp
object (JavaScript expression), and creates a variable named with the value of the string
passed as its first parameter; this variable's content is the JavaScript expression passed as
the second parameter to the JsCrVar method.

The result of JsCrVar("fromServer", JsRaw("""$("#cmd2").html("this string
was sent from the server")""")) will be:

var fromServer = $("#cmd2").html("this string was sent from the
 server");

When this variable is evaluated, it changes the content of the span tag with cmd2 as the
value of id, as you can see in the HTML that was rendered.

Also, note that we are using jQuery in the string passed as parameter for the constructor of
the JsRaw class, and that's all it takes to create a JavaScript code that will be executed in the
client. That's because the default template offered by Lift includes the path to jQuery. If you
look at the default.html file in the templates-hidden folder, you'll find the following
script tag:

<script id="jquery" src="/classpath/jquery.js"
 type="text/javascript"></script>

Working with HTML

54

However, this only works because we are using lift-jquery-module, which provides
jQuery for us.

If you don't want to use jQuery or want to use a different
version from the one provided by lift-jquery-module,
just remove it from the build.sbt file and remove the
script that loads jQuery from the template, or make the
necessary changes to load the version you want to use.

The command2 variable uses the JsFunc class, which takes two parameters and produces
a call to a given JavaScript function. The first parameter is the name of the function that
will be called, and the second, which is optional, is a list of parameters that will be used as
arguments when calling the function. Let's say we do something like this:

JsFunc("someFunc", JsExp.strToJsExp("someValue")

This will produce the following output:

someFunc("someValue");

Since we are passing just one parameter—the name of the function—the output in the
HTML will be:

myFunction();

When the HTML is loaded by the browser, it will call the function that we've created in the
myFunction HTML file, causing the content of the span tag with cmd1 as the value of id
to be changed.

In the case of the command3 variable, we used the SetHtml case class. It takes two
arguments; the first is the ID of the element that will be changed and the second is the
content that will be added into the element defined by the first argument. So, when we run
JsCmds.SetHtml("cmd3", Text("changing element content using Lift's
JsCmds")), we are asking Lift to create a JavaScript code to change the content of the
span tag with cmd3 as the value of id by adding this text: changing element content
using Lift's JsCmds.

The result of using the SetHtml class is the following JavaScript code, as you can see in the
source of the HTML rendered:

jQuery('#'+"cmd3").html("changing element content using Lift\u0027s
JsCmds");

Chapter 2

55

There's more...
The JsCmds object has many more classes that make it capable of sending several JavaScript
commands. For example, you can use the JsCmds.Alert class to invoke the JavaScript alert:

1. Add the following code in the JsCommand snippet we've created:
val command4 = JsCmds.Alert("Alert sent from Lift").

2. Change the bind from "*" #> Script(command1 & command2 & command3)
to "*" #> Script(command1 & command2 & command3 & command4).

3. Restart the application and access http://localhost:8080, and you should see
an alert as shown in the following screenshot:

Similar to what happened when we used the SetHtml class, using the alert will make Lift
render a call to the JavaScript alert in the HTML. If you take a look at the HTML source, you'll
find the following code:

alert("Alert sent from Lift");

You can, create for loops using the JsFor and JsForIn classes, if statements using the
JsIf object, and so on. It is worth spending some time playing with them. Or, if you prefer,
you can create JavaScript code as strings and then call them in the HTML.

1. Add the following code in the index.html file:
<div id="cmd4"></div>

Working with HTML

56

2. Then, in the JsCommand.scala file, create a new method called confirm, with the
following code:
def confirm = {
 val numbers = (1 to 10).toList
 val jsFunc =
 """
 var numbers = [""" + numbers.mkString(",") + """];
 for (i = 1; i <= """ + numbers.size + """; i++) {
 $("#cmd4").append('<button data-number="' + i + '">' +
 i + '</button>');
 }

 $("#cmd4 button").click(function() {
 confirm('Do you really want to delete number: ' +
 $(this).data("number"));
 });
 """.stripMargin

 JsRaw(jsFunc).cmd
}

3. Modify the jsCommand method by adding a new variable called command5:
val command5 = confirm

4. And then append the command5 variable after the command4 variable, as shown in
the following code:
"*" #> Script(command1 & command2 & command3 & command4 &
command5)

5. Start the application and access http://localhost:8080; you will see 10 buttons,
and when you click on any of them, you'll see a confirmation dialog as shown in the
following screenshot:

Chapter 2

57

As explained earlier, what we did here is create JavaScript code using Scala's jsFunc
variable, which is a string. But we added a little bit of complexity by creating a dynamic string
to show how to create a dynamic JavaScript to be rendered on the page.

As you can see, Lift offers an abstraction layer over JavaScript that can be used to integrate
server-side code with client-side code, and this abstraction is very powerful and flexible.

See also
 f You can find more about Lift and JavaScript integration at http://exploring.

liftweb.net/master/index-10.html

Invoking server-side functions from the
client

In the previous recipe, we learned how to create JavaScript functions/code on the server and
how to invoke/trigger those codes from the client. This is very useful, however, it's not enough,
since there are times when we need to do the opposite. In other words, what do we do when
we need to call a function on the server side using JavaScript? The solution is to use Ajax.
In this recipe, we'll learn how to use Ajax and Lift's JavaScript abstraction layer to create a
function on the server side and call it from the client side.

Getting ready
First of all, we will edit the index.html file.

1. Invoke the snippet that will create the Ajax function that we are going to call, using
the following code snippet:

2. Add a combobox containing some names and a button, as shown in the
following code:
<div>
 <select id="person">
 <option value="Carly">Carly</option>
 <option value="Joe">Joe</option>
 <option value="John">John</option>
 <option value="Mary">Mary</option>
 </select>

 <button>Delete Selected</button>
</div>

Working with HTML

58

3. After adding the combobox and the button, add the following JavaScript to call the
Ajax function created by Lift when the user clicks on the button:
<script>
 $(document).ready(function() {
 $("button").click(function () {
 ajaxDeletePeople($("#person").val());
 });
 });
</script>

How to do it...
1. Create a file called JsCommand.scala in the snippet package, with the

following content:
package code.snippet

import net.liftweb.util.BindHelpers._
import net.liftweb.http.js.JsCmds
import net.liftweb.http.js.JsCmds._
import net.liftweb.http.js.JE.JsRaw
import net.liftweb.http.SHtml
import net.liftweb.json._

class JsCommand {
 implicit val formats = net.liftweb.json.DefaultFormats

 var persons = "Carly" :: "Joe" :: "John" :: "Mary" :: Nil

 def loadData = {
 def funcBody(json: JValue) = {
 val p = json.extract[String]

 persons = persons.filterNot(_ == p)

 JsRaw(
 """
 $("#person [value='""" + p + """']").remove()
 """).cmd &
 JsCmds.Alert(p + " was removed")
 }

Chapter 2

59

 Function("ajaxDeletePeople", List("personperson"),
 SHtml.jsonCall(JsRaw("person"), (value: Jvalue) =>
 funcBody(value)))
 }

 def jsFunction = {
 "*" #> Script(loadData)
 }
}

2. Start the application and access http://localhost:8080; you should see a page
similar to the following screenshot:

If you select a name in the combobox and click on the Delete Selected button,
you'll see an alert saying that the name you selected was deleted (see the following
screenshot); you will also see that the name is no longer in the combobox.

How it works...
As we've seen before, invokes
the jsFunction method in the JsCommand snippet. The jsFunction method transforms
the script tag due to the binding "*" #> Script(loadData). So far, so good. We've
seen this in the previous recipe, and there is nothing new here. The good stuff is happening in
the loadData method that is passed as a parameter to the Script object.

Working with HTML

60

The loadData method is composed of two blocks of code: an inner method called funcBody
and a call to the Function object. The Function object creates a JavaScript function and
takes three parameters—the function name, the list of parameters, and the function body.

When we say Function("ajaxDeletePeople", List("person"), SHtml.
jsonCall(JsRaw("person"), funcBody _)), we are creating a JavaScript function called
ajaxDeletePeople, which takes one parameter—person—and are creating a GUIDJsExp
object as its body using the Shtml.jsonCall method and the parameter's second element.

The first parameter of the jsonCall method is the JavaScript expression that will be used
to calculate the value to be sent to the server. In this case, we are saying that the value will
be held by the variable person. The second parameter is the invocation of the funcBody
function, passing whatever comes from the client as parameter.

If you take a look at the source of the HTML that was created in the browser, you will see the
following code:

<script type="text/javascript">
 // <![CDATA[
 function ajaxDeletePeople(person) {
 liftAjax.lift_ajaxHandler('F428923197995KXSU5A=' +
 encodeURIComponent(JSON.stringify(person)), null, null,
 null);
 }

 //]]>
</script>

The ajaxDeletePeople function was created by the Function object,
Function("ajaxDeletePeople"… and the body of this function was created
by the Shtml.jsonCall method. You can see that Lift creates an invocation to the
lift_ajaxHandler method and passes a string composed by the GUID and the
encoded JSON value represented by the person variable.

So, when ajaxDeletePeople is called, it calls the lift_ajaxHandler function, which will
trigger a call—an HTTP request—to the server passing the GUID and the JSON object.

Lift gets the GUID and discovers which function it has to call. In our case, it is the funcBody
method. Lift then calls the funcBody method, passing the JSON object as parameter. The
funcBody method extracts the value of the JSON object using the method extract of the
JValue class and stores it in the variable p. We use the value of the p variable to filter the
list of names defined by the persons variable and return a new list that doesn't contain the
value of p. This new list is then reassigned to the variable persons.

Note that we could do something more complex here, such
as deleting a record from the database or any other logic
that could be necessary.

Chapter 2

61

After removing the value from the list to simulate the deletion of some data, we create a
JsCmd code, using the JsRaw class, to remove the value from the combobox. Also, we've
created an alert to show which value from the combobox was removed.

CmdPair is composed by the jQuery code that removes the select option from the combobox,
and the alert is the return value of the funcBody method.

Basically, we have created a way to tell Lift to create a JavaScript function that triggers an Ajax
call to the server. This invokes the funcBody function that deletes data from the server and
returns JavaScript commands that will update the UI.

The missing part is about how we bind the UI to this process. Well, the bind was created by the
following JavaScript code that we added in the index.html file:

$("button").click(function () {
 ajaxDeletePeople($("#person").val());
});

This code triggers the click event of the button tag to invoke the ajaxDeletePeople
function. The code is created on the server side, and it passes the value of the selected option
as parameter to the ajaxDeletePeople function.

See also
 f You can find out more about Lift and JavaScript integration at http://exploring.

liftweb.net/master/index-10.html

3
Working with Forms

In this chapter, we will cover:

 f Creating forms

 f Validating forms

 f Creating an Ajax form

 f Creating multipage forms

 f Defining a relationship between form fields

Introduction
What many UI-based applications have in common, is that they need a way to let the user
input data. So, collecting data from the user is a feature that most applications should have.
But in a web environment, how do we collect data?

The basic method is via forms. In this chapter, we will learn how to create forms—single page,
multipage, and Ajax forms. We will also learn how to validate the data submitted by the user,
how to wire form fields to create relations between them, and so on.

In other words, we will learn how to get and handle data submitted by the user in
different ways.

Creating forms
In this recipe, we'll learn the basic technique for creating forms. Lift offers a neat and easy
mechanism to help the creation of forms, called LiftScreen.

Working with Forms

64

Getting ready
We'll modify the code that we used in the recipe, Sending e-mails using Gmail's SMTP server,
in Chapter 1, Getting Started with Lift Basics.

You can duplicate and rename the code that we created before to keep the original example,
or you can modify it during this recipe.

How to do it...
1. Replace the p tag and its contents in the index.html file with the following code:

<div class="lift:SinglePageForm"></div>

2. Create a file called SinglePageForm.scala in the snippet package; it should
contain the following code:
package code.snippet

import net.liftweb.http._
import code.lib.SendEmail

class SinglePageForm extends LiftScreen {
 val from = field("E-mail", "", "placeholder" ->
 "Enter your e-mail")
 val subject = field("Subject", "", "placeholder" ->
 "Enter the subject of your message")
 val body = field("Message", "", "placeholder" ->
 "Enter your message")

 protected def finish() {
 S.notice("form submitted")

 SendEmail.send_!(
 from,
 "to_email@example.com",
 subject,
 body
)
 }
}

Chapter 3

65

3. You should see a form when you start the application and access
http://localhost:8080, as shown in the following screenshot:

How it works...
As you can see, there is nothing new in the HTML file, except for the fact that we didn't
add the method that should be invoked in the snippet. We are invoking the snippet
called SinglePageForm, and that's it. Before getting into why we are invoking only the
SinglePageForm snippet without any methods—in other words, explicitly—we must take a
look at the snippet itself.

The first thing we will notice in the snippet code is that it extends the trait LiftScreen.
Secondly, the snippet has a few variable declarations, and thirdly, it has a method
called finish.

The field method used in the variable declarations is a method defined in the
AbstractScreen trait. It's actually a convenient way to create Field objects.

We can use the field method of the AbstractScreen trait
because the LiftScreen trait extends it.

Each Field object defines a form field and can have validation rules and attributes, such as
ID, class, and name.

So, when we say field("E-mail", "", "placeholder" -> "Enter your
e-mail"), we are creating a Field object whose label will be E-mail and whose initial
value will be an empty string; it will also have the placeholder attribute with the value
Enter your e-mail. We have defined the subject and body fields in the same way.
These field objects are text fields by default. That's why we see three textfields—E-mail,
Subject, and Message—rendered on the page.

Working with Forms

66

Now, we know how to define form fields using the LiftScreen trait, but we don't know how
the Cancel and Finish buttons were added onto the page and how the submit process works.

Let's take a look at the LiftScreen trait and discover why we don't need to explicitly specify
which method will be invoked in the SinglePageForm snippet. This will help us to find out
how the Cancel and Finish buttons are rendered and also how the form is submitted.

LiftScreen provides a default dispatch method that is invoked when rendering the page.
Then it calls the toForm method, which invokes a method called renderHtml. This last
method is the one that will actually transform our field definitions into NodeSeq, which
will be rendered in the browser. However, it does not only transform our definitions into
NodeSeq; it also adds the Cancel and Finish buttons by invoking the cancelButton and
finishButton methods respectively. Both methods take no argument and return an Elem
class; this means that you can override both methods and customize them. For example, you
can change the Finish button to Save by doing this:

override def finishButton = <button>Save<button>

The renderHtml method then binds the Finish button to the finish method, which is
defined in our snippet. How does it know that we implement the finish method, so that it
can be bound to the Finish button? The finish method is an abstract method defined in the
LiftScreen trait, forcing us to implement the finish method in our snippet.

The finish method that we have implemented does two things. Firstly, it sends a message
that will be displayed on the page, stating that the form was submitted, using the notice
method of the S object. Secondly, it uses the SendEmail.send_! method to send the e-mail.

Note, that we are passing the fields that we've defined as parameters to the send_! method.
However, it expects strings, not fields, so how does this work?

As it turns out, there is a toString method that is implicitly called in this case; this method
returns an empty string or the value that the field holds.

There's more...
It is worth mentioning that it's possible to override both, the toForm method of Field
objects, and the default template used by Lift, wizard-all.html, so you can have more
control over how the page and the fields will be rendered in the browser.

See also
 f You can find more information and examples on LiftScreen at: https://www.

assembla.com/spaces/liftweb/wiki/LiftScreen

 f To get more information about Lift messages, please visit: https://www.
assembla.com/spaces/liftweb/wiki/Lift_Notices_and_Auto_Fadeout

Chapter 3

67

Validating forms
In the previous recipe, we learned how to create a form so that users can submit data to
the server. However, we didn't validate the data, and thus, it allows users to submit anything
including invalid data, such as an invalid e-mail address or date.

The reason to validate data submitted by users is not only to prevent the application crashing
from being fed data in an invalid format—for example, sending an email to an invalid e-mail
address—but also for security reasons.

Getting ready
We are going to improve the code from the previous recipe by adding validation to the form
we've created. You can duplicate the project to keep the previous section's code unmodified or
you can modify it.

How to do it...
Carry out the following steps to validate the form:

1. In the SinglePageForm.scala file, add the following import statement:
import java.util.regex.Pattern

2. Add the following line in the SinglePageForm snippet:
val emailRegex = Pattern.compile("\\b[a-zA-Z0-9._%-]+
 @[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,4}\\b")

3. In the from field declaration, add the following rule:
valRegex(emailRegex, "Invalid e-mail")

4. Add the following rules in the subject field declaration:
 valMinLen(10, "Subject too short"),
 valMaxLen(140, "Subject too long")

5. For the body field, add these rules:
 valMinLen(20, "Message too short"),
 valMaxLen(400, "Message too long")

6. Remove the following div tag from the default.html file to prevent message
duplication.
<div class="lift:Msgs?showAll=true"></div>

7. Start the application and access http://localhost:8080.

Working with Forms

68

If you submit the form without filling it in first, you will see some error messages on the page,
as shown in the following screenshot:

How it works...
The difference between this code and the code from the previous recipe is that we have
added a few validation helpers—valRegex, valMinLen, and valMaxLen—from the
LiftScreen trait.

Each helper takes two arguments. The first argument is the value that will be used to check
the user input, and the second argument is a string representing the message that will be
displayed to the user in case the value entered by the user is not valid.

Through this quick explanation, the meaning of the helpers we've used becomes clear. The
valRegex validation helper takes, as its first argument, a regular expression—in this case
represented by the value emailRegex—and a message that tells the user that the e-mail
entered is not valid. The valMinLen validation helper takes an integer as its first argument
and validates the minimum length of the string entered by the user. On the contrary,
valMaxLen takes an integer to define the maximum length that the string entered by the
user can be.

In practical terms, what are we doing here is telling Lift not to allow users to enter invalid
e-mail addresses, not to allow e-mail subjects shorter than 10 characters or longer than 140
characters, and not to allow e-mail body messages shorter than 20 characters or longer than
200 characters.

Chapter 3

69

But how does Lift apply these rules? How do they work? Well, if you take a look at the source
code of LiftScreen, you'll be able to see that every validation helper has the same structure:

 protected def <helperName>(<base value>, <message>): <return> =
 <field value> match {
 case <success> => Nil
 case <failure> => List<FieldError>
 }

As you can see, each rule matches the field value against the control value, so the rule returns
Nil in case of success, and as a List<FieldError> object in case of failure. So, let's take
a look at how Lift would validate input using the rules we've set in our code. For example,
we've set the rule valMinLen(10, "Subject too short"), for the subject field.

So, you can see that, in the preceding helper structure:

 f <helperName> is valMinLen

 f <base value> is 10

 f <message> is "Subject too short"

 f <return> is a function that receives the value from the field String =>
List[FieldError]

 f <field value> is the value of the field

 f <success> is a statement that checks the condition that should be checked

 f <failure> is just a place holder

By changing the values from the code of the helper structure and what was stated in the
previous paragraph, we'll have the following code:

 protected def valMinLen(10, "Subject too short"):
 String => Lift[FieldError] = s =>
 s match {
 case str if str != null&& str.length > 10 => Nil
 case _ => List(FieldError(subject, "Message too short"))
 }

This real implementation of valMinLen is more abstract and has a few differences, but this
example is pretty close to it.

FieldError is a class that holds the reference to the field that has the error and the
message to be displayed on the page. So, if more than one field has errors, the FieldError
object list will have more than one element. This means that for each field with invalid data,
there will be a FieldError object in the FieldError object list.

Working with Forms

70

We still need to see how Lift calls this rule to validate the form. Do you remember when I
said that Lift calls the finish method when the user clicks on the Finish button? Well, what
happens inside this method is that before calling the finish method that is defined in our
snippet, it will call the validate method of the AbstractScreen trait. The LiftScreen
trait mixes in the AbstractScreen trait. This method gets every field declared in the snippet
and calls their validate method, which will trigger the execution of the rules we've defined
for each field. After executing the validate method of each field, the validate method
of the AbstractScreen trait will return an empty list if every value entered by the user is
correct, or it will return a list of FieldError in case of any failure.

Lift will then invoke the finish method defined by us if no errors are found, or it will call the
renderHtml() method to re-render the form and display the error messages.

This is the process by which Lift validates the data entered by the users.

In step 6, I mentioned that keeping the div tag that invokes the Msg snippet would cause the
error messages to be duplicated. This is because the Msg snippet usually renders only generic
messages—the ones that are not associated with an ID—and when passing the parameter
showAll (set to true), causes the Msg snippet to render every message, including the
ones associated with an ID, which is the case of the messages from FieldError objects. In
practice, this means that the message will be rendered near the field that didn't pass the test
because it is associated with the ID of the field; the message will also be rendered in div with
the showAll parameter set to true.

There's more...
We've learned how to use the built-in validation helpers offered by Lift to create the basic
rules of form validation. However, it is almost certain that you'll need to define more complex
rules to validate forms when building your application.

Fortunately, we can create custom helpers and add them to our field definitions. Suppose we
want the e-mail body to have at least three words, we will carry out the following steps:

1. Add the following code in the SinglePageForm snippet:
 def minNumOfWords(num: => Int, msg: => String):
 String => List[FieldError] =
 s => s match {
 case str if (str != null) && str.split(" ").size >=
 num => Nil
 case _ => List(FieldError(currentField.box openOr new
 FieldIdentifier {}, Text(msg)))
 }

This method takes two parameters: the minimum number of words the e-mail body
should have, and the message to be displayed in case the user enters a message
with less than the minimum number of words.

Chapter 3

71

2. Add the following code in the definition of the body field:
minNumOfWords(3,
 "The e-mail body should have at least three words")

By doing this, we are adding the custom rule that we have created into the e-mail body
message, making Lift also apply this rule when validating the data.

After adding this custom validation rule, if you try to submit the form and do not enter at least
three words in the message field, you will see the message, The e-mail body should have at
least three words, as shown in the following screenshot:

Creating an Ajax form
We have seen how to create forms and validate them using Lift, and that is really neat.
However, your application still has to reload the entire page to submit the forms and get a
response from the server.

Things don't have to be this way! Lift is very flexible and provides a mechanism to add Ajax
support into forms. In other words, we can build Ajax forms easily and thus not have to reload
the whole page just to submit a form. In this recipe, we will learn how to create a form and
submit it using Ajax.

Getting ready
We are going to change the form we built in the Creating forms recipe from a regular form to
an Ajax form.

Working with Forms

72

How to do it...
You can create an Ajax form by performing the following steps:

1. Remove the div tag that invokes the SinglePageForm snippet:
<div class="lift:SinglePageForm"></div>

2. And add the following code in its place:
 <form class="lift:form.ajax">
 <div class="lift:AjaxForm.form">
 <div>
 <label for="from">From:</label>
 <input type="text" id="from">
 </div>
 <div>
 <label for="subject">Subject:</label>
 <input type="text" id="subject">
 </div>
 <div>
 <label for="message">Message:</label>
 <textarea id="message" cols="10"
 rows="8"></textarea>
 </div>
 <div>
 <input type="submit" value="Submit">
 </div>
 </div>
 </form>

3. Then create a file called AjaxForm.scala in the snippet package and add the
following code into it:
package code.snippet

import net.liftweb._
import http._
import js.JsCmds
import util.BindHelpers._
import code.lib.SendEmail

class AjaxForm {
 def form = {
 var from = ""
 var subject = ""
 var message = ""

 def process() = {
 SendEmail.send_!(
 from,
 "to_email@example.com",

Chapter 3

73

 subject,
 message
)

 JsCmds.Alert("Message sent") &
 JsCmds.SetValById("from", "") &
 JsCmds.SetValById("subject", "") &
 JsCmds.SetValById("message", "")
 }

 "#from" #> SHtml.text(from, from = _, "id" -> "from")
 &
 "#subject" #> (SHtml.text(subject, subject = _,
 "id" -> "subject")) &
 "#message" #> (SHtml.textarea(message, message = _,
 "id" -> "message") ++ SHtml.hidden(process))
 }
}

4. Start the application and access http://localhost:8080 in your browser.

A form will be shown on the page, and you will see an alert saying that the message
was sent when you hit the Submit button. This is shown in the following screenshot:

When you close the alert message, the form will be cleaned up.

Working with Forms

74

How it works...
The AjaxForm snippet that we have created has one method called form, which is the method
invoked in the HTML. This method binds the input fields in the HTML and replaces them with
input fields that are created by the calls of the SHtml.text and SHtml.textarea methods.

The SHtml object is a Lift built-in object that makes the task of working with forms and Ajax
easier because it offers a variety of methods, such as form fields and Ajax calls, to easily
generate markup. For example, when you use SHtml.text, Lift allows you to generate the
HTML code to create an input text field; likewise, if you use SHtml.textarea, Lift will create
a textarea field. Both methods—text and textarea—take three parameters. The first one is
the variable that holds the value that will be shown in the field. The second is a function called
Any, which takes a string as an argument and can return anything. The third is an ElemAttr
object list; in other words, a list of attr-value pairs that will be applied to the element. So,
when we say "#from" #> SHtml.text(from, from = _, "id" -> "from"), we are
binding the tag with from as the value of the id field in the HTML to the result of the invocation
of the SHtml.text method, meaning that we'll replace the tag with from as value of the id
field with the HTML code generated by the SHtml.text method.

Looking closely at the binding, we can see that we are using a variable called from, which
was defined at the beginning of the from method as an empty string, and the first argument
of the text method; that's why the field is empty when we load the page.

For the second argument, we are declaring an anonymous function that takes a string as its
only argument and returns nothing: (String) => Unit. This function gets the string that
was passed to it and assigns it to the from variable—from = _. The string that is passed is
the one containing the value entered into the form by the user. In other words, we've created a
function that takes the value from the form and assigns it to the from variable.

As the third argument states, we passed the id-from pair, meaning that the input text field
that will be created by Lift will have the attribute id with value from. The same is true for both
the subject text field and the message textarea. And this concludes the explanation on how
to create form fields using Lift's API. However, it doesn't explain how the form is submitted.

Well, you can see that after invoking the SHtml.textarea method, we append—by invoking
the ++ method—the call to the SHtml.hidden method, passing the process method as its
argument. As you can imagine, this will create a hidden field bound to the process method.

If you take a look at the HTML source code generated, you'll see something like the following
line of code:

<input type="hidden" name="F525418990340V1BAXG" value="true">.

The name of the input hidden field is the value generated by Lift to bind the field to the
process method. So when the form is submitted, Lift knows what has to be executed.

Chapter 3

75

Alright, now we know how all of the binds are done. When the process method is invoked,
the variables that will be used as parameters in the invocation of the SendEmail.send_!
method have the correct value because the anonymous function that we defined when
invoking the SHtml.text and SHtml.textarea methods was called, it assigned the values
from the form to the variables.

After sending the e-mail, by invoking the SendEmail.send_! method, the process
method does two more things. Firstly, it sends a JavaScript command to display an alert, and
secondly, it cleans the form field up by setting the field values to empty strings by creating the
SetValById classes. This class takes two arguments: the first one is the ID of the element
that will get the new value, and the second is the value itself.

We've seen how the form is created and how it is processed, but we still don't know how it is
submitted.

As you can see in the index.html file, we are invoking two snippets. One of them is the
snippet we've created—AjaxForm—and we know how it works; the other is a Lift built-in
snippet called Form: <form class="lift:form.ajax">

When you invoke the Form snippet, Lift will wrap your snippet into its own snippet. In other
words, Lift will create a form tag around the HTML generated by your snippet. We can check
this by looking at the HTML source generated in the browser. This is what you'll find:

<form id="F2506649547422RDOLZ" action="javascript://"
 onsubmit="liftAjax.lift_ajaxHandler(jQuery
 ('#'+"F2506649547422RDOLZ").serialize(),
 null, null, "javascript");return false;">

As you can see, Lift has created a form tag and it also added an onsubmit attribute to it,
which is an Ajax handler. When the user clicks the submit button, it triggers the Ajax handler
defined in the onsubmit attribute, which will trigger an Ajax call to the server, thus submitting
the form. Once the server gets the call, it will trigger the functions defined by the second
arguments passed to the methods that create the fields, and when it starts processing the
hidden field, it will invoke the process method and the e-mail will be sent, the alert will be
shown, and the form will have its field values reset.

There's more...
We can validate Ajax forms by creating a few rules and check them before sending the e-mail:

1. First remove the following code from the default.html file and add it just before
the div tag containing the from field in the index.html file:
<div class="lift:Msgs?showAll=true"></div>

Working with Forms

76

2. Then, add the following code into the process method in the AjaxForm snippet:
 if (!emailRegex.matcher(from).matches()) {
 S.warning("From is not a valid e-mail")
 Noop
 } else if (subject.trim.length < 10 ||
 subject.trim.length > 140) {
 S.warning("Subject should have at least 10 chars and
 have no more than 140.")
 Noop
 } else if (message.trim.length < 20 ||
 message.trim.length > 400) {
 S.warning("Message should have at least 20 chars and
 have no more than 400.")
 Noop
 } else {
 <previous code from process method>
 }

It you try to submit the form without filling it in correctly, you will see an error message before
the From field as shown in the following screenshot:

Chapter 3

77

Now, when the form is submitted and the process method is invoked, it validates the values
of the variables—from, subject, and message—and if anything fails, it sends a message
to the client and returns an empty JavaScript command, Noop. And if everything goes fine, it
sends the e-mail and resets the values of the form fields.

The message is created by the invocation of the S.warning method and is displayed in the
client by the invocation of the Msgs snippet.

Creating multipage forms
Sometimes a single page form is all that you need to get your job done, but there are times when
we need more. In such situations, we need an easy way to deal with multipage forms; this means
that we need a way to keep the values between the pages, a way to validate all fields, pages and
so on, and a way to change the flow of the form based on how the user filled in some fields.

Lift provides a powerful and flexible tool to accomplish this. It is called Wizard.

Getting ready
In this section, we will learn how to create a multipage form using Wizard. We will start with
preparing our application to be able to use Wizard.

1. Create a new project.

2. Add lift-wizard as a dependency by adding the following line into
libraryDependencies ++= Seq in the build.sbt file:
"net.liftweb" %% "lift-wizard" % liftVersion
 % "compile"

3. Add the following code into the div tag with main as the value of the id field in the
index.html file:
<div class="lift:MultiPageForm"></div>

4. Create a file called finish.html in the webapp folder. It should be identical to
the index.html file except for the fact that we'll change the div tag, replacing the
invocation to the MultiPageForm snippet with an invocation to the Msgs snippet:
<div class="lift:Msgs?showAll=true"></div>

How to do it...

1. Edit the Boot.scala file and add a new entry into the entries value to serve the
finish page:
Menu.i("Finish") / "finish"

Working with Forms

78

2. Create a new snippet called MultiPageForm in the snippet package, containing the
following code:
package code.snippet

import net.liftweb._
import http._
import js.JsCmds.RedirectTo
import wizard._

object MultiPageForm extends Wizard {
 val userData = new Screen {
 val name = field("Name", "")
 val email = field("E-mail", "")
 }

 val addressData = new Screen {
 val line1 = field("Address line 1", "")
 val line2 = field("Address line 2", "")
 val line3 = field("Address line 3", "")
 val city = field("City", "")
 val state = field("State", "")
 val zipCode = field("Zip code", "")
 }

 def finish() {
 val name = userData.name.is
 val email = userData.email.is
 val line1 = addressData.line1.is
 val line2 = addressData.line2.is
 val line3 = addressData.line3.is
 val city = addressData.city.is
 val state = addressData.state.is
 val zip = addressData.zipCode.is

 S.redirectTo("/finish",
 () => {
 S.notice("Name: " + name)
 S.notice("E-mail: " + email)
 S.notice("Address Line 1: " + line1)
 S.notice("Address Line 2: " + line2)
 S.notice("Address Line 3: " + line3)
 S.notice("City: " + city)
 S.notice("State: " + state)
 S.notice("Zip Code: " + zip)
 }
)
 }
}

Chapter 3

79

3. Start the application and access http://localhost:8080. You should see a page
containing two fields—Name and E-mail—and two buttons—Cancel and Next. This is
shown in the following screenshot:

If you click on the Next button, you will see the second page of the form, as shown in the
following screenshot:

Working with Forms

80

After filling in both pages of the form and clicking the finish button, you'll see a page containing
a list with the values that you entered in the form, as shown in the following screenshot:

How it works...
We won't take too much time explaining how both of the HTML files work because they are
simple snippet invocations. The index.html file invokes the MultiPageForm snippet and
the finish.html file invokes the Msgs snippet.

The first thing you should notice in the MultiPageForm snippet is that it extends the Wizard
trait. This trait holds a list of Screen objects. Screen is actually a trait that extends the
AbstractScreen trait. This is the same trait used by LiftScreen. As you can imagine,
everything that we learned about the LiftScreen trait and how to build a form using it is
true when dealing with Screen objects.

You can see that we are creating two Screen objects in here—the userData and
addressData variables:

val userData = new Screen …
val addressData = new Screen …

You can also see that the Screen object has values that are fields; they are the same
ones we used to create the form fields for the single page form. The userData object of
Screen has two fields—name and email—and the addressData object of Screen has
six fields—line1, line2, line3, city, state, and zipCode.

You can think of each screen of the form as being a single page form, and that Lift does all of
the plumbing to put the pages together in a way that it can be seen by the user as a single form
that has more than one page. What Lift does to achieve this trick, is to keep track of the field
values when navigating through the form. So, when the user fills in the first page and clicks on
Next, Lift stores the values in a RequestVar object, which is a variable that holds its value
during the lifetime of the page being rendered, and renders the next page; this goes on until the
user reaches the last page and clicks on the Finish button. When this happens, Lift invokes the
finish method—just like it did with the single page form—so we also need to implement it here.

Chapter 3

81

You can see that we are doing two things in the finish method. We are assigning the values
of each form field to a new variable, and then we are redirecting the application to the Finish
page. The redirect is necessary if the next page that you'll show to the user is not a form.
That's because, once the finish method is done, the Wizard trait will reset the form and
will send that application back to the first page. So, if we just do the invocations to S.notice,
we'll see the messages rendered above the fields on the first page of the form. To make sure
the redirect works, we need to add a new entry in the SiteMap to serve the /finish path.

Reassignment of the values is necessary because we won't have access to the form variables
after the redirect. So, for example, if you try to say S.notice("Name: " + userData.
name.is), you'll see just the text Name:, on the Finish page, and no value in front of it.

There's more...
I've said that Wizard is a list of Screen objects and that each Screen object works as a
single page form, LiftScreen, because both extend the AbstractScreen trait. To prove
this point, we'll use the validations we added to the form in the Validating forms recipe in this
chapter, and as you can imagine, it will work just like it did before.

1. Add the following code just before the definition of the userData variable in the
MultiPageForm snippet:
val emailRegex = Pattern.compile
 ("\\b[a-zA-Z0-9._%-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,4}\\b")

2. Modify the userData definition by adding the valMaxLen and valMinLen
validations in the name variable:
 valMinLen(10, "Name too short"),
 valMaxLen(140, "Name too long")

3. Add the valRegex validation into the e-mail address:

valRegex(emailRegex, "Invalid e-mail")

Working with Forms

82

Now, if you start the application and try to submit the form without correctly filling it in, you'll
see messages stating that you didn't add the proper values to the fields. This is shown in the
following screenshot:

Another neat thing we can do is to modify the form flow. To do this, we'll add a new Screen
object into our form, making it have three screens.

1. So, create a new Screen object called paymentData containing the following code:
 val paymentData = new Screen {
 val creditCardName = field("Credit card name", "")
 val creditCardNumber = field("Credit card number", "")
 val creditCardExpDate = field
 ("Credit card expiration date", "")
 }

2. Add the variables to hold the values of the new fields inside the finish method:
 val ccName = paymentData.creditCardName.is
 val ccNumber = paymentData.creditCardNumber.is
 val ccExpDate = paymentData.creditCardExpDate.is

3. And add the notices for the newly created fields so that they can be shown on the
Finish page:

 S.notice("Credit card name: " + ccName)
 S.notice("Credit card number: " + ccNumber)
 S.notice("Credit card expiration date" + ccExpDate)

Chapter 3

83

Right now, we have a form with three pages which goes from pages one, to two, to three in a
straight flow. But that's not what we want.

1. On the userData object of Screen, create a new field, which will be a checkbox.
Lift automatically creates a checkbox field if you pass a Boolean value to the field
method, as shown in the following code:
 val hasAddress = field("I already have an address",
 false)

2. While still in userData, override the method nextScreen with the following code:

 override def nextScreen = if (!hasAddress)
 addressData else paymentData

What's new in this example, is that we've overridden the definition of the nextScreen method.
This is the method invoked by Lift to determine which page it should show next. As you can
see, we've changed the original flow of the form from page one, to page two, to page three
by placing a conditional statement. So, if the user marks the checkbox, the hasAddress
value will be true, making the execution enter the else part, thus making the nextScreen
method return the paymentData object of Screen. If the user doesn't mark the checkbox, the
nextScreen method will return addressData.

See also
 f The Creating forms recipe in this chapter

 f The Validating forms recipe in this chapter

Defining a relation between form fields
Another neat feature that Lift provides is Cells, which like cells in a spreadsheet can be
wired together, so when the value of one cell changes, it automatically updates the value
of another one.

In this recipe, I'll mix Ajax forms with Cells to teach you how to create a dynamic shopping cart.
Thus, when the user updates the quantity of a given item he or she wants to purchase, the
total amount per item and the total shopping cart amount will be updated.

Getting ready
You can use the code from the examples we've used in the previous recipes, or you can start
a new project.

Working with Forms

84

Modify the index.html file by removing everything inside the div tag, with main as the
value of the id field, and add the following code into it:

 <div data-lift=" ShoppingCart.show">
 <table>
 <thead>
 <tr>
 <th>Item</th>
 <th>Quantity</th>
 <th>Price</th>
 <th>Total</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td class="item"></td>
 <td class="quantity"></td>
 <td class="price"></td>
 <td class="total"></td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td colspan="3">Total</td>
 <td class="cart-total"></td>
 </tr>
 </tfoot>
 </table>
 </div>

How to do it...
Follow these steps to create a relation between the form fields:

1. Create a snippet called ShoppingCart in the snippet package, with the
following code:
package code.snippet

import net.liftweb.util.{DynamicCell, ValueCell}
import net.liftweb.util.BindHelpers._
import net.liftweb.http.{WiringUI, SHtml}
import net.liftweb.http.js.JsCmds
import net.liftweb.http.js.JsCmds._

Chapter 3

85

case class Item(id: Int, name: String, qty: Int, prc: Double) {
 val quantity = ValueCell(qty)
 val price = ValueCell(prc)
 val total = quantity.lift(_ * price)
}

class ShoppingCart {
 val items = Item(1, "Item 1", 10, 1) ::
 Item(2, "Item 2", 1, 10) ::
 Item(3, "Item 3", 2, 1.5) ::
 Item(4, "Item 4", 3, 2.5) :: Nil

 val cartTotal = DynamicCell(() => items.foldLeft(0d)((acc, i) =>
acc + i.total.get))

 def setQuantity(i: Item, qty: Int, totalId: String) = {
 if (i.quantity.get < qty || i.quantity.get > qty) {
 i.quantity.set(qty)
 JsCmds.SetValById(totalId, i.total.get)
 } else {
 Noop
 }
 }

 def show = {
 "tbody *" #> {
 items.map(i => {
 val totalId = i.id.toString

 ".item *" #> i.name &
 ".quantity *" #> SHtml.ajaxText(
 i.quantity.get.toString,
 v => setQuantity(i, v.toInt, totalId)) &
 ".price *" #> WiringUI.asText(i.price.get) &
 ".total *" #> WiringUI.asText(i.total)
 })
 } &
 ".cart-total *" #> WiringUI.asText(cartTotal)
 }
}

Working with Forms

86

2. Start the application and access http://localhost:8080 in your browser;
you should see a page which looks like a shopping cart, as shown in the
following screenshot:

As you change the value of the fields in the Quantity column, the values in the Total column
will be updated automatically.

How it works...
In the index.html file, we've invoked the method show of the ShoppingCart snippet and
we have also created the table structure that will hold the items of the shopping cart, namely,
item name, quantity, price, and total per item. It will also have the total value of the cart.

Let's start looking at the snippet to find out how the HTML code that we've put in the index.
html file turns into a dynamic shopping cart.

Starting with the show method, we can see that there is a bind to the content of the tbody
tag—tbody *—and a bind to the td tag with class cart-total of the tfoot section. The
tbody bind creates a list of CssSel elements, one for each item in the shopping cart, which
are represented by the elements in the items list.

A shopping cart item is represented by the case class Item. This class has an ID, a name, a
quantity, a price, and a total value, which is the price multiplied by the quantity.

You will notice that we have used the qty and prc parameters to set the quantity
and price attributes respectively and that these attributes belong to ValueCell. The
ValueCell object is one of the three types of Cell objects that is provided by Lift and
it also holds a value that can be mutated.

Chapter 3

87

The attribute total is a FuncCell object of Cell, which holds a value that is created by
applying a function to the value of another Cell object.

val total = quantity.lift(_ * price)

You can see in the preceding code, that we have created a FuncCell object of Cell by lifting
the quantity into a function that multiplies the quantity by the price—_ * price—and have
assigned it to the total attribute.

Now that we've seen how the Item class is defined, we can get back to the binds. As I was
saying, the tbody bind creates a list of CssSel elements that are generated by the application
of the function (Item) => CssSel, which is the argument of the map method—items.
map(...). This function binds the name of the item to the td tag where the class attribute
equals item. It then creates a text field, which is bound to an Ajax handler, and it binds this
text field to the td tag with quantity as the value of the class attribute. The Ajax handler
will then invoke the method setQuantity; we'll soon see how this works.

And the last part of the show method creates a bind between the asText method of the
WiringUI object and those td tags where class equals price, total, and cart-total.
The only difference is the value that we are passing as parameter in each one of the bindings.

Right now, we know how the binds are done and how the HTML is generated, but we still don't
know how the fields are updated automatically.

Let's start with the total of each item. Since we've told Lift that the value of the total cell is
calculated by the application of a function to the value of the quantity cell, each time we set
a new value in the quantity cell, the total cell is automatically updated.

The next piece of the puzzle is the ajaxText field that we've bound to the Quantity column
in the table. Every time the user changes the value and takes the focus out of the field, an
Ajax call is triggered; this will invoke the setQuantity method. This method does two things.
It sets a new value in the quantity cell of the item and sends a JavaScript command to
update the value of the Total field on the page if the quantity has changed. Alternatively, it
does nothing if the user enters the same value in the quantity field.

You can see that we are passing the value of the total cell to the JavaScript command, and
this works because when the quantity cell is updated, the total cell is updated too.

This is how we've used Cells and JavaScript to create a dynamic shopping cart.

www.allitebooks.com

http://www.allitebooks.org

Working with Forms

88

There's more...
Ajax fields and JavaScript commands are not the only way to update the UI when working
with Cells.

We can use the WiringUI object, which offers a practical way to render the UI on top of Cells
and Wiring.

You can see an example of the use of WiringUI in the bind of the td tag with the class total
in the table's tfoot section—".cart-total *" #> WiringUI.asText(cartTotal).
What we are doing here is creating a text node—the span tag—that will be rendered inside the
td tag using the cartTotal variable as its argument. cartTotal is a DynamicCell type of
Cell, which changes its value at each access. This means that every time a dependent Cell
value changes, the value of DynamicCell is recalculated. You can see that we've created
this Cell as being the sum of the values of the total Cell objects of each item in the cart; in
other words, it is the sum of the total of each item. So, each time the total of any item changes,
it triggers the recalculation of the cartTotal variable, which makes the WiringUI.asText
method update the UI, and it's because of this mechanism that we can see the total value
changing each time we update the value of the quantity fields.

I hope I've demonstrated to you how powerful and flexible Lift is by letting the limit of what we
can do become the limit of our imagination. All we need to do is to put these pieces together
in imaginative ways to build complex forms that offer an extraordinary user experience.

4
Working with REST

In this chapter, we will cover the following topics:

 f Getting data from the server

 f Creating data using the REST service

 f Modifying data using the REST service

 f Deleting data using the REST service

 f Testing a REST service using Specs2

 f Uploading a file using the REST service

 f Creating an RSS feed

Introduction
In the early days of the Internet, the websites and applications were standalone as they had
no means of communicating with each other. Each application was like an island that had to
collect and store every piece of data it could possibly need to get the job done.

Today, almost everyone in the world connects to the Internet through notebooks, cell phones, or
tablets. Therefore, applications should be able to communicate with each other so that users
can access any information they need from their cell phones, notebooks, or any other device.

Each application that communicates with the external world must provide an API (Application
Programming Interface) to specify how the applications will interact. However, having an API
is not enough. We still need HTTP to transport the data.

How did the need for building APIs and using HTTP as the transportation layer lead to REST?

Working with REST

90

REST, which stands for Representational State Transfer, is a style or pattern for creating
consistent APIs. Thus, the application will have a uniform interface to send and retrieve
representations of states of resources, which are meaningful concepts such as a user, an
order, and so on. Another advantage of a REST API is that it simplifies and decouples the
server and client sides. As a result, REST is becoming the most common option chosen to
export application features to external resources when creating APIs.

In this chapter, we will learn how to build an application to create and maintain data about
clients—CRUD operations—using a REST interface to serve as the communication bridge
between the server and the client.

CRUD stands for Create, Retrieve, Update, and Delete.

Our REST API will be composed of the following URLs:

Method URL Action
GET /clients Retrieves the list of clients
GET /clients/<id> Gets the data for the client with the specified ID
POST /clients Creates a new client
PUT /clients/<id> Modifies the client data with the given ID
DELETE /clients/<id> Deletes the client data with the given ID

Each section will handle one of the URLs mentioned in the preceding table. However, this is
not the end of the story. We will learn how to upload files to the server and how to create an
RSS feed using a REST API at the end of this chapter.

Getting data from the server
In this recipe, we will learn how to build URLs to respond to GET requests. In other words,
we will learn how to serve data to the clients of your API. This means that you will be able
to create a REST URL, where you can fetch a collection from data of a given resource—data
about clients in this case—or fetch data about a specific resource.

Getting ready
You can either use example codes, which we have used in the recipes from previous chapters,
or you can start a new project.

Chapter 4

91

After creating the project, we will need to create a list of clients to serve as an in-memory
database. We will need a model class to keep the data that will be shown on the page:

1. Inside the code.model package, let's create a class named Client with the
following code:
package code.model

import net.liftweb.json.JsonDSL._

case class Client(id: Int, name: String, email: String) {
 def asJson = {
 ("id" -> id) ~
 ("name" -> name) ~
 ("email" -> email)
 }
}

2. Let's create a new package, named session, inside the code package. Then, create
an object named ClientCache with the following code:
package code.session

import code.model.Client

object ClientCache {
 var clients: List[Client] = Nil

 def startClient() {
 if (clients.isEmpty)
 clients = (1 to 10).toList.map(i => Client(i, "Client " + i,
"client_" + i + "@email.com"))
 }
}

3. Invoke the method startClient() inside the boot method, which is in the Boot
class, with the following code snippet:
ClientCache.startClient()

How to do it...
Now, carry out the following steps to see the list of clients:

1. Create a new package called rest inside the code package.

Working with REST

92

2. Now, create an object called Clients in it. This object should have the
following code:
package code.rest

import net.liftweb.http.rest.RestHelper
import net.liftweb.http._
import net.liftweb.json.JsonDSL._
import net.liftweb.util.Helpers._
import code.session.ClientCache
import code.session.Clients
object Clients extends RestHelper {
 serve({
 case Req("api" :: "clients" :: Nil, _, GetRequest) =>
listClients()
 })

 def listClients() = JsonResponse ("clients" ->
ClientCache.clients.map(_.asJson))
}

3. Add the following line in the boot method of the Boot class to register our object as
a dispatcher:
LiftRules. statelessDispatch.append(Clients)

4. Modify the index.html file by creating a table to hold the data inside the div tag
with main as the value of id:
 <table>
 <thead>
 <tr>
 <th>Id</th>
 <th>Name</th>
 <th>E-mail</th>
 <th>View</th>
 <th>Delete</th>
 </tr>
 </thead>
 <tbody>
 </tbody>
 </table>

5. Now, create the JavaScript code to call the REST API and display the data in the
web page, as shown in the following code:
<script type="text/javascript">
 $(document).ready(function() {
 $.ajax({
 url: "/api/clients",
 contentType: "application/json"
 }).done(function (data) {

Chapter 4

93

 var clients = "";

 $.each(data.clients, function(i, client) {
 clients += '<tr>' +
 ' <td>' + client.id + '</td>' +
 ' <td><input type="text" value="' +
client.name + '"></td>' +
 ' <td><input type="text" value="' +
client.email + '"></td>' +
 ' <td>View</td>' +
 ' <td>Delete</td>' +
 '</tr>';
 });

 $("tbody").html(clients);
 });
 });
 </script>

6. Start the application.

7. Access http://localhost:8080.

You should see a web page containing a list of clients in your browser:

Working with REST

94

How it works...
When working with REST, you need to create a dispatcher that tells Lift how to handle
the requests sent to your REST API. The dispatcher is an object that extends the built-in
RestHelper object, which defines some helper methods, such as the serve method, which
adds request handlers to work with REST. One of the methods defined by the RestHelper
object, which we used to define the endpoint, is the serve method. This method takes an
argument as a partial function, which takes a Req object and returns a LiftResponse. In
other words, we passed the serve method a pattern match block that associates request
paths to methods that return HTTP responses.

In our case, we defined a match that handles requests—of type GET—sent to the path /api/
clients, that calls the listClients method. The first parameter that we passed to the
Req object is a list of strings that defines the path /api/clients. The second parameter
defines the extension; for example, if you pass JSON as the second argument, the path will
be /api/clients.json. Since we passed—underscore—as its second argument, it does
not matter what the extension of the endpoint is. The third and last parameter of the case
defines the type of HTTP request—GET, POST, PUT, or DELETE.

The list method gets the clients from the ClientCache object and transforms it into a list
of JSON objects by calling the asJson method, which is defined in the Client class. Let's
see how this transformation works.

To transform a Scala object into a JSON object, we used the DSL JsonDSL defined by Lift.
This DSL defines methods such as -> and ~, which help us tell Lift how the transformation
should be done. For example, when you use the code snippet ("id" -> id) ~ ("name"
-> name), the DSL will return the object JObject(JField("id",JInt(id)) ::
JField("name",JString(name)) :: Nil). As you can see, the DSL creates a
JObject, which contains a list of JField objects. Each JField object, is composed by
a name—String—and a value—JValue. If the variable being transformed is a String,
it will be converted into a JString object; otherwise, if it is an Int, it will be converted
into a Jint object.

Going back to the asJson method, you can see that it will take the current client instance and
will return a JObject (which is also a JValue), containing three JField objects—one for
the client's name, one for the e-mail, and the third one for its ID. We then get the list of JSON
objects—JObject—and we pass it to the JsonResponse object.

The JsonResponse object gets the list of JSON objects and then builds a
LiftResponse—which will be an HTTP response with the status code 200—with
the proper response headers, cookies, and our objects.

Now that we know how the API works on the server side, let's take a look at the client side.

Chapter 4

95

In the index.html file, we used jQuery's Ajax feature to invoke our API; at the time of getting
the response from the server, if it iterates the list of JSON objects and creates the HTML
elements—table rows—then the HTML elements will be inserted into the table we've defined.

The JavaScript code used is just an example to show how the
REST API works, that is, how it handles a request and how it
sends a response.

Now, the user will see the final result, which is the table containing one client per row, as you
can see in the screenshot at the end of this recipe's How to do it... section.

There's more...
Now, let's learn how to fetch a specific client:

1. First, we need to add the new URL in our dispatcher by adding a new case statement
into the serve method. Create the serve method in the Clients object using the
following code snippet:
 serve({
 case Req("api" :: "clients" :: AsInt(id) :: Nil, _,
GetRequest) => getClient(id)
 case Req("api" :: "clients" :: Nil, _, GetRequest) =>
listClients()
 })

2. Then, still inside the Clients object, you'll need to define the get method as
follows:
 def getClient (id: Int) = {
 val client = ClientCache.clients.filter(_.id == id).map(_.
asJson).headOption

 client match {
 case Some(c) => JsonResponse.apply(c)
 case _ => NotFoundResponse()
 }
 }

3. Then, in the index.html file, find the following line:
' <td>View</td>' +

and change it to:

' <td><a href="#" class="view" data-id="' + client.id +
'" onclick="showDetail(this)">View</td>' +

Working with REST

96

4. Now, inside the script tag, create the showDetail function with the
following code:
 var showDetail = function(element) {
 $.ajax({
 url: "/api/clients/" + $(element).data("id"),
 contentType: "application/json"
 }).done(function (client) {
 $("#client-id span").html(client.id);
 $("#client-name span").html(client.name);
 $("#client-email span").html(client.email);
 $("#client-data").show();
 });
 };

Restart the application, refresh the page, and click on one of the View links, and you should
see a web page with a list of clients and a section at the top with the details of the client you
clicked on, as shown in the following screenshot:

The mechanisms behind fetching a collection of objects from the server and a single one are
very similar and we must learn what the differences are.

There are two important differences. The first is the endpoint; to fetch a collection of a given
resource, we call /api/clients, while to fetch one resource only, we must call /api/
clients/<id> (where <id> is the unique identifier of the resource). We have defined this
new endpoint by creating the following new case entry in the server method:

case Req("api" :: "clients" :: AsInt(id) :: Nil, _, GetRequest) =>
getClient(id)

Chapter 4

97

If you compare both case statements, you can see that they are identical and the only
differences are:

 f The new entry path has a new element: AsInt(id)

 f The method that it calls is the getClient method

The new element of the path is a value—called id—that will be converted into an Int value by
the AsInt object. This variable will be used as the parameter when invoking the getClient
method. The getClient method filters the client list in the ClientCache object by their
IDs and calls the asJson method to the client whose ID matches the ID passed to the
getClient method. Then, it "pattern matches" the value it gets after filtering the client
list and passes the JSON representation of the client to the JsonResponse object, thus
returning a HTTP response with the status code 200, and containing the client object as
a JSON object. However, if the filter cannot find any client, the getClient method will return
a NotFoundResponse—error code 404.

The last missing point is how the client side interacts with this endpoint. Well, you can see
that we've created a link that invokes the showDetail function when the user clicks on it,
as shown in the following snippet:

 <td><a href="#" class="view" data-id="' + client.id + '"
onclick="showDetail(this)">View</td>' +

The showDetail function then triggers an Ajax call—a GET HTTP request—to the path
we have defined. When the server responds, it gets the values from the JSON object that
the server sent, adds them into the HTML, and then shows the div element with its ID
client-data, which contains the values we retrieved from the server.

Now that we know how to fetch data from the server, we will learn how to create new data
using a REST API.

Creating data using the REST service
Now that we know how to fetch data, the next step is to learn how to create the data so that
we can fetch it later.

Thus, we will learn how to create the REST URL, which will respond to the POST request.

Getting ready
We are going to modify the code we created in the previous recipe. You can duplicate the
project from the last recipe to keep it separated or you can use the same one.

1. Remove the following line from the boot method in the Boot class:
ClientCache.startClient()

Working with REST

98

2. Then modify the ClientCache object by adding a new import statement:
import net.liftweb.http.SessionVar

3. Remove the clients variable and the startClient method, and modify the object
declaration from object ClientCache to object ClientCache extends
SessionVar[List[Client]](Nil).

4. At last, in the index.html file, create a form to input data using this code:
 <div>
 <form>
 <fieldset>
 <legend>New Client</legend>
 <div><label for="name">Name:</label><input
type="text" id="name"></div>
 <div><label for="email">Email:</label><input
type="text" id="email"></div>
 <div> <button>Submit</button> </div>
 </fieldset>
 </form>
 </div>

5. Create a JavaScript function to send the data to the server, as follows:
 var createClient = function() {
 var client = {
 name: $("#name").val(),
 email: $("#email").val()
 };

 $.ajax({
 async: false,
 type: "post",
 url: "/api/clients",
 data: JSON.stringify(client),
 contentType: "application/json"
 }).done(function (data) {
 var newLine = '<tr>' +
 ' <td>' + data.id + '</td>' +
 ' <td><input type="text" value="' +
data.name + '"></td>' +
 ' <td><input type="text" value="' +
data.email + '"></td>' +
 ' <td><a href="#" class="view" data-
id="' + data.id + '" onclick="showDetail(this)">View</td>' +
 ' <td>Delete</td>' +

Chapter 4

99

 '</tr>';

 $("tbody").append(newLine);
 $("form")[0].reset();
 });
 };

6. We also need to bind the button's onclick event listener to call the
createClient function:

 $("button").click(function() {
 createClient();
 });

How to do it...
Carry out the following steps to input data:

1. Define a new URL inside the serve method:
case "api" :: "clients" :: Nil JsonPost json -> _ =>
createClient(json)

2. Create a case class that will represent the data we get from the request:
case class JClient(id: Option[Int], name: String, email: String)

3. Create a method to convert the data received in the request into a Client object:
 implicit def jClient2Client(jClient: JClient): Client = {
 val nextId = ClientCache.is.size + 1

 Client(jClient.id.getOrElse(nextId), jClient.name, jClient.
email)
 }

4. Create the method that will save the new client data on the server with the following
code snippet:
 def createClient (json: JValue) = {
 val client: Client = json.extract[JClient]
 ClientCache.set(client :: ClientCache.is)

 JsonResponse (client.asJson)
 }

5. Start the application.

6. Access http://localhost:8080.

Working with REST

100

You will see that the web page now has a form where you can input data, as shown in the
following screenshot:

How it works...
The server-side part is simple; as you can see, it consists of a few lines of code. The first thing
to notice is that we have created a new endpoint to respond to HTTP POST requests. However,
there are many things going on.

Most of them have to do with the JsonPost value, which is defined as follows in the
RestHelper trait:

protected lazy val JsonPost = new TestPost[JValue] with JsonTest
with JsonBody

So, when the server gets the POST request, it tests the request to see whether it is a POST
request with JSON data in its body and awaits a JSON response. If this is the case, it will
extract the path, the JSON object, and the req object from the request.

The JSON object will then be assigned to the json value and the req object will be discarded
due to the use of the _ character. We then pass the json value to the createClient
method. But, we still need to extract the values out of the JSON object and create a new
client object with it. We do this by invoking the extract method from the JValue object.
This method can extract values from JSON objects using case classes. In our case class,
we told the extract method to use the case class JClient to extract the values from the
JSON object.

Chapter 4

101

You can see that the JClient class is a representation of the JSON object, meaning that for
each attribute that is present in the JSON object, it must be present in the case class.

Once we have extracted the values from the JSON object, we can add it to our list of clients.
However, there is a small catch here; the list of clients, which is kept in the ClientCache
object, is a list of Client objects not a list of JClient objects. So how is it possible to
extract a JClient object from the JSON object and add it into the list of clients?

This is possible because we have defined an implicit conversion to convert JClient
objects into Client objects. So, when we use this code val client: Client = json.
extract[JClient], the extract method will create a JClient object. Then, the implicit
conversion will be invoked and will create the Client object, which will be assigned to the
client value. We then prepend the client object to the client list, and then set this new list
as the client list of the ClientCache object.

The last step is to return the newly added object to the client side with an HTTP response
with the status code 200, in order to tell the client that everything worked and that the client
was successfully added. We do this by converting the object—Client—into a JObject
and passing it, as a parameter, to the JsonResponse object. Let's see how the client side
interacts with this endpoint.

First of all, we defined an HTML form—composed by two textfields and a submit button—so we
can input the data that we want to use to create our clients.

We have also bound the button's onclick event listener to call the createClient function
everytime the user clicks on it.

The createClient method creates a JSON object using the values entered into the form
and triggers an Ajax call—HTTP POST Request—to the URL /api/clients, passing the JSON
object in the request body. Once the server finishes its job—by adding the client into the
ClientCache object—we do two things. Firstly, we create a new line in the list of clients
using the data that came from the server, and secondly, we reset the form.

There's more...
We have modified the ClientCache object and changed it into a SessionVar object. But
what is a SessionVar object anyway?

A SessionVar object is an object that basically has two features:

 f It has a lifetime similar to the HTTP session attributes

 f It is type safe

You can use a SessionVar object whenever you need to keep a value around for periods
longer than a few HTTP requests.

Working with REST

102

See also
You can learn more about implicit conversions in Scala by visiting the following URLs:

 f http://www.scala-lang.org/node/114

 f http://www.artima.com/weblogs/viewpost.jsp?thread=179766

Modifying data using the REST service
We now know how to build a REST API to fetch and create data, but what if our client has
moved to a new office or changed their phone number?

We will need to have a way to modify our client's data and this is what we will learn in
this recipe.

Getting ready
We will keep evolving the code that we have created in the last recipe. So, again, you can
duplicate the last section's project or just modify it.

1. In the index.html file, create a new column in the table to hold the edit link:
<th>Edit</th>

2. Create a new function called createLine, which should have the same code as the
createClient's newLine variable. This code is as follows :
 var createLine = function(data) {
 return <place the code from the newLine variable
here>
 };

3. Then add the new column, by adding the following code:
 ' <td><a href="#" class="edit" data-
id="' + data.id + '"
onclick="editClient(this)">Edit</td>' +

4. In the createClient function, change the following line:
$("tbody").append(newLine);

to:
$("tbody").append(createLine(data));

Chapter 4

103

5. Now, create a function called editClient with the following code:
 var editClient = function(element) {
 var name = $(element).parents("tr").find(":input")[0];
 var email = $(element).parents("tr").find(":input")[1];

 var client = {
 id: $(element).data("id"),
 name: name.value,
 email: email.value
 };

 $.ajax({
 async: false,
 type: "put",
 url: "/api/clients/" + client.id,
 data: JSON.stringify(client),
 contentType: "application/json"
 }).done(function (data) {
 alert(JSON.stringify(data));
 });
 };

6. Change the highlighted line that starts with client += to clients +=
createLine(client);, from the following code:

 clients += '<tr>' +
 ' <td>' + client.id + '</td>' +
 ' <td><input type="text"
value="' + client.name + '"/></td>' +
 ' <td><input type="text"
value="' + client.email + '"/></td>' +
 ' <td><a href="#"
class="view" data-id="' + client.id + '"
onclick="showDetail(this)">View</td>' +
 ' <td>Delete</td>' +
 '</tr>';

How to do it...
Now, carry out the following steps:

1. Create the new URL in the Clients dispatcher by adding the following code into the
serve method:
 case "api" :: "clients" :: AsInt(id) :: Nil JsonPut
json -> _ => editClient(id, json)

Working with REST

104

2. Now, create the editClient method, which should have the following code:
 def editClient(id: Int, json: JValue) = {
 val client: Client = json.extract[JClient]
 val newList = ClientCache.is.filter(_.id != id)

 ClientCache.set(client :: newList)

 JsonResponse (client.asJson)
 }

3. Start the application.

4. Access http://localhost:8080.

Now, you will see a page similar to the one shown in the following screenshot:

How it works...
Once again, the server side is simple and straightforward. You will notice that we have used
the same technique to create a new client, and we are going to use it again. However, instead
of using the JsonPost value to extract a JSON object from a POST request, we have used the
JsonPut value.

Chapter 4

105

This means that when we send a PUT request to the URL /api/clients/<id>, Lift will extract
the JSON object from the request's body and pass it with the ID extracted from the URL, to
the editClient method. The editClient method will use the same implicit conversion to
transform the JClient object that was extracted from the JSON object, into a Client object.

Now that we have the value sent from the browser stored in the client variable, we can edit
the data. In this example, we are not actually editing the client, we are just removing the client
with the same ID from the ClientCache object and adding a new one, which has different
values but the same ID.

After updating the list of clients, the editClient method returns the modified client as a
JSON object in the HTTP response, by converting the Client object into a JObject object
and passing it to the JsonResponse object.

On the client side, we have to change a few things to integrate the UI with the API. First, we
need to create a function to create the JSON object and send it to the server to edit the client
data. To achieve this, we created the function called editClient, which gets the values from
the input fields and creates a JSON object, and then stores it in the client variable.

After creating the JSON object, it fires an Ajax call to the endpoint we defined earlier. Once
the server finishes the updating process and responds to the client, it captures the JSON
object that the server sends back and shows it in an alert dialog. We have now created a
new column in the client list to create a link that calls the editClient function.

Deleting data using the REST service
Our application to manage clients using a REST API is almost ready. The last thing that we
need to learn is how to destroy data using our API.

Getting ready
As you can imagine, you have only two options. Either duplicate the project from the last
section or keep evolving the same project.

1. In the index.html file, modify the createLine function by changing the line with
the Delete column from:
' <td>Delete</td>' +

to:

 ' <td><a href="#" data-id="' + data.id + '"
onclick="deleteClient(this)">Delete</td>' +

Working with REST

106

2. Create the deleteClient function, which will make the delete call to the server:
 var deleteClient = function(element) {
 $.ajax({
 async: false,
 type: "delete",
 url: "/api/clients/" + $(element).data("id"),
 contentType: "application/json"
 }).done(function (data) {
 $(element).parents("tr").hide();
 });
 };

How to do it...
Now carry out the following steps:

1. First, modify the serve method in the Clients dispatcher by adding the
following line:
 case Req("api" :: "clients" :: AsInt(id) :: Nil, _,
DeleteRequest) => deleteClient(id)

2. Create a new method called getById in the Clients object, as shown in the
following code:
def getById(id: Int) = ClientCache.is.find(_.id == id)

3. Modify the geClient method from:
 def getClient(id: Int) = {
 val client = ClientCache.is.filter(_.id == id).map(_.asJson).
headOption

 client match {
 case Some(c) => JsonResponse.apply(c)
 case _ => NotFoundResponse()
 }
 }

to:
 def get(id: Int) = {
 getById(id) match {
 case Some(c) => JsonResponse (c.asJson)
 case _ => NotFoundResponse()
 }
 }

4. Create a new method called deleteClient with the following code:
def deleteClient(id: Int) = {
 getById(id) match {

Chapter 4

107

 case Some(c) => {
 val newList = ClientCache.is.filter(_.id != c.id)

 ClientCache.set(newList)

 JsonResponse (c.asJson)
 }
 case _ => NotFoundResponse()
 }
 }

5. Start the application.

6. Access http://localhost:8080.

You should see a web page containing a Delete link in each line, as shown in the
following screenshot:

How it works...
To remove data from the server, we have used a technique similar to the one that we use
to fetch a given client. This means that our API will delete data when it gets a DELETE HTTP
request in this address: /api/clients/<id>. However, this is the same URL which we have
used to fetch data from a single client to display in the browser. So, how does Lift know when
we want to fetch or delete data?

It knows because of the HTTP request type that we have used in the case statements. To
simply fetch data, we used a GetRequest, while to delete data, we used a DeleteRequest,
which is a case object that defines DELETE as the HTTP method of the request.

Working with REST

108

Another thing to note, is that we have used the AsInt object to extract the client ID from
the URL and pass it to the deleteClient method—just as we did earlier to fetch the data
for a given client. The delete method filters the client list from the ClientCache object and
creates a new list that does not contain the client that we want to delete, and stores this new
list in the ClientCache object. Then, it returns the client that we have just removed from
the list in the HTTP response, using the JsonResponse object. The deleteClient method
also returns an HTTP response with error code 404 if it cannot find the client that we want to
delete in the list of clients.

On the client side, we created a function named deleteClient to trigger the Ajax call to
delete the client. You can see that the HTTP request of the Ajax call will have the type delete,
which will match against the delete endpoint. This function hides the line containing the
deleted client once it gets a response from the server.

Testing a REST service using Specs2
As the API is subject to change in the future, it will be nice if we could create automated tests
which we can easily run to confirm that we aren't breaking anything when making
such changes.

In this recipe, we'll learn how to test REST APIs using Specs2.

Getting ready
As in the previous recipes, you can duplicate the project you used earlier or you can keep
modifying the same one by adding the following dependency in the build.sbt file:

"net.liftweb" %% "lift-testkit" % liftVersion
 % "test"

How to do it...
1. Now, create the specification named ClientsSpec in src/test/scala/ code/

rest using the following code:
package code.rest

import org.specs2.mutable.Specification
import net.liftweb.mockweb.MockWeb._
import code.model.Client
import code.session.ClientCache
import net.liftweb.http.JsonResponse
import net.liftweb.json.JsonDSL._

Chapter 4

109

class ClientsSpec extends Specification {
 val clients = Client(1, "First", "first@test.com") ::
 Client(2, "Second", "first@test.com") :: Nil

 "Client REST API" should {
 "list clients" in {
 testS("/api/clients") {
 ClientCache.set(clients)

 val expectedResp = JsonResponse("clients" -> clients.
map(_.asJson))

 Clients.listClients() ==== expectedResp
 }
 }

 "fetch details from a given client" in {
 testS("/api/clients/1") {
 ClientCache.set(clients)

 val expectedResp = JsonResponse(
 clients.head.asJson,
 Nil, Nil,
 200
)
 Clients.getClient(1) ==== expectedResp
 }
 }

 "be able to create new clients" in {
 testS("/api/clients") {
 val expectedResp = JsonResponse(
 clients.head.asJson,
 Nil, Nil,
 200
)

 Clients.createClient(clients.head.asJson)
 Clients.getClient(1) ==== expectedResp
 ClientCache.is.size === 1
 }
 }
 }
}

Working with REST

110

You should see output similar to that in the following screenshot, after running the test
command—which will make the tests run—inside the sbt session:

How it works...
Testing REST services becomes simple when we bind the endpoint to a method. All we need
to do is test the method itself. Since the method used by the endpoint is just a regular Scala
method, we can unit test in it.

In this case, I chose to test them with the Specs2 framework, which we have already seen
how it works in the recipe Testing snippets using Specs2, in Chapter 2, Working with HTML.
However, there is a need to introduce lift-testkit to create and run the tests because the
REST service we've built depends on the SessionVar object.

The problem with the SessionVar objects is that they are bound to an HTTP context, which
means that to be able to make the tests to work, we'll need to mock HTTP requests, and this is
exactly what lift-testkit provides.

You can see that we call the method testS inside each test. This method set up the S object,
which represents the state of an HTTP request/response. The request that will be mocked
uses the URL that is passed as the parameter to the testS method. So, in the first test, we'll
mock a request to /api/clients. Now, inside the testS method, we are able to set any
value we want in ClientCache SessionVar, which is the data source of our REST API.
So, to actually test the list endpoint, we need to have some data that we can fetch. For this
purpose, we've added two clients in the ClientCache object by using the SessionVar.set
method—ClientCache.set(clients). At this point, we have everything that we need to
test ready, and what we have left to do is call the method that we want to test and compare
the result.

This is what we did when we compared the result from the call of the listClients method
with the expectedResp variable—which is what we expect the listClients method to
return. The test will pass if the values on both sides of the=== method match, and it will fail
if they don't.

There's more...
To test the creation of a new client, we used the same technique. The difference is that we
didn't set the ClientCache object upfront.

Chapter 4

111

We first called the createClient method, and then we tested its content to check if it had
the expected value—only one client.

See also
 f See the Testing snippets using Specs2 recipe in Chapter 2, Working with HTML

 f To learn more about lift-testkit, visit:
https://www.assembla.com/spaces/liftweb/wiki/Mocking_HTTP_
Requests

Uploading a file using the REST service
We know now how to build a REST API that responds to the basic HTTP methods—GET, POST,
PUT, and DELETE. However, we were dealing only with JSON data until now, but what if you
also want to allow the users of your application to upload files?

In this recipe, we will learn how to send a file to the server and then save it in the
local filesystem.

Getting ready
1. Create a new project or modify the one we used in the last section.

2. Edit the index.html file by adding the following form in the div element
with main as the value of id:
<form enctype="multipart/form-data" action="/api/files"
method="post">
 <fieldset>
 <legend>New File</legend>

 <div>
 <label for="uploadFile">File:</label>
 <input type="file" id="uploadFile"
 name="uploadFile"/>
 </div>
 <div>
 <input type="submit" value="Submit"/>
 </div>
 </fieldset>
 </form>

Working with REST

112

3. Add a new key named file.folder in the default.props file which is located in
src/main/resources/props/, as shown in the following code:
file.folder=<someFolder>

4. Change <someFolder> to the folder where you want to save the file.

How to do it...
Now carry out the following steps in order to upload the file:

1. Create a new object named Files in the code.rest package under
src/main/scala/ with the following code:
package code.rest

import net.liftweb.http.rest.RestHelper
import net.liftweb.http._
import java.io.{File, FileOutputStream}
import net.liftweb.util.Props

object Files extends RestHelper {
 serve {
 case "api" :: "files" :: _ Post req => uploadFile(req)
 }

 def uploadFile(req: Req): LiftResponse = {
 req.uploadedFiles match {
 case FileParamHolder(_, mime, fileName, data) :: Nil => {
 val path = Props.get("file.folder", "") + "/" + fileName

 val fos = new FileOutputStream(new File(path))
 fos.write(data)
 fos.close()
 }
 case _ =>
 }

 RedirectResponse("/")
 }
}

2. Append the Files object to LiftRules.dispatch as:
LiftRules.dispatch.append(Files)

3. Start the application.

4. Access http://localhost:8080.

Chapter 4

113

You will see a web page containing a form with only one field named File, as shown in the
following screenshot:

If you submit the form, you will see that the file was saved in the folder you set in the
default.props file earlier.

How it works...
First of all, we have defined a new endpoint so that we can upload the file. This new
endpoint—/api/files—was bound to the uploadFile method.

This method invoked the uploadedFiles method from the req object, which returns a list
of FileParamHolder objects. A FileParamHolder class holds the files uploaded via a
multipart-data form.

Its attributes are as follows:

 f The name of the form field

 f The MIME type that was specified in the request's content type

 f The name of the file

 f The array of bytes that is the content of the file

In our case, since we are sending only one file, the uploadedFiles method will return a list
containing only one FileParamHolder entry. We will then use the returned list in a pattern
match to extract the file attributes and bytes. When we use FileParamHolder(_, mime,
fileName, data) :: Nil in the case statement in the pattern match, it means that we
want a list of a single element and that this element is a invoked FileParamHolder. We
are also saying that we are only interested in the last three parameters that were used to
construct the object. Inside the case statement, we will have the MIME type, the name of the
file, and the array of bytes available.

Working with REST

114

You can see that we use the name of the file—the fileName variable—and the value we
defined in the default.props file, to define the whole path where the file will be
saved. Then, we use the path variable to create the file object and pass it to the
FileOutputStream object.

Once you have the FileOutputStream object, you can invoke the write method and pass
the array of bytes—the data variable—to write the content of the file.

After this step, the file is saved and we can close the FileOutputStream object and redirect
the user to the home page.

Creating an RSS feed
In this recipe, we will learn how to use the techniques we have learned so far to build RSS
(Rich Site Summary), which is a format to deliver content that changes regularly.

By providing an RSS feed for the content of your site, you will allow people to have a convenient
way of staying informed by retrieving the latest content of your application. RSS feeds are
convenient because people don't need to access each site that they want to read content from.
All they need to do is add the RSS feed URL into their favorite newsreader and all of the content
the person is interested in will be in one place.

Getting ready
One last time, you can duplicate the project you used in the previous recipe, or you can keep
modifying the same one.

How to do it...
Carry out the following steps to create an RSS feed:

1. Create a new endpoint to serve the feed, using the following code in the
Clients object:
case Req("api" :: "clients" :: "feeds" :: "rss" :: _, _,
GetRequest) => toRss(getClients)

2. Create an implicit method to transform XML objects into arrays of bytes:
implicit def elemToByteArray(value: Elem): Array[Byte] = {
 value.toString().getBytes
 }

Chapter 4

115

3. Create an object named DateUtils inside the package lib under src/main/
scala/code/ with the following code:
package code.lib

import java.text.SimpleDateFormat
import java.util.Date

object DateUtils {
 def formatDate(format: String)(date: Long): String = {
 val sdf: SimpleDateFormat = new SimpleDateFormat(format)
 sdf.format(new Date(date))
 }

 def longDate(date: Long): String = formatDate("yyyy-MM-
dd'T'HH:mm:ssZ")(date)
}

4. Create the method getClients to build the XML that will be served, as follows:
 def getClients: Elem = {
 <rss version="2.0">
 <channel>
 <title>Clients</title>
 <description>List of clients by RSS feed</description>
 <link>http://localhost:8080/api/clients/feeds/rss</link>
 <lastBuildDate>{longDate(Calendar.getInstance().
getTimeInMillis)}</lastBuildDate>
 <pubDate> {longDate(Calendar.getInstance().
getTimeInMillis)} </pubDate>

 {ClientCache.clients.flatMap {
 c =>
 <item>
 <title>Client: {c.id}</title>
 <description>Name: {c.name} - E-mail: {c.email}</
description>
 <pubDate> {longDate(Calendar.getInstance().
getTimeInMillis)} </pubDate>

 </item>
 }}
 </channel>

 </rss>
 }

Working with REST

116

5. Create the method to build the response that will be sent to the client:
 def toRss(elem: Elem): LiftResponse = {
 InMemoryResponse(
 elem,
 ("Content-Type" -> "application/rss+xml") :: Nil,
 Nil,
 200)
 }

6. Start the application.

7. Access http://localhost:8080/api/clients/feeds/rss.

Now, you will see the following RSS feed:

How it works...
You can see that we have created a new endpoint to serve the RSS feed, and bound this
endpoint to the method toRss in the previous section.

This method takes an Elem object as its argument and returns an InMemoryResponse.
This means that it will take the Elem object and push it directly into the Response object.
The conversion from an Elem object into an array of bytes is done by the implicit method
toByteArray. Since we've defined this method as implicit, we can pass the Elem object
directly to the InMemoryResponse class, which takes an Array[Byte] as it's first parameter.

Chapter 4

117

The second parameter of the InMemoryResponse class is a list of HTTP headers that we
used to define the content type of the response as being application/rss+xml.

InMemoryResponse is a basic type of response. There
are several response types that are wrappers to the
InMemoryResponse.

For example, NotFoundReponse sets the appropriate
headers and response code for an InMemoryResponse
to send an error 404 response to the client.

You can look at the net.liftweb.http.LiftResponse
to see every type of response provided by Lift.

The third parameter is a list of HTTP cookies, which we will pass a Nil value—an empty
list—because we don't care about cookies in this case. We passed 200 as the last parameter
to define the HTTP response status code.

Now that we know how to build an HTTP response to serve an RSS feed, let's learn how to
build the feed content.

To build the feed content, we created the method getClients, which builds an XML object
using some helper methods. These helper methods format the date and mapping of our list
of clients to build XML item blocks; each client is an item block. So, after iterating the list of
clients, it returns the XML that will be used as the parameter when calling the toRss method.

See also
 f You can learn more about how to work with XML using Scala by visiting:

http://www.scala-lang.org/node/131

5
Working with Databases

In this chapter, we will cover the following topics:

 f Configuring a connection to database

 f Mapping a table to a Scala class

 f Creating one-to-many relationships

 f Creating many-to-many relationships

 f Creating CRUD features with CRUDify

 f Paginating result sets

 f Using an in-memory database in application tests

Introduction
We have learned how to create snippets, how to work with forms, and Ajax, how to test your
code, and how to create a REST API, and all this is awesome! However, we did not learn how to
persist data to make it durable.

In this chapter, we will see how to use Mapper, an object-relational mapping (ORM) system
for relational databases, included with Lift.

The idea is to create a map of database tables into a well-organized structure of objects;
for example, if you have a table that holds users, you will have a class that represents the
user table.

Let's say that a user can have several phone numbers. Probably, you will have a table
containing a column for the phone numbers and a column containing the ID of the user
owning that particular phone number.

Working with Databases

120

This means that you will have a class to represent the table that holds phone numbers, and
the user class will have an attribute to hold the list of its phone numbers; this is known as a
one-to-many relationship.

Mapper is a system that helps us build such mappings by providing useful features and
abstractions that make working with databases a simple task. For example, Mapper provides
several types of fields such as MappedString, MappedInt, and MappedDate which we
can use to map the attributes of the class versus the columns in the table being mapped. It
also provides useful methods such as findAll that is used to get a list of records or save, to
persist the data. There is a lot more that Mapper can do, and we'll see what this is through the
course of this chapter.

Configuring a connection to database
The first thing we need to learn while working with databases is how to connect the
application that we will build with the database itself.

In this recipe, we will show you how to configure Lift to connect with the database of our
choice. For this recipe, we will use PostgreSQL; however, other databases can also be used:

Getting ready
1. Start a new blank project.

2. Edit the build.sbt file to add the lift-mapper and PostgreSQL driver dependencies:
"net.liftweb" %% "lift-mapper" % liftVersion % "compile",
"org.postgresql" % "postgresql" % "9.2-1003-jdbc4" % "compile"

3. Create a new database.

4. Create a new user.

How to do it...
Now carry out the following steps to configure a connection with the database:

1. Add the following lines into the default.props file:
db.driver=org.postgresql.Driver
db.url=jdbc:postgresql:liftbook
db.user=<place here the user you've created>
db.password=<place here the user password>

2. Add the following import statement in the Boot.scala file:
import net.liftweb.mapper._

Chapter 5

121

3. Create a new method named configureDB() in the Boot.scala file with the
following code:
 def configureDB() {
 for {
 driver <- Props.get("db.driver")
 url <- Props.get("db.url")
 } yield {
 val standardVendor =
 new StandardDBVendor(driver, url, Props.get("db.user"),
Props.get("db.password"))

 LiftRules.unloadHooks.append(standardVendor.
closeAllConnections_! _)

 DB.defineConnectionManager(DefaultConnectionIdentifier,
standardVendor)
 }
 }

4. Then, invoke configureDB() from inside the boot method.

How it works...
Lift offers the net.liftweb.mapper.StandardDBVendor class, which we can use to
create connections to the database easily.

This class takes four arguments: driver, URL, user, and password. These are described
as follows:

 f driver: The driver argument is the JDBC driver that we will use, that is, org.
postgresql.Driver

 f URL: The URL argument is the JDBC URL that the driver will use, that is,
jdbc:postgresql:liftbook

 f user and password: The user and password arguments are the values you set when
you created the user in the database.

After creating the default vendor, we need to bind it to a Java Naming and Directory
Interface (JNDI) name that will be used by Lift to manage the connection with the database.
To create this bind, we invoked the defineConnectionManager method from the
DB object. This method adds the connection identifier and the database vendor into a
HashMap, using the connection identifier as the key and the database vendor as the value.
The DefaultConnectionIdentifier object provides a default JNDI name that we can
use without having to worry about creating our own connection identifier. You can create
your own connection identifier if you want. You just need to create an object that extends
ConnectionIdentifier with a method called jndiName that should return a string.

Working with Databases

122

Finally, we told Lift to close all the connections while shutting down the application
by appending a function to the unloadHooks variable. We did this to avoid locking
connections while shutting the application down.

There's more...
It is possible to configure Lift to use a JNDI datasource instead of using the JDBC driver
directly. In this way, we can allow the container to create a pool of connections and then tell
Lift to use this pool.

To use a JNDI datasource, we will need to perform the following steps:

1. Create a file called jetty-env.xml in the WEB-INF folder under src/main/
webapp/ with the following content:
<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN"
"http://www.eclipse.org/jetty/configure.dtd">
<Configure class="org.eclipse.jetty.webapp.WebAppContext">
 <New id="dsliftbook"
class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg>jdbc/dsliftbook</Arg>
 <Arg>
 <New class="org.postgresql.ds.PGSimpleDataSource">
 <Set name="User">place here the user you've
created</Set>
 <Set name="Password">place here the user
password</Set>
 <Set name="DatabaseName">liftbook</Set>
 <Set name="ServerName">localhost</Set>
 <Set name="PortNumber">5432</Set>
 </New>
 </Arg>
 </New>
</Configure>

2. Add the following line into the build.sbt file:
env in Compile := Some(file("./src/main/webapp/WEB-INF/jetty-
env.xml") asFile)

3. Remove all the jetty dependencies and add the following:
 "org.eclipse.jetty" % "jetty-webapp" %
"8.0.4.v20111024" % "container",
 "org.eclipse.jetty" % "jetty-plus" % "8.0.4.v20111024"
% "container",

Chapter 5

123

4. Add the following code into the web.xml file.
 <resource-ref>
 <res-ref-name>jdbc/dsliftbook</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

5. Remove the configureDB method.

6. Replace the invocation of configureDB method with the following line of code:
DefaultConnectionIdentifier.jndiName = "jdbc/dsliftbook"

The creation of the file jetty-envy.xml and the change we made in the web.xml file were
to create the datasource in jetty and make it available to Lift.

Since the connections will be managed by jetty now, we don't need to append hooks so
that Lift can close the connections or any other configuration when shutting down the
application. All we need to do is tell Lift to get the connections from the JNDI datasource that
we have configured into the jetty. We do this by setting the jndiName variable of the default
connection identifier, DefaultConnectionIdentifier as follows:

DefaultConnectionIdentifier.jndiName = "jdbc/dsliftbook"

The change we've made to the build.sbt file was to make the jetty-env.xml file
available to the embedded jetty. So, we can use it when we get the application started by
using the container:start command.

See also...
 f You can learn more about how to configure a JNDI datasource in Jetty at the

following address:

http://wiki.eclipse.org/Jetty/Howto/Configure_JNDI_Datasource

Mapping a table to a Scala class
Now that we know how to connect Lift applications to the database, the next step is to learn
how to create mappings between a database table and a Scala object using Mapper.

Getting ready
We will re-use the project we created in the previous recipe since it already has the
connection configured.

Working with Databases

124

How to do it...
Carry out the following steps to map a table into a Scala object using Mapper:

1. Create a new file named Contact.scala inside the model package under
src/main/scala/code/ with the following code:
package code.model

import net.liftweb.mapper.{MappedString, LongKeyedMetaMapper,
LongKeyedMapper, IdPK}

class Contact extends LongKeyedMapper[Contact] with IdPK {
 def getSingleton = Contact

 object name extends MappedString(this, 100)
}

object Contact extends Contact with LongKeyedMetaMapper[Contact] {
 override def dbTableName = "contacts"
}

2. Add the following import statement in the Boot.scala file:
import code.model.Contact

3. Add the following code into the boot method of the Boot class:
 Schemifier.schemify(
 true, Schemifier.infoF _,
 Contact
)

4. Create a new snippet named Contacts with the following code:
package code.snippet

import code.model.Contact
import scala.xml.Text
import net.liftweb.util.BindHelpers._

class Contacts {
 def prepareContacts_!() {
 Contact.findAll().map(_.delete_!)
 val contactsNames = "John" :: "Joe" :: "Lisa" :: Nil
 contactsNames.foreach(Contact.create.name(_).save())

 }

Chapter 5

125

 def list = {
 prepareContacts_!()

 "li *" #> Contact.findAll().map {
 c => { c.name.get
 }
 }
 }
}

5. Edit the index.html file by replacing the content of the div element with main as
the value of id using the following code :
 <div data-list="Contacts.list">

 </div>

6. Start the application.

7. Access your local host (http://localhost:8080), and you will see a page with
three names, as shown in the following screenshot:

How it works...
To work with Mapper, we use a class and an object. The first is the class that is a
representation of the table; in this class we define the attributes the object will have based
on the columns of the table we are mapping. The second one is the class' companion object
where we define some metadata and helper methods.

The Contact class extends the LongKeyedMapper[Contact] trait and mixes the trait IdPK.
This means that we are defining a class that has an attribute called id (the primary key), and
this attribute has the type Long. We are also saying that the type of this Mapper is Contact.

Working with Databases

126

To define the attributes that our class will have, we need to create objects that extend
"something". This "something" is the type of the column. So, when we say an object name
extends MappedString(this, 100), we are telling Lift that our Contact class will have
an attribute called name, which will be a string that can be 100 characters long. After defining
the basics, we need to tell our Mapper where it can get the metadata about the database
table. This is done by defining the getSingleton method. The Contact object is the object
that Mapper uses to get the database table metadata. By default, Lift will use the name
of this object as the table name. Since we don't want our table to be called contact but
contacts, we've overridden the method dbTableName.

What we have done here is created an object called Contact, which is a representation of a
table in the database called contacts that has two columns: id and name. Here, id is the
primary key and of the type Long, and name is of the type String, which will be mapped to a
varchar datatype.

This is all we need to map a database table to a Scala class, and now that we've got the
mapping done, we can use it. To demonstrate how to use the mapping, we have created
the snippet Contacts.

This snippet has two methods. The list method does two things; it first invokes the
prepareContacts_!() method, and then invokes the findAll method from the Contact
companion object. The prepareContacts_!() method also does two things: it first deletes
all the contacts from the database and then creates three contacts: John, Joe, and Lisa.
To delete all the contacts from the database, it first fetches all of them using the findAll
method, which executes a select * from contacts query and returns a list of Contact
objects, one for each existing row in the table. Then, it iterates over the collection using the
foreach method and for each contact, it invokes the delete_! method which as you can
imagine will execute a delete from contacts where id = contactId query is valid.

After deleting all the contacts from the database table, it iterates the contactsNames list, and
for each element it invokes the create method of the Contact companion object, which then
creates an instance of the Contact class. Once we have the instance of the Contact class, we
can set the value of the name attribute by passing the value instance.name(value).

You can chain commands while working with Mapper objects
because they return themselves. For example, let's say
our Contact class has firstName and lastName as
attributes. Then, we could do something like this to create
and save a new contact:

Contact.create.firstName("John").
lastName("Doe").save()

Finally, we invoke the save() method of the instance, which will make Lift execute an insert
query, thus saving the data into the database by creating a new record.

Chapter 5

127

Getting back to the list method, we fetch all the contacts again by invoking the findAll
method, and then create a li tag for each contact we have fetched from the database. The
content of the li tags is the contact name, which we get by calling the get method of the
attribute we want the value of. So, when you say contact.name.get, you are telling Lift that
you want to get the value of the name attribute from the contact object, which is an instance
of the Contact class.

There's more...
Lift comes with a variety of built-in field types that we can use; MappedString is just one of
them. The others include, MappedInt, MappedLong, and MappedBoolean.

All these fields come with some built-in features such as the toForm method, which returns
the HTML needed to generate a form field, and the validate method that validates the
value of the field.

By default, Lift will use the name of the object as the name of the table's column; for example,
if you define your object as name—as we did—Lift will assume that the column name is name.

Lift comes with a built-in list of database-reserved words such
as limit, order, user, and so on. If the attribute you are mapping
is a database-reserved word, Lift will append _c at the end of
the column's name when using Schemifier. For example, if
you create an attribute called user, Lift will create a database
column called user_c.

You can change this behavior by overriding the dbColumnName method, as shown in the
following code:

object name extends MappedString(this, 100) {
 override def dbColumnName = "some_new_name"
 }

In this case, we are telling Lift that the name of the column is some_new_name. We have
seen that you can fetch data from the database using the findAll method. However, this
method will fetch every single row from the database.

To avoid this, you can filter the result using the By object; for example, let's say you want to get
only the contacts with the name Joe. To accomplish this, you would add a By object as the
parameter of the findAll method as follows:

Contact.findAll(By(Contact.name, "Joe")).

Working with Databases

128

There are also other filters such as ByList and NotBy. And if for some reason the features
offered by Mapper to build select queries aren't enough, you can use methods such as
findAllByPreparedStatement and findAllByInsecureSQL where you can use raw
SQL to build the queries.

The last thing left to talk about here is how this example would work if we didn't create any
table in the database. Well, I hope you remember that we added the following lines of code
to the Boot.scala file:

 Schemifier.schemify(
 true, Schemifier.infoF _,
 Contact
)

As it turns out, the Schemifier object is a helper object that assures that the database has
the correct schema based on a list of MetaMappers. This means that for each MetaMapper
we pass to the Schemifier object, the object will compare the MetaMapper with the
database schema and act accordingly so that both the MetaMapper and the database
schema match. So, in our example, Schemifier created the table for us. If you change
MetaMapper by adding attributes, Schemifier will create the proper columns in the table.

See also...
 f To learn more about query parameters, you can find more at:

https://www.assembla.com/spaces/liftweb/wiki/Mapper#querying_
the_database

Creating one-to-many relationships
In the previous recipe, we learned how to map a Scala class to a database table using
Mapper. However, we have mapped a simple class with only one attribute, and of course,
we will not face this while dealing with real-world applications.

We will probably need to work with more complex data such as the one having one-to-many or
many-to-many relationships. An example of this kind of relationship would be an application
for a store where you'll have customers and orders, and we need to associate each customer
with the orders he or she placed. This means that one customer can have many orders.

In this recipe, we will learn how to create such relationships using Mapper.

Chapter 5

129

Getting ready
We will modify the code from the last section by adding a one-to-many relationship into
the Contact class. You can use the same project from before or duplicate it and create
a new project.

How to do it...
Carry out the following steps:

1. Create a new class named Phone into the model package under
src/main/scala/code/ using the following code:
package code.model

import net.liftweb.mapper._

class Phone extends LongKeyedMapper[Phone] with IdPK {
 def getSingleton = Phone

 object number extends MappedString(this, 20)

 object contact extends MappedLongForeignKey(this, Contact)
}

object Phone extends Phone with LongKeyedMetaMapper[Phone] {
 override def dbTableName = "phones"
}

2. Change the Contact class declaration from:
class Contact extends LongKeyedMapper[Contact] with IdPK

To:

class Contact extends LongKeyedMapper[Contact]
with IdPK
with OneToMany[Long, Contact]

3. Add the attribute that will hold the phone numbers to the Contact class as follows:
object phones extends MappedOneToMany(Phone,
Phone.contact, OrderBy(Phone.id, Ascending)) with
Owned[Phone] with Cascade[Phone]

Working with Databases

130

4. Insert the new class into the Schemifier list of parameters. It should look like the
following code:
 Schemifier.schemify(
 true, Schemifier.infoF _,
 Contact,
 Phone
)

5. In the Contacts snippet, replace the import statement from the following code:
import code.model.Contact

 To:

import code.model._

6. Modify the Contacts.prepareContacts_! method to associate a phone number to
each contact. Your method should be similar to the one in the following lines of code:
 def prepareContacts_!() {
 Contact.findAll().map(_.delete_!)
 val contactsNames = "John" :: "Joe" :: "Lisa" :: Nil
 val phones = "5555-5555" :: "5555-4444" :: "5555-3333"
:: "5555-2222" :: "5555-1111" :: Nil

 contactsNames.map(name => {
 val contact = Contact.create.name(name)
 val phone = Phone.create.number(phones((new
Random()).nextInt(5))).saveMe()
 contact.phones.append(phone)
 contact.save()
 })
 }

7. Replace the list method's code with the following code:
 def list = {
 prepareContacts_!()

 ".contact *" #> Contact.findAll().map {
 contact => {
 ".name *" #> contact.name.get &
 ".phone *" #> contact.phones.map(_.number.get)
 }
 }
 }

Chapter 5

131

8. In the index.html file, replace the ul tag with the one in the following code snippet:

 <li class="contact">

 <li class="phone">

9. Start the application.

10. Access http://localhost:8080.

Now you will see a web page with three names and their phone numbers, as shown in the
following screenshot:

How it works...
In order to create a one-to-many relationship, we have mapped a second table called phone
in the same way we've created the Contact class. The difference here is that we have added
a new attribute called contact. This attribute extends MappedLongForeignKey, which is
the class that we need to use to tell Lift that this attribute is a foreign key from another table.

In this case, we are telling Lift that contact is a foreign key from the contacts table in the
phones table. The first parameter is the owner, which is the class that owns the foreign key,
and the second parameter is MetaMapper, which maps the parent table.

After mapping the phones table and telling Lift that it has a foreign key, we need to tell Lift
what the "one" side of the one-to-many relationship will be.

To do this, we need to mix the OneToMany trait in the Contact class. This trait will add
features to manage the one-to-many relationship in the Contact class. Then, we need to
add one attribute to hold the collection of children records; in other words, we need to add
an attribute to hold the contact's phone numbers.

Working with Databases

132

Note that the phones attribute extends MappedOneToMany, and that the first two
parameters of the MappedOneToMany constructor are Phone and Phone.contact. This
means that we are telling Lift that this attribute will hold records from the phones table and
that it should use the contact attribute from the Phone MetaMapper to do the join. The last
parameter, which is optional, is the OrderBy object. We've added it to tell Lift that it should
order, in an ascending order, the list of phone numbers by their id.

We also added a few more traits into the phones attribute to show some nice features. One
of the traits is Owned; this trait tells Lift to delete all orphan fields before saving the record.
This means that if, for some reason, there are any records in the child table that has no owner
in the parent table, Lift will delete them when you invoke the save method, helping you keep
your databases consistent and clean.

Another trait we've added is the Cascade trait. As its name implies, it tells Lift to delete
all the child records while deleting the parent record; for example, if you invoke
contact.delete_! for a given contact instance, Lift will delete all phone records
associated with this contact instance. As you can see, Lift offers an easy and handy
way to deal with one-to-many relationships.

See also...
 f You can read more about one-to-many relationships at the following URL:

https://www.assembla.com/wiki/show/liftweb/Mapper#onetomany

Creating many-to-many relationships
Many-to-many relationships are also very common in real-world applications. In this recipe, we
will learn how to use Mapper to create such relationships. To do this, we will create a model
for a school where we can have one student attending many subjects and one subject having
many students.

Getting ready
You can use any of the projects we have used in the previous sections of this chapter. It is up
to you whether to change an existing project or duplicate it.

Chapter 5

133

How to do it...
To create a many-to-many relationship, carry out the following steps:

1. Create a class called Student in the model package with the following code:
package code.model

import net.liftweb.mapper._

class Student extends LongKeyedMapper[Student]
with ManyToMany
with IdPK {
 def getSingleton = Student

 object name extends MappedString(this, 50)

 object courses extends MappedManyToMany(CourseStudents,
CourseStudents.student, CourseStudents.course, Course)
}

object Student extends Student with LongKeyedMetaMapper[Student] {
 override def dbTableName = "students"
}

2. Create a class called Course in the model package with the following code:
package code.model

import net.liftweb.mapper._

class Course extends LongKeyedMapper[Course]
with ManyToMany
with IdPK {
 def getSingleton = Course

 object name extends MappedString(this, 50)

 object students extends MappedManyToMany(CourseStudents,
CourseStudents.course, CourseStudents.student, Student)
}

object Course extends Course with LongKeyedMetaMapper[Course] {
 override def dbTableName = "courses"

}

Working with Databases

134

3. Create a class called CourseStudents in the model package with the
following code:
package code.model

import net.liftweb.mapper.{MappedLongForeignKey,
LongKeyedMetaMapper, IdPK, LongKeyedMapper}

class CourseStudents extends LongKeyedMapper[CourseStudents]
with IdPK {
 def getSingleton = CourseStudents

 object course extends MappedLongForeignKey(this, Course)

 object student extends MappedLongForeignKey(this, Student)

}

object CourseStudents extends CourseStudents with LongKeyedMetaMap
per[CourseStudents] {
 override def dbTableName = "courses_students"
}

4. Create a new snippet called Courses. Here is the code:
package code.snippet

import net.liftweb.util.4BindHelpers._
import code.model.{Course, Student}

class Courses {
 def prepareCourses_!() {
 Student.findAll().map(_.delete_!)
 Course.findAll().map(c => {
 c.students.delete_!
 c.delete_!
 })

 val studentNames = "John" :: "Joe" :: "Lisa" :: Nil
 val courseNames = "Math" :: "Biology" :: "Physics" :: Nil

 val students = studentNames.map(student => Student.create.
name(student).saveMe())

Chapter 5

135

 courseNames.map(courseName => {
 val course = Course.create.name(courseName)
 course.students.appendAll(students)
 course.save
 })
 }

 def list = {
 prepareCourses_!()

 ".course *" #> Course.findAll().map {
 c => {
 ".name *" #> c.name.get &
 ".student *" #> c.students.map(_.name.get)
 }
 }
 }
}

5. Add those three classes we created in the model package to the Schemifier list of
parameters as follows:
 Schemifier.schemify(
 true, Schemifier.infoF _,
 Course,
 Student,
 CourseStudents
)

6. Modify the content of div with main as the value of id in the index.html file so
that it will have the following code:
 <div data-lift="Courses.list">

 <li class="course">

 <li class="student">

 </div>

7. Start the application.

8. Access http:localhost:8080.

Working with Databases

136

Now you will see a web page containing a list of courses and its students:

How it works...
To create a many-to-many relationship, we need to set one attribute in each class of the
relationship that will be a link to the other class; for example, the Student class will have an
attribute called courses, while the Course class will have an attribute called students.

However, this is not enough. We will also need a third class, CourseStudents, to map the
extra table needed to create the many-to-many relationship. This class will have a foreign key
for both Student and Courses classes.

With this is mind, let's take a look at the code we've created and see how it accomplishes the
task. The Course and Student classes are identical since they both mix in the ManyToMany
trait. This is a trait similar to the OneToMany trait in the sense that while the OneToMany trait
added features to manage one-to-many relationships in the Contact class, the ManyToMany
trait will also add features to manage many-to-many relationships into the Course class.

Both classes also define an attribute that extends MappedManyToMany, which is a class
to track the relationship. The difference between the Course and Student classes lies
in the order of the parameters passed to the MappedManyToMany class. The order of the
parameters is as follows:

 f The class that defines the CourseStudents join table is the same for both classes.

 f The attribute of the join Mapper, CourseStudents, which defines the link with
the class that is defining the MappedManyToMany attribute. In case of the Course
class, it will be CourseStudents.course, while for the Student class, it will be
CourseStudents.student.

Chapter 5

137

 f The attribute of the join Mapper, CourseStudents, which defines the other side
of the relation. For the Course class, it will be the foreign key of the Student class,
CourseStudents.student, and for the Student class, it will be the foreign key of
the Course class, CourseStudents.course.

 f The singleton object of the other Mapper side of the relation. It will be Student for
the Course class and Course for the Student class.

This takes care of the first part of the mapping. Now, we need to map the join table, which
leads us to the CourseStudents class. As you can see, this is a simple mapping which
has two attributes and both of them are mapped as MappedLongForeignKey. As I said
before, this is the class that we need to use to tell Lift that this attribute is a foreign key
from another table.

As you can imagine, the join table is a table that has two foreign keys—one for each side of the
relation. The snippet uses the prepareCourses_! method to clean up the table and create
the necessary data to show how the mapping works. You can see that it works just like the
example from the Creating one-to-many relationships section.

This is true to the list method, which just iterates over the list of courses and fetches the
list of students for each course, then creates the necessary CssSel to render the HTML that
will produce the page you saw on the screenshot in the How to do it... section of the Creating
many-to-many relationships recipe. You can see that for a given course, we can get the
collection of students directly using c.students.map(_.name.get) due to the mapping
we've built.

See also...
 f You can read more about many-to-many relationships at:

https://www.assembla.com/wiki/show/liftweb/Mapper#manytomany

Creating CRUD features with CRUDify
Another interesting feature offered by Lift is the CRUDify trait. Imagine if there was a way to
get your mappings and generate all the pages necessary to perform CRUD operations without
you having to manually create them one by one. What I am saying is that, given a mapping,
your application will automatically have all the pages needed to perform the CRUD operations.
Wouldn't it be nice if we had such a feature? Well, it happens that we do have such a feature,
as the CRUDify trait does exactly this!

CRUD is an acronym for the four basic functions performed to
databases and persistent storage, and it stands for Create,
Read, Update, and Destroy.

Working with Databases

138

Getting ready
To demonstrate how the CRUDify trait works, we will use the project we created in the
Mapping a table to a Scala class recipe.

You can duplicate it or just modify the same project.

How to do it...
Carry out the following steps:

1. Mix-in the CRUDify trait in the Contact object as follows:
object Contact extends Contact
with LongKeyedMetaMapper[Contact]

2. With CRUDify[Long, Contact], remove the prepareContacts_! method from
the Contacts snippet.

3. Modify the entries variable in the Boot.boot method to include the
Contact.menus variable. It should look like the following code:
 val entries = List(
 Menu.i("Home") / "index" :: // the simple way to declare a
menu
 // more complex because this menu allows anything in the
 // /static path to be visible
 Menu(Loc("Static", Link(List("static"), true,
"/static/index"),
 "Static Content")) ::
 Contact.menus
).flatten

4. Start the application.

5. Access http://localhost:8080.

At this point, you should see two new menu items List contacts and Create contacts.

Chapter 5

139

If you click on the List contacts link, you will see a web page similar to the following screenshot:

How it works...
Did you see how easy it was to use the CRUDify trait to add the CRUD features in the
application? All we needed to do was to add it to the Contact MetaMapper and add the
menu entries in the site map.

Let's start with the menu entries. The CRUDify trait comes with a method called menus.
This method defines a menu item for each of the CRUD operations—list, edit, create, view, and
delete—and binds each of them to a given template, which are defined in the CRUDify trait.
For example, when you click on the List Contacts link, Lift will use the template defined by
the method _showAllTemplate from the CRUDify trait, resulting in the list you saw on the
screenshot in the How to do it... section in the Creating CRUD features with CRUDify recipe.
The same holds for each one of the other operations—view, edit, create, and delete. This is
why it was so easy to add the CRUD features to the application.

There's more...
You can define your own templates for each of the web pages that are used by the
CRUDify trait.

Working with Databases

140

To do this, you need to override the following methods:

 f _viewTemplate: Override this method to change the template for the View page

 f _editTemplate: Override this method to change the template for the Edit page

 f _deleteTemplate: Override this method to change the template for the Delete page

 f _createTemplate: Override this method to change the template for the Create
contacts page

 f _showAllTemplate: Override this method to change the template for the List
contacts all page

You can also disable the menu entries by defining it's LocParam as Empty; for example, you
can disable the delete menu item by overriding the deleteMenuLoc method and making it
return Empty - override def deleteMenuLoc = Empty.

If you do this and try to click on the Delete link, you will get an HTTP response with status
code 404 Not Found.

Paginating result sets
Sometimes, we need to deal with so much data that presenting them at once to the user is
not an option. The reasons are as follows:

 f It will consume too many resources

 f It will be slow to render the page to the user

 f The user is probably not interested in all the data but just a small part of it

This is why we paginate result sets, to make the user's life easier.

In this section, we will see how to paginate a page using another built-in feature from Lift.

Getting ready
We will use the project from the previous recipe. You can duplicate it or modify the same project.

How to do it...
Carry out the following steps to paginate result sets:

1. In the Contacts snippet, add the following import statements:
import net.liftweb.http.PaginatorSnippet
import net.liftweb.mapper.{MaxRows, StartAt}

Chapter 5

141

2. Modify the Contacts snippet declaration from:
class Contacts {

To:

object Contacts extends PaginatorSnippet[Contact]

3. Add the count method.
def count = Contact.count

4. Override the itemsPerPage method:
override def itemsPerPage = 3

5. Create the page method as follows:
 override def page = Contact.findAll(
 StartAt(curPage * itemsPerPage),
 MaxRows(itemsPerPage)
)

6. Modify the list method by replacing the invocation to Contact.findAll() by the
invocation to the page method.
 def list = {
 "li *" #> page.map {
 c => c.name.get
 }
 }
}

7. Start the application.

8. Access http://localhost:8080.

Now you will see a web page similar to the following screenshot:

Working with Databases

142

How it works...
The PaginatorSnippet trait provides everything we need to add pagination to a given web
page. It calculates how many pages are necessary, the links to the first and last pages, and
also the links to the previous and next pages.

The only things we need to do are as follows:

 f Define the count method, which defines the total number of records the collection
that will be paginated has

 f Override the page method, which is used to retrieve the slice of the collection that
will be shown in the current page

We have also overridden the itemsPerPage method because we didn't want to use the
default value, which is 20.

The page method uses the curPage method, which is provided by the PaginatorSnippet
trait and controls the current page that is being shown to the user. So, by multiplying the value
returned from the curPage method by the value returned from the itemsPerPage method,
we can figure out what should be the first record we need to retrieve from the database.

We have also used two query parameters to delimit the range of records that the Mapper
should retrieve from the database: the StartAt class defines the start point, and the
MaxRows class defines how many records should be retrieved. This is all it takes in the
snippet side to add pagination to a web page. Now, let's take a look at what is necessary to do
on the HTML side.

To render the pagination controls in HTML, we need to invoke the paginate method from
the PaginatorSnippet - <div data-lift="Contacts.paginate">. This method
will bind the nav tags and will generate the HTML necessary to create the controls. It will also
generate the links with the correct values so that the user can navigate through the web pages.

Each XML tag will generate one control to navigate between the pages :

 f The nav:first tag will generate the link that takes the user to the first page, it is
represented by the << symbol

 f The nav:last tag will generate the link represented by the >> symbol, which takes
the user to the last page

 f The nav:prev and nav:next tags will generate the link to go to the previous and
next pages respectively. They are represented by the < and > symbols

 f The nav:allpages tag will generate all the page numbers with a link so that
the user can go directly to the desired page—the current page is represented by a
number with no link

Chapter 5

143

 f The nav:records tag renders the text Displaying start-end of total, where start
is the number of the first record of the current page, end is the number of the last
record, and total is the number of elements in the collection represented by the
count method

There's more...
You can change the symbols that represent the pagination controls by overriding the following
methods, which should return a NodeSeq object:

 f prevXml: It is used for changing the previous page control symbol

 f nextXml: It is used for changing the next page control symbol

 f firstXml: It is used for changing the first page control symbol

 f lastXml: It is used for changing the last page control symbol

Using an in-memory database in application
tests

In the previous recipes, we have learned how to use Mapper to map database tables into
Scala classes and how to use those classes to communicate with the database.

However, there is a small problem; how to test our application without messing with the
database. In other words how can we use a database that provides a controlled environment
for tests.

The answer to this is an in-memory database that we can reset every time before running
the tests.

Getting ready
We will use the project from the previous section. You can duplicate it or use the same project.
You will first need to carry out the following steps:

1. Add the following line in librariesDependenciesSeq in the build.sbt file:
"com.h2database" % "h2" % "1.3.167" %
"test"

2. Add the following line at the end of the build.sbt file:
parallelExecution in Test := false

Working with Databases

144

3. Create a file named test.default.props in props under src/test/
resources/ with the following content:
db.driver=org.h2.Driver
db.url=jdbc:h2:mem:liftbook
db.user=sa
db.password=sa

4. Create a trait named InMemoryDB in lib under src/test/scala/code/ with the
following code:
package code.lib

import code.model.Contact
import net.liftweb.http.LiftRules
import net.liftweb.mapper._
import net.liftweb.util.Props

trait InMemoryDB {
 def prepareDB_!() {
 for {
 driver <- Props.get("db.driver")
 url <- Props.get("db.url")
 } {
 val vendor = new StandardDBVendor(driver, url, Props.
get("db.user"), Props.get("db.password"))
 LiftRules.unloadHooks.append(vendor.closeAllConnections_! _)
 DB.defineConnectionManager(DefaultConnectionIdentifier,
vendor)
 }

 Schemifier.schemify(
 true, Schemifier.infoF _,
 Contact
)
 }

 def prepareContacts_!() {
 Contact.findAll().map(_.delete_!)
 val contactsNames = "John" :: "Joe" :: "Lisa" :: "Dave" ::
"Sam" :: Nil
 contactsNames.map(Contact.create.name(_).save())

 }

 prepareDB_!()
 prepareContacts_!()
}

Chapter 5

145

How to do it...
Now carry out the following steps:

1. Create a class named ContactsTest in snippet under src/test/scala/code/
with the following code:
package code.snippet

import org.specs2.mutable.Specification
import code.lib.InMemoryDB

class ContactsTest extends Specification with InMemoryDB {
 "concats snippet" should {
 "retrieve three contacts" in {
 val contacts = Contacts.page
 contacts.size must be equalTo(3)
 contacts.map(_.name).mkString(",") must be
equalTo("John,Joe,Lisa")
 }
 }
}

2. Start an sbt session.

3. Run the test command. After running the test, you should get a result similar to the
following screenshot:

How it works...
Since we don't have a JNDI datasource because we are not running the tests with a running
jetty instance, we need to configure the database using the JDBC URL.

To configure it, we defined the test.default.props file under the src/test/resources
folder so that the Props object could find it and read the values it should use to configure the
connection. You can see that the URL we used is jdbc:h2:mem:liftbook. This means that
we'll connect to an H2 database whose name is liftbook. The mem parameter is there to tell
the H2 database that it should create an in-memory database instead of creating a database
in the filesystem.

Working with Databases

146

The InMemoryDB trait was created to provide the tests with a convenient way to get the
database connection for the tests. All you'll need to do is to mix this trait in your test classes
and they will have a connection available.

As you can see, this is exactly what we did in the ContactsTest specification, and since the
connection to the database is available and the InMemoryDB trait has created some contacts
for us, we can test whether the Contacts snippet is doing what it is supposed to do. Since
we've invoked the page method directly, the PaginatorSnippet trait will assume that we
are in the first page; so, the page method will only return the first three contacts.

There's more...
The modification we did in the build.sbt file to prevent parallel execution of tests, that is,
parallelExecution in Test := false, was to avoid issues during the preparation of
the database between the execution of tests.

Imagine if we have two or more tests and they are executed in parallel; this means that
while we are executing one test and an instance of the database is created, another test
can try to create the same schema in the database where one already exists. This will cause
Schemifier to throw an exception and the test will fail. This is why we don't want our tests
to run in parallel.

6
Working with Record

In this chapter, we will cover the following topics:

 f Configuring a connection to a database using Squeryl

 f Mapping a table to a Scala class

 f Migrating a database using Liquibase

 f Creating one-to-many relationships

 f Creating many-to-many relationships

 f Paginating result sets using Record

 f Testing your application using an in-memory database

Introduction
In the previous chapter, we learned how to store data in a database and how to work with this
stored data. However, Mapper is not the only persistent layer available in Lift. In fact, there is
another one, named Record.

In this chapter, we will learn how to use Record to integrate Lift with Squeryl, which is an ORM
and DSL (Domain-specific language), for Scala. Unlike other ORM frameworks that provide a
string-based query language, such as JPA-QL and HQL (to mention a few), Squeryl gives us a
powerful DSL that we can use to create type-safe access to the database. This means that if
you have used any string based query language, when changes to the database are made, you
will probably have to deal with runtime errors because the application compiles just fine. But, if
you access the database using a DSL that can be checked at compilation time, this means that
any changes made to the database and to your models will make your project stop compiling.

Working with Record

148

While Mappers is a complete ORM framework, Record is a thin layer that you can use to
integrate other ORM frameworks with Lift and keep a consistent API. The idea is that, by
using Record, your application can have some guarantees; in other words, a record can
be created, saved, and presented in different forms (such as XHTML and JSON).

Configuring a connection to a database
using Squeryl

The first thing that we need to learn is how to configure Record to create a connection to
a database. The database that we will use to build the example and explain how Record
works, is PostgreSQL.

Getting ready
Before we can get started, we need to create a new project and carry out basic steps, such as
creating a database and a new user.

1. Start a new blank project.
2. Edit the build.sbt file to add the lift-squeryl-record and PostgreSQL

driver dependencies, as shown in the following code:
"net.liftweb" %% "lift-squeryl-record" % liftVersion % "compile",
"org.postgresql" % "postgresql" % "9.2-1003-jdbc4" % "compile"

3. Create a new database.
4. Create a new user.

How to do it...
1. Add the following lines into the default.props file:

db.url=jdbc:postgresql:liftbook
db.user=<place here the user you've created>
db.password=<place here the user password>

2. Add the following import statements in the Boot.scala file:
import net.liftweb.squerylrecord.SquerylRecord
import org.squeryl.Session
import java.sql.DriverManager
import org.squeryl.adapters.PostgreSqlAdapter
import javax.naming.InitialContext
import javax.sql.DataSource

Chapter 6

149

3. Create a new method named prepareDb in the Boot.scala file, as shown in the
following code:
 def prepareDb() {
 for {
 url <- Props.get("db.url")
 user <- Props.get("db.user")
 pass <- Props.get("db.password")
 }
 SquerylRecord.initWithSquerylSession(Session.create(
 DriverManager.getConnection(url, user, pass),
 new PostgreSqlAdapter))
 }

4. Then, invoke it from inside the boot method:
prepareDb()

How it works...
The SquerylRecord object contains the logic to integrate Record and Squeryl. To initialize the
integration, we need to do two things. First, we need to create a RecordMetaDataFactory
instance, and secondly, we need to create a session.

The session is needed because Squeryl requires every access made to the database to be
executed inside the context of the transaction. However, a transaction can only be invoked
if a session has already been initialized. On the other hand, RecordMetaDataFactory is
necessary because it's this factory that makes the integration between Record and Squeryl
possible. In other words, this factory makes it possible for Squeryl to use Record objects as its
model objects.

The method initWithSquerylSession performs the two actions (required to
initialize the integration of Record and Squeryl), for us in a convenient way otherwise, we
would have had to perform them manually. It calls the init method, which creates the
RecordMetaDataFactory instance and also configures the session. The session that will
be configured is the one that is created by invoking the create method of the Session
object. This method takes two arguments. The first argument is the connection object and the
second argument is the database adapter, which defines the database dialect. Since we are
going to use PostgreSQL as the database, we use the PostgreSqlAdapter class, which is
responsible for translating the code. Using Squeryl DSL, we write the proper SQL commands
into the application.

Working with Record

150

There's more...
As we did with Mapper, it is also possible to configure Squeryl to use a JNDI Datasource
instead of using the JDBC driver directly.

Be aware that this configuration is for Jetty; it will be different
for other containers.

To use a JNDI Datasource, you will need to:

1. Create a file named jetty-env.xml in the WEB-INF folder with the
following content:
<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN"
 "http://www.eclipse.org/jetty/configure.dtd">
<Configure class="org.eclipse.jetty.webapp.WebAppContext">
 <New id="dsliftbook"
 class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg>jdbc/dsliftbook</Arg>
 <Arg>
 <New class="org.postgresql.ds.PGSimpleDataSource">
 <Set name="User">
 place here the user you've created</Set>
 <Set name="Password">
 place here the user password</Set>
 <Set name="DatabaseName">liftbook</Set>
 <Set name="ServerName">localhost</Set>
 <Set name="PortNumber">5432</Set>
 </New>
 </Arg>
 </New>
</Configure>

2. Add the following line into the build.sbt file:
env in Compile := Some(file("
 ./src/main/webapp/WEB-INF/jetty-env.xml") asFile)

3. Remove all Jetty dependencies and add the following code snippet:
 "org.eclipse.jetty" % "jetty-webapp" % "8.0.4.v20111024" %
"container",
 "org.eclipse.jetty" % "jetty-plus" % "8.0.4.v20111024" %
"container",

Chapter 6

151

4. Add the following code into the web.xml file:
 <resource-ref>
 <res-ref-name>jdbc/dsliftbook</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

5. Modify the method prepareDb to lookup the JNDI Datasource:
val ds = new InitialContext().lookup("java:
 /comp/env/jdbc/dsliftbook").asInstanceOf[DataSource]

6. Modify the invocation of the method initWithSquerylSession, as follows:
SquerylRecord.initWithSquerylSession(
 Session.create(
 ds.getConnection,
 new PostgreSqlAdapter)
)

We have now made all of the changes that we made when configuring Mapper to use
the JNDI connection instead of the JDBC one. The only difference is in how we use it.
In the case of Mapper, all we needed to do was to set the value for jndiName in the
DefaultConnectionIdentifier object. In the case of Squeryl, we had to lookup the
Datasource in InitialContext, and after finding the Datasource, we were able to get the
connection from it and pass it to the create method of the Session object.

As you can see, the only difference between using JDBC and JNDI from the code perspective,
is how we get the connection to create the Squeryl session. Of course, there is another
difference; the connections are now managed by the container.

See also
 f The Configuring a connection to a database recipe in Chapter 5, Working

with Databases
 f Learn more about Squeryl at http://squeryl.org/

Mapping a table to a Scala class
Now that we have learned how to create a connection to the database using Squeryl and
Record, it is time to learn how to map database tables to Scala classes.

Getting ready
Since the project from the previous recipe has the connection already configured, we are
going to use it. If for any reason you didn't have the connection to the database configured,
please follow the Configuring a connection to a database using Squeryl recipe in this chapter.

Working with Record

152

How to do it...
1. Create a table named contacts in the database using the following SQL code snippet:

create table contacts (
 id serial not null primary key,
 name varchar(100) not null
)

2. Create a new file named Contact.scala inside the model package, with the
following code snippet:
package code.model

import net.liftweb.squerylrecord.KeyedRecord
import net.liftweb.squerylrecord.RecordTypeMode._
import net.liftweb.record.{MetaRecord, Record}
import net.liftweb.record.field._
import org.squeryl.annotations.Column

class Contact extends Record[Contact] with
 KeyedRecord[Long] {
 def meta = Contact

 @Column(name="id")
 override val idField = new LongField(this)

 val name = new StringField(this, "")
}

object Contact extends Contact with MetaRecord[Contact] {
 def selectAll = transaction {
 from(LiftBookSchema.contacts)(c => select (c)).toList
 }

 def delete_!(toDelete: Contact) = transaction {
 LiftBookSchema.contacts.deleteWhere(c => c.id ===
 toDelete.id)
 }

 def create(name: String) = transaction {
 val contact = Contact.createRecord.name(name)

 LiftBookSchema.contacts.insert(contact)
 }
}

Chapter 6

153

3. Create a class named LiftBookSchema in the model package, using the following
code snippet:
package code.model

import org.squeryl.PrimitiveTypeMode._
import org.squeryl.Schema

object LiftBookSchema extends Schema {
 val contacts = table[Contact]("contacts")

 on(contacts)(s => declare(
 s.id is(autoIncremented("contacts_id_seq"))
))
}

4. Create a new snippet named Contacts with the following code snippet:
package code.snippet

import code.model.Contact
import net.liftweb.util.BindHelpers._

class Contacts {
 def prepareContacts_!() {
 Contact.selectAll.map(Contact.delete_! _)
 val contactsNames = "John" :: "Joe" :: "Lisa" :: Nil
 contactsNames.map(Contact.create(_))

 }

 def list = {
 prepareContacts_!()

 "li *" #> Contact.selectAll.map {
 c => c.name.get
 }
 }
}

5. Edit the index.html file by replacing the content of the div with main as the value
of the id field by using the following code snippet:
 <div data-lift="Contacts.list">

 </div>

Working with Record

154

6. Start the application, access http://localhost:8080, and you will see a page
with three names, as shown in the following screenshot:

How it works...
I think you have noticed that, unlike when we used Schemifier to create the database
tables for us, when using Squeryl, we had to create the database tables ourselves. This is
because Squeryl does not have a way to incrementally evolve the database structure.

The Squeryl schema object has a method called create, which
can be used to generate the database structure for the first time.
However, it does not do any checks and assumes that there is
no table created. So, if you try to run it twice, you'll get an error
message saying that the table already exists.

Our Contact class extends Record and mixes in the KeyedRecord trait. When mapping a
table to a class using Record, you need to extend Record, which is a field container and has
helper methods, such as validate and toForm. As you can imagine, these respectively
validate and generate the HTML code that represents the field in a HTML form.

The KeyedRecord trait is necessary when the table has a primary key;
KeyedRecord[Long] means that our primary key is of type Long. When you use this trait,
you are obligated to override the variable idField, which is the primary key itself. We've
defined the idField variable by assigning the value LongField(this) to it. That's because
we want a primary key of type Long.

LongField is one of the field types provided by Record that
defines a field of type Long.

Another thing we did to map the primary key was to use the annotation @Column, which can
be used to define the column metadata. When you say @Column(name="id"), you are telling
Record that the annotated field represents or is mapped to the table column called id. In
other words, we are telling Record that the variable idField is mapped to the column id in
the database table.

Chapter 6

155

We have also defined a variable called name, which was mapped as a StringField
object—the type of field is String—and since the column's name is the same as
the variable name (both are called name), we don't need to use the @Column annotation.
This is because Record, by default, uses the variable name as the column's name.

Finally, we also need to declare the meta method, which defines where Record can get the
metadata for your class. As you can imagine, defining a MetaRecord for your Record class
requires creating an object and mixing the MetaRecord trait into it. That is exactly what we did
in this line of code: object Contact extends Contact with MetaRecord[Contact].

There are two differences from Mapper's meta objects. First, we don't define the table's
metadata (such as the table name) in here, and secondly, since Record is not a complete
ORM, Record objects don't have a method to communicate with the database using
operations such as delete, insert, update, and select. To perform such operations,
you need to use methods from Squeryl's schema object. This is why we need to create these
helper methods to execute select, update, delete, and insert operations. Although they
are not necessary to use Record with Squeryl, they add a certain level of convenience.

Do you remember that I said that every access made to the database needs to be executed in
the context of a transaction? Well, because of this, we need to wrap all methods—selectAll,
delete_!(toDelete: Contact), and create(name: String)—in the transaction
block. Actually, transaction is a method provided by Squeryl which always creates a new
transaction. There is another method called inTransaction which only creates a new
transaction if there are none, and re-uses an existing one otherwise.

When you look at these methods, you will notice that all of them use a variable called
contacts from the object LiftBookSchema. But, what is this schema object and what is
this table item that we've used to define the variable contacts? The schema object is the
representation of a database schema. In other words, a database schema is a collection of
tables, and a Squeryl schema is a collection of all objects that represent database tables.

The definition of tables in Squeryl is by the use of the table method. When we created the
variable contacts by invoking the table method, we passed Contact (as the type of the
table), and the string contacts. We said that we wanted to add the table called contacts,
which should be mapped onto the Contact MetaRecord object. So, if you take a look at
the Contact object, it will be clear what each one of its methods is doing. For example,
LiftBookSchema.contacts.deleteWhere(c => c.id === toDelete.id), is going
to delete a record from the contacts table where the value of id for the record matches that
for the Contact object that is passed as a parameter.

Working with Record

156

One last thing that we need to do is to map the sequence created by PostgreSQL when we
created the table's primary key as being of type serial. If we don't do this, we'll get an
exception when trying to insert new records into the table. So, we need to tell Squeryl the
name of the auto-increment sequence of the id field. The autoIncremented method
takes a string as an argument—the sequence name—and returns an AutoIncremented
object; a ColumnAttribute. Then, we pass this object to the is method, which takes
ColumnAttribute as its argument and returns ColumnAttributeAssignment—a
class that contains a field and a list of attributes—which contains the field id and the
auto-increment attribute.

PostgreSQL usually generates a sequence name of the
format <table-name>_<field-name>_seq—in our case,
contacts_id_seq. You might want to confirm this name
after creating the table and change it in case of any difference.

There's more...
In order to avoid explicit calling of the transaction or inTransaction methods all the
time, you can tell Lift to do it for you by adding the following code in the Boot.boot method:

S.addAround(new LoanWrapper {
 override def apply[T](f: => T): T = inTransaction(f)
})

You'll also need to add the following import statements in the Boot.scala file:

import net.liftweb.http.S
import net.liftweb.util.LoanWrapper
import net.liftweb.squerylrecord.RecordTypeMode._

And then you can remove the calls to the inTransaction method.

See also
 f Learn more about Squeryl's insert, update, and delete operations at

http://squeryl.org/inserts-updates-delete.html

 f For more information on select, you can visit http://squeryl.org/
selects.html

 f For more information on Squeryl transactions, you can visit http://squeryl.org/
sessions-and-tx.html

Chapter 6

157

Migrating the database using Liquibase
Squeryl doesn't do database migration for us. This means that you can use the create
method from the schema object only once, because it tries to create all of the tables each
time it runs and it will give errors when trying to create a table that already exists.

For this reason, we can use third-party tools such as Liquibase, in order to automate the
migration process; that is, database creation and changing. Liquibase uses an XML file,
databaseChangeLog, to define all of the changes that it needs to execute. Each one of
these changes is defined by a changeSet tag. It also keeps track of these changeSet tags
to prevent executing any one of them twice.

Once you define your databaseChangeLog file—the XML file that contains the changeSet
tags—you can tell Lift to execute it during application startup. So, whenever you change your
database, all you need to do is to create the changeSet tags, add them into the changelog
file and during the next deployment of your application, your database will be updated. That is
what we'll practice doing in this recipe.

Getting ready...
To demonstrate how to use Liquibase to keep your database up to date, let's drop the
contact table from the database and then recreate it using Liquibase.

1. Add the Liquibase in the libraryDependencies section in the build.sbt file:
"org.liquibase" % "liquibase-maven-plugin" % "3.0.2"

2. In the Boot class, add the following method:
 def runChangeLog(ds: DataSource) {
 val connection = ds.getConnection

 try {
 val database = DatabaseFactory.getInstance().
 findCorrectDatabaseImplementation(new
 JdbcConnection(connection))

 val liquibase = new Liquibase(
 "database/changelog/db.changelog-master.xml",
 new FileSystemResourceAccessor(),
 database
)
 liquibase.update(null)
 } catch {
 case e: SQLException => {
 connection.rollback()
 throw new DatabaseException(e)
 }
 }
 }

Working with Record

158

How to do it...
1. Add the following line into the prepareDb method in the Boot.scala file, just after

the declaration of the ds value:
runChangeLog(ds)

2. In the root folder—same level as the src folder—create a new folder
named database.

3. Inside the newly created folder, create another new one named changelog.

4. Inside the changelog folder, create a new file called db.changelog-master.xml,
containing the following code:
<?xml version="1.0" encoding="UTF-8"?>
<databaseChangeLog
 xmlns="http://www.liquibase.org/xml/ns/dbchangelog/1.9"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.liquibase.org/xml/ns/dbchangelog/1.9
 http://www.liquibase.org/xml/ns/dbchangelog/
 dbchangelog-1.9.xsd">

 <include file="database/changelog/
 db.changelog-1.0.xml"/>
</databaseChangeLog>

5. Inside the changelog folder, create a new file named db.changelog-1.0.xml,
containing the following code:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<databaseChangeLog xmlns=
 "http://www.liquibase.org/xml/ns/dbchangelog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.liquibase.org/xml/ns/dbchangelog
 http://www.liquibase.org/xml/ns/dbchangelog/
 dbchangelog-2.0.xsd">
 <changeSet author="author-name" id="1">
 <preConditions onFail="MARK_RAN">
 <not>
 <tableExists tableName="contacts"/>
 </not>
 </preConditions>

Chapter 6

159

 <createTable tableName="contacts">
 <column autoIncrement="true" name="id"
 type="bigserial">
 <constraints nullable="false" primaryKey="true" />
 </column>
 <column name="name" type="varchar(100)"/>
 </createTable>
 </changeSet>
</databaseChangeLog>

6. Start the application.

In the sbt session, you should see a log similar to the log shown in the following screenshot:

How it works...
If you check your database after application startup, you'll see three tables—contacts,
databasechangelog, and databasechangeloglock.

What happened here, is that when we invoked the runChangelog method during the
application startup process, it created an instance of the Liquibase class and then called
the update method.

To create the Liquibase instance, you need to pass three arguments to its constructor. The
first one is the changelog file—db.changelog-master.xml—which is the file that maps all
changeSet tags. The second argument is the ResourceAccessor object, or in other words,
how Liquibase will access the changelog file; in our example, we are telling Liquibase that
the changelog file should be accessed using the file system and that is why we have used
the object FileSystemResourceAccessor. The third parameter is the database object,
which is the object that Liquibase will use to communicate with the database.

Working with Record

160

This method basically does three things. First, it checks for the existence of the tables
databasechangelog and databasechangeloglock and creates them if they do not
exist. Secondly, it checks which changeSet instances have already been executed so it can
execute only new ones, and thirdly, it executes the changeSet instances. Each changeSet
tag describes what needs to be done. In our example, we are telling Liquibase that we want
to create a table called contacts and that it should have two columns. One is id and
the other is name. After executing the changeSet, Liquibase will create a record in the
databasechangelog table. So, during the next startup, Liquibase will check and discover
that the changeSet tag was executed and it will not execute it again.

See also
 f For more details on Liquibase, refer to http://www.liquibase.org/

quickstart.html

Creating one-to-many relationships
After learning how to map a database table to a Scala class using Record, we will learn how to
take the next step, which is mapping a one-to-many relationship using Record.

Getting ready
We are going to modify the project from the last recipe. You can duplicate the project or
modify it; it is your choice.

1. Create a table called phones:
create table phones (
 id serial primary key,
 number varchar(15),
 contact bigint
)

2. Add the following import statements in the Boot.scala file:
import net.liftweb.http.S
import net.liftweb.util.LoanWrapper
import net.liftweb.squerylrecord.RecordTypeMode._

3. Add the following code into the boot method in the Boot.scala file:
S.addAround(new LoanWrapper {
 override def apply[T](f: => T): T = inTransaction(f)

Now, you won't need to invoke the inTransaction or transaction methods.

Chapter 6

161

How to do it...
1. In the model folder, create a new file named Phone.scala containing the

following code:
package code.model

import net.liftweb.squerylrecord.KeyedRecord
import net.liftweb.record.{MetaRecord, Record}
import net.liftweb.record.field._
import org.squeryl.annotations.Column
import net.liftweb.squerylrecord.RecordTypeMode._
import org.squeryl.dsl.ManyToOne

class Phone private() extends Record[Phone] with
 KeyedRecord[Long] {
 override def meta = Phone

 @Column(name="id")
 override val idField = new LongField(this)

 val number = new StringField(this, "")

 @Column(name="contact")
 val contactId = new LongField(this)

 lazy val contact: ManyToOne[Contact] =
 LiftBookSchema.contactsToPhones.right(this)
}

object Phone extends Phone with MetaRecord[Phone] {
 def selectAll =
 from(LiftBookSchema.phones)(p => select (p)).toList

 def delete_!(toDelete: Phone) =
 LiftBookSchema.phones.deleteWhere
 (p => p.id === toDelete.id)

 def create(number: String) =
 Phone.createRecord.number(number)

}

Working with Record

162

2. Modify the Contact class by adding the following code:
 lazy val phones: OneToMany[Phone] =
 LiftBookSchema.contactsToPhones.left(this)

3. Modify the create method in the Contact object, as follows:
 def create(name: String, phone: Phone) = {
 val contact = Contact.createRecord.name(name)

 LiftBookSchema.contacts.insert(contact)

 contact.phones.associate(phone)

 contact
 }

4. Modify the delete_! method, as follows:
def delete_!(toDelete: Contact) = {
 toDelete.phones.deleteAll
 LiftBookSchema.contacts.deleteWhere
 (c => c.id === toDelete.id)
}

5. Modify the LiftBookSchema object by adding the following import:
import net.liftweb.squerylrecord.RecordTypeMode._

6. Also add the following code into the LiftBookSchema object:
 val phones = table[Phone]("phones")

 /* phones_id_seq is the name of the sequence generated by
PostgreSQL when using the serial data type */
 on(phones)(s => declare(
 s.id is(autoIncremented("phones_id_seq"))
))

 val contactsToPhones = oneToManyRelation(contacts,
 phones).via((c, p) => c.id === p.contactId)

7. Modify the method prepareContacts_!(), in the Contacts snippet, as follows:
 def prepareContacts_!() {
 Contact.selectAll.map(Contact.delete_! _)

 val contactsNames = "John" :: "Joe" :: "Lisa" :: Nil
 val phones = "5555-5555" :: "5555-4444" :: "5555-3333"
 :: "5555-2222" :: "5555-1111" :: Nil

Chapter 6

163

 contactsNames.map(name => {
 val phone = Phone.create(phones
 ((new Random()).nextInt(5)))
 Contact.create(name, phone)
 })
 }

8. In the Contacts snippet, modify the method list to look like the following code:
def list = {
 prepareContacts_!()

 ".contact *" #> Contact.selectAll.map {
 c => {
 ".name *" #> c.name.get &
 ".phone *" #> c.getPhones.map(_.number.get)
 }
 }
 }

9. In the index.html file, modify the content of the div with main as the value of the
id field using the following code:
<div data-lift="Contacts.list">

 <li class="contact">

 <li class="phone">

</div>

10. Start the application and access http://localhost:8080; you should see a page
similar to the one shown in the following screenshot:

Working with Record

164

How it works...
There is nothing new regarding creation of the phones table, the Phone class (which is
the Record class), and the Phone object (which is the MetaRecord instance). We also
had to include the phones table in LiftBookSchema and define the name of the
auto-increment sequence.

However, to create a one-to-many relationship, we need to define a few things.

First of all, we need to create a field called contactId in the Phone class to hold the
foreign key.

Secondly, we need to define the relationship in the schema. We did this by creating the
variable contactsToPhones, which invokes the oneToManyRelation method and builds
the relationship between the two tables. The via method tells Squeryl which fields on both
tables are used to create the relationship and how they are compared—in other words, how
the primary key and the foreign key relate to each other.

The last thing that we need to do is define the left side (one-to-many), and the right side
(many-to-one). In order to do this, we have created a variable called contact in the Phone
class, and a variable called phones in the Contact class. The phones variable is the
left-hand side of the relationship, and that is why we have used the OneToMany trait; the
contact variable is the right-hand side, and we have therefore used the ManyToOne trait.

You will notice that both variables use the OneToManyRelation object we have declared in
the schema.

Now, we can use a helper method provided by traits, such as the associate method, which
associates the object from the left-hand side with the object from the right-hand side of the
relation. This means that by associating a phone object with a contact object, Squeryl will
update the phone object, assign the contactId field to the phone object, and reflect the
change in the database.

One important thing that you must keep in mind is that
the associate method must be invoked after inserting
the parent record in the database, so Squeryl can get the
correct ID to insert in the association.

Another method that is available to us is the deleteAll method. This method is provided
by the OneToMany trait. It deletes all of the records from the child table—the right-hand side
of the relationship.

Chapter 6

165

Creating many-to-many relationships
So far, we have learned how to map a table using Record and Squeryl; we've also learned
how to create a one-to-many relationship. We will now learn how to create a many-to-many
relationship using Record and Squeryl.

Getting ready
You can use any of the projects that we have created in this chapter, or you can start a new
one; do whatever fits you best.

Create the following tables:

create table courses (
 id serial primary key,
 name varchar(100)
);

create table students (
 id serial primary key,
 name varchar(100)
);

create table courses_students (
 id serial primary key,
 course bigint,
 student bigint
);

How to do it...
1. Create a class called Student in the model package, as follows:

package code.model

import net.liftweb.record.{MetaRecord, Record}
import net.liftweb.squerylrecord.KeyedRecord
import net.liftweb.record.field.{StringField, LongField}
import org.squeryl.annotations.Column
import org.squeryl.dsl.ManyToMany
import net.liftweb.squerylrecord.RecordTypeMode._

Working with Record

166

class Student private() extends Record[Student] with
 KeyedRecord[Long] {
 override def meta = Student

 @Column(name="id")
 override val idField = new LongField(this)

 val name = new StringField(this, "")

 lazy val courses : ManyToMany[Course,CourseStudents] =
 LiftBookSchema.studentCourses.right(this)
}

object Student extends Student with MetaRecord[Student] {
 def selectAll = {
 from(LiftBookSchema.students)(s => select (s)).toList
 }

 def delete(student: Student) = {
 LiftBookSchema.students.deleteWhere(s => s.id
 === student.id)
 }

 def create(name: String) = {
 val student = Student.createRecord.name(name)

 LiftBookSchema.students.insert(student)
 }
}

2. Create a class called Course using the following code:
package code.model

import net.liftweb.record.{MetaRecord, Record}
import net.liftweb.squerylrecord.KeyedRecord
import net.liftweb.record.field.{StringField, LongField}
import org.squeryl.annotations.Column
import org.squeryl.dsl.ManyToMany
import net.liftweb.squerylrecord.RecordTypeMode._

class Course private() extends Record[Course] with
 KeyedRecord[Long] {
 override def meta = Course

Chapter 6

167

 @Column(name="id")
 override val idField = new LongField(this)

 val name = new StringField(this, "")

 lazy val students : ManyToMany[Student,CourseStudents] =
 LiftBookSchema.studentCourses.left(this)

}

object Course extends Course with MetaRecord[Course] {
 def selectAll = {
 from(LiftBookSchema.courses)(c => select (c)).toList
 }

 def delete(course: Course) = {
 LiftBookSchema.courses.deleteWhere(c => c.id
 === course.id)
 LiftBookSchema.studentCourses.deleteWhere(cs =>
 cs.course === course.id)
 }

 def create(name: String) = {
 val course = Course.createRecord.name(name)

 LiftBookSchema.courses.insert(course)
 }

 def createWithStudents(name: String, students:
 List[Student]) = {
 val course = Course.createRecord.name(name)

 LiftBookSchema.courses.insert(course)

 students map { course.students.associate(_) }

 course
 }
}

Working with Record

168

3. Create a class called CourseStudents, as shown in the code below:
package code.model

import net.liftweb.record.{Record, MetaRecord}
import net.liftweb.squerylrecord.KeyedRecord
import org.squeryl.annotations._
import net.liftweb.record.field.LongField

class CourseStudents extends Record[CourseStudents] with
 KeyedRecord[Long] {
 override def meta = CourseStudents

 @Column(name="id")
 override val idField = new LongField(this)

 val course = new LongField(this)

 val student = new LongField(this)
}

object CourseStudents extends CourseStudents with
MetaRecord[CourseStudents] {

}

4. Add the students and courses classes into the LiftBookSchema object,
as shown in the code below:
object LiftBookSchema extends Schema {
 val students = table[Student]("students")
 val courses = table[Course]("courses")

 val studentCourses = manyToManyRelation(courses,
 students, "courses_students").via[CourseStudents] {

(courseTable, studentTable, courseStudentsTable) =>
 (courseStudentsTable.course === courseTable.id,
 cs.student === studentTable.id)
 } on(students)(s => declare(
 s.id is(autoIncremented("students_id_seq"))
))

Chapter 6

169

 on(courses)(c => declare(
 c.id is(autoIncremented("courses_id_seq"))
))

 on(studentCourses)(s => declare(
 s.id is (autoIncremented("courses_students_id_seq"))
))
}

5. Create a new snippet called Courses, as shown in the code below:
package code.snippet

import code.model._
import net.liftweb.util.BindHelpers._

class Courses {
 def prepareCourses_!() {
 Student.selectAll map { Student.delete(_) }
 Course.selectAll map { Course.delete(_) }

 val studentNames = "John" :: "Joe" :: "Lisa" :: Nil
 val courseNames = "Math" :: "Biology" ::
 "Physics" :: Nil

 val students = studentNames map { Student.create(_) }

 courseNames map { Course.createWithStudents
 (_, students) }
 }

 def list = {
 prepareCourses_!()

 ".course *" #> Course.selectAll.map {
 c => {
 ".name *" #> c.name.get &
 ".student *" #> c.students.map(_.name.get)
 }
 }
 }
}

Working with Record

170

6. In the index.html file, replace the content of the div with main as the value of the
id field, with the following code:
 <div data-lift="Courses.list">

 <li class="course">

 <li class="student">

 </div>

7. Start the application, access http:localhost:8080, and you will see a page
similar to the one shown in the following screenshot:

How it works...
Let's start with the class that glues students and courses together: CourseStudents.
You can see that it is a regular mapping, just like the one we created in the second recipe of
this chapter, Mapping a table to a Scala class. So, if this class is just a normal class, how does
Record know how to put the pieces together?

Well, if you take a look at the LiftBookSchema object, you will see that, besides the code to
set the auto-increment keys, we also declared a variable called studendCourses by invoking
the manyToManyRelation method. This method takes three arguments. The first one is
the left-hand table, courses; the second argument is the right-hand table, students, and
the third argument is the name of the middle table, or the table that will hold the relationship
between the other two. Note, that the argument is the name of the table as it is in the database.

Chapter 6

171

Having one instance of the ManyToManyBuilder object, we can invoke the method called
via, which will define the relationship between the primary and foreign keys of the three
tables. To invoke the via method, we need to inform Squeryl about the class that maps the
middle table; in our case, this is the CourseStudents class. Then, we need to pass a block
containing a function that takes three arguments and returns a pair of EqualityExpression
objects. In other words, we need to tell Squeryl how to compare the keys. The first argument,
courseTable, is the left-hand table, the second one, studentTable, is the right-hand table,
and the third argument, courseStudentsTable, is the middle table. The pair of equality
expressions is compounded by courseStudentsTable.course === course.id and
courseStudentsTabl.student === student.id. The first expression tells Squeryl
that the relation between the tables, CourseStudents and Course, is defined by equality
between the id field of the Course table and the course field of the CourseStudents
table. The second expression states that the relationship between the Student table and the
CourseStudents table is given by the equality between the id field of the student table
and the student field of the CourseStudents table.

The last part of the mapping is to define the fields in both tables, Student and Course, so that
we can query course data of a given student or student data of a given course. For this, we need
to define a variable in both classes. In the Course class, we need to create a variable to hold
the students that are attending, and in the Student class, we need to set a variable to hold
the courses that the student is enrolled on. In the Course class we've added val students,
which has the type ManyToMany[Student,CourseStudents] and is built by invoking the
left method of the many-to-many relationship defined by the class CourseStudents. We are
using the left method in the Course class, because we defined the Course class as the left-
hand side of the relationship when we defined the relationship in the LiftBookSchema class
as manyToManyRelation(courses, students, "courses_students"). This method
returns a Query[R] with ManyToMany, which means that we can query records from the right-
hand table, Student, from this variable.

On the other hand, in the Student class we need to define a variable of type ManyToMany[
Course,CourseStudents] to hold the ManyToMany object. Since the Student class was
defined as the right-hand table, we will use the right method.

Note, that these variable types are defined in terms of the other table and the middle table.
So, in the Student class, we defined it as ManyToMany[Course,CourseStudents], and
in the Course table, we defined it as ManyToMany[Student,CourseStudents].

All of the other methods we created in the Student and Course classes are helper methods
that were created so that we could create, delete, and query the data in an easier way.

We have seen all of these methods in the previous section, which you can refer to, if you need
to find a specific detail that you might have forgotten.

Working with Record

172

Paginating result sets using Record
In Chapter 5, Working with Databases, we have seen how to paginate result sets using
PaginatorSnippet and Mapper, in the Paginating result sets recipe. We'll be using the
PaginatorSnippet tool, so there will be nothing new in that sense; however, Record does
not have the helper methods that Mapper does. Therefore, paginating the result sets using
Record and Squeryl is a little different.

In this recipe we will look at these differences and learn how to paginate result sets
using Squeryl.

Getting ready
To keep things simple and to focus on what is important, we will use the project from the
second recipe of this chapter, Mapping a table to a Scala class, where we mapped the
contacts table. You can create a new project by duplicating the old one or you can modify it.

How to do it...
Perform the following steps to paginate a result set using Record and Squeryl:

1. Modify the Contact class by adding the following method definitions:
 def count = {
 from(LiftBookSchema.contacts)(c =>
 compute(countDistinct(c.id))).toLong
 }

 def selectAll(offset: Int, itemsPerPage: Int) = {
 from(LiftBookSchema.contacts)(c => select
 (c)).page(offset, itemsPerPage).toList
 }

2. Import PaginatorSnippet into the Contacts snippet, as shown in the
following code:
 import net.liftweb.http.PaginatorSnippet

3. Modify the Contacts snippet by adding the following method definitions:
 def count = Contact.count

 override def itemsPerPage = 3

 def page = Contact.selectAll(
 curPage * itemsPerPage,
 itemsPerPage
)

Chapter 6

173

4. Add some more names into the contactsNames variable, as shown in the
following code:
 val contactsNames = "John" :: "Joe" :: "Lisa" ::
 "Damien" :: "Adam" :: Nil

5. Change the list method by replacing the invocation for the selectAll method
with that for the page method:
 def list = {
 prepareContacts_!()

 "li *" #> page.map {
 c => c.name.get
 }
 }

6. In the index.html file, add the following code after the div tag with the attribute
data-lift="Contacts.list":
 <div class="l:Contacts.paginate">
 <nav:first></nav:first>
 |
 <nav:prev></nav:prev>
 |
 <nav:allpages> | </nav:allpages>
 |
 <nav:next></nav:next>
 |
 <nav:last></nav:last>

 <p><nav:records></nav:records></p>
 </div>

7. Start the application.

8. Access http://localhost:8080, to see the results on a page similar to the
following screenshot:

Working with Record

174

How it works...
As already stated in the introduction of the recipe, we are using the same PaginatorSnippet
instance that we used in Chapter 5, Working with Databases. This means that we need to
define the count and page methods and add the proper tags in the HTML file in order to get
Lift to render the pagination controls.

If you compare the code from this recipe with the code from Chapter 5, Working with
Databases, you will see that they are almost the same and the differences are in the count
and page methods. These differences are due to the fact that Record is not a complete ORM,
like Mapper is. This means that the Record class does not have the count or selectAll
methods, which respectively take an offset value and a limit value as argument. That is why
we needed to create those methods ourselves.

You can see that the count method is quite similar to the selectAll method; the difference
is that instead of invoking the select method we invoke two other methods, namely,
compute and countDistinct. Note that in the new version of the selectAll method, we
added the call to the page method between the calls to the select and toList methods,
passing the offset and items per page values as arguments. As you can imagine, Squeryl will
limit the result set, taking into account those parameters.

See also
 f The Paginating result sets recipe in Chapter 5, Working with Databases

Testing your application using an in-memory
database

Until now, we have learned how to integrate our Lift application with the database using
Record and Squeryl. Now it is time to learn, similar to what we did in Chapter 5, Working
with Databases, about how to test an application that uses these two components: Record
and Squeryl.

Getting ready
We will modify the project that we have worked on in the previous recipe. Again, you can
modify it directly or create a new one by duplicating it.

Chapter 6

175

How to do it...
To modify an old or a new project, perform the following steps:

1. Add h2 as a new dependency into the Seq libraryDependencies section in
the build.sbt file:
 "com.h2database" % "h2" %
 "1.3.167" % "test"

2. In the build.sbt file, set sbt to not execute tests in parallel using the
following command:
parallelExecution in Test := false

3. In the test | resources folder, create a new folder called props and then inside this
folder, create a file called test.default.props using the following key/value pairs:

db.url=jdbc:h2:mem:liftbook;DB_CLOSE_DELAY=-1
db.user=sa
db.password=

To test your application using an in-memory database, carry out the following steps:

1. In the \test\scala folder, create (inside the code.lib package), a new trait called
InMemoryDB, using the following code:
package code.lib

import net.liftweb.util.Props
import code.model.{LiftBookSchema, Contact}
import org.squeryl.adapters.H2Adapter
import java.sql.DriverManager
import org.squeryl.Session
import net.liftweb.squerylrecord.SquerylRecord

import net.liftweb.squerylrecord.RecordTypeMode._

trait InMemoryDB {
 def prepareDB_!() {
 for {
 url <- Props.get("db.url")
 user <- Props.get("db.user")
 pass <- Props.get("db.password")
 } {
 SquerylRecord.initWithSquerylSession(
 Session.create(

Working with Record

176

 DriverManager.getConnection(url, user, pass),
 new H2Adapter
)
)
 }

 inTransaction {
 LiftBookSchema.drop
 LiftBookSchema.create
 }
 }

 def prepareContacts_!() {
 inTransaction {
 val contactsNames = "John" :: "Joe" :: "Lisa" ::
 "Dave" :: "Sam" :: Nil
 contactsNames.map(Contact.create(_))
 }
 }

 prepareDB_!()
 prepareContacts_!()
}

2. In the \test\scala folder, create (inside the code.snippet package), a new class
called ContactsTest, using the following code:
package code.snippet

import org.specs2.mutable.Specification
import code.lib.InMemoryDB
import net.liftweb.squerylrecord.RecordTypeMode._

class ContactsTest extends Specification with InMemoryDB {
 "concats snippet" should {
 "retrieve three contacts" in {
 inTransaction {
 val contacts = Contacts.page
 contacts.size must be equalTo(3)
 contacts.map(_.name).mkString(",") must be
 equalTo("John,Joe,Lisa")
 }
 }
 }
}

Chapter 6

177

3. Run the test command in an sbt session. After sbt finishes running the test, you
should see a result similar to that shown in the following screenshot:

How it works...
You can see that we have created a trait so that we can have a convenient way to set up
the in-memory database for tests that require a database. All it needs to do is mix the
InMemoryDB trait in.

This trait invokes two methods: prepareDB_!() and prepareContacts_!().

The prepareDB_!() method creates a connection with the database and initializes a
Squeryl session. The connection with the database is created in the same way as in the first
recipe of this chapter. With the initialized session, the prepareDB_!() method drops the
existing schema and creates a new one. Therefore, every class will have a freshly created
database schema.

The reason why we have used the drop and create methods of the Squeryl schema in these
tests is that we want the database to be recreated, and to be sure that our tests, environment
is controlled and that one test is not affecting the others.

Then, with the newly created schema, the trait invokes the prepareContacts_!() method,
which creates all of the data needed to run the test.

See also
 f The Testing snippets using Specs2 recipe in Chapter 2, Working with HTML

 f The Testing a REST service using Specs2 recipe in Chapter 4, Working with REST

 f The Configuring a connection to a database using Squeryl recipe in this chapter

 f The Using an in-memory database in application tests recipe in Chapter 5,
Working with Databases

7
Working with MongoDB

In this chapter, we will cover the following recipes:

 f Connecting to MongoDB using Record

 f Mapping a MongoDB collection to a Scala class

 f Mapping embedded objects

 f Mapping referenced objects

 f Querying with Rogue

Introduction
NoSQL databases are very common nowadays. This is because they focus on having low
latency and high throughput. This is very important due to the high volume of data that some
applications have to deal with.

One of the popular NoSQL databases is MongoDB, an open source document database that is
written in C++ and that stores data in the binary form of JSON objects, BSON. MongoDB has
some features such as supporting autosharding which mean that it can scale horizontally, and
support GridFS, which is a specification for storing data that exceeds the size limit of a BSON
document (16 MB).

Connecting to MongoDB using record
In this recipe, we will see how we can use record to connect our Lift application to a
MongoDB database.

Working with MongoDB

180

Getting ready
Before starting with this recipe, you will need to install MongoDB on your computer. You
can download the appropriate installer for your OS from http://www.mongodb.org/
downloads, and you can find installation instructions specific to your OS at
http://docs.mongodb.org/manual/installation/.

How to do it...
1. Start a new blank project.

2. Edit the build.sbt file and add the following dependencies:
"net.liftweb"
 %% "lift-mongodb" % liftVersion %
"compile->default" withSources(),
"net.liftweb"
 %% "lift-mongodb-record" % liftVersion %
"compile->default" withSources()

3. Add the following import statements in the Boot.scala file:
import net.liftweb.mongodb.{DefaultMongoIdentifier, MongoDB}
import com.mongodb.Mongo

4. Add the following line in the Boot.boot method:
MongoDB.defineDb(DefaultMongoIdentifier, new Mongo, "liftbook")

5. Start the MongoDB server.

6. Start the application.

How it works...
Lift provides an efficient layer to integrate applications with MongoDB. You can see that
creating a connection to a MongoDB database is easy, and it takes just one line of code:
MongoDB.defineDb(DefaultMongoIdentifier, new Mongo, "liftbook").

The defineDb method takes three arguments. The first one is an identifier and defines a JNDI
name for the Mongo instance. This argument is used by Lift as a key of a HashMap of identifiers
to addresses. Therefore, given an identifier, Lift can reach the correct Mongo instance.

The fact that Lift keeps this HashMap means that we can set
more than one instance.

Chapter 7

181

The second argument is the Mongo instance new Mongo(). You can see that we didn't pass
any parameter when constructing the Mongo object instance. This means that Lift will create
a Mongo instance using localhost as the host address and the default Mongo port, 27017.
Finally, the third parameter is the database name.

It is really easy to use MongoDB on a Lift application. One
line of code is all you need to connect your application to a
MongoDB database.

Mapping a MongoDB collection to
a Scala class

In the previous recipe, we learned how to connect a Lift application to a MongoDB database.
Now, we will learn how to map a collection from MongoDB to a Scala class so we can use it to
store and retrieve data into and from the MongoDB collection.

Getting ready
Let's modify the project from the previous recipe because it already has the
connection configured.

How to do it...
Carry out the following steps:

1. Create a file named Contact.scala in the model package using the
following code:
package code.model

import net.liftweb.mongodb.record._
import net.liftweb.mongodb.record.field._
import net.liftweb.record.field.StringField

class Contact extends MongoRecord[Contact] with
ObjectIdPk[Contact] {
 def meta = Contact

 object name extends StringField(this, 150)
}

object Contact extends Contact with MongoMetaRecord[Contact]

Working with MongoDB

182

2. Create a file named Contacts.scala in the snippet package with the
following code:
package code.snippet

import code.model._
import net.liftweb.util.BindHelpers._

class Contacts {
 def prepareContacts_!() {
 Contact.findAll.map(_.delete_!)
 val contactsNames = "John" :: "Joe" :: "Lisa" :: Nil
 contactsNames.map(Contact.createRecord.name(_).save)
 }

 def list = {
 prepareContacts_!()

 "li *" #> Contact.findAll.map {
 c => c.name.get
 }
 }
}

3. In the index.html file, modify the div tag with id set to main such that it has the
following code:
<div data-lift="Contacts.list">

 </div>

4. Start the application.

5. Access http://localhost:8080 via your browser. You should see a list of
contacts as shown in in the following screenshot:

Chapter 7

183

How it works...
If you compare the code from the Connection to MongoDB using record recipe with the code
from this recipe, you can see that when using MongoRecord, we did not need to declare
all those helper methods we had to declare with record and Squeryl. Another difference
between working with record and Squeryl and working with record and MongoDB is how
we create the map. In the case of record and Squeryl, we had to extend record and mix
KeyedRecord into the class that will represent our table. On the other hand, when working
with Mongo, we needed to extend MongoRecord and mix ObjectIdPk in. For the object that
will hold the metadata, we extended MetaRecord in the case of record with Squeryl, and
MongoMetaRecord when working with MongoDB and record.

See also
 f Learn more about MongoDB at http://www.mongodb.org/

 f Learn more about Lift and MongoDB at the following URLs:

 � https://www.assembla.com/wiki/show/liftweb/Mongo_Record_
Basics

 � https://www.assembla.com/wiki/show/liftweb/Mongo_Record_
Referenced_Objects

 � https://www.assembla.com/wiki/show/liftweb/Mongo_Record_
Embedded_Objects

 � https://www.assembla.com/wiki/show/liftweb/MongoDB

 � https://www.assembla.com/wiki/show/liftweb/lift-mongodb

Mapping embedded objects
When working with document-based databases such as MongoDB, instead of using a one-
to-many relationship to link to classes that represent two tables in the database—such as
contacts and phones—we can map both objects Contact and Phone. Then, instead of
storing them in two different collections, we embed the phone object into the contact
object. In the following recipe, we will learn how to embed one object into another.

Getting ready
We'll keep evolving the project from the previous recipe.

Working with MongoDB

184

How to do it...
Carry out the following steps:

1. Create a new file named Phone.scala in src/main/scala/code/model with the
following code:
package code.model

import net.liftweb.mongodb.record._
import net.liftweb.record.field.StringField

class Phone extends BsonRecord[Phone] {
 def meta = Phone

 val number = new StringField(this, 15)
}

object Phone extends Phone with BsonMetaRecord[Phone]

2. Change the Contact class by adding the numbers object as follows:
class Contact extends MongoRecord[Contact] with
ObjectIdPk[Contact] {
 def meta = Contact

 object name extends StringField(this, 150)

 object numbers extends BsonRecordListField(this, Phone)
}

3. Change the Contacts snippet as follows:
class Contacts {
 private def createContact(name: String, phoneNumbers:
List[String]) {
 val phones = phoneNumbers.map(Phone.createRecord.number(_))
 Contact.createRecord.name(name).numbers(phones).save
 }

 def prepareContacts_!() {
 Contact.findAll.map(_.delete_!)
 createContact("John", "555-5555" :: Nil)
 createContact("Joe", "444-4444" :: "222-2222" :: Nil)
 createContact("Lisa", "333-3333" :: Nil)
 }

Chapter 7

185

 def list = {
 prepareContacts_!()

 "li *" #> Contact.findAll.map {
 contact => {
 ".name *" #> contact.name.get &
 ".phone *" #> contact.numbers.get.map(_.number.get)
 }
 }
 }
}

4. Change the ul tag in the index.html file as follows:

 <li class="phone">

5. Start the application.

6. Access http://localhost:8080 and you'll see a web page such as the one
shown in the following screenshot:

How it works...
The first thing to notice is that while the Contact class extends MongoRecord, the Phone
class extends BsonRecord, which is a special type of Record that is used to encode and
decode BSON/DBObject objects. This means that Lift will know how to convert the BSON
representation of a phone number—which is the format that MongoDB uses to save the
data—into a DBObject, which is a key-value map that can be saved in the database.

Working with MongoDB

186

One important difference between the MongoRecord and BsonRecord traits is that the
latter can't save itself, while the former can. The consequence of this difference is that we
can't invoke the save or saveTheRecord methods of a BsonRecord object. Thus, the only
thing we can do is to embed it in a MongoRecord object.

Another difference between the Phone and Contact classes is their companion object. In
the Contact class, we extended MongoRecord, and its companion object extended the
MongoMetaRecord trait. In the Phone class, we extended BsonRecord, and its companion
object extended the BsonMetaRecord trait. As you can imagine, MongoMetaRecord
is used to deal with MongoRecord objects, and BsonMetaRecord is used to deal with
BsonRecord objects.

So, if the only thing we can do with BsonRecord is to embed it into MongoRecord, how do
we do it?

If you take a look at the Contact class, you'll see that the numbers object we added extends
the BsonRecordListField class, which can hold a list of BsonRecord objects.

Note that the BsonRecordListField class takes two arguments, the first one being the
owner—that's why we passed the value this—and the second argument being the object we
want to embed, in this case, the Phone object's BsonMetaRecord trait.

There's more...
We have embeded a list of Phone objects into the Contact class. But, what if you just want
to embed one object instead of a list? In this case, you can use the BsonRecordField class.

The difference between the BsonRecordListField and BsonRecordField classes is that
the latter contains only one object, while the former can contain one or more objects. This
means that when saving the data into MongoDB, the BsonRecordField class will be saved
as a subobject and BsonRecordListField will be saved as an array of objects.

See also
 f You can learn more about BSON objects at http://docs.mongodb.org/meta-

driver/latest/legacy/bson/

 f You can learn more about embedded objects in Lift at https://www.assembla.
com/spaces/liftweb/wiki/Mongo_Record_Embedded_Objects

Chapter 7

187

Mapping referenced objects
In the last recipe, we learned how to embed one object into another using record. However,
there are situations where it's better to just create a reference from one object to another.
For example, let's say we are creating a system for a store and we'll need to generate some
reports. It's not practical to embed order into the clients because if we did so, each time we
wanted to generate a report related to orders only, we would have to fetch all clients to find
the order in which we want to generate the report. So, in such situations, it makes more sense
to create a reference between clients and their orders. This is what we'll learn in this recipe.

Getting ready
We'll evolve the project we used in the Connecting to MongoDB using record recipe. You can
duplicate or modify it.

How to do it...
Carry out the following steps:

1. Create a file called Order.scala under src/main/scala/code/model with the
following code:
package code.model

import net.liftweb.mongodb.record._
import net.liftweb.mongodb.record.field._
import net.liftweb.record.field._

class Order extends MongoRecord[Order] with ObjectIdPk[Order] {
 def meta = Order

 object date extends DateField(this)

 object total extends DoubleField(this)

}

object Order extends Order with MongoMetaRecord[Order]

2. Create a file called Client.scala under src/main/scala/code/model with the
following code:
package code.model

import net.liftweb.mongodb.record._
import net.liftweb.mongodb.record.field._
import net.liftweb.record.field.StringField

Working with MongoDB

188

class Client extends MongoRecord[Client] with ObjectIdPk[Client] {
 def meta = Client

 object name extends StringField(this, 150)

 object orders extends ObjectIdRefListField(this, Order)
}

object Client extends Client with MongoMetaRecord[Client]

3. Create a file called Clients.scala under src/main/scala/code/snippet with
the following code:
package code.snippet

import code.model._
import net.liftweb.util.BindHelpers._
import java.util.Date
import java.text.SimpleDateFormat

class Clients {
 val dateFormat = new SimpleDateFormat("dd/MM/yyyy")
 def prepareOrders(client: Client, totalValue: Double) {
 val order = Order.createRecord.date(new Date()).
total(totalValue).saveTheRecord().get

 client.orders(order.id.get :: Nil).save
 }

 def prepareClients() {
 Client.findAll.map(_.delete_!)
 Order.findAll.map(_.delete_!)

 Client.createRecord.name("John").saveTheRecord().
map(prepareOrders(_, 250.23))
 Client.createRecord.name("Joe").saveTheRecord().
map(prepareOrders(_, 100.00))
 Client.createRecord.name("Lisa").saveTheRecord().
map(prepareOrders(_, 75.78))
 }

 def list = {
 prepareClients()

 "li *" #> Client.findAll.map { client =>

Chapter 7

189

 ".name *" #> client.name.get &
 ".orders *" #> client.orders.objs.map { order =>
 "Date: " + dateFormat.format(order.date.get) + " -
value: $ " + order.total.get
 }
 }
 }
}

4. Replace the contents of the div tag with id set to main in the index.html file
using the following HTML snippet:
 <div data-lift="Clients.list">

 <li class="orders">

 </div>

5. Start the application.

6. Access http://localhost:8080 and you'll see a web page like the one in the
following screenshot:

How it works...
The difference between this technique and the one mentioned in the Mapping embedded
objects recipe is that, to reference an object in this technique, the needs to exist in its own
collection, while to embed an object inside another, the object to be embedded needs to exist
only inside the object that contains it—its owner. Since we need to save the object we'll be
referencing in its own collection, it has to be a MongoRecord object. Thus, everything that we
learned in the Mapping embedded objects recipe holds true here.

Working with MongoDB

190

So, as you can see, there is nothing new regarding the mapping of the Client and Order
classes, except for the fact that we mapped the order attribute of the Client class as
an object that extends ObjectIdRefListField. To use the ObjectIdRefListField
class, we had to pass two parameters to its constructor. The first parameter is the owner
of the reference, in this case, the Client object (that is why we passed this as the first
parameter). The second parameter is the object that we want to reference Order.

When we used object orders extends ObjectIdRefListField(this, Order),
we told record that the Client object will hold a reference to a list of Order objects. You
might think that this is very similar to embedding an object, and you would be right. However,
there is an important difference in how the data is stored on MongoDB and how we used it.
While embedding, the whole object or an array of whole objects is saved inside the other, and
when referencing, only the id attribute of the objects is saved—referencing is like a one-to-
many relationship.

The next step is to understand how to use referenced objects. Let's take a look at the Client
snippet. If you take a look at the prepareClients() method, you'll see that it creates a
client, sets the name, and invokes the saveTheRecord() method, which returns a value
of the type Box[Client]. It then invokes the map method and then the prepareOrders
method, passing the boxes' value as the first argument and a decimal number as the second
argument. Then, the prepareOrders method creates a new order, sets it into the client's
orders object, and saves the client. These steps are repeated two more times to create three
orders and three clients.

After creating the clients and the orders, the list method invokes the findAll method from
the Client object to fetch all clients from MongoDB. Then for each client, it invokes the objs
method from the client's orders object; this then fetches the list of referenced objects and
caches them. Once it gets the list of orders referenced by the client object, it iterates the
list and creates a string with the date and the total value of the order to be rendered on the
web page.

See also...
 f You can navigate to the following URL to learn more about referenced objects:

https://www.assembla.com/wiki/show/liftweb/Mongo_Record_
Referenced_Objects

Querying with Rogue
Rogue is a type-safe domain specific language (DSL) built by Foursquare to execute, find, and
modify commands against MongoDB using Lift. You can use Rogue to enhance the power of
your record models.

In this recipe, we will learn the basics of Rogue to perform a couple of queries using its features.

Chapter 7

191

Getting ready
We'll evolve the project from the Mapping a MongoDB collection to a Scala class recipe but
you'll need to add Rogue in the list of dependencies of the project. Add the following lines in
the libraryDependencies Seq key in the build.sbt file:

 "com.foursquare" %% "rogue-field" % "2.2.0"
intransitive(),
 "com.foursquare" %% "rogue-core" % "2.2.0"
intransitive(),
 "com.foursquare" %% "rogue-lift" % "2.2.0"
intransitive(),
 "com.foursquare" %% "rogue-index" % "2.2.0"
intransitive()

How to do it...
Carry out the following steps:

1. Add the following import statements in the Client.scala file:
import com.foursquare.rogue.LiftRogue._
import java.util.regex.Pattern

2. Modify the Client class companion object as follows:
object Contact extends Contact with MongoMetaRecord[Contact] {
 def startsWith(name: String) = {
 val pattern = Pattern.compile(name + ".*", Pattern.CASE_
INSENSITIVE | Pattern.MULTILINE)

 Contact where (_.name matches pattern) fetch()
 }

 def fetchWithLimit(limit: Int) = Contact.orderAsc(_.name).
fetch(limit)

 def findByName(name: String) = Contact.where(_.name eqs name).
get()
}

3. In the Clients.scala file, add two more names in the contactsName list:
val contactsNames = "John" :: "Joe" :: "Lisa" :: "Bill" ::
"Brandon" :: Nil

Working with MongoDB

192

4. Replace the list method with the following code:
 def list = {
 prepareContacts_!()
 ".starts-with li *" #> Contact.startsWith("B").map(_.name.get)
&
 ".first-three li *" #> Contact.fetchWithLimit(3).map(_.name.
get) &
 ".get-by-name *" #> Contact.findByName("Lisa").map(_.name.
get).getOrElse("")
 }

5. In the index.html file, replace the HTML code inside the div tag with id set to
main with the following HTML snippet:
<div data-lift="Contacts.list">
 <h6>Found by name: </h6>

 <h6>Starts with 'B'</h6>
 <ul class="starts-with">

 <h6>First 3 contacts</h6>
 <ul class="first-three">

</div>

6. Start the application.

7. Access http://localhost:8080 and you'll see a web page like the one in the
following screenshot:

Chapter 7

193

How it works...
As you can see, there is nothing new regarding the Contacts code snippet and the index.
html file. In the snippet, we just added two more names into the list, and then we changed
the code from the list method to use the new methods we added into the Contact
object. Let's see what each one of them does. The findByName method takes one string
as argument—the contact name—and then invokes the where method from the Contact
companion object. But wait! MetaRecord objects don't have a where method, so how did
we use such method?

As it turns out, Rogue comes with several implicit conversion methods to better integrate with
record. One of the implicit conversions is from MetaRecord to QueryBuilder. So, as
you can imagine, when we used Contact.where, we weren't invoking it from the Contact
object but from Rogue's QueryBuilder object. The where methods take the clause we want
to add in the query as an argument and returns a Query object.

When we used this _.name eqs name as the query clause, we told Rogue to get only the
contacts whose name field is equal to the value of the variable name. The eqs method you see
in the where clause takes a value as an argument and compares it with the value of the field.

The startsWith method is similar to findByName, but is used instead of the eqs method
to find contacts whose name matches exactly with the argument passed to the method.

We built a Pattern object, a compiled representation of a regular expression—to match the
strings that start with the value—that was used to invoke the startsWith method. Finally, we
passed the Pattern object to the matches method, which will be used to find the contacts
whose names match the pattern.

Then, we invoked the fetch method from the Query object to return all records that were
found. In the fetchWithLimit method, we used two methods from Rogue. The first is
orderAsc, and the second is fetch. The same implicit conversion that was applied to
convert a MetaRecord object into a QueryBuilder object (so we could use the where
method) was applied here. That's why we used the orderAsc method without any problems.
As you can imagine, the orderAsc method orders the result of the query in an ascending
order, using the value of the field that was passed as its parameter to sort the result, in
our case, the names of the contacts. The fetch method in the fetchWithLimit and
startsWith methods are not the same. In the latter, it just executes the query, while in the
former, it implicitly adds a limit clause to the query before executing it.

To explicitly limit the number of records that a query might return, you should use this code:

Contact.orderAsc(_.name)..limit(3).fetch()

Here, 3 specifies the maximum number of records that the query will return.

Working with MongoDB

194

See also...
 f You can learn more about Rogue by visiting https://github.com/foursquare/

rogue

 f To learn more about regular expressions in Java, go to docs.oracle.com/javase/
tutorial/essential/regex/

8
Integrating Lift with

Social Media

In this chapter, we will learn:

 f Signing up using a Facebook account
 f Fetching a user's Facebook data
 f Signing up using a Gmail account
 f Fetching a user's Gmail data
 f Signing up using a LinkedIn account
 f Fetching a user's LinkedIn data
 f Signing up using a Twitter account
 f Fetching a user's Twitter data

Introduction
Social media is an important part of our daily lives, so much so that we use our accounts not
only for interaction with our friends or colleagues, but also to log in on several online services
and then share information from the social media account with the service you signed up for.
This is called social login, and the OAuth protocol is used to authenticate the user and to
obtain access the user's data.

There are two versions of the OAuth protocol. The first version is referred to as OAuth, while
the second one is known as OAuth2. The version that will be used to share information
will depend on the third-party application you are integrating with. For example, Facebook
provides an API that uses OAuth2 but Twitter does not. So you can use OAuth2 to integrate
your application with Facebook; but to integrate with Twitter, you need to use OAuth.

In this chapter, we will learn how to build such interaction between social media such as
Facebook and Twitter with an application built using Lift.

Integrating Lift with Social Media

196

Signing up using a Facebook account
In this recipe, we will see how to log a user in to your application using his/her
Facebook account.

Getting ready
Before being able to integrate our application with Facebook, we need to register an
application on Facebook. This will give us an application identification and a secret token that
will be used to identify the application requesting authorization and access to the user's data.

1. Start a new blank project.

2. Edit the build.sbt file by adding the following dependencies:
 "net.databinder.dispatch" %% "dispatch-core" %
"0.11.0", "com.restfb" % "restfb" % "1.6.12"

3. Create a new app on Facebook and add its id and secret keys in the
default.props file:
facebook.app.id=<app-id>
facebook.app.secret=<app-secret>

To learn how to register an application on Facebook, please
navigate to this URL: https://developers.facebook.
com/docs/web/tutorials/scrumptious/
register-facebook-application/.

How to do it...
Carry out the following steps to sign a user up using a Facebook account:

1. Create a file called FacebookDispatcher.scala inside the code.lib package:
package code.lib

import net.liftweb.http._
import net.liftweb.http.{Req => LiftReq}
import net.liftweb.common.{Loggable, Box, Full, Empty}
import net.liftweb.util.Props
import dispatch._
import scala.concurrent.ExecutionContext.Implicits.global
import net.liftweb.util.Helpers._

object facebookSession extends SessionVar[Box[String]](Empty)

Chapter 8

197

object FacebookDispatcher extends Loggable {
 val facebookAppId = Props.get("facebook.app.id").get
 val facebookAppSecret = Props.get("facebook.app.secret").get

 def signup(): Box[LiftResponse] = {
 val fbUrl = :/("www.facebook.com").secure / "dialog" / "oauth"
<<?
 ("client_id", facebookAppId) ::
 ("redirect_uri", "http://localhost:8080/fb/callback") ::
Nil

 Full(RedirectResponse(fbUrl.url))
 }

 private def extractTokenFromString(strResponse: String) = {
 strResponse.split("&").map { param =>
 val keyValue = param.split("=")
 keyValue(0) -> keyValue(1)
 }.toMap[String, String]
 }

 private def processResponse(response: Future[String]) {
 val futureToken = for { strResponse <- response } yield {
 val paramMap = extractTokenFromString(strResponse)
 paramMap.get("access_token")
 }

 facebookSession(futureToken())
 }

 def callback(): Box[LiftResponse] = {

 val redirectUrl = "http://localhost:8080/fb/callback"

 S.param("code") match {
 case Full(c) => {
 val reqHandler = :/("graph.facebook.com").secure / "oauth"
/ "access_token" <<?
 ("client_id", facebookAppId) ::
 ("redirect_uri", redirectUrl) ::
 ("client_secret", facebookAppSecret) ::
 ("code", c) :: Nil

Integrating Lift with Social Media

198

 val resp = Http(reqHandler OK as.String)

 processResponse(resp)
 }
 case _ => logger.warn("no code parameter in the URL")
 }

 Full(RedirectResponse("/"))
 }

 def matcher: LiftRules.DispatchPF = {
 case req @ LiftReq("fb" :: "login" :: Nil, _, GetRequest) =>
 () => signup()
 case req @ LiftReq("fb" :: "callback" :: Nil, _, GetRequest)
=>
 () => callback()
 }
}

2. Create a snippet called FacebookData:
package code.snippet

import code.lib.facebookSession
import com.restfb.DefaultFacebookClient
import com.restfb.types.User
import net.liftweb.util.BindHelpers._
import net.liftweb.common.Full

class FacebookData {
 def render = {
 facebookSession.get match {
 case Full(token) =>
 val facebookClient = new DefaultFacebookClient(token)
 val fbUser = facebookClient.fetchObject("me", classOf[User])

 ".id" #> fbUser.getId &
 ".name" #> fbUser.getName &
 ".email" #> fbUser.getEmail
 case _ => "*" #> "Not authorized"
 }
 }
}

Chapter 8

199

3. Append the FacebookDispatcher object into the LiftRules.dispatch value:
LiftRules.dispatch.append(FacebookDispatcher.matcher)

4. Replace the contents of the div tag with main as the value of id in the index.
html file with the following HTML code:
<head_merge>
 <style type="text/css">
 button {
 display: block;
 margin-bottom: 40px;
 }
 </style>
 </head_merge>

 <h2>Welcome to your project!</h2>

 Log in using
Facebook
 <div data-lift=" FacebookData.render">
 <h3>Facebook User</h3>

 <dl>
 <dt>Id</dt>
 <dd></dd>
 <dt>Name</dt>
 <dd></dd>
 <dt>E-mail</dt>
 <dd></dd>
 </dl>
 </div>

5. Start the application.

6. Access http://localhost:8080.

Integrating Lift with Social Media

200

7. Click on the Log in using Facebook link, and you'll be redirected to Facebook's
authorization page, and when Facebook redirects you to the application, you'll see
a web page containing your Facebook data, as shown in the following screenshot:

How it works...
Facebook's login mechanism uses OAuth2—a two-step authorization process. In the first step,
we get a code which we can use to get an access token; only after getting the token will we be
able get the user's data. With this in mind, to create the login mechanism to our application
using the user's Facebook account, we'll need to get the code, take the access token, and then
get the user's data so that we can store it in our database to be able to identify the user later.

When the user clicks on the link, we redirect him/her to the /fb/login URI, which is handled
by the FacebookDispatcher object. If you take a look at the FacebookDispatcher
.matcher method, you will see that the /fb/login URI invokes the signup method. The
signup method redirects the user to Facebook so that he/she can authorize our application
to get his/her data. Let's take a look at how it creates the URL to redirect the user.

We need to pass at least the following two parameters to Facebook in order to get an
authorization token:

 f client_id: This is the app ID we set in the default.props file

 f redirect_uri: This is the address that the user will be redirected to after
Facebook's authorization process

To build the URL, we used the dispatch library, which is a library for interacting with HTTP in an
asynchronous way. The :/ object creates a request to a host (www.facebook.com) which is
the parameter passed to the method. Note that we didn't define the request's protocol, that is,
if it's HTTP or HTTPS. That's why we invoked the method secure—which converts the request
into a secure one—so that the request will be made to
https://www.facebook.com.

Chapter 8

201

After building the basics—host and protocol—of the request, we still need to define the
path, which is done by using the method /. This method returns a new Req object, which
is the result of combining the original Req object to the string that is passed as its
argument. So, when we used / "dialog" / "oauth", we created a request to
http://www.facebook.com/dialog/auth. Then, we invoked the method <<?
to add query parameters into the Request class. This method takes a list of tuples as
parameter, where each tuple is composed of two strings—(String, String). The first
element of the tuple is the query string parameter, while the second of is the value.

You can see that we are adding two parameters into the Request class: ("client_id",
 facebookAppId), and ("redirect_uri", "http://localhost:8080/fb/
callback"). The first is the app ID and the second is the redirect URI which will send the
user back to our application at /fb/callback.

Finally, we transform the Request class built by the dispatch library into an URI and then into
a string. This is so we can pass it to the RedirectResponse object to finally redirect the user
to Facebook.

You can see that we used the dispatch library just to build the correct HTTP request, and
that issuing the RedirectReponse will make the user's web browser actually perform it;
then Facebook will check whether the user is logged in or not. If not, it will display a login
form, and once the user is logged in into his/her Facebook account, a form asking for the
user's authorization will be displayed. Once the user authorizes our application to fetch
data on their behalf, Facebook will redirect the user back to us, using the URI passed with
the redirect_uri parameter.

The /fb/callback URI is also handled by the FacebookDispatcher object, which
will invoke the callback method. The callback parameter method first checks if there
is a query string parameter called code ("an encrypted string unique to each request",
as per the Facebook developer site: https://developers.facebook.com/docs/
facebook-login/login-flow-for-web-no-jssdk/), which is the signal that
everything is ok and the user is authorized in our application.

To make things simple, we are not handling any error case
which would have resulted in the callback from Facebook
not containing the code parameter.

Once we get the code, we will need to make another request to Facebook in order to get the
access token. This request will be made to https://graph.facebook.com/oauth/
access_token, and it will have the following parameters:

 f client_id: This parameter is the app ID

 f redirect_uri: This parameter is the address that the user will be redirected to
after Facebook's authorization process

Integrating Lift with Social Media

202

 f client_secret: This parameter is the client secret that we added into the
default.props file

 f code: This parameter is the code that we've just got from Facebook

The difference here is that instead of making the request from the user's web browser, we've
made it from the server. We did this by invoking the Http object, which is an HTTP executor.
This means that it takes a request handler object and returns a Future[Response] object.
However, instead of just passing the request handler, we have used some useful features of
the dispatch library to make the Http object return a Future[String] object, where the
Future will give us the data Facebook sent us.

Note that we passed the code reqHandler OK as.String as an argument to the
Http object; reqHandler is the Req object. The OK method takes a function as its
argument and executes the function only if the response returns a status code 200;
otherwise, it throws an exception. The function we are passing to the OK method is the
as.String object. This object takes a response and returns its body as a string. In other
words, val resp = Http(reqHandler OK as.String) will assign a Future[String]
object to the resp value.

The problem is that a Future object is only a promise that says that, at some point in
the future, we'll get something back from it. To get the value from Future, we invoked
the processResponse method, passing Future[String] to it. This method uses
Scala's for comprehension to get the string sent by Facebook and then invokes the
extractTokenFromString method. Then, it will return a map containing all parameters
sent with the response, which will allow us to get the value of the access_token
parameter from it.

The for comprehension will return an object of type Future[Option[String]], which
still represents only a promise, and will assign it as the value of futureToken. So, in order
to get the access token and use it, we need to evaluate Future to get the Option[String]
object. We do this in the same way we were invoking a method called futureToken(). By
doing this, we are applying the Future object and allowing it to be evaluated.

At the end, we applied the result of evaluating Future to the facebookSession object
and we then redirected the user to the index page—Full(RedirectResponse("/")).
Now, if you take a look at the FacebookData snippet. you'll see that it checks whether the
facebookSession object is full or not. If isn't, it will render a Not authorized string,
and if it's full, it will use the restfb library to get the user's data and show it. In order to use
restfb, we need to build a client using the access token val facebookClient = new
DefaultFacebookClient(token).

Then, having built the client, we invoked the fetchObject method by passing the string me
and the class of the User object—classOf[User]—which will allow restfb to give us an
instance of the User object populated with the Facebook public profile data. Then we can get
the information from the User object and render it on the page.

Chapter 8

203

There's more...
We stopped the process just after getting the user's information from Facebook and rendered
it to make the example as simple as possible. To finish the login process, it would be
necessary to save the access token and the information we got and put it into the database
so that we could use it later without having to ask the user to repeat the whole process. So,
what we would do is:

1. Ask for the user's Facebook e-mail ID using the access token.

2. Check if the e-mail ID exists in the database:

 � If it exists, store the user information in a SessionVar object

 � If it does not exist, save it and store the information in SessionVar

3. Use the information in SessionVar to acknowledge that the user is logged in.

See also...
 f To learn more about the OAuth protocol, visit http://oauth.net/

 f You can learn more about the Facebook API in Facebook's developer area:

https://developers.facebook.com/

 f You can learn more about the restfb library at http://restfb.com/ and about
the dispatch library at http://dispatch.databinder.net/Dispatch.html

 f If you have doubts about the database process, you can check Chapter 5, Working
with Databases and Chapter 6, Working with Record.

Fetching a user's Facebook data
In the previous recipe, we learned how to log a user in using his/her Facebook account.
Now, we will learn how to download more information about the user from Facebook, such as
the user's friends.

Getting ready
You can modify the previous recipe's project or duplicate it so that you can keep both versions
at hand.

Integrating Lift with Social Media

204

How to do it...
A user's Facebook data can be fetched by carrying out the following steps:

1. Modify the signup method on the FacebookDispatcher object as follows:
 def signup(): Box[LiftResponse] = {
 val scope = ("email" :: "friends_about_me" ::
Nil).mkString(",")
 val fbUrl = :/("www.facebook.com").secure / "dialog" /
"oauth" <<?
 ("client_id", facebookAppId) ::
 ("redirect_uri",
"http://localhost:8080/fb/callback") ::
 ("scope", scope) ::
 Nil

 Full(RedirectResponse(fbUrl.url))
 }

2. Modify the FacebookData snippet to look like this:
package code.snippet

import com.restfb.{Parameter, DefaultFacebookClient}
import com.restfb.types.User
import scala.collection.JavaConversions._
import code.lib.fbSess
import net.liftweb.common.Full
import net.liftweb.util.BindHelpers._

case class FacebookFriend(id: String, firstName: String,
lastName: String, userName: String)

class FacebookData {
 val fields = "id" :: "last_name" :: "first_name" ::
"username" :: Nil

 private def fetchUserData(facebookClient:
DefaultFacebookClient) = {
 val myFriends = facebookClient.fetchConnection(
 "me/friends",
 classOf[User],
 Parameter.'with'("fields", fields.mkString(","))
)

Chapter 8

205

 val friendsList = myFriends.iterator().toList.flatten

 friendsList.map { user =>
 FacebookFriend(user.getId, user.getFirstName,
user.getLastName, user.getUsername)
 }
 }
 def render = {

 fbSess.get match {
 case Full(token) =>
 val facebookClient = new DefaultFacebookClient(token)
 val fbUser = facebookClient.fetchObject("me",
classOf[User])

 ".id" #> fbUser.getId &
 ".name" #> fbUser.getName &
 ".email" #> fbUser.getEmail &
 "li *" #> fetchUserData(facebookClient).map(
facebookFriend => {
 ".id" #> facebookFriend.id &
 ".userName" #> facebookFriend.userName &
 ".firstName" #> facebookFriend.firstName &
 ".lastName" #> facebookFriend.lastName
 })
 case _ => "*" #> "Not authorized"
 }
 }
}

3. Start the application.

4. Modify the index.html file by appending the following code inside the div tag with
the data-lift attribute:
 <hr/>

 <h4>Facebook Friends</h4>

 Id: </
span> /
 User Name: <span
class="userName"> /
 First Name: <span
class="firstName"> /
 Last Name: <span

Integrating Lift with Social Media

206

class="lastName">

5. Add the following code into the style tag:
 li {
 list-style: none;
 }

 .bold {
 font-weight: bold;
 }

6. Access http://localhost:8080.

7. Click on the Log in using Facebook link and perform the authorization process. Now,
you will see a web page containing your data and a list with your Facebook friends as
shown in the following screenshot:

How it works...
The only difference between the login and authorization process is the scope, using this we've
now told Facebook that we also want to access to the user's e-mail address and the data
about his/her friends. The bigger difference lies in the snippet code. You can see that after
getting the user data, we invoked a method called fetchUserData and used its result to
change the contents of a li tag.

Chapter 8

207

This method invokes the fetchConnection method from the restfb.
DefaultFacebookClient object, passing the following values as parameters:

 f The first parameter is the string me/friends, which is the type of connection we
want to fetch, in this case the user's friends

 f The second parameter is the connection type, in this case, the User class since the
user's Facebook friends are also Facebook users

 f The last parameter—Parameter.'with'("fields", fields.
mkString(",")—defines which fields from the user's friend's profile we want to
fetch. In this case, they are: e-mail address, last name, first name, and username

Facebook's request parameters are parameters that you can pass
with the request to modify both the input and the output types.

We've then got an object of type Connection[User], which we transformed into an
Iterator[List[User]] object by invoking it's iterator() method. We then invoked
the toList method to transform the Iterator object into a List object, which gives
us a List[List[User]] object. However, the inner List object is not a Scala List
object, but a java.util.List object. To convert the Java List object into a Scala List
object—so that we can use the method from the Scala List API—we used the Scala object
scala.collection.JavaConversions._.

Now that we have a List[List[User]] object where both lists are Scala objects, we can
invoke the flatten method to get a list of users—List[User]. Then, we traverse the list
of users—List[User]—and create a FacebookFriend object for each element of the
facebookFriends list.

The FacebookFriend class is a case class that will be used to render the user information
on the page. However, it could be a Mapper or a Record class that would store the
information in the database. We've made it a case class to make the example simple. After
getting the list of FacebookFriend objects back from the fetchUserData method, the
snippet iterates it and creates a CssSel object that will create one li tag for each friend
downloaded from Facebook.

See also...
 f You can learn more about Facebook's request parameters at:

https://developers.facebook.com/docs/reference/api/
request-parameters/

 f You can learn more about conversions between Java and Scala collections at:

http://docs.scala-lang.org/overviews/collections/
conversions-between-java-and-scala-collections.html

Integrating Lift with Social Media

208

Signing up using a Gmail account
In this section, we are going to learn how to log a user into your application using his or her
Gmail account.

Getting ready
1. Start a new blank project.

2. Register your app.

3. Edit the build.sbt file by adding the following dependencies:
 "net.databinder.dispatch" %% "dispatch-core" % "0.11.0"

4. Add the values of client.id and client.secret in the default.props file.

google.client.id=app-id
google.client.secret=app=secret

How to do it...
Carry out the following steps to create a login mechanism using Gmail:

1. Create a file called GoogleDispatcher.scala inside the code.lib package.

2. Create a SessionVar object called googleSession:
object googleSession extends SessionVar[Box[String]](Empty)

3. Create a SessionVar object called googleAuthState:
object googleAuthState extends
SessionVar[Box[String]](Empty)

4. Create a case class called AccessToken:
case class AccessToken(access_token: String, token_type:
String, expires_in: Int, id_token: String)

5. Create a case class called VerifiedEmail:
case class VerifiedEmail(id: String, email: String,
verified_email: Boolean)

6. Create an object called GoogleDispatcher with the following code:
import net.liftweb.http._
import net.liftweb.http.{Req => LiftReq}
import net.liftweb.common._
import dispatch._

Chapter 8

209

import net.liftweb.util.Props
import net.liftweb.json.JsonParser._
import net.liftweb.json.DefaultFormats
import java.util.UUID
import scala.concurrent.ExecutionContext.Implicits.global

object GoogleDispatcher extends Loggable {
 implicit def formats = DefaultFormats

 private def state =
 UUID.randomUUID.toString.replaceAll("-", "")

 def signup() = {
 googleAuthState(Full(state))

 val params = ("client_id",
 Props.get("google.client.id").openOr("")) ::
 ("response_type", "code") ::
 ("scope", "openid email") ::
 ("redirect_uri",
 "http://localhost:8080/google/callback") ::
 ("state", googleAuthState.get.openOr("")) :: Nil

 val googleUrl = :/("accounts.google.com").secure / "o"
 / "oauth2" / "auth" <<? params

 Full(RedirectResponse(googleUrl.url))
 }

 private def getToken(code: String) = {
 val params = ("code", code) ::
 ("client_id", Props.get("google.client.id").get) ::
 ("client_secret", Props.get("google.client.secret").get) ::
 ("redirect_uri",
 "http://localhost:8080/google/callback") ::
 ("grant_type", "authorization_code") :: Nil

 val baseReq = (:/("accounts.google.com").secure / "o" /
 "oauth2" / "token").POST
 val googleUrl = baseReq <:< Map("Content-Type" ->
 "application/x-www-form-urlencoded")<< params

 val futureResponseBody = Http(googleUrl OK as.String)

 val futureToken = for { strResponse <-
 futureResponseBody } yield {
 Full(parse(strResponse).extract[AccessToken]
 .access_token)
 }

Integrating Lift with Social Media

210

 futureToken()
 }

 private def fetchUserInfo(token: String) = {
 val getUserEmail = :/("www.googleapis.com").secure /
 "oauth2" / "v1" / "userinfo" <<?
 ("access_token", token) :: Nil

 val futureResponseBody = Http(getUserEmail OK
 as.String)

 val futureEmail = for { strResponse <-
 futureResponseBody } yield {
 parse(strResponse).extract[VerifiedEmail] match {
 case VerifiedEmail(id, email, verified) =>
 Full(email)
 case _ => Empty
 }
 }

 futureEmail()
 }

 def callback() = {
 (S.param("state"), googleAuthState.get,
 S.param("code")) match {
 case (Full(rs), Full(os), Full(c)) if rs == os =>
 for {
 t <- getToken(c)
 email <- fetchUserInfo(t)
 } { googleSession(Full(email)) }
 case _ => logger.warn("no code parameter in the URL")
 }

 Full(RedirectResponse("/"))
 }

 def matcher: LiftRules.DispatchPF = {
 case req@LiftReq("google" :: "login" :: Nil, _, GetRequest) =>
 () => signup()
 case req@LiftReq("google" :: "callback" :: Nil, _, GetRequest)
=>
 () => callback()
 }
}

Chapter 8

211

7. Append GoogleDispatcher to the LiftRules.dispatch value:
LiftRules.dispatch.append(GoogleDispatcher.matcher)

8. Create a snippet called GoogleData with the following code:
package code.snippet

import code.lib.googleSession
import net.liftweb.util.BindHelpers._
import net.liftweb.common.Full

object GmailData {
 def render = {
 googleSession.get match {
 case Full(email) => ".email" #> email
 case _ => "*" #> "Not authorized"
 }
 }
}

9. Replace the content of the div tag with main as the value of id with the
following code:
 <head_merge>
 <style type="text/css">
 a {
 display: block;
 margin-bottom: 40px;
 }
 </style>
 </head_merge>

 <h2>Welcome to your project!</h2>

 Log in using
GMail
 <div data-lift="GmailData.render">
 <h3>Gmail User</h3>

 <dl>
 <dt>Email</dt>
 <dd></dd>
 </dl>
 </div>

10. Start the application.

11. Access http://localhost:8080.

Integrating Lift with Social Media

212

When you click on the Log in using GMail link, you'll be redirected to Google's authorization
page and then it redirects you back to the application, where you'll see a page containing your
Gmail e-mail address, as shown in the following screenshot:

How it works...
The process is similar to that in the Signing up using a Facebook account recipe. So, when the
user clicks on the link, he/she is redirected to /google/login. This URL is handled by the
GoogleDispatcher object, which invokes the signup method when a request is made to
that URL.

To make the login process work, we need to first get an authorization token from Google, and
then we have to make another request to get the access token, which we will use to get the
user's e-mail address. The first request to get the authorization code requires us to pass some
parameters in order to get the token. They are:

 f state: It is a unique string that we use as an anti-forgery token.

 f response_type: This should be "code".

 f scope: This should be "openid email".

 f redirect_uri: This is the address that the user will get redirected to after the
authorization process. This URL must be registered when you register the application.

The state token is a random string created by the java.util.UUID class in the state
method and then stored in the googleAuthState session variable. After getting the state
token, the signup method generates a list of tuples to hold the parameters necessary to
make the request—params variable—and then it uses the dispatch library to create the
request URL:

:/("accounts.google.com").secure / "o" / "oauth2" / "auth" <<?

Chapter 8

213

The user is then redirected to Google to authorize our application to get his data. Once
the application is authorized, Google redirects the user to the URL we've passed in the
redirect_uri param—http://localhost:8080/google/callback—and it also adds
some query string parameters that we'll use to finish the process. This URL is also handled
by the GoogleDispatcher object, which invokes the callback method after requests has
been made to the /google/callback URL.

The callback method does a pattern matching to get the values passed in the URL as query
strings and also to get the value from the googleAuthState session variable:

(S.param("state"), googleAuthState.get, S.param("code")) match {
….

If the URL has the state and code parameters (sent by Google) and the session variable
is properly set, the method compares the state parameter with the value we stored in the
session earlier. If they don't match, it does nothing; but if they match, it continues the process.

Now that we have the authorization code which was sent to us in the code parameter, we
can ask for the access token by invoking the getToken method. This method does a POST
request to Google, passing:

 f client_id and client_secret variables: We set these in the
default.props file

 f redirect_uri: The same as before

 f code: The authorization code we got from the previous step

 f grant_type: This parameter must be "authorization_code".

It also sets the Content-Type header of the Request class to application/x-www-
form-urlencoded. Then, it uses Scala's for comprehension to parse the response
received from Google and extracts the access token. Since the response is a JSON string,
we've used Lift's JsonParser object to transform the JSON string into an instance of the
case class called AccessToken.

Now that we have the access token, we can finally ask for the user's e-mail ID by invoking
the fetchUserInfo method. To get the user's e-mail ID, the fetchUserInfo method
sends a GET request to Google using the dispatch library by passing the access token as a
query string parameter. Then, the method gets the JSON sent by Google, parses it using Lift's
JsonParser object, and creates an instance of the case class VerifiedEmail, which has
the user's e-mail ID.

Finally, it gets the e-mail address, sets it into the googleSession session variable, and
redirects the user to the home page—http://localhost:8080. You can see that the
GmailData snippet will add the e-mail address inside the span tag with class email if the
googleSession session variable has some value; if not, it will add the text Not authorized.

Integrating Lift with Social Media

214

See also...
 f We have explained the basics about the dispatch library in the first recipe, Signing up

using a Facebook account. You can refer to it if you have any queries.

 f You can learn more about Google's OAuth API at:

https://developers.google.com/accounts/docs/OAuth2Login?hl=ja

Fetching a user's Gmail data
In this recipe, we will go a step further and learn how to get a user's Gmail contact list using
the Google Data API.

Getting ready
1. You can use the same project we have used in the last section, or you can create

your own.

2. Edit the build.sbt file by adding the following dependencies:

"com.google.gdata" % "core" % "1.47.1-custom"

How to do it...
Carry out the following steps to fetch a user's Gmail data:

1. Append the following code into the div tag with the data-lift attribute:
 <hr/>

 <h4>Gmail Contacts</h4>

 Full Name: <span
 class="fullName">

2. Add the following case class into the GoogleDispatcher.scala file:
case class User(email: String, accessToken: AccessToken)

3. Modify the googleSession SessionVar object from Box[String] to
Box[User]:
object googleSession extends SessionVar[Box[User]](Empty)

Chapter 8

215

4. In the getToken method, remove the invocation to the access_token
variable when parsing the response string from the old code—from the login
recipe— Full(parse(str).extract[AccessToken]).access_token to
Full(parse(str).extract[AccessToken]).

5. In the signup method, modify the scope tuple in the params variable:
("scope", "openid email https://www.google.com/m8/feeds")

6. In the callback method, modify the for comprehension as follows:
 for {
 t <- getToken(c)
 email <- fetchUserInfo(t.access_token)
 } { googleSess(Full(User(email, t))) }

7. Create a new method called getService in the GoogleData snippet:
 private def getService(accessToken: AccessToken) = {
 val service = new ContactsService("liftcookbook")
 service.setHeader("Authorization", "Bearer " + accessToken.
access_token)

 service
 }

8. Create a new method called fetchContacts in the GoogleData snippet:
 private def fetchContacts(accessToken: AccessToken) = {

 val feedUrl = new URL("https://www.google.com/m8/feeds/
contacts/default/full"
)

 val query = new Query(feedUrl)

 getService(accessToken).getFeed(query,
classOf[ContactFeed]).getEntries.asScala
 }

9. In the GoogleData snippet, modify the render method as follows:
def render = {
 googleSession.get match {
 case Full(user) =>
 ".email" #> user.email &
 "li *" #> fetchContacts(user.accessToken).map(contact => {
 ".fullName" #> contact.getName.getFullName.getValue
 })
 case _ => "*" #> "Not authorized"
 }
 }

Integrating Lift with Social Media

216

10. You'll also need to add the following import statements:
import com.google.gdata.client.contacts.ContactsService
import com.google.gdata.client.Query
import java.net.URL
import com.google.gdata.data.contacts.ContactFeed
import code.lib.AccessToken
import collection.JavaConverters._

11. Start the application.

12. Access http://localhost:8080.

After the login process, you will see not only your e-mail, but also a list of your Gmail
contacts, as shown in the following screenshot:

How it works...
Since the process to log the user in and get the user's authorization is the same, I'll only
explain the things we've changed, why they were necessary, and the process of fetching the
user's contact list from Google.

The first thing to notice is that we've changed the googleSession object from
Box[String] to Box[User]. We had to make such a change because, unlike the time
when we were just logging the user in, we're now going to make new requests to Google in
order to get more information about the user, and for each request we issue, the access token
is required. So, we've created a User object to store both the e-mail address and token so
that we can use them later.

Since were requesting more information, we also need to change the scope parameter when
requesting the token. For this purpose, we've added the URL https://www.google.com/m8/
feeds. If we didn't add this URL into the scope parameter, we wouldn't be able to get the list.

Chapter 8

217

You can see that in the callback method, instead of just storing the e-mail, we are now
storing a User object in the session variable. Besides the scope and the changes which we
made to store more information in the session variable, the process to get the token is exactly
the same as the one we saw in the previous recipe.

In the GoogleData snippet, we have added two new methods—getService and
fetchContacts. The former method creates an instance of the class ContactsService,
which we'll use to fetch the contact list.

Google's client library has different service classes for different types
of information that you might want to get—CalendarService for
integration with Google Calendar, DocsService to integrate your
application with Google Docs, and so on.

To create the service object and be able to use it, we need to set it's Authorization
header with the access token we got earlier—service.setHeader("Authorization",
"Bearer " + accessToken.access_token). We can now ask for the contact list. In
order to get the list, we need to use the service object to perform queries on a given URL. This
is exactly what the fetchContacts method does. It creates a URL object using the URI that
contains the contacts list—https://www.google.com/m8/feeds/contacts/default/
full—and it creates a Query object passing the URL object to its constructor.

Now that we have the Query and ContactsService objects, we can ask for the contact list
by invoking the ContactsService getFeed method, passing the Query object and the
class of the feed—classOf[ContactFeed]—which will give us a ContactFeed object.

We can then invoke the getEntries method to get a list of ContactEntry objects,
one for each contact existing in the user's contact list. However, this returns a java.
util.List object, and to make our life easier, we've used the asScala method from the
JavaConverters object in order to convert the Java List object into a Scala List object.

We now have the user's contact list and we can display it in the web page.

See also...
 f You can learn more about the Google Data API at:

https://developers.google.com/gdata/

Integrating Lift with Social Media

218

Signing up using a LinkedIn account
In this recipe, we'll continue our journey through social media and we'll make the user of your
application capable of authenticating it using their LinkedIn account.

The authentication process using someone's account is just like the process we learned
when authenticating the user using his or her Gmail account. This means that we first need
to get an authorization token and an access token before being able to get information about
the user.

Getting ready
1. You can use the project from the Signing up using a Gmail account recipe or you can

create your own project.

2. Register your application on LinkedIn.

3. Add app id and secret into the default.props file:

linkedin.client.id=api-key
linkedin.client.secret=api-secret

How to do it...
Carry out the following steps:

1. Create a file called LinkedinDispatcher.scala with the same content from the
GoogleDispatcher.scala file.

2. Modify the case class called AccessToken by removing the id_token and token_
type attributes.

3. Remove the case class called VerifiedEmail.

4. Modify the params variable in the getToken method to use the correct key when
getting the client id and secret variables from the default.props file.

5. Set redirect_uri to:
http://localhost:8080/linkedin/callback

6. Replace the value of baseReq with the following code:
val baseReq = (:/("www.linkedin.com").secure / "uas" /
 "oauth2" / "accessToken").POST << paramsRemove the
 googleUrl value declaration.

7. Rename the variable passed as an argument to the Http constructor from
googleUrl to baseReq:
 Http(baseReq OK as.String)

Chapter 8

219

8. Change the method fetchUserInfo as follows:
 private def fetchUserInfo(token: String) = {
 val getUserEmail = :/("api.linkedin.com").secure / "v1" /
"people" / "~" / "email-address" <<?
 ("oauth2_access_token", token) :: Nil

 val futureResponseBody = Http(getUserEmail OK as.String)

 val futureEmail = for { strResponse <- futureResponseBody }
yield {
 Full(XML.loadString(strResponse).text)
 }

 futureEmail()
 }

9. Modify the params variable in the signup method to use the correct key when
getting the client.id variable from the default.props file.

10. Change the scope of param from "openid email" to "r_emailaddress"

11. Rename the occurrences of the googleAuthState session variable to
linkedinAuthState.

12. Change the redirect_uri param to "http://localhost:8080/linkedin/
callback".

13. Replace the googleUrl variable declaration with the following code:
val linkedinUrl = :/("www.linkedin.com").secure / "uas" /
"oauth2" / "authorization" <<? params

14. Rename the occurrences of the googleUrl variable to linkedinUrl.

15. In the callback and matcher methods, replace the occurrences of the word
google with linkedin.

16. Rename GoogleDispatcher to LinkedinDispatcher in the Boot.scala class.

17. The GmailData snippet will be turned into the LinkedinData snippet.

18. Replace the occurrences of the word google with linkedin.

19. Replace all occurrences of google with linkedin in the index.html file.

20. Start the application and access http://localhost:8080.

Integrating Lift with Social Media

220

After the authorization process, you will see a web page showing the e-mail address you use
for your LinkedIn account, as shown in the following screenshot:

How it works...
The main point of re-using the code from the earlier recipe Signing up using a Gmail account
was to show you that the process of signing users up using their Gmail or LinkedIn accounts is
the same. That's because they both use OAuth2—Version 2 of the OAuth protocol.

This means that in both cases we need to make a request to get an authorization code. Then
we need to make another call to get an access token which can be used on further requests
to get the information we want about the user.

Besides the name differences, variable names, and so on, you can see that three things were
actually different between both cases:

 f The URL's we used to make the requests, for example:
 � https://accounts.google.com/o/oauth2/token

 � https://www.linkedin.com/uas/oauth2/accessToken

 f When requesting the access token from Google, we needed to specify the
request's Content-Type header, which wasn't necessary when requesting
the token for LinkedIn

 f While Google sends the data using JSON, LinkedIn uses XML, which means we need
to change how we handle the responses we get from each one

Chapter 8

221

See also...
 f You can learn more about LinkedIn's REST API at:

http://developer.linkedin.com/rest

 f If you are interested in learning more about the OAuth2 protocol, you can go to:

http://oauth.net/2/

Fetching a user's LinkedIn data
After learning how to sign users up to your application using their LinkedIn account, we will
learn how to fetch the user's LinkedIn connection list.

Getting ready
We will modify the project we created in the previous section.

How to do it...
Carry out following steps:

1. Modify the LinkedinDispatcher object by changing the scope parameter in
the signup() method from "r_emailaddress" to "r_emailaddress,r_
fullprofile,r_network".

2. Create a case class called User as follows:
case class User(email: String, token: String)

3. Change the type of the session variable linkedinSession from Box[String] to
Box[User].

4. Change the linkedinSess(Full(email)) code in the callback method to
linkedinSess(Full(User(email, t))).

5. Modify the index.html file by appending the following HTML code in the div tag
with attribute data-lift:
 <h4>LinkedIn Contacts</h4>

 Full Name: <span
class="fullName">

Integrating Lift with Social Media

222

6. Modify the LinkedinData snippet by adding the following import statements:
import dispatch._
import scala.xml.XML
import scala.concurrent.ExecutionContext.Implicits.global

7. Create a case class called LinkedinPerson.
case class LinkedinPerson(firstName: String, lastName: String) {
 def fullName = firstName + " " + lastName
}

8. Create a method called fetchConnections.
 def fetchConnections(token: String) = {
 val params = ("oauth2_access_token", token) :: Nil
 val baseReq = :/("api.linkedin.com").secure / "v1" / "people"
/ "~" / "connections:(first-name,last-name)"
 val req = baseReq <<? params
 val futureResponse = Http(req OK as.String)
 val futureConnections = for (strResponse <- futureResponse)
yield {
 (XML.loadString(strResponse) \ "person").map(p => {
 LinkedinPerson((p \ "first-name").text, (p \ "last-name").
text)
 })
 }

 futureConnections()
 }

9. Modify the render method as follows:
 def render = {
 linkedinSession.get match {
 case Full(u) => ".email" #> u.email &
 "li *" #> fetchConnections(u.token).map(p => {
 ".fullName" #> p.fullName
 })
 case _ => "*" #> "Not authorized"
 }
 }

10. Start the application and access http://localhost:8080.

Chapter 8

223

You should see a web page similar to the one shown in the following screenshot once the
authorization process is complete:

How it works...
To fetch data from the user's LinkedIn account, we need to make some changes because
we need the token to make the request get the data we want. In order to store the token
and use it later in the application, we changed the linkedinSession session variable
to store a User object which holds the user's e-mail address and access token, instead of
just storing the user's e-mail address. Another necessary change was the scope when
requesting the access token. When we wanted just the token to get the user's e-mail address
to sign him/her in, we set the value of scope to r_emailaddress. But now, we'll ask for
more information about the user, and that's why we've changed the value of scope to
r_emailaddress,r_fullprofile,r_network. After making such changes, the
application now stores the user's e-mail address and access token in the session variable
which we will use to get the user's connections.

If you take a look at the LinkedinData snippet, you will see that we added a new method
called fetchConnections. This method makes use of the dispatch library to issue a request
to https://api.linkedin.com/v1/people/~/connections:(first-name,
last-name)?oauth2_access_token=<access-token>, and then it parses the response
from LinkedIn—XML containing all connections of the user—and transforms it into a list of
LinkedinPerson objects, which belong to a case class we have created to hold the data
we get from LinkedIn. Finally, the snippet uses the list returned by the fetchConnection
method in the render method, which will cause the data to be displayed in the HTML.

You can see that whenever a social media uses the OAuth2 protocol to allow access to its API
for third-party applications, the process of gaining access and then fetching data is basically
the same.

Integrating Lift with Social Media

224

Signing up using a Twitter account
We will now learn how to log users in to your application using their Twitter account. Unlike
Gmail, Facebook, and LinkedIn, Twitter does not have an OAuth2 API where you can make
requests on behalf of the user. This means that we can only use OAuth2 to communicate
with a small part of their API.

Unfortunately, the API part involved in the process of verifying user credentials is only
accessible via Twitter's OAuth API, which uses Version 1 of the OAuth protocol. I said
unfortunately because more work—code, requests, and more—is necessary when working
with OAuth. However, there is a neat library we can use to work with OAuth that will make
our lives easier.

Getting ready
1. Start a new blank project.

2. Edit the build.sbt file by adding the following dependency:
"org.scribe" % "scribe" % "1.3.5" % "compile"

3. Create a new app on Twitter and add its id and secret keys in the
default.props file:

twitter.consumer.key=<app-key>
twitter.consumer.secret=<app-secret>

How to do it...
Carry out the following steps:

1. In the index.html file, change the contents of the div tag with main as the value
of id as shown in the following code:
 <head_merge>
 <style type="text/css">
 a {
 display: block;
 margin-bottom: 40px;
 }
 </style>
 </head_merge>

 <h2>Welcome to your project!</h2>

Log in using
 Twitter

Chapter 8

225

 <div data-lift="TwitterData.render">
 <h3>Twitter User</h3>

 <dl>
 <dt>Id</dt>
 <dd></dd>
 <dt>Name</dt>
 <dd></dd>
 </dl>
 </div>

2. Create a file called TwitterDispatcher.scala in the code.lib package.

3. You will need the following import statements:
import net.liftweb.util.Props
import org.scribe.builder.ServiceBuilder
import org.scribe.builder.api.TwitterApi
import net.liftweb.http._
import net.liftweb.common._
import org.scribe.model.{Verb, OAuthRequest, Token, Verifier}
import net.liftweb.json.JsonParser._
import net.liftweb.json.DefaultFormats

4. In the recently created file, add a case class called TwitterPerson:
case class TwitterPerson(name: String, id: Int)

5. Also add an object called requestTokenSess:
object requestTokenSess extends
SessionVar[Box[Token]](Empty)

6. And another object called twitterSession:
object twitterSession extends
SessionVar[Box[TwitterPerson]](Empty)

7. Create an object called TwitterDispatcher with the following code:
object TwitterDispatcher {
 implicit val formats = DefaultFormats

 val clientKey = Props.get("twitter.consumer.key").get
 val clientSecret =
 Props.get("twitter.consumer.secret").get

 val service = new
 ServiceBuilder().provider(classOf[TwitterApi])
 .apiKey(clientKey)
 .apiSecret(clientSecret)

Integrating Lift with Social Media

226

 .callback("http://localhost:8080/twitter/callback")
 .build()

 def signup = {
 val requestToken = service.getRequestToken
 val url = service.getAuthorizationUrl(requestToken)

 requestTokenSess(Full(requestToken))

 Full(RedirectResponse(url))
 }

 def callback(req: Req) = {
 for {
 oAuthVerifier <- S.param("oauth_verifier")
 requestToken <- requestTokenSess.get
 } yield {
 val verifier = new Verifier(oAuthVerifier)
 val accessToken =
 service.getAccessToken(requestToken, verifier)

 val request = new OAuthRequest(
 Verb.GET,
 "http://api.twitter.com/1.1/account/verify_credentials.
json
 ?skip_status=true"
)

 service.signRequest(accessToken, request)

 val response = request.send()

 val twitterPerson =
 parse(response.getBody).extract[TwitterPerson]
 twitterSession(Full(twitterPerson))
 }

 Full(RedirectResponse("/"))
 }

 def matcher: LiftRules.DispatchPF = {
 case req@Req("twitter" :: "login" :: Nil, _,
 GetRequest) =>
 () => signup
 case req@Req("twitter" :: "callback" :: Nil, _,
 GetRequest) =>
 () => callback(req)
 }
}

Chapter 8

227

8. Append the TwitterDispatcher.matcher method to the LiftRules.dispatch
Seq value by adding the following code into the Boot.boot method:
LiftRules.dispatch.append(TwitterDispatcher.matcher)

9. Create a snippet called TwitterData with the following code:
package code.snippet

import net.liftweb.common.Full
import code.lib.twitterSession
import net.liftweb.util.BindHelpers._

class TwitterData {
 def render = {
 twitterSession.get match {
 case Full(u) =>
 ".name" #> u.name &
 ".id" #> u.id
 case _ => "*" #> "Not authorized"
 }
 }
}

10. Start the application and access http://localhost:8080.

After the authorization process, you will see a web page containing your Twitter ID and name,
as shown in the following screenshot:

Integrating Lift with Social Media

228

How it works...
After clicking on the Log in using Twitter link, the user is redirected to /twitter/login,
which is handled by the TwitterDispatcher object. The dispatcher will then invoke the
signup() method. This method does a few things. It first uses the OAuthService object to
get a request token, and then uses the token to get the authorization URL which will be used
to allow the user to validate the request token. After getting the authorization URL, it stores
the request token in the requestTokenSess session variable and redirects the user to the
URL that it received in the previous step. This will redirect the user to Twitter to validate the
request token. After the token is validated, Twitter will redirect the user to your application
using the callback URL that was set during the creation of the OAuthService object.

The callback URL is also handled by the TwitterDispatcher object, which invokes the
callback method. Then, it gets the verifier parameter that was sent by Twitter and uses
it to create a Verifier object. Then, using the Verifier object and the request token we
put into the session variable, it requests the access token by invoking the getAccessToken
method from the OAuthService object. Now that we have the access token, we can make a
signed request to Twitter and ask for the data we want.

To create the request, the callback method first creates an OAuthRequest object passing
a verb and a string URL as the parameters to the OauthRequest object constructor. The verb
is the request type—GET, PUT, POST, DELETE, and so on—and the URL is the address of the
API endpoint.

In this case, we are going to make a GET request to http://api.twitter.com/1.1/
account/verify_credentials.json?skip_status=true to get the user data, that is,
the ID and e-mail address. Actually, this endpoint gives us more information. However, for this
example, we are only interested in the user's ID and name.

After creating the request object, the method signRequest is invoked and the access token
and the request object are passed as arguments. We can finally send the request to Twitter in
order to get the information we want by invoking the send method from the OauthRequest
object. When we invoke the send method, it returns a Response object. This object has a
method called getBody, which we can call to get the string containing a JSON object that has
the user data, sent from Twitter.

We then use Lift's JsonParser object method to transform the JSON string into an instance
of the TwitterPerson object and set it into the twitterSession session variable. The
last thing that is done by the callback method is to redirect the user to the home page.

When the TwitterData snippet starts to process the HTML after the redirection, it checks
the twitterSession session variable, which now has the TwitterPerson object, and
adds the username and ID into the HTML that will be displayed in the browser.

As you can see, OAuth requires more work than OAuth2. However, we can make our lives
easier by using libraries such as Scribe that handle OAuth complexities for us.

Chapter 8

229

See also...
 f You can learn more about OAuth protocols at:

http://oauth.net/documentation/getting-started/

 f Here is the link for the scribe library:

https://github.com/fernandezpablo85/scribe-java

Fetching a user's Twitter data
In this recipe, we will go a step further and learn how to fetch the user's data from their Twitter
account. Since the process of authentication is the same as in the previous section, we will
focus on the things we need to do to change the project we created in the previous recipe in
order to get the information we want from the user's account.

Getting ready
You can modify the project we created in the previous recipe or you can duplicate it.

How to do it...
Carry out the following steps to fetch the user's Twitter data:

1. Create a new file named TwitterHelper.scala with the following code:
package code.lib

import net.liftweb.util.Props
import org.scribe.builder.ServiceBuilder
import org.scribe.builder.api.TwitterApi
import org.scribe.model._
import net.liftweb.json.JsonParser._
import net.liftweb.json.DefaultFormats

object TwitterHelper {
 implicit def formats = DefaultFormats

 val clientKey =
 Props.get("twitter.consumer.key").openOr("")
 val clientSecret =
 Props.get("twitter.consumer.secret").openOr("")
 val callbackURL =
 "http://localhost:8080/twitter/callback"

Integrating Lift with Social Media

230

 val service = new
 ServiceBuilder().provider(classOf[TwitterApi])
 .apiKey(clientKey)
 .apiSecret(clientSecret)
 .callback(callbackURL)
 .build()

 def fetchTwitterPerson(requestToken: Token, accessToken:
 Token) = {
 val request = new OAuthRequest(
 Verb.GET,
 "http://api.twitter.com/1.1/account/verify_
 credentials.json ?skip_status=true"
)

 service.signRequest(accessToken, request)

 parse(request.send().getBody).extract[TwitterPerson]
 }

 def fetchUserFriends = {
 val request = new OAuthRequest(
 Verb.GET,
 "http://api.twitter.com/1.1/friends/list.json?
 skip_status=true"
)

 val friends = for {
 token <- accessTokenSess
 } yield {
 service.signRequest(token, request)

 parse(request.send().getBody).extract[TwitterFriends]
 .users
 }

 friends.openOr(Nil)
 }
}

Chapter 8

231

2. Create a case class called TwitterFriends in the
TwitterDispatcher.scala file:
case class TwitterFriends(users: List[TwitterPerson])

3. Create an object called accessTokenSess:
object accessTokenSess extends SessionVar[Box[Token]](Empty)

4. Remove the following code from the TwitterDispatcher object:
 implicit val formats = DefaultFormats

 val clientKey = Props.get("twitter.consumer.key").openOr("")
 val clientSecret = Props.get("twitter.consumer.secret").
openOr("")

 val service = new ServiceBuilder().provider(classOf[TwitterApi])
 .apiKey(clientKey)
 .apiSecret(clientSecret)
 .callback("http://localhost:8080/twitter/callback")
 .build()

5. In the signup method, you'll need to change the requestToken and url variables
as follows:
 val requestToken =
TwitterHelper.service.getRequestToken
 val url =
TwitterHelper.service.getAuthorizationUrl(requestToken)

6. In the callback method, you'll need to change the accessToken variable with the
following code:
val accessToken =
TwitterHelper.service.getAccessToken(requestToken,
verifier)

7. Delete the following code from the callback method:
val request = new OAuthRequest(
 Verb.GET,
 "http://api.twitter.com/1.1/account/verify_credentials.
json?skip_status=true"
)

 service.signRequest(accessToken, request)

 val response = request.send()

 val twitterPerson =
parse(response.getBody).extract[TwitterPerson]

Integrating Lift with Social Media

232

8. Add the following code in place of the deleted code:
 val person = TwitterHelper.fetchTwitterPerson
(requestToken, accessToken)

 twitterSess(Full(person))

 accessTokenSess(Full(accessToken))

9. Replace the render method in the TwitterData snippet with the
following code:
def render = {
 twitterSession.get match {
 case Full(u) =>
 ".name" #> u.name &
 ".id" #> u.id &
 "li *" #> TwitterHelper.fetchUserFriends.map(f => {
 ".idName" #> (f.id + " - " + f.name)
 })
 case _ => "*" #> "Not authorized"
 }
 }

10. Append the following HTML code after the dl tag in the index.html file:
 <hr/>

 <h4>Twitter Friends</h4>

 Friend: <span
class="idName">

11. Start the application.

Chapter 8

233

12. Access http://localhost:8080.

After the authorization process, you will see a web page containing your Twitter ID,
name, and a list of your friends, as shown in the following screenshot:

How it works...
In this example, we created the TwitterHelper object to keep things organized and simple
for us to re-use the OAuthService object. Since OAuth makes us sign every request we want
to make, it's easier if we keep the service object and the access token in a place where they
can easily be re-used.

You can see that the fetchTwitterPerson method wraps all the processes involved
in verifying the user credentials—this was discussed in the previous recipe. Wrapping the
process of verifying the user credentials on a method made the callback method a little
bit cleaner because now, we just need to invoke one method that gives us an instance of the
TwitterPerson object, which will be put inside a session variable.

Another change we made to the callback method was to add the access token into a
session variable so that we can re-use the access token that we put in the session variable
in the requests we'll make in the future. If you compare the fetchTwitterPerson and
fetchUserFriends methods, you'll see that they are quite similar. They both create an
OAuthRequest object—only the URLs are different—and they both use the access token to
sign the request before invoking the request's send method.

Integrating Lift with Social Media

234

Another difference between those methods is the return type. The first one returns
an instance of the TwitterPerson object, while the second method returns a list of
TwitterPerson objects—each one representing one friend of the user.

Since we wrapped all the processes needed to fetch the user's list of friends, all we needed
to do in the snippet was invoke the fetchUserFriends method and then iterate the list to
create one li tag for each one of them.

This is all you need to do in order to display data for a given user in your application. You can
also explore the Twitter API documentation in order to discover new endpoints that you can
use to grab more information about the user.

Index
Symbols
_createTemplate method 140
_deleteTemplate method 140
_editTemplate method 140
_showAllTemplate method 140
_viewTemplate method 140

A
ajaxDeletePeople function 60, 61
Ajax form

creating 71-77
API 89
application programming interface. See API
application tests

in-memory database, using
in 143-146, 174-177

asJson method 94
associate method 164

B
Blueprint CSS 7
Boot class 21
boot method 18, 91
BSON 179
BsonRecordField class 186

C
callback method 231
client

server-side functions, invoking from 57-61
command2 variable 54
complex menu structures

creating 35

configureMailer method 18
connection

configuring, to database 120-123
ConsoleAppender 16
Contacts.prepareContacts_! method 130
container:start command 7
count method 142, 174
CourseStudents class 171
createClient function 102
createClient method 101, 111
createLine function 105
Create, Retrieve, Update, and Delete. See

CRUD
CRUD 90
CRUD feature

creating, CRUDify used 137-140
CRUDify

used, for CRUD feature creating 137-140
CSS selector

used, for HTML list creating 26-29
curPage method 142
custom error page

creating 46-49

D
data

creating, REST service used 97-102
deleting, REST service used 105-108
modifying, REST service used 102-105
obtaining, from server 90-97

database
connecting to, Squeryl used 148-151
connection, configuring to 120, 121
migrating, Liquibase used 157-159, 160

236

data-lift attribute 24
dbColumnName method 127
deleteClient method 108
DELETE method 90
DSL (Domain-specific language) 147

E
e-mail

sending, Gmail's SMTP server used 17-21
EmailSnippet class 21
embedded objects

mapping 183-186
entries variable 13
extractTokenFromString method 202
extXml method 143

F
Facebook account

signing up 196-202
FacebookFriend class 207
fetchConnection method 207
fetch method 193
fetchObject method 202
fetchTwitterPerson method 233
fetchUserFriends methods 233
fetchWithLimit method 193
file

uploading, REST service used 111-113
fileName variable 114
FileParamHolder class 113
findAll method 127, 190
findByName method 193
finishButton method 66
finish method 66
firstXml method 143
flatten method 207
foreach method 126
form fields

relation, defining 83-88
forms

about 63
creating 63-66
validating 67-71

funcBody function 61

G
getEntries method 217
GET method 90
Gmail account

signing up 208-213
Gmail SMTP server

used, for e-mail sending 17, 18

H
HTML elements

transforming, using their IDs 24-26
HTML list

creating, CSS selector used 26-29
HTML table

creating, with dynamically defined
columns 29-32

HTTP executor 202

I
in-memory database

used, for application testing 174-177
using, in application tests 143-146

InMemoryResponse class 117
intTransform method 28
isAdmin_? function 38
itemsPerPage method 142
iterableStringTransform method 28

J
JavaScript commands

sending, from server 50-56
jetty:un command 10
JNDI (Java Naming and Directory

Interface) 121
jsFunction method 59
jsonCall method 60
JsonParser method 228
JsRaw class 61

L
lastXml method 143
lift_ajaxHandler function 60

237

Lift application
creating, Maven used 8, 9
creating, SBT used 5, 7

LinkedIn account
signing up 218-221

Liquibase
used, for database migration 157-160

listClients method 94
loadData method 59, 60
LocParam functions 13, 14
logback

used, for logging 14-16
loggedin parameter 34
logging

logback, using 14, 16

M
Mailer object 21
manyToManyRelation method 170
many-to-many relationships

about 132
creating 133-137, 165-170
working 170, 171

mapper 120
Mapper models 7
Maven

URL 10
used, for Lift application creating 8, 9

mem parameter 145
menu

rendering dynamically 36-38
MongoDB

connecting, record used 179-181
NoSQL databases 179
URLs 183

MongoDB collection
mapping, to Scala class 181-183

multipage forms
creating 77-83

N
nav:allpages tag 142
nav:first tag 142
nav:last tag 142
nav:next tag 142
nav:prev tag 142

nav:records tag 143
nextScreen method 83

O
OAuth 195
OAuth2 195
OAuth protocol 195
ObjectIdRefListField class 190
object-relational mapping (ORM) 119
oneToManyRelation method 164
one-to-many relationships

about 120
creating 128-131, 160-164

P
paginate method 142
PaginatorSnippet tool 172
POST method 90
prepareClients() method 190
prepareContacts_!() method 126, 177
prepareOrders method 190
prevXm method 143
process method 76
PUT method 90

Q
querying

with Rogue 190-193
query string parameter 201

R
record

about 147
used, for MongoDB connecting 179-181
used, for result sets pagination 172-174

redirect_uri parameter 213
referenced objects

mapping 187-189
renderHtml() method 70
representational state transfer. See REST
REST 90
REST service

testing, Specs2 used 108, 110
used, for data creating 97-113

238

used, for data deleting 105-108
used, for data modifying 102-105
used, for file uploading 111, 112

result sets
paginating 140-143
paginating, Record used 172-174

Rogue
querying with 190-193

RSS feed
creating 114, 116

RSS (Rich Site Summary) 114

S
save() method 126
saveTheRecord() method 190
SBT

about 5
used, for Lift application creating 5-7

SBT plugin, ScalaIDE/Eclipse
URL 8

Scala class
MongoDB collection, mapping to 181-183
table, mapping to 123-128, 151-156

sendMail method 21
sendNow() method 21
serve method 95, 99
server

data, obtaining from 90-96
JavaScript commands, sending from 50-57

server-side functions
invoking, from client 57-61

SetHtml class 54
showDetail function 97
Shtml.jsonCall method 60
SHtml.textarea method 74
sign up

Facebook account, using 196-203
Gmail account, using 208-213
LinkedIn account, using 218, 220
Twitter account, using 224-228

signup() method 228
Simple Build Tool. See SBT
SiteMap

about 10
configuring 11-13
URL 14

snippets
nesting 32-35
testing, Specs2 used 43-45

social login 195
social media 195
S.param method 34
Specs2

used, for REST service testing 108, 110
used, for snippet testing 43-45

Squeryl
used, for database conection

configuration 148-151
startsWith method 193
state token 212

T
table

mapping, to Scala class 123-127, 151-156
templates

localizing 39-42
test command 145
toRss method 117
toString method 66
Twitter account

signing up 224-228

U
unloadHooks variable 122
uploadedFiles method 113
user's Facebook data

fetching 203-207
user's Gmail data

fetching 214-217
user's LinkedIn data

fetching 221-223
user's Twitter data

fetching 229-234

V
validate method 127

Thank you for buying

Lift Application Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Vaadin 7 Cookbook
ISBN: 978-1-84951-880-2 Paperback: 404 pages

Over 90 recipes for creating Rich Internet Applications
with the latest version of Vaadin

1. Covers exciting features such as using drag and
drop, creating charts, custom components, lazy
loading, server-push functionality, and more

2. Tips for facilitating the development and testing
of Vaadin applications

3. Enhance your applications with Spring, Grails, or
Roo integration

Learning Play! Framework 2
ISBN: 978-1-78216-012-0 Paperback: 290 pages

Start developing awesome web applications with this
friendly, practical guide to the Play! Framework

1. While driving in Java, tasks are also presented
in Scala – a great way to be introduced to this
amazing language

2. Create a fully-fledged, collaborative web
application – starting from ground zero; all layers
are presented in a pragmatic way

3. Gain the advantages associated with developing a
fully integrated web framework

Please check www.PacktPub.com for information on our titles

Instant Lift Web Applications
How-to
ISBN: 978-1-84951-978-6 Paperback: 96 pages

Get to know the Lift Web Framework quickly and
efficiently using practical, hands-on recipes

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2. Develop your own Lift web applications, find
practical examples for many common use cases

3. Learn how to build responsive web applications

4. Hands-on recipes with accompanying source code
to help you get up to speed quickly

Instant Play Framework
Starter
ISBN: 978-1-78216-290-2 Paperback: 70 pages

Build your web applications from the ground up with the
Play Framework for Java and Scala

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2. Get started with Play 2.1

3. Build your own web application with Java
and Scala

4. Handle user input with forms and access data
with Ebean, Anorm, and Slick

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with Lift Basics
	Introduction
	Creating a Lift application using SBT
	Creating a Lift application using Maven
	Defining a SiteMap
	Logging using logback
	Sending e-mails using Gmail's SMTP server

	Chapter 2: Working with HTML
	Introduction
	Transforming HTML elements using their IDs
	Creating an HTML list using CSS selectors
	Creating an HTML table with dynamically defined columns
	Nesting snippets
	Dynamic menu rendering
	Localizing templates
	Testing snippets using Specs2
	Creating custom error pages
	Sending JavaScript commands from
the server
	Invoking server-side functions from the client

	Chapter 3: Working with Forms
	Introduction
	Creating forms
	Validating forms
	Creating an Ajax form
	Creating multipage forms
	Defining a relation between form fields

	Chapter 4: Working with REST
	Introduction
	Getting data from the server
	Creating data using the REST service
	Modifying data using the REST service
	Deleting data using the REST service
	Testing a REST service using Specs2
	Uploading a file using the REST service
	Creating an RSS feed

	Chapter 5: Working with Databases
	Introduction
	Configuring a connection to the database
	Mapping a table to a Scala class
	Creating one-to-many relationships
	Creating many-to-many relationships
	Creating CRUD features with CRUDify
	Paginating result sets
	Using an in-memory database in application tests

	Chapter 6: Working with Record
	Introduction
	Configuring a connection to a database using Squeryl
	Mapping a table to a Scala class
	Migrating the database using Liquibase
	Creating one-to-many relationships
	Creating many-to-many relationships
	Paginating result sets using Record
	Testing your application using an in-memory database

	Chapter 7: Working with MongoDB
	Introduction
	Connecting to MongoDB using record
	Mapping a MongoDB collection to
a Scala class
	Mapping embedded objects
	Mapping referenced objects
	Querying with Rogue

	Chapter 8: Integrating Lift with Social Media
	Introduction
	Signing up using a Facebook account
	Fetching a user's Facebook data
	Signing up using a Gmail account
	Fetching a user's Gmail data
	Signing up using a LinkedIn account
	Fetching a user's LinkedIn data
	Signing up using a Twitter account
	Fetching a user's Twitter data

	Index

