
www.allitebooks.com

http://www.allitebooks.org

Linux Utilities
Cookbook

Over 70 recipes to help you accomplish a wide variety
of tasks in Linux quickly and efficiently

James Kent Lewis

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Linux Utilities Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1211013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-300-8

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
James Kent Lewis

Reviewers
Samarendra Manohar Hedaoo

Jitesh Marathe

Young-Ho Song

Gene Wilburn

Acquisition Editor
Owen Roberts

Lead Technical Editor
Madhuja Chaudhari

Technical Editors
Aparna Chand

Adrian Raposo

Gaurav Thingalaya

Project Coordinator
Apeksha Chitnis

Proofreader
Ting Baker

Indexer
Hemangini Bari

Tejal R. Soni

Production Coordinators
Aparna Bhagat

Kirtee Shingan

Cover Work
Kirtee Shingan

www.allitebooks.com

http://www.allitebooks.org

About the Author

James Kent Lewis has been in the computer industry for over 30 years. He started out
writing BASIC programs in high school and used punch cards in college for his Pascal, Fortran,
COBOL, and assembly language classes. Jim taught himself the C programming language
by writing various utilities, including a fully-functional text editor, which he uses everyday.
He started out using DOS and AIX, and then OS/2. Linux is now his operating system of choice.

Jim has worked in the past for several companies, including IBM, Texas Instruments, Tandem,
Raytheon, Hewlett-Packard, and others. Most of these positions dealt with low-level device
drivers and operating system internals. In his spare time, he likes to create video games in Java.

Jim has written articles for IBM Developer Works and has one patent.

First, I would like to thank Red Hat for creating a great OS. I used Fedora 17
to develop this book and it worked flawlessly. I would also like to thank my
brother David for letting me bounce ideas off of him. Last, but certainly not
least, I would like to thank my girlfriend, Gabriele. Her patience was greatly
appreciated, and she also helped by lending me her Ubuntu laptop from
time to time.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Samarendra Manohar Hedaoo is currently working towards the automation of the
IT infrastructure at SocialTwist (http://www.socialtwist.com) using Puppet. He has
around two years' experience in IT, most of which he has worked on creating and tweaking
existing solutions for automation. He is an alumnus of Symbiosis Institute of Computer
Studies & Research, where he spent most of his time on creating and implementing internal
solutions for academic and official purposes of Symbiosis, including software that printed his
own graduation degree. He also has a bit of experience in writing, which he did mostly at the
organizations that he worked for, documenting solutions that he created, and also producing
short tutorials for internal use. He has a keen interest in anthropology and would like to work
on applying AI to the field of anthropology, someday. He enjoys reading technical books that
explain technology using stories and non-technical books that talk about various aspects
of daily life.

Jitesh Marathe has more than 14 years' experience in IT. He currently works with the MNC
Product company as a Staff Engineer, where he acts as POC for projects and acting architect
for a few of them, which involves designing and implementation of project and guiding teams
though the project life cycle.

He is a graduate in Computer Applications and has spent a major time frame of his career,
acting as a system administrator; he has close links with Linux/Unix and system
administrator- related jobs.

He holds a passion for reading books and travelling to new places with his family.

www.allitebooks.com

http://www.allitebooks.org

Young-Ho Song has spent over 10 years working as a software engineer for IT companies
that specialize in the pay TV industry and networking devices. He currently manages a global
team of software engineers who work on a variety of difference subjects, and he has the
responsibility to ensure that all Linux-based STBs (Set-Top Boxes) including NDS CA (Conditional
Access) system are securely protected by Linux hardening review. He's also very familiar with
RTOS (Real Time OS) embedded systems, multimedia delivery systems, and network security.
He has a Ph.D. degree in Computer Engineering. You can refer to the following site for further
information about him: https://sites.google.com/site/profileyhsong.

All the following books were written by him (co-authored) and were published in Korea:

 f Embedded Linux Based Mobile Device, INFO-TECH COREA, March, 2006

 f Intel PXA255 XScale Based Embedded Linux System, SCITECH Media, 2005

 f The Design and Implementation of the ARM9 Based SoC, INFO-TECH COREA,
March, 2006

Gene Wilburn is a Canadian writer, photographer, and computer specialist residing in
Port Credit, Ontario, near Toronto. He has worked on various Unix and Unix-like operating
systems, including AIX, Solaris, Linux, FreeBSD, and OpenBSD. He has been a programmer,
database analyst, infrastructure specialist, and technical lead on projects. He has worked
at Micromedia Ltd., Ontario Training Corporation, Royal Ontario Museum, and Canada Life.
He is currently self employed.

As a writer, his work has appeared in Small Print Magazine, PC Week, Shutterbug, Infoworld,
InfoAge, Toronto Star, Computing Canada, Computer Paper, Access, Here's How!, and Photo
Life. He is the author of Northern Journey: A Guide to Canadian Folk Music on CD, Reference
Press Recreational Writing, lulu.com and Markdown for Writers. He is a co-author of Red Hat
Linux System Administration Unleashed, and he wrote the popular Linux for Newbies, Wilburn
Communications Ltd. and Linux Inside, Wilburn Communications Ltd., and columns for
The Computer Paper (Canada). His website is genewilburn.com.

I would like to thank Ken Thompson and Dennis Ritchie for creating Unix
and C, and all the people who have subsequently developed Linux, FreeBSD,
Mac OS X, iOS, and Android.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt
 f Copy and paste, print and bookmark content
 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Using the Terminal / Command Line 5

Introduction 5
Command retrieval and line editing 6
Using history 7
Filename auto-completion 8
The shell prompt 9
Other environment variables 10
Using aliases 12
The .bashrc file 14
Dealing with blanks and special characters in filenames 15
Understanding the $? variable 16
Redirection and piping 17
Sending output from one terminal to another 18
Using the Screen program 19

Chapter 2: The Desktop 21
Introduction 21
GNOME 2 21
KDE desktop 24
xfce 27
LXDE 29
Unity 31
Mate 33

Chapter 3: Files and Directories 37
Introduction 37
Copying, removing, and updating files and directories 39
Finding files using find and locate 41
Creating text files – vim, Emacs, and others 42

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

 Using the file command 45
Using grep to find patterns 47
Compressing files using ZIP and TAR 48
Other helpful commands such as stat, sum, touch, and more 52

Chapter 4: Networking and the Internet 55
Introduction 55
Troubleshooting bad connections 56
Copying files to another machine – FTP and SCP 59
Logging into another machine – Telnet and Secure Shell 62
Getting a web page without a browser – wget 64
Browsing the web – Firefox 64
E-mail – Using a web mail program 67
Running your own web server – httpd 69
What is using that port? The /etc/services file 70
IPv4 versus IPv6 72

Chapter 5: Permissions, Access, and Security 75
Introduction 75
Creating and managing user accounts – useradd 75
Working with passwords 78
Working with file permissions 79
Working with the firewalls and router settings 81
Working with Secure Linux – SELinux 82
Using sudo to secure a system 84
The /tmp directory 87

Chapter 6: Processes 89
Introduction 89
Understanding processes 89
Examining processes with ps 92
Examining processes using top 94
Changing priorities with nice 99
Observing a process using the /proc filesystem 101

Chapter 7: Disks and Partitioning 107
Introduction 107
Using fdisk 111
Using mkfs to format a drive 114
Using fsck to check the filesystem 115
Logical Volume Management (LVM) 117

iii

Table of Contents

Chapter 8: Working with Scripts 123
Introduction 123
Removing text from a file 124
Using script parameters 126
Coding a loop in a script 127
Backing up your system 130
Locking a file for only one use at a time 132
Getting introduced to Perl 133

Chapter 9: Automating Tasks Using Cron 141
Introduction 141
Creating and running a crontab file 143
Running a command every other week 144
Reporting the errors from a crontab file 147

Chapter 10: The Kernel 149
Introduction 149
A brief look at module commands 150
Building a kernel from kernel.org 156
Using xconfig to modify the configuration 158
Working with GRUB 161
Understanding GRUB 2 163

Appendix A 167
Appendix B 183
Index 199

Preface
Linux Utilities Cookbook shows how to solve typical problems on a Linux computer. The
information is provided in a "recipe format” allowing the user to find desired topics quickly
and efficiently. The steps to perform a task are clearly explained and have been tested for
accuracy. There is also a section on shell scripting.

What this book covers
Chapter 1, Using the Terminal / Command Line, covers how to get the most out of the Linux
command line.

Chapter 2, The Desktop, introduces some of the desktop environments available for Linux.

Chapter 3, Files and Directories, explains files, directories, and how to manage them.

Chapter 4, Networking and the Internet, covers connectivity and how to fix it when it goes down.

Chapter 5, Permissions, Access, and Security, gives a brief overview of Linux security features.

Chapter 6, Processes, explains how to manage processes in Linux.

Chapter 7, Disks and Partitioning, gives a brief insight into disk management.

Chapter 8, Working with Scripts, covers how to write scripts in Linux.

Chapter 9, Automating Tasks Using Cron, explains how to run jobs automatically.

Chapter 10, The Kernel, introduces how to make a custom kernel for your system.

Appendix A, Linux Best Practices, shows how to set up and run your systems like a pro.

Appendix B, Finding Help, covers locating the information you need quickly.

Preface

2

What you need for this book
To follow along with the examples in this book you will need a mainstream Linux distribution
running on your computer. The author used Fedora by Red Hat to create this book along
with the examples and scripts. However, any distro should work fine. Note that most can
be downloaded and installed free of charge from the manufacturer's website.

Who this book is for
This book is intended for somewhat experienced computer users who want to know more about
Linux. The recipe format is designed to allow quick access to typical tasks that come up often.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive.”

Any command-line input or output is written as follows:

export PS1=”screen$WINDOW \h \u \w \$ "

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen”.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Commands that are part of a text section will be indicated like this: run cd /tmp

Preface

3

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

4

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Using the Terminal /

Command Line

In this chapter we will cover:

 f Command retrieval and line editing

 f Using history

 f Filename auto-completion

 f The shell prompt

 f Other environment variables

 f Using aliases

 f The .bashrc file

 f Dealing with blanks and special characters in filenames

 f Understanding the $? variable

 f Redirection and piping

 f Sending output from one terminal to another

 f Using the Screen program

Introduction
Knowing how to use the command line efficiently will really help you get the most out of your
computer. There are many ways to save time and effort when typing commands, you just need
to know what they are.

There are many different Linux environments available. This chapter focuses on the popular
Bash shell.

Using the Terminal / Command line

6

Command retrieval and line editing
A standard Bash terminal is automatically set to insert mode, so you don't have to press the
Insert key to insert text. Use the up and down arrow keys to recall a previous command, and
then other cursor keys to edit that line as needed.

Getting ready
All you need for this example is a terminal running the Bash shell. Other terminals may
not have these capabilities.

How to do it...
We will run a few commands as follows:

1. Type in the command route and press the Enter key.
2. Do the same for uptime, ls, date, and sync, pressing Enter after each command.
3. Now press the up arrow key one time. You should see the following command:

sync

4. Now press the up arrow two more times. You should see date and ls.
5. Press Enter. The ls command will run again. Pressing Enter will always run

the command shown.

Chapter 1

7

How it works...
The line is stored in a buffer with full editing capabilities. This buffer is sent to the OS when
the Enter key is pressed.

The summary of the keys used for retrieval and editing is as follows:

 f Up arrow: It is used to scroll up the history buffer

 f Down arrow: It is used to scroll down the history buffer

 f Home: It is used to bring the cursor to the beginning of the line

 f End: It is used to bring the cursor to the end of the line

 f Delete: It is used to delete the character to the right of the cursor

 f Backspace: It is used to delete the character to the left of the cursor and shift the line

 f Left and right arrow: These are the cursor movement keys

Using history
The standard Bash shell includes a history function. It records each command in a database
that can be shown by running the history command. In this section we have shown how this
is done.

Getting ready
All you need is a Bash terminal to follow the given steps.

See the following screenshot:

Using the Terminal / Command line

8

How to do it...
1. Run a few commands such as route, uptime, date, and sync.
2. Run the history command.
3. Look for a command you would like to run again, but instead of typing the command,

type an exclamation point (!) and then the number next to the command as shown
in the history listing, and press Enter.

4. That command will run again.

How it works...
Think of the command line history as a linear database. You can scroll up and down until you
see the command you want. This is also helpful to recall something you did a while back. The
HISTSIZE environment variable controls how many commands will be saved in the buffer.

Be careful with this feature. Make sure you have the correct
command before running it.

Filename auto-completion
When running a command, you do not have to type the entire filename. This saves a lot
of time and effort, and also helps prevent typos.

The Tab key is used to invoke filename auto-completion. See the following screenshot:

Chapter 1

9

You only need to type enough characters to make the filename you want unique, and then
press Tab. If you didn't type enough characters, you will hear the console beep (in most
shells). If you now press Tab again, all of the possibilities will be displayed.

Getting ready
All you need for this example is a terminal running the Bash shell.

How to do it...
1. Change to your home directory, in my case it's:

cd /home/jklewis.

2. Create a directory using the following command:
mkdir Linuxbook

3. Change to it Linuxbook using the following command:
cd Linuxbook

ls > file2.txt

ls > file3.txt

ls > file4.txt

ls > unique1.txt

4. Now let's create some dummy files; run using the following command:
ls > file1.txt

5. Now type ls -la u and then press Tab. The rest of the filename "unique1.txt" will
appear. Press Enter.

6. Now type ls -al file and press Tab. Nothing will happen, and your console may
beep. Press Tab again. Now all 4 filenames will appear.

7. Add a 4, press Tab again, and then Enter. The command ls -la file4 will run.

This may look complicated or even clumsy but if you give it a chance you will become
an expert in no time at all.

The shell prompt
A standard terminal usually has a rather cryptic command line prompt. This should be
changed by modifying the PS1 environment variable.

Using the Terminal / Command line

10

How to do it...
An example is shown in the following screenshot:

Refer to the line export PS1="\u \h \w \$ "

1. The \u command means to show the current user of this shell.

2. The \h command shows the hostname of this machine.

3. The \w command means to show the full path of the current directory. This change
is highly recommended, as the user doesn't have to type pwd (Print Working
Directory) all the time to know what directory is being used.

4. The \$ means to display a $ or # depending on the effective UID.

There's more...
There are many more options, such as showing the time and date, using colors, and so on.
For more information, run man bash and search for PS1.

Other environment variables
The PS1 variable is only one of literally hundreds of environment variables. Don't worry,
you don't have to know them all! The following are a few very useful ones:

 f PS1: It shows and sets the command line prompt

 f USER: It shows the current user

 f HOSTNAME: It shows the current hostname for this machine

 f HOME: It shows the home directory of the current user

Chapter 1

11

 f SHELL: It shows the current shell this terminal is running in
 f TERM: It shows which terminal type is being used
 f PATH: It shows and sets the directories where programs are searched for
 f PWD: It shows the current working directory
 f EDITOR: It can be set to the full path to your desired text editor for use with certain

commands such as crontab -e
 f TZ: It shows and sets the time zone variable
 f HISTSIZE: It shows and sets the size of the history buffer

Most of these are self-explanatory; however, a few need more discussion. The PATH
environment variable is where commands are searched for in the filesystem.

 The echo command is used to display the contents of a variable:

How to do it...
1. Prepending a dot to the PATH means the program will be looked for in the current

directory first, before searching the rest of the path. This is very useful during the
code development for example. Do this by running:
export PATH=".:$PATH"

2. The EDITOR variable can be set to your favorite text editor. Most people use vi (or
vim); however, you can point it to the one you want. If you change this, be sure to
use the full path. To change the EDITOR variable do this:
export EDITOR=/lewis/bin64/kw

3. An export can be removed by setting it to nothing:
export EDITOR=

Using the Terminal / Command line

12

4. By convention, environment variables are usually written in uppercase. View the man
pages and/or search Google for more information on these variables.

How it works...
Think of these environment variables just as you would if you were using a programming
language. In this case, the type of the variable is determined by the OS. For example,
you could type A=1 or A="This is a string".

The OS knows the difference. Also, there is variable scope. Notice I did not use export
above. That means this A is local to this shell. Only exporting a variable will make it available
to other shells (after sourcing the file).

Using aliases
Wouldn't it be nice if you could easily create a simple command without having to make
a script out of it? Well, there is a way. This is done using aliases.

How to do it...
The following are the steps to create an alias:

1. Type tput clear and press Enter. Your screen should have cleared.

2. Now enter alias cls="tput clear". Now when you run cls it will do the same
thing.

3. Let's create some more. To show a long directory listing enter alias la="ls -la".
Enter 'la' to run the alias.

4. To show a long listing with the most current files last enter 'alias lt="ls
-latr"'.

If you create an alias and then decide you no longer want it you can remove it by using the
unalias command, for example, unalias cls.

You can also use aliases to move around the filesystem efficiently. This is very handy and
will save you an incredible amount of typing. Here are some examples:

1. mkdir /home/jklewis/linuxbook

2. alias lbook="cd /home/jklewis/linuxbook"

3. lbook

Chapter 1

13

You will now be taken to that directory. Here is something I make frequent use of on my systems:

1. export LBOOK="/home/jklewis/linuxbook"

2. alias lbook="cd $LBOOK"

3. lbook

As you can see, running lbook will take you to the directory as shown above. However,
you can also use the LBOOK variable to copy files to that directory:

1. cd /tmp

2. touch f1.txt

3. cp f1.txt $LBOOK

The file f1.txt will now exist in the /home/jklewis/linuxbook directory. This becomes
even more handy when extremely long filenames are used.

To remove the lbook alias run unalias lbook

You can list your aliases by just running alias without any parameters. Any time you find
yourself constantly typing the same commands or filenames consider creating an alias for it.

There's more...
Note that the above examples will only be effective in that terminal and will not persist across
a reboot. See the next section on how to make the changes permanent.

Also, in some cases, what you want to do may be too complicated for an alias, for example,
to check for the proper number of parameters. This is where you can create a shell script,
which will be covered in Chapter 8, Working with Scripts.

Using the Terminal / Command line

14

The .bashrc file
There are many environment variables we can look at and change. However, we certainly don't
want to enter these every time we start a new shell. There is a special file, named .bashrc,
which is used to store your settings. It is located in the user's home directory. For example,
the .bashrc file for the root user is in the /root directory.

Here is a .bashrc file from one of my systems:

How to do it...
The description of the lines is as follows:

1. To comment a line, precede it with a # symbol.

2. To create a variable, use the export tag.

3. To create an alias, use the alias tag (as shown earlier in this chapter).

4. Control statements are allowed; see the if clause in the previous screenshot.

Chapter 1

15

5. After modifying your .bashrc file, remember to source it using the dot operator
as follows:
. .bashrc

Dealing with blanks and special characters
in filenames

Linux (and Unix) filesystems were not originally designed to handle blanks in filenames.
This can cause quite a few problems, as the shell treats each item after a blank as another
file or parameter. A solution is to use quotes, the backslash, or the Tab key.

The following sections assume the user has not modified the Bash Internal Field Separator
(IFS) variable.

How to do it...
See the following screenshot. I purposely created three "bad" filenames:

1. Run ls -la file with blanks.txt and notice the errors.

Using the Terminal / Command line

16

2. Now run it again, but enclose the filename in quotes: ls -la "file with
blanks.txt"; it will work properly now.

3. Enter ls -la file and press Tab. It will escape the blanks for you.
4. Run ls -la special>.txt. Observe the error.
5. Enclose in quotes as before using the following command:

ls -la "special>.txt"

6. Now try ls -la -startswithdash.txt and then try quoting it. Doesn't work, right?
7. Precede the filename with the ./ operator using the following command:

ls -la ./-starWtswithdash.txt

As you can see, this can also be a problem if special characters have been used in the
filename. Study this one a bit and it will become clear. Remember the Tab key; it works really
well for just about every case. If the file starts with a dash, use the ./ operator. It means
to refer to the file in the current directory.

There's more...
The issue of blanks and special characters is even more of a problem in scripts. This will
be covered in more detail in Chapter 8, Working with Scripts.

Understanding the $? variable
Typically, when a command is run in Linux it performs a task; it either reports what it did
or indicates an error occurred. An internal return code is also generated, and is displayed
by running the echo $? command. Note that this must be the very next thing typed after
the original command.

The following screenshot shows echo $?:

Chapter 1

17

How to do it...
Here is a quick example of echo $?:

1. Run the following command:
ping -c 1 packt.com

2. It should succeed. Run the following command:
echo $?

3. You should get a 0 for success.

4. Now run the following command:
ping -c 1 phooey

It may take a second or two to complete.

5. Run echo $? again. It should return a non-zero value to indicate failure.

How it works...
In general, a return of zero means success. A non-zero return means an error has occurred,
and in many cases the code returned indicates what the error was. Remember this the
next time you type a command, hit Enter, and get the shell prompt back without anything
appearing to happen.

There's more...
The man and info pages for a command typically contain an entry showing what the errors
mean. If the man page is lacking, consult the web.

Redirection and piping
Suppose you run a command, say route, and want to save the output in a file. The
redirection (>) operator is used to do this instead of sending the output to the screen.

www.allitebooks.com

http://www.allitebooks.org

Using the Terminal / Command line

18

How to do it...
Let's try some redirection:

1. Enter ifconfig > file1.txt. You won't see anything, because the output went
into the file.

2. Run cat file1.txt. You should now see the output.

3. This works the other direction as well, to read from a file run the following command:
sort < file1.txt

4. You can even do both in one step:
sort < file1.txt > output-file.txt

5. You can also send the output to another command using the pipe operator. For
example, run route | grep eth0. The above command would display only
the lines from route that contain the phrase eth0.

There's more...
Here is something that I use all the time. Say I have written a program in C a long time ago,
have several versions, and want to find the latest one. I could run locate to find them all:

locate crc.c

This might return quite a few lines. How can I run ls on each file to find the latest one?
By piping the output into the xargs command and then ls:

locate crc.c | xargs ls -la

This will now show the time and date of each file.

This might seem a bit complicated at first, but if you experiment a little it will become second
nature to you.

Sending output from one terminal to another
This is a really handy feature that is unique to Linux/UNIX systems. It's most useful in scripts but
can be used on the command line as well. If you have a system available try the given steps.

Getting ready
You will need two open terminals.

Chapter 1

19

How to do it...
We show how to send the output from one terminal to another in the following steps:

1. In one terminal run the tty command. The output should be something like /dev/
pts/16.

2. In the other terminal run the route command. You will see the output in that
terminal.

3. Now run route again, but now using the command:
route > /dev/pts/16

4. The output will go to that other terminal.

How it works...
Terminals on Linux systems are devices that have their own buffer space. By referring to
the device by name you can write to it.

There's more...
This feature is even more useful in scripts, which we will see in Chapter 8, Working with Scripts.

Using the Screen program
Screen is a full-screen window manager that shares a physical terminal with other processes
(which are usually other terminals/shells). It is normally used when no other manager or
desktop is available, such as on a server. It has a scroll-back history buffer and also allows
for copy and paste of text between windows.

Getting ready
The following is a brief list of some of the many key bindings available with Screen:

 f Ctrl + A + ?: It displays a list of commands and their key bindings
 f Ctrl + A + C: It brings up a new window
 f Ctrl + A + D: It detaches a window
 f Ctrl + A + N: It is used to go to the next window in the sequence
 f Ctrl + A + P: It is used to go to the previous window in the sequence
 f Ctrl + A + # (where # is a number): It is used to go directly to that window
 f Ctrl + A + ": It shows the list of windows; user can select any one by the number

Using the Terminal / Command line

20

The following is a list of frequently used commands:

 f screen -list: It shows all of the windows
 f screen <program>: It creates a new window and run that program in it

How to do it...
An example of running the Screen utility is as follows:

1. In a terminal run the screen -L command.
2. Now press Ctrl + A and then press C. This will create another window.
3. Do this two more times.
4. Try typing Ctrl + A + 0.
5. Try Ctrl + A + 3.

How it works...
In the previous section, step 1 will create a new window, window 0. If you are running inside
a window manager you may notice the title change showing which window it is.

Step 2 will create another window. After step 3, you will have 4 windows in total.

When you perform the actions in step 4, you should be in window 0. Typing Ctrl + a + 3
will take you to window 3.

There's more...
Here is a helpful hint, if you are running only a command line with no desktop, you may want
to change your PS1 variable to something like the following in your .bashrc file:

export PS1="screen$WINDOW \h \u \w \$ "

Now the prompt will always show which window you are in.

This describes only a small part of what Screen can do. Consult the man page for more information.

2
The Desktop

In this chapter we will cover these desktop environments:

 f GNOME 2

 f KDE desktop

 f xfce

 f LXDE

 f Unity

 f Mate

Introduction
A computer desktop is normally composed of windows, icons, directories/folders, a toolbar,
and some artwork. A window manager handles what the user sees and the tasks that are
performed. A desktop is also sometimes referred to as a graphical user interface (GUI).

There are many different desktops available for Linux systems. Here is an overview of some of
the more common ones.

GNOME 2
GNOME 2 is a desktop environment and GUI that is developed mainly by Red Hat, Inc. It
provides a very powerful and conventional desktop interface. There is a launcher menu for
quicker access to applications, and also taskbars (called panels). Note that in most cases
these can be located on the screen where the user desires.

The Desktop

22

The screenshot of GNOME 2 running on Fedora 14 is as follows:

This shows the desktop, a command window, and the Computer folder. The top and bottom
"rows" are the panels. From the top, starting on the left, are the Applications, Places, and
System menus. I then have a screensaver, the Firefox browser, a terminal, Evolution, and
a Notepad. In the middle is the lock-screen app, and on the far right is a notification about
updates, the volume control, Wi-Fi strength, battery level, the date/time, and the current user.
Note that I have customized several of these, for example, the clock.

Getting ready
If you have a computer running the GNOME 2 desktop, you may follow along in this
section. A good way to do this is by running a Live Image, available from many different
Linux distributions.

Chapter 2

23

The screenshot showing the Add to Panel window is as follows:

How to do it...
Let's work with this desktop a bit:

1. Bring this dialog up by right-clicking on an empty location on the task bar.

2. Let's add something cool. Scroll down until you see Weather Report, click on it and
then click on the Add button at the bottom.

3. On the panel you should now see something like 0 °F. Right-click on it.

4. This will bring up a dialog, select Preferences.

5. You are now on the General tab. Feel free to change anything here you want, then
select the Location tab, and put in your information.

6. When done, close the dialog. On my system the correct information was
displayed instantly.

7. Now let's add something else that is even more cool. Open the Add to Panel dialog
again and this time add Workspace Switcher.

8. The default number of workspaces is two, I would suggest adding two more. When
done, close the dialog.

9. You will now see four little boxes on the bottom right of your screen. Clicking on one
takes you to that workspace. This is a very handy feature of GNOME 2.

The Desktop

24

There's more...
I find GNOME 2 very intuitive and easy to use. It is powerful and can be customized
extensively. It does have a few drawbacks, however. It tends to be somewhat "heavy" and may
not perform well on less powerful machines. It also does not always report errors properly.
For example, using Firefox open a local file that does not exist on your system (that is,
file:///tmp/LinuxBook.doc). A File Not Found dialog should appear. Now try opening
another local file that does exist, but which you do not have permissions for. It does not report
an error, and in fact doesn't seem to do anything. Remember this if it happens to you.

KDE desktop
The KDE desktop was designed for desktop PCs and powerful laptops. It allows for extensive
customization and is available on many different platforms. The following is a description
of some of its features.

Getting ready
If you have a Linux machine running the KDE desktop you can follow along. These screenshots
are from KDE running on a Live Media image of Fedora 18.

The desktop icon on the far right allows the user to access Tool Box:

Chapter 2

25

You can add panels, widgets, activities, shortcuts, lock the screen, and add a lot more using
this dialog.

The default panel on the bottom begins with a Fedora icon. This icon is called a Kickoff
Application Launcher and allows the user to access certain items quickly. These include
Favorites, Applications, a Computer folder, a Recently Used folder, and a Leave button.

If you click on the next icon it will bring up the Activity Manager. Here you can create the
activities and monitor them. The next icon allows you to select which desktop is currently
in the foreground, and the next items are the windows that are currently open. Over to the
far right is the Clipboard.

Here is a screenshot of the clipboard menu:

Next is the volume control, device notifier, and networking status.

The Desktop

26

Here is a screenshot of Interfaces and Connections dialog:

Lastly, there is a button to show the hidden icons and the time.

How to do it...
Let's add a few things to this desktop:

1. We should add a console. Right-click on an empty space on the desktop. A dialog will
come up with several options; select Konsole. You should now have a terminal.

2. Close that dialog by clicking on some empty space.

3. Now let's add some more desktops. Right-click on the third icon on the bottom left
of the screen. A dialog will appear, click on Add Virtual Desktop. I personally like
four of these.

4. Now let's add something to the panel. Right-click on some empty space on the panel
and hover the mouse over Panel Options; click on AddWidgets.

5. You will be presented with a few widgets. Note that the list can be scrolled to see
a whole lot more. For example, scroll over to Web Browser and double-click on it.

6. The web browser icon will appear on the panel near the time.

Chapter 2

27

There's more...
You can obviously do quite a bit of customization using the KDE desktop. I would suggest
trying out all of the various options, to see which ones you like the best.

KDE is actually a large community of open source developers, of which KDE Plasma
desktop is a part. This desktop is probably the heaviest of the ones reviewed, but also one
of the most powerful. I believe this is a good choice for people who need a very elaborate
desktop environment.

xfce
xfce is another desktop environment for Linux and UNIX systems. It tends to run very crisply
and not use as many system resources. It is very intuitive and user-friendly.

Getting ready
The following is a screenshot of xfce running on the Linux machine I am using to write
this book:

If you have a machine running the xfce desktop, you can perform these actions. I recommend
a Live Media image from the Fedora web page.

The Desktop

28

While somewhat similar to GNOME 2, the layout is somewhat different. Starting with the
panel on the top (panel 1) is the Applications Menu, following by a LogOut dialog. The
currently open windows are next. Clicking on one of these will either bring it up or minimize it
depending on its current state. The next item is the Workspaces of which I have four, then the
Internet status. To complete the list is the volume and mixer apps and the date and time. The
screen contents are mostly self-explanatory; I have three terminal windows open and the File
Manager folder.

The smaller panel on the bottom of the screen is called panel 2.

How to do it...
Let's work with the panels a bit:

1. In order to change panel 2 we must unlock it first. Right-click on the top panel,
and go to Panel | PanelPreferences.

2. Use the arrows to change to panel 2. See the screenshot below:

3. You can see it is locked. Click on Lock panel to unlock it and then close this dialog.

4. Now go to panel 2 (on the bottom) and right-click on one of the sides. Click
on AddNewItems....

5. Add the applications you desire.

Chapter 2

29

There's more...
This is by no means an exhaustive list of what xfce can do. The features are modular and can
be added as needed. See http://www.xfce.org for more information.

LXDE
LXDE (Lightweight X11 Desktop Environment) was designed to work well in low resource
conditions and is a relatively new environment. Unlike most of the other desktops, the
components of LXDE do not have many dependencies and can run independently.

Getting ready
If you have a machine using this desktop you can follow along with this section.

This is a screenshot of LXDE running on a Live Media image of Fedora 18:

As you can see, there are two terminals open and the file manager. Starting on the left of
the panel is the familiar-looking Fedora icon, which has just been clicked on. It brings up
the pulldown as shown. The next icon is the file manager and then an LXTerminal.

The Desktop

30

The next icon says "Left click to iconify all windows. Middle click to shade them". I chose
to leave this icon as is.

The next are two desktop icons, and then the event list. Farther to the right is a Wi-Fi icon
(Wi-Fi not activated), a wired Ethernet status, a system monitor, volume control, and the
Network Manager Applet. After that is the clipboard manager, time, a lock-screen icon,
and a logout box.

How to do it...
Let's work with this desktop a bit:

1. Right-click on an empty spot of the panel, a pulldown will be displayed.

2. Click on Panel Settings. The following screen will pop up:

3. Let's change the font size. Click on Appearance, and then Size under Font.
4. Using the scroll keys change the value to something else. The change will appear

instantly. When it looks good, select Close.
5. Let's add an app. Bring up the panel settings again and click on Add / Remove

Panel Items.
6. Click on Add, scroll down and click on Desktop Number / Workspace Name. The

name of the workspace you are currently in shows up on the far right of the panel. I
personally like this feature a lot.

Chapter 2

31

There's more...
I found LXDE to be very intuitive and fast. I believe it would work well, particularly on laptops
and mobile devices, where power is at a premium.

Unity
Unity is a shell interface for the GNOME environment used primarily on Ubuntu systems.
It was designed to work well on small screens, for example, it employs a vertical application
switcher. Unlike the other desktops/managers, it is not itself a collection of executables but
uses existing applications.

Getting ready
If you have a machine running the Unity desktop, you can follow along with this section.

The following is a screenshot of Unity running on Ubuntu 12.04:

The Desktop

32

On the desktop is a GNOME terminal session and the Home folder. Starting with the vertical
panel on the left is the Dash Home icon. It allows the user to find things quickly. Under that is
the Home folder (already opened) and then the Firefox web browser. The next three are Libre
Office Writer, Calculator, and Impress. Next is the Ubuntu Software Center, which is used to
search for and purchase applications. The next icons are for Ubuntu One, a Terminal, System
Settings, the Workspace Switcher, and the Trash folder.

To complete the discussion of the top panel, on the far right is the icon for Evolution. The next
is the Battery status icon, network status (both wired and wireless), and the volume control.
The remaining icons are the time, a switch user accounts icon, and the log out button.

Interesting enough, the terminal was not available by default on this guest desktop.

How to do it...
Let's add a terminal to this desktop:

1. Open the Home folder and then click on File System.

2. Double-click on the usr folder and then the bin folder.

3. Click on Search to open that dialog box.

4. Type in gnome-terminal and press Enter.

5. Double-click on the gnome-terminal icon.

6. It will open up on the screen, and you also see it as an icon along the left side panel.

7. Right-click on this icon and select Lock to Launcher. You now have a terminal icon.

The top panel on Unity works a little differently from the other desktops. Try the given steps:

1. Open the Home folder.

2. Open a terminal if you haven't already done so.

3. Now, click somewhere on the Home folder. The text Home Folder will be shown
on the panel.

Chapter 2

33

4. Now click on the Terminal. The text Terminal now appears. The menu items listed
on the panel always correspond to the window or app that has the focus.

There's more...
I found Unity to be very different from the other desktops. At first it was a bit difficult, but like
everything else it gets better with time. I believe this desktop would be popular with users
who do not have much experience with Linux/UNIX systems.

Mate
The Mate desktop was created to give users a more productive environment similar to
GNOME 2. I am currently running Fedora 19 on my laptop using Mate and it is running fine.
Note that I downloaded the F19 installation DVD and chose Mate during the install process.

Getting started
You can use a Live Image or a full install DVD from the Fedora site to follow along with these
steps, whichever you prefer.

The Desktop

34

The following is a screenshot of Mate on Fedora 19:

You can see I already have two terminals open. On the top left is the Applications pulldown,
which allows you to browse and run installed applications. The next one is Places, which
allows you to access documents, folders, and network places. Next is System, where you can
change the desktop appearance and behavior, get help, or log out. The icons are Caja, a file
manager, and then a terminal. Yes, the Mate people were smart enough to include one by
default. The next icons are Firefox, a mail app, and a messenger app. I added the lock-screen
icon, which is in the middle. On the right is the volume, then the Wi-Fi bars, the battery status,
and the date (which I customized a bit).

On the bottom left is an icon that allows you to hide all windows and show the desktop.
And finally, on the far right are four workspaces.

Chapter 2

35

How to do it...
Let's change a few things on this desktop:

1. First let's add the Lock Screen app. Right-click in the middle of the top panel.

2. Click on Add to Panel....

3. Click on Lock Screen and follow the instructions. Close the dialog.

4. Now let's work with the time and date. Left-click on it and you will notice a calendar
is displayed.

5. Left-click on the time and date again to close the calendar and then right-click on it.
Click on the Preferences tab.

6. The Clock Preferences window should be displayed. Here you can change how
the time and date are shown. I clicked on Show seconds because I like seeing
the full time.

7. Close the dialog.

There's more...
As you can see, Mate works very much like GNOME 2. It is very intuitive and easy to use.
The designers did a fine job creating this desktop.

3
Files and Directories

In this chapter we will cover:

 f Copying, removing, and updating files and directories

 f Finding files using find and locate

 f Creating text files – vim, Emacs, and others

 f Using the file command

 f Using grep to find patterns

 f Compressing files using ZIP and TAR

 f Other helpful commands such as stat, sum, touch, and more

Introduction
You can think of everything in a Linux filesystem as a stream of bytes. This is simply called
a file. A directory is also a file that contains other files. Most of the files are located on your
computer's hard disk. However, some are in memory, for example, /proc and /sys are
actually virtual filesystems. Files can also be stored on removable media too such as USB
devices, CD/DVDs, and on other machines (that is, NFS mounts).

Understanding inodes and the superblock
Every file under a filesystem has a special number called an inode. The inode is where the OS
stores the properties of the file and contains the following information:

 f The file type such as regular, directory, special, link, socket, pipe, or block device

 f The owner and group information

www.allitebooks.com

http://www.allitebooks.org

Files and Directories

38

 f The permissions of the file (more on this in Chapter 5, Permissions, Access,
and Security)

 f Date and time on which the file was created and when last changed or read

 f The file size

 f The inode contains some other information as well

Things that are not available in the inode are the full path and name of the file itself. This is
stored in the /proc filesystem under the PID (process ID) of the process that owns the file.

The superblock is what ties all of the inodes together on a filesystem. It contains all of the
information needed to manage the files. Being very important to the system, most Linux
filesystems have a backup copy of the superblock at regular intervals, while also being
retained in memory.

The dumpe2fs command can be used to show the contents of the superblock. The following
is a screenshot of dumpe2fs taken on Fedora 17:

This shows the superblock information for the first partition on this hard drive.

Chapter 3

39

Copying, removing, and updating files and
directories

In this section we will briefly explore how to copy, remove, and update files.

Getting ready
Several books have been written about filesystem management, and so this will serve as just
a brief overview. If you have a Linux machine available you can try out these commands.
We will be doing everything in the /tmp filesystem, so you don't have to worry about messing
anything up on your system.

How to do it...
The following is the method to create some files and directories:

1. Go to the /tmp directory:
cd /tmp

2. Make a test directory:
mkdir lbooktest3

3. Go to the directory:
cd lbooktest3

4. Let's create some files:
ls > f1; ls > f2; ls > f3

5. Also, create some directories:
mkdir dir1 dir2 dir3

6. The syntax for copy is cp source-file destination-file, so now run cp f1
f5. This will create file f5 which is a copy of file f1.

7. You can copy to a directory:
cp f1 dir1

8. The above is a relative path, because it starts from the current directory. To use an
absolute path do this:
cp f1 /tmp/lbooktest3/dir1

9. Now let's remove file f3 from the current directory:
rm f3

Files and Directories

40

10. Let's move file f2 to dir2:
mv f2 dir2

11. The mv command is also used to rename a file. To rename f1 to f6:
mv f1 f6

12. To see a text mode graphical representation of this directory run the following command:
tree

13. It is optional to clean up everything we just did, cd /tmp and then run:
rm -r lbooktest3

The following is a screenshot of the above commands:

There's more...
A file can be copied from another location on your computer to the current directory. This is
performed using the dot operator:

 cp /tmp/somefile

You don't have to cd to a directory first. You can do something like the following command:

 cp /bin/bash /tmp

This is very handy, especially when configuring a machine.

So what happens if you copy a file to a file that already exists? Assuming you have the proper
permissions, the file being copied overwrites the other file. Also, be careful when using rm, as
it is very difficult to recover a deleted file on a Linux system.

Chapter 3

41

Finding files using find and locate
The find command is normally used to search for files starting from the current directory.
The locate command uses the updatedb database to find files or directories on the entire
system (with some exceptions).

How to do it...
Let's use find and locate to look for some common Linux files:

1. First change the directory to /usr:
cd /usr

2. Run the following command:
find -name bash

3. Now try it with a wildcard:
find -name bash*

4. It will also find directories:

find -name bin

Now suppose we want to look for a file, but don't really know where it might be on the system.
The find command is also slow at times, because it has to search the filesystem from the
current point. Here's where locate comes in real handy.

1. You can be in any directory for this example. Run the following command:
locate gnome-terminal

2. Now try the command:
locate vim

3. See how fast this is? Now try:
locate ifconfig

4. To ignore case do:
locate -i sudo

Files and Directories

42

There's more...
The find command has over 100 parameters; consult the man page for more information.

The locate command uses a database(s) to store the location of files. This database is
usually automatically recreated by a cron job every night. If you want to refresh the database
immediately run the updatedb command. Note that it may take a while on a large filesystem
and/or slow computer.

Creating text files – vim, Emacs, and others
Most users are probably familiar with a GUI-based word processing program. For example,
I am using LibreOffice Writer to compose this book. However, you can edit files using the
command line as well. Some of us even prefer it.

Getting ready
It is assumed the reader has access to a Linux machine with a selection of text editors
available. We will start with vim, a text editor that is available on every Linux/Unix system.
If Emacs is not on your system, try installing it with yum install emacs or apt-get
install emacs.

How to do it...
The following is the method to create and edit a text file using the vi command:

1. Let's go to the tmp directory. Run the following command:
cd /tmp

2. Now run:
vim lbookfile1.txt

3. Your terminal should have cleared with vim running in it. Vim is modeless, and so
always has to be told what mode to be in. Press the A key.

4. Vim should now be in Insert mode. You may see something like -- INSERT -- at
the bottom of the screen. Now type some characters.

5. The normal cursor control keys should be functional. When done editing, press the
Esc key to get out of Insert mode.

6. To enter command mode, press the colon key, and then any letter. To save the file for
example type :w.

7. To save the file and then quit vim, press Esc and then type :wq.

Chapter 3

43

The following is a screenshot of vim editing a Java file:

Now let's take a look at the Emacs editor:

1. Change to the /tmp directory:
cd /tmp

2. To start Emacs in text mode run:
 emacs -nw lbooktest3.txt

3. It will start up in edit mode. Type a few lines
4. To save the file, press Ctrl + C and then press Ctrl + S.
5. The standard cursor keys should get you around the screen; try it.
6. Press Ctrl+H+? to bring up the Help window.
7. To go back to your original screen, press Ctrl+X+1.
8. To close the Emacs session, press Ctrl + X and then press Ctrl + C.

Files and Directories

44

The following is a screenshot of Emacs editing the Java file:

There's more...
Vim and Emacs are very powerful editors. They are most often used by programmers writing
code and sys admins maintaining shell scripts. To get more information consult the man and/
or info pages, or their websites.

And for a bonus, here's a picture of my personally-written text editor:

Chapter 3

45

This was written in C language under DOS about 20 years ago. I have now compiled and run it
on over 20 different platforms.

 Using the file command
We talked about text files above. In general, humans can read and edit text files rather easily.
A binary file is different, it is (loosely) what the computer "reads". For example, when you run
a command such as vim filename1.txt vim is a binary file and filename1.txt is a
text file.

How to do it...
The following is an example of running the Linux file command:

1. Change the directory to /tmp as usual:
cd /tmp

2. Let's create a text file:
ls > temp1.txt

3. What kind of file is it? Run the following command:
file temp1.txt

4. As you can see, the file command can tell us what kind of file something is.

5. Now run the following command:
file /bin/bash

6. All of that information means it's a binary file. It also shows what platform bash was
written for, and some other info.

7. Try running file on some different files on your system to get an idea of what there is
out there.

You must have the proper permissions to run the file command as it
must perform an open operation on the file.

Files and Directories

46

There's more...
We mentioned editing text files. Binary files can be edited as well, if you really know what you
are doing. This is sometimes needed during low-level work, for example, when working on
device drivers. A binary editor may look something like the following screenshot:

Oh no, I have edited a file but now can't save it!

From time to time, you may get into a text editing situation that seems
hopeless. You have spent some time changing a file but now can't save it.
The error is usually something like "Permission denied". There are usually
two things that can cause this; you can't write into the directory where the
file is located, or the file already exists but not with the proper writeable
permissions. The best way to save your work, if the program allows it, is to
simply write the file somewhere else, for example, in /tmp.

This is a rather simplistic example, but it gets the idea across. I wish I had
already known this procedure the first time it happened to me.

How to do it...
The following is the method to save a file when you get a permission error:

1. As a normal user (not root) go to the /usr directory:
cd /usr

2. Now run the following command:
vim lbookfake1.txt

Chapter 3

47

3. It should open up an empty file as normal. Press A and then then enter some text.

4. Now press Esc, and type :w.

5. It should show a write error, so save the file to /tmp:
:w /tmp/lbookfake1.txt

6. That should succeed. You can then take steps to correct the real problem (that is,
don't edit files where you are not supposed to!).

Using grep to find patterns
When dealing with files, it is convenient to be able to search for patterns within the text. This is
often used in code development for example. Here we show how to use grep.

Getting ready
We will use the dmesg program, which shows information about the running kernel, for
this example. If it is not available, or if your computer has been running for a long time, the
following may not match up quite right on your system.

How to do it...
The following is an example on using grep:

1. Run the following command:
cd /tmp

2. Use dmesg to create a file, so we can search for some information about your system:
dmesg > dmesg1.txt

3. Let's see if we can determine what network device is being used. Run:
grep network dmesg1.txt

4. The output might not be very informative. But what if case is an issue? Try the
following command:
grep -i network dmesg1.txt

5. The -i tells grep to ignore case. You should now see which network driver your
system is using. Now try the following command:
grep -i cdrom dmesg1.txt

6. grep returns a code based on the results of the search. Run the above command
again (remember the up arrow shortcut?):
grep -i cdrom dmesg1.txt

Files and Directories

48

7. Now run the following command:
echo $?

8. Assuming the text was found, the return code will be 0. Now search for a string that
should not be there:
grep -i jimlewis dmesg1.txt

9. Run the following command:
echo $?

10. The return code should not be 0.

This might seem a little backwards, that zero means success and
non-zero means failure. This is common to many Linux commands,
because in many cases the number returned is an error code.

There's more...
The grep program can search in an incredible amount of different ways. You can specify very
complicated patterns as well. Consult the man page for more information. Also, we will visit
the return code from grep again in Chapter 8, Working with Scripts.

Compressing files using ZIP and TAR
It's no secret that a Linux system has a lot of files. A typical code development project might
have over 1000 files, spread across several directories. And how do we back all of that stuff up?

The answer is file packaging and compression. Here we will show two favorites, ZIP and TAR.

Getting ready
Most Linux systems have both ZIP and TAR, and so it will be assumed they are already
available on your system.

Chapter 3

49

How to do it...
Here we will experiment with the zip and unzip command::

1. Run the following command:
cd /tmp

2. Let's make a temporary directory:
mkdir lbooktemp

3. Run the following command:
cd lbooktemp

4. Now let's create some files:
ls > f1.txt; route > f2.txt; dmesg > f3.txt

5. Then, create some more files:
ifconfig > ifconfig.dat; dmesg > dmesg.dat

6. Let's package and compress the first ones into a single file:
zip lbook1.zip f1.txt f2.txt f3.txt

7. As you can see, the syntax for ZIP is "zip zipped-file files-to-zip". We could have also
used wildcards above:
zip lbook1.zip *.txt

8. Now let's include the others:
zip lbook1.zip *.txt *.dat

9. The unzip program is used to extract files out of a zipped file (also called an archive).
Make another directory using the command:
mkdir test

10. Run the following command:
cp lbook1.zip test

11. Run the following command:
cd test

12. Now unzip the file:
unzip lbook1.zip

13. Perform an ls -la command. You should see the files as before.

14. You can also view the contents of a ZIP file, without extracting anything, by running
the following command:
unzip -l zipped-file

Files and Directories

50

I use ZIP when there are just a few files, or when I am sending them to someone running
a non-Linux OS. While ZIP can be used to span directories, it doesn't normally deal well with
some Linux files. Tar is a better alternative:

1. We can use the same files as before: cd /tmp/lbooktemp

2. Run tar cvzf lbook1.tar.gz *.txt. This will create a gzip compressed
archive file.

3. Now run file lbook1.tar.gz. It should show something like the following output:
lbook1.tar.gz: POSIX tar archive (GNU)

4. To extract, first copy it to the test directory:
cp lbook1.tar.gz test

5. Run the following command:
cd test

6. Run the following command:
tar xvzf lbook1.tar.gz

7. Perform an ls -la command. You should see the files again.

8. To view a tar archive, use the t (for tell) option:
tar tvzf lbook1.tar.gz

9. Now let's TAR the the whole directory:
cd /tmp

10. Run the following command:
tar cvzf lbooktemp1.tar.gz lbooktemp

11. This will get the entire directory, even the hidden files if any exist.

Chapter 3

51

The following is a screenshot of the zip command:

There's more...
ZIP and TAR are used quite frequently in system administration to back up everything.
It should be noted that "tarring up" a system, copying that file to another machine, and
"untarring" the file is a great way to clone a box (I use this all the time).

Later, when we discuss crontab in Chapter 9, Automating Tasks Using Cron, I will show how I
use TAR to backup my system every night.

Files and Directories

52

Other helpful commands such as stat, sum,
touch, and more

There are many more commands available in Linux that deal with files. In this section I show
how to use a few of them.

How to do it...
The following are some of the commands I find myself using all the time:

1. Run the following command:
cd /tmp

2. Create a file:
dmesg > file1.txt

3. Now run ls -la and remember the info. We will use this later.

4. Use the stat command to see practically everything you would ever want to know
about the file:
stat file1.txt

5. Now suppose you have sent that file to someone that is running a Linux system, and
want to ensure it did not get corrupted along the way. Run the following command:
sum file1.txt

6. The first number is the checksum and the second is the number of blocks for that file.
If the other person runs sum on his copy of the file and sees the same info, the files
are the same.

The file names do not have to match.

7. We have created a lot of files by using the redirection operator. You can also use the
touch command:
touch file2.txt

8. Since file2.txt did not already exist, touch will create it as an empty file. In fact,
let's prove that:
file file2.txt

Chapter 3

53

9. So what happens if we run touch on an existing file? Does it empty it? No, it updates
the time and date on it. Run the following command:
ls -la file1.txt

10. Now run the following command:
touch file1.txt

11. Run ls -la again. You should notice it now shows the current date and time on
that file.

12. Suppose you want to just view a text file. Run the following command:
less file1.txt

13. When using the less command press the Space bar to scroll down. Press Q to exit.

14. Say we want to see just the first few lines in that file:
head file1.txt

15. The head command shows the first 10 lines by default. How about the last 10 lines?
Run the following command:
tail file1.txt

There's more...
As I have said before, there are many, many more commands that deal with files. And, of the
commands I have mentioned, I have only scratched the surface of what they can do.
As always, consult the man pages for more information.

4
Networking and

the Internet

In this chapter we will cover:

 f Troubleshooting bad connections

 f Copying files to another machine–FTP and SCP

 f Logging into another machine – Telnet and Secure Shell

 f Getting a web page without a browser – wget

 f Browsing the web – Firefox

 f E-mail – using a web mail program

 f Running your own web server – httpd

 f What is using that port? The /etc/services file

 f IPv4 versus IPv6

Introduction
Being "on the net" is crucial in today's world. Here we explain connectivity and what to
do when it doesn't work. But first we will explain the pros and cons of a wired versus
a wireless connection.

A typical wired Ethernet connection is fast and reliable. It does not normally suffer from
dropouts or lost packets. A good quality wire such as Cat 5E or Cat 6 can run for several
feet without any loss of signal.

Networking and the Internet

56

Wireless connectivity gives you the freedom to, well, not have a wire for one thing. When
properly configured it can be effortless to use and be very reliable.

Wired connection has the following pros:

 f Wired connection is typically faster than wireless

 f In general, it is more reliable

 f It doesn't suffer from periodic dropouts or lost packets

 f Is easier to configure and troubleshoot

Wired connection has the following cons:

 f We need to use wires; it can be very difficult to rearrange or change, especially
in a computer lab environment

 f We need someone to design and physically connect the network

 f It can be confusing when using large servers with multiple Ethernet ports

Wireless connection has the following pros:

 f It is convenient; we don't have to deal with wires

 f In some cases, it can go pretty far from the base router

 f It is easily set up for guest access

Wireless connection has the following cons:

 f It is not always reliable. Dropped packets happen much more frequently than with
a wired connection.

 f It can be hard to set up, especially for the first time.

 f We have to deal with passwords and encryption to prevent unwanted access.

Troubleshooting bad connections
This seems to happen occasionally, and at the worst possible time. These are the steps
I normally take to diagnose and solve the problem on a wired connection. It is assumed
that the connection worked properly at some time in the past.

Getting ready
There is no special setup for this example, unless you happen to have a broken machine
somewhere. You can run most of these commands without fear of hurting a good system.

Chapter 4

57

How to do it...
Try these steps when diagnosing a network issue:

1. First let's make sure the connection is really down by pinging a known external
address. I use Road Runner as my ISP, so for me the command would be:
ping rr.com

2. Something like this should appear:

3. Press Ctrl + C to stop the output. If the command line says timed out, or says
something about no host or bad route, the connection is indeed down. Let's try
to fix it.

4. Find your gateway address. Run the route command; your gateway should show up
at the top of the output. Note, the route command taking a long time to complete
is also a sign the connection is down.

5. Ping the gateway provided by route above. If it pings successfully, then the problem
is most likely on the router, or at the ISP itself.

6. If it doesn't get a good ping, let's try this. If you already know the interface name, skip
to the next step. If not, find it by using the ifconfig command. Look for a stanza
that has something like eth0 or p3p2.

7. Run the ethtool command on the interface. In my case it is ethtool eth0.
Look at the last line; it should say:
Link detected: yes

8. If it does not, the problem may be the wire. If your port has LEDs see if they are
on. One of them should blink from time to time. Try wiggling the wire. Of course,
if you have a known good wire, try replacing it. Note, a "known good wire" does
not necessarily mean one right out of the package. Got bit by that once.

Networking and the Internet

58

9. If the wire seems okay, let's look deeper. Make sure, in the steps above, you have
the right interface. Note at this point you may want to just read these steps instead
of running the commands, as they will take your network down.

10. Try running the ifdown <interface> command. You probably will not see any output.

11. Now run the ifup <interface> command. It may take a few seconds, and then you
should see some output. If you are using DHCP, you should see the connection being
made. When you get the prompt back, try the ping again.

12. I'll assume if you're still reading, the ping failed and the connection is still down.
It is possible your router and/or modem has become jammed up. Try turning those
off, wait about a minute, and then turn them back on.

13. After waiting for the network to settle in try the ping again. If it is still down, continue
with the next steps.

14. Even though I despise this as a solution, at this point, I would suggest a cold
shutdown. Close down all except one terminal and run the following command:
shutdown -h now

15. I like to wait a few minutes before rebooting, just to make sure the memory is actually
clear. Okay, so turn it back on and wait for it to boot all the way up.

16. Try the ping command again. If it now works, I would suspect some kind of transient
error or problem. If it continues to work, well that's great. However, if it fails again
I would suspect the hardware might be going bad.

17. If the ping command stills fails after a reboot, I would try booting up a Live Media
image. If this works and gets on the net, something is out of whack in the files on your
base system. If it does not work, I would suspect the hardware again.

18. One last thing; make sure no one has made any changes to your DHCP server.
A misconfigured server can cause all kinds of bad things to happen, such as not
getting a connection.

There's more...
I hope this section has been useful. These steps have worked for me countless times in the
past. One more thing I would suggest is to look at your /var/log/messages file (and/or
dmesg). It may shed some light on why the connection is failing.

Chapter 4

59

Working with IP addresses, subnets, domains, and so on

This will serve as a very brief overview of what is meant by an IP address,
subnet, and domain. Understanding this information will help you with future
sections of this book.

An IP address, in general, is what distinguishes one computer from another
on a network. It is a set of numbers such as 66.69.172.30. Within a home
network, since NAT (Network Address Translation) is most likely used, you
may be more familiar with the local addresses, such as 192.168.1.115.

The following is a quick list of the terminology:
 f IP address: The Internet Protocol address of this machine,

for example, 192.168.1.115.
 f Subnet: The third octet (or set of numbers) is the subnet.

For example, 192.168.1.115 and 192.168.1.120 are on
the same subnet. However, 192.168.2.115 is not.

 f Domain: A domain is usually referred to by a hostname, such
as rr.com. It too has a numeric IP. Use the ping command
to determine what IP a hostname is using.

Copying files to another machine – FTP
and SCP

Not counting email, the two most common ways to copy files to another machine are FTP (File
Transfer Protocol)and SCP (Secure copy). Here we will discuss both.

FTP has been around for many years and is still used quite a lot today. However, standard FTP
does have a serious drawback. The data is sent in what is called "clear text". This means a
knowledgeable person could obtain the data under the right conditions. We will talk about
this a bit later.

Getting ready
We will assume an FTP server has already been set up and is available for this exercise.
Normally you would use ftp command from one machine (the client) to another (the server).
However, for this example I am using just one machine. The command to start an FTP session
is ftp server-name where server-name can be a host name known on your network,
or a numeric IP address. For this example, I have created a file in /tmp named f1.txt
and a file in /home/jklewis named f5.txt.

Most Linux distributions are already set up to allow the scp command, which is very
convenient. We will assume your distro allows this. Note that some do not allow root
access so we will use a guest account.

Networking and the Internet

60

The syntax for SCP comprises of the given commands.

To copy to a machine:
scp local-filename username@hostname:/directory

To copy from a machine:
scp username@hostname:/directory/filename

(Don't forget the colon above.)

The following is a screenshot of the FTP help screen on Fedora 18:

How to do it...
Here is how to use the ftp command:

1. In a terminal session on the client, run the following command:
ftp 192.168.1.115

2. It should present you with a prompt. Type in the username and press Enter.
3. Type in the password and press Enter.
4. It should show something like Login successful. If it doesn't, then you are not

logged in, although there will still be an FTP prompt. Assuming it logged in run the
following command:
ls -la

5. You should see a listing of files. Run help to show a list of commands. They might
not all be available on your system (which I consider a bug).

Chapter 4

61

6. One thing to remember when using ftp is to know where you are at all times.
It is very easy to get confused. Use pwd often. Run it now:
pwd

7. The commands you type are on the server. To run a command locally, prefix it with
an exclamation point. Try these commands:
!pwd, !ls

8. So, let's actually do something. Change your local directory to /tmp by running :
lcd /tmp

9. Run the !ls command. Now let's copy file f1.txt to the server:
put f1.txt

10. Now let's retrieve file f5.txt from the server:
get f5.txt

11. This may appear a bit confusing at first. That's because it is. However, if you use it
a lot it will become much easier. Remember, you put it to the server, and get it from
the server.

12. When you are finished with your FTP session run the following command:
quit

13. Now let's run some scp commands, to begin:
cd /tmp

14. Create a test file by running:
ls > f1.txt

15. Run the following command:
scp f1.txt guest1@192.168.1.115:/temp

16. Enter the password for user guest.
17. Assuming file f5.txt is on the remote /temp, to get it run:

scp guest1@192.168.1.115:/temp/f5.txt

18. Don't forget the colon above. Run ls -la to see how it went.

There's more...
I mentioned that FTP sends its data in clear text. The Secure Shell commands (more on that
in the next section) use encryption and so security is not a problem. Also, it is possible to set
up a machine so that the password is not required. For more on this, see the ssh-keygen
command. This topic is also covered in Appendix A, Linux Best Practices. To configure sshd,
for example, to change how root logins work, see the sshd_config file.

Networking and the Internet

62

Logging into another machine – Telnet and
Secure Shell

Telnet is an older protocol but is still used a lot today. It suffers from the same security
problem as FTP; it sends text in a non-encrypted format. However, it is still useful in say
a lab environment protected by a good firewall.

Getting ready
I will again use the same machine as both the client and server. For this example, we will
assume both the Telnet client and server are already installed and operational.

The command to start a Telnet session is telnet hostname. The hostname can be a name
reachable on your network or a numeric IP.

Secure Shell (SSH), is a more popular protocol as it provides for strong encryption of both
the password and text. It's also much easier to use, in my opinion.

To start a secure shell, the command is as follows:
ssh username@hostname

How to do it...
Here we will run a few Telnet and SSH commands:

1. Run the following command:
telnet 192.168.1.115

2. A banner and prompt should appear. Enter the username.

3. Enter the password.

4. The message of the day (/etc/motd) file will probably be displayed. This is a good
place to put messages and other information for anyone who is logging in. In this
terminal you can run pretty much any text-mode command you want. Try pwd.

5. You can change to another directory, edit files, and pretty much whatever you would
normally do if you were actually on the system.

6. When you are done with the session, run:

exit

Chapter 4

63

This is a screenshot of Telnet running on Fedora 18:

1. Now let's try running a Secure Shell session:
ssh jklewis@192.168.1.115

2. Enter your password. The /etc/motd file should display as before. Let's try some
commands. Run the following command:
pwd

3. Run the following command:
uptime

4. As with Telnet, every text-based command should work just as if you were on
the actual machine. When done with the session, run:
exit

There's more...
Secure copy and Secure Shell are the best ways to copy files and to access remote machines.
Get to know them well. I mentioned above that the ssh-keygen program allows one to copy
files without a password. This works for SSH as well. I use this on all my home machines, and
also on my website, which is hosted by a service provider. For more information on this very
cool feature run man ssh-keygen.

One other thing, I mentioned that the Telnet and SSH sessions should work just like you
were on the actual machine. This is not always true when the client is running on a non-Linux
machine. For example, some of the key strokes may be mapped differently. Take a look at
the documentation for the client program you are using as there may be a way to adjust the
key mappings.

Networking and the Internet

64

Getting a web page without a browser – wget
Probably everyone has received an e-mail from a questionable source. You know you shouldn't
click on any of the links, but wouldn't it be nice if there was a safe way to determine what was
on that site? Well, there is.

The wget program allows you to download files from URLs. Although it can do a lot, the
simplest form of the command is: wget <some URL>. Assuming no errors, it will place that
file in the current directory. If you do not specify a filename, by default it will attempt to get
the index.html file.

How to do it...
The following is the method to run wget:

1. Run the following command:
cd /tmp

2. Run the following command:
wget www.jklewis.com

3. The resulting file will be named index.html. View it with more index.html. Yes,
it's my personal web page.

4. You can also refer to specific files. Try:
wget www.jklewis.com/shipfire.gif

5. Try it with some other sites. You can do this on a suspicious site to see if it is safe.

6. If you have a suspect site in mind do a wget on the file. View it and look for links
to other sites. If you see something like http:/DoWeCheatThemAndHow.com.
I probably wouldn't click on that.

There's more...
The wget command can do a lot more. With the right parameters, it can be used to clone
entire websites and a lot of other neat things. Consult the man page for more information.

Browsing the web – Firefox
There are several different browsers to choose from for your Linux system. Here we will focus
on Firefox by Mozilla.

Chapter 4

65

Getting ready
Firefox is usually available by clicking on the browser icon on your desktop. You can also
start it from the command line. For this example we will start Firefox for the first time with
user jklewis.

The following screenshot shows how Firefox looked like the first time I opened it under
user jklewis:

How to do it...
The following is the method to run Firefox from a terminal:

1. Open a terminal session for a guest user. For this example, I ran su - jklewis
and entered my password

2. Run firefox & (the ampersand tells it to run the command in the background
so you can still access that terminal. Error messages will also be displayed here).

3. Firefox should come up with the default settings. Let's change some of them.
Go to Edit | Preferences.
Click on Edit->Preferences

4. The Firefox Preferences screen should come up, on the General section. See
where it shows Home Page, change it to something more useful. I changed mine
to http://jklewis.com.

Networking and the Internet

66

5. The General section is also where you can control the behavior of the Downloads
window. I have chosen to leave that checked for this user.

6. Now click on the Tabs section. I personally despise browser tabs and so I have
turned them off. To do this remove the check mark from Open new windows in
a new tab instead and Always show the tab bar. Note you do not have to do that
for this exercise.

7. The Content section allows you to control what gets displayed. Take a good look
at this page, however, I usually leave these settings as is.

8. The Applications section shows what browser plugins are available. I don't change
anything here.

9. Now click on the Privacy section. This is where you can clear your history and deal
with cookies.

10. Now click on Security. I suggest leaving this as it is.

11. The Sync section lets you sync up with a mobile device.

12. The Advanced section has a few pages to it. The General page lets you control how
the browser operates. Now click on the Network page. This is where you configure
the cache.

13. The Update page deals with what gets updated automatically, and the Encryption
page is where the protocols are set and where you can view and modify your
certificates. I suggest leaving these as they are.

14. Now close out the Preferences dialog.

15. Now let's view a website and bookmark it. Go to the URL field and double-click on it.
Press the Delete key. Now enter jklewis.com.

The "www" is not normally required.

16. You should see my web page. Now click on Bookmarks.

17. Click on Bookmark This Page. A dialog titled Page Bookmarked will appear
(actually this is absolutely wrong as the page has not been bookmarked yet).
Here you can change the title of the bookmark, or the folder to put it in. For now
just click on Done to finish.

18. The page should now be bookmarked.

There's more...
As you can see, there are quite a few more options. Explore these as you need them.
The following are a few more tips when browsing.

Chapter 4

67

When bookmarking a page, take a good look at the title given. For some reason they don't
always give a good descriptive name. "Account Login" just doesn't tell me much. However,
if I change it to "Hi-Fee Bank and Trust – Login" that tells me exactly which account it is.

I highly recommend your browser be run from a guest account, and not root. Note that if you
are running your desktop under a guest user (also highly recommended) starting Firefox from
the icon will be fine.

On the right of the URL field is a star. Clicking on this brings up History. Next to that is a semi-
circle with an arrow. This is the Refresh button. If a page ever seems to be loading too slowly,
or is just not working right, try refreshing the page by clicking on this icon.

E-mail – Using a web mail program
There are many web mail clients available, such as Evolution and Thunderbird. I have used
both and find them lacking in some areas. For this reason and others I use a browser web
mail app instead.

Getting ready
If you already use a web mail program this will probably be old hat to you. However, if you have
not used one before this should be very helpful. Note, for this section I do not suggest you try
and run these commands, just read them.

How to do it...
The following is the method to access a webmail client using Firefox:

1. Log in to your account on your provider's website. Somewhere on there should
be a link to to access your e-mail. Your provider may even give you a choice
of which web mail app to use. I chose Squirrel Mail.

2. Whichever one you pick, it should open up and ask for your email account password.
Remember that this might be different from the password you used to get into your
provider's main account.

3. Once you are in the mail app should present you with the contents of your inbox.
Here you can respond to mails, forward them, provide attachments, and so on.

4. There should also be an address book. Find it, open it, and get to know how to use
it. If the provider has a way to export the address book file to your computer make
frequent use of that feature so you can restore it later if it gets corrupted.

5. Keep this in mind; if you are going to compose an email and attach a file to it, attach
the file first before doing anything else. Then go fill out the other fields and compose
the text. Trust me, your friends, family, potential employers, and so on will all thank
you for not forgetting the attachment.

Networking and the Internet

68

6. Most web mail programs do not auto refresh the screen. So, if you leave it open
(which I do all the time) and leave the computer, when you come back be sure to
refresh the email session. This is usually done by clicking on the Inbox title. You
can also click on the browser's Refresh button.

7. One last thing about web mailers; the mail will probably eventually fill up your
allocated space, and you might even get some e-mails about it from your provider.
What I do is wait until I have used approximately 80 percent of my space in the inbox.
I then go directly to the last page (usually page 30 or so) and move these to the trash.
I go through and delete these one page at a time until I am back on page 20.

8. Some people delete mail as they go. This is fine if you are good at it. I am not. If I do
it that way I'll eventually delete something I wish I could get back.

9. Speaking of getting a file back, you can usually recover a deleted file by looking for it
in the Trash folder. However, once you have purged the folder, the e-mails will be gone
for good. The purge usually occurs automatically about once a week (configurable
on some mailers).

There's more...
One of the nice features of a web mailer is you should be able to access your email from
any browser on any machine. All of the information is stored on the provider's website.

The following is a screenshot of Squirrel Mail | Options:

Chapter 4

69

Running your own web server – httpd
There may come a time when you will want to run your own web server. In my career as a
software engineer I have been often asked to run the department lab. The easiest way to keep
my users informed as to what is going on is to put the notes and files on my own local website
that I control. This may sound hard but it really isn't.

Getting ready
This assumes you have a Linux system available to try this out on. If not, you can still get a lot
out of this section. This also assumes that httpd is not already installed. These steps were
performed on my laptop running Fedora 18.

How to do it...
The following are the steps to install your own Apache httpd server on Fedora:

1. First install httpd:
yum install httpd

2. Now change to the configuration directory:
cd /etc/httpd/conf

3. Make a backup copy of the file: cp httpd.conf /tmp/httpd.conf.orig.
You may want to choose a more suitable backup directory.

4. Edit the file with a text editor:
vi httpd.conf

5. This file contains almost everything you need to know in order to set up your httpd
server. Read the first page very closely where it talks about ServerRoot.

6. In brief, if a filename begins with a slash, the server will use that path as indicated.
However, if a relative path is used, the value of ServerRoot is prepended. For
example, scroll down to this line:
Include conf.modules.d/*.conf

7. Since this is a relative path and ServerRoot is set to /etc/httpd, the directory
that will be included is really /etc/httpd/conf.modules.d.

8. In another terminal change to that directory now:
cd /etc/httpd

9. Be sure to remember how ServerRoot works! It will save you a lot of time. Now let's go
through the httpd.conf file a bit more. The Listen directive tells httpd which port
to use. Leave it at 80 for now.

Networking and the Internet

70

10. Scroll down to ServerName. This is where you can enter the name of your particular
server. Leave it blank for now.

11. The last one we will talk about is DocumentRoot. This is the directory where your web
pages will be served from. It should be set to /var/www/html.

12. Let's actually start the httpd service. Run systemctl start httpd.service.
This should silently return back to the command line.

13. We have to enable it as well using the command systemctl enable httpd.
service. This should show a successful link message.

14. Now let's try it:
cd /var/www/html

15. Run ls -la. It is probably empty. Create a file by running:
dmesg > dmesg1.txt

16. Now either go to or open a browser session. We will check things locally first, so in the
URL field enter file:///var/www/html/dmesg1.txt.

17. The file contents should be displayed. Now let's create another file:
echo "This is a new file" > newfile.txt

18. Substituting your IP for mine, try this in the URL field: 192.168.1.115:/newfile.
txt. The contents of newfile.txt should be displayed.

There's more...
If you decide to do a lot of "web serving" be sure to read and understand the httpd.conf
file. There is also quite a lot of information available on the net.

You may find that you cannot actually access your files from another computer on your
network. That is most likely due to a firewall (iptables) issue; however, your router may need
some configuring as well. This will be covered in Chapter 5, Permissions, Access, and Security.

What is using that port? The /etc/services
file

From time to time you may need to know what service is running on a particular port. The
/etc/services file contains that information and more.

How to do it...
Here we will take a look at some common services on a Linux system:

1. View your /etc/services file: more /etc/services.

Chapter 4

71

2. Press the Space bar once to scroll the page down. See where it shows "ftp"?.
The 21 in the next column indicates the port that FTP is using. The /tcp and /udp
means that port is available for both protocols.

3. You should also see telnet (if not, press Enter a few times). It should show
port 23.

4. Now let's search for a service. Press the Backspace key a few times to go back to
the top, and enter /nameserver.

5. We can see that nameserver is using port 42 and is available for both TCP
and UDP.

6. The file is quite long (over 11,000 lines on my system) as there are many, many
standard ports.

There's more...
By convention, ports numbered 0 to 1023 are considered the "well-known ports". Ports
numbered 1024 to 49151 are the "Registered Ports". The Private and Dynamic ports go
from 49152 to 65535. If you are developing an application or are otherwise dealing with
ports be sure to follow this port use convention.

The following is a screenshot of the first few lines of /etc/services on Fedora 18:

Networking and the Internet

72

IPv4 versus IPv6
As of the writing of this book, Internet Protocol Version 4 (IPv4)is used to route most of the
network traffic on the Internet. It uses 32-bit (4 byte) addresses, which allows for a space of
232 addresses. Under IPv4, there are not enough addresses remaining to accommodate all
of the Internet devices now in use, which is why IPv6 was created. In this section we will first
run some commands and then discuss IPv4 and IPv6.

How to do it...
Let's try some commands using both protocols:

1. Let's start with IPv4. Run the following command:
ping 192.168.1.115

2. Then, run the following command:
ssh 192.168.1.115

3. Now let's try IPv6. First let's see if your computer has an IPv6 address. Run
ifconfig on your interface; on my laptop it's ifconfig wlan0.

4. You should see something like the following output:
inet 192.168.1.115 netmask 255.255.255.0 broadcast 192.168.1.255

5. You should also see something like the following output: inet6 2002:244:b303:0
:221:5eff:feff:f15d. Try pinging it. On mine, it's ping 2002:244:b303:0:22
1:5eff:feff:f15d.

6. Did you get a ping: unknown host error? That's because we have to use
the IPv6 version of ping. Try again, but like the following command:
ping6 2002:244:b303:0:221:5eff:feff:f15d

7. Now try ssh, it seems to already know about IPv6:
ssh 2002:244:b303:0:221:5eff:feff:f15d

Chapter 4

73

There's more...
In general, under IPv4, a numeric IP address is written as xxx.yyy.zzz.www which is called
dotted decimal format. Each of the 3 numbers separated by the dots are called an octet.
The high order octet, the xxx in this example, indicates which class of IP this is. The following
is a partial list of the classes available in IPv4:

Classes Ports
Private network 10.0.0.0
Local loopback 127.0.0.1
Link-local 169.254.0.0
Private network 192.168.0.0
IP multicast 224.0.0.0
Broadcast 255.255.255.255

You have already seen some examples of the private addresses I use on my home network.
The format is usually something like the following set of commands:

ping 192.168.1.115

scp file1.txt guest1@192.168.1.115:/temp

telnet 192.168.1.115

ssh 192.168.1.115

The IPv4 address space became officially exhausted in 2011. For this, and other reasons,
IPv6 was created.

IPv6 is the most current version of the internet protocol. As opposed to IPv4 which uses
a 32-bit address, IPv6 uses a 128-bit address. This is 2128 addresses, or enough for every
person on Earth to each have well over a million for their own use. We probably won't run
out of these anytime soon.

An IPv6 address has 8 groups of 4 hex digits, separated by colons: 2002:4244:b323:0:468
7:fcff:fe69:4d0f.

Networking and the Internet

74

Yes, this looks formidable but there were several reasons for the change:

 f The longer address allows for more efficient routing
 f It allows for special addressing techniques
 f The size of a subnet is now 264 addresses
 f Renumbering an existing network under IPv4 can be very complicated; when

configured correctly, this is not an issue with IPv6
 f Multicasting is done more efficiently
 f IPv6 has Stateless Address Autoconfiguration (SLAAC)

IPv6 addresses can be abbreviated as follows: leading zeroes can be omitted.

Consecutive groups of zeroes can be omitted and replaced with two colons.

Look at the following example: the IP address is 2002:0244:0000:0000:0000:fcff:fe6
9:4d0f.

Omit leading zeroes, we get 2002:244:0:0:0:fcff:fe69:4d0f.

Now omit the zero groups and we get 2002:244::fcff:fe69:4d0f.

For more information consult the man pages and Internet. Large usage of IPv6 is still a long
way off, but will be here eventually.

5
Permissions, Access,

and Security

In this chapter we will cover:

 f Creating and managing user accounts – useradd

 f Working with passwords

 f Working with file permissions

 f Working with firewalls and router settings

 f Working with Secure Linux – SELinux

 f Using sudo to secure a system

 f The /tmp directory

Introduction
This chapter will serve as a brief review of Linux file permissions, and how access to the
machine is handled by the password system. It will also show how to work with the security
features in the firewall and router, and mentions SELinux and sudo.

Creating and managing user
accounts – useradd

In this section we will show you how to add a user account using the useradd program.

Permissions, Access, and Security

76

Getting ready
These commands should not be destructive to your system; however, you will need to be
the root user.

In most Linux distributions there are two versions of this command,
useradd and adduser. They do not always do the same thing, so
consult your man page (and/or the file command) to make sure you
are running the proper one. On Fedora, adduser is a symbolic link to
useradd and so they are equivalent.

How to do it...
Here we will run the useradd command to add a user and the passwd command to set
the password. There is more discussion of passwd in the following section:

1. Firstly, we will be changing /etc/passwd, so let’s make a backup copy of it.
Run the following command: cp /etc/passwd /tmp/passwd.orig

2. Now let’s create a user named test1:
useradd test1

3. It should have returned silently back to the command line. Now let’s try it:
su - test1

4. You should see the prompt change. Run whoami, it should say test1. Be sure
to run this every time you use su. Now let’s change the password:
run passwd

5. It will say something like Changing password for user test1. But then it prompts
for the current password. What does this mean? What password does it want?

6. I don’t really know the answer to this and the man pages are useless. They always
skip this step, which is rather odd. There are ways to do this using the crypto function
and some other complicated procedures. However, the following is my approach:

7. Press Ctrl + C to come out of the passwd command and run exit to return to the
root account. Now edit /etc/passwd and go to the bottom line. 1003 below will
probably be different on your system, but you should see
a line similar to this:
test1:x:1003:1003::/home/test1:/bin/bash

8. Delete the x, so that the line now looks like:
test1::1003:1003::/home/test1:/bin/bash

Chapter 5

77

9. Save the file and exit. If you get a permission error remember you have
to be root for this procedure.

10. Now run su to become the test1 user again:
su – test1

11. Run passwd.

12. Hey, cool, it’s not asking for the current password this time. So go ahead
and create one now as we really don’t want an open account on the system. If you
plan to keep this account I suggest writing this password down or even better putting
it into an encrypted file somewhere safe.

13. After entering the same new password twice you should get a message similar to:
passwd: all authentication tokens updated successfully

We now have a new user. Note that in general this user can perform most of the activities on
the command line that he has the proper permissions for. However, depending on the Linux
distribution, the user may not be able to access all resources (the sound system, for example).

Here is a screenshot of useradd –help taken on my Fedora 17 system:

Permissions, Access, and Security

78

There’s more...
The useradd command can do a whole lot more than just create new accounts. You can
change how an existing account works, or when it expires. You can even give a user system
authority so he has almost has much power as root. Consult the man pages or use the –help
option for more information.

Working with passwords
I mentioned the passwd command in the previous recipe. It is used to update a user’s
authentication tokens. You will need to be the root user for this example. We will use
the test1 user created in the above section.

How to do it...
Let’s work with the passwd command a little:

1. From a user account, login to test1 to make sure that still works as expected:
su - test1

2. Enter the password when prompted. This should work without errors.

3. Now let’s lock this account. Exit back to root and run:
passwd -l test1

4. From a user account run su - test1 and enter the password again. It should fail.

5. Go back to root and unlock the account using the command passwd -u test1. Log
in again to make sure it works.

6. Now let’s expire the account. This will force the user to create a new password.
As root run the following command:
passwd -e test1

7. Now as a guest user, log into test1 using the command su - test1.
Enter your password.

8. You will be told to create a new password. Be careful here as you have to enter the
old (current) password again, and then the new one two times. Yes, it does seem
odd that we have to type the old password again, since we just did that.

9. Note that you can delete a password for a user account by running passwd -d
test1. This is easier than editing the /etc/passwd file directly as we did in
the above section.

Chapter 5

79

There’s more...
You can set a lot of other things on a user account. These include the amount of time for
the account to remain active, and when to start warning the user to change their password.
See the man pages for more info.

A word about passwords

In the old days, we would pick a relatively simple password and keep
it forever. We didn’t need to change it all the time, and could use it for
everything, so it was not necessary to write it down. Unfortunately, that has
now changed. Passwords usually need to be a combination of uppercase
letters, numbers, and maybe even special characters. They have to be a lot
longer in length as well. You can’t always use them for everything because
the password rules on one system may differ from the rules on another. For
these reasons I suggest using a different password for every account when
reasonable, and record it somewhere safe. You will most likely have to change
this password at regular intervals.

Working with file permissions
Since Linux was designed to be a multiuser operating system, every file has file permissions
and ownership associated with it. This is to prevent one user from overwriting the files
of another (either intentionally or unintentionally). The root user can (usually) access every
file in the system.

Getting ready
Here is a quick review of basic file system permissions. For this example, it is assumed umask
is set to 0022. Run umask to make sure.

Observe the following ls -la listing of my backup script b:

-rwxr-xr-x. 1 guest1 root 559 Mar 28 12:43 b

Starting from the left, the first position indicates what kind of file this is. A -, as shown, means
this is a regular file. A d there would mean a directory, and an l would indicate it’s a link.
The next three sets of three letters are the file permissions and can be referred to in either
symbolic or numeric mode. We are going to use numeric (octal) mode.

The first three sets, rwx, are the settings for the owner (guest1) of this file. The next three,
r-x, are the settings for the group (root). The third set is for all others. r means the file
is readable, w means it’s writeable, and x means it’s executable.

Permissions, Access, and Security

80

The chmod command accepts one to four octal digits. If a digit is missing it is assumed
to be a leading zero. The first digit sets the user ID, group ID, or the sticky bit. The second digit
selects the permissions for this user, and the third selects the permissions for the others.

So, let’s now change some permissions on a temporary file and see what happens.

How to do it...
Let’s work with some file permissions:

1. Let’s change to the /tmp directory by using the command:
 cd /tmp

2. If the file f1 exists remove it using the following command:
rmf1

3. Using a guest account (in my case jklewis) create a temporary file by using
the command:
ls>f1

4. Now run the following command:
ls -al f1

5. It should show something like the following output:
-rw-rw-r--. 1 jklewisjklewis 131 Mar 29 10:35 f1

6. Those are the default permissions based on the umask command. This indicates
that owner and group have read and write privileges, and others have only read.

7. So how do we change these? By using the chmod command. Suppose this is a script
and we wanted to make it executable. Run the following command:
chmod 775 f1

8. Now run ls -la f1; it should now look like the following output:
-rwxrwxr-x. 1 jklewisjklewis 131 Mar 29 10:35 f1

9. Those xs show that every user can run the file. Let’s do one more. Run chmod 000
f1and then ls -la f1, it will show the following output:
----------. 1 jklewisjklewis 131 Mar 29 10:35 f1

Wow! No one will be able to do anything with this file now, right? Well, no, the owner
of the file can still change the permissions. Speaking of ownership, the chown command
is used to change that field. It is normally run as the root user.

There’s more...
I did not mention the setuid, setgid, or sticky bits. Consult the chmod man page
for information on these settings. The restricted deletion bit is mentioned in The /tmp
directory section.

Chapter 5

81

Working with the firewalls and router
settings

A firewall is used to prevent unauthorized network access to a machine(s) while still allowing
normal (or legal) traffic to pass through. The iptables command is used to set up, configure,
and view the tables of the IPv4 rules in the kernel. It is somewhat complicated and so this will
serve as just a simple overview.

iptables uses one or more tables. Each table has a number of pre-made chains and can
also contain user-created chains. A chain is a list of rules, and a rule specifies what to do
with a packet that matches. This “match” is called a target.

When a packet does not match, the next rule in the chain is looked at. If it does match, one
of the following can be specified for the packet:

 f ACCEPT: It allows the packet to pass on

 f DROP: It rejects the packet

 f QUEUE: It passes the packet on to the user space

 f RETURN: It stops the running of this chain and continues at the next rule in the
calling chain

How to do it...
Here are a few iptable commands. Do not run these commands on your system; this
is an example only:

1. To delete all existing rules, use the following command:
iptables -F

2. To block a specific IP address, use the following command:
iptables -A INPUT -s 192.168.1.115 -j DROP

3. To allow loopback access, use the following command:

iptables -A INPUT -i lo -j ACCEPT

iptables -A OUTPUT -o lo -j ACCEPT

Now let’s talk about routers. Most routers have a firewall built-in that can be managed
by a web browser. While it does not replace iptables, it is usually easier to configure
and can work across your entire network.

The web page for a typical home router usually has a 192.168.1.1 address. Try it in your
browser now.

Permissions, Access, and Security

82

Here is a screenshot of my router on the Security page:

You may have to enter an ID and password. Consult your router documentation for the
defaults if you haven’t already changed them. Go to the Security (or equivalent) tab
to access those features.

There’s more...
There is a whole lot more to iptables, enough to fill an entire book. For more information
refer to the man pages, or a book on firewalls. There are also quite a few good websites
on the topic.

Working with Secure Linux – SELinux
This section will serve as an overview of Security Enhanced Linux (SELinux). In the Working
with file permissions section, we discussed how standard Linux provides protection for the
system. This method is called Discretionary Access Control (DAC), and has some limitations.
For example, a typical user could open his files up, either accidentally or on purpose, for any
other user to read or write. This could allow unauthorized access to sensitive information.
To provide more security, SELinux uses MAC (Mandatory Access Control). MAC uses
a security policy that covers all processes and files in the system. All files in SELinux have
labels that contain security-relevant information.

Chapter 5

83

For example, the following is a normal listing of a file under DAC:

ls -la ifcfg-eth0

-rw-r--r--. 1 root root 73 Apr 22 2011 ifcfg-eth0

Same file, but with the Z (security context) option to ls:

ls -Z ifcfg-eth0

-rw-r--r--. root root unconfined_u:object_r:default_t:s0ifcfg-eth0

unconfined_u is the user, object_r is the role, default_t is the type, and s0 is
the level. This info is used to make access control decisions. Note that the normal DAC
rules are checked first, if they do not allow the action then the SELinux rules are not used.

Getting ready
We are only going to run some commands as root and view some of the settings. We will
not be making any changes to the configuration. This example will assume you are already
running SELinux in Enforcing mode. To determine if this is so run the sestatus command.
The output should be similar to the following screenshot

How to do it...
Okay, so let’s run some SELinux commands.

1. Run getenforce; it should report enforcing.

2. Now let’s view the list of mappings:
semanage login -l

3. To view the SELinux contexts for processes run the following command:
ps –eZ

4. To view the context for user run the following command:
id –Z

Permissions, Access, and Security

84

5. The sealert command is used to view the complete SELinux message when
an error occurs. Check your /var/log/messages file to see if any alerts have
been generated, and if so can run sealert -l on the number to get a detailed view.

6. To get a detailed list of the SELinux Booleans with descriptions run the
following command:
semanage boolean –l

7. To see the list but without the descriptions run the following command:
getsebool –a

8. To check if files and directories have the correct SELinux context run the
following command:
matchpathcon

There’s more...
As I mentioned SELinux is normally installed by default in most distributions. In some cases
you may not even realize it is there. However, at times it will get in your way. If you try to install a
service, for example, vsftpd, it may fail because it will violate the SELinux policy. It will usually
pop up a fairly decent error message. The message may even tell you how to fix the problem,
however, I have found in practice that it doesn’t work. You perform the action(s) it gives, it seems
to run without error, but then the access is still denied. In these cases I use the setenforce
command to put SELinux into Permissive mode and then carry on with my activity:

setenforce 0

Note that this only works until the next reboot.

For more information on SELinux there is a rather excellent guide on the Fedora website.

Using sudo to secure a system
There may be times, especially if you are a system administrator, when you would like
to give a user more access to the computer, but not actually root authority. This can be done
by modifying the /etc/sudoers file and having your users invoke the sudo command.

Getting ready...
The following steps should not harm your system. We will perform these with a user account
made above. You will need to be the root user for this section.

Chapter 5

85

How to do it...
Here we will work with the /etc/sudoers file:

1. Make a backup copy of your /etc/sudoers file:
cp /etc/sudoers /tmp/sudoers.orig

2. You don’t edit this file directly, the visudo command is used. This is poorly named
as any text editor can be used if you export the EDITOR variable accordingly. Set
the variable if desired then run the command:
visudo

3. This command makes a temporary copy of the sudoers file and edits it. If all goes
well it then copies the temporary file over the original when you are done. So, let’s
take a look at this file.

4. Read the section on aliases. They are divided into groups for things such as
networking, software, services, locate, and others. For now let’s just jump in
and see how this works.

5. But first let’s try something. Open another session as a guest user. I’ll use my
jklewis account.

6. Under the jklewis account type the following command:
cd /tmp

7. Create a file using the command:
ls>f1

8. Now try to copy that file to /usr/bin:
cp f1 /usr/bin

9. You should have received an error. This is correct of course, a normal user can’t
normally write to the /usr/bin directory. Now go back to your visudo session.

10. You will need the hostname for your machine. For this example we will use the
numeric IP. You can obtain that from the ifconfig command if needed.

11. Just after the lines that mention the shutdown command we are going to add a line
for our guest user. The syntax is username, hostname, commands, and options,
so add the line:
jklewis 192.168.1.115=(ALL) ALL

12. Save the file and close the visudo session. Now try this command again. While still
in the /tmp directory run cpf1 /usr/bin. It should still give the error message.
Now try it like the following command:
sudo cp f1 /usr/bin

Permissions, Access, and Security

86

13. Ah, it’s asking for a password, right? Yes, and it’s asking for the user’s password,
not the one for root. This can be easy to confuse (well, it was for me anyway). The
best way to remember this is you probably aren’t supposed to know what the root
password is. Enter yours.

14. If this is the first time sudo is being used by this user an interesting notice may
pop up. Read it and understand it to avoid the wrath of your system admin.

15. After all of this the command should proceed without error this time. Pretty cool, huh?
Since we used ALL in the line we added to the sudoers file it effectively has given
this user full access. Note that some things will still not work the same, redirection
for one.

16. Okay, so we probably don’t really want this jklewis jerk messing up our system,
so let’s fine tune this a bit. Run visudo again.

17. Scroll down or search for Processes. Uncomment the # Cmnd_Alias PROCESSES
line by removing the # mark.

18. Scroll back down to the jklewis line we added earlier. Change it to read:
jklewis 192.168.1.115=(ALL) PROCESSES

19. Now we need a process to kill. As root start up a vi session. Something like vi
mybook will work.

20. In your user session run psauxw | grep”vi mybook” and remember the process
number (PID).

21. Also in your user session run kill -9 on the above PID. It will give an error. Now run
it again but with like the following command:
sudo kill -9 <pid>

22. The process with vi should be killed.

If the screen stays blue or some other color just run the ls
command. That should clear it up.

Chapter 5

87

The following is a screenshot of my /etc/sudoers file:

There’s more...
You can see from the sudoers file that a lot of fine tuning can be performed on it. Users can
be given very little extra authority, or a whole lot. For more information run man sudoers.

Here’s my two cents on sudo. There are many computer users who can be trusted to run as
root without harming the system. However, there are exceptions. If you set up sudo you might
spend a whole lot of time trying to get it just right, only to find that you are always having to
add more things. Your users will get upset because they can’t do their work until you make
the changes. Then, when you think you finally have it just right, someone, using sudo, will still
mess up and mess up bad. It has been my experience that if a user makes this mistake once,
he will do it again and again.

The /tmp directory
The /tmp directory is somewhat special as by default it allows all users to write files to it. Here
is what the listing for /tmp looks like on my system:

drwxrwxrwt. 10 root root 4096 Mar 31 03:48 tmp

You can see this is open for everyone. The t in the permissions indicates that the restricted
deletion bit is set on the directory. So what does this actually mean? For directories, it
prevents normal users from removing or renaming a file in the directory that they don’t have
the proper permissions for.

www.allitebooks.com

http://www.allitebooks.org

Permissions, Access, and Security

88

As a normal user you still need to be careful when writing to /tmp, as there are
some restrictions.

How to do it...
Let’s try a few things to get an idea of how /tmp works:

1. Run the following command:
cd /tmp

2. If there are any temporary .txt files lying around from earlier sections clean them
up; an rm *.txt file should do it.

3. Now run the following command:
ls>root1.txt

4. In another session, as a guest user (I’ll use jklewis), run the following command:
cd /tmp

5. Run the following command:
ls>jklewis.txt

6. This should work without error. Now try:
 ls>root1.txt

7. You should have received the Permission denied error. Why? Because even though
normal users can all write to the /tmp directory, the normal file system (DAC)
permissions must still be followed.

There’s more...
For the reasons outlined above I would suggest not using the /tmp directory for anything except
for truly temporary files. In addition, most distributions routinely clean out /tmp and so anything
not owned by root is going to get deleted. Remember all of this when generating temporary files
especially when writing scripts (more on that in Chapter 8, Working with Scripts).

6
Processes

In this chapter we will cover the following topics:

 f Understanding processes

 f Examining processes with ps

 f Examining processes using top

 f Changing priorities with nice

 f Observing a process using the /proc filesystem

Introduction
All the programs running in Linux are processes. In this chapter, you’ll learn how to view their
status by using ps and top, how to set the priority at which they run, and how to view the
internals of a process by using the /proc filesystem.

Understanding processes
Every process has a unique identifier called a Process Identifier (PID). Also, every process
has a Parent Process Identifier (PPID). There is an exception, init (or systemd). The init
process starts all other processes and has a PID of 1. This process is special because it
cannot be killed (and any attempt to do so is often fatal).

Similar to files, a process also has access permissions. These are referred to as the Real user
and Group IDs. This provides a level of protection by not allowing unprivileged users to access
critical operating system tasks. Memory, open files, and other resources are owned by the
process and are kept separate from other processes (in most cases).

Processes

90

From the user’s perspective, a process is typically started from the command line or desktop.
Take editing a file with vi, for example. The user starts the session and works interactively
with the editor. He can save the file or edit another one. As long as the session is active,
there is a PID associated with it. When the user terminates vi, the PID and all the associated
resources are terminated as well. That PID will be recycled and used by the OS again later.
A program run is this way is called a foreground process.

A process can also be run in the background. For example, in Chapter 4, Networking and the
Internet, we ran the browser with the firefox & command. The ampersand puts the process
into the background, freeing up that terminal for more input/output. Note that messages
coming from the application (Firefox in this example) will still be output to that terminal. This
can really be helpful when debugging. Also note that a process run in the background tends
to run at a lower priority than a foreground task (more on priorities later). In the old days,
background processes were also commonly referred to as jobs.

There are some special file handles associated with each process:

 f Standard input (stdin): A process takes its normal input from here (Handle 0)
 f Standard output (stdout): A process writes its normal output to here (Handle 1)
 f Standard error (stderr): A process writes its error output to here (Handle 2)

The following is a screenshot showing the standard handles:

Other files opened by a process start at handle 3. There are some processes that have been
given special names. For example, many of the processes on a Linux system are run in the
background and, in most cases, are never meant to be run from the command line. These are
called services or daemons. The Hypertext Transfer Protocol Daemon (HTTPD) web process
is a good example of a service.

Chapter 6

91

Typically, a service waits for an event or events to occur, performs an action or some actions,
and then goes back to waiting again. If a service logs any activity, it will generally do so to
the /var/log/<service-name> directory.

If the terminal a background job was started from is terminated,
the background job will end as well. Some Linux distributions will
attempt to warn the user of this condition.

How to do it…
The following is a brief list of commands one can use to look at processes:

 f To see a snapshot of the processes currently running on the system:
ps auxw

 f To see the processes in real-time run:
top

 f To see all the types of process directories:
ls /proc

There’s more...
A process can spin off other processes. It can also spin off threads. A thread inherits all
the handles and resources of the parent. It is generally used in programming to perform
a small task concurrently, while the main task is running, and return quickly.
Are there limits on the resources? Yes. The ulimit command is used to view and set the hard
and soft limits on a process. It is not normally needed by the user; however, if you’re curious,
run ulimit -a on your system. You should see an output similar to the following screenshot:

For more information on ulimit, consult the man page.

Processes

92

Examining processes with ps
The ps program allows the user to see a snapshot of the processes running on the system.
By using the appropriate parameters, the output can be changed to include more or less
information. For this section we will run as root, and use the BSD style ps. The options
may be grouped, and no dash is used.

How to do it...
Carry out the following steps to run ps:

1. Running just ps with no parameters will give something like the following output:
 Big4 /temp/linuxbook/chap6 # ps

 PID TTY TIME CMD

 5197 pts/25 00:00:00 su

 5218 pts/25 00:00:00 bash

 17789 pts/25 00:00:00 ps

2. Since this is not very informative, let’s show every process that has a TTY:
ps a

3. Now, include the processes that don’t have a TTY:
ps ax

4. Display the output in a more user-oriented format: ps aux. Note the change in
the header.

5. If the lines are cut off at the end on your system, add the wide option using the
following command:
ps auxw

6. There sure is a lot of output. Here are some ideas on how to deal with it:
ps auxw | more

7. You can redirect the output to a file as well: ps auxw > ps-output.txt
and then view it with more or vi.

8. You can also use grep to find a particular process ID. In another terminal,
run the following command:
vi file1.txt

9. Now back in your original terminal, run the following command:
ps auxw | grep file1.txt

Chapter 6

93

10. You should see a line containing the text vi file1.txt. This is the PID you
are looking for and one of the most common uses of ps.

11. You can also show a tree view of the processes:
pstree

How it works...
The ps command gets its information from the /proc file system. Every running process
has an associated entry here. We will discuss /proc in more detail later in this chapter.

There’s more...
The BSD style header will look something like the following:

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

The definitions of each of the terms are given as follows:

 f USER: It is the owner of the process

 f PID: It is the process identifier

 f %CPU: It gives the CPU time divided by the time the process has been running for

 f %MEM: It gives the ratio of the process memory to the physical memory

 f VSZ: It contains the virtual memory size of the process

 f RSS: It contains real memory resident set size

 f TTY: It represents the terminal associated with this process

 f STAT: It represents the process state

 f START: It gives the time the process started

 f TIME: It gives the total CPU time

 f COMMAND: It is the name of the command

The ps command has quite a few other options to it. You can view threads, get security
(SELinux) info, tighten what is displayed by the username, and change the output format.
You can even modify some environment variables to change how ps works. See the man page
for more information.

Processes

94

The following screenshot gives an idea of what ps - auxw looks like on my Fedora 17 system:

Examining processes using top
The top program is similar to ps except that it shows the state of the system in real time.
You can control how it operates using command line switches and/or its interactive interface.
It can also use a configuration file. You can do quite a bit with top. The following are some
examples of what is possible.

Getting ready
No special setup is needed. These commands will be run as root.

To get help for top, you can run the following command line:

 top -h or -v

Chapter 6

95

These are equivalent and show the library version and usage.

The general syntax for top is as follows:

 top -bcHisS -d delay -n iterations -p pid [,pid...]

The following is a screenshot of top running on Fedora 17:

How to do it...
Following are some examples using the command line switches:

1. To update the screen every 2 seconds:
top -d 2

2. To update the screen every half second:
top -d 0.5

3. To update 10 times and then quit:
top -n 10

4. To do both:
top -d 0.5 -n 10

Processes

96

5. To update the screen immediately, press Spacebar or Enter.

6. To monitor a specific PID, use the -p option. This will show the init (or systemd)
process:
top -p 1

7. Let’s monitor a few processes. First, run ps auxw and remember the PIDs for
four processes.

8. Then run top, substituting the PIDs obtained previously:
top -p pid1,pid2,pid3,pid4

9. To omit showing idle processes, run the following command:
top -i

10. To also show threads, run top -H. To monitor only the processes for a certain user,
the syntax is top -u <username>. Try it with root:
top -u root

11. You can run top in the batch mode. For example, to save the output to a file:

top -b -n 10 > top1.txt

The following are some examples using the interactive commands. Start top and follow along:

1. To show just the processes owned by a particular user (root in this example),
press U and then enter root.

2. To change the delay time, press D and then enter a time by pressing D followed by 1.

3. To show all the CPUs on a multi-core machine, press 1 (press 1 again to
toggle back).

4. To toggle the showing of the command line versus the program name, press C.

5. To change the nice setting on a process, press R and then enter the
priority desired.

6. To activate Secure Mode, press S (see Secure Mode explained afterwards).

7. To send a signal to a process, press K and then enter the signal to send.
Be sure you have the correct PID and signal before performing this action.

8. To write the configuration file, press W. This will create the file .toprc in the user’s
home directory and will use the settings in it on the next startup of top.

9. To display the Help screen, press H.

10. To quit top, press Q.

Chapter 6

97

How it works...
The following is a description of the first five lines shown in the previous screenshot:

 f top: It contains the time of day, machine uptime, number of users, and load average

 f Tasks: It gives the number of total tasks, number currently running, sleeping,
stopped, and zombie

 f Cpu(s): The different types of CPU states are as follows:

 � us: It represents the user time

 � sy: It represents the system time

 � ni: It represents the nice time

 � id: It represents the idle time
 � wa: It represents the I/O wait time
 � hi: It gives the time spent servicing hardware interrupts
 � si: It gives the time spent servicing software interrupts
 � st: It represents the stolen CPU time

 f Mem: It gives the total memory in machine; used, free, and buffers in KBs

 f Swap: It gives the total swap space; used, free, and cached in KBs

The following are the definitions for the standard header. Note that these can change based
on command line options or interactive commands:

 f PID: It defines the process identifier
 f USER: It holds the username of the owner of this task
 f PR: It holds the priority of this task
 f NI: It consists of the nice value (more on priorities in the next section)
 f VIRT: It exhibits the total amount of virtual memory used by this task
 f RES: It gives the physical memory used by this task
 f SHR: It gives the shared memory used by this task
 f S: It stands for the process status, which will be one of the following:

 � S: It stands for sleeping
 � D: It means uninterruptible sleep
 � R: It shows the process is running (or ready to run)
 � T: It shows that the process has been traced or stopped
 � Z: It signifies the zombie status

Processes

98

 f %CPU: It gives the share of the elapsed CPU time since the last update, expressed
as a percentage

 f %MEM: It holds the currently used share of available physical memory, expressed
as a percentage

 f TIME+: It gives the total CPU time used by this task since it began running

 f COMMAND: It is the command used to start this task

There’s more...
In addition to the user configuration file, there can also be a global file. It is named /etc/
toprc and consists of only two lines given as follows:
S # Line 1: secure mode switch

2.0 # Line 2: delay in seconds

This file is created manually by the root user. If this file exists, it activates the Secure Mode
and changes how top operates:

 f A different version of the Help screen is shown

 f A user cannot kill a task

 f A user cannot renice a task

 f A user cannot change the delay interval of top

If top doesn’t appear to be working as you expected, check for the existence of the
configuration files both for the users and root. There are plenty of other things you can do with
top. You can change how the fields are arranged and sorted. You can change the color and
highlighting. There is a multiple window option too. For more information, see the man page
for top.

Chapter 6

99

The following is a screenshot of top on my Fedora 17 system:

Changing priorities with nice
The nice command allows you to adjust the priority a process runs at. Modern-day operating
systems usually do a great job of task scheduling. However, a particular process may require
some tweaking on occasions. Here, we will show how to use nice.

The priority is referred to as the niceness level. The range of niceness a process can have
goes from 19, which is the least favorable, down to a maximum of -20, which is the most
favorable (if this seems backwards to you, it does to me as well).

Most favorable________________________Least favorable

 20 __________________________________19

 Highest priority________________________Lowest priority

Processes

100

You may recall the NI column from the previous section on top. This is the niceness setting
and on Fedora, several services run at the most favorable setting of -20.

Note that changing the niceness setting of a process is not a guarantee that the OS will honor
it. It is simply a suggestion to the scheduler.

Also note that the command given to nice must not be a built-in command.

The syntax for nice is as follows:

 nice [Option]... [Command [Arg] ...]

How to do it...
Now, let’s run a few nice commands:

1. To see the current nice value, run nice by itself:
nice

2. Now run nice on itself:
nice nice

3. See the output of 10? That’s the default adjustment if none is given.

4. Now set it to the maximum value:
nice -n -20 nice

5. For the minimum value:
nice -n 19 nice

6. Now let’s try something else. In another terminal, run the following command:
nice -n 15 vi testfile.txt

7. Then find its PID:
ps auxw | grep testfile.txt

8. Now run top on the previous PID:
top -p <pid>

9. The nice column (NI) should show a niceness of 15.

Chapter 6

101

The following is a screenshot showing nice running on Fedora 17:

There’s more...
Unlike most other Linux programs, there isn’t anything more to nice. If you try to set it
above the maximum of 20, it will still use 20 and if you try to set it lower than the minimum
of -19, it will use -19. Also, the top program allows you to adjust the niceness level
of a process dynamically.

Observing a process using the /proc
filesystem

The /proc filesystem is where Linux stores the data related to the currently running
processes. In most cases, a casual user would probably never (hopefully never) need to know
this information. However, it can be really helpful during debugging, or if you just want to know
about some of the internals of Linux.

Processes

102

How to do it...
The following steps explain how to see the information contained in /proc:

1. Let’s try an experiment in /proc as root run:
file uptime

2. It shows uptime: empty, right? So if we cat it, there should be no output ideally,
right? Try it:
cat uptime

3. Wow, so how did that happen? The files in /proc are special because the information
is read out of them in real time. Let’s try some more and run the following command:
cat interrupts

4. Now run cat version and cat meminfo.

5. In another session, run the following command:
vi test5.txt

6. Let’s find its PID:
ps auxw | grep “vi test5.txt”

7. Change to that directory in /proc: cd /proc/<pid-from-above>.

8. Now change the directory to the File Descriptor (FD) directory:
cd fd

9. Run the ls -la command. You should see something like the following output:
Big2 /proc/20879/fd # ls –la.

 total 0

 dr-x------. 2 root root 0 Apr 11 16:27 .

 dr-xr-xr-x. 8 root root 0 Apr 11 16:27 ..

 lrwx------. 1 root root 64 Apr 11 16:27 0 -> /dev/pts/10

 lrwx------. 1 root root 64 Apr 11 16:27 1 -> /dev/pts/10

 lrwx------. 1 root root 64 Apr 11 16:27 2 -> /dev/pts/10

 lrwx------. 1 root root 64 Apr 11 16:27 4 -> /tmp/.test5.txt.
swp

You can see this is indeed our session of vi editing the test5.txt file. Note that the file
shown is a temporary file created by vi and left open during execution.

Chapter 6

103

There’s more...
The following screenshot shows a listing of the /proc directory on the Fedora 17 system:

So what does all of that mean? The numbers are, as you may have guessed, process IDs.
Every process will have a number here, which are actually directories that contain practically
everything you would ever want to know about that process.

The following are what some of those files are for. I didn’t list each one but covered the ones
that I think are the most interesting:

 f buddyinfo: It contains data about nodes and memory

 f cgroups: It contains data about CPU groups

 f cmdline: It is the command line given to start the process

 f consoles: It gives information about consoles

 f cpuinfo: It has a very informative listing of the CPUs in your system

 f crypto: It contains information about the crytographic routines available
in the system

 f devices: It has a list of the devices

Processes

104

 f diskstats: It has a list of the disk statistics

 f dma: It has a list of DMA

 f filesystems: It gives a list of the filesystems available

 f interrupts: It contains a very detailed listing of the interrupts being used
by the system

 f iomem: It gives the I/O memory information

 f ioports: It gives the I/O port information

 f kallsyms: It consists of a list of the OS symbols

 f kcore: It represents the memory image of this machine

 f meminfo: It contains a very detailed list of how memory is being used by the system

 f modules: It contains a list of the modules used by the system

 f mounts: It contains a list of the mounted filesystems (real and virtual) in the system

 f partitions: It contains a list of the partitions

 f slabinfo: It consists of a list of the slab memory objects

 f softirqs: It is another IRQ listing

 f uptime: It gives the amount of time the machine has been up (see the
uptime command)

 f version: It is the kernel version (see the uname command)

 f vmstat: It gives the virtual memory statistics

 f zoneinfo: It is another rather detailed memory listing

With a few exceptions, you can cat most of these files to get at important internal data. Note,
do not cat (or do anything else with) the kcore file. Do not try to edit these files. Also, if you
cat a file and nothing seems to happen, pressing Ctrl and C should make you back out.

Programs written in a language such as C can take advantage of the information in /proc
 to do some pretty cool things. For example, I have developed code that can allow a program
to determine if it was run normally to the screen, or redirected to a file. The program can
then take appropriate action, for example, clear the screen if run normally, and not clear it
if redirected to a file. This way, control codes don’t get embedded in the file. I have another C
code that can determine the full path and filename of any file currently opened by the program.

Chapter 6

105

The following is another screenshot of top:

This was created by running top and then pressing Z. You can customize top quite a bit.
See the man page for more information.

7
Disks and Partitioning

In this chapter we will cover the following topics:

 f Using fdisk

 f Using mkfs to format a drive

 f Using fsck to check the filesystem

 f Logical Volume Management (LVM)

Introduction
When installing a machine, you can take the defaults or set up your disk(s) practically any
way you want. Here is a brief review of partitions and filesystems. A typical Linux system
usually has at least three separate partitions. They are labelled /, /boot, and swap. The /
(pronounced root) is the parent of the directory structure. /boot is where the system kernel
and map files reside. The swap partition is used when parts of memory need to be moved
to the hard drive because of over-commitment. This is called being swapped out to disk.

The following are usually on separate partitions:

 f /: It is the parent directory

 f /boot: The boot and map files are located in here

 f (swap): It signifies the swap space

The following are traditionally on a separate partition, but do not have to be:

 f /home

 f /tmp

 f /etc

 f /var

Disks and Partitioning

108

Here is a partial list of the filesystems and directories and their general use, that are normally
present on a Linux system. This is taken from Fedora 17 64-bit:

 f /: It is the parent directory.

 f /boot: The boot, map files, and system kernel are present in it.

 f (swap): It stands for the swap space.

 f /root: It is the home directory for the superuser.

 f /home: The user directories go here (for example, /home/guest1, which has been
used throughout this book).

 f /tmp: It is a directory that has the file deletion bit set. Temporary files can be placed
here by users and various other programs. A cron job run by root cleans
/tmp at periodic intervals (usually once a week).

 f /usr: It consists of the operating system's (OS)’s parent user directory.

 f /usr/bin: It has the OS’s executable programs.

 f /usr/etc: It contains the OS’s configuration files.

 f /usr/games: It consists of the games provided by the distribution.

 f /usr/include: It includes files for programming languages such as C.

 f /usr/lib: It contains the OS’s library files.

 f /usr/lib64: It consists of the OS’s library files of 64 bit versions.

 f /usr/local: The user programs can be placed here by the system admin for
their use.

 f /usr/sbin: It has the OS’s executable programs used by the system.

 f /usr/share: It includes the OS’s shared programs and files.

 f /usr/src: The OS’s kernel source, include, and make files are placed here

 f /dev: It represents the device directory. For example, the /dev/sda device points
to the first SCSI hard drive.

 f /lib: It is a symbolic link to /usr/lib.

 f /lib64: It is a symbolic link to /usr/lib64.

 f /mnt: It is used as a mount point.

 f /opt: It represents the optional files.

 f /var/logs: It consists of the OS’s logs.

 f /var/spool: It contains the printer files.

 f /var/run: The OS keeps data on running programs here.

 f /run: It is the symbolic link to /var/run.

 f lost+found: It is where the OS keeps track of filesystem data.

Chapter 7

109

 f /etc: It is pronounced etcetera and stands for everything else. Configuration files
tend to be located here.

The different types of virtual filesystems are as follows:

 f /proc: The OS keeps track of processes here. See the previous chapter for more
information.

 f /sys: The OS keeps track of other processes in this directory.

Some other useful terms have been defined in the following list:

 f device: It refers to the entire disk. For example, the first SCSI disk is normally named
/dev/sda.

 f partition: It is the device name followed by a number. The first SCSI partition would
be /dev/sda1.

 f filesystem: It defines the type of filesystem being used. Some examples are ext2,
ext3, ext4, vfat, and xfs.

 f mount point: It is the directory that points to the partition. The /etc/fstab file
contains a table showing mount points and the partitions they are associated with.
This file, which is created by a system installer such an Anaconda, can be manually
edited by the superuser to add or delete devices and mounts.

The boot partition is where the operating system kernel and other startup files are located.
Here is a description of the files found in /boot:

 f vmlinuz: It represents a symbolic link to the kernel. For example, it points to
vmlinuz-2.6.35.6-45.fc14.x86_64 on Fedora 14.

 f initramfs: It represents the initial RAM disk. On Fedora 14, it is named as
initramfs-2.6.35.6-45.fc14.x86_64.img.

 f config: This file is used to configure the kernel. We will see more on that in Chapter
10, The Kernel. On Fedora 14, it is named as config-2.6.35.6-45.fc14.x86_64.

 f map: This is the system map file, which contains entry points into the various kernel
routines. On Fedora 14, it is named as System.map-2.6.35.6-45.fc14.x86_64.

The initial RAM disk needs a bit more explanation. This file contains all the device drivers
needed to get the kernel loaded and running. For example, the kernel needs to access
the hard drive in order to boot up. If it needs a special driver for this (that is, if it can’t
be accessed by the BIOS alone), it must be located in the initramfs file or else it will not
be able to complete the process. The initramfs file is created during system install, and can
be modified by an experienced person. This is normally done when testing and/or using a new
hardware. This is a compressed GZIP file that is uncompressed and placed on a ram
(in memory) disk during boot up.

Disks and Partitioning

110

The following is a snapshot of /boot and the file command on my Fedora 17 system:

The df program is used to report the filesystem disk space usage statistics. The following
output is a df -h listing from my Fedora 14 system. The -h parameter puts the output into
a more human readable form (useful on large disks):

Big4 ~ # df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda3 97G 48G 45G 52% /

tmpfs 5.9G 780K 5.9G 1% /dev/shm

/dev/sda1 485M 51M 409M 12% /boot

/dev/sda2 385G 124G 242G 34% /data

/dev/sda5 49G 8.3G 38G 19% /lewis

/dev/sdf1 932G 243G 690G 27% /megadrive

/dev/sdg1 7.3G 3.1G 4.3G 42% /usb

The first column shows the partition of the filesystem. The second shows the size of the
partition. The third is the amount used followed by the amount still available. The Use%
is the percentage used, and the last column is the mount point.

Chapter 7

111

This output tells you a lot about how I set up this system. I did not make separate partitions
for /home, /tmp, /etc, or /var. They are all in the same partition under /. I have the
required /boot partition which I made larger than the default since I frequently build new
kernels. There is a separate /data and /lewis partition. All the mentioned partitions are on
the /dev/sda device. So what device and partitions are /dev/sdf1 and /dev/sdg1? The
first is an Iomega external USB drive and the second is an 8 GB Universal Serial Bus (USB)
stick. These are used for backups, just in case the primary drive goes out.

The fsck program is used to check and optionally repair damaged filesystems. It can check
multiple filesystems in parallel to speed up processing. If no parameters are given, fsck
defaults to checking the filesystems in the /etc/fstab file.

When using partitions, you must keep in mind where a directory is mounted on. For example,
suppose the space on / is getting tight and so you decide to delete some big files that are
located in the /tmp directory. You need to first make sure that /tmp is indeed mounted on /,
and not on its own partition. It is easy to make this mistake, so keep it in mind. This is even
more of an issue if you are the system administrator for a lot of machines that are not all set
up the same way.

Using fdisk
The fdisk program is used to manipulate the disk partition table. You can create, modify,
and remove partitions with this utility.

Getting ready
You may follow along with these commands as long as you do not use the write table to disk
action. However, just to be safe you may want to use a USB stick, or some other drive or
system you don’t care about.

The syntax for the interactive version of fdisk is fdisk <device-name>. I will be using
a 4GB USB stick, /dev/sdb for this example. Remember that fdisk works with the entire
device, so you do not use a partition number when starting the command. We will perform
these actions as root.

Disks and Partitioning

112

The following is a screenshot showing fdisk on Fedora 18:

How to do it...
Carry out the following steps for running fdisk:

1. Start the command by running fdisk on the device:
fdisk /dev/sdb

2. To display the Help menu: enter an m. It brings up the list of actions that can
be performed on this device.

3. To display the partition table: enter a p. A list of the partitions on this device
will be displayed.

4. In the case of my USB stick, there is only one partition. So let’s delete it:
enter a d

5. Since there was only one partition, it was deleted by default. Now let’s add one:
enter an n

6. Since this is the first partition, press a p for Primary.

Chapter 7

113

7. Now run enter a 1 and take the default starting sector.

8. We now have to enter a size. This can be done by the sector number or size. Let’s use
size and make it 1 GB:
enter +1G

9. Run enter a p again to see what we have. You should see something like
the following output:
 Command (m for help): p

 Disk /dev/sdb: 4009 MB, 4009754624 bytes, 7831552 sectors

 Units = sectors of 1 * 512 = 512 bytes

 Sector size (logical/physical): 512 bytes / 512 bytes

 I/O size (minimum/optimal): 512 bytes / 512 bytes

 Disk identifier: 0xc3072e18

 Device Boot Start End Blocks Id System

 /dev/sdb1 2048 2099199 1048576 83 Linux

 Command (m for help):

10. This looks good. Now let’s add another one and then take the defaults:
enter n, then p, then 2, and the default first sector

11. For size, let’s use 2 GB this time:
enter +2G

12. To see what it looks like:
enter a p

13. The table should now show two partitions. At this point, you could continue to make
more partitions, or save the table. You can always make more partitions later if you
have the required disk space.

14. For this example, we will quit without saving the changes:
enter a q

15. To make sure nothing went wrong, run fdisk /dev/sdb -l to get a listing.
It should show the same as when we started.

There’s more...
You may have noticed some other actions available on the fdisk help screen. You can
change the way the units are displayed, list the known partition types, and a few other things.
For more information, consult the fdisk man page.

Disks and Partitioning

114

Using mkfs to format a drive
The mkfs command builds a filesystem on the device (similar to formatting a drive).
It determines the filesystem type and calls the appropriate mkfs.<type> program.
For example, if you were to run mkfs -t ext4 /dev/sdb5, it would actually run the mkfs.
ext4 program. The mkfs options are as follows:

 f -t: It specifies the type of filesystem desired
 f -V: It produces verbose output
 f -V: It displays version information if used as the only parameter
 f -h: It displays a help screen

Note that no other parameters are passed to the filesystem’s specific program. Also note that
in some cases, a size value needs to be provided.

Getting ready
The mkfs program will destroy any data currently residing in the partition. So, make sure
you have taken the desired backups before proceeding with this command. Once this action
has been taken, it cannot be reversed. If you would like to follow these steps, you should first
practice on a USB stick or some other device you don’t care about.

Be sure to unmount the partition before proceeding.

How to do it...
Carry out the following steps for formatting a partition in Linux:

1. For this example, I have inserted a USB stick (one I don’t care about). To make sure we
have the correct device, run dmesg and look at the last line:
dmesg | tail -20

2. On my system, it shows the device is /dev/sdh1 (substitute your device accordingly).
It did not mount it, so I am ready to proceed. However, if yours is auto-mounted, you
should be able to unmount it by running:
umount /dev/sdh1

3. Note that the following command will destroy any data on this device. So, be sure
you have backed up anything that want to keep before proceeding!

4. Run the command mkfs -V -t vfat /dev/sdh1. The following output is shown
on my system:
Big2 /temp # mkfs -V -t vfat /dev/sdh1
mkfs (util-linux 2.21.2)
mkfs.vfat /dev/sdh1
mkfs.vfat 3.0.12 (29 Oct 2011)

Chapter 7

115

5. Now mount the device: mount /dev/sdh1 /usb2 (substitute your device and
mount point as you feel appropriate).

6. Run ls -la /usb2. It should look something like the following output:

Big2 /temp # ls -la /usb2

total 8

drwxr-xr-x. 2 root root 4096 Dec 31 1969 .

dr-xr-xr-x. 25 root root 4096 Jun 7 10:04 ..

That’s pretty much it for mkfs. Just be very careful when using this command and double
check everything first before proceeding.

Using fsck to check the filesystem
In order to check and repair a Linux filesystem, the fsck program is used. In reality, fsck
is just a frontend for the filesystem specific checker (similar to mkfs).

The fsck program can be run on different filesystems in parallel to speed up processing.
Note that this feature can be disabled on low resource machines.

In general, the syntax for fsck is as follows:

 fsck [-lsAVRTMNP] [-C [fd]] [-t fstype] [filesys...] [--] [fs-
specific-options]

Getting ready
The fsck program if used incorrectly, can corrupt the data currently residing on the partition.
So make sure you have taken all the desired backups before proceeding with this command.
Once this action has been taken, it cannot be reversed. If you would like to follow these steps,
you may first want to practice on a USB stick you don’t care about.

The device must be unmounted before running the command.

How to do it...
Carry out the following steps to check and run a partition:

1. For this example, I have inserted a USB stick (one I don’t really care about). To
make sure we have the correct device, run dmesg and look at the last line:
dmesg | tail -20

Disks and Partitioning

116

2. On my system, it shows the device is /dev/sdh1 (substitute your device accordingly).
It did not mount it, so I am ready to proceed. However, if yours is auto-mounted, you
should be able to unmount it by running umount /dev/sdh1.

3. We can now run the fsck program. I first want to see what actions it will take and so,
will use the -N option. Run fsck -N /dev/sdh1. The following output is shown on
my system:
Big2 /home/guest1 # fsck -N /dev/sdh1

fsck from util-linux 2.21.2

[/sbin/fsck.vfat (1) -- /dev/sdh1] fsck.vfat /dev/sdh1

4. This looks good, so let’s include a progress bar and run it for real: fsck -C /dev/
sdh1. The following result is obtained on my system:
Big2 /home/guest1 # fsck -C /dev/sdh1

fsck from util-linux 2.21.2

dosfsck 3.0.12, 29 Oct 2011, FAT32, LFN

/dev/sdh1: 1743 files, 234381/977025 clusters

Since there were no problems on this USB stick, the output is not very exciting. I have seen
some really bad errors in the past, and if this happens to you, I suggest getting the data off
the drive as soon as possible, and then either reformatting the drive with mkfs or getting
a new one just to be safe.

There’s more...
The following is a brief list of the options for fdisk along with their functions:

 f -l: It will lock the device before checking and can be used on only one device
at a time.

 f -s: It will serialize the file checking operations. It is useful when checking more
than one filesystem at a time in the interactive mode.

 f -A: It uses the entries in the /etc/fstab file to go through and check all the
filesystems in one run. Typically, the root filesystem is checked first and then the
others based on the values of the passno value. See the man page of fstab for
more information on the available options.

 f -C: It will display a progress bar.

 f -M: It specifies not to check the mounted filesystems.

 f -N: It will show what actions would be performed on this device but does not actually
make them

 f -P: It will check the root filesystem in parallel with the other systems. Don’t ever use
this option.

Chapter 7

117

 f -R: It will skip the root filesystem while checking the others.

 f -V: It will enable verbose output and so its usage is recommended.

The following is a list of options usually supported by the filesystem specific program:

 f -a: It will automatically repair the filesystem without any questions. Be very careful
with this option as I have seen it go horribly wrong on more than one occasion.

 f -n: This option is supposed to tell the specific checker to not perform any repairs.
It is unreliable and so not recommended.

 f -r: It will repair the filesystem interactively. Do not use this option if running fsck
in parallel.

 f -y: It tells some specific checkers to make repairs automatically.

In theory, a journaling filesystem, such as ext3 or ext4, should not need a lot of checking
or repair. If this is not the case on your system, I would suspect the hardware or maybe the
hardware CMOS levels. Make sure everything in your system is flashed to the proper version.

In order to repair a filesystem, it must not be mounted. Also, checking a
mounted filesystem may give bogus error messages sometimes.

Logical Volume Management (LVM)
LVM for Linux allows one to manage disks or arrays of disks as one large pool of storage.
An LVM consists of one or more physical volumes along with one or more logical volumes.

Directories such as /root and /home for example, are located in a logical volume. Several
commands exist to manage the LVM. Some operate on physical volumes, some operate
on logical volumes, and some on both.

The following list can be used as a quick reference guide for the LVM commands:

 f pvcreate: It initializes a disk or partition

 f pvchange: It changes the allocation permissions of one or more physical volumes

 f pvck: It checks the physical volume metadata

 f pvdisplay: It displays the attributes of a physical volume

 f pvmove: It moves physical extents

 f pvremove: It removes a physical volume

 f pvresize: It resizes a disk or partition

 f pvs: It reports information about physical volumes

 f pvscan: It scans all the disks for physical volumes

Disks and Partitioning

118

 f vgcfgbackup: It backs up the volume group descriptor area

 f vgcfgrestore: It restores the volume group descriptor area

 f vgchange: It changes attributes of a volume group

 f vgck: It checks the volume group metadata

 f vgconvert: It converts the volume group metadata format

 f vgcreate: It creates a volume group

 f vgdisplay: It displays the attributes of volume groups

 f vgexport: It makes volume groups unknown to the system

 f vgextend: It adds physical volumes to a volume group

 f vgimport: It makes exported volume groups known to the system

 f vgimportclone: It imports and renames a duplicated volume group

 f vgmerge: It merges two volume groups

 f vgmknodes: It recreates a volume group directory and logical volume special files

 f vgreduce: It removes the unused physical volumes from a volume group

 f vgremove: It removes a volume group

 f vgrename: It renames a volume group

 f vgs: It reports information about volume groups

 f vgscan: It scans all the disks for volume groups and rebuilds caches

 f vgsplit: It splits a volume group into two

 f lvchange: It changes the attributes of a logical volume

 f lvconvert: It converts a logical volume from linear to mirror or snapshot

 f lvcreate: It creates a logical volume in an existing volume group

 f lvdisplay: It displays the attributes of a logical volume

 f lvextend: It extends the size of a logical volume

 f lvmdiskscan: It scans for all the devices visible to lvm2

 f lvmdump: It creates lvm2 information dumps for diagnostic purposes

 f lvreduce: It reduces the size of a logical volume

 f lvremove: It removes a logical volume

 f lvrename: It renames a logical volume

 f lvresize: It resizes a logical volume

 f lvs: It reports information about logical volumes

 f lvscan: It scans all the disks for logical volumes

Chapter 7

119

Getting ready
The following commands assume that you are running an LVM-aware system. Note that you
do not need to actually have your drive in an LVM format in order to try the commands.

How to do it...
The following are some non-destructive commands you can try on your system (you will need
to be in root to run these):

1. Let’s see all the physical volumes on the system:
pvdisplay

2. Now let’s scan the disks:
pvscan

3. Then, display the attributes of the volume groups:
vgdisplay

4. We report information about volume groups:
vgs

5. The disks for all the volume groups are then scanned:
vgscan

6. Then the attributes for the logical volume (this one gets used a lot) need to be displayed:
lvdisplay

7. Scan for all the devices visible to LVM:
lvmdiskscan

8. Report information about the logical volumes:
lvs

9. Scan all the disks for logical volumes:
lvscan

Disks and Partitioning

120

The following is a screenshot of pvdisplay and vgdisplay on my Fedora 14 system:

There’s more...
If you are accustomed to the traditional method of configuring disk drives, LVM can take
a while to get used to. I have found the man pages to be pretty good in this area, and the
Internet has some good articles on it as well.

Understanding different filesystems
At the time of writing this, there are over 60 different filesystems available for Linux.
The following is a brief overview of the common ones you may frequently encounter:

 f Btrfs: B-tree filesystem is a copy-on-write filesystem developed by Oracle in 2007.
It is still in the developmental stage and considered experimental. The intention
of Btrfs is to allow the filesystem to scale as drives get larger and larger. Because
of its benefits, it is being considered as the filesystem to replace ext4.

 f ext2: It was introduced in 1993. This filesystem does not have journaling and hence,
has fewer writes per cycle, making it a good choice for flash drives.

Chapter 7

121

 f ext3: It is very similar to ext2 with the addition of journaling, which improves
reliability, especially after an unclean shutdown.

 f ext4: Being released in 2008, it is considered the successor of ext3. It can handle
volumes up to 1 exbibyte and files up to 16 tebibytes. This filesystem uses extents
to replace the traditional block mapping scheme used by earlier versions of ext.
It has enhancements allowing for faster filesystem checks (fsck).

 f FAT: This is the abbreviation of File Allocation Table and the format was originally
used by DOS, OS/2, and Windows. It is available in the kernel mainly to provide
support for external devices such as USB flash drives.

 f ReiserFS (or Reiser3): It is a general purpose filesystem with journaling, originally
designed and written by Hans Reiser. When it was created, it contained many
features that were not yet available at the time including journaling, online growth,
and a scheme to limit internal fragmentation.

 f Reiser4: It is the successor of ReiserFS (due to the conviction of the designer
Hans Reiser for murder, future development is uncertain).

8
Working with Scripts

In this chapter we will cover the following topics:

 f Removing text from a file

 f Using script parameters

 f Coding a loop in a script

 f Backing up your system

 f Locking a file for only one use at a time

 f Getting introduced to Perl

Introduction
Knowing how to write scripts will allow you to run your system(s) much more efficiently. Script
writing is easy; you don't need a degree in Computer Science or anything like that. Even better,
everything you need to create and run scripts is already available on your Linux system.

The main thing to remember while programming is to think like the computer does. Try
to understand what each step does. If you run into a problem, look at the line in question
carefully. The computer will do exactly what you tell it to do, every time.

We will be writing Bash shell scripts in these examples. It is good programming practice
to begin each script with a line indicating which shell is being used. This is done with a line
that starts in the first column such as the following:

#!/bin/sh

Working with Scripts

124

Use a text editor to create scripts. I have seen people attempting to use a word processor
for script writing but I don't recommend it. Word processors are cumbersome and always
seem to insert bad characters into the file (even though they claim not to). If you don't already
know by now, learn how to use EMACS, vi, or some other text editor (see Chapter 3, Files
and Directories). You will be glad you did.

In order to execute the script as a command, you need to change the permissions on the
file. For example, if you have created and saved a text file named mycmd, you can make
it executable by running the following command:

 chmod 755 mycmd

If you have not done much script writing, to be on the safe side, I would suggest using a user
account when creating and running scripts. When you get comfortable (or if you already are),
you can run as root. You will probably have to at some point, especially if you are a systems
administrator.

Several script examples have been given in the following paragraphs. These should give
a good idea of what can scripts be used for and how to write them.

Removing text from a file
A script can be written to do almost anything you can imagine. The following is one
such example.

How to do it...
The following is the listing for a script that can be used to cut the line numbers off
the examples. You can then run them as is on your system.

Script 1 – removing line numbers
 1 #!/bin/sh

 2 # removelines 5/1/2013

 3 if ["$1" = ""] ; then

 4 echo "Usage: removenumbers filename > newfile"

 5 echo " This script will remove the line numbers from the beginning
of the lines"

 6 echo " in filename. It assumes the number field is 5 characters
wide."

 7 echo " Use the redirection operator to save the output to a new
file."

 8 exit

 9 fi

 10 cat $1 | cut -c 1-5 --complement

Chapter 8

125

How it works…
Let's discuss what the previous given lines do.

 f The first line tells the OS what shell this script is for.

 f Line 2 has a # in the first column. This is called a comment line. Here I have
the date the script was written.

 f The $1 variable is the first parameter you gave after the name of the command.
If no parameter is given, it will be equal to the empty string (""). The Usage text
will be displayed and the script will exit at line 8.

 f If a parameter was indeed given, this script assumes it's a filename and so,
processing will continue with line 10.

 f Line 10 uses the cat command to stream the contents of the file. In this case,
the stream is being piped to the cut command.

 f The cut command would normally keep the first five characters of each line and
discard the rest. However, since I used the --complement flag, it does just the
opposite. Many Linux commands have this option or something similar to it.

There's more...
If you would like to try this on your system, carry out the following steps:

1. Open a text editing session, for example vi removelines.txt.

2. Put vi into Insert mode by pressing I.

3. Copy the text of the script from the book and paste it into vi. Save the file and exit:
wq.

4. Now run the following command:
cat removelines.txt | cut -c 1-5 --complement > removelines

5. Then make it executable:
chmod 755 removelines

6. Run the following command:

removelines

If all went well, the usage screen should appear. You can now use this script on the rest
of the examples in this chapter.

Working with Scripts

126

Using script parameters
Here we show how to count and show the number of parameters given to a script.

How to do it...
The following is the script listing:

Script 2 – parameters
 1 #!/bin/sh

 2 # 5/1/2013

 3 echo Script showing how to count and show the parameters

 4 N=$#

 5 echo Number of parameters: $N

 6 if [$N -eq 0] ; then

 7 echo "Usage: $0 parameters and/or a mask"

 8 exit

 9 fi

 10 for i in $* ; do

 11 echo Parm: $i

 12 done

How it works…
 f You already know what lines 1 to 3 do. The $# built-in variable contains the number

of parameters that were given to the script. In line 4, we set the variable N to
that value.

 f Line 5 displays the value of N. Note that to access a variable, you must precede
it with a $ character.

 f In line 6, we test N to see if any parameters were given. If not, we display the Usage
message and exit at line 8.

 f Line 10 is an example of a for loop. Note the syntax, and don't forget the done
command at the end of the loop. Note that $* is a built-in variable that contains
a list of all the parameters given to the script.

 f In line 11, we display the value of the i variable.

Chapter 8

127

There's more...
1. Make this an executable script on your system by following the example in

the previous section with the only change in its naming as parameters.

2. Run it: parameters (you may need to run this as ./parameters on your system).

3. You should see the Usage message. Now run it with this command:
parameters 1 34 56

4. It should display the number 3 and then each parameter on a line.

5. Try it with some other numbers. Also try some wildcard characters.

Variables require a bit more explanation. For example, the following are
numbers:
i=1
RC=0

You test numbers in the following manner:
if [$i -eq 0] ; then # test for equal
if [$RC -ne 0] ; then # test for not equal

The following are strings:
FNAME=Jim
LNAME=Lewis
if ["$FNAME" = "Jim"] ; then # test string equality
if ["$LNAME" = "Lewis"] ; then # test string equality

This is another case where it helps to remember that it's backwards. Use
letters such as -eq to test numbers, and = and other numeric operators to
test strings.

Coding a loop in a script
Our previous scripts were commands that ran quickly to completion. Here is an example
of a script that runs until you decide to terminate it. Note that if no parameters are required,
a Usage section is probably not needed (but be sure to state what the script does in
the comment section).

This script monitors the state of the network connection by pinging the provider once
a minute. Failures are logged to a file.

Working with Scripts

128

How to do it...
The following is the program listing:

Script 3 - loops
 1 #!/bin/sh

 2 #

 3 # Check network once a minute and log failures to a file

 4 PROVIDER=192.168.1.102

 5 tput clear

 6 while [1]

 7 do

 8 echo Written by Jim Lewis 2/21/2007

 9 echo Pinging $PROVIDER

 10 ping -c 1 $PROVIDER

 11 rc=$?

 12 if [$rc -ne 0] ; then

 13 echo Cannot ping $PROVIDER

 14 date >> log1.txt

 15 echo Cannot ping $PROVIDER >> log1.txt

 16 fi

 17 sleep 60

 18 done

How it works...
 f Line 4 is your provider's IP address or domain name. For this example, I used my

bigtwo machine. Note that this variable could instead be placed in your .bashrc
file (see Chapter 1, Using the Terminal / Command Line). That way you would only
have to change it in one place if you get a new provider in the future.

 f Line 5 clears the screen.

 f Line 6 might look a little strange. Yes, that is what is known as an infinite loop.
However, the script can still be terminated by pressing Ctrl and C, by issuing a kill
command to it, or by having it watch for a file (more on that later).

 f In line 7, remember that a while statement needs a statement after it.

Chapter 8

129

 f Line 10 uses the ping command. The -c 1 variable tells it to ping only once.

 f Line 11 saves the error code from the previous command.

 f The ping command returns 0 if there are no errors. In case errors are present, line
14 appends the system date to the log1.txt file.

 f Line 15 then appends the text to the log file.

 f Line 17 waits for 60 seconds and then the loop starts the back up again at line 6.

I have been running this script since January 2007. I have used the log1.txt file on more
than one occasion to convince my provider to improve their service.

The following is a screenshot of the script running on my Fedora 17 system:

There's more...
Carry out the following steps to run this script:

1. Create the file as in the previous sections. You may name it whatever you want,
as long as it does not conflict with another script or program. I named mine loop1.

2. Open a terminal on your system. I suggest making it rather small as in the
previous screenshot.

3. You do not need to be root to run this script. So, simply type the name you gave
it to start it up.

4. Remember that this script is in a loop; it will run until you terminate it.

5. From time to time you should look at the log1.txt file to see how reliable your
Internet connection is. Note that if your connection goes down a lot, this file may
get very large.

Scripts such as this one are used quite frequently, especially when performing system
administration duties to monitor the resources of the network.

Working with Scripts

130

One word of caution, use services such as ping with care. For example, do not ping your
provider an excessive number of times. Once a minute is fine. When developing a script like
this, use a local ping address for testing until you get it just right.

Backing up your system
Automating tasks is what makes scripts really powerful. You can spend some time getting
a script just right and then let it do its thing. I easily have at least ten scripts running on each
of my Fedora systems right now.

Here's what I call my poor man's backup utility. In the past, I have tried some store-bought
programs only to be disappointed with the quality of the software. There's nothing worse than
needing your backup files and then discovering there aren't any! This script is called by a cron
job every night at 3 a.m. We cover cron in the next chapter.

If you want to try and use this script, be sure you understand what is going on. The backup
directories must be created manually first, along with the filenum1 file.

This script, as written, must run as root.

How to do it...
I use the following script to make a backup copy of my files:

Script 4 – making backups
 1 #!/bin/sh

 2 # Jim's backup program

 3 # Change to an appropriate directory on your system

 4 cd /lewis/backup

 5 VER="File backup by Jim Lewis 4/25/2011 A"

 6 echo $VER

 7 date >> datelog.txt

 8 T=`cat filenum1`

 9 T=`expr $T + 1`

 10 if [$T -gt 7] ; then

 11 T=1

 12 fi

 13 echo $T > filenum1

 14 TDIR=/temp/linuxbook/chap8/backups$T

Chapter 8

131

 15 echo "Removing files from $TDIR"

 16 cd $TDIR

 17 pwd

 18 rm *.gz

 19 echo "Backing up files to $TDIR"

 20 X=`date "+%m%d-%H"` # create a timestamp

 21 echo $X

 22 cd /

 23 tar -cvzf "$TDIR/lewis$X.gz" lewis

 24 tar -cvzf "$TDIR/temp$X.gz" temp

 25 tar -cvzf "$TDIR/root$X.gz" root

 26 cd /home

 27 tar -cvzf "$TDIR/guest$X.gz" --exclude=Cache --exclude=.cache
--exclude=.evolution --exclude=vmware --exclude=.thumbnails --exclude=.
gconf --exclude=.kde --exclude=.adobe guest1

 28 echo $VER

 29 cd $TDIR

 30 pwd

 31 ls -lah

How it works...
 f Line 4 changes to my backup directory. You would want to change this on

your system.

 f Line 7 appends the current date to the datelog.txt file. I check this from time
to time to make sure everything looks okay.

 f Line 8 looks really weird; what are those backticks for? The filenum1 file contains
a number which is the next directory to copy the backup files to (7 in all). As you
know, if you were to cat this file, it would display its contents on the screen. Well,
the backticks mean to run this command, but place the resulting expression into
a variable. This sounds complicated, but you will get used to it very quickly.

 f The variable T now has the number of the next directory to use. Line 9 uses the expr
command to evaluate the expression and add 1 to T.

 f Line 10 checks to see if T is greater than 7, and if so, sets it back to 1. Yes, I make
seven backups, one for each day of the week. Call me paranoid!

 f Line 13 copies the new value of T back to filenum1 for the next use.

Working with Scripts

132

 f Line 14 sets up the TDIR variable, which contains the backup directory we are going
to copy the files to.

 f Line 16 changes to TDIR.

 f Line 17 displays the current working directory. I had put this in when writing this
script and got used to it being there, so left it in. This is completely optional.

 f Line 18 removes the previous compressed backed up files. I strongly suggest
you comment this line when first trying out this script. Then, after being sure that
everything is okay, you can put it back in.

 f Line 20 sets up a date timestamp. Again, the backtick operators are being used
to put the value of date into a variable (X in this case).

 f Line 22 changes to /.

 f Lines 23, 24, and 25 back up the directories /lewis, /temp, and /root.

 f Line 26 changes to /home.

 f Line 27 tars up my /home/guest1 directory. The parameters on tar tell it which
directories to exclude from the archive. See the tar man page for more information.

 f Line 28 displays the script version, line 29 goes back to the backup directory, line 30
displays the directory name, and line 31 shows the file listing.

This script is more of an example than a true backup program, but it's a good place to start
from. The real one I use is similar to this, but also copies the files to an external USB drive
and to another computer off-site (using unattended scp). Whenever I want to create
a new Linux machine, I just copy these files to it and extract them, configure and source
my .bashrc, and I am ready to run.

Locking a file for only one use at a time
This comes up often enough for me to mention it. There may be times when you want to edit
a file in a terminal by running a simple script. However, if the file has already been opened in
another terminal, there is the possibility that updates made in one session will get overwritten
in the other. The following script should help prevent that from occurring.

How to do it...
Here is an easy way to prevent the same file from being edited by more than one terminal
at the same time:

Script 5 – file locking
 1 #!/bin/sh

 2 # todo script 5/1/2013

 3 FN1=/tmp/file.lock

Chapter 8

133

 4 if [-f $FN1] ; then

 5 echo -n "File is being used in tty: "

 6 cat $FN1

 7 exit

 8 fi

 9 echo `tty` > $FN1

 10 # perform your actions(s) here

 11 kw /lewis/todo.txt

 12 rm $FN1

How it works...
 f Line 3 sets the variable FN1 to the name of the lock file.

 f Line 4 checks to see if the lock file exists. If it does, it displays the contents
of the lock file and exits the script.

 f We get to line 9 if the lock file does not exist. The lock file is now created by
redirecting the output of the tty command to the file.

 f In line 11, you can perform whatever action(s) you desire. In my case, I edit /tmp/
todo.txt here using kw, my text editor. Even after the editor session is closed,
the processing of the script continues.

 f Line 12 removes the lock file.

This is simple and works really well. I use a version of this script to edit several of my
important files. The todo script can be run from anywhere on my system and the todo.txt
file is displayed in my text editor. If I go off to another session or window later while the file
is still being edited, and try to run todo again, it will not allow the edit. It also tells me if tty
is in the original session. This can help me find it again more quickly, which is very useful as
I always have a lot of workspaces and terminals open.

Getting introduced to Perl
Perl is a programming language that can be used for text manipulation, web development,
network programming, system administration, development of GUIs, and a whole lot more.
It was designed to be easy to use and efficient, and you can use either a traditional procedural
or object oriented approach in your scripts. Perl also has a rather large list of third-party
add-on modules that give it even more functionality.

Working with Scripts

134

Getting ready
In this section, we will cover just the very basics of Perl. Most typical Linux systems come
with it and the documentation already installed. To see a brief introduction, run perldoc
perlintro on your system. The Perl introduction should come right up.

In order to run a Perl script, you can use the following Perl command:

perl filename.pl

The .pl parameter is the usual extension given to Perl scripts. You can also place the path
to Perl in the script similar to how we did with bash. First run which perl to see where
Perl is located and then put that in as the first line of your script:

#!/usr/bin/perl

That's the correct path on Fedora. As with bash scripts, use a text editor to create them
and use chmod 755 filename.pl to make it executable. Now, you can just type the name
of the command to run it.

How to do it...
The following is a small Perl script I wrote when I was first starting out learning the language:

 1 #!/usr/bin/perl

 2 # t1.pl - Perl practice script 1

 3 use strict;

 4 use warnings;

 5 sub displaymessage

 6 {

 7 my $message = shift;

 8 print "message: $message\n";

 9 }

 10 system("tput clear");

 11 print "Practice script 1 5/4/2013\n";

 12 my $name = "Jim";

 13 print "name: $name\n";

 14 my @numbers = (23, 42, 69, 71);

 15 print "numbers 0: $numbers[0]\n";

 16 print "Last element is: $numbers[$#numbers]\n";

 17 if($numbers[0]==23)

Chapter 8

135

 18 {

 19 print "numbers 0 is equal to 23\n";

 20 }

 21 my $count = 0 ;

 22 foreach (@numbers)

 23 {

 24 print "Element $count is $_\n";

 25 $count++;

 26 }

 27 print "Opening input.txt ...\n";

 28 open(my $in, "<", "input.txt") or die "Cannot open input.txt for
reading: $!";

 29 print "Opening output.txt ...\n";

 30 open(my $out, ">", "output.txt") or die "Cannot open output.txt
for writing: $!";

 31 while (<$in>)

 32 {

 33 print "line $_";

 34 print $out $_;

 35 }

 36 close $in or die "$in: $!";

 37 close $out or die "$out: $!";

 38 displaymessage("Type some keys. Press 'c' to clear the screen and
'q' to quit:");

 39 my $key = 1;

 40 $count = 1;

 41 while($count < 500)

 42 {

 43 # read a key from the keyboard

 44 open(TTY, "+</dev/tty") or die "no tty: $!";

 45 system "stty cbreak </dev/tty >/dev/tty 2>&1";

 46 $key = getc(TTY);

 47 if($key eq 'c')

 48 {

 49 system("tput clear");

 50 }

Working with Scripts

136

 51 if($key eq 'q')

 52 {

 53 print "\nEnding the script\n";

 54 $count = 10000;

 55 }

 56 $count++;

 57 }

How it works...
 f Line 1 tells the shell which interpreter to use.

 f Line 3 tells the compiler to be rather severe with the syntax. Always use this line.

 f Line 4 says to show all warnings. Always use this too.

 f Lines 5 to 9 are a subroutine. Line 7 puts the first parameter to the subroutine
into the variable message. Line 8 displays it.

 f Line 10 clears the screen.

 f Line 11 tells us what this script is supposed to be. Note the \n parameter at the
end of the line. This stands for newline, and signifies continuing the next print
output on to the next line.

 f Line 12 sets the variable name to Jim. Note the $ symbol in front of name.
Don't forget it.

 f Line 13 displays the variable.

 f Line 14 creates an array of numbers. Note the @ character.

 f Line 15 displays the first element in the array.

 f Line 16 displays the last element by using the special Perl syntax of $#numbers.

 f Line 17 checks to see if element 0 really is equal to 23 or not. Note the double
equal sign.

 f Line 21 creates the variable count and sets it to 0.

 f Line 22 is another special Perl convention. The foreach command means
to traverse through the array one element at a time. This is a very handy feature.

 f Line 24 shows how the special $_ construct works to display each element
of an array.

 f Line 25 increments the count by 1.

Chapter 8

137

 f The next lines are a way to handle files in Perl. It attempts to open the input.txt
file for reading and output.txt for writing. The input.txt file must exist or else
the program will error out and stop right here. The contents of input.txt are
as follows:
line 1

line 2

line 3

line 4

line 5

 f Line 30 opens the output file.
 f Lines 31 through 35 read each line from input.txt and write it to output.txt.
 f Lines 36 and 37 close the files. Don't forget this step in your scripts.
 f Line 38 uses the subroutine we created earlier to display a message.
 f Line 39 creates and sets the key variable.
 f Line 40 resets the count variable back to 1 again.
 f Line 41 starts a while loop.
 f Lines 43 through 46 are a way to read a key from the keyboard in Perl. If this looks

convoluted to you, I couldn't agree more.

The remaining lines are self-explanatory. When the user presses q to quit, the count variable
is increased to 10000. This causes the while loop at line 41 to finish early, effectively ending
the script. You could have instead used a loop control variable here.

The following is a screenshot of the previous script running on my system:

Working with Scripts

138

There's more...
Although this is an extremely trivial script, you can do an incredible amount of things with
Perl. Many years ago, when I was first starting out with home computers, there was a text-
mode game we could play based on Star Trek. I obtained a copy of this game in BASIC and
eventually rewrote it in C. A few months ago, I decided to rewrite it again, this time in Perl.
It's not done yet, probably because I am too busy writing this book, but it is getting there.

Good books on Perl should be easy to locate. I have bought a few and find them to be very
valuable as I attempt to learn it in more detail.

There are several hundred standard Linux utilities that can be used standalone or in scripts.
The following is a short list of some of the most common ones. Whenever you need to perform
any task, check here to see if you can incorporate some of the given commands into
your script.

The following utilities are located in /bin:

 f awk, gawk: These are used for pattern scanning and processing language

 f basename: It is used to strip directory and suffix from filenames

 f bash: It is a GNU bourne-again shell

 f cat: It is used to concatenate files and print on the standard output

 f chmod: It is used to change file mode bits

 f chown: It is used to change the file owner and group

 f cp: It is used to copy files and directories

 f cut: It is used to remove sections from each line of files

 f date: It is used to print or set the system date and time

 f dmesg: It is used to print or control the kernel ring buffer

 f echo: It is used to display a line of text

 f find: It is used to search for files in a directory hierarchy

 f grep, egrep, fgrep: These are used to print lines matching a pattern

 f hostname: It is used to show or set the system's host name

 f ls: It is used to list the directory contents

 f mkdir: It is used to make directories

 f mktemp: It is used to create a temporary file or directory

 f mv: It is used to move (rename) files

 f ping, ping6: These are used to send ICMP ECHO_REQUEST to network hosts

 f ps: It is used to report a snapshot of the current processes

Chapter 8

139

 f pwd: It is used to print the name of the current/working directory

 f rm: It is used to remove files or directories

 f sed: It is used to invoke the stream editor for filtering and transforming text

 f sleep: It represents the delay for a specified amount of time

 f sort: It is used to sort the lines of text files

 f tar: It is used to combine and optionally compress files together into a single archive

 f touch: It is used to change file timestamps

The following utilities are located in /usr/bin:

 f diff: It is used to compare files line by line

 f dirname: It is used to strip the last component from the filename

 f expr: It is used to evaluate expressions

 f file: It is used to determine the file type

 f flock: It is used to manage locks from shell scripts

 f stat: It is used to display file or filesystem status

 f tee: It is used to read from the standard input and write to standard output and files

 f time: It is used to time a simple command or give the resource usage

 f tty: It is used to print the filename of the terminal connected to standard input

 f uniq: It is used to report or omit repeated lines

 f unzip: It is used to list, test, and extract compressed files in a ZIP archive

 f who: It is used to show who is logged on

 f xargs: It is used to build and execute command lines from the standard input

The following commands are built into the shell:

 f cd: It is used to change the directory

 f echo: It is used to display a line of text

 f exit: It causes the shell to exit (with an optional return code)

 f export: It is used to set an environment variable

 f kill: It is used to send a signal to or terminate a process

 f read: It is used to get a string from the keyboard and place it into a variable

9
Automating Tasks

Using Cron

In this chapter we will cover:

 f Creating and running a crontab file

 f Running a command every other week

 f Reporting the errors from a crontab file

Introduction
The cron daemon, which is usually started automatically by the OS, looks at all of the crontab
files once every minute. If the criterion has been met, the command is run. In this chapter
we show how to create and maintain your crontab files using the crontab program.

Depending on how your system is set up, cron jobs are permitted (allowed or not allowed)
based on the user. The files that control this are in /etc and are named cron.allow and
cron.deny. These are explained in the following section:

 f cron.allow: If this file exists, then the user must be listed in it, in order to use crontab

 f cron.deny: If cron.allow does not exist but cron.deny does exist then the user
must not be listed in the cron.deny file

If neither of the file exists, then only the root user can use the command. In most Linux
systems only cron.deny exists and it is empty. Check this on your system before running
the following commands.

Automating Tasks Using Cron

142

We will use a user account to experiment with crontab. The crontab command is used
to make changes to the crontab file, as it should not be edited directly. To view the crontab
for the current user, run crontab -l.

The command to edit the crontab file for the current user is crontab -e. By default, this will
bring up the crontab file in the vi editor. However, you can change the EDITOR environment
variable to use whatever text editor you wish.

The following is the format of a typical user crontab file:

#

crontab for jklewis

Field 1 2 3 4 5 6

Min Hour Day of month Month of year Day of week

0-59 0-23 1-31 1-12 0-6 0=Sun /path/command

#

Days of the week: 0=Sun 1=Mon 2=Tues 3=Wed 4=Thu 5=Fri 6=Sat

I always add this template to the top of the crontab file so I can easily remember what
the fields are. The following is an example crontab entry:

 10 0 * * 0 /path/mycommand

These values can be integers, a range, an element or list of elements, or an asterisk.
An asterisk means to match all valid values.

 f #: This indicates a commented line. It must be the first thing on the line (don't put
it at the end of a line).

 f Field 1: This is the minute. It starts at 0 meaning 00:00.

 f Field 2: This is the hour. It starts at 0 which means 12:00 a.m.

 f Field 3: This is the day of the month.

 f Field 4: This is the month of the year. Names can also be used.

 f Field 5: This is the day of the week. It starts at 0, which is Sunday. Names can also
be used.

 f Field 6: This is the path/command to run.

This example entry would run mycommand at 12:10 a.m. on every Sunday.

Use white space only to separate the fields. Do not use tabs.

Chapter 9

143

Creating and running a crontab file
Here we will show an example of creating and running a user crontab file.

Getting ready
Be sure your system is set up as outlined in the Introduction. We will be using two terminal
sessions, to see our results more easily.

How to do it...
The following is an example of how to create and run a crontab file:

1. In a terminal session run tty and remember the output. This will be used in step 10.

2. Open or use another terminal under a user account. I'll be using jklewis as in
earlier chapters.

3. Let's view the crontab file by running the following command:
crontab -l

4. It may say something like no crontab for jklewis which is fine.

5. Now let's make one by running the following command:
crontab -e

6. It may say something like no crontab for jklewis - using an empty one
which is good.

7. Crontab should bring up a temporary file in vi (unless you have changed the EDITOR
variable as I have, on my system). The file will not be used until it has been saved
and the session has been ended.

8. I suggest cutting and pasting the template I created above to your crontab file.
It will make it much easier to remember the fields.

9. Now let's add an entry that we can see takes effect quickly. Insert the following lines
into the file (cut and paste should work):
TTY=/dev/pts/17

crontab example 1

* * * * * date > $TTY; echo "Yes it works" > $TTY

10. Change the TTY line to what you found in step 1.

11. Now save the file and quit the session. You should see a message such as the
following:
crontab: installing new crontab

Automating Tasks Using Cron

144

12. In the next minute you should see something like the following output in your
other session:
Tue May 7 19:52:01 CDT 2013

Yes it works

13. The entry we just made with all of those asterisks means to run the command every
minute. Edit the crontab again and change the line to the following code:
*/5 * * * * date > $TTY; echo "Every 5 minutes" > $TTY

14. That strange looking syntax is a way to skip, or increment, a value. Now try the
following command:
35 9 * * 1-5 date > $TTY; echo "9:35 every week
day" > $TTY

15. That runs every weekday (Mon - Fri) at 9:35 a.m. The 1-5 in the day field is a range.

16. Names can also be used for the day and month fields, as in the following command:
17 13 8 May Wed date > $TTY; echo "May 8 at 13:17"
> $TTY

17. And also the following command:

0 0 * * Fri date > $TTY; echo "Run every Friday
at 12:00 am" > $TTY

With names, the standard three letter abbreviations are used, and the case does not matter.
Using names might be easier, however, you cannot use ranges or steps with names.

Running a command every other week
Now that we have looked at the basics of cron, how would you set up an entry to run
a command every other week? You may be tempted to try something like the following code:

 * * * * 0/2 /path/command

That means to start on Sunday, and then run every other Sunday, right? No, this is wrong,
but you often see this given as a solution on websites. Cron doesn't actually have a built-in
way to do this, but there is a work-around.

Chapter 9

145

How to do it...
The following are the steps to run a command every other week:

1. Create the following script in your home directory and name it cron-weekly1
(feel free to cut and paste):
#!/bin/sh

cron-weekly1

Use this script to run a cron job every other week

FN=$HOME/cron-weekly.txt

if [-f $FN] ; then

 rm $FN

 exit

fi

touch $FN

echo Run the command here

2. Make the script executable by running the following command:
chmod 755 cron-weekly1

3. Under your user account run by running the following command:
crontab -e

4. Add the following line:
 0 0 * * 0 $HOME/cron-weekly1

5. End your editing session. This will install the modified crontab file.

How it works...
Take a look at this script. The first time it is run, the cron-weekly.txt file does not exist,
and so it is created, and the command (the one you want to run every other week) is executed.
The next week, when this script is run again, it sees that the cron-weekly.txt file is
there, deletes it, then exits the script (the command is not run). This alternates every week,
effectively running the command every other week. Pretty cool, huh?

In the preceding cron-weekly1 script, the command is executed the first time the script
is run. You can change this to run the command starting with the next week by moving
the line to run the command inside the if statement.

Automating Tasks Using Cron

146

Although it might be very tempting to do so, do NOT put a comment # at the end of a line.
Cron cannot tell if it's a comment or part of a command. If cron ever reports some errors you
don't understand, check for comments that are in the wrong place. Yes, I admit I still do this
from time to time.

If you do something crontab doesn't like (such as the * * * * 0/2 command line
shown in the preceding section), it will usually report an error when you close the session.
It will then give you the option to re-edit the file. By all means do so, and either fix the problem,
or at least comment the line. You can go back and edit it again later.

You can remove a crontab file completely by running crontab -r. I would suggest making
a backup copy before doing this, just in case. You should be able to save the file to a new
name through whatever text editor you have chosen to use.

There's more...
Crontab files can make use of environment variables. The following are a few common ones:

 f SHELL: This tells the OS to use a particular shell, overriding what is in the /etc/
passwd file. For example, SHELL=/bin/sh.

 f MAILTO: This tells cron to mail errors to this user. The syntax is MAILTO=<user>
that is MAILTO=jklewis.

 f CRON_TZ: This is used to set a particular timezone variable, that is CRON_TZ=Japan.

Cron has some shortcuts you can use. These are used in place of the 5 time and date fields,
and are as follows:

Shortcuts for command Command Output
@reboot Run once after reboot
@yearly or @annually 0 0 1 1 * 1st day of the month on the

1st day of the year
@monthly 0 0 1 * * 1st day of the month
@weekly 0 0 * * 0 Run on Sunday at 12:00 am
@daily 0 0 * * * Run every day at 12:00 am
@hourly 0 * * * * Run every hour on the hour

So in the preceding example we could have put @weekly $HOME/cron-weekly1.

Don't use cron for any time sensitive tasks. There is usually a short delay, just a few
seconds, before the command is run. If you need better granularity than that, use
a script and the sleep routine.

You can also set up a crontab for root. To see that and more, use man -a crontab.

Chapter 9

147

Reporting the errors from a crontab file
You may be wondering, if there is an error in a crontab file how does the computer report it?
It does this by using the sendmail system, to mail the crontab user.

How to do it...
The following is an example of how errors are reported by cron:

1. Open a terminal with a user account.

2. Edit your crontab file by running the following command:
crontab -e

3. Now let's deliberately cause an error. Scroll to the bottom and add the following line:
* * * * date > /baddirectory/date.txt

4. Save the file. Wait until cron runs in the next minute, and then press Enter in your
user terminal.

5. You should see a message saying you have mail. Run the following command:
mail

6. There should be a mail indicating the error (in this case, file not found). You may
delete the message by pressing D and then Q to leave the mail.

7. To finish, be sure to re-edit your crontab file and remove the bad line we just added.

There's more...
You can also monitor the /var/log/cron file to see what cron is doing on the system
throughout the day. This is very helpful when first creating a crontab file and trying
to get it just right.

The Kernel

In this chapter we will cover the following topics:

 f A brief look at module commands
 f Building a kernel from kernel.org
 f Using xconfig to modify the configuration
 f Working with GRUB
 f Understanding GRUB 2

Introduction
The kernel is the main component, or the heart of an operating system. It controls all
of the resources, timings, interrupts, memory allocation, process separation, error handling,
and logging in the system. In a typical Linux computer, the kernel is modular, in that it has
a core file (or files) and then loads the other device drivers as needed. In some cases, say
an embedded device, the kernel may consist of one big image with all of the drivers it needs
contained inside a file. This is known as a monolithic kernel.

Before deciding whether you need to build a custom kernel, you should first make sure you
really do need one. Here are some of the pros and cons to running a custom kernel.

The following are the pros to running a custom kernel:

 f If you know what you are doing and have the time to research it, you can end up with
a kernel that gets the most out of your hardware

 f You can take advantage of the features or devices that the stock kernel might not have

 f By going through all of the kernel settings you gain a better understanding of Linux

 f Building and running your own kernels is just plain fun

10

The Kernel

150

The following are the cons of running a custom kernel:

 f Your own custom kernel might not contain features needed by your distribution

 f VMware, and other virtual environments will probably not work without additional effort

 f Be aware that if you run your own kernel, you will most likely no longer be supported
by your distribution support channel

Most of these cons of running your own kernel can be worked
around and/or solved. It just depends on how much time you
have to spend on getting it right.

A brief look at module commands
There are several commands that are used to manipulate the modules on your system. Note
that depending on your distribution, these commands may only be run as root.

How to do it...
In the following steps, we will run the lsmod, modprobe, insmod, and modinfo commands:

1. To see the status of the modules currently loaded on the system, run lsmod.

2. To load a module from the current /lib/modules/<kernel name> directory, you
would use the modprobe command. An example would be modprobe pcnet32.

3. To load a module directly, use the insmod command. An example would be insmod
/temp/pcnet32.ko.

4. To display the information about a module, use the modinfo command. Try this
on your system by first running lsmod to find a module and then modinfo on one
of the names modinfo video.

How it works...
The lsmod command takes the contents of the /proc/modules file and displays it in a nice,
easy to read format. Use it to determine what modules are loaded in the system.

Chapter 10

151

The following screenshot shows a partial listing of lsmod from my Fedora 19 system:

The modprobe command is used to add and remove modules from the Linux kernel. It loads
the module from the current /lib/modules/<kernel name> directory. The modprobe
command does a lot more than insmod, such as load more than one module at a time to
resolve dependencies, and is generally preferred over insmod. Since modprobe can load
multiple modules, the files in /etc/modprobe.d and the /etc/modules.conf file are
used to resolve any issues.

The insmod command can be used to insert a module into the system. It is normally used
to load a module directly. For example, if you wanted to load a newly created version of the
pcnet32 module, you would first change the directory to the proper directory and then run
insmod pcnet32.ko.

The Kernel

152

The modinfo command shows information about a Linux kernel module. It is a very useful
command that allows you to see the details about a particular module, such as what
parameters it will accept. The following is what the output from modinfo looks like on my
Fedora 17 system:

BIG2 /temp/linux-3.9.1 # modinfo nouveau

filename: /lib/modules/3.6.1-1.fc17.x86_64/kernel/drivers/gpu/drm/
nouveau/nouveau.ko

license: GPL and additional rights

description: nVidia Riva/TNT/GeForce

author: Stephane Marchesin

alias: pci:v000012D2d*sv*sd*bc03sc*i*

alias: pci:v000010DEd*sv*sd*bc03sc*i*

depends: drm,drm_kms_helper,ttm,mxm-wmi,i2c-core,wmi,video,i2c-
algo-bit

intree: Y

vermagic: 3.6.1-1.fc17.x86_64 SMP mod_unload

parm: agpmode:AGP mode (0 to disable AGP) (int)

parm: modeset:Enable kernel modesetting (int)

parm: vbios:Override default VBIOS location (charp)

parm: vram_pushbuf:Force DMA push buffers to be in VRAM (int)

parm: vram_notify:Force DMA notifiers to be in VRAM (int)

parm: vram_type:Override detected VRAM type (charp)

parm: duallink:Allow dual-link TMDS (>=GeForce 8) (int)

parm: uscript_lvds:LVDS output script table ID (>=GeForce 8)
(int)

parm: uscript_tmds:TMDS output script table ID (>=GeForce 8)
(int)

parm: ignorelid:Ignore ACPI lid status (int)

parm: noaccel:Disable all acceleration (int)

parm: nofbaccel:Disable fbcon acceleration (int)

parm: force_post:Force POST (int)

parm: override_conntype:Ignore DCB connector type (int)

parm: tv_disable:Disable TV-out detection (int)

parm: tv_norm:Default TV norm.

 Supported: PAL, PAL-M, PAL-N, PAL-Nc, NTSC-M, NTSC-J,
hd480i, hd480p, hd576i, hd576p, hd720p, hd1080i.

 Default: PAL

Chapter 10

153

 NOTE Ignored for cards with external TV encoders.
(charp)

parm: reg_debug:Register access debug bitmask:

 0x1 mc, 0x2 video, 0x4 fb, 0x8 extdev, 0x10 crtc, 0x20
ramdac, 0x40 vgacrtc, 0x80 rmvio, 0x100 vgaattr, 0x200 EVO (G80+) (int)

parm: perflvl:Performance level (default: boot) (charp)

parm: perflvl_wr:Allow perflvl changes (warning: dangerous!)
(int)

parm: msi:Enable MSI (default: off) (int)

parm: ctxfw:Use external HUB/GPC ucode (fermi) (int)

parm: mxmdcb:Santise DCB table according to MXM-SIS (int)

The rmmod command allows you to remove a loaded module from the Linux kernel.
The usual syntax is rmmod modulename. The extension is not used. You can also use
the modprobe -r command.

The depmod program generates the modules.dep and .map files. It does not normally need
to be executed manually by the user as it is run during the kernel build. It creates a list of
module dependencies by examining the modules in /lib/modules/<kernelname> and
determining what symbols they need and which symbols they export.

Some of these commands have a force option available. It will attempt to perform the desired
function, bypassing any checks. I have never seen this work reliably and so do not recommend
its use. If you do decide to try it, make sure you have a complete OS backup available.

When running device driver commands, in many cases more information is available
by looking at the /var/log/messages file. I suggest opening a terminal and running
tail -f /var/log/messages in it. Keep this terminal where you can see it at all times.
Also note that the file will eventually be recycled, so the command will have to be stopped
and started again (about once a week on my systems). A simple test is to run logger
hellojim. If you don't see that show up, then it's time to restart the tail session again.

You can also run the dmesg command. The following is an abbreviated example of the output
of dmesg on Fedora 17:

Linux version 3.6.1-1.fc17.x86_64 (mockbuild@) (gcc version 4.7.2
20120921 (Red Hat 4.7.2-2) (GCC)) #1 SMP Wed Oct 10 12:13:05 UTC 2012

Command line: BOOT_IMAGE=/vmlinuz-3.6.1-1.fc17.x86_64 root=/dev/mapper/
vg_bigtwo-lv_root ro rd.md=0 rd.dm=0 SYSFONT=True rd.lvm.lv=vg_bigtwo/lv_
swap KEYTABLE=us rd.lvm.lv=vg_bigtwo/lv_root LANG=en_US.UTF-8 rd.luks=0
rhgb quiet

smpboot: Allowing 4 CPUs, 2 hotplug CPUs

Booting paravirtualized kernel on bare hardware

The Kernel

154

Kernel command line: BOOT_IMAGE=/vmlinuz-3.6.1-1.fc17.x86_64 root=/dev/
mapper/vg_bigtwo-lv_root ro rd.md=0 rd.dm=0 SYSFONT=True rd.lvm.lv=vg_
bigtwo/lv_swap KEYTABLE=us rd.lvm.lv=vg_bigtwo/lv_root LANG=en_US.UTF-8
rd.luks=0 rhgb quiet

Memory: 3769300k/5242880k available (6297k kernel code, 1311564k absent,
162016k reserved, 6905k data, 1032k init)

Console: colour dummy device 80x25

tsc: Fast TSC calibration using PIT

tsc: Detected 2699.987 MHz processor

CPU: Processor Core ID: 0

CPU0: Thermal monitoring enabled (TM2)

smpboot: CPU0: Intel Pentium(R) Dual-Core CPU E5400 @ 2.70GHz
stepping 0a

NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU
counter.

smpboot: Booting Node 0, Processors #1

smpboot: Total of 2 processors activated (10799.94 BogoMIPS)

atomic64 test passed for x86-64 platform with CX8 and with SSE

NET: Registered protocol family 38

Block layer SCSI generic (bsg) driver version 0.4 loaded (major 252)

Console: switching to colour frame buffer device 80x30

fb0: VESA VGA frame buffer device

input: Power Button as /devices/LNXSYSTM:00/device:00/PNP0C0C:00/input/
input0

ACPI: Power Button [PWRB]

Serial: 8250/16550 driver, 4 ports, IRQ sharing enabled

Non-volatile memory driver v1.3

Linux agpgart interface v0.103

ACPI: PCI Interrupt Link [LSA0] enabled at IRQ 21

ata1: SATA max UDMA/133 abar m8192@0xfe9fc000 port 0xfe9fc100 irq 21

usb usb1: New USB device found, idVendor=1d6b, idProduct=0002

usb usb1: Manufacturer: Linux 3.6.1-1.fc17.x86_64 ehci_hcd

usb usb1: SerialNumber: 0000:00:04.1

hub 1-0:1.0: USB hub found

hub 1-0:1.0: 8 ports detected

usb usb2: Manufacturer: Linux 3.6.1-1.fc17.x86_64 ohci_hcd

usb usb2: SerialNumber: 0000:00:04.0

usbcore: registered new interface driver usbserial

Chapter 10

155

usbcore: registered new interface driver usbserial_generic

USB Serial support registered for generic

usbserial: USB Serial Driver core

serio: i8042 KBD port at 0x60,0x64 irq 1

serio: i8042 AUX port at 0x60,0x64 irq 12

mousedev: PS/2 mouse device common for all mice

rtc0: alarms up to one year, y3k, 114 bytes nvram, hpet irqs

device-mapper: uevent: version 1.0.3

device-mapper: ioctl: 4.23.0-ioctl (2012-07-25) initialised: dm-devel@
redhat.com

cpuidle: using governor ladder

cpuidle: using governor menu

drop_monitor: Initializing network drop monitor service

ip_tables: (C) 2000-2006 Netfilter Core Team

input: AT Translated Set 2 keyboard as /devices/platform/i8042/serio0/
input/input2

ata1: SATA link up 3.0 Gbps (SStatus 123 SControl 300)

ata1.00: ATA-8: WDC WD5000AAVS-00N7B0, 01.00A01, max UDMA/133

ata1.00: 976773168 sectors, multi 0: LBA48 NCQ (depth 31/32)

ata1.00: configured for UDMA/133

scsi 0:0:0:0: Direct-Access ATA WDC WD5000AAVS-0 01.0 PQ: 0
ANSI: 5

Freeing unused kernel memory: 1032k freed

Write protecting the kernel read-only data: 12288k

nouveau 0000:00:10.0: setting latency timer to 64

[drm] nouveau 0000:00:10.0: Detected an NV40 generation card (0x063000a2)

Console: switching to colour dummy device 80x25

usb 1-6: New USB device found, idVendor=0bda, idProduct=0181

Initializing USB Mass Storage driver...

scsi4 : usb-storage 1-6:1.0

tsc: Refined TSC clocksource calibration: 2699.931 MHz

usb 2-3: Manufacturer: American Power Conversion

hid-generic 0003:051D:0002.0001: hiddev0,hidraw0: USB HID v1.00 Device
[American Power Conversion Back-UPS RS 700G FW:856.L3 .D USB FW:L3] on
usb-0000:00:04.0-3/input0

EXT4-fs (dm-1): mounted filesystem with ordered data mode. Opts: (null)

e1000: Intel(R) PRO/1000 Network Driver - version 7.3.21-k8-NAPI

The Kernel

156

e1000: Copyright (c) 1999-2006 Intel Corporation.

r8169 0000:04:00.0: irq 43 for MSI/MSI-X

r8169 0000:04:00.0: eth0: RTL8102e at 0xffffc90010fae000,
44:87:fc:69:4d:0f, XID 04c00000 IRQ 43

microcode: CPU0 updated to revision 0xa0b, date = 2010-09-28

ALSA sound/pci/hda/hda_intel.c:1593 Enable delay in RIRB handling

There's more...
Consult the man or info pages for any of these commands for more information. In particular,
look at man modprobe.conf for details on how to use the configuration options available
with modprobe.

You can use the uname -r command to see the current kernel version. You will often see
that the expression uname -r in scripts and aliases works great.

Building a kernel from kernel.org
For this example, we will be using kernel files from the http://kernel.org website.

Getting ready
You should be able to perform all but the last step without any possible harm to your system.
The make install command will modify your GRUB file(s), and so at a minimum, I would
back those up. To be very safe, and since we already know I am paranoid, if you are going
to install the new kernel, I would run all of these steps on a test machine.

This example assumes your computer has been installed as a full development system.
You will need up-to-date versions of GCC, make, the QT development package, and others.
If you have a current distribution elected to install the Software Development package
(or equivalent), you are probably good to go. I suggest having at least 10 GB of file space
available on the partition you plan to do the builds in; more if you are going to be creating
a lot of kernel trees (the files in kernel 3.9.1 are using 6.5 GB).

The vmlinuz, initramfs, and map files will be copied to /boot, so make sure it is large
enough to handle the number of extra kernels you want (about 500 MB is typical).

You will need to be root to run the make modules_install and make install commands.
I suggest becoming root for all of this procedure to avoid any file permission problems.

Chapter 10

157

How to do it...
The following are the steps to get and build a kernel:

1. On your browser, navigate to http://kernel.org.

2. Click inside the yellow square where it says Latest Stable Kernel and save the file.
On Fedora, the Downloads directory is /home/<user>/Downloads.

3. Where you want to build is pretty much up to you. I personally dislike long directory
paths and so I have put mine in the /temp directory. You may choose another
location if you wish.

4. Copy or move the .xz file from the Downloads directory to /temp. For this example,
the filename is linux-3.9.1.tar.xz.

5. Change the directory to /temp and extract the file tar xvf linux-3.9.1.tar.
xz. This used to take a long time, but it's not too bad these days.

6. When it's finished, change directory to the cd /temp/linux-3.9.1 directory.

7. The next step is to obtain a kernel configuration file. Unless you have a specific
one already in mind, I usually take the latest one out of the /boot directory.
On my system, I ran the following command:
cp /boot/config-3.6.1-1.fc17.x86_64

8. You could have copied the file directly to .config, however, I like seeing what I
started with. So do it now:
cp config-3.6.1-1.fc17.x86_64 .config

9. We now need to run a kernel build program to get everything in sync. We will use
the xconfig program, which will be discussed in more detail in the next section.
For now, just run the following command:
make xconfig

10. This will bring up a cool-looking screen with about a million things on it. Click
on File | Save and then File | Quit.

11. You should now be back at the text screen, with it showing something like the
following:
Big4 /temp/linux-3.9.1 # make xconfig
 HOSTCC scripts/kconfig/conf.o
 HOSTCC scripts/kconfig/zconf.tab.o
 HOSTCXX scripts/kconfig/qconf.o
 HOSTLD scripts/kconfig/qconf
scripts/kconfig/qconf Kconfig
#
configuration written to .config
#

The Kernel

158

12. Now run the make command. Depending on the speed of your computer, this may take
a long while. If you're a coffee or tea drinker, this might be a good time to go get some.

13. Check to make sure there were no errors, and then run the following command:
make modules_install

14. This next step will modify your GRUB configuration. I always make sure I have backups
for those just in case. When done, to install the kernel, run the following command:
make install

15. In most cases, the make install command will set the new kernel as the default.
You can check this by viewing your GRUB configuration files (we will see more on
GRUB later in this chapter).

16. To actually try out the new kernel, you must reboot the system (more on that later).
When the screen comes up, make sure the proper kernel is selected on the menu.

17. Since we made no real changes, the kernel should boot up without any issues.
Check this by running the uname -a command to make sure it booted the right
one. You should not see or notice any differences in this kernel. However, depending
on several factors it may not work as expected, or it may not even boot at all. If this
is the case, you should be able to reboot back into the previous good kernel.

When rebooting, I strongly suggest a cold start. Perform an orderly shutdown (shutdown
-h now) and let the machine sit for at least a few seconds; minutes wouldn't hurt either.
I have seen some very strange things happen with warm boots that any sane person would
say was impossible.

Using xconfig to modify the configuration
As was mentioned in the previous section, the .config file is what controls everything
that goes into the kernel files. This includes both the vmlinuz and initramfs files,
and the device driver modules. The .config is a text file but is not meant to be edited
directly, instead one of several different programs can be used. In this chapter we show
you how to use the xconfig program to make changes to the .config file.

Getting ready
Please see the previous section on what is needed to prepare before performing these steps.

Chapter 10

159

How to do it...
Here we will use xconfig to modify the configuration:

1. Change to the kernel build directory and run the following command:
make xconfig

2. That cool-looking screen should come up again. This program takes a few minutes
to get used to, so we will go through it step-by-step.

3. First, locate the string Processor type and features and click on it. You will see
the screen change.

4. Now in the panel on the right-hand side under Processor family, click on Core 2/
newer Xeon. Click on the text, not the radio button.

5. You should now be seeing something like the following screenshot (from my Fedora
19 system using a 3.9.9 kernel):

6. You must use caution when using this program. It is quite easy to accidentally click
on a radio button, changing something you did not intend to. For this reason I suggest
making frequent backups of your .config file. Since it is a text file, you can use the
diff program to look for changes between files. If you are unfamiliar with diff, run
man diff for more information.

The Kernel

160

7. So, let's go ahead and change something. If you are running modern hardware, it
probably has a Core 2 or Xeon processor in it. Run cat /proc/cpuinfo to see
what you have. If it looks appropriate, click the radio button on the Core 2/newer
Xeon line.

8. Those are the basics for configuring a new kernel. When first getting started, I suggest
making as few changes as possible between builds. This way it will be much easier
to track down what change caused a problem, if one should occur.

9. To complete this discussion of xconfig, let's try another field. On the left-hand side,
click on the text of General setup.

10. You should see the text on the right change. In general, when using xconfig you
click on the text to change the display, to expand or compress an entry click on the
appropriate button, and to actually change a value click on the radio button. A small
black dot in a box means a module will be built.

There's more...
You can use the diff command to look at the differences between the .config files
you have saved. This will save a lot of time when debugging.

The program can be somewhat confusing. In places, the text on the right will indicate
Say Y here. That means to make sure there is a check in the checkbox. Likewise, No means
no checkmark. In some cases the program will say to indicate Y or N in a field that doesn't
even have a checkbox. I suppose those are bugs, if so, they have been there for a long time.

You may also click on Help | Introduction for some brief text on how xconfig is used.

Extra care must be taken when building kernels. It is easy to make a mistake when using
xconfig to modify your .config file resulting in an unbootable kernel. The following are
a few pointers:

 f Make a backup of the current .config every single time you make a change.
 f Make as few changes as possible at one time. It's tempting to try and save time

by making a lot of changes, if this works for you that is great. It does not work
for me though.

 f If your latest kernel will not boot, try using diff to compare your latest .config
file with the last good one. You might be able to spot the problem right away.

 f If all fails, go back to a known working configuration file and start again from there.
You have been making backups of your .config files all this time, right?

Chapter 10

161

Working with GRUB
When working with kernels, you may need to change your GRUB configuration file from time
to time. You can modify which kernel comes up by default, the timeout value for the kernel
selection menu, the parameters passed to the kernel, boot other operating systems, and
many other things.

The grub.conf file is normally located in /boot/grub, or you can use the /etc/grub.
conf file, which is a symbolic link.

The following is what grub.conf looks like on my Fedora 14 system:

grub.conf generated by anaconda

#

Note that you do not have to rerun grub after making changes to this
file

NOTICE: You have a /boot partition. This means that

all kernel and initrd paths are relative to /boot/, eg.

root (hd0,0)

kernel /vmlinuz-version ro root=/dev/sda3

initrd /initrd-[generic-]version.img

default=2

timeout=5

splashimage=(hd0,0)/grub/splash.xpm.gz

hiddenmenu

title Fedora (3.9.1)

 root (hd0,0)

 kernel /vmlinuz-3.9.1 ro root=UUID rhgb quiet

 initrd /initramfs-3.9.1.img

title Fedora (2.6.38.4)

 root (hd0,0)

 kernel /vmlinuz-2.6.38.4 ro root=UUID rhgb quiet

 initrd /initramfs-2.6.38.4.img

title Fedora (2.6.35.6-45.fc14.x86_64)

 root (hd0,0)

 kernel /vmlinuz-2.6.35.6-45.fc14.x86_64 ro root=UUID rhgb quiet

 initrd /initramfs-2.6.35.6-45.fc14.x86_64.img

The Kernel

162

How to do it...
Here we will show you how to change some of the items in the grub.conf file. Note that a
mistake here can render your system unbootable, so either just follow along or be very careful.

1. Change to the proper directory:
cd /etc

2. Make a backup copy: cp grub.conf /temp (or some other suitable location).

3. Edit it with vi or equivalent:
vi grub.conf

4. Referring to my file above let's boot the first stanza by default. Change the
default=2 line to default=0. Note that they count starting at 0.

5. Now let's increase the amount of time it will wait for you to make a selection; change
the timeout value to 10.

6. Suppose you want to boot up in text mode, to do this comment out (that is, put a #
in front of) the splashimage and hiddenmenu lines.

7. And also remove the rhgb quiet from the stanza (or all of them).

8. If you have any parameters you want passed to the kernel, you can just add them
to the end of the kernel line.

How it works...
Let us see the break-up of the above mentioned steps in the following section:

 f The commented section says You have a /boot partition. This means
that all kernel and initrd paths are relative to /boot. What
this is trying to say is when you come across a line later containing something like /
vmlinuz-3.9.1, it really means /boot/vmlinuz-3.9.1. Don't forget that it works
this way, and you will save yourself a lot of grief later.

 f The default=2 means to use the third title or stanza (yes, this is another place
where they start counting at 0 instead of 1).

 f The timeout=5 means to display the kernel boot menu for 5 seconds before booting
into the default one.

 f The splashimage line shows a graphical image on the screen while booting.
I dislike this immensely and so I comment it out.

 f The hiddenmenu line means to hide the kernel boot menu. You comment this line
out to show the menu. Yes, it's backwards again, but not quite as awkward
as counting things starting at 0.

Chapter 10

163

 f The first title line begins a kernel stanza. Everything between that line and the next
title line (or end of file) is associated with that kernel. In this case, the first listed
kernel is the latest one I have created (3.9.1).

 f The root (hd0,0) line means that my /boot directory is located on the first hard
drive on the first partition.

 f The next line is the actual kernel file and parameters.

 f The last line of this stanza is the initial RAM disk image file.

 f As you can see, there are two more stanzas (kernels) available on this machine.
I am running 2.6.35-6-45.fc14.x86_64, the default kernel for Fedora 14 64-bit.

Understanding GRUB 2
GRUB 2 is now being used in many Linux distributions. It is a complete rewrite and was
created to fix some of the perceived issues in GRUB Legacy. It is still being developed,
and so the information here may not be complete or up-to-date.

The boot configuration when using GRUB 2 is in the /boot/grub2/grub.cfg file. You can
also refer to it by the /etc/grub2.cfg file which is a symbolic link.

The following is what the first few lines look like on my Fedora 17 system:

#

DO NOT EDIT THIS FILE

#

It is automatically generated by grub2-mkconfig using templates

from /etc/grub.d and settings from /etc/default/grub

#

BEGIN /etc/grub.d/00_header

if [-s $prefix/grubenv]; then

 load_env

fi

set default="1"

if [x"${feature_menuentry_id}" = xy]; then

 menuentry_id_option="--id"

else

 menuentry_id_option=""

fi

The Kernel

164

As the commented line says, this file is not intended to be edited directly. Instead, the /etc/
default/grub file is used in combination with the set of files in the /etc/grub.d directory.

Big2 /etc/grub.d # ls -la

total 76

drwx------. 2 root root 4096 Oct 18 2012 .

drwxr-xr-x. 167 root root 12288 May 15 03:34 ..

-rwxr-xr-x. 1 root root 7528 Aug 2 2012 00_header

-rwxr-xr-x. 1 root root 9265 Aug 2 2012 10_linux

-rwxr-xr-x. 1 root root 9948 Aug 2 2012 20_linux_xen

-rwxr-xr-x. 1 root root 2564 Aug 2 2012 20_ppc_terminfo

-rwxr-xr-x. 1 root root 9339 Aug 2 2012 30_os-prober

-rwxr-xr-x. 1 root root 214 Aug 2 2012 40_custom

-rwxr-xr-x. 1 root root 216 Aug 2 2012 41_custom

-rw-r--r--. 1 root root 483 Aug 2 2012 README

How to do it...
The following are the steps to make changes to the boot configuration when using GRUB 2.
Remember, the grub.cfg file is not edited directly; changes are instead made to the files
in the /etc/grub.d directory.

1. Let's change the timeout and rhgb values. Edit the /etc/default/grub file.

2. Change GRUB_TIMEOUT to 10.

3. In GRUB_CMDLINE_LINUX, remove the rhgb quiet. Save the file.

4. Create the new file by running the following command:
grub2-mkconfig -o /boot/grub2/grub.cfg

5. The modified grub.cfg file should be ready for booting.

How it works...
The following is a description of what the scripts in /etc/grub.d are for:

 f 00_header: This generates the header for grub2.cfg and gets the info from
the /etc/default/grub file

 f 10_linux: This loads the menu entries

 f 20_linux_xen: This looks for zen kernels to add them to the menu

 f 20_ppc_terminfo: This checks for a correct size terminal on PPC systems

Chapter 10

165

 f 30_os-prober: This searches the hard drives for other operating systems so
it can add them to the boot menu

 f 40_custom: This is a template that can be used to add extra entries to the boot menu

 f 41_custom: This reads information from /boot/grub/custom.cfg if it exists

 f README: This is a file that contains some other useful information

There's more...
The following is a partial list of the GRUB 2 commands available in the operating system:

 f grub2-editenv: This edits the GRUB environment block

 f grub2-fstest: This is a debug tool for GRUB filesystem drivers

 f grub2-kbdcomp: This generates a GRUB keyboard layout file

 f grub2-menulst2cfg: This transforms legacy menu.lst into grub.cfg

 f grub2-mkfont: This makes GRUB font files

 f grub2-mkimage: This makes a bootable image of GRUB

 f grub2-mklayout: This generates a GRUB keyboard layout file

 f grub2-mkpasswd-pbkdf2: This generates a hashed password for GRUB

 f grub2-mkrelpath: This makes a system path relative to its root

 f grub2-mkrescue: This makes a GRUB rescue image

 f grub2-mkstandalone: This makes a memdisk-based GRUB image

 f grub2-script-check: This checks grub.cfg for syntax errors

 f grub2-bios-setup: This sets up a device to boot using GRUB

 f grub2-install: This installs GRUB to a device

 f grub2-mkconfig: This generates a GRUB configuration file

 f grub2-mknetdir: This prepares a GRUB netboot directory

 f grub2-ofpathname: This finds an OpenBOOT path for a device

 f grub2-probe: This probes device information for GRUB

 f grub2-reboot: This sets the default boot entry for GRUB, for the next boot only

 f grub2-set-default: This sets the saved default boot entry for GRUB

 f grub2-sparc64-setup: This sets up a device to boot using GRUB

To learn more about GRUB 2, the official web page is http://www.gnu.org/software/
grub/grub.html.

A
Linux Best Practices

In this appendix we will cover the following topics:

 f Root user versus normal user

 f Running the GUI

 f Creating, verifying, and storing backups

 f Permissions and who you are

 f Making backups in real time

 f Environmental variables and shells

 f The best environment

 f Using and monitoring a UPS

 f Being careful when copying files

 f Verifying archive files and using checksums

 f Firewalls, router settings, and security

 f What to do if you find an intrusion

 f Spaces in filenames

 f Using scripts and aliases to save time and effort

 f Using scp and ssh with automatic authentication

 f Saving history and taking screenshots

 f Space on drives

 f Being open to new ideas

Linux Best Practices

168

Introduction
There are many things you can do to get the most out of your Linux system(s). Conventional
wisdom states that there are many ways to perform a particular task on a computer. This
is true, however, in reality there is usually only one good way to accomplish something.
The trick is to be open-minded and see the good when it happens.

Root user versus normal user
Running as the root user versus a normal user mostly depends on the environment you are
in. If each person has their own workstation and is in charge of how it is set up, then running
as root might be very natural for you (especially if you don't make mistakes). However, if
you're working in a bank or other situation where a typing error might wipe out a million dollar
account, running as root is certainly not advisable. In these cases, assuming you have the
authority, you would switch to root only when necessary and only to perform the needed task.
Using sudo, if it has been configured correctly, is also an option. See Chapter 5, Permissions,
Access, and Security, for more information on sudo.

Another thing to keep in mind is how comfortable you are running as root. If you are error
prone or nervous, and/or have caused serious damage in the past running as root, you
obviously need to take great care when doing so. On the other hand, if you consistently
run as root and don't ever make a mistake then that is great. It is certainly more efficient.

A special note to system administrators: I have seen this on more than one occasion and
so will mention it here. This applies to both novice and seasoned system administrators.
 It is customary for you (and maybe your manager) to be the only ones with root authority
on the systems. This sounds like a good idea, right? It might avoid having someone make
a mistake that could take out an entire project. And, it just feels good being the person in
charge. People come to you when they need something changed and you happily do it. Then
they come again, and again, and again. At some point you realize you can't get any of your
work done because of all the requests, and that they can't have their work done if you are
not around. So you try and set up sudo. Now it's even worse; every time you think you have
it set up to handle anything, someone may come to you if it fails again. So what do you do?

You may be able to give selected users root access. Use your instincts. For example, watch
how the individual users type. Are they comfortable when using the command line? Do they
type with authority, or seem scared of the machine? If a particular user consistently uses the
GUI to perform tasks that are done much more efficiently on the command line, then I would
see that as a strong warning sign.

In time you will get a feel of who can be trusted with root access and be able to grant it to
them. If, of course, someone does make a mistake, then it should not be the end of the world.
They can't really hurt the entire project, because you have been creating and verifying daily
backups, right? You can restore the damage and take root back from them. Note, one mistake
is all it takes. I would not trust that user with root again.

Appendix A

169

Running the GUI
While I am somewhat quick to trust my users with root access, and use it myself most of the
time, I absolutely do not recommend running the GUI this way. Some distributions won't even
allow it. By running the GUI as root, you are in effect running a lot of other things as root, such
as your browser and mail programs. Not a good idea at all.

Here is my preferred environment on a Linux or UNIX system. I use Fedora, but these ideas
should work on most other distributions. After installing a system, one of the first things
I do is change it so that the machine comes up in command line mode and not in a GUI. This
way if a graphics problem has occurred, it is much easier to diagnose and correct. I also have
a choice in which GUI to bring up by running the appropriate startx type command. At the
command prompt, I log in as a normal or guest user. On my Fedora 14 system I then run
startx, which brings up Gnome 2.

After the GUI has come all the way up, I open a terminal session and run su to root. I check
to make sure the machine can ping, and usually do a few more sanity checks. If all is well,
I then run my jset script. It performs some desktop customization such as opening terminal
windows into their proper directories, and reminding me of what command to run (I have
written a lot of programs and so really need this). It also mounts my USB devices, or warns
me if there is a problem. I then position the terminal sessions right where I want them to be.
I am now set to get some work done.

The following is a script similar to the one that I use to set up my desktop after booting up:

#!/bin/sh

last update 6/9/2013 (rebooted)

echo percentused - run go

cd /lewis/java/percentused

xterm +sb -title Xterm -geom 80x20 &

echo apcupsd - run go

cd /lewis/java/apc

xterm +sb -title Xterm -geom 80x20 &

echo jtail - run jtail

cd /lewis/jtail-f/jtail

xterm +sb -title jtail -geom 137x30 &

echo jsecure - run jsecure

cd /lewis/jtail-f/jsecure

Linux Best Practices

170

xterm +sb -title jtail -geom 125x33 &

echo ping - run loop1

cd /lewis/ping

xterm +sb -title ping -geom 86x8 &

echo runbackup1 - run runbackup1

cd /lewis/backup

xterm +sb -title runbackup1 -geom 65x21 &

echo jwho - run jwho

cd /lewis/jwho

xterm +sb -title jwho -geom 65x8 &

mount usb stick

mount /dev/sdg1 /usb

mount Iomega external drive

mount /dev/sdf1 /megadrive

Creating, verifying, and storing backups
I cannot stress how important it is to create backups of your system(s). At a minimum, copy
your personal and business data, and configuration files to a safe place. Some people backup
everything, even the operating system itself. Whatever you decide to do, make a plan and
stick to it. As mentioned in Chapter 8, Working with Scripts, this is a great time to design
and use a script. Use crontab if desired, to automate the periodic taking of backups.

The tar command is great for backing up entire directories. Note that it will get any hidden
files as well. You can exclude specific directories if desired, and do quite a few other things
with tar. The following are the commands similar to the ones I use to backup my /home/
guest1 directory.

tsback1 is a text file containing the number to start with.

cat tsback1

0

Appendix A

171

The following is the start of the script:

 cd /home

 NUM=`cat tsback1` # get the next number to use

 tar -cvzf /megadrive/backups/backup$NUM.gz --exclude=Cache
--exclude=.cache --exclude=.thumbnails guest1

Remember to include the directory to be backed up as the last thing on the line. This first
changes the /home directory, because for tar, you want to be in the parent directory of the
sub-directory to be backed up. The next line sets the NUM variable to the next one to use. The
last line creates the tar file directly onto my USB external drive in the appropriate directory.

I attempt to be very careful while creating backups. The script I actually use to back things up
does quite a few other things. For example, it checks to make sure my USB external drive is
really there, and can be written to (it should also check if there is enough free space on the
drive, that's a TODO of mine). If the code determines the drive is not there or some other error
occurs, a really loud and obnoxious alarm goes off. And, if I have not responded to this alarm
in 5 minutes, an email is sent to my cell phone. How's that for paranoid?

Making backups is great. However, if the backup is unusable, it doesn't do you much good.
So, it is wise to verify your backups from time to time. How often do this is up to you and your
comfort level. My script routinely copies the backup files to another machine, which then
extracts them and runs a few tests. If anything doesn't look quite right, another alarm goes
off. This is all done automatically in scripts.

Okay, we are now making backups and verifying them. What about storing them? Suppose you
have everything just right, all your files are copied and verified, and they are all located in the
same place such as your home or office. And now something unspeakable occurs, such as
a fire or theft. I agree, there is a very low chance of this happening, but it still could. I, for one,
do not want to try and reproduce the million lines of code I have written since 1982 and so
have backups all over the place, including off-site. In some of the companies I have worked
at, the files were copied to tape, CDs, and/or hard drives, and stored in a walk-in fireproof
safe. Pretty good idea.

Permissions and who you are
This mostly pertains to system administrators. As a system administrator, you probably do most
of your work as the root user. You set up guest accounts and quotas, and maybe even create
scripts, and so on. It is sometimes easy to forget that your users don't have root authority.

With this in mind, be sure to check out your additions and changes from the user's
perspective. Become that user with su and make sure you can access everything normally.
This will save you a lot of time, and maybe even embarrassment, if you find a problem before
your users do.

Linux Best Practices

172

Making backups in real time
When editing scripts and other files, it is a good idea to make numbered backups. Nothing
is more frustrating than having something work, then break after some changes, and then
not be able to get it working again quickly. With numbered backups you can always go back
to a previous version that worked, and then use diff to find the mistake. I sure learned this
one the hard way.

The following is a backup script I wrote for the users of this book (the one I normally use
is written in C). It is named mkbak:

#!/bin/sh

mkbak script to create backup files

if ["$1" = ""] ; then

 echo "Usage: mkbak filename(s)"

 echo "Creates numbered backup file(s) in the current directory."

 exit

fi

for i in $* ; do

 if [! -f $i] ; then

 echo File $i not found.

 continue

 fi

 num=1

 while [1]

 do

 ibak=bak-$num.$i

 if [-f $ibak] ; then

 num=`expr $num + 1`

 else

 break

 fi

 done

 cp $i $ibak

 rc=$?

 if [$rc -eq 0] ; then

 echo File $i copied to $ibak

Appendix A

173

 else

 echo "An error has occurred in the cp command, rc: $rc"

 fi

done

This script comes free of charge, but with some limitations. It will not handle filenames with
blanks, and only works on files in the current directory. Note that you can cd to the directory
you want first and then run it.

The following is the script I use to backup the current book file I am working on:

#!/bin/sh

b1 script to copy book file

Date 1/22/2013

FN=startA1.txt # name of file to back up

STARTDIR=`pwd` # remember the starting directory

cp $FN /usb/book # copy to USB stick

cd /usb/book # cd to it

mkbak $FN # make the numbered backup

cd $STARTDIR # go back to the starting directory

cp $FN /megadrive/book # copy to USB external drive

cd /megadrive/book # cd to it

mkbak $FN # make the numbered backup

cd $STARTDIR # go back to the starting directory

sum $FN /usb/book/$FN /megadrive/book/$FN # use sum to check

scp $FN $B2:/temp # copy to my other machine

ssh $B2 /usr/bin/sum /temp/$FN # check the copy

While editing the file (the FN variable), I will manually run this from time-to-time, usually after
a lot of changes, and definitely just before I get up to take a break or whatever.

Linux Best Practices

174

Environment variables and shells
One thing that comes up a lot during system administration is the monitoring of several
machines. It's not uncommon to have 5 or 6 ssh sessions open at a time, more if you have
multiple monitors. It's crucial to know which session is running on which machine, as typing
the right command on the wrong machine can be a disaster. For this reason and others,
I recommend using a custom PS1 variable when logging into a remote machine.

This was mentioned in Chapter 1, Using the Terminal / Command Line, during the discussion
of environment variables. The following is what my PS1 variable looks like on my machine
running Fedora 17:

Big2 /temp/linuxbook/chapA # echo $PS1

Big2 \w #

Big2 /temp/linuxbook/chapA #

Simple, and not too cluttered. The following is what PS1 looks like on my other machine when
I log into it:

BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 /temp # echo $PS1

BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 \w #

BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 /temp #

It should be pretty hard to mix those up.

While we are on the subject of environment variables, there is something else to keep in mind.
When you make a change to your .bashrc file and source it, the changes are only visible
in that session (as well as any newly opened sessions). In order to see the change in other
existing sessions you must source it in them as well. It would be rather cool if there was a way
to make the changes visible in every session with just one command, however, I do not believe
that is possible. Of course, one could argue that shutdown -r now will do it.

The best environment
What works best for one person may not work the best for another. However, I know that I am
most productive when using a fast desktop system with plenty of memory and storage, and
two big displays. The following is my typical set up:

On my left-hand side display, I put the scripts, and the following programs that I use to monitor
the system:

 f A disk space monitoring program written in Java and C

 f A program that monitors my Uninterruptible Power Supply (UPS), also written in Java
and C

Appendix A

175

 f A script that pings the network once a minute and logs any failures

 f A program that uses tail -f /var/log/messages to monitor kernel messages

 f My backup script that runs every night at 3 a.m.

 f A "poor man's" intrusion detection script (more on that later)

 f A script that e-mails the system status to my cell phone twice a day

 f I have the Computer and Guest folder icons visible and easy to access

 f Any ssh sessions to remote machines

 f And a few others that are too boring to mention

All of these are set to remain visible in all workspaces. Speaking of workspaces, I usually
have four of them. I always place the same programs and terminal sessions in the same
workspace, and in about the same place on the screen. This way, I can get to where I want
to be very quickly. Have you ever been in a situation where your team is about to miss an
important deadline, and you are being forced to watch and wait as someone else wastes a lot
of time trying to find or do something on their system? You do not ever want to be that person.

On the right-hand side display I do most of my actual work. The following is how my
workspaces tend to be laid out:

 f In Workspace 1 are a couple of terminals. Those are there and ready in case I need
to do something right away

 f Workspace 2 is normally used for program development. I do C, Java, and script
development here

 f Workspace 3 is where I am currently typing this book in my custom written text editor
(which will eventually be imported into LibreOffice)

 f Workspace 4 is where I have my webmail client

Speaking of browsing, I tend to open those on the left-hand side display, and in whatever
workspace that goes with what I am currently working on. This is very fast and efficient, and
is also easier to cut and paste when needed.

Not all of us have the luxury of fast machines or dual monitors, particularly at our jobs, where
it sometimes seems to be more important to management to save money, instead of giving
the employees what they need to be productive. All I can say to that, is try your best to get
what you need to do your job as efficiently as possible.

Linux Best Practices

176

Using and monitoring a UPS
In my opinion it is imperative that a UPS be used on at least your primary workstation.
All kinds of bad things can happen to the hardware if the power suddenly goes off (or
worse, browns out), not to mention what might happen to your data. With modern journaling
filesystems, I realize data loss is somewhat rare, but why take the chance? Also, I really just
don't like to reboot. Ever.

Depending on your situation, try to get the best UPS you can afford. You want one that will run
your system for a long time and also power your display, modem, router, and external drives
if you have them. This way, if the power goes out for just a short time you won't lose anything,
and won't have to wait for everything to come back up.

There are many different UPS brands available today. I am somewhat partial to the American
Power Conversion (APC) devices. I have several of them, and they work well with Linux.
Be sure to get one with a phone-connector to USB port, as the old-style serial port units
do not work properly.

The apcupsd daemon can be used to monitor the UPS. If your distribution does not already
have it, the package can be installed.

 f If using Fedora, run yum -y install apcupsd (substitute your package installer
as appropriate)

 f Comment out the WALL statement in the /etc/apcupsd/apccontrol file to keep
annoying messages from being broadcasted to every terminal

 f Run apcaccess status to query the UPS

There's quite a bit more you can do with apcupsd, for more information check its website
at http://www.apcupsd.com. This also lists some UPS units that might not be as
compatible with Linux as the ones I have.

One more thing, you will probably want to use the auto-shutdown feature of the UPS. It can
be set up to automatically shutdown your machine if the power has been out for too long.
Most units allow you to set the amount of time to stay running, before shutting down.
Remember that the longer the UPS runs on the batteries, the shorter their life span will be.

Being careful when copying files
When copying files to a directory, make sure it really is a directory. This happens enough for
me to mention it, and I have to admit I still almost do it from time-to-time. It is quite easy to
copy a lot of files to what you believe is a directory, but isn't. The result is that just the last file
that was copied will be there, and if you don't still have the source files, they might now be
lost. Use the file command to verify whether the target really is a directory before you copy
the files.

Appendix A

177

Verifying archive files and using checksums
One thing that comes up a lot is mistakes that go unnoticed in the creation of tar or zip
archives that are going to be sent to another person or site.

The following are the steps that should be followed:

1. Copy the files to an appropriate directory (make sure it really is a directory first).

2. Use zip or tar to compress and create the archive.

3. Use the tell or list option to be sure it looks correct. For TAR it's tar -tvzf
filename.gz and for ZIP it's unzip -l filename.zip.

4. Run the sum command against your file, and then send the file to where it needs to go.

5. If using scp, use ssh to run the sum command on the file on the remote system like
the following:
ssh <user@remote-host> /usr/bin/sum filename.gz

6. The two sum values should match.

7. If using e-mail, run sum on your end, and send the result along with the e-mail.

A piece of advise for developers; suppose you are creating an archive of a programming
project. To make absolutely sure you have copied every file it needs, create the archive and
then copy it to another machine. Un-compress and build it as you normally would. An error
will occur if a needed file is missing.

Firewalls, router settings, and security
Firewalls were covered in Chapter 5, Permissions, Access, and Security, and so this will
just be a brief recap. If you are running a home system and using a good router, the default
settings for iptables is probably all you need. It may require some tweaking, for example,
to use a scanner, but for the most part you are probably safe from hackers. On the other hand,
if you are the system administrator for a large company, iptables is probably not enough.
I would investigate using a hardware intrusion appliance or some other method, to insure data
and system security.

It is highly suggested that a router with a built-in firewall be used at all times. By no means
would I connect a system directly to the Internet. While a typical Linux system may survive
this, I have seen Windows boxes get infected with a virus in less than 30 minutes.

The default router settings are probably already strong enough to keep out the typical hacker.
To be sure, and just to get an idea of what is going on inside your router, it's a good idea
to login and check everything from time-to-time. On most routers, pointing your browser to
192.168.1.1 will bring up the login screen. In most cases, an ID and password are required.

Linux Best Practices

178

The who command can be used in Linux to show the username, tty, date, time and IP address
of each user on the system, as shown in the following screenshot:

Here is another thing you can do to help prevent an intrusion. It is a good idea to deny
root access by ssh/scp because hackers will usually attempt to break in as root. This can
be accomplished by editing the /etc/ssh/sshd_config file. Locate the line that says
#PermitRootLogin yes and change it to PermitRootLogin no. Don't forget to remove
the # (pound sign). You will also need to restart sshd. Now, any attempt to login as root will
fail. I have all of my machines set up this way as an added precaution.

One last thing, any time someone logs (or attempts to log) into your system, a record is made
of it. On Fedora this is put into the /var/log/secure file. You can check this file from
time-to-time, or monitor it by using the tail -f /var/log/secure command.

And now for a bonus. The following is a simple script I use to watch for unauthorized access
to my machine:

#!/bin/sh

tput clear

echo "jwho by Lewis 10/23/2011"

numusers=`who | wc -l`

while [1]

do

 rc=`who | wc -l` # get number of users

 if [$rc -gt $numusers] ; then

 echo "Someone new has logged on!!!!!!!!!!!"

Appendix A

179

 date

 who

 jalert5 & # see below

 numusers=$rc

 elif [$rc -lt $numusers] ; then

 echo "Someone logged off."

 date

 numusers=$rc

 fi

 sleep 5

done

Basically what this does is check every 5 seconds to see if the number of users have changed.
If it has increased, the jalert5 script is run in the background. It plays a really obnoxious
WAV file every 5 seconds until I turn it off. This will also fire every time you open a new
session, so you will probably want to run it last after a boot up.

What to do if you find an intrusion
Suppose you have found that an intrusion has occurred. What should you do?

These instructions are for your machine or for one you have total
responsibility for. If this occurs on a machine where you work,
immediately follow whatever procedures your company has in
place for a security event.

Quick action is needed if you suspect a break-in. Run the who command or cat /var/log/
secure and check the output. If you see a suspicious IP address, take the following actions:

 f If this were a very important machine with critical data on it, I would pull out the
Ethernet wire(s) and shut it down now. I would then boot up from rescue media and try
to determine if anything bad had occurred. Checking the date and time they got in (from
the who command) could give you an idea of how much damage they may have caused.

 f If this were my home system, I would first pull the Ethernet wire. I would then run ps
auxw to a file to capture what is going on in the system right now. I would copy this
file to some other machine or device and then shutdown the system.

By examining the ps output and looking at the tty value I could probably determine what
programs they were running, if any. This might point to what they were trying to accomplish
by getting into the system.

Linux Best Practices

180

Obviously, if someone does get into your system, they most likely did it by guessing or somehow
determining a password. I would probably reset all the passwords to something much harder
to crack, and then inform my users to pick better ones. Or probably assign them myself.

Okay, so at least one person reading this is thinking why pull out the Ethernet wire? Why not
just bring down the interface? Well, because a shrewd attacker is going to think of that, and
as soon as he has access, he is going to put code on the system to automatically bring the
interface back up if it goes down. He may even put a timer on it, or hide it in some other way.

It is possible that an attacker had time to do all kinds of things. He may have even been able
to modify the who, ps, and other commands to make it almost impossible to track what he
did (or is still doing) from the running system. With this in mind, you still need to shutdown
asap and then boot up with a rescue disk or equivalent. Some of the things to look at are
the commands such as ps and who. Run the file command, it should show them as being
a binary executable and not a shell script. If they are shell scripts, you may discover the
attacker has renamed the executable files with a . to hide them, and then wrapped them
around a script to help cover up his presence. There are many other ways to hide as well.

Spaces in filenames
When generating files for yourself or other people, do not include blanks in the filename. This
can cause a lot of problems on Linux and UNIX machines. If necessary, use capital letters
and/or underscores. Do not use parentheses or other special characters either. I was really
amazed the first time I downloaded a file using Firefox, as it inserted parentheses
to differentiate it from another file of the same name. I appreciate the fact that it didn't just
over-write the original file, but using parentheses was and is a really bad idea.

Using scripts and aliases to save time and
effort

One thing I see a lot of in the field is people wasting time and effort typing the same things
over and over again. Don't do this. Use aliases and scripts. Don't think about how much time
you might spend writing the script, think about how much time you will save by being able
to use it all the time. You might also be able to incorporate it into another script later on
(especially if it was written well, to begin with). Also, having these available should help with
meeting deadlines.

Appendix A

181

Using scp and ssh with automatic
authentication

Follow these steps to allow the use of ssh/scp without having to enter a password. You will
need to be root.

1. First, make sure the client has used ssh at least once. This will create the proper
directory that is needed.

2. On the master machine run the ssh-keygen -t rsa command. This will create
some necessary files.

3. If the /root/.ssh/authorized_keys file does not already exist on the client,
you can run scp /root/.ssh/id_rsa.pub <hostname>:/root/.ssh/
authorized_keys.

4. Otherwise, copy the id_rsa.pub file over to the client and then add it to the
authorized_keys file (I usually put it at the bottom).

5. You should now be able to scp and ssh to the client without having to enter
a password. This is really handy, especially in scripts.

You can also add this entry to another user account. For example, I added it to my /home/
guest1/.ssh/authorized_keys file. This way I can copy files as root from one machine,
and it will still be accepted by the other.

Saving history and taking screenshots
We all have to learn new things when dealing with computers. Sometimes the steps involved
are pretty complicated, and I have found that in practically every situation whatever document
or site I am using to perform the steps, has errors. It's not complete, the author skipped
an important step, and so on. For these reasons and others, after I have (finally) gotten
something to work, I run the history command in that session and output it to a file.
I then save this under a suitable name so I can find it again later.

Depending on how much effort was required, and if appropriate, I may take screenshots of each
step as well. This can be valuable later as a reference, and if you ever have to help someone
else accomplish the same task. Or, if someone talks you into writing a book about it someday.

Space on drives
In the old days there was never enough hard drive space. We were always running low or out,
and trying to find ways to increase our storage. Now, in modern times, this might not be as
much of an issue. However, it is still a good idea to monitor your available space at all times.

Linux Best Practices

182

There are quite a few ways to do this. On my systems I use a program I wrote in C and Java.
It's called Percent Space Used and just uses df -h under the covers. You can put df
in a script, or just check the space manually from time to time. Just don't run out! Filling up
a partition is a good way to have a disaster on your hands, especially if it is a system partition.

Being open to new ideas
Here is my last bit of advice for people wanting to know Linux better. I consistently see people
in the field doing their everyday jobs, and doing it the same way. Always be on the lookout
on how to improve the way you perform your daily tasks. If you see a co-worker doing
something that seems odd to you, don't just assume his way is wrong and yours is right.
His process may be a whole lot better than yours. Learn from it. On the other hand, he may
not have a better way, yours may be better. At this point, it's up to you to decide whether
to attempt to share your ideas. I have found most people very resistant to this.

Do not let yourself get caught in the "Your way isn't better than mine, it's just different"
argument. As I mentioned before, there is usually only one right way to perform a task,
but most people just don't see this. Try to find it when you can, and share your ideas only
if the person you are trying to help is receptive.

B
Finding Help

In this appendix we will cover the following topics:

 f Using man pages

 f Using the info command

 f Commands and the Usage section

 f Local documentation directories

 f Browsing the web to find help

 f Distribution release notes

 f Linux users' groups

 f Internet Relay Chat (IRC)

Introduction
There are many different places to find help on Linux. There is also quite a lot of information
available; in fact, it is too much in some cases. It can be difficult to filter out the noise from
the good stuff. Here we try to show you how to get what you need quickly and efficiently.

Using man pages
The man utility is an interface to the local reference manuals. It is used to quickly find
information on programs, utilities, functions, and other topics. The man utility will accept
several options; however, the usual invocation is simply man page, where page actually
refers to a topic. You can even run man by itself to learn how to use it.

Finding Help

184

The following is a screenshot of the command man man:

Running man on a page displays that topic of interest. The spacebar is used to page down,
and Q is used to quit. Pages (topics) are presented in a more or less standard order with these
possible section names: NAME, SYNOPSIS, CONFIGURATION, DESCRIPTION, EXAMPLES,
OVERVIEW, DEFAULTS, OPTIONS, EXIT STATUS, RETURN VALUE, ENVIRONMENT, FILES,
VERSIONS, CONFORMING TO, NOTES, BUGS, AUTHORS, HISTORY, and SEE ALSO.

man shows the first page found, even if there are more pages in other sections. For example,
suppose you are looking for information on how to code the readlink function in your C
program. You might try the following command:

man readlink

Appendix B

185

It brings up a page, but of the command readlink and not the C function. Why? Because
it shows the first page, unless you specify the section number before the page. Well, how
do you know what that is? You can run man with the -a option in the following manner:

man -a readlink

This brings up the command readlink as before. Now press Q to quit. The page goes away,
but instead of terminating, the man session shows something as follows:

Big4 /lewis/Fedora/17 # man -a readlink

--Man-- next: readlink(2) [view (return) | skip (Ctrl-D) | quit (Ctrl-C)
]

This is giving you a choice: pressing Enter will show the next page (topic), Ctrl + D will skip
to the next topic, and Ctrl + C will end the man session. Pressing Q when you are on the last
topic will cause man to terminate normally as before.

So what if you already know that you want the page from section 3 and load it directly?
You can specify it in the following manner:

man 3 readlink

This will skip the first two and go right into the page for readlink out of the POSIX
Programmer's Manual.

Here is a list of the section numbers and their names:

 f 1: Executable programs or shell commands

 f 2: System calls (functions provided by the kernel)

 f 3: Library calls (functions within program libraries)

 f 4: Special files (usually found in /dev)

 f 5: File formats and conventions (for example, /etc/passwd)

 f 6: Games

 f 7: Miscellaneous (including macro packages and conventions), for example, man(7)
and groff(7)

 f 8: System administration commands

 f 9: Kernel routines

The local reference manuals can be a great source of information. They contain a wealth of
data on just about everything in a Linux system. Unfortunately, they do have some drawbacks.
Most are well-written and make sense. Some are, well, rather horrible. When this happens,
there are other places to find help.

Finding Help

186

Using the info command
In addition to the man pages, most Linux systems also have Info documents. These are
accessed by using the info program. In general, the data provided by Info documents tend
to go into more detail and are more informative than a typical man page.

Like man, you can run info on its own:

info info

This presents an introduction on how to use info. The last paragraph says If new to info,
type 'h' now. This brings you to a programmed instruction sequence. If you are interested
in learning how to use info to its fullest, I suggest pressing H here to run the tutorial.

The following is a screenshot of running info info and then pressing H:

Appendix B

187

Commands and the Usage section
Most commands in Linux have a Usage section, which can be displayed by running it with the
--help option. Typical examples of this are cat, cut, ifconfig, bash, rm, and many others.

The following is a screenshot of rm --help:

Note that, in general, the Usage section is not really intended to teach someone a whole
lot about a command. It's really used to remind the user what the parameters are, and
the general format of the command.

Finding Help

188

Note that some commands, especially those that require parameters in order to accomplish
something, will display their usage information just by being invoked with no parameters given.

The following is a screenshot of running the awk command with no parameters:

Local documentation directories
Most full Linux distributions have directories that contain documentation on various topics.
Depending on which distribution is being used, the layout may differ slightly but in most cases,
the files are located in the /usr/share/doc directory. The following is a partial listing
of the /usr/share/doc directory taken from Fedora 14:

 f /usr/share/doc/BackupPC-3.1.0

 f /usr/share/doc/ConsoleKit-0.4.2

 f /usr/share/doc/Django-1.2.3

 f /usr/share/doc/GConf2-2.31.91

Appendix B

189

 f /usr/share/doc/GeoIP-1.4.7

 f /usr/share/doc/GitPython-0.2.0

 f /usr/share/doc/HTML

 f /usr/share/doc/ImageMagick-6.6.4.1

 f /usr/share/doc/ModemManager-0.4

 f /usr/share/doc/MySQL-python-1.2.3

 f /usr/share/doc/NetworkManager-0.8.1

 f /usr/share/doc/abrt-1.1.13

 f /usr/share/doc/ant-1.7.1

 f /usr/share/doc/apcupsd-3.14.8

 f /usr/share/doc/doxygen-1.7.1

 f /usr/share/doc/ethtool-2.6.38

 f /usr/share/doc/fedora-release-14

 f /usr/share/doc/gcc-4.5.1

 f /usr/share/doc/gcc-c++-4.5.1

 f /usr/share/doc/gimp-2.6.11

 f /usr/share/doc/git-1.7.3.1

 f /usr/share/doc/gnome-desktop-2.32.0

 f /usr/share/doc/gnuchess-5.07

 f /usr/share/doc/httpd-2.2.16

 f /usr/share/doc/httpd-tools-2.2.16

 f /usr/share/doc/java-1.6.0-openjdk-1.6.0.0

 f /usr/share/doc/java-1.6.0-openjdk-devel-1.6.0.0

 f /usr/share/doc/kaffeine-1.1

 f /usr/share/doc/mailx-12.4

 f /usr/share/doc/make-3.82

 f /usr/share/doc/man-db-2.5.7

 f /usr/share/doc/man-pages-3.25

There is also a documentation viewer/browser, which is normally accessed through the file
folder dialog. For example, if you open your file manager and go to one of the directories under
/usr/share/doc, you will see many files. Clicking on the README file will bring up more
information about that particular program on your system. There may be other readable files
as well, such as CONTENT, AUTHOR, MAINTAINERS, INSTALLATION, and so on.

Finding Help

190

Browsing the web to find help
Using the Internet is certainly a great way to find help on Linux tasks. In many cases, it
may even be better than relying on local sources as updates may have occurred since the
documentation was last put on your system. When I need to look up something using the web,
I go directly to Google Advanced Search.

The following is a screenshot of http://www.google.com/advanced_search with some
of the fields already filled in:

Using this search method is fast and you can use those fields to narrow down what you are
looking for.

Appendix B

191

Keep in mind that there is a lot of information out on the Internet. Some of it is accurate
and is exactly what you are looking for. However, in many cases the information is not
correct. The person giving the answer may act as though he or she is an expert on the
subject when in fact, he or she is not. Many people also don't always check their solution
before presenting it as a definitive answer to your question/problem. Be aware of this
as you try solutions given on the Internet.

The reverse of this situation is also true. If you want to help people, then that is absolutely
great. However, be considerate and test any solution you wish to provide for accuracy before
sending it as a reply to their problem.

Distribution release notes
A great way to learn more about your Linux distribution is to look at the release notes for it.
These usually contain information such as the following:

 f They keep a record of the changes that have been made since the last release. This
is usually separated into sections for specific users such as system administrators,
desktop users, developers, and others. Note that in some distributions, more
information is available in the Technical Notes document.

 f They spell out the minimum hardware requirements/architecture needed to run the
distro effectively. Special attention is given to memory, graphics, and video concerns.

 f They give installation instructions with emphasis on booting, and special
or unusual setups.

 f They provide a list of the possible desktop environments that can be installed, often
accompanied by the steps to do so. This is a very important section because using
a poorly designed and/or buggy desktop will hinder your productivity.

 f They have an explanation of the new features, functions, and programs that have
been added into the release. This is sometimes followed by the reasoning behind
the addition, and what program(s) it replaces.

 f They consist of a list of the depreciated (removed) programs and features.

 f They have pointers on where to get additional help such as websites and chat rooms.

 f They contain a list of the known bugs and problems that still exist in the distro,
along with information about possible workarounds. Always consult this list before
filing a bug report.

 f They give instructions on how to provide feedback on both the distribution and
release notes, as well as any features you would like to see added/changed.

Finding Help

192

The following is a screenshot of the release notes for Fedora 19 from http://docs.
fedoraproject.org/en-US/Fedora/19/html/Release_Notes/index.html:

Appendix B

193

The following is the link to the release notes for Ubuntu 13.04 from https://wiki.
ubuntu.com/RaringRingtail/ReleaseNotes:

Finding Help

194

The following screenshot is of Debian 7.0 (Wheezy) taken from http://www.debian.org/
releases/stable/amd64/release-notes:

The release notes make for very good reading. I browse them before, during, and after
installing a new distribution. This ensures I get the most out of my distribution, informs me of
new features, and helps me avoid spending too much time and effort trying to solve a known
bug or problem.

Linux users' groups
Another really good place to ask for help is on your local users' group. To find one near you,
try an advanced Google search on Linux User Group, and then put in your city (and state
if necessary). You should be presented with a few options. Note that most just require
a valid e-mail address to get subscribed to the group. In general, to ask a question you
simply compose it like a normal one and then e-mail it to the group's e-mail address. People
who are knowledgeable in that area are usually quick to provide help and will e-mail back
to the group with a possible answer. In most cases, you can also search through the group's
archives to find things.

http://www.debian.org/releases/stable/amd64/release-notes
http://www.debian.org/releases/stable/amd64/release-notes

Appendix B

195

I have found answers to many difficult issues by asking questions on the Central Texas Linux
Users Group (CTLUG).

The following is a screenshot of the CTLUG site at http://ctlug.org/:

Internet Relay Chat (IRC)
Using IRC is a great way to stay informed about various topics that are of interest to you. It is
also a very good place to ask for help. The people who frequent these chat rooms do so
by joining channels that pertain to the subject they are interested in and are knowledgeable of.
This is all done in real time as well with no need to wait for an e-mail reply to come back. You
just need an IRC client, a server, and a group (channel) to join and (in most cases) are ready
to go. There are quite a few different IRC clients. Some of these are text- mode (command line)
and some are GUI-based.

Finding Help

196

The following is a screenshot of http://www.irchelp.org/irchelp/clients/unix/,
a site that shows different IRC clients for Linux and Unix:

If you are new to IRC, here are a few pointers to get you started. I did not already have one
and so began by getting a client. I prefer command line programs and so installed irssi
on my Fedora 17 machine by running the yum command as root:

yum -y install irssi

This worked just fine.

http://www.irchelp.org/irchelp/clients/unix/

Appendix B

197

The following is a screenshot of irssi –help on Fedora 17:

This program allows for quite a bit of customization. The default configuration on my system
is contained in the /home/<user>/.irssi/config file. You can override this using the
previous settings. For now, let's just run it plain to see what it looks like.

1. Start by running irssi. It should bring up a text mode screen and present you with
a welcome message since this is your first time in.

2. Connect to a server. For this example, we will use freenode. Run:
/connect irc.freenode.net

3. You should see another welcome-type message. Now we need a channel. For this
example, run the /join #chat command (don't forget the # symbol).

4. You should now be connected to freenode through the channel #chat and be able
to chat with the other users.

Note that irssi does take a bit of getting used to. At the bottom is a status screen. You may
see something such as [Act: 2] or equivalent. This indicates that there is new text present
in another window, which you can access by pressing the Alt key followed by the number.
So, Alt + 2 will get you to the next screen.

Anything you type in that is not preceded by a / symbol, will go to everyone currently in
the group. Remember that this is a public forum; be careful with what you say and follow
the directions. Also take care to not put personal information in a chat session.

Finding Help

198

There are quite a few websites that contain information on IRC. The following are a few I found:

 f http://www.irchelp.org/

 f http://www.linux.org/article/view/irssi-for-beginners-2012

 f http://www.tldp.org/LDP/sag/html/irc.html

 f https://wiki.archlinux.org/index.php/IRC_Channel

There are so many Linux channels available that it is difficult to put them in a list. Some
require authentication, while some let you start chatting right away. The best way to find these
is to search the Internet for the subject you are looking for help on, and include the phrase
IRC. Connect to the appropriate server, join the channel, follow any special directions there
might be, and have fun chatting!

http://www.irchelp.org/
http://www.linux.org/article/view/irssi-for-beginners-2012
http://www.linux.org/article/view/irssi-for-beginners-2012
http://www.linux.org/article/view/irssi-for-beginners-2012
http://www.tldp.org/LDP/sag/html/irc.html
http://www.tldp.org/LDP/sag/html/irc.html
https://wiki.archlinux.org/index.php/IRC_Channel
https://wiki.archlinux.org/index.php/IRC_Channel

Index
Symbols
$? variable

about 16
example 17
using 16
working 17

.bashrc file 14
/bin utilities

awk 138
basename 138
bash 138
cat 138
chmod 138
chown 138
cp 138
cut 138
date 138
dmesg 138
echo 138
egrep 138
fgrep 138
find 138
gawk 138
grep 138
hostname 138
ls 138
mkdir 138
mktemp 138
mv 138
ping 138
ping6 138
ps 138
pwd 139
rm 139
sed 139

sleep 139
sort 139
tar 139
touch 139

/boot 107
/etc/services file 70
/proc directory

listing, on Fedora 17 system 103-105
/proc filesystem

about 37, 38, 101
used, for observing process 102, 103

/sys filesystem 37
/tmp directory

about 87
working 88

/usr/bin utilities
diff 139
dirname 139
expr 139
file 139
flock 139
stat 139
tee 139
time 139
tty 139
uniq 139
unzip 139
who 139
xargs 139

A
aliases

about 12
creating 12
using 13

American Power Conversion (APC) 176

200

archive files
verifying 177

awk command 138, 188

B
backups

creating 170, 171
performing, in real times 172, 173
storing 170, 171
verifying 170, 171

basename command 138
bash command 138, 187
Bash Internal Field Separator (IFS) variable

15
Bash shell

$? variable 16
about 5
aliases 12, 13
.bashrc file 14
blanks and special characters, dealing with

15
command retrieval 6
environment variables 10, 11
filename auto-completion 8
history function 7
line editing 7
output, sending from one terminal to another

19
redirection (>) operator 17
screen program, using 19, 20
shell prompt 9

Bash shell scripts 123
best practices, Linux

about 168
actions, for intrusion 179
aliases, using 180
archive files, verifying 177
backups, creating 170, 171
backups, performing in real time 172, 173
backups, storing 170, 171
backups, verifying 170, 171
best environment 174, 175
checksums, using 177
environment variables 174
files, copying to directory 176
firewalls 177

GUI, running 169
hard drive space 181
history, saving 181
new ideas 182
no spaces, in filenames 180
permissions 171
root user versus normal user 168
router settings 177
screenshots, taking 181
scripts, using 180
security 178
shells 174
ssh/scp, using with automatic authentication

181
UPS, monitoring 176
UPS, using 176

blanks and special characters
dealing with 15, 16

BSD style header 93
Btrfs filesystem 120

C
Cat 5E 55
Cat 6 55
cat command 125, 138, 187
cd command 139
Central Texas Linux Users Group. See CTLUG
checksums

using 177
chmod command 138 80
chown command 138
command

running, every other week 145
command retrieval 6
commands, GRUB 2

grub2-editenv 165
grub2-fstest 165
grub2-install 165
grub2-kbdcomp 165
grub2-menulst2cfg 165
grub2-mkconfig 165
grub2-mkfont 165
grub2-mkimage 165
grub2-mklayout 165
grub2-mknetdir 165
grub2-mkpasswd-pbkdf2 165

201

grub2-mkrelpath 165
grub2-mkrescue 165
grub2-mkstandalone 165
grub2-ofpathname 165
grub2-probe 165
grub2-reboot 165
grub2-script-check 165
grub2-set-default 165
grub2-sparc64-setup 165

computer desktop 21
config file 109
configuration

modifying, xconfig used 158-160
cp command 138
cron 141
cron.allow file 141
cron.deny file 141
crontab command 142, 170
crontab file

about 141
creating 143, 144
editing 142
environment variables 146
errors, reporting from 147
format 142
running 143, 144

cron-weekly.txt file 145
CTLUG

URL 195
custom kernel, running

cons 150
pros 149

cut command 125, 138, 187

D
date command 138
depmod program 153
device 109
df program 110
diff command 139, 160
directories

about 37
creating 39

dirname command 139
Distribution Release Notes

about 191

URL, for Debian 7.0 (Wheezy) 194
URL, for release notes for Ubuntu 13.04 193

dmesg command
about 47, 153
output, on Fedora 17 153

domain 59
drive

formatting, mkfs command used 114, 115
dsmeg command 138
dumpe2fs command 38

E
echo command 11, 138, 139
EDITOR variable 11
egrep command 138
Emacs 42
Emacs editor

about 43
used, for editing Java file 44

environment variables 174
environment variables, Bash shell

EDITOR 11
HISTSIZE 11
HOME 10
HOSTNAME 10
PATH 11
PS1 10
PWD 11
SHELL 11
TERM 11
TZ 11
USER 10
working 12

environment variables, crontab files
CRON_TZ 146
MAILTO 146
SHELL 146

errors
reporting, form crontab file 147

ethtool command 57
Evolution 22, 67
exit command 139
export command 139
expr command 131, 139
ext2 filesystem 120
ext3 filesystem 121

202

ext4 filesystem 121

F
FAT filesystem 121
fdisk program

about 111
options 116, 117
running, steps 112, 113

Fedora
httpd server, installing on 69, 70

Fedora 14 22
Fedora 17 108
fgrep command 138
file

about 37
copying 40
locking 132, 133
searching, find command used 41
searching, locate command used 41
text, removing from 124, 125

file command
about 139
using 45, 46

File Descriptor (FD) 102
file handles, processes

standard error (stderr) 90
standard input (stdin) 90
standard output (stdout) 90

filename auto-completion, Bash shell 8, 9
file permissions

working with 79, 80
files

compressing, tar used 48-50
compressing, zip used 48-49
copying, to another machine 59-61
creating 39

filesystems
/ 108
about 107, 109
/boot 108
Btrfs 120
checking, fsck program used 115, 116
/dev 108
ext2 120
ext3 121
ext4 121

FAT 121
/home 108
/lib 108
/lib64 108
lost+found 108
/mnt 108
/opt 108
Reiser4 121
ReiserFS 121
/root 108
/run 108
(swap) 108
/tmp 108
using 108-111, 120
/usr 108
/usr/bin 108
/usr/etc 108
/usr/games 108
/usr/include 108
/usr/lib 108
/usr/lib64 108
/usr/local 108
/usr/sbin 108
/usr/share 108
/usr/src 108
/var/logs 108
/var/run 108
/var/spool 108

filesystem specific program
options 117

File Transfer Protocol. See FTP
find command

about 41, 138
used, for finding files 41

Firefox
running, from terminal 65
used, for accessing webmail client 67

firewall
about 81, 177
settings 81

flock command 139
fsck program

about 111, 115
used, for checking filesystem 115, 116

FTP 59
ftp command

using 60, 61

203

G
gawk command 138
Gnome 2 169
GNOME 2

about 21, 22
Add to Panel window 23
screenshot 22
working with 23, 24

Google Advanced Search 190
graphical user interface (GUI) 21
grep command 138

used, for searching patterns 47
Group IDs 89
GRUB

working with 161-163
GRUB 2

URL 165
working with 163-165

grub2-bios-setup command 165
grub2-editenv command 165
grub2-fstest command 165
grub2-inst command 165
grub2-kbdcomp command 165
grub2-menulst2cfg command 165
grub2-mkconfig command 165
grub2-mkfont command 165
grub2-mkimage command 165
grub2-mklayout command 165
grub2-mknetdir command 165
grub2-mkpasswd-pbkdf2 command 165
grub2-mkrelpath command 165
grub2-mkrescue command 165
grub2-mkstandalone command 165
grub2-ofpathname command 165
grub2-probe command 165
grub2-reboot command 165
grub2-script-check command 165
grub2-set-default command 165
grub2-sparc64-setup command 165
grub.conf file 161
GUI

running 169

H
head command 53
history function, Bash shell

using 7, 8
HISTSIZE variable 11
HOME variable 10
hostname command 138
HOSTNAME variable 10
httpd 69
httpd server

installing, on Fedora 69, 70
Hypertext Transfer Protocol Daemon

(HTTPD) 90

I
ifconfig command 187
ifdown command 58
ifup command 58
info command

about 186
using 186

init process 89
initramfs file 109
inode 37, 38
insmod command 150, 151
Internet Relay Chat. See IRC
intrusion 179
IP address 59
iptable commands 81
IPv4

about 72
classes 73
versus IPv6 72, 73

IPv6 72, 73
IRC

about 195
using 196, 197

J
Java file

editing, Emacs editor used 44
editing, vim editor used 43

K
KDE desktop

about 24, 27
clipboard menu 25
customizing 26

204

default panel 25
Interfaces and Connections dialog 26
Tool Box, accessing 24

kernel
about 149
building, from kernel.org 156-158

kernel.org
kernel, building from 156-158

Kickoff Application Launcher 25
kill command 139

L
LibreOffice Writer 42
Lightweight X11 Desktop Environment. See

LXDE
line editing 7
Linux

Bash shell 5
file permissions, working with 79
firewalls and router settings, working with 81
SELinux 82
/tmp directory 87
user account, creating 75
user account, managing 75

Linux file permissions 75
Linux systems

GNOME 2 21
KDE desktop 24
LXDE 29
Mate 33
Unity 31
xfce 27

Linux User Group 194
local documentation directories 188, 189
locate command

about 41
used, for finding files 41

Logical Volume Management. See LVM
loop

coding, in script 127-129
ls command 138
lsmod command 150
ls /proc command 91
lvchange command 118
lvconvert command 118
lvcreate command 118

lvdisplay command 118
lvextend command 118
LVM 117
LVM commands

lvchange 118
lvconvert 118
lvcreate 118
lvdisplay 118
lvextend 118
lvmdiskscan 118
lvmdump 118
lvreduce 118
lvremove 118
lvrename 118
lvresize 118
lvs 118
lvscan 118
pvchange 117
pvck 117
pvcreate 117
pvdisplay 117
pvmove 117
pvremove 117
pvresize 117
pvs 117
pvscan 117
running 119, 120
vgcfgbackup 118
vgcfgrestore 118
vgchange 118
vgck 118
vgconvert 118
vgcreate 118
vgdisplay 118
vgexport 118
vgextend 118
vgimport 118
vgimportclone 118
vgmerge 118
vgmknodes 118
vgreduce 118
vgremove 118
vgrename 118
vgs 118
vgscan 118
vgsplit 118

lvmdiskscan command 118

205

lvmdump command 118
lvreduce command 118
lvremove command 118
lvrename command 118
lvresize command 118
lvscan command 118
lvs command 118
LXDE

about 29
running 29
working with 30, 31

M
make install command 156
man pages

using 184, 185
man utility 183
map file 109
Mate desktop

about 33
customizing 35
screenshot 34

mkdir command 138
mkfs command

about 114
options 114
used, for formatting drive 114, 115

mktemp command 138
modinfo command 150, 152
modprobe command 150 151
module commands

dmesg 153
insmod 151
lsmod 150
modinfo 152
modprobe 151
rmmod 153

monolithic kernel 149
mount point 109
mv command 138

N
NAT (Network Address Translation) 59
network issue

diagnosing, steps 57, 58
nice command

about 99
used, for modifying process priority 100, 101

normal user
versus root user 168

O
octet 73
output

sending, from one terminal to another 18

P
panels 21
Parent Process Identifier (PPID) 89
partitions

about 107, 109
using 108-111

passwd command
working with 78

patterns
searching, grep command used 47

Perl
about 133
scripts 134-137

permissions 89, 171
PID (process ID) 38
ping6 command 138
ping command 59 , 129, 138
process

about 91
observing, /proc filesystem used 102, 103

processes
about 89, 90
examining, ps program used 92, 93
examining, top program used 94-98
file handles 90
standard handles 90

Process Identifier (PID) 89
process priority

modifying, nice command used 100, 101
PS1 variable 10
ps auxw command 91
ps command 138
ps program

used, for examining processes 92, 93
pvchange command 117
pvck command 117

206

pvcreate command 117
pvdisplay command 117
pvmove command 117
pvremove command 117
pvresize command 117
pvscan command 117
pvs command 117
pwd command 139
PWD variable 11

R
read command 139
readlink function 184
real user 89
redirection (>) operator 17
Reiser4 filesystem 121
ReiserFS filesystem 121
rm command 139 187
rmmod command 153
root user

versus normal user 168
route command 57
router settings 81, 177

S
SCP (Secure copy) 59
Screen

about 19
using 19, 20

script
about 124
loop, coding in 127-129

script parameters
using 126

script writing 123
Secure Shell (SSH) 62
Security Enhanced Linux. See SELinux
sed command 139
SELinux

about 82
commands, executing 83

services
on Linux system 70

shell prompt
about 9, 10
example 10

shells 174
SHELL variable 11
sleep command 139
sort command 139
Squirrel Mail 67
SSH commands

running 62, 63
ssh-keygen command 61
stat command 139
Stateless Address Autoconfiguration

(SLAAC) 74
subnet 59
sudo command

about 87
used, for securing system 84-86

superblock
about 38
information, for partition on hard drive 38

swap partition 107
system

backing up 130-132
securing, sudo command used 84, 85

T
tar

used, for compressing files 48-50
tar command 139, 170
target 81
tee command 139
Telnet 62
telnet commands

running 62, 63
TERM variable 11
text

removing, from file 124, 125
text files

creating 42
threads 91
Thunderbird 67
time command 139
top program

about 91, 94
used, for examining processes 94-98

touch command 139
tty command 139
TZ variable 11

207

U
ulimit command 91
Uninterruptible Power Supply. See UPS
uniq command 139
Unity

about 31
running 31, 32
terminal, adding 32
working with 32

Universal Serial Bus (USB) 111
unzip command 139
UPS

about 174
monitoring 176
using 176

Usage section 187
user accounts

creating, useradd program used 75, 77
managing, useradd program used 76, 77

useradd command
about 78
used, for adding user account 75, 76, 77

USER variable 10

V
vgcfgbackup command 118
vgcfgrestore command 118
vgchange command 118
vgck command 118
vgconvert command 118
vgcreate command 118
vgdisplay command 118
vgexport command 118
vgextend command 118
vgimportclone command 118
vgimport command 118
vgmerge command 118
vgmknodes command 118
vgreduce command 118
vgremove command 118
vgrename command 118
vgscan command 118
vgs command 118
vgsplit command 118
vim 42
vim editor

used, for editing Java file 43
virtual filesystems

about 37
/proc 109
/sys 109

vmlinuz file 109
VMware 150

W
web

browsing, for help 190
webmail client

accessing, Firefox used 67
web page

obtaining, without browser 64, 65
web server

running 69
wget program

about 64
running 64, 65

who command 139, 178
wired connection

about 55
cons 56
pros 56

wireless connection
about 56
cons 56
pros 56

X
xargs command 139
xconfig

used, for modifying configuration 158-160
xfce

about 27
panel 1 28
panel 2 28
panels, working with 28
running 27
URL 29

Z
zip

used, for compressing files 48, 49

Thank you for buying

Linux Utilities Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Linux Shell Scripting
Cookbook
ISBN: 978-1-84951-376-0 Paperback: 360 pages

Solve real-world shell scripting problems with over 110
simple but incredibly effective recipes

1. Master the art of crafting one-liner command
sequence to perform tasks such as text
processing, digging data from files, and lot more

2. Practical problem solving techniques adherent to
the latest Linux platform

3. Packed with easy-to-follow examples to exercise all
the features of the Linux shell scripting language

4. Part of Packt's Cookbook series: Each recipe is
a carefully organized sequence of instructions to
complete the task as efficiently as possible

Linux Email
ISBN: 978-1-84719-864-8 Paperback: 376 pages

Set up, maintain, and secure a small office e-mail server

1. Covers all the information you need to easily set
up your own Linux email server

2. Learn how to provide web access to email, virus
and spam protection, and more

3. Thoroughly covers open source tools like PostFix,
Courier, SpamAssassin, and ProcMail

4. A step-by-step approach where the reader is taken
through examples with ample screenshots and
clear explanations to facilitate learning

Please check www.PacktPub.com for information on our titles

CentOS 6 Linux Server
Cookbook
ISBN: 978-1-84951-902-1 Paperback: 374 pages

A practical guide to installing, and administrating the
CentOS cmmunity-based enterprise server

1. Delivering comprehensive insight into CentOS
server with a series of starting points that show
you how to build, configure, maintain and deploy
the latest edition of one of the world’s most
popular community based enterprise servers.

2. Providing beginners and more experienced
individuals alike with the opportunity to enhance
their knowledge by delivering instant access to
a library of recipes that addresses all aspects of
CentOS server and put you in control.

Linux Mint System
Administrator’s Beginner's
Guide
ISBN: 978-1-84951-960-1 Paperback: 146 pages

A practical guide to learn basic concepts, techniques,
and tools to become a Linux Mint sysytem administrator

1. Discover Linux Mint and learn how to install it

2. Learn basic shell commands and how to deal with
user accounts

3. Find out how to carry out system administrator
tasks such as monitoring, backups, and network
configuration

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Using the Terminal / Command line
	Introduction
	Command retrieval and line editing
	Using history
	Filename auto-completion
	The shell prompt
	Other environment variables
	Using aliases
	The .bashrc file
	Dealing with blanks and special characters in filenames
	Understanding the $? variable
	Redirection and piping
	Sending output from one terminal to another
	Using the Screen program

	Chapter 2: The Desktop
	Introduction
	GNOME 2
	KDE desktop
	xfce
	LXDE
	Unity
	Mate

	Chapter 3: Files and Directories
	Introduction
	Copying, removing, and updating files and directories
	Finding files using find and locate
	Creating text files – vim, Emacs, and others
	 Using the file command
	Using grep to find patterns
	Compressing files using ZIP and TAR
	Other helpful commands such as stat, sum, touch, and more

	Chapter 4: Networking and
the Internet
	Introduction
	Troubleshooting bad connections
	Copying files to another machine – FTP
and SCP
	Logging into another machine – Telnet and Secure Shell
	Getting a web page without a browser – wget
	Browsing the web – Firefox
	E-mail – Using a web mail program
	Running your own web server – httpd
	What is using that port? The /etc/services file
	IPv4 versus IPv6

	Chapter 5: Permissions, Access, and Security
	Introduction
	Creating and managing user
accounts – useradd
	Working with passwords
	Working with file permissions
	Working with the firewalls and router settings
	Working with Secure Linux – SELinux
	Using sudo to secure a system
	The /tmp directory

	Chapter 6: Processes
	Introduction
	Understanding processes
	Examining processes with ps
	Examining processes using top
	Changing priorities with nice
	Observing a process using the /proc filesystem

	Chapter 7: Disks and Partitioning
	Introduction
	Using fdisk
	Using mkfs to format a drive
	Using fsck to check the filesystem
	Logical Volume Management (LVM)

	Chapter 8: Working with Scripts
	Introduction
	Removing text from a file
	Using script parameters
	Coding a loop in a script
	Backing up your system
	Locking a file for only one use at a time
	Getting introduced to Perl

	Chapter 9: Automating Tasks Using Cron
	Introduction
	Creating and running a crontab file
	Running a command every other week
	Reporting the errors from a crontab file

	Chapter 10: The Kernel
	Introduction
	A brief look at module commands
	Building a kernel from kernel.org
	Using xconfig to modify the configuration
	Working with GRUB
	Understanding GRUB 2

	Appendix A: Linux Best Practices
	Appendix B: Finding Help
	Index

