
www.allitebooks.com

http://www.allitebooks.org

LiveCode Mobile
Development HOTSH T

Create your own exciting applications with
10 fantastic projects

Edward D Lavieri Jr.

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

LiveCode Mobile Development HOTSH T

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1171013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-748-4

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Edward D Lavieri Jr.

Reviewers
Randy Hengst

Geoff Canyon

Mark Rauterkus

Acquisition Editors
Pramila Balan

Mary Nadar

Lead Technical Editor
Susmita Panda

Technical Editors
Amit Ramadas

Harshad Vairat

Project Coordinator
Rahul Dixit

Proofreaders
Stephen Copestake

Lauren Harkins

Indexer
Rekha Nair

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Edward D Lavieri Jr. has a strong academic background with multiple graduate degrees.
He has 12 years of experience as a college instructor teaching computer programming and
other computer science and information systems courses. He retired from the U.S. Navy
after 25 years as an Intelligence Specialist and Command Master Chief. He started his
own software design and development studio in 2008. His passion is developing
educational games.

As founder and creative director of his own software design and development studio, he is
constantly developing software. He uses LiveCode as one of his primary development tools.

He authored a book on software consulting entitled Software Consulting: A Revolutionary
Approach and was the technical editor of the Excel Formulas and Functions for Dummies
book. He has also authored numerous computer science and information systems
college courses.

I would like to thank my wife and life partner Brenda, above all else. She
creates the balance in life that makes anything possible. Thank you for the
eternal smile on my heart and for being so supportive. Also, thank you
Lona, my favorite author on the planet, for being an inspiration. Lastly, I am
thankful for the amazing work that the following people have pioneered:
Grace Hopper, Tim Berners-Lee, Jack Kilby, Douglas Engelbart, and Kevin
Miller. Without their efforts, this book would not have been a reality.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Randy Hengst is a professor and co-chair in the Education Department of Augustana
College in Rock Island, IL, USA. He teaches Educational Psychology, methods classes
for elementary education majors, and supervises student teaching experiences in
elementary schools.

He is also the lead developer of Classroom Focused Software. Within that work he
has developed numerous iOS apps for use in the Number Sense Project that is part
of the preparation program for elementary education majors at Augustana. Refer to
www.augustana.edu/numbersense.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface 1
Project 1: Developing Hello Planet! 7

Mission Briefing 7
Using pop-up dialogs 8
Detecting the time of day 10
Evaluating user input 11
Custom pop ups 15
Using locational services 26
Mission Accomplished 29
A Hotshot Challenge 30

Project 2: Developing User Interfaces 31
Mission Briefing 31
Orientation 32
Working with cards 33
Buttons 39
Graphics 43
Mission Accomplished 46
A Hotshot Challenge 46

Project 3: Using Math – Mobile Calculator 47
Mission Briefing 47
Creating the user interface 49
Accepting user input 57
Validating user input 65
Performing calculations 70
Using the order of precedence 72
Using random numbers 73

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Mission Accomplished 75
A Hotshot Challenge 75

Project 4: Building Menus – Menu of Menus 77
Mission Briefing 77
Creating the main stack 81
Creating the project shell 83
Creating a swiping menu interface 85
Creating a pull-down menu interface 88
Creating an option menu interface 93
Creating a combobox menu interface 97
Creating a pop-up menu interface 99
Creating a tab menu interface 101
Creating a picker menu interface 103
Creating a drop-down menu interface 105
Mission Accomplished 109
A Hotshot Challenge 109

Project 5: Creating How Smart Am I? – A Quiz Game 111
Mission Briefing 111
Creating the main stack 113
Creating a true/false question card 117
Creating a multiple choice question card 122
Creating a sequencing question card 127
Creating a short-answer question card 134
Creating a picture question card 137
Adding navigational scripting 141
Adding scoring 143
Mission Accomplished 149
A Hotshot Challenge 150

Project 6: Creating the Find the Bananas Game 151
Mission Briefing 151
Creating the main stack 153
Creating the user interface 153
Importing and optimizing the images 157
Programming the game 159
Adding a scoring schema 166
Mission Accomplished 167
A Hotshot Challenge 168

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Project 7: Creating the Jungle Dance Party Mobile App 169
Mission Briefing 169
Creating the main stack 171
Creating the user interface 171
Creating the Dog card 175
Creating the Monkey card 177
Creating the Panda card 179
Programming the application 180
Adding optional sound 185
Mission Accomplished 187
A Hotshot Challenge 187

Project 8: Creating the My Database Mobile App 189
Mission Briefing 189
Creating the main stack 191
Creating the user interface 192
Programming the Create database function 194
Programming the Open and Close database functions 196
Creating the Add Record card and functionality 199
Creating the View card and functionality 205
Creating the Query card and functionality 208
Mission Accomplished 209
A Hotshot Challenge 210

Project 9: Advanced Fun with the Advanced Fun Mobile App 211
Mission Briefing 211
Creating the main stack 213
Creating the user interface 213
Programming the All About Me option 217
Programming the Traveler option 220
Programming the Script Grabber option 224
Programming the Custom Properties option 228
Programming the Textual Fun option 236
Programming the Arrays option 241
Mission Accomplished 248
A Hotshot Challenge 249

www.allitebooks.com

http://www.allitebooks.org

Project 10: In-app Purchases and Advertising for iOS and Android 251
Mission Briefing 251
Creating the main stack 253
Creating the user interface 253
Integrating on-load advertising 257
Integrating banner advertising 261
Integrating Full Screen Ad #1 262
Integrating Full Screen Ad #2 265
Integrating in-app purchases 265
Mission Accomplished 268
A Hotshot Challenge 268

Appendix: Mobile App Development Primer 269
iOS apps 269
Android apps 276

Index 281

Preface

There are over 2,000 programming languages and several that can be used to program
mobile applications. LiveCode has proven itself a strong competitor in the mobile application
development market. The power of this easy-to-learn programming environment will get you
to start developing mobile apps with the very first project.

LiveCode Mobile Development Hotshot is a hands-on guide to developing games and other
apps for mobile devices using LiveCode. You will learn tricks and techniques for tackling even
the most difficult mobile application topics. Best of all, you will be provided with 100 percent
of the source code with each line of code explained.

The approach taken in this book is to present a hands-on mission in each project. This
approach will help you learn faster and more efficiently. You can enter the code listed
in the book, or download it from the Packt Publishing website.

You'll be exposed to introductory mobile applications such as Hello Planet and Interface Fun.
Each project is successively more complex. Additional projects include games, a calculator,
and much, much more.

By the time you complete all the projects in this book, you'll have the confidence and skills
necessary to develop your own mobile applications using LiveCode.

What this book covers
Project 1, Developing Hello Planet!, introduces LiveCode for mobile devices. In this project,
you'll build your first mobile application.

Project 2, Developing User Interfaces, explains how to develop user interfaces including
orientations and navigation.

Preface

2

Project 3, Using Math – Mobile Calculator, demonstrates how to create a mobile app
calculator that supports addition, subtraction, multiplication, and division. This project
also introduces the concept of random numbers.

Project 4, Building Menus – Menu of Menus, introduces LiveCode menus to include swipe,
pulldown, option, combobox, pop up, tab, picker, and dropdown.

Project 5, Creating How Smart Am I? – A Quiz Game, explains how to create a mobile
app quiz. Question types of true/false, multiple choice, sequencing, short answer,
and picture-based are demonstrated.

Project 6, Creating the Find the Bananas Game, explains how to create a game based on
the classic three-shell game. This project introduces how to use reference images and why
it is so important.

Project 7, Creating the Jungle Dance Party Mobile App, introduces the concept of
basic animation.

Project 8, Creating the My Database Mobile App, introduces you to creating and using
databases in LiveCode.

Project 9, Advanced Fun with the Advanced Fun Mobile App, introduces you to several
advanced features of LiveCode.

Project 10, In-app Purchases and Advertising for iOS and Android, explains how to implement
in-app purchases and advertising for both iOS and Android mobile devices.

Appendix, Mobile App Development Primer, explains how to prepare your LiveCode mobile
apps for submission to app stores.

What you need for this book
In order to follow the examples provided in this book, you'll need a copy
of LiveCode Community 6.1.1. or greater. This software is available for free
at http://livecode.com/download/.

Who this book is for
This book is written for people that are already familiar with the LiveCode development
environment, but have not yet explored how to use their knowledge of LiveCode to create
mobile apps.

Preface

3

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Mission Briefing
This section explains what you will build, with a screenshot of the completed project.

Why Is It Awesome?
This section explains why the project is cool, unique, exciting, and interesting. It describes
what advantage the project will give you.

Your Hotshot Objectives
This section explains the major tasks required to complete your project.

 f Task 1

 f Task 2

 f Task 3

 f Task 4, and so on

Mission Checklist
This section explains any pre-requisites for the project, such as resources or libraries that
need to be downloaded, and so on.

Task 1
This section explains the task that you will perform.

Prepare for Lift Off
This section explains any preliminary work that you may need to do before beginning work
on the task.

Engage Thrusters
This section lists the steps required in order to complete the task.

Preface

4

Objective Complete - Mini Debriefing
This section explains how the steps performed in the previous section allow us to complete
the task.

Classified Intel
The extra information in this section is relevant to the task.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We also added a call to that command at the end of the timeup command."

A block of code is set as follows:

on openStack
 answer "Greetings!" titled "Hello Planet!"
end openStack

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "So, navigate to
File | Standalone Application Settings."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

5

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Project 1
Developing Hello

Planet!

There are several ways of learning how to program. The most proven method is to program
by actually programming. I know that sounds intuitive, but so many programming books
just show you code and have you retype it. The approach taken in this book is to show you
programming techniques, demonstrate how to apply them in code, and to have you apply
what you have learned by using the new knowledge in your own programming projects. Each
project consists of a specific project that we'll code together. Projects have been specifically
designed to demonstrate key functions and features of LiveCode.

Mission Briefing
For our first project, we'll start with a small derivation of the popular Hello World!
application. We'll develop a mobile application that greets the user with a custom message.
Our application will target the iOS 6.0 development platform and run on iPads, iPhones,
and iTouches with at least iOS 6.0 installed.

Why Is It Awesome?
It is important to start with a relatively simple mobile application. This will allow you to
quickly grasp key functions and features of developing mobile applications with LiveCode.
Don't worry, we'll start developing more complex mobile applications in subsequent projects.

Developing Hello Planet!

8

Your Hotshot Objectives
To develop our Hello Planet! mobile application, we'll use several capabilities and features to
include the following:

 f Answer dialog
 f System time
 f Evaluate user input
 f Custom pop ups
 f Locational services

Mission Checklist
You do not need plugins or additional software for LiveCode in order to accomplish this
mission. You're all set, so let's get started.

Using pop-up dialogs
Let's get started by creating a new main stack with basic properties. You can set these
properties in the properties inspector.

Prepare for Lift Off
First, we will create a new stack and name it HelloPlanet.

Project 1

9

Make sure to create your App ID and Provisioning Profile via your Apple
developer account before you move past this point.

Now, we need to tell LiveCode that this will be a mobile app. So, navigate to File |
Standalone Application Settings. You'll want to deselect Mac, Windows, and Linux as
standalone options. Those are the default settings, and because you'll be developing a
mobile app, you do not need to create desktop versions. After you adjust your settings, your
Standalone Application Settings for HelloPlanet – iOS dialog should look something like the
following screenshot:

Developing Hello Planet!

10

Engage Thrusters
Okay, you're ready to start coding the mobile app. Let's write a script that results in a pop-up
dialog appearing when the mobile app is first loaded. We'll do this with the following code
on the main stack:

on openStack
 answer "Greetings!" titled "Hello Planet!"
end openStack

This code is executed when the app first loads. Because it is at the main stack level and is
initiated with the openStack keyword, the answer command will result in a pop-up dialog
before any other code is executed. Also, you'll see we've used two strings: one for the title
and one for the message.

Objective Complete - Mini Debriefing
When we do not tell the answer command what buttons to display on the pop-up dialog,
it defaults to an OK button.

Okay, that was not very exciting, but we had to start somewhere.

Detecting the time of day
Let's start adding features to our mobile app, first by displaying the time of day.

Engage Thrusters
Let's modify the code in the main stack to include code to get and display the current time.

on openStack
 local theTime

 put the time into theTime

 answer "Greetings!" & return & theTime titled "Hello Planet!"
end openStack

Project 1

11

As you can see from this code, we created a local variable to temporarily hold the mobile
device's current time. Next, we pulled the local time with the put the time command and
stored it using into the local variable with the same line of code. Then, we simply modified
the answer command to add a carriage return and the time. Take a look at our results.

Objective Complete - Mini Debriefing
So far, we have a mobile app that opens a dialog, displays a message that includes the
current time, and presents the user with the single OK button. In the next task, we'll
take steps to make this app a bit more interactive.

Evaluating user input
Our Hello Planet! app does take user input. The OK button must be tapped and that tap
is something we can capture and potentially assign code to. What do we know about this
button? We know that the user taps it (when they do). We also know at what date and time
they tap it.

Engage Thrusters
So, let's count how many seconds it takes the user to tap that button. Here is the code:

on openStack
 global theStart
 local theTime

 put the seconds into theStart
 put the time into theTime

 answer "Greetings!" & return & theTime titled "Hello Planet!"
 timeup
end openStack

Developing Hello Planet!

12

command timeup
 global theStart
 local theEnd

 put the seconds into theEnd

 answer "It took you " & (theEnd - theStart) & " seconds to tap that
button!" titled "I was Counting"
end timeup

We made a few adjustments to our app's code.

For the openStack code, we made the following changes:

 f Added a global variable called theStart

 f Captured the current time in seconds

 f Stored the current time in the global theStart variable

 f Added a command call to the new timeup command that executes immediately
after the user releases the OK button

For the timeup code, we made the following changes:

 f Added a reference to the global theStart variable

 f Added a local variable called theEnd

 f Captured the current time in seconds

 f Stored the current time in the local theEnd variable

 f Calculated how many seconds elapsed between displaying the pop-up dialog
and when the user released the OK button; we accomplished this by subtracting
theStart from theEnd

After the user releases the OK button, he/she will be greeted with a new pop-up dialog as
shown in the following screenshot:

Project 1

13

So far, we've only allowed the user to provide inputs by way of tapping a button. Let's get
some additional information from them by asking a direct question. Here's the code:

command timeup
 global theStart
 local theEnd

 put the seconds into theEnd

 answer "It took you " & (theEnd - theStart) & " seconds to tap that
button!" titled "I was Counting"

 namefun
end timeup

command namefun
 ask "What is your name?"
end namefun

As you can see in the preceding code, we have added a new command, namefun. We also
added a call to that command at the end of the timeup command. When we execute the
code, we see that a new pop-up dialog appears that asks the user to enter their name.
LiveCode helps us out here by automatically activating the mobile device's keyboard.

Developing Hello Planet!

14

The user can now enter their name via their mobile device's keyboard. Let's do something
with the text they enter.

What we'll do next is take the name the user inputs, count the number of letters, and
determine how many of them are vowels. Then, we'll provide the results to the user in
yet another pop-up dialog.

Here is the modified code for the namefun command:

command namefun
 local userName, theLen, theVowels, tLoop

 ask "What is your name?"
 put it into userName
 put the length of userName into theLen
 --
 put 0 into theVowels
 repeat with tLoop = 1 to theLen
 if character tLoop of userName is among the characters of
"aeiou" then
 add 1 to theVowels
 end if
 end repeat

 answer "You have " & theLen & " letters in your name; " & theVowels
& " of them are vowels."
end namefun

Okay, let's take a closer look at our new code:

 local userName, theLen, theVowels, tLoop

We are using four local variables:

 f userName: We use this to hold the input from the user

 f theLen: We put the number of characters in the user's input into this variable

 f theVowels: We store the number of vowels contained in the user's name

 f tLoop: We use this variable for our repeat loop

Now, the next line of code is:

 ask "What is your name?"

The ask command initiates the prompt with What is your name? as the prompt and the OK
and Cancel buttons.

 put it into userName

Project 1

15

We use the preceding line of code to take the username and put it into the variable userName.

 put the length of userName into theLen

We use the preceding line of code to take the length of the username and put it into the
variable userName. In this context, the length is defined by the number of characters
in the username.

 put 0 into theVowels
 repeat with tLoop = 1 to theLen
 if character tLoop of userName is among the characters of
"aeiou" then
 add 1 to theVowels
 end if
 end repeat

In the preceding code block, we cycle through the entire username, one character at a time.
For each character, we check to see if it is a vowel by comparing it to the provided string
(aeiou). Before entering the repeat loop, we give our counter variable, theVowels, a
value of zero.

 answer "You have " & theLen & " letters in your name; " & theVowels
& " of them are vowels."

Objective Complete - Mini Debriefing
Finally, we provide our user with an informative pop-up dialog using the answer command
as shown in the following screenshot:

Custom pop ups
The ability to create custom pop-up dialogs provides the programmer with incredible
flexibility in both displaying information to the user and obtaining information from them.

Developing Hello Planet!

16

Prepare for Lift Off
In the last three tasks, we relied on the operating system to build our pop-up dialogs. What
if you want to use pop ups with more customizations such as the layout and appearance?
LiveCode gives us the flexibility to create our own pop-up dialogs. In fact, there are a couple
of different ways of doing this. First, we can create a group of objects and then display the
group when warranted. The second method is to create one or more cards in a new stack
to be used for pop-up dialogs. We'll use the second method in this task because it exercises
better programming style.

Programming style refers to how a programmer codes his/her applications. It is
considered good style to use clear programming techniques that can easily be
discerned if other programmers were to review the source code.

Engage Thrusters
In this task, we'll copy our Hello Planet! source code and name it HelloPlanet_
v2.livecode. This will result in two different versions of our Hello Planet! mobile
application. Both the versions will perform the same functions. The difference will be
that the second version will use custom dialog boxes as pop ups instead of relying on
the pop ups automatically generated by the answer and ask commands.

Here are the six steps we will take:

1. Customize the main stack.

2. Create and customize a card called Greeting1.

3. Create and customize a card called Greeting2.

4. Create and customize a card called Counting.

5. Create and customize a card called GetName.

6. Create and customize a card called Final.

We have a lot to do, so let's get started.

Customizing the main stack
You'll remember that our mobile application's title was simply Hello Planet!. For clarity,
let's change that to Hello Planet! v2 via the main stack's properties inspector.

Now, let's customize the main stack by giving it a background color of black. This will become
the default color of the new cards we create.

Project 1

17

Now, we are ready to create and customize the five cards that will correspond to the five
pop-up dialogs in our Hello Planet! v2 mobile application.

Creating and customizing a new card called Greeting1
As our main application window is just a blank blue screen, we can easily mimic pop-up
dialogs by creating objects on additional cards with the same background color as the stack.

When we created the main stack, our first card was automatically created. So, let's rename
that card to Greeting1.

You'll recall that this first dialog in the initial version of this app simply displayed a pop-up
dialog that had a title, message, and an OK button. We'll build that pop-up dialog on the
Greeting1 card by following these steps:

1. Go to the Greeting1 card.

2. Draw a rounded rectangle on the card so that it is located just below the top of the
card. Change the following settings:

1. Set Opaque of the rectangle to true.

2. Change the fill color to blue so that there is a contrast with the background
of the card.

3. Set the border to 0.

4. Set the text to bold and the font size to 18.

5. Set the drop shadow to true.

6. Change the drop shadow color to a light color such as white.

7. Lock the size and position.

3. Drag a Label field on top of the rectangle and also change the following settings:

1. Change the label's text color to white.

2. Center the label's text.

3. Change the label's text size to 24.

4. Set the label's text to bold.

5. Change the label's contents to Hello Planet! v2.

6. Resize the label's physical size to 292 wide and 42 high. This will ensure the
text is properly displayed on the card.

Developing Hello Planet!

18

4. Drag a second Label field onto the middle of the rounded rectangle and update the
following settings:

1. Change the label's text color to white.
2. Center the label's text.
3. Change the label's text size to 24.
4. Change the label's text to Greetings!.
5. Resize the label's physical size to 292 wide and 42 high. This will ensure the

text is properly displayed on the card.

5. Draw a second rounded rectangle on the bottom-center of the first rounded
rectangle and update the following settings:

1. Set Opaque of the rectangle to true.
2. Change the fill color to a lighter color to contrast with the background of

the card.
3. Change the name to OK.
4. Set the border to 0.
5. Set the text to bold and the font size to 18.
6. Set the drop shadow to true.
7. Change the drop shadow color to a light color such as white.

Your custom pop-up dialog should look similar to the following screenshot:

Next, we need to code the OK rectangle so that the app continues processing the dialog
interfaces we've previously programmed. Here is the code for that rectangle:

on mouseUp
 timeup
end mouseUp

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this
book elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

Project 1

19

Now, we will need to modify the code in the openStack command to remove the call to the
answer command. As you can see in the following code block, you can simply comment out
the last two lines of code:

on openStack
 global theStart
 local theTime

 put the seconds into theStart
 put the time into theTime

 // v1 code no longer required
 //answer "Greetings!" & return & theTime titled "Hello Planet!"
 //timeup
end openStack

You can see that we eliminated the answer command and moved the call to the timeup
command to the new OK button we created. Now we are ready to create our second
pop-up dialog.

Creating and customizing a new card called Greeting2
Our Greeting2 card will simply add the current time to the message provided by the
Greeting1 card. Let's use a shortcut to create our second pop-up dialog card. The quickest
route to success is to copy the elements from the first card and paste them on the new card.

Once you have all four objects (two rounded rectangles and two labels) copied to the
Greeting2 card, make the following modifications:

1. Unlock the size and position of the large rounded rectangle.

2. Change the height of the large rounded rectangle to 160.

3. Lock the size and position of the large rounded rectangle.

4. Move the smaller rounded rectangle with the OK label to the bottom of the larger
rounded rectangle.

5. Copy the label that currently has Greetings! as the content.

6. Paste the new label and position it above the OK rounded rectangle.

7. Change the name of the new label to timeDisplay.

8. Empty the contents of the new timeDisplay label.

www.allitebooks.com

http://www.allitebooks.org

Developing Hello Planet!

20

Now we need to modify the openStack code as follows:

on openStack
 global theStart
 //local theTime

 put the seconds into theStart
 put the time into fld "timeDisplay" on card "Greeting2"
 go to card "Greeting2"
 // v1 code no longer required
 //answer "Greetings!" & return & theTime titled "Hello Planet!"
 //timeup
end openStack

We commented out the local variable theTime because we no longer need it.
Instead, we can pass the system time direction into the timeDisplay field. Once
the time is put into the timeDisplay field, we open the Greeting2 card with the
go to card "Greeting2" statement.

When we run the application in the mobile simulator, the screen displays the greeting
message and time in the simulated pop-up dialog as shown in the following screenshot:

Project 1

21

Creating and customizing a new card called Counting
Our next step is to create a pop up that will display the I was Counting message from the
first version of our Hello Planet! mobile application. To do this, we will copy the objects on
the Greeting2 card and paste them onto a new card named Counting.

Here are the steps to customize the Counting card:

1. Rename the label timeDisplay to countDisplay.

2. Delete the label with the current contents of Greetings!.

3. Change the height of the label countDisplay from 42 to 72.

4. Change the contents of the top label (currently contains Hello Planet! v2) to
I was Counting.

Now, we just need to modify the command timeup source code to calculate the seconds
and display the feedback message on the Counting card. Here is the modified source code:

command timeup
 global theStart
 local theEnd

 put the seconds into theEnd
 put "It took you " & (theEnd - theStart) & " seconds" & return &
"to tap that button!" into fld "countDisplay" on card "Counting"
 go to card "Counting"
 //v1 code no longer required
 //answer "It took you " & (theEnd - theStart) & " seconds to tap
that button!" titled "I was Counting"
 // namefun
end timeup

As you can see, we commented out the answer command and the call to namefun. We
replaced the answer command with the put command. Because we commented out the
call to namefun, we'll need to call that command once the user clicks on the OK button.
Instead of keeping the namefun command at the stack level, we will, in the next task,
move that code to the GetName card. So, we'll just need to go from the Counting card
to the GetName card. Here is that source code:

on mouseUp
 go to card "GetName"
end mouseUp

Developing Hello Planet!

22

Once the new code is run in an emulator, you should receive the following output, with the
amount of seconds being the actual time you took to tap the OK button:

Creating and customizing a new card called GetName
Our next step is to create and customize a card named GetName that prompts the user
for their name. So, we'll need a message, the ability to input text, and two buttons labeled
Cancel and OK.

Here are the required steps:

1. Copy the objects from the Greeting1 card.

2. Create a new card and name it GetName.

3. Paste the copied objects from the Greeting1 card onto the GetName card.

4. Delete the Label field containing Hello Planet! v2.

5. Move the Label field containing Greetings! to the top of the blue
rounded rectangle.

6. Change the contents of the remaining Label field to What is your name?.

7. Add a text entry field under the label and above the OK button.

8. Name the text entry field theName.

9. Change the text size of the field theName to 24.

10. Change the background color of the field theName to white.

11. Move the OK button to the right of the blue rounded rectangle.

12. Duplicate the OK rectangle and place it to the left of the OK rectangle.

13. Change the name of the new rectangle to Cancel.

14. Resize the Cancel and OK rectangles so they span the width of the theName field.

Project 1

23

Once you complete these steps, your card should look similar to the following screenshot:

LiveCode will automatically display the keyboard when the user taps the text entry field
(theName), so we do not need to add any code to make it happen. We do need to code
both the Cancel and OK rectangles. Let's start with the Cancel rectangle.

When the user taps the Cancel button, we just want to go back to the previous card—the
Counting card. Here is the code for the Cancel button:

on mouseUp
 go to card "Counting"
end mouseUp

The code for the OK rectangle is a bit more complex and can be slightly modified from the
namefun command that we coded in the first version of our application. So, your first action
is to copy the entire namefun command from the stack level and paste the code into the OK
graphic's on mouseUp command.

Next, we'll modify the source code to use the input from our text entry field to calculate the
number of characters and vowels in the name entered by the user. Here is the source code:

on mouseUp
 local userName, theLen, theVowels, tLoop
 local theResults

 put the text of fld "theName" into userName
 put the length of userName into theLen
 --
 put 0 into theVowels
 repeat with tLoop = 1 to theLen
 if character tLoop of userName is among the characters of
"aeiou" then
 add 1 to theVowels
 end if
 end repeat

 put "You have " & theLen & " letters in your name; " & theVowels &
" of them are vowels." into theResults
end mouseUp

Developing Hello Planet!

24

You'll notice that much of the original source code from the namefun command remains
unchanged. We added a new local variable, theResults, to hold the entire final result's
string. We'll use this to populate our final card. The put the text of fld "theName"
into username code captures any text entered by the user. From there, the rest of the
source code is unchanged until the final put command, which replaced the answer command.

We should also code in some basic housekeeping. When the GetName card is displayed,
we want to ensure the text entry field (theName) is blank. Here is the code we will use to
accomplish that:

on preOpenCard
 put empty into fld "theName"
end preOpenCard

Because this code is placed at the card level using the preOpenCard command, any text in
the text entry field will be removed before it is displayed to the user.

When you are finished with this fifth step, your simulator test should resemble the
following output:

Project 1

25

Our final step is to create and customize a new card called Final.

Creating and customizing a new card called Final
For this final step, we'll start by creating a new card and naming it Final. Next, copy the
objects from the Counting card and paste them in the new Final card. Then, complete the
following customizations:

1. Delete the Label field with the contents I was Counting.

2. Rename the countDisplay Label field as finalResults.

3. Move the finalResults Label field to the top of the large blue rectangle.

4. Change the text size from 24 to 18.

5. Deselect Don't Wrap Text on the finalResults field.

6. Expand the OK rectangle to the width of the large blue rectangle leaving a small
space on both sides.

7. Move the OK rectangle up so that is just below the finalResults Label field.

8. Resize the large blue triangle so that there is not a large gap between the bottoms of
the two rectangles.

Now we are ready to perform our final coding. First, we'll need to edit the on mouseUp
command of the OK rectangle on the GetName card. Instead of putting the final results into
a local variable, we'll modify the code to put the results directly into the finalResults
Label field on the Final card. Here is the modified source code:

on mouseUp
 local userName, theLen, theVowels, tLoop

 put the text of fld "theName" into userName
 put the length of userName into theLen
 --
 put 0 into theVowels
 repeat with tLoop = 1 to theLen
 if character tLoop of userName is among the characters of
"aeiou" then
 add 1 to theVowels
 end if
 end repeat

 put "You have " & theLen & " letters in your name; " & theVowels &
" of them are vowels." into fld "finalResults" on card "Final"
 go to card "Final"
end mouseUp

Developing Hello Planet!

26

As you can see, we have only made two changes to this source code. First, we deleted the
local theResults line of code, as we no longer need that local variable. We also changed
the final put command to put the compiled results into the field finalResults on the Final
card instead of a local variable. Lastly, we make a call to the card Final.

Our final action is to assign an action to the OK rectangle on the Final card. There are a
couple of options. We can quit the application or we can loop back to the very beginning.
As the user can exit the application by using their mobile device buttons (such as the Home
button on an iPhone), we do not always need to offer that functionality. Therefore, let's
simply code the OK button to reopen the Greeting2 card. Here is the code we'll use:

on mouseUp
 go to card "Greeting2"
end mouseUp

That's it for our look at custom pop ups.

Objective Complete - Mini Debriefing
Working with custom pop ups is something that you'll likely do a lot if you develop mobile
applications with LiveCode. Using standard pop ups is usually acceptable for business or
finance types of applications. While you are developing educational and entertainment
applications, the use of custom pop ups is more desirable.

Using locational services
Locational services allow applications to use information gathered from networks (Wi-Fi,
cellular, and GPS) to determine the device's location. This information can be used in a
variety of ways to include mapping and providing the user with locality-relevant information.

Project 1

27

Prepare for Lift Off
Let's use an advanced feature with another pop up. We'll determine the location of the
mobile device and display the results in a standard pop-up dialog.

Engage Thrusters
The first thing we need to do is to make a copy of the original Hello Planet! LiveCode file.
You can name the copied file HelloPlanet_v3.livecode.

With the LiveCode source file open, add the following code at the stack level:

on preOpenStack
 local theLocation

 if mobileSensorAvailable("location") is true then
 mobileStartTrackingSensor "location", true
 get mobileSensorReading("location", true)
 if it is an array then
 combine it using return and ":"
 end if
 put it into theLocation
 answer theLocation titled "Current Location"
 mobileStopTrackingSensor "location"
 else
 answer "Your mobile location sensor is not available" titled
"Sorry"
 end if
end preOpenStack

On the second line of code, we declare a local variable to hold the location results. Next is an
if-then-else block with the if mobileSensorAvailable statement. This statement tests
to see if the mobile device's location sensor is available. If it is not available, the answer
"Your mobile location sensor is not available" titled "Sorry" statement
displays an informative message to the user.

If the location sensor is available, the following block of code is executed:

 mobileStartTrackingSensor "location", true
 get mobileSensorReading("location", true)
 if it is an array then
 combine it using return and ":"
 end if
 put it into theLocation
 answer theLocation titled "Current Location"
 mobileStopTrackingSensor "location"

Developing Hello Planet!

28

Let's look at the description for each of the eight lines of code in detail.

 f Line 1: With this statement, we are initiating the tracking sensor.

 f Line 2: This statement obtains the reading from the location sensor. The true
parameter provides detailed results. We could have replaced the true parameter
with false, which would have only provided basic results.

 f Line 3: This conditional if statement tests to see if results from line 2 are in the
form of an array. If the mobile device is working properly, the results will always
be in the form of an array.

 f Line 4: Here we use the combine command to convert the array into an easily
readable list.

 f Line 5: This closes the conditional block of code.

 f Line 6: This statement places the newly formatted results into the variable
theLocation.

 f Line 7: This is the output statement that calls the pop up and displays the contents
of the variable theLocation.

 f Line 8: With this statement, we stop the tracking sensor.

While using a mobile device's sensors, you'll want to be mindful of how much
additional processing is required by the device. Excessive processing can cause
the device to heat up and the battery to drain faster.

Once you enter the new code, you're ready to test it. Because this code interacts with the
mobile device's hardware, you will not be able to test it in an emulator. If you attempt to
do so, you will receive an error such as the one shown in the following screenshot:

Project 1

29

You'll need to install the mobile app on an actual device to test your newly revised app.
The first time you run the app on your device, the mobile operating system should display
a system dialog indicating that the app wants to use the device's current location. Refer to
the following screenshot for an example:

Objective Complete - Mini Debriefing
Once you click on the OK button, the Hello Planet! app will determine and display your
device's current location. The output will be similar to the following screenshot:

Let's wrap up this project with a project debrief in the next section.

Mission Accomplished
You completed your first project. I encourage you to explore and experiment with the source
code. This strategy will help you fully understand the code as well as learn how making
changes in the code impacts the application's output.

With this project, we explored how to use pop-up dialogs on mobile devices. In addition to
using system-generated pop ups, we created some of our own. We also detected the time
of day, evaluated user input, and captured data from the mobile device's location sensor.

Developing Hello Planet!

30

For system-generated pop ups, we made use of the answer and ask commands.
While we explored several ways of creating custom pop ups, we simulated pop ups
with custom-designed cards.

A Hotshot Challenge
This developer's challenge is designed to take what you learned about pop ups, and through
self discovery, extend your knowledge. For this challenge, modify the source code that
captures and displays the locational information to accomplish the following:

 f Inform the user if the location sensor is available or not

 f Ask the user if they prefer detailed or basic location information

 f Instead of displaying all the location information, provide a button for each data
piece and allow the user to select individual buttons to see the specific data

That's it. Good luck.

Project 2
Developing User

Interfaces

A key concept to keep in mind when developing mobile applications is that there are layers.
At the bottom layer is the mobile device's operating system, such as iOS or Android. At the
top layer is your user. And, of course, the middle layer is where your mobile application is.
The users never see your source code, but they do see the graphics, buttons, and text that
your application displays. These components are collectively known as user interfaces.
Users interact with your application's user interface.

Mission Briefing
In this project, we'll build an application that allows users to cycle through various screens
to learn information about colors. We will also deal with mobile device orientations (portrait
and landscape) in this project.

Why Is It Awesome?
We conquer two main User Interface Components (UICs): multiple ways to transition
between cards and orientations. Spending time learning how to handle different mobile
device orientations is important because different users use their devices differently.
Learning how to compensate for this varied use will be time well spent.

Developing User Interfaces

32

Your Hotshot Objectives
To develop our Interface Fun mobile application, we'll use several capabilities and features
to include:

 f Portrait orientation

 f Landscape orientation

 f Card navigation

 f Buttons

 f Graphics

 f Label fields

Mission Checklist
You do not need anything special to accomplish this mission. You're all set, so let's get started.

Orientation
Orientation refers to how a mobile device is held or viewed. When the device is held
vertically, the display screen's height is more than its width. This is known as the portrait
orientation. When the mobile device is held horizontally, the display screen's width is more
than its height. This is known as the landscape orientation.

Engage Thrusters
Let's try an experiment. Grab your mobile device and notice how you pick it up and how
you hold it. This is known as user behavior. Knowing how users use their mobile devices is
important when you design and develop mobile applications.

Next, experiment with several different applications that you already have on your mobile
device. Determine what happens when you switch your device's orientation between
portrait and landscape.

Objective Complete - Mini Debriefing
You should now have a good understanding of the concept of orientation. This understanding
will help you determine what orientation to use when you are developing your own
mobile applications.

Project 2

33

Classified Intel
The terms portrait and landscape come from the ideal canvas orientation for viewing a
painting of a person (portrait) and viewing a painting of an outdoor scene (landscape).

Working with cards
Cards can be an important part of designing user interfaces. Each card represents a screen
in your application. Depending upon the type of application that you are building, you might
only need one card, or you could use many of them.

Engage Thrusters
Cards can be used in LiveCode to provide different interfaces and screens; they can also be
used to organize your mobile app's content. Let's take a closer look at how to use cards for
your mobile application.

Examining card properties
Let's begin by creating a new main stack named InteractiveFun_v2. The size of the stack
should be 320 x 480 pixels. Once you create the new stack, review the Application Browser
(shown in the following screenshot) to gain access to the default card:

Developing User Interfaces

34

When new main stacks are created, those stacks will contain one card. You can access the
card directly by double-clicking on it. When you right-click on the card in the Application
Browser, you can access the card's scripts and properties. The properties inspector is
another way to access cards. This inspector provides us access to the following areas:

 f Basic Properties
 f Colors and Patterns
 f Custom Properties
 f Geometry
 f Blending
 f Property Profiles
 f Size and Position
 f Text formatting

Cards in action
Let's create Version 2 of our Interactive Fun application by performing the following steps:

1. Rename the current card to Red.
2. Create a second card and name it Green.
3. Create a third card and name it Blue.
4. Change the background color of each card to the color matching the name of

the card.
5. On the Red card, create two buttons. Label one Go to Green and the other

Go to Blue. Place both buttons towards the bottom of the card; exact
placement is not important.

6. Edit the code of each button to so that when the onMouseUp handler is called, that
navigation changes to the appropriate colored card. For example, the "Go to Green"
button's code should be:
on mouseUp
 go to card "Green"
end mouseUp

7. On the Green card, create two buttons. Label one Go to Red and the other Go to
Blue. Place both the buttons in the same location as you did for the Red card.

8. Edit the code of each button to so that when the onMouseUp handler is called,
that navigation changes to the appropriate colored card as you did in step 6.

9. On the Blue card, create two buttons. Label one Go to Red and the other
Go to Green. Place both buttons in the same location as you did for the
Red and Green cards.

Project 2

35

10. Edit the code of each button to so that when the onMouseUp handler is called,
that navigation changes to the appropriate colored card as you did in step 6.

It is time to test your app using the simulator. Your app should allow easy navigation
between the cards. Using the red, green, and blue color scheme provides you with
visual proof that your application is working properly.

Card transitions
We have several options regarding transitioning between cards. In the previous section,
we saw that the new card simply appeared without any fanfare. We can enhance our user
interface by using visual effects when navigating from one card to another. We accomplish
this by using the visual effect command.

To use the visual effect command, we simply make a call to that command, right before
the command to go to another card. Here is an example of the code you would use:

visual effect dissolve
go to card "Red"

Not all of LiveCode's visual effects will work for mobile devices. The following effects are the
ones that do work:

 f plain
 f dissolve
 f push up
 f push down
 f push right
 f push left
 f reveal up
 f reveal down
 f reveal right
 f reveal left
 f scroll up
 f scroll left
 f scroll down
 f scroll right
 f curl up (iOS only, not Android)
 f curl down (iOS only, not Android)
 f flip left (iOS only, not Android)
 f flip right (iOS only, not Android)

Developing User Interfaces

36

We can also include a speed parameter to the visual effect command. If no speed
parameter is provided, then the visual effect command occurs at normal speed.
Here are the speed options:

 f very slow

 f slow

 f normal

 f fast

 f very fast

The following code is an example of how you would add speed to your visual effect
command:

visual effect dissolve very slowly
go to card "Red"

We can even add audio clips that play during the visual effect. This is accomplished by using
the following sample code:

visual effect dissolve very slowly with sound "chesse.wav"
go to card "Red"

Let's modify our Red card to demonstrate some of these visual effects.

1. Create a button called Go to Green dissolve fast. Add the following code to
the button:
on mouseUp
 visual effect dissolve fast
 go to card "Green"
end mouseUp

2. Create a button called Go to Green reveal up slowly. Add the following code
to the button:
on mouseUp
 visual effect reveal up slowly
 go to card "Green"
end mouseUp

3. Create a button called Go to Green reveal down very slowly. Add the
following code to the button:
on mouseUp
 visual effect reveal down very slowly
 go to card "Green"
end mouseUp

Project 2

37

4. Create a button called Go to Green scroll left. Add the following code to
the button:
on mouseUp
 visual effect scroll left
 go to card "Green"
end mouseUp

5. Create a button called Go to Green scroll right. Add the following code to
the button:
on mouseUp
 visual effect scroll right
 go to card "Green"
end mouseUp

6. Create a button called Go to Green curl up. Add the following code to
the button:
on mouseUp
 visual effect curl up
 go to card "Green"
end mouseUp

7. Create a button called Go to Green curl down. Add the following code to
the button:
on mouseUp
 visual effect curl down
 go to card "Green"
end mouseUp

8. Create a button called Go to Green flip left. Add the following code to
the button:
on mouseUp
 visual effect flip left
 go to card "Green"
end mouseUp

9. Create a button called Go to Green flip right. Add the following code to
the button:
on mouseUp
 visual effect flip right
 go to card "Green"
end mouseUp

10. Organize your buttons (you should have 11 of them) on the Red card. How you
organize them is up to you.

Developing User Interfaces

38

Objective Complete - Mini Debriefing
The following screenshot is an example of one such solution:

Classified Intel
So far, we've referenced cards by their name (that is, Red). We can also refer to them by
their index number. Each card is given an index number starting with 1. Numbers are
assigned sequentially. As you can see from the following screenshot of the Application
Browser, our three cards (Red, Green, and Blue) are also cards 1, 2, and 3.

Project 2

39

So, we can say go to card Blue and go to card 3. Both commands will have the
same effect. We can also say go to next card or go to previous card. Both of those
commands will cycle through the card index. So, if you are on card 3 and there is no card 4,
the go to next card will navigate from card 3 to card 1. The same is true if you are on
card 1 and use the go to previous card command. In this case, navigation will go from
card 1 to card 3 (the last card of the current stack).

Buttons
LiveCode provides us with easy access to push buttons, default buttons, and rectangle
buttons on the tool palette. Once we drag any of these interface objects onto a card, we can
change its style via the properties inspector. This gives us the ability to change a button to
any of the following styles: push, square, rounded, transparent, opaque, shadow, checkbox,
or radio.

Engage Thrusters
There are several messages related to buttons that are very useful when developing mobile
applications. The most frequently used are mouseDown and mouseUp. Typically, only the
mouseUp message is used; however, there are cases when you might want to use the
mouseDown message. Let's experiment with both.

1. Let's begin by creating a new main stack named InteractiveFun_v3. The size of
the stack should be 320 x 480 pixels.

2. Using the Colors and Patterns inspector, change the background color of the card to
any color.

3. Drag a Label field from the Tools palette onto the card. Name the field header.
Change the contents to Mouse Messages. Align it to the center and bold the text.
Set the width to 264 and height to 21. Set the location of the field to 157, 16.

www.allitebooks.com

http://www.allitebooks.org

Developing User Interfaces

40

4. Drag a Scrolling Field from the Tools palette onto the card. Name the field
messages. Set the width to 264 and height to 286. Set the location of the field
to 157, 175. Using the Basic Properties, inspector, make sure you remove the
checkmark next to Focusable which will set the tranverseOn to off and ensure
the keyboard is not automatically activated when the mobile app is run.

5. Drag a Rectangle Button from the Tools palette onto the card. Name the button
Button 1. Set the location of button Button 1 to 93,363.

6. Drag a Rectangle Button from the Tools palette onto the card. Name the button
Button 2. Set the location of button Button 2 to 227,363.

7. Drag a Rectangle Button from the Tools palette onto the card. Name the button
Quit. Set the location of button Quit to 157,425.

Objective Complete - Mini Debriefing
When you've completed the preceding seven steps, run your app in the simulator. It should
resemble the following screenshot:

Project 2

41

Now we can program our three buttons. What we will do is capture the messages from the
three buttons and display them on sequential lines in the Scrolling Field.

Enter the following code for button Button 1:

on mouseDown
 local nextLine

 put the number of lines of fld "messages" into nextLine
 put the name of me & " mouseDown" into line (nextLine +1) of fld
"messages"
end mouseDown

on mouseUp
 local nextLine

 put the number of lines of fld "messages" into nextLine
 put the name of me & " mouseUP" into line (nextLine +1) of fld
"messages"
end mouseUp

As you can see, we created two listeners, one each for the mouseDown and mouseUp
messages. We start by declaring a local variable called nextLine to temporarily hold the
number of lines currently in the field messages. To obtain that number, we use put the
number of lines of fld "messages" into the nextLine line of code. Next, we build
a string and display it on the next blank line of the field.

We use the put the name of me code snippet to display the name of the button along
with the message the button sent. This allows us to simply copy the code from button
Button 1 and paste it into Button 2.

Developing User Interfaces

42

Let's copy the code from button Button 1 and paste it into the code of button Button 2.
Now, test the app in the simulator again. As you can see from the following screenshot,
mouseDown and mouseUp messages are being captured and displayed for both buttons:

All that is left is to add code to our Quit button. Enter the following code for that button:

on mouseDown
 local nextLine

 put the number of lines of fld "messages" into nextLine
 put the name of me & " mouseDown" into line (nextLine +1) of fld
"messages"
end mouseDown

on mouseUp
 quit
end mouseUp

As you can see, we simply copy and pasted the on mouseDown listener from either of the
other buttons. No code change was required. We also added code to quit the app when
the user takes their finger off of the mouse, triggering the mouseUp message to be sent.

Project 2

43

Classified Intel
The concept of LiveCode messages should not be new to you. If you are unfamiliar with
messages, you can open the Message Watcher window, which is available from the
Development drop-down menu in LiveCode. You can monitor the messages your
stacks and cards are receiving using this tool.

Graphics
LiveCode graphics are objects that are drawn, customized, and programmed within the
LiveCode development environment. As illustrated in the following diagram, the graphic
types are Rectangle, Rounded Rectangle, Oval, Line, Freehand, Polygon, and Freehand
Polygon. Regardless of the type of graphic, you refer to them as grc or graphic in code.

Engage Thrusters
Let's create Version 4 of our Interactive Fun mobile application.

1. Begin by creating a new main stack named InteractiveFun_v4. The size of the
stack should be 320 x 480 pixels.

2. Set the background color to white.

3. Using the Standalone Application Settings dialog, hide the Status Bar. We are
disabling the Status Bar so that we can have additional screen real estate. The
Status Bar's height is 20 pixels and, for Interactive Fun v4, we'll need as
much screen real estate as possible. See the following screenshot for details:

Developing User Interfaces

44

4. Select the Rectangle tool from the Tools palette and draw a rectangle on the card.
Set the width to 138 and height to 50. Set the location to 221,41. Set the Opaque
to True. Select a background color of your choosing.

5. Select the Rounded Rectangle tool from the Tools palette and draw a rounded
rectangle on the card. Set the width to 134 and height to 48. Set the location to
221,105. Set the Opaque to True. Select a background color of your choosing.

6. Select the Oval tool from the Tools palette and draw an oval on the card. Set the
width to 74 and height to 60. Set the location to 221,75. Set the Opaque to
True. Select a background color of your choosing.

7. Select the Polygon tool from the Tools palette and draw a polygon on the card. Set
the width to 72 and height to 72. Set the location to 221,257. Set the Opaque to
True. Select a background color of your choosing.

8. Select the Line tool from the Tools palette and draw a line on the card. Set the width
to 128 and height to 4. Set the location to 221,310. Set the Opaque to True. Set
the line size to 3 by editing the border size field of the Basic Properties inspector.

9. Select the Freehand tool from the Tools palette and draw any shape on the card.
Set the approximate width and height to 73 and 71. Set the location to 221,363.
Set the Opaque to True. Select a background color of your choosing.

10. Select the Freehand Polygon tool from the Tools palette and draw a freehand
polygon on the card. Set the approximate width and height to 110 and 50. Set
the location to 221,439. Set the Opaque to True. Select a background color of
your choosing.

11. Drag a Label field onto the left of the rectangle on the card. Change the contents of
the label to Rectangle. Apply the bold and center formatting to the text.

12. Drag a Label field onto the left of the rounded rectangle on the card. Change
the contents of the label to Rounded Rectangle. Apply the bold and center
formatting to the text.

13. Drag a Label field onto the left of the oval on the card. Change the contents of the
label to Oval. Apply the bold and center formatting to the text.

14. Drag a Label field onto the left of the polygon on the card. Change the contents of
the label to Polygon. Apply the bold and center formatting to the text.

15. Drag a Label field onto the left of the line on the card. Change the contents of the
label to Line. Apply the bold and center formatting to the text.

16. Drag a Label field onto the left of the freehand object on the card. Change the
contents of the label to Freehand. Apply the bold and center formatting to the text.

Project 2

45

17. Drag a Label field onto the left of the freehand polygon on the card. Change
the contents of the label to Freehand Polygon. Apply the bold and center
formatting to the text.

18. Center-align each Label field to the corresponding graphic.

19. Center-align all seven labels to one another.

Objective Complete - Mini Debriefing
Once you have completed the preceding steps, your app should look similar to the
following screenshot:

Developing User Interfaces

46

Classified Intel
Graphics can be powerful interface objects. We can apply customizations to their
appearance, animate them, apply code to them, and even create them programmatically.
You can use graphics to replace standard buttons to give your mobile app a look that
is unique.

Mission Accomplished
You completed your second project with four different versions. You can use what you've
learned about orientation, cards, buttons, and graphics, to create your own unique
interactive interfaces.

We created four versions of our Interactive Fun mobile application. The first version
helped us understand how to handle portrait and landscape orientations. The second
version focused on navigating between cards with and without visual effects. In our third
version, we experimented with buttons. Our final and fourth version was used to create
the seven types of graphics.

As you have become accustomed to the projects in this book, we tackled this project's core
learning topics of orientation, cards, buttons, and graphics, through hands-on programming
and experimentation. I encourage you to continue to experiment with each of the four
versions of this project.

A Hotshot Challenge
Let's take what you've learned in this project to a new level. For this challenge, try to
accomplish the following with a fifth version of the Interactive Fun application:

 f On card 1, provide the user with the ability to indicate one selection from each of
the three categories: visual effect, visual effect speed, and card to navigate to

 f Create seven additional cards, each with a unique graphic

 f Cards 2 through 8 should permit the user to navigate back to card 1

That's it. Have fun with this challenge. Good luck!

Project 3
Using Math – Mobile

Calculator

Mobile devices do a great job with mathematical equations, from adding and subtracting to
performing more complex calculations. Most people take calculators for granted stating that,
"they just work." We'll take a project-based approach to create our own mobile calculator.
This look behind the curtains should give you an appreciation for the complexities of even
the simplest of calculators.

Mission Briefing
In this project, we will build a mobile calculator that supports addition, subtraction,
multiplication, and division. We will also include the ability to generate random
numbers as part of our calculations.

Our mobile calculator will carefully process user input to help prevent mistakes. So, our
mission is to create a user-friendly mobile calculator that performs accurate calculations
and supports random number processing.

Using Math – Mobile Calculator

48

Here is a preview of what the mobile app that we will build in this project looks like:

Why Is It Awesome?
When you have completed the Mobile Calculator project, you will have a good understanding
of how to perform mathematical calculations using LiveCode for mobile applications. You'll
also learn the importance of planning for user input issues and potential user errors. These
learning points will be important to you as you work on subsequent projects in this book and
develop your own mobile applications using LiveCode.

Your Hotshot Objectives
To complete the Mobile Calculator project, we'll accomplish the following tasks:

 f Creating the user interface

 f Accepting user input

 f Validating user input

 f Performing calculations

 f Using the order of precedence

 f Using random numbers

Project 3

49

Mission Checklist
Whenever you develop mobile applications that use math, you should have an external
source for validating the calculations. You can use a physical calculator, a calculator on your
computer, or a spreadsheet software such as Microsoft Excel. Once you have a means of
performing mathematical calculations, you'll be ready to get started.

Creating the user interface
Our first task is to build the user interface for our Mobile Calculator application. There will be
a total of 20 interface objects for our project. We'll handle adding LiveCode scripts to each
button in the next section.

Prepare for Lift Off
Here is the list of interface objects we'll need for our application:

 f Number buttons (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9)

 f Calculation buttons

 � Addition (+)

 � Subtraction (-)

 � Multiplication (*)

 � Division (%)

 f The decimal button

 f The clear (C) button

 f The equals (=) button

 f The random (R) button

 f Two label fields

Engage Thrusters
1. Let's begin by creating a new main stack named MobileCalculator. Using the

properties inspector, make the following customizations to the main stack:

1. Change the size of the stack to 320 x 480 pixels.

2. Set the title of the stack to Mobile Calculator.

3. Set the background color to black.

Using Math – Mobile Calculator

50

2. Next, we will create a button to use as a template.

1. Drag a Rectangle Button onto the card.

2. Change the size of the button to 60 x 60 pixels. This will result in a standard
square button.

3. Set the location to 62, 106. This will be the future spot of the 7 button.

4. Change the name of the button to 7.

5. Put 7 into the button's label.

6. Set the text size to 24.

7. Set the style to bold.

8. Set the background color to dark brown.

9. Set the foreground color to white.

10. Change the border width to 1.

11. Set Lock size and position of the button to true. Do this by checking the
Lock size and position checkbox in the Size & Position section of the
properties inspector. Since this is our button template, we'll want to be
 sure we do not accidentally change the button's location.

So far, your interface should look like the following screenshot:

Project 3

51

3. With our template created, we can use it to quickly create the rest of the number
buttons. Make nine copies of the 7 button and customize each button using the
following table:

Button Location
0 161, 306
1 62, 240
2 161, 240
3 260, 240
4 62, 173
5 161, 173
6 260, 173
7 62, 106
8 161, 106
9 260, 106

Set Lock size and position of each for the new buttons to true as explained earlier.

Upon completion of step 3, your interface should look like the following screenshot:

Using Math – Mobile Calculator

52

As you can see, we've left enough room above the numbers for the calculation
display, and below the number buttons for the remaining interface buttons.

4. Next, we'll create our clear and decimal point buttons.

 � Copy the 0 button and make the following modifications to the new button:

1. Name the button Clear.
2. Set the label to C.
3. Set the location of the button to 62, 306.
4. Change the background color to a dark orange color.
5. Change the foreground color to the same dark brown color you

used in step 2.
6. Set Lock size and position to true.

 � Copy the C button and make the following modifications to the new button:

1. Name the button Decimal.
2. Set the label to ..
3. Set the location of the button to 260, 306.
4. Set Lock size and position to true.

Upon completion of step 4, your interface should look like the following screenshot:

Project 3

53

5. We are ready to create our calculation buttons.

 � Copy the C button and make the following modifications to the new button:

1. Name the button Multiply.

2. Set the label to *.

3. Set the location of the button to 62, 373.

4. Change the background color to a light tan color.

5. Change the foreground color to black.

6. Set Lock size and position to true.

 � Copy the * button and make the following modifications to the new button:

1. Name the button Divide.

2. Set the label to %.

3. Set the location of the button to 62, 440.

4. Set Lock size and position to true.

 � Copy the * button and make the following modifications to the new button:

1. Name the button Plus.

2. Set the label to +.

3. Set the location of the button to 161, 373.

4. Set Lock size and position to true.

 � Copy the * button and make the following modifications to the new button:

1. Name the button Minus.

2. Set the label to -.

3. Set the location of the button to 161, 440.

4. Set Lock size and position to true.

Using Math – Mobile Calculator

54

Upon completion of step 5, your interface should look like the following screenshot:

As you can see, we are indicating button organization by color and placement.

6. Let's create a button that will allow the user to use random numbers.

 � Copy the + button and make the following modifications to the new button:

1. Name the button Random.

2. Set the label to R.

3. Set the location of the button to 260, 373.

4. Change the background color to dark red.

5. Set Lock size and position to true.

7. We only have one button left to create for our interface – the equals button.

 � Copy the + button and make the following modifications to the new button:

1. Name the button Equals.

2. Set the label to =.

3. Set the location of the button to 260, 440.

Project 3

55

4. Change the background color to dark green.

5. Set Lock size and position to true.

Upon completion of this step, your interface should look like the
following screenshot:

8. Now, we are ready to create the first of our two labels. Our first label will display
output to the user.

1. Drag a Label field onto the card.

2. Name the field Results.

3. Change the width to 266 and height to 36.

4. Set the location to 159, 32.

5. Change the contents to 0.

6. Set Opaque to true.

7. Set the background color to white.

8. Set the text size to 24.

9. Set Lock size and position to true.

Using Math – Mobile Calculator

56

9. Our last label will be an interface element that allows the user to switch between
basic and advanced modes.

1. Drag a Label field onto the card.

2. Name the field Mode.

3. Set the contents to Enter Advanced Mode.

4. Change the width to 128 and height to 21.

5. Set the location to 90, 60.

6. Set the foreground color to red.

7. Set Lock size and position to true.

Objective Complete - Mini Debriefing
We used nine steps to create 20 interface objects for our mobile application. One of the
techniques we used to be more efficient was to create button templates. This saved us
time by only having to make minor changes to buttons created with templates.

Your completed interface should look like the following screenshot:

Project 3

57

Classified Intel
When you have multiple interactive interface objects in a mobile application, you'll want
to ensure you have enough spacing between them to prevent user input mistakes. If, for
example, your buttons are too close to one another, it will be easier for users to tap the
wrong buttons. So, keep that in mind while designing your interfaces, and run lots of
tests afterwards.

Accepting user input
In this section, we will add LiveCode scripts to our mobile application's interface objects.
We will first create a set of global variables at the stack level so that user input can be
captured and used. We will use the "first number operator second number" schema
for our calculations.

Engage Thrusters
Accepting user input can be a very important component of mobile applications. The key to
successfully handling user input is to ensure the proper variables are set up. We'll begin with
global variables next.

Creating and initializing global variables
Our first step is to create a set of global variables in the stack. Enter the following code:

on preOpenStack
 global firstNumber, secondNumber, theOperator, theMode

 clearAll
end preOpenStack

Each time the app is loaded, the preOpenStack message is received by the stack and our
associated code does two things. First, it initializes the following four global variables:

 f firstNumber: This is the number before the operator in our "first number operator
second number" schema

 f secondNumber: This is the number after the operator in our "first number operator
second number" schema

 f theOperator: This variable will hold the mathematical operation selected by the
user (multiplication, division, addition, or subtraction)

 f theMode: This variable will track which mode the calculator is in, basic or advanced

Using Math – Mobile Calculator

58

The second thing our preOpenStack code does is call the clearAll command. Here is the
code for that command. Be sure to enter it at the stack level.

command clearAll
 global firstNumber, secondNumber, theOperator, theMode

 put empty into firstNumber
 put empty into secondNumber
 put empty into theOperator
 --
 put "Basic" into theMode
 put "Enter Advanced Mode" into fld "Mode"

end clearAll

The purpose of the clearAll command is to reset all our global variables, clear the output
displayed in the Results field, and put the calculator back in Basic mode. We accomplish this
by declaring the global variables, putting empty into firstNumber, secondNumber, and
theOperator. We also populate Basic into theMode. Lastly, we put Enter Advanced
Mode into the field Mode.

Programming the number buttons
Our next step is to program each of the number buttons (0-9). We do not want to duplicate a
bunch of code for each number button. So, let's create a command to accept a number when
the user enters it. Then, we can have each number button call the same command and pass
its number as a parameter.

Before programming this command, let's look at some of the logic required. When a user
taps a number button, we need a method of knowing if that number is the first digit in the
first number, second, or a subsequent digit in the first number, or the first digit in the second
number, second, or a subsequent digit in the second number. This can get complicated, so
let's look at the four possible conditions that can exist when a user taps a number button.

Case firstNumber theOperator secondNumber
1 is empty is empty is empty

2 is a number is empty is empty

3 is a number is not empty is empty

4 is a number is not empty is a number

Project 3

59

After review of the preceding table, we see that there are only four conditions that will exist
when a user enters numbers. So, let's create a command that processes the numbers based
on these four cases.

command processNumber theNumber
 global firstNumber, secondNumber, theOperator

 // Case 1
 if (firstNumber is empty) then
 put theNumber into firstNumber
 // Case 2
 else if (firstNumber is a number) AND (theOperator is empty) then
 put theNumber after firstNumber
 // Case 3
 else if (theOperator is not empty) AND (secondNumber is empty) then
 put theNumber into secondNumber
 // Case 4
 else if (secondNumber is a number) then
 put theNumber after secondNumber
 end if
end processNumber

As you can see with the command declaration statement, we are identifying theNumber
to receive the value passed to us by the 0-9 buttons. With the processNumber command,
we use an if-then-else set of statements to determine which of the four cases exist and then
take the appropriate action. Compare the code to the following table to see which conditions
we are testing for and what action is taken:

Case Conditions Action

1 (firstNumber is empty) put theNumber into
firstNumber

2 (firstNumber is a number) AND
(theOperator is empty)

put theNumber after
firstNumber

3 (theOperator is not empty) AND
(secondNumber is empty)

put theNumber into
secondNumber

4 (secondNumber is a number) put theNumber after
secondNumber

Using Math – Mobile Calculator

60

Now that we have a command that can accept any number, we just need to program each of
the 10 number buttons (0-9) so that the processNumber command knows which number is
being passed to it. Here is the code:

on mouseUp
 processNumber(the short name of me)
end mouseUp

We only needed one identical line of code for each of the number buttons. Each button
passes its short name to the processNumber command.

Be sure that you enter the code processNumber(the short
name of me) in each of the number buttons' (0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9) on mouseUp scripts.

We also need to update the display so the user knows that whatever they are entering is
being displayed. So, let's slightly modify our processNumber command. Here is the code:

command processNumber theNumber
 global firstNumber, secondNumber, theOperator

 // Case 1
 if (firstNumber is empty) then
 put theNumber into firstNumber
 set the text of fld "Results" to firstNumber
 // Case 2
 else if (firstNumber is a number) AND (theOperator is empty) then
 put theNumber after firstNumber
 set the text of fld "Results" to firstNumber
 // Case 3
 else if (theOperator is not empty) AND (secondNumber is empty) then
 put theNumber into secondNumber
 set the text of fld "Results" to secondNumber
 // Case 4
 else if (secondNumber is a number) then
 put theNumber after secondNumber
 set the text of fld "Results" to secondNumber
 end if
end processNumber

We only added four lines of code, one for each of the four cases. We simply set the text of
the field Results to the first or second number, depending upon which number was being
entered by the user.

Project 3

61

Programming the operator buttons
Our next task is to program the operator (*, %, +, -) buttons. We'll use the same technique
we did with our number buttons and create one command that accepts the input from the
four operator buttons.

First, let's create the LiveCode script for the four operator buttons:

on mouseUp
 processOperator(the short name of me)
end mouseUp

This script passes the short name of the operator button to the command
processOperator. Next, we'll program the processOperator command.
But first, we should again review what the possible conditions might be when
one of the operators is pressed.

Case firstNumber theOperator secondNumber
1 is empty is empty is empty

2 is a number is empty is empty

3 is a number is not empty is empty

4 is a number is not empty is a number

Based on this table, here is the script for the processOperator command. Be sure to enter
this code at the stack level.

command processOperator passedOperator
 global firstNumber, secondNumber, theOperator

 // Case 1
 if (firstNumber is empty) then
 beep
 // Case 2
 else if (firstNumber is a number) AND (theOperator is empty) then
 put passedOperator into theOperator
 // Case 3
 else if (theOperator is not empty) AND (secondNumber is empty) then
 put passedOperator into theOperator
 // Case 4
 else if (secondNumber is a number) then
 put calculate() into firstNumber
 put passedOperator into theOperator
 put empty into secondNumber
 end if
end processOperator

Using Math – Mobile Calculator

62

In case 1, no number has been entered yet, so pressing an operator key is considered invalid.

In case 2, the first number has already been entered, and the operator is now being defined.

In case 3, the first number and the operator have already been entered, but the second
number has not been entered yet. In this case, we simply update the operator based on the
latest user input.

In case 4, the first number, operator, and the second number have already been entered.
When the user enters an operator after having entered the second number, that indicates a
calculation is ready to be entered. So, we'll take the calculation results and make it the new
first number, and the newest operator is recorded.

Our processOperator script calls a calculate() function. Let's write that next.

Programming the calculation function
Here is the code:

function calculate
 global firstNumber, secondNumber, theOperator
 local tempResults

 switch theOperator
 case "Multiply"
 put firstNumber * secondNumber into tempResults
 break
 case "Divide"
 put firstNumber / secondNumber into tempResults
 break
 case "Plus"
 put firstNumber + secondNumber into tempResults
 break
 case "Minus"
 put firstNumber - secondNumber into tempResults
 break
 end switch

 set the text of field "Results" to tempResults
 return tempResults
end calculate

Our calculate function does not have to be too sophisticated because we know that
when this function is called, the user has already entered the first number, the mathematical
operator, and the second number. This allows us to create a switch statement based on
the operator.

Project 3

63

After we complete the calculation, we update the Results field and return the value, so
processing can continue with the processOperator script.

Programming the clear command
When the user clicks on the C button, they will want their latest input to be cleared from
memory and the display. There are only four possible cases in which the C button will need
to perform any operations. These cases are presented in the following table:

Case firstNumber theOperator secondNumber
1 is empty is empty is empty

2 is a number is empty is empty

3 is a number is not empty is empty

4 is a number is not empty is a number

We can re-use most of the code we've already written for the processOperator command.
Here is the modified code:

command processClear
 global firstNumber, secondNumber, theOperator

 // Case 1
 if (firstNumber is empty) then
 set the text of field "Results" to empty
 // Case 2
 else if (firstNumber is a number) AND (theOperator is empty) then
 if the len of firstNumber > 1 then
 delete the last char of firstNumber
 set the text of field "Results" to firstNumber
 else
 put empty into firstNumber
 set the text of field "Results" to empty
 end if
 // Case 3
 else if (theOperator is not empty) AND (secondNumber is empty) then
 put empty into theOperator
 // Case 4
 else if (secondNumber is a number) then
 if the len of secondNumber > 1 then
 delete the last char of secondNumber
 set the text of field "Results" to secondNumber
 else

Using Math – Mobile Calculator

64

 put empty into secondNumber
 set the text of field "Results" to empty
 end if
 end if
end processClear

In case 1, no values have been entered for the first number, so our code simply empties any
displayed results in the Results field.

In case 2, the first number has been entered, but an operator has not been identified. This
tells us that the user wants to clear out the last digit of the first number. We need to check
to see if the first number has more than one digit. If it is only one digit, we simply empty
the firstNumber variable; otherwise, we remove the last digit of the number.

In case 3, the first number has been entered and an operator has been identified, but the
second number has not been entered yet. In this case, we want to empty the previously
entered operator from the theOperator variable.

In case 4, the user has entered the second number. Similar to what we did for case 2, we
need to determine if the second number has more than one digit and then edit the second
number accordingly.

The next thing for us to do is to enter code for the C button that calls the processClear
command. Here is the code for the C button:

on mouseUp
 processClear
end mouseUp

This code simply calls the processClear command each time it is clicked.

Programming the equals button
The last thing we need to do is program the equals button. We previously programmed the
calculate() function, so we'll use it again for the equals functionality. Here is the code
for the equals button:

on mouseUp
 global firstNumber, secondNumber, theOperator

 if (firstNumber is a number) AND (theOperator is not empty) AND
(secondNumber is a number) then
 put calculate() into firstNumber
 put empty into theOperator
 put empty into secondNumber
 else
 beep
 end if
end mouseUp

Project 3

65

Before calling the calculate() function, we check to ensure that we have both the first
and second numbers as well as an operator. If we do not have these three components,
we send a system beep to the user.

In the case that we do have all three data components, we call the calculate() function,
put the results in the firstNumber variable, and empty the variables theOperator
and secondNumber.

Objective Complete - Mini Debriefing
Now we have a fully functioning mobile calculator. We created 20 individual interface objects
and programmed the number buttons (0-9), the operator buttons (+, -, *, %), the C (clear)
button, and the equals button. We used calls to functions and commands to make our
source code efficient.

With this phase of our project behind us, you should take time to thoroughly test
the application.

Validating user input
So far, we have done a great job in preventing user error. Each interface object has specific
input associated with it. When a user clicks on the 7 button, for example, only a 7 can be
entered into our equation. What if you gave the user access to the keyboard? That would
introduce a wide range of possible data input errors. In this section, we'll delve into the
area of validating user input.

Engage Thrusters
Our Mobile Calculator application only has one card. Let's get started by naming that card
Basic. Next, we'll create a new card and name it Advanced. Next, follow these steps to
set up the user interface on the Advanced card.

1. Copy the Results field from the Basic card and paste it onto the Advanced card.
2. Copy the Mode field from the Basic card and paste it onto the Advanced card.
3. Change the contents of the field Mode to Enter Basic Mode.
4. Change the text alignment of field Mode to left.
5. Drag a Rectangle Button onto the Advanced card and make the following

customizations:
1. Set the width to 112 and height to 23.
2. Set the location to 82, 97.
3. Set the name to Formula.

Using Math – Mobile Calculator

66

4. Set the label to Enter Formula.

5. Set Lock size and position to true.

6. Drag a square button onto the Advanced card and make the following customizations:

1. Set the width to 112 and height to 23.

2. Set the location to 236, 97.

3. Set the name to Calculate.

4. Set the label to Calculate.

5. Set Lock size and position to true.

Your user interface on the Advanced card should look like the following screenshot:

7. Now, let's code the button with the Enter Formula label. Enter the following code
for that button:

on mouseUp
 global tOne, tTwo, tOperator

 put empty into fld "Results"

 ask "Enter the first number" titled "First Number"

Project 3

67

 put it into tOne
 set the text of field "Results" to tOne
 --
 ask "Enter an Operator (+, -, *, %)" titled "Operator
Selection"
 put it into tOperator
 set the text of field "Results" to tOne & space & tOperator
 --
 ask "Enter the second number" titled "Second Number"
 put it into tTwo
 set the text of field "Results" to tOne & space & tOperator &
space & tTwo
end mouseUp

We created three global variables to hold our first number (tOne), second number
(tTwo), and the operator (tOperator). Next, we cleared the Results field. The rest
of our code is broken into three sections, one for each global variable. Each of these
sections gets input from the user, stores the results into the appropriate variable,
and updates the Results field.

As you can see from the following screenshot, our code works as it was designed to:

Using Math – Mobile Calculator

68

What if the user enters invalid data? Some users will do it on purpose and others
will do it by mistake. We want to do our best to prevent users from entering
incorrect data. One method of preventing erroneous data is to simply use buttons
as we did on the Basic card. Let's demonstrate this by changing the ask dialog
that gets the mathematical operator from the user to an answer dialog with four
buttons, one for each operator. Here is the new code for that section of code:
 answer "Select an Operator" with "+" or "-" or "*" or "%" titled
"Operator Selection"
 put it into tOperator
 set the text of field "Results" to tOne & space & tOperator

Our new dialog only permits the user to select one of the authorized operators.
Refer to the following screenshot for details:

8. We still need to ensure that users are only entering numbers for the first and second
numbers. There are a couple of ways of accomplishing this. One method is to check
that both variables are actually numbers. We can do that with the following code:
on mouseUp
 global tOne, tTwo, tOperator

 put empty into fld "Results"

 ask "Enter the first number" titled "First Number"
 put it into tOne
 if tOne is a number then
 set the text of field "Results" to tOne
 --
 answer "Select an Operator" with "+" or "-" or "*" or "%"
titled "Operator Selection"
 put it into tOperator
 set the text of field "Results" to tOne & space & tOperator
 --
 ask "Enter the second number" titled "Second Number"
 put it into tTwo
 if tTwo is a number then
 set the text of field "Results" to tOne & space &
tOperator & space & tTwo
 else

Project 3

69

 answer "Invalid " & quote & "Second Number" & quote & "
input."
 put empty into fld "Results"
 end if
 else
 answer "Invalid " & quote & "First Number" & quote & "
input."
 end if
end mouseUp

We added two if-then statements, one for each number (first and second). If the
data input was not a number, processing ends.

Another method of accomplishing this would be to ensure only numbers can
be entered.

9. We will program the Calculate button in the next section. So, the last thing we need
to be able to do is to switch between Basic and Advanced modes. On the Advanced
card, enter the following script into the Mode field:

on mouseUp
 global theMode

 put "Basic" into theMode
 go to card "Basic"
end mouseUp

As you can see, we are simply changing the contents of the variable theMode
and going back to the Basic card. Now, let's add code to the Mode field on the
Basic card.
on mouseUp
 global theMode

 put "Advanced" into theMode
 go to card "Advanced"
end mouseUp

This code changes the contents of the variable theMode to Advanced and switches
to the Advanced card.

Using Math – Mobile Calculator

70

Objective Complete - Mini Debriefing
Validating user input is very important for most mobile applications. While testing your
applications, you should have as many people test them as possible. Ask them to try to crash
your app, even offer them a reward if they succeed. The more potential problems you can fix
before release, the better.

Classified Intel
Another method of controlling what characters users are allowed to input would be to
display the keyboard that best fits the current functionality. For example, if you want a
user to only enter numbers, you might make a call to the mobileSetKeyboardType
"numeric" command.

Performing calculations
Let's navigate to the Advanced card in our mobile application. We will focus on the Calculate
button to demonstrate how to code math into your mobile applications.

Engage Thrusters
Enter the following LiveCode script for the Calculate button:

on mouseUp
 global tOne, tTwo, tOperator
 local tempResults

 switch tOperator
 case "*"
 put tOne * tTwo into tempResults
 break
 case "%"
 put tOne / tTwo into tempResults
 break
 case "+"
 put tOne + tTwo into tempResults
 break
 case "-"
 put tOne - tTwo into tempResults
 break
 end switch

 set the text of field "Results" to tOne & space & tOperator & space
& tTwo & " = " & tempResults
end mouseUp

Project 3

71

We used a switch statement with four possible cases, one for each mathematical operator.
We then performed the basic mathematical function and display the results. An example
output is shown in the following screenshot:

What about more complex calculations? LiveCode has a great capability to process advanced
mathematical functions and operations. Here is a list of some mathematical functions that
you can use in your mobile applications:

 f cos()
 f asin()
 f max()
 f abs()
 f exp10()
 f trunc()
 f sin(x)
 f min()
 f round()
 f exp2()
 f sqrt()
 f pi

Using Math – Mobile Calculator

72

Objective Complete - Mini Debriefing
While LiveCode is not a statistical tool, it has very strong built-in calculation capabilities.

Using the order of precedence
You may be familiar with the order of operators or operator precedence from your early
school years. Now is the time to brush up on that area of mathematics. Let's examine the
mathematical equation of 10 + 6 / 3. If we process the equation left to right, we get
10 + 6 = 16 divided by 3, which results in 5.333333. This is the incorrect solution.

If we remember that we should divide before we add, we would divide 6 by 3 with a result
of 2, then add it to 10 with a result of 12. This is the correct solution.

It becomes very clear that we cannot simply perform calculations programmatically without
specific knowledge of the order of precedence.

Engage Thrusters
The following table shows the proper operator order of precedence:

Precedence Name Symbol Explanation

1 Grouping () Expressions in parenthesis are evaluated first.
When nested, the innermost dataset is evaluated
first.

2 Unary not

bitNot

there is a

there is no

Unary operations act on a single operand only.

3 Exponent ^ This is also referred to as the power of a number.

4 Multiplication/
Division

*

%

div

mod

Each of these has the same order of precedence.
If more than one is used in an equation, they are
computed left to right.

5 Addition /
Subtraction

+

-

Both of these have the same order of
precedence. If more than one is used in an
equation, they are computed left to right.

6 Concatenation &

&&

,

These are string operators (join strings).

Project 3

73

Precedence Name Symbol Explanation

7 Comparison <

>

<=

>=

contains

is/is not
among

is/is not in

is/is not
within

is/is not a

These operators compare two values.

8 Equality =

is

<>

!=

is not

These operators compare two values for equality.

9 bitAnd bitAnd

10 bitXOr bitXOr

11 bitOr bitOr

12 and and

13 or or

14 function calls This is the lowest priority operator.

Objective Complete - Mini Debriefing
As you've seen, there is more to operator precedence than most people realize. Fortunately,
we have everything we need to know in the preceding table.

Using random numbers
Let's navigate to the Basic card in our mobile application. We will focus on the R button to
demonstrate how to use random numbers in our mobile applications. Random numbers are
commonly used in mobile games and games of chance.

Using Math – Mobile Calculator

74

Engage Thrusters
Add the following code to the R button on the Basic card:

on mouseUp
 set the randomSeed to the long seconds

 ask "Enter any number" titled "Upper Limit"
 answer random(it) & " is a random number between 1 and " & it
titled "Results"
end mouseUp

This code accomplishes three things. First, it sets a random seed. Using a random seed helps
improve the randomness of results. Next, the code prompts the user for input. The user is
being asked for an upper limit number.

Lastly, our code calculates a random number between 1 and the number entered by the user
and displays the results. Refer to the following screenshots for details:

Objective Complete - Mini Debriefing
We aptly demonstrated how to use random numbers to include the necessity for using a
random seed. We used both the randomSeed and random() functions.

Classified Intel
It is important to use a unique random seed each time you need to generate a random
number. Using a function such as the long seconds is a good technique. The long seconds
returns the number of seconds since midnight, January 1st, 1970 (GMT).

Project 3

75

Mission Accomplished
This project had you delving into how LiveCode handles mathematical functions and
operations. Along the way, we discovered how to program and use our own functions
and commands, how to accept and validate user input, and how to use random numbers.

Here is a screenshot of the two modes (Basic and Advanced) that we created for our Mobile
Calculator project:

A Hotshot Challenge
You might have noticed that we created a decimal button on the Basic card. You might have
also realized that we did not program it. Right now it is just sitting there taking up space.
Your challenge, should you choose to accept it, is to program that button and make any
other necessary changes to the mobile app so that users can use the calculator with a
decimal point. Good luck!

Project 4
Building Menus – Menu

of Menus

Mobile applications often present users with options. These options might include
selecting a date and time for a meeting, a color, a number, or a host of other options.
How to present the options to the user deserves careful consideration. Fortunately,
LiveCode offers several different menu interface objects. In this project, we will look
at how to use each of LiveCode's menu interface objects specifically for mobile devices.

Mission Briefing
In this project, we will build a mobile application called Menu of Menus. We will use a single
stack with eight cards. Each card will feature a different type of menu interface object:

 f swipe

 f pulldown

 f option

 f combobox

 f pop-up

 f tab

 f picker

 f dropdown

Building Menus – Menu of Menus

78

Our app's main purpose is to demonstrate various menu objects working on a mobile
device. We'll add some components to our project along the way to ensure developing
this app is fun.

The following screenshot is a preview of what the mobile app that we will build in this
project looks like:

This project requires the use of a third-party commercial plugin called MobGUI. This plugin
works with the commercial version of LiveCode and is available at a nominal fee. Even
if you do not want to purchase the plugin, it is worth your time reading through this
project's pages.

Project 4

79

Why Is It Awesome?
It is very important to become familiar with menu interface objects for mobile devices. Your
users will need to interact with the apps you develop. Menu interface objects are advanced
user interface objects, in that they have embedded functionality in LiveCode that makes
their use a powerful tool for you as a LiveCode developer.

You might think that menus are not important to you because you are only going to develop
game apps for mobile devices. Even in this case, menu interface objects are typically used.
One common example is to select a difficulty setting from a drop-down menu list.

Even if your immediate mobile application project does not call for the use of menus,
this project will provide you with the ability to easily use menu interface objects in
future LiveCode mobile application projects.

Your Hotshot Objectives
To complete the Menu of Menus project, we'll accomplish the following tasks:

 f Creating the main stack

 f Creating the project shell

 f Creating a swiping menu interface

 f Creating a pull-down menu interface

 f Creating an option menu interface

 f Creating a combobox menu interface

 f Creating a pop-up menu interface

 f Creating a tab menu interface

 f Creating a picker menu interface

 f Creating a drop-down menu interface

Building Menus – Menu of Menus

80

Mission Checklist
Throughout this project, we will make use of the MobGUI LiveCode plugin. You can obtain
this plugin at the LiveCode store. It is very reasonably priced. Once you have purchased the
MobGUI plugin, you will be provided with a download link. With the plugin downloaded to
your computer, you will need to ensure it is placed in the appropriate folder. As shown in
the following screenshot, the revMobGUI.livecode file should be placed in the Plugins
folder of your LiveCode installation:

Project 4

81

Creating the main stack
Our first task is to create the main stack for our Menu of Menus application. There will
be eight cards in our stack; we'll create those in the next section and then, in subsequent
sections, add appropriate LiveCode scripts to them.

Prepare for Lift Off
Open LiveCode and double-check to ensure you have the MobGUI plugin installed.
Simply select Plugins from the Development drop-down menu and ensure that
revMobGUI is listed.

Engage Thrusters
1. Let's begin by creating a new main stack named Menus. Using the properties

inspector, make the following customizations to the main stack:

1. Change the size of the stack to 320 x 480 pixels.

2. Set the name of the stack to Menus.

3. Set the title of the stack to Menu of Menus.

4. Set the background color to black.

2. Open the MobGUI plugin by selecting the Development drop-down menu,
then Plugins, and finally, revMobGUI.

3. With the MobGUI stack in focus, click on the Menus main stack.

4. In the MobGUI stack, make the following configuration changes:

1. Under the Design size & orientation section, select iPhone and Portrait.

2. Under the Runtime allowed orientations section, select Portrait and
deselect Portrait upside down, Landscape left, and Landscape right.

Building Menus – Menu of Menus

82

When you complete the four steps, the MobGUI interface should resemble the
following screenshot:

Objective Complete - Mini Debriefing
Now we have a main stack named Menus that uses the MobGUI plugin. This will be our
canvas for the remaining tasks required of this project.

Classified Intel
You can accomplish everything in this project without using the MobGUI plugin. Using the
plugin is therefore not required, but it is advisable. The benefits of using the MobGUI plugin
are that you can save a tremendous amount of time when creating and scripting your
interface. MobGUI is a third-party plugin and is only available when purchased along
with a commercial license of LiveCode.

Project 4

83

Creating the project shell
In this section, we will create a shell for the project that consists of eight cards. Cards 2
through 8 will have navigational controls that permit the user to go back to card 1.

Engage Thrusters
1. LiveCode automatically created the first card when we created the main stack.

Make the following changes to card 1:

1. Rename the card to Swipe.

2. Drag a navigation bar from the MobGUI stack onto the Swipe card.

3. Change the label of the Navigation Bar to navBar.

4. Set the label of navBar to Swipe Menu.

2. Create a second card and make the following configuration changes:

1. Rename the card to Pull.

2. Drag a navigation bar from the MobGUI stack onto the card.

3. Change the title of the Navigation Bar to navBar.

4. Set the label of navBar to Pull-Down Menu.

5. Drag a left navigational button from the MobGUI stack onto the card.

6. Rename the left button to Back.

7. Change the label text of the Back button to Back.

8. Remove all of the Back button's code.

9. Add the following code to the Back button:
 on mouseUp
 go to card 1
 end mouseUp

This code will take the user to the first card, which is our main menu.

3. Create a third card with the following details:

1. Rename the card to Option.

2. Copy the navBar and Back objects from the first card and paste them onto
the new card.

3. Change the label of navBar to Option Menu.

Building Menus – Menu of Menus

84

4. Create a fourth card with the following details:

1. Rename the card to Combo.

2. Copy the navBar and Back objects from the first card and paste them onto
the new card.

3. Change the label of navBar to Combo Box Menu.

5. Create a fifth card with the following details:

1. Rename the card to Pop.

2. Copy the navBar and Back objects from the first card and paste them onto
the new card.

3. Change the label of navBar to Pop-Up Menu.

6. Create a sixth card with the following details:

1. Rename the card to Tab.

2. Copy the navBar and Back objects from the first card and paste them onto
the new card.

3. Change the label of navBar to Tab Menu.

7. Create a seventh card with the following details:

1. Rename the card to Picker.

2. Copy the navBar and Back objects from the first card and paste them onto
the new card.

3. Change the label of navBar to Picker Menu.

8. Create an eighth card with the following details:

1. Rename the card to Drop.

2. Copy the navBar and Back objects from the first card and paste them onto
the new card.

3. Change the label of navBar to Drop-Down Menu.

Objective Complete - Mini Debriefing
Now we have a main stack with eight cards. Cards 2 through 8 have navigational bars with an
appropriate label. These cards also all have a Back button that takes the user back to card 1.

Project 4

85

Classified Intel
We made quick work of creating cards 3 through 8 by copying objects from card 2 and
making minor edits. This type of approach is intended to save you time. Programming in
LiveCode need not be tedious.

Creating a swiping menu interface
In this section, we will edit the first card of your mobile application. The card will hold
swiping menu interface objects, one for each type of menu used in this project.

Engage Thrusters
1. Drag a Label field from the MobGUI stack onto the Swipe card. Make the following

modifications to the label.

1. Change the label to Footer.

2. Set the text to Your Swipe is my command.

3. Set the location to 158, 434.

2. Next we will add eight list button groups from the MobGUI stack to our card.
Here are the steps:

1. Right-click on the list button group on the MobGUI stack and select the
number 8.

2. Drag the list button group from the MobGUI stack onto the Swipe card.

3. Edit the first list button group and make the following configuration changes:

1. Change the name of the list button group to Swipe.

2. Change the label to Swipe List Menu.

3. Set the location to 158, 74.

4. Edit the second list button group and make the following configuration changes:

1. Change the name of the list button group to Pull.

2. Change the label to Pull-Down Menu.

3. Set the location to 158, 117.

4. Edit the on touchEnd script to point to the Pull card. Here is the code:
 on touchEnd pId
 mobGUIUntouch the long id of me
 visual effect push left very fast
 go card "Pull"
 end touchEnd

Building Menus – Menu of Menus

86

5. Edit the third list button group and make the following configuration changes:

1. Change the name of the list button group to Option.

2. Change the label to Option Menu.

3. Set the location to 158, 160.

4. Edit the on touchEnd script to point to the Option card. Here is the code:
 on touchEnd pId
 mobGUIUntouch the long id of me
 visual effect push left very fast
 go card "Option"
 end touchEnd

6. Edit the fourth list button group and make the following configuration changes:

1. Change the name of the list button group to Combo.

2. Change the label to Combo Box Menu.

3. Set the location to 158, 203.

4. Edit the on touchEnd script to point to the Combo card. Here is the code:
 on touchEnd pId
 mobGUIUntouch the long id of me
 visual effect push left very fast
 go card "Combo"
 end touchEnd

7. Edit the fifth list button group and make the following configuration changes:

1. Change the name of the list button group to Pop.

2. Change the label to Pop-Up Menu.

3. Set the location to 158, 246.

4. Edit the on touchEnd script to point to the Pop card. Here is the code:

 on touchEnd pId
 mobGUIUntouch the long id of me
 visual effect push left very fast
 go card "Pop"
 end touchEnd

Project 4

87

8. Edit the sixth list button group and make the following configuration changes:

1. Change the name of the list button group to Tab.

2. Change the label to Tab Menu.

3. Set the location to 158, 289.

4. Edit the on touchEnd script to point to the Tab card. Here is the code:
 on touchEnd pId
 mobGUIUntouch the long id of me
 visual effect push left very fast
 go card "Tab"
 end touchEnd

9. Edit the seventh list button group and make the following configuration changes:

1. Change the name of the list button group to Picker.

2. Change the label to Picker Menu.

3. Set the location to 158, 332.

4. Edit the on touchEnd script to point to the Picker card. Here is the code:
 on touchEnd pId
 mobGUIUntouch the long id of me
 visual effect push left very fast
 go card "Picker"
 end touchEnd

10. Edit the eighth list button group and make the following configuration changes:

1. Change the name of the list button group to Drop.

2. Change the label to Drop-Down Menu.

3. Set the location to 158, 375.

4. Edit the on touchEnd script to point to the Drop card. Here is the code:
 on touchEnd pId
 mobGUIUntouch the long id of me
 visual effect push left very fast
 go card "Drop"
 end touchEnd

Building Menus – Menu of Menus

88

Objective Complete - Mini Debriefing
Once you have completed the preceding 10 steps, you will have the main interface of the
Menu of Menus mobile application completed. Your interface should look like the one in
the following screenshot:

Creating a pull-down menu interface
In this section, we will create two pull-down menu interfaces on our Pull card. We will ask
the user to first select a color, then an animal. We will include a Process button that provides
results of the user's selections.

Engage Thrusters
1. Drag a Label field from the Tools palette onto the Pull card and make the following

modifications to that label:

1. Set the width to 134 and height to 21.

2. Set the location to 81, 64.

3. Change the foreground color to white.

4. Align the text to left.

5. Bold the text.

Project 4

89

6. Change the text size to 14.

7. Change the contents to select a color.

2. Drag a Pulldown Menu from the Tools palette onto the Pull card and make the
following modifications to that object:

1. Set the name to color.

2. Set the width to 134 and height to 21.

3. Set the location to 219, 64.

4. Set the menu items text to Red, Green, Blue, and Purple.

5. Set the showName to true by selecting the checkbox next to Display Name
in the properties inspector.

6. Edit the code so that it matches the following:

 on menuPick pItemName
 global theColor
 put pItemName into theColor
 end menuPick

3. Drag a Label field from the Tools palette onto the Pull card and make the following
modifications to that label:

1. Set the width to 134 and height to 21.

2. Set the location to 81, 198.

3. Change the foreground color to white.

4. Align the text to left.

5. Bold the text.

6. Change the text size to 14.

7. Change the contents to Select an animal.

4. Drag a Pulldown Menu menu from the Tools palette onto the Pull card and make the
following modifications to that object:

1. Set the name to animal.

2. Set the width to 134 and height to 21.

3. Set the location to 221, 198.

4. Set the menu items text to Lion, Tiger, Bear, and Zebra.

5. Set the showName to True.

www.allitebooks.com

http://www.allitebooks.org

Building Menus – Menu of Menus

90

6. Edit the code so that it matches the following:

 on menuPick pItemName
 global theAnimal
 put pItemName into theAnimal
 end menuPick

5. Drag a Label field from the Tools palette onto the Pull card and make the following
modifications to that label:

1. Change the name to Results.

2. Set the width to 276 and height to 68.

3. Set the location to 156, 406.

4. Change the foreground color to yellow.

5. Align the text to center.

6. Bold the text.

7. Change the text size to 14.

8. Clear the default contents.

6. Drag a button from the MobGUI stack onto the Pull card and make the following
modifications:

1. Change the name to Process.

2. Change the label to Process.

3. Edit the on touchEnd script so that it matches the following code:

 on touchEnd pId
 global theColor, theAnimal
 local part1, part2, newAnimal
 mobGUIUntouch the long id of me

 if theColor is empty OR theAnimal is empty then
 answer "Cannot compute. Check your selections."
 else
 switch theColor
 case "Red"
 put "R" into part1
 break
 case "Green"
 put "Gr" into part1
 break
 case "Blue"
 put "Bl" into part1

Project 4

91

 break
 case "Purple"
 put "P" into part1
 end switch
 --
 switch theAnimal
 case "Lion"
 put "ion" into part2
 break
 case "Tiger"
 put "iger" into part2
 break
 case "Bear"
 put "ear" into part2
 break
 case "Zebra"
 put "ebra" into part2
 end switch
 --
 put part1 & part2 into newAnimal
 put "You selected " & theColor & " and " & theAnimal &
return & \\
 "Your new animal is:" & return & newAnimal into fld
"Results"
 end if
 end touchEnd

As you review our Process button's code, you will see that we are accomplishing five things:

1. First, we check to make sure that the user has selected both a color and an animal.
If they failed to make one selection in each category, we display a pop up and urge
them to check their selections.

2. Next, we take the first part of the selected color and place it in the local variable
part1. We use R for red, Gr for green, Bl for blue, and P for purple.

3. Our next step is to place part of the animal name into the local variable part2.
We use ion for Lion, iger for Tiger, ear for Bear, and ebra for Zebra.

4. Next, we combine the variables part1 and part2 into a third variable
named newAnimal.

5. Lastly, we output the results to the user.

Building Menus – Menu of Menus

92

The last thing we need to do is to add code to the card that clears the on-screen results and
global variables each time the card is viewed. Here is that code:

on preOpenCard
 global theColor, theAnimal

 put empty into theColor
 put empty into theAnimal
 put empty into fld "Results"
end preOpenCard

As you can see by reviewing the preceding code, we start by declaring the two global
variables (theColor and theAnimal). Next, we put empty into both of those variables.
The last thing our code does is to clear the Results field.

Objective Complete - Mini Debriefing
Having followed the seven steps in this section, you should have the Pull card completely
designed and programmed so that it serves as a good example of how to use pull-down
menus for mobile applications developed using LiveCode. Your application should look
similar to the following screenshot:

Project 4

93

Creating an option menu interface
In this section, we will create three option menu interfaces on our Option card. We will
prompt the user to select a country from the first option menu, a number from the second,
and an animal, plant, or vegetable from the third menu. We will then present the user with
a Process button to process the selections. Our final task will be to display the results to
the user.

Engage Thrusters
As you progress through the steps in this task, you will use both the LiveCode Tools palette
and the MobGUI interface. There are instances where you could accomplish steps using
either interface. Let's stick to the steps as outlined to avoid confusion.

1. Navigate to the Option card.

2. Drag an Option Menu button from the LiveCode Tools palette onto the Option card
and make the following modifications to that object:

1. Set the name to Country.

2. Set the width to 102 and height to 22.

3. Set the location to 69, 91.

4. Set the menu items text to at least five countries. I listed countries I have
been to, but you can use anything, such as Australia, Canada, China, India,
Russia, Singapore, South Korea, and the United States.

5. Edit the code so that it matches the following:
 on menuPick pItemName
 global theCountry
 put pItemName into theCountry
 end menuPick

This code simply takes the user's choice and puts the value into the global
variable theCountry.

3. Drag an Option Menu from the Tools palette onto the Option card and make the
following modifications to that object:

1. Set the name to Number.

2. Set the width to 50 and height to 22.

3. Set the location to 160, 91.

4. Set the menu items text to the following numbers: 2, 3, 4, 5, 10, and 20.

Building Menus – Menu of Menus

94

5. Edit the code so that it matches the following:

 on menuPick pItemName
 global theNumber
 put pItemName into theNumber
 end menuPick

This code simply takes the user's choice and puts the value into the global
variable theNumber.

4. Drag an Option Menu from the Tools palette onto the Option card and make the
following modifications to that object:

1. Set the name to Product.

2. Set the width to 102 and height to 22.

3. Set the location to 251, 91.

4. Set the menu items text to Aardvark, Christmas tree, Lizard,
Orchid, and Spinach.

5. Edit the code so that it matches the following:

 on menuPick pItemName
 global theObject
 put pItemName into theObject
 end menuPick

This code simply takes the user's choice and puts the value into the global
variable theObject.

5. Drag a Label field from the Tools palette onto the Option card and make the
following modifications to that label:

1. Change the name to Results.

2. Set the width to 276 and height to 92.

3. Set the location to 156, 418.

4. Change the foreground color to yellow.

5. Align the text to center.

6. Bold the text.

7. Change the text size to 14.

8. Clear the default contents.

Project 4

95

6. Drag a button from the MobGUI stack onto the Option card and make the
following modifications:

1. Change the name to Process.

2. Change the label to Process.

3. Edit the on touchEnd script so that it matches the following code:

 on touchEnd pId
 global theCountry, theNumber, theObject
 local firstChar, aan
 mobGUIUntouch the long id of me

 if theCountry is empty OR theNumber is empty OR theObject
 is empty then
 answer "Cannot compute. Check your selections."
 else
 //put char 1 of theObject into firstChar
 if char 1 of theObject is among the characters of
 "aeiou" then
 put "an" into aan
 else
 put "a" into aan
 end if

 put "You will have a very happy life with your
 parents, spouse, and " \\
 & theNumber & " children living on " & aan & space &
 theObject \\
 & " farm in " & theCountry & "." into fld "Results"
 end if
 end touchEnd

As you review our Process button's code, you will see that we are accomplishing
three things:

1. First, we check to make sure that the user has selected a country, a number, and an
object. If they failed to make one selection in each category, we display a pop up and
urge them to check their selections.

2. Next, we check to see if the first letter of value in the variable theObject is a
vowel. If it is a vowel, we put "an" into the variable aan; otherwise we put "a"
into that variable.

3. Lastly, we output the results to the user.

Building Menus – Menu of Menus

96

The last thing we need to do is to add code to the card that clears the on-screen results and
global variables each time the card is viewed. Here is that code:

on preOpenCard
 global theCountry, theNumber, theObject

 put empty into theCountry
 put empty into theNumber
 put empty into theObject
 put empty into fld "Results"
end preOpenCard

As you can see by reviewing the preceding code, we start by declaring the three global
variables (theCountry, theNumber, and theObject). Next, we put empty into all
three of those variables. The last thing our code does is to clear the Results field.

Objective Complete - Misson Debriefing
Having followed the seven steps in this section, you should have the Option card completely
designed and programmed so that it serves as a good example of how to use option menus
for mobile applications developed using LiveCode. Your application should look similar to the
following screenshot:

Project 4

97

Creating a combobox menu interface
In this section, we will create a pop-up menu interface on our Combo card. Combo menus
allow the user to select a menu choice already listed or enter their own selection via
the keyboard.

Engage Thrusters
We'll work through four steps to accomplish our task.

1. Drag a Label field from the Tools palette onto the Combo card and make the
following modifications to that field:

1. Set the width to 202 and height to 21.

2. Set the location to 117, 88.

3. Change the foreground color to white.

4. Align the text to left.

5. Bold the text.

6. Change the text size to 14.

7. Change the contents to Select your favorite fruit.

2. Drag a Label field from the Tools palette onto the Combo card and make the
following modifications to that label:

1. Change the name to Results.

2. Set the width to 276 and height to 68.

3. Set the location to 156, 406.

4. Change the foreground color to yellow.

5. Align the text to center.

6. Bold the text.

7. Change the text size to 14.

8. Clear the default contents.

3. Drag an Option Menu from the Tools palette onto the Combo card and make the
following modifications to that object:

1. Set the name to Combo.

2. Set the width to 190 and height to 22.

3. Set the location to 155, 139.

Building Menus – Menu of Menus

98

4. Set the menu items text to Apples, Bananas, Coconut, Orange,
and Watermelon.

5. Edit the code so that it matches the following:

 on menuPick pItemName
 set the text of fld "Results" to pItemName
 end menuPick

 on returnInField
 set the text of fld "Results" to the label of me
end returnInField

With the on menuPick script, we capture any of the combobox menu options
prepopulated and put the results in the Results field. With the second script,
on returnInField, we capture anything the user types in when they hit the
return key.

4. The last thing we need to do is to add code to the card that clears the on-screen
results each time the card is viewed. Here is that code:

on preOpenCard
 put empty into fld "Results"
end preOpenCard

As you can see by reviewing the preceding code, we simply clear the Results field.

Objective Complete - Mission Debriefing
Having followed the four steps in this section, you should have the Combo card completely
designed and programmed so that it serves as a good example of how to use combo menus
for mobile applications developed using LiveCode. Your application should look similar to the
following screenshot:

Project 4

99

Creating a pop-up menu interface
In this section, we will create a pop-up menu interface on our Pop card. Pop-up menus are
a nice menu interface that allows you to conserve precious screen real estate. When a user
selects a pop-up menu, the menu choices appear in a popped-up interface.

Engage Thrusters
1. Drag a Label field from the Tools palette onto the Pop card and make the following

modifications to that label:

1. Change the name to Results.

2. Set the width to 276 and height to 68.

3. Set the location to 156, 406.

4. Change the foreground color to yellow.

5. Align the text to center.

Building Menus – Menu of Menus

100

6. Bold the text.

7. Change the text size to 14.

8. Clear the default contents.

2. Drag a Pop-Up Menu from the Tools palette onto the Pop card and make the
following modifications to that object:

1. Set the width to 222 and height to 22.

2. Set the location to 155, 209.

3. Set the menu items text to the 50 U.S States. You can find a file with
the 50 states alphabetically listed in the Chapter 4 folder for this book,
located on the www.packtpub.com site.

4. Edit the code so that it matches the following:

 on menuPick pItemName
 set the text of fld "Results" to pItemName
 end menuPick

With the on menuPick script, we capture the selection made by the user
and put the results in the Results field.

3. The last thing we need to do is to add code to the card that clears the on-screen
results each time the card is viewed. Here is that code:

on preOpenCard
 put empty into fld "Results"
end preOpenCard

As you can see by reviewing the preceding code, we simply clear the Results field.

Objective Complete - Mission Debriefing
Having followed the four steps in this section, you should have the Pop card completely
designed and programmed so that it serves as a good example of how to use pop-up menus
for mobile applications developed using LiveCode. Your application should look similar to the
following screenshot:

Project 4

101

Creating a tab menu interface
In this section, we will create a tab menu interface on our Tab card. Tab menus offer an
excellent way of organizing information groups without having to switch between cards.
In two steps, we will create a simple tab menu interface that has four tabs, one for
each season.

Engage Thrusters
1. Drag a Tab Panel menu from the Tools palette and place it onto the Tab card. Make

the following configuration changes to the object:

1. Change the name to Tabs.

2. Set the width to 280 and height to 144.

3. Set the location to 158, 150.

4. Set the background color to white.

5. Change the tabs in the basic properties of the properties inspector to
Spring, Summer, Autumn, and Winter.

6. Set the showName to True by checking the Display Name checkbox in the
properties inspector.

Building Menus – Menu of Menus

102

2. Add the following code to the Tabs panel menu object:

on menuPick pItemName
 switch pItemName
 case "Spring"
 set the label of me to "Longer Days" & return & \
 "Plant Growth" & return & "Unstable Weather" & \
 return & "Groundhog Day"
 break
 case "Summer"
 set the label of me to "Sunny" & return & "Picnics" & \
 return & "Vacation" & return & "Swimming" & \
 return & "Ice Tea"
 break
 case "Autumn"
 set the label of me to "Foliage Splendor" & return & \
 "Earlier Nights" & return & "September Equinox" & \
 return & "Thanksgiving"
 break
 case "Winter"
 set the label of me to "Coldest" & return & "Snow" & \
 return & "Ice" & "Freezing" & return & "Snowmen" &
\
 return & "Santa Claus"
 break
 end switch
end menuPick

Our source code uses a simple switch statement to change the text of the label
based on which tab is selected.

Objective Complete - Mission Debriefing
Having followed the two steps in this section, you should have the Tab card completely
designed and programmed so that it serves as a simple example of how to use tab panel
menus for mobile applications developed using LiveCode. Your application should look
similar to the following screenshot:

Project 4

103

Creating a picker menu interface
In this section, we will create a picker menu interface on our Picker card. We will create
a picker with three columns: the first and third for numbers, and the middle column for
mathematical operators.

Engage Thrusters
There are no user interface objects required to instantiate a picker menu for mobile devices.
We can accomplish this programmatically. Here is the source code required for the
Picker card.

on openCard
 local t1, t2, t3

 put "1" & return & "2" & return & "3" & return & \
 "4" & return & "5" & return & "6" into t1
 put "*" & return & "+" & return & "-" into t2
 put "1" & return & "2" & return & "3" & return & \
 "4" & return & "5" & return & "6" into t3

Building Menus – Menu of Menus

104

 mobilePick t1, 3, t2, 2, t3, 3
 --
 put char 1 of the result into t1
 put char 3 of the result into t2
 put char 5 of the result into t3
 --
 if t2 is 1 then
 answer t1 & " * " & t3 & " = " & (t1 * t3) with "Okay"
 else if t2 is 2 then
 answer t1 & " + " & t3 & " = " & (t1 + t3) with "Okay"
 else
 answer t1 & " - " & t3 & " = " & (t1 - t3) with "Okay"
 end if
end openCard

Our source code has four basic areas. The first area is where we declare three local variables.
The first variable (t1) is for the first number / number set; the second variable (t2) is for the
mathematical operator; and the third variable (t3) is for the second number / number set.

The second section of source code populates the three columns of the picker menu. The
first and third columns will have the numbers 1, 2, 3, 4, 5, and 6. The middle column will
contain the following mathematical operator symbols: multiplication (*), addition (+), and
subtraction (-). At the end of this section, a call is made to the mobilePick command.
This is what instantiates the picker on mobile devices. The mobilePick command takes
parameters in pairs, starting with the values and followed by the initial placeholder for
that column. So, we have the first column identified as t1 with item 3 being displayed,
the second column as t2 with the second data item being displayed, and t3 for the
third column with the third item in that list being highlighted initially.

The next section of the code puts the output into local variables (t1, t2, and t3).

The final section uses an if…else branch to determine how to calculate the formula.
The answer is provided in the form of a pop-up window.

Project 4

105

Objective Complete-Mission Debriefing
This was a relatively straightforward user interface that can be created 100 percent via code.
The picker menu interface is considered to be very user-friendly, so you should consider
using it whenever it makes sense. The completed Picker card and functionality can be
demonstrated by review of the following screenshots:

Creating a drop-down menu interface
In this section, we will create a drop-down menu interface on our Drop card. We will use the
Menu Builder that is available via the Tools menu item.

Building Menus – Menu of Menus

106

Engage Thrusters
Next, we'll follow the seven steps detailed on the following pages in order to complete
this task.

1. Navigate to the Drop card.

2. Select Menu Builder from the drop-down Tools menu in the main LiveCode menu
system. You should see the Menu Builder main dialog window as shown in the
following screenshot:

Project 4

107

3. From the Menu Builder dialog window, select New and make the following entries
on the pop-up form and change the Menus to Day, Month, and Year.

4. Using the Menu Builder dialog window, add menu items (Monday, Tuesday,
Wednesday, Thursday, and Friday) to the Day menu. Refer to the following
screenshot for details:

Building Menus – Menu of Menus

108

5. Enter menu items for the Month Menu. Enter all 12 months sequentially. Refer to
the following screenshot for details:

6. Enter menu items for the Year Menu. Enter Before 1970, 1970s, 1980s, 1990s,
2000s, and After 2010.

7. Test the app in the simulator. As you can see from the following screenshot, using
LiveCode's Menu Builder can be somewhat problematic:

Objective Complete - Mission Debriefing
We completed our objective by using LiveCode's embedded Menu Builder. It became
apparent that using drop-down menus is usually not appropriate for mobile devices. The
Menu Builder is a powerful utility for creating drop-down menus. Unfortunately, it is not
fully compatible with mobile devices.

Project 4

109

Mission Accomplished
In this project, we developed a Menu of Menus mobile application using LiveCode. Our
application featured the following menu types: Swipe List, Pull-Down, Option, Combo Box,
Pop-Up, Tab, Picker, and Drop-Down. We made extensive use of the MobGUI LiveCode
plugin to save time and help ensure our app had a familiar user interface schema.

The following screenshot shows the final project running in a simulator:

A Hotshot Challenge
For this Hotshot challenge, perform the following actions:

 f On card 1 (Swipe), change the Drop-Down Menu label to Hotshot Challenge

 f On Card 8 (Drop-Down), change the card so that it contains two or more menu
types that work together in a creative and useful way

Good luck!

Project 5
Creating How Smart
Am I? – A Quiz Game

Games are a very popular mobile application genre. Quizzes are a common technique
used by educators and trainers to introduce materials and concepts to users and assess
their knowledge. The gaming concept in a quiz game is that there are winning and losing
conditions. LiveCode makes creating a quiz game for mobile devices relatively easy.

Mission Briefing
In this project, we will build a mobile application called How Smart Am I?. We'll use a single
stack with six cards. The first card will be our main interface and each of the remaining cards
will feature a different question format: true or false, multiple choice, sequencing, short
answer, and picture-based. For each question card, we will create a question and answer
data structure, display the questions, get and evaluate user answers, and provide feedback
regarding the correct or incorrect nature of the user's answer.

We will use a landscape orientation for this application.

Creating How Smart Am I? – A Quiz Game

112

Here is an interface mockup of what the mobile app that we will build in this project will
look like:

Why Is It Awesome?
The skills you learn while working on this project will help you design and develop your own
mobile quiz app. More importantly, you will learn how to handle data and user input using
LiveCode. These skills will help you develop a vast array of mobile applications that require
data to be manipulated, evaluated, and otherwise processed.

Why is this a game? Quiz games might not have flashy animations and characters that
interact with the user, but they are indeed games. Quiz games are an important type of
mobile application and are in great demand.

Your Hotshot Objectives
To complete the How Smart Am I? project, we'll accomplish the following tasks:

 f Creating the main stack

 f Creating a true/false question card

 f Creating a multiple choice question card

 f Creating a sequencing question card

 f Creating a short-answer question card

 f Creating a picture question card

 f Adding navigational scripting

 f Adding scoring

Project 5

113

Mission Checklist
You do not need plugins or additional software for LiveCode in order to accomplish this
mission. You're all set, so let's get started.

Creating the main stack
Our first task is to create the main stack for our How Smart Am I? application. There will be
six cards in our stack. As we create the main stack, refer to the interface mockup so you have
a clear picture of what we are doing.

Engage Thrusters
1. Let's begin by creating a new main stack named HowSmart. Using the properties

inspector, make the following customizations to the main stack:

1. Change the size of the stack to 480 x 320 pixels. This will give us a
landscape orientation.

2. Set the name of the stack to HowSmart.

3. Set the title of the stack to How Smart Am I?.

4. Set the background color to black.

2. Rename the default card to Main.

3. Drag a Label field onto the Main card and make the following customizations using
the properties inspector:

1. Set the width to 470 and the height to 36.

2. Set the location to 239, 22.

3. Set the name of the field to Title.

4. Set the text size to 24.

5. Center the text.

6. Change the contents to How Smart Am I?.

7. Set the foreground color to white.

In the next six steps, we will create the six icons, one for each question type.

Creating How Smart Am I? – A Quiz Game

114

4. Drag a Rectangle Button onto the default card and make the following
enhancements:

1. Change the size of the button to 64 x 64 pixels.

2. Set the location to 76, 102.

3. Set the name of the button to true-false.

4. Set the label of the button to True\nFalse.

When you use the \n escape sequence, it causes the remaining
text to start on a new line.

5. Drag a square button onto the default card and make the following enhancements:

1. Change the size of the button to 64 x 64 pixels.

2. Set the location to 238, 102.

3. Set the name of the button to m-choice.

4. Set the label of the button to Multiple\nChoice.

6. Drag a square button onto the default card and make the following enhancements:

1. Change the size of the button to 64 x 64 pixels.

2. Set the location to 400, 102.

3. Set the name of the button to sequence.

4. Set the label of the button to Sequence.

7. Drag a square button onto the default card and make the following enhancements:

1. Change the size of the button to 64 x 64 pixels.

2. Set the location to 76, 190.

3. Set the name of the button to short-answer.

4. Set the label of the button to Short\nAnswer.

8. Drag a square button onto the default card and make the following enhancements:

1. Change the size of the button to 64 x 64 pixels.

2. Set the location to 238, 190.

3. Set the name of the button to pictures.

4. Set the label of the button to Using\nPictures.

Project 5

115

9. Drag a square button onto the default card and make the following enhancements:

1. Change the size of the button to 64 x 64 pixels.

2. Set the location to 400, 190.

3. Set the name of the button to challenge.

4. Set the label of the button to Hotshot\nChallenge.

So far, your interface should look like the following screenshot:

Next, let's continue building our main interface by adding the remaining three
elements: the Reset button, progress indicators, and the grade label.

10. Drag a Rectangle Button onto the card and make the following modifications:

1. Set the location to 55, 291.

2. Set the name of the button to Reset.

3. Set the label of the button to Reset.

11. Drag a Label field onto the card and make the following modifications:

1. Set the location to 410, 291.

2. Set the width to 100 and the height to 37.

3. Set the name of the field to Score.

4. Set the show focus border to false by deselecting it in the
properties inspector.

Creating How Smart Am I? – A Quiz Game

116

5. Set the foreground color to white.

6. Set the text size to 24.

12. Draw five oval graphics on the card with the following specifications:

1. Set Opaque to true.

2. Set the size to 28 x 28.

3. Set the foreground color to white.

4. Set the names to progress1, progress2, progress3, progress4,
and progress5.

5. Set the location of graphic progress1 to 174, 291.

6. Set the location of graphic progress2 to 212, 291.

7. Set the location of graphic progress3 to 249, 291.

8. Set the location of graphic progress4 to 287, 291.

9. Set the location of graphic progress5 to 324, 291.

Objective Complete - Mini Debriefing
After completing the 12 steps in this section, your interface should look like the following
screenshot. There are three main areas of our interface. First, is the header that only
contains one label field. The second area contains six 64 x 64 buttons, each will open
a new card. The last area is the footer, which contains three components: the Reset
button, five progress graphics, and a label field to display the score.

Project 5

117

Classified Intel
The 12 steps in this task included creating six buttons that were very similar to each other.
The only differences were the name, label, and location. There are also five identical oval
graphics, identical in everyway except for name and location. In both these cases, there is
great efficiency to be had in creating the first object in each group (buttons and graphics),
replicating each one, and then making the necessary customizations.

Creating a true/false question card
In this section, we will create a new card for true/false questions. It will consist of a title
label, question area, two buttons, and a position indicator.

Engage Thrusters
1. Create a new card and name it TF.

2. Copy the Title field from the Main card and paste it onto the new TF card. This will
ensure the title field has a consistent format and location.

3. Drag a Rectangle Button onto the card and make the following modifications:

1. Change the name to True.

2. Change the display name to True.

3. Set the size to 148 x 36.

4. Set the location to 136, 214.

5. Change the text size to 18.

4. Drag a Rectangle Button onto the card and make the following modifications:

1. Change the name to False.

2. Change the display name to False.

3. Set the size to 148 x 36.

4. Set the location to 346, 214.

5. Change the text size to 18.

Creating How Smart Am I? – A Quiz Game

118

5. Drag a new Label field onto the bottom of the card and make the following
modifications:

1. Name the field Progress.

2. Set the size to 436 x 32.

3. Set the location to 242, 294.

4. Change the text size to 18.

5. Change the text alignment to center.

6. Change the foreground color to white.

Now that our user interface for the true/false questions is completed (as shown in
the following screenshot), we can move on to programming the functionality of
this card:

6. Add the following code in the TF card's script:
on preOpenCard
 global gNbr, gArray

 # Section 1
 put 1 into qNbr
 put empty into qText
 put empty into qAnswer
 # Section 2
 put "" into fld "Question"
 put "" into fld "Progress"
 # Section 3
 put "All houses have basements." into qArray["1"]["question"]

Project 5

119

 put "F" into qArray["1"]["answer"]
 put "This simply is not true." into qArray["1"]["feedback"]
 --
 put "Dogs eat grapes." into qArray["2"]["question"]
 put "F" into qArray["2"]["answer"]
 put "Actually, grapes are bad for dogs." into qArray["2"]
["feedback"]
 --
 put "Ink can be used for writing." into qArray["3"]["question"]
 put "T" into qArray["3"]["answer"]
 put "Inks are commonly used in pens for writing." into
qArray["3"]["feedback"]
end preOpenCard

This code declares two variables, one each for the question number (qNbr) and the
question array (qArray). The rest of the code is divided into sections, each with a #
Section number comment line preceding its code.

In section 1 after declaring the variables, our code resets qNbr to 1 and puts empty
into qText and qAnswer.

In section 2 the second section of code clears out the Question and Progress
label fields.

In section 3 of our code, we are putting our three true/false questions into an array
called qArray.

7. Now, we can program the card to display the first question. Add the following code
to the TF card:
on openCard
 global qNbr, qArray

 put qArray[qNbr]["question"] into fld "Question"
 put "Question " & qNbr & " of 3" into fld "Progress"
end openCard

This code pulls the first question from the qArray array and updates both the
Question and Progress fields.

8. Add the following code to the True button's script:
on mouseUp
 global qNbr, qText, qAnswer, qArray

 # Section 1
 if qArray[qNbr]["answer"] is "T" then
 if qNbr < 3 then
 answer "Very Good." with "Next" titled "Correct"

Creating How Smart Am I? – A Quiz Game

120

 else
 answer "Very Good." with "Okay" titled "Correct"
 end if
 else
 if qNbr < 3 then
 answer qArray[qNbr]["feedback"] with "Next" titled "Wrong
Answer"
 else
 answer qArray[qNbr]["feedback"] with "Okay" titled "Wrong
Answer"
 end if
 end if

 # Section 2
 if qNbr < 3 then
 add 1 to qNbr
 nextQuestion
 else
 go to card "Main"
 end if

end mouseUp

In section 1 of this code, you can see that we first evaluate if the question's answer
is T (true). We know that there are only three questions, so we will either present
the user with a Next or Okay button, as appropriate. When we provide results to
the user, we either tell them Very Good or provide feedback from qArray.

9. Next, we need to script the False button. You should copy the code from the True
button and then modify it to match the following code:
on mouseUp
 global qNbr, qText, qAnswer, qArray

 # Section 1
 if qArray[qNbr]["answer"] is "F" then
 if qNbr < 3 then
 answer "Very Good." with "Next" titled "Correct"
 else
 answer "Very Good." with "Okay" titled "Correct"
 end if
 else

Project 5

121

 if qNbr < 3 then
 answer qArray[qNbr]["feedback"] with "Next" titled "Wrong
Answer"
 else
 answer qArray[qNbr]["feedback"] with "Okay" titled "Wrong
Answer"
 end if
 end if

 # Section 2
 if qNbr < 3 then
 add 1 to qNbr
 nextQuestion
 else
 go to card "Main"
 end if

end mouseUp

10. Both the True and False button scripts call a command named nextQuestion,
which we have not written yet. Let's do that now with the following code:

command nextQuestion
 global qNbr, qArray

 put qArray[qNbr]["question"] into fld "Question"
 put "Question " & qNbr & " of 3" into fld "Progress"
end nextQuestion

You might recognize this code. This is the same code we used in step 8. Instead
of duplicating the code, let's update the openCard script to simply call the
nextQuestion command. We can accomplish this with the following code:

on openCard
 nextQuestion
end openCard

Creating How Smart Am I? – A Quiz Game

122

Objective Complete - Mini Debriefing
If you followed the 10 steps in this task, you will have a fully functioning true/false
question interface. When a question is fully populated on the screen, it should look
like the following screenshot:

Creating a multiple choice question
card

In this section, we will create a new card for multiple choice questions. It will consist of a title
label, question area, four buttons, four answer choices, and a position indicator.

Engage Thrusters
1. Create a new card and name it MC.

2. Copy the Title label from the Main card and paste it onto the new MC card. This will
ensure the title label field has a consistent format and location.

3. Copy the Question label from the TF card and paste it onto the new MC card.

4. Copy the Progress label from the TF card and paste it onto the new MC card.

5. Drag a Rectangle Button onto the card and make the following modifications:

1. Change the name to b1.

2. Change the display name to A.

3. Set the size to 36 x 36.

4. Set the location to 51, 189.

5. Change the text size to 18.

Project 5

123

6. Drag a Rectangle Button onto the card and make the following modifications:

1. Change the name to b2.

2. Change the display name to B.

3. Set the size to 36 x 36.

4. Set the location to 51, 236.

5. Change the text size to 18.

7. Drag a Rectangle Button onto the card and make the following modifications:

1. Change the name to b3.

2. Change the display name to C.

3. Set the size to 36 x 36.

4. Set the location to 273, 189.

5. Change the text size to 18.

8. Drag a Rectangle Button onto the card and make the following modifications:

1. Change the name to b4.

2. Change the display name to D.

3. Set the size to 36 x 36.

4. Set the location to 273, 236.

5. Change the text size to 18.

9. Drag a Label field onto the card and make the following modifications:

1. Change the name to b1.

2. Set the size to 182 x 42.

3. Set the location to 161, 189.

4. Change the text size to 14.

5. Left-align the text.

10. Drag a Label field onto the card and make the following modifications:

1. Change the name to b2.

2. Set the size to 182 x 42.

3. Set the location to 161, 237.

4. Change the text size to 14.

5. Left-align the text.

Creating How Smart Am I? – A Quiz Game

124

11. Drag a Label field onto the card and make the following modifications:

1. Change the name to b3.

2. Set the size to 182 x 42.

3. Set the location to 383, 189.

4. Change the text size to 14.

5. Left-align the text.

12. Drag a Label field onto the card and make the following modifications:

1. Change the name to b4.

2. Set the size to 182 x 42.

3. Set the location to 383, 237.

4. Change the text size to 14.

5. Left-align the text.

While using multiple choice question sets, users will want to be
able to click on the button and the text, so your user interface
should take that into consideration.

13. Let's next code the four label fields that will hold the answers to each question.
We merely want to pass the "mouseUp" message to the corresponding button.
Place the following code into each of the four label fields:
on mouseUp
 send "mouseUp" to btn(short name of me)
end mouseUp

We are able to use the exact same code for each of the four label fields because we
gave the labels the same names as their corresponding buttons. LiveCode knows the
difference between a label named b1 and a button named b1.

14. Add the following code to the MC card's script:
on preOpenCard
 global qNbr, qArray

 # Section 1
 put 1 into qNbr
 # Section 2
 put "" into fld "Question"
 put "" into fld "b1"
 put "" into fld "b2"
 put "" into fld "b3"

Project 5

125

 put "" into fld "b4"
 put "" into fld "Progress"
 # Section 3
 put "Which is not an automotive manufacturer?" into qArray["1"]
["question"]
 put "b4" into qArray["1"]["correct"]
 put "Ford" into qArray["1"]["answer1"]
 put "Audi" into qArray["1"]["answer2"]
 put "Chevy" into qArray["1"]["answer3"]
 put "Kiap" into qArray["1"]["answer4"]
 --
 put "Which is the smallest dog breed?" into qArray["2"]
["question"]
 put "b1" into qArray["2"]["correct"]
 put "Corgi" into qArray["2"]["answer1"]
 put "Husky" into qArray["2"]["answer2"]
 put "Shar Pei" into qArray["2"]["answer3"]
 put "Irish Setter" into qArray["2"]["answer4"]
 --
 put "Which U.S. state is the furthest south?" into qArray["3"]
["question"]
 put "b2" into qArray["3"]["correct"]
 put "Washington" into qArray["3"]["answer1"]
 put "Texas" into qArray["3"]["answer2"]
 put "New York" into qArray["3"]["answer3"]
 put "Connecticut" into qArray["3"]["answer4"]
end preOpenCard

This code is similar to what we used for the TC card. The difference here is the
structure of the question set array. We now have a question, correct answer code,
and four answers in each row of data. We will use b1, b2, b3, and b4 for correct
answer codes, since those are also the names of our buttons.

15. Next, we need to write our code so that we can sequence between questions. Here
is the code to accomplish that:
on openCard
 nextQuestion
end openCard

command nextQuestion
 global qNbr, qArray

 put qArray[qNbr]["question"] into fld "Question"
 put qArray[qNbr]["answer1"] into fld "b1"
 put qArray[qNbr]["answer2"] into fld "b2"

Creating How Smart Am I? – A Quiz Game

126

 put qArray[qNbr]["answer3"] into fld "b3"
 put qArray[qNbr]["answer4"] into fld "b4"
 put "Question " & qNbr & " of 3" into fld "Progress"
end nextQuestion

As you can see, we simply modified the nextQuestion code from the TF card to
reflect the new question set data structure.

16. The next thing for us to do is to add code so that we can evaluate our user's
answers. We will accomplish this by writing an evaluateMC command.
Put the following code at the card level:
command evaluateMC theGuess
 global qNbr, qArray

 # Section 1
 if qArray[qNbr]["correct"] is theGuess then
 if qNbr < 3 then
 answer "Very Good." with "Next" titled "Correct"
 else
 answer "Very Good." with "Okay" titled "Correct"
 end if
 else
 if qNbr < 3 then
 answer "That is not correct" with "Next" titled "Wrong
Answer"
 else
 answer "That is not correct" with "Okay" titled "Wrong
Answer"
 end if
 end if

 # Section 2
 if qNbr < 3 then
 add 1 to qNbr
 nextQuestion
 else
 go to card "Main"
 end if
end evaluateMC

Again, you can see that this code is a slight modification of the code we used for
the True and False buttons on the TF card. We made a few minor modifications
and excluded specific feedback.

Project 5

127

17. The last thing for us to do is to attach code to each of the four buttons (b1, b2, b3,
and b4) so we can evaluate our users' answers. We will add the following code to
pass the selected button's short name to the evaluateMC command we created
in the previous step. Add the following code to each of the four buttons:

on mouseUp
 evaluateMC(the short name of me)
end mouseUp

Objective Complete - Mini Debriefing
If you have followed the 17 steps in this task, you will have a fully functioning true/false
question interface. When a question is fully populated on the screen, it should look like
the following screenshot:

Creating a sequencing question card
In this section, we will create a new card for multiple choice questions. It will consist of a title
label, question area, four buttons, four answer choices, and a position indicator.

Engage Thrusters
1. Create a new card and name it Sequencing.

2. Copy the Title label from the Main card and paste it onto the new Sequencing card.
This will ensure the Title label field has a consistent format and location.

3. Copy the Question label from the MC card and paste it onto the new
Sequencing card.

Creating How Smart Am I? – A Quiz Game

128

4. Copy the Progress label from the MC card and paste it onto the new
Sequencing card.

5. Change the contents of the label field Questions to Drag the numbers over
the steps below to show proper sequence. For the sequencing question
type, we will have one persistent question text for all three sequencing questions.
Change the size to 436 x 56 and the location to 240, 24.

6. Draw a rectangular graphic on the card with the following characteristics:

1. Change the name to rect1.

2. Set the line size under Border to 2.

3. Set the foreground color to yellow.

4. Set the background color to gray.

5. Set Opaque to true.

6. Set the size to 108 x 66.

7. Set the location to 64, 181.

7. Replicate graphic rect1 and make the following modifications to the new graphic:

1. Change the name to rect2.

2. Set the location to 181, 181.

8. Replicate graphic rect1 and make the following modifications to the new graphic:

1. Change the name to rect3.

2. Set the location to 299, 181.

9. Replicate graphic rect1 and make the following modifications to the new graphic:

3. Change the name to rect4.

4. Set the location to 416, 181.

10. Drag four Label fields onto the card with the following characteristics:

1. Set the size to 100 x 58.

2. Set the text size to 14.

3. Center the text.

4. Disable the Don't Wrap feature.

5. Change the names to label1, label2, label3, and label4.

6. Set the location to 64, 181 (label1), 180, 181 (label2), 298, 181
(label3), and 418, 181 (label4).

Project 5

129

11. Select graphic rect1 and field label1. Combine the two objects into a group
named grp1.

12. Select graphic rect2 and field label2. Combine the two objects into a group
named grp2.

13. Select graphic rect3 and field label3. Combine the two objects into a group
named grp3.

14. Select graphic rect4 and field label4. Combine the two objects into a group
named grp4.

15. Drag a Rectangle Button onto the card and make the following modifications:

1. Change the name to s1.

2. Change the display name to 1.

3. Set the size to 35 x 35.

4. Set the location to 45, 263.

5. Change the text size to 18.

16. Drag a Rectangle Button onto the card and make the following modifications:

1. Change the name to s2.

2. Change the display name to 2.

3. Set the size to 35 x 35.

4. Set the location to 95, 263.

5. Change the text size to 18.

17. Drag a Rectangle Button onto the card and make the following modifications:

1. Change the name to s3.

2. Change the display name to 3.

3. Set the size to 35 x 35.

4. Set the location to 145, 263.

5. Change the text size to 18.

18. Drag a Rectangle Button onto the card and make the following modifications:

1. Change the name to s4.

2. Change the display name to 4.

3. Set the size to 35 x 35.

4. Set the location to 195, 263.

5. Change the text size to 18.

Creating How Smart Am I? – A Quiz Game

130

19. Drag a Rectangle Button onto the card and make the following modifications:

1. Change the name to Submit.

2. Change the display name to Submit.

3. Set the location to 419, 255.

20. Drag a Label field onto the card with the following specifications:

1. Change the name to category.

2. Set the foreground color to red.

3. Set the size to 458 x 31.

4. Set the location to 241, 121.

5. Change the text size to 18.

6. Bold and center the text.

21. Add the following code to buttons s1, s2, s3, and s4:
on mouseDown
 grab me
end mouseDown

This code will allow the users to move the four buttons.

22. Next, let's add our preOpenCard script:
on preOpenCard
 global qNbr, qArray

 # Section 1
 put 1 into qNbr
 # Section 2
 put "" into fld "category"
 put "" into fld "label1"
 put "" into fld "label2"
 put "" into fld "label3"
 put "" into fld "label4"
 put "" into fld "progress"
 # Section 3
 put "Driving a car" into qArray["1"]["category"]
 put "Visual Inspection" into qArray["1"]["s1"]
 put "Seat Belt" into qArray["1"]["s2"]
 put "Start Engine" into qArray["1"]["s3"]
 put "Drive" into qArray["1"]["s4"]
 --
 put "Primary Schools" into qArray["2"]["category"]

Project 5

131

 put "Kindergarten" into qArray["2"]["s1"]
 put "Elementary" into qArray["2"]["s2"]
 put "Middle School" into qArray["2"]["s3"]
 put "High School" into qArray["2"]["s4"]
 --
 put "Life Stages" into qArray["3"]["category"]
 put "Birth" into qArray["3"]["s1"]
 put "Youth" into qArray["3"]["s2"]
 put "Adult" into qArray["3"]["s3"]
 put "Elderly" into qArray["3"]["s4"]
end preOpenCard

Section 1 of the code simply sets the qNbr counter to 1. Section 2 clears the five on
screen label fields. Section 3 populates the qArray question set.

23. Our next step is to program the nextQuestion feature. Here is that code:
on openCard
 nextQuestion
end openCard

command nextQuestion
 global qNbr, qArray

 # Section 1
 put qArray[qNbr]["category"] into fld "category"
 put qArray[qNbr]["s1"] into fld "label1"
 put qArray[qNbr]["s2"] into fld "label2"
 put qArray[qNbr]["s3"] into fld "label3"
 put qArray[qNbr]["s4"] into fld "label4"
 put "Question " & qNbr & " of 3" into fld "Progress"

 # Section 2
 set the loc of btn "s1" to 45,263
 set the loc of btn "s2" to 95,263
 set the loc of btn "s3" to 145,263
 set the loc of btn "s4" to 195,263
end nextQuestion

In section 1 of this code, we load the next set of data from the array and populate
the label fields. In section 2 of this code, we are resetting the original locations of
the buttons s1, s2, s3, and s4.

Creating How Smart Am I? – A Quiz Game

132

24. Our final step is to program the Submit button so that it evaluates the order
selected by the user. Here is the code you will need to enter:

on mouseUp
 global qNbr, qArray
 local tResult

 # Section 1
 if the loc of btn "s1" is within the rect of grp "grp1" AND \
 the loc of btn "s2" is within the rect of grp "grp2" AND
\
 the loc of btn "s3" is within the rect of grp "grp3" AND
\
 the loc of btn "s4" is within the rect of grp "grp4" then
 put "correct" into tResult
 else
 put "incorrect" into tResult
 end if

 #Section 2
 switch tResult
 case "correct"
 if qNbr < 3 then
 answer "Very Good." with "Next" titled "Correct"
 else
 answer "Very Good." with "Okay" titled "Correct"
 end if
 break
 case "incorrect"
 if qNbr < 3 then
 answer "That is not correct" with "Next" titled "Wrong
Answer"
 else
 answer "That is not correct" with "Okay" titled "Wrong
Answer"
 end if
 break
 end switch

 # Section 3
 if qNbr < 3 then
 add 1 to qNbr
 nextQuestion
 else
 go to card "Main"
 end if
end mouseUp

Project 5

133

In section 1 of the code, we are evaluating to see if the sequence buttons (s1, s2, s3, and
s4) are contained within (on top of) the appropriate groups (grp1, grp2, grp3, and grp4).
Depending upon the evaluation results, we will either put correct or incorrect into
the local variable tResult.

Section 2 of our code, contains a switch statement that displays a feedback pop-up dialog to
the user with either Next or Okay, depending upon which question number the user is on.

Section 3's code routes the user either to the next question or back to the main card once
they have answered all three questions.

Objective Complete - Mini Debriefing
We successfully coded our sequencing quiz card. We used a simple interface that requires
the users to drag-and-drop four buttons to indicate the proper sequence. Mobile device
users use their fingers to interact with mobile apps, so our implementation of drag-and-drop
objects is ideally suited for this app.

Your user interface should resemble the following screenshot:

Creating How Smart Am I? – A Quiz Game

134

Creating a short-answer question
card

For this task, we will create a card to host an interface for a short-answer question. This type
of question allows the user to input their answers via the keyboard. Evaluating this type of
answer can be especially challenging, since there could be several correct answers and users
are prone to make spelling mistakes.

Engage Thrusters
1. Create a new card and name it SA.

2. Copy the Title label from the Main card and paste it onto the new SA card.
This will ensure the title label field has a consistent format and location.

3. Copy the Question label from the TF card and paste it onto the new SA card.

4. Copy the Progress label from the TF card and paste it onto the new SA card.

5. Copy the Submit button from the Sequencing card and paste it onto the new
SA card.

6. Drag a text entry field onto the card and make the following modifications:

1. Change the name to answer.

2. Set the size to 362 by 46.

3. Set the location to 237, 185.

4. Change the text size to 14.

7. We are now ready to program our interface. Enter the following code at the
card level:
on preOpenCard
 global qNbr, qArray

 # Section 1
 put 1 into qNbr
 # Section 2
 put "" into fld "question"
 put "" into fld "answer"
 put "" into fld "progress"
 # Section 3
 put "What farm animal eats shrubs, can be eaten, and are
smaller than cows?" into qArray["1"]["question"]
 put "goat" into qArray["1"]["answer"]
 --

Project 5

135

 put "What is used in pencils for writing?" into qArray["2"]
["question"]
 put "lead" into qArray["2"]["answer"]
 --
 put "What programming language are you learning" into
qArray["3"]["question"]
 put "livecode" into qArray["3"]["answer"]
end preOpenCard

In section 1 of this code, we reset the question counter (qNbr) variable to 1.

Section 2 contains the code to clear the question, answer, and progress fields.

Section 3 populates the question/answer array (qArray). As you can see, this is
the simplest array we have used. It only contains a question and answer pairing
for each row.

8. Our last step for the short answer question interface is to program the Submit
button. Here is the code for that button:

on mouseUp
 global qNbr, qArray
 local tResult

 # Section 1
 if the text of fld "answer" contains qArray[qNbr]["answer"]
then
 put "correct" into tResult
 else
 put "incorrect" into tResult
 end if

 #Section 2
 switch tResult
 case "correct"
 if qNbr < 3 then
 answer "Very Good." with "Next" titled "Correct"
 else
 answer "Very Good." with "Okay" titled "Correct"
 end if
 break
 case "incorrect"
 if qNbr < 3 then
 answer "The correct answer is: " & \
 qArray[qNbr]["answer"] & "." \
 with "Next" titled "Wrong Answer"
 else

Creating How Smart Am I? – A Quiz Game

136

 answer "The correct answer is: " & \
 qArray[qNbr]["answer"] & "." \
 with "Okay" titled "Wrong Answer"
 end if
 break
 end switch

 # Section 3
 if qNbr < 3 then
 add 1 to qNbr
 nextQuestion
 else
 go to card "Main"
 end if
end mouseUp

Our Submit button script is divided into three sections. The first section (section 1) checks
to see if the answer contained in the array (qArray) is part of the answer the user entered.
This is a simple string comparison and is not case sensitive.

Section 2 of this button's code contains a switch statement based on the local variable
tResult. Here, we provide the user with the actual answer if they do not get it right on
their own.

The final section (section 3) navigates to the next question or to the main card, depending
upon which question set the user is on.

Objective Complete - Mini Debriefing
We have successfully coded our short answer quiz card. Our approach was to use a simple
question and data input design with a Submit button.

Project 5

137

Your user interface should resemble the following screenshot:

Creating a picture question card
Using pictures as part of a quiz, poll, or other interface can be fun for the user. It might also
be more appropriate than simply using text. Let's create a card that uses pictures as part of
a quiz.

Engage Thrusters
1. Create a new card and name it Pictures.

2. Copy the Title label from the Main card and paste it onto the new Pictures card.
This will ensure the title label field has a consistent format and location.

3. Copy the Question label from the TF card and paste it onto the new Pictures card.

4. Copy the Progress label from the TF card and paste it onto the new Pictures card.

5. Drag a Rectangle Button onto the card and make the following customizations:

1. Change the name to picture1.

2. Set the size to 120 x 120.

3. Set the location to 128, 196.

Creating How Smart Am I? – A Quiz Game

138

6. Drag a second Rectangle Button onto the card and make the following
customizations:

1. Change the name to picture2.

2. Set the size to 120 x 120.

3. Set the location to 336, 196.

Upload the following listed files into your mobile application's Image Library. This
LiveCode function is available by selecting the Development pull-down menu, then
selecting Image Library. Near the bottom of the Image Library dialog is an Import
File button. Once your files are uploaded, take note of the ID numbers assigned
by LiveCode:

 � q1a1.png

 � q1a2.png

 � q2a1.png

 � q2a2.png

 � q3a1.png

 � q3a2.png

7. With our interface fully constructed, we are now ready to add LiveCode script to the
card. Here is the code you will enter at the card level:
on preOpenCard
 global qNbr, qArray

 # Section 1
 put 1 into qNbr
 set the icon of btn "picture1" to empty
 set the icon of btn "picture2" to empty

 # Section 2
 put "" into fld "question"
 put "" into fld "progress"

 # Section 3
 put "Which puppy is real?" into qArray["1"]["question"]
 put "2175" into qArray["1"]["pic1"]
 put "2176" into qArray["1"]["pic2"]
 put "q1a1" into qArray["1"]["answer"]
 --
 put "Which puppy looks bigger?" into qArray["2"]["question"]
 put "2177" into qArray["2"]["pic1"]

Project 5

139

 put "2178" into qArray["2"]["pic2"]
 put "q2a2" into qArray["2"]["answer"]
 --
 put "Which scene is likely to make her owner more upset?" into
qArray["3"]["question"]
 put "2179" into qArray["3"]["pic1"]
 put "2180" into qArray["3"]["pic2"]
 put "q3a1" into qArray["3"]["answer"]
end preOpenCard

In section 1 of this code, we set the qNbr to 1. This is our question counter. We also
ensure that there is no image visible in the two buttons. We do this by setting the
icon of the buttons to empty.

In section 2, we empty the contents of the two onscreen fields (Question
and Progress).

In the third section, we populate the question set array (qArray). Each question
has an answer that corresponds with the filename of the images you added to your
stack in the previous step. The ID numbers of the six images you uploaded are also
added to the array, so you will need to refer to your notes from step 7.

8. Our next step is to program the picture1 and picture2 buttons. Here is the code for
the picture1 button:
on mouseUp
 global qNbr, qArray

 # Section 1
 if qArray[qNbr]["answer"] contains "a1" then
 if qNbr < 3 then
 answer "Very Good." with "Next" titled "Correct"
 else
 answer "Very Good." with "Okay" titled "Correct"
 end if
 else
 if qNbr < 3 then
 answer "That is not correct." with "Next" titled "Wrong
Answer"
 else
 answer "That is not correct." with "Okay" titled "Wrong
Answer"
 end if
 end if

 # Section 2
 if qNbr < 3 then

Creating How Smart Am I? – A Quiz Game

140

 add 1 to qNbr
 nextQuestion
 else
 go to card "Main"
 end if

end mouseUp

In section 1 of our code, we check to see if the answer from the array contains
a1, which indicates that the picture on the left is the correct answer. Based on the
answer evaluation, one of two text feedbacks is provided to the user. The name of
the button on the feedback dialog is either Next or Okay, depending upon which
question set the user is currently on. The second section of this code routes the user
to either the main card (if they finished all three questions) or to the next question.

9. Copy the code you entered in the picture1 button and paste it onto the picture2
button. Only one piece of code needs to change. On the first line of the section 1
code, change the string from a1 to a2. That line of code should be as follows:

 if qArray[qNbr]["answer"] contains "a2" then

Objective Complete - Mini Debriefing
In just 9 easy steps, we created a picture-based question type that uses images we uploaded
to our stack's image library and a question set array. Your final interface should look similar
to the following screenshot:

Project 5

141

Adding navigational scripting
In this task, we will add scripts to the interface buttons on the Main card.

Engage Thrusters
1. Navigate to the Main card.

2. Add the following script to the true-false button:
on mouseUp
 set the disabled of me to true
 go to card "TF"
end mouseUp

3. Add the following script to the m-choice button:
on mouseUp
 set the disabled of me to true
 go to card "MC"
end mouseUp

4. Add the following script to the sequence button:
on mouseUp
 set the disabled of me to true
 go to card "Sequencing"
end mouseUp

5. Add the following script to the short-answer button:
on mouseUp
 set the disabled of me to true
 go to card "SA"
end mouseUp

6. Add the following script to the pictures button:
on mouseUp
 set the disabled of me to true
 go to card "Pictures"
end mouseUp

Creating How Smart Am I? – A Quiz Game

142

7. The last step in this task is to program the Reset button. Here is the code for
that button:

on mouseUp
 global theScore, totalQuestions, totalCorrect

 # Section 1
 set the disabled of btn "true-false" to false
 set the disabled of btn "m-choice" to false
 set the disabled of btn "sequence" to false
 set the disabled of btn "short-answer" to false
 set the disabled of btn "pictures" to false

 # Section 2
 set the backgroundColor of grc "progress1" to empty
 set the backgroundColor of grc "progress2" to empty
 set the backgroundColor of grc "progress3" to empty
 set the backgroundColor of grc "progress4" to empty
 set the backgroundColor of grc "progress5" to empty

 # Section3
 put 0 into theScore
 put 0 into totalQuestions
 put 0 into totalCorrect
 put theScore & "%" into fld "Score"
end mouseUp

There are three sections to this code. In section 1, we are enabling each of the
buttons. In the second section, we are clearing out the background color of each
of the five progress circles in the bottom-center of the screen. In the final section,
section 3, we reset the score and the score display.

Objective Complete - Mini Debriefing
That is all there was to this task, seven easy steps. There are no visible changes to the mobile
application's interface.

Project 5

143

Adding scoring
For our project's final task, we will add scoring to our mobile application. This will require us
to edit all six cards.

Engage Thrusters
1. We want to ensure that the scoring is set to zero each time the application is run.

So, we'll add the following code at the stack level:
on openStack
 global theScore, totalQuestions, totalCorrect

 put 0 into theScore
 put 0 into totalQuestions
 put 0 into totalCorrect
end openStack

2. Each time the user is taken back to the Main card, we want to recalculate the score.
Here is the code to accomplish that. Put this code at the card level on the Main card:
on openCard
 global theScore, totalQuestions, totalCorrect

 put totalCorrect / totalQuestions into theScore
 put theScore * 100 into theScore
 put format("%2d", theScore) & "%" into fld "Score"
end openCard

Next, we want to track scores for each question type. We will make similar scripting
edits and additions to each of the question type cards. To ensure we do not make
any errors, we will have one step for each question type.

3. Perform the following operations on the TF card:

1. Add global tQ, tC to the on preOpenCard script. The tQ variable
will hold the total number of questions for this question type. The tC
variable will hold the total number of correctly answered questions
for this question type.

2. Add the following lines of code to section 1 of the on preOpenCard script:
 put 0 into tQ
 put 0 into tC

Creating How Smart Am I? – A Quiz Game

144

3. Add global tQ, tC to the on mouseUp script of the True button.

4. Edit section 1 of the on mouseUp script of the True button.
Section 1
 add 1 to tQ
 if qArray[qNbr]["answer"] is "T" then
 if qNbr < 3 then
 answer "Very Good." with "Next" titled "Correct"
 else
 answer "Very Good." with "Okay" titled "Correct"
 end if
 add 1 to tC
 else
 if qNbr < 3 then
 answer qArray[qNbr]["feedback"] with "Next" titled
"Wrong Answer"
 else
 answer qArray[qNbr]["feedback"] with "Okay" titled
"Wrong Answer"
 end if
 end if

In section 1, we merely added two lines, one each to increment the tQ and
tC variables.

5. Add global tQ, tC to the on mouseUp script of the False button.

6. Edit section 1 of the on mouseUp script of the False button.
Section 1
 add 1 to tQ
 if qArray[qNbr]["answer"] is "F" then
 if qNbr < 3 then
 answer "Very Good." with "Next" titled "Correct"
 else
 answer "Very Good." with "Okay" titled "Correct"
 end if
 add 1 to tC
 else
 if qNbr < 3 then
 answer qArray[qNbr]["feedback"] with "Next" titled
"Wrong Answer"
 else
 answer qArray[qNbr]["feedback"] with "Okay" titled
"Wrong Answer"
 end if
 end if

Project 5

145

In section 1, we merely added two lines, one each to increment the tQ and
tC variables.

7. Next, we will create a score calculation by adding the following code at the
stack level:

command exitOperations theProgressBar
 global theScore, totalQuestions, totalCorrect
 global tQ, tC

 # Section 1
 put totalQuestions + tQ into totalQuestions
 put totalCorrect + tC into totalCorrect

 # Section 2
 if (tC / tQ) > .69 then
 set the backgroundColor of grc theProgressBar on card
"Main" to green
 else
 set the backgroundColor of grc theProgressBar on card
"Main" to red
 end if

 # Section 3
 go to card "Main"
end exitOperations

In section 1 of this code, we add the questions and correct answers to the
global variables. In section 2, we first calculate how the player scored with
the questions presented on this card. If the player scored 70 percent or
better, the corresponding progress indicator on the Main card will be filled
in (using the foreground color) with green; otherwise, the fill color will
be red.

Our next step is to make calls to the exitOperations code. We will do
this by replacing the go to card "Main" code in both the True and
False button scripts with exitOperations("Progress1").

4. Perform the following operations on the MC card:

1. Add global tQ, tC to the on preOpenCard script.

2. Add the following lines of code to section 1 of the on preOpenCard script:
 put 0 into tQ
 put 0 into tC

3. Add global tQ, tC to the evaluateMC script.

Creating How Smart Am I? – A Quiz Game

146

4. Edit section 1 of the on mouseUp script of the evaluateMC script.
 # Section 1
 add 1 to tQ
 if qArray[qNbr]["correct"] is theGuess then
 if qNbr < 3 then
 answer "Very Good." with "Next" titled "Correct"
 else
 answer "Very Good." with "Okay" titled "Correct"
 end if
 add 1 to tC
 else
 if qNbr < 3 then
 answer "That is not correct" with "Next" titled
"Wrong Answer"
 else
 answer "That is not correct" with "Okay" titled
"Wrong Answer"
 end if
 end if

Our next step is to make calls to the exitOperations code. We will
do this by replacing the go to card "Main" code in section 2 of the
evaluateMC script with exitOperations("Progress2").

5. Perform the following operations on the Sequencing card:

1. Add global tQ, tC to the on preOpenCard script.

2. Add the following lines of code to section 1 of the on preOpenCard script:
 put 0 into tQ
 put 0 into tC

3. Add global tQ, tC to the on mouseUp script of the Submit button.

4. Edit section 1 of the on mouseUp script of the Submit button.
 # Section 1
 add 1 to tQ
 if the loc of btn "s1" is within the rect of grp "grp1"
AND \
 the loc of btn "s2" is within the rect of grp
"grp2" AND \
 the loc of btn "s3" is within the rect of grp
"grp3" AND \
 the loc of btn "s4" is within the rect of grp
"grp4" then

Project 5

147

 put "correct" into tResult
 add 1 to tC
 else
 put "incorrect" into tResult
 end if

Our next step is to make calls to the exitOperations code.
We will do this by replacing the go to card "Main" code in
section 3 of the on mouseUp script of the Submit button with
exitOperations("Progress3").

6. Perform the following operations on the SA card:

1. Add global tQ, tC to the on preOpenCard script.

2. Add the following lines of code to section 1 of the on preOpenCard script:
 put 0 into tQ
 put 0 into tC

3. Add global tQ, tC to the on mouseUp script of the Submit button.

4. Edit section 1 of the on mouseUp script of the Submit button.

Section 1
 add 1 to tQ
 if the text of fld "answer" contains qArray[qNbr]
["answer"] then
 put "correct" into tResult
 add 1 to tC
 else
 put "incorrect" into tResult
 end if

Our next step is to make calls to the exitOperations code.
We will do this by replacing the go to card "Main" code in
section 3 of the on mouseUp script of the Submit button with
exitOperations("Progress4").

7. Perform the following operations on the Pictures card:

1. Add global tQ, tC to the on preOpenCard script.

2. Add the following lines of code to section 1 of the on preOpenCard script:
 put 0 into tQ
 put 0 into tC

3. Add global tQ, tC to the on mouseUp script of the picture1 button.

Creating How Smart Am I? – A Quiz Game

148

4. Edit section 1 of the on mouseUp script of the picture1 button.
Section 1
 add 1 to tQ
 if qArray[qNbr]["answer"] contains "a1" then
 add 1 to tC
 if qNbr < 3 then
 answer "Very Good." with "Next" titled "Correct"
 else
 answer "Very Good." with "Okay" titled "Correct"
 end if
 else
 if qNbr < 3 then
 answer "That is not correct." with "Next" titled
"Wrong Answer"
 else
 answer "That is not correct." with "Okay" titled
"Wrong Answer"
 end if
 end if

5. Replace the go to card "Main" code in section 2 of the on mouseUp
script of the picture1 button with exitOperations("Progress5").

6. Add global tQ, tC to the on mouseUp script of the picture2 button.

7. Edit section 1 of the on mouseUp script of the picture2 button.
 # Section 1
 add 1 to tQ
 if qArray[qNbr]["answer"] contains "a2" then
 add 1 to tC
 if qNbr < 3 then
 answer "Very Good." with "Next" titled "Correct"
 else
 answer "Very Good." with "Okay" titled "Correct"
 end if
 else
 if qNbr < 3 then
 answer "That is not correct." with "Next" titled
"Wrong Answer"
 else
 answer "That is not correct." with "Okay" titled
"Wrong Answer"
 end if
 end if

Project 5

149

8. Replace the go to card "Main" code in section 2 of the on mouseUp
script of the picture1 button with exitOperations("Progress5").

Objective Complete - Mini Debriefing
Our scoring system is complete. Now, each section is scored separately (indicated by color)
and we have a comprehensive scoring system.

Mission Accomplished
In this project, we developed a somewhat complex How Smart Am I? mobile application that
featured five specific question types: true/false, multiple choice, sequencing, short answer,
and picture-based.

The following screenshot shows how we do the following:

 f Disable buttons once we have completed the corresponding section

 f How the color codes along the bottom indicate progress

 f How the overall score is displayed in the bottom-right corner of the screen

Creating How Smart Am I? – A Quiz Game

150

A Hotshot Challenge
For this Hotshot challenge, perform the following actions:

1. Create a Challenge card and link the Hotshot Challenge button on the Main
card to it.

2. On your new card, program a question type of your choice.

3. Ensure you update the scoring system to incorporate your new question type.

4. Finally, add a progress indicator at the bottom of the Main card and update the
appropriate functionality.

Good luck and have fun!

Project 6
Creating the Find the

Bananas Game

This project consists of designing and developing a Find the Bananas game that is based
on the classic three-shell game of chance, which is often referred to as shell game or
Thimblerig. Historically, this game is played with three shells and a pea. It is viewed by
most as a game of chance or a gambling game. In practice, the game is often employed
as a confidence trick to fraudulently take people's money. There will be no fraud in our
game, just honest fun.

Mission Briefing
Our version of the shell game will consist of three coconut halves instead of shells and a
bunch of bananas instead of a pea. Where else would you expect to find bananas but under
a coconut? The object of the game will be for the user to correctly guess which coconut half
is hiding the bananas. The game will have an endless number of rounds, each one scoring
higher than the last.

The interface will consist of a title, three game spot buttons, an information icon, a label for
the current round number, a label for points, and three banana icons which indicate how
many lives the player has remaining.

Creating the Find the Bananas Game

152

The following diagram is an interface mockup of what the mobile app that we will build in
this project will look like:

Why Is It Awesome?
By working through this project, you will gain an understanding, and hands-on experience,
of how to effectively use images in a mobile application using LiveCode. You'll also gain
experience with developing a complete game with just one LiveCode card.

This type of simplicity of design has two major purposes. First, it is likely to result in smaller
application file sizes, which should result in the application running faster. Secondly, simple
interfaces are good from a usability perspective.

Usability refers to the ability for a mobile application to be used for its intended
purpose effectively by the user. When a mobile application is intuitively
designed, it means that users can immediately start using the application
without having to refer to help or instructions.

Your Hotshot Objectives
To complete the Find the Bananas project, we'll accomplish the following tasks:

 f Creating the main stack
 f Creating the user interface
 f Importing and optimizing the images
 f Programming the game
 f Adding a scoring schema

Project 6

153

Creating the main stack
We'll start by creating the main stack for our Find the Bananas game. For this application,
we will only have one stack and a single card.

Engage Thrusters
1. Let's begin by creating a new main stack named Bananas. Using the properties

inspector, make the following customizations to the main stack:

1. Change the size of the stack to 480 x 320 pixels. This will give us a
landscape orientation.

2. Set the name of the stack to Bananas.

3. Set the title of the stack to Find the Bananas.

4. Set the background color to white.

2. Rename the default card to Main.

Objective Complete - Mini Debriefing
Since we will only have one stack and one card for this application, we can quickly
accomplish this task. In the next task, we will create the user interface.

Creating the user interface
For this task, we will create the user interface. The game's interface will consist of four labels,
three buttons, and three images. The labels are:

 f Game title

 f Information icon

 f Points display

 f Round (level) display

The three buttons will represent the three game spots.

The three images will consist of three small banana bunches.

As you work through the steps in this task, refer back to the interface mockup so you have a
clear picture of what we are doing.

Creating the Find the Bananas Game

154

Engage Thrusters
1. Drag a Label field onto the Main card and make the following customizations using

the properties inspector:

1. Set the width to 470 and the height to 36.

2. Set the location to 239, 22.

3. Set the name of the field to Title.

4. Set the text size to 24.

5. Center-align the text.

6. Change the contents to Find the Bananas.

7. Set the foreground color to black.

2. Drag a Label field onto the Main card and make the following customizations using
the properties inspector:

1. Set the width to 42 and the height to 58.

2. Set the location to 25, 289.

3. Set the name of the field to Information.

4. Set the text size to 36.

5. Center-align the text.

6. Italicize the text.

7. Change the contents to i.

8. Set the foreground color to black.

3. Drag a Label field onto the card Main and make the following customizations using
the properties inspector:

1. Set the width to 188 and the height to 29.

2. Set the location to 200, 290.

3. Set the name of the field to Level.

4. Set the text size to 18.

5. Left-align the text.

6. Change the contents to Current Run: 0.

7. Set the foreground color to black.

Project 6

155

4. Drag a Label field onto the Main card and make the following customizations using
the properties inspector:

1. Set the width to 188 and the height to 29.

2. Set the location to 200, 266.

3. Set the name of the field to Score.

4. Set the text size to 18.

5. Left-align the text.

6. Change the contents to Score: 0.

7. Set the foreground color to black.

5. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 120 and the height to 120.

2. Set the location to 90, 136.

3. Set the name of the button to spot1.

4. Set Show name to false.

5. Set Opaque to false.

6. Set Three D to false.

7. Set Border to false.

8. Set the Hilite border to false by ensuring the Hilite border checkbox
is unchecked.

6. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 120 and the height to 120.

2. Set the location to 240, 136.

3. Set the name of the field to spot2.

4. Set the Show name to false.

5. Set the Opaque to false.

6. Set the Three D to false.

7. Set the Border to false.

8. Set the Hilite border to false.

Creating the Find the Bananas Game

156

7. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 120 and the height to 120.

2. Set the location to 390, 136.

3. Set the name of the field to spot3.

4. Set the Show name to false.

5. Set the Opaque to false.

6. Set the Three D to false.

7. Set the Border to false.

8. Set the Hilite border to false.

8. Drag an Image Area object onto the card and make the following customizations
using the properties inspector:

1. Set the width to 40 and the height to 40.

2. Set the location to 362, 288.

3. Set the name of the field to loss1.

9. Drag an Image Area object onto the card and make the following customizations
using the properties inspector:

1. Set the width to 40 and the height to 40.

2. Set the location to 406, 288.

3. Set the name of the field to loss2.

10. Drag an Image Area object onto the card and make the following customizations
using the properties inspector:

1. Set the width to 40 and the height to 40.

2. Set the location to 450, 288.

3. Set the name of the field to loss3.

Objective Complete - Mini Debriefing
After completing the 10 steps in this section, your interface should look similar to the
following image. There are only three types of objects for this interface: labels, buttons,
and images. Our interface consists of four labels, three buttons, and three images.

Project 6

157

Classified Intel
We are using a single button for each game spot, each capable of showing any of the three
game images. Depending on the game state, each of those game spots (spot1, spot2, and
spot3) could display a coconut half with the open end down, a coconut half with the open
end exposed, or the bunch of bananas. This keeps our total number of objects low.

Importing and optimizing the images
In this task, we will import our images files and ensure they are optimized for our mobile
application. In the last task, we created three buttons sized 120 x 120 and three image
objects sized 40 x 40.

The three buttons will either display a coconut half with the open end facing down, a
coconut half with the open end facing up, or the bunch of bananas. Before the user guesses
which coconut half the bananas are hiding under, all three game spots (spot1, spot2, and
spot3) will show the coconut half with the open end facing down. When the user taps on
one of the buttons, it will either display the coconut half with the open end facing up or the
bunch of bananas.

The three images will show a bunch of bananas. Each time the player fails to find the
bananas, one of the banana bunches will be hidden using the set the visible of img
<image name> to false syntax.

Creating the Find the Bananas Game

158

Engage Thrusters
1. Using LiveCode's drop-down menu system, navigate to File | Import As Control |

Image File. Select the bananas.png, coconut-down.png, coconut-up.png,
and loss.png files, in that order.

2. For each of the images, set the location to 544, 166. This puts the images out of the
viewable area of the mobile device.

3. For each of the images, set Lock size and position to true. This setting is available on
the Size and Position area of the properties inspector.

4. Verify that the object IDs for the four imported images match the table below. If the
image IDs do not match, edit them using the properties inspector so that they match
precisely. If you have any problems assigning these Object IDs, simply keep track of
the IDs you use and make any necessary changes in subsequent steps so that your
code is referencing the proper IDs.

Object ID Image File
1021 bananas.png
1022 coconut_down.png
1023 coconut_up.png
1024 loss.png

5. Using the message box, issue the command set the icon of btn "spot1" to
1022. This will display the coconut-down image (ID 1022) in the first game spot.

6. Using the message box, issue the command set the icon of btn "spot2" to
1021. This will display the bananas image (ID 1021) in the first game spot.

7. Using the message box, issue the command set the icon of btn "spot3" to
1023. This will display the coconut-up image (ID 1023) in the first game spot.

8. Make the following modifications to the loss1 image:

1. Set the source to loss.png.

2. Set the Show Border to false.

9. Make the following modifications to the loss2 image:

1. Set the source to loss.png.

2. Set the Show Border to false.

10. Make the following modifications to the loss3 image:

1. Set the source to loss.png.

2. Set the Show Border to false.

Project 6

159

Objective Complete - Mini debriefing
If you examine the images files that you imported, each of them was the exact same size
as the object that is set to display them. By ensuring the images were optimized (set at the
correct size) before importing them, we do not need LiveCode to resize them. This also
ensures that the images are displayed how we want them, without losing any aspect or
gaining any pixilation.

After you complete the preceding 10 steps, your interface should look like the
following screenshot:

Classified Intel
Although each of the images we imported can be used in three different spots each, we only
have one copy of each image. Instead of putting three copies of each image in each spot they
could possibly be displayed in the game, we merely reference the image's ID to display it.
This keeps the mobile application's size down and helps the application be more efficient.

Programming the game
We are now ready to program the game. There are only four programmable objects for this
application: the three buttons (spot1, spot2, and spot3) and the information label. Most
of our code will be placed at the card level.

Creating the Find the Bananas Game

160

Engage Thrusters
1. Add the following code to the Main card:

command setupGame
 global gScore, gLevel, gLoss, gAnswer

 # Section 1
 put 0 into gScore
 put 0 into gLevel
 put 0 into gLoss
 put 0 into gAnswer
 # Section 2
 set the icon of btn "spot1" to 1022
 set the icon of btn "spot2" to 1022
 set the icon of btn "spot3" to 1022
 # Section 3
 set the text of fld "Score" to "Score: 0"
 set the text of fld "Level" to "Current Run: 0"
 # Section 4
 set the vis of img "loss1" to true
 set the vis of img "loss2" to true
 set the vis of img "loss3" to true
end setupGame

In section 1 of the preceding code, we are resetting the values of four global
variables (gScore, gLevel, gLoss, and gAnswer) by putting 0 (zero) into
each variable.

Section 2 contains the necessary code to display the coconut half image with
the open end facing down into each of the three spots (buttons spot1, spot2,
and spot3).

The next section, section 3, is where we reset the two label fields to display
the current score and level information.

In the final section, section 4, we ensure all three loss images (loss1, loss2,
and loss3) are visible.

2. Add the following code to the Main card:
on openCard
 setupGame
end openCard

This code simply makes a call to the command setupGame script each time the card
is initially opened. We handle the game's setup in its own code set so that we can
invoke it if the game is over and the player wishes to replay.

Project 6

161

3. Next, we will program a resetCoconuts script so that we can easily put an image
of the coconut half with the open end face down into each of the three game spots.
Enter the following code at the card level:
command resetCoconuts
 set the icon of btn "spot1" to 1022
 set the icon of btn "spot2" to 1022
 set the icon of btn "spot3" to 1022
end resetCoconuts

This is the same code found in section 2 of the code we entered in step 2.
So, let's replace that code in the setupGame script with resetCoconuts.
Your new setupGame code should be as the following code (note the only
difference is in section 2):

command setupGame
 global gScore, gLevel, gLoss, gAnswer

 # Section 1
 put 0 into gScore
 put 0 into gLevel
 put 0 into gLoss
 put 0 into gAnswer
 # Section 2
 resetCoconuts
 # Section 3
 set the text of fld "Score" to "Score: 0"
 set the text of fld "Level" to "Current Run: 0"
 # Section 4
 set the vis of img "loss1" to true
 set the vis of img "loss2" to true
 set the vis of img "loss3" to true
end setupGame

4. Our next step is to program a getAnswer script so that we can generate a new
answer (which spot the bananas are in). Here is the code you will enter at the
card level:
command getAnswer
 global gAnswer

 set the randomSeed to the seconds
 put random(3) into gAnswer
end getAnswer

Creating the Find the Bananas Game

162

In our getAnswer script, we start by setting the randomSeed to seconds. This
ensures we will have a truly random result each time a new answer is requested.
Then, we simply generate a random number from 1 to 3 and put it into the global
gAnswer variable.

5. Now, we can write a script to process the answer. Here is the code you will enter
at the card level:
command processAnswer theGuess
 global gScore, gLevel, gLoss, gAnswer

 # User found the bananas
 answer "Good Guessing! Your score has been updated. Continue
playing?" with "Yes" and "No" titled "You found the bananas!"
 if it is "Yes" then
 add 1 to gLevel
 set the text of fld "Level" to "Current Run: " & gLevel
 --
 resetCoconuts
 getAnswer
 else
 quit
 end if
 else
 # User did not find the bananas
 addLoss
 end if

end processAnswer

The processAnswer takes theGuess as a parameter, which will be passed from
one of the three game buttons. There are two conditions that can exist: the user
guessed the answer correctly or incorrectly. The first section of our code handles
the correct case.

When the user correctly finds the bananas, we prompt the user to congratulate
them on their correct guess and see if they want to continue or not. If they do not
want to continue, we exit the game. Otherwise, we increment the level and update
the level display.

The last thing we do for correct guesses, assuming the user wants to continue,
is to make calls to the resetCoconuts and getAnswer commands.

In the event that the user does not find the bananas, we simply make a call to the
addLoss command's script, which we will write in the next step.

Project 6

163

6. If a user fails to find the bananas, the addLoss command's script will be invoked.
Here is that code (add this to the card level):
command addLoss
 global gLoss

 add 1 to gLoss

 switch gLoss
 case "1"
 set the vis of img "loss1" to false
 answer "No bananas there." with "Okay" titled "No Bananas
for You!"
 resetCoconuts
 getAnswer
 break
 case "2"
 set the vis of img "loss2" to false
 answer "No bananas there." with "Okay" titled "No Bananas
for You!"
 resetCoconuts
 getAnswer
 break
 case "3"
 set the vis of img "loss3" to false
 answer "Game Over." with "Quit" and "Try Again" titled
"No Bananas for You!"
 if it is "Quit" then
 quit
 else
 setupGame
 getAnswer
 end if
 break
 end switch
end addLoss

This script is only executed if the user fails to find the bananas. The first thing we do
is to increment gLoss. Next, we use a switch statement so we can handle each
case differently.

On the user's first incorrect guess, we will make the first bunch of bananas
(loss1) invisible. Then, we provide the user with feedback and make calls
to the resetCoconuts and getAnswer scripts.

Creating the Find the Bananas Game

164

When the user fails to find the bananas for the second time, we make the second
bunch of bananas (loss2) invisible. Then, we provide the user with feedback and
make calls to the resetCoconuts and getAnswer scripts.

After the user's third incorrect answer, we make the third bunch of bananas (loss3)
invisible. Then, we provide the user with feedback and ask if they want to quit
or try again. If they want to try again, we make calls to the setupGame and
getAnswer scripts.

7. Next, we need to program each of the three buttons (spot1, spot2, and spot3).
Here is the code for the spot1 button:
on mouseUp
 global gAnswer

 if gAnswer is 1 then
 set the icon of me to 1021
 else
 set the icon of me to 1023
 end if
 processAnswer(1)
end mouseUp

With this on mouseUp script, we check to see if the user correctly guessed the
answer. If they found the bananas, then they are displayed (ID 1021). Otherwise,
the coconut half with the open end up (ID 1023) is displayed. Next, a call to the
processAnswer() script is made with the number 1 passed to it. This makes
the processAnswer() script aware of which button sent the message.

8. The following code is for the spot2 button:
on mouseUp
 global gAnswer

 if gAnswer is 2 then
 set the icon of me to 1021
 else
 set the icon of me to 1023
 end if
 processAnswer(2)
end mouseUp

With this on mouseUp script, we check to see if the user correctly guessed the
answer. If they found the bananas, then they are displayed (ID 1021). Otherwise,
the coconut half with the open end up (ID 1023) is displayed. Next, a call to the
processAnswer() script is made with the number 2 passed to it. This makes
the processAnswer() script aware of which button sent the message.

Project 6

165

9. The following code is for the spot3 button:

on mouseUp
 global gAnswer

 if gAnswer is 3 then
 set the icon of me to 1021
 else
 set the icon of me to 1023
 end if
 processAnswer(3)
end mouseUp

With this on mouseUp script, we check to see if the user correctly guessed the
answer. If they found the bananas, then they are displayed (ID 1021). Otherwise,
the coconut half with the open end up (ID 1023) is displayed. Next, a call to the
processAnswer() script is made with the number 3 passed to it. This makes
the processAnswer() script aware of which button sent the message.

Objective Complete - Mini Debriefing
That was a lot of code for a simple game. As you have seen, there can be a lot of finite
details that go into programming a mobile application, even with a scripting language
such as LiveCode.

Once you have completed the preceding nine steps, you will have a fully functioning game.
Your interface should be similar to the following screenshot:

Creating the Find the Bananas Game

166

Adding a scoring schema
A game is not really a game without some sort of scoring. To add a scoring schema to our
game, we will simply add a few lines of code to our processAnswer() script.

Engage Thrusters
Add the following lines of code to the processAnswer() script just after the if theGuess
is gAnswer then line of code:

if gLevel is 0 then
 add 50 to gScore
 else
 add (100 * gLevel) to gScore
 end if
 set the text of fld "Score" to "Score: " & gScore

When the user correctly finds the bananas, we need to check to see if it is the first time they
guessed correctly. If it is, then the gLevel will still be 0 and the add (100 * gLevel) to
gScore statement will result in 0 points. So, if gLevel is 0, we will award the user 50 points.
After awarding the appropriate points, we update the score display.

The following complete processAnswer() script is to help you ensure you added the new
six lines of code in the right location:

command processAnswer theGuess
 global gScore, gLevel, gLoss, gAnswer

 # User found the bananas
 if theGuess is gAnswer then
 if gLevel is 0 then
 add 50 to gScore
 else
 add (100 * gLevel) to gScore
 end if
 set the text of fld "Score" to "Score: " & gScore
 --
 answer "Good Guessing! Your score has been updated. Continue
 playing?" with "Yes" and "No" titled "You found the bananas!"
 if it is "Yes" then
 add 1 to gLevel
 set the text of fld "Level" to "Current Run: " & gLevel
 --
 resetCoconuts

Project 6

167

 getAnswer
else
 quit
 end if
 else
 # User did not find the bananas
 addLoss
 end if

end processAnswer

Objective Complete - Mini Debriefing
Our scoring schema has been fully implemented. Users will now see their score as they
progress through the game.

Mission Accomplished
In this project, we developed a simple Find the Bananas mobile application using a single
stack and a single card. Moreover, we only used a total of four label fields, three buttons,
and three image objects. We explored how to use references to images so that they can
be displayed more than once simultaneously without sacrificing application size.

The following screenshot shows the completed game with a high score of 5,550 on Level 11:

Creating the Find the Bananas Game

168

A Hotshot Challenge
Your Hotshot challenge for this project has two components:

 f Program the information label field that is located in the lower left corner of the
application screen. Simply add a dialog box that explains the scoring system.

 f Implement a high score feature to this game.

That's it; have fun!

Project 7
Creating the Jungle

Dance Party
Mobile App

In this project, we will create the Jungle Dance Party app. We will present the user with
three animals and provide them with the opportunity to make each of them have a little fun,
one at a time. There is no scoring, no way to win, and no way to lose. Our mobile app will
simply provide our users with an opportunity to have a little fun while we show off our
animation skills.

Mission Briefing
Our mobile app will consist of one stack and four cards. The first card will be our main
interface screen that will present the user with animal selections. The remaining three
cards will be for the animal animations, one card per animal.

When one of the animals is selected from the main card, our app will open the appropriate
card, and after a forced 2-second delay, we will animate the animal until the user elects to go
back to the main card.

Creating the Jungle Dance Party Mobile App

170

Here is a mockup of our app's main interface:

Why Is It Awesome?
As you work through this project, you will gain experience in creating a basic animation of
objects. We will design our app from start to finish to include a main interface and three
additional cards to hold the individual animal animations.

We will employ a simple sequence of image swapping to animate our three animals. This
technique is common in most games and LiveCode makes the development process easy.

Your Hotshot Objectives
To complete the Jungle Dance Party project, we'll accomplish the following tasks:

 f Creating the main stack

 f Creating the user interface

 f Creating the Dog card

 f Creating the Monkey card

 f Creating the Panda card

 f Programming the application

 f Adding optional sound

Project 7

171

Creating the main stack
Our first task is to create the main stack for our Jungle Animal Party mobile app. For this
application, we will only have one stack and four cards. First, we will create the main stack.

Engage Thrusters
1. Let's begin by creating a new main stack named Jungle. Using the properties

inspector, make the following customizations to the main stack:

1. Change the size of the stack to 480 x 320 pixels. This will give us a
landscape orientation.

2. Set the name of the stack to Jungle.

3. Set the title of the stack to Jungle Dance Party.

4. Set the background color to white.

2. Rename the default card to Main.

Objective Complete - Mini Debriefing
When we created the main stack, LiveCode created a default card for us. In our next task,
we will configure the default card to house our main user interface.

Creating the user interface
For this task, we will create the user interface. The game's interface will consist of a title
label, a sound icon, three image objects (one for each animal), and a footer label.

As you work through the steps in this task, refer back to the interface mockup so that you
have a clear picture of what we are doing.

Creating the Jungle Dance Party Mobile App

172

Engage Thrusters
1. Drag a Label field onto the Main card and make the following customizations using

the properties inspector:

1. Set the width to 470 and the height to 36.

2. Set the location to 239, 39.

3. Set the name of the field to Title.

4. Set the text size to 24.

5. Center the text.

6. Change the contents to Jungle Dance Party.

7. Set the text (foreground color) to black.

2. Drag a Label field onto the Main card and make the following customizations using
the properties inspector:

1. Set the width to 188 and the height to 29.

2. Set the location to 239, 266.

3. Set the name of the field to Footer.

4. Set the text size to 18.

5. Center the text.

6. Change the contents to Select an Animal.

7. Set the foreground color to black.

3. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 30 and the height to 30.

2. Set the location to 459, 21.

3. Set the name of the field to sound.

4. Using the Icons & Border section of the properties inspector, click on the
wand icon to the right of the Icon label and field. Next, in the Image library:
drop-down list, select MetaCard Compatible Icons. Scroll until you find the
large sound icon. Select that icon. You will see that this resulted in the icon
of the button being set to image ID 394.

Project 7

173

5. Set Show name to false.

6. Set Opaque to false.

7. Set Three D to false.

8. Set Border to false.

9. Set Hilite Border to false.

4. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 120 and the height to 120.

2. Set the location to 90, 136.

3. Set the name of the button to dog.

4. Import the dog_120x120.png image as an object. Set the location of the
image to 692, 188. Lock the location. Then, set the icon of the dog button
to the image.

When we set the location of objects outside the visible area
of a card, we are essentially keeping it handy (on the card)
and ensuring that the object is not visible. This gives us great
control over what the user sees on the screen.

Creating the Jungle Dance Party Mobile App

174

5. Set Show name to false.

6. Set Opaque to false.

7. Set Three D to false.

8. Set Border to false.

9. Set Hilite Border to false.

5. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 120 and the height to 120.

2. Set the location to 240, 136.

3. Set the name of the field to monkey.

4. Import the monkey_120x120.png image as an object. Set the location of
the image to 692, 188. Lock the location. Then, set the icon of the monkey
button to the image.

5. Set Show name to false.

6. Set Opaque to false.

7. Set Three D to false.

8. Set Border to false.

9. Set Hilite Border to false.

6. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 120 and the height to 120.

2. Set the location to 390, 136.

3. Set the name of the field to panda.

4. Import the panda_120x120.png image as an object. Set the location of
the image to 692, 188. Lock the location. Then, set the icon of the panda
button to the image.

5. Set Show name to false.

6. Set Opaque to false.

7. Set Three D to false.

8. Set Border to false.

9. Set Hilite Border to false.

Project 7

175

Objective Complete - Mini Debriefing
After completing the six steps in this task, your interface should look similar to the following
screenshot. There are only three types of objects for this interface: labels, buttons, and
images. Our interface consists of two labels, four buttons, and three images. Note that,
the images are used as button icons. We placed and locked the original images off of the
visible screen.

Classified Intel
We uploaded three images, one for each animal. Because our original images are of the
same size as our buttons (120 x 120), our interface is considered to be optimized. It is worth
the time to format the images (and other objects) before importing them into LiveCode
as objects.

Creating the Dog card
With our interface complete, we are ready to create a card for each animal. We'll start with
the dog. Our card will contain a series of images that we will display in sequence and a
button for the user to navigate back to the main card.

Creating the Jungle Dance Party Mobile App

176

The following image shows the 10 individual frames of the dog playing with his ball:

Engage Thrusters
1. Create a new card and name it Dog.

2. Drag a Rectangle Button onto the card and make the following modifications to the
default button settings:

1. Set the width to 82 and the height to 23.

2. Set the location to 240, 301.

3. Set the name of the button to Enough.

3. Import the dog1.png, dog2.png, dog3.png, dog4.png, dog5.png, dog6.png,
dog7.png, dog8.png, dog9.png, and dog10.png files.

4. Place the 10 image files in the center of the screen.

5. With all 10 image files selected, align the images to the left.

6. With all 10 image files selected, align the images to the bottom.

7. Rename each of the 10 dog images so that they only contain dog and the image
number, no period or file extension. So, the image names should be dog1, dog2,
dog3, dog4, dog5, dog6, dog7, dog8, dog9, and dog10.

Objective Complete - Mini Debriefing
In just seven steps, we created the Dog card and prepared it for animation. Once you
complete the steps, your card will contain 10 dog images overlaid on each other, and
an Enough button. Your card should look similar to the following screenshot:

Project 7

177

Creating the Monkey card
Next, we will create a card for the monkey animation. You will note a lot of similarities in
this task from what you accomplished with the Dog card. Our Monkey card will contain five
images that we will display in sequence and a button for the user to navigate back to the
main card.

The following image shows five individual frames of the monkey dancing:

Creating the Jungle Dance Party Mobile App

178

Engage Thrusters
1. Create a new card and name it Monkey.

2. Drag a Rectangle Button onto the card and make the following modifications to the
default button settings:

1. Set the width to 82 and the height to 23.

2. Set the location to 240, 301.

3. Set the name of the button to Enough.

3. Import the monkey1.png, monkey2.png, monkey3.png, monkey4.png,
monkey5.png files.

4. Place the five image files in the center of the screen.

5. With all the five image files selected, align the images to the center.

6. With all the five image files selected, align the images to the middle.

7. Rename each of the five monkey images so that they only contain monkey and
the image number, no period or file extension. So, the image names should be
monkey1, monkey2, monkey3, monkey4, and monkey5.

Objective Complete - Mini Debriefing
Our Monkey card is now ready for animation. We will program the animation in a later task.
After you complete the seven steps listed in this task, your card will contain five monkey
images overlaid on each other, and an Enough button. Your card should look similar to the
following screenshot:

Project 7

179

Creating the Panda card
We are now ready to create our last card, the Panda card. There are eight images in the
panda animation sequence. We will put all eight of those images on the Panda card as well
as a button named Enough. Like with the last two cards, our Enough button will be used to
navigate back to the main card.

The following image shows eight individual frames of the panda walking:

Engage Thrusters
1. Create a new card and name it Panda.

2. Drag a Rectangle Button onto the card and make the following modifications to the
default button settings:

1. Set the width to 82 and the height to 23.

2. Set the location to 240, 301.

3. Set the name of the button to Enough.

3. Import the panda1.png, panda2.png, panda3.png, panda4.png, panda5.png,
panda6.png, panda7.png, and panda8.png files.

4. Place the eight image files in the center of the screen.

5. With all eight image files selected, align the images to the center.

6. With all eight image files selected, align the images to the bottom.

7. Rename each of the eight panda images so that they only contain panda and the
image number, no period or file extension. So, the image names should be panda1,
panda2, panda3, panda4, panda5, panda6, panda7, and panda8.

Creating the Jungle Dance Party Mobile App

180

Objective Complete - Mini Debriefing
After you complete the seven steps listed in this task, your card will contain eight panda
images overlaid on each other and an Enough button. Your card should look similar to the
following screenshot:

Programming the application
All the pieces are in place now. You created the stack, the four cards, and all the required
objects for the Jungle Dance Party. All that is left is to program the application. We will start
with programming the navigation between cards, and then we will program the individual
animation sequences.

Engage Thrusters
1. Add the following LiveCode script to the dog button on the main card:

on mouseUp
 go to card "Dog"
end mouseUp

2. Add the following LiveCode script to the monkey button on the main card:
on mouseUp
 go to card "Monkey"
end mouseUp

Project 7

181

3. Add the following LiveCode script to the panda button on the main card:
on mouseUp
 go to card "Panda"
end mouseUp

4. Add the following LiveCode script to the Enough button on the Dog card:
on mouseUp
 go to card "Main"
end mouseUp

5. Add the following LiveCode script to the Enough button on the Monkey card:
on mouseUp
 go to card "Main"
end mouseUp

6. Add the following LiveCode script to the Enough button on the Panda card:
on mouseUp
 go to card "Main"
end mouseUp

Next, we will prepare each of the animal cards by writing preOpenCard commands.

7. Add the following code to the Dog card. This will ensure that the only visible image
is the first image in the animation sequence.
on preOpenCard
 set the vis of img "dog1" to true
 set the vis of img "dog2" to false
 set the vis of img "dog3" to false
 set the vis of img "dog4" to false
 set the vis of img "dog5" to false
 set the vis of img "dog6" to false
 set the vis of img "dog7" to false
 set the vis of img "dog8" to false
 set the vis of img "dog9" to false
 set the vis of img "dog10" to false
end preOpenCard

8. Add the following code to the Monkey card. This will make the first image visible and
the others not visible.
on preOpenCard
 set the vis of img "monkey1" to true
 set the vis of img "monkey2" to false
 set the vis of img "monkey3" to false
 set the vis of img "monkey4" to false
 set the vis of img "monkey5" to false
end preOpenCard

Creating the Jungle Dance Party Mobile App

182

9. Add the following code to the Panda card:
on preOpenCard
 set the vis of img "panda1" to true
 set the vis of img "panda2" to false
 set the vis of img "panda3" to false
 set the vis of img "panda4" to false
 set the vis of img "panda5" to false
 set the vis of img "panda6" to false
 set the vis of img "panda7" to false
 set the vis of img "panda8" to false
end preOpenCard

We are now ready to program our individual animation sequences. As you will see in
the next three steps, we will implement a brief pause before staring the animation
sequence. This will help ensure that the animation does not start until the card is
fully loaded and the user is ready.

10. Add the following code to the Dog card:
on openCard
 wait 1 sec
 --
 repeat for 3 times
 set the vis of img "dog2" to true
 set the vis of img "dog1" to false
 wait 150 millisecs
 set the vis of img "dog3" to true
 set the vis of img "dog2" to false
 wait 150 millisecs
 set the vis of img "dog4" to true
 set the vis of img "dog3" to false
 wait 150 millisecs
 set the vis of img "dog5" to true
 set the vis of img "dog4" to false
 wait 150 millisecs
 set the vis of img "dog6" to true
 set the vis of img "dog5" to false
 wait 150 millisecs
 set the vis of img "dog7" to true
 set the vis of img "dog6" to false
 wait 150 millisecs
 set the vis of img "dog8" to true
 set the vis of img "dog7" to false
 wait 150 millisecs
 set the vis of img "dog9" to true

Project 7

183

 set the vis of img "dog8" to false
 wait 150 millisecs
 set the vis of img "dog10" to true
 set the vis of img "dog9" to false
 wait 150 millisecs
 set the vis of img "dog1" to true
 set the vis of img "dog10" to false
 wait 150 millisecs
 end repeat
end openCard

The first part of this code contains the statement wait 1 sec. This is really to
compensate for slower mobile devices. The rest of the code is encapsulated in a
repeat loop. We simply display the next image in the sequence, make the previous
image invisible, wait 150 milliseconds, and then move forward in the sequence. If
we did not wait, at least briefly, between each sequence, the mobile device would
flash the individual images too quickly for the user to see.

11. Add the following code to the Monkey card:
on openCard
 wait 1 sec
 --
 repeat for 3 times
 set the vis of img "monkey2" to true
 set the vis of img "monkey1" to false
 wait 150 millisecs
 set the vis of img "monkey3" to true
 set the vis of img "monkey2" to false
 wait 150 millisecs
 set the vis of img "monkey4" to true
 set the vis of img "monkey3" to false
 wait 150 millisecs
 set the vis of img "monkey5" to true
 set the vis of img "monkey4" to false
 wait 150 millisecs
 set the vis of img "monkey1" to true
 set the vis of img "monkey5" to false
 wait 150 millisecs
 end repeat
end openCard

This code contains the 1-second preanimation pause just like we implemented on
the Dog card. The repeat loop is similar to what we coded on the Dog card, but with
only five images.

Creating the Jungle Dance Party Mobile App

184

12. Add the following code to the Panda card:

on openCard
 wait 1 sec
 --
 repeat for 3 times
 set the vis of img "panda2" to true
 set the vis of img "panda1" to false
 wait 150 millisecs
 set the vis of img "panda3" to true
 set the vis of img "panda2" to false
 wait 150 millisecs
 set the vis of img "panda4" to true
 set the vis of img "panda3" to false
 wait 150 millisecs
 set the vis of img "panda5" to true
 set the vis of img "panda4" to false
 wait 150 millisecs
 set the vis of img "panda6" to true
 set the vis of img "panda5" to false
 wait 150 millisecs
 set the vis of img "panda7" to true
 set the vis of img "panda6" to false
 wait 150 millisecs
 set the vis of img "panda8" to true
 set the vis of img "panda7" to false
 wait 150 millisecs
 set the vis of img "panda1" to true
 set the vis of img "panda8" to false
 wait 150 millisecs
 end repeat
end openCard

This code replicates the code we used for the Dog and Monkey cards. There were eight
panda images, so we merely sequence the display of those images with an interval of
150 milliseconds.

Objective Complete - Mini Debriefing
We have completely programmed our Jungle Dance Party mobile application. We added
navigational control to the application by programming the buttons on the main interface
as well as the Enough buttons on the Dog, Monkey, and Panda cards. Our coding included
adding the preOpenCard and openCard scripts for each of the three animal cards.

Project 7

185

Classified Intel
As much of our code on the three animal cards is identical, we can save a lot of time by
copying and pasting code between cards. It is important to ensure all the pasted code is
reviewed so that there are no references to objects on another card.

Adding optional sound
Let's make this app a bit more interesting. We will upload three sound files, one for each
animal. We will use the sound button on the main interface to allow the user to enable/
disable sound.

Engage Thrusters
1. Add the following script at the stack level:

global theSound

on openStack
 put "on" into theSound
 set the icon of btn "sound" on card "Main" to 394
end openStack

We instantiated a global variable (theSound) to keep track of the user's desire to
hear or suppress sound effects. In the openStack script, we set the initial condition
to "on" so that, by default, the app will play sound effects.

2. Edit the script of the sound button on the Main card so that it matches the
following code:
on mouseUp
 global theSound

 if theSound is "on" then
 put "off" into theSound
 set the icon of me to 390
 else
 put "on" into theSound
 set the icon of me to 394
 end if
end mouseUp

This code handles switching between "on" and "off" conditions of the global
variable theSound.

Creating the Jungle Dance Party Mobile App

186

3. Import the dog.wav, monkey.wav, and panda.wav audio files.

4. Add the following first line to the on openCard script of the Dog card:
 global theSound

We need to declare our global variable so that we can reference it later in the code.

5. Add the following three lines of code immediately following the repeat for 3
times line of code on the Dog card:
if theSound is "on" then
 play audioclip "dog.wav"
end if

Here, we simply check to see if theSound is "on" or "off" and either play or do
not play the appropriate audio clip. In the next four steps, we will repeat these code
changes for the Monkey and Panda cards.

6. Add the following first line to the on openCard script of the Monkey card:
 global theSound

We need to declare our global variable so that we can reference it later in the code.

7. Add the following three lines of code immediately following the repeat for 3
times line of code on the Monkey card:
if theSound is "on" then
 play audioclip "monkey.wav"
end if

8. Add the following first line to the on openCard script of the Panda card:
 global theSound

We need to declare our global variable so that we can reference it later in the code.

9. Add the following three lines of code immediately following the repeat for 3
times line of code on the Panda card:

if theSound is "on" then
 play audioclip "panda.wav"
end if

Objective Complete - Mini Debriefing
That's it. You uploaded three audio clips into your LiveCode application and add the
necessary code to play them based on user preference.

Project 7

187

Mission Accomplished
In this project, we developed a Jungle Dance Party mobile application using a single stack
and four cards. We used a series of images to create an animation effect on three of the four
cards. The fourth card was used for navigation. We included audio files and gave control of
their use to our user.

The following screenshot shows the completed game's main interface:

A Hotshot Challenge
Your Hotshot challenge for this project is to give users control of how fast or how slow the
animals are animated. In this project, we used 150 milliseconds to control the animation
speed. Give your users the ability to adjust that for each animal. Once you accomplish this,
you'll have a real Jungle Dance Party!

Project 8
Creating the My

Database Mobile App

In this project, we will create the My Database app. We will develop our app so that users
can create and manage their personal home inventory. Their inventory will be searchable
and sortable. We will permit information such as item name, category, room where the item
is located, purchase price, and date purchased. Our mobile app will have a simple design so
that we can focus on interacting with the database.

Creating mobile applications that make use of databases can be quite complex. This project
is merely an introduction to using databases for your mobile apps. In order to create robust
mobile applications that make full use of databases, you'll need to go beyond the basics
presented in this project.

Mission Briefing
Our mobile app will consist of one stack and four cards. The first card will present the user
with a simple interface that provides six options:

 f Create: This will allow the user to create a new database

 f Open: This option will open a previously created database

 f Add: Using this feature, users will be able to add information to the database

 f View: We will provide users with the ability to view data they previously entered
into the database

 f Query: This will be the search function

 f Close: Users should close the database when they are finished using it

Creating the My Database Mobile App

190

The second, third, and fourth cards will be for the Add, View, and Query functions respectively.

The following diagram is a mockup of our app's main interface:

Why Is It Awesome?
A lot of mobile applications collect or manage data. This data can be a simple as a user's
profile settings or as complex as stock exchange information. With LiveCode, we have several
methods of storing data to include labels, tables, data charts, and external files. Of course,
we can also use databases that are embedded in our app or connect to external databases.
When we have more than a small amount of data to deal with, using databases can make
our apps more efficient.

Your Hotshot Objectives
Use the following brief bullet points outlining the eight major tasks required to complete
the project:

 f Creating the main stack

 f Creating the user interface

 f Programming the Create database function

 f Programming the Open and Close database functions

 f Creating the Add Record card and functionality

 f Creating the View card and functionality

 f Creating the Query card and functionality

Project 8

191

Mission Checklist
Before getting started, it is important that you have a firm understanding of database
vocabulary. The following table is of database terms and their meaning:

Term Description

Database A collection of related data stored systematically.

Field Fields hold one piece of data such as last name, dates, color, etc.

Record A group of related fields.

Table A data structure similar to a spreadsheet or matrix used for storing data.
Columns indicate the field and rows indicate specific records.

Creating the main stack
Our first task is to create the main stack for our My Database mobile app. For this
application, we will only have one stack and four cards. First, we will create the main stack.

Engage Thrusters
1. Let's begin by creating a new main stack named MyDatabase. Using the properties

inspector, make the following customizations to the main stack:

1. Change the size of the stack to 480 x 320 pixels. This will give us a
landscape orientation.

2. Set the name of the stack to MyDatabase.

3. Set the title of the stack to My Database.

4. Set the background color to white.

2. Rename the default card to Main.

Objective Complete - Mini Debriefing
When we created the main stack, LiveCode created a default card for us. In our next task,
we will configure the default card to house our main user interface.

Creating the My Database Mobile App

192

Creating the user interface
In this task, we will create the user interface. The app's interface will consist of a title label,
six rectangular buttons, an additional label field, and a list box.

As you work through the steps in this task, refer back to the interface mockup so you have a
clear picture of what we are doing.

Engage Thrusters
1. Drag a Label field onto the card Main and make the following customizations using

the properties inspector:

1. Set the width to 470 and the height to 36.

2. Set the location to 239, 26.

3. Set the name of the field to Title.

4. Set the text size to 24.

5. Center-align the text.

6. Change the contents to My Database App.

7. Set the text (foreground color) to black.

2. Drag a Label field onto the card Main and make the following customizations using
the properties inspector:

1. Set the width to 128 and the height to 28.

2. Set the location to 211, 74.

3. Set the name of the field to LogTitle.

4. Set the text size to 14.

5. Left-align the text.

6. Change the contents to Transaction Log.

7. Set the foreground color to black.

3. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 59, 77.

3. Set the name of the button to Create.

Project 8

193

4. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 59, 120.

3. Set the name of the button to Open.

5. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 59, 163.

3. Set the name of the button to Add.

6. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 59, 207.

3. Set the name of the button to View.

7. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 59, 250.

3. Set the name of the button to Query.

8. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 59, 293.

3. Set the name of the button to Close.

9. Drag a Scrolling Field onto the card Main and make the following customizations
using the properties inspector:

1. Set the width to 300 and the height to 214.

2. Set the location to 298, 197.

3. Set the name of the field to log.

4. Set the text size to 14.

5. Left-align the text.

6. Set the text (foreground color) to black.

Creating the My Database Mobile App

194

Objective Complete - Mini Debriefing
After completing the nine steps in this section, your interface should look similar to the
following screenshot. We were able to create this interface by using only three types of
objects: labels, buttons, and a scrolling list field. Our interface consists of a title, six buttons,
a transaction log, and a transaction log label.

Programming the Create database
function

When you work with databases in LiveCode, the first thing you must do is to establish a
connection to the database. In this task, we will code the Create button to create a new
database. In the subsequent task, we will code the open and close functions.

Engage Thrusters
1. Add the following code to the Create button:

on mouseUp
 dbConnect
end mouseUp

This code calls the dbConnect command, which we will program in the next step.

Project 8

195

2. Add the following code to the Main card's script:
command dbConnect
 global dbPath, dbID
 local tLog

 # SECTION ONE
 put specialFolderPath("documents") & "/packt.sqlite" into
dbPath

 # SECTION TWO
 put revOpenDatabase("sqlite", dbPath, , , ,) into dbID

 # SECTION THREE
 put fld "log"into tLog
 put "Database Created: ID " & dbID & return before tLog
 put tLog into fld "log"
end dbConnect

As you can see, we start the dbConnect command by declaring two global variables
and one local variable. The dbPath variable contains the path for the database.
LiveCode requires that the path point to an area that the user has write access to.
The dbID variable will store the newest database connection ID. The tLog local
variable will be used in section three of our code.

Section one of our code creates the path for the database and stores it in the global
dbPath variable.

Section two creates a new database and stores the ID in the global dbID variable.

In section three, our code puts a new message at the top of the transaction log. To
do this, we capture the log's current text and store it in the local tLog variable. We
then construct our next transaction report and add it to the tLog contents using
the before keyword. Last, we dump the contents of the tLog variable into the log
field. This might seem a laborious approach, but it is necessary and very quick.

3. Since we started putting data in the transaction log field (log), we will want to
ensure that field is cleared each time the app is opened. To accomplish this, enter
the following code at the stack level:

on openStack
 put empty into fld "log" on card "Main"
end openStack

Creating the My Database Mobile App

196

Objective Complete - Mini Debriefing
In three easy steps, we created the ability for users to create databases using our mobile
app. When we use the Create button, we will see output results in the transaction log as
illustrated in the following screenshot:

Classified Intel
When you create a database using the steps outlined in this task, an sqlite file is created
on your mobile device's storage medium. In our example, the file would be named packt.
sqlite. Where this file is located depends on which mobile device you are using.

Programming the Open and Close
database functions

In the previous task, we created a database from scratch. In this task, we will code the Open
and Close buttons so that we can open a previously created database and close the open
database connection.

Project 8

197

Engage Thrusters
1. Add the following code to the Open button:

on mouseUp
 dbConnect2
end mouseUp

This code calls the dbConnect2 command, which we will program in the next step.

2. Add the following code to the Main card's script:
command dbConnect2
 global dbPath, dbID
 local tLog

 # SECTION ONE
 answer files "Select a database file to open:" with type
"sqlite"
 put it into dbPath

 # SECTION TWO
 put revOpenDatabase("sqlite", dbPath, , , ,) into dbID

 # SECTION THREE
 put fld "log"into tLog
 put "Database " & dbPath & " Opened: ID " & dbID &
 return before tLog
 put tLog into fld "log"
end dbConnect2

Our dbConnect2 command is very similar to the dbConnect command we coded
in our previous task. The differences are in sections two and three.

Section two now asks for a file from the user. The ask files with type command
opens a standard dialog box so that the user can select a specific file. The results
are put into the global dbPath variable.

In section three, we modified our transaction log output to show that we opened,
instead of created, a database.

3. All that is left for us to accomplish in this task is to close the database. To do that,
add the following code to the Close button's script:

on mouseUp
 global dbID
 local tLog

 # SECTION ONE

Creating the My Database Mobile App

198

 revCloseDatabase dbID

 # SECTION TWO
 put fld "log"into tLog
 put "Database Closed: ID " & dbID & return before tLog
 put tLog into fld "log"
end mouseUp

In section one of this code, we make a call to the revCloseDatabase command
and pass the current database connection ID (dbID). Next, in section two, we output
an appropriate entry in the transaction log.

Objective Complete - Mini Debriefing
In three easy steps, we created the ability for users to create databases using our mobile
app. When we use the Create button, we will see output results in the transaction log as
illustrated in the following screenshot:

Classified Intel
When apps are programmed with LiveCode, databases are automatically closed when the
user quits the app. It is considered good programming practice to close the databases as
soon as your app no longer requires an active connection.

Project 8

199

Creating the Add Record card and
functionality

In this task, we will create an Add card so that users can add data to their database.

Engage Thrusters
1. Add the following code to the Add button's script.

on mouseUp
 go to card "Add"
end mouseUp

2. Create a new card and name it Add.

3. Drag a Label field onto the card Add and make the following customizations using
the properties inspector:

1. Set the width to 470 and the height to 36.

2. Set the location to 239, 26.

3. Set the name of the field to Title.

4. Set the text size to 24.

5. Center-align the text.

6. Change the contents to Add Data to My Database.

7. Set the foreground color to black.

4. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 61, 73.

3. Set the name of the button to Table.

4. Set the label of the button to Add Table.

5. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 53, 299

3. Set the name of the button to Back.

Creating the My Database Mobile App

200

6. Add the following code to the Back Button:
on mouseUp
 go to card "Main"
end mouseUp

The Back button is now programmed to allow the user to navigate back to the
main screen.

7. Add the following code to the Table Button:
on mouseUp
 global dbID
 local tSQL, tLog, tResults

 # SECTION ONE
 put "CREATE TABLE inventory (item char(10), " & \
 "category char(12), room char(10), price " & \
 "integer, pDate date)" into tSQL

 # SECTION TWO
 revExecuteSQL dbID, tSQL
 put it into tResults
 if tResults is not a number then
 put "no" into tResults
 end if

 # SECTION THREE
 put fld "log" on card "Main" into tLog
 put "Table " & quote & " Created: " & tResults & \
 " records impacted" & return before tLog
 put tLog into fld "log" on card "Main"
end mouseUp

Section one of this code compiles an SQL statement and puts it into the local
variable tSQL.

In section two, we execute the SQL statement by using the revExecuteSQL
statement. We merely pass the connection ID (dbID) and SQL statement
(tSQL); LiveCode does the rest for us. We also evaluate the return value of the
revExecuteSQL statement. The statement will return the number of rows
impacted by the statement.

We put an appropriate entry into the transaction log on the Main card in section
three of the code.

Next we will create the ability for users to add records to the new table.

Project 8

201

8. Drag a Label field onto the card Add and make the following customizations using
the properties inspector:

1. Set the width to 100 and the height to 21.

2. Set the location to 150, 112.

3. Set the name of the field to Item Label.

4. Change the contents to Item Name.

9. Drag a Label field onto the card Add and make the following customizations using
the properties inspector:

1. Set the width to 100 and the height to 21.

2. Set the location to 150, 142.

3. Set the name of the field to Category Label.

4. Change the contents to Category.

10. Drag a Label field onto the card Add and make the following customizations using
the properties inspector:

1. Set the width to 100 and the height to 21.

2. Set the location to 150, 172.

3. Set the name of the field to Room Label.

4. Change the contents to Room.

11. Drag a Label field onto the card Add and make the following customizations using
the properties inspector:

1. Set the width to 100 and the height to 21.

2. Set the location to 150, 202.

3. Set the name of the field to Price Label.

4. Change the contents to Price.

12. Drag a Label field onto the card Add and make the following customizations using
the properties inspector:

1. Set the width to 100 and the height to 21.

2. Set the location to 150, 232.

3. Set the name of the field to Date Label.

4. Change the contents to Purchase Date.

Creating the My Database Mobile App

202

13. Drag a Text Entry Field onto the card Add and make the following customizations
using the properties inspector:

1. Set the width to 100 and the height to 21.

2. Set the location to 266, 112.

3. Set the name of the field to item.

14. Drag a Text Entry Field onto the card Add and make the following customizations
using the properties inspector:

1. Set the width to 100 and the height to 21.

2. Set the location to 266, 142.

3. Set the name of the field to category.

15. Drag a Text Entry Field onto the card Add and make the following customizations
using the properties inspector:

1. Set the width to 100 and the height to 21.

2. Set the location to 266, 172.

3. Set the name of the field to room.

16. Drag a Text Entry Field onto the card Add and make the following customizations
using the properties inspector:

1. Set the width to 100 and the height to 21.

2. Set the location to 266, 202.

3. Set the name of the field to price.

17. Drag a Text Entry Field onto the card Add and make the following customizations
using the properties inspector:

1. Set the width to 100 and the height to 21.

2. Set the location to 266, 232.

3. Set the name of the field to pDate.

18. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 265, 271.

3. Set the name of the button to Record.

4. Set the label of the button to Add Record.

Project 8

203

19. Add the following code to the Record button:
on mouseUp
 global dbID
 local tSQL, tLog, tResults
 local tData1, tData2, tData3, tData4, tData5

 # SECTION ONE
 put the text of fld "item" into tData1
 put the text of fld "category" into tData2
 put the text of fld "room" into tData3
 put the text of fld "price" into tData4
 put the text of fld "pDate" into tData5
 --
 put "INSERT into inventory VALUES (" & \
 tData1 & comma & tData2 & comma & \
 tData3 & comma & tData4 & comma & \
 tData4 & ");" into tSQL

 # SECTION TWO
 revExecuteSQL dbID, tSQL
 put it into tResults
 if tResults is not a number then
 put "no" into tResults
 end if

 # SECTION THREE
 put fld "log" on card "Main" into tLog
 put "Record Added" & return before tLog
 put tLog into fld "log" on card "Main"

 # SECTION FOUR
 clearValues
end mouseUp

Section one of this code compiles an SQL statement and puts it into the local
variable tSQL. As you can see, values are taken from the text input fields on
the Add card.

In section two, we execute the SQL statement by using the revExecuteSQL
statement.

Section three is where we log our output to the transaction log on the Main card.

Creating the My Database Mobile App

204

In the final section, section four, we make a call to the clearValues command.
We will program that command in the next steps.

20. Add the following openCard code at the card level of the Add card:
on openCard
 clearValues
end openCard

21. Add the following code at the card level of the Add card:

command clearValues
 put empty into fld "item"
 put empty into fld "category"
 put empty into fld "room"
 put empty into fld "price"
 put empty into fld "pDate"
end clearValues

We will use the clearValues command to ensure no data is left in the input text
fields after each record is added and each time the card is opened.

Objective Complete - Mini Debriefing
After completing the 21 steps in this task, you will have an interface that facilitates the
creation of an inventory table in the database. Also, the user can create records to add
to the table. Data elements are item, category, room, price, and purchase date.
Your interface and results should be similar to the following screenshots:

Project 8

205

Creating the View card and
functionality

Now that our mobile app can create a database and add a table, and now that we can add
records to the database, we need a way to view the database information. We'll accomplish
that in this task.

Engage Thrusters
1. Add the following code to the View button's script on the Main card.

on mouseUp
 go to card "View"
end mouseUp

2. Create a new card and name it View.

3. Drag a Label Field onto the card View and make the following customizations using
the properties inspector:

1. Set the width to 470 and the height to 36.

2. Set the location to 239, 26.

3. Set the name of the field to Title.

4. Set the text size to 24.

5. Center-align the text.

Creating the My Database Mobile App

206

6. Change the contents to View My Database.

7. Set the foreground color to black.

4. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 53, 299

3. Set the name of the button to Back.

5. Add the following code to the Back button:
on mouseUp
 go to card "Main"
end mouseUp

6. Drag a Scrolling List Field onto the card and make the following customizations using
the properties inspector:

1. Set the width to 416 and the height to 198.

2. Set the location to 240, 161

3. Set the name of the field to viewPort.

7. At the card level of the View card, enter the following code:

on openCard
 global dbID
 local tSQL, tResults

 # SECTION ONE
 put empty into fld "viewPort"

 # SECTION TWO
 put "SELECT * from inventory;" into tSQL
 put revDataFromQuery(tab,return,dbID,tSQL) into
 tResults
 put tResults into fld "viewPort"
end openCard

Objective Complete - Mini Debriefing
Now that you completed the steps in this task, you have a method of retrieving and
displaying the contents of the database's inventory table. Your interface for the View
card should be similar to the following screenshot:

Project 8

207

Classified Intel
When you save your mobile application as a standalone application, you will need to include
the appropriate database support. This setting is available in the Standalone Application
Settings window. The following screenshot provides the details:

Creating the My Database Mobile App

208

Creating the Query card and
functionality

The last thing for us to accomplish is to provide users with the ability to request specific data
from their database. This is accomplished through the use of SQL commands.

Engage Thrusters
1. Add the following code to the Query button's script on the Main card:

on mouseUp
 go to card "query"
end mouseUp

2. Create a new card and name it Query.

3. Drag a Label field onto the card Query and make the following customizations using
the properties inspector:

1. Set the width to 470 and the height to 36.

2. Set the location to 239, 26.

3. Set the name of the field to Title.

4. Set the text size to 24.

5. Center-align the text.

6. Change the contents to Query My Database.

7. Set the foreground color to black.

4. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 53, 299

3. Set the name of the button to Back.

5. Add the following code to the Back button.
on mouseUp
 go to card "Main"
end mouseUp

Project 8

209

6. At the card level of the "Query" card, enter the following code:

/*
Functionality for this card is
part of the Hotshot Challenge
at the end of the chapter.
*/

Objective Complete - Mini Debriefing
In this task, we created the shell and navigation controls for the Query card. Functionality
requires moderate to advanced SQL statements, which is beyond the scope of this book.
It is not all that difficult and so it is being left for you to handle in the Hotshot Challenge.

Your interface should be similar to the following screenshot:

Mission Accomplished
You did it! Database work is not the easiest and it might not be as much fun as
programming games. As you have seen, LiveCode does some of the heavy lifting
when it comes to database work.

We created a simple My Database mobile application that supports the creation, opening,
closing, and viewing of database data. We even included functionality to create an inventory
table and upload data in to that table of the database.

Creating the My Database Mobile App

210

Your completed user interface should be similar to the following screenshot:

A Hotshot Challenge
For this Hotshot Challenge, you will make modifications to the My Database App. Accomplish
the following to complete your challenge:

 f Make the appropriate changes to the Create button's functionality so that when
a new database is created, there is a check to see if that database already exists.
This will prevent the user from accidentally overwriting their database.

 f Add error checking to the Close button so that an error is displayed in the
transaction log when a user attempts to close a database that is not open.

 f Complete the functionality on the Query card.

Good luck!

Project 9
Advanced Fun

with the Advanced
Fun Mobile App

In this project, we will create the Advanced Fun mobile app. We will use six of LiveCode's
more advanced features and put them all in one app. Our app will contain a main menu
with buttons leading to six cards, each featuring a different advanced feature.

As you start developing more advanced mobile applications with LiveCode, you'll likely need
to use one or more of the features covered in this project. Keep your project ideas in mind
while you work through this project.

Mission Briefing
Our mobile app will consist of one stack and seven cards. The first card will present the user
with a simple interface that provides the following six options:

 f All About Me: We will demonstrate what information LiveCode can determine
about the user's device

 f Traveler: This option will demonstrate both drag-and-drop functionality along with
contextually aware objects

 f Script Grabber: We will have objects give other objects scripts

 f Custom Properties: Here we will have LiveCode supporting custom properties
of objects

Advanced Fun with the Advanced Fun Mobile App

212

 f Textual Fun: Here we will demonstrate how to evaluate and manipulate text

 f Arrays: Our final option will focus on arrays as variables

Each of the six options listed will be featured on separate cards within the same main stack.

Here is a mockup of our app's main interface:

Why Is It Awesome?
LiveCode is a full-featured and very capable programming language. Our Advanced Fun
mobile app project will feature some of LiveCode's more advanced features. It is important
to have a good understanding of all your programming language's capabilities while you are
developing mobile apps. When you know what LiveCode's capabilities are, you are more apt
to use them to your advantage. When appropriate, you can use the advanced features to
make your app more efficient, interesting, and fun.

Your Hotshot Objectives
We have eight primary tasks to complete in order to realize our vision of the Advanced Fun
mobile app. They are as follows:

 f Creating the main stack

 f Creating the user interface

 f Programming the All About Me option

Project 9

213

 f Programming the Traveler option

 f Programming the Script Grabber option

 f Programming the Custom Properties option

 f Programming the Textual Fun option

 f Programming the Arrays option

Creating the main stack
Our first task is to create the main stack for our Advanced Fun mobile app. For this
application, we will only have one stack and seven cards.

Engage Thrusters
1. Let's begin by creating a new main stack named Advanced Fun. Using the

properties inspector, make the following customizations to the main stack:

1. Change the size of the stack to 480 x 320 pixels. This will give us a
landscape orientation.

2. Set the name of the stack to AdvancedFun.

3. Set the title of the stack to Advanced Fun.

4. Set the background color to white.

2. Rename the default card to Main.

3. Save the stack.

Objective Complete - Mini Debriefing
When we created the main stack, LiveCode created a default card for us. In our next task,
we will configure the default card to house our main user interface.

Creating the user interface
In this task, we will create the user interface. The app's interface will consist of a title label
and six rectangular buttons.

As you work through the steps in this task, refer back to the interface mockup so you have a
clear picture of what we are doing.

Advanced Fun with the Advanced Fun Mobile App

214

Engage Thrusters
1. Drag a Label field onto the card Main and make the following customizations using

the properties inspector:

1. Set the width to 470 and the height to 36.

2. Set the location to 239, 26.

3. Set the name of the field to Title.

4. Set the text size to 24.

5. Embolden and center the text.

6. Change the contents to Advanced Fun.

7. Set the text (foreground color) to black.

2. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 160 and the height to 23.

2. Set the location to 239, 85.

3. Set the name of the button to AboutMe.

4. Set the label of the button to All About Me.

5. Set the fill (background color) to blue.

6. Set the text (foreground color) to white.

7. Set the text size to 14.

8. Embolden the text.

9. Add the following script to this button:

 on mouseUp
 go to card (short name of me)
 end mouseUp

3. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 160 and the height to 23.

2. Set the location to 239, 124.

3. Set the name of the button to Traveler.

4. Set the label of the button to Traveler.

5. Set the background color to blue.

6. Set the foreground color to white.

Project 9

215

7. Set the text size to 14.

8. Bold the text.

9. Add the following script to this button:

 on mouseUp
 go to card (short name of me)
 end mouseUp

4. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 160 and the height to 23.

2. Set the location to 239, 163.

3. Set the name of the button to ScriptGrabber.

4. Set the label of the button to Script Grabber.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 14.

8. Embolden the text.

9. Add the following script to this button:

 on mouseUp
 go to card (short name of me)
 end mouseUp

5. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 160 and the height to 23.

2. Set the location to 239, 201.

3. Set the name of the button to CustomP.

4. Set the label of the button to Custom Properties.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 14.

8. Embolden the text.

9. Add the following script to this button:
 on mouseUp
 go to card (short name of me)
 end mouseUp

Advanced Fun with the Advanced Fun Mobile App

216

6. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 160 and the height to 23.

2. Set the location to 239, 240.

3. Set the name of the button to TextFun.

4. Set the label of the button to Textual Fun.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 14.

8. Embolden the text.

9. Add the following script to this button:

 on mouseUp
 go to card (short name of me)
 end mouseUp

7. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 160 and the height to 23.

2. Set the location to 239, 279.

3. Set the name of the button to Arrays.

4. Set the label of the button to Arrays.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 14.

8. Embolden the text.

9. Add the following script to this button:
 on mouseUp
 go to card (short name of me)
 end mouseUp

Objective Complete - Mini Debriefing
After completing the seven steps in this section, your interface should look similar
to the following screenshot. Our interface is simple with just one text label and six
rectangular buttons.

Project 9

217

Classified Intel
For each button, we added the script go to card (short name of me). In the next six
tasks, we will create additional six cards. By giving the cards the same name as the buttons,
we can refer to them more easily. This is another advanced feature.

Programming the All About Me option
For this task we will create a new card with one button and one text field. Next, we will add a
script to the button that displays information about the user's device in the text field.

Engage Thrusters
1. Create a new card and name it AboutMe.

2. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 49, 17.

3. Set the name of the button to Back.

4. Set the label of the button to Back.

5. Set the background color to blue.

6. Set the foreground color to white.

Advanced Fun with the Advanced Fun Mobile App

218

7. Set the text size to 12.

8. Add the following script to the Back button.

 on mouseUp
 go to card "Main"
 end mouseUp

3. Drag a Default Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 200 and the height to 23.

2. Set the location to 240, 56.

3. Set the name of the button to Action.

4. Set the label of the button to What do I know?.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 14.

8. Embolden the text.

4. Drag a Scrolling Field onto the card and make the following customizations using the
properties inspector:

1. Set the width to 384 and the height to 148.

2. Set the location to 240, 180.

3. Set the name of the button to Output.

5. Add the following code to the card AboutMe:
on openCard
 put empty into fld "Output"
end openCard

This code will ensure each time the user selects the All About Me option that the
Output field will be empty.

6. Add the following script to the Action button:
on mouseUp
 local sect1, sect2, sect3, sect4
 local tOS, tMemory

 # SECTION ONE
 put empty into fld "output"

Project 9

219

 # SECTION TWO
 put "Today is : " & the date & return & \
 "The time is: " & the time into sect1

 # SECTION THREE
 put "Your host name is: " & the hostname & return & \
 "Your IP Address is: " & the hostNameToAddress of the
hostName into sect2

 # SECTION FOUR
 put "Your system is: " & the systemVersion into sect3

 # SECTION FIVE
 put hasMemory(3*1024*1024) into tMemory
 if tMemory then
 put "You have at least 3 MB of RAM available" into sect4
 else
 put "You have less than 3 MB of RAM available" into sect4
 end if

 # SECTION SIX
 put sect1 & return & sect2 & return & sect3 & return & sect4
into fld "output"
end mouseUp

We start this button's code by declaring several local variables. The rest of our code
is organized into four sections. Each of these sections uses the corresponding local
variable (sect1, sect2, sect3, or sect4) to store the results for later output.

The tOS variable stores the user's operating system, and the tMemory variable is
used in the fifth section.

The first section of the script simply clears the Output field by putting empty into
it. The second section gets the date and time from the user's system and puts the
formatted results into the variable sect1. The third section of our script obtains
the hostname and IP address of the user's device. This information is placed in
the sect2 local variable. The fourth section gets and displays the system version
of the user's device. If the user's device is a Mac, the systemVersion function
returns three integers such as 10.7.5. If the user is using Windows, the function
will return a string beginning with the word Windows. In the case of mobile devices,
the systemVersion function will return the actual version of the OS such as 5.1 or
6.0.1. The output for this section is put in the sect3 local variable.

Advanced Fun with the Advanced Fun Mobile App

220

The code in the fifth section determines if the user's device has at least 3 MB of
memory available using the hasMemory() function. This function returns true
if the specified amount of memory is available to the user; otherwise false is
returned. Our code formats the output and places it in the sect4 local variable.

In our final section of code, the sixth section, we simply display the contents of the
sect1, sect2, sect3, and sect4 local variables, separated by a return, in the
Output field.

Objective Complete - Mini Debriefing
As you can see in the following sample output screenshot, we have completed this task and
have the ability to see information about our system. Some of the output was blacked out
for security purposes.

Programming the Traveler option
For this task, we will create an interface that permits the user to drag-and-drop an object
over one of three geographic areas. We will add code so that the system can tell us where
the user dropped the object.

Project 9

221

Engage Thrusters
1. Create a new card and name it Traveler.

2. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 49, 17.

3. Set the name of the button to Back.

4. Set the label of the button to Back.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 12.

8. Add the following script to the Back button:

 on mouseUp
 go to card "Main"
 end mouseUp

3. Drag a Label field onto the card Traveler and make the following customizations
using the properties inspector:

1. Set the width to 378 and the height to 21.

2. Set the location to 283, 18.

3. Set the name of the field to Instructions.

4. Set the text size to 14.

5. Embolden and center the text.

6. Change the contents to Drag the car to a country.

7. Set the foreground color to black.

4. Import the US_140x93.png image file to the Traveler card and make the following
customizations using the properties inspector:

1. Set the location to 92, 202.

2. Change the name of the image to US.

5. Import the UK_93x145.png image file to the Traveler card and make the following
customizations using the properties inspector:

1. Set the location to 240, 176.

2. Change the name of the image to UK.

Advanced Fun with the Advanced Fun Mobile App

222

6. Import the IT_115x145.png image file to the Traveler card and make the following
customizations using the properties inspector:

1. Set the location to 395, 174.

2. Change the name of the image to IT.

7. Import the car.png image file to the Traveler card and make the following
customizations using the properties inspector:

1. Set the location to 92, 78.

8. Drag a Label field onto the Traveler card and make the following customizations
using the properties inspector:

1. Set the width to 438 and the height to 27.

2. Set the location to 239, 295.

3. Set the name of the field to Results.

4. Set the text size to 12.

5. Embolden and center the text.

6. Set the foreground color to black.

9. Add the following script at the card level on the Traveler card:
on preOpenCard
 set the loc of img "car.png" to 92,78
 put empty into fld "Results"
end preOpenCard

This code will reset the location of the car image and ensure that no text is displayed
in the Results field.

10. Add the following code to the car.png image:

on mouseDown
 grab me
end mouseDown

on mouseUp
 if the loc of me is within the rect of img "US" then
 put "You are in the United States" into fld "Results"
 else if the loc of me is within the rect of img "UK" then
 put "You are in the United Kingdom" into fld "Results"
 else if the loc of me is within the rect of img "IT" then

Project 9

223

 put "You are in Italy" into fld "Results"
 else
 put "You are no where special" into fld "Results"
 end if
end mouseUp

There are two parts to the code we just entered. First is the mouseDown handler.
When the user clicks or taps the car, they will have essentially grabbed or selected
the object to be moved. Now the user can freely move the car around the screen.
When the player releases the car object, the mouseUp handler will be executed.

The mouseUp handler simply checks to see if the car is located inside one of the
country rectangles. An appropriate message is displayed in the Results field.

Objective Complete - Mini Debriefing
Having followed the 10 steps in this task, your user interface should be similar to the
following screenshot:

Advanced Fun with the Advanced Fun Mobile App

224

As you can see in the following screenshot, the car has been moved to Italy and the results
are displayed at the bottom of the screen:

Programming the Script Grabber
option

For this task, we will create a new ScriptGrabber card and add functionality so that a Try Me
button's script can be changed during program execution.

Engage Thrusters
1. Create a new card and name it ScriptGrabber.

2. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 49, 17.

3. Set the name of the button to Back.

4. Set the label of the button to Back.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 12.

Project 9

225

8. Add the following script to the Back button.

 on mouseUp
 go to card "Main"
 end mouseUp

3. Drag a Label field onto the ScriptGrabber card and make the following
customizations using the properties inspector:

1. Set the width to 378 and the height to 21.

2. Set the location to 283, 18.

3. Set the name of the field to Instructions.

4. Set the text size to 14.

5. Embolden and center the text.

6. Change the contents to Pick a Script to Grab.

7. Set the foreground color to black.

4. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 217, 61.

3. Set the name of the button to Normal.

4. Set the label of the button to Normal.

5. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 365, 61.

3. Set the name of the button to Opposite.

4. Set the label of the button to Opposite.

6. Drag a Push Button onto the card and make the following customizations using the
properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 291, 99.

3. Set the name of the button to Try Me.

4. Set the label of the button to Try Me.

Advanced Fun with the Advanced Fun Mobile App

226

7. Drag a Scrolling Field onto the card and make the following customizations using the
properties inspector:

1. Set the width to 384 and the height to 148.

2. Set the location to 248, 206.

3. Set the name of the button to Output.

8. Add the following code to the ScriptGrabber card:
on preOpenCard
 set the script of btn "Try Me" to empty
 --
 put empty into fld "Output"
end preOpenCard

This code accomplishes two things just prior to the ScriptGrabber card being
opened. First, it removes any scripts assigned to the Try Me button. Second,
it clears out the Output text field.

9. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 103, 297.

3. Set the name of the button to btnNormal.

4. Add the following code to this button:
 on mouseUp
 put "Normal: Up means Up" into fld "Output"
 end mouseUp

 on mouseDown
 put "Normal: Down means Down" into fld "Output"
 end mouseDown

5. Set Visible of the button to false.

The code for this button will send text messages to the Output field to indicate that
the normal button code is being used.

Project 9

227

10. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 205, 297.

3. Set the name of the button to btnOpposite.

4. Add the following code to this button:
 on mouseUp
 put "Opposite: Up means Down" into fld "Output"
 end mouseUp

 on mouseDown
 put "Opposite: Down means Up" into fld "Output"
 end mouseDown

5. Set Visible of the button to false.

The code for this button will send text messages to the Output field to
indicate that the normal button code is being used.

11. Add the following code to the Normal button:
on mouseUp
 set the script of btn "Try Me" to script of btn "btnNormal"
end mouseUp

This code will copy the script from the btnNormal button to the Try Me button.

12. Add the following code to the Opposite button:

on mouseUp
 set the script of btn "Try Me" to script of btn "btnOpposite"
end mouseUp

This code will copy the script from the btnOpposite button to the Try Me button.

Advanced Fun with the Advanced Fun Mobile App

228

Objective Complete - Mini Debriefing
After you complete the 12 steps outlined in this task, you will have an interface on your
ScriptGrabber card similar to the following screenshot:

As you can see, the Try Me button can emulate the code from either hidden button
(Normal and Opposite).

Classified Intel
Assigning scripts to objects is an advanced technique afforded to us by LiveCode. There
are, of course, limitations to how many lines of a script you can assign to objects once
the program is running. By default, you can use up to 10 statements.

Programming the Custom Properties
option

Custom properties provide us with tremendous flexibility to manage objects in our mobile
apps. Objects in LiveCode have properties such as location, rect, size, various colors, and
countless other properties. What if you want to create an object such as an avatar for a
mobile game? You might want to give it properties such as health, stamina, coins, dexterity,
age, hair color, and more. LiveCode affords us that type of programming flexibility.

In this task, we will create a car with custom properties.

Project 9

229

Engage Thrusters
1. Create a new card and name it CustomP.

2. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 49, 17.

3. Set the name of the button to Back.

4. Set the label of the button to Back.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 12.

8. Add the following script to the Back button.
 on mouseUp
 go to card "Main"
 end mouseUp

3. Drag a Label field onto the card CustomP and make the following customizations
using the properties inspector:

1. Set the width to 378 and the height to 21.

2. Set the location to 283, 18.

3. Set the name of the field to Instructions.

4. Set the text size to 14.

5. Embolden and center the text.

6. Change the contents to Click Buttons to learn about me.

7. Set the foreground color to black.

4. Import the car.png image file to the CustomP card and make the following
customizations using the properties inspector:

1. Set the location to 240, 160.

2. Change the name to car.

Advanced Fun with the Advanced Fun Mobile App

230

5. Select the car image and select Custom Properties in the properties inspector.
Refer to the following screenshot:

To add custom properties, you will click on the plus sign in the Custom Properties
area of the Custom Properties dialog window. When you do this, a pop-up input box
appears. Enter the name of your custom property there.

Project 9

231

In this dialog box, enter color and click on the OK button or tap the return (Mac)/
Enter (Windows) key.

6. Now that you have created the first custom property of your car, you need to
assign it a value. With the new custom property name selected, type black in
the Property Contents input box. Refer to the following screenshot for details:

Advanced Fun with the Advanced Fun Mobile App

232

7. Add the following additional custom properties for the car image:

Custom property Property content
year 2013

wheels 4

doors 2

body sport

miles 10,319

speed 139

8. Drag a Label field onto the CustomP card and make the following customizations
using the properties inspector:

1. Set the width to 148 and the height to 34.

2. Set the location to 238, 207.

3. Set the name of the field to Property.

4. Set the text size to 14.

5. Embolden and center the text.

6. Set the foreground color to black.

9. At the card level, add the following code to the CustomP card:
on preOpenCard
 put empty into fld "Property"
end preOpenCard

This code will ensure that the Property label is blank when the card is first opened.

10. Drag a Rectangle Button onto the CustomP card and make the following
modifications using the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 77, 97.

3. Set the name of the button to color.

4. Add the following script to the button:

 on mouseUp
 local tProp

 put the short name of me into tProp
 put the tProp of img "car" into fld "Property"
 end mouseUp

Project 9

233

This code will display the property contents for the color custom property. The
output will be displayed in the Property field that we placed just under the car.

11. Drag a Rectangle Button onto the CustomP card and make the following
modifications using the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 77, 152.

3. Set the name of the button to body.

4. Add the following script to the button:

 on mouseUp
 local tProp

 put the short name of me into tProp
 put the tProp of img "car" into fld "Property"
 end mouseUp

This code will display the property contents for the body custom property.
The output will be displayed in the Property field that we placed just under
the car.

12. Drag a Rectangle Button onto the CustomP card and make the following
modifications using the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 77, 207.

3. Set the name of the button to doors.

4. Add the following script to the button:

 on mouseUp
 local tProp

 put the short name of me into tProp
 put the tProp of img "car" into fld "Property"
 end mouseUp

This code will display the property contents for the doors custom property.
The output will be displayed in the Property field that we placed just under
the car.

Advanced Fun with the Advanced Fun Mobile App

234

13. Drag a Rectangle Button onto the CustomP card and make the following
modifications using the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 240, 97.

3. Set the name of the button to speed.

4. Add the following script to the button:

 on mouseUp
 local tProp

 put the short name of me into tProp
 put the tProp of img "car" into fld "Property"
 end mouseUp

This code will display the property contents for the speed custom property.
The output will be displayed in the Property field that we placed just under
the car.

14. Drag a Rectangle Button onto the CustomP card and make the following
modifications using the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 405, 97.

3. Set the name of the button to year.

4. Add the following script to the button:

 on mouseUp
 local tProp

 put the short name of me into tProp
 put the tProp of img "car" into fld "Property"
 end mouseUp

This code will display the property contents for the year custom property.
The output will be displayed in the Property field that we placed just under
the car.

Project 9

235

15. Drag a Rectangle Button onto the CustomP card and make the following
modifications using the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 405, 152.

3. Set the name of the button to miles.

4. Add the following script to the button:

 on mouseUp
 local tProp

 put the short name of me into tProp
 put the tProp of img "car" into fld "Property"
 end mouseUp

This code will display the property contents for the miles custom property.
The output will be displayed in the Property field that we placed just under
the car.

16. Drag a Rectangle Button onto the CustomP card and make the following
modifications using the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 405, 207.

3. Set the name of the button to wheels.

4. Add the following script to the button:

 on mouseUp
 local tProp

 put the short name of me into tProp
 put the tProp of img "car" into fld "Property"
 end mouseUp

This code will display the property contents for the wheels custom property.
The output will be displayed in the Property field that we placed just under
the car.

Advanced Fun with the Advanced Fun Mobile App

236

Objective Complete - Mini Debriefing
With the 16 steps in this task completed, we will have a fully functional example of using
custom properties. The user interface should be similar to the following screenshot:

Classified Intel
You cannot create custom properties whose name is already in use by LiveCode such as style.
If your new custom property name clashes with a built-in reserved word, LiveCode will let
you know with a friendly error message.

Programming the Textual Fun option
LiveCode provides us with powerful control over text. We can evaluate entire strings, lines,
chunks, words, or individual characters. In this task, we will have a little bit of fun with input
provided to us by the user. We will create a new card titled TextFun that will simply ask the
user for input and present a Process button. Once that button is clicked/tapped, our code
will do the rest.

Project 9

237

Engage Thrusters
1. Create a new card and name it TextFun.

2. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 49, 17.

3. Set the name of the button to Back.

4. Set the label of the button to Back.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 12.

8. Add the following script to the Back button.

 on mouseUp
 go to card "Main"
 end mouseUp

3. Drag a Label field onto the card TextFun and make the following customizations
using the properties inspector:

1. Set the width to 168 and the height to 28.

2. Set the location to 98, 61.

3. Set the name of the field to Instructions.

4. Set the text size to 12.

5. Embolden and left-align the text.

6. Set the foreground color to black.

4. Drag a Text Entry Field onto the TextFun card and make the following customizations
using the properties inspector:

1. Set the width to 272 and the height to 21.

2. Set the location to 318, 61.

3. Set the name of the field to userInput.

Advanced Fun with the Advanced Fun Mobile App

238

5. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 21.

2. Set the location to 413, 92.

3. Set the name of the button to Process.

4. Set the label of the button to Process.

6. Drag a Scrolling Field onto the card and make the following customizations using the
properties inspector:

1. Set the width to 384 and the height to 148.

2. Set the location to 248, 206.

3. Set the name of the button to Output.

7. Add the following code to the card level of the TextFun card:
on preOpenCard
 put empty into fld "userInput"
 put empty into fld "Output"
end preOpenCard

This code empties the user input text field and the Output scrolling text field each
time the card is opened.

8. Add the following code to the Process button:
on mouseUp
 local theInput, sect1, sect2, sect3, sect4, sect5
 local tVowel, tConsonant, tOther, tBackwards, tReverse

 # SECTION ONE
 put empty into fld "Output"
 put the text of fld "userInput" into theInput
 put 0 into tVowel
 put 0 into tConsonant
 put 0 into tOther

 # SECTION TWO
 put "Words: " & the number of words of theInput & \
 return & "First Word: " & word 1 of theInput & \
 return & "Last Word: " & last word of theInput into sect1

 # SECTION THREE
 put "Characters: " & the number of chars of theInput into sect2

Project 9

239

 # SECTION FOUR
 repeat with x = 1 to (the len of theInput)
 if char x of theInput is among the chars of "aeiou" then
 add 1 to tVowel
 else if char x of theInput is among the chars of
"bcdfghjklmnpqrstvwxyz" then
 add 1 to tConsonant
 else
 add 1 to tOther
 end if
 end repeat
 put "Vowels: " & tVowel & return & \
 "Consonants: " & tConsonant & return & \
 "Special Characters: " & tOther into sect3

 # SECTION FIVE
 repeat with x = the len of theInput down to 1
 put char x of theInput after tBackwards
 end repeat
 put "Backwards: " & tBackwards into sect4

 # SECTION SIX
 repeat with x = the number of words of theInput down to 1
 put word x of theInput after tReverse
 put space after tReverse
 end repeat
 put "Reverse Words: " & tReverse into sect5

 # SECTION SEVEN
 put sect1 & return & sect2 & return & sect3 & return & \
 sect4 & return & sect5 into fld "Output"
end mouseUp

Our code starts by declaring 11 local variables. Here, each of these variables will be
discussed in the related section of code.

The code in the first section accomplishes a few things. First, it puts empty into the
Output field. We do this to avoid confusion. Next, we take the user input and put it
into the theInput variable. This makes referencing the user's text more efficient in
later code. The third thing this section of code does is to put zero (0) into three local
variables: tVowel, tConsonant, and tOther. If we do not put a numeric value
in these variables, we run the risk of future errors. If we never use one of those
variables and did not initialize it, any attempt to use that variable would result in
unwanted results.

Advanced Fun with the Advanced Fun Mobile App

240

The second section of the code calculates the number of words, the first word, and
the last word of the user input. We can simply use the number of words, word
1, and last word to obtain those results.

In the third section, we determine the number of characters by using the number
of characters of theInput statement. Note that even spaces count
as characters.

The fourth section is a bit more complicated. Here we count how many of the
characters are vowels, how many are consonants, and how many are neither a
vowel or consonant. The easiest way to accomplish this is to use a repeat loop
using a local variable that starts at one (1) and goes to the last character, which we
can determine by using the len or the length. As you can see with the provided
code, for each character we evaluate it using the is among function.

In the fifth section, we have another repeat loop that starts with the last letter
and works backwards to the first letter. Each character is put into a local variable,
one after the other.

The sixth section is similar to the code in the fifth section. The difference is that
in the fifth section, we used the repeat loop to go through the user input one
character at a time. With the sixth section's code, we loop through the input one
word at a time. Words are delineated by spaces.

Finally, the seventh section is where we combine the previous sectional inputs and
post the results in the Output field.

Objective Complete - Mini Debriefing
With the 8 steps in this task completed, we will have a fully functional example of using
custom properties. The user interface should be similar to the following screenshot:

Project 9

241

Programming the Arrays option
Arrays are a way to organize data in memory. You can think of arrays as being as simple as
a list or as complicated as a spreadsheet. We use arrays in programming to help make our
code efficient and to logically store data.

In this task we will create an array, populate it, sort it, and search it.

Engage Thrusters
1. Create a new card and name it Arrays.

2. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 49, 17.

3. Set the name of the button to Back.

4. Set the label of the button to Back.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 12.

8. Add the following script to the Back button:

 on mouseUp
 go to card "Main"
 end mouseUp

3. Drag a Scrolling Field onto the card and make the following customizations using the
properties inspector:

1. Set the width to 384 and the height to 164.

2. Set the location to 248, 214.

3. Set the name of the button to Output.

4. Set Three D to false.

Advanced Fun with the Advanced Fun Mobile App

242

4. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 73, 79.

3. Set the name of the button to Create.

4. Set Three D to false.

5. Add the following script to the Create button:

 on mouseUp
 global gArrayFun

 put empty into gArrayFun
 put "gArrayFun Array initialized" into fld "Output"
 end mouseUp

This code initializes the global array gArrayFun and puts an appropriate
message in our output box. Refer to the following screenshot for details:

Project 9

243

5. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 185, 79.

3. Set the name of the button to Populate.

4. Set Three D to false.

5. Add the following script to the Populate button.

 on mouseUp
 global gArrayFun
 local tOutput

 # SECTION ONE
 put "American Buffalo" into gArrayFun[1]
 put "Wild Pig" into gArrayFun[2]
 put "Komodo Dragon" into gArrayFun[3]
 put "Prairie Dog" into gArrayFun[4]
 put "Giant Panda" into gArrayFun[5]
 put "Water Buffalo" into gArrayFun[6]
 put "Elephant Seal" into gArrayFun[7]
 put "Irish Setter" into gArrayFun[8]
 put "Sea Urchin" into gArrayFun[9]
 put "Guinea Pig" into gArrayFun[10]

 # SECTION TWO
 repeat with x = 1 to 10
 put gArrayFun[x] & return after tOutput
 end repeat

 put tOutput into fld "Output"
 end mouseUp

Advanced Fun with the Advanced Fun Mobile App

244

The first section of this code populates 10 animal names into the array. Each
array location is referenced in brackets after the array name. In the second
section, the code steps through the array, populating the local variable
tOuptut, one line at a time with the values held in the array. As you can
see from the following screenshot, the array values are displayed as they
were entered, not in any other order:

6. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 297, 79.

3. Set the name of the button to Sort.

4. Set Three D to false.

5. Add the following script to the Sort button:

 on mouseUp
 global gArrayFun
 local tData

 # SECTION ONE
 combine gArrayFun using return
 sort lines of gArrayFun
 put gArrayFun into fld "Output"

Project 9

245

 # SECTION TWO
 put gArrayFun into tData
 repeat with x = 1 to 10
 put line x of tData into gArrayFun[x]
 end repeat
end mouseUp

This code does two things. First, in the first section, it uses the combine
function to convert our gArrayFun[] array into a regular variable. This
allows us to sort the new variable's lines. At the end of this section's code,
we output the sorted results in our Output field.

In the second section, we need to put the sorted data back into an array.
We do this by stepping through a repeat loop, one variable at a time until
all values are back in the array. This time, they are in the sorted order. Here
is a screenshot of our results:

7. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 82 and the height to 23.

2. Set the location to 409, 79.

3. Set the name of the button to Search.

4. Set Three D to false.

Advanced Fun with the Advanced Fun Mobile App

246

5. Add the following script to the Search button:

 on mouseUp
 global gArrayFun
 local userInput, tResults

 # SECTION ONE
 ask "What do you want to search for?" titled
 "Enter Search Criteria"
 put it into userInput

 # SECTION TWO
 repeat with x = 1 to 10
 if userInput is among the words of gArrayFun[x] then
 put gArrayFun[x] & return after tResults
 end if
 end repeat

 # SECTION THREE
 put "Your Search Results:" & return & tResults into
 fld "Output"
 end mouseUp

In the first section of this code, we prompt the user for input and place
that input into the userInput local variable. For testing, you can use the
word Pig, as there are multiple occurrences of it in our array. Refer to the
following screenshot for details:

Project 9

247

In the second section, we use a repeat loop to check each value in our
array. We are checking to see if the search criterion we entered (Pig) is
contained (is among) the array values. If we find a match, we add the
full array value and a return in the tResults local variable.

In the third section, we output the results to the Output field. Refer to the
following screenshot for results:

8. At the card level, add the follow script to the Arrays card:

on preOpenCard
 put empty into fld "Output"
end preOpenCard

This script simply clears the output scrolling list field each time the card is opened.

Advanced Fun with the Advanced Fun Mobile App

248

Objective Complete - Mini Debriefing
We completed this task in only eight steps. Our ArrayFun card has functionality to create,
populate, sort, and search our array. Our final UI, before any of the buttons are selected,
is depicted in the following screenshot:

Mission Accomplished
Our project consisted of creating a single mobile application that demonstrates six sets of
advanced features of LiveCode. Our main interface is shown in the following screenshot:

Project 9

249

The advanced features we demonstrated included detecting system information,
contextually aware objects, assigning scripts to objects programmatically, assigning
and using custom properties, evaluating and manipulating text, and arrays.

A Hotshot Challenge
Your Hotshot challenge for this project has the following two parts:

 f Part 1: Revisit the All About Me functionality we created in the first task. Modify the
code so that you can precisely (within 1 MB) display how much RAM is available to
a user .

 f Part 2: Update the ArraysFun card functionality so that the appropriate error
handling is in place. For example, you cannot search or sort an array that has
not been created or populated.

Good luck!

Project 10
In-app Purchases and

Advertising for iOS
and Android

There are three primary ways to make money from mobile applications. The most traditional
method is to sell your app via the app store / marketplace associated with your distribution
platform (that is, iOS or Android). Two additional methods of earning revenue are to allow
users to purchase digital goods from within your app and to support third-party advertising.
In this project, we will explore how to implement in-app purchases and advertising using
LiveCode.

Mission Briefing
For this final project, we will build an application that incorporates in-app purchasing and
in-app advertising. There will be some specific differences in how we implement these
schemas depending upon our targeted development platform. We will highlight those
differences so there is no confusion.

Our application will consist of a single stack and single card housing a simple user interface.
We will have a title, five buttons, and an on-screen persistent ad.

We will call our app IAPAA for in-app purchases and advertising.

In-app Purchases and Advertising for iOS and Android

252

The following diagram is a mockup of our app's main interface:

Why Is It Awesome?
This project will help you learn how to implement in-app purchasing and advertising using
LiveCode. This is an important skillset to have. The good news is that it is not terribly difficult.
Once you complete this project, you will be able to incorporate in-app advertising and
purchasing in your own mobile apps.

You will learn how to implement these two important features for both iOS and
Android devices.

Your Hotshot Objectives
In order to complete this project, you will progress through the following tasks:

 f Creating the main stack

 f Creating the user interface

 f Integrating on-load advertising

 f Integrating banner advertising

Project 10

253

 f Integrating Full Screen Ad #1

 f Integrating Full Screen Ad #2

 f Integrating in-app purchases

Creating the main stack
Let's start by creating the main stack for our IAPAA mobile app. For this application, we will
only have one stack and one card. First, we will create the main stack.

Engage Thrusters
1. Let's begin by creating a new main stack named IAPAA. Using the properties

inspector, make the following customizations to the main stack:

1. Change the size of the stack to 480 x 320 pixels. This will give us a
portrait orientation.

2. Set the name of the stack to IAPAA.

3. Set the title of the stack to IAPAA.

4. Set the background color to white.

2. Rename the default card to Main.

Objective Complete - Mini Debriefing
When we created the main stack, LiveCode created a default card for us. In our next task,
we will configure the Main card to house our user interface.

Creating the user interface
You are now ready to create the user interface for your IAPAA mobile application.
Our interface will only consist of a single title and five buttons.

Engage Thrusters
1. Drag a Label field onto the card Main and make the following customizations using

the properties inspector:

1. Set the width to 316 and the height to 36.

2. Set the location to 160, 38.

3. Set the name of the field to Title.

In-app Purchases and Advertising for iOS and Android

254

4. Set the text size to 24.

5. Bold and center-align the text.

6. Change the contents to IAPAA.

7. Set the foreground color to black.

2. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 275 and the height to 36.

2. Set the location to 160, 102.

3. Set the name of the button to coins_10.

4. Set the label of the button to Purchase 10 Coins.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 18.

8. Bold the text.

3. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 275 and the height to 36.

2. Set the location to 160, 163.

3. Set the name of the button to coins_100.

4. Set the label of the button to Purchase 100 Coins.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 18.

8. Bold the text.

4. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 275 and the height to 36.

2. Set the location to 160, 223.

3. Set the name of the button to full_ad1.

4. Set the label of the button to Full Screen Ad #1.

Project 10

255

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 18.

8. Bold the text.

5. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 275 and the height to 36.

2. Set the location to 160, 284.

3. Set the name of the button to full_ad2.

4. Set the label of the button to Full Screen Ad #2.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 18.

8. Bold the text.

6. Drag a Rectangle Button onto the card and make the following customizations using
the properties inspector:

1. Set the width to 275 and the height to 36.

2. Set the location to 160, 344.

3. Set the name of the button to hotshot.

4. Set the label of the button to Hotshot Challenge.

5. Set the background color to blue.

6. Set the foreground color to white.

7. Set the text size to 18.

8. Bold the text.

Objective Complete - Mini Debriefing
The user interface was pretty quick to create. We only added one text label and five buttons
to our main stack's default card. So far, we have not added any scripts to implement in-app
purchases or advertising. We will accomplish that in subsequent tasks.

In-app Purchases and Advertising for iOS and Android

256

Your interface should look similar to the following screenshot:

Classified Intel
You'll note that we left empty space at the bottom of our interface. That is where we will
place our banner ad in a later task.

Project 10

257

Integrating on-load advertising
There are a host of advertising agencies that support in-app mobile advertising. The one
we will use for this task is inner-active, an app monetization service. It supports several
types of advertising, all free to the developer. More importantly, RunRev, the owners of
LiveCode, have a partnership with inner-active. This makes integrating in-app advertising
relatively easy.

For this task, we will add an advertisement when the app is initially loaded. No changes to
our UI will be required.

Prepare for Lift Off
You will need to create a free account at inner-active. Their site is www.inner-active.com.
You will also need a LiveCode account (also free). You should have created your LiveCode
account when you obtained your copy of LiveCode.

Once you have these accounts, you will be ready to proceed with this task.

Engage Thrusters
1. Log in to your LiveCode account and select the Store link at the top of the page.

At the LiveCode store, select the Advertising link in the left-hand side navigation
pane. Refer to the following image for details:

2. Login to your inner-active account via the LiveCode site.

In-app Purchases and Advertising for iOS and Android

258

If you are new to inner-active, you should take the time to explore
the Settings tab where you can configure your profile information
to include payment details.

3. Select the Add App tab and enter the information as shown in the
following screenshot:

1. Select iPhone for the Platform.

2. Enter IAPAA for the App Name.

3. Leave the Store Download Link section blank.

4. Select Education for the Category.

5. Enter the following App Description: educational app to
demonstrate how in-app advertising and in-app purchasing
works for programmers.

6. Leave the Age Group set to All.

7. Select Yes for Use Location.

Project 10

259

4. Click the Create button to create a new App ID. In just a few moments, you will have
an App ID created for you. Take note of the App ID; you will use it in your mobile
application in the next step. This App ID will be used by inner-active to track the
amount of advertising your app receives.

Your App ID will be unique. The three19_IAPAA_iPhone App
ID is used in this project for illustrative purposes. You should
be sure to use your own App ID so that any ad revenue and
statistics are correctly attributed to you.

5. Next, we will add LiveCode script to our application so that a full screen ad will
be displayed each time the app is launched. Enter the following lines of code in
the Main card.

on preOpenCard
 mobileAdRegister "three19_IAPAA_iPhone"
 mobileAdCreate "Ad001", "full screen", (0,0)
end preOpenCard

LiveCode gives us the ability to add mobile advertising with as few as two lines of
code. Our first line of code makes a call to the mobileAdRegister command. We
pass this command the App ID created by inner-active. This command allows us to
use the App ID along with other LiveCode functions.

Our second line of code uses the mobileAdCreate command to instantiate the ad.
We passed three parameters to the command. First, we pass Ad001 as the name of
the ad. This can be anything we want it to be. We can reference the ad by the name
we assign just as if it were a global variable. The second parameter is full screen
as the type. LiveCode allows us the option to have a banner, text, or full screen ad.
If no type is passed, a banner ad will be created. Finally, we pass the top left pixel
location of our ad (0,0).

In-app Purchases and Advertising for iOS and Android

260

When you test the app in a simulator, or on your actual device, you should have a
full screen ad displayed as illustrated in the following screenshot:

Objective Complete - Mini Debriefing
In this task, we created an inner-active mobile app monetization account. Using that account
and two lines of code, we created a full screen ad that will be displayed each time the app
is loaded.

Project 10

261

Integrating banner advertising
In this task, we will add a banner advertisement to our main screen using the
mobileAdCreate command.

Engage Thrusters
Add the following code to the Main card script:

on openCard
 local adData

 put "30" into adData["refresh"]
 put "24" into adData["age"]
 put "Female" into adData["gender"]

 mobileAdCreate "Ad002", "banner", (0,410), adData
end openCard

This is the only code we need to add a banner advertisement on the main card. As you can
see, we created a local array called adData. We use this array to hold values for refresh,
age, and gender. There are additional attributes available including distribution id, phone
number, keywords, coordinates, and location.

For our example, we only use the refresh, age, and gender attributes. Refresh refers to
how often you want the ad to refresh. The default is two minutes, but you can enter a value
between 30 and 300 seconds. The age refers to the age of the target user. The gender value
can be male, female, m, or f.

The call to the mobileAdCreate command now includes the ad name (Ad002),
type (banner), location (0,410), and metadata (adData).

In-app Purchases and Advertising for iOS and Android

262

Objective Complete - Mini Debriefing
For this task we entered code in the openCard command to facilitate adding a banner on
the bottom of the application's main screen. We set the ad to refresh every 30 seconds
and targeted 24 year-old females. The following screenshot shows our work in action:

Integrating Full Screen Ad #1
Our next task is to program the button labelled Full Screen Ad #1. We will do this by adding
code to the full_ad1 button.

Project 10

263

Engage Thrusters
Add the following code to the button full_ad1:

on mouseUp

 # SECTION ONE
 set the vis of btn "coins_10" to false
 set the vis of btn "coins_100" to false
 set the vis of btn "full_ad1" to false
 set the vis of btn "full_ad2" to false
 set the vis of btn "movie_ad" to false

 # SECTION TWO
 mobileAdSetVisible "Ad002", false

 # SECTION THREE
 mobileAdCreate "Ad003", "text", (0,240)

 # SECTION FOUR
 wait 15 seconds
 mobileAdSetVisible "Ad003", false
 mobileAdSetVisible "Ad002", true
 --
 set the vis of btn "coins_10" to true
 set the vis of btn "coins_100" to true
 set the vis of btn "full_ad1" to true
 set the vis of btn "full_ad2" to true
 set the vis of btn "movie_ad" to true

end mouseUp

There are four sections to this code. The first two sections hide the on screen objects so that
our new ad can be clearly displayed. In the first section, we are setting the visibility of our
five buttons to false. In the second section, we make a call to the mobileAdSetVisible
command and pass Ad002 (our banner ad) and false to it. This tells LiveCode to hide that
specific ad.

In section three, we instantiate a new ad and give it the name Ad003. The second parameter
we pass is text, which is one of the three types (banner, text, and full screen) that we can
use. Our final parameter is the starting location for the ad on screen.

Our final section, section four, waits 15 seconds, hides the new full screen text ad (Ad003),
redisplays the banner ad (Ad002), and sets the interface buttons to true.

In-app Purchases and Advertising for iOS and Android

264

Objective Complete - Mini Debriefing
This task was made easy by LiveCode's mobile ad support library. We introduced the
mobileAdSetVisible command so that we can selectively display and hide ads we
create with the mobileAdCreate command.

The following screenshot shows our new full screen ad:

Project 10

265

Integrating Full Screen Ad #2
Some mobile application developers place ads that are displayed when the user navigates
between cards. We can handle this task with another call to the mobileAdCreate
command. After you finish this task, you will be able to click on the button labelled Full
Screen Ad #2 to see a new full screen ad. The ad will remain in place until the user closes
out of it by clicking the x in the upper right-hand corner.

Engage Thrusters
Add the following lines of code to the script of button full_ad2:

on mouseUp
 local adData

 put "45" into adData["age"]
 put "male" into adData["gender"]

 mobileAdCreate "Ad004", "full screen", (0,0), adData
end mouseUp

We created a new full screen ad titled Ad004 and targeted 45 year-old males.

When instantiated, the full screen ad will remain on screen until the user closes it. Tapping
the x in the upper right-hand corner will close the ad. This technique is used when you want
your users to see the ad and force them to close it.

Objective Complete - Mini Debriefing
We created an additional full screen add by making a call to the mobileAdCreate command.

Integrating in-app purchases
Integrating in-app purchases is a complex task; and it is different for iOS and Android mobile
apps. In this task, we will cover the key commands and processes used for integrating in-app
purchases on iOS devices.

Prepare for Lift Off
In order to complete this task, you will need to have Apple Developer and iTunes
Connect accounts.

In-app Purchases and Advertising for iOS and Android

266

Engage Thrusters
1. Log in to your iTunes Connect account and ensure you have accepted the most

recent iOS Paid Applications Agreement from Apple. The agreement can be found
in the Contracts, Tax, and Banking section of the iTunes Connect site. The following
screenshot shows the message that will be displayed to you when you have not
accepted the most current agreement:

2. Add your app to iTunes Connect. Once you have the required information entered,
select the Manage In-App Purchases button. You are now ready to select the Create
New button. Refer to the following screenshot for details:

3. Next, you will be prompted to select a purchase type. For the purpose of this task,
select Consumable. Refer to the following screenshot for a detailed description of
that purchase type:

Project 10

267

4. You will be presented with a web form that has several mandatory fields:

 � Reference Name: This is used for your reference. A typical reference name
would be 10 Coin Pack.

 � Product ID: This is a unique product identifier. A typical product ID would be
IAPAA10CoinPack.

 � Price Tier: This is used to select the purchase price associated with the
reference name.

You will need to add at least one language and a screenshot. Once you have all this
information entered, you can select Save. The result will be in the form of a unique
Apple ID that you will use in LiveCode.

The example in the following screenshot shows four purchases for non-consumable
items. This means that once the user makes the purchase, they will always have the
purchased item.

5. Now you are ready to write the necessary code in LiveCode to support the
in-app advertising. There are several LiveCode commands and functions that you
should become familiar with. A brief summary of these commands and functions
is provided in the following table. You should consult the LiveCode

Command / Function Description

mobileCanMakePurchase() This function returns "true" or "false."

mobilePurchaseCreate productID This command creates a new purchase.

mobilePurchases() This function returns a list of all
active purchases.

mobilePurchaseConfirmDelivery
purchaseID

This command is used to communicate
with the App Store to confirm
purchase fulfillment.

In-app Purchases and Advertising for iOS and Android

268

Objective Complete - Mini Debriefing
That is it; you completed this task. It is clear that LiveCode is only one part of the
solution regarding iOS in-app purchases. You must also have an Apple Developer
and iTunes Connect account.

Mission Accomplished
You completed this project and now have sufficient experience to implement in-app
advertising in your own mobile applications. You also have an idea of what it takes to
support in-app purchases.

Your final app interface should look similar to the following screenshot:

A Hotshot Challenge
Your final Hotshot challenge is to program the Hotshot Challenge button in this project.
Create a unique mobile ad experience based on the work you competed in this project.

Have fun and good luck!

Mobile App
Development Primer

Developing apps for mobile devices requires knowledge of the platform-specific submission
process. LiveCode allows you to publish apps in iOS and Android formats, and there are
unique considerations for both. This appendix covers preparing your LiveCode apps for
submission to the appropriate app store.

iOS apps
There are several settings to pay attention to prior to submitting your app to Apple's App
Store. Fortunately, LiveCode gives us control of all of these settings in a single Standalone
Application Settings dialog screen.

Mobile App Development Primer

270

The Standalone Application Settings window
As you can see in the following screenshot, the Standalone Application Settings dialog
window has a large number of options that must be reviewed prior to publishing an iOS
binary file:

Appendix

271

This dialog window's options are divided into four sections as indicated in the
following screenshot:

The first section is the Build for: area of the window.

If you want LiveCode to publish a binary for iOS, the iOS checkbox must be selected.

Mobile App Development Primer

272

You will use the first pull-down menu to select which iOS device or devices you want your
app to support. The options are: iPod, iPhone and iPad, iPod and iPhone, and iPad.

The second pull-down menu dictates what the minimum iOS version that your app will
support. The available options include: 3.1.3 or later, 4.0 or later, 5.0 or later, and 6.1
or later.

The third pull-down menu allows you to select which instruction set to build for.
There are three options available as follows:

 f Universal: This generates a build for ARMv6 and ARMv7 devices. Selecting this
option will result in a larger binary file.

 f Arm v6: This build will run on ARMv6 and ARMv7 devices.

 f Arm v7: This binary will only work on ARMv7 devices.

The second section is comprised of Basic Application Settings, Icons, and Splash Screens.

There are five settings in the Basic Application Settings area of the dialog. The descriptions
for each of these settings are as follows:

 f Display Name: This is the label that will be displayed on the SpringBoard or Home
screen of the iOS device

 f Version: The version number entered must match the data you enter in the
App Store

 f Internal App ID: This is the bundle identifier that matches your iOS
provisioning profile

 f Profile: Here you will select the provisioning profile associated with your app

 f Externals: If your app uses any of the listed externals, they must be selected here
prior to generating a binary file

Appendix

273

Apple's requirements for app icons are very specific. It is a good idea to review
those requirements prior to submitting each app. This will help ensure that you
are apprised of any changes from Apple.

Based on your target devices, you will need to provide two or four icons. Each icon's size
requirement is listed as follows:

 f iPhone – 57 x 57 pixels

 f Hi-Res iPhone – 114 x 114 pixels

 f iPad – 72 x 72 pixels

 f Hi-Res iPad – 144 x 144 pixels

There is also a Prerendered Icon checkbox. Selecting this box indicates that your icons
already have a tint and glossy effect applied to them. Again, check the current Apple
submission requirements.

Mobile App Development Primer

274

The next area of this section is Splash Screens. There are up to seven splash screens that you
will need to provide, depending upon your device and orientation selections. Dimensions of
each splash screen are listed as follows:

 f iPhone – 320 x 480 pixels

 f Hi-Res iPhone – 640 x 960 pixels

 f 4 Inch iPhone – 640 x 1,136 pixels

 f iPad Portrait – 768 x 1,024 pixels

 f iPad Lscape – 1,024 x 768 pixels

 f Hi-Res iPad Portrait – 1,536 x 2,048 pixels

 f Hi-Res iPad Lscape – 2,048 x 1,496 pixels

The third section is Requirements and Restrictions. There are three checkboxes and 18 radio
box selections to be made in the Requirements and Restrictions area of the dialog box.

 f Persistent WiFi: Select this option if your mobile app requires a persistent Wi-Fi
connection to operate.

Appendix

275

 f File Sharing: This feature refers to the File Sharing option in iTunes. Select this
option if your app requires iTunes file sharing to be enabled.

 f Push Notifications: Select this option if your app will be programmed to receive
push notifications.

 f Use the 18 radio buttons to designate which services your app needs or should be
prohibited from using.

The fourth and last section is comprised of Status Bar, Orientation Options, and Custom
URL Scheme.

This final area of the Standalone Application Settings dialog window is as follows:

 f Status Bar: Here, you can select if you want the iOS device's status bar to be visible
or hidden while your application is on screen. If you select Visible, you will also want
to select a Status Bar Style option. The style options are Default, Black Opaque, and
Black Translucent.

 f Orientation Options: Set the iPhone Initial Orientation field to Portrait,
Portrait Upside-Down, Landscape Left, or Landscape Right. If your app will be
deployed on iPads, you will select one or more of the iPad Supported Initial
Orientations options.

Initial orientations are important because they determine which
splash screen to display while your app is loading.

Mobile App Development Primer

276

 f Custom URL Scheme: This feature allows you to design a custom URL that can be
used to launch your app from within another app.

Android apps
When we develop apps for Android devices, we have several specific settings to set in the
Standalone Application Settings dialog screen.

As you can see in the following screenshot, the Standalone Application Settings dialog
window has a large number of options that must be reviewed prior to publishing an
Android binary file:

Appendix

277

This dialog window's options are divided into five sections as indicated in the
following screenshot:

The first section is the Build for: area of the window.

The Build for: option provides us with the ability to select and deselect the option to publish
a binary file formatted for Android devices.

Mobile App Development Primer

278

The second section is Basic Application Settings.

There are several settings in the Basic Application Settings area of the dialog window.
The description for each of these settings is as follows:

 f Label: This is the label that will be displayed on the launch screen of the
Android device.

 f Identifier: This is a unique identifier specific to your app.

 f Version Name: This is the version of your app in a human-readable format.

 f Version Code: This is the version number used by the Android OS.

 f Icon: This is where you will upload your app's launch icon.

 f Splash: If you have a personal or educational LiveCode license, you will upload a
splash screen image here. If you have a commercial license, this does not apply
to you.

 f Signing: You are presented with three options: Sign with my key, Sign for
development only, and Do not sign.

 f Key: This setting links to a key-store file that is used when the Sign with my key
option within Signing is selected.

Appendix

279

 f Install Location: This is where you set your app's preference for storing data.
The options are Internal Storage Only, Allow External Storage, and Prefer
External Storage.

 f App Billing Key: This is where you will enter your billing key from your Android Play
Store account. This key is used for in-app purchases.

 f Externals: If your app uses any of the listed externals, they must be selected here
prior to generating a binary file.

 f Custom URL Scheme: This feature allows you to design a custom URL that can be
used to launch your app from within another app.

 f Push Sender ID: This is a unique project number associated with your app. This ID is
used while you are using push notifications.

 f Status Bar Icon: Here you will upload your status bar icon.

The third section is Requirements and Restrictions.

The first section of the Requirements and Restrictions area allows you to indicate the
minimum Android version that must be installed on a user's device for your app to run.
The options include 2.2 - Froyo, 2.3 - Gingerbread, 2.3.3, 3.0 - Honeycomb, and 3.1.

The section contains 13 sets of radio buttons. These buttons allow you to select which
services are required, used, or not applicable.

The fourth section is User Interface Options.

Mobile App Development Primer

280

In this section of the dialog window, you select your app's initial orientation
(Portrait or Landscape) and whether or not to display the status bar.

The fifth and final section is Application Permissions.

This final section of the Standalone Application Settings dialog window is where you will
select which services and accesses your app will use.

Index
A
Add Record card

creating 199-204
Advanced card 65
Advanced Fun mobile app

about 211
All About Me option 217-219
final steps 248, 249
Hotshot challenge 249
main stack, creating 213
mockup interface diagram 212
objectives 212, 213
Script Grabber option 224-228
simple interface, options 211
Traveler option 220-223
user interface, creating 213-216

All About Me option
creating 217-220

Android apps
Application Permissions 280
Basic Application Settings. 278
Build for:area of the window 277
Build for: option 277
Requirements and Restrictions 279
Standalone Application Settings dialog 280
Standalone Application Settings window 276
User Interface Options 279

answer command 30
Application Settings dialog screen 276
Arrays 241
ArraysFun card functionality 249
Arrays option

programming 241-247

B
Back button 200
banner advertising

integrating 261
Basic Application Settings area

about 278
Display Name 272
Externals 272
Internal App ID 272
Profile 272
settings 278
Version 272

Build for: option 277
buttons

about 39
app, running into simulator 40-42
mouseDown message, using 39, 40

C
Calculate button 69
calculate() function 65
calculation function

programming 62
calculations

performing 70, 71
cards

Red card, modifying 36, 37
referring, by index number 38
transitions 35
working with 33-35

clear command
programming 63, 64

282

combine function 245
Combo card 98
combo menu interface

creating 97, 98
counting card

creating 21, 22
customizing 21, 22

Create button 198
Create database function

programming 194-196
custom pop-up dialogs

counting card, creating 21
counting card, customizing 21
creating 16
Final card, creating 25, 26
Final card, customizing 25, 26
GetName card, creating 22-25
GetName card, customizing 22-25
Greeting1 card, creating 17-19
Greeting2 card, creating 19, 20
Greeting2 card, customizing 19, 20
main stack, customizing 16

Custom Properties option
body 232
doors 232
miles 232
programming 228-236
speed 232
wheels 232
year 232

D
database 191
dbConnect2 command 197
dbConnect command 197
dog button 173
Dog card, Jungle Dance Party app project

creating 175, 176
drop-down menu interface

creating 105-108

E
Enough button 179, 184
equals button

programming 64, 65

F
field 191
Final card

creating 25, 26
customizing 25, 26

Find the Bananas project
about 151
diagram 152
final steps 167
Hotshot challenge 168
images, importing 157-159
images, optimizing 157-159
main stack, creating 153
objectives 152
programming 159-165
user interface, creating 153-156

full_ad1 button 262
Full Screen Ad #1

integrating 262-264
Full Screen Ad #2

integrating 265

G
getAnswer command 162
GetName card

creating 22-24
customizing 22-24

global variables
creating 57, 58
firstNumber 57
initializing 57, 58
secondNumber 57
theMode 57
theOperator 57

Greeting1 card
creating 17-19
customizing 17-19

Greeting2 card
creating 19, 20
customizing 19, 20

H
hasMemory() function 220
Hotshot Challenge button 150

283

How Smart Am I mobile application
about 111, 112
final steps 149
Hotshot challenge 150
interface mockup 112
main stack, creating 113-116
multiple choice question card, creating 122-127
navigational scripting, adding 141, 142
picture question card, creating 137-140
score, adding 143-149
sequencing question card, creating 127-133
short answer question card, creating 134-136
tasks 112
true/false question card, creating 117-122

I
IAPAA

banner advertising 261
final stages 268
Full Screen Ad #1 262-264
Full Screen Ad #2 265
Hotshot challenge 268
in-app purchases 265-267
main stack, creating 253
mockup interface diagram 252
on-load advertising 257-260
screenshot 268
user interface, creating 253-256

Image Library 138
images, Find the Bananas game

importing 157-159
optimizing 157-159

in-app purchases
integrating 265-267

in-app purchases and advertising. See IAPAA
Interactive Fun mobile application

fifth version, accomplishing 46
freehand 43
freehand polygon 43
line 43
oval 43
polygon 43
rectangle 43
rounded rectangle 43
version4, creating 43-46

Interface Fun mobile application
briefing 31
objectives 32

iOS apps
about 269
Standalone Application Settings window

270-275

J
Jungle Dance Party app project

about 169, 170
application, programming 180-184
Dog card, creating 175, 176
final stage 187
Hotshot challenge 187
interface mockup 170
main stack, creating 171
monkey card, creating 177, 178
optional sound, adding 185, 186
Panda card, creating 179, 180
tasks 170
user interface, creating 171-175

L
landscape orientation 32
LiveCode graphics 43
LiveCode plugin 80
locational services

using 26-29

M
main stack

creating 81, 82
main stack, Advanced Fun mobile app

creating 213
main stack, Find the Bananas game

creating 153
main stack, IAPAA

creating 253
main stack, Jungle Dance Party app project

creating 171
main stack, My Database mobile app

creating 191

282

Menu of Menus application
about 77
accomplishing 109
combo menu interface, creating 97
drop-down menu interface, creating 105
features 79
final project 109
interface object 77
main stack, creating 81
option menu interface, creating 93
picker menu interface, creating 103
pop-up menu interface, creating 99
preview 78
project shell, creating 83
pull-down menu interface, creating 88
swiping menu interface, creating 85
tab menu interface, creating 101

MobGUI plugin 78, 80
mobileAdCreate command 259
mobileAdSetVisible command 263
mobile calculator project

about 47, 48
accomplishing 75
 calculations, performing 70
precedence order, using 72
preview 48
project completion tasks 48
random numbers, using 73, 74
screenshot 75
user input, accepting 57
user input, validating 65
user interface, creating 49

mobileCanMakePurchase() command 267
mobilePurchaseConfirmDelivery purchaseID

command 267
mobilePurchaseCreate productID command 267
mobilePurchases() command 267
monkey button 180
monkey card, Jungle Dance Party app project

creating 177, 178
mouseUp handler 223
multiple choice question card

creating 122-127
My Database mobile app

about 189

Add Record card, creating 199-204
Create database function, programming

194-196
database 191
field 191
final steps 209
Hotshot challenge 210
main stack, creating 191
mockup interface 190
objectives 190
Open and Close database functions,

programming 196-198
Query card, creating 208, 209
record 191
screenshot 210
simple interface, options 189
table 191
user interface, creating 192, 193
View card, creating 205, 206

N
navigational scripting

adding 141, 142
number buttons

programming 58-60

O
on-load advertising

integrating 257-260
Open and Close database functions

programming 196-198
openCard command 262
operator buttons

programming 61
operator order of precedence

using 72, 73
optional sound

adding 185, 186
Option card 96
option menu interface

creating 93-96
orientation

landscape orientation 32

283

P
panda button 181
Panda card, Jungle Dance Party app project

creating 179, 180
Picker card 105
picker menu interface

creating 103, 104
picture question card

creating 137-140
Pop card 100
pop-up dialogs

using 8-10
pop-up menu interface

creating 99, 100
portrait orientation 32
preOpenCard commands 181
Prerendered Icon checkbox 273
programming 7
project brief

about 7
advantages 7
checklist 8
objectives 8

project shell
creating 83, 84

pull-down menu interface
creating 88-92

Q
Query card

creating 208

R
random() function 74
random numbers

using 73, 74
R button 73
record 191
resetCoconuts command 162
RunRev 257

S
score

adding 143-148

scoring schema
adding 166, 167

ScriptGrabber card 224
Script Grabber option

programming 224-228
sequencing question card

creating 127-133
shell game 151
short answer question card

creating 134-136
Standalone Application Settings window 207
Store link 257
Submit button 134, 147
Swipe card 85
swiping menu interface

creating 85-88

T
Tab card 102
table 191
Table Button 200
tab menu interface

creating 101, 102
Textual Fun option

programming 236-240
theInput variable 239
Thimblerig 151
time of the day

detecting 10
timeup command 13
Traveler option

programming 221-224
true/false question card

creating 117-121
Try Me button 224

U
user input

accepting 57
calculation function, programming 62
clear command, programming 63, 64
equals button, programming 64, 65
evaluating 11-15
global variables, creating 57, 58
global variables, initializing 57, 58

282

number buttons, programming 58-60
operator buttons, programming 61
validating 65-70

userInput local variable 246
user interface

created object 56
creating 49-55
mistakes, preventing 57
requirements 49

user interface, Advanced Fun mobile app
creating 213-216

User Interface Components (UIC) 31
user interface, Find the Bananas game

creating 153-157

user interface, IAPAA
creating 253-256

user interface, Jungle Dance Party app project
creating 171-175

user interface, My Database mobile app
creating 192

V
View card

creating 205, 206
visual effect command 36

Thank you for buying
LiveCode Mobile Development
Hotsh t

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Corona SDK Mobile Game
Development: Beginner's
Guide
ISBN: 978-1-84969-188-8 Paperback: 408 pages

Create monetized games for iOS and Android with
minimum cost and code

1. Build once and deploy your games to both iOS
and Android

2. Create commercially successful games by applying
several monetization techniques and tools

3. Create three fun games and integrate them with
social networks such as Twitter and Facebook

HTML5 Mobile Development
Cookbook
ISBN: 978-1-84969-196-3 Paperback: 254 pages

Over 60 recipes for building fast, responsive HTML5
mobile websites for iPhone 5, Android, Windows Phone,
and Blackberry

1. Solve your cross-platform development
issues by implementing device and content
adaptation recipes

2. Maximum action, minimum theory allowing you to
dive straight into HTML5 mobile web development

3. Incorporate HTML5-rich media and geo-location
into your mobile websites

Please check www.PacktPub.com for information on our titles

Flash iOS Apps Cookbook
ISBN: 978-1-84969-138-3 Paperback: 420 pages

100 practical recipes for developing iOS apps with Flash
Professional and Adobe AIR

1. Build your own apps, port existing projects, and
learn the best practices for targeting iOS devices
using Flash

2. How to compile a native iOS app directly from Flash
and deploy it to the iPhone, iPad or iPod touch

3. Full of practical recipes and step-by-step
instructions for developing iOS apps with
Flash Professional

Unity iOS Essentials
ISBN: 978-1-84969-182-6 Paperback: 358 pages

Develop high performance, fun iOS games using Unity 3D

1. Learn key strategies and follow practical guidelines
for creating Unity 3D games for iOS devices

2. Learn how to plan your game levels to optimize
performance on iOS devices using advanced
game concepts

3. Full of tips, scripts, shaders, and complete Unity 3D
projects to guide you through game creation on iOS
from start to finish

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Project 1: Developing Hello Planet!
	Mission Briefing
	Using pop-up dialogs
	Detecting the time of the day
	Evaluating user input
	Custom pop ups
	Using locational services
	Mission Accomplished
	A Hotshot Challenge

	Project 2: Developing User Interfaces
	Mission Briefing
	Orientation
	Working with cards
	Buttons
	Graphics
	Mission Accomplished
	A Hotshot Challenge

	Project 3: Using Math – Mobile Calculator
	Mission Briefing
	Creating the user interface
	Accepting user input
	Validating user input
	Performing calculations
	Using the order of precedence
	Using random numbers
	Mission Accomplished
	A Hotshot Challenge

	Project 4: Building Menus – Menu of Menus
	Mission Briefing
	Creating the main stack
	Creating the project shell
	Creating a swiping menu interface
	Creating a pull-down menu interface
	Creating an option menu interface
	Creating a combo menu interface
	Creating a pop-up menu interface
	Creating a tab menu interface
	Creating a picker menu interface
	Creating a drop-down menu interface
	Mission Accomplished
	A Hotshot Challenge

	Project 5: Creating How Smart Am I? – A Quiz Game
	Mission Briefing
	Creating the main stack
	Create a true/false question card
	Creating a multiple choice question card
	Creating a sequencing question card
	Creating a short answer question card
	Creating a picture question card
	Adding navigational scripting
	Adding scoring
	Mission Accomplished
	A Hotshot Challenge

	Project 6: Creating the Find the Bananas Game
	Mission Briefing
	Create the main stack
	Create the user interface
	Import and optimize the images
	Program the game
	Add a scoring schema
	Mission Accomplished
	A Hotshot Challenge

	Project 7: Creating the Jungle Dance Party Mobile App
	Mission Briefing
	Creating the main stack
	Creating the user interface
	Create the Dog card
	Creating the Monkey card
	Creating the Panda card
	Programming the application
	Adding optional sound
	Mission Accomplished
	A Hotshot Challenge

	Project 8: Creating the My Database Mobile App
	Mission Briefing
	Creating the main stack
	Creating the user interface
	Programming the Create database function
	Programming the Open and Close database functions
	Creating the Add Record card and functionality
	Creating the View card and functionality
	Creating the Query card and functionality
	Mission Accomplished
	A Hotshot Challenge

	Project 9: Advanced Fun with the Advanced Fun Mobile App
	Mission Briefing
	Creating the main stack
	Creating the user interface
	Programming the All About Me option
	Programming the Traveler option
	Programming the Script Grabber option
	Programming the Custom Properties option
	Programming the Textual Fun option
	Programming the Arrays option
	Mission Accomplished
	A Hotshot Challenge

	Project 10: In-app Purchases and Advertising for iOS and Android
	Mission Briefing
	Creating the main stack
	Creating the user interface
	Integrating on-load advertising
	Integrating banner advertising
	Integrating Full Screen Ad #1
	Integrating Full Screen Ad #2
	Integrating in-app purchases
	Mission Accomplished
	A Hotshot Challenge

	Appendix: Mobile App Development Primer
	iOS apps
	Android apps

	Index

