
Lumen
Programming
Guide

Writing PHP Microservices, REST and
Web Service APIs
—
Paul Redmond

www.allitebooks.com

http://www.allitebooks.org

 Lumen
Programming Guide

 Writing PHP Microservices, REST
and Web Service APIs

 Paul Redmond

www.allitebooks.com

http://www.allitebooks.org

Lumen Programming Guide: Writing PHP Microservices, REST and Web Service APIs

Paul Redmond
Phoenix, Arizona
USA

ISBN-13 (pbk): 978-1-4842-2186-0 ISBN-13 (electronic): 978-1-4842-2187-7
DOI 10.1007/978-1-4842-2187-7

Library of Congress Control Number: 2016953766

Copyright © 2016 by Paul Redmond

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Jacob Jensen
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com , or visit www.springeronline.com . Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
 Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com/9781484221860 . For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/9781484221860
http://www.apress.com/source-code/
http://www.allitebooks.org

 To Bernadette

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ... xi

About the Technical Reviewer ... xiii

Acknowledgments ...xv

Introduction ...xvii

 ■Chapter 1: Installing Lumen .. 1

 ■Chapter 2: Hello Lumen ... 7

 ■Chapter 3: Creating the Book Application ... 17

 ■Chapter 4: Starting the Books API ... 23

 ■Chapter 5: Creating, Reading, Updating, and Deleting Books 33

 ■Chapter 6: Responding to Errors ... 65

 ■Chapter 7: Leveling Up Responses .. 89

 ■Chapter 8: Validation ... 125

 ■Chapter 9: Authors .. 137

 ■Chapter 10: The /authors API Resource .. 165

 ■Chapter 11: Book Bundles ... 201

 ■Chapter 12: Ratings ... 219

 ■Appendix: Where to Go From Here ... 243

Index ... 245

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ... xi

About the Technical Reviewer ... xiii

Acknowledgments ...xv

Introduction ...xvii

 ■Chapter 1: Installing Lumen .. 1

Homestead ... 1

Mac OSX ... 2

Linux ... 3

Red Hat/CentOS .. 4

Debian/Ubuntu .. 5

Windows ... 6

Conclusion .. 6

 ■Chapter 2: Hello Lumen ... 7

Setting Up a New Project ... 7

Routes .. 9

The Hello World Route .. 10

Route Parameters ... 10

Middleware and Responses ... 11

Global Middleware .. 11

Route Middleware... 13

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

The Request and Response Objects ... 14

The Request .. 15

The Response ... 15

Onward ... 16

 ■Chapter 3: Creating the Book Application ... 17

Building Something Amazing ... 17

Environment Setup ... 19

Checking Unit Tests .. 21

Setup Complete .. 22

 ■Chapter 4: Starting the Books API ... 23

Creating the First Endpoint ... 23

Setting Up Models and Seed Data .. 26

Eloquent Books .. 30

Success .. 32

 ■Chapter 5: Creating, Reading, Updating, and Deleting Books 33

Requesting an Individual Book ... 33

Creating a New Book .. 41

Updating an Existing Book ... 49

Deleting Books ... 53

Conclusion .. 63

 ■Chapter 6: Responding to Errors ... 65

Test Database ... 65

Model Factories .. 66

Factories in Tests .. 66

Better Error Responses .. 69

Framework Exception Handling .. 70

JSON Exceptions .. 72

Testing the Exception Handler .. 74

Conclusion .. 88

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

 ■Chapter 7: Leveling Up Responses .. 89

Introducing Fractal ... 89

First Version of API Response Formatting .. 90

The Fractal Response Class ... 97

The Book Transformer .. 97

The Fractal Response Class.. 101

Fractal Response Service ... 111

Integrating the Fractal Response Service .. 114

Conclusion .. 124

 ■Chapter 8: Validation ... 125

First Attempt at Validation .. 125

More Validation Constraints ... 129

Custom Validation Messages ... 132

Other Approaches ... 134

Conclusion .. 135

 ■Chapter 9: Authors .. 137

The Authors Database Schema .. 137

Fixing Broken Tests .. 145

Conclusion .. 163

 ■Chapter 10: The /authors API Resource .. 165

The GET /authors Endpoint ... 166

The AuthorsTransformer ... 166

The Author Controller .. 168

The GET /authors/{id} Endpoint .. 170

A Basic Response ... 170

Including Other Models in the Response .. 171

The POST /authors Endpoint... 181

The PUT /authors/{id} Endpoint .. 188

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

The DELETE /authors/{id} Endpoint .. 197

Conclusion .. 199

 ■Chapter 11: Book Bundles ... 201

Defi ning the Relationship Between Books and Bundles .. 201

The GET /bundles/{id} Endpoint .. 206

Adding a Book to a Bundle ... 214

Remove a Book from a Bundle ... 215

Conclusion .. 217

 ■Chapter 12: Ratings ... 219

Database Design .. 219

Rating an Author ... 223

Adding an Author Rating ... 223

Deleting an Author Rating ... 233

Ratings in the Author API .. 236

Eager Loading Ratings ... 240

Conclusion .. 242

 ■Appendix: Where to Go From Here ... 243

Laravel .. 243

Laracasts .. 243

Mockery ... 244

Guzzle ... 244

Index ... 245

www.allitebooks.com

http://www.allitebooks.org

xi

 About the Author

 Paul Redmond has worked as a web developer, entrepreneur, and mentor
in software development for over a decade. He has built web applications
within startups, agencies, and enterprise customers with open-source
technologies. Paul is passionate about writing highly available applications
with PHP, JavaScript, and RESTful APIs.

 Paul lives in Scottsdale, Arizona with his wife, Bernadette, three boys,
and one cat. He is usually wrangling code, kittens, and children, but finds
time to enjoy reading fantasy/fiction, writing, and watching sports.

www.allitebooks.com

http://www.allitebooks.org

xiii

 About the Technical Reviewer

 Jacob Jensen is a software engineer who loves testing, automating, and
clean code; he has a passion for teaching and learning, and has deep
experience in web development, design patterns, object-oriented design,
and a multitude of programming languages and platforms.

xv

 Acknowledgments

 Writing a book is challenging. Editing a book more so.
 Writing a book takes patience, persistence, time, and an abundance of help from others. When I first

envisioned this title, its humble beginnings were in the form of an eBook. I conceptualized, wrote, edited,
technically edited, designed, and marketed the concepts herein.

 The Laravel (https://laravel.com/) framework and the Lumen micro framework have been inspiring
in my day-to-day work. They provide a pleasant and productive development experience that rekindled
my love for PHP and inspired me to share what I’ve learned with others. Additionally, the positive feedback
and word-of-mouth about this book within the PHP and Laravel communities—specifically Taylor Otwell
(https://twitter.com/taylorotwell), Michael Dyrynda (https://dyrynda.com.au/), and Amanda Folson
(http://amandafolson.net/)—was unexpected and huge motivation to keep pressing forward and making
the book better.

 My early readers provided constructive feedback, small amounts of errata and grammar issues, and
insight into what they liked about the manuscript. Early reader feedback showed that people were actually
interested in my work, and found tips and tricks that helped them.

 I would like to thank Steve Anglin and Mark Powers at Apress for guiding me through the writing
process. They have made a dream of mine come true: to author a technical book. I am thankful for their help,
and the help of everyone else at Apress who assisted me throughout the process.

 Within my professional circle, the direct and indirect mentoring I’ve received from my colleague
Justin Rainbow has helped shape me as a developer and I am much, much better off for it. Thank you. My
colleague Jacob Jensen, the technical editor of this book, has been invaluable for motivating me, letting me
bounce ideas off of him, and providing great feedback on a technical and peer level.

 Writing a book is a big commitment, involving many late nights, and I owe my wife, Bernadette, and
my children, Hayden, Masen, and Lincoln, the biggest thanks of all. Life is short. I am so fortunate to have a
wonderful family that supports me. I love you guys!

https://laravel.com/
https://twitter.com/taylorotwell
https://dyrynda.com.au/
http://amandafolson.net/

xvii

 Introduction

 Lumen is a framework that is designed to write APIs. With the rising popularity of microservices
(http://microservices.io/patterns/microservices.html), existing patterns like service-oriented
architecture (https://en.wikipedia.org/wiki/Service-oriented_architecture), and increased
demand for public APIs, Lumen is a perfect fit for writing the service layer in the same language as the web
applications you write.

 In my experience, it’s not uncommon for PHP shops to write web applications with PHP and API
services with something like Node.js (https://nodejs.org/en/). I am not suggesting that this is a bad idea,
but I see Lumen as a chance to improve development workflows for PHP developers and for companies to
standardize around a powerful set of complimentary frameworks: Laravel and Lumen.

 You can write APIs quickly with Lumen using the built-in packages provided, but Lumen can also get out
of your way and be as minimalist as you want it to be. Set aside framework benchmarks and open your mind
to increased developer productivity. Lumen is fast, but more importantly, it helps me be more productive.

 The Same Tools to Write APIs and Web Applications
 Lumen is a minimal framework that uses a subset of the same components from Laravel (https://laravel.com/).
Together Laravel and Lumen give developers a powerful combination of tools: a lightweight framework for
writing APIs and a full-fledged web framework for web applications. Lumen also has a subset of console
tools available from Laravel. Other powerful features from Laravel are included like database migrations,
Eloquent Models (ORM Package), job queues, scheduled jobs, and a test suite focused on testing APIs.

 The development experience between Lumen and Laravel is relatively the same, which means
developers will see a productivity boost by adopting both frameworks. Together they provide a consistent
workflow and can simplify the software stack for developers, release engineers, and operations teams.

 Who This Book Is For
 This book is for programmers that want to write APIs in PHP. Familiarity with the HTTP spec, Composer,
PHPUnit, and the command line will help, but this book walks you through each step of building an API.
You don’t need to be an expert on these subjects, and more experienced developers can skip things they
understand to focus on the specific code needed to write APIs in Lumen. This book does not cover every
detail of using Lumen, but focuses on the most important concepts needed to write testable APIs with Lumen.

 Conventions Used in This Book
 The book is a hands-on guide to building a working API, so you will see tons of code samples throughout the
book. I will point out a few conventions used so that you can understand the console commands and code.
The code is meant to provide a fully working API; you can follow along or copy and paste code samples.

http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://nodejs.org/en/
https://nodejs.org/en/
https://laravel.com/
https://laravel.com/

 ■ INTRODUCTION

xviii

 1 https://laravel.com/docs/homestead

 Code Examples
 A typical PHP code snippet looks like this:

 Example PHP Code Snippet

 /**
 * A Hello World Example
 */
 $app->get('/', function () {
 return 'Hello World';
 });

 To guide readers, approximate line numbers are used when you will be adding a block of code to an
existing class or test file:

 Example PHP Code Snippet

 10 /**
 11 * A Foobar Example
 12 */
 13 $app->get('/foo', function () {
 14 return 'bar';
 15 });

 Longer lines end in a backslash (\) and continue to the next line:

 Example of Long Line in PHP

 $thisIsALongLine = 'Lorem ipsum dolor sit amet, consectetur adipisicing elit. Qu\
 os unde deserunt eos?'

 When you need to run console commands to execute the test suite or create files, the snippet appears as
plain text without line numbers. Lines start with $, which represents the terminal prompt.

 Example Console Command

 $ touch the/file.php

 Console commands that should be executed in the recommended Homestead 1 environment will be
indicated like the following example. The book removes extra output from PHPUnit tests to make examples
less verbose.

 Console Command in the Homestead Virtual Machine

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (1 test, 4 assertions)

https://laravel.com/docs/homestead
https://laravel.com/docs/homestead

 ■ INTRODUCTION

xix

 Code Errata and Feedback
 Submit errata to lumenapibook@gmail.com , or via the book’s apress.com product page, located at
www.apress.com/9781484221860 . Feel free to send in typos, inaccurate descriptions, code issues, praise,
feedback, and code suggestions on better ways of doing something. Please don’t be shy; these things make
my book better!

 Tips, Notes, and Warnings

 YOUR ASIDE TITLE

 This is an aside

 Hey, Listen! Tips give you pointers related to concepts in the book.

 Danger! Warnings point out potential issues and security concerns.

 Need the Info This aside provides additional info related to code and concepts.

 Git Commit: Amazing Refactor! rm3dwe2f

 This is an example of a code commit if you are following along and using git to commit your work.

 Discussions This tip includes deeper discussions around topics in the book. Advanced users can
generally skip these.

 Tools You Will Need
 All tools are recommended, but if you know what you’re doing, you can set up your own coding environment
and skip the recommended tools. You might even have these tools already; just make sure they are relatively
up-to-date. All tools listed are free unless otherwise noted.

 VirtualBox
 This book uses a virtual machine to run the API application. You will need to download VirtualBox if you
plan on using the recommended Homestead environment. VirtualBox works on Windows, Mac, and Linux
(www.virtualbox.org).

http://www.apress.com/9781484221860
http://www.apress.com/9781484221860
http://example.com/changeset/rm3dwe2f
https://git-scm.com/
https://www.virtualbox.org/wiki/Downloads
https://laravel.com/docs/homestead
http://www.virtualbox.org/

 ■ INTRODUCTION

xx

 Vagrant
 Homestead also requires Vagrant (www.vagrantup.com/) to manage and provision virtual machines. Vagrant
works on Windows, Mac, and Linux (Debian and CentOS).

 Version Control
 If you want to work along in the book and commit your code as you go (recommended), you need to install a
version control system. I recommend git, but anything you want will do.

 Editor/IDE
 Most readers will already have a go-to editor. I highly recommend PhpStorm (www.jetbrains.com/phpstorm/),
which is not free, but it pays for itself. Other common IDE options are Eclipse PDT and NetBeans.

 If you don’t like IDEs, I recommend Sublime Text (www.sublimetext.com/) or Atom (https://atom.io/).
If you are on Mac, TextMate (https://macromates.com/) is another great choice. TextMate 2 is marked as
“beta” but is reliable.

http://www.vagrantup.com/
http://www.jetbrains.com/phpstorm/
http://www.sublimetext.com/
https://atom.io/
https://macromates.com/

1© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7_1

 CHAPTER 1

 Installing Lumen

 Before you start diving into Lumen, you need to make sure PHP is installed. You’ll also need a few other tools
to develop a real application. You can get PHP a number of ways, but here is my recommendation for all
platforms: Laravel Homestead (laravel.com/docs/homestead). I also include a few different ways to install
PHP locally if you are interested, but the book examples will use Homestead. I highly encourage using
Homestead to work through this book.

 To work through the applications in this book, you will need

• PHP >= 5.5.9, as well as a few PHP extensions

• Composer

• MySQL Database

 Homestead comes with a modern version of PHP called Composer (https://getcomposer.org/), and
a few database options, so you don’t need to worry about the requirements if you are using Homestead; if
you are not using Homestead, you will need >= PHP 5.5.9 as outlined by the Lumen installation instructions
(https://lumen.laravel.com/docs/5.2/installation#installation).

 The last thing on the list is a database. Lumen can be configured to use different databases including
MySQL, SQLite, PostgreSQL, or SQL Server. We will use MySQL (any MySQL variant will do) for this book.
MySQL is the default database connection in the Lumen Framework database configuration (https://github.
com/laravel/lumen-framework/blob/5.2/config/database.php) so we will stick with the convention.

 Homestead
 Laravel Homestead is the best development environment choice because it provides a complete
development environment for all your Laravel and Lumen projects. Homestead provides some solid benefits
for your development environment as well, including the following:

• Isolated environment on a virtual machine

• Works on Windows, Mac, and Linux

• Easily configure all your projects in one place

 As mentioned in the introduction, Homestead requires Vagrant (www.vagrantup.com/) and VirtualBox
(www.virtualbox.org/) so you will need to install both. Follow the installation instructions
(https://lumen.laravel.com/docs/5.2/installation#installation) to finish setting up Homestead.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-2187-7_1)
contains supplementary material, which is available to authorized users.

https://getcomposer.org/
https://lumen.laravel.com/docs/5.2/installation#installation
https://github.com/laravel/lumen-framework/blob/5.2/config/database.php
https://github.com/laravel/lumen-framework/blob/5.2/config/database.php
http://www.vagrantup.com/
http://www.virtualbox.org/
https://lumen.laravel.com/docs/5.2/installation#installation
http://dx.doi.org/10.1007/978-1-4842-2187-7_1

CHAPTER 1 ■ INSTALLING LUMEN

2

 Once you complete the installation instructions you should be able to run the vagrant ssh command
within the Homestead project and successfully ssh into your Homestead virtual machine. You will revisit
Homestead to set up your sample application in Chapter 2 , and then you will set up another application in
Chapter 3 that you will work on throughout the remainder of the book.

 When the install instructions instruct you to clone the Homestead git repository, I encourage you
to clone it to ~/Code/Homestead to follow along with the book, or you can adapt the examples to match
whatever you pick (see Listing 1-1).

 Listing 1-1. Cloning the Homestead Project to ~/Code/Homestead

 $ mkdir -p ~/Code
 $ git clone https://github.com/laravel/homestead.git Homestead

 Once you finish the Homestead installation instructions you should be able to ssh into the virtual
machine (Listing 1-2).

 Listing 1-2. SSH Into Homestead

 $ cd ~/Code/Homestead
 $ vagrant ssh
 Welcome to Ubuntu 14.04.3 LTS (GNU/Linux 3.19.0-25-generic x86_64)

 * Documentation: https://help.ubuntu.com/
 Last login: Tue Feb 2 04:48:52 2016 from 10.0.2.2
 vagrant@homestead:~$

 You can type “exit” or press Control+D to exit the virtual machine. The homestead repository will be
at ~/Code/Homestead and this is the path you will use in this book for your applications. I encourage you
to review the Homestead.yaml file at ~/.homestead/Homestead.yaml after you finish installing Homestead.
Once you get Homestead installed, you can skip ahead to Chapter 2 . See you in the next section!

 ■ Optional Local Instructions The following sections offer information if you are interested in running PHP
locally, so feel free to skip them. I cannot guarantee these instructions, but for the most part they should work
for you.

 Mac OSX
 If you want to develop locally on OS X, I recommend using Homebrew (http://brew.sh/) to install PHP
and MySQL. The PHP installation that ships with OS X will probably suffice, but I will show you how to
install PHP with Homebrew instead of dealing with the different versions of PHP that ship with different
versions of OS X.

 To install packages with Homebrew, you will need Xcode developer tools and the Xcode command line
tools. XCode is a rather large download—I’ll be waiting for you right here.

 Once you have Xcode, follow the installation instructions (http://brew.sh/#install) on Homebrew’s
site. Next, you need to tell brew about “homebrew-php” so you can install PHP 5.6 (Listing 1-3).

http://dx.doi.org/10.1007/978-1-4842-2187-7_2
http://dx.doi.org/10.1007/978-1-4842-2187-7_3
http://dx.doi.org/10.1007/978-1-4842-2187-7_2
http://brew.sh/
http://brew.sh/#install

CHAPTER 1 ■ INSTALLING LUMEN

3

 Listing 1-3. Tap homebrew-php

 $ brew tap homebrew/dupes
 $ brew tap homebrew/versions
 $ brew tap homebrew/homebrew-php
 $ brew install php56 php56-xdebug

 Once the installation finishes, verify that you have the right version of PHP in your path (Listing 1-4).

 Listing 1-4. Verifying PHP

 $ php --version
 PHP 5.6.16 (cli) (built: Dec 7 2015 10:06:24)
 Copyright (c) 1997-2015 The PHP Group
 Zend Engine v2.6.0, Copyright (c) 1998-2015 Zend Technologies

 Next, you need to install the MySQL database server with Homebrew (Listing 1-5).

 Listing 1-5. Installing MySQL with Homebrew

 $ brew install mysql

 Once the MySQL installation is finished, make sure you can connect to the database server (Listing 1-6).

 Listing 1-6. Connecting to MySQL

 $ mysql -u root
 Welcome to the MySQL monitor. Commands end with ; or \g.
 Your MySQL connection id is 3795
 Server version: 5.6.26 Homebrew
 ...
 mysql>

 I highly recommend updating the root password (http://dev.mysql.com/doc/refman/5.6/en/
resetting-permissions.html) and adding another user besides root, which you will use to connect to
MySQL. Although the database is local, securing MySQL is a good habit.

 You can configure Apache or Nginx locally if you want to use a web server (Mac ships with Apache).
 I’ll leave the rest up to you, but it should be pretty easy to get PHP and a web server going on a Mac by

searching Google.

 Linux
 Here are simple instructions to install PHP on Unix-like systems; this section includes the most popular
distributions like CentOS and Ubuntu. This is not an exhaustive set of setup instructions but it should be
enough to work with Lumen.

http://dev.mysql.com/doc/refman/5.6/en/resetting-permissions.html
http://dev.mysql.com/doc/refman/5.6/en/resetting-permissions.html

CHAPTER 1 ■ INSTALLING LUMEN

4

 Red Hat/CentOS
 To install a modern version of PHP on Red Hat and CentOS, I recommend using the Webtatic (https://
webtatic.com/) yum repository. First, add the repository with the Webtatic release RPM; you should use the
repository that matches your specific version (Listing 1-7).

 Listing 1-7. Adding the Webtatic Repository

 # CentOS/REHL 7
 $ yum -y update
 $ rpm -Uvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
 $ rpm -Uvh https://mirror.webtatic.com/yum/el7/webtatic-release.rpm

 # CentOS/REHL 6
 $ yum -y update
 $ rpm -Uvh https://mirror.webtatic.com/yum/el6/latest.rpm

 Next, install the following PHP packages and verify that PHP was installed properly (Listing 1-8).

 Listing 1-8. Installing PHP Packages from Webtatic

 $ yum install \
 php56w.x86_64 \
 php56w-mysql.x86_64 \
 php56w-mbstring.x86_64 \
 php56w-xml.x86_64 \
 php56w-pecl-xdebug.x86_64

 # Verify
 $ php --version
 PHP 5.6.16 (cli) (built: Nov 27 2015 21:46:01)
 Copyright (c) 1997-2015 The PHP Group
 Zend Engine v2.6.0, Copyright (c) 1998-2015 Zend Technologies

 Next, install the MySQL client and server (Listing 1-9).

 Listing 1-9. Installing MySQL on REHL

 $ yum install mysql-server mysql

 Once MySQL is installed, you should set a root password (Listing 1-10).

 Listing 1-10. Securing the MySQL Installation

 $ /usr/bin/mysql_secure_installation

 Follow the prompts and you should be all set!

https://webtatic.com/
https://webtatic.com/

CHAPTER 1 ■ INSTALLING LUMEN

5

 Debian/Ubuntu
 On Debian systems I recommend using the php5-5.6 PPA (https://launchpad.net/~ondrej/+archive/
ubuntu/php5-5.6) from Ondrej Surý (https://launchpad.net/~ondrej) or the PHP 7 version of the same
PPA. Installation of the PPA varies slightly between different versions. Most of the steps will remain the same,
but the following are the steps for Ubuntu 14.04 and Ubuntu 12.04.

 First, install a couple dependencies needed to add the PPA. If you are using Ubuntu 14.04, see Listing 1-11 .

 Listing 1-11. Installing Dependencies Needed and the PPA on Ubuntu 14.04

 $ apt-get install -y language-pack-en-base
 $ apt-get install -y software-properties-common --no-install-recommends
 $ LC_ALL=en_US.UTF-8 add-apt-repository ppa:ondrej/php5-5.6

 If you are using Ubuntu 12.04, run the code in Listing 1-12 instead.

 Listing 1-12. Installing Dependencies and the PPA on Ubuntu 12.04

 $ apt-get install -y language-pack-en-base
 $ apt-get install -y python-software-properties --no-install-recommends
 $ LC_ALL=en_US.UTF-8 add-apt-repository ppa:ondrej/php5-5.6

 Note that non-UTF-8 locales will not work (https://github.com/oerdnj/deb.sury.org/issues/56)
at the time of writing. Next, update and install the required packages and verify; the commands are the same
for Ubuntu 14.04 and 12.04 (Listing 1-13).

 Listing 1-13. Updating and Installing Packages

 $ apt-get update
 $ apt-get install -y \
 php5 \
 php5-mysql \
 php5-xdebug

 # Verify
 $ php --version
 PHP 5.6.16-2+deb.sury.org~precise+1 (cli)
 Copyright (c) 1997-2015 The PHP Group
 Zend Engine v2.6.0, Copyright (c) 1998-2015 Zend Technologies
 with Zend OPcache v7.0.6-dev, Copyright (c) 1999-2015, by Zend Technologies

 Next, install MySQL server and client packages, make the MySQL service start on boot, and start the
service manually (Listing 1-14).

 Listing 1-14. Installing MySQL Packages on Ubuntu

 $ apt-get install \
 mysql-server \
 mysql-client
 $ sudo update-rc.d mysql defaults
 $ sudo service mysql start

https://launchpad.net/~ondrej/+archive/ubuntu/php5-5.6
https://launchpad.net/~ondrej/+archive/ubuntu/php5-5.6
https://launchpad.net/~ondrej
https://github.com/oerdnj/deb.sury.org/issues/56

CHAPTER 1 ■ INSTALLING LUMEN

6

 During the installation of the mysql-server package you should be prompted to update the root
password, which will look similar to Figure 1-1 .

 Figure 1-1. Configuring MySQL Root Password

 Verify that you can connect to MySQL after you finish installing MySQL and setting a root password
(Listing 1-15).

 Listing 1-15. Connecting to MySQL

 $ mysql -u root -p
 Enter password:
 …
 mysql>

 At this point, you should have everything required to get through this book using the built-in PHP server
on a local Ubuntu machine.

 Windows
 I recommend using Homestead (http://laravel.com/docs/5.1/homestead#installation-and-setup) to
work through this book on Windows.

 Conclusion
 You should now have a working environment that you can use to write Lumen applications! Let’s summarize
what we did in this chapter:

• Installed Vagrant and VirtualBox

• Installed the Homestead virtual machine

• Covered alternative ways of installing PHP and MySQL

 I want to emphasize how easy Homestead makes getting a solid, portable development environment
working with little effort. Now that you have PHP installed, it’s time to learn Lumen!

http://laravel.com/docs/5.1/homestead#installation-and-setup

7© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7_2

 CHAPTER 2

 Hello Lumen

 Let’s dive right into Lumen. In this chapter, you’ll learn how to set up a new Lumen project and you’ll explore
some of Lumen’s basic features:

• Routing

• Middleware

• Requests

• Responses

 To follow along, you should have the recommended Homestead environment from Chapter 1 installed.

 Setting Up a New Project
 Before you can get started, you need to create a new Lumen project in Homestead. To create a new project,
ssh into Homestead virtual machine and use Composer to create a new Lumen project (Listing 2-1).

 Listing 2-1. Creating a New Lumen Application in Homestead

 # On your local machine
 $ cd ~/Code/Homestead
 $ vagrant ssh

 # In the virtual machine
 vagrant@homestead:~$ cd ~/Code
 vagrant@homestead:~/Code$ composer create-project \
 laravel/lumen=~5.2.0 --prefer-dist hello-lumen
 vagrant@homestead:~/Code$ cd hello-lumen

 The book examples assume Homestead was cloned to the suggested path ~/Code/Homestead . Adjust the
commands if you cloned Homestead elsewhere.

 In the Homestead virtual machine, you change the directory to ~/Code, where your application files will
live. Next, you use Composer’s create-project command to create a new Lumen project. The last argument
in the create-project command tells Composer to create the project in the path ~/Code/hello-lumen . Now
that you’ve created a new project on the virtual machine, you should also see a shared local path at ~/Code/
hello-lumen on your own machine.

http://dx.doi.org/10.1007/978-1-4842-2187-7_1

CHAPTER 2 ■ HELLO LUMEN

8

 The next step is telling Homestead about the hello-lumen application. On your local machine, open
 ~/.homestead/Homestead.yaml and find the default project under the sites key (Listing 2-2).

 Listing 2-2. Default Sites Configuration in Homestead.yaml

 sites:
 - map: homestead.app
 to: /home/vagrant/Code/Laravel/public

 Replace it with the code in Listing 2-3 and save the file.

 Listing 2-3. Default Sites Configuration in Homestead.yaml

 sites:
 - map: hello-lumen.app
 to: /home/vagrant/Code/hello-lumen/public

 Configure the project’s hostname and the path to the public folder on the virtual machine. Save the
file and run vagrant provision on your local machine to update Homestead with the new configuration
changes (Listing 2-4).

 Listing 2-4. Provision Vagrant Locally

 > cd ~/Code/Homestead
 > vagrant provision

 Every time you update Homestead.yaml you will need to run the vagrant provision command.

 Once Vagrant is finished provisioning the machine, the last step is adding an entry to the hosts file on
your local machine. The hosts file will map the hostname hello-lumen.app to your virtual machine’s IP
address. You can find Homestead’s IP address by finding the ip key in the ~ /.homestead/Homestead.yaml
file—you should see something like ip: "192.168.10.10" .

 Take note of the IP address so you can add it to the local hosts file. To update the hosts file on Mac or
Linux, the file path is /etc/hosts ; if you are on Windows, the file path is C:\Windows\System32\drivers\
etc\hosts . Add the line from Listing 2-5 to your hosts file.

 Listing 2-5. Adding Hostname to Hosts File

 192.168.10.10 hello-lumen.app

 Be sure to use the IP address found in your ~/.homestead/Homestead.yaml file, not the IP shown in this book.
It might be the same, but make sure.

 After updating the hosts file, visit http://hello-lumen.app/ in your browser and you should see
something similar to Figure 2-1 .

http://hello-lumen.app/

CHAPTER 2 ■ HELLO LUMEN

9

 You should now have a working hello-lumen project. Let’s get to work!

 Routes
 Routing (https://lumen.laravel.com/docs/5.2/routing) is the first feature we will cover. Application
routes in Lumen are defined in the app/Http/routes.php file. In the most basic form, routing configuration
includes an HTTP verb (GET, POST, etc.) which accepts a URI and a Closure . We will use the Closure style
routes in this chapter, but we will use controllers throughout the book.

 The first routes will be two simple “Hello World” examples to introduce you to routing:

• /hello/world which responds with the text “Hello World”

• /hello/{name} which responds with a customized greeting

 Before you define your own routes, if you open the file app/Http/routes.php, the default contents
looks like Listing 2-6 .

 Listing 2-6. The Default Lumen Route in app/Http/routes.php

 <?php

 $app->get('/', function () use ($app) {
 return $app->version();
 });

 The $app variable in the routes file is an instance of \Laravel\Lumen\Application which is defined
in the bootstrap/app.php file. The application routes file is imported near the end of bootstrap/app.php
(Listing 2-7).

 Listing 2-7. The Bootstrap File Importing Routes

 $app->group(['namespace' => 'App\Http\Controllers'], function ($app) {
 require __DIR__.'/../app/Http/routes.php';
 });

 Figure 2-1. Lumen default route

https://lumen.laravel.com/docs/5.2/routing

CHAPTER 2 ■ HELLO LUMEN

10

 The Hello World Route
 Your first route is a simple /hello/world route that responds with the text “Hello World”. Open up the app/
Http/routes.php file and add the route shown in Listing 2-8 .

 Listing 2-8. The /hello/world Route in app/Http/routes.php

 18 $app->get('/hello/world', function () use ($app) {
 19 return "Hello world!";
 20 });

 The $app->get() method accepts a URI and a \Closure that gets executed to create the response. The
route returns a string response. If you visit http://hello-lumen.app/hello/world in your browser, you will
see the response “Hello world!”

 The $app instance has HTTP methods like get , put , post , and delete which are used to define routes.
In this example, the defined route will respond to GET requests. If you try to send a POST request, you will get
a 405 response (Listing 2-9).

 Listing 2-9. Trying to POST to the Hello World Route

 $ curl -I -XPOST http://hello-lumen.app/hello/world
 HTTP/1.1 405 Method Not Allowed
 Server: nginx/1.9.7
 Content-Type: text/html; charset=UTF-8
 Transfer-Encoding: chunked
 Connection: keep-alive
 allow: GET
 Cache-Control: no-cache, private
 date: Tue, 29 Dec 2015 06:28:46 GMT

 Route Parameters
 The second route you are going to add has a dynamic route parameter (Listing 2-10).

 Listing 2-10. Your Second Route

 22 $app->get('/hello/{name}', function ($name) use ($app) {
 23 return "Hello { $name } ";
 24 });

 The route URI has a required route parameter {name} which is then passed to the \Closure . You then
 return y our concatenated $name variable, which creates the HTTP response shown in Listing 2-11 .

 Listing 2-11. Example Response from the Router

 $ curl -i http://hello-lumen.app/hello/paul
 HTTP/1.1 200 OK
 Server: nginx/1.9.7
 Content-Type: text/html; charset=UTF-8
 Transfer-Encoding: chunked
 Connection: keep-alive

http://hello-lumen.app/hello/world

CHAPTER 2 ■ HELLO LUMEN

11

 Cache-Control: no-cache
 Date: Sat, 26 Dec 2015 21:27:19 GMT

 Hello paul

 You can define multiple route parameters in one route and add constraints to them (only digits). I will
go over plenty of route examples as you work through this book.

 Middleware and Responses
 Similar to express.js (http://expressjs.com/) and many other web frameworks, Lumen has HTTP
middleware (https://lumen.laravel.com/docs/5.2/middleware). Middleware provides a way to filter
incoming HTTP requests before a defined route handles the request. You can use middleware to do any
number of things, like authentication, validating a signed request, and CORS support, to name a few.
Middleware classes are typically created in the app/Http/Middleware path by convention; I suggest sticking
to the convention unless you plan on writing a standalone package that includes middleware.

 Lumen has two types of middleware configuration: global middleware and route middleware. What is the
difference between the two types? Global middleware runs on every HTTP request and route middleware runs
on specific routes (or groups of routes) configured to run the middleware. We will go over an example of each.

 We will also cover an example of creating a response object in middleware. We will work with response
objects throughout this book, but we will only touch on them lightly in this chapter.

 Global Middleware
 The first middleware example you will write is a simple request logger that logs every incoming request
to the storage/logs/lumen.log application log file. Configuring the logging middleware to be a global
middleware makes sense because we want to log all HTTP requests.

 Start by creating the file app/Http/Middleware/RequestLogMiddleware.php with the contents shown in
Listing 2-12 .

 Listing 2-12. Creating the RequestLogMiddleware

 1 <?php
 2
 3 namespace App\Http\Middleware;
 4
 5 use Log;
 6 use Closure;
 7 use Illuminate\Http\Request;
 8
 9 class RequestLogMiddleware
 10 {
 11 public function handle(Request $request, Closure $next)
 12 {
 13 Log::info("Request Logged \n " .
 14 sprintf("~~~~ \n %s~~~~", (string) $request));
 15
 16 return $next($request);
 17 }
 18 }

http://expressjs.com/
https://lumen.laravel.com/docs/5.2/middleware

CHAPTER 2 ■ HELLO LUMEN

12

 Middleware needs to define a handle method that accepts two parameters: the request object and a
 Closure instance. The request object is an instance of Illuminate\Http\Request and represents the current
request.

 Each middleware must call return $next($request) at some point in order to continue processing the request.

 Now you need to register your new middleware in bootstrap/app.php (Listing 2-13).

 Listing 2-13. Registering a Global Middleware

 62 // $app->middleware([
 63 // App\Http\Middleware\ExampleMiddleware::class
 64 //]);
 65
 66 $app->middleware([
 67 App\Http\Middleware\RequestLogMiddleware::class
 68]);

 The Application::middleware() method accepts an array of middleware class names. I have included
the commented out middleware so you can see other types of middleware that ship with Lumen.

 There is one more step to get the middleware working: you need to enable facades (https://laravel.
com/docs/5.2/facades) so the Log class will work as expected.

 In bootstrap/app.php, uncomment the code in Listing 2-14 .

 Listing 2-14. Enabling Facades in the Application

 26 // $app->withFacades();
 27 $app->withFacades();

 With facades enabled, the new middleware will add a log entry to storage/logs/lumen.log for every
request (Listing 2-15).

 Listing 2-15. Partial Log Output from RequestLogMiddleware in lumen.log

 [2015-12-26 21:47:53] lumen.INFO: Request Logged
 GET /hello/paul HTTP/1.1
 ...

 ■ Facades The facade pattern provides a static interface to classes available in the service container
(https://lumen.laravel.com/docs/5.2/container).

 It offers a clean style that I personally like, but you are not required to use it.

 Lumen offers various ways of resolving dependencies out of the container, which you will see in this book.
Also be sure to read the “Resolving” section of the documentation (https://lumen.laravel.com/docs/5.2/
container).

https://laravel.com/docs/5.2/facades
https://laravel.com/docs/5.2/facades
https://lumen.laravel.com/docs/5.2/container
https://lumen.laravel.com/docs/5.1/container#resolving
https://lumen.laravel.com/docs/5.1/container#resolving

CHAPTER 2 ■ HELLO LUMEN

13

 The middleware should be working. What happens if we forget to call $next($request) ? To experiment,
you would get the following response (Listing 2-16) by removing return $next($request) from the
middleware (be sure to put it back).

 Listing 2-16. What Happens When $next($request) Is Not Returned?

 $ curl -i http://hello-lumen.app/hello/paul
 HTTP/1.1 200 OK
 Server: nginx/1.9.7
 Date: Sat, 26 Dec 2015 21:54:00 GMT
 Content-Type: text/html; charset=UTF-8
 Transfer-Encoding: chunked
 Connection: keep-alive

 Middleware can also control whether or not the HTTP request should continue being processed. For
example, an authentication middleware would deny access to guests trying to access secured parts of the
application by sending a 403 Forbidden response instead of proceeding with the request. Middleware
should either allow the request to continue or send a response back.

 Route Middleware
 Our next middleware will be route middleware for the /hello/{name} route. Create a new middleware class
in app/Http/Middleware/HelloMiddleware.php with the code from Listing 2-17 .

 Listing 2-17. Creating the HelloMiddleware

 1 <?php
 2
 3 namespace App\Http\Middleware;
 4
 5 use Closure;
 6 use Illuminate\Http\Request;
 7
 8 class HelloMiddleware
 9 {
 10 public function handle(Request $request, Closure $next)
 11 {
 12 if (preg_match('/balrog$/i', $request->getRequestUri())) {
 13 return response('YOU SHALL NOT PASS!', 403);
 14 }
 15
 16 return $next($request);
 17 }
 18 }

 The HelloMiddleware checks the request URI against a case-insensitive regex pattern. If the URI
matches the regex pattern, the middleware returns a 403 forbidden response error with the response()
helper function. If the user is not asking to say hello to a balrog, the request will proceed as expected.

CHAPTER 2 ■ HELLO LUMEN

14

 In order to use the HelloMiddleware you need to configure it in bootstrap/app.php (Listing 2-18).

 Listing 2-18. Registering the HelloMiddleware

 66 $app->middleware([
 67 App\Http\Middleware\RequestLogMiddleware::class
 68]);
 69
 70 $app->routeMiddleware([
 71 'hello' => App\Http\Middleware\HelloMiddleware::class
 72]);

 The $app->routeMiddleware() method takes an associative array. The key hello is a shorthand
reference to the middleware class; the shorthand key configures routes to use the middleware (Listing 2-19).

 Listing 2-19. Configuring Your Route to Use the HelloMiddleware

 22 $app->get('/hello/{name}', ['middleware' => 'hello', function ($name) {
 23 return "Hello { $name } ";
 24 }]);

 You have changed the second parameter in $app->get() to an array . The middleware key instructs
your route to run the ‘hello’ middleware you defined in your bootstrap/app.php file. Note that the code
example also drops use($app) in your Closure because you are not using $app inside the Closure .

 Now if you try saying hello to a balrog the middleware will authoritatively stop the request (Listing 2-20).

 Listing 2-20. Saying Hello to a Balrog

 $ curl -i http://hello-lumen.app/hello/balrog
 HTTP/1.1 403 Forbidden
 Server: nginx/1.9.7
 Content-Type: text/html; charset=UTF-8
 Transfer-Encoding: chunked
 Connection: keep-alive
 Cache-Control: no-cache
 Date: Sun, 27 Dec 2015 02:00:27 GMT

 YOU SHALL NOT PASS!

 We are done with your quick tour of middleware. To learn more about middleware, read the full
documentation (https://lumen.laravel.com/docs/5.2/middleware). Another good resource is reading
the source code of the middleware that ships with Lumen.

 The Request and Response Objects
 You will become quite familiar with getting data from requests and returning responses while building
APIs with Lumen. We will quickly touch on each so you can get your feet wet. We will be using these objects
extensively throughout the book, so using them should become second nature by the end of this book. Let’s
dive in to the request object first.

www.allitebooks.com

https://lumen.laravel.com/docs/5.2/middleware
http://www.allitebooks.org

CHAPTER 2 ■ HELLO LUMEN

15

 The Request
 The request object (https://lumen.laravel.com/docs/5.2/requests) represents the HTTP request and
is one of the essential objects that you need to familiarize yourself with. It provides methods to access basic
information about the HTTP request and to access things like POST data and query string parameters, to
name a few. To access the request in your routes, you type-hint the Illuminate\Http\Request class on
your route. Type-hinting the request object (Listing 2-21) automatically injects the request from the service
container (https://lumen.laravel.com/docs/5.2/container) .

 Listing 2-21. Using the Request Object

 26 $app->get('/request', function (Illuminate\Http\Request $request) {
 27 return "Hello " . $request->get('name', 'stranger');
 28 });

 In Listing 2-21 , the route returns a string from the query string parameter name , and the second
argument, 'stranger' , is the default value returned when the name parameter is not present in the request.
Making a request without the name parameter will return the responses shown in Listing 2-22 .

 Listing 2-22. Experimenting with Request::get()

 $ curl http://hello-lumen.app/request
 Hello stranger

 $ curl http://hello-lumen.app/request\?name\=Paul
 Hello Paul

 The request object has many useful methods, and I highly encourage you to browse the source code
and read all the documentation (https://lumen.laravel.com/docs/5.2/requests) on requests.

 The Response
 Lumen provides a response object to represent an HTTP response which provides convenient methods
that make it easy to craft valid HTTP responses and return JSON, which is the response type you will return
throughout this book—you are building APIs after all!

 You can create a response in a number of ways, and I’ll show you a few examples, including crafting
a response from the Illuminate\Http\Response object and some convenience functions for easily
responding with JSON. We will also build on the request object to show you some basic content negotiation.

 The first way to create a response is returning an instance of the Illuminate\Http\Response object in a
route (Listing 2-23).

 Listing 2-23. Using the Illuminate Response Object

 30 $app->get('/response', function (Illuminate\Http\Request $request) {
 31 return (new Illuminate\Http\Response('Hello stranger', 200))
 32 ->header('Content-Type', 'text/plain');
 33 });

https://lumen.laravel.com/docs/5.2/requests
https://lumen.laravel.com/docs/5.2/container
https://lumen.laravel.com/docs/5.2/requests

CHAPTER 2 ■ HELLO LUMEN

16

 In Listing 2-23 , we return the response object, set the status code to a 200 OK, and set the Content-Type
header to text/plain . To expand on this example, let’s do some inline content negotiation and return JSON
when the client asks for it (Listing 2-24).

 Listing 2-24. Responding with JSON

 30 $app->get('/response', function (Illuminate\Http\Request $request) {
 31 if ($request->wantsJson()) {
 32 return response()->json(['greeting' => 'Hello stranger']);
 33 }
 34
 35 return (new Illuminate\Http\Response('Hello stranger', 200))
 36 ->header('Content-Type', 'text/plain');
 37 });

 In Listing 2-24 , you use the Request object to check if the client is asking for JSON. If the client wants
JSON, you use the response() helper function, which returns an instance of the Laravel\Lumen\Http\
ResponseFactory . Now you can get a JSON greeting (Listing 2-25).

 Listing 2-25. Returning a JSON Response

 $ curl -H"Accept: application/json" \
 http://hello-lumen.app/response

 {"greeting":"Hello stranger"}

 The ResponseFactory has three convenient methods: make() , json() , and download(). You’ve seen
 json() already, but the above route could be written as shown in Listing 2-26 to use the make() method
instead of initializing an instance of the response.

 Listing 2-26. Using the ResponseFactory

 30 $app->get('/response', function (Illuminate\Http\Request $request) {
 31 if ($request->wantsJson()) {
 32 return response()->json(['greeting' => 'Hello stranger']);
 33 }
 34
 35 return response()
 36 ->make('Hello stranger', 200, ['Content-Type' => 'text/plain']);
 37 });

 Some people might prefer to directly initialize the Response object, but I personally like using the
 response() helper function. I think the helper function cleans up code nicely and is convenient. Note that
the third argument in make() accepts an optional array of HTTP response headers.

 Onward
 We are done with the tour of the basic parts of Lumen. In the next chapter, we will create another Lumen
application and prepare to write test-driven features as we work through the remainder of the book.

17© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7_3

 CHAPTER 3

 Creating the Book Application

 Unfortunately, the world doesn’t have much demand for “Hello World” APIs, and working on trivial
applications is not going to help you for long. We are ready to start building something of more substance,
driven by tests. For the remainder of this book, we will create a RESTful (hopefully) book API. The book
API will represent two main RESTful resources (books and authors) and a few other resources. You will be
writing a RESTful API, and while I try to follow good practices, it might not be perfectly “RESTful.” I digress.

 You will see some similarities between writing APIs and web applications in this book, such as routing,
models, database associations, and the like. We will cover specific challenges and needs that differ from
traditional web applications. As we work on the book and author resources, we will also include validation,
ways to structure response data, and error handling, among other API-specific topics.

 Before we can start writing the API, we need to define and set up the application to store your virtual
library of books. In true web-naming fashion, our virtual library will be known to the world as Bookr .

 Bookr will be developed in small, test-driven increments of code. You will get accustomed to running
tests often, and I will show you a couple of my favorite workflows around testing. I think you will begin to
realize how easily you can write fully-tested APIs with Lumen!

 ■ Source Code If you get stuck or you want to see the source code, you can download it from https://
bitbucket.org/paulredmond/apress-bookr .

 Building Something Amazing
 If you’ve used Laravel before, you are probably familiar with the love and attention to detail that make the
Laravel ecosystem amazing! Without further ado, let’s start by creating a new project on the Homestead
virtual machine (Listing 3-1).

 Listing 3-1. Creating a New Lumen Application in Homestead

 # On your local machine
 $ cd ~/Code/Homestead
 $ vagrant ssh

 # In the virtual machine
 vagrant@homestead:~$ cd ~/Code
 vagrant@homestead:~/Code$ composer create-project \
 laravel/lumen=~5.2.0 --prefer-dist bookr
 vagrant@homestead:~/Code$ cd bookr

https://bitbucket.org/paulredmond/apress-bookr
https://bitbucket.org/paulredmond/apress-bookr

CHAPTER 3 ■ CREATING THE BOOK APPLICATION

18

 Next, put your application under version control on the Homestead virtual machine (Listing 3-2).

 Listing 3-2. Adding the Application to Version Control

 # vagrant@homestead:~/Code/bookr$
 $ git init
 $ git add .
 $ git commit -m"Initial commit of Bookr"

 ■ Initial commit of Bookr 67e024d (https://bitbucket.org/paulredmond/apress-bookr/
commits/67e024d)

 Lumen ships with sensible .gitignore defaults so don’t be concerned with running git add . for the
initial commit.

 ■ Keep Private Things Private Avoid committing sensitive information (such as database passwords)
to version control. Lumen uses the phpdotenv (https://github.com/vlucas/phpdotenv) library to load
environment configuration, making it really easy to keep sensitive data out of your code.

 Next, you need to configure your new application locally in ~/.homestead/Homestead.yaml . On your
local machine, add the configuration shown in Listing 3-3 .

 Listing 3-3. Adding Bookr Site Configuration in Homestead.yaml

 sites:
 - map: hello-lumen.app
 to: /home/vagrant/Code/hello-lumen/public
 - map: bookr.app
 to: /home/vagrant/Code/bookr/public

 databases:
 - homestead
 - bookr
 - bookr_testing

 You’ve added a site configuration and two databases that Homestead will create when you run vagrant
provision . The bookr database is the development database, and the bookr_testing database will be your
testing database in a later chapter. Save the configuration, and provision the virtual machine by running the
code in Listing 3-4 locally.

 Listing 3-4. Provisioning Vagrant Locally

 $ cd ~/Code/Homestead
 $ vagrant provision

 Once provisioning is complete, you are ready to add bookr.app to your local system’s hosts file. Update
the hosts file entry you added in Chapter 2 by editing /etc/hosts (or C:\Windows\System32\drivers\etc\
hosts on Windows) and make it look like Listing 3-5 .

https://github.com/vlucas/phpdotenv
http://dx.doi.org/10.1007/978-1-4842-2187-7_2

CHAPTER 3 ■ CREATING THE BOOK APPLICATION

19

 Listing 3-5. Updating the Hosts File

 192.168.10.10 hello-lumen.app bookr.app

 Be sure you use the correct IP address from your _/.homestead/Homestead.yaml file!

 You are done setting up the application on Homestead. If you visit http://bookr.app/ in your browser,
you should now see the same “Lumen” text you saw in Chapter 2 .

 Now that you have a working application on Homestead, you should be able to connect to your
MySQL databases. If you read the “Connecting to Databases” section (https://laravel.com/docs/5.2/
homestead#connecting-to-databases) in the Homestead documentation you should be able to connect
with your favorite MySQL GUI app or the console. I personally like Sequel Pro (www.sequelpro.com/) on
OS X. At the time of this writing, you can connect to Homestead’s MySQL server with the code in Listing 3-6
from your local terminal if you have the MySQL client installed.

 Listing 3-6. Connecting to Homestead Bookr Databases

 > mysql \
 -u homestead \
 -h 127.0.0.1 \
 -P 33060 \
 -psecret

 mysql> show databases;
 +--------------------+
 | Database |
 +--------------------+
 | information_schema |
 | bookr |
 | bookr_testing |
 | ... |
 +--------------------+
 mysql> exit
 Bye

 Environment Setup
 Now that the project is set up and under version control, you need to create a .env file. The .env file is used
to set up an environment-specific configuration which is used by Lumen. I will show you how configuration
files use environment variables later on. For now, copy the .env.example file that ships with Lumen for your
development environment (Listing 3-7).

 Listing 3-7. Copying the Example .env File

 $ cd ~/Code/Homestead
 $ vagrant ssh
 # ...
 vagrant@homestead:~$ cd Code/bookr/
 vagrant@homestead:~$ cp .env.example .env

http://bookr.app/
http://dx.doi.org/10.1007/978-1-4842-2187-7_2
https://laravel.com/docs/5.2/homestead#connecting-to-databases
https://laravel.com/docs/5.2/homestead#connecting-to-databases
http://www.sequelpro.com/

CHAPTER 3 ■ CREATING THE BOOK APPLICATION

20

 ■ Repeatable Environments I recommend keeping .env.example under version control and up to date with
any configuration used in your application. The .env file is ignored by git to keep sensitive data out of your repo.
That means that another developer pulling your changes will not have any new environment variables you’ve
added in his or her .env file.

 Keeping track of environment variables can be frustrating when you pull changes and things stop working.
Having an accurate starting point in .env.example makes it easy for a new developer to get an environment
going and for developers to see what has been added or changed.

 We will use as many conventions as possible in your environment. Since Lumen defaults to using
MySQL, we will stick with that convention. Open .env (around Line 8 at the time of writing) and you will
see the MySQL credentials shown in Listing 3-8 .

 Listing 3-8. The .env Database Connection Configuration

 8 DB_CONNECTION=mysql
 9 DB_HOST=localhost
 10 DB_PORT=3306
 11 DB_DATABASE=bookr
 12 DB_USERNAME=homestead
 13 DB_PASSWORD=secret

 If you are using Homestead, the .env.example file already contains the correct MySQL credentials, and
the only thing you need to change is DB_DATABASE=bookr ; if you are using your own environment, adjust
accordingly.

 Quick feedback is fun. Its time to try out your new configuration! Run the code in Listing 3-9 on the
Homestead server.

 Listing 3-9. Running the artisan migrate Command

 vagrant@homestead:~/Code/bookr$ php artisan migrate
 Migration table created successfully.
 Nothing to migrate.

 Sweet! Your database and environment configurations are ready to go.
 If we want to hit the ground running on the first endpoint in the next chapter, we need to do a little more

setup. Lumen doesn’t assume that we need or want to use object-relational mapping (ORM), but Eloquent
(https://laravel.com/docs/5.2/eloquent) is a really nice ORM, and I personally think it’s worth using in
Lumen.

 How do you enable Eloquent in Lumen? Back to your app bootstrap file, bootstrap/app.php , to
uncomment a few lines. You should also enable Facades (https://laravel.com/docs/5.2/facades) at the
same time, so uncomment the following two lines shown in Listing 3-10 .

 Listing 3-10. Enabling Facades and Eloquent

 26 $app->withFacades();
 27
 28 $app->withEloquent();

 Now commit your changes (Listing 3-11).

https://laravel.com/docs/5.2/eloquent
https://laravel.com/docs/5.2/facades

CHAPTER 3 ■ CREATING THE BOOK APPLICATION

21

 Listing 3-11. Commiting the Application Configuration

 # vagrant@homestead:~/Code/bookr$
 $ git commit -am"Enable Facades and Eloquent"

 ■ Enable Facades and Eloquent 00619f2 (https://bitbucket.org/paulredmond/apress-bookr/
commits/00619f2)

 Before moving on to the final setup task, I’d like to show you quickly how these environment settings
work. Lumen has all of the default PHP configuration files located in the vendor/laravel/lumen-
framework/config folder. Feel free to take a peek now.

 If you create a config/ folder in the root of the project, you can copy over config files and the application will
read your copied file instead of the vendor config file.

 The following code example is the default MySQL configuration that ships with Lumen, which may vary
slightly from the time this was published. This example will give you an idea of how Lumen uses env() for
configuration. By using env() you can use the .env file to get what you want without copying the vendor/
laravel/lumen-framework/config/database.php configuration file to the project’s config/ folder.

 Default Database.php Config (Partial Source):

 60 'mysql' => [
 61 'driver' => 'mysql',
 62 'host' => env('DB_HOST', 'localhost'),
 63 'port' => env('DB_PORT', 3306),
 64 'database' => env('DB_DATABASE', 'forge'),
 65 'username' => env('DB_USERNAME', 'forge'),
 66 'password' => env('DB_PASSWORD', ''),
 67 'charset' => 'utf8',
 68 'collation' => 'utf8_unicode_ci',
 69 'prefix' => env('DB_PREFIX', ''),
 70 'timezone' => env('DB_TIMEZONE', '+00:00'),
 71 'strict' => false ,
 72],

 The env() function will get the value for the first argument; if the configuration doesn’t exist, the second
argument is the default. When you ran your failed migration command earlier, the application configuration
was using the defaults.

 Checking Unit Tests
 Lumen uses PHPUnit for tests. When creating new projects, I recommend ensuring that PHPUnit is running
properly. In my experience, if I don’t test early and often, it becomes increasingly difficult to commit to
testing in a project. Try running the PHPUnit suite that ships with Lumen:

 Running phpunit Tests

 vagrant@homestead:~/Code/bookr$ vendor/bin/phpunit

 OK (1 test, 1 assertion)

https://bitbucket.org/paulredmond/apress-bookr/commits/00619f2
https://bitbucket.org/paulredmond/apress-bookr/commits/00619f2

CHAPTER 3 ■ CREATING THE BOOK APPLICATION

22

 PHPUnit is a composer dependency, and you execute tests by referencing vendor/bin/phpunit . If all
went well, you should see green! Lumen ships with an example test class which is passing. The example tests
let you know things are working as expected.

 You will become very comfortable writing tests as you work through this book, but for now you just
need to know you have everything working so you can focus on writing your application (Figure 3-1).

 Figure 3-1. PHPUnit success

 ■ PHPUnit Alias on Homestead On Homestead you can simply run phpunit without referencing the
 vendor/bin path.

 Homestead creates an alias for you defined on your local machine in the ~ /.homestead/aliases file. You can
also add your own aliases to that file.

 I also have ./vendor/bin to my path when I am not using Homestead: export PATH=./vendor/bin:$PATH

 You can also install PHPUnit on your system. Refer to the official installation documentation (https://phpunit.
de/manual/current/en/installation.html) .

 Setup Complete
 With minimal setup, we are in good shape to start writing the first API endpoint: books. Setup was simple,
but we covered many important steps that I like to perform at the beginning of an application. Getting a
working database and unit tests will go a long way in helping us focus on writing the API. We are establishing
conventions and good practices early.

https://phpunit.de/manual/current/en/installation.html
https://phpunit.de/manual/current/en/installation.html

23© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7_4

 CHAPTER 4

 Starting the Books API

 In this chapter, we will focus on writing our first API resource: /books . We will take this in small chunks and
test it as we go. At the end of the next few chapters we will have a fully-tested /books resource doing basic
CRUD operations. The /books resource will look like this:

 Basic REST /books Resource

 GET /books Get all the books
 POST /books Create a new book
 GET /books/{id} Get a book
 PUT /books/{id} Update a book
 DELETE /books/{id} Delete a book

 Creating the First Endpoint
 The first order of business to create a BooksControllerTest class and write your first failing test. You will
then write the minimum amount of code required to get the test to pass. When you get back to green, you are
free to refactor or add another feature.

 I prefer my test’s namespace to be organized under the same namespace as the application namespace.
In our case, the controller namespace will be App\Http\Controllers and the tests for controllers will go
under Tests\App\Http\Controllers . So let’s write some code! See Listing 4-1 .

 Listing 4-1. Creating Your Test and Controller

 # vagrant@homestead:~/Code/bookr$
 $ mkdir -p tests/app/Http/Controllers
 $ git mv tests/ExampleTest.php tests/app/Http/Controllers/BooksControllerTest.php
 $ touch app/Http/Controllers/BooksController.php

 In Listing 4-1 , you rename the ExampleTest.php file as the BooksControllerTest.php with git since you
don’t want a fake example test. Feel free to create files however you want, but I will do it from the command
line throughout the book for maximum portability.

 Now you’ll write and execute your first failing test for the GET /books route. Note the
“use TestCase” import because you are namespacing your tests (Listing 4-2). You could also reference it
with extends \TestCase and skip the use statement.

CHAPTER 4 ■ STARTING THE BOOKS API

24

 Listing 4-2. The BooksControllerTest.php File

 1 <?php
 2
 3 namespace Tests\App\Http\Controllers;
 4
 5 use TestCase;
 6
 7 class BooksControllerTest extends TestCase
 8 {
 9 /** @test **/
 10 public function index_status_code_should_be_200()
 11 {
 12 $this->get('/books')->seeStatusCode(200);
 13 }
 14 }

 Your test makes a request to the /books route and then expects to see a 200 status code. The visit and
 seeStatusCode methods are provided by the Laravel\Lumen\Testing\CrawlerTrait trait. You will become
more familiar with the methods the CrawlerTrait provides as we work through the book.

 Now run the test you just created and see what happens (Listing 4-3).

 Listing 4-3. Failing the Test

 vagrant@homestead:~/Code/bookr$ phpunit
 F
 ...
 FAILURES!
 Tests: 1, Assertions: 1, Failures: 1.

 I have omitted a stack trace, but basically your failing test received a 404 status code. Now, it’s time to
make our test pass, but you only write the least amount of code to get your test to passing and nothing more.
You created the BooksController file earlier in the chapter, so now add the code in Listing 4-4 .

 Listing 4-4. The BooksController.php Class

 1 <?php
 2
 3 namespace App\Http\Controllers;
 4
 5 /**
 6 * Class BooksController
 7 * @package App\Http\Controllers
 8 */
 9 class BooksController
 10 {
 11 /**
 12 * GET /books
 13 * @return array
 14 */

CHAPTER 4 ■ STARTING THE BOOKS API

25

 15 public function index()
 16 {
 17 return [];
 18 }
 19 }

 You define an index method and return an empty array. You still haven’t defined a route for your GET /
books endpoint, which you’ll add below the default route in app/Http/routes.php , as shown in Listing 4-5 .

 Listing 4-5. Adding the BooksController@index Route

 14 $app->get('/', function () use ($app) {
 15 return $app->version();
 16 });
 17
 18 $app->get('/books', 'BooksController@index');

 This is the first time using a controller for the second argument of a route definition. Lumen assumes
the namespace of a controller to be App\Http\Controllers , and the second argument is in this format:
 <controller_name>@<method> . The BooksController@index string passed to your route references the
public index method of the BooksController . With the controller and route in place, your test should pass
now (Listing 4-6).

 Listing 4-6. Passing the Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (1 test, 1 assertion)

 Now that your tests are back to green you are ready to add more features. We know this endpoint will
return a collection of books, so you will write a test for that (Listing 4-7).

 Listing 4-7. Testing the JSON Response

 15 /** @test **/
 16 public function index_should_return_a_collection_of_records()
 17 {
 18 $this
 19 ->get('/books')
 20 ->seeJson([
 21 'title' => 'War of the Worlds'
 22])
 23 ->seeJson([
 24 'title' => 'A Wrinkle in Time'
 25]);
 26 }

 The test introduces the seeJson() method, which converts the passed array into JSON and assures that
the JSON occurs somewhere within the response. I encourage you to read the official Lumen documentation
on testing (https://lumen.laravel.com/docs/5.2/testing). The “ Testing JSON APIs ” (https://lumen.
laravel.com/docs/5.2/testing#testing-json-apis) section has information on testing JSON responses.

http://lumen.laravel.com/docs/testing
https://lumen.laravel.com/docs/5.2/testing
http://lumen.laravel.com/docs/testing#testing-json-apis
https://lumen.laravel.com/docs/5.2/testing#testing-json-apis
https://lumen.laravel.com/docs/5.2/testing#testing-json-apis

CHAPTER 4 ■ STARTING THE BOOKS API

26

 As you would expect, if you run the tests, you will see failures. A failed test means you are ready to write
implementation code. To reiterate, you will write the smallest amount of code to get tests passing again
(Listing 4-8).

 Listing 4-8. Returning a Collection of Books

 11 /**
 12 * GET /books
 13 * @return array
 14 */
 15 public function index()
 16 {
 17 return [
 18 ['title' => 'War of the Worlds'],
 19 ['title' => 'A Wrinkle in Time']
 20];
 21 }

 After adding the controller code, tests should be back to green (Listing 4-9)!

 Listing 4-9. Passing Test for a Collection of Books

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (2 tests, 3 assertions)

 Git commit: Add /books Index Route

 e21bf99 (https://bitbucket.org/paulredmond/apress-bookr/commits/e21bf99)

 Now that you have passing tests, you are free to refactor the code and continue to ensure the tests still
pass. With that in mind, it seems like a good time to introduce some real data from the database.

 Setting Up Models and Seed Data
 Our book API is not very useful right now without dynamic data, but we have a good testing foundation to
make sure we can iterate and verify that our tests still pass. You can lean on your tests while you convert
your controller to use a database. Lumen has some great features that make working with databases very
pleasant!

 Your first order of business is to define a Book model. What should that look like? What columns should
you include? You could flesh out the entire data structure up front, but database migrations make it really
easy to iterate on the database schema. For now, your schema will be very simple.

https://bitbucket.org/paulredmond/apress-bookr/commits/e21bf99

CHAPTER 4 ■ STARTING THE BOOKS API

27

 ■ I encourage you to spend some time thinking about your database structure in the beginning. Aim for
a mix of defining good structure up front without it paralyzing you from getting started on writing code.

 Migrations allow you to iterate on the schema, but making good data decisions early can save you some
headaches.

 You will start by creating a database migration with the artisan console (https://laravel.com/
docs/5.2/artisan) for the books resource (Listing 4-10).

 Listing 4-10. The Books Database Migration

 # vagrant@homestead:~/Code/bookr$
 $ php artisan make:migration create_books_table --create=books

 The make:migration command knows you intend to create a new database table from the --create
flag. Your filename date will differ from my example, but will end with the same create_books_table.php
file suffix.

 Migrations Database migrations (https://laravel.com/docs/5.2/migrations) are covered in great
detail in the Laravel documentation. The Laravel migration documentation applies to Lumen.

 In the generated migration you will see two methods: up() and down() . The up() method will be used to
apply the migration and the down() method will roll back the migration. The artisan command takes care of
 down for you automatically because of the --create flag, so let’s finish writing the up method (Listing 4-11).

 Listing 4-11. The Books Table Migration

 8 /**
 9 * Run the migrations.
 10 *
 11 * @return void
 12 */
 13 public function up()
 14 {
 15 Schema::create('books', function (Blueprint $table) {
 16 $table->increments('id');
 17 $table->string('title');
 18 $table->text('description');
 19 $table->string('author');
 20 $table->timestamps();
 21 });
 22 }

 The migration is very readable and simple. Take note of $table->timestamps() , which will create two
datetime columns: created_at and updated_at . Eloquent will also populate the timestamp columns for you
automatically when you create and update records.

https://laravel.com/docs/5.2/artisan)
https://laravel.com/docs/5.2/artisan)
https://laravel.com/docs/5.2/migrations

CHAPTER 4 ■ STARTING THE BOOKS API

28

 Now that you have the migration ready, let’s run it (Listing 4-12).

 Listing 4-12. Running Your First Database Migration

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate
 Migrated: 2016_07_28_232137_create_books_table

 It seems to have worked! Check the database to be sure (Table 4-1).

 mysql> use bookr;
 mysql> show columns from books;

 Table 4-1. The Books Table Structure

 Field Type Key Default

 id int(10) unsigned PRI NULL

 title varchar(255) NULL

 description Text NULL

 author varchar(255) NULL

 created_at Timestamp 0000-00-00 00:00:00

 updated_at Timestamp 0000-00-00 00:00:00

 Success! Now that you have a working database migration, you are going to need some data. How
should we get data into the development database? We could version a SQL script that we execute when
setting up an environment; we could connect to the database and add some rows by hand. At this point,
either would be fine, but it will get clunky fast. Real fast. Fortunately (and not surprisingly) Lumen provides a
better way with database seeding .

 The database seeding files are located in the database/seeds folder—specifically the DatabaseSeeder.
php file. Listing 4-13 shows what the stock DatabaseSeeder class looks like.

 Listing 4-13. The Default Seeder Class

 1 <?php
 2
 3 use Illuminate\Database\Seeder;
 4
 5 class DatabaseSeeder extends Seeder
 6 {
 7 /**
 8 * Run the database seeds.
 9 *
 10 * @return void
 11 */
 12 public function run()
 13 {
 14 // $this->call('UserTableSeeder');
 15 }
 16 }

CHAPTER 4 ■ STARTING THE BOOKS API

29

 Line #14 is an example of how the DatabaseSeeder can call other seeder classes to keep things tidy. Based on
the DatabaseSeeder example, it makes sense to make a seeder class for the books table. Create the file database/
seeds/BooksTableSeeder.php and call it from the DatabaseSeeder class. Once you create the seeder, you can
use it to populate your development database with the artisan db:seed command (Listing 4-14).

 Listing 4-14. The BooksTableSeeder

 1 <?php
 2
 3 use Carbon\Carbon;
 4 use Illuminate\Database\Seeder;
 5
 6 class BooksTableSeeder extends Seeder
 7 {
 8 /**
 9 * Run the database seeds.
 10 *
 11 * @return void
 12 */
 13 public function run()
 14 {
 15 DB::table('books')->insert([
 16 'title' => 'War of the Worlds',
 17 'description' => 'A science fiction masterpiece about Martians invading

London',
 18 'author' => 'H. G. Wells',
 19 'created_at' => Carbon::now(),
 20 'updated_at' => Carbon::now(),
 21]);
 22
 23 DB::table('books')->insert([
 24 'title' => 'A Wrinkle in Time',
 25 'description' => 'A young girl goes on a mission to save her father who has

gone missing after working on a mysterious project called a tesseract.',
 26 'author' => 'Madeleine L\'Engle',
 27 'created_at' => Carbon::now(),
 28 'updated_at' => Carbon::now()
 29]);
 30 }
 31 }

 The DB::table() method returns an instance of the \Illuminate\Database\Query\Builder class,
which has an insert method to insert a record to the database. The Builder::insert() method accepts
an associative array of data. The code also introduces the Carbon (http://carbon.nesbot.com/) library, a
standalone library for working with PHP’s DateTime .

http://carbon.nesbot.com/

CHAPTER 4 ■ STARTING THE BOOKS API

30

 To use the book seeder, you need to call the BooksTableSeeder within the database/seeds/
DatabaseSeeder.php class (Listing 4-15).

 Listing 4-15. Calling the BooksTableSeeder in the DatabaseSeeder Class

 12 public function run()
 13 {
 14 // $this->call('UserTableSeeder');
 15 $this->call(BooksTableSeeder::class);
 16 }

 You are now ready to seed the database with artisan. Since you created a new seeder class, you need
to dump the composer autoloader. The database classes are autoloaded through composer’s class map
(https://getcomposer.org/doc/04-schema.md#classmap) setting, so each new seeder requires running
the dump-autoload command (Listing 4-16).

 Listing 4-16. Refreshing the Schema and Seeding the Database

 # vagrant@homestead:~/Code/bookr$
 $ composer dump-autoload
 Generating autoload files

 $ php artisan migrate:refresh
 Rolled back: 2015_10_17_075310_create_books_table
 Migrated: 2015_10_17_075310_create_books_table

 $ php artisan db:seed
 Seeded: BooksTableSeeder

 I introduced a new artisan command called migrate:refresh, which will reset and rerun all
migrations. The db:seed command populates the bookr database with the seed data you just defined.

 ■ Artisan To get an overview of what each artisan command does, run php artisan to get a list of
commands and a short description. You can even write your own commands.

 Database migrations, database seeding, and Eloquent are the great features that set Lumen apart from
other PHP micro-frameworks, in my opinion. Lumen is lightweight, but it offers features to help developer
productivity that are not out of reach or difficult to enable.

 Eloquent Books
 Now that the books table has data, let’s define a model representing the books table that you can use to
query the database. Lumen (like Laravel) has access to Eloquent ORM, which is a fantastic ActiveRecord
implementation for querying data and inserting/updating data.

 Lumen does not ship with an artisan command for creating models, but creating one is not hard:

https://getcomposer.org/doc/04-schema.md#classmap
https://getcomposer.org/doc/04-schema.md#classmap

CHAPTER 4 ■ STARTING THE BOOKS API

31

 # vagrant@homestead:~/Code/bookr$
 $ touch app/Book.php

 The model is really simple at the moment (Listing 4-17).

 Listing 4-17. The Book Eloquent Model

 1 <?php
 2
 3 namespace App;
 4
 5 use Illuminate\Database\Eloquent\Model;
 6
 7 class Book extends Model
 8 {
 9
 10 }

 With the seeded data and Book model in hand, you are ready to wrap up the refactored
 BooksController@index route (Listing 4-18).

 Listing 4-18. Putting the Book Model to Work

 1 <?php
 2
 3 namespace App\Http\Controllers;
 4
 5 use App\Book;
 6
 7 /**
 8 * Class BooksController
 9 * @package App\Http\Controllers
 10 */
 11 class BooksController
 12 {
 13 /**
 14 * GET /books
 15 * @return array
 16 */
 17 public function index()
 18 {
 19 return Book::all();
 20 }
 21 }

CHAPTER 4 ■ STARTING THE BOOKS API

32

 Now it’s time to run the test suite to see if your refactor broke anything:

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (2 tests, 3 assertions)

 The refactor was simple and passed the first time. Sometimes refactors will lead to broken tests, which
we will see later in this book. The goal of refactoring is that we start refactoring while tests are green, and
then when we are done refactoring we should still be at green.

 If you make a request to http://bookr.app/books , you should something resembling the response in
Listing 4-19 .

 Listing 4-19. Example Response from /books

 [
 {
 "id" :1,
 "title" :"War of the Worlds",
 "description" :"A science fiction masterpiece about Martians invading London",
 "author" :"H. G. Wells",
 "created_at" :"2015-12-30 03:11:40",
 "updated_at" :"2015-12-30 03:11:40"
 },
 {
 "id" :2,
 "title" :"A Wrinkle in Time",
 "description" :"A young girl goes on a mission to save her father who has gone

missing after working on a mysterious project called a tesseract.",
 "author" :"Madeleine L'Engle",
 "created_at" :"2015-12-30 03:11:40",
 "updated_at" :"2015-12-30 03:11:40"
 }
]

 Success
 Boom! We’ve successfully refactored the BooksController to use a database and an Eloquent model. We will
see plenty more examples of models throughout the book. Now we can move on to the rest of the /books
endpoints. See you in the next chapter.

 Git commit: Create books Table and BooksController

 729dff4 (https://bitbucket.org/paulredmond/apress-bookr/commits/729dff4)

http://bookr.app/books
https://bitbucket.org/paulredmond/apress-bookr/commits/729dff4

33© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7_5

 CHAPTER 5

 Creating, Reading, Updating, and
Deleting Books

 Now that you have a Books model, you are well-equipped to handle the management of books. You will
continue to follow your test-driven development workflow as you complete the remaining CRUD operations
of the /books API.

 Listing 5-1 shows a quick refresher of your /books RESTful endpoints.

 Listing 5-1. Basic REST /books Resource

 GET /books Get all the books
 POST /books Create a new book
 GET /books/{id} Get a book
 PUT /books/{id} Update a book
 DELETE /books/{id} Delete a book

 Requesting an Individual Book
 You are going to start off with the GET /books/{id} route. Before you start coding, let’s quickly define your
high-level acceptance criteria for this route. You can do this within the tests/app/Http/Controllers/
BooksControllerTest.php file by defining the skeleton test methods, as shown in Listing 5-2 .

 Listing 5-2. The GET books/:id Acceptance Criteria

 28 /** @test **/
 29 public function show_should_return_a_valid_book()
 30 {
 31 $this->markTestIncomplete('Pending test');
 32 }
 33
 34 /** @test **/
 35 public function show_should_fail_when_the_book_id_does_not_exist()
 36 {
 37 $this->markTestIncomplete('Pending test');
 38 }
 39

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

34

 40 /** @test **/
 41 public function show_route_should_not_match_an_invalid_route()
 42 {
 43 $this->markTestIncomplete('Pending test');
 44 }

 You mark these tests as incomplete while you work through each criterion. Running your test suite will
provide the output shown in Listing 5-3 .

 Listing 5-3. Running phpunit with New Pending Tests

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK, but incomplete, skipped, or risky tests!
 Tests: 5, Assertions: 3, Incomplete: 3.

 I want to point out that your tests rely on seed data. Using seed data for tests is not ideal, and you will
address it in Chapter 6 . In the meantime, you need to make sure that the database has seed data before
running tests that rely on specific data in the database. You can always ensure that the database is fresh by
running the code in Listing 5-4 .

 Listing 5-4. How to Refresh the Migrations and Seed the Database

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh
 $ php artisan db:seed

 Let’s get to work on the first acceptance criterion: show_should_return_a_valid_book (Listing 5-5).
To meet this acceptance criterion, you need to

• Find the book in the database.

• Respond with the book’s data.

• Make sure it responds with a correct status code.

• Assert that the JSON data returned is accurate.

 Listing 5-5. Testing for a Valid Book

 28 /** @test **/
 29 public function show_should_return_a_valid_book()
 30 {
 31 $this
 32 ->get('/books/1')
 33 ->seeStatusCode(200)
 34 ->seeJson([
 35 'id' => 1,
 36 'title' => 'War of the Worlds',
 37 'description' => 'A science fiction masterpiece about Martians invading

London',
 38 'author' => 'H. G. Wells'
 39]);
 40

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2187-7_6
http://www.allitebooks.org

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

35

 41 $data = json_decode($this->response->getContent(), true);
 42 $this->assertArrayHasKey('created_at', $data);
 43 $this->assertArrayHasKey('updated_at', $data);
 44 }

 You’ve already seen seeStatusCode and seeJson . The only thing new in Listing 5-5 is the last three lines
that get the response body (JSON) and decode it. The test simply checks the existence of created_at and
 updated_at , but does not test these values. Your seed data cannot guarantee consistent dates so it’s impossible
to test the values. In a later chapter, I will show you how to test date values once you start using proper test data.

 Next, run the test (Listing 5-6), which will definitely fail. Can you come up with the reasons why the
test fails?

 Listing 5-6. Running the Failing Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit
 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::show_should_return_a_valid_bo\
 ok
 Failed asserting that 404 matches expected 200.

 bookr/vendor/laravel/lumen-framework/src/Testing/CrawlerTrait.php:412
 bookr/tests/app/Http/Controllers/BooksControllerTest.php:33

 If you inspect the test failure closely, you will see that on line 33 your test asserts a 200 HTTP status
code, but a 404 response is given because no route exists yet. You will need to create a new route and
controller method to get your tests back to green. Make the following changes in app/Http/routes.php
(Listing 5-7) and app/Http/Controllers/BooksController.php (Listing 5-8).

 Listing 5-7. Adding Show Route to routes.php

 18 $app->get('/books', 'BooksController@index');
 19 $app->get('/books/{id}', 'BooksController@show');

 Listing 5-8. Adding Show Method to BooksController.php

 22 /**
 23 * GET /books/{id}
 24 * @param integer $id
 25 * @return mixed
 26 */
 27 public function show($id)
 28 {
 29 return Book::findOrFail($id);
 30 }

 The code for BooksController@show introduces the findOrFail method; the findOrFail method either
returns a record or throws an exception of type Illuminate\Database\Eloquent\ModelNotFoundException .

 The new route and the BooksController::show() method should be enough to get your test passing
again (Listing 5-9).

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

36

 Listing 5-9. Running PHPUnit Test for Returning a Valid Book

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=show_should_return_a_valid_book

 OK (1 test, 7 assertions)

 You will use PHPUnit’s --filter flag to only run your latest test. The --filter flag, which accepts a
regular expression, is a convenient way to limit which tests run; you will use it extensively in this book.

 You are again back to green and you can move on to your next acceptance criterion, shown in Listing 5-10 .

 Listing 5-10. Testing Failure When a Book Does Not Exist

 46 /** @test **/
 47 public function show_should_fail_when_the_book_id_does_not_exist()
 48 {
 49 $this
 50 ->get('/books/99999')
 51 ->seeStatusCode(404)
 52 ->seeJson([
 53 'error' => [
 54 'message' => 'Book not found'
 55]
 56]);
 57 }

 Next, let’s run the test to make sure it fails (Listing 5-11).

 Listing 5-11. Running PHPUnit After Writing the Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=show_should_fail_when_the_book_id_does_not_exist

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::show_should_fail_when_the_book_id_does_
not_exist
 Invalid JSON was returned from the route. Perhaps an exception was thrown?

 FAILURES!
 Tests: 1, Assertions: 1, Failures: 1.

 Your latest test brings you back to failure. The findOrFail method will throw an exception if the id
does not match a record in the database, resulting in a 404 error response with a Content-Type header of
text/html. What you really wanted based on your test criteria is a 404 response with a friendly JSON error
message. Time to update your BooksController::store() method to catch the ModelNotFoundException
(Listing 5-12) and get tests back to green!

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

37

 Listing 5-12. Responding to ModelNotFoundException BooksController::show()

 1 <?php
 2
 3 namespace App\Http\Controllers;
 4
 5 use App\Book;
 6 use Illuminate\Database\Eloquent\ModelNotFoundException;
 7
 8 /**
 9 * Class BooksController
 10 * @package App\Http\Controllers
 11 */
 12 class BooksController
 13 {
 14 /**
 15 * GET /books
 16 * @return array
 17 */
 18 public function index()
 19 {
 20 return Book::all();
 21 }
 22
 23 /**
 24 * GET /books/{id}
 25 * @param integer $id
 26 * @return mixed
 27 */
 28 public function show($id)
 29 {
 30 try {
 31 return Book::findOrFail($id);
 32 } catch (ModelNotFoundException $e) {
 33 return response()->json([
 34 'error' => [
 35 'message' => 'Book not found'
 36]
 37], 404);
 38 }
 39 }
 40 }

 The entire controller is included to avoid confusion. Let’s break down the changes:

• You wrap the Book::findOrFail() method in a try/catch block so you can catch
the exception and respond with a 404 .

• If the id is found, a valid record is returned.

• The ModelNotFoundException is imported on line #6.

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

38

• You introduce the response() helper to create a response object.

• You then call json() on the response object to send a JSON response.

• The json() method accepts your array of data, and a HTTP status code.

 Running your test suite will get you back to green (Listing 5-13). Getting back to green is a good feeling.

 Listing 5-13. Running the Test for an Invalid Book id

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=show_should_fail_when_the_book_id_does_not_exist

 OK (1 test, 2 assertions)

 You have one final task to satisfy the acceptance criteria, and then you can move on to the next endpoint.
The final test is to ensure that your BooksController::show route only matches integer ids. As of right now,
your show route will happily match any parameter. Let’s write a test for the route matching (Listing 5-14).

 Listing 5-14. A Test for Route Matching

 59 /** @test **/
 60 public function show_route_should_not_match_an_invalid_route()
 61 {
 62 $this->get('/books/this-is-invalid');
 63
 64 $this->assertNotRegExp(
 65 '/Book not found/',
 66 $this->response->getContent(),
 67 'BooksController@show route matching when it should not.'
 68);
 69 }

 Your test ensures that the response does not contain Book not found because that would mean the
 BooksController@show route was executed and the 404 response for the ModelNotFoundException was sent.
You added a helpful message of “BooksController@show route matching when it should not” to explain that
you do not want to match the BooksController@show route.

 Let’s run the test and see if it fails (Listing 5-15).

 Listing 5-15. Running a Test for Invalid Show Route

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=show_route_should_not_match_an_invalid_route

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::show_route_should_not_match_an_invalid_
route

 BooksController@show route matching when it should not.
 Failed asserting that '{"error":{"message":"Book not found"}}' does not match PCRE pattern
"/Book not found/".

 /home/vagrant/Code/bookr/tests/app/Http/Controllers/BooksControllerTest.php:68

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

39

 FAILURES!
 Tests: 1, Assertions: 1, Failures: 1.

 Since you have not changed the BooksController@show code yet, you get an expected failure. You need to
change the route parameter to be constrained with a regular expression and then the test will pass (Listing 5-16).

 Listing 5-16. Constrain the Show Route with a Regular Expression (app/Http/routes.php).

 19 $app->get('/books/{id:[\d]+}', 'BooksController@show');

 Now only requests where the id is an integer will match. Let’s see if you can now pass the test (Listing 5-17).

 Listing 5-17. Passing the Invalid Route Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=show_route_should_not_match_an_invalid_route

 OK (1 test, 1 assertion)

 Your acceptance criteria have been met for the GET /book/{id} route! You are ready to move on to
creating new books. Commit your changes.

 Git commit Add /books/{id} Route

 a39f235 (https://bitbucket.org/paulredmond/apress-bookr/commits/a39f235)

 Listing 5-18 shows what your BooksControllerTest class looks like so far.

 Listing 5-18. BooksControllerTest

 1 <?php
 2
 3 namespace Tests\App\Http\Controllers;
 4
 5 use TestCase;
 6
 7 class BooksControllerTest extends TestCase
 8 {
 9 /** @test **/
 10 public function index_status_code_should_be_200()
 11 {
 12 $this->visit('/books')->seeStatusCode(200);
 13 }
 14
 15 /** @test **/
 16 public function index_should_return_a_collection_of_records()
 17 {
 18 $this
 19 ->get('/books')
 20 ->seeJson([
 21 'title' => 'War of the Worlds'
 22])

https://bitbucket.org/paulredmond/apress-bookr/commits/a39f235

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

40

 23 ->seeJson([
 24 'title' => 'A Wrinkle in Time'
 25]);
 26 }
 27
 28 /** @test **/
 29 public function show_should_return_a_valid_book()
 30 {
 31 $this
 32 ->get('/books/1')
 33 ->seeStatusCode(200)
 34 ->seeJson([
 35 'id' => 1,
 36 'title' => 'War of the Worlds',
 37 'description' => 'A science fiction masterpiece about Martians invading

London',
 38 'author' => 'H. G. Wells'
 39]);
 40
 41 $data = json_decode($this->response->getContent(), true);
 42 $this->assertArrayHasKey('created_at', $data);
 43 $this->assertArrayHasKey('updated_at', $data);
 44 }
 45
 46
 47 /** @test **/
 48 public function show_should_fail_when_the_book_id_does_not_exist()
 49 {
 50 $this
 51 ->get('/books/99999')
 52 ->seeStatusCode(404)
 53 ->seeJson([
 54 'error' => [
 55 'message' => 'Book not found'
 56]
 57]);
 58 }
 59
 60 /** @test **/
 61 public function show_route_should_not_match_an_invalid_route()
 62 {
 63 $this->get('/books/this-is-invalid');
 64
 65 $this->assertNotRegExp(
 66 '/Book not found/',
 67 $this->response->getContent(),
 68 'BooksController@show route matching when it should not.'
 69);
 70 }
 71 }

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

41

 You have been running specific tests. You need to make sure the whole suite passes before moving to
the next feature, so see Listing 5-19 .

 Listing 5-19. Running the Full Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (5 tests, 13 assertions)

 Running the whole suite is important before moving on to make sure the entire test harness is sound
before writing new features. You will build a dependable, albeit imperfect set of tests you can depend upon
when refactoring and making major changes.

 HOW IS THE MISSING ROUTE HANDLED?

 Now that your BooksController::show() route only matches integer ids, how is an invalid route
like /books/this-is-invalid handled? If Lumen can’t find a route, the application will throw a
 NotFoundHttpException . If you investigate the response headers, you can see that Lumen responds
with a text/html content type by default:

 curl -I -H"Content-Type: application/json" \
 -H"Accept: application/json" \
 http://localhost:8000/books/ this -is-invalid

 HTTP/1.0 404 Not Found
 Host: localhost:8000
 Connection: close
 Cache-Control: no-cache, private
 date: Sun, 18 Oct 2015 07:25:30 GMT
 Content-type: text/html; charset=UTF-8

 The HTML response is not something an API consumer expects and you intend on making error
responses JSON. For now, be aware of how things are working. You will revisit handling missing routes
exceptions with JSON in the next chapter.

 Creating a New Book
 The next feature is creating a new book with the POST /books route. You will dive more into Eloquent and
see how to handle POST data in the controller. Listing 5-20 shows the acceptance criteria for creating a new
book in the tests/app/Http/Controllers/BooksControllerTest.php file.

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

42

 Listing 5-20. The POST /books Acceptance Criteria

 72 /** @test **/
 73 public function store_should_save_new_book_in_the_database()
 74 {
 75 $this->markTestIncomplete('pending');
 76 }
 77
 78 /** @test */
 79 public function store_should_respond_with_a_201_and_location_header_when_successful()
 80 {
 81 $this->markTestIncomplete('pending');
 82 }

 Let’s start with the store_should_save_new_book_in_the_database test (Listing 5-21). When things go
as expected, this test will make sure that

• The response contains a "created": true JSON fragment.

• The book exists in the database.

 Listing 5-21. Testing the Creation of a New Book

 72 /** @test **/
 73 public function store_should_save_new_book_in_the_database()
 74 {
 75 $this->post('/books', [
 76 'title' => 'The Invisible Man',
 77 'description' => 'An invisible man is trapped in the terror of his own

creation',
 78 'author' => 'H. G. Wells'
 79]);
 80
 81 $this
 82 ->seeJson(['created' => true])
 83 ->seeInDatabase('books', ['title' => 'The Invisible Man']);
 84 }

 Your test inherits a $this->post() method, which accepts a URI and an array of post data. The test
contains the seeInDatabase() method, which accepts a table name and an associative array in the format
of column => value, and ensures the record is in the database. You can pass multiple columns to further
constrain $this->seeInDatabase() assertions.

 Running the test suite will result in a failure because you haven’t defined the route or the controller
method yet (Listing 5-22).

 Listing 5-22. Running the Full Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 There was 1 failure:

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

43

 1) Tests\App\Http\Controllers\BooksControllerTest::store_should_save_new_book_in_the_database
 Invalid JSON was returned from the route. Perhaps an exception was thrown?
 ...

 FAILURES!
 Tests: 7, Assertions: 13, Failures: 1, Incomplete: 1.

 You will start coding by adding a route to app/Http/routes.php (Listing 5-23).

 Listing 5-23. Adding the POST Route

 18 $app->get('/books', 'BooksController@index');
 19 $app->get('/books/{id}', 'BooksController@show');
 20 $app->post('/books', 'BooksController@store');

 Your first version of the BooksController@store method is shown in Listing 5-24 .

 Listing 5-24. First Version of the BooksController::store() Method

 41 /**
 42 * POST /books
 43 * @param Request $request
 44 * @return \Symfony\Component\HttpFoundation\Response
 45 */
 46 public function store(Request $request)
 47 {
 48 $book = Book::create($request->all());
 49
 50 return response()->json(['created' => true], 201);
 51 }

 The store method is your first example using the service container (https://lumen.laravel.com/
docs/5.2/container) to do method injection in a controller. The store method accepts an Illuminate\
Http\Request instance that represents the current HTTP request.

 Inside the method, the first line tries to create a new book in the database by passing post data from the
request ($request->all()) to the Book::create() method. If the Book::create() method succeeds, it will
return an instance of the new book. After creating the book, the method returns a JsonResponse object by
calling response()->json(), which accepts an array of data and a status code. The JsonResponse object will
convert the array into JSON before being sent to the browser.

 Your senses might be warning you that you are allowing mass assignment in the controller. While it is

good to always keep mass assignment in mind, Eloquent does guard against mass assignment (https://
laravel.com/docs/5.2/eloquent#mass-assignment), as you will see shortly.

 Before you run your test, you need to also import Illuminate\Http\Request at the top of the
 BooksController (Listing 5-25).

https://lumen.laravel.com/docs/5.2/container
https://lumen.laravel.com/docs/5.2/container
https://laravel.com/docs/5.2/eloquent#mass-assignment
https://laravel.com/docs/5.2/eloquent#mass-assignment

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

44

 Listing 5-25. Importing the Illuminate Request Class in the BooksController

 1 <?php
 2
 3 namespace App\Http\Controllers;
 4
 5 use App\Book;
 6 use Illuminate\Http\Request;
 7 use Illuminate\Database\Eloquent\ModelNotFoundException;

 You might think you’ve covered everything, so your test should pass, but it still fails (Listing 5-26).

 Listing 5-26. The Failing Test Output

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=store_should_save_new_book_in_the_database

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::store_should_save_new_book_in_the_
database
 Invalid JSON was returned from the route. Perhaps an exception was thrown?
 ...

 FAILURES!
 Tests: 1, Assertions: 0, Failures: 1.

 The error message is identical to the last time you ran this test! You need to dig a little deeper to figure
this out. Options include looking at the storage/logs/lumen.log file or adding some temporary debugging
code to the request. Let’s pursue the second option and add some debugging code to the BooksController
(Listing 5-27).

 Listing 5-27. Temporary Debugging Code

 42 /**
 43 * POST /books
 44 * @param Request $request
 45 * @return \Symfony\Component\HttpFoundation\Response
 46 */
 47 public function store(Request $request)
 48 {
 49 try {
 50 $book = Book::create($request->all());
 51 } catch (\Exception $e) {
 52 dd(get_class($e));
 53 }
 54
 55 return response()->json(['created' => true], 201);
 56 }

 You are attempting to debug the store method by catching any exception that happens when calling
 Book::create() . The code introduces the dd() function, which dumps the passed variable(s) and exits the script.

 With the debug code in place, run the test again (Listing 5-28).

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

45

 Listing 5-28. Running the Test with Debug Code in Place

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=store_should_save_new_book_in_the_database

 "Illuminate\Database\Eloquent\MassAssignmentException"

 The exception being caught is a mass assignment exception. I mentioned earlier that Eloquent guards
against mass assignment out of the box, so you need to configure which fields are mass-assignable using the
 protected $fillable = [] array in the Book model (Listing 5-29).

 Listing 5-29. Defining Mass Assignable Fields (app/Http/Book.php)

 1 <?php
 2
 3 namespace App;
 4
 5 use Illuminate\Database\Eloquent\Model;
 6
 7 class Book extends Model
 8 {
 9 /**
 10 * The attributes that are mass assignable
 11 *
 12 * @var array
 13 */
 14 protected $fillable = ['title', 'description', 'author'];
 15 }

 You can also provide a protected $guarded property with values that should not be mass-assignable. You
are taking the route that all columns should be protected, minus the exceptions you add to the $fillable array.
See the “Mass Assignment” (https://laravel.com/docs/5.2/eloquent#mass-assignment) section in the
Eloquent documentation for more information.

 Before you remove the debugging code, try running the test again (Listing 5-30).

 Listing 5-30. Running the Test After Defining Fillable Columns

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=store_should_save_new_book_in_the_database

 OK (1 test, 2 assertions)

 After defining the fillable fields, your test worked as expected! Now you need to revert the debugging
code you added (Listing 5-31).

 Listing 5-31. Reverting the Debugging Code

 42 /**
 43 * POST /books
 44 * @param Request $request
 45 * @return \Symfony\Component\HttpFoundation\Response

https://laravel.com/docs/5.2/eloquent#mass-assignment

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

46

 46 */
 47 public function store(Request $request)
 48 {
 49 $book = Book::create($request->all());
 50
 51 return response()->json(['created' => true], 201);
 52 }

 The next test criterion makes sure that successfully creating a new book will respond with a 201 status
code and a Location header matching the URI of the created resource (Listing 5-32).

 Listing 5-32. Writing a Test for 201 Status Code and Location Header

 86 /** @test */
 87 public function store_should_respond_with_a_201_and_location_header_when_successful()
 88 {
 89 $this->post('/books', [
 90 'title' => 'The Invisible Man',
 91 'description' => 'An invisible man is trapped in the terror of his own

creation',
 92 'author' => 'H. G. Wells'
 93]);
 94
 95 $this
 96 ->seeStatusCode(201)
 97 ->seeHeaderWithRegExp('Location', '#/books/[\d]+$#');
 98
 99 }

 The test will look familiar, except for the seeHeaderWithRegExp method, because you haven’t defined
it yet. To provide some convenience around checking header values, you define this custom assertion in the
base test class tests/TestCase.php that your tests inherit (Listing 5-33).

 Listing 5-33. New Test Assertions (tests/TestCase.php)

 15 /**
 16 * See if the response has a header.
 17 *
 18 * @param $header
 19 * @return $this
 20 */
 21 public function seeHasHeader($header)
 22 {
 23 $this->assertTrue(
 24 $this->response->headers->has($header),
 25 "Response should have the header ' { $header } ' but does not."
 26);
 27
 28 return $this;
 29 }
 30
 31 /**

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

47

 32 * Asserts that the response header matches a given regular expression
 33 *
 34 * @param $header
 35 * @param $regexp
 36 * @return $this
 37 */
 38 public function seeHeaderWithRegExp($header, $regexp)
 39 {
 40 $this
 41 ->seeHasHeader($header)
 42 ->assertRegExp(
 43 $regexp,
 44 $this->response->headers->get($header)
 45);
 46
 47 return $this;
 48 }

 You added two public methods that help assert headers. The seeHasHeader() method asserts the
mere existence of a header. The seeHeaderWithRegExp method chains a call to seeHasHeader and then
uses PHPUnit’s assertRegExp to see if the response header matches the passed regular expression.
These methods use Illuminate\Http\Response , which wraps the Symfony\Component\HttpFoundation\
Response . I encourage you to become familiar with the request and response classes because you will use
them frequently to build APIs.

 After defining the new test methods, run the test (Listing 5-34).

 Listing 5-34. Running the Test for the 201 Status Code and Location Header

 # vagrant@homestead:~/Code/bookr$
 $ phpunit \
 --filter=store_should_respond_with_a_201_and_location_header_when_successful

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::store_should_respond_with_a_2\
 01_and_location_header_when_successful
 Response should have the header 'Location' but does not.
 Failed asserting that false is true.

 /home/vagrant/Code/bookr/tests/TestCase.php:25
 /home/vagrant/Code/bookr/tests/TestCase.php:41
 /home/vagrant/Code/bookr/tests/app/Http/Controllers/BooksControllerTest.php:97

 FAILURES!
 Tests: 1, Assertions: 2, Failures: 1.

 Implement the Location header to get your test to pass (Listing 5-35).

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

48

 Listing 5-35. Adding Location Header to BooksController@store

 42 /**
 43 * POST /books
 44 * @param Request $request
 45 * @return \Symfony\Component\HttpFoundation\Response
 46 */
 47 public function store(Request $request)
 48 {
 49 $book = Book::create($request->all());
 50
 51 return response()->json(['created' => true], 201, [
 52 'Location' => route('books.show', ['id' => $book->id])
 53]);
 54 }

 The json() method accepts an associative array of headers as the third argument, and you use this
argument to set the Location header. The route() helper method takes a named route (https://lumen.
laravel.com/docs/5.2/routing#named-routes) to create a URI for the value of the Location header. You
haven’t created a named route called books.show yet, so you need to define one now in app/Http/routes.php
(Listing 5-36).

 Listing 5-36. Adding the BooksController@show Named Route

 18 $app->get('/books', 'BooksController@index');
 19 $app->get('/books/{id:[\d]+}', [
 20 'as' => 'books.show',
 21 'uses' => 'BooksController@show'
 22]);
 23 $app->post('/books', 'BooksController@store');

 The show route accepts an associative array with the named route 'as' => 'books.show' and the 'uses'
key defines the controller.

 The dot notation used in the name route has no special meaning, but the namespace helps with
organization. You could have named the route something like “show_book” if you wanted, but I personally
follow the dot notation because it feels more organized.

 Let’s see if you code now passes the test suite (Listing 5-37).

 Listing 5-37. Running the Full Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (7 tests, 18 assertions)

 Passing the tests means you are done with your BooksController@store route.

 Git commit: Create a New Book

 1403e67 (https://bitbucket.org/paulredmond/apress-bookr/commits/1403e67)

https://lumen.laravel.com/docs/5.2/routing#named-routes
https://lumen.laravel.com/docs/5.2/routing#named-routes
https://bitbucket.org/paulredmond/apress-bookr/commits/1403e67

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

49

 Updating an Existing Book
 Now that you can create a new book, the next feature is the ability to update an existing book. You will begin
to understand (if you don’t already) in this section that using your development database for tests is not a
good idea; you will cover using a separate test database in Chapter 6 . I hope you are getting a feel for using
test-driven development to drive good design. Good design does not happen all at once, but through small
increments of test and code cycles.

 Listing 5-38 shows the acceptance criteria for updating an existing book record the BooksControllerTest
class (tests/app/Http/Controllers/BooksControllerTest.php).

 Listing 5-38. Acceptance Criteria for Updating a Book

 101 /** @test **/
 102 public function update_should_only_change_fillable_fields()
 103 {
 104 $this->markTestIncomplete('pending');
 105 }
 106
 107 /** @test **/
 108 public function update_should_fail_with_an_invalid_id()
 109 {
 110 $this->markTestIncomplete('pending');
 111 }
 112
 113 /** @test **/
 114 public function update_should_not_match_an_invalid_route()
 115 {
 116 $this->markTestIncomplete('pending');
 117 }

 The first test will ensure that only fillable fields can be changed and that the changes are persisted in the
database. The response should also return the updated record data and a 200 OK status code (Listing 5-39).

 Listing 5-39. Testing for a Successful Book Update

 101 /** @test **/
 102 public function update_should_only_change_fillable_fields()
 103 {
 104 $this->notSeeInDatabase('books', [
 105 'title' => 'The War of the Worlds'
 106]);
 107
 108 $this->put('/books/1', [
 109 'id' => 5,
 110 'title' => 'The War of the Worlds',
 111 'description' => 'The book is way better than the movie.',
 112 'author' => 'Wells, H. G.'
 113]);
 114
 115 $this
 116 ->seeStatusCode(200)
 117 ->seeJson([

http://dx.doi.org/10.1007/978-1-4842-2187-7_6

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

50

 118 'id' => 1,
 119 'title' => 'The War of the Worlds',
 120 'description' => 'The book is way better than the movie.',
 121 'author' => 'Wells, H. G.'
 122])
 123 ->seeInDatabase('books', [
 124 'title' => 'The War of the Worlds'
 125]);
 126 }

 Your test assumes that a post with an id of 1 exists in the database from your seed data. You make a PUT
request with changes all the fillable fields so you can assert that they get updated. Notice that the test tries to
update the id, which should not be allowed. Before making the PUT request, your test makes sure a record
doesn’t already exist in the database. After updating the record, the test verifies the response, the status
code, and that a record exists with the new changes in the database.

 Your test will fail with your assertion of a 200 response status code because you haven’t defined a route;
instead you get a 405 Method Not Allowed response (Listing 5-40).

 Listing 5-40. Testing the Updating of a Book

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::update_should_only_change_fillable_fields
 Expected status code 200, got 405.
 Failed asserting that 405 matches expected 200.

 FAILURES!
 Tests: 10, Assertions: 20, Failures: 1, Incomplete: 2.

 With the failing test written, define the route (Listing 5-41) and the controller implementation
(Listing 5-42).

 Listing 5-41. Books Update Route (app/Http/routes.php)

 18 $app->get('/books', 'BooksController@index');
 19 $app->get('/books/{id:[\d]+}', [
 20 'as' => 'books.show',
 21 'uses' => 'BooksController@show'
 22]);
 23 $app->post('/books', 'BooksController@store');
 24 $app->put('/books/{id:[\d]+}', 'BooksController@update');

 Listing 5-42. First Attempt at Updating a Book (BooksController.php)

 56 /**
 57 * PUT /books/{id}
 58 *
 59 * @param Request $request

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

51

 60 * @param $id
 61 * @return mixed
 62 */
 63 public function update(Request $request, $id)
 64 {
 65 $book = Book::findOrFail($id);
 66
 67 $book->fill($request->all());
 68 $book->save();
 69
 70 return $book;
 71 }

 The controller uses the findOrFail method you’ve already seen, which returns the book if it exists. The
 $book->fill() method, provided by Eloquent, takes an array of data from the request, but only updates the
model’s $fillable fields. Next, the $book->save() method is called and the updated book returned.

 Run the tests after writing the implementation to see if you can move on (Listing 5-43).

 Listing 5-43. Running the Update Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=update_should_only_change_fillable_fields

 OK (1 test, 7 assertions)

 I will spoil it for you: if you run the test again, it will fail the second time. Why does it fail? Because you
are using the development database to run tests. The second time you run your test, it will see the updated
record in the database when it should not (Listing 5-44).

 Listing 5-44. Your Failing Test, Which Should Pass

 $this->notSeeInDatabase('books', [
 'title' => 'The War of the Worlds'
]);

 Until you start using a separate test database you will have to purge and seed the data before each test
run (Listing 5-45).

 Listing 5-45. Refreshing the Database Before Running Tests

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh && php artisan db:seed
 $ phpunit --filter=update_should_only_change_fillable_fields

 OK (1 test, 7 assertions)

 You are ready to work on the second acceptance criteria: update_should_fail_with_an_invalid_id .
The final two acceptance criteria don’t need to insert a record; they just make sure that your route matches
integer digits and that non-existent records return a 404 response. Let’s break the rules a little and write tests
for both features at the same time (Listing 5-46).

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

52

 Listing 5-46. Writing Remaining Tests for the Update Action (BooksController.php)

 127 /** @test **/
 128 public function update_should_fail_with_an_invalid_id()
 129 {
 130 $this
 131 ->put('/books/999999999999999')
 132 ->seeStatusCode(404)
 133 ->seeJsonEquals([
 134 'error' => [
 135 'message' => 'Book not found'
 136]
 137]);
 138 }
 139
 140 /** @test **/
 141 public function update_should_not_match_an_invalid_route()
 142 {
 143 $this->put('/books/this-is-invalid')
 144 ->seeStatusCode(404);
 145 }

 Let’s run all the update_should tests (Listing 5-47).

 Listing 5-47. Running the Update Tests

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh && php artisan db:seed
 $ phpunit --filter=update_should

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::update_should_fail_with_an_invalid_id
 ErrorException: Invalid argument supplied for foreach()
 …

 FAILURES!
 Tests: 3, Assertions: 9, Failures: 1.

 It looks like the only failing test is update_should_fail_with_an_invalid_id . You already dealt with
this issue in the GET/books/{id} route when testing for an error message, so see if you can fix this test on
your own before you see the solution (Listing 5-48).

 Listing 5-48. Responding to Missing Books with a 404 (BooksController.php)

 56 /**
 57 * PUT /books/{id}
 58 * @param Request $request
 59 * @param $id
 60 * @return mixed
 61 */
 62 public function update(Request $request, $id)

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

53

 63 {
 64 try {
 65 $book = Book::findOrFail($id);
 66 } catch (ModelNotFoundException $e) {
 67 return response()->json([
 68 'error' => [
 69 'message' => 'Book not found'
 70]
 71], 404);
 72 }
 73
 74 $book->fill($request->all());
 75 $book->save();
 76
 77 return $book;
 78 }

 Like the BooksController@show method, the @update method catches the ModelNotFoundException
and responds with an error message and a 404 status code. This should get your test suite passing again
(Listing 5-49).

 Listing 5-49. Running the Full Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh && php artisan db:seed
 $ phpunit

 OK (10 tests, 28 assertions)

 Git Commit: Update a Book

 475127d (https://bitbucket.org/paulredmond/apress-bookr/commits/475127d)

 Deleting Books
 Deleting books is the last part of CRUD, and the end of this really long chapter. Luckily, deleting is easy.
Listing 5-50 shows the DELETE /books/{id} route criteria.

 Listing 5-50. Delete Books Acceptance Criteria (BooksControllerTest.php)

 148 /** @test **/
 149 public function destroy_should_remove_a_valid_book()
 150 {
 151 $this->markTestIncomplete('pending');
 152 }
 153
 154 /** @test **/
 155 public function destroy_should_return_a_404_with_an_invalid_id()
 156 {

https://bitbucket.org/paulredmond/apress-bookr/commits/475127d

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

54

 157 $this->markTestIncomplete('pending');
 158 }
 159
 160 /** @test **/
 161 public function destroy_should_not_match_an_invalid_route()
 162 {
 163 $this->markTestIncomplete('pending');
 164 }

 Your first test will make sure you can successfully delete a book. The test expects a 204 No Content
status code and an empty response when deletion succeeds (Listing 5-51).

 Listing 5-51. Testing for Successful Deletion (BooksControllerTest.php)

 142 /** @test **/
 143 public function destroy_should_remove_a_valid_book()
 144 {
 145 $this
 146 ->delete('/books/1')
 147 ->seeStatusCode(204)
 148 ->isEmpty();
 149
 150 $this->notSeeInDatabase('books', ['id' => 1]);
 151 }

 Let’s run the test to make sure it fails (Listing 5-52).

 Listing 5-52. Running the Test for Destroying a Book

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=destroy_should_remove_a_valid_book

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::destroy_should_remove_a_valid_book
 Expected status code 204, got 405.
 Failed asserting that 405 matches expected 204.

 /home/vagrant/Code/bookr/vendor/laravel/lumen-framework/src/Testing/CrawlerTrait\
 .php:412
 /home/vagrant/Code/bookr/tests/app/Http/Controllers/BooksControllerTest.php:153

 FAILURES!
 Tests: 1, Assertions: 1, Failures: 1.

 The failed test responds with a 405 Method Not Allowed response. Lumen responds with the 405
without any work on your part until you define the DELETE /books/{id} route. A failed test means you are
ready to implement your first version of the BooksController@destroy method and route (Listing 5-53).

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

55

 Listing 5-53. BooksController::destroy() Method (BooksController.php)

 80 /**
 81 * DELETE /books/{id}
 82 * @param $id
 83 * @return \Illuminate\Http\JsonResponse
 84 */
 85 public function destroy($id)
 86 {
 87 $book = Book::findOrFail($id);
 88 $book->delete();
 89
 90 return response(null , 204);
 91 }

 Just like your test outlines, you find the book and call $book->delete() on the model and omit a
response body. You don’t call response()->json() because you are not sending back a response body with a
 204 response, indicating that the server successfully fulfilled the request but there is no content to send back.

 You need to define the accompanying route (Listing 5-54) and then run the test (Listing 5-55).

 Listing 5-54. The BooksController@destroy Route

 18 $app->get('/books', 'BooksController@index');
 19 $app->get('/books/{id:[\d]+}', [
 20 'as' => 'books.show',
 21 'uses' => 'BooksController@show'
 22]);
 23 $app->put('/books/{id:[\d]+}', 'BooksController@update');
 24 $app->post('/books', 'BooksController@store');
 25 $app->delete('/books/{id:[\d]+}', 'BooksController@destroy');

 Listing 5-55. Running the Test for Destroying a Book

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=destroy_should_remove_a_valid_book

 OK (1 test, 2 assertions)

 After you delete the record in the database, your test will fail if you run it a second time because the
record has been removed. Keep refreshing the migration and seeding data to wrap up this chapter. The final
two tests are the same as the PUT /books/{id} tests (Listing 5-56).

 Listing 5-56. Final BooksController::destroy() Tests

 158 /** @test **/
 159 public function destroy_should_return_a_404_with_an_invalid_id()
 160 {
 161 $this

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

56

 162 ->delete('/books/99999')
 163 ->seeStatusCode(404)
 164 ->seeJsonEquals([
 165 'error' => [
 166 'message' => 'Book not found'
 167]
 168]);
 169 }
 170
 171 /** @test **/
 172 public function destroy_should_not_match_an_invalid_route()
 173 {
 174 $this->delete('/books/this-is-invalid')
 175 ->seeStatusCode(404);
 176 }

 You expect that your tests should fail (Listing 5-57).

 Listing 5-57. Running the Tests for Deleting a Book

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh && php artisan db:seed
 $ phpunit --filter=destroy_

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::destroy_should_return_a_404_with_an_
invalid_id
 ErrorException: Invalid argument supplied for foreach()
 ...

 FAILURES!
 Tests: 3, Assertions: 4, Failures: 1.

 There’s one final test to fail and then you can consider your initial BooksController complete. To pass
the final test, you must catch the ModelNotFoundException like your other controller methods (Listing 5-58).

 Listing 5-58. Respond with 404 Error if Missing (BooksController.php)

 80 /**
 81 * DELETE /books/{id}
 82 * @param $id
 83 * @return \Illuminate\Http\JsonResponse
 84 */
 85 public function destroy($id)
 86 {
 87 try {
 88 $book = Book::findOrFail($id);
 89 } catch (ModelNotFoundException $e) {
 90 return response()->json([
 91 'error' => [
 92 'message' => 'Book not found'

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

57

 93]
 94], 404);
 95 }
 96
 97 $book->delete();
 98
 99 return response(null , 204);
 100 }

 This code change should get your tests to pass (Listing 5-59).

 Listing 5-59. Run the Full Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh && php artisan db:seed
 $ phpunit

 OK (13 tests, 33 assertions)

 Success! You are done with your first version of the BooksController. The following listings show
the full source code of the main files you are working on, including BooksController.php (Listing 5-60),
 BooksControllerTest.php (Listing 5-61), and routes.php (Listing 5-62).

 Listing 5-60. BooksController.php

 1 <?php
 2
 3 namespace App\Http\Controllers;
 4
 5 use App\Book;
 6 use Illuminate\Http\Request;
 7 use Illuminate\Database\Eloquent\ModelNotFoundException;
 8
 9 /**
 10 * Class BooksController
 11 * @package App\Http\Controllers
 12 */
 13 class BooksController
 14 {
 15 /**
 16 * GET /books
 17 * @return array
 18 */
 19 public function index()
 20 {
 21 return Book::all();
 22 }
 23
 24 /**
 25 * GET /books/{id}
 26 * @param integer $id
 27 * @return mixed

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

58

 28 */
 29 public function show($id)
 30 {
 31 try {
 32 return Book::findOrFail($id);
 33 } catch (ModelNotFoundException $e) {
 34 return response()->json([
 35 'error' => [
 36 'message' => 'Book not found'
 37]
 38], 404);
 39 }
 40 }
 41
 42 /**
 43 * POST /books
 44 * @param Request $request
 45 * @return \Symfony\Component\HttpFoundation\Response
 46 */
 47 public function store(Request $request)
 48 {
 49 $book = Book::create($request->all());
 50
 51 return response()->json(['created' => true], 201, [
 52 'Location' => route('books.show', ['id' => $book->id])
 53]);
 54 }
 55
 56 /**
 57 * PUT /books/{id}
 58 * @param Request $request
 59 * @param $id
 60 * @return mixed
 61 */
 62 public function update(Request $request, $id)
 63 {
 64 try {
 65 $book = Book::findOrFail($id);
 66 } catch (ModelNotFoundException $e) {
 67 return response()->json([
 68 'error' => [
 69 'message' => 'Book not found'
 70]
 71], 404);
 72 }
 73
 74 $book->fill($request->all());
 75 $book->save();
 76
 77 return $book;
 78 }

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

59

 79
 80 /**
 81 * DELETE /books/{id}
 82 * @param $id
 83 * @return \Illuminate\Http\JsonResponse
 84 */
 85 public function destroy($id)
 86 {
 87 try {
 88 $book = Book::findOrFail($id);
 89 } catch (ModelNotFoundException $e) {
 90 return response()->json([
 91 'error' => [
 92 'message' => 'Book not found'
 93]
 94], 404);
 95 }
 96
 97 $book->delete();
 98
 99 return response(null , 204);
 100 }
 101 }

 Listing 5-61. BooksControllerTest.php

 1 <?php
 2
 3 namespace Tests\App\Http\Controllers;
 4
 5 use TestCase;
 6
 7 class BooksControllerTest extends TestCase
 8 {
 9 /** @test **/
 10 public function index_status_code_should_be_200()
 11 {
 12 $this->visit('/books')->seeStatusCode(200);
 13 }
 14
 15 /** @test **/
 16 public function index_should_return_a_collection_of_records()
 17 {
 18 $this
 19 ->get('/books')
 20 ->seeJson([
 21 'title' => 'War of the Worlds'
 22])
 23 ->seeJson([
 24 'title' => 'A Wrinkle in Time'
 25]);
 26 }

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

60

 27
 28 /** @test **/
 29 public function show_should_return_a_valid_book()
 30 {
 31 $this
 32 ->get('/books/1')
 33 ->seeStatusCode(200)
 34 ->seeJson([
 35 'id' => 1,
 36 'title' => 'War of the Worlds',
 37 'description' => 'A science fiction masterpiece about Martians invading

London',
 38 'author' => 'H. G. Wells'
 39]);
 40
 41 $data = json_decode($this->response->getContent(), true);
 42 $this->assertArrayHasKey('created_at', $data);
 43 $this->assertArrayHasKey('updated_at', $data);
 44 }
 45
 46 /** @test **/
 47 public function show_should_fail_when_the_book_id_does_not_exist()
 48 {
 49 $this
 50 ->get('/books/99999')
 51 ->seeStatusCode(404)
 52 ->seeJson([
 53 'error' => [
 54 'message' => 'Book not found'
 55]
 56]);
 57 }
 58
 59 /** @test **/
 60 public function show_route_should_not_match_an_invalid_route()
 61 {
 62 $this->get('/books/this-is-invalid');
 63
 64 $this->assertNotRegExp(
 65 '/Book not found/',
 66 $this->response->getContent(),
 67 'BooksController@show route matching when it should not.'
 68);
 69 }
 70
 71 /** @test **/
 72 public function store_should_save_new_book_in_the_database()
 73 {
 74 $this->post('/books', [
 75 'title' => 'The Invisible Man',
 76 'description' => 'An invisible man is trapped in the terror of his own

creation',

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

61

 77 'author' => 'H. G. Wells'
 78]);
 79
 80 $this
 81 ->seeJson(['created' => true])
 82 ->seeInDatabase('books', ['title' => 'The Invisible Man']);
 83 }
 84
 85 /** @test */
 86 public function store_should_respond_with_a_201_and_location_header_when_

successful()
 87 {
 88 $this->post('/books', [
 89 'title' => 'The Invisible Man',
 90 'description' => 'An invisible man is trapped in the terror of his own

creation',
 91 'author' => 'H. G. Wells'
 92]);
 93
 94 $this
 95 ->seeStatusCode(201)
 96 ->seeHeaderWithRegExp('Location', '#/books/[\d]+$#');
 97
 98 }
 99
 100 /** @test **/
 101 public function update_should_only_change_fillable_fields()
 102 {
 103 $this->notSeeInDatabase('books', [
 104 'title' => 'The War of the Worlds'
 105]);
 106
 107 $this->put('/books/1', [
 108 'id' => 5,
 109 'title' => 'The War of the Worlds',
 110 'description' => 'The book is way better than the movie.',
 111 'author' => 'Wells, H. G.'
 112]);
 113
 114 $this
 115 ->seeStatusCode(200)
 116 ->seeJson([
 117 'id' => 1,
 118 'title' => 'The War of the Worlds',
 119 'description' => 'The book is way better than the movie.',
 120 'author' => 'Wells, H. G.'
 121])
 122 ->seeInDatabase('books', [
 123 'title' => 'The War of the Worlds'
 124]);
 125 }

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

62

 126
 127 /** @test **/
 128 public function update_should_fail_with_an_invalid_id()
 129 {
 130 $this
 131 ->put('/books/999999999999999')
 132 ->seeStatusCode(404)
 133 ->seeJsonEquals([
 134 'error' => [
 135 'message' => 'Book not found'
 136]
 137]);
 138 }
 139
 140 /** @test **/
 141 public function update_should_not_match_an_invalid_route()
 142 {
 143 $this->put('/books/this-is-invalid')
 144 ->seeStatusCode(404);
 145 }
 146
 147 /** @test **/
 148 public function destroy_should_remove_a_valid_book()
 149 {
 150 $this
 151 ->delete('/books/1')
 152 ->seeStatusCode(204)
 153 ->isEmpty();
 154
 155 $this->notSeeInDatabase('books', ['id' => 1]);
 156 }
 157
 158 /** @test **/
 159 public function destroy_should_return_a_404_with_an_invalid_id()
 160 {
 161 $this
 162 ->delete('/books/99999')
 163 ->seeStatusCode(404)
 164 ->seeJsonEquals([
 165 'error' => [
 166 'message' => 'Book not found'
 167]
 168]);
 169 }
 170
 171 /** @test **/
 172 public function destroy_should_not_match_an_invalid_route()
 173 {
 174 $this->delete('/books/this-is-invalid')
 175 ->seeStatusCode(404);
 176 }
 177 }

CHAPTER 5 ■ CREATING, READING, UPDATING, AND DELETING BOOKS

63

 Listing 5-62. routes.php

 1 <?php
 2
 3 /*
 4 |---
 5 | Application Routes
 6 |---
 7 |
 8 | Here is where you can register all of the routes for an application.
 9 | It is a breeze. Simply tell Lumen the URIs it should respond to
 10 | and give it the Closure to call when that URI is requested.
 11 |
 12 */
 13
 14 $app->get('/', function () use ($app) {
 15 return $app->version();
 16 });
 17
 18 $app->get('/books', 'BooksController@index');
 19 $app->get('/books/{id:[\d]+}', [
 20 'as' => 'books.show',
 21 'uses' => 'BooksController@show'
 22]);
 23 $app->put('/books/{id:[\d]+}', 'BooksController@update');
 24 $app->post('/books', 'BooksController@store');
 25 $app->delete('/books/{id:[\d]+}', 'BooksController@destroy');

 If you are following along, commit your changes before moving on to the next chapter.

 Git commit: Delete a Book

 60ab6ca (https://bitbucket.org/paulredmond/apress-bookr/commits/60ab6ca)

 Conclusion
 You covered a lot of ground in this chapter, including

• Testing first and then writing a passing implementation

• Creating new records in a database with Eloquent

• Updating existing records in the database

• Deleting existing records in the database

• Using correct response codes for creating, updating, and deleting resources

• Defining a named route

 The BooksController is clean and simple, with Eloquent doing the heavy lifting for your data. Your
methods are small and concise, which makes code easier to digest and maintain.

https://bitbucket.org/paulredmond/apress-bookr/commits/60ab6ca

65© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7_6

 CHAPTER 6

 Responding to Errors

 During your work on the Book API in Chapter 5 it became evident that you need to start using a separate
test database. You also don’t have very good error responses for API consumers yet. Responding to a client
with an HTML error that expects JSON is not going to cut it anymore. When an API consumer interacts with
your API, you want to respond with the correct Content-Type header. For now, you will assume all of your
consumers want JSON, and in my experience, JSON is typically what consumers want.

 Test Database
 The main focus of this chapter will be error responses, but before you work on error responses you will side-
step and fix your glaring database testing issue. Lumen provides convenient and clever tools out of the box to
support creating test data, such as

• Model factories

• DatabaseMigrations trait

• Faker data generator (https://github.com/fzaninotto/Faker)

 The basic steps needed to start using the test database include

• Configuring PHPUnit to use the test database

• Creating a model factory definition for the Book model

• Modifying existing tests to use factory test data

 Back in Chapter 3 you set up the bookr_testing database during your project setup in the
 Homestead.yaml file. If you don’t have that database yet, you need to configure it now and rerun the
vagrant provision .

 If you recall your project environment setup, the MySQL database is configured using phpdotenv . You
take advantage of that to set the test database used within PHPUnit. Open the phpunit.xml file in the root of
the project and you will see opening and closing <php></php> tags that contain environment variables; you
need to add the DB_DATABASE variable (Listing 6-1).

 Listing 6-1. Configuring PHPUnit to Use the Testing Database

 22 <php>
 23 <env name="APP_ENV" value="testing"/>
 24 <!-- Test Database -->
 25 <env name="DB_DATABASE" value="bookr_testing"/>
 26 <env name="CACHE_DRIVER" value="array"/>
 27 </php>

http://dx.doi.org/10.1007/978-1-4842-2187-7_5
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
http://dx.doi.org/10.1007/978-1-4842-2187-7_3

CHAPTER 6 ■ RESPONDING TO ERRORS

66

 I won’t show the output if you run phpunit at this point, but you will get exceptions and failures, lots
of them. Switching the database to bookr_testing means that you don’t have any tables or data yet. You
already have migrations, but to get data in your test database you need to configure a model factory and
tweak your tests to take advantage of the DatabaseMigrations trait that Lumen provides.

 Model Factories
 Model factories provide fake test data that can be used to populate the test data before running a test.
Factories generate random fake data you can use in a test, making your test data isolated and repeatable.
In fact, each test requiring test data starts with a fresh database.

 You only have one model right now, so you will define a factory you can use in your
 BooksControllerTest.php . All the model factory definitions should be added in the database/factories/
ModelFactory.php file (Listing 6-2).

 Listing 6-2. Adding the Book Model Factory

 21 $factory->define(App\Book::class, function ($faker) {
 22 $title = $faker->sentence(rand(3, 10));
 23
 24 return [
 25 'title' => substr($title, 0, strlen($title) - 1),
 26 'description' => $faker->text,
 27 'author' => $faker->name
 28];
 29 });

 You define a Book factory with the first argument, App\Book::class , which references the model. The
second argument in the factory definition is a Closure , which does the following:

• Uses Faker (https://github.com/fzaninotto/Faker) to generate a random
sentence between 3 and 10 words long

• Returns an array of fake data using Faker’s various “formatters”

• Removes the period (.) from the sentence formatter with substr

 Factories in Tests
 Now that you’ve defined a book factory (pun intended), you are ready to use it in your test to provide
random fake test data. You will update all your existing tests that currently depend on your seeded data
to start using the new factory. The only test file you have at this point is tests/app/Http/Controllers/
BooksControllerTest.php , so open it up in your favorite editor.

 The first test is index_should_return_a_collection_of_records , which ensures that the
 BooksController@index method returns a collection of books (Listing 6-3).

 Listing 6-3. Refactoring the index_should_return_a_collection_of_records Test

 15 /** @test **/
 16 public function index_should_return_a_collection_of_records()
 17 {
 18 $books = factory('App\Book', 2)->create();
 19

https://github.com/fzaninotto/Faker

CHAPTER 6 ■ RESPONDING TO ERRORS

67

 20 $this->get('/books');
 21
 22 foreach ($books as $book) {
 23 $this->seeJson(['title' => $book->title]);
 24 }
 25 }

 The last code snippet is the first example of using the factory() helper function. You indicate that you
want to use the App\Book factory, and that you want it to generate two book models. The second argument is
optional, and if you omit it you will get one record back.

 The factory() helper returns an instance of Illuminate\Database\Eloquent\FactoryBuilder , which
has the methods make() and create() . You want to persist data to the database so you use create() ; the
 make() method will return a model without saving it to the database.

 The factory()->create() call returns the model instances and you loop over them to make sure each
model is represented in the /books response.

 Now that you’ve see the first example of using a factory, you need a way to migrate and reset your
database before each test requiring the database. Enter the DatabaseMigrations trait provided by the
Lumen framework (Listing 6-4).

 Listing 6-4. Adding the DatabaseMigrations Trait

 1 <?php
 2
 3 namespace Tests\App\Http\Controllers;
 4
 5 use TestCase;
 6 use Laravel\Lumen\Testing\DatabaseMigrations;
 7
 8 class BooksControllerTest extends TestCase
 9 {
 10 use DatabaseMigrations;
 11 // ...
 12 }

 The DatabaseMigrations trait uses a @before PHPUnit annotation to migrate the database
automatically.

 Learn More About Model Factories

 See the “Model Factories” (https://lumen.laravel.com/docs/5.2/testing#model-factories) section of
the official documentation for information on how to use model factories.

 It is time to run phpunit against your first test refactor (Listing 6-5).

 Listing 6-5. Testing the First Test Refactor

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=index_should_return_a_collection_of_records

 OK (1 test, 2 assertions)

https://lumen.laravel.com/docs/5.2/testing#model-factories

CHAPTER 6 ■ RESPONDING TO ERRORS

68

 Now that you have a working test with the Book model factory, you can knock out the remaining test cases
that need model data. You will cheat a little and fix the remaining tests before you run the whole test suite again.

 Next up is the GET /book/{id} route test, shown in Listing 6-6 .

 Listing 6-6. Refactoring show_should_return_a_valid_book to Use Factories

 31 /** @test **/
 32 public function show_should_return_a_valid_book()
 33 {
 34 $book = factory('App\Book')->create();
 35 $this
 36 ->get("/books/ { $book->id } ")
 37 ->seeStatusCode(200)
 38 ->seeJson([
 39 'id' => $book->id,
 40 'title' => $book->title,
 41 'description' => $book->description,
 42 'author' => $book->author
 43]);
 44
 45 $data = json_decode($this->response->getContent(), true);
 46 $this->assertArrayHasKey('created_at', $data);
 47 $this->assertArrayHasKey('updated_at', $data);
 48 }

 Note that you use the $book->id to build the request URI and then assert the response from the $book
instance. The remainder of the test stays the same.

 Next up is using a model factory to test that only fillable fields can be updated (Listing 6-7).

 Listing 6-7. Refactoring update_should_only_change_fillable_fields to Use Model Factories

 104 /** @test **/
 105 public function update_should_only_change_fillable_fields()
 106 {
 107 $book = factory('App\Book')->create([
 108 'title' => 'War of the Worlds',
 109 'description' => 'A science fiction masterpiece about Martians invading

London',
 110 'author' => 'H. G. Wells',
 111]);
 112
 113 $this->put("/books/ { $book->id } ", [
 114 'id' => 5,
 115 'title' => 'The War of the Worlds',
 116 'description' => 'The book is way better than the movie.',
 117 'author' => 'Wells, H. G.'
 118]);
 119
 120 $this
 121 ->seeStatusCode(200)
 122 ->seeJson([
 123 'id' => 1,

CHAPTER 6 ■ RESPONDING TO ERRORS

69

 124 'title' => 'The War of the Worlds',
 125 'description' => 'The book is way better than the movie.',
 126 'author' => 'Wells, H. G.'
 127])
 128 ->seeInDatabase('books', [
 129 'title' => 'The War of the Worlds'
 130]);
 131 }

 The test is the first example of passing an array to the factory()->create() to override model values.
You are not required to pass specific data to get this test passing, but I think it makes the test more readable.
When you pass an array to factory()->create() (and make) the values override the generated values
produced by the Faker library. Note that you removed the notSeeInDatabase() assertion at the beginning
because each test has a clean database, making the test unnecessary.

 The next test to be refactored with a model factory is the one that ensures that a book can be deleted
(Listing 6-8).

 Listing 6-8. Refactoring destroy_should_remove_a_valid_book to Use Factories

 153 /** @test **/
 154 public function destroy_should_remove_a_valid_book()
 155 {
 156 $book = factory('App\Book')->create();
 157 $this
 158 ->delete("/books/ { $book->id } ")
 159 ->seeStatusCode(204)
 160 ->isEmpty();
 161
 162 $this->notSeeInDatabase('books', ['id' => $book->id]);
 163 }

 Your refactor is done. See if the tests can be passed now (Listing 6-9).

 Listing 6-9. Test Suite After Model Factory Refactoring

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (13 tests, 32 assertions)

 You can run phpunit multiple times and the tests will pass every time. Yay!

 Git commit: Use Model Factories and a Test Database for Tests

 1c50b61 (https://bitbucket.org/paulredmond/apress-bookr/commits/1c50b61)

 Better Error Responses
 You are ready to improve your APIs error responses. Thus far you get back HTML when you have an
application exception like a ModelNotFoundException , but an API consumer should get JSON. You could
support other content types too, but you will focus on JSON responses for now.

https://bitbucket.org/paulredmond/apress-bookr/commits/1c50b61

CHAPTER 6 ■ RESPONDING TO ERRORS

70

 Framework Exception Handling
 So how does Lumen deal with exceptions out of the box? The Lumen application bootstraps an application
instance (Laravel\Lumen\Application) which contains a few key traits: Laravel\Lumen\Concerns\
RoutesRequests and Laravel\Lumen\Concerns\RegistersExceptionHandlers . You will find the
 Application::run() method is contained in the RoutesRequests trait (Listing 6-10).

 Listing 6-10. The RoutesRequests Trait’s run() Method

 /**
 * Run the application and send the response.
 *
 * @param SymfonyRequest|null $request
 * @return void
 */
 public function run($request = null)
 {
 $response = $this->dispatch($request);

 if ($response instanceof SymfonyResponse) {
 $response->send();
 } else {
 echo (string) $response;
 }

 if (count($this->middleware) > 0) {
 $this->callTerminableMiddleware($response);
 }
 }

 The trait’s run() method is called from the front controller (public/index.php). The first line dispatches
the request, expecting a response back. If you view the source for the RoutesRequests::dispatch() method,
you will see a try/catch where exceptions are caught and handled (Listing 6-11).

 Listing 6-11. Partial Source of Lumen’s Application::dispatch() Method

 try {
 return $this->sendThroughPipeline($this->middleware, function () use ($method,
$pathInfo) {
 if (isset($this->routes[$method.$pathInfo])) {
 return $this->handleFoundRoute([true, $this->routes[$method.$pathInfo]
['action'], []]);
 }

 return $this->handleDispatcherResponse(
 $this->createDispatcher()->dispatch($method, $pathInfo)
);
 });
 } catch (Exception $e) {
 return $this->sendExceptionToHandler($e);
 } catch (Throwable $e) {
 return $this->sendExceptionToHandler($e);
 }

CHAPTER 6 ■ RESPONDING TO ERRORS

71

 Application exceptions are caught and then sendExceptionToHandler() is called. The
 sendExceptionToHandler() appears as shown in Listing 6-12 (at the time of writing) in the
RegistersExceptionHandlers trait.

 Listing 6-12. The Application::sendExceptionToHandler() Method

 /**
 * Send the exception to the handler and return the response.
 *
 * @param \Throwable $e
 * @return Response
 */
 protected function sendExceptionToHandler($e)
 {
 $handler = $this->resolveExceptionHandler();

 if ($e instanceof Error) {
 $e = new FatalThrowableError($e);
 }

 $handler->report($e);

 return $handler->render($this->make('request'), $e);
 }

 The exception handler is resolved from the container on the first line, and is an instance of
app/Exceptions/Handler.php . The handler instance from the container is responsible for rendering
the exception. Lumen uses a contract (https://laravel.com/docs/5.2/contracts), specifically the
 Illuminate\Contracts\Debug\ExceptionHandler , to bind the container to the application’s handler. The
 bootstrap/app.php binds the application handler to the ExceptionHandler contract (Listing 6-13).

 Listing 6-13. The Exception Handler Contract in bootstrap/app.php

 41 $app->singleton(
 42 Illuminate\Contracts\Debug\ExceptionHandler::class,
 43 App\Exceptions\Handler::class
 44);

 The Application class will resolve the Handler class in app/Exceptions/Handler.php . Listing 6-14
shows the Handler::render() method.

 Listing 6-14. The Exception Handler Render Method

 39 / **
 40 * Render an exception into an HTTP response.
 41 *
 42 * @param \Illuminate\Http\Request $request
 43 * @param \Exception $e
 44 * @return \Illuminate\Http\Response
 45 */
 46 public function render($request, Exception $e)
 47 {
 48 return parent ::render($request, $e);
 49 }

https://laravel.com/docs/5.2/contracts

CHAPTER 6 ■ RESPONDING TO ERRORS

72

 The application handler defers to the parent class to render out the exception. The parent of the
application Handler is the Lumen framework Handler, which you can find at vendor/laravel/lumen-
framework/src/Exceptions/Handler.php . I’ll leave it to you to investigate the source if you want, but
basically the default Handler uses the Symfony Debug component (http://symfony.com/doc/current/
components/debug.html) ExceptionHandler class to send a response.

 JSON Exceptions
 Now that you understand a bit about how Lumen calls the app/Exception/Handler, you are going to update
the Handler::render() method to respond with JSON instead of HTML when appropriate (Listing 6-15).

 Listing 6-15. Checking to See if the User Wants a JSON Response

 40 /**
 41 * Render an exception into an HTTP response.
 42 *
 43 * @param \Illuminate\Http\Request $request
 44 * @param \Exception $e
 45 * @return \Illuminate\Http\Response
 46 */
 47 public function render($request, Exception $e)
 48 {
 49 if ($request->wantsJson() && !($e instanceof ValidationException)) {
 50 $response = [
 51 'message' => (string) $e->getMessage(),
 52 'status' => 400
 53];
 54
 55 if ($e instanceof HttpException) {
 56 $response['message'] = Response::$statusTexts[$e->getStatusCode()];
 57 $response['status'] = $e->getStatusCode();
 58 }
 59
 60 if ($this->isDebugMode()) {
 61 $response['debug'] = [
 62 'exception' => get_class($e),
 63 'trace' => $e->getTrace()
 64];
 65 }
 66
 67 return response()->json(['error' => $response], $response['status']);
 68 }
 69
 70 return parent ::render($request, $e);
 71 }
 72
 73 /**
 74 * Determine if the application is in debug mode.
 75 *
 76 * @return Boolean
 77 */
 78 public function isDebugMode()

http://symfony.com/doc/current/components/debug.html
http://symfony.com/doc/current/components/debug.html

CHAPTER 6 ■ RESPONDING TO ERRORS

73

 79 {
 80 return (Boolean) env('APP_DEBUG');
 81 }

 You need to import Response at the top of your Handler class or you will get a fatal error (Listing 6-16).

 Listing 6-16. Importing the Response Class

 <?php

 namespace App\Exceptions;

 use Exception;
 use Symfony\Component\HttpFoundation\Response;
 // ...

 class Handler extends ExceptionHandler

 Let’s break down the changes you made to the render method:

• $request->wantsJson() checks if the user has “json” in the Accept header.

• You skip ValidationException , allowing the parent handler to handle validation
exceptions.

• If the user doesn’t want JSON, skip and call parent::render() like the original
method.

• If the user wants JSON, you start building the response array, which will be the
returned JSON data.

• You start out with the default exception message and a status code of 400 Bad
Request for generic errors.

• If the exception is an instance of Symfony\Component\HttpKernel\Exception\
HttpException, change the message and status code of the exception
(i.e. status=404, message=Not Found).

• If debug mode is enabled, add the exception class and the stack trace.

• Finally, return a JSON response with the assembled data.

 Try your new handler logic out in the console with curl (Listing 6-17).

 Listing 6-17. Exception Response With Debugging Disabled for Brevity

 # vagrant@homestead:~/Code/bookr$
 $ curl -H"Accept: application/json" http://bookr.app/foo/bar

 HTTP/1.0 404 Not Found
 Host: localhost:8000
 Connection: close
 X-Powered-By: PHP/5.6.13
 Cache-Control: no-cache
 Date: Sun, 25 Oct 2015 06:37:31 GMT
 Content-Type: application/json

 {"error":{"message":"Not Found","status":404}}

CHAPTER 6 ■ RESPONDING TO ERRORS

74

 If you have debugging turned on, your response will have more data. You should check what happens if
you don’t send the Accept header (Listing 6-18).

 Listing 6-18. Response Example for a Missing Route

 # vagrant@homestead:~/Code/bookr$
 $ curl -I http://bookr.app/foo/bar

 HTTP/1.1 404 Not Found
 Server: nginx/1.9.7
 Content-Type: text/html; charset=UTF-8
 Connection: keep-alive
 Cache-Control: no-cache, private
 date: Wed, 06 Jan 2016 04:28:54 GMT

 You have not asked for JSON, so the handler defers to the parent class. You can make the determination
to always respond with JSON in your own applications, but for now you will keep your check and fall back to
the default. The approach you’ve taken to send a JSON response for exceptions is basic, but your approach is
good enough to get started. Eventually, you might want to build your own handler(s) for handling exceptions
that you can reuse on multiple projects. Start simple, and add complexity when you need it.

 You could have started writing tests before this change, but I thought it was more important to show you
how the handler works under the hood and see the results of your modifications first.

 Testing the Exception Handler
 You have an exception handler that can respond to JSON, but you need to write tests to make sure it behaves
as you expect. You will write unit tests for the handler, and your existing API tests will cover integration tests.

 A really useful library for unit testing is a mocking library called Mockery (http://docs.mockery.io/
en/latest/) , which will help you mock dependencies with relative ease. Mockery is not a requirement for
Lumen so you need to install it with Composer (Listing 6-19).

 Listing 6-19. Requiring Mockery

 # vagrant@homestead:~/Code/bookr$
 $ composer require --dev mockery/mockery:~0.9.4

 Now let’s create your Handler unit test file (Listing 6-20).

 Listing 6-20. Creating the HandlerTest File

 # vagrant@homestead:~/Code/bookr$
 $ mkdir -p tests/app/Exceptions
 $ touch tests/app/Exceptions/HandlerTest.php

 Add the following code in Listing 6-21 to the new HandlerTest.php file.

 Listing 6-21. The HandlerTest File (tests/app/Exceptions/HandlerTest.php)

 1 <?php
 2
 3 namespace Tests\App\Exceptions;
 4

http://docs.mockery.io/en/latest/
http://docs.mockery.io/en/latest/

CHAPTER 6 ■ RESPONDING TO ERRORS

75

 5 use TestCase;
 6 use \Mockery as m;
 7 use App\Exceptions\Handler;
 8 use Illuminate\Http\Request;
 9 use Illuminate\Http\JsonResponse;
 10
 11 class HandlerTest extends TestCase
 12 {
 13
 14 }

 The following is a list of things you need to test based on the code you’ve written in the
 Handler::render() method:

• It responds with HTML when json is not requested.

• It responds with json when json is requested.

• It provides a default status code for non-HTTP exceptions.

• It provides common HTTP status codes for HTTP exceptions.

• It provides debug information when debugging is enabled.

• It skips debugging information when debugging is disabled.

 Your first test (Listing 6-22) will ensure the application responds with HTML when JSON is not
requested. Mockery makes mocking dependencies a breeze.

 Listing 6-22. Testing That the API Responds with HTML When JSON Is Not Accepted

 13 /** @test **/
 14 public function it_responds_with_html_when_json_is_not_accepted()
 15 {
 16 // Make the mock a partial, you only want to mock the `isDebugMode` method
 17 $subject = m::mock(Handler::class)->makePartial();
 18 $subject->shouldNotReceive('isDebugMode');
 19
 20 // Mock the interaction with the Request
 21 $request = m::mock(Request::class);
 22 $request->shouldReceive('wantsJson')->andReturn(false);
 23
 24 // Mock the interaction with the exception
 25 $exception = m::mock(\Exception::class, ['Error!']);
 26 $exception->shouldNotReceive('getStatusCode');
 27 $exception->shouldNotReceive('getTrace');
 28 $exception->shouldNotReceive('getMessage');
 29
 30 // Call the method under test, this is not a mocked method.
 31 $result = $subject->render($request, $exception);
 32
 33 // Assert that `render` does not return a JsonResponse
 34 $this->assertNotInstanceOf(JsonResponse::class, $result);
 35 }

CHAPTER 6 ■ RESPONDING TO ERRORS

76

 You mock the class under test (App\Exceptions\Handler) as a partial mock (http://docs.mockery.
io/en/latest/reference/partial_mocks.html) . This allows you to mock certain methods, but the other
methods respond normally. In your case, you want to control the return of the isDebugMode method you
created. Mocking isDebugMode allows you to assert that it was never called! The expectation declaration
 shouldNotReceive means that the mocked method should never receive a call (http://docs.mockery.io/
en/latest/reference/expectations.html) .

 You mock Illuminate\Http\Request and control the flow of the render method by instructing
that wantsJson returns false . If wantsJson returns false, the entire block will be skipped and thus
 Handler::isDebugMode() will not be called. You can see how simple mocks make controlling the flow of the
method under test.

 The last mock you create before calling $subject->render() is an \Exception . Note in the m::mock()
call that you pass an array of constructor arguments (m::mock('ClassName', [arg1,arg2])). Like the
partial mock, you set up three shouldNotRecieve expectations for the exception mock: getStatusCode ,
 getTrace , and getMessage .

 Lastly, you actually call $subject->render($request, $exception); . You use a PHP assertion to make
sure that the render method did not return an instance of the JsonResponse class. Note that because you
partially mocked the subject of this test, the render method responds and works normally.

 Now that you have an understanding of the test, let’s run the first test (Listing 6-23).

 Listing 6-23. Running the First Handler Unit Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=it_responds_with_html_when_json_is_not_accepted

 OK (1 test, 1 assertion)

 Everything passed, but all that work for one assertion!? Fortunately, Mockery provides a way to make
expectations count as assertions in PHPUnit. Open up the base TestCase class found in tests/TestCase.
php and add the following code in Listing 6-24 .

 Listing 6-24. Mockery’s PHPUnit Integration Trait (Partial Source)

 1 <?php
 2
 3 use Mockery\Adapter\Phpunit\MockeryPHPUnitIntegration;
 4
 5 class TestCase extends Laravel\Lumen\Testing\TestCase
 6 {
 7 use MockeryPHPUnitIntegration;
 8 // …
 9 }

 Now you should get more assertions (Listing 6-25).

 Listing 6-25. Running Tests After Adding the Mockery PHPUnit Trait

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=it_responds_with_html_when_json_is_not_accepted

 OK (1 test, 6 assertions)

 Great, you want your hard work and commitment to writing tests mean something. I personally don’t
know if I would write all those mocks without the assertion count payoff!

http://docs.mockery.io/en/latest/reference/partial_mocks.html
http://docs.mockery.io/en/latest/reference/partial_mocks.html
http://docs.mockery.io/en/latest/reference/expectations.html
http://docs.mockery.io/en/latest/reference/expectations.html

CHAPTER 6 ■ RESPONDING TO ERRORS

77

 MOCKING

 Mocking is an invaluable tool in your testing arsenal. It forces you to think about good code design.
Mocking the interactions a class has with other dependencies helps you detect complicated code and
hard-to-test code. A class with many dependencies can become difficult to mock, which might mean
that you should refactor, or perhaps you are mocking things that don’t need to be mocked.

 Mocking is an easy enough concept to understand, but practical use is an art that takes practice. Don’t
give up on using mocking in your tests; the concepts will eventually click! I encourage you to read
through the whole Mockery documentation and practice mocking.

 The phpspec (http://phpspec.readthedocs.org/en/latest/) library is another good library that uses
mocks for tests. In this book, I will stick to PHPUnit + Mockery, but phpspec is an excellent choice too!

 You’ve covered the test for what happens when your app is rendering an exception response but the
user doesn’t want JSON back. Now you are going to test the JSON response when the user wants JSON
(Listing 6-26).

 Listing 6-26. Testing That the API Responds with JSON on an Exception

 37 /** @test */
 38 public function it_responds_with_json_for_json_consumers()
 39 {
 40 $subject = m::mock(Handler::class)->makePartial();
 41 $subject
 42 ->shouldReceive('isDebugMode')
 43 ->andReturn(false);
 44
 45 $request = m::mock(Request::class);
 46 $request
 47 ->shouldReceive('wantsJson')
 48 ->andReturn(true);
 49
 50 $exception = m::mock(\Exception::class, ['Doh!']);
 51 $exception
 52 ->shouldReceive('getMessage')
 53 ->andReturn('Doh!');
 54
 55 /** @var JsonResponse $result */
 56 $result = $subject->render($request, $exception);
 57 $data = $result->getData();
 58
 59 $this->assertInstanceOf(JsonResponse::class, $result);
 60 $this->assertObjectHasAttribute('error', $data);
 61 $this->assertAttributeEquals('Doh!', 'message', $data->error);
 62 $this->assertAttributeEquals(400, 'status', $data->error);
 63 }

http://phpspec.readthedocs.org/en/latest/

CHAPTER 6 ■ RESPONDING TO ERRORS

78

 The mocks in your latest test are very similar to the first handler test, but this time you mock your method
under test to go into the if ($request->wantsJson()) { logic. Inside the if ($request->wantsJson()) {
statement there are calls that you need to mock that should receive. The $exception mock should receive
a call to getMessage and return "Doh!" since that is the parameter you passed to the $exception mock
constructor.

 The $exception is not an instance of Symfony\Component\HttpKernel\Exception\HttpException so
your test will use the default status code and message from the exception. You then assert that the method
under test returns an instance of Illuminate\Http\JsonResponse . Finally, you assert the response body for
the correct keys, values, and status code.

 A couple more tests and you can call your exception response handler good. The next test needs to
import a few classes to the top of your HandlerTest class (Listing 6-27).

 Listing 6-27. Adding a Few HTTP Exception Classes (tests/app/Exceptions/HandlerTest.php)

 <?php

 namespace Tests\App\Exceptions;

 // ...
 use Symfony\Component\HttpKernel\Exception\NotFoundHttpException;
 use Symfony\Component\HttpKernel\Exception\AccessDeniedHttpException;

 class HandlerTest extends TestCase

 And now the final test for the Handler.php class. This test ensures that classes extending from
 HttpException will respond with the matching HTTP request status code and message (Listing 6-28).

 Listing 6-28. Testing HTTP Exception Responses

 67 /** @test */
 68 public function it_provides_json_responses_for_http_exceptions()
 69 {
 70 $subject = m::mock(Handler::class)->makePartial();
 71 $subject
 72 ->shouldReceive('isDebugMode')
 73 ->andReturn(false);
 74
 75 $request = m::mock(Request::class);
 76 $request->shouldReceive('wantsJson')->andReturn(true);
 77
 78 $examples = [
 79 [
 80 'mock' => NotFoundHttpException::class,
 81 'status' => 404,
 82 'message' => 'Not Found'
 83],
 84 [
 85 'mock' => AccessDeniedHttpException::class,
 86 'status' => 403,
 87 'message' => 'Forbidden'
 88]

CHAPTER 6 ■ RESPONDING TO ERRORS

79

 89];
 90
 91 foreach ($examples as $e) {
 92 $exception = m::mock($e['mock']);
 93 $exception->shouldReceive('getMessage')->andReturn(null);
 94 $exception->shouldReceive('getStatusCode')->andReturn($e['status']);
 95
 96 /** @var JsonResponse $result */
 97 $result = $subject->render($request, $exception);
 98 $data = $result->getData();
 99
 100 $this->assertEquals($e['status'], $result->getStatusCode());
 101 $this->assertEquals($e['message'], $data->error->message);
 102 $this->assertEquals($e['status'], $data->error->status);
 103 }
 104 }

 The $subject and $request mocks should look familiar at this point. After mocking and setting
expectations, the test creates an array of $examples that you will loop over to test a few exceptions
that extend from the HttpException class. The foreach loop mocks each example and sets mockery
expectations. Each loop will do the following:

• Set shouldReceive expectation for getMessage and getStatusCode.

• The $subject->render() call is made on the partially mocked test subject.

• Make PHPUnit assertions about the response status and message keys.

 You are at a point where you should run tests before moving on (Listing 6-29).

 Listing 6-29. Running the Handler Tests and the Full Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=HandlerTest

 OK (3 tests, 25 assertions)

 $ phpunit

 OK (16 tests, 57 assertions)

 Before you call it good, let’s refactor the BooksController@show method to not catch exceptions from
the Book::findOrFail() method call now that your handler can respond to exceptions. Listing 6-30 shows
the current version of the @show method.

 Listing 6-30. Current BooksController@show Method

 24 /**
 25 * GET /books/{id}
 26 * @param integer $id
 27 * @return mixed
 28 */
 29 public function show($id)
 30 {

CHAPTER 6 ■ RESPONDING TO ERRORS

80

 31 try {
 32 return Book::findOrFail($id);
 33 } catch (ModelNotFoundException $e) {
 34 return response()->json([
 35 'error' => [
 36 'message' => 'Book not found'
 37]
 38], 404);
 39 }
 40 }

 Let’s remove the try/catch to see how your App\Exceptions\Handler::render() method handles the
 findOrFail() call (Listing 6-31).

 Listing 6-31. Removing try/catch From the BooksController@show Method

 24 /**
 25 * GET /books/{id}
 26 * @param integer $id
 27 * @return mixed
 28 */
 29 public function show($id)
 30 {
 31 return Book::findOrFail($id);
 32 }

 Now try making a request to an invalid record (Listing 6-32).

 Listing 6-32. Making a Request for an Invalid Book

 # vagrant@homestead:~/Code/bookr$
 $ curl -i -H"Accept: application/json" http://bookr.app/books/5555

 HTTP/1.1 400 Bad Request
 Server: nginx/1.9.7
 Content-Type: application/json
 Transfer-Encoding: chunked
 Connection: keep-alive
 Cache-Control: no-cache
 Date: Wed, 06 Jan 2016 05:00:35 GMT

 {"error":{"message":"No query results for model [App\\Book].","status":400}}

 It looks like your Handler.php adjustments are working, but a 400 is not exactly the right response for a
 ModelNotFoundException . If you run phpunit, now you will get a failure; your test suite has helped you avoid
a bug! Let’s make one last adjustment to your Handler::render() method (Listing 6-33) to account for a
 ModelNotFoundException .

 Listing 6-33. Additional Check for ModelNotFoundException

 49 if ($e instanceof HttpException) {
 50 $response['message'] = Response::$statusTexts[$e->getStatusCode()];

CHAPTER 6 ■ RESPONDING TO ERRORS

81

 51 $response['status'] = $e->getStatusCode();
 52 } else if ($e instanceof ModelNotFoundException) {
 53 $response['message'] = Response::$statusTexts[Response::HTTP_NOT_FOUND];
 54 $response['status'] = Response::HTTP_NOT_FOUND;
 55 }

 Try your request again and then run your test suite (Listing 6-34).

 Listing 6-34. Making a Request After Changing the Handler

 # vagrant@homestead:~/Code/bookr$
 $ curl -i -H"Accept: application/json" http://bookr.app/books/5555

 HTTP/1.1 404 Not Found
 Server: nginx/1.9.7
 Content-Type: application/json
 Transfer-Encoding: chunked
 Connection: keep-alive
 Cache-Control: no-cache
 Date: Wed, 06 Jan 2016 05:07:21 GMT

 {"error":{"message":"Not Found","status":404}}

 Much better! Let’s see if your tests are passing now (Listing 6-35).

 Listing 6-35. Running the Entire Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::show_should_fail_when_the_book_id_does_
not_exist
 Invalid JSON was returned from the route. Perhaps an exception was thrown?
 …

 FAILURES!
 Tests: 16, Assertions: 56, Failures: 1.

 Your failing test claims that you have invalid JSON. It makes sense because your test is not asking for
JSON with Accept: application/json and the return parent::render($request, $e); part of your
handler is returning a 404 HTML response. If you look at the test, the message you are looking for is “Book
not found”, but you can actually update the handler to use the 404 message and status, so you need to change
your seeJson() assertion (Listing 6-36).

 Listing 6-36. Fixing the Broken BooksController@show Test

 49 /** @test **/
 50 public function show_should_fail_when_the_book_id_does_not_exist()
 51 {
 52 $this

CHAPTER 6 ■ RESPONDING TO ERRORS

82

 53 ->get('/books/99999', ['Accept' => 'application/json'])
 54 ->seeStatusCode(404)
 55 ->seeJson([
 56 'message' => 'Not Found',
 57 'status' => 404
 58]);
 59 }

 The $this->get() method can pass an array of headers; the Accept header will trigger
your Handler::response() JSON logic. Next, you changed the seeJson check to match the
 ModelNotFoundException response message and status; you gain more consistent 404 messages by allowing
the Handler to deal with them. Run the test suite again (Listing 6-37) to see if you are back to green!

 Listing 6-37. Running the Full Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (16 tests, 57 assertions)

 Much better! You added more logic to your Handler class to deal with the ModelNotFoundException so
you need to account for the added code in your test suite. You will add the ModelNotFoundException to your
array of examples that you loop through by modifying an existing test (Listing 6-38).

 Listing 6-38. Adding the ModelNotFoundException to Your $examples Array

 73 /** @test */
 74 public function it_provides_json_responses_for_http_exceptions()
 75 {
 76 $subject = m::mock(Handler::class)->makePartial();
 77 $subject
 78 ->shouldReceive('isDebugMode')
 79 ->andReturn(false);
 80
 81 $request = m::mock(Request::class);
 82 $request->shouldReceive('wantsJson')->andReturn(true);
 83
 84 $examples = [
 85 [
 86 'mock' => NotFoundHttpException::class,
 87 'status' => 404,
 88 'message' => 'Not Found'
 89],
 90 [
 91 'mock' => AccessDeniedHttpException::class,
 92 'status' => 403,
 93 'message' => 'Forbidden'
 94],
 95 [
 96 'mock' => ModelNotFoundException::class,
 97 'status' => 404,
 98 'message' => 'Not Found'

CHAPTER 6 ■ RESPONDING TO ERRORS

83

 99]
 100];
 101
 102 foreach ($examples as $e) {
 103 $exception = m::mock($e['mock']);
 104 $exception->shouldReceive('getMessage')->andReturn(null);
 105 $exception->shouldReceive('getStatusCode')->andReturn($e['status']);
 106
 107 /** @var JsonResponse $result */
 108 $result = $subject->render($request, $exception);
 109 $data = $result->getData();
 110
 111 $this->assertEquals($e['status'], $result->getStatusCode());
 112 $this->assertEquals($e['message'], $data->error->message);
 113 $this->assertEquals($e['status'], $data->error->status);
 114 }
 115 }

 You need to import the ModelNotFoundException class (Listing 6-39) and run the test suite
(Listing 6-40).

 Listing 6-39. Importing ModelNotFoundException to Your HandlerTest Class

 <?php

 namespace Tests\App\Exceptions;

 // ...
 use Illuminate\Database\Eloquent\ModelNotFoundException;

 class HandlerTest extends TestCase
 {
 // ...
 }

 Listing 6-40. Running the Full Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (16 tests, 62 assertions)

 Adding a check for the ModelNotFoundException was fairly easy! Your Handler is in good shape. You
now have test database migrations and factories working and a better exception response handler class.

 Git commit: Handle Exceptions with a JSON Response

 d5e41d7 (https://bitbucket.org/paulredmond/apress-bookr/commits/d5e41d7)

 Listing 6-40 contains the final Handler file in full and Listing 6-40 contains the final HandlerTest file in full.

https://bitbucket.org/paulredmond/apress-bookr/commits/d5e41d7

CHAPTER 6 ■ RESPONDING TO ERRORS

84

 Listing 6-41. Final Handler.php File

 <?php

 namespace App\Exceptions;

 use Exception;
 use Symfony\Component\HttpFoundation\Response;
 use Illuminate\Validation\ValidationException;
 use Illuminate\Auth\Access\AuthorizationException;
 use Illuminate\Database\Eloquent\ModelNotFoundException;
 use Symfony\Component\HttpKernel\Exception\HttpException;
 use Laravel\Lumen\Exceptions\Handler as ExceptionHandler;

 class Handler extends ExceptionHandler
 {
 /**
 * A list of the exception types that should not be reported.
 *
 * @var array
 */
 protected $dontReport = [
 AuthorizationException::class,
 HttpException::class,
 ModelNotFoundException::class,
 ValidationException::class,
];

 /**
 * Report or log an exception.
 *
 * This is a great spot to send exceptions to Sentry, Bugsnag, etc.
 *
 * @param \Exception $e
 * @return void
 */
 public function report(Exception $e)
 {
 parent::report($e);
 }

 /**
 * Render an exception into an HTTP response.
 *
 * @param \Illuminate\Http\Request $request
 * @param \Exception $e
 * @return \Illuminate\Http\Response
 */
 public function render($request, Exception $e)
 {
 if ($request->wantsJson() && !($e instanceof ValidationException)) {

CHAPTER 6 ■ RESPONDING TO ERRORS

85

 $response = [
 'message' => (string) $e->getMessage(),
 'status' => 400
];

 if ($e instanceof HttpException) {
 $response['message'] = Response::$statusTexts[$e->getStatusCode()];
 $response['status'] = $e->getStatusCode();
 } else if ($e instanceof ModelNotFoundException) {
 $response['message'] = Response::$statusTexts[Response::HTTP_NOT_FOUND];
 $response['status'] = Response::HTTP_NOT_FOUND;
 }

 if ($this->isDebugMode()) {
 $response['debug'] = [
 'exception' => get_class($e),
 'trace' => $e->getTrace()
];
 }

 return response()->json(['error' => $response], $response['status']);
 }

 return parent::render($request, $e);
 }

 /**
 * Determine if the application is in debug mode.
 *
 * @return Boolean
 */
 public function isDebugMode()
 {
 return (Boolean) env('APP_DEBUG');
 }
 }

 Listing 6-42. Final HandlerTest.php

 <?php

 namespace Tests\App\Exceptions;

 use TestCase;
 use \Mockery as m;
 use App\Exceptions\Handler;
 use Illuminate\Http\Request;
 use Illuminate\Http\JsonResponse;
 use Symfony\Component\HttpKernel\Exception\NotFoundHttpException;
 use Symfony\Component\HttpKernel\Exception\AccessDeniedHttpException;
 use Illuminate\Database\Eloquent\ModelNotFoundException;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 ■ RESPONDING TO ERRORS

86

 class HandlerTest extends TestCase
 {
 /** @test **/
 public function it_responds_with_html_when_json_is_not_accepted()
 {
 // Make the mock a partial, you only want to mock the `isDebugMode` method
 $subject = m::mock(Handler::class)->makePartial();
 $subject->shouldNotReceive('isDebugMode');

 // Mock the interaction with the Request
 $request = m::mock(Request::class);
 $request->shouldReceive('wantsJson')->andReturn(false);

 // Mock the interaction with the exception
 $exception = m::mock(\Exception::class, ['Error!']);
 $exception->shouldNotReceive('getStatusCode');
 $exception->shouldNotReceive('getTrace');
 $exception->shouldNotReceive('getMessage');

 // Call the method under test, this is not a mocked method.
 $result = $subject->render($request, $exception);

 // Assert that `render` does not return a JsonResponse
 $this->assertNotInstanceOf(JsonResponse::class, $result);
 }

 /** @test */
 public function it_responds_with_json_for_json_consumers()
 {
 $subject = m::mock(Handler::class)->makePartial();
 $subject
 ->shouldReceive('isDebugMode')
 ->andReturn(false);

 $request = m::mock(Request::class);
 $request
 ->shouldReceive('wantsJson')
 ->andReturn(true);

 $exception = m::mock(\Exception::class, ['Doh!']);
 $exception
 ->shouldReceive('getMessage')
 ->andReturn('Doh!');

 /** @var JsonResponse $result */
 $result = $subject->render($request, $exception);
 $data = $result->getData();

CHAPTER 6 ■ RESPONDING TO ERRORS

87

 $this->assertInstanceOf(JsonResponse::class, $result);
 $this->assertObjectHasAttribute('error', $data);
 $this->assertAttributeEquals('Doh!', 'message', $data->error);
 $this->assertAttributeEquals(400, 'status', $data->error);
 }

 /** @test */
 public function it_provides_json_responses_for_http_exceptions()
 {
 $subject = m::mock(Handler::class)->makePartial();
 $subject
 ->shouldReceive('isDebugMode')
 ->andReturn(false);

 $request = m::mock(Request::class);
 $request->shouldReceive('wantsJson')->andReturn(true);

 $examples = [
 [
 'mock' => NotFoundHttpException::class,
 'status' => 404,
 'message' => 'Not Found'
],
 [
 'mock' => AccessDeniedHttpException::class,
 'status' => 403,
 'message' => 'Forbidden'
],
 [
 'mock' => ModelNotFoundException::class,
 'status' => 404,
 'message' => 'Not Found'
]
];

 foreach ($examples as $e) {
 $exception = m::mock($e['mock']);
 $exception->shouldReceive('getMessage')->andReturn(null);
 $exception->shouldReceive('getStatusCode')->andReturn($e['status']);

 /** @var JsonResponse $result */
 $result = $subject->render($request, $exception);
 $data = $result->getData();

 $this->assertEquals($e['status'], $result->getStatusCode());
 $this->assertEquals($e['message'], $data->error->message);
 $this->assertEquals($e['status'], $data->error->status);
 }
 }
 }

CHAPTER 6 ■ RESPONDING TO ERRORS

88

 Conclusion
 Your API now responds to exceptions more intelligently, and API consumers will get better feedback when
things go wrong. Along the way, you worked on

• Defining model factories

• Using a dedicated test database

• Installing and using Mockery

• Customizing the App\Exceptions\Handler response

• Understanding how Lumen responds to exceptions

 I hope you spend more time on your own playing with Mockery; it’s a wonderful mocking library.
Mocking takes time and practice but is well worth the effort.

89© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7_7

 CHAPTER 7

 Leveling Up Responses

 Your API responses work fine, but at the moment they don’t scale very well. You need to make them more
consistent across all endpoints by using conventions, as well as anticipate adding things like pagination to
your response. If you’ve consumed a few APIs, you have probably noticed that response data formats vary
between each API. Understanding each API format can be challenging enough, but add inconsistencies
between endpoints within the same API and it can be a frustrating user experience.

 Your current API response for all books looks something like Listing 7-1 .

 Listing 7-1. The GET /books JSON Response

 [{
 " id ": 1,
 " title ": "War of the Worlds",
 " description ": "A science fiction masterpiece about Martians invading London",
 " author ": "H. G. Wells",
 " created_at ": "2015-10-21 06:54:33",
 " updated_at ": "2015-10-21 06:54:33"
 }, {
 " id ": 2,
 " title ": "A Wrinkle in Time",
 " description ": "A young girl goes on a mission to save her father who has gone missing
after working on a mysterious project called a tesseract.",
 " author ": "Madeleine L'Engle",
 " created_at ": "2015-10-21 06:54:33",
 " updated_at ": "2015-10-21 06:54:33"
 }]

 The data format not bad per se, but what if you want to add metadata like pagination? Where will it go?
It’s easy to see how quickly your current response will crumble. Plus, right now each controller is responsible
for formatting its response.

 Introducing Fractal
 I believe that the response handling code is one of the most critical parts of an API, and so you need to
offload the responsibility from the controller to a service that the controller can use. You could write the code
from scratch on your own, but Fractal (http://fractal.thephpleague.com/) provides a good (and flexible)
solution for us. Fractal describes itself as follows:

http://fractal.thephpleague.com/

CHAPTER 7 ■ LEVELING UP RESPONSES

90

 Fractal provides a presentation and transformation layer for complex data
output, the like found in RESTful APIs, and works really well with JSON. Think of
this as a view layer for your JSON/YAML/etc.

 When building an API it is common for people to just grab stuff from the
database and pass it to json_encode(). This might be passable for “trivial” APIs
but if they are in use by the public, or used by mobile applications then this will
quickly lead to inconsistent output.

 Sounds exactly like what you need! Out of the box you can quickly get a format like that shown in
Listing 7-2 .

 Listing 7-2. Example JSON Response Using Fractal

 {
 " data ": [{
 " id ": 1,
 " title ": "War of the Worlds",
 " description ": "A science fiction masterpiece about Martians invading London",
 " author ": "H. G. Wells",
 " created_at ": "2015-10-21 06:54:33",
 " updated_at ": "2015-10-21 06:54:33"
 }, {
 " id ": 2,
 " title ": "A Wrinkle in Time",
 " description ": "A young girl goes on a mission to save her father who has gone

missing after working on a mysterious project called a tesseract.",
 " author ": "Madeleine L'Engle",
 " created_at ": "2015-10-21 06:54:33",
 " updated_at ": "2015-10-21 06:54:33"
 }]
 }

 With the response content in a "data" key, you can add other things to the response without mixing it in
with the book data. Fractal encourages good data design, and responses will be consistent across the API.

 You need to install Fractal with Composer and then configure it so you can use it in your controllers.
Various libraries exist to even integrate Fractal, but you are going to roll your own. Sometimes rolling your
own is better than adding a dependency. Using Fractal is simple enough to use that you don’t need to use a
Laravel/Lumen integration.

 I try to keep application dependencies to a minimum and invest in dependencies where it counts. You
add complexity to your application with each new dependency and you increase the size of your application.
Always weigh the value of using a vendor vs. rolling your own. In your case, Fractal makes sense and
provides a good value for data transformation; but by rolling your own service provider to integrate Fractal
you will learn (if you haven’t used them in Laravel) how to write services.

 First Version of API Response Formatting
 Let’s get to work on your first version of refactoring response formatting. You could start integrating Fractal
immediately, but that’s not an iterative approach. First, you will write test specifications and make the
minimum change needed to support your response changes. Once you have the tests in place, you will be
ready to make the move to the Fractal library.

 You will cover the BooksController@index route test first (Listing 7-3).

CHAPTER 7 ■ LEVELING UP RESPONSES

91

 Listing 7-3. Updating the BooksController@index Test

 18 /** @test **/
 19 public function index_should_return_a_collection_of_records()
 20 {
 21 $books = factory('App\Book', 2)->create();
 22
 23 $this->get('/books');
 24 $expected = [
 25 'data' => $books->toArray()
 26];
 27
 28 $this->seeJsonEquals($expected);
 29 }

 You remove the foreach loop and use the Collection::toArray() method to create the expected JSON
response. You check the data with seeJsonEquals() to make sure your response matches the actual response.

 You should have a failing test now (Listing 7-4).

 Listing 7-4. Failing PHPUnit Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 1) Tests\App\Http\Controllers\BooksControllerTest::index_should_return_a_collect\
 ion_of_records
 Failed asserting that two strings are equal.
 --- Expected
 +++ Actual
 @@ @@
 -'{"data":[{"author":"Dortha Hodkiewicz"...
 +'[{"author":"Dortha Hodkiewicz",...

 /home/vagrant/Code/bookr/vendor/laravel/lumen-framework/src/Testing/CrawlerTrait\
 .php:338
 /home/vagrant/Code/bookr/tests/app/Http/Controllers/BooksControllerTest.php:28

 FAILURES!
 Tests: 16, Assertions: 61, Failures: 1.

 Getting your test back to green is achieved by changing your return from a model collection to an array
with a data key (Listing 7-5). After your change, the test suite should be back to green (Listing 7-6).

 Listing 7-5. BooksController@index Data Implementation

 15 /**
 16 * GET /books
 17 * @return array
 18 */
 19 public function index()
 20 {
 21 return ['data' => Book::all()->toArray()];
 22 }

CHAPTER 7 ■ LEVELING UP RESPONSES

92

 Listing 7-6. Passing PHPUnit Test for BooksController@index

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (16 tests, 61 assertions)

 Next, update the BooksController@show test (Listing 7-7).

 Listing 7-7. Updating the BooksController@show Test

 31 /** @test **/
 32 public function show_should_return_a_valid_book()
 33 {
 34 $book = factory('App\Book')->create();
 35 $expected = [
 36 'data' => $book->toArray()
 37];
 38 $this
 39 ->get("/books/ { $book->id } ")
 40 ->seeStatusCode(200)
 41 ->seeJsonEquals($expected);
 42 }

 Your modified test now expects the book data to be inside the data key. Let’s make sure your test fails
now (Listing 7-8).

 Listing 7-8. Failing PHPUnit Test for the BooksController@show Route

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 1) Tests\App\Http\Controllers\BooksControllerTest::show_should_return_a_valid_bo\
 ok
 Failed asserting that two strings are equal.
 --- Expected
 +++ Actual
 @@ @@
 -'{"data":{"author":"Dr. Wyman Brown"...
 +'{"author":"Dr. Wyman Brown"...

 /home/vagrant/Code/bookr/vendor/laravel/lumen-framework/src/Testing/CrawlerTrait\
 .php:338
 /home/vagrant/Code/bookr/tests/app/Http/Controllers/BooksControllerTest.php:41

 FAILURES!
 Tests: 16, Assertions: 56, Failures: 1.

 Getting your test passing with the minimum amount of code is similar to your BooksController@index
change (Listing 7-9).

CHAPTER 7 ■ LEVELING UP RESPONSES

93

 Listing 7-9. Getting the BooksController@show Route Back to Green

 24 /**
 25 * GET /books/{id}
 26 * @param integer $id
 27 * @return mixed
 28 */
 29 public function show($id)
 30 {
 31 return ['data' => Book::findOrFail($id)->toArray()];
 32 }

 The code change in Listing 7-10 gets your suite passing again.

 Listing 7-10. Passing Tests After Updating BooksController@show

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (16 tests, 56 assertions)

 The remaining routes are store and the update . In the original BooksController@store method you
cheated a little bit and responded with {"created": true} , but let’s return the new record data instead
(Listing 7-11).

 Listing 7-11. Updating the BooksController@store Response

 71 /** @test **/
 72 public function store_should_save_new_book_in_the_database()
 73 {
 74 $this->post('/books', [
 75 'title' => 'The Invisible Man',
 76 'description' => 'An invisible man is trapped in the terror of his own

creation',
 77 'author' => 'H. G. Wells'
 78]);
 79
 80 $body = json_decode($this->response->getContent(), true);
 81 $this->assertArrayHasKey('data', $body);
 82
 83 $data = $body['data'];
 84 $this->assertEquals('The Invisible Man', $data['title']);
 85 $this->assertEquals(
 86 'An invisible man is trapped in the terror of his own creation',
 87 $data['description']
 88);
 89 $this->assertEquals('H. G. Wells', $data['author']);
 90 $this->assertTrue($data['id'] > 0, 'Expected a positive integer, but did not see

one.');
 91 $this->seeInDatabase('books', ['title' => 'The Invisible Man']);
 92 }

 Your failing test confirms that you are ready to get the test back to green (Listing 7-12).

CHAPTER 7 ■ LEVELING UP RESPONSES

94

 Listing 7-12. Failing BooksController@store Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::store_should_save_new_book_in\
 _the_database
 Failed asserting that an array has the key 'data'.

 /home/vagrant/Code/bookr/tests/app/Http/Controllers/BooksControllerTest.php:78

 FAILURES!
 Tests: 16, Assertions: 55, Failures: 1.

 The implementation swaps out the "created": true JSON with the newly created book data (Listing 7-13).

 Listing 7-13. Updating the BooksController@store Method

 34 /**
 35 * POST /books
 36 * @param Request $request
 37 * @return \Symfony\Component\HttpFoundation\Response
 38 */
 39 public function store(Request $request)
 40 {
 41 $book = Book::create($request->all());
 42
 43 return response()->json(['data' => $book->toArray()], 201, [
 44 'Location' => route('books.show', ['id' => $book->id])
 45]);
 46 }

 Your suite should be fully passing again after your code change (Listing 7-14).

 Listing 7-14. Passing BooksController@store Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (16 tests, 60 assertions)

 The BooksController@update test is next. Update the code as shown in Listing 7-15 before writing the
test to illustrate a caveat of using seeJson() .

 Listing 7-15. Updating the BooksController@update Method

 48 /**
 49 * PUT /books/{id}
 50 * @param Request $request
 51 * @param $id
 52 * @return mixed

CHAPTER 7 ■ LEVELING UP RESPONSES

95

 53 */
 54 public function update(Request $request, $id)
 55 {
 56 try {
 57 $book = Book::findOrFail($id);
 58 } catch (ModelNotFoundException $e) {
 59 return response()->json([
 60 'error' => [
 61 'message' => 'Book not found'
 62]
 63], 404);
 64 }
 65
 66 $book->fill($request->all());
 67 $book->save();
 68
 69 return ['data' => $book->toArray()];
 70 }

 You’ve made a code change, and you should expect your tests to fail now (Listing 7-16), but they don’t!

 Listing 7-16. Running Tests After Changing BooksController@update. Will They Fail?

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (16 tests, 60 assertions)

 The controller change did not cause your tests to fail—not good. You’ve introduced a breaking change
to the API that your tests failed to catch. Your test does some response checking with seeJson , but it doesn’t
check the integrity of the JSON response. The seeJson() method checks fragments of JSON but not the
location of the data. Be careful when you are writing tests to ensure the response format carefully. The
 seeJson() method is not to blame; you need to test for the data key (Listing 7-17).

 Listing 7-17. Checking for the Data Key in the Response

 110 /** @test **/
 111 public function update_should_only_change_fillable_fields()
 112 {
 113 $book = factory('App\Book')->create([
 114 'title' => 'War of the Worlds',
 115 'description' => 'A science fiction masterpiece about Martians invading

London',
 116 'author' => 'H. G. Wells',
 117]);
 118
 119 $this->notSeeInDatabase('books', [
 120 'title' => 'The War of the Worlds',
 121 'description' => 'The book is way better than the movie.',
 122 'author' => 'Wells, H. G.'
 123]);
 124

CHAPTER 7 ■ LEVELING UP RESPONSES

96

 125 $this->put("/books/ { $book->id } ", [
 126 'id' => 5,
 127 'title' => 'The War of the Worlds',
 128 'description' => 'The book is way better than the movie.',
 129 'author' => 'Wells, H. G.'
 130]);
 131
 132 $this
 133 ->seeStatusCode(200)
 134 ->seeJson([
 135 'id' => 1,
 136 'title' => 'The War of the Worlds',
 137 'description' => 'The book is way better than the movie.',
 138 'author' => 'Wells, H. G.',
 139])
 140 ->seeInDatabase('books', [
 141 'title' => 'The War of the Worlds'
 142]);
 143
 144 // Verify the data key in the response
 145 $body = json_decode($this->response->getContent(), true);
 146 $this->assertArrayHasKey('data', $body);
 147 }

 At the end of the test you check the response body for the existence of the data key. If you revert the
controller change you did first, you should now get a failing test (Listing 7-18).

 Listing 7-18. Testing Results of Reverting the BooksController@update Route

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::update_should_only_change_fil\
 lable_fields
 Failed asserting that an array has the key 'data'.
 ...

 FAILURES!
 Tests: 16, Assertions: 62, Failures: 1.

 The test suite should be fully passing again. If you reverted the BooksController@update method to see
the test fail, put the change back (Listing 7-19).

 Listing 7-19. Fully Passing Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (16 tests, 62 assertions)

CHAPTER 7 ■ LEVELING UP RESPONSES

97

 Git commit: Contain Book Responses in a data Attribute

 9ded4b6 (https://bitbucket.org/paulredmond/apress-bookr/commits/9ded4b6)

 The Fractal Response Class
 Now that your tests are passing again, you are free to start refactoring code or adding new features. I could
end the chapter now, but experience says that changing arrays to include a data key like you’ve done isn’t
going to scale very well. It does afford you passing tests and gives you the green light to refactor and make
sure your tests still pass. As mentioned at the beginning of the chapter, you are going to lean on the Fractal
library for handling your response data.

 The first step is installing the Fractal (http://fractal.thephpleague.com/) library as a composer
dependency (Listing 7-20).

 Listing 7-20. Installing Fractal with Composer

 # vagrant@homestead:~/Code/bookr$
 $ composer require league/fractal=^0.13.0

 You will take the following steps to refactor responses:

• Create a transformer (http://fractal.thephpleague.com/transformers/) for the
 Book model.

• Create a dedicated Fractal service to transform models.

• Create a service provider (https://lumen.laravel.com/docs/5.2/providers) to
define the Fractal service.

• Use the service in the BooksController to return responses.

 The Book Transformer
 The first step is creating a transformer for the Book model. Transformers in Fractal are responsible for
transforming data into an array format. Your application will pass Eloquent models into transformers, and
the transformer will be responsible for formatting the model data into an array. You will see shortly how this
works in your controllers, but first, you will write a test-driven Book transformer.

 Create the transformer test class (Listing 7-21).

 Listing 7-21. Creating the BookTransformerTest.php Test

 # vagrant@homestead:~/Code/bookr$
 $ mkdir -p tests/app/Transformer/
 $ touch tests/app/Transformer/BookTransformerTest.php

 Listing 7-22 shows the skeleton of your implementation class.

https://bitbucket.org/paulredmond/apress-bookr/commits/9ded4b6
http://fractal.thephpleague.com/
http://fractal.thephpleague.com/transformers/
https://lumen.laravel.com/docs/5.2/providers

CHAPTER 7 ■ LEVELING UP RESPONSES

98

 Listing 7-22. The BookTransformerTest Class Skeleton

 1 <?php
 2
 3 namespace Tests\App\Transformer;
 4
 5 use TestCase;
 6 use App\Book;
 7 use App\Transformer\BookTransformer;
 8 use League\Fractal\TransformerAbstract;
 9 use Laravel\Lumen\Testing\DatabaseMigrations ;
 10
 11 class BookTransformerTest extends TestCase
 12 {
 13 use DatabaseMigrations;
 14
 15 /** @test **/
 16 public function it_can_be_initialized()
 17 {
 18 $subject = new BookTransformer();
 19 $this->assertInstanceOf(TransformerAbstract::class, $subject);
 20 }
 21 }

 I like to write an initialization test for unit tests. I find that starting with a simple initialization test gets
me past the mental hurdle of starting to write tests for a class, and I can start building off of that first test that
just gets my foot in the door.

 What happens if you run this test without creating the class (Listing 7-23)?

 Listing 7-23. First Test Run For The BookTransforerTest

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=BookTransformerTest

 There was 1 error:

 1) Tests\App\Transformer\BookTransformerTest::it_can_be_initialized
 Error: Class 'App\Transformer\BookTransformer' not found

 /home/vagrant/Code/bookr/tests/app/Transformer/BookTransformerTest.php:18

 FAILURES!
 Tests: 1, Assertions: 0, Errors: 1.

 Obviously, you haven’t defined the BookTransformer yet, but it’s nice that PHPUnit can keep us honest;
to get the initialization test passing you must define the class (Listing 7-24).

 Listing 7-24. Creating the BookTransformer Class

 # vagrant@homestead:~/Code/bookr$
 $ mkdir -p app/Transformer
 $ touch app/Transformer/BookTransformer.php

CHAPTER 7 ■ LEVELING UP RESPONSES

99

 Define the BookTransformer Class

 1 <?php
 2
 3 namespace App\Transformer;
 4
 5 use League\Fractal\TransformerAbstract;
 6
 7 class BookTransformer extends TransformerAbstract
 8 {
 9
 10 }

 Fractal transformers extend the League\Fractal\TransformerAbstract class provided by Fractal. All
your transformers should extend this class.

 Now that you have your BookTransformer class, your test should pass now (Listing 7-25).

 Listing 7-25. The Initializable Test Passes

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=BookTransformerTest

 OK (1 test, 1 assertion)

 Ok, now you are ready to write your next test describing how the BookTransformer should transform a
 Book model (Listing 7-26). Transforming model data will allow all controllers rendering book data to use a
consistent transformation.

 Listing 7-26. Test to Transform a Book Model

 22 /** @test **/
 23 public function it_transforms_a_book_model()
 24 {
 25 $book = factory(Book::class)->create();
 26 $subject = new BookTransformer();
 27
 28 $transform = $subject->transform($book);
 29
 30 $this->assertArrayHasKey('id', $transform);
 31 $this->assertArrayHasKey('title', $transform);
 32 $this->assertArrayHasKey('description', $transform);
 33 $this->assertArrayHasKey('author', $transform);
 34 $this->assertArrayHasKey('created_at', $transform);
 35 $this->assertArrayHasKey('updated_at', $transform);
 36 }

 You can see the missing method you have not defined in the transformer—the transform() method.
The test passes a model from the factory that exists in the database, and then asserts that the model has
all the keys you expect a book response to contain. The book must exist in the database because your
transformer is transforming existing records, including the id attribute.

 You are ready to write the BookTransformer::transform() implementation. The transform method allows
you to define a public data interface of the book model while the internal details are hidden. This means that
your internal logic can change but the API consumer continues to get the same data interface (Listing 7-27).

CHAPTER 7 ■ LEVELING UP RESPONSES

100

 Listing 7-27. Writing the BookTransformer::transform() Method

 1 <?php
 2
 3 namespace App\Transformer;
 4
 5 use App\Book;
 6 use League\Fractal\TransformerAbstract;
 7
 8 class BookTransformer extends TransformerAbstract
 9 {
 10 /**
 11 * Transform a Book model into an array
 12 *
 13 * @param Book $book
 14 * @return array
 15 */
 16 public function transform(Book $book)
 17 {
 18 return [
 19 'id' => $book->id,
 20 'title' => $book->title,
 21 'description' => $book->description,
 22 'author' => $book->author,
 23 'created' => $book->created_at->toIso8601String(),
 24 'updated' => $book->updated_at->toIso8601String(),
 25];
 26 }
 27 }

 Note that the created and updated keys do not match your database column. What is really cool about
using Fractal transformers is abstracting the API format from the database schema when it makes sense. In
this case, is it necessary to change created_at into created ? Probably not, but it serves as an illustration
of how you can change the background implementation details and continue to provide consistent data
transformation to the API user.

 As an example, say that when a new book is created in the database you immediately offer it for sale
in your online store. Imagine that the application needs to display how long ago the title was released in a
relative format (Listing 7-28).

 Listing 7-28. Example Transformation

 1 return [
 2 'id' => $book->id,
 3 'title' => $book->title,
 4 'description' => $book->description,
 5 'author' => $book->author,
 6 'created' => $book->created_at->toIso8601String(),
 7 'updated' => $book->updated_at->toIso8601String(),
 8 'released' => $book->created_at->diffForHumans()
 9]

CHAPTER 7 ■ LEVELING UP RESPONSES

101

 In this example, the released key is tied to created_at field and uses Carbon’s (http://carbon.nesbot.com/)
diffForHumans() method to provide a relative date. In the future, you could change the 'released' key to
use a 'published' datetime column from the database and the implementation details would be invisible to
consumers. Note that the created_at and updated_at properties in the example are also Carbon instances.

 DATE MUTATORS

 Eloquent automatically provides a Carbon instance for created_at and updated_at , but you can
configure your model to provide Carbon for other fields. See the “Date Mutators” section (https://
laravel.com/docs/5.2/eloquent-mutators#date-mutators) in the Laravel documentation.

 Next, you need to run your implementation to see if it satisfies your test (Listing 7-29).

 Listing 7-29. Runing the BookTransformer Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=BookTransformerTest::it_transforms_a_book_model

 There was 1 failure:

 1) Tests\App\Transformer\BookTransformerTest::it_transforms_a_book_model
 Failed asserting that an array has the key 'created_at'.

 /home/vagrant/Code/bookr/tests/app/Transformer/BookTransformerTest.php:34

 FAILURES!
 Tests: 1, Assertions: 6, Failures: 1.

 Whoops! Your test was looking for created_at but you designed your transformer to use created . Let’s
fix the test to match your transformer (Listing 7-30) and run the test again.

 Listing 7-30. Fixing the BookTransformerTest to Match BookTransformer::transform()

 34 $this->assertArrayHasKey('created', $transform);
 35 $this->assertArrayHasKey('updated', $transform);

 With your created and updated key assertions, let’s run your test again (Listing 7-31).

 Listing 7-31. Running PHPUnit Test for the BookTransfomer

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=BookTransformerTest::it_transforms_a_book_model

 OK (1 test, 7 assertions)

 The Fractal Response Class
 It’s time to move on to your Fractal response class. If you look at the Fractal documentation for a simple
transformer example (http://fractal.thephpleague.com/simple-example/), you will see that you need
a League\Fractal\Manager class. You could use the manager class directly in your controllers, but let’s
provide a service for the Fractal manager.

http://carbon.nesbot.com/
https://laravel.com/docs/5.2/eloquent-mutators#date-mutators
https://laravel.com/docs/5.2/eloquent-mutators#date-mutators
http://fractal.thephpleague.com/simple-example/

CHAPTER 7 ■ LEVELING UP RESPONSES

102

 You will call your service App\Http\Response\FractalResponse and start by writing some tests for it
(Listing 7-32).

 Listing 7-32. Setting Up the FractalResponse Files

 # vagrant@homestead:~/Code/bookr$
 $ mkdir -p app/Http/Response
 $ touch app/Http/Response/FractalResponse.php
 $ mkdir -p tests/app/Http/Response
 $ touch tests/app/Http/Response/FractalResponseTest.php

 Write the class initialization test first (Listing 7-33).

 Listing 7-33. Test for FractalResponse Initialization

 1 <?php
 2
 3 namespace Tests\App\Http\Response;
 4
 5 use TestCase;
 6 use App\Http\Response\FractalResponse;
 7
 8 class FractalResponseTest extends TestCase
 9 {
 10 /** @test **/
 11 public function it_can_be_initialized()
 12 {
 13 $this->assertInstanceOf(FractalResponse::class, new FractalResponse());
 14 }
 15 }

 Running the test will fail at this point. Listing 7-34 shows the initial class skeleton to get it passing again.

 Listing 7-34. Initial FractalResponse Skeleton Class

 1 <?php
 2
 3 namespace App\Http\Response;
 4
 5 class FractalResponse
 6 {
 7 public function __construct()
 8 {
 9
 10 }
 11 }

 The FractalResponse constructor will have a few dependencies: a League\Fractal\Manager instance
and a DataArraySerializer (http://fractal.thephpleague.com/serializers/#dataarrayserializer)
instance.

http://fractal.thephpleague.com/serializers/#dataarrayserializer

CHAPTER 7 ■ LEVELING UP RESPONSES

103

 Serializers provide structure around your data without affecting transformers—in your case, that means
wrapping your transformer output in a "data" property using the DataArraySerializer . The manager
sets the serializer by calling setSerializer() and passing a serializer instance. Serializers extend from the
 League\Fractal\Serializer\SerializerAbstract class so you can even write your unit tests against the
abstract implementation!

 Let’s flesh out your FractalResponse initialization dependencies in a test (Listing 7-35).

 Listing 7-35. Testing the FractalResponse with a Manager Dependency

 1 <?php
 2
 3 namespace Tests\App\Http\Response;
 4
 5 use TestCase;
 6 use Mockery as m;
 7 use League\Fractal\Manager;
 8 use App\Http\Response\FractalResponse;
 9 use League\Fractal\Serializer\SerializerAbstract;
 10
 11 class FractalResponseTest extends TestCase
 12 {
 13 /** @test **/
 14 public function it_can_be_initialized()
 15 {
 16 $manager = m::mock(Manager::class);
 17 $serializer = m::mock(SerializerAbstract::class);
 18
 19 $manager
 20 ->shouldReceive('setSerializer')
 21 ->with($serializer)
 22 ->once()
 23 ->andReturn($manager);
 24
 25 $fractal = new FractalResponse($manager, $serializer);
 26 $this->assertInstanceOf(FractalResponse::class, $fractal);
 27 }
 28 }

 The whole class is provided for clarity. Note the use of Mockery’s shouldReceive method, which sets
an expectation that FractalResponse calls setSerializer once. The test mocks SerializerAbstract and
expects that the manager will receive a call to setSerializer with the mock. The last part of test asserts the
 FractalResponse class was successfully initialized.

 It’s time to ensure that your new test fails (Listing 7-36).

 Listing 7-36. Testing Initialization of FractalResponse

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=FractalResponseTest

CHAPTER 7 ■ LEVELING UP RESPONSES

104

 There was 1 error:

 1) Tests\App\Http\Response\FractalResponseTest::it_can_be_initialized
 Mockery\Exception\InvalidCountException: Method setSerializer(object(Mockery_7_L\
 eague_Fractal_Serializer_SerializerAbstract)) from Mockery_6_League_Fractal_Manager should
be called
 exactly 1 times but called 0 times.

 /home/vagrant/Code/bookr/vendor/mockery/mockery/library/Mockery/CountValidator/Exact.php:37
 /home/vagrant/Code/bookr/vendor/mockery/mockery/library/Mockery/Expectation.php:271
 /home/vagrant/Code/bookr/vendor/mockery/mockery/library/Mockery/ExpectationDirector.php:120
 /home/vagrant/Code/bookr/vendor/mockery/mockery/library/Mockery/Container.php:297
 /home/vagrant/Code/bookr/vendor/mockery/mockery/library/Mockery/Container.php:282
 /home/vagrant/Code/bookr/vendor/mockery/mockery/library/Mockery.php:142
 /home/vagrant/Code/bookr/vendor/mockery/mockery/library/Mockery/Adapter/Phpunit/
MockeryPHPUnitIntegration.php:24

 FAILURES!
 Tests: 1, Assertions: 2, Errors: 1.

 You will notice that Mockery expected setSerializer() to be called once, but you haven’t
introduced the manager and serializer parameters in the constructor. Now you are ready to write out your
implementation (Listing 7-37).

 Listing 7-37. FractalResponse Defines the Manager and Serializer Dependencies

 1 <?php
 2
 3 namespace App\Http\Response;
 4
 5 use League\Fractal\Manager;
 6 use League\Fractal\Serializer\SerializerAbstract;
 7
 8 class FractalResponse
 9 {
 10 /**
 11 * @var Manager
 12 */
 13 private $manager;
 14
 15 /**
 16 * @var SerializerAbstract
 17 */
 18 private $serializer;
 19
 20 public function __construct(Manager $manager, SerializerAbstract $serializer)
 21 {
 22 $this->manager = $manager;
 23 $this->serializer = $serializer;
 24 $this->manager->setSerializer($serializer);
 25 }
 26 }

CHAPTER 7 ■ LEVELING UP RESPONSES

105

 Your constructor type hints SerializerAbstract, which allows you to accept any instance that extends
the abstract class so you can swap it out whenever you wish.

 The FractalResponse class is not very useful right now; you are ready to add a few methods that
controllers can use to create response data. You know, based on your BooksController, that you
need to support serializing collections and individual records. You will define two public methods,
 FractalResponse::item() and FractalResponse::collection() , which will use Resources (http://
fractal.thephpleague.com/resources/) to transform the data and convert it into an array.

 Listing 7-38 is an example of how you will use your service.

 Listing 7-38. Example FractalResponse Method Usage

 // BooksController::show()
 return $this->fractal->item($book, new BookTransformer());

 // BooksController::index()
 return $this->fractal->collection($books, new BookTransformer());

 You will start with the FractalResponse::item() method first. The basic usage of Fractal to return an
item might look like Listing 7-39 .

 Listing 7-39. Example Usage of Fractal Manager Item

 $data = ['bar' => 'bar'];
 $manager = new \League\Fractal\Manager();
 $item = new \League\Fractal\Resource\Item($data, function (array $data) {
 return [
 'foo' => $data['bar']
];
 });

 $manager->createData($item)->toArray();

 In this code, you create a Manager instance and an Item resource. The manager calls createData(),
which returns an instance of League\Fractal\Scope , and then you chain a toArray() call on the scope. This
simple example illustrates using a Closure but you will pass a transformer object in your implementation.

 With that in mind, write a test for your FractalResponse::item() method (Listing 7-40).

 Listing 7-40. Test for the FractalResponse::item() Method

 29 /** @test **/
 30 public function it_can_transform_an_item()
 31 {
 32 // Transformer
 33 $transformer = m::mock('League\Fractal\TransformerAbstract');
 34
 35 // Scope
 36 $scope = m::mock('League\Fractal\Scope');
 37 $scope
 38 ->shouldReceive('toArray')
 39 ->once()
 40 ->andReturn(['foo' => 'bar']);
 41

http://fractal.thephpleague.com/resources/
http://fractal.thephpleague.com/resources/

CHAPTER 7 ■ LEVELING UP RESPONSES

106

 42 // Serializer
 43 $serializer = m::mock('League\Fractal\Serializer\SerializerAbstract');
 44
 45 $manager = m::mock('League\Fractal\Manager');
 46 $manager
 47 ->shouldReceive('setSerializer')
 48 ->with($serializer)
 49 ->once();
 50
 51 $manager
 52 ->shouldReceive('createData')
 53 ->once()
 54 ->andReturn($scope);
 55
 56 $subject = new FractalResponse($manager, $serializer);
 57 $this->assertInternalType(
 58 'array',
 59 $subject->item(['foo' => 'bar'], $transformer)
 60);
 61 }

 This is a pretty long test, so let’s break it down:

• You mock a transformer that the item method will accept (BookTransformer).

• You mock a Scope object that will be returned from the Manager::createData()
method call.

• You mock the serializer to initialize your class.

• You mock the manager class, which should receive a call to createdData and
 setSerializer.

• Finally, you initialize the class under test and assert that the item method returns the
internal type array .

 I must say, it’s pretty neat when tests help design how you write your implementation. Now that you
have a failing test (you can run it on your own) you are ready to write some code (Listing 7-41).

 Listing 7-41. The FractalResponse::item() Implementation

 1 <?php
 2
 3 namespace App\Http\Response;
 4
 5 use League\Fractal\Manager;
 6 use League\Fractal\Resource\Item;
 7 use League\Fractal\TransformerAbstract;
 8 use League\Fractal\Serializer\SerializerAbstract;
 9
 10 class FractalResponse
 11 {
 12 /**
 13 * @var Manager

CHAPTER 7 ■ LEVELING UP RESPONSES

107

 14 */
 15 private $manager;
 16
 17 /**
 18 * @var SerializerAbstract
 19 */
 20 private $serializer;
 21
 22 public function __construct(Manager $manager, SerializerAbstract $serializer)
 23 {
 24 $this->manager = $manager;
 25 $this->serializer = $serializer;
 26 $this->manager->setSerializer($serializer);
 27 }
 28
 29 public function item($data, TransformerAbstract $transformer, $resourceKey = null)
 30 {
 31 $resource = new Item($data, $transformer, $resourceKey);
 32
 33 return $this->manager->createData($resource)->toArray();
 34 }
 35 }

 The item() method accepts the data to be transformed, a transformer (BookTransformer), and a
resource key. You will not be using the resource key, but you want to support the full League\Fractal\
Resource\Item API. You create a new League\Fractal\Resource\Item instance and pass it to the manager’s
 createData method. The createData method returns a League\Fractal\Scope instance and you call
 toArray to return array data from the League\Fractal\Scope instance.

 You can read about resource keys in the official Fractal serializer
(http://fractal.thephpleague.com/serializers/) documentation

 You are ready to run the tests after your first stab at the implementation (Listing 7-42).

 Listing 7-42. Testing the FractalResponse::item() Implementation

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (20 tests, 75 assertions)

 You can move on to your collection method test. The FractalResponse::collection() method
is very similar to the item method, so I won’t spend much time on it. You will be passing the collection
method an Illuminate\Database\Eloquent\Collection to iterate over the collection and transform each
item. Listing 7-43 shows the test for the collection method.

 Listing 7-43. Initial Test for the FractalResponse::collection() Method

 63 /** @test **/
 64 public function it_can_transform_a_collection()
 65 {
 66 $data = [
 67 ['foo' => 'bar'],

http://fractal.thephpleague.com/serializers/

CHAPTER 7 ■ LEVELING UP RESPONSES

108

 68 ['fizz' => 'buzz'],
 69];
 70
 71 // Transformer
 72 $transformer = m::mock('League\Fractal\TransformerAbstract');
 73
 74 // Scope
 75 $scope = m::mock('League\Fractal\Scope');
 76 $scope
 77 ->shouldReceive('toArray')
 78 ->once()
 79 ->andReturn($data);
 80
 81 // Serializer
 82 $serializer = m::mock('League\Fractal\Serializer\SerializerAbstract');
 83
 84 $manager = m::mock('League\Fractal\Manager');
 85 $manager
 86 ->shouldReceive('setSerializer')
 87 ->with($serializer)
 88 ->once();
 89
 90 $manager
 91 ->shouldReceive('createData')
 92 ->once()
 93 ->andReturn($scope);
 94
 95 $subject = new FractalResponse($manager, $serializer);
 96 $this->assertInternalType(
 97 'array',
 98 $subject->collection($data, $transformer)
 99);
 100 }

 This test is nearly identical to your FractalResponseTest::it_can_transform_an_item() test .
The only difference is that you are calling the collection method instead. You could merge the item and
 collection tests into one, but let’s leave them separate for clarity.

 Listing 7-44 shows the implementation for FractalResponse::collection() .

 Listing 7-44. The FractalResponse::collection() Implementation

 1 <?php
 2
 3 namespace App\Http\Response;
 4
 5 use League\Fractal\Manager;
 6 use League\Fractal\Resource\Item;
 7 use League\Fractal\TransformerAbstract;
 8 use League\Fractal\Resource\Collection;
 9 use League\Fractal\Serializer\SerializerAbstract;
 10
 11 class FractalResponse

CHAPTER 7 ■ LEVELING UP RESPONSES

109

 12 {
 13 /**
 14 * @var Manager
 15 */
 16 private $manager;
 17
 18 /**
 19 * @var SerializerAbstract
 20 */
 21 private $serializer;
 22
 23 public function __construct(Manager $manager, SerializerAbstract $serializer)
 24 {
 25 $this->manager = $manager;
 26 $this->serializer = $serializer;
 27 $this->manager->setSerializer($serializer);
 28 }
 29
 30 public function item($data, TransformerAbstract $transformer, $resourceKey = null)
 31 {
 32 $resource = new Item($data, $transformer, $resourceKey);
 33
 34 return $this->manager->createData($resource)->toArray();
 35 }
 36
 37 public function collection($data, TransformerAbstract $transformer, $resourceKey =

 null)
 38 {
 39 $resource = new Collection($data, $transformer, $resourceKey);
 40
 41 return $this->manager->createData($resource)->toArray();
 42 }
 43 }

 The collection endpoint initializes a League\Fractal\Resource\Collection instance, but everything
else is exactly the same. Both the item and collection methods duplicate creating the data and converting
it to an array. All tests should be passing, so you are now able to refactor out the duplication (Listing 7-45).

 Listing 7-45. Refactoring FractalResponse::item() and FractalResponse::collection()

 1 <?php
 2
 3 namespace App\Http\Response;
 4
 5 use League\Fractal\Manager;
 6 use League\Fractal\Resource\Item;
 7 use League\Fractal\TransformerAbstract;
 8 use League\Fractal\Resource\Collection;
 9 use League\Fractal\Resource\ResourceInterface;
 10 use League\Fractal\Serializer\SerializerAbstract;
 11
 12 class FractalResponse

CHAPTER 7 ■ LEVELING UP RESPONSES

110

 13 {
 14 /**
 15 * @var Manager
 16 */
 17 private $manager;
 18
 19 /**
 20 * @var SerializerAbstract
 21 */
 22 private $serializer;
 23
 24 public function __construct(Manager $manager, SerializerAbstract $serializer)
 25 {
 26 $this->manager = $manager;
 27 $this->serializer = $serializer;
 28 $this->manager->setSerializer($serializer);
 29 }
 30
 31 public function item($data, TransformerAbstract $transformer, $resourceKey = null)
 32 {
 33 return $this->createDataArray(
 34 new Item($data, $transformer, $resourceKey)
 35);
 36 }
 37
 38 public function collection($data, TransformerAbstract $transformer, $resourceKey =

 null)
 39 {
 40 return $this->createDataArray(
 41 new Collection($data, $transformer, $resourceKey)
 42);
 43 }
 44
 45 private function createDataArray(ResourceInterface $resource)
 46 {
 47 return $this->manager->createData($resource)->toArray();
 48 }
 49 }

 After your refactor, you should run the test suite again to make sure all tests still pass (Listing 7-46).

 Listing 7-46. Making Sure Tests Still Pass After the Refactoring

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (21 tests, 79 assertions)

 You didn’t do anything ground-breaking, but you did consolidated duplicate code while using your
passing tests to refactor. Refactoring is an important part of the test-driven process because the goal is to get
tests passing with minimal code, and then improve the minimal code while keeping tests passing.

CHAPTER 7 ■ LEVELING UP RESPONSES

111

 Git commit: Add FractalResponse Class

 f1123c8 (https://bitbucket.org/paulredmond/apress-bookr/commits/f1123c8)

 Fractal Response Service
 The FractalResponse class is ready to be used in your BooksController . What is really cool is that you wrote
the implementation in isolation, but the tests provide a good degree of confidence that it will work. Writing it
in isolation also has the benefit of helping you resist the temptation to start integrating before fully testing.

 How should you go about integrating the FractalResponse class in your controllers? One option would
be to create an instance of FractalResponse in the controller, as shown in Listing 7-47 .

 Listing 7-47. One Option: Using the FractalResponse Object in the Controller

 1 public function __construct() {
 2 // …
 3 $this->fractal = new FractalResponse($manager, $serializer);
 4 }

 Constructing a new instance of the FractalResponse in the controller means that you also need to
create an instance of the manager and serializer, and pass them to the FractalResponse constructor. Doing
this by hand each time you need them sounds like a bad time.

 A facade would work, and that is definitely a viable option (Listing 7-48).

 Listing 7-48. Using the Façade Option

 1 // An individual book
 2 return FractalResponse::item($book, new BookTransformer());
 3
 4 // A collection of books
 5 return FractalResponse::collection($books, new BookTransformer());

 In this book you will not use either option; instead you will define a Service Provider (https://lumen.
laravel.com/docs/5.2/providers) to resolve a fully initialized FractalResponse instance anywhere you
need it. Laravel provides a powerful and easy-to-use service container (https://laravel.com/docs/5.2/
container) that you will use to define a FractalResponse service.

 Service providers are used to bootstrap the application by registering service container bindings
(among other things) which can be resolved from the service container. This means that you need to define a
service for the FractalResponse class that you can resolve out of the container.

 In Lumen, providers are configured in the bootstrap/app.php file. Listing 7-49 shows what the section
looks like by default at the time of writing.

 Listing 7-49. Boilerplate Service Provider Configuration

 70 /*
 71 |--
 72 | Register Service Providers
 73 |--
 74 |

https://bitbucket.org/paulredmond/apress-bookr/commits/f1123c8
https://lumen.laravel.com/docs/5.2/providers
https://lumen.laravel.com/docs/5.2/providers
https://laravel.com/docs/5.2/container
https://laravel.com/docs/5.2/container

CHAPTER 7 ■ LEVELING UP RESPONSES

112

 75 | Here you will register all of the application's service providers which
 76 | are used to bind services into the container. Service providers are
 77 | totally optional, so you are not required to uncomment this line.
 78 |
 79 */
 80
 81 // $app->register(App\Providers\AppServiceProvider::class);
 82 // $app->register(App\Providers\AuthServiceProvider::class);
 83 // $app->register(App\Providers\EventServiceProvider::class);

 As you can see, the framework provides an AppServiceProvider class that you could use to register
application services. You will create your own service provider class because you will benefit from learning how
to create one, but more commonly you would use the AppServiceProvider to define your application services.

 Let’s start by creating your new service provider class (Listing 7-50).

 Listing 7-50. Creating the FractalServiceProvider Class

 # vagrant@homestead:~/Code/bookr$
 $ touch app/Providers/FractalServiceProvider.php

 Add the code in Listing 7-51 to the newly created file.

 Listing 7-51. A Skeleton FractalServiceProvider Class

 1 <?php
 2
 3 namespace App\Providers;
 4
 5 use Illuminate\Support\ServiceProvider;
 6
 7 class FractalServiceProvider extends ServiceProvider
 8 {
 9 public function register()
 10 {
 11
 12 }
 13
 14 public function boot()
 15 {
 16
 17 }
 18 }

 Service providers can be defined anywhere you want; however, let’s use the convention provided in
Lumen, which is under the App\Providers namespace. Service providers must define a register() method.
The sole purpose of the register method is to bind things to the service container.

 The boot method is called after all other services have been registered, and is optional. One example of
using the boot method is loading configuration that your provider needs. You don’t need to use boot in the
 FractalServiceProvider , but it was included for awareness. I will not delve into the full ServiceProvider
API; read the service provider documentation (https://lumen.laravel.com/docs/5.2/providers) and
browse the source code to learn more.

 With a bit of background behind us, let’s register your service (Listing 7-52).

https://lumen.laravel.com/docs/5.2/providers

CHAPTER 7 ■ LEVELING UP RESPONSES

113

 Listing 7-52. Defining the FractalResponse Service

 1 <?php
 2
 3 namespace App\Providers;
 4
 5 use League\Fractal\Manager;
 6 use App\Http\Response\FractalResponse;
 7 use Illuminate\Support\ServiceProvider;
 8 use League\Fractal\Serializer\DataArraySerializer;
 9
 10 class FractalServiceProvider extends ServiceProvider
 11 {
 12 public function register()
 13 {
 14 // Bind the DataArraySerializer to an interface contract
 15 $this->app->bind(
 16 'League\Fractal\Serializer\SerializerAbstract',
 17 'League\Fractal\Serializer\DataArraySerializer'
 18);
 19
 20 $this->app->bind(FractalResponse::class, function ($app) {
 21 $manager = new Manager();
 22 $serializer = $app['League\Fractal\Serializer\SerializerAbstract'];
 23
 24 return new FractalResponse($manager, $serializer);
 25 });
 26
 27 $this->app->alias(FractalResponse::class, 'fractal');
 28 }
 29 }

 The first thing the register method does is bind the DataArraySerializer implementation to the
abstract serializer. When you type-hint League\Fractal\Serializer\SerializerAbstract the container
will resolve League\Fractal\Serializer\DataArraySerializer for you. Binding is powerful because when
you code to an interface you can change the implementation in the provider, and classes consuming the
service will not know the difference.

 Secondly, you define your FractalResponse service. The $this->app->bind() call accepts the abstract
name, and the second argument can be a concrete implementation (like your DataArraySerializer class)
or a Closure . When you pass a Closure, it accepts your application instance ($app) as an argument. In the
closure, you construct a League\Fractal\Manager instance and reference the SerializerAbstract from the
container, which was the contract you bound to the DataArraySerializer . Lastly, you create and return the
 FractalResponse instance.

 The last thing you do in the register method is call $this->app->alias(), which will alias your
service to a shorter name when you ask for it from the container. The alias is a convenient short name to the
service but is not required.

 You can now access your service in a few ways (Listing 7-53).

 Listing 7-53. Different Ways to Resolve the FractalResponse Service

 $fractal = app('App\Http\Response\FractalResponse');
 $fractal = \App::make('App\Http\Response\FractalResponse');

CHAPTER 7 ■ LEVELING UP RESPONSES

114

 // Using the alias you defined:
 $fractal = app('fractal');

 // Or via constructor hinting for the classes the container resolves
 class MyController extends Controller
 {
 public function __construct(App\Http\Response\FractalResponse $fractal)
 {
 $this->fractal = $fractal;
 }
 }

 For your particular use case, you will use the constructor to easily provide all of your controllers with the
 FractalResponse service.

 The next step in finishing the service provider is registering the provider in your application. Open the
 bootstrap/app.php file and add the code in Listing 7-54 .

 Listing 7-54. Registering the FractalServiceProvider

 81 // $app->register(App\Providers\AppServiceProvider::class);
 82 // $app->register(App\Providers\AuthServiceProvider::class);
 83 // $app->register(App\Providers\EventServiceProvider::class);
 84
 85 $app->register(\App\Providers\FractalServiceProvider::class);

 You can now resolve the FractalResponse class from the service container, and you are ready to
integrate the service into your BooksController class in the next section. Onward!

 Integrating the Fractal Response Service
 Your final task is integrating the FractalResponse service. You could make each controller resolve the service
out of the container, but you want to provide consistency across all your responses. The App\Http\Controllers\
Controller class sounds like a good place to resolve the service because all controllers extend from it. Edit
app/Http/Controllers/Controller.php and add the code from Listing 7-55 for your controllers to use.

 Listing 7-55. Integrating the FractalResponse Service in the Base Controller

 1 <?php
 2
 3 namespace App\Http\Controllers;
 4
 5 use App\Http\Response\FractalResponse;
 6 use Laravel\Lumen\Routing\Controller as BaseController;
 7 use League\Fractal\TransformerAbstract;
 8
 9 class Controller extends BaseController
 10 {
 11 /**
 12 * @var FractalResponse
 13 */
 14 private $fractal;

CHAPTER 7 ■ LEVELING UP RESPONSES

115

 15
 16 public function __construct(FractalResponse $fractal)
 17 {
 18 $this->fractal = $fractal;
 19 }
 20
 21 /**
 22 * @param $data
 23 * @param TransformerAbstract $transformer
 24 * @param null $resourceKey
 25 * @return array
 26 */
 27 public function item($data, TransformerAbstract $transformer, $resourceKey = null)
 29 {
 30 return $this->fractal->item($data, $transformer, $resourceKey);
 31 }
 32
 33 /**
 34 * @param $data
 35 * @param TransformerAbstract $transformer
 36 * @param null $resourceKey
 37 * @return array
 38 */
 39 public function collection($data, TransformerAbstract $transformer, $resourceKey =

 null)
 41 {
 42 return $this->fractal->collection($data, $transformer, $resourceKey);
 43 }
 44 }

 The constructor method type-hints the FractalResponse argument that the service container will
resolve automatically when initializing the controller. The item and collection methods are pass-through
methods to the FractalResponse service. You could make the methods more generic like respondWithItem
and take care of the response, but what you have is good enough for now. You can refactor when you sense
duplication and brittle code.

 Let’s try your first integration with the BooksController . Be sure to add use App\Transformer\
BookTransformer ; and extends Controller to start using the base application controller at the top of
app/Http/Controllers/BooksController.php (Listing 7-56).

 Listing 7-56. Using the FractalResponse Service in the BooksController

 1 <?php
 2
 3 namespace App\Http\Controllers;
 4
 5 use App\Book;
 6 use Illuminate\Http\Request;
 7 use App\Transformer\BookTransformer;
 8 use Illuminate\Database\Eloquent\ModelNotFoundException;
 9
 10 /**
 11 * Class BooksController

CHAPTER 7 ■ LEVELING UP RESPONSES

116

 12 * @package App\Http\Controllers
 13 */
 14 class BooksController extends Controller
 15 {
 16 /**
 17 * GET /books
 18 * @return array
 19 */
 20 public function index()
 21 {
 22 return $this->collection(Book::all(), new BookTransformer());
 23 }
 24 // ...
 25 }

 Importantly, the BooksController is now extending the base Controller class found in the same
folder. Don’t forget to extend this controller now , because you need it to inherit the collection
and item methods you just wrote! The BooksController@index method calls the App\Http\
Controller::collection() method and passes the Eloquent collection and the BookTransformer as
parameters. The method returns an array that will resemble the JSON response in Listing 7-57 .

 Listing 7-57. The /books Response Using the FractalResponse Service

 {
 "data": [
 {
 "author": "H. G. Wells",
 "created": "2015-10-21T06:54:33+0000",
 "description": "A science fiction masterpiece about Martians invading London",
 "id": 1,
 "title": "War of the Worlds",
 "updated": "2015-10-21T06:54:33+0000"
 },
 {
 "author": "Madeleine L'Engle",
 "created": "2015-10-21T06:54:33+0000",
 "description": "A young girl goes on a mission to save her father who has gone

missing after working on a mysterious project called a tesseract.",
 "id": 2,
 "title": "A Wrinkle in Time",
 "updated": "2015-10-21T06:54:33+0000"
 }
]
 }

 Let’s run a test to see if your integration is working (Listing 7-58).

 Listing 7-58. Test Failure After Integrating Fractal

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

CHAPTER 7 ■ LEVELING UP RESPONSES

117

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::index_should_return_a_collection_of_
records
 Failed asserting that two strings are equal.
 ...

 It looks like your response test doesn’t match the response from the controller. If you recall, the
 BooksControllerTest test was updated earlier when you added the data key (Listing 7-59).

 Listing 7-59. Your Index Test for a Collection of Books

 /** @test **/
 public function index_should_return_a_collection_of_records()
 {
 $books = factory('App\Book', 2)->create();

 $this->get('/books');

 $expected = [
 'data' => $books->toArray()
];

 $this->seeJsonEquals($expected);
 }

 The $books->toArray() method will do the equivalent of (string) $book->created_at to the date, but
your new transformer is using $book->created_at->toIso8601String() . The transformer is also defining a
 created property but your test is expecting a created_at property. Let’s fix the test to pass again (Listing 7-60).

 Listing 7-60. Changing the Test to Assert the BookTransformer Correctly

 18 /** @test **/
 19 public function index_should_return_a_collection_of_records()
 20 {
 21 $books = factory('App\Book', 2)->create();
 22
 23 $this->get('/books');
 24
 25 $content = json_decode($this->response->getContent(), true);
 26 $this->assertArrayHasKey('data', $content);
 27
 28 foreach ($books as $book) {
 29 $this->seeJson([
 30 'id' => $book->id,
 31 'title' => $book->title,
 32 'description' => $book->description,
 33 'author' => $book->author,
 34 'created' => $book->created_at->toIso8601String(),
 35 'updated' => $book->updated_at->toIso8601String(),
 36]);
 37 }
 38 }

CHAPTER 7 ■ LEVELING UP RESPONSES

118

 After getting the /books response, you check for the data key and then loop through the factory models
to ensure they are all in the response correctly. With your change in place, you will see if the tests pass now
(Listing 7-61).

 Listing 7-61. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (21 tests, 92 assertions)

 The BooksController@show method is next (Listing 7-62).

 Listing 7-62. Updating BooksController@show to Use Fractal

 25 /**
 26 * GET /books/{id}
 27 * @param integer $id
 28 * @return mixed
 29 */
 30 public function show($id)
 31 {
 32 return $this->item(Book::findOrFail($id), new BookTransformer());
 33 }

 The @show method is using the inherited Controller::item() method you built earlier. You are
refactoring at this point so you should expect your tests to pass. If not, you need to fix them before moving on
(Listing 7-63).

 Listing 7-63. Running the Test Suite after Refactoring BooksController@show

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::show_should_return_a_valid_book
 Failed asserting that two strings are equal.

 Darn! If you have a keen eye, you can see that you have the same issue in the BooksController@show
test that you just fixed for the BooksController@index test (Listing 7-64).

 Listing 7-64. Updating the BooksController@show Test

 40 /** @test **/
 41 public function show_should_return_a_valid_book()
 42 {
 43 $book = factory('App\Book')->create();
 44
 45 $this
 46 ->get("/books/ { $book->id } ")
 47 ->seeStatusCode(200);
 48

CHAPTER 7 ■ LEVELING UP RESPONSES

119

 49 // Get the response and assert the data key exists
 50 $content = json_decode($this->response->getContent(), true);
 51 $this->assertArrayHasKey('data', $content);
 52 $data = $content['data'];
 53
 54 // Assert the Book Properties match
 55 $this->assertEquals($book->id, $data['id']);
 56 $this->assertEquals($book->title, $data['title']);
 57 $this->assertEquals($book->description, $data['description']);
 58 $this->assertEquals($book->author, $data['author']);
 59 $this->assertEquals($book->created_at->toIso8601String(), $data['created']);
 60 $this->assertEquals($book->updated_at->toIso8601String(), $data['created']);
 61 }

 Your test now asserts each property instead of the whole model data all at once. With this change, and
more granular checking, let’s see if the tests are passing now (Listing 7-65).

 Listing 7-65. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (21 tests, 98 assertions)

 Your next refactor is the BooksController@store method (Listing 7-66).

 Listing 7-66. Refactoring BooksController@store to Use Fractal

 35 /**
 36 * POST /books
 37 * @param Request $request
 38 * @return \Symfony\Component\HttpFoundation\Response
 39 */
 40 public function store(Request $request)
 41 {
 42 $book = Book::create($request->all());
 43 $data = $this->item($book, new BookTransformer());
 44
 45 return response()->json($data, 201, [
 46 'Location' => route('books.show', ['id' => $book->id])
 47]);
 48 }

 Nothing in this example that you haven’t seen before, so let’s run the tests (Listing 7-67).

 Listing 7-67. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (21 tests, 98 assertions)

CHAPTER 7 ■ LEVELING UP RESPONSES

120

 Your tests pass, but you should review them to make sure they still cover everything. If you look at
the store_should_save_new_book_in_the_database test, notice that it doesn’t check for the created or
 updated field. You can either provide extra assertions to check, or you can rely on the BookTransformer::it_
transforms_a_book_model() test to ensure that this works correctly. Your test is an integration test, so let’s
add the additional checks. You cannot guarantee at this point that the BookTransformer is being used.

 You have one problem, though: if you assert the value of created and updated, how do you know what
to expect? These fields are populated dynamically when the book is created. Lucky for us, Lumen uses the
Carbon (http://carbon.nesbot.com/) library to work with dates in Eloquent.

 If you browse the Carbon documentation or the API, you will find the Carbon::setTestNow() method;
you need to mock the time so you know what to expect! Mocking Carbon makes testing dates really easy!

 In preparation to updating your test, you need to add a setUp and tearDown method so you can test
dates in each test and then reset Carbon afterwards (Listing 7-68).

 Listing 7-68. Mocking Carbon in the BooksControllerTest Class (Partial Source)

 1 <?php
 2
 3 namespace Tests\App\Http\Controllers;
 4
 5 use TestCase;
 6 use Carbon\Carbon;
 7 use Illuminate\Foundation\Testing\DatabaseMigrations;
 8
 9 class BooksControllerTest extends TestCase
 10 {
 11 use DatabaseMigrations;
 12
 13 public function setUp()
 14 {
 15 parent ::setUp();
 16
 17 Carbon::setTestNow(Carbon::now('UTC'));
 18 }
 19
 20 public function tearDown()
 21 {
 22 parent ::tearDown();
 23
 24 Carbon::setTestNow();
 25 }
 26 // …
 27 }

 At the top of your BooksControllerTest you import Carbon with use Carbon\Carbon; . You override the
 setUp and tearDown methods (see https://phpunit.de/manual/current/en/fixtures.html) to mock Carbon.

 Calling Carbon::setTestNow(Carbon::now('UTC')); will mock your tests to use the current time. Once the
test is over, you call Carbon::setTestNow(); in the tearDown method to reset Carbon to its normal behavior.

 Now that you’ve mocked Carbon, you can write your test expectations (Listing 7-69).

http://carbon.nesbot.com/
https://phpunit.de/manual/current/en/fixtures.html

CHAPTER 7 ■ LEVELING UP RESPONSES

121

 Listing 7-69. Updating the BooksController@store Test to Assert Created and Updated Values

 104 /** @test **/
 105 public function store_should_save_new_book_in_the_database()
 106 {
 107 $this->post('/books', [
 108 'title' => 'The Invisible Man',
 109 'description' => 'An invisible man is trapped in the terror of his own

creation',
 110 'author' => 'H. G. Wells'
 111]);
 112
 113 $body = json_decode($this->response->getContent(), true);
 114 $this->assertArrayHasKey('data', $body);
 115
 116 $data = $body['data'];
 117 $this->assertEquals('The Invisible Man', $data['title']);
 118 $this->assertEquals(
 119 'An invisible man is trapped in the terror of his own creation',
 120 $data['description']
 121);
 122 $this->assertEquals('H. G. Wells', $data['author']);
 123 $this->assertTrue($data['id'] > 0, 'Expected a positive integer, but did not see

one.');
 124
 125 $this->assertArrayHasKey('created', $data);
 126 $this->assertEquals(Carbon::now()->toIso8601String(), $data['created']);
 127 $this->assertArrayHasKey('updated', $data);
 128 $this->assertEquals(Carbon::now()->toIso8601String(), $data['updated']);
 129
 130 $this->seeInDatabase('books', ['title' => 'The Invisible Man']);
 131 }

 Near the end of the test you assert that the response has the created and updated keys, and you use carbon
to make sure the dates are in ISO 8601 (http://www.iso.org/iso/home/standards/iso8601.htm) format.

 Let’s make sure your new assertions pass (Listing 7-70).

 Listing 7-70. Running the Entire Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (21 tests, 102 assertions)

 And your tests all pass! You are on the final method refactor and then you are done. The
 BooksController@update method will be similar to the store method (Listing 7-71).

 Listing 7-71. Refactoring BooksController@update

 50 /**
 51 * PUT /books/{id}
 52 * @param Request $request

http://www.iso.org/iso/home/standards/iso8601.htm

CHAPTER 7 ■ LEVELING UP RESPONSES

122

 53 * @param $id
 54 * @return mixed
 55 */
 56 public function update(Request $request, $id)
 57 {
 58 try {
 59 $book = Book::findOrFail($id);
 60 } catch (ModelNotFoundException $e) {
 61 return response()->json([
 62 'error' => [
 63 'message' => 'Book not found'
 64]
 65], 404);
 66 }
 67
 68 $book->fill($request->all());
 69 $book->save();
 70
 71 return $this->item($book, new BookTransformer());
 72 }

 The only change here is returning a transformed model. Let’s check the test (Listing 7-72).

 Listing 7-72. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (21 tests, 102 assertions)

 And you are still green!
 Next, add response checks and assert the dates in the update_should_only_change_fillable_fields

test (Listing 7-73).

 Listing 7-73. Adding Additional Checks for BooksController@update

 150 /** @test **/
 151 public function update_should_only_change_fillable_fields()
 152 {
 153 $book = factory('App\Book')->create([
 154 'title' => 'War of the Worlds',
 155 'description' => 'A science fiction masterpiece about Martians invading

London',
 156 'author' => 'H. G. Wells',
 157]);
 158
 159 $this->notSeeInDatabase('books', [
 160 'title' => 'The War of the Worlds',
 161 'description' => 'The book is way better than the movie.',
 162 'author' => 'Wells, H. G.'
 163]);
 164

CHAPTER 7 ■ LEVELING UP RESPONSES

123

 165 $this->put("/books/ { $book->id } ", [
 166 'id' => 5,
 167 'title' => 'The War of the Worlds',
 168 'description' => 'The book is way better than the movie.',
 169 'author' => 'Wells, H. G.'
 170]);
 171
 172 $this
 173 ->seeStatusCode(200)
 174 ->seeJson([
 175 'id' => 1,
 176 'title' => 'The War of the Worlds',
 177 'description' => 'The book is way better than the movie.',
 178 'author' => 'Wells, H. G.',
 179])
 180 ->seeInDatabase('books', [
 181 'title' => 'The War of the Worlds'
 182]);
 183
 184 $body = json_decode($this->response->getContent(), true);
 185 $this->assertArrayHasKey('data', $body);
 186
 187 $data = $body['data'];
 188 $this->assertArrayHasKey('created', $data);
 189 $this->assertEquals(Carbon::now()->toIso8601String(), $data['created']);
 190 $this->assertArrayHasKey('updated', $data);
 191 $this->assertEquals(Carbon::now()->toIso8601String(), $data['updated']);
 192 }

 At the end of the test method you added assertions for the created and updated values, just like in your
last test. Time for the moment of truth: running the whole suite one last time (Listing 7-74).

 Listing 7-74. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (21 tests, 106 assertions)

 Git commit: Integrate the FractalResponse Service

 845f27e (https://bitbucket.org/paulredmond/apress-bookr/commits/845f27e)

https://bitbucket.org/paulredmond/apress-bookr/commits/845f27e

CHAPTER 7 ■ LEVELING UP RESPONSES

124

 Conclusion
 You’ve had a long journey in this chapter, but now you have a decent way to generate consistent responses in
your app. Along the way you learned

• How to write the minimum amount of code to get tests to pass

• To refactor only after getting tests to pass

• How to create and install a service provider

• How to use the service container

• The basics of the Fractal library

 At this point I encourage you to read more about the service container (https://lumen.laravel.com/
docs/5.2/container) and service providers (https://lumen.laravel.com/docs/5.2/providers) in the
official documentation. The container and providers are related concepts that you will use frequently when
you develop Lumen applications.

https://lumen.laravel.com/docs/5.2/container
https://lumen.laravel.com/docs/5.2/container
https://lumen.laravel.com/docs/5.2/providers

125© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7_8

 CHAPTER 8

 Validation

 Your /books API is going smoothly up to this point, but your tests and controllers assume that good data is being
submitted. Your application doesn’t protect against bad data (and empty data) being saved to the database;
specifically, the BooksController@store and BooksController@update methods happily save bad data.

 You will focus your efforts on validating data submitted to the /books API using the validation (https://
lumen.laravel.com/docs/5.2/validation) tools provided by Lumen. You will write tests for your validation
logic; this will provide you with a good foundation of how write validation tests in your own applications.

 First Attempt at Validation
 You will start out with basic validation and then iteratively add features as you go. Like always, you create
tests first.

 What validation rules do you need? Validation is a combination of business logic and security practices.
For example, in your /books API, all books should be required to have a title. For your purposes, the
database schema doesn’t allow null values, and you intend to make the title , description , and author
fields required. If these fields are present, you will consider them valid.

 Let’s start by creating a new integration test file (Listing 8-1) and the skeleton class (Listing 8-2) with a
few basic tests for validation.

 Listing 8-1. Creating the Test Class

 # vagrant@homestead:~/Code/bookr$
 $ touch tests/app/Http/Controllers/BooksControllerValidationTest.php

 Listing 8-2. The Skeleton BooksControllerValidationTest Class

 1 <?php
 2
 3 namespace Tests\App\Http\Controllers;
 4
 5 use TestCase;
 6 use Illuminate\Http\Response;
 7 use Laravel\Lumen\Testing\DatabaseMigrations;
 8
 9 class BooksControllerValidationTest extends TestCase
 10 {
 11 use DatabaseMigrations;
 12
 13 /** @test **/

https://lumen.laravel.com/docs/5.2/validation
https://lumen.laravel.com/docs/5.2/validation

CHAPTER 8 ■ VALIDATION

126

 14 public function it_validates_required_fields_when_creating_a_new_book()
 15 {
 16
 17 }
 18
 19 /** @test **/
 20 public function it_validates_requied_fields_when_updating_a_book()
 21 {
 22
 23 }
 24 }

 Take note of the imported Illuminate\Http\Response class that you will use to test expected response
codes. You also import the DatabaseMigrations trait to test existing database records and insert new ones.

 Start writing your first test, making sure that your BooksController@store method validates required
fields before creating a new book (Listing 8-3).

 Listing 8-3. Writing Validation Assertions for the BooksController@store Method

 13 /** @test **/
 14 public function it_validates_required_fields_when_creating_a_new_book()
 15 {
 16 $this->post('/books', [], ['Accept' => 'application/json']);
 17
 18 $this->assertEquals(Response::HTTP_UNPROCESSABLE_ENTITY, $this->response-

>getStatusCode());
 19
 20 $body = json_decode($this->response->getContent(), true);
 21
 22 $this->assertArrayHasKey('title', $body);
 23 $this->assertArrayHasKey('description', $body);
 24 $this->assertArrayHasKey('author', $body);
 25
 26 $this->assertEquals(["The title field is required."], $body['title']);
 27 $this->assertEquals(["The description field is required."], $body['description']);
 28 $this->assertEquals(["The author field is required."], $body['author']);
 29 }

 Your first test tries to create a new book without sending any data; you expect to receive a 422
Unprocessable Entity status code from the failed validation. Next, you decode the JSON response and
assert that certain validation errors are present in the response. The validator formats error messages into an
array for each field. Now run your first failing validation test (Listing 8-4).

 Listing 8-4. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=it_validates_required_fields_when_creating_a_new_book

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerValidationTest::it_validates_required_fields_
when_creating_a_new_book
 Failed asserting that 201 matches expected 422.

CHAPTER 8 ■ VALIDATION

127

 bookr/tests/app/Http/Controllers/BooksControllerValidationTest.php:18

 FAILURES!
 Tests: 1, Assertions: 1, Failures: 1.

 The API responds with a 201 Created status code which you expect when valid data is submitted, but
you expect failure because the data submitted is invalid. With the failed test you are ready to integrate your
validation logic in the controller (Listing 8-5).

 Listing 8-5. The Validation Implementation for Creating a Book

 35 /**
 36 * POST /books
 37 *
 38 * @param Request $request
 39 * @return \Illuminate\Http\JsonResponse
 40 */
 41 public function store(Request $request)
 42 {
 43 $this->validate($request, [
 44 'title' => 'required',
 45 'description' => 'required',
 46 'author' => 'required'
 47]);
 48
 49 $book = Book::create($request->all());
 50 $data = $this->item($book, new BookTransformer());
 51
 52 return response()->json($data, 201, [
 53 'Location' => route('books.show', ['id' => $book->id])
 54]);
 55 }

 The first line of the controller calls the validate() method, which accepts an Illuminate\Http\
Request instance and an array of validation rules mapped to the request data. You validate the request using
the required rule, which means the field must be present. If the validate() method fails, it will throw an
 HttpResponseException with the 422 Unprocessable Entity status code, which is what your test expects.

 THE VALIDATE METHOD

 The validate() method comes from the Laravel\Lumen\Routing\ProvidesConvenienceMethods
trait provided by the base Laravel\Lumen\Routing\Controller class.

 Read the validation documentation (https://laravel.com/docs/5.2/validation#available-
validation-rules) to find a complete list of all the validation rules Lumen supports out of the box, as
well as how to create your own custom rules.

 Next, test your implementation to see if it succeeds (Listing 8-6).

https://laravel.com/docs/5.2/validation#available-validation-rules
https://laravel.com/docs/5.2/validation#available-validation-rules

CHAPTER 8 ■ VALIDATION

128

 Listing 8-6. Testing the BooksController@store Validation Implementation

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=it_validates_required_fields_when_creating_a_new_book

 OK (1 test, 7 assertions)

 Add the same basic validation to the BooksController@update method before doing some refactoring
and improvements (Listing 8-7).

 Listing 8-7. Writing the Validation Test for the BooksController@update Method

 31 /** @test **/
 32 public function it_validates_validates_passed_fields_when_updating_a_book()
 33 {
 34 $book = factory(\App\Book::class)->create();
 35
 36 $this->put("/books/ { $book->id } ", [], ['Accept' => 'application/json']);
 37
 38 $this->assertEquals(Response::HTTP_UNPROCESSABLE_ENTITY, $this->response-

>getStatusCode());
 39
 40 $body = json_decode($this->response->getContent(), true);
 41
 42 $this->assertArrayHasKey('title', $body);
 43 $this->assertArrayHasKey('description', $body);
 44 $this->assertArrayHasKey('author', $body);
 45
 46 $this->assertEquals(["The title field is required."], $body['title']);
 47 $this->assertEquals(["The description field is required."], $body['description']);
 48 $this->assertEquals(["The author field is required."], $body['author']);
 49 }

 This test creates a valid record in the database and attempts a PUT request with no data. Running the
tests will give an error similar to the first validation test (Listing 8-8).

 Listing 8-8. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerValidationTest::it_validates_valida\
 tes_passed_fields_when_updating_a_book
 Failed asserting that 200 matches expected 422.

 /home/vagrant/Code/bookr/tests/app/Http/Controllers/BooksControllerValidationTest.php:38

 FAILURES!
 Tests: 23, Assertions: 114, Failures: 1.

 The BooksController@update implementation is identical to the BooksController@create method
(Listing 8-9).

CHAPTER 8 ■ VALIDATION

129

 Listing 8-9. Implementing Validation in the BooksController@update Method

 57 /**
 58 * PUT /books/{id}
 59 *
 60 * @param Request $request
 61 * @param $id
 62 * @return mixed
 63 */
 64 public function update(Request $request, $id)
 65 {
 66 try {
 67 $book = Book::findOrFail($id);
 68 } catch (ModelNotFoundException $e) {
 69 return response()->json([
 70 'error' => [
 71 'message' => 'Book not found'
 72]
 73], 404);
 74 }
 75
 76 $this->validate($request, [
 77 'title' => 'required',
 78 'description' => 'required',
 79 'author' => 'required'
 80]);
 81
 82 $book->fill($request->all());
 83 $book->save();
 84
 85 return $this->item($book, new BookTransformer());
 86 }

 Next, you should run your test to see if you are back to green again (Listing 8-10).

 Listing 8-10. Running the BooksController@update Validation Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (23 tests, 120 assertions)

 With passing tests you’ve provided basic validation for books. Your validation code is ready to be
expanded to include more rules and tests to ensure your validation continues to work as expected.

 More Validation Constraints
 The second validation rule is limiting the length of the book title. The database is constrained to 255
characters so you will write your application to match. You will test a few scenarios, including “just long
enough” and “just too long.” Add the tests in Listing 8-11 to the BooksControllerValidationTest file.

CHAPTER 8 ■ VALIDATION

130

 Listing 8-11. Testing the “Title Is Too Long” Scenario

 51 /** @test **/
 52 public function title_fails_create_validation_when_just_too_long()
 53 {
 54 // Creating a book
 55 $book = factory(\App\Book::class)->make();
 56 $book->title = str_repeat('a', 256);
 57
 58 $this->post("/books", [
 59 'title' => $book->title,
 60 'description' => $book->description,
 61 'author' => $book->author,
 62], ['Accept' => 'application/json']);
 63
 64 $this
 65 ->seeStatusCode(Response::HTTP_UNPROCESSABLE_ENTITY)
 66 ->seeJson([
 67 'title' => ["The title may not be greater than 255 characters."]
 68])
 69 ->notSeeInDatabase('books', ['title' => $book->title]);
 70 }
 71
 72 /** @test **/
 73 public function title_fails_update_validation_when_just_too_long()
 74 {
 75 // Updating a book
 76 $book = factory(\App\Book::class)->create();
 77 $book->title = str_repeat('a', 256);
 78
 79 $this->put("/books/ { $book->id } ", [
 80 'title' => $book->title,
 81 'description' => $book->description,
 82 'author' => $book->author
 83], ['Accept' => 'application/json']);
 84
 85 $this
 86 ->seeStatusCode(Response::HTTP_UNPROCESSABLE_ENTITY)
 87 ->seeJson([
 88 'title' => ["The title may not be greater than 255 characters."]
 89])
 90 ->notSeeInDatabase('books', ['title' => $book->title]);
 91 }

 In the first test, the factory(\App\Book::class)->make() method was introduced. When you call
 ->make() from the factory instead of ->create() it gives you an unsaved model that is not persisted in the
database. Both tests make the title just too long to pass validation in order to test the threshold of failure. The
error message is asserted and you also assert that a record with the invalid title is not in the database.

 You need to wire up the controller changes to match these tests (Listing 8-12 and Listing 8-13). At this
point you should run tests, which will fail because the validation will still pass.

CHAPTER 8 ■ VALIDATION

131

 Listing 8-12. Adding Max Validation to BooksController@create

 43 $this->validate($request, [
 44 'title' => 'required|max:255' ,
 45 'description' => 'required',
 46 'author' => 'required'
 47]);

 Listing 8-13. Adding Max Validation to BooksController@update

 76 $this->validate($request, [
 77 'title' => 'required|max:255' ,
 78 'description' => 'required',
 79 'author' => 'required'
 80]);

 Validation rules are separated by the pipe | character, thus, title is required and max:255 length. Now
see if your new validation rules pass (Listing 8-14).

 Listing 8-14. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (25 tests, 126 assertions)

 The next two tests, shown in Listing 8-15 , will assert that validation passes when you have exactly 255
characters.

 Listing 8-15. Testing That Validation Passes with a Title of Exactly 255 Characters

 93 /** @test **/
 94 public function title_passes_create_validation_when_exactly_max()
 95 {
 96 // Creating a new Book
 97 $book = factory(\App\Book::class)->make();
 98 $book->title = str_repeat('a', 255);
 99
 100 $this->post("/books", [
 101 'title' => $book->title,
 102 'description' => $book->description,
 103 'author' => $book->author,
 104], ['Accept' => 'application/json']);
 105
 106 $this
 107 ->seeStatusCode(Response::HTTP_CREATED)
 108 ->seeInDatabase('books', ['title' => $book->title]);
 109 }
 110
 111 /** @test **/
 112 public function title_passes_update_validation_when_exactly_max()
 113 {
 114 // Updating a book

CHAPTER 8 ■ VALIDATION

132

 115 $book = factory(\App\Book::class)->create();
 116 $book->title = str_repeat('a', 255);
 117
 118 $this->put("/books/ { $book->id } ", [
 119 'title' => $book->title,
 120 'description' => $book->description,
 121 'author' => $book->author
 122], ['Accept' => 'application/json']);
 123
 124 $this
 125 ->seeStatusCode(Response::HTTP_OK)
 126 ->seeInDatabase('books', ['title' => $book->title]);
 127 }

 The BooksControllerTest class already covers creating a valid book, so you only assert the correct
status code, which means validation passed. Last, you check that a new record exists in the database. At this
point, your tests should all be passing (Listing 8-16), but if the maximum value changes, your tests will fail,
indicating business rules around your title length. These tests will guide developers in understanding the
business rules around data.

 Listing 8-16. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (27 tests, 130 assertions)

 You now have additional max:255 validation for the title that’s working. As you can see, validation is
really easy in Lumen, but it can also handle more complex rules. Your data is not complicated at the moment
so a few built-in validation rules will suffice.

 Custom Validation Messages
 Lumen has good validation messages out of the box, but I will show you how you can customize them if
needed. You will use the description field as an example.

 The first thing to do is update your tests to match the new error message you want to use. The validation
test for BooksController@create should look Listing 8-17 and Listing 8-18 now.

 Listing 8-17. Test for Custom Description Validation Message for BooksController@create

 13 /** @test **/
 14 public function it_validates_required_fields_when_creating_a_new_book()
 15 {
 16 $this->post('/books', [], ['Accept' => 'application/json']);
 17
 18 $this->assertEquals(Response::HTTP_UNPROCESSABLE_ENTITY, $this->response-

>getStatusCode());
 19
 20 $body = json_decode($this->response->getContent(), true);
 21
 22 $this->assertArrayHasKey('title', $body);

CHAPTER 8 ■ VALIDATION

133

 23 $this->assertArrayHasKey('description', $body);
 24 $this->assertArrayHasKey('author', $body);
 25
 26 $this->assertEquals(["The title field is required."], $body['title']);
 27 $this->assertEquals(
 28 ["Please provide a description."],
 29 $body['description']
 30);
 31 $this->assertEquals(["The author field is required."], $body['author']);
 32 }

 Listing 8-18. Test for Custom Description Validation Message for BooksController@update

 34 /** @test **/
 35 public function it_validates_validates_passed_fields_when_updating_a_book()
 36 {
 37 $book = factory(\App\Book::class)->create();
 38
 39 $this->put("/books/ { $book->id } ", [], ['Accept' => 'application/json']);
 40
 41 $this->assertEquals(Response::HTTP_UNPROCESSABLE_ENTITY, $this->response-

>getStatusCode());
 42
 43 $body = json_decode($this->response->getContent(), true);
 44
 45 $this->assertArrayHasKey('title', $body);
 46 $this->assertArrayHasKey('description', $body);
 47 $this->assertArrayHasKey('author', $body);
 48
 49 $this->assertEquals(["The title field is required."], $body['title']);
 50 $this->assertEquals(
 51 ["Please provide a description."],
 52 $body['description']
 53);
 54 $this->assertEquals(["The author field is required."], $body['author']);
 55 }

 The only thing you needed to change was the custom error message for the description field, but the
entire test cases are provided for clarity.

 At this point, the tests are failing, and you are ready to implement your custom message. The
 Controller::validate() method accepts an optional third argument, which is an associative array of
custom validation messages. You can define them with the pattern 'attribute.<rule>' => <message> to
override a specific field (Listing 8-19 and Listing 8-20).

 Listing 8-19. Adding the Custom Validation Method for the Description

 43 $this->validate($request, [
 44 'title' => 'required|max:255',
 45 'description' => 'required',
 46 'author' => 'required'
 47], [
 48 'description.required' => 'Please provide a :attribute.'
 49]);

CHAPTER 8 ■ VALIDATION

134

 Listing 8-20. Adding the Custom Description Message for BooksController@update

 78 $this->validate($request, [
 79 'title' => 'required|max:255',
 80 'description' => 'required',
 81 'author' => 'required'
 82], [
 83 'description.required' => 'Please provide a :attribute.'
 84]);

 You added a custom message for the description’s required validation rule. The validator understands
certain placeholders like :attribute, which will be resolved to the word “description”. If you were to pass
 'required' => 'Please fill out the :attribute.' the custom message would apply to all fields being
validated with the required rule.

 It’s time to run your test suite one last time and see if the new custom message worked (Listing 8-21).

 Listing 8-21. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (27 tests, 130 assertions)

 Other Approaches
 Admittedly, this validation chapter is barebones, and you might be scratching your head wondering if
validation logic even belongs in the controller. Shouldn’t the model be responsible for validating data? Not
surprisingly, there are differing opinions about where validation should be covered: in the controller or the
model within Model-View-Controller (MVC).

 I try to take a pragmatic approach. In your API thus far, is validation making your controller too
complex? Nope. Is the controller processing user input from a request? Yes. The controller is a fine place for
validation logic, in my opinion. The key is to keep your code simple; you can always refactor later.

 That being said, I will touch briefly on another technique used in Laravel (and thus Lumen):
validation in models. For example, Dayle Rees wrote about one approach to move validation into models
(https://daylerees.com/trick-validation-within-models/). Other notable frameworks (such as Rails)
also integrate validation rules in the model layer.

 In your case, you also have duplicated logic by validating in controller methods. Isn’t that bad? In
my opinion, it can be, but at this point in your API, I would argue that creating a base model and moving
validation logic into your Book model would be a premature optimization and more complex than your
simple validation rules. Plus, you have validation tests for both endpoints. I encourage you to solve this
problem however you feel fits your style; just try to avoid premature optimization and doing it for the sake of
doing it. Lumen is flexible enough to allow you to come up with your own approach.

https://daylerees.com/trick-validation-within-models/

CHAPTER 8 ■ VALIDATION

135

 Conclusion
 You breezed through adding basic API validation. At this point, I encourage you to read through the
validation documentation (https://lumen.laravel.com/docs/5.2/validation) to become more familiar
with the available built-in validation rules and making your own custom rules. You should have a good
foundation for writing validation rules and tests to ensure your APIs respond to invalid data in a useful way.
Validation not only helps keep bad data out of the database, it provides API consumers helpful information
when bad data is submitted to the application.

 Git commit: Add Book API Validation

 d4144f0 (https://bitbucket.org/paulredmond/apress-bookr/commits/d4144f0)

https://lumen.laravel.com/docs/5.2/validation
https://bitbucket.org/paulredmond/apress-bookr/commits/d4144f0

137© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7_9

 CHAPTER 9

 Authors

 So far your /books endpoint provides an author column on the books database table. Making authors a
string field on the books table was intentional so that you could focus on other primary concepts of building
your API, but now you are ready to create proper author data and provide API endpoints for author data.

 This chapter will cover the following:

• Creating the authors database schema

• Creating a relationship between book data and authors

• Creating API endpoints for author information

• Modifying your /books endpoint to use new author data

 The Authors Database Schema
 Creating the authors database table involves a few migrations:

 1. Create a new authors database table.

 2. Associate authors and books.

 3. Remove the deprecated author column on the books table.

 You will start by creating the new authors database table. If you remember when you created the books
table you have an artisan command to create migration scripts (Listing 9-1).

 Listing 9-1. Creating the Authors Database Migration

 # vagrant@homestead:~/Code/bookr$
 $ php artisan make:migration create_authors_table --create=authors

 Add the columns shown in Listing 9-2 to the up() method.

 Listing 9-2. The Authors Table Migration

 8 /**
 9 * Run the migrations.
 10 *
 11 * @return void
 12 */
 13 public function up()
 14 {

CHAPTER 9 ■ AUTHORS

138

 15 Schema::create('authors', function (Blueprint $table) {
 16 $table->increments('id');
 17 $table->string('name');
 18 $table->enum('gender', ['male', 'female']);
 19 $table->text('biography');
 20 $table->timestamps();
 21 });
 22 }

 This time around I will move at a quicker pace, so you might want to review your original migration of
the books table.

 The up migration might be the first time you’ve seen the $table->text() method and $table->enum()
in a migration:

• The text() method is the TEXT equivalent for the database.

• The enum() method is equivalent to a relational database ENUM field.

 You can go ahead and run the migration to try it out (Listing 9-3).

 Listing 9-3. Running the Database Migration

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh
 Rolled back: 2015_12_29_234835_create_books_table
 Migrated: 2015_12_29_234835_create_books_table
 Migrated: 2016_01_20_050526_create_authors_table

 Keep in mind that commands like migrate:refresh will remove data from the database, but this is a good thing
in development because you can depend on seed data to quickly get a repeatable development environment.

 The next migration will define the database association between the books table and the authors table.
Because you are using Eloquent you have access to the following types of relationships:

• One-to-one

• One-to-many

• Many-to-many

• Has-many-through

• Polymorphic relationships

• Many-to-many polymorphic relationships

 You can read more about model relationships (https://laravel.com/docs/5.2/eloquent-
relationships) in the Laravel documentation. You will pick one-to-many, although a many-to-many
relationship might be better suited if you are allowing multiple authors.

 For the purposes of your API, a book will only have one author, and you will define that relationship
with a new migration (Listing 9-4).

 Listing 9-4. Making the Migration to Associate Books and Authors

 # vagrant@homestead:~/Code/bookr$
 $ php artisan make:migration \
 associate_books_with_authors --table=books

https://laravel.com/docs/5.2/eloquent-relationships
https://laravel.com/docs/5.2/eloquent-relationships

CHAPTER 9 ■ AUTHORS

139

 Your API is not in production yet, so you could modify the original books migration that creates the
 books table. Changing the existing migration is much cleaner when you are developing a new application;
if your application is already in production, you must create another migration. You are creating a new
migration in this case so that you can get familiar with how to write migrations for a production API that
already has production data.

 This migration is a little trickier than your previous experience with migrations (Listing 9-5).

 Listing 9-5. The Migration to Associate Authors and Books

 1 <?php
 2
 3 use Illuminate\Database\Schema\Blueprint;
 4 use Illuminate\Database\Migrations\Migration;
 5
 6 class AssociateBooksWithAuthors extends Migration
 7 {
 8 /**
 9 * Run the migrations.
 10 *
 11 * @return void
 12 */
 13 public function up()
 14 {
 15 Schema::table('books', function (Blueprint $table) {
 16
 17 // Create the author_id column as an unsigned integer
 18 $table->integer('author_id')->after('id')->unsigned();
 19
 20 // Create a basic index for the author_id column
 21 $table->index('author_id');
 22
 23 // Create a foreign key constraint and cascade on delete.
 24 $table
 25 ->foreign('author_id')
 26 ->references('id')
 27 ->on('authors')
 28 ->onDelete('cascade');
 29 });
 30 }
 31
 32 /**
 33 * Reverse the migrations.
 34 *
 35 * @return void
 36 */
 37 public function down()
 38 {
 39 Schema::table('books', function (Blueprint $table) {
 40 // Drop the foreign key first
 41 $table->dropForeign('books_author_id_foreign');
 42
 43 // Now drop the basic index

CHAPTER 9 ■ AUTHORS

140

 44 $table->dropIndex('books_author_id_index');
 45
 46 // Lastly, now it's safe to drop the column
 47 $table->dropColumn('author_id');
 48 });
 49 }
 50 }

 I will start by explaining the up method:

• Create an unsigned integer column author_id after the id column.

• Add a basic index to the author_id column.

• Add a foreign key associated with the authors.id column.

• The foreign key should cascade on delete.

 The down method looks simple but is actually a little trickier:

• You must drop the foreign key first.

• You then must drop the index.

• Finally, you are safe to drop the author_id column.

 A migration should be able to be applied and rolled back without error cleanly. You will try out applying
and rolling back to make sure your migration is working as expected (Listing 9-6).

 Listing 9-6. Making Sure Migrations Can Be Applied and Rolled Back

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh
 Rolled back: 2016_07_31_195159_associate_books_with_authors
 Rolled back: 2016_07_31_194721_create_authors_table
 Rolled back: 2016_07_28_232137_create_books_table
 Migrated: 2016_07_28_232137_create_books_table
 Migrated: 2016_07_31_194721_create_authors_table
 Migrated: 2016_07_31_195159_associate_books_with_authors

 Now that you have a working migration, you need to update your seed data for the books table and
create a new factory for authors. First, you need an Eloquent model for authors (Listing 9-7).

 Listing 9-7. Creating the Author Model File

 # vagrant@homestead:~/Code/bookr$
 $ touch app/Author.php

 Your Author model will look like Listing 9-8 .

 Listing 9-8. The Author Model Class

 1 <?php
 2
 3 namespace App;
 4
 5 use Illuminate\Database\Eloquent\Model;

CHAPTER 9 ■ AUTHORS

141

 6
 7 class Author extends Model
 8 {
 9 /**
 10 * The attributes that are mass assignable
 11 *
 12 * @var array
 13 */
 14 protected $fillable = ['name', 'biography', 'gender'];
 15
 16 public function books()
 17 {
 18 return $this->hasMany(Book::class);
 19 }
 20 }

 The $fillable property was introduced in the Book model and defines mass-assignable columns. Next,
you define a books() method that has the one-to-many relationship with the Book model. The hasMany
method takes the Book model class name. By convention, the Author model will use author_id on the books
table to look up associations.

 Next, you need to adjust your Book model to include the authors association (Listing 9-9).

 Listing 9-9. The Book Model Association with Authors

 1 <?php
 2
 3 namespace App;
 4
 5 use Illuminate\Database\Eloquent\Model;
 6
 7 class Book extends Model
 8 {
 9 /**
 10 * The attributes that are mass assignable
 11 *
 12 * @var array
 13 */
 14 protected $fillable = ['title', 'description', 'author'];
 15
 16 public function author()
 17 {
 18 return $this->belongsTo(Author::class);
 19 }
 20 }

 By convention, the belongsTo method sets up the association with the Author model and Eloquent will
take the author_id and find the author record with the Author.id field. You can tweak the foreign key name as
the second argument in belongsTo , but let’s follow the naming conventions that automatically take care of it.

 The Eloquent relationships (https://laravel.com/docs/5.2/eloquent-relationships) documentation
explains in detail how you can customize model associations and how to use them.

https://laravel.com/docs/5.2/eloquent-relationships

CHAPTER 9 ■ AUTHORS

142

 With the one-to-many association in place, Eloquent can load data about the associated models, as
shown in Listing 9-10 .

 Listing 9-10. Example of Using Eloquent Associations

 $book = Book::find(1);
 echo $book->author->name;

 $author = Author::find(1);
 foreach ($author->books as $book) {
 echo $book->title;
 }

 The models are ready to go, and you have your schema migration working! Now you need to add a new
factory definition for authors and update the seed data. Start by adding the factory definition to database/
factories/ModelFactory.php (Listing 9-11).

 Listing 9-11. The Author Model Factory

 31 $factory->define(App\Author::class, function ($faker) {
 32 return [
 33 'name' => $faker->name,
 34 'biography' => join(" ", $faker->sentences(rand(3, 5))),
 35 'gender' => rand(1, 6) % 2 === 0 ? 'male' : 'female'
 36];
 37 });

 The biography key uses the $faker->sentences() method from the Faker\Provider\Lorem provider.
The $faker->sentences() method takes an integer for the first parameter, which determines how many
sentences will be generated. You use a random number between 3 and 5 sentences and join the array with
an empty space (“ ”). The gender key can either be male or female and you use the modulus operator to
randomly pick male or female. An even random number will be male, and an odd number will be female.

 Next, you will put your new factory to work by using it to seed book and author data. You will modify the
 database/seeds/BooksTableSeeder.php to use your model association (Listing 9-12).

 Listing 9-12. Seed Author and Book Data

 1 <?php
 2
 3 use Carbon\Carbon;
 4 use Illuminate\Database\Seeder;
 5 use Illuminate\Database\Eloquent\Model;
 6
 7 class BooksTableSeeder extends Seeder
 8 {
 9 /**
 10 * Run the database seeds.
 11 *
 12 * @return void
 13 */
 14 public function run()
 15 {

CHAPTER 9 ■ AUTHORS

143

 16 factory(App\Author::class, 10)->create()->each(function ($author) {
 17 $booksCount = rand(1, 5);
 18
 19 while ($booksCount > 0) {
 20 $author->books()->save(factory(App\Book::class)->make());
 21 $booksCount--;
 22 }
 23 });
 24 }
 25 }

 The modified BooksTableSeeder is not complicated; it creates 10 authors and then iterates over each
record with a Closure callback. Inside the each callback you get a random $booksCount integer to determine
how many books an author will have. The while loop is used to keep creating new books for the author until
the $bookCount is 0.

 Feel free to purge your database and run the seeder again to try it out (Listing 9-13).

 Listing 9-13. Purging the Database and Applying the Modified BooksTableSeeder

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh
 $ php artisan db:seed

 Keep in mind that if your application were in production, you would need to migrate the data and the
schema. Since you are in early development you don’t need to worry about losing data in the database.

 You have one final migration that will remove the authors column in the database (Listing 9-14).

 Listing 9-14. Migration to Remove the Authors Column from the Books Table

 # vagrant@homestead:~/Code/bookr$
 $ php artisan make:migration \
 remove_books_authors_column --table=books

 The migration will drop the author column on up and add it back on down . Like I mentioned, if this
application were in production you might have to find all the authors and migrate them over to the new
 authors table inside the up method. The down callback would reverse the effects of migrating the authors
column to a new table. Again, since you are in early development, you could also just remove this column
from the original books migration. I want to provide you with more exposure to database migrations, so let’s
use a new migration to demonstrate dropping a column via a migration.

 Listing 9-15 shows a simple migration for removing the author column.

 Listing 9-15. Cleaning Up the Author Column on the books Table

 1 <?php
 2
 3 use Illuminate\Database\Schema\Blueprint;
 4 use Illuminate\Database\Migrations\Migration;
 5
 6 class RemoveBooksAuthorsColumn extends Migration
 7 {
 8 /**
 9 * Run the migrations.

CHAPTER 9 ■ AUTHORS

144

 10 *
 11 * @return void
 12 */
 13 public function up()
 14 {
 15 Schema::table('books', function (Blueprint $table) {
 16 $table->dropColumn('author');
 17 });
 18 }
 19
 20 /**
 21 * Reverse the migrations.
 22 *
 23 * @return void
 24 */
 25 public function down()
 26 {
 27 Schema::table('books', function (Blueprint $table) {
 28 $table->string('author');
 29 });
 30 }
 31 }

 Time to run the migration and see what happens (Listing 9-16).

 Listing 9-16. Refreshing the Database Migrations

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh
 Rolled back: 2016_07_31_195159_associate_books_with_authors
 Rolled back: 2016_07_31_194721_create_authors_table
 Rolled back: 2016_07_28_232137_create_books_table
 Migrated: 2016_07_28_232137_create_books_table
 Migrated: 2016_07_31_194721_create_authors_table
 Migrated: 2016_07_31_195159_associate_books_with_authors
 Migrated: 2016_07_31_201317_remove_books_authors_column

 You will get errors now if you run php artisan db:seed after running the migration to remove the
 authors column from the books table. You need to fix the db seeder, which is now broken due to the
database migration (Listing 9-17).

 Listing 9-17. The Broken Database Seeder

 # vagrant@homestead:~/Code/bookr$
 $ php artisan db:seed
 ...
 [PDOException]
 SQLSTATE[42S22]: Column not found: 1054 Unknown column 'author' in 'field list'
 ...

 To fix the seeder you need to remove the author key in the Book factory. Open the database/
factories/ModelFactory.php file and locate the Book factory (Listing 9-18).

CHAPTER 9 ■ AUTHORS

145

 Listing 9-18. Removing the Author Key from the Book Factory

 21 $factory->define(App\Book::class, function ($faker) {
 22 $title = $faker->sentence(rand(3, 10));
 23
 24 return [
 25 'title' => substr($title, 0, strlen($title) - 1),
 26 'description' => $faker->text,
 27];
 28 });

 Now you can refresh seed data successfully (Listing 9-19).

 Listing 9-19. Successfully Seeding the Database

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh
 ...
 $ php artisan db:seed

 That wraps up your database schema and migration. You have a new authors table and you’ve cleaned
up migrations and database seeding. At this point, the tests will blow up, so you need to find out what broke
and fix it.

 Fixing Broken Tests
 You need to fix the tests that are failing as the result of schema changes. Although fixing broken tests isn’t the
most glamorous part of programming, it’s nice to know that your test suite catches broken code before you
ship it.

 Since you just changed your database schema, it makes sense that various tests adding database records
would break since you removed the authors column from the books table. You have a validation requirement
of an author name in your PUT /books and POST /books endpoints too, which doesn’t exist in your schema.

 If you inspect the BooksControllerTest you will see this factory call a few times:

 $books = factory('App\Book', 2)->create();

 Similar to the BooksTableSeeder change you made in this chapter, various tests will need to create an
author and then associate that author with a book. It makes sense to create a method to avoid boilerplate
code everywhere. Add the code in Listing 9-20 to the tests/TestCase.php from which your tests extend.

 Listing 9-20. A Book Factory Method in tests/TestCase.php

 54 /**
 55 * Convenience method for creating a book with an author
 56 *
 57 * @param int $count
 58 * @return mixed
 59 */
 60 protected function bookFactory($count = 1)
 61 {
 62 $author = factory(\App\Author::class)->create();

CHAPTER 9 ■ AUTHORS

146

 63 $books = factory(\App\Book::class, $count)->make();
 64
 65 if ($count === 1) {
 66 $books->author()->associate($author);
 67 $books->save();
 68 } else {
 69 $books->each(function ($book) use ($author) {
 70 $book->author()->associate($author);
 71 $book->save();
 72 });
 73 }
 74
 75 return $books;
 76 }

 The bookFactory method is creating an author in the database. Next, the method calls make() to populate
a Book model instance that is not yet saved in the database. The author_id column is required by a foreign key
constraint so you need to call make() so you can attach the author_id before inserting the record in the database.
The if statement checks to see how many books should be created. If only one book needs to be created, you
attach the author to the book; otherwise you loop through each book and attach the author to all books.

 Now that you have a convenient way of creating books and authors in the test database, you need
to determine which tests need fixing. The easiest way to do that is to run the whole phpunit suite and go
through each error one by one. As you find an error, you update it and run the test in isolation until it passes.
You then move on to the next error, and so on, until you get back to green.

 I will spare you the output from all of the failures, but the first one you will work on is this error
(Listing 9-21).

 Listing 9-21. PHPUnit Error Output

 Tests\App\Http\Controllers\BooksControllerTest::store_should_save_new_book_in_the_database
 PHPUnit_Framework_Exception: Argument #2 (No Value) of PHPUnit_Framework_Assert:\
 :assertArrayHasKey() must be a array or ArrayAccess

 bookr/tests/app/Http/Controllers/BooksControllerTest.php:108

 The BooksController@store method is obviously breaking. Let’s find out what’s happening (Listing 9-22).

 Listing 9-22. Temporarily Dump the $body Variable

 104 /** @test **/
 105 public function store_should_save_new_book_in_the_database()
 106 {
 107 $this->post('/books', [
 108 'title' => 'The Invisible Man',
 109 'description' => 'An invisible man is trapped in the terror of his own

creation',
 110 'author' => 'H. G. Wells'
 111]);
 112
 113 $body = json_decode($this->response->getContent(), true);
 114 dd($body, $this->response->getStatusCode());
 115 //
 116 }

CHAPTER 9 ■ AUTHORS

147

 The dd() function is a convenience function for dumping the variable and exiting the program.
Listing 9-23 shows the output you will receive when you run the test now.

 Listing 9-23. Debugging the Failing Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=store_should_save_new_book_in_the_database

 null
 500

 The response body is null and the status code is 500 . Weird! You should comb the logs and see what
you can find. Clear out the storage/logs/lumen.log file and run the test again. You should see something
like Listing 9-24 .

 Listing 9-24. Test Error in storage/logs/lumen.log

 [2016-07-31 20:37:28] lumen.ERROR: PDOException: SQLSTATE[42S22]: Column not found: 1054
Unknown column 'author' in 'field list' in /Users/paul/Code/laravel-valet/bookr/vendor/
illuminate/database/Connection.php:441

 The BooksController@store method is trying to insert an author column that no longer exists in the
 books table. You could remove it from your test to get the next error, but I want to show you another issue
here: the Book model has defined author as a fillable field. You need to remove the field that is invalid now
(Listing 9-25).

 Listing 9-25. Updating the app/Book.php Fillable Fields

 9 /**
 10 * The attributes that are mass assignable
 11 *
 12 * @var array
 13 */
 14 protected $fillable = ['title', 'description'];

 If you run your test again, you will get a different error (Listing 9-26).

 Listing 9-26. A PDOException Error in storage/logs/lumen.log

 [2016-07-31 20:38:17] lumen.ERROR: PDOException: SQLSTATE[23000]: Integrity constraint
violation: 1452 Cannot add or update a child row: a foreign key constraint fails (`bookr_
testing`.`books`, CONSTRAINT `books_author_id_foreign` FOREIGN KEY (`author_id`) REFERENCES
`authors` (`id`) ON DELETE CASCADE) in /Users/paul/Code/laravel-valet/bookr/vendor/
illuminate/database/Connection.php:441

 Now the BooksController@store method is failing because of a missing foreign key constraint; you are
not passing a proper author_id in the request. You are creating a book so you just need to generate a valid
author in your test (Listing 9-27).

 Listing 9-27. Updating the Test to Pass an Author ID

 104 /** @test **/
 105 public function store_should_save_new_book_in_the_database()

CHAPTER 9 ■ AUTHORS

148

 107 {
 107 $author = factory(\App\Author::class)->create([
 108 'name' => 'H. G. Wells'
 109]);
 110
 111 $this->post('/books', [
 112 'title' => 'The Invisible Man',
 113 'description' => 'An invisible man is trapped in the terror of his own

creation',
 114 'author_id' => $author->id
 115], ['Accept' => 'application/json']);
 116
 117 $body = json_decode($this->response->getContent(), true);
 118
 119 $this->assertArrayHasKey('data', $body);
 120
 121 $data = $body['data'];
 122 $this->assertEquals('The Invisible Man', $data['title']);
 123 $this->assertEquals(
 124 'An invisible man is trapped in the terror of his own creation',
 125 $data['description']
 126);
 127 $this->assertEquals('H. G. Wells', $data['author']);
 128 $this->assertTrue($data['id'] > 0, 'Expected a positive integer, but did not see

one.');
 129
 130 $this->assertArrayHasKey('created', $data);
 131 $this->assertEquals(Carbon::now()->toIso8601String(), $data['created']);
 132 $this->assertArrayHasKey('updated', $data);
 133 $this->assertEquals(Carbon::now()->toIso8601String(), $data['updated']);
 134
 135 $this->seeInDatabase('books', ['title' => 'The Invisible Man']);
 136 }

 Run the test again (Listing 9-28).

 Listing 9-28. Running Your Failing Test Again

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=store_should_save_new_book_in_the_database

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::store_should_save_new_book_in_the_
database
 Failed asserting that an array has the key 'data'.

 /home/vagrant/Code/bookr/tests/app/Http/Controllers/BooksControllerTest.php:119

 FAILURES!
 Tests: 1, Assertions: 1, Failures: 1.

CHAPTER 9 ■ AUTHORS

149

 You’re still getting errors, so let’s investigate the response (Listing 9-29).

 Listing 9-29. Debugging the Failing Test (Partial Code)

 104 /** @test **/
 105 public function store_should_save_new_book_in_the_database()
 106 {
 107 $author = factory(\App\Author::class)->create([
 108 'name' => 'H. G. Wells'
 109]);
 110
 111 $this->post('/books', [
 112 'title' => 'The Invisible Man',
 113 'description' => 'An invisible man is trapped in the terror of his own

creation',
 114 'author_id' => $author->id
 115], ['Accept' => 'application/json']);
 116
 117 $body = json_decode($this->response->getContent(), true);
 118 dd($body);
 119 // …

 The output should be something like Listing 9-30 .

 Listing 9-30. Output from Debugging the Failing Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=store_should_save_new_book_in_the_database

 array:1 [
 "author" => array:1 [
 0 => "The author field is required."
]
]

 You have a failed validation constraint for the author column that is no longer valid since you removed
the authors column. You need to replace it with a validation rule for a valid author_id (Listing 9-31).

 Listing 9-31. Updating Validation in BooksController@store

 43 $this->validate($request, [
 44 'title' => 'required|max:255',
 45 'description' => 'required',
 46 'author_id' => 'required|exists:authors,id'
 47], [
 48 'description.required' => 'Please fill out the :attribute.'
 49]);

 You’ve replaced author with author_id and you are using the exists validation rule that ensures an author
record exist in the authors table. The exists validation in this case reads like this: exists:<table>,<column> .
If you omit the column, it will use the field associated with the validation rule, in this case author_id . At this
point, running the test again will still fail (see if you can figure out why on your own).

CHAPTER 9 ■ AUTHORS

150

 You haven’t changed the controller to set the author_id property on the model, although you are
passing it at this point in the failing test. You need to allow this field to be fillable (Listing 9-32).

 Listing 9-32. Making the author_id Field Mass-Assignable

 9 /**
 10 * The attributes that are mass assignable
 11 *
 12 * @var array
 13 */
 14 protected $fillable = ['title', 'description', 'author_id'];

 Now your controller should be able to populate the author_id field when it calls $book =
Book::create($request->all()); . Let’s run your test again and see (Listing 9-33).

 Listing 9-33. Running the Test After Making author_id Fillable

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=store_should_save_new_book_in_the_database

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::store_should_save_new_book_in_the_
database
 Array (…) does not match expected type "string".

 bookr/tests/app/Http/Controllers/BooksControllerTest.php:121

 It looks like your save is now succeeding, but your assertions are not matching up anymore. The
response should look something like Listing 9-34 now if you call dd() .

 Listing 9-34. Dumped Response from the Test

 array:1 [
 "data" => array:6 [
 "id" => 1
 "title" => "The Invisible Man"
 "description" => "An invisible man is trapped in the terror of his own creation"
 "author" => array:6 [
 "id" => 1
 "name" => "H. G. Wells"
 "gender" => "female"
 "biography" => "Ut quis doloremque dolorem eaque. Repellendus et dolor eos doloribus.
Velit omnis alias ut fugiat molestias ab velit."
 "created_at" => "2015-11-21 16:32:34"
 "updated_at" => "2015-11-21 16:32:34"
]
 "created" => "2015-11-21T16:32:34+0000"
 "updated" => "2015-11-21T16:32:34+0000"
]
]

CHAPTER 9 ■ AUTHORS

151

 Whoops, the BookTransformer is now outputting the entire author record instead of just the author
name. Later on in the book you will change the way responses include author data, but for now let’s just keep
your API the same. You can now use the associated author model to pass the author name (Listing 9-35).

 Listing 9-35. Updating the BookTransformer::transform() Method

 10 /**
 11 * Transform a Book model into an array
 12 *
 13 * @param Book $book
 14 * @return array
 15 */
 16 public function transform(Book $book)
 17 {
 18 return [
 19 'id' => $book->id,
 20 'title' => $book->title,
 21 'description' => $book->description,
 22 'author' => $book->author->name ,
 23 'created' => $book->created_at->toIso8601String(),
 24 'updated' => $book->updated_at->toIso8601String(),
 25];
 26 }

 Run your test again after the transformer change (Listing 9-36). If you have any dd() calls in your test,
don’t forget to remove them!

 Listing 9-36. Running the Test After Updating the BookTransformer

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=store_should_save_new_book_in_the_database
 OK (1 test, 10 assertions)

 You had to do considerable amount of investigating for a simple change, but it was a good exercise
to get more familiar with debugging failing tests. You are ready to move on to the update_should_only_
change_fillable_fields failing test, shown in Listing 9-37 .

 Listing 9-37. Failing Test for Updating Fillable Fields

 Tests\App\Http\Controllers\BooksControllerTest::update_should_only_change_fillable_fields
 Illuminate\Database\QueryException: SQLSTATE[42S22]: Column not found: 1054 Unknown column
'author' in 'field list'…

 This error looks familiar. The BooksController@update and accompanying tests are still using the
 author parameter. You will start by updating the test to look like Listing 9-38 .

 Listing 9-38. Fixes for the update_should_only_change_fillable_fields Test

 153 /** @test **/
 154 public function update_should_only_change_fillable_fields()
 155 {
 156 $book = $this->bookFactory();
 157

CHAPTER 9 ■ AUTHORS

152

 158 $this->notSeeInDatabase('books', [
 159 'title' => 'The War of the Worlds',
 160 'description' => 'The book is way better than the movie.',
 161]);
 162
 163 $this->put("/books/ { $book->id } ", [
 164 'id' => 5,
 165 'title' => 'The War of the Worlds',
 166 'description' => 'The book is way better than the movie.'
 167], ['Accept' => 'application/json']);
 168
 169 $this
 170 ->seeStatusCode(200)
 171 ->seeJson([
 172 'id' => 1,
 173 'title' => 'The War of the Worlds',
 174 'description' => 'The book is way better than the movie.'
 175])
 176 ->seeInDatabase('books', [
 177 'title' => 'The War of the Worlds'
 178]);
 179
 180 $body = json_decode($this->response->getContent(), true);
 181 $this->assertArrayHasKey('data', $body);
 182
 183 $data = $body['data'];
 184 $this->assertArrayHasKey('created', $data);
 185 $this->assertEquals(Carbon::now()->toIso8601String(), $data['created']);
 186 $this->assertArrayHasKey('updated', $data);
 187 $this->assertEquals(Carbon::now()->toIso8601String(), $data['updated']);
 188 }

 It is a good idea to remove changing the author from the test and focus on updating the book. Now that
you have a separate database table for authors, you should make a separate test for changing the author. You
should also remove the author column from the notSeeInDatabase and the $this->seeJson() assertion
(Listing 9-39).

 Listing 9-39. Running the Test After Updating

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=update_should_only_change_fillable_fields

 There was 1 failure:

 1) Tests\App\Http\Controllers\BooksControllerTest::update_should_only_change_fil\
 lable_fields
 Failed asserting that 422 matches expected 200.

 It looks like you are getting a validation error from your missing author parameter. Let’s change the
validation rule to match the BooksController@update change you just made (Listing 9-40).

CHAPTER 9 ■ AUTHORS

153

 Listing 9-40. Updating Validation for BooksController@update

 $this->validate($request, [
 'title' => 'required|max:255',
 'description' => 'required',
 'author_id' => 'exists:authors,id'
], [
 'description.required' => 'Please fill out the :attribute.'
]);

 An important difference between BooksController@update and BooksController@store validation
is that you don’t use the require rule on update. You only check that the records exist in the authors table
if the field is present and allow the endpoint to optionally change the author. Now, let’s see if your change
makes the test pass (Listing 9-41).

 Listing 9-41. Running the Test After Updating Validation

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=update_should_only_change_fillable_fields

 OK (1 test, 11 assertions)

 Moving on, the next error from the suite is from the destroy_should_remove_a_valid_book test
(Listing 9-42).

 Listing 9-42. The Next Error from Your Test Suite

 1) Tests\App\Http\Controllers\BooksControllerTest::destroy_should_remove_a_valid_book
 Illuminate\Database\QueryException: SQLSTATE[23000]: Integrity constraint violation: 1452
Cannot add or update a child row: a foreign key constraint fails

 The test’s factory() call fails because of the foreign key constraint. Fixing this test is a one-line change
using your new bookFactory() method (Listing 9-43).

 Listing 9-43. Fixing the Failing BooksController@destroy Test

 208 /** @test **/
 209 public function destroy_should_remove_a_valid_book()
 210 {
 211 $book = $this->bookFactory();
 212
 213 $this
 214 ->delete("/books/ { $book->id } ")
 215 ->seeStatusCode(204)
 216 ->isEmpty();
 217
 218 $this->notSeeInDatabase('books', ['id' => $book->id]);
 219 }

 Let’s see if your destroy test passes after your change (Listing 9-44).

CHAPTER 9 ■ AUTHORS

154

 Listing 9-44. Running the Test After Updating BooksController@destroy

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=destroy_should_remove_a_valid_book

 OK (1 test, 2 assertions)

 You’ve fixed a few individual tests. Now run the entire suite to see what remains (Listing 9-45).

 Listing 9-45. The Next Error from the Test Suite

 Tests\App\Http\Controllers\BooksControllerValidationTest::it_validates_required_fields_when_
updating_a_book
 Illuminate\Database\QueryException: SQLSTATE[23000]: Integrity constraint violation: 1452
Cannot add or update a child row: a foreign key constraint fails

 This error comes from tests/app/Http/Controllers/BooksControllerValidationTest.php and looks
like another factory failure (Listing 9-46).

 Listing 9-46. Updating the Test to Use the bookFactory() Method

 /** @test **/
 public function it_validates_required_fields_when_updating_a_book()
 {
 $book = $this->bookFactory();

 $this->put("/books/ { $book->id } ", [], ['Accept' => 'application/json']);
 $this->assertEquals(Response::HTTP_UNPROCESSABLE_ENTITY, $this->response-

>getStatusCode());
 $body = json_decode($this->response->getContent(), true);

 $this->assertArrayHasKey('title', $body);
 $this->assertArrayHasKey('description', $body);

 $this->assertEquals(["The title field is required."], $body['title']);
 $this->assertEquals(["Please provide a description."], $body['description']);
 }

 You replace the factory() call with the bookFactory() method and remove a few assertions for the
 authors validation. That should be enough to get the test passing again (Listing 9-47).

 Listing 9-47. Running the Validation Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=it_validates_required_fields_when_updating_a_book

 OK (1 test, 5 assertions)

 You are getting the same foreign key errors in various places so let’s bulk-update tests that are using the
original factory() call and see what remains afterwards. Let’s start with the tests/app/Http/Controllers/
BooksControllerValidationTest.php file (Listing 9-48).

CHAPTER 9 ■ AUTHORS

155

 Listing 9-48. Replacing All factory() Calls in the Validation Test File

 /** @test **/
 public function title_fails_create_validation_when_just_too_long()
 {
 // Creating a book
 $book = $this->bookFactory();
 //...
 }

 /** @test **/
 public function title_fails_update_validation_when_just_too_long()
 {
 // Updating a book
 $book = $this->bookFactory();
 // ...
 }

 /** @test **/
 public function title_passes_create_validation_when_exactly_max()
 {
 // Creating a new Book
 $book = $this->bookFactory();
 // ...
 }

 /** @test **/
 public function title_passes_update_validation_when_exactly_max()
 {
 // Updating a book
 $book = $this->bookFactory();
 // ...
 }

 Next, you will update the tests/app/Http/Controllers/BooksControllerTest.php file (Listing 9-49).

 Listing 9-49. Replacing All factory() Calls in BooksControllerTest

 /** @test **/
 public function index_should_return_a_collection_of_records()
 {
 $books = $this->bookFactory(2);
 // ...
 }

 /** @test **/
 public function show_should_return_a_valid_book()
 {
 $book = $this->bookFactory();
 // ...
 }

 The BooksController@index test creates two books since you are testing for a collection of records.

CHAPTER 9 ■ AUTHORS

156

 Hopefully the foreign key errors are behind you. Let’s see what failures you have remaining in the
 BooksControllerValidationTest (Listing 9-50).

 Listing 9-50. Remaining Validation Test Failures

 # vagrant@homestead:~/Code/bookr$
 $ phpunit tests/app/Http/Controllers/BooksControllerValidationTest.php

 There were 2 failures:

 1) Tests\App\Http\Controllers\BooksControllerValidationTest::it_validates_requir\
 ed_fields_when_creating_a_new_book
 Failed asserting that an array has the key 'author'.

 /home/vagrant/Code/bookr/tests/app/Http/Controllers/BooksControllerValidationTest.php:24

 2) Tests\App\Http\Controllers\BooksControllerValidationTest::title_passes_create_validation_
when_exactly_max
 Failed asserting that 422 matches expected 201.

 /home/vagrant/Code/bookr/vendor/laravel/lumen-framework/src/Testing/CrawlerTrait.php:412
 /home/vagrant/Code/bookr/tests/app/Http/Controllers/BooksControllerValidationTest.php:107

 FAILURES!
 Tests: 6, Assertions: 20, Failures: 2.

 It looks like you have a failed assertion for a key you are no longer providing and a 422 response code,
which means you have some validation errors when you don’t expect them.

 The first fix is simply removing an assertion for the author key and removing the author validation
message check. Listing 9-51 shows what the BooksControllerValidationTest should look like after you
remove the author checks.

 Listing 9-51. Removing Author Test Assertions

 13 /** @test **/
 14 public function it_validates_required_fields_when_creating_a_new_book()
 15 {
 16 $this->post('/books', [], ['Accept' => 'application/json']);
 17
 18 $this->assertEquals(Response::HTTP_UNPROCESSABLE_ENTITY, $this->response-

>getStatusCode());
 19
 20 $body = json_decode($this->response->getContent(), true);
 21
 22 $this->assertArrayHasKey('title', $body);
 23 $this->assertArrayHasKey('description', $body);
 24
 25 $this->assertEquals(["The title field is required."], $body['title']);
 26 $this->assertEquals(
 27 ["Please provide a description."],
 28 $body['description']
 29);
 30 }

CHAPTER 9 ■ AUTHORS

157

 The second failure in BooksControllerValidationTest happens because the author_id is a required
field (Listing 9-52).

 Listing 9-52. Fixing the BooksController@create Exactly Max Validation Test

 90 /** @test **/
 91 public function title_passes_create_validation_when_exactly_max()
 92 {
 93 // Creating a new Book
 94 $book = $this->bookFactory();
 95 $book->title = str_repeat('a', 255);
 96 $this->post("/books", [
 97 'title' => $book->title,
 98 'description' => $book->description,
 99 'author_id' => $book->author->id , // Pass a valid author
 100], ['Accept' => 'application/json']);
 101
 102 $this
 103 ->seeStatusCode(Response::HTTP_CREATED)
 104 ->seeInDatabase('books', ['title' => $book->title]);
 105 }

 Next, there are some instances of 'author' => $book->author you need to replace with a valid author_
id in BooksControllerValidationTest . The first test is when the title is just too long when trying to create a
book (Listing 9-53).

 Listing 9-53. Adding the author_id Field to the POST Request

 48 /** @test **/
 49 public function title_fails_create_validation_when_just_too_long()
 50 {
 51 // Creating a book
 52 $book = $this->bookFactory();
 53 $book->title = str_repeat('a', 256);
 54
 55 $this->post("/books", [
 56 'title' => $book->title,
 57 'description' => $book->description,
 58 'author_id' => $book->author->id,
 59], ['Accept' => 'application/json']);
 60
 61 $this
 62 ->seeStatusCode(Response::HTTP_UNPROCESSABLE_ENTITY)
 63 ->seeJson([
 64 'title' => ["The title may not be greater than 255 characters."]
 65])
 66 ->notSeeInDatabase('books', ['title' => $book->title]);
 67 }

 The second place you need to send an author id is when updating a title with a PUT request (Listing 9-54).

CHAPTER 9 ■ AUTHORS

158

 Listing 9-54. Adding the author_id Field to the PUT Request

 69 /** @test **/
 70 public function title_fails_update_validation_when_just_too_long()
 71 {
 72 // Updating a book
 73 $book = $this->bookFactory();
 74 $book->title = str_repeat('a', 256);
 75
 76 $this->put("/books/ { $book->id } ", [
 77 'title' => $book->title,
 78 'description' => $book->description,
 79 'author_id' => $book->author->id,
 80], ['Accept' => 'application/json']);
 81
 82 $this
 83 ->seeStatusCode(Response::HTTP_UNPROCESSABLE_ENTITY)
 84 ->seeJson([
 85 'title' => ["The title may not be greater than 255 characters."]
 86])
 87 ->notSeeInDatabase('books', ['title' => $book->title]);
 88 }

 The final author id replacement is when the title passes validation with exactly the maximum characters
allowed (Listing 9-55).

 Listing 9-55. Adding the author_id Field to the PUT Request

 108 /** @test **/
 109 public function title_passes_update_validation_when_exactly_max()
 110 {
 111 // Updating a book
 112 $book = $this->bookFactory();
 113 $book->title = str_repeat('a', 255);
 114
 115 $this->put("/books/ { $book->id } ", [
 116 'title' => $book->title,
 117 'description' => $book->description,
 118 'author_id' => $book->author->id,
 119], ['Accept' => 'application/json']);
 120
 121 $this
 122 ->seeStatusCode(Response::HTTP_OK)
 123 ->seeInDatabase('books', ['title' => $book->title]);
 124 }

 After making these author changes, you can run all the tests in the BooksControllerValidationTest
class (Listing 9-56).

CHAPTER 9 ■ AUTHORS

159

 Listing 9-56. Running the Tests for BooksControllerValidationTest

 # vagrant@homestead:~/Code/bookr$
 $ phpunit tests/app/Http/Controllers/BooksControllerValidationTest.php

 OK (6 tests, 20 assertions)

 You are starting to see the light at the end of the refactor tunnel! Run your test suite and see what
remains (Listing 9-57).

 Listing 9-57. Running the Full Test Suite After Your Fixes

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 There were 3 failures:
 ...

 FAILURES!
 Tests: 27, Assertions: 104, Errors: 1, Failures: 3.

 I’ve only provided partial error output, but if you inspect the “Unable to find JSON fragment” error
closely you will notice that the response includes all author data from the Author model. You need to update
your test to check the author’s name (Listing 9-58).

 Listing 9-58. Using Author Model in the Assertion of the author Property

 /** @test **/
 public function index_should_return_a_collection_of_records()
 {
 $books = $this->bookFactory(2);

 $this->get('/books');

 $content = json_decode($this->response->getContent(), true);
 $this->assertArrayHasKey('data', $content);

 foreach ($books as $book) {
 $this->seeJson([
 'id' => $book->id,
 'title' => $book->title,
 'description' => $book->description,
 'author' => $book->author->name , // Check the author's name
 'created' => $book->created_at->toIso8601String(),
 'updated' => $book->updated_at->toIso8601String(),
]);
 }
 }

 Next, verify that your change fixed the test (Listing 9-59).

CHAPTER 9 ■ AUTHORS

160

 Listing 9-59. Testing the BooksController@index Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=index_should_return_a_collection_of_records

 OK (1 test, 13 assertions)

 Now run phpunit again to get the last two failures (Listing 9-60).

 Listing 9-60. Getting the Next PHPUnit Failure

 # vagrant@homestead:~/Code/bookr$
 $ phpunit
 ...
 There were 2 failures:

 FAILURES!
 Tests: 27, Assertions: 115, Errors: 1, Failures: 2.

 You’re getting closer! The next error looks like an invalid comparison of the Author model. Looking at
the show_should_return_a_valid_book test closely, you need to update the following assertEquals check
(Listing 9-61).

 Listing 9-61. Fixing the Assertion for the Author’s Name

 /** @test **/
 public function show_should_return_a_valid_book()
 {
 $book = $this->bookFactory();

 $this
 ->get("/books/{$book->id}")
 ->seeStatusCode(200);

 // Get the response and assert the data key exists
 $content = json_decode($this->response->getContent(), true);
 $this->assertArrayHasKey('data', $content);
 $data = $content['data'];

 // Assert the Book Properties match
 $this->assertEquals($book->id, $data['id']);
 $this->assertEquals($book->title, $data['title']);
 $this->assertEquals($book->description, $data['description']);
 $this->assertEquals($book->author->name, $data['author']);
 $this->assertEquals($book->created_at->toIso8601String(), $data['created']);
 $this->assertEquals($book->updated_at->toIso8601String(), $data['created']);
 }

 Let’s see if you fixed the test and what remains to be fixed (Listing 9-62).

CHAPTER 9 ■ AUTHORS

161

 Listing 9-62. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 There was 1 failure:
 ...

 FAILURES!
 Tests: 27, Assertions: 117, Errors: 1, Failures: 1.

 The Failed asserting that 302 matches expected 201 message means that the controller is
sending a redirect response. You are communicating with JSON clients so you need to send the request with
the Accept: application/json header in order to get back a JSON response instead of the default failed
validation redirect. Looking at this test, you can see that validation will fail because you need to send an
 author_id, which is required in BooksController@create , so let’s update both now (Listing 9-63).

 Listing 9-63. Using the Author Model to Fix the Failing Test

 138 /** @test */
 139 public function store_should_respond_with_a_201_and_location_header_when_successful()
 140 {
 141 $author = factory(\App\Author::class)->create();
 142 $this->post('/books', [
 143 'title' => 'The Invisible Man',
 144 'description' => 'An invisible man is trapped in the terror of his own

creation',
 145 'author_id' => $author->id
 146], ['Accept' => 'application/json']);
 147
 148 $this
 149 ->seeStatusCode(201)
 150 ->seeHeaderWithRegExp('Location', '#/books/[\d]+$#');
 151 }

 The individual test passes now (Listing 9-64).

 Listing 9-64. Running the PHPUnit Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=store_should_respond_with_a_201_and_location_header_when_successful

 OK (1 test, 3 assertions)

 Run your entire suite again and see if you are back to green yet (Listing 9-65).

 Listing 9-65. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

CHAPTER 9 ■ AUTHORS

162

 There was 1 error:

 1) Tests\App\Transformer\BookTransformerTest::it_transforms_a_book_model
 Illuminate\Database\QueryException: SQLSTATE[23000]: Integrity constraint violat\
 ion...

 FAILURES!
 Tests: 27, Assertions: 117, Errors: 1.

 One more error and you should be back to green. The error is another foreign key constraint violation in
the BooksTransformerTest file. You just need to use the bookFactory() method (Listing 9-66).

 Listing 9-66. Updating the Failing BookTransformerTest

 22 /** @test **/
 23 public function it_transforms_a_book_model()
 24 {
 25 $book = $this->bookFactory();
 26 $subject = new BookTransformer();
 27
 28 $transform = $subject->transform($book);
 29
 30 $this->assertArrayHasKey('id', $transform);
 31 $this->assertArrayHasKey('title', $transform);
 32 $this->assertArrayHasKey('description', $transform);
 33 $this->assertArrayHasKey('author', $transform);
 34 $this->assertArrayHasKey('created', $transform);
 35 $this->assertArrayHasKey('updated', $transform);
 36 }

 You should be completely done and have full passing tests again (Listing 9-67).

 Listing 9-67. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (27 tests, 125 assertions)

 Finally!

 Git Commit: Add Author Model Data to Books

 b463cc9 (https://bitbucket.org/paulredmond/apress-bookr/commits/b463cc9)

https://bitbucket.org/paulredmond/apress-bookr/commits/b463cc9

CHAPTER 9 ■ AUTHORS

163

 Conclusion
 You’ve successfully refactored your code to use the new authors model. For a minor change, you can see
that your test suite took a bit of work to fix. While annoying, good test coverage is a huge time saver in the
long run.

 The small investment in fixing tests will pay dividends. You can rip out the guts of your code and have
confidence that test specifications will lead you to less bugs, and keep business and code requirements
documented.

 You could have designed your schema with separate tables up front in a real project. Thinking about
schema design early is important, but do not over-design your schema up front if it blocks you from
developing iteratively. Your string column for the author name was fine to get you going, and you were able
to refactor things (somewhat) painlessly. You don’t have to finish the application in one sitting and you may
get a few things wrong at first.

165© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7_10

 CHAPTER 10

 The /authors API Resource

 In this chapter, you are going to build on the last chapter’s introduction to the authors table. You will start
working on API endpoints for your dedicated Author resource! At this point, you should be familiar with the
basics of defining routes and working with controllers. Reference Chapter 4 and Chapter 5 to get a refresher
as needed.

 The author endpoint will provide API endpoints for getting author details and the books they’ve
authored. Along the way I will show you a really cool feature of Fractal that allows you to include associated
transformer data in a response; this means you can easily include book data in author responses if desired.

 Your basic API endpoints will look like Listing 10-1 .

 Listing 10-1. Basic REST /authors Resource

 GET /authors Get all the authors
 POST /authors Create a new author
 GET /authors/{id} Get an author’s details
 PUT /authors/{id} Update an author
 DELETE /authors/{id} Delete an author

 Before you work on the individual endpoints, let’s define all your routes in app/Http/routes.php
(Listing 10-2).

 Listing 10-2. Defining the Author Routes

 27 $app->group([
 28 'prefix' => '/authors',
 29 'namespace' => 'App\Http\Controllers'
 30], function (\Laravel\Lumen\Application $app) {
 31 $app->get('/', 'AuthorsController@index');
 32 $app->post('/', 'AuthorsController@store');
 33 $app->get('/{id:[\d]+}', 'AuthorsController@show');
 34 $app->put('/{id:[\d]+}', 'AuthorsController@update');
 35 $app->delete('/{id:[\d]+}', 'AuthorsController@destroy');
 36 });

 The code snippet introduces the $app->group() method, which accepts the following keys: prefix ,
 namespace , and middleware . You need to define the namespace key so the group knows how to locate the
 AuthorsController and you define a prefix of /authors that all routes in the group will use.

http://dx.doi.org/10.1007/978-1-4842-2187-7_4
http://dx.doi.org/10.1007/978-1-4842-2187-7_5

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

166

 The GET /authors Endpoint
 Your first endpoint will get all authors. You will create an AuthorTransformer class that you can use on all
author responses. If you recall, in the last chapter you created a factory and database seeder for authors that
you can use to write your tests for the /authors endpoints. Time to code.

 First up, let’s create the files necessary for this whole section (Listing 10-3).

 Listing 10-3. Creating the AuthorTransformer Class

 # vagrant@homestead:~/Code/bookr$
 $ touch app/Transformer/AuthorTransformer.php
 $ touch tests/app/Transformer/AuthorTransformerTest.php
 $ touch app/Http/Controllers/AuthorsController.php
 $ touch tests/app/Http/Controllers/AuthorsControllerTest.php

 The AuthorsTransformer
 Let’s start with the AuthorTransformerTest class (Listing 10-4).

 Listing 10-4. The AuthorTransformerTest Skeleton Class

 1 <?php
 2
 3 namespace Tests\App\Transformer;
 4
 5 use TestCase;
 6 use App\Transformer\AuthorTransformer;
 7 use Laravel\Lumen\Testing\DatabaseMigrations ;
 8
 9 class AuthorTransformerTest extends TestCase
 10 {
 11 use DatabaseMigrations;
 12
 13 public function setUp()
 14 {
 15 parent ::setUp();
 16
 17 $this->subject = new AuthorTransformer();
 18 }
 19 /** @test **/
 20 public function it_can_be_initialized()
 21 {
 22 $this->assertInstanceOf(AuthorTransformer::class, $this->subject);
 23 }
 24 }

 Your test file is fairly familiar. As a convenience I’ve opted to construct the transformer before each test
in the setUp() method and assign it to $this->subject .

 Next, you create the AuthorTransformer class to get the test passing (Listing 10-5).

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

167

 Listing 10-5. Creating the AuthorTransformer Class

 1 <?php
 2
 3 namespace App\Transformer;
 4
 5 use App\Author;
 6 use League\Fractal\TransformerAbstract;
 7
 8 class AuthorTransformer extends TransformerAbstract
 9 {
 10 }

 Now that you have the boilerplate code, you need to write tests for your specification. First, the
 AuthorTransformer should simply need to be able to transform an Author model in a consistent way that
you expect (Listing 10-6).

 Listing 10-6. The Test Specification for the transform() Method

 25 /** @test **/
 26 public function it_can_transform_an_author()
 27 {
 28 $author = factory(\App\Author::class)->create();
 29
 30 $actual = $this->subject->transform($author);
 31
 32 $this->assertEquals($author->id, $actual['id']);
 33 $this->assertEquals($author->name, $actual['name']);
 34 $this->assertEquals($author->gender, $actual['gender']);
 35 $this->assertEquals($author->biography, $actual['biography']);
 36 $this->assertEquals(
 37 $author->created_at->toIso8601String(),
 38 $actual['created']
 39);
 40 $this->assertEquals(
 41 $author->updated_at->toIso8601String(),
 42 $actual['created']
 43);
 44 }

 Your assertions are straightforward and make sure that the transformer includes all the expected author
properties. Now write the AuthorTransformer::transform() implementation to get the newly written test
to pass (Listing 10-7).

 Listing 10-7. Implementing the AuthorTransformer::transform() Method

 10 /**
 11 * Transform an author model
 12 *
 13 * @param Author $author
 14 * @return array
 15 */

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

168

 16 public function transform(Author $author)
 17 {
 18 return [
 19 'id' => $author->id,
 20 'name' => $author->name,
 21 'gender' => $author->gender,
 22 'biography' => $author->biography,
 23 'created' => $author->created_at->toIso8601String(),
 24 'updated' => $author->created_at->toIso8601String(),
 25];
 26 }

 You should have been running tests after writing each test and then after implementing it. Let’s make
sure you are passing now (Listing 10-8).

 Listing 10-8. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (29 tests, 132 assertions)

 The Author Controller
 Now that you have a basic AuthorTransformer you will change focus to the AuthorsController@index
route. Let’s write your first test in the tests/app/Http/Controllers/AuthorsControllerTest.php file
(Listing 10-9).

 Listing 10-9. Testing the AuthorsController@index for a 200 Status Code

 1 <?php
 2
 3 namespace Tests\App\Http\Controllers;
 4
 5 use TestCase;
 6 use Illuminate\Http\Response;
 7 use Laravel\Lumen\Testing\DatabaseMigrations;
 8
 9 class AuthorsControllerTest extends TestCase
 10 {
 11 use DatabaseMigrations;
 12
 13 /** @test **/
 14 public function index_responds_with_200_status_code()
 15 {
 16 $this->get('/authors')->seeStatusCode(Response::HTTP_OK);
 17 }
 18 }

 Running the test at this point results in a failing test with a 500 status code because you haven’t defined
the controller. Add the following controller code in Listing 10-10 to get the test back to green.

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

169

 Listing 10-10. Defining the AuthorsController

 1 <?php
 2
 3 namespace App\Http\Controllers;
 4
 5 use App\Author;
 6
 7 class AuthorsController extends Controller
 8 {
 9 public function index()
 10 {
 11 }
 12 }

 Just defining the route and controller method results in a 200 status code. Next, you will write assertions
to test that the AuthorsController@index returns a collection of records in the AuthorsControllerTest file
(Listing 10-11).

 Listing 10-11. Testing That the AuthorsController@index Returns Multiple Records

 19 /** @test **/
 20 public function index_should_return_a_collection_of_records()
 21 {
 22 $authors = factory(\App\Author::class, 2)->create();
 23
 24 $this->get('/authors', ['Accept' => 'application/json']);
 25
 26 $body = json_decode($this->response->getContent(), true);
 27 $this->assertArrayHasKey('data', $body);
 28 $this->assertCount(2, $body['data']);
 29
 30 foreach ($authors as $author) {
 31 $this->seeJson([
 32 'id' => $author->id,
 33 'name' => $author->name,
 34 'gender' => $author->gender,
 35 'biography' => $author->biography,
 36 'created' => $author->created_at->toIso8601String(),
 37 'updated' => $author->updated_at->toIso8601String(),
 38]);
 39 }
 40 }

 The test is nearly identical to the same test for the /books route. Next, write the integration and get the
test to pass (Listing 10-12).

 Listing 10-12. Returning a Collection of Author Records

 1 <?php
 2
 3 namespace App\Http\Controllers;

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

170

 4
 5 use App\Author;
 6 use App\Transformer\AuthorTransformer;
 7
 8 class AuthorsController extends Controller
 9 {
 10 public function index()
 11 {
 12 return $this->collection(
 13 Author::all(),
 14 new AuthorTransformer()
 15);
 16 }
 17 }

 You are starting to reap the benefits of your Fractal integration and returning a consistent response
takes no effort!

 Let’s verify your tests now (Listing 10-13).

 Listing 10-13. Running Tests for the AuthorsController

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (31 tests, 147 assertions)

 The GET /authors/{id} Endpoint
 You will continue with your quick pace and knock out the first version of the GET /authors/{id} route. In
this route, you want to allow including an author’s books, so I will show you a way to easily accomplish this
with Fractal.

 A Basic Response
 Let’s start by testing for a basic response you are familiar with from the /books/{id} route (Listing 10-14).

 Listing 10-14. Testing the AuthorsController@show Method

 42 /** @test **/
 43 public function show_should_return_a_valid_author()
 44 {
 45 $book = $this->bookFactory();
 46 $author = $book->author;
 47
 48 $this->get("/authors/ { $author->id } ", ['Accept' => 'application/json']);
 49 $body = json_decode($this->response->getContent(), true);
 50 $this->assertArrayHasKey('data', $body);
 51
 52 $this->seeJson([
 53 'id' => $author->id,

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

171

 54 'name' => $author->name,
 55 'gender' => $author->gender,
 56 'biography' => $author->biography,
 57 'created' => $author->created_at->toIso8601String(),
 58 'updated' => $author->updated_at->toIso8601String(),
 59]);
 60 }
 61
 62 /** @test **/
 63 public function show_should_fail_on_an_invalid_author()
 64 {
 65 $this->get('/authors/1234', ['Accept' => 'application/json']);
 66 $this->seeStatusCode(Response::HTTP_NOT_FOUND);
 67
 68 $this->seeJson([
 69 'message' => 'Not Found',
 70 'status' => Response::HTTP_NOT_FOUND
 71]);
 72
 73 $body = json_decode($this->response->getContent(), true);
 74 $this->assertArrayHasKey('error', $body);
 75 $error = $body['error'];
 76
 77 $this->assertEquals('Not Found', $error['message']);
 78 $this->assertEquals(Response::HTTP_NOT_FOUND, $error['status']);
 79 }

 I cheated a little and added two tests, but everything in these tests should be familiar to you already.
The implementation for the AuthorsController@show method should cover both tests and get back to green
(Listing 10-15).

 Listing 10-15. Implementing a Passing AuthorsController@show Method

 18 public function show($id)
 19 {
 20 return $this->item(
 21 Author::findorFail($id),
 22 new AuthorTransformer()
 23);
 24 }

 Including Other Models in the Response
 Fractal provides a way to build responses for relationships between transformers. This will allow you to load
the Book data for an author without much effort on your part, and provide consistent behavior across your
API. You can provide these associations by default, or optionally include them.

 How should you go about implementing the inclusion of optional data in your API? A common strategy
that you are going to use is to include a query string parameter to instruct the API to provide optional extra
data (Listing 10-16).

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

172

 Listing 10-16. Your Query String Used to Include Extra Data

 http://bookr.app/authors/1?include=books

 In order for Fractal to include Book data, you need to add a few things to app/Http/Response/
FractalResponse.php . You need a way to get the request query string param include and pass its value to
fractal. One way to accomplish this is to pass an instance of Illuminate\Http\Request as a dependency of
 FractalResponse .

 First, let’s write your tests for updating the FractalResponse to include the Request dependency. You
will start by adding the Illuminate\Http\Request dependency throughout the tests/app/Http/Response/
FractalResponseTest.php file. The FractalResponseTest class should look Listing 10-17 when you are done.

 Listing 10-17. Full FractalResponseTest Source

 1 <?php
 2
 3 namespace Tests\App\Http\Response;
 4
 5 use TestCase;
 6 use Mockery as m;
 7 use League\Fractal\Manager;
 8 use Illuminate\Http\Request;
 9 use App\Http\Response\FractalResponse;
 10 use League\Fractal\Serializer\SerializerAbstract;
 11
 12 class FractalResponseTest extends TestCase
 13 {
 14 /** @test **/
 15 public function it_can_be_initialized()
 16 {
 17 $manager = m::mock(Manager::class);
 18 $serializer = m::mock(SerializerAbstract::class);
 19 $request = m::mock(Request::class);
 20
 21 $manager
 22 ->shouldReceive('setSerializer')
 23 ->with($serializer)
 24 ->once()
 25 ->andReturn($manager);
 26 $fractal = new FractalResponse($manager, $serializer, $request);
 27 $this->assertInstanceOf(FractalResponse::class, $fractal);
 28 }
 29
 30 /** @test **/
 31 public function it_can_transform_an_item()
 32 {
 33 // Request
 34 $request = m::mock(Request::class);
 35
 36 // Transformer
 37 $transformer = m::mock('League\Fractal\TransformerAbstract');
 38

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

173

 39 // Scope
 40 $scope = m::mock('League\Fractal\Scope');
 41 $scope
 42 ->shouldReceive('toArray')
 43 ->once()
 44 ->andReturn(['foo' => 'bar']);
 45
 46 // Serializer
 47 $serializer = m::mock('League\Fractal\Serializer\SerializerAbstract');
 48
 49 $manager = m::mock('League\Fractal\Manager');
 50 $manager
 51 ->shouldReceive('setSerializer')
 52 ->with($serializer)
 53 ->once();
 54
 55 $manager
 56 ->shouldReceive('createData')
 57 ->once()
 58 ->andReturn($scope);
 59
 60 $subject = new FractalResponse($manager, $serializer, $request);
 61 $this->assertInternalType(
 62 'array',
 63 $subject->item(['foo' => 'bar'], $transformer)
 64);
 65 }
 66
 67 /** @test **/
 68 public function it_can_transform_a_collection()
 69 {
 70 $data = [
 71 ['foo' => 'bar'],
 72 ['fizz' => 'buzz'],
 73];
 74
 75 // Request
 76 $request = m::mock(Request::class);
 77
 78 // Transformer
 79 $transformer = m::mock('League\Fractal\TransformerAbstract');
 80
 81 // Scope
 82 $scope = m::mock('League\Fractal\Scope');
 83 $scope
 84 ->shouldReceive('toArray')
 85 ->once()
 86 ->andReturn($data);
 87
 88 // Serializer
 89 $serializer = m::mock('League\Fractal\Serializer\SerializerAbstract');

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

174

 90
 91 $manager = m::mock('League\Fractal\Manager');
 92 $manager
 93 ->shouldReceive('setSerializer')
 94 ->with($serializer)
 95 ->once();
 96
 97 $manager
 98 ->shouldReceive('createData')
 99 ->once()
 100 ->andReturn($scope);
 101
 102 $subject = new FractalResponse($manager, $serializer, $request);
 103 $this->assertInternalType(
 104 'array',
 105 $subject->collection($data, $transformer)
 106);
 107 }
 108 }

 You’ve imported the Illuminate\Http\Response class and included it throughout the file in order to
initialize an instance with the response. Now you need to update your FractalResponse class to accept the
Illuminate Request instance in the constructor (Listing 10-18).

 Listing 10-18. Updating FractalResponse to Accept a Request Instance (Partial Source)

 1 <?php
 2
 3 namespace App\Http\Response;
 4
 5 use League\Fractal\Manager;
 6 use League\Fractal\Resource\Item;
 7 use League\Fractal\TransformerAbstract;
 8 use League\Fractal\Resource\Collection;
 9 use League\Fractal\Resource\ResourceInterface;
 10 use League\Fractal\Serializer\SerializerAbstract;
 11 use Illuminate\Http\Request;
 12
 13 class FractalResponse
 14 {
 15 /**
 16 * @var Manager
 17 */
 18 private $manager;
 19
 20 /**
 21 * @var SerializerAbstract
 22 */
 23 private $serializer;
 24
 25 /**
 26 * @var Request

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

175

 27 */
 28 private $request;
 29
 30 public function __construct(
 31 Manager $manager,
 32 SerializerAbstract $serializer,
 33 Request $request
 34) {
 35 $this->manager = $manager;
 36 $this->serializer = $serializer;
 37 $this->manager->setSerializer($serializer);
 38 $this->request = $request;
 39 }
 40 // ...
 41 }

 The code snippet looks like a lot of code; all that is happening here is that you are importing the
 Illuminate\Http\Response class, type-hinting the constructor argument, and assigning the request. The
 $request parameter will come from the Service Container.

 If you run the test suite now, you will get lots of failures because you’ve updated your FractalResponse
constructor with the Response instance. In order to get back to green, you need to update the
 app/Providers/FractalServiceProvider.php file to pass the response instance from the container
into your FractalResponse instance (Listing 10-19).

 Listing 10-19. Adding the Request Dependency to the FractalResponse Service

 12 public function register()
 13 {
 14 // Bind the DataArraySerializer to an interface contract
 15 $this->app->bind(
 16 'League\Fractal\Serializer\SerializerAbstract',
 17 'League\Fractal\Serializer\DataArraySerializer'
 18);
 19
 20 $this->app->bind(FractalResponse::class, function ($app) {
 21 $manager = new Manager();
 22 $serializer = $app['League\Fractal\Serializer\SerializerAbstract'];
 23
 24 return new FractalResponse($manager, $serializer, $app['request']);
 25 });
 26
 27 $this->app->alias(FractalResponse::class, 'fractal');
 28 }

 The service container has the service $app['request'] , which is a service that represents the current
request. You simply pass the service into the FractalResponse constructor and now your tests should pass
again.

 Let’s verify if your tests are passing now (Listing 10-20).

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

176

 Listing 10-20. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (33 tests, 160 assertions)

 Now that you have the $app['request'] instance in your FractalResponse service you are ready
to write a method in the FractalResponse class that parses request includes with the following
requirements:

• If an include string is passed, use it to parse includes .

• If a parameter is not passed, use the URL ?include= query param.

 The requirements allow you to manually pass the includes , but you will commonly rely on the
 ?include= query string parameter.

 The tests should look something like Listing 10-21 .

 Listing 10-21. Tests for the FractalResponse::parseIncludes() Method

 110 /** @test **/
 111 public function it_should_parse_passed_includes_when_passed()
 112 {
 113 $serializer = m::mock(SerializerAbstract::class);
 114
 115 $manager = m::mock(Manager::class);
 116 $manager->shouldReceive('setSerializer')->with($serializer);
 117 $manager
 118 ->shouldReceive('parseIncludes')
 119 ->with('books');
 120
 121 $request = m::mock(Request::class);
 122 $request->shouldNotReceive('query');
 123
 124 $subject = new FractalResponse($manager, $serializer, $request);
 125 $subject->parseIncludes('books');
 126 }
 127
 128 /** @test **/
 129 public function it_should_parse_request_query_includes_with_no_arguments()
 130 {
 131 $serializer = m::mock(SerializerAbstract::class);
 132 $manager = m::mock(Manager::class);
 133 $manager->shouldReceive('setSerializer')->with($serializer);
 134 $manager
 135 ->shouldReceive('parseIncludes')
 136 ->with('books');
 137
 138 $request = m::mock(Request::class);
 139 $request
 140 ->shouldReceive('query')
 141 ->with('include', '')

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

177

 142 ->andReturn('books');
 143
 144 (new FractalResponse($manager, $serializer, $request))->parseIncludes();
 145 }

 You have tested both outlined scenarios with mockery. The first test ensures that the passed parameter
is used and that the request instance query() method is not called. In the second example, you call
 parseIncludes() with no arguments and assert that the request object’s query method is called and returns
a value.

 The AuthorsTransformer will now optionally include the books associated with an author when the
request query string contains /authors/{id}?include=books . This is where your eager-loading call in the
controller is a good idea: instead of each individual book requiring an extra query, all the author’s books are
retrieved in a single query.

 You are now ready to write the implementation in your FractalResponse service (Listing 10-22).

 Listing 10-22. Implementing the FractalResponse::parseIncludes() Method

 41 /**
 42 * Get the includes from the request if none are passed.
 43 *
 44 * @param null $includes
 45 */
 46 public function parseIncludes($includes = null)
 47 {
 48 if (empty ($includes)) {
 49 $includes = $this->request->query('include', '');
 50 }
 51
 52 $this->manager->parseIncludes($includes);
 53 }

 You’ve defined the parseIncludes() method right below the constructor . The method checks to
see if the $includes parameter has a non-empty value. If it is empty, you assign $includes to the request
query param ?include . The second parameter in $this->request->query('include', '') is the default if
 include doesn’t exist.

 Let’s run the FractalResponseTest after adding tests and the implementation and see where things are
at (Listing 10-23).

 Listing 10-23. Running the FractalResponse Tests

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (35 tests, 166 assertions)

 The FractalResponse class can now accept the ?include= query parameter and allows the Fractal
manager class to parse the passed includes .

 The other side of the includes functionality is the AuthorTransformer class and making sure it can
transform the books associated with the author.

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

178

 If you look at the transformers documentation (http://fractal.thephpleague.com/transformers/)
(see the “Including Data” section) you will see two class properties that transformers can define:
 $availableIncludes and $defaultIncludes . The $availableIncludes is used to optionally include other
transformers, and the $defaultIncludes array automatically includes other transformers. You will opt to
use $availableIncludes to include related Book records on demand. Append the test in Listing 10-24 to the
 tests/app/Transformer/AuthorTransformerTest.php file.

 Listing 10-24. Test for Transforming an Author’s Books

 46 /** @test **/
 47 public function it_can_transform_related_books()
 48 {
 49 $book = $this->bookFactory();
 50 $author = $book->author;
 51
 52 $data = $this->subject->includeBooks($author);
 53 $this->assertInstanceOf(\League\Fractal\Resource\Collection::class, $data);
 54 }

 In order to get your new failing author transformer test passing you need to define the AuthorTransfor
mer::includeBooks() method in the file app/Transformers/AuthorTransformer.php . Define the following
at the top of the AuthorTransformer class (Listing 10-25).

 Listing 10-25. The AuthorsTransformer::includeBooks() Method

 10 protected $availableIncludes = [
 11 'books'
 12];
 13
 14 public function includeBooks(Author $author)
 15 {
 16 return $this->collection($author->books, new BookTransformer());
 17 }

 Your transformer should pass now (Listing 10-26).

 Listing 10-26. Running All Tests for AuthorTransformer

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (36 tests, 167 assertions)

 You have one task remaining for this feature—you need to wire it all up in the controller. First,
let’s create a test to optionally include books in the /author/{id} response in your tests/app/Http/
Controllers/AuthorsController.php file (Listing 10-27).

 Listing 10-27. Test to Optionally Include Books

 81 /** @test **/
 82 public function show_optionally_includes_books()
 83 {
 84 $book = $this->bookFactory();

http://fractal.thephpleague.com/transformers/
http://fractal.thephpleague.com/transformers/

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

179

 85 $author = $book->author;
 86
 87 $this->get(
 88 "/authors/ { $author->id } ?include=books",
 89 ['Accept' => 'application/json']
 90);
 91
 92 $body = json_decode($this->response->getContent(), true);
 93
 94 $this->assertArrayHasKey('data', $body);
 95 $data = $body['data'];
 96 $this->assertArrayHasKey('books', $data);
 97 $this->assertArrayHasKey('data', $data['books']);
 98 $this->assertCount(1, $data['books']['data']);
 99
 100 // See Author Data
 101 $this->seeJson([
 102 'id' => $author->id,
 103 'name' => $author->name,
 104]);
 105
 106 // Test included book Data (the first record)
 107 $actual = $data['books']['data'][0];
 108 $this->assertEquals($book->id, $actual['id']);
 109 $this->assertEquals($book->title, $actual['title']);
 110 $this->assertEquals($book->description, $actual['description']);
 111 $this->assertEquals(
 112 $book->created_at->toIso8601String(),
 113 $actual['created']
 114);
 115 $this->assertEquals(
 116 $book->updated_at->toIso8601String(),
 117 $actual['updated']
 118);
 119 }

 This test is long but easy to understand. The test looks similar to the show_should_return_a_valid_
author test, but you don’t need to assert as many author keys in the response because it’s already covered.
You only do enough to know the author is represented in the response and focus on testing that the books
associated with the author are included.

 The test will fail if you run it because you haven’t told fractal about the ?include=books part of your test
yet, so fractal doesn’t know you want to include books (Listing 10-28).

 Listing 10-28. Optionally Including Books Test Failure

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 There was 1 failure:

 1) Tests\App\Http\Controllers\AuthorsControllerTest::show_optionally_includes_bo\
 oks

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

180

 Failed asserting that an array has the key 'books'.

 /home/vagrant/Code/bookr/tests/app/Http/Controllers/AuthorsControllerTest.php:96

 FAILURES!
 Tests: 37, Assertions: 169, Failures: 1.

 It would be nice if your controllers just automatically called the parseIncludes() method you built
earlier to include related entities. To do this, you can call parseIncludes() in the base controller App\Http\
Controllers\Controller.php where you assign $this->fractal in the constructor (Listing 10-29).

 Listing 10-29. Calling parseIncludes() in the Base Controller

 16 public function __construct(FractalResponse $fractal)
 17 {
 18 $this->fractal = $fractal;
 19 $this->fractal->parseIncludes();
 20 }

 The base controller is calling FractalManager::parseIncludes() without passing any
arguments and will assign any values in the ?include= query params. You can include multiple with
 ?include=books,another . Your feature should pass at this point (Listing 10-30).

 Listing 10-30. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (37 tests, 178 assertions)

 After you put in some hard work, your feature works! An example response might look like Listing 10-31 .

 Listing 10-31. Sample Response for AuthorsController@show With Books

 {
 "data" :{
 "id" :1,
 "name" :"Jane Doe",
 "gender" :"female",
 "biography" :"Hello World",
 "created" :"2015-11-25T00:13:00+0000",
 "updated" :"2015-11-25T00:13:00+0000",
 "books" :{
 "data" :[
 {
 "id" :1,
 "title" :"Ab beatae dignissimos laudantium aut quod beatae",
 "description" :"Non reprehenderit ut pariatur. Voluptate magni nam ea

modi dolores rerum. Molestiae eaque et sunt et.",
 "author" :"Jane Doe",
 "created" :"2015-11-25T00:13:00+0000",
 "updated" :"2015-11-25T00:13:00+0000"

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

181

 }
]
 }
 }
 }

 With minimal effort you were able to load related model data into your response in a consistent fashion.
Any time you include related entities, consumers can expect the same data patterns and keys.

 The POST /authors Endpoint
 The last section had many moving parts, but now it’s time to slow it down and work on a more focused POST
/authors endpoint. You’ve covered creating a new resource in the POST /books endpoint so most of this will
be good review and practice. If you recall the steps taken in the BooksController::store() method, they
were as follows:

• Validate the POST data.

• Create a new resource; in this case, a new Author.

• Respond with the new resource and a 201 created status code.

• Provide a Location header with the new location of the resource.

 You will start by creating a new resource and responding with a 201 , followed by adding on validation
and the Location header.

 First, you define a successful POST request test in tests/app/Http/Controllers/
AuhorsControllerTest.php (Listing 10-32).

 Listing 10-32. Test for Creating a New Author

 121 /** @test **/
 122 public function store_can_create_a_new_author()
 123 {
 124 $postData = [
 125 'name' => 'H. G. Wells',
 126 'gender' => 'male',
 127 'biography' => 'Prolific Science-Fiction Writer',
 128];
 129
 130 $this->post('/authors', $postData, ['Accept' => 'application/json']);
 131
 132 $this->seeStatusCode(201);
 133 $data = $this->response->getData(true);
 134 $this->assertArrayHasKey('data', $data);
 135 $this->seeJson($postData);
 136
 137 $this->seeInDatabase('authors', $postData);
 138 }

 Here is the initial version of the AuthorsController@store (Listing 10-33).

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

182

 Listing 10-33. AuthorsController with @store Method Added

 1 <?php
 2
 3 namespace App\Http\Controllers;
 4
 5 use App\Author;
 6 use App\Transformer\AuthorTransformer;
 7 use Illuminate\Http\Request;
 8
 9 class AuthorsController extends Controller
 10 {
 11 public function index()
 12 {
 13 return $this->collection(
 14 Author::all(),
 15 new AuthorTransformer()
 16);
 17 }
 18
 19 public function show($id)
 20 {
 21 return $this->item(
 22 Author::findorFail($id),
 23 new AuthorTransformer()
 24);
 25 }
 26
 27 public function store(Request $request)
 28 {
 29 $author = Author::create($request->all());
 30 $data = $this->item($author, new AuthorTransformer());
 31
 32 return response()->json($data, 201);
 33 }
 34 }

 The code should pass the tests after your change (Listing 10-34).

 Listing 10-34. Running Tests After Defining the @store Method

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (38 tests, 184 assertions)

 The next feature you are going to add is validation. For the BooksController you separated your
controller validation tests into a separate file. Feel free to do that for the AuthorsController validation
tests. The code will still work, but you are going to add these tests in the tests/app/Http/Controllers/
AuthorsControllerTest.php file (Listing 10-35).

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

183

 Listing 10-35. Validation Test for the AuthorsController@store Method

 140 /** @test **/
 141 public function store_method_validates_required_fields()
 142 {
 143 $this->post('/authors', [],
 144 ['Accept' => 'application/json']);
 145
 146 $data = $this->response->getData(true);
 147
 148 $fields = ['name', 'gender', 'biography'];
 149
 150 foreach ($fields as $field) {
 151 $this->assertArrayHasKey($field, $data);
 152 $this->assertEquals(["The { $field } field is required."], $data[$field]);
 153 }
 154 }

 Implement the code in Listing 10-36 to get the test passing (Listing 10-37).

 Listing 10-36. Adding Validation to AuthorsController@store

 27 public function store(Request $request)
 28 {
 29 $this->validate($request, [
 30 'name' => 'required',
 31 'gender' => 'required',
 32 'biography' => 'required'
 33]);
 34
 35 $author = Author::create($request->all());
 36 $data = $this->item($author, new AuthorTransformer());
 37
 38 return response()->json($data, 201);
 39 }

 Listing 10-37. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (39 tests, 190 assertions)

 Next, let’s experiment and see what happens if you try to post a value for gender that does not match
your enum field of male or female (Listing 10-38).

 Listing 10-38. Test for Invalid Gender Data

 156 /** @test **/
 157 public function store_invalidates_incorrect_gender_data()
 158 {
 159 $postData = [

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

184

 160 'name' => 'John Doe',
 161 'gender' => 'unknown',
 162 'biography' => 'An anonymous author'
 163];
 164
 165 $this->post('/authors', $postData, ['Accept' => 'application/json']);
 166
 167 $this->seeStatusCode(422);
 168
 169 $data = $this->response->getData(true);
 170 $this->assertCount(1, $data);
 171 $this->assertArrayHasKey('gender', $data);
 172 $this->assertEquals(
 173 ["Gender format is invalid: must equal 'male' or 'female'"],
 174 $data['gender']
 175);
 176 }

 In this test, you’ve specified a gender value not allowed in your enum field. You assert that you should
only have one validation failure by counting the $data array and then assert the validation message for failed
gender validation. Even though you are using an enum field, you get a 201 when you shouldn’t (Listing 10-39).

 Listing 10-39. Running the Gender Validation Test

 $ phpunit

 There was 1 failure:

 1) Tests\App\Http\Controllers\AuthorsControllerTest::store_invalidates_incorrect\
 _gender_data
 Failed asserting that 201 matches expected 422.

 /home/vagrant/Code/bookr/vendor/laravel/lumen-framework/src/Testing/CrawlerTrait.php:412
 /home/vagrant/Code/bookr/tests/app/Http/Controllers/AuthorsControllerTest.php:167

 FAILURES!
 Tests: 40, Assertions: 191, Failures: 1.

 You will use a regex rule to guarantee a valid gender to get the requirement passing (Listing 10-40).

 Listing 10-40. Validating Gender in the AuthorsController@store Method

 27 public function store(Request $request)
 28 {
 29 $this->validate($request, [
 30 'name' => 'required',
 31 'gender' => [
 32 'required',
 33 'regex:/^(male|female)$/i',
 34],
 35 'biography' => 'required'
 36], [

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

185

 37 'gender.regex' => "Gender format is invalid: must equal 'male' or 'female'"
 38]);
 39
 40 $author = Author::create($request->all());
 41 $data = $this->item($author, new AuthorTransformer());
 42
 43 return response()->json($data, 201);
 44 }

 You’ve added a regular expression validation rule for gender and changed the gender rules to use an
array. This is because your regex contains a pipe character, (|), which is what the validator uses to separate
rules. Lastly, you add a custom validation message so users of the API will know what values are allowed.

 Let’s check back in with your test suite and make sure it’s green (Listing 10-41).

 Listing 10-41. Testing Gender Validation Again

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (40 tests, 194 assertions)

 The last validation rule you will add before you complete the POST /authors endpoint is length
validation for the name field (Listing 10-42).

 Listing 10-42. Adding Length Validation Tests for AuthorsController@store

 178 /** @test **/
 179 public function store_invalidates_name_when_name_is_just_too_long()
 180 {
 181 $postData = [
 182 'name' => str_repeat('a', 256),
 183 'gender' => 'male',
 184 'biography' => 'A Valid Biography'
 185];
 186
 187 $this->post('/authors', $postData, ['Accept' => 'application/json']);
 188
 189 $this->seeStatusCode(422);
 190
 191 $data = $this->response->getData(true);
 192 $this->assertCount(1, $data);
 193 $this->assertArrayHasKey('name', $data);
 194 $this->assertEquals(
 195 ["The name may not be greater than 255 characters."],
 196 $data['name']
 197);
 198 }
 199
 200 /** @test **/
 201 public function store_is_valid_when_name_is_just_long_enough()
 202 {
 203 $postData = [

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

186

 204 'name' => str_repeat('a', 255),
 205 'gender' => 'male',
 206 'biography' => 'A Valid Biography'
 207];
 208
 209 $this->post('/authors', $postData,
 210 ['Accept' => 'application/json']);
 211
 212 $this->seeStatusCode(201);
 213 $this->seeInDatabase('authors', $postData);
 214 }

 The two tests check the same max validation you added for the Book’s title column. To get these tests
passing you need one-line change (Listing 10-43). Run the tests again (Listing 10-44).

 Listing 10-43. Adding Max Name Validation Rule

 27 public function store(Request $request)
 28 {
 29 $this->validate($request, [
 30 'name' => 'required|max:255',
 31 'gender' => [
 32 'required',
 33 'regex:/^(male|female)$/i',
 34],
 35 'biography' => 'required'
 36], [
 37 'gender.regex' => "Gender format is invalid: must equal 'male' or 'female'"
 38]);
 39
 40 $author = Author::create($request->all());
 41 $data = $this->item($author, new AuthorTransformer());
 42
 43 return response()->json($data, 201);
 44 }

 Listing 10-44. Running the Test Suite After Adding Max Validation

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (42 tests, 200 assertions)

 You now have a solid endpoint for creating authors with valid data. Now you need to make sure that
creating the author adds a Location header (Listing 10-45).

 Listing 10-45. Test for the Location Header When an Author Is Created

 216 /** @test **/
 217 public function store_returns_a_valid_location_header()
 218 {
 219 $postData = [

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

187

 220 'name' => 'H. G. Wells',
 221 'gender' => 'male',
 222 'biography' => 'Prolific Science-Fiction Writer'
 223];
 224
 225 $this
 226 ->post('/authors', $postData,
 227 ['Accept' => 'application/json'])
 228 ->seeStatusCode(201);
 229
 230 $data = $this->response->getData(true);
 231 $this->assertArrayHasKey('data', $data);
 232 $this->assertArrayHasKey('id', $data['data']);
 233
 234 // Check the Location header
 235 $id = $data['data']['id'];
 236 $this->seeHeaderWithRegExp('Location', "#/authors/ { $id } $#");
 237 }

 This test doesn’t need to check every detail since another test already covers checking the response
data. The test focuses on asserting the value of the Location header and checks for a valid id. You use your
custom seeHeaderWithRegExp assertion to make sure the location header is correct (Listing 10-46).

 Listing 10-46. Running the Test Suite After Adding the Location Header Test

 $ phpunit

 There was 1 failure:

 1) Tests\App\Http\Controllers\AuthorsControllerTest::store_returns_a_valid_locat\
 ion_header
 Response should have the header 'Location' but does not.
 Failed asserting that false is true.

 /home/vagrant/Code/bookr/tests/TestCase.php:29
 /home/vagrant/Code/bookr/tests/TestCase.php:45
 /home/vagrant/Code/bookr/tests/app/Http/Controllers/AuthorsControllerTest.php:235

 FAILURES!
 Tests: 43, Assertions: 204, Failures: 1.

 The first code update you will make is defining the GET /authors/id route as a named route so you can
more easily generate a route URL. Modify the route in app/Http/routes.php (Listing 10-47).

 Listing 10-47. Making the Authors Route a Named Route

 $app->group([
 'prefix' => '/authors',
 'namespace' => 'App\Http\Controllers'
], function (\Laravel\Lumen\Application $app) {
 // …
 $app->get('/{id:[\d]+}', [

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

188

 'as' => 'authors.show',
 'uses' => 'AuthorsController@show'
]);
 // ...
 });

 Now you can add the Location header in the AuthorsController@store route (Listing 10-48).

 Listing 10-48. Adding the Location Header in the AuthorsController

 27 public function store(Request $request)
 28 {
 29 $this->validate($request, [
 30 'name' => 'required|max:255',
 31 'gender' => [
 32 'required',
 33 'regex:/^(male|female)$/i',
 34],
 35 'biography' => 'required'
 36], [
 37 'gender.regex' => "Gender format is invalid: must equal 'male' or 'female'"
 38]);
 39
 40 $author = Author::create($request->all());
 41 $data = $this->item($author, new AuthorTransformer());
 42
 43 return response()->json($data, 201, [
 44 'Location' => route('authors.show', ['id' => $author->id])
 45]);
 46 }

 Let’s see if your suite passes now (Listing 10-49).

 Listing 10-49. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (43 tests, 205 assertions)

 All features pass for the POST /authors endpoint!

 The PUT /authors/{id} Endpoint
 Next up is the ability to update an author. You will add the following features:

• It will have the ability to change author name, gender, and biography.

• It will have the ability to validate name, gender, and biography.

• It should not match an invalid route, such as /authors/foobar.

• It should 404 an invalid author.

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

189

 You will start out by writing a test to update an author (Listing 10-50).

 Listing 10-50. Test to Successfully Update an Author

 239 /** @test **/
 240 public function update_can_update_an_existing_author()
 241 {
 242 $author = factory(\App\Author::class)->create();
 243
 244 $requestData = [
 245 'name' => 'New Author Name',
 246 'gender' => $author->gender === 'male' ? 'female' : 'male',
 247 'biography' => 'An updated biography',
 248];
 249
 250 $this
 251 ->put(
 252 "/authors/ { $author->id } ",
 253 $requestData,
 254 ['Accept' => 'application/json']
 255)
 256 ->seeStatusCode(200)
 257 ->seeJson($requestData)
 258 ->seeInDatabase('authors', [
 259 'name' => 'New Author Name'
 260])
 261 ->notSeeInDatabase('authors', [
 262 'name' => $author->name
 263]);
 264
 265 $this->assertArrayHasKey('data', $this->response->getData(true));
 266 }

 Your test updates all the author fields and then chains assertions together to ensure the proper status
code and that the response has correct author data. Next, the test asserts that the updated record is found
in the database and that the old author data is not found. Lastly, you continue to ensure your API contains a
 data key.

 The minimum code needed to get the controller passing is in Listing 10-51 .

 Listing 10-51. Writing the AuthorsController@update Code

 48 public function update(Request $request, $id)
 49 {
 50 $author = Author::findOrFail($id);
 51
 52 $author->fill($request->all());
 53 $author->save();
 54
 55 $data = $this->item($author, new AuthorTransformer());
 56
 57 return response()->json($data, 200);
 58 }

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

190

 The code in AuthorsController@update should be familiar. Let’s see if it passes (Listing 10-52).

 Listing 10-52. Running the Test Suite

 $ phpunit

 OK (44 tests, 212 assertions)

 Next up is validation testing. The validation rules will be the same as the AuthorsController@store
method, so let’s refactor both methods to use the same rules. With your tests passing, let’s refactor the
validation out of the @store method. You will write a private method at the end of the AuthorsController
to deal with validation (Listing 10-53).

 Listing 10-53. Custom Method for Author Validation

 60 /**
 61 * Validate author updates from the request.
 62 *
 63 * @param Request $request
 64 */
 65 private function validateAuthor(Request $request)
 66 {
 67 $this->validate($request, [
 68 'name' => 'required|max:255',
 69 'gender' => [
 70 'required',
 71 'regex:/^(male|female)$/i',
 72],
 73 'biography' => 'required'
 74], [
 75 'gender.regex' => "Gender format is invalid: must equal 'male' or 'female'"
 76]);
 77 }

 Nothing new in this method; you just copied the original AuthorsController@store validation code
into a private method. Let’s use the validateAuthor() method in the @store controller method
(Listing 10-54).

 Listing 10-54. Refactoring the AuthorsController@store Method

 27 public function store(Request $request)
 28 {
 29 $this->validateAuthor($request);
 30
 31 $author = Author::create($request->all());
 32 $data = $this->item($author, new AuthorTransformer());
 33
 34 return response()->json($data, 201, [
 35 'Location' => route('authors.show', ['id' => $author->id])
 36]);
 37 }

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

191

 Let’s see if the code passes the tests (Listing 10-55).

 Listing 10-55. See If Tests Pass After the Refactor

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (44 tests, 212 assertions)

 Your code passes the tests, so you can write the next validation tests for the AuthorsController@update
method (Listing 10-56).

 Listing 10-56. Writing a Test for AuthorsController@update Validation

 268 /** @test **/
 269 public function update_method_validates_required_fields()
 270 {
 271 $author = factory(\App\Author::class)->create();
 272 $this->put("/authors/ { $author->id } ", [], ['Accept' => 'application/json']);
 273 $this->seeStatusCode(422);
 274 $data = $this->response->getData(true);
 275
 276 $fields = ['name', 'gender', 'biography'];
 277
 278 foreach ($fields as $field) {
 279 $this->assertArrayHasKey($field, $data);
 280 $this->assertEquals(["The { $field } field is required."], $data[$field]);
 281 }
 282 }

 Now, run the test suite to verify that your new validation test fails (Listing 10-57).

 Listing 10-57. Testing the Update Validation Method

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 There was 1 failure:

 1) Tests\App\Http\Controllers\AuthorsControllerTest::update_method_validates_req\
 uired_fields
 Failed asserting that 200 matches expected 422.

 /home/vagrant/Code/bookr/vendor/laravel/lumen-framework/src/Testing/CrawlerTrait\
 .php:412
 /home/vagrant/Code/bookr/tests/app/Http/Controllers/AuthorsControllerTest.php:273

 FAILURES!
 Tests: 45, Assertions: 213, Failures: 1.

 You can now use your refactored validation to make the new test pass (Listing 10-58).

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

192

 Listing 10-58. Using the New validateAuthor() Method

 39 public function update(Request $request, $id)
 40 {
 41 $this->validateAuthor($request);
 42 $author = Author::findOrFail($id);
 43
 44 $author->fill($request->all());
 45 $author->save();
 46
 47 $data = $this->item($author, new AuthorTransformer());
 48
 49 return response()->json($data, 200);
 50 }

 Your test suite should be back to green (Listing 10-59).

 Listing 10-59. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (45 tests, 219 assertions)

 Another thing you can clean up is the duplicated test code for validating an author. Let’s refactor your
tests to test both the @update and @store methods at the same time. You can start by refactoring the store_
method_validates_required_fields test in the AuthorsControllerTest (Listing 10-60).

 Listing 10-60. Testing the Create and Update Validation Fields

 140 /** @test **/
 141 public function validation_validates_required_fields()
 142 {
 143 $author = factory(\App\Author::class)->create();
 144 $tests = [
 145 ['method' => 'post', 'url' => '/authors'],
 146 ['method' => 'put', 'url' => "/authors/ { $author->id } "],
 147];
 148
 149 foreach ($tests as $test) {
 150 $method = $test['method'];
 151 $this->{$method}($test['url'], [], ['Accept' => 'application/json']);
 152 $this->seeStatusCode(422);
 153 $data = $this->response->getData(true);
 154
 155 $fields = ['name', 'gender', 'biography'];
 156
 157 foreach ($fields as $field) {
 158 $this->assertArrayHasKey($field, $data);
 159 $this->assertEquals(["The { $field } field is required."], $data[$field]);
 160 }
 161 }
 162 }

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

193

 Note that the method name has been updated to reflect the scope of the test after refactoring. The
 $tests array defines the outline for testing both @create and @update validation. The foreach is basically
the same as the original test except that now the tests use the dynamic values from the $tests array.

 All of your tests should still be passing at this point if you want to run the test suite before you start
refactoring the next test. The next test you will refactor is the store_invalidates_incorrect_gender_data
test in the same file (Listing 10-61).

 Listing 10-61. Refactoring Invalid Gender Test

 164 /** @test **/
 165 public function validation_invalidates_incorrect_gender_data()
 166 {
 167 $author = factory(\App\Author::class)->create();
 168 $tests = [
 169 // Create
 170 [
 171 'method' => 'post',
 172 'url' => '/authors',
 173 'data' => [
 174 'name' => 'John Doe',
 175 'biography' => 'An anonymous author'
 176]
 177],
 178
 179 // Update
 180 [
 181 'method' => 'put',
 182 'url' => "/authors/ { $author->id } ",
 183 'data' => [
 184 'name' => $author->name,
 185 'biography' => $author->biography
 186]
 187]
 188];
 189
 190 foreach ($tests as $test) {
 191 $method = $test['method'];
 192 $test['data']['gender'] = 'unknown';
 193 $this->{$method}($test['url'], $test['data'], ['Accept' => 'application/

json']);
 194
 195 $this->seeStatusCode(422);
 196
 197 $data = $this->response->getData(true);
 198 $this->assertCount(1, $data);
 299 $this->assertArrayHasKey('gender', $data);
 200 $this->assertEquals(
 201 ["Gender format is invalid: must equal 'male' or 'female'"],
 202 $data['gender']
 203);
 204 }
 205 }

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

194

 Let’s run your test suite to see if your code still passes the tests (Listing 10-62).

 Listing 10-62. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (45 tests, 231 assertions)

 Onto refactoring the next test: the store_invalidates_name_when_name_is_just_too_long test, which
you will rename since it’s testing create and update (Listing 10-63).

 Listing 10-63. Refactoring Test When the Name is Just Too Long

 207 /** @test **/
 208 public function validation_invalidates_name_when_name_is_just_too_long()
 209 {
 210 $author = factory(\App\Author::class)->create();
 211 $tests = [
 212 // Create
 213 [
 214 'method' => 'post',
 215 'url' => '/authors',
 216 'data' => [
 217 'name' => 'John Doe',
 218 'gender' => 'male',
 219 'biography' => 'An anonymous author'
 220]
 221],
 222
 223 // Update
 224 [
 225 'method' => 'put',
 226 'url' => "/authors/ { $author->id } ",
 227 'data' => [
 228 'name' => $author->name,
 229 'gender' => $author->gender,
 230 'biography' => $author->biography
 231]
 232]
 233];
 234
 235 foreach ($tests as $test) {
 236 $method = $test['method'];
 237 $test['data']['name'] = str_repeat('a', 256);
 238
 239 $this->{$method}($test['url'], $test['data'], ['Accept' => 'application/

json']);
 240
 241 $this->seeStatusCode(422);
 242
 243 $data = $this->response->getData(true);

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

195

 244 $this->assertCount(1, $data);
 245 $this->assertArrayHasKey('name', $data);
 246 $this->assertEquals(["The name may not be greater than 255 characters."],

$data['name']);
 247 }
 248 }

 Your tests are still passing at this point and you have one more validation-related test to refactor. Before
you finish the final test, it’s noticeable how much your refactor data is exactly the same in each validation
test. Let’s extract a method for the data at the end of the AuthorsControllerTest (Listing 10-64).

 Listing 10-64. Extract Boilerplate Validation Data

 334 /**
 335 * Provides boilerplate test instructions for validation.
 336 * @return array
 337 */
 338 private function getValidationTestData()
 339 {
 340 $author = factory(\App\Author::class)->create();
 341 return [
 342 // Create
 343 [
 344 'method' => 'post',
 345 'url' => '/authors',
 346 'status' => 201,
 347 'data' => [
 348 'name' => 'John Doe',
 349 'gender' => 'male',
 350 'biography' => 'An anonymous author'
 351]
 352],
 353
 354 // Update
 355 [
 356 'method' => 'put',
 357 'url' => "/authors/ { $author->id } ",
 358 'status' => 200,
 359 'data' => [
 360 'name' => $author->name,
 361 'gender' => $author->gender,
 362 'biography' => $author->biography
 363]
 364]
 365];
 366 }

 The only thing to note in the new method is the status key, which allows a validation test that succeeds
to test the status code for each type of operation.

 Now that you have the new getValidationTestData() method, let’s drop it in to your tests (Listing 10-65).

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

196

 Listing 10-65. Updated Gender Validation Test

 164 /** @test **/
 165 public function validation_invalidates_incorrect_gender_data()
 166 {
 167 foreach ($this->getValidationTestData() as $test) {
 168 $method = $test['method'];
 169 $test['data']['gender'] = 'unknown';
 170 $this->{$method}($test['url'], $test['data'], ['Accept' => 'application/

json']);
 172
 173 $this->seeStatusCode(422);
 174
 175 $data = $this->response->getData(true);
 176 $this->assertCount(1, $data);
 177 $this->assertArrayHasKey('gender', $data);
 178 $this->assertEquals(
 179 ["Gender format is invalid: must equal 'male' or 'female'"],
 180 $data['gender']
 181);
 182 }
 183 }

 Now let’s try using your new method in the store_is_valid_when_name_is_just_long_enough test and
rename it to match its new purpose (Listing 10-66).

 Listing 10-66. Refactored Test When the Name is Just Long Enough

 227 /** @test **/
 228 public function validation_is_valid_when_name_is_just_long_enough()
 229 {
 230 foreach ($this->getValidationTestData() as $test) {
 231 $method = $test['method'];
 232 $test['data']['name'] = str_repeat('a', 255);
 233
 234 $this->{$method}($test['url'], $test['data'], ['Accept' => 'application/

json']);
 235
 236 $this->seeStatusCode($test['status']);
 237 $this->seeInDatabase('authors', $test['data']);
 238 }
 239 }

 With your refactored test using the new getValidationTestData() your test is straightforward. Now
let’s update the validation_invalidates_name_when_name_is_just_too_long to use your new method
(Listing 10-67).

 Listing 10-67. Updated Test When Name is Just Too Long

 184 /** @test **/
 185 public function validation_invalidates_name_when_name_is_just_too_long()
 186 {

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

197

 187 foreach ($this->getValidationTestData() as $test) {
 188 $method = $test['method'];
 189 $test['data']['name'] = str_repeat('a', 256);
 190
 191 $this->{$method}($test['url'], $test['data'], ['Accept' => 'application/

json']);
 192
 193 $this->seeStatusCode(422);
 194
 195 $data = $this->response->getData(true);
 196 $this->assertCount(1, $data);
 197 $this->assertArrayHasKey('name', $data);
 198 $this->assertEquals(["The name may not be greater than 255 characters."],

$data['name']);
 299 }
 200 }

 Now that validation covers both creating and updating, you can remove the update_method_
validates_required_fields test you originally started writing and then ensure the code passes the full test
suite (Listing 10-68).

 Listing 10-68. Running the Test Suite After Refactoring

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (45 tests, 237 assertions)

 The refactoring of the AuthorsController and AuthorsControllerTest has the code looking really clean.
Your test coverage allowed you to rip out duplicate code and have confidence that things are still working.

 The DELETE /authors/{id} Endpoint
 The last author endpoint you will work on in this chapter is the DELETE /authors/{id} route. If you recall
the schema design of the books table, you added a foreign key constraint to the author_id field that will
 CASCADE when an author is deleted. This means that when your author is deleted, all the books associated
with that author will be deleted.

 You have simple criteria for your first test:

• The author should not exist in the authors table after delete.

• No books with the author’s id should exist in the books table.

• A 204 status code should be returned with no content when the delete succeeds.

 You will add your remaining tests above the private function getValidationTestdata() method to
keep the test organized (Listing 10-69).

 Listing 10-69. Successful Delete Test

 284 /** @test **/
 285 public function delete_can_remove_an_author_and_his_or_her_books()
 286 {

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

198

 287 $author = factory(\App\Author::class)->create();
 288
 289 $this
 290 ->delete("/authors/ { $author->id } ")
 291 ->seeStatusCode(204)
 292 ->notSeeInDatabase('authors', ['id' => $author->id])
 293 ->notSeeInDatabase('books', ['author_id' => $author->id]);
 294 }

 And the @destroy implementation above the private validateAuthor() method (Listing 10-70).

 Listing 10-70. Implementing the AuthorsController@destroy Method

 52 public function destroy($id)
 53 {
 54 Author::findOrFail($id)->delete();
 55
 56 return response(null , 204);
 57 }

 The final test ensures that a 404 response is returned when an invalid author id is passed (Listing 10-71).

 Listing 10-71. Test Trying to Delete an Invalid ID

 296 /** @test **/
 297 public function deleting_an_invalid_author_should_return_a_404()
 298 {
 299 $this
 300 ->delete('/authors/99999', [], ['Accept' => 'application/json'])
 301 ->seeStatusCode(404);
 302 }

 This test already passes because you used findOurFail($id) but you will keep it anyway just in case
things change in the future. You could replace the findOrFail() with find() to see the failure if you want to
experiment before replacing it with findOrFail() .

 Let’s run the test suite before concluding the chapter (Listing 10-72).

 Listing 10-72. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (47 tests, 241 assertions)

 Git Commit: Add the Authors Resource API

 b06c563 (https://bitbucket.org/paulredmond/apress-bookr/commits/b06c563)

https://bitbucket.org/paulredmond/apress-bookr/commits/b06c563

CHAPTER 10 ■ THE /AUTHORS API RESOURCE

199

 Conclusion
 You are done with the basics of the /authors routes and this chapter! The biggest thing introduced in this
chapter was how to include associated entity data in responses with Fractal. You also got lots of practice
refactoring methods and tests, and making sure things still pass afterwards.

 Now that you have two working entities, in the next chapter you will use existing entities to build out a
book bundles feature. The chapter will also introduce how to add multiple entity associations in a many-to-
many relationship through the API. You will also cover embedded relationships.

201© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7_11

 CHAPTER 11

 Book Bundles

 In this chapter, you will be building a simple book bundle implementation. A book bundle is basically a
collection of books bundled together under a common theme. For example, a “Database Primer” book
bundle might include books about database design, database theory, and database administration.

 The outline for the API endpoints you will cover this chapter will be as shown in Listing 11-1 .

 Listing 11-1. Basic REST /Bundles Endpoints

 GET /bundles/{id} Get individual bundle details
 PUT /bundles/{id}/books/{bookId} Add a Book to a Bundle
 DELETE /bundles/{id}/books/{bookId} Remove a Book from a Bundle

 Your book routes in Listing 11-1 are nested REST resources , meaning they represent books in the context
of the /bundles functionality. You will use these nested resources to manage adding and removing books
from bundles.

 You won’t code basic CRUD endpoints for /bundles in this chapter—you should be equipped with
enough knowledge to complete CRUD endpoints for /bundles on your own. The focus of this chapter will be
on new functionality you haven’t learned yet.

 Defining the Relationship Between Books and Bundles
 The Bundle and Book model relationship will be a many-to-many (https://laravel.com/docs/5.2/
eloquent-relationships#many-to-many) relationship—you may also know this relationship as “has and
belongs to many” (HABTM). It is reasonable that one book could be included in multiple bundles, and that a
bundle will have many books (as the name implies).

 In this section, you will define the tables, relationships, and data needed for your tests and seed data.
Once you have your schema and seed data, you can start coding features.

 Let’s start defining the data and the relationships needed. First, you need a bundles table that contains
data such as the bundle name (Listing 11-2).

 Listing 11-2. Creating the bundles Table

 # vagrant@homestead:~/Code/bookr$
 $ php artisan make:migration \
 create_bundles_table --create=bundles

 If you recall, the --create flag will generate the migration with Schema::create() in the
 CreateBundlesTable::up() method and Schema::drop() in the CreateBundlesTable::down() method.

 The bundle will simply have title and description fields with the usual timestamps (Listing 11-3).

CHAPTER 11 ■ BOOK BUNDLES

202

 Listing 11-3. The CreateBundlesTable Migration

 1 <?php
 2
 3 use Illuminate\Database\Schema\Blueprint;
 4 use Illuminate\Database\Migrations\Migration;
 5
 6 class CreateBundlesTable extends Migration
 7 {
 8 /**
 9 * Run the migrations.
 10 *
 11 * @return void
 12 */
 13 public function up()
 14 {
 15 Schema::create('bundles', function (Blueprint $table) {
 16 $table->increments('id');
 17 $table->string('title');
 18 $table->text('description');
 19 $table->timestamps();
 20 });
 21 }
 22
 23 /**
 24 * Reverse the migrations.
 25 *
 26 * @return void
 27 */
 28 public function down()
 29 {
 30 Schema::drop('bundles');
 31 }
 32 }

 Next, your many-to-many relationship needs a pivot table. The convention for a many-to-many
relationship pivot table will be derived from the alphabetical order of the related model names. In your case,
the convention for “Books” and “Bundles” will be a “book_bundle” table. You will use the convention, but
you can also customize things, as you might now expect, in Eloquent if needed. The next migration will look
like Listing 11-4 .

 Listing 11-4. Creating the Migration for the book_bundle Table

 # vagrant@homestead:~/Code/bookr$
 $ php artisan make:migration \
 create_book_bundle_table --create=book_bundle

 And the migration will look like Listing 11-5 .

CHAPTER 11 ■ BOOK BUNDLES

203

 Listing 11-5. The CreateBookBundleTable Migration Class

 1 <?php
 2
 3 use Illuminate\Database\Schema\Blueprint;
 4 use Illuminate\Database\Migrations\Migration;
 5
 6 class CreateBookBundleTable extends Migration
 7 {
 8 /**
 9 * Run the migrations.
 10 *
 11 * @return void
 12 */
 13 public function up()
 14 {
 15 Schema::create('book_bundle', function (Blueprint $table) {
 16 $table->increments('id');
 17 $table->integer('book_id')->unsigned();
 18 $table->integer('bundle_id')->unsigned();
 19 $table->timestamps();
 20 });
 21 }
 22
 23 /**
 24 * Reverse the migrations.
 25 *
 26 * @return void
 27 */
 28 public function down()
 29 {
 30 Schema::drop('book_bundle');
 31 }
 32 }

 The book_id and bundle_id fields correlate with the id column on the books and bundles tables,
including being an unsigned integer. Other than that, there’s nothing new here.

 Now you can run your migrations and make sure they work as expected (Listing 11-6).

 Listing 11-6. Running the Database Migrations

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh
 Rolled back: 2016_01_20_052512_remove_books_authors_column
 Rolled back: 2016_01_20_051118_associate_books_with_authors
 Rolled back: 2016_01_20_050526_create_authors_table
 Rolled back: 2015_12_29_234835_create_books_table
 Migrated: 2015_12_29_234835_create_books_table
 Migrated: 2016_01_20_050526_create_authors_table

CHAPTER 11 ■ BOOK BUNDLES

204

 Migrated: 2016_01_20_051118_associate_books_with_authors
 Migrated: 2016_01_20_052512_remove_books_authors_column
 Migrated: 2016_01_24_041900_create_bundles_table
 Migrated: 2016_01_30_165357_create_book_bundle_table

 Now that you have your migrations working, the next step is creating a Bundle model so that you can
define the associations (Listing 11-7).

 Listing 11-7. Creating the app/Bundle.php File

 # vagrant@homestead:~/Code/bookr$
 $ touch app/Bundle.php

 Open the app/Bundle.php and define the Bundle model with the code in Listing 11-8 .

 Listing 11-8. The Bundle Eloquent Model

 1 <?php
 2
 3 namespace App;
 4
 5 use Illuminate\Database\Eloquent\Model;
 6
 7 class Bundle extends Model
 8 {
 9 protected $fillable = ['title', 'description'];
 10
 11 public function books()
 12 {
 13 return $this->belongsToMany(\App\Book::class);
 14 }
 15 }

 The Bundle::books() method defines the Book model as a belongs-to-many relationship. You have
seen the belongsTo() and hasMany associations when you associated Book and Author , so this should
already look familiar. For more information on Eloquent relationships, see the Eloquent relationships
(https://laravel.com/docs/5.2/eloquent-relationships) documentation.

 You need to update the Book model in app/Book.php to define the inverse of this relationship, which is
identical (Listing 11-9).

 Listing 11-9. Defining the Bundle Relationship in the Book Model

 21 public function bundles()
 22 {
 23 return $this->belongsToMany(\App\Bundle::class);
 24 }

 The last thing you will do is define the factory so that you can create model seed data. Add the code in
Listing 11-10 to the end of the database/factories/ModelFactory.php file.

CHAPTER 11 ■ BOOK BUNDLES

205

 Listing 11-10. Model Factory for the Bundle Model

 38 $factory->define(\App\Bundle::class, function ($faker) {
 39
 40 $title = $faker->sentence(rand(3, 10));
 41
 42 return [
 43 'title' => substr($title, 0, strlen($title) - 1),
 44 'description' => $faker->text
 45];
 46 });

 Next, create a new database seeder file (Listing 11-11) and seed code (Listing 11-12):

 Listing 11-11. Creating the BundlesTableSeeder Class

 # vagrant@homestead:~/Code/bookr$
 $ touch database/seeds/BundlesTableSeeder.php

 Listing 11-12. The BundlesTableSeeder Class

 1 <?php
 2
 3 use Illuminate\Database\Seeder;
 4
 5 class BundlesTableSeeder extends Seeder
 6 {
 7 /**
 8 * Run the database seeds.
 9 *
 10 * @return void
 11 */
 12 public function run()
 13 {
 14 factory(\App\Bundle::class, 5)->create()->each(function ($bundle) {
 15 $booksCount = rand(2, 5);
 16 $bookIds = [];
 17
 18 while ($booksCount > 0) {
 19 $book = \App\Book::whereNotIn('id', $bookIds)
 20 ->orderByRaw("RAND()")
 21 ->first();
 22
 23 $bundle->books()->attach($book);
 24 $bookIds[] = $book->id;
 25 $booksCount--;
 26 }
 27 });
 28 }
 29 }

CHAPTER 11 ■ BOOK BUNDLES

206

 The Bundles seeder class creates five bundles and then loops through each one. In the callback, a
random amount of books (between 2 and 5) will be defined with rand(2, 5) . The while loop finds a random
book in the database that has not been used yet with the whereNotIn('id', $bookIds) call and returns the
first result. Next, the book is attached to the current bundle, and added to the ignore array so the book will
not be in the same bundle twice.

 You need to add the new BundlesTableSeeder class to the database/seeds/DatabaseSeeder.php file
(Listing 11-13).

 Listing 11-13. Adding the BundlesTableSeeder to the DatabaseSeeder

 7 /**
 8 * Run the database seeds.
 9 *
 10 * @return void
 11 */
 12 public function run()
 13 {
 14 // $this->call('UserTableSeeder');
 15 $this->call(BooksTableSeeder::class);
 16 $this->call(BundlesTableSeeder::class);
 17 }

 You are ready to run the migrations again and seed the new bundle data (Listing 11-14).

 Listing 11-14. Migrating and Seeding Application Data

 # vagrant@homestead:~/Code/bookr$
 $ composer dump-autoload
 $ php artisan migrate:refresh
 ...
 $ php artisan db:seed
 Seeded: BooksTableSeeder
 Seeded: BundlesTableSeeder

 Remember that when you add new seeder classes you need to update the Composer autoloader with
the composer dump-autoload command so artisan can find the seeder class. If all went well, you should have
some seed data in the bundles table and book_bundle table.

 You now have the correct data model and associations to move onto your next endpoint, which is
returning an individual bundle with related books.

 The GET /bundles/{id} Endpoint
 With your data and model relationships in place, you are ready to start working on the individual bundle
response. Your API endpoint (/bundles/{id}) response resembles the JSON in Listing 11-15 .

 Listing 11-15. Example Bundle Response

 {
 "data" :{
 "id" :1,

CHAPTER 11 ■ BOOK BUNDLES

207

 "title" :"Eveniet numquam quos doloribus nemo dolore culpa voluptatem nobis in omnis
aut",

 "description" :"Perferendis minus omnis accusantium reiciendis totam. Quoautem
ratione amet facere quam. Iure sunt qui odio sint.",

 "created" :"2015-12-06T03:14:58+0000",
 "updated" :"2015-12-06T03:14:58+0000",
 "books" :{
 "data" :[
 {
 "id" :6,
 "title" :"Et ipsam facilis rerum expedita doloribus quasi aliquam numquam

provident rerum mollitia",
 "description" :"Itaque cumque est et vitae voluptatibus ad. Rerum

repellendus consequatur labore eum nostrum. Ut et ut voluptate maiores.",
 "author" :"Angelina Doyle",
 "created" :"2015-12-06T03:14:58+0000",
 "updated" :"2015-12-06T03:14:58+0000"
 },
 {
 "id" :33,
 "title" :"Dolorem at cum esse",
 "description" :"Commodi et consequuntur quia culpa. Totam earum ad
tempore cumque dolor. In ratione voluptas quisquam et est quaerat rem.",
 "author" :"Rylan Lind II",
 "created" :"2015-12-06T03:14:58+0000",
 "updated" :"2015-12-06T03:14:58+0000"
 }
]
 }
 }
 }

 You are ready to create your BundleTransformer file (Listing 11-16).

 Listing 11-16. Creating the BundleTransformer Class and Test

 # vagrant@homestead:~/Code/bookr$
 $ touch tests/app/Transformer/BundleTransformerTest.php
 $ touch app/Transformer/BundleTransformer.php

 Next, you are going to cheat a little and write all the bundle transformer tests beforehand (Listing 11-17).

 Listing 11-17. Testing the Bundle Transformer

 1 <?php
 2
 3 namespace Tests\App\Transformer;
 4
 5 use TestCase;

CHAPTER 11 ■ BOOK BUNDLES

208

 6 use App\Transformer\BundleTransformer;
 7 use Laravel\Lumen\Testing\DatabaseMigrations;
 8
 9 class BundleTransformerTest extends TestCase
 10 {
 11 use DatabaseMigrations;
 12
 13 /**
 14 * @var BundleTransformer
 15 */
 16 private $subject;
 17
 18 public function setUp()
 19 {
 20 parent ::setUp();
 21
 22 $this->subject = new BundleTransformer();
 23 }
 24
 25 /** @test **/
 26 public function it_can_be_initialized()
 27 {
 28 $this->assertInstanceOf(
 29 BundleTransformer::class,
 30 $this->subject
 31);
 32 }
 33
 34 /** @test **/
 35 public function it_can_transform_a_bundle()
 36 {
 37 $bundle = factory(\App\Bundle::class)->create();
 38
 39 $actual = $this->subject->transform($bundle);
 40
 41 $this->assertEquals($bundle->id, $actual['id']);
 42 $this->assertEquals($bundle->title, $actual['title']);
 43 $this->assertEquals(
 44 $bundle->description,
 45 $actual['description']
 46);
 47 $this->assertEquals(
 48 $bundle->created_at->toIso8601String(),
 49 $actual['created']
 50);
 51 $this->assertEquals(
 52 $bundle->updated_at->toIso8601String(),
 53 $actual['updated']
 54);
 55 }
 56

CHAPTER 11 ■ BOOK BUNDLES

209

 57 /** @test **/
 58 public function it_can_transform_related_books()
 59 {
 60 $bundle = $this->bundleFactory();
 61
 62 $data = $this->subject->includeBooks($bundle);
 63 $this->assertInstanceOf(
 64 \League\Fractal\Resource\Collection::class,
 65 $data
 66);
 67 $this->assertInstanceOf(
 68 \App\Book::class,
 69 $data->getData()[0]
 70);
 71 $this->assertCount(2, $data->getData());
 72 }
 73 }

 I have included all the tests needed to cover the BundleTransformer ; this test is just like the other
transformer tests you’ve already covered. You might have noticed the call to $this->bundleFactory() in
the it_can_transform_related_books test, which you haven’t written yet. You might have also noticed the
 setUp() method used to initialize the subject of your tests as $this->subject, which is a convenient way to
set up the test subject before of each test.

 You are ready to write the actual transformer class, write the bundleFactory() method, and get
tests back to green. Next, you will write the BundleTransformer implementation in app/Transformer/
BundleTransformer.php (Listing 11-18).

 Listing 11-18. Implementing the BundleTransformer Class

 1 <?php
 2
 3 namespace App\Transformer;
 4
 5 use App\Bundle;
 6 use League\Fractal\TransformerAbstract;
 7
 8 /**
 9 * Class BundleTransformer
 10 * @package App\Transformer
 11 */
 12 class BundleTransformer extends TransformerAbstract
 13 {
 14 protected $defaultIncludes = ['books'];
 15
 16 /**
 17 * Include a bundle's books
 18 * @param Bundle $bundle
 19 * @return \League\Fractal\Resource\Collection
 20 */
 21 public function includeBooks(Bundle $bundle)
 22 {
 23 return $this->collection($bundle->books, new BookTransformer());

CHAPTER 11 ■ BOOK BUNDLES

210

 24 }
 25
 26 /**
 27 * Transform a bundle
 28 *
 29 * @param Bundle $bundle
 30 * @return array
 31 */
 32 public function transform(Bundle $bundle)
 33 {
 34 return [
 35 'id' => $bundle->id,
 36 'title' => $bundle->title,
 37 'description' => $bundle->description,
 38 'created' => $bundle->created_at->toIso8601String(),
 39 'updated' => $bundle->updated_at->toIso8601String(),
 40];
 41 }
 42 }

 The BundleTransformer will always include books; therefore this transformer has books in the
 $defaultIncludes array.

 Next, let’s define the bundleFactory() method in the base tests/TestCase.php file right after the
 bookFactory() method in order to easily create bundle records in the database for testing purposes
(Listing 11-19).

 Listing 11-19. Defining the bundleFactory() Method in the TestCase Class

 78 /**
 79 * Convenience method for creating a book bundle
 80 *
 81 * @param int $count
 82 * @return mixed
 83 */
 84 protected function bundleFactory($bookCount = 2)
 85 {
 86 if ($bookCount <= 1) {
 87 throw new \RuntimeException('A bundle must have two or more books!');
 88 }
 89
 90 $bundle = factory(\App\Bundle::class)->create();
 91 $books = $this->bookFactory($bookCount);
 92
 93 $books->each(function ($book) use ($bundle) {
 94 $bundle->books()->attach($book);
 95 });
 96
 97 return $bundle;
 98 }

CHAPTER 11 ■ BOOK BUNDLES

211

 The bundleFactory() method first makes sure that a $bookCount of at least 2 is passed; otherwise
it will throw a \RuntimeException . Next, a bundle is created in the test database. You use the
 TestCase::bookFactory() method to create multiple books, and then you loop through each book and
attach it to your bundle. Finally, you return the bundle.

 Before moving on, verify that all tests pass (Listing 11-20).

 Listing 11-20. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (50 tests, 250 assertions)

 With the BundleTransformer class in place you can create test file for the Bundle controller at
tests/app/Http/Controllers/BundlesControllerTest.php with the first failing test for the
 BundlesController@show method (Listing 11-21 and Listing 11-22).

 Listing 11-21. Creating the BundlesController and Test File

 # vagrant@homestead:~/Code/bookr$
 $ touch app/Http/Controllers/BundlesController.php
 $ touch tests/app/Http/Controllers/BundlesControllerTest.php

 Listing 11-22. Writing the Test for the BundlesController@show Method

 1 <?php
 2
 3 namespace Tests\App\Http\Controllers;
 4
 5 use TestCase;
 6 use Laravel\Lumen\Testing\DatabaseMigrations;
 7
 8 class BundlesControllerTest extends TestCase
 9 {
 10 use DatabaseMigrations;
 11
 12 /** @test **/
 13 public function show_should_return_a_valid_bundle()
 14 {
 15 $bundle = $this->bundleFactory();
 16
 17 $this->get("/bundles/ { $bundle->id } ", ['Accept' => 'application/json']);
 18 $this->seeStatusCode(200);
 19 $body = $this->response->getData(true);
 20
 21 $this->assertArrayHasKey('data', $body);
 22 $data = $body['data'];
 23
 24 // Check bundle properties exist in the response
 25 $this->assertEquals($bundle->id, $data['id']);
 26 $this->assertEquals($bundle->title, $data['title']);

CHAPTER 11 ■ BOOK BUNDLES

212

 27 $this->assertEquals($bundle->title, $data['title']);
 28 $this->assertEquals(
 29 $bundle->description,
 30 $data['description']
 31);
 32 $this->assertEquals(
 33 $bundle->created_at->toIso8601String(),
 34 $data['created']
 35);
 36 $this->assertEquals(
 37 $bundle->updated_at->toIso8601String(),
 38 $data['updated']
 39);
 40
 41 // Check that book data is in the response
 42 $this->assertArrayHasKey('books', $data);
 43 $books = $data['books'];
 44
 45 // Check that two books exist in the response
 46 $this->assertArrayHasKey('data', $books);
 47 $this->assertCount(2, $books['data']);
 48
 49 // Verify keys for one book...
 50 $this->assertEquals(
 51 $bundle->books[0]->title,
 52 $books['data'][0]['title']
 53);
 54 $this->assertEquals(
 55 $bundle->books[0]->description,
 56 $books['data'][0]['description']
 57);
 58 $this->assertEquals(
 59 $bundle->books[0]->author->name,
 60 $books['data'][0]['author']
 61);
 62 $this->assertEquals(
 63 $bundle->books[0]->created_at->toIso8601String(),
 64 $books['data'][0]['created']
 65);
 66 $this->assertEquals(
 67 $bundle->books[0]->updated_at->toIso8601String(),
 68 $books['data'][0]['updated']
 69);
 70 }
 71 }

 The test is long but simple. You get the bundle response and go through all the data to make sure your
bundle endpoint contains all the response data. The controller isn’t complicated but you want to make sure
you test all the expected data. In fact, the implementation is only a few lines (Listing 11-23).

CHAPTER 11 ■ BOOK BUNDLES

213

 Listing 11-23. The Initial Version of the BundlesController

 1 <?php
 2
 3 namespace App\Http\Controllers;
 4
 5 use App\Bundle;
 6 use App\Transformer\BundleTransformer;
 7
 8 /**
 9 * Class BundlesController
 10 * @package App\Http\Controllers
 11 */
 12 class BundlesController extends Controller
 13 {
 14 public function show($id)
 15 {
 16 $bundle = Bundle::findOrFail($id);
 17 $data = $this->item($bundle, new BundleTransformer());
 18
 19 return response()->json($data);
 20 }
 21 }

 You’ve seen the @show method a few times. All you need to do at the moment is find the bundle and run the
response through Fractal. The BundleTransformer automatically includes the bundle’s books in the response.
You still need to define a BundlesController@show route in the app/Http/routes.php file before your tests will
pass again. You might as well take this opportunity to write all the routes for this chapter at once (Listing 11-24).

 Listing 11-24. Adding the /bundles Routes

 41 $app->group([
 42 'prefix' => '/bundles',
 43 'namespace' => 'App\Http\Controllers'
 44], function (\Laravel\Lumen\Application $app) {
 45
 46 $app->get('/{id:[\d]+}', [
 47 'as' => 'bundles.show',
 48 'uses' => 'BundlesController@show'
 49]);
 50
 51 $app->put(
 52 '/{bundleId:[\d]+}/books/{bookId:[\d]+}',
 53 'BundlesController@addBook'
 54);
 55
 56 $app->delete(
 57 '/{bundleId:[\d]+}/books/{bookId:[\d]+}',
 58 'BundlesController@removeBook'
 59);
 60 });

 With the routes defined you are ready to see if your test suite is fully passing again (Listing 11-25).

CHAPTER 11 ■ BOOK BUNDLES

214

 Listing 11-25. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit
 OK (51 tests, 266 assertions)

 Adding a Book to a Bundle
 Up to this point, you have relied on seed data and factories to associate bundles and books. You need
an API endpoint to define the relationship for books contained within a bundle. You will write the API
to allow adding and removing a single book per request. Adding a book will use the PUT/bundles/
{bundleId:[\d]+}/books/{bookId:[\d]+} nested route.

 Let’s start by writing the failing test for adding a book to an existing bundle in the tests/app/Http/
Controllers/BundlesControllerTest.php file (Listing 11-26).

 Listing 11-26. Testing the Addition of a Book to a Bundle

 72 /** @test **/
 73 public function addBook_should_add_a_book_to_a_bundle()
 74 {
 75 $bundle = factory(\App\Bundle::class)->create();
 76 $book = $this->bookFactory();
 77
 78 // Bundle should not have any associated books yet
 79 $this->notSeeInDatabase('book_bundle', ['bundle_id' => $bundle->id]);
 80
 81 $this->put("/bundles/ { $bundle->id } /books/ { $book->id } ", [],
 82 ['Accept' => 'application/json']);
 83
 84 $this->seeStatusCode(200);
 85
 86 $dbBundle = \App\Bundle::with('books')->find($bundle->id);
 87 $this->assertCount(1, $dbBundle->books,
 88 'The bundle should have 1 associated book');
 89
 90 $this->assertEquals(
 91 $dbBundle->books()->first()->id,
 92 $book->id
 93);
 94
 95 $body = $this->response->getData(true);
 96
 97 $this->assertArrayHasKey('data', $body);
 98 // Ensure the book id is in the response.
 99 $this->assertArrayHasKey('books', $body['data']);
 100 $this->assertArrayHasKey('data', $body['data']['books']);
 101
 102 // Make sure the book is in the response
 103 $books = $body['data']['books'];
 104 $this->assertEquals($book->id, $books['data'][0]['id']);
 105 }

CHAPTER 11 ■ BOOK BUNDLES

215

 Your test creates a bundle and a book separately because you don’t want them associated, and you
assert that the new bundle does not have any books. You associate a book with the bundle with a PUT request
and then get the bundle from the database to ensure the book is now associated with the bundle. Lastly, the
test ensures the response contains the newly associated book and has the expected response.

 Next, you will write the BundlesController::addBook() method which adds a book to the bundle
(Listing 11-27).

 Listing 11-27. The Initial Method for Adding a Book

 22 /**
 23 * @param int $bundleId
 24 * @param int $bookId
 25 * @return \Illuminate\Http\JsonResponse
 26 */
 27 public function addBook($bundleId, $bookId)
 28 {
 29 $bundle = \App\Bundle::findOrFail($bundleId);
 30 $book = \App\Book::findOrFail($bookId);
 31
 32 $bundle->books()->attach($book);
 33 $data = $this->item($bundle, new BundleTransformer());
 34
 35 return response()->json($data);
 36 }

 The implementation is really simple: the controller makes sure that both the bundle and book are valid
records and attaches the book to the bundle with the attach() method. Let’s make sure your new controller
method satisfies your tests (Listing 11-28).

 Listing 11-28. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (52 tests, 274 assertions)

 Remove a Book from a Bundle
 Now that you have a way to add a book to a bundle, you need a way to remove a book too. Removing a book
from a bundle resembles adding a book and will not take much effort to test and implement. First, write the
test for removing a book (Listing 11-29).

 Listing 11-29. Test for Removing a Book from a Bundle

 107 /** @test **/
 108 public function removeBook_should_remove_a_book_from_a_bundle()
 109 {
 110 $bundle = $this->bundleFactory(3);
 111 $book = $bundle->books()->first();
 112

CHAPTER 11 ■ BOOK BUNDLES

216

 113 $this->seeInDatabase('book_bundle', [
 114 'book_id' => $book->id,
 115 'bundle_id' => $bundle->id
 116]);
 117
 118 $this->assertCount(3, $bundle->books);
 119
 120 $this
 121 ->delete("/bundles/ { $bundle->id } /books/ { $book->id } ")
 122 ->seeStatusCode(204)
 123 ->notSeeInDatabase('book_bundle', [
 124 'book_id' => $book->id,
 125 'bundle_id' => $bundle->id
 126]);
 127
 128 $dbBundle = \App\Bundle::find($bundle->id);
 129 $this->assertCount(2, $dbBundle->books);
 130 }

 Let’s break down the code in this test:

• Create a bundle with three associated books.

• Get the first associated book and ensures the database association.

• Assert that the bundle has three associated books.

• Make a DELETE request and check for a 204 response.

• Verify that the removed book is not associated with the bundle anymore.

• Verify that the bundle only has two associated books in the database after deleting
the association.

 The controller method is just like the addBook() method, except that you call detach() instead of
 attach() to remove the book from the bundle.

 Up next is the controller method for removing a book from a book bundle (Listing 11-30).

 Listing 11-30. Removing a Book in the BundlesController

 38 public function removeBook($bundleId, $bookId)
 39 {
 40 $bundle = \App\Bundle::findOrFail($bundleId);
 41 $book = \App\Book::findOrFail($bookId);
 42
 43 $bundle->books()->detach($book);
 44
 45 return response(null , 204);
 46 }

 The removeBook method finds the bundle and book records, and then detaches the association between
the bundle and book. The response sends back a null response body with a 204 No Content on success.

 Next, finalize your bundle features by running the full test suite (Listing 11-31).

CHAPTER 11 ■ BOOK BUNDLES

217

 Listing 11-31. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (53 tests, 279 assertions)

 Git Commit: Add the Bundles API Resource

 e720e5c (https://bitbucket.org/paulredmond/apress-bookr/commits/492e78b)

 Conclusion
 You learned how to deal with adding and removing many-to-many associations through API requests, in
addition to basic GET responses for all bundles and individual bundles. You now have enough experience
in this book to write tests for the remaining /bundle CRUD operations and then implement each one. I
demonstrated one way to represent many-to-many associations through an AP; you can now expand upon it
with things like bulk adding and removing of books from a bundle.

 In the next and final chapter of this book, you will explore polymorphic relationships, as well as some
performance optimizations to your queries for associated records.

219© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7_12

 CHAPTER 12

 Ratings

 The final chapter will focus on adding the ability to rate things. When you think of ratings, you might
think of book ratings, but actually you can apply ratings to multiple things. Specifically, you will add
ratings to authors . Using Eloquent makes it easy to apply data like ratings to multiple models (as
you will see shortly) using polymorphic relationships (https://laravel.com/docs/5.2/eloquent-
relationships#polymorphic-relations). Polymorphic relationships allow a model (ratings) to belong to
more than one model. In the context of your API, ratings make sense for authors, books, and bundles.

 Your ratings will be a five star rating system based on an integer value between 1 and 5 . You will be laying all
the groundwork in this chapter so that adding ratings to multiple models in your API will be almost effortless.

 Database Design
 Eloquent provides polymorphic associations out of the box and it’s really easy to get something working
quickly. Your database design will start by defining a migration for the ratings table. Based on the
polymorphic documentation, you should come up with something like Listing 12-1 .

 Listing 12-1. Creating the Ratings Table Migration

 # vagrant@homestead:~/Code/bookr$
 $ php artisan make:migration \
 create_ratings_table --create=ratings
 Created Migration: 2015_12_12_061605_create_ratings_table

 The migration for the ratings table will define the value, the associated model id, and the model type
(Listing 12-2).

 Listing 12-2. Ratings Table Database Migration Code

 1 <?php
 2
 3 use Illuminate\Database\Schema\Blueprint;
 4 use Illuminate\Database\Migrations\Migration;
 5
 6 class CreateRatingsTable extends Migration
 7 {
 8 /**
 9 * Run the migrations.
 10 *
 11 * @return void

https://laravel.com/docs/5.2/eloquent-relationships#polymorphic-relations
https://laravel.com/docs/5.2/eloquent-relationships#polymorphic-relations

CHAPTER 12 ■ RATINGS

220

 12 */
 13 public function up()
 14 {
 15 Schema::create('ratings', function (Blueprint $table) {
 16 $table->increments('id');
 17 $table->integer('value')->unsigned();
 18 $table->integer('rateable_id')->unsigned();
 19 $table->string('rateable_type');
 20 $table->timestamps();
 21 });
 22 }
 23
 24 /**
 25 * Reverse the migrations.
 26 *
 27 * @return void
 28 */
 29 public function down()
 30 {
 31 Schema::drop('ratings');
 32 }
 33 }

 Your migration defines an unsigned integer field of value to hold the rating. The polymorphic
association needs two other fields: rateable_id and rateable_type . The former is the id of the “owning”
model (Author) and the latter is the class name of the “owning” model (App\Author). The rest of the
migration should be familiar at this point.

 With the ratings table defined, your next step is to create a new Rating model and update your Author
model to support ratings. Create the app/Rating.php model with the code in Listing 12-3 .

 Listing 12-3. The Rating Model

 1 <?php
 2
 3 namespace App;
 4
 5 use Illuminate\Database\Eloquent\Model;
 6
 7 class Rating extends Model
 8 {
 9 /**
 10 * @inheritdoc
 11 */
 12 protected $fillable = ['value'];
 13
 14 public function rateable()
 15 {
 16 return $this->morphTo();
 17 }
 18 }

CHAPTER 12 ■ RATINGS

221

 Notice the correlation between the method name of rateable() and the database field name prefix of
 rateable_ . The return $this->morphTo() call is defining the polymorphic inverse relationship. You also
define the value field as the only fillable field since the other fields will be managed by Eloquent automatically.

 Next, you are going to create a PHP Trait (http://php.net/manual/en/language.oop5.traits.php)
that models can use to add the other end of the polymorphic relationship easily. Create a file at
app/Rateable.php with the code in Listing 12-4 .

 Listing 12-4. The Rateable Trait

 1 <?php
 2
 3 namespace App;
 4
 5 /**
 6 * Trait to enable polymorphic ratings on a model.
 7 *
 8 * @package App
 9 */
 10 trait Rateable
 11 {
 12 public function ratings()
 13 {
 14 return $this->morphMany(Rating::class, 'rateable');
 15 }
 16 }

 When a model uses the Rateable trait, the ratings() method will define a one-to-many polymorphic
relationship, meaning that the Author model will have many ratings and a single Rating will belongTo an
 Author . Other models can add this trait to implement ratings, and this makes it easy at a glance to see that a
model is “rateable.”

 Next, add the new trait to the Author and Book models (Listing 12-5).

 Listing 12-5. Adding the Rateable Trait

 class Book extends Model
 {
 use Rateable;

 // ...
 }

 class Author extends Model
 {
 use Rateable;

 // ...
 }

 I’ve provided one code sample for both models since adding the trait is such a small amount of code. Now
your models can store ratings in the database! You are ready to create a factory and seed data now for ratings.

 First, append the factory in Listing 12-6 to the database/factories/ModelFactory.php file.

http://php.net/manual/en/language.oop5.traits.php

CHAPTER 12 ■ RATINGS

222

 Listing 12-6. The Rating Factory

 48 $factory->define(\App\Rating::class, function ($faker) {
 49 return [
 50 'value' => rand(1, 5)
 51];
 52 });

 The factory randomly assigns 1-5 stars for a rating. Note that you will not use factory()->create() on
the ratings factory. You will mostly use factory()->make() and then save the ratings through other models.

 To use your new factory, you will refactor the database/seeds/BooksTableSeeder.php file to insert
ratings into author and book seed data (Listing 12-7).

 Listing 12-7. Adding Ratings to the Books Database Seeder

 9 /**
 10 * Run the database seeds.
 11 *
 12 * @return void
 13 */
 14 public function run()
 15 {
 16 $authors = factory(App\Author::class, 10)->create();
 17 $authors->each(function ($author) {
 18 $author->ratings()->saveMany(
 19 factory(App\Rating::class, rand(20, 50))->make()
 20);
 21
 22 $booksCount = rand(1, 5);
 23
 24 while ($booksCount > 0) {
 25 $book = factory(App\Book::class)->make();
 26 $author->books()->save($book);
 27 $book->ratings()->saveMany(
 28 factory(App\Rating::class, rand(20, 50))->make()
 29);
 30 $booksCount--;
 31 }
 32 });
 33 }

 Now your database seeder is creating ratings for each author, and then ratings for each book. You use
 rand(20, 50) to add between 20 and 50 ratings with ratings()->saveMany() . As noted earlier, you call
 factory(App\Rating::class, rand(20, 50))->make() and use the associated models to persist ratings to
the database. You should be able to seed the database now with the artisan command (Listing 12-8).

 Listing 12-8. Migrating and Seeding the Database

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh
 ...
 $ php artisan db:seed

CHAPTER 12 ■ RATINGS

223

 Seeded: BooksTableSeeder
 Seeded: BundlesTableSeeder

 If you inspect the database you should see ratings in the ratings table for both authors and books.
Eloquent and Laravel make it easy to model data quickly and get stuff done!

 Rating an Author
 The design of the author ratings API will be a nested resource specific to author ratings. The following are
examples of the author rating endpoints you will be writing:

• POST /authors/1/ratings for adding a new rating

• DELETE /authors/1/ratings/1 for deleting an existing author rating

 Define the new author rating routes in app/Http/routes.php to get started (Listing 12-9).

 Listing 12-9. Author Ratings Routes in app/Http/routes.php

 27 $app->group([
 28 'prefix' => '/authors',
 29 'namespace' => 'App\Http\Controllers'
 30], function (\Laravel\Lumen\Application $app) {
 31 $app->get('/', 'AuthorsController@index');
 32 $app->post('/', 'AuthorsController@store');
 33 $app->get('/{id:[\d]+}', [
 34 'as' => 'authors.show',
 35 'uses' => 'AuthorsController@show'
 36]);
 37 $app->put('/{id:[\d]+}', 'AuthorsController@update');
 38 $app->delete('/{id:[\d]+}', 'AuthorsController@destroy');
 39
 40 // Author ratings
 41 $app->post('/{id:[\d]+}/ratings', 'AuthorsRatingsController@store');
 42 $app->delete(
 43 '/{authorId:[\d]+}/ratings/{ratingId:[\d]+}',
 44 'AuthorsRatingsController@destroy'
 45);
 46 });

 Note the {authorId:[\d]+} route param, which is needed to differentiate with the ratingId —route
params must be unique. You will organize author rating management in a new controller but nest the routes
within the /authors resource routes.

 Adding an Author Rating
 The first route you will test is adding a new rating to an author. When the Controller endpoint is complete
you will expect a response similar to Listing 12-10 .

CHAPTER 12 ■ RATINGS

224

 Listing 12-10. Example Response from AuthorsRatingsController@store

 {
 "data" :{
 "id" :1409,
 "value" :"5",
 "type" :"App\\Author",
 "links" :[
 {
 "rel" :"author",
 "href" :"http:\/\/localhost:8000\/authors\/1"
 }
],
 "created" :"2015-12-12T16:42:24+0000",
 "updated" :"2015-12-12T16:42:24+0000"
 }
 }

 Let’s get to work on writing tests and a controller for your work. First, let’s create the Author’s ratings
controller and test (Listing 12-11).

 Listing 12-11. Creating the AuthorRatingsController and Test File

 # vagrant@homestead:~/Code/bookr$
 $ touch tests/app/Http/Controllers/AuthorsRatingsControllerTest.php
 $ touch app/Http/Controllers/AuthorsRatingsController.php

 Your first test in the tests/app/Http/Controllers/AuthorsRatingsControllerTest.php file will test
adding a new rating to an author (Listing 12-12).

 Listing 12-12. Test for Adding Author Ratings

 1 <?php
 2
 3 namespace Tests\App\Http\Controllers;
 4
 5 use TestCase;
 6 use Laravel\Lumen\Testing\DatabaseMigrations;
 7
 8 class AuthorsRatingsControllerTest extends TestCase
 9 {
 10 use DatabaseMigrations;
 11
 12 /** @test **/
 13 public function store_can_add_a_rating_to_an_author()
 14 {
 15 $author = factory(\App\Author::class)->create();
 16
 17 $this->post(
 18 "/authors/ { $author->id } /ratings",
 19 ['value' => 5],
 20 ['Accept' => 'application/json']

CHAPTER 12 ■ RATINGS

225

 21);
 22
 23 $this
 24 ->seeStatusCode(201)
 25 ->seeJson([
 26 'value' => 5
 27])
 28 ->seeJson([
 29 'rel' => 'author',
 30 'href' => route('authors.show', ['id' => $author->id])
 31]);
 32
 33 $body = $this->response->getData(true);
 34 $this->assertArrayHasKey('data', $body);
 35
 36 $data = $body['data'];
 37 $this->assertArrayHasKey('links', $data);
 38 }
 39 }

 This test submits a rating of “5” and makes sure that the value is returned. The test also checks for a
 links key which will contain an href to the created rating resource and an href to the author associated with
this rating.

 HATEOAS

 For those keeping track, this book hasn’t talked about or addressed HATEOAS (https://en.wikipedia.
org/wiki/HATEOAS) (Hypermedia as the Engine of Application State) much at all, but I have provided
a few examples how you can use the route() helper function to make generating links between data
simple.

 You can leverage Fractal transformers to take care of HATEOAS data and I encourage you to learn more
of the theory and good practices around writing RESTful services, including HATEOAS, if you are not
familiar.

 Before you start working on the controller, you will need another Fractal transformer for ratings. The
transformer will need to be a little smarter than your previous transformers since it will transform multiple
types, and you want to provide additional data about a rating and how it relates to other models.

 Create the new rating transformer file and accompanying test (Listing 12-13).

 Listing 12-13. Creating the RatingTransformer and Test Files

 $ touch tests/app/Transformer/RatingTransformerTest.php
 $ touch app/Transformer/RatingTransformer.php

 The initial RatingTransformerTest class will include the basic initialization test you add for each
transformer and a test to transform an author rating (Listing 12-14).

https://en.wikipedia.org/wiki/HATEOAS
https://en.wikipedia.org/wiki/HATEOAS

CHAPTER 12 ■ RATINGS

226

 Listing 12-14. Initial RatingTransformerTest Class

 1 <?php
 2
 3 namespace Tests\App\Transformer;
 4
 5 use TestCase;
 6 use App\Transformer\RatingTransformer;
 7 use Laravel\Lumen\Testing\DatabaseMigrations;
 8
 9 class RatingTransformerTest extends TestCase
 10 {
 11 use DatabaseMigrations;
 12
 13 /**
 14 * @var RatingTransformer
 15 */
 16 private $subject;
 17
 18 public function setUp()
 19 {
 20 parent ::setUp();
 21
 22 $this->subject = new RatingTransformer();
 23 }
 24
 25 /** @test **/
 26 public function it_can_be_initialized()
 27 {
 28 $this->assertInstanceOf(RatingTransformer::class, $this->subject);
 29 }
 30
 31 /** @test **/
 32 public function it_can_transform_a_rating_for_an_author()
 33 {
 34 $author = factory(\App\Author::class)->create();
 35 $rating = $author->ratings()->save(
 36 factory(\App\Rating::class)->make()
 37);
 38
 39
 40 $actual = $this->subject->transform($rating);
 41
 42 $this->assertEquals($rating->id, $actual['id']);
 43 $this->assertEquals($rating->value, $actual['value']);
 44 $this->assertEquals($rating->rateable_type, $actual['type']);
 45 $this->assertEquals(
 46 $rating->created_at->toIso8601String(),
 47 $actual['created']
 48);
 49 $this->assertEquals(
 50 $rating->updated_at->toIso8601String(),

CHAPTER 12 ■ RATINGS

227

 51 $actual['created']
 52);
 53
 54 $this->assertArrayHasKey('links', $actual);
 55 $links = $actual['links'];
 56 $this->assertCount(1, $links);
 57 $authorLink = $links[0];
 58
 59 $this->assertArrayHasKey('rel', $authorLink);
 60 $this->assertEquals('author', $authorLink['rel']);
 61 $this->assertArrayHasKey('href', $authorLink);
 62 $this->assertEquals(
 63 route('authors.show', ['id' => $author->id]),
 64 $authorLink['href']
 65);
 66 }
 67 }

 Like all the other transformer tests you’ve covered, you test that the transformer can be initialized.
The it_can_transform_a_rating_for_an_author test checks for keys and values to make sure the
transformer formats data as you expect. The test also verifies the links property, which should contain an
author resource with an href to the author API entity.

 Listing 12-15 shows what your first RatingTransformer implementation looks like.

 Listing 12-15. First Version of the RatingTransformer Implementation

 1 <?php
 2
 3 namespace App\Transformer;
 4
 5 use App\Rating;
 6 use League\Fractal\TransformerAbstract;
 7
 8 /**
 9 * Class RatingTransformer
 10 * @package App\Transformer
 11 */
 12 class RatingTransformer extends TransformerAbstract
 13 {
 14 /**
 15 * Transform a Rating
 16 *
 17 * @param Rating $rating
 18 * @return array
 19 */
 20 public function transform(Rating $rating)
 21 {
 22 return [
 23 'id' => $rating->id,
 24 'value' => $rating->value,
 25 'type' => $rating->rateable_type,
 26 'links' => [

CHAPTER 12 ■ RATINGS

228

 27 [
 28 'rel' => 'author',
 29 'href' => route('authors.show', ['id' => $rating->rateable_id])
 30]
 31],
 32 'created' => $rating->created_at->toIso8601String(),
 33 'updated' => $rating->updated_at->toIso8601String(),
 34];
 35 }
 36 }

 You’ve side-stepped the failing test for RatingsAuthorsController that you originally wrote in this
section to work on the RatingTransformer . You cannot run the full test suite, but the initial passing version
of the RatingTransfomer hard-codes the author link data and your RatingTransformer tests should pass
now (Listing 12-16).

 Listing 12-16. Running Tests for the RatingTransformer

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=RatingTransformerTest

 OK (2 tests, 12 assertions)

 Before you write the passing implementation for the AuthorsRatingsController, let’s refactor the
transformer to be more dynamic and capable of transforming a rating for other entities (Listing 12-17).

 Listing 12-17. Refactoring the RatingTransformer to Support Multiple Models

 1 <?php
 2
 3 namespace App\Transformer;
 4
 5 use App\Rating;
 6 use League\Fractal\TransformerAbstract;
 7
 8 /**
 9 * Class RatingTransformer
 10 * @package App\Transformer
 11 */
 12 class RatingTransformer extends TransformerAbstract
 13 {
 14 /**
 15 * Transform a Rating
 16 *
 17 * @param Rating $rating
 18 * @return array
 19 */
 20 public function transform(Rating $rating)
 21 {
 22 return [
 23 'id' => $rating->id,
 24 'value' => $rating->value,

CHAPTER 12 ■ RATINGS

229

 25 'type' => $rating->rateable_type,
 26 'links' => [
 27 [
 28 'rel' => $this->getModelName($rating->rateable_type),
 29 'href' => $this->getModelUrl($rating)
 30]
 31],
 32 'created' => $rating->created_at->toIso8601String(),
 33 'updated' => $rating->updated_at->toIso8601String(),
 34];
 35 }
 36
 37 /**
 38 * Get a human-friendly model name
 39 *
 40 * @param $rateable_type
 41 * @return string
 42 */
 43 private function getModelName($rateable_type)
 44 {
 45 return strtolower(preg_replace("/^App \\ \/", '', $rateable_type));
 46 }
 47
 48 /**
 49 * Generate a URL to the rated model resyource
 50 *
 51 * @param Rating $rating
 52 * @return string
 53 */
 54 private function getModelUrl(Rating $rating)
 55 {
 56 $author = \App\Author::class;
 57 $book = \App\Author::class;
 58
 59 switch ($rating->rateable_type) {
 60 case $author:
 61 $named = 'authors.show';
 62 break ;
 63 case $book:
 64 $named = 'books.show';
 65 break ;
 66 default :
 67 throw new \RuntimeException(sprintf(
 68 'Rateable model type for %s is not defined',
 69 $rating->rateable_type
 70));
 71 }
 72
 73 return route($named, ['id' => $rating->rateable_id]);
 74 }
 75 }

CHAPTER 12 ■ RATINGS

230

 You’ve added two private methods for dealing with dynamic model data, getModelName() and
 getModelUrl() . These methods are not perfect but they get the job done by providing a more human-
readable rel type. You will have to keep adding more models to the switch statement in getModelUrl()
method when you want to make something “rateable,” but for now it works.

 Your tests should still pass after the refactor. In real life, you might have to deal with failures along the
way, but through the power of books , you get the passing code immediately (Listing 12-18).

 Listing 12-18. Running the RatingTransformer Tests After Refactoring

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=RatingTransformerTest

 OK (2 tests, 12 assertions)

 The getModelUrl() will throw an exception if it doesn’t recognize the $rating->rateable_type so you
need to write a test for that (Listing 12-19).

 Listing 12-19. Test for a Thrown Exception in RatingTranformerTest

 68 /**
 69 * @test
 70 * @expectedException \RuntimeException
 71 * @expectedExceptionMessage Rateable model type for Foo\Bar is not defined
 72 */
 73 public function it_throws_an_exception_when_a_model_is_not_defined()
 74 {
 75 $rating = factory(\App\Rating::class)->create([
 76 'value' => 5,
 77 'rateable_type' => 'Foo\Bar',
 78 'rateable_id' => 1
 79]);
 80
 81 $this->subject->transform($rating);
 82 }

 You directly create a rating with a fake rateable_type to trigger the exception. This test also uses PHPUnit
test annotations (https://phpunit.de/manual/current/en/appendixes.annotations.html#appendixes.
annotations.expectedException) to ensure that \RuntimeException is thrown with the correct message.

 Your transformer passes fully and is ready to use. You can now starting writing the first version of your
controller at app/Http/Controllers/AuthorsRatingsController.php and get your tests to pass (Listing 12-20).

 Listing 12-20. The AuthorsRatings Controller

 1 <?php
 2
 3 namespace App\Http\Controllers;
 4
 5 use App\Author;
 6 use Illuminate\Http\Request;
 7 use App\Transformer\RatingTransformer;
 8
 9 /**

https://phpunit.de/manual/current/en/appendixes.annotations.html#appendixes.annotations.expectedException
https://phpunit.de/manual/current/en/appendixes.annotations.html#appendixes.annotations.expectedException

CHAPTER 12 ■ RATINGS

231

 10 * Manage an Author's Ratings
 11 */
 12 class AuthorsRatingsController extends Controller
 13 {
 14 public function store(Request $request, $authorId)
 15 {
 16 $author = Author::findOrFail($authorId);
 17
 18 $rating = $author->ratings()->create(['value' => $request->get('value')]);
 19 $data = $this->item($rating, new RatingTransformer());
 20
 21 return response()->json($data, 201);
 22 }
 23 }

 The controller simply checks for a valid author and creates a new rating associated with the author. The
controller returns the new rating data with a 201 created response. The full test suite should pass now that
you’ve implemented the controller (Listing 12-21).

 Listing 12-21. Running the Full Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (57 tests, 299 assertions)

 For your own satisfaction, you can post a rating via the command line on ‘nix systems, as shown in
Listing 12-22 .

 Listing 12-22. Adding an Author Rating with Curl

 # vagrant@homestead:~/Code/bookr$
 $ php artisan migrate:refresh
 $ php artisan db:seed
 $ curl --data "value=5" -X POST http://bookr.app/authors/1/ratings
 {
 "data":{
 "id":1188,
 "value":"5",
 "type":"App\\Author",
 "links":[
 {
 "rel":"author",
 "href":"http:\/\/bookr.app\/authors\/1"
 }
],
 "created":"2016-02-02T05:55:42+0000",
 "updated":"2016-02-02T05:55:42+0000"
 }
 }

CHAPTER 12 ■ RATINGS

232

 Now that the code has passed the tests, you will write a test to ensure you get a 404 response back when
the author id is invalid in AuthorsRatingsControllerTest (Listing 12-23).

 Listing 12-23. Test for Trying to Add a Rating to an Invalid Author

 40 /** @test **/
 41 public function store_fails_when_the_author_is_invalid()
 42 {
 43 $this->post('/authors/1/ratings', [], ['Accept' => 'application/json']);
 44 $this->seeStatusCode(404);
 45 }

 Since you already wrote Author::findOrFail($authorId); this test will pass. Be careful of tests
that pass without writing additional code. To verify that your test is indeed valid, temporarily update the
controller to Listing 12-24 .

 Listing 12-24. Revert AuthorsRatingsController to Make Test Fail

 14 public function store(Request $request, $authorId)
 15 {
 16 $author = Author::find($authorId);
 17
 18 $rating = $author->ratings()->create(['value' => $request->get('value')]);
 19 $data = $this->item($rating, new RatingTransformer());
 20
 21 return response()->json($data, 201);
 22 }

 After changing the AuthorsRatingsController::store() method, you should get the test failure
shown in Listing 12-25 .

 Listing 12-25. Test Failure After Reverting the AuthorsRatingsController

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 There was 1 failure:

 1) Tests\App\Http\Controllers\AuthorsRatingsControllerTest::store_fails_when_the\
 _author_is_invalid
 Failed asserting that 400 matches expected 404.

 /home/vagrant/Code/bookr/vendor/laravel/lumen-framework/src/Testing/CrawlerTrait\
 .php:412
 /home/vagrant/Code/bookr/tests/app/Http/Controllers/AuthorsRatingsControllerTest.php:44

 FAILURES!
 Tests: 58, Assertions: 300, Failures: 1.

 Your test will guard against to responding with a 404 when the database lookup fails. Revert the
 AuthorsRatingsController.php file to Listing 12-26 to get back to green.

CHAPTER 12 ■ RATINGS

233

 Listing 12-26. Restoring the Correct Store Method

 14 public function store(Request $request, $authorId)
 15 {
 16 $author = Author::findOrFail($authorId);
 17
 18 $rating = $author->ratings()->create(['value' => $request->get('value')]);
 19 $data = $this->item($rating, new RatingTransformer());
 20
 21 return response()->json($data, 201);
 22 }

 Check the tests to make sure everything is working as expected (Listing 12-27).

 Listing 12-27. Running the Full Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (58 tests, 300 assertions)

 Deleting an Author Rating
 Your next feature will be the ability to delete an existing author rating. You already defined the application
delete route earlier in this chapter (Listing 12-28).

 Listing 12-28. The Delete Route for Author Ratings

 $app->delete(
 '/{authorId}:[\d]+}/ratings/{ratingId:[\d]+}',
 'AuthorsRatingsController@destroy'
);

 The outline for your acceptance criteria:

• Delete should remove an existing rating from an author.

• The ratings table should no longer associate the rating to the author.

• The rating should no longer exist in the database.

 Let’s write the first failing test for deleting a rating from an author in the
 AuthorsRatingsControllerTest (Listing 12-29).

 Listing 12-29. Test to Delete a Rating from an Author

 47 /** @test **/
 48 public function destroy_can_delete_an_author_rating()
 49 {
 50 $author = factory(\App\Author::class)->create();
 51 $ratings = $author->ratings()->saveMany(
 52 factory(\App\Rating::class, 2)->make()
 53);
 54

CHAPTER 12 ■ RATINGS

234

 55 $this->assertCount(2, $ratings);
 56
 57 $ratings->each(function (\App\Rating $rating) use ($author) {
 58 $this->seeInDatabase('ratings', [
 59 'rateable_id' => $author->id,
 60 'id' => $rating->id
 61]);
 62 });
 63
 64 $ratingToDelete = $ratings->first();
 65 $this
 66 ->delete(
 67 "/authors/ { $author->id } /ratings/ { $ratingToDelete->id } "
 68)
 69 ->seeStatusCode(204);
 70
 71 $dbAuthor = \App\Author::find($author->id);
 72 $this->assertCount(1, $dbAuthor->ratings);
 73 $this->notSeeInDatabase(
 74 'ratings',
 75 ['id' => $ratingToDelete->id]
 76);
 77 }

 First, you seed data for the test; data factory code should look familiar because it is basically the same as
the database seeding you saw earlier in this chapter. You then check to make sure that you save two ratings
in the database with ratings()->saveMany() so you can verify that the rating count decreases by one after
deleting one rating. Next, you loop through each rating and just double check that each rating is properly
associated with the author.

 With the data seeded and verifying associations, your test gets the rating to be deleted and makes the
 DELETE request and you expect a 204 status code in return. Last, you verify that the rating was removed by
getting the author from the database and asserting that the author only has one rating, and the rating you
deleted is no longer in the ratings table.

 Technically, the framework takes care of the database associations checked in this test, but extra
checking does not hurt and makes me feel safer that my test is accurate.

 Moving on, you make sure your new test causes a failure (Listing 12-30).

 Listing 12-30. Running the Failing Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 There was 1 failure:

 1) Tests\App\Http\Controllers\AuthorsRatingsControllerTest::destroy_can_delete_an_author_
rating
 Failed asserting that 404 matches expected 204.

 /home/vagrant/Code/bookr/vendor/laravel/lumen-framework/src/Testing/CrawlerTrait.php:412
 /home/vagrant/Code/bookr/tests/app/Http/Controllers/AuthorsRatingsControllerTest.php:69

 FAILURES!

CHAPTER 12 ■ RATINGS

235

 Tests: 59, Assertions: 304, Failures: 1.

 With the failing test in place, let’s write the first implementation of the AuthorsRatingsController@
destroy method (Listing 12-31).

 Listing 12-31. Implementation for Deleting an Author Rating

 24 /**
 25 * @param $authorId
 26 * @param $ratingId
 27 * @return \Laravel\Lumen\Http\ResponseFactory
 28 */
 29 public function destroy($authorId, $ratingId)
 30 {
 31 /** @var \App\Author $author */
 32 $author = Author::findOrFail($authorId);
 33 $author
 34 ->ratings()
 35 ->findOrFail($ratingId)
 36 ->delete();
 37
 38 return response(null , 204);
 39 }

 Your controller ensures the author exists and then uses the author to find the $ratingId . The request
can fail if the $authorId is invalid or the $ratingId is invalid. You should write some additional tests in the
 AuthorsRatingsControllerTest class just to ensure that this method fails in the way you expect (Listing 12-32).

 Listing 12-32. Test API Cannot Delete Another Author’s Rating

 79 /** @test **/
 80 public function destroy_should_not_delete_ratings_from_another_author()
 81 {
 82 $authors = factory(\App\Author::class, 2)->create();
 83 $authors->each(function (\App\Author $author) {
 84 $author->ratings()->saveMany(
 85 factory(\App\Rating::class, 2)->make()
 86);
 87 });
 88
 89 $firstAuthor = $authors->first();
 90 $rating = $authors
 91 ->last()
 92 ->ratings()
 93 ->first();
 94
 95 $this->delete(
 96 "/authors/ { $firstAuthor->id } /ratings/ { $rating->id } ",
 97 [],
 98 ['Accept' => 'application/json']
 99)->seeStatusCode(404);
 100 }

CHAPTER 12 ■ RATINGS

236

 The test creates factory data for two authors. You then grab the first author and a rating from the second
author. Your delete request expects a 404 response because the rating id is invalid in the context of the author
from which you try to delete a rating. This test will pass because you’ve already added $author->ratings()->
findOrFail($ratingId) to the controller’s destroy method. You can swap out the code to get the test failing.

 You should also expect a 404 if the author id is not valid in the AuthorsRatingsControllerTest . You
have already seen variations of this test multiple times in this book.

 Listing 12-33. Test Expecting a 404 When the Author Is Invalid

 102 /** @test **/
 103 public function destroy_fails_when_the_author_is_invalid()
 104 {
 105 $this->delete(
 106 '/authors/1/ratings/1',
 107 [],
 108 ['Accept' => 'application/json']
 109)->seeStatusCode(404);
 110 }

 You code should fully pass, but you’ll run the test suite once more before moving on to the next topic
(Listing 12-34).

 Listing 12-34. Running the Full Test Suite

 $ phpunit

 OK (61 tests, 308 assertions)

 You are done with managing author ratings, although I did not cover all the API endpoints you might
make to manage ratings an application. You could also provide an endpoint to do bulk operations, like
removing multiple ratings with one request when it makes sense. You should be equipped with enough
knowledge now to develop and test these concepts.

 Ratings in the Author API
 Now that you have the database schema and basic rating management, you are going to add rating data to
the /author API. Your feature will be to provide an API that includes an author’s rating average and rating
count. When building this feature you need to keep in mind how the ratings might be used. In the simplest
form, perhaps an author page will show a five star graphical scale.

 The API needs to provide enough information to allow the UI to display the ratings. The consumer
might need to know things like the maximum rating possible, how many people rated the author, the average
rating, and the average rating as a percentage.

 With that data in mind, your first attempt might look like Listing 12-35 .

 Listing 12-35. Example Author Response With Ratings

 {
 "data" :{
 "id" :1,
 "name" :"Roslyn Medhurst",
 "gender" :"female",

CHAPTER 12 ■ RATINGS

237

 "biography" :"Nemo accusantium et blanditiis.",
 "rating" :{
 "average" :3.32,
 "max" :5,
 "percent" :66.4,
 "count" :56
 },
 "created" :"2015-12-12T14:36:50+0000",
 "updated" :"2015-12-12T14:36:50+0000"
 }
 }

 Now that you have an idea of what your API might respond with, your test plan will include:

• Testing typical rating values when an author has been rated

• Testing the rating data when an author has not been rated yet

 You’ll start by writing new tests in the tests/app/Transformer/AuthorTransformerTest.php class.
The first test you will cover is to modify the existing it_can_transform_an_author test to add rating data
(Listing 12-36).

 Listing 12-36. Testing the AuthorTransformer Rating Data

 25 /** @test **/
 26 public function it_can_transform_an_author()
 27 {
 28 $author = factory(\App\Author::class)->create();
 29
 30 $author->ratings()->save(
 31 factory(\App\Rating::class)->make(['value' => 5])
 32);
 33
 34 $author->ratings()->save(
 35 factory(\App\Rating::class)->make(['value' => 3])
 36);
 37
 38 $actual = $this->subject->transform($author);
 39
 40 $this->assertEquals($author->id, $actual['id']);
 41 $this->assertEquals($author->name, $actual['name']);
 42 $this->assertEquals($author->gender, $actual['gender']);
 43 $this->assertEquals($author->biography, $actual['biography']);
 44 $this->assertEquals($author->created_at->toIso8601String(), $actual['created']);
 45 $this->assertEquals($author->updated_at->toIso8601String(), $actual['created']);
 46
 47 // Rating
 48 $this->assertArrayHasKey('rating', $actual);
 49 $this->assertInternalType('array', $actual['rating']);
 50 $this->assertEquals(4, $actual['rating']['average']);
 51 $this->assertEquals(5, $actual['rating']['max']);
 52 $this->assertEquals(80, $actual['rating']['percent']);
 53 $this->assertEquals(2, $actual['rating']['count']);
 54 }

CHAPTER 12 ■ RATINGS

238

 You start by adding ratings to the author data under test. To make it easy to calculate averages, you
add two ratings individually, and factory()->make() allows you to override the rating value. Next, you add
assertions that the rating key exists and is an array. Last, you verify the value of each individual rating key
you expect.

 Your test will fail with the error shown in Listing 12-37 .

 Listing 12-37. Running the Modified Test

 # vagrant@homestead:~/Code/bookr$
 $ phpunit --filter=it_can_transform_an_author

 There was 1 failure:

 1) Tests\App\Transformer\AuthorTransformerTest::it_can_transform_an_author
 Failed asserting that an array has the key 'rating'.

 /home/vagrant/Code/bookr/tests/app/Transformer/AuthorTransformerTest.php:48

 FAILURES!
 Tests: 1, Assertions: 7, Failures: 1.

 Your implementation of this feature will update the app/Transformer/AuthorTransformer.php file to
include the “ratings” key and do all the ratings calculations (Listing 12-38).

 Listing 12-38. Implementing Ratings in the AuthorTransformer

 19 /**
 20 * Transform an author model
 21 *
 22 * @param Author $author
 23 * @return array
 24 */
 25 public function transform(Author $author)
 26 {
 27 return [
 28 'id' => $author->id,
 29 'name' => $author->name,
 30 'gender' => $author->gender,
 31 'biography' => $author->biography,
 32 'rating' => [
 33 'average' => (float) sprintf(
 34 "%.2f",
 35 $author->ratings->avg('value')
 36),
 37 'max' => (float) sprintf("%.2f", 5),
 38 'percent' => (float) sprintf(
 39 "%.2f",
 40 ($author->ratings->avg('value') / 5) * 100
 41),
 42 'count' => $author->ratings->count(),
 43],
 44 'created' => $author->created_at->toIso8601String(),

CHAPTER 12 ■ RATINGS

239

 45 'updated' => $author->created_at->toIso8601String(),
 46];
 47 }

 If you run the test suite, things should pass again (Listing 12-39).

 Listing 12-39. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (61 tests, 314 assertions)

 Your change will affect all of your responses containing an author. Unfortunately, the rating data is lazy-
loaded right now, meaning that each Author record in the /authors request will result in a new query. If you
are returning 100 authors in your response, that will result in 100 queries to the ratings table. Listing 12-40
is an example from the app/storage/logs/lumen.log file where I am outputting queries from the ORM.

 Listing 12-40. Example of a Lazy-Loaded Query

 [2015-12-17 21:20:56] lumen.INFO: select * from `ratings` where `ratings`.`ratea\
 ble_id` = ? and `ratings`.`rateable_id` is not null and `ratings`.`rateable_type\
 ̀ = ? [1,"App\\Author"]

 To get this type of logging working in your app, you are going to use the app/Providers/
AppServiceProvider.php class to add some database logging so you can visualize the actual queries
generated by Eloquent (Listing 12-41).

 Listing 12-41. Adding Database Logging to the AppServiceProvider

 1 <?php
 2
 3 namespace App\Providers;
 4
 5 use DB;
 6 use Log;
 7 use Illuminate\Support\ServiceProvider;
 8
 9 class AppServiceProvider extends ServiceProvider
 10 {
 11 /**
 12 * Register any application services.
 13 *
 14 * @return void
 15 */
 16 public function register()
 17 {
 18 //
 19 }
 20
 21 public function boot()
 22 {

CHAPTER 12 ■ RATINGS

240

 23 if (env('DB_LOGGING', false) === true) {
 24 DB::listen(function($query) {
 25 Log::info($query->sql, $query->bindings, $query->time);
 26 });
 27 }
 28 }
 29 }

 You’ve added a listener that will log out the SQL query and bindings when the environment variable DB_
LOGGING=true is set. To start using this listener, you need to enable the AppServiceProvider and configure
the environment variable.

 To enable the AppServiceProvider, open up bootstrap/app.php and look for the “Register Service
Providers” section and uncomment the AppServiceProvider class (Listing 12-42).

 Listing 12-42. Enabling the AppServiceProvider in bootstrap/app.php

 81 $app->register(App\Providers\AppServiceProvider::class);

 Add the following to your .env file in the root of the project (I would also recommend adding it to the
. env example file for other developers to grab). Setting the variable to true (Listing 12-43) enables logging.

 Listing 12-43. Enabling DB Logging in .env

 DB_LOGGING= true

 Setting it to false or not defining the variable will disable logging (Listing 12-44).

 Listing 12-44. Disabling DB Logging in .env.example

 DB_LOGGING= false

 Chatty Logs It’s probably not a good idea to use DB::listen() to log database queries in production;

use the DB logging feature as a development convenience to see SQL queries. You can just as easily enable
MySQL’s logging capabilities to get the same effect. I prefer to toggle it on/off in development because I don’t
always need (or want) to see database logs while I develop.

 Now that you have database logging in place, make a request to the /authors endpoint to visualize the
queries. In the next section, you will work on preventing excess queries to get author rating data.

 Eager Loading Ratings
 After taking an aside and understanding that your transformer can create additional unnecessary (and
unintentional) queries, what can you do about it? Enter eager loading (https://laravel.com/docs/5.2/
eloquent-relationships#eager-loading).

 The official documentation for eager loading does a great job of explaining the (potential) problem and
how to avoid it. Let’s update your AuthorsController@index method to use eager loading and check how
your database logging changes compared to doing a query for each individual author. Open the app/Http/
Controllers/AuthorsController.php file and update the index route (Listing 12-45).

https://laravel.com/docs/5.2/eloquent-relationships#eager-loading
https://laravel.com/docs/5.2/eloquent-relationships#eager-loading

CHAPTER 12 ■ RATINGS

241

 Listing 12-45. Using Eager Loading on the Authors Index Route

 11 public function index()
 12 {
 13 $authors = Author::with('ratings')->get();
 14
 15 return $this->collection($authors, new AuthorTransformer());
 16 }

 If you make a request to /authors with database logging turned on, the request should only generate
two queries (Listing 12-46).

 Listing 12-46. Queries Logged with Eager Loading

 [2015-12-18 05:33:07] lumen.INFO: select * from `authors`
 [2015-12-18 05:33:07] lumen.INFO: select * from `ratings` where `ratings`.`ratea\
 ble_id` in (?, ?, ?, ?, ?, ?, ?, ?, ?, ?) and `ratings`.`rateable_type` = ? [1,2\
 ,3,4,5,6,7,8,9,10,"App\\Author"]

 Much better! Now your transformer is not creating unnecessary queries.

 You Can Still Generate Extra Queries!

 In the AuthorTransformer you can still create extra queries by calling the $author->ratings() method. For
example, $author->ratings()->avg('value') makes an additional query even if you use eager loading to
get the author and ratings. You should use $author->ratings->avg('value') as seen in your transformer to
avoid extra queries.

 At this point, you should run the test suite again since you changed your code to use eager loading
(Listing 12-47).

 Listing 12-47. Running the Test Suite

 # vagrant@homestead:~/Code/bookr$
 $ phpunit

 OK (61 tests, 314 assertions)

 The remaining author routes in the AuthorsController don’t really need to use eager loading because
only one record is being requested and you will not generate additional queries. Eager loading is most
important when you are getting a collection of records and looping over them.

 Git Commit: Add Author Ratings

 c5989e9 (https://bitbucket.org/paulredmond/apress-bookr/commits/c5989e9)

https://bitbucket.org/paulredmond/apress-bookr/commits/c5989e9

CHAPTER 12 ■ RATINGS

242

 Conclusion
 In this chapter, you learned how to use polymorphic relationships in your API and then expose the data
from your Fractal transformer. You are well-equipped to add ratings to books and then use the API to create
your own front end too! Along the way you learned about eager loading (https://laravel.com/docs/5.2/
eloquent-relationships#eager-loading) and just touched on the subject of query optimization.

http://laravel.com/docs/5.1/eloquent-relationships#eager-loading
https://laravel.com/docs/5.2/eloquent-relationships#eager-loading
https://laravel.com/docs/5.2/eloquent-relationships#eager-loading

243© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7

 APPENDIX

 Where to Go From Here

 Congratulations! Thanks for reading and working through the whole book. The main objective of this book
is two-fold: to show that any PHP developer can pick up this book and write Lumen APIs with no previous
Laravel Experience, and to let you practice test-driven development in an API context.

 A wonderful artifact of writing this book in a test-driven manner is that I have high confidence that
the code samples in this book do work. I am not claiming that the book is 100% free from bugs or full test
coverage, but the code feels solid .

 There are many things not covered in the scope of this book that may one day become a follow-up or
a more advanced book. For instance, I did not cover writing APIs with multi-tenancy in mind and I did not
cover authentication. This book was about building a foundation.

 If you want to share this book with others in your company, meetups, newsletters, and conferences,
please get in touch with me on Twitter @paulredmond (https://twitter.com/paulredmond).

 Laravel
 If you have a solid understanding of Laravel (https://laravel.com/) , you pretty much know Lumen
(apart from a few API differences). If you have not worked with Laravel, I hope you read through the
documentation at https://laravel.com/docs/ . Chances are that most readers have already at least
experimented with Laravel.

 Laravel is the other half of my current development toolkit. Together, Laravel and Lumen provide all
the core developer tools I need to write web applications and APIs. I have the same basic workflow between
writing Laravel and Lumen apps. Having the same workflow makes me feel very productive, and the APIs are
familiar.

 Lumen has other features you can read about in the Laravel documentation, such as a queue system
and scheduled jobs. Knowing that you don’t have to bring in third-party libraries to get a queue going in
Lumen or Laravel is a huge win. Lumen also benefits from some more advanced Eloquent features that I did
not cover in this book, but you can learn about them in the documentation.

 Laracasts
 Laracasts (https://laracasts.com/) are the best resource for learning Laravel (and thus Lumen), period.
At the time of writing, they have a free series called Laravel from Scratch at https://laracasts.com/
series/laravel-5-from-scratch . The paid subscription is valuable and will give you hours of videos on
Laravel, general programming, development tools, and even JavaScript.

https://twitter.com/paulredmond
https://laravel.com/
https://laravel.com/docs/
https://laracasts.com/
https://laracasts.com/
https://laracasts.com/series/laravel-5-from-scratch
https://laracasts.com/series/laravel-5-from-scratch
https://laracasts.com/series/laravel-5-from-scratch

APPENDIX ■ WHERE TO GO FROM HERE

244

 Mockery
 We used Mockery (http://docs.mockery.io/en/latest/) to unit test certain things in this book and I can’t
encourage you enough to become very familiar with this library. Mockery is a must in my own unit testing
toolbelt.

 Guzzle
 Guzzle (http://docs.guzzlephp.org/) is my favorite PHP HTTP client library. When you write APIs, you
need a way for other applications to communicate with your API. If you haven’t used Guzzle, I recommend
writing an HTTP client for the application you wrote in this book. It would be a good exercise. Sometimes
your own APIs will need to communicate with other internal APIs.

http://docs.mockery.io/en/latest/
http://docs.mockery.io/en/latest/
http://docs.guzzlephp.org/
http://docs.guzzlephp.org/

245© Paul Redmond 2016
P. Redmond, Lumen Programming Guide, DOI 10.1007/978-1-4842-2187-7

 A
 $app->group, 9, 165, 187, 213, 223
 Artisan console

 commands
 db:seed , 29–30, 34, 51–53, 56–57, 143–145,

206, 222, 231
 make:migration , 27, 137–138, 143, 201–202,

219
 migrate:refresh , 30, 34, 51–53, 56–57, 138,

140, 143–145, 203, 206, 222, 231
 Author Model Factory , 142
 /authors , 165–199, 223–224, 230–241
 AuthorsController , 165–166, 168–171, 178–192, 195,

197–198, 223, 228, 241
 AuthorsRatings Controller , 230
 Authors Transformer , 166–168, 177–178

 B
 Book API

 create a new project , 7–9, 17, 21
 Book bundle , 199, 201–217
 /books API , 33, 125
 BooksController , 23–25, 31–32, 35–38, 43–44, 48–50,

52, 54–60, 63, 97, 105, 111, 114–116, 182
 BooksController@index , 25, 31, 35, 43, 48, 50, 55,

63, 66, 90–92, 116, 118, 155, 160
 BooksControllerTest , 23–24, 33, 35–36, 38–39, 41,

43, 44, 47, 49–50, 52–54, 56–57, 59, 66–67,
91–92, 94, 96, 117–118, 120, 132, 145–146,
148, 150–153, 155

 /books/ route , 33, 39, 52–54, 170
 BooksTableSeeder.php , 29, 142, 222
 BookTransformer , 98–99, 101, 106–107, 115–117,

120, 151
 Bundle model factory , 204–205
 /bundles , 201, 204–214, 216–217
 BundlesController , 211, 213–216
 BundleTransformer , 207–211, 213, 215

 C
 Carbon , 29, 101, 120–121, 123, 142, 148, 152
 Composer , 1, 7, 17, 22, 30, 74, 90, 97, 206

 commands
 dump-autoload , 30, 206

 create-project , 7, 17
 Custom validation messages , 132–134, 185

 D
 Database migration

 authors , 27–28, 137–139, 143–144, 202–203
 books table , 27–28, 30, 137–139, 143–144, 203

 DatabaseMigrations trait , 65–67, 126
 Database seeder , 28–29, 142, 144, 205, 222
 Date Mutators , 101
 dd() , 44, 147, 150–151
 Debugging

 dd() , 44, 147, 151

 E
 Eloquent

 author model , 140–142, 152, 159–162, 167,
220–221, 238

 book model , 31, 45, 67, 97, 141, 201, 204
 database logging , 239–241
 eager loading , 177, 240–242
 many to many , 138, 201–202, 217
 mass assignment , 43, 45
 MassAssignmentException , 45
 methods

 all() , 31, 37, 43–44, 46, 48, 53, 57, 94–95, 116,
119, 122, 127, 129, 150, 170, 182–183, 185,
188–190, 192

 attach() , 215–216
 create() , 43–44, 67–69, 91–92, 99, 117,

128, 133, 145, 161, 169, 191–198, 205,
208, 224, 235

 Index

■ INDEX

246

 delete() , 55, 57, 59, 198, 235
 detach() , 216
 fi ll() , 51
 fi ndOrFail() , 37, 79–80, 198

 ModelNotFoundException , 35–39, 44, 53,
56–59, 69, 80–85, 115, 122, 129

 morphMany() , 221
 one to many , 138, 141–142, 221
 polymorphic relationships , 138, 217, 219,

221, 242
 properties

 $fi llable , 45, 51, 141, 147, 150, 220
 relationships , 141, 201, 204, 240, 242

 Environment setup
 database connection , 1, 20, 147
 Th e .env fi le , 19–21

 Exception Handling
 Handler contract , 71
 Handler.php , 71–72, 78, 80, 84
 HandlerTest.php , 74, 78, 85
 HttpException , 72–73, 78–80, 84

 F, G
 Facades , 12, 20–21, 111
 Faker , 65–66, 69, 142, 145, 205, 222
 Fractal

 FractalServiceProvider.php , 112, 175
 including other models , 171–181
 installing fractal , 97
 manager , 101–106, 108–109, 113,

172–174, 177
 parseIncludes() , 176–177, 180
 serializer , 102–111, 113, 172–177

 Fractal Response Class
 FractalResponse::collection() , 107–109
 FractalResponse::item() , 105–106, 109

 H
 Homestead

 book API setup , 7, 26, 65
 Homestead.yaml , 2, 8, 18–19, 65
 project setup , 65
 vagrant , 1, 2, 7, 19–21, 23–28, 30, 34, 36, 38–39,

41–42, 44–45, 47, 50–55, 57, 73
 vagrant provision , 8, 18, 65

 I
 Installation

 Linux–Debian/Ubuntu , 5–6
 Linux–Red Hat , 4
 Mac OSX , 2–3
 Windows , 6

 J, K
 JSON Exceptions , 72–74
 JsonResponse , 43, 55–56, 59, 75–79, 83, 85–87,

127, 215

 L
 Log facade , 12
 Lumen

 app.php confi g , 9, 12, 14, 20, 71, 111, 114, 240
 enable eloquent , 20
 enable facades , 12, 20–21
 project setup , 65
 requirements , 1, 74

 M
 Max Length , 131–132
 Middleware

 global middleware , 11–13
 route middleware , 11, 13–14

 Mockery , 74–77, 79, 85, 88, 103–104, 177, 244
 MockeryPHPUnitIntegration , 76, 104
 Mocking Carbon , 120
 Model factory

 book model factory , 66, 68
 factory() , 67, 69, 153–155, 222, 238
 factory()->create() , 67, 69, 222
 in tests , 66–69, 145–146

 MySQL , 1–6, 19–21, 28, 65, 240

 N, O
 Nested REST resources , 201

 P, Q
 Phpdotenv , 18, 65
 PHPUnit , 21–22, 36, 47, 65, 67, 76–77, 79, 91–92, 98,

101, 146, 160–161, 230
 --fi lter , 36, 38–39, 44–45, 47, 51–52, 54–56, 67,

76, 79, 99, 101, 103, 126, 128, 147–154,
160–161, 230, 238

 Pending tests , 33–34

 R
 Rateable trait , 221
 Rating model factory , 220
 Ratings , 219–244
 Rating transfomer , 225
 Request Object

 $request->all() , 43–44, 46, 48, 51, 53, 58, 94, 119,
122, 127, 152, 182–183, 186, 188–190

■ INDEX

247

 $request->wantsJson() , 16, 72–73,
78, 84

 Required , 5–6, 10, 23, 125, 128–129, 131–134, 149,
153, 156, 183–184, 186, 188, 190–192

 response()
 response()->json() , 43, 55
 response()->make() , 16

 Response object , 11, 14–16
 Route groups , 9–11, 13–15, 25, 165
 Routes

 Hello World Route , 10–11
 named routes , 48, 63
 route() , 34, 38, 40, 48–49, 52, 54, 56,

60, 62, 225
 route parameters , 10–11

 routes.php
 BooksController@destroy , 54–55, 63, 153–154
 BooksController@index , 25, 31, 35, 43, 48, 50,

55, 63, 66, 90–92, 118, 155, 160
 BooksController@show , 35, 38–40, 43, 48, 50,

53, 55, 60, 63, 79–81, 92–93, 118
 BooksController@store , 43, 48, 50, 55, 63, 93,

94, 119, 121, 125, 128, 146–147, 149, 153
 BooksController@update , 50, 55, 63, 95–96,

121–122, 125, 128–129, 131, 134, 151–153

 S
 Service container , 12, 15, 43, 111–112, 114–115,

124, 175
 Service provider

 FractalServiceProvider.php , 112, 175
 resolve a service , 71, 111, 113–115, 134

 T
 Test database , 49, 51, 65–66, 69, 83, 88, 146, 211
 Testing

 CrawlerTrait , 24, 35, 51, 54, 91, 94, 156, 184,
232, 234

 methods
 get() , 10, 14–15, 82, 241
 isEmpty() , 54, 62, 69, 153
 notSeeInDatabase , 49, 51, 54, 61–62, 69, 95,

122, 130, 152, 153, 157, 158, 189, 198, 214,
216, 234

 post() , 42
 seeHeaderWithRegExp() , 46–47, 61, 161,

187
 seeInDatabase() , 42, 50, 61, 69, 93, 96, 121,

123, 131, 148, 152, 186, 189, 196, 234
 seeJson() , 25, 81, 94, 95, 152
 seeJsonEquals() , 52, 56, 62, 91–92, 117
 seeStatusCode() , 24, 34, 36, 39–40, 46, 49,

52, 54, 56, 59–62, 68–69, 82, 92, 96, 118,
123, 130–132, 157–158, 161, 168, 181,
184–187, 189, 191–194, 196, 198, 211, 216,
232, 234–236

 U
 Unit Tests , 21–22, 74, 76, 98, 103, 244

 V, W, X, Y, Z
 Validation , 125–135, 149, 153–157, 183–186,

190–192, 195–196

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Installing Lumen
	Homestead
	Mac OSX
	Linux
	Red Hat/CentOS
	Debian/Ubuntu

	Windows
	Conclusion

	Chapter 2: Hello Lumen
	Setting Up a New Project
	Routes
	The Hello World Route
	Route Parameters

	Middleware and Responses
	Global Middleware
	Route Middleware

	The Request and Response Objects
	The Request
	The Response

	Onward

	Chapter 3: Creating the Book Application
	Building Something Amazing
	Environment Setup
	Checking Unit Tests
	Setup Complete

	Chapter 4: Starting the Books API
	Creating the First Endpoint
	Setting Up Models and Seed Data
	Eloquent Books
	Success

	Chapter 5: Creating, Reading, Updating, and Deleting Books
	Requesting an Individual Book
	Creating a New Book
	Updating an Existing Book
	Deleting Books
	Conclusion

	Chapter 6: Responding to Errors
	Test Database
	Model Factories
	Factories in Tests

	Better Error Responses
	Framework Exception Handling
	JSON Exceptions

	Testing the Exception Handler
	Conclusion

	Chapter 7: Leveling Up Responses
	Introducing Fractal
	First Version of API Response Formatting
	The Fractal Response Class
	The Book Transformer
	The Fractal Response Class

	Fractal Response Service
	Integrating the Fractal Response Service
	Conclusion

	Chapter 8: Validation
	First Attempt at Validation
	More Validation Constraints
	Custom Validation Messages
	Other Approaches
	Conclusion

	Chapter 9: Authors
	The Authors Database Schema
	Fixing Broken Tests
	Conclusion

	Chapter 10: The /authors API Resource
	The GET /authors Endpoint
	The AuthorsTransformer
	The Author Controller

	The GET /authors/{id} Endpoint
	A Basic Response
	Including Other Models in the Response

	The POST /authors Endpoint
	The PUT /authors/{id} Endpoint
	The DELETE /authors/{id} Endpoint
	Conclusion

	Chapter 11:
Book Bundles
	Defining the Relationship Between Books and Bundles
	The GET /bundles/{id} Endpoint
	Adding a Book to a Bundle
	Remove a Book from a Bundle
	Conclusion

	Chapter 12: Ratings
	Database Design
	Rating an Author
	Adding an Author Rating
	Deleting an Author Rating

	Ratings in the Author API
	Eager Loading Ratings
	Conclusion

	Appendix: Where to Go From Here
	Laravel
	Laracasts
	Mockery
	Guzzle
	Index

