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Preface

Machine Learning for Hackers: Email
To explain the perspective from which this book was written, it will be helpful to define
the terms machine learning and hackers.

What is machine learning? At the highest level of abstraction, we can think of machine
learning as a set of tools and methods that attempt to infer patterns and extract insight
from a record of the observable world. For example, if we’re trying to teach a computer
to recognize the zip codes written on the fronts of envelopes, our data may consist of
photographs of the envelopes along with a record of the zip code that each envelope
was addressed to. That is, within some context we can take a record of the actions of
our subjects, learn from this record, and then create a model of these activities that will
inform our understanding of this context going forward. In practice, this requires data,
and in contemporary applications this often means a lot of data (several terabytes).
Most machine learning techniques take the availability of such a data set as given—
which, in light of the quantities of data that are produced in the course of running
modern companies, means new opportunities.

What is a hacker? Far from the stylized depictions of nefarious teenagers or Gibsonian
cyber-punks portrayed in pop culture, we believe a hacker is someone who likes to
solve problems and experiment with new technologies. If you’ve ever sat down with
the latest O’Reilly book on a new computer language and knuckled out code until you
were well past “Hello, World,” then you’re a hacker. Or, if you’ve dismantled a new
gadget until you understood the entire machinery’s architecture, then we probably
mean you, too. These pursuits are often undertaken for no other reason than to have
gone through the process and gained some knowledge about the how and the why of
an unknown technology.
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Along with an innate curiosity for how things work and a desire to build, a computer
hacker (as opposed to a car hacker, life hacker, food hacker, etc.) has experience with
software design and development. This is someone who has written programs before,
likely in many different languages. To a hacker, UNIX is not a four-letter word, and
command-line navigation and bash operations may come as naturally as working with
windowing operating systems. Using regular expressions and tools such as sed, awk and
grep are a hacker’s first line of defense when dealing with text. In the chapters of this
book, we will assume a relatively high level of this sort of knowledge.

How This Book is Organized
Machine learning exists at the intersection of traditional mathematics and statistics
with software engineering and computer science. As such, there are many ways to learn
the discipline. Considering its theoretical foundations in mathematics and statistics,
newcomers would do well to attain some degree of mastery of the formal specifications
of basic machine learning techniques. There are many excellent books that focus on
the fundamentals, the seminal work being Hastie, Tibshirani, and Friedman’s The
Elements of Statistical Learning [HTF09].* But another important part of the hacker
mantra is to learn by doing. Many hackers may be more comfortable thinking of prob-
lems in terms of the process by which a solution is attained, rather than the theoretical
foundation from which the solution is derived.

From this perspective, an alternative approach to teaching machine learning would be
to use “cookbook” style examples. To understand how a recommendation system
works, for example, we might provide sample training data and a version of the model,
and show how the latter uses the former. There are many useful texts of this kind as
well—Toby Segaran’s Programming Collective Intelligence is an recent example
[Seg07]. Such a discussion would certainly address the how of a hacker’s method of
learning, but perhaps less of the why. Along with understanding the mechanics of a
method, we may also want to learn why it is used in a certain context or to address a
specific problem.

To provide a more complete reference on machine learning for hackers, therefore, we
need to compromise between providing a deep review of the theoretical foundations
of the discipline and a broad exploration of its applications. To accomplish this, we
have decided to teach machine learning through selected case studies.

For that reason, each chapter of this book is a self-contained case study focusing on a
specific problem in machine learning. The case studies in this book will focus on a
single corpus of text data from email. This corpus will be used to explore techniques
for classification and ranking of these messages.

* The Elements of Statistical Learning can now be downloaded free of charge at http://www-stat.stanford.edu/
~tibs/ElemStatLearn/.
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The primary tool we will use to explore these case studies is the R statistical program-
ming language (http://www.r-project.org/). R is particularly well suited for machine
learning case studies because it is a high-level, functional, scripting language designed
for data analysis. Much of the underlying algorithmic scaffolding required is already
built into the language, or has been implemented as one of the thousands of R packages
available on the Comprehensive R Archive Network (CRAN).† This will allow us to
focus on the how and the why of these problems, rather than reviewing and rewriting
the foundational code for each case.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require

† For more information on CRAN, see http://cran.r-project.org/.
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permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Machine Learning for Email by Drew Con-
way and John Myles White (O’Reilly). Copyright 2012 Drew Conway and John Myles
White, 978-1-449-31430-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920022350

x | Preface

www.allitebooks.com

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/0636920022350
http://www.allitebooks.org


To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Using R

Machine learning exists at the intersection of traditional mathematics and statistics
with software engineering and computer science. In this book, we will describe several
tools from traditional statistics that allow you to make sense of that world. Statistics
has almost always been concerned with learning something interpretable from data,
while machine learning has been concerned with turning data into something practical
and usable. This contrast makes it easier to understand the term machine learning:
Machine learning is concerned with teaching computers something about the world, so
that they can use that knowledge to perform other tasks, while statistics is more con-
cerned with developing tools for teaching humans something about the world, so that
they can think more clearly about the world in order to make better decisions.

In machine learning, the learning occurs by extracting as much information from the
data as possible (or reasonable) through algorithms that parse the basic structure of the
data and distinguish the signal from the noise. After they have found the signal, or
pattern, the algorithms simply decide that everything else that’s left over is noise. For
that reason, machine learning techniques are also referred to as pattern recognition
algorithms. We can “train” our machines to learn about how data is generated in a given
context, which allows us to use these algorithms to automate many useful tasks. This
is where the term training set comes from, referring to the set of data used to build a
machine learning process. The notion of observing data, learning from it, and then
automating some process of recognition is at the heart of machine learning, and forms
the primary arc of this book.

In this book, we will assume a relatively high degree of knowledge in basic programming
techniques and algorithmic paradigms. That said, R remains a relatively niche language
even among experienced programmers. In an effort to start everyone at the same start-
ing point, this chapter will also provide some basic information on how to get started
using the R language. Later in the chapter we will work through a specific example of
using the R language to perform common tasks associated with machine learning.

1



This chapter does not provide a complete introduction to the R pro-
gramming language. As you might expect, no such introduction could
fit into a single book chapter. Instead, this chapter is meant to prepare
the reader for the tasks associated with doing machine learning in R.
Specifically, we describe the process of loading, exploring, cleaning, and
analyzing data. There are many excellent resources on R that discuss
language fundamentals; such as data types, arithmetic concepts, and
coding best practices. Insofar as those topics are relevant to the case
studies presented here, we will touch on all of these issues; however,
there will be no explicit discussion of these topics. Some of these re-
sources are listed in Table 1-1.

If you have never seen the language and its syntax before, we highly recommend going
through this introduction to get some exposure. Unlike other high-level scripting lan-
guages, such as Python or Ruby, R has a unique and somewhat prickly syntax and tends
to have a steeper learning curve than other languages. If you have used R before, but
not in the context of machine learning, there is still value in taking the time to go
through this review before moving onto the cases.

R for Machine Learning
R is a language and environment for statistical computing and graphics...R provides a
wide variety of statistical (linear and nonlinear modeling, classical statistical tests, time-
series analysis, classification, clustering, ...) and graphical techniques, and is highly ex-
tensible. The S language is often the vehicle of choice for research in statistical method-
ology, and R provides an Open Source route to participation in that activity.

—The R Project for Statistical Computing, http://www.r-project.org/

The best thing about R is that it was developed by statisticians. The worst thing about R
is that...it was developed by statisticians.

—Bo Cowgill, Google, Inc.

R is an extremely powerful language for manipulating and analyzing data. Its meteoric
rise in popularity within the data science and machine learning communities has made
it the de facto lingua franca for analytics. R’s success in the data analysis community
stems from two factors described in the epitaphs above: R provides most of the technical
power that statisticians require built into the default language, and R has been sup-
ported by a community of statisticians who are also open source devotees.

There are many technical advantages afforded by a language designed specifically for
statistical computing. As the description from the R Project notes, the language pro-
vides an open-source bridge to S, which contains many highly-specialized statistical
operations as base functions. For example, to perform a basic linear regression in R,
one must simply pass the data to the lm function, which then returns an object con-
taining detailed information about the regression (coefficients, standard errors, residual
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values, etc.). This data can then be visualized by passing the results to the plot function,
which is designed to visualize the results of this analysis.

In other languages with large scientific computing communities, such as Python, du-
plicating the functionality of lm requires the use of several third-party libraries to rep-
resent the data (NumPy), perform the analysis (SciPy) and visualize the results
(matplotlib). As we will see in the following chapters, such sophisticated analyses can
be performed with a single line of code in R.

In addition, as in other scientific computing environments, the fundamental data type
in R is a vector. Vectors can be aggregated and organized in various ways, but at the
core, all data are represented this way. This relatively rigid perspective on data struc-
tures can be limiting, but is also logical given the application of the language. The most
frequently used data structure in R is the data frame, which can be thought of as a
matrix with attributes, an internally defined “spreadsheet” structure, or relational da-
tabase-like structure in the core of the language. Fundamentally, a data frame is simply
a column-wise aggregation of vectors that R affords specific functionality to, which
makes it ideal for working with any manner of data.

For all of its power, R also has its disadvantages. R does not scale well
with large data, and while there have been many efforts to address this
problem, it remains a serious issue. For the purposes of the case studies
we will review, however, this will not be an issue. The data sets we will
use are relatively small, and all of the systems we will build are proto-
types or proof-of-concept models. This distinction is important, be-
cause if your intention is to build enterprise level machine learning sys-
tems at the Google or Facebook scale, then R is not the right solution.
In fact, companies like Google and Facebook often use R as their “data
sandbox,” to play with data and experiment with new machine learning
methods. If one of those experiments bears fruit, then the engineers will
attempt to replicate the functionality designed in R in a more appropri-
ate language, such as C.

This ethos of experimentation has also engendered a great sense of community around
the language. The social advantages of R hinge on this large and growing community
of experts using and contributing to the language. As Bo Cowgill alludes to, R was
borne out of statisticians’ desire to have a computing environment that met their spe-
cific needs. Many R users, therefore, are experts in their various fields. This includes
an extremely diverse set of disciplines, including mathematics, statistics, biology,
chemistry, physics, psychology, economics, and political science, to name a few. This
community of experts has built a massive collection of packages on top of the extensive
base functions in R. At the time of writing, CRAN contained over 2,800 packages. In
the case studies that follow, we will use many of the most popular packages, but this
will only scratch the surface of what is possible with R.

R for Machine Learning | 3



Finally, while the latter portion of Cowgill’s statement may seem a bit menacing, it
further highlights the strength of the R community. As we will see, the R language has
a particularly odd syntax that is rife with coding “gotchas” that can drive even experi-
enced developers away. But all grammatical grievances with a language can eventually
be overcome, especially for persistent hackers. What is more difficult for non-statisti-
cians is the liberal assumption of familiarity with statistical and mathematical methods
built into R functions. Using the lm function as an example, if you had never performed
a linear regression, you would not know to look for coefficients, standard errors, or
residual values in the results. Nor would you know how to interpret those results.

But, because the language is open source, you are always able to look at the code of a
function to see exactly what it is doing. Part of what we will attempt to accomplish with
this book is to explore many of these functions in the context of machine learning, but
that will ultimately only address a tiny subset of what you can do in R. Fortunately, the
R community is full of people willing to help you understand not only the language,
but also the methods implemented in it. Table 1-1 lists some of the best places to start.

Table 1-1. Community resources for R help

Resource Location Description

RSeek http://rseek.org/ When the core development team decided to
create an open-source version of S and call it R,
they had not considered how hard it would be to
search for documents related to a single-letter
language on the Web. This specialized search tool
attempts to alleviate this by providing a focused
portal to R documentation and information.

Official R mailing lists http://www.r-project.org/mail.html There are several listservs dedicated to the R lan-
guage, including announcements, packages, de-
velopment—and of course—help. Many of the
language’s core developers frequent these lists,
and responses are often quick and terse.

StackOverflow http://stackoverflow.com/questions/tagged/r Hackers will know StackOverflow.com as one of
the premier web resources for coding tips in any
language, and the R tag is no exception. Thanks
to the efforts of several prominent R community
members, there is an active and vibrant collec-
tion of experts adding and answering R questions
on StackOverflow.

#rstats Twtter hash-tag http://search.twitter.com/search?q=%23rstats There is also a very active community of R users
on Twitter, and they have adopted the #rstats
hashtag as their signifier. The thread is a great
place to find links to useful resources, find experts
in the language, and post questions—as long
as they can fit into 140 characters!
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Resource Location Description

R-Bloggers http://www.r-bloggers.com/ There are hundreds of people blogging about
how they use R in their research, work, or just for
fun. R-bloggers.com aggregates these blogs and
provides a single source for all things related to
R in the blogosphere, and is a great place to learn
by example.

Video Rchive http://www.vcasmo.com/user/drewconway As the R community grows, so too do the number
of regional meetups and gatherings related to
the language. The Rchive attempts to document
the presentations and tutorials given at these
meetings by posting videos and slides, and now
contains presentations from community mem-
bers all over the world.

The remainder of this chapter focuses on getting you set up with R and using it. This
includes downloading and installing R, as well as installing R packages. We conclude
with a miniature case study that will serve as an introduction to some of the R idioms
we’ll use in later chapters. This includes issues of loading, cleaning, organizing, and
analyzing data.

Downloading and Installing R
Like many open source projects, R is distributed by a series of regional mirrors. If you
do not have R already installed on your machine, the first step is to download it. Go to
http://cran.r-project.org/mirrors.html and select the CRAN mirror closest to you. Once
you have selected a mirror, you will need to download the appropriate distribution of
R for whichever operating system you are running.

R relies on several legacy libraries compiled from C and Fortran. As such, depending
on your operating system and your familiarity with installing software from source
code, you may choose whether to install R from a compiled binary distribution or the
source. Below, we present instruction for installing R on Windows, Mac OS X, and
Linux distributions, with notes on installing from either source or binaries when
available.

Finally, R is available in both 32- and 64-bit versions and, depending on your hardware
and operating system combination, you should install the appropriate version.

Windows

For Windows operating systems there are two subdirectories available to install R:
base and contrib. The latter is a directory of compiled Windows binary versions of the
all of the contributed R packages in CRAN, while the former is the basic installation.
Select the base installation, and download the latest compiled binary. Installing con-
tributed packages is easy to do from R itself and is not language-specific; therefore, it
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is not necessary to to install anything from the contrib directory. Follow the on-screen
instructions for the installation.

Once the installation has successfully completed, you will have an R application in your
Start menu, which will open the RGui and R Console, as pictured in Figure 1-1.

Figure 1-1. The RGui and R console on a Windows installation

For most standard Windows installations, this process should proceed without any
issues. If you have a customized installation, or encounter errors during the installation,
consult the R for Windows FAQ at your mirror of choice.

Mac OS X

Fortunately for Mac OS X users, R comes pre-installed with the operating system. You
can check this by opening the Terminal.app and simply typing R at the command-line.
You are now ready to begin! For some users, however, it will be useful to have a GUI
application to interact with the R console. For this you will need to install separate
software. With Mac OS X, you have the option of installing from either a compiled
binary or the source. To install from a binary—recommended for users with no
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experience using a Linux command line—simply download the latest version at your
mirror of choice at http://cran.r-project.org/mirrors.html and following the on-screen
instructions. Once the installation is complete, you will have both R.app (32-bit) and
R64.app (64-bit) available in your Applications folder. Depending on your version of
Mac OS X and your machine’s hardware, you may choose which version you wish to
work with.

As with the Windows installation, if you are installing from binary this process should
proceed without any problems. When you open your new R application you will see a
console similar to the one pictured in Figure 1-2.

Figure 1-2. The R console on a 64-bit version of the Mac OS X installation

If you have a custom installation of Mac OS X or wish to customize the
installation of R for your particular configuration, we recommend that
you install from the source code. To install R from source on Mac OS
X requires both C and Fortran compilers, which are not included in the
standard installation of the operating system. You can install these
compilers using the Mac OS X Developers Tools DVD included with
your original Mac OS X installation package, or you can install the nec-
essary compilers from the tools directory at the mirror of your choice.
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Once you have all of the necessary compilers to install from source, the process is the
typical configure, make, and install procedure used to install most software at the
command line. Using the Terminal.app, navigate to the folder with the source code and
execute the following commands:

$ ./configure
$ make
$ make install

Depending on your permission settings, you may have to invoke the sudo command as
a prefix to the configuration step and provide your system password. If you encounter
any errors during the installation, using either the compiled binary distribution or the
source code, consult the R for Mac OS X FAQ at the mirror of your choice.

Linux

As with Mac OS X, R comes preinstalled on many Linux distributions. Simply type R
at the command line and the R console will be loaded. You can now begin program-
ming! The CRAN mirror also includes installations specific to several Linux distribu-
tions, with instructions for installing R on Debian, RedHat, SUSE, and Ubuntu. If you
use one of these installations, we recommend that you consult the instructions for your
operating system, because there is considerable variance in the best practices between
Linux distributions.

IDEs and Text Editors
R is a scripting language and therefore the majority of the work done in this book’s case
studies will be done within a IDE or text editor, rather than directly inputted into the
R console. As we will show in the next section, some tasks are well suited for the console,
such as package installation, but primarily you will want to be working within the IDE
or text editor of your choice.

For those running the GUI in either Windows or Mac OS X, there is a basic text editor
available from that application. By navigating to File→New Document from the menu
bar, or clicking on the blank document icon in the header of the window (highlighted
in Figure 1-3), you will open a blank document in the text editor. As a hacker, you likely
already have an IDE or text editor of choice, and we recommend that you use whichever
environment you are most comfortable in for the case studies. There are simply too
many options to enumerate here, and we have no intention of inserting ourselves in the
infamous emacs versus vim debate.
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Figure 1-3. Text editor icon in R GUI

Loading and Installing R Packages
There are many well-designed, maintained, and supported R packages related to ma-
chine learning. Loading packages in R is very straightforward. There are two functions
to perform this: library and require. There are some subtle differences between the
two, but for the purposes of this book, the primary difference is that require will return
a Boolean (TRUE or FALSE) value, indicating whether the package is installed on the
machine after attempting to load it. As an example, below we use library to load
spatstat but require for lda. By using the print function, we can see that we have
lda installed because a Boolean value of TRUE was returned after the package was loaded:

library(spatstat)
print(require(lda))
[1] TRUE

If we did not have lda installed (i.e., FALSE was returned by require), then we would
need to install that package before proceeding.

If you are working with a fresh installation of R, then you will have to
install a number of packages to complete all of the case studies in this
book.

There are two ways to install packages in R; either with the GUI interface or with the
install.packages function from the console. Given the intended audience for this book,
we will be interacting with R exclusively from the console during the case studies, but
it is worth pointing out how to use the GUI interface to install packages. From the menu
bar in the application, navigate to Packages &Data→Package Installer, and a window
will appear as displayed in Figure 1-4. From the Package Repository drop-down, select
either CRAN (binaries) or CRAN (sources) and click the Get List button to load all of
the packages available for installation. The most recent version of packages will be
available in the CRAN (sources) repository, and if you have the necessary compilers
installed on your machine, we recommend using the sources repository. You can now
select the package you wish to install and click Install Selected to install the packages.
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Figure 1-4. Installing R packages using the GUI interface

The install.packages function is the preferred way to install packages because it pro-
vides greater flexibility in how and where packages get installed. One of the primary
advantages of using install.packages is that it allows you to install from local source
code as well as from CRAN. Though uncommon, occasionally you may may want to
install a package that is not yet available on CRAN—for example, if you’re updating
to an experimental version of a package. In these cases you will need to install from
source:

install.packages("tm", dependencies=TRUE)
setwd("~/Downloads/")
install.packages("RCurl_1.5-0.tar.gz", repos=NULL, type="source")

In the first example above, we use the default settings to install the tm package from
CRAN. The tm provides function used to do text mining, and we will use it in Chap-
ter 3 to perform classification on email text. One useful parameter in the install.pack
ages function is suggests, which by default is set to FALSE but if activated will instruct
the function to download and install any secondary packages used by the primary in-
stallation. As a best practice, we recommend always setting this to TRUE, especially if
you are working with a clean installation of R.

10 | Chapter 1: Using R



Alternatively, we can also install directly from compressed source files. In the example
above, we are installing the RCurl package from the source code available on the au-
thor’s website. Using the setwd function to make sure the R working directory is set to
the directory where the source file has been saved, we can simply execute the above
command to install directly from the source code. Note the two parameters that have
been altered in this case. First, we must tell the function not to use one of the CRAN
repositories by setting repos=NULL, and specify the type of installation using
type="source".

As mentioned, we will use several packages through the course of this text. Table 1-2
lists all of the packages used in the case studies and includes a brief description of their
purpose, along with a link to additional information about each.

We are now ready to begin exploring machine learning with R! Before we proceed to
the case studies, however, we will review some R functions and operations that we will
use frequently.

Table 1-2. R packages used in this book

Name Location Author Description & Use

ggplot2 http://had.co
.nz/ggplot2/

Hadley Wickham An implementation of the grammar of graphics in R. The premier pack-
age for creating high-quality graphics.

plyr http://had.co
.nz/plyr/

Hadley Wickham A set of tools used to manipulate, aggregate and manage data in R.

tm http://www
.spatstat.org/
spatstat/

Ingo Feinerer A collection of functions for performing text mining in R. Used to work
with unstructured text data.

R Basics for Machine Learning
UFO Sightings in the United States, from 1990-2010
As we stated at the outset, we believe that the best way to learn a new technical skill is
to start with a problem you wish to solve or a question you wish to answer. Being excited
about the higher level vision of your work makes makes learning from case studies
work. In this review of basic concepts in the R language, we will not be addressing a
machine learning problem, but we will encounter several issues related to working with
data and managing it in R. As we will see in the case studies, quite often we will spend
the bulk of our time getting the data formatted and organized in a way that suits the
analysis. Very little time, in terms of coding, is usually spent running the analysis.

For this case we will address a question with pure entertainment value. Recently, the
data service Infochimps.com released a data set with over 60,000 documented reports
of unidentified flying objects (UFO) sightings. The data spans hundreds of years and
has reports from all over the world. Though it is international, the majority of sightings
in the data come from the United States. With the time and spatial dimensions of the
data, one question we might ask is: are there seasonal trends in UFO sightings; and
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what, if any, variation is there among UFO sightings across the different states in the
U.S.?

This is a great data set to start exploring, because it is rich, well-structured, and fun to
work with. It is also useful for this exercise because it is a large text file, which is typically
the type of data we will deal with in this book. In such text files there are often messy
parts, so we will use base functions in R and some external libraries to clean and or-
ganize the raw data. This section will take you step-by-step through an entire simple
analysis that tries to answer the questions we posed earlier. You will find the code for
this section in the code folder for this chapter as the ufo_sightings.R file. We begin by
loading the data and required libraries for the analysis.

Loading libraries and the data

First, we will load the ggplot2 package, which we will use in the final steps of our visual
analysis:

library(ggplot2)

While loading ggplot2, you will notice that this package also loads two other required
packages: plyr and reshape. Both of these packages are used for manipulating and
organizing data in R, and we will use plyr in this example to aggregate and organize
the data.

The next step is to load the data into R from the text file ufo_awesome.tsv, which is
located in data/ufo/ directory for this chapter. Note that the file is tab-delimited (hence
the .tsv file extension), which means we will need to use the read.delim function to
load the data. Because R exploits defaults very heavily, we have to be particularly con-
scientious of the default parameter settings for the functions we use in our scripts. To
see how we can learn about parameters in R, suppose that we had never used the
read.delim function before and needed to read the help files. Alternatively, assume that
we do not know that read.delim exists and need to find a function to read delimited
data into a data frame. R offers several useful functions for searching for help:

?read.delim                     # Access a function's help file
??base::delim                   # Search for 'delim' in all help files for functions 
                                # in 'base'
help.search("delimited")        # Search for 'delimited' in all help files
RSiteSearch("parsing text")     # Search for the term 'parsing text' on the R site.

In the first example, we append a question mark to the beginning of the function. This
will open the help file for the given function and it’s an extremely useful R shortcut.
We can also search for specific terms inside of packages by using a combination of ??
and ::. The double question marks indicate a search for a specific term. In the example
above, we are searching for occurrences of the term “delim” in all base functions, using
the double colon. R also allows you to perform less structured help searches with
help.search and RSiteSearch. The help.search function will search all help files in your
installed packages for some term, which in the above example is “delimited.” Alterna-
tively, you can search the R website, which includes help files and the mailing lists
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archive, using the RSiteSearch function. Please note, this chapter is by no means meant
to be an exhaustive review of R or the functions used in this section. As such, we highly
recommend using these search functions to explore R’s base functions on your own.

For the UFO data there are several parameters in read.delim that we will need to set
by hand in order to properly read in the data. First, we need to tell the function how
the data are delimited. We know this is a tab-delimited file, so we set sep to the tab
character. Next, when read.delim is reading in data it attempts to convert each column
of data into an R data type using several heuristics. In our case, all of the columns are
strings, but the default setting for all read.* functions is to convert strings to factor
types. This class is meant for categorical variables, but we do not want this. As such,
we have to set stringsAsFactors=FALSE to prevent this. In fact, it is always a good prac-
tice to switch off this default, especially when working with unfamiliar data.

The term “categorical variable” refers to a type of data that denotes an
observation’s membership in a category. In statistics categorical varia-
bles are very important because we may be interested in what makes
certain observations belong to a certain type. In R we represent catego-
rical variables as factor types, which essentially assigns numeric refer-
ences to string labels. In this case, we convert certain strings—such as
state abbreviations—into categorical variables using as.factor, which
assigns a unique numeric ID to each state abbreviation in the data set.
We will repeat this process many times.

Also, this data does not include a column header as its first row, so we will need to
switch off that default as well to force R to not use the first row in the data as a header.
Finally, there are many empty elements in the data, and we want to set those to the
special R value NA. To do this we explicitly define the empty string as the na.string:

ufo<-read.delim("data/ufo/ufo_awesome.tsv", sep="\t", stringsAsFactors=FALSE, 
    header=FALSE, na.strings="")

We now have a data frame containing all of the UFO data! Whenever working with
data frames, especially if they are from external data sources, it is always a good idea
to inspect the data by hand. Two great functions for doing this are head and tail. These
functions will print the first and last six entries in a data frame:

head(ufo)
       V1       V2                    V3   V4     V5    V6
1 19951009 19951009         Iowa City, IA <NA>    <NA>  Man repts. witnessing "flash...
2 19951010 19951011         Milwaukee, WI <NA>  2 min.  Man  on Hwy 43 SW of Milwauk...
3 19950101 19950103           Shelton, WA <NA>    <NA>  Telephoned Report:CA woman v...
4 19950510 19950510          Columbia, MO <NA>  2 min.  Man repts. son's bizarre sig...
5 19950611 19950614           Seattle, WA <NA>    <NA>  Anonymous caller repts. sigh...
6 19951025 19951024  Brunswick County, ND <NA> 30 min.  Sheriff's office calls to re...
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The first obvious issue with the data frame is that the column names are generic. Using
the documentation for this data set as a reference, we can assign more meaningful labels
to the columns. Having meaningful column names for data frames is an important best
practice. It makes your code and output easier to understand, both for you and other
audiences. We will use the names function, which can either access the column labels
for a data structure or assign them. From the data documentation, we construct a
character vector the corresponds to the appropriate column names and pass it to the
names functions with the data frame as its only argument:

names(ufo)<-c("DateOccurred","DateReported","Location","ShortDescription",
     "Duration","LongDescription")

From the head output and the documentation used to create column headings, we know
that the first two columns of data are dates. As in other languages, R treats dates as a
special type, and we will want to convert the date strings to actual date types. To do
this we will use the as.Date function, which will take the date string and attempt to
convert it to as Date object. With this data the strings have an uncommon date format
of the form YYYYMMDD. As such, we will also have to specify a format string in
as.Date so the function knows how to convert the strings. We begin by converting the
DateOccurred column:

ufo$DateOccurred<-as.Date(ufo$DateOccurred, format="%Y%m%d")
Error in strptime(x, format, tz = "GMT") : input string is too long

We’ve just come upon our first error! Though a bit cryptic, the error message contains
the substring “input string too long”, which indicates that some of the entries in the
DateOccurred column are too long to match the format string we provided. Why might
this be the case? We are dealing with a large text file, so perhaps some of the data was
malformed in the original set. Assuming this is the case, those data points will not be
parsed correctly when being loaded by read.delim and that would cause this sort of
error. Because we are dealing with real world data, we’ll need to do some cleaning by
hand.

Converting date strings, and dealing with malformed data

To address this problem we first need to locate the rows with defective date strings,
then decide what to do with them. We are fortunate in this case because we know from
the error that the errant entries are “too long.” Properly parsed strings will always be
eight characters long, i.e., “YYYYMMDDD”. To find the problem rows, therefore, we
simply need to find those that have strings with more than eight characters. As a best
practice, we first inspect the data to see what the malformed data looks like, in order
to get a better understanding of what has gone wrong. In this case, we will use the
head function, as before, to examine the data returned by our logical statement.

Later, to remove these errant rows we will use the ifelse function to construct a vector
of TRUE and FALSE values to identify the entries that are eight characters long (TRUE) and
those that are not (FALSE). This function is a vectorized version of the typical if-else
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logical switch for some Boolean test. We will see many examples of vectorized opera-
tions in R. They are the preferred mechanism for iterating over data because they are
often—but not always—more efficient:*

    head(ufo[which(nchar(ufo$DateOccurred)!=8 | nchar(ufo$DateReported)!=8),1])
    [1] "ler@gnv.ifas.ufl.edu"
    [2] "0000" 
    [3] "Callers report sighting a number of soft white balls of lights headingin
    an easterly directing then changing direction to the west beforespeeding off to
    the north west."
    [4] "0000"
    [5] "0000"
    [6] "0000"

    good.rows<-ifelse(nchar(ufo$DateOccurred)>!=8 | nchar(ufo$DateReported)!=8,
FALSE,TRUE)
    length(which(!good.rows))
    [1] 371
    ufo<-ufo[good.rows,]

We use several useful R functions to perform this search. We need to know the length
of the string in each entry of DateOccurred and DateReported, so we use the nchar func-
tion to compute this. If that length is not equal to eight, then we return FALSE. Once
we have the vectors of Booleans, we want to see how many entries in the data frame
have been malformed. To do this, we use the which command to return a vector of
vector indices that are FALSE. Next, we compute the length of that vector to find the
number of bad entries. With only 371 rows not conforming, the best option is to simply
remove these entries and ignore them. At first, we might worry that losing 371 rows of
data is a bad idea, but there are over sixty-thousand total rows, so we will simply ignore
those rows and continue with the conversion to Date types:

    ufo$DateOccurred<-as.Date(ufo$DateOccurred, format="%Y%m%d")
    ufo$DateReported<-as.Date(ufo$DateReported, format="%Y%m%d")

Next we will need to clean and organize the location data. Recall from the previous
head call that the entries for UFO sightings in the United States take the form “City,
State”. We can use R’s regular expression integration to split these strings into separate
columns and identify those entries that do not conform. The latter portion (identifying
those that do not conform) is particularly important because we are only interested in
sighting variation in the United States and will use this information to isolate those
entries.

Organizing location data

To manipulate the data in this way, we will first construct a function that takes a string
as input and performs the data cleaning. Then we will run this function over the location
data using one of the vectorized apply functions:

* For a brief introduction to vectorized operations in R see [LF08].
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get.location<-function(l) {
  split.location<-tryCatch(strsplit(l,",")[[1]], error= function(e) return(c(NA, NA)))
  clean.location<-gsub("^ ","",split.location)
  if (length(clean.location)>2) {
    return(c(NA,NA))
  }
  else {
    return(clean.location)
  }
}

There are several subtle things happening in this function. First, notice that we are
wrapping the strsplit command in R’s error handling function, tryCatch. Again, not
all of the entries are of the proper “City, State” form, and in fact some do not even
contain a comma. The strsplit function will throw an error if the split character is not
matched, therefore, we have to catch this error. In our case, when there is no comma
to split we will return a vector of NA to indicate that this entry is not valid. Next, the
original data included leading whitespace, so we will use the gsub function (part of R’s
suite of functions for working with regular expressions) to remove the leading white-
space from each character. Finally, we add an additional check to ensure that only the
location vectors of length two are returned. Many non-U.S. entries have multiple com-
mas, creating larger vectors from the strsplit function. In this case, we will again return
an NA vector.

With the function defined, we will use the lapply function, short for “list-apply,” to
iterate this function over all strings in the Location column. As mentioned, the apply
family of functions in R are extremely useful. They are constructed of the form
apply(vector, function), and return results of the vectorized application of the func-
tion to the vector in a specific form. In our case, we are using lapply, which always
returns a list:

city.state<-lapply(ufo$Location, get.location)
head(city.state)
[[1]]
[1] "Iowa City" "IA"       

[[2]]
[1] "Milwaukee" "WI"       

[[3]]
[1] "Shelton" "WA"     

[[4]]
[1] "Columbia" "MO"      

[[5]]
[1] "Seattle" "WA"     

[[6]]
[1] "Brunswick County" "ND"
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From above, a list in R is a key-value style data structures, wherein the keys are indexed
by the double-bracket and values by the single bracket. In our case the keys are simply
integers, but lists can also have strings as keys.† Though convenient, having the data
stored in a list is not desirable, as we would like to add the city and state information
to the data frame as separate columns. To do this we will need to convert this long list
into a two-column matrix, with the city data as the leading column:

location.matrix<-do.call(rbind, city.state)
ufo<-transform(ufo, USCity=location.matrix[,1], USState=tolower(location.matrix[,2]), 
     stringsAsFactors=FALSE)

To construct a matrix from the list, we use the do.call function. Similar to the
apply functions, do.call executes a function call over a list. We will often use the com-
bination of lapply and do.call to manipulate data. Above we pass the rbind function,
which will “row-bind” all of the vectors in the city.state list to create a matrix. To get
this into the data frame we use the transform function. We create two new columns;
USCity and USState, from the first and second columns of location.matrix, respectively.
Finally, the state abbreviations are inconsistent, with some uppercase and others
lowercase, so we use the tolower function to make them all lowercase.

Dealing with data outside our scope

The final issue related to data cleaning we must consider concerns entries that meet the
“City, State” form, but are not from the U.S. Specifically, the data include several UFO
sightings from Canada, which also take this form. Fortunately, none of the Canadian
province abbreviations match U.S. state abbreviations. We can use this information to
identify non-U.S. entries by constructing a vector of U.S. state abbreviations and only
keeping those entries in the USState column that match an entry in this vector:

us.states<-c("ak","al","ar","az","ca","co","ct","de","fl","ga","hi","ia","id","il",
     "in","ks","ky","la","ma","md","me","mi","mn","mo","ms","mt","nc","nd","ne","nh",
     "nj","nm","nv","ny","oh","ok","or","pa","ri","sc","sd","tn","tx","ut","va","vt",
     "wa","wi","wv","wy")
ufo$USState<-us.states[match(ufo$USState,us.states)]
ufo$USCity[is.na(ufo$USState)]<-NA

To find the entries in the USState column that do not match a U.S. state abbreviation,
we use the match function. This function takes two arguments: the first are the values
to be matched, and the second those to be matched against. What is returned is a vector
of the same length as the first argument, in which the values are the index of entries in
that vector that match some value in the second vector. If no match is found, the func-
tion returns NA by default. In our case, we are only interested in which entries are NA,
as these are those entries that do not match a state. We then use the is.na function to
find which entries are not U.S. states and reset them to NA in the USState column. Finally,
we also set those indices in the USCity column to NA for consistency.

† For a thorough introduction to lists, see Chapter 1 of [Spe08].
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Our original data frame now has been manipulated to the point that we can extract
from it only the data we are interested in. Specifically, we want a subset that includes
only U.S. incidents of UFO sightings. By replacing entries that did not meet this criteria
in the previous steps, we can use the subset command to create a new data frame of
only U.S. incidents:

ufo.us<-subset(ufo, !is.na(USState))
head(ufo.us)
  DateOccurred DateReported              Location ShortDescription Duration
1   1995-10-09   1995-10-09         Iowa City, IA             <NA>     <NA>
2   1995-10-10   1995-10-11         Milwaukee, WI             <NA>   2 min.
3   1995-01-01   1995-01-03           Shelton, WA             <NA>     <NA>
4   1995-05-10   1995-05-10          Columbia, MO             <NA>   2 min.
5   1995-06-11   1995-06-14           Seattle, WA             <NA>     <NA>
6   1995-10-25   1995-10-24  Brunswick County, ND             <NA>  30 min.

  LongDescription                       USCity               USState
1 Man repts. witnessing "flash...       Iowa City            ia
2 Man  on Hwy 43 SW of Milwauk...       Milwaukee            wi
3 Telephoned Report:CA woman v...       Shelton              wa
4 Man repts. son's bizarre sig...       Columbia             mo
5 Anonymous caller repts. sigh...       Seattle              wa
6 Sheriff's office calls to re...       Brunswick County     nd

Aggregating and organizing the data

We now have our data in a format in which we can begin analyzing it! In the previous
section we spent a lot of time getting the data properly formatted and identifying the
relevant entries for our analysis. In this section we will explore the data to further
narrow our focus. These data have two primary dimensions: space (where the sighting
happened) and time (when a sighting occurred). We focused on the former in the pre-
vious section, but here we will focus on the latter. First, we use the summary function
on the DateOccurred column to get a sense of this chronological range of the data:

summary(ufo.us$DateOccurred)
Min.      1st Qu.       Median         Mean      3rd Qu.         Max. 
"1400-06-30" "1999-09-06" "2004-01-10" "2001-02-13" "2007-07-26" "2010-08-30"

Surprisingly, this data goes back quite a long time:the oldest UFO sighting comes from
1400! Given this outlier, the next question is: how are these data distributed over time?
And is it worth analyzing the entire time series? A quick way to look at this visually is
to construct a histogram. We will discuss histograms in more detail in the next chapter,
but for now you should know that histograms allow you to bin your data by a given
dimension and observe the frequency with which your data falls into those bins. The
dimension of interest here is time, so we construct a histogram that bins the data over
time:
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quick.hist<-ggplot(ufo.us, aes(x=DateOccurred))+geom_histogram()+
    scale_x_date(major="50 years")
ggsave(plot=quick.hist, filename="../images/quick_hist.png", height=6, width=8)
stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.

There are several things to note here. This is our first use of the ggplot2 package, which
we will use throughout the book for all of our data visualizations. In this case, we are
constructing a very simple histogram, which we only requires a single line of code. First,
we create a ggplot object and pass it the UFO data frame as its initial argument. Next,
we set the x-axis aesthetic to the DateOccurred column, as this is the frequency we are
interested in examining. With ggplot2 we must always work with data frames, and the
first argument to create a ggplot object must always be a data frame. ggplot2 is an R
implementation of Leland Wilkinson’s Grammar of Graphics [Wil05]. This means the
package adheres to this particular philosophy for data visualization, and all visualiza-
tions will be built up as a series of layers. For this histogram, the initial layer is the x-
axis data, namely the UFO sighting dates. Next, we add an histogram layer with the
geom_histogram function. In this case, we will use the default settings for this function,
but, as we will see later, this default is often not a good choice. Finally, because this
data spans such a long time period, we will rescale the x-axis labels to occur every 50
years with the scale_x_date function.

Once the ggplot object has been constructed, we use the ggsave function to output the
visualization to a file. We could have also used > print(quick.hist) to print the visu-
alization to the screen. Note the warning message that is printed when you draw the
visualization. There are many ways to bin data in a histogram, and we will discuss this
in detail the next chapter, but this warning is provided to let you know exactly how
ggplot2 does the binning by default.

We are now ready to explore the data with this visualization, which is illustrated in
Figure 1-5.

The results of this analysis are stark. The vast majority of the data occur between 1960
and 2010, with the majority of UFO sightings occurring within the last two decades.
For our purposes, therefore, we will focus on only those sightings that occurred between
1990 and 2010. This will allow us to exclude the outliers and compare relatively com-
parable units during the analysis. As before, we will used the subset function to create
a new data frame that meets this criteria:

ufo.us<-subset(ufo.us, DateOccurred>=as.Date("1990-01-01"))
nrow(ufo.us)
[1] 46347

While this removes many more entries than we eliminated while cleaning the data, it
still leaves us with over forty-six thousand observations to analyze. Next, we must begin
organizing the data such that it can be used to address our central question: what, if
any, seasonal variation exists for UFO sightings in U.S. states? To address this, we must
first ask: what do we mean by “seasonal?” There are many ways to aggregate time series
data with respect to seasons; by week, month, quarter, year, etc. But which way of
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aggregating our data is most appropriate here? The DateOccurred column provides UFO
sighting information by the day, but there is considerable inconsistency in terms of the
coverage throughout the entire set. We need to aggregate the data in a way that puts
the amount of data for each state on relatively level planes. In this case, doing so by
year-month is the best option. This aggregation also best addresses the core of our
question, as monthly aggregation will give good insight into seasonal variations.

We need to count the number of UFO sightings that occurred in each state by all year-
month combinations from 1990-2010. First, we will need to create a new column in
the data that corresponds to the year and months present in the data. We will use the
strftime function to convert the Date objects to a string of the “YYYY-MM” format.
As before, we will set the format parameter accordingly to get the strings:

ufo.us$YearMonth<-strftime(ufo.us$DateOccurred, format="%Y-%m")

Notice that in this case we did not use the transform function to add a new column to
the data frame. Rather, we simply referenced a column name that did not exists and R
automatically added it. Both methods for adding new columns to a data frame are
useful, and we will switch between them depending on the particular task. Next, we
want to count the number of times each state and year-month combination occurs in
the data. For the first time we will use the ddply function, which is part of the extremely
useful plyr library for manipulating data.

Figure 1-5. Exploratory histogram of UFO data over time
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The plyr family of functions work a bit like the map-reduce style data aggregation tools
that have risen in popularity over the past several years. They attempt to group data in
some specific way meaningful to all observations, and then do some calculation on each
of these group and return the results. For this task we want to group the data by state
abbreviations and the year-month column we just created. Once the data is grouped
as such, we count the number of entries in each group and return that as a new column.
Here we will simply use the nrow function to reduce the data by the number of rows in
each group:

sightings.counts<-ddply(ufo.us,.(USState,YearMonth), nrow)
head(sightings.counts)
USState YearMonth V1
1      ak   1990-01  1
2      ak   1990-03  1
3      ak   1990-05  1
4      ak   1993-11  1
5      ak   1994-11  1
6      ak   1995-01  1

We now have the number of UFO sightings for each state by the year and month. From
the head call above, however, we can see that there may be a problem with using the
data as is, because it contains a lot of missing values. For example, we see that there
was one UFO sighting in January, March, and May of 1990 in Arkansas; but no entries
appear for February or April. Presumably, there were no UFO sightings in these months,
but the data does not include entries for non-sightings, so we have to go back and add
these as zeroes.

We need a vector of years and months that span the entire data set. From this we can
check to see if they are already in the data, and if not, add them as zeroes. To do this,
we will create a sequence of dates using the seq.Date function, and then format them
to match the data in our data frame:

date.range<-seq.Date(from=as.Date(min(ufo.us$DateOccurred)),
    to=as.Date(max(ufo.us$DateOccurred)), by="month")
date.strings<-strftime(date.range, "%Y-%m")

With the new date.strings vector, we need to create a new data frame that has all year-
months and states. We will use this to performing the matching with the UFO sighting
data. As before, we will use the lapply function to create the columns and the
do.call function to convert this to a matrix and then data frame:

states.dates<-lapply(us.states,function(s) cbind(s,date.strings))
states.dates<-data.frame(do.call(rbind, states.dates), stringsAsFactors=FALSE)
head(states.dates)
s date.strings
1 ak      1990-01
2 ak      1990-02
3 ak      1990-03
4 ak      1990-04
5 ak      1990-05
6 ak      1990-06
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The states.dates data frame now contains entries for every year, month and state
combination possible in the data. Note that there are now entries for February and
April 1990 for Arkansas. To add in the missing zeroes to the UFO sighting data, we
need to merge this data with our original data frame. To do this, we will use the
merge function, which takes two ordered data frames and attempts to merge them by
common columns. In our case, we have two data frames ordered alphabetically by U.S.
state abbreviations and chronologically by year and month. We need to tell the function
which columns to merge these data frames by. We will set the by.x and by.y parameters
according to the matching column names in each data frame. Finally, we set the all
parameter to TRUE, which instructs the function to include entries that do not match
and fill them with NA. Those entries in the V1 column will be those state, year, and month
entries for which no UFOs were sighted:

all.sightings<-merge(states.dates,sightings.counts,by.x=c("s","date.strings"),
     by.y=c("USState","YearMonth"),all=TRUE)
head(all.sightings)
  s  date.strings V1
1 ak      1990-01  1
2 ak      1990-02 NA
3 ak      1990-03  1
4 ak      1990-04 NA
5 ak      1990-05  1
6 ak      1990-06 NA

The final steps for data aggregation are simple housekeeping. First, we will set the
column names in the new all.sightings data frame to something meaningful. This is
done in exactly the same way as we did it at the outset. Next, we will convert the NA
entries to zeroes using the is.na function, again. Finally, we will convert the Year
Month and State columns to the appropriate types. Using the date.range vector we
created in the previous step and the rep function to create a new vector that repeats a
given vector, we replace the year and month strings with the appropriate Date object.
Again, it is better to keep dates as Date objects rather than strings because we can
compare Date objects mathematically, but we can’t do that easily with strings. Likewise,
the state abbreviations are better represented as a categorical variables than strings, so
we convert these to factor types. We will describe factors, and other R data types, in
more detail in the next chapter:

names(all.sightings)<-c("State","YearMonth","Sightings")
all.sightings$Sightings[is.na(all.sightings$Sightings)]<-0
all.sightings$YearMonth<-as.Date(rep(date.range,length(us.states)))
all.sightings$State<-as.factor(toupper(all.sightings$State))

We are now ready to analyze the data visually!
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Analyzing the data

For this data we will only address the core question by analyzing it visually. For the
remainder of the book we will combine both numeric and visual analyses, but as this
example is only meant to introduce core R programming paradigms, we will stop at
the visual component. Unlike the previous histogram visualization, however, we will
take greater care with ggplot2 to build the visual layers explicitly. This will allow us to
create a visualization that directly addresses the question of seasonal variation among
states overtime and produce a more professional-looking visualization.

We will construct the visualization all at once below, then explain each layer
individually:

state.plot<-ggplot(all.sightings, aes(x=YearMonth,y=Sightings))
+geom_line(aes(color="darkblue"))+
     facet_wrap(~State,nrow=10,ncol=5)+
     theme_bw()+
     scale_color_manual(values=c("darkblue"="darkblue"),legend=FALSE)+
     scale_x_date(major="5 years", format="%Y")+
     xlab("Time")+ylab("Number of Sightings")+
     opts(title="Number of UFO sightings by Month-Year and U.S. State (1990-2010)")
ggsave(plot=state.plot, filename="../images/ufo_sightings.pdf",width=14,height=8.5)

As always, the first step is to create a ggplot object with a data frame as its first argument.
Here, we are using the all.sightings data frame we created in the previous step. Again,
we need to build an aesthetic layer of data to plot, and in this case the x-axis is the
YearMonth column and the y-axis is the Sightings data. Next, to show seasonal variation
among states, we will plot a line for each state. This will allow us to observe any spikes,
lulls, or oscillation in the number of UFO sightings for each state over time. To do this,
we will use the geom_line function and set the color to “darkblue” to make the visual-
ization easier to read.

As we have seen throughout this case, the UFO data is fairly rich and includes many
sightings across the United States over a long period of time. Knowing this, we need to
think of a way to break up this visualization such that we can observe the data for each
state, but also compare it to the others. If we plot all of the data in a single panel it will
be very difficult to discern variation. To check this, run the first line of code from the
above block, but replace color="darkblue" with color=State and enter >
print(state.plot) at the console. A better approach would be to plot the data for each
state individually, and order them in a grid for easy comparison.

To create a multi-faceted plot, we use the facet_wrap function and specify that the
panels be created by the State variable, which is already a factor type, i.e., categorical.
We also explicitly define the number of rows and columns in the grid, which is easier
in our case because we know we are creating 50 different plots.

The ggplot2 package has many plotting themes. The default theme is the one we used
in the first example and has a grey background with dark grey gridlines. While it is
strictly a matter of taste, we prefer using a white background for this plot, since that
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will make it easier to see slight difference among data points in our visualization. We
add the theme_bw layer, which will produce a plot with a white background and black
gridlines. Once you become more comfortable with ggplot2, we recommend experi-
menting with different defaults to find the one you prefer.‡

The remaining layers are done as housekeeping to make sure the visualization has a
professional look and feel. Though not formally required, paying attention to these
details is what can separate amateurish plots from professional-looking data visualiza-
tions. The scale_color_manual function is used to specify that the string “darkblue”
corresponds to the web-safe color “darkblue.” While this may seem repetitive, it is at
the core of ggplot2’s design, which requires explicit definition of details, such as color.
In fact, ggplot2 tends to think of colors as a way of distinguishing among different types
or categories of data; and, as such, prefers to have a factor type used to specify color.
In our case we are defining a color explicitly using a string and therefore have to define
the value of that string with the scale_color_manual function.

As we did before, we use the scale_x_date to specify the major gridlines in the visual-
ization. Since this data spans twenty years, we will set these to be at regular five year
intervals. Then we set the tick labels to be the year in a full four digit format. Next, we
set the x-axis label to “Time” and the y-axis label to “Number of Sightings” by using
the xlab and ylab functions respectively. Finally, we use the opts function to give the
plot a title.There are many more options available in the opts function, and in later
chapters we will see some of them, but there are many more beyond the scope of this
book.

With all of the layers built, we are now ready to render the image with ggsave and
analyze the data. The results are shown in Figure 1-6.

There are many interesting observations that arise in this analysis. We see that Cali-
fornia and Washington are large outliers in terms of the number of UFO sightings
reported in these states compared to the others. Between these outliers there are also
interesting differences. In California, the number of UFO sightings seems to be some-
what random over time, but steadily increasing since 1995; while in Washington, the
seasonal variation seems to be very consistent over time, with regular peaks and valleys
in UFO sightings starting from about 1995.

‡ For more information on ggplot2 themes, see Chapter 8 of [Wic09].
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Figure 1-6. Number of UFO sightings by Year-Month and U.S. State (1990-2010)
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We can also notice that many states experience sudden spikes in the number of UFO
sightings reported. For example, Arizona, Florida, Illinois, and Montana seem to have
experienced spikes around mid-1997, while Michigan, Ohio, and Oregon experienced
similar spikes in late 1999. Only Michigan and Ohio are geographically close among
these groups. If we do not believe that these are actually the result of extraterrestrial
visitors, what are some alternative explanations? Perhaps there was increased vigilance
among citizens to look to the sky as the millennium came to a close, causing heavier
reporting of false sightings.

If, however, you are sympathetic to the notion that we may be regularly hosting visitors
from outer space, there is also evidence to pique your curiosity. In fact, there is sur-
prising regularity of these sightings in many states in the United States, with evidence
of regional clustering as well. It is almost as if the sightings really contain a meaningful
pattern.

Further Reading on R
This introductory case is by no means meant to be an exhaustive review of the language.
Rather, we used this data set to introduce several R paradigms related to loading,
cleaning, organizing, and analyzing data. We will revisit many of the functions and
processes reviewed above in the following chapters, along with many others. For those
readers interested in gaining more practice and familiarity with R before proceeding,
there are many excellent resources. These resources can roughly be divided into either
reference books and texts or online resources, as shown in Table 1-3.

In the next chapter, we will review exploratory data analysis. Much of the above case
study involved exploring data, but we moved through these steps rather quickly. In the
next section we will consider the process of data exploration much more deliberately.

Table 1-3. R references

Title Author Reference Description

Text References

Data Manipulation with R Phil Spector [Spe08] A deeper review of many of the data ma-
nipulation topics covered in the previous
section, and introduction to several tech-
niques not covered.

R in a Nutshell Joseph Adler [Adl10] A detailed exploration of all of R’s base
functions. This book takes the R manual and
adds several practical examples.

Introduction to Scientific
Programming and Simulation
Using R

Owen Jones, Rob-
ert Maillardet, and
Andrew Robinson

[JMR09] Unlike other introductory texts to R, this
book focuses on the primacy of learning the
language first, then creating simulations.
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Title Author Reference Description

Data Analysis Using Regression
and Multilevel/Hierarchical
Models

Andrew Gelman
and Jennifer Hill

[GH06] This text is heavily focused on doing statis-
tical analyses, but all of the examples are in
R and is an excellent resources for both
learning the language and methods.

ggplot2: Elegant Graphics for
Data Analysis

Hadley Wickham [Wic09] The definitive guide to creating data visu-
alizations with ggplot2.

Online References

An Introduction to R Bill Venables and
David Smith

http://
lib.stat.cmu.edu/S/
Spoetry/Tutor/R_in-
ferno.pdf

An extensive and ever-changing introduc-
tion to the language from the R Core team.

The R Inferno Patrick Burns http://cran.r-
project.org/doc/
manuals/R-in-
tro.html

An excellent introduction to R for the ex-
perienced programmer. The abstract says it
best, “If you are using R and you think you’re
in hell, this is a map for you.”

R for Programmers Norman Matloff http://heather.cs.uc
davis.edu/~matloff/
R/RProg.pdf

Similar to the “R Inferno,” this introduction
is geared for programmers with experience
in other languages.

The split-apply-combine strat-
egy for data analysis

Hadley Wickham http://had.co.nz/
plyr/plyr-intro
-090510.pdf

The author of plyr and provides an excel-
lent introduction to the map-reduce para-
digm in the context of his tools, with many
examples.

R Data Analysis Examples UCLA ATS http://www.ats.ucla
.edu/stat/r/dae/de
fault.htm

A great “Rosetta Stone” style introduction
to those with experience in other statistical
programming platforms, such as SAS, SPSS
and Stata.
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CHAPTER 2

Data Exploration

Exploration vs. Confirmation
Whenever you work with data, it’s helpful to imagine breaking up your analysis into
two completely separate parts: exploration and confirmation. The distinction between
exploratory data analysis and confirmatory data analysis comes down to us from the
famous John Tukey,* who emphasized the importance of designing simple tools for
practical data analysis. In Tukey’s mind, the exploratory steps in data analysis involve
using summary tables and basic visualizations to search for hidden patterns in your
data. In this chapter, we’ll describe some of the basic tools that R provides for sum-
marizing your data numerically and then we’ll teach you how to make sense of the
results. After that, we’ll show you some of the tools that exist in R for visualizing your
data; at the same time, we’ll give you a whirlwind tour of the basic visual patterns that
you should keep an eye out for in any visualization.

But, before you start searching through your first data set, we should warn you about
a real danger that’s present whenever you explore data: you’re likely to find patterns
that aren’t really there. The human mind is designed to find patterns in the world and
will do so even when those patterns are just quirks of chance. You don’t need a degree
in statistics to know that we human beings will easily find shapes in clouds after looking
at them for only a few seconds. And plenty of people have convinced themselves that
they’ve discovered hidden messages in run-of-the-mill texts like Shakespeare’s plays.
Because we humans are vulnerable to discovering patterns that won’t stand up to care-
ful scrutiny, the exploratory step in data analysis can’t exist in isolation: it needs to be
accompanied by a confirmatory step. Think of confirmatory data analysis as a sort of
mental hygiene routine that we use to clean off our beliefs about the world after we’ve
gone slogging through the messy—and sometimes lawless—world of exploratory data
visualization.

* The same person who invented the word “bit”.
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Confirmatory data analysis usually employs two methods:

1. Testing a formal model of the pattern that you think you’ve found on a new data
set you didn’t use to find the pattern

2. Using probability theory to test whether the patterns you’ve found in your original
data set could reasonably have been produced by chance.

Because confirmatory data analysis requires more math than exploratory data analysis,
this chapter is exclusively concerned with exploratory tools. In practice, that means
that we’ll focus on numeric summaries of your data and some standard visualization
tools. The numerical summaries we’ll describe are the stuff of introductory statistics
courses: means, modes, percentiles, medians, standard deviations, and variances. The
visualization tools we’ll use are also some of the most basic tools that you would learn
about in an “Intro to Stats” course: histograms, kernel density estimates, and scatter-
plots. We think simple visualizations are often underappreciated and we hope we can
convince you that you can often learn a lot about your data using only these basic tools.
Much more sophisticated techniques will come up in the later chapters of this book,
but the intuitions for analyzing data are best built up while working with the simplest
of tools.

What is Data?
Before we start to describe some of the basic tools that you can use to explore your
data, we should agree on what we mean when we use the word “data”. It would be
easy to write an entire book about the possible definitions of the word “data,” because
there are so many important questions you might want to ask about any so-called data
set. For example, you often would want to know how the data you have was generated
and whether the data can reasonably be expected to be representative of the population
you truly want to study: while you could learn a lot about the social structure of the
Amazonian Indians by studying records of their marriages, it’s not clear that you’d learn
something that applied very well to other cultures in the process. The interpretation of
data requires that you know something about the source of your data: often the only
way to separate causation from correlation is to know whether the data you’re working
with was generated experimentally or was only recorded observationally because ex-
perimental data wasn’t available.

While these sorts of concerns are interesting issues that we hope you’ll want to learn
about some day,† we’re going to completely avoid issues of data collection during this
book. For our purposes, the subtler philosophical issues of data analysis are going to
be treated as if they were perfectly separable from the sorts of prediction problems for
which we’re going to use machine learning techniques. In the interest of pragmatism,
we’re therefore going to use the following definition throughout the rest of this book:

† When you’re interested, we’d recommend reading Judea Pearl’s Causality [Pea05].
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A “data set” is nothing more than a big table of numbers and strings in which every
row describes a single observation of the real world and every column describes a single
attribute that was measured for each of the observations represented by the rows. If
you’re at all familiar with databases, this definition of data should match your intuitions
about the structure of database tables pretty closely. If you’re worried that your data
set isn’t really a single table, let’s just pretend that you’ve used R’s merge, SQL’s JOIN
family of operations, or some of the other tools we described earlier to create a data set
that looks like a single table.

We’ll call this the “data as rectangles” model. While this viewpoint is clearly a sub-
stantial simplification, it will let us motivate many of the big ideas of data analysis
visually, which we hope makes what are otherwise very abstract ideas a little more
tangible. And the “data as rectangles” model serves another purpose: it lets us freely
exploit ideas from database design as well as ideas from pure mathematics. If you’re
worried that you don’t know much about matrices, don’t worry: throughout this book
you’ll always be able to think of matrices as nothing more than two-dimensional arrays,
i.e., a big table. As long as we assume we’ve working with rectangular arrays, we’ll be
able to use lots of powerful mathematical techniques without having to think very
carefully about the actual mathematical operations being performed. For example, we
won’t explicitly use matrix multiplication anywhere in this book, even though almost
every technique we’re going to exploit can be described in terms of matrix multiplica-
tions, whether it’s the standard linear regression model or the modern matrix factori-
zation techniques that have become so popular lately thanks to the Netflix prize.

Because we’ll treat data rectangles, tables, and matrices interchangeably, we ask for
your patience when we switch back and forth between those terms throughout this
book. Whatever term we use, you should just remember that we’re thinking of some-
thing like Table 2-1 when we talk about data.

Table 2-1. Your authors

Name Age

Drew Conway 28

John Myles White 29

Since data consists of rectangles, we can actually draw pictures of the sorts of operations
we’ll perform pretty easily. A numerical data summary involves reducing all of the rows
from your table into a few numbers—often just a single number for each column in
your data set. An example of this type of data summary is shown in Figure 2-1.
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Figure 2-1. Summarizing many columns in one number per column

In contrast to a numerical summary, a visualization of a single column’s contents usu-
ally involves reducing all of the rows from a single column in your data into one image.
An example of a visual summary of a single column is shown in Figure 2-2.

Figure 2-2. Summarizing one column in one image

Beyond the tools you can use for analyzing isolated columns, there are lots of tools you
can use to understand the relationships between multiple columns in your data set. For
example, computing the correlation between two columns turns all of the rows from
two columns of your table into a single number that summarizes the strength of the
relationship between those two columns. An example of this is shown in Figure 2-3.
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Figure 2-3. Correlation: summarizing two columns in one number

And there are other tools that go further: beyond relating pairs of columns together,
you might want to reduce the number of columns in your data set if you think there’s
a lot of redundancy. Replacing many columns in your data set with a few columns or
even just one is called dimensionality reduction. An example of what dimensionality
reduction techniques achieve is shown in Figure 2-4.

Figure 2-4. Dimensionality reduction: summarizing many columns in one column

As the pictures in Figures 2-1 to 2-4 suggest, summary statistics and dimensionality
reduction move along opposite directions: summary statistics tell you something about
how all of the rows in your data set behave when you move along a single column,
while dimensionality reduction tools let you replace all of the columns in your data
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with a small number of columns that have a unique value for every row. When you’re
exploring data, both of these approaches can be helpful, because they allow you to turn
the mountains of data you sometimes get handed into something that’s immediately
comprehensible.

Inferring the Types of Columns in Your Data
Before you do anything else with a new data set, you should try to find out what each
column in your current table represents. Some people like to call this information a
data dictionary, by which they mean that you might be handed a short verbal descrip-
tion of every column in the data set. For example, imagine that you had the unlabeled
data set in Table 2-2 given to you.

Table 2-2. Unlabeled data

... ... ...

“1” 73.847017017515 241.893563180437

“0” 58.9107320370127 102.088326367840

Without any identifying information, it’s really hard to know what to make of these
numbers. Indeed, as a starting point you should figure out the type of each column: is
the first column really a string, even though it looks like it contains only 0’s and 1’s?
In the UFO example in the first chapter, we immediately labeled all of the columns of
the data set we were given. When we’re given a data set without labels, we can use
some of the type determination functions built into R. Three of most important of these
functions are shown in Table 2-3.

Table 2-3. Type determination in R

R function Description

is.numeric Returns TRUE if the entries of the vector are numbers, which can be either integers or floating points.
Returns FALSE otherwise.

is.character Returns TRUE if the entries of the vector are character strings. R does not provide a single character data
type. Returns FALSE otherwise.

is.factor Returns TRUE if the entries of the vector are levels of a factor, which is a data type used by R to represent
categorical information (and FALSE otherwise). If you’ve used enumerations in SQL, a factor is somewhat
analogous. It differs from a character vector in both its hidden internal representation and semantics: most
statistical functions in R work on numeric vectors or factor vectors, but not on character vectors.

Having basic type information about each column can be very important as we move
forward, because a single R function will often do different things depending of the
type of its inputs. Those 0’s and 1’s stored as characters in our current data set need to
be translated into numbers before we can use some of the built-in functions in R,
but they actually need to be converted into factors if we’re going to use some other
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built-in functions. In part, this tendency to move back and forth between types comes
from a general tradition in machine learning for dealing with categorical distinctions.
Many variables that really work like labels or categories are encoded mathematically
as 0 and 1. You can think of these numbers as if they were Boolean values: 0 might
indicate that an email is not spam, while a 1 might indicate that the email is spam. This
specific use of 0’s and 1’s to describe qualitative properties of an object is often called
dummy coding in machine learning and statistics. The dummy coding system should
be distinguished from R’s factors, which express qualitative properties using explicit
labels.

Factors in R can be thought of as labels, but the labels are actually en-
coded numerically in the background: when the programmer accesses
the label, the numeric values are translated into the character labels
specified in an indexed array of character strings. Because R uses a nu-
meric coding in the background, naive attempts to convert the labels
for an R factor into numbers will produce strange results, since you’ll
be given the actual encoding scheme’s numbers rather than the numbers
associated with the labels for the factor.

Tables 2-4 to 2-6 show the same data, but the data has been described with three
different encoding schemes:

Table 2-4. Factor coding

MessageID IsSpam

1 “Yes”

2 “No”

Table 2-5. Dummy coding

MessageID IsSpam

1 1

2 0

Table 2-6. Physicists’ coding

MessageID IsSpam

1 1

2 -1

In the first table, IsSpam is meant to be treated directly as a factor in R, which is one
way to express qualitative distinctions. In practice, it might be loaded as a factor or as
a string depending on the data loading function you use: see the stringsAsFactors
parameter that was described in “Loading libraries and the data” on page 12 for details.

Inferring the Types of Columns in Your Data | 35



With every new data set, you’ll need to figure out whether the values are being loaded
properly as factors or as strings after you’ve decided how you would like each column
to be treated by R.

If you are unsure, it is often better to begin by loading things as strings.
You can always convert a string column to a factor column later.

In the second table, IsSpam is still a qualitative concept, but it’s being encoded using
numeric values that represent a Boolean distinction: 1 means IsSpam is true, while 0
means IsSpam is false. This style of numeric coding is actually required by some ma-
chine learning algorithms. For example, glm, the default function in R for using logistic
regression, assumes that your variables are dummy coded.

Finally, in the third table, we show another type of numeric encoding for the same
qualitative concept: in this encoding system, people use +1 and -1 instead of 1 and 0.
This style of encoding qualitative distinctions is very popular with physicists, so you
will eventually see it as you read more about machine learning. In this book, though,
we’ll completely avoid using this style of notation since we think it’s a needless source
of confusion to move back and forth between different ways of expressing the same
distinctions.

Inferring Meaning
Even after you’ve figured out the type of each column, you may still not know what a
column means. Determining what an unlabeled table of numbers describes can be sur-
prisingly difficult. Let’s return to the table that we showed earlier.

Table 2-7. Unlabeled data

... ... ...

“1” 73.847017017515 241.893563180437

“0” 58.9107320370127 102.088326367840

How much more sense does this table make if we tell you that (a) the rows describe
individual people, (b) the first column is a dummy code indicating whether the person
is male (written as a 1) or female (written as 0), (c) the second column is the person’s
height in inches and (d) the third column is the person’s weight in pounds? The numbers
suddenly have meaning when they’re put into proper context and that will shape how
you think about them.

But, sadly, you will sometimes not be given this sort of interpretative information. In
those cases, human intuition, aided by liberally searching through Google, is often the
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only tool that we can suggest to you. Thankfully, your intuition can be substantially
improved after you’ve looked at some numerical and visual summaries of the columns
whose meaning you don’t understand.

Numeric Summaries
One of the best ways to start making sense of a new data set is to compute simple
numeric summaries of all of the columns. R is very well suited to doing this. If you’ve
got just one column from a data set as a vector, summary will spit out the most obvious
values you should look at first:

data.file <- file.path('data', '01_heights_weights_genders.csv')
heights.weights <- read.csv(data.file, header = TRUE, sep = ',')
heights <- with(heights.weights, Height)
summary(heights)

# Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#54.26   63.51   66.32   66.37   69.17   79.00

Asking for the summary of a vector of numbers from R will give you the numbers you
saw above:

1. The minimum value in the vector.

2. The first quartile (which is also called the 25th percentile and is the smallest number
that’s bigger than 25% of your data).

3. The median (aka the 50th percentile).

4. The mean.

5. The 3rd quartile (aka the 75th percentile).

6. The maximum value.

This is close to everything you should ask for when you want a quick numeric summary
of a data set. All that’s really missing is the standard deviation of the column entries, a
numeric summary we’ll define later on in this chapter. In the following pages, we’ll
describe how to compute each of the numbers that summary produces separately and
then we’ll show you how to interpret them.

Means, Medians, and Modes
Learning to tell means and medians apart is one of the most tedious parts of the typical
“Intro to Stats” class. It can take a little while to become familiar with those concepts,
but we really do believe that you’ll need to be able to tell them apart if you want to
seriously work with data. In the interests of better pedagogy, we’ll try to hammer home
the meaning of those terms in two pretty different ways. First, we’ll show you how to
compute the mean and the median algorithmically. For most hackers, code is a more
natural language to express ideas than mathematical symbols, so we think that rolling
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your own functions to compute means and medians will probably make more sense
than showing you the defining equations for those two statistics. And later in this
chapter, we’ll show you how you can tell when the mean and median are different, by
looking at the shape of your data in histograms and density plots.

Computing the mean is incredibly easy. In R, you would normally use the mean function.
Of course, telling you to use a black-box function doesn’t convey much of the intuition
for what a mean is, so let’s implement our own version of mean, which we’ll call
my.mean. It’s just one line of R code, because the relevant concepts are already available
as two other functions in R: sum and length.

my.mean <- function(x) {
  return(sum(x) / length(x))
}

That single line of code is all there is to a mean: you just add up all the numbers in your
vector and then divide the sum by the length of the vector. As you’d expect, this function
produces the average value of the numbers in your vector, x. The mean is so easy to
compute in part because it doesn’t have anything to do with the sorted positions of the
numbers in your list.

The median is just the opposite: it entirely depends upon the relative position of the
numbers in your list. In R, you would normally compute the median using median, but
let’s write our version, which we’ll call my.median:

my.median <- function(x) {
  sorted.x <- sort(x)
  
  if (length(x) %% 2 == 0)
  {
    indices <- c(length(x) / 2, length(x) / 2 + 1)
    return(mean(sorted.x[indices]))
  }
  else
  {
    index <- ceiling(length(x) / 2)
    return(sorted.x[index])
  }
}

Just counting lines of code should tell you that the median takes a little bit more work
to compute than the mean. As a first step, we had to sort the vector, because the median
is essentially the number that’s in the middle of your sorted vector. That’s why the
median is also called the 50th percentile or the 2nd quartile. Once you’ve sorted a
vector, you can easily compute any of the other percentiles or quantiles just by splitting
the list into two parts somewhere else along its length. To get the 25th percentile (also
known as the 1st quartile), you can split the list at one quarter of its length.

The only problem with these informal definitions in terms of length is that they don’t
exactly make sense if your list has an even number of entries. When there’s no single
number that’s exactly in the middle of your data set, you need to do some trickery to
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produce the median. The code we wrote above handles the even length vector case by
taking the average of the two entries that would have been the median if only the list
had contained an odd number of entries.

To make that point clear, here is a simple example in which the median has to be
invented by averaging entries and another case in which the median is exactly equal to
the middle entry of the vector:

my.vector <- c(0, 100)
my.vector
# [1]   0 100
mean(my.vector)
#[1] 50
median(my.vector)
#[1] 50
my.vector <- c(0, 0, 100)
mean(my.vector)
#[1] 33.33333
median(my.vector)
#[1] 0

Returning to our original heights and weights data set, let’s compute the mean and
median of the heights data. This will also give us an opportunity to test our code:

my.mean(heights)
#[1] 66.36756
my.median(heights)
#[1] 66.31807
mean(heights) - my.mean(heights)
#[1] 0
median(heights) - my.median(heights)
#[1] 0

The mean and median in this example are very close to each other. In a little bit, we’ll
explain why we should expect that to be the case given the shape of the data we’re
working with.

Since we’ve just described two of the three most prominent numbers from an intro stats
course, you may be wondering why we haven’t mentioned the mode. We’ll talk about
modes in a bit, but there’s a reason we’ve ignored it so far: the mode, unlike the mean
or median, doesn’t always have a simple definition for the kinds of vectors we’ve been
working with. Because it’s not easy to automate, R doesn’t have a built-in function that
will produce the mode of a vector of numbers.

The reason that it’s complicated to define the mode of an arbitrary vec-
tor is that you need the numbers in the vector to repeat if you’re going
to define the mode numerically. When the numbers in a vector could
be arbitrary floating point values, it’s unlikely that any single numeric
value would ever be repeated in the vector. For that reason, modes are
only really defined visually for many kinds of data sets.
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All that said, if you’re still not sure about the math and are wondering what the mode
should be in theory, it’s supposed to be the number that occurs most often in your data
set.

Quantiles
As we said just a moment ago, the median is the number that occurs at the 50% point
in your data. To get a better sense of the range of your data, you might want to know
what value is the lowest point in your data. That’s the minimum value of your data set,
which is computed using min in R:

min(heights)
#[1] 54.26313

And to get the highest/maximum point in your data set, you should use max in R:

max(heights)
#[1] 78.99874

Together, the min and max define the range of your data:

c(min(heights), max(heights))
#[1] 54.26313 78.99874
range(heights)
#[1] 54.26313 78.99874

Another way of thinking of these numbers is to think of the min as the number which
0% of your data is below and the max as the number which 100% of your data is below.
Thinking that way leads to a natural extension: how can you find the number which
N% of your data is below? The answer to that question is to use the quantile function
in R. The Nth quantile is exactly the number which N% of your data is below.

By default, quantile will tell you the 0%, 25%, 50%, 75% and 100% points in your data:

quantile(heights)
#      0%      25%      50%      75%     100% 
#54.26313 63.50562 66.31807 69.17426 78.99874

To get other locations, you can pass in the cut-offs you want as another argument to
quantile called probs:

quantile(heights, probs = seq(0, 1, by = 0.20))
#      0%      20%      40%      60%      80%     100% 
#54.26313 62.85901 65.19422 67.43537 69.81162 78.99874

Here we’ve used the seq function to produce a sequence of values between 0 and 1 that
grows in 0.20 increments:

seq(0, 1, by = 0.20)
#[1] 0.0 0.2 0.4 0.6 0.8 1.0
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Quantiles don’t get emphasized as much in traditional statistics texts as means and
medians, but they can be just as useful. If you run a customer service branch and keep
records of how long it takes to respond to a customer’s concerns, you might benefit a
lot more from worrying about what happens to the first 99% of your customers than
worrying about what happens to the median customer. And the mean customer might
be even less informative if your data has a strange shape.

Standard Deviations and Variances
The mean and median of a list of numbers are both measures of something central: the
median is literally in the center of list, while the mean is only effectively in the center
once you’ve weighted all the items in the list by their values.

But central tendencies are only one thing you might want to know about your data.
Equally important is to ask how far apart you expect the typical values to be, which
we’ll call the spread of your data. You can imagine defining the range of your data in
a lot of ways. As we already said, you could use the definition that the range function
implements: the range is defined by the min and max values. This definition misses two
things we might want from a reasonable definition of spread:

1. The spread should only include most of the data, not all of it.

2. The spread shouldn’t be completely determined by the two most extreme values
in your data set, which are often outlier values that are not representative of your
data set as a whole.

The min and max will match the outliers perfectly, which makes them fairly brittle def-
initions of spread. Another way to think about what’s wrong with the min and max
definition of range is to consider what happens if you change the rest of your data while
leaving those two extreme values unchanged. In practice, you can move the rest of the
data as much as you’d like inside those limits and still get the same min and max. In other
words, the definition of range based on min and max effectively only depends on two of
your data points, whether or not you have two data points or two million data points.
Because you shouldn’t trust any summary of your data that’s insensitive to the vast
majority of the points in the data, we’ll move on to a better definition of the spread of
a data set.

Now, there are a lot of ways you could try to meet the requirements we described above
for a good numeric summary of data. For example, you could see what range contains
50% of your data and is centered around the median. In R, this is quite easy to do:

c(quantile(heights, probs = 0.25), quantile(heights, probs = 0.75))

Or you might want to be more inclusive and find a range that contains 95% of the data:

c(quantile(heights, probs = 0.025), quantile(heights, probs = 0.975))
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These are actually really good measures of the spread of your data. When you work
with more advanced statistical methods, these sorts of ranges will come up again and
again. But, historically, statisticians have used a somewhat different measure of spread:
specifically, they’ve used a definition called the variance. The idea is roughly to measure
how far, on average, a given number in your data set is from the mean value. Rather
than give a formal mathematical definition, let’s define the variance computationally
by writing our own variance function:

my.var <- function(x) {
  m <- mean(x)
  return(sum((x - m) ^ 2) / length(x))
}

As always, let’s check that our implementation works by comparing it with R’s var:

my.var(heights) - var(heights)

We’re only doing a so-so job of matching R’s implementation of var. In theory, there
could be a few reasons for this, most of which are examples of how things can go wrong
when you assume floating point arithmetic is perfectly accurate. But there’s actually
another reason that our code isn’t working the same way that the built-in function does
in R: the formal definition of variance doesn’t divide out by the length of a vector, but
rather by the length of the vector minus one. This is done because the variance that you
can estimate from empirical data turns out, for fairly subtle reasons, to be biased
downwards from its true value. To fix this for a data set with n points, you normally
multiply your estimate of the variance by a scaling factor of n / (n - 1), which leads
to an improved version of my.var:

my.var <- function(x) {
  m <- mean(x)
  return(sum((x - m) ^ 2) / (length(x) - 1))
}

my.var(heights) - var(heights)

With this second version of my.var, we match R’s estimate of the variance perfectly.
The floating point concerns we raised above could easily come up if had used longer
vectors, but they didn’t seem to matter with a data set of this size.

Now, the variance is a very natural measure of the spread of our data, but it’s unfortu-
nately much larger than almost any of the values in our data set. One obvious way to
see this mismatch in scale is to look at the values that are one unit of variance away
from the mean:

c(mean(heights) - var(heights), mean(heights) + var(heights))
#[1] 51.56409 81.17103

This range is actually larger than the range of the entire original data set:

c(mean(heights) - var(heights), mean(heights) + var(heights))
#[1] 51.56409 81.17103
range(heights)
#[1] 54.26313 78.99874
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The reason we’re so far out of bounds from our original data is that we defined variance
by measuring the squared distance of each number in our list from the mean value, but
we never undid that squaring step. To put everything back on the original scale, we
need to replace the variance with the standard deviation, which is just the square root
of the variance:

my.sd <- function(x) {
  return(sqrt(my.var(x)))
}

Before we do anything else, it’s always good to check that your implementation makes
sense relative to R’s, which is called sd:

my.sd(heights) - sd(heights)

Since we’re now computing values on the right scale, it’ll be informative to recreate our
estimate of the range of our data by looking at values that are one unit of standard
deviation away from the mean:

c(mean(heights) - sd(heights), mean(heights) + sd(heights))
# [1] 62.52003 70.21509
range(heights)
#[1] 54.26313 78.99874

Now that we’re using units of standard deviations instead of units of variances, we’re
solidly inside the range of our data. Still, it would be nice to get a sense of how tightly
inside the data we are. One way to do this is to compare the standard deviation based
range against a range defined using quantiles:

c(mean(heights) - sd(heights), mean(heights) + sd(heights))
# [1] 62.52003 70.21509

c(quantile(heights, probs = 0.25), quantile(heights, probs = 0.75))
#     25%      75% 
#63.50562 69.17426

By using the quantile function, we can see that roughly 50% of our data is less than
one standard deviation away from the mean. This is quite typical, especially for data
with the shape that our heights data has. But to finally make that idea about the shape
of our data precise, we need to start visualizing our data and define some formal terms
for describing the shape of data.

Exploratory Data Visualization
Computing numerical summaries of your data is clearly valuable: it’s the stuff of clas-
sical statistics after all. But, for many people, numbers don’t convey the information
they want to see very efficiently. Visualizing your data is often a more effective way to
discover patterns in it. In this chapter, we’ll cover the two simplest forms of exploratory
data visualization: single column visualizations, which highlight the shape of your data,
and two column visualizations, which highlight the relationship between pairs of
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columns. Beyond showing you the tools for visualizing your data, we’ll also describe
some of the canonical shapes you can expect to see when you start looking at data.
These idealized shapes, also called distributions, are standard patterns that statisticians
have studied over the years. When you find one of these shapes in your data, you can
often make broad inferences about your data: how it originated, what sort of abstract
properties it will have, and so on. Even when you think the shape you see is only a
vague approximation to your data, the standard distributional shapes can provide you
with building blocks that you can use to construct more complex shapes that match
your data more closely.

All that said, let’s get started by just visualizing the heights and weights data that we’ve
been working with so far. It’s actually a fairly complex data set that illustrates many of
the ideas we’ll come up against again and again throughout this book. The most typical
single column visualization technique that people use is the histogram. In a histogram,
you divide your data set into bins and then count the number of entries in your data
that fall into each of the bins. For instance, we might use one inch bins to visualize our
height data. We can do that in R as follows:

library('ggplot2')

data.file <- file.path('data', '01_heights_weights_genders.csv')

heights.weights <- read.csv(data.file, header = TRUE, sep = ',')

ggplot(heights.weights, aes(x = Height)) + geom_histogram(binwidth = 1)

Looking at Figure 2-5, something should jump out at you: there’s a bell curve shape in
your data. Most of the entries are in the middle of your data, near the mean and median
height. But there’s a danger that this shape is an illusion caused by the type of histogram
we’re using. One way to check this is to try using several other binwidths. This is
something you should always keep in mind when working with histograms: the bin-
widths you use impose external structure on your data at the same time that they reveal
internal structure in your data. The patterns you find, even when they’re real, can go
away very easily if you use the wrong settings for building a histogram:

ggplot(heights.weights, aes(x = Height)) + geom_histogram(binwidth = 5)
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Figure 2-5. Histogram of 10,000 people’s heights in inches

Exploratory Data Visualization | 45



When we use too broad a binwidth, a lot of the structure in our data goes away
(Figure 2-6). There’s still a peak, but the symmetry we saw before seems to mostly
disappear. This is called oversmoothing. And the opposite problem, called under-
smoothing (Figure 2-7), is just as dangerous:

ggplot(heights.weights, aes(x = Height)) + geom_histogram(binwidth = 0.001)

Figure 2-6. Histogram of 10,000 people’s heights in inches, with too broad a binwidth
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Figure 2-7. Histogram of 10,000 people’s heights in inches, with too thin a binwidth

Here we’ve undersmoothed the data because we’ve used incredibly small bins. Because
we have so much data, you can still learn something from this histogram, but a data
set with 100 points would be basically worthless if you had used this sort of binwidth.

Because setting binwidths can be tedious and because even the best histogram is too
jagged for our taste, we prefer an alternative to histograms called kernel density esti-
mates (KDEs), or density plots. While density plots suffer from most of the same prob-
lems of oversmoothing and undersmoothing that plague histograms, we generally find
them aesthetically superior—especially since density plots for large data sets look a
more like the theoretical shapes we expect to find in our data. Additionally, density
plots have some theoretical superiority over histograms: in theory, using a density plot
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should require fewer data points to reveal the underlying shape of your data than a
histogram. And, thankfully, density plots (an example of which is shown in Fig-
ure 2-8) are just as easy to generate in R as histograms:

ggplot(heights.weights, aes(x = Height)) + geom_density()

Figure 2-8. Density plot of 10,000 people’s heights in inches

The smoothness of the density plot helps us discover the sorts of patterns that we
personally find harder to see in histograms. Here, the density plot suggests that the data
are suspiciously flat at the peak value. Since the standard bell curve shape we might
expect to see isn’t flat, this leads us to wonder if there might be more structure hidden
in this data set. One thing you might try doing when you think there’s some structure
you’re missing is to split up your plot by any qualitative variables you have available.
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Here, we use the gender of each point to split up our data into two parts. Then we
create a density plot in which there are two densities that get superimposed, but colored
in differently to indicate the gender they represent. The resulting plot is shown in
Figure 2-9:

ggplot(heights.weights, aes(x = Height, fill = Gender)) + geom_density()

Figure 2-9. Density plot of 10,000 people’s heights in inches with genders

In this plot, we suddenly see a hidden pattern that was totally missing before: we’re
not looking at one bell curve, but at two different bell curves that partially overlap. This
isn’t surprising: men and women have different mean heights. We might expect to see
the same bell curve structure in the weights for both genders, so let’s make a new density
plot for the weights column of our data set:

ggplot(heights.weights, aes(x = Weight, fill = Gender)) + geom_density()
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Looking at Figure 2-10, we see the same mixture of bell curves structure. In future
chapters, we’ll cover this sort of mixture of bell curves in some detail, but it’s worth
giving a name to the structure we’re looking at right now: it’s a mixture model in which
two standard distributions have been mixed to produce a non-standard distribution.

Figure 2-10. Density plot of 10,000 people’s weights in pounds with genders

Of course, we need to describe our standard distributions more clearly to give sense to
that sentence, so let’s start with our first idealized data distribution: the normal distri-
bution, which is also called the Gaussian distribution or the bell curve. We can easily
see an example of the normal distribution by simply splitting up the plot into two pieces,
called facets. We’ll do this with the density plots we’ve shown you so far so that you
can see the two bell curves in isolation from one another. In R, we can build this sort
of faceted plot as follows:
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ggplot(heights.weights, aes(x = Weight, fill = Gender)) + geom_density() + 
facet_grid(Gender ~ .)

Once we've run this code, we can look at Figure 2-11 and clearly see one bell curve
centered at 64” for women and another bell curve centered at 69” for men. This specific
bell curve is the normal distribution, a shape that comes up so often that it’s easy to
think that it’s the “normal” way for data to look. This isn’t quite true: lots of things we
care about, from people’s annual incomes to the daily changes in stock prices, aren’t
very well described using the normal distribution. But the normal distribution is very
important in the mathematical theory of statistics, so it’s much better understood than
most other distributions.

Figure 2-11. Density plot of 10,000 people’s weights in pounds with genders, with facets
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On a more abstract level, a normal distribution is just a type of bell curve. It might be
any of the bell curves shown in Figures 2-12 through Figure 2-14.

Figure 2-12. Normal distribution with mean 0 and variance 1

In these graphs, two parameters vary: the mean of the distribution, which determines
the center of the bell curve, and the variance of the distribution, which determines the
width of the bell curve. You should play around with visualizing various versions of
the bell curve by playing with the parameters in the following code until you feel com-
fortable with how the bell curve looks. To do that, play with the values of m and s in
the code below:

m <- 0
s <- 1
ggplot(data.frame(X = rnorm(100000, m, s)), aes(x = X)) + geom_density()
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All of the curves you can generate with this code have the same basic shape: changing
m and s only moves the center around and contracts or expands the width. Unfortu-
nately, seeing this general bell shape isn’t sufficient to tell you that your data is normal:
there are other bell-shaped distributions, one of which we’ll describe in just a moment.
For now, let’s do a quick jargon lesson, since the normal distribution lets us define
several qualitative ideas about the shape of data.

Figure 2-13. Normal distribution with mean 1 and variance 3
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Figure 2-14. Normal distribution with mean 0 and variance 5

Modes
First, let’s return to the topic of modes that we put off until now. As we said earlier,
the mode of a continuous list of numbers isn’t well defined, since no numbers repeat.
But the mode has a clear visual interpretation: when you make a density plot, the mode
of the data is the peak of the bell. For an example, look at Figure 2-15.
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Figure 2-15. Normal distribution with its mode highlighted

Estimating modes visually is much easier to do with a density plot than with a histo-
gram, which is one of the reasons we prefer density plots over histograms. And modes
make sense almost immediately when you look at density plots, whereas they often
make very little sense if you try to work with the numbers directly.

Now that we’ve defined a mode, we should point out one of the defining traits of the
normal distribution is that it has a single mode, which is also the mean and the median
of the data it describes. In contrast, a graph like the one shown in Figure 2-16 has two
modes, and the graph in Figure 2-17 has three modes.
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Figure 2-16. Mixture of two normal distributions with both modes highlighted

When we talk about the number of modes that we see in our data, we’ll use the following
terms: a distribution with one mode is unimodal; a distribution with two modes is
bimodal; and a distribution with two or more modes is multimodal.
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Figure 2-17. Mixture of three normal distributions with three modes highlighted

Skewness
Another important qualitative distinction can be made between data that’s symmetric
and data that’s skewed. Figures 2-18 and 2-19 show images of symmetric and skewed
data to make these terms clear.
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Figure 2-18. Symmetric distribution

A symmetric distribution has the same shape whether you move to the left of the mode
or to the right of the mode. The normal distribution has this property, which tells us
that we’re as likely to see data that’s below the mode as we are to see data that’s above
the mode. In contrast, the second graph, which is called the gamma distribution, is
skewed to the right: you’re much more likely to see extreme values to the right of the
mode than you are to see extreme values to the left of the mode.
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Figure 2-19. Skewed distribution

Thin Tails vs. Heavy Tails
The last qualitative distinction we’ll make is between data that’s thin-tailed and data
that’s heavy-tailed. We’ll show the standard graph that’s meant to illustrate this dis-
tinction in a second, but this distinction is probably easier to make in words: a thin-
tailed distribution usually produces values that are not far from the mean: let’s say that
it does so 99% of the time. The normal distribution, for example, produces values that
are no more than three standard deviations away from the mean about 99% of the time.
In contrast, another bell shaped distribution called the Cauchy distribution produces
only 90% of its values inside those three standard deviation bounds. And, as you get
further away from the mean value, the two types of distributions become even more
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different: a normal distribution almost never produces values that are six standard
deviations away from the mean, while a Cauchy will do it almost 5% of the time.

The canonical images that are usually used to explain this distinction between the thin-
tailed normal and the heavy-tailed Cauchy are shown in Figure 2-20 and Figure 2-21.

Figure 2-20. Heavy-tailed Cauchy vs. thin-tailed Gaussian distribution
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Figure 2-21. Heavy-tailed Cauchy vs. thin-tailed Gaussian distribution, with facets

But we think you’ll get more intuition by just generating lots of data from both of those
distributions and seeing the results for yourself. R makes this quite easy, so you should
try the following:

set.seed(1)
normal.values <- rnorm(250, 0, 1)
cauchy.values <- rcauchy(250, 0, 1)

range(normal.values)
range(cauchy.values)
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Plotting these will also make the point clearer:

df <- data.frame(X = c(x, x), Distribution = c(rep('Normal', length(x)), rep('Cauchy', 
length(x))), Density = c(y, z))
ggplot(df, aes(x = X, y = Density, linetype = Distribution, group = Distribution)) +
  geom_line()

ggplot(df, aes(x = X, y = Density, linetype = Distribution, group = Distribution)) +
  geom_line() +
  facet_grid(Distribution ~ .)

To end this section on the normal distribution and its cousin the Cauchy distribution,
let’s summarize the qualitative properties of the normal once more: it’s unimodal,
symmetric, and has a bell shape with thin tails. The Cauchy is unimodal, symmetric,
and has a bell shape with heavy tails.

After the normal distribution, there are two more canonical images we want to show
you before we bring this section on density plots to a close: a mildly skewed distribution
called the gamma and a very skewed distribution called the exponential. We’ll use both
later on since they occur in real data, but it’s worth describing them now to illustrate
the skew visually.

Let’s start with the gamma distribution. It’s quite flexible, so we’d encourage you to
play with it on your own for a bit. Here’s a starting point:

gamma.values <- rgamma(100000, 1, 0.001)
ggplot(data.frame(X = gamma.values), aes(x = X)) + geom_density()

The resulting plot of the gamma data is shown in Figure 2-22.

As you can see, the gamma distribution is skewed to the right, which means that the
median and the mean can sometimes be quite different. In Figure 2-23, we’ve plotted
some scores we spidered from people playing the iPhone game Canabalt.

This real data set looks remarkably like data that could have been produced by a the-
oretical gamma distribution. We also bet that you’ll see this sort of shape in the density
plots for scores in lot of other games as well, so it seems like a particularly useful the-
oretical tool to have in your belt if you want to analyze game data.

One other thing to keep in mind is that the gamma distribution only produces positive
values. When we describe how to use stochastic optimization tools near the end of this
book, having an all positive distribution will come in very handy.

The last distribution we’ll describe is the exponential distribution, which is a nice
example of a powerfully skewed distribution. An example data set drawn from the
exponential distribution is shown in Figure 2-24.
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Figure 2-22. Gamma distribution
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Figure 2-23. Canabalt scores

Because the mode of the exponential distribution occurs at zero, it’s almost like you
had cut off the positive half of a bell to produce the exponential curve. This distribution
comes up quite a lot when the most frequent value in your data set is zero and only
positive values can ever occur. For example, corporate call centers often find that the
length of time between the calls they receive looks like an exponential distribution.
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Figure 2-24. Exponential distribution

As you build up a greater familiarity with data and learn more about the theoretical
distributions that statisticians have studied, these distributions will become more fa-
miliar to you — especially because the same few distributions come up over and over
again. For right now, what you really take away form this section are the simple qual-
itative terms that you can use to describe your data to others: unimodal vs. multimodal,
symmetric vs. skewed, and thin-tailed vs. heavy-tailed.
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Visualizing the Relationships between Columns
So far we’ve only covered strategies for thinking carefully about individual columns in
your data set. This is clearly worth doing: often just seeing a familiar shape in your data
tells you a lot about your data. Seeing a normal distribution tells us that you can use
the mean and median interchangeably and it also tells you that you can trust that most
of the time you won’t see data more than three standard deviations away from the mean.
That’s a lot to learn just from a single visualization.

But all of the material we just reviewed is what you’d expect to learn in a traditional
statistics class: it doesn’t have the feel of the machine learning applications that you’re
presumably itching to start getting involved with. To do real machine learning, we need
to find relationships between multiple columns in our data and use those relationships
to make sense of our data and to predict things about the future. Some examples we’ll
touch on over the course of this book include the following prediction problems:

1. Predicting someone’s weight from their height.

2. Predicting whether an email is spam or not using the text of the email.

These sorts of problems break down into two sorts: regression problems, in which you
need to predict some number (like weight) given a bunch of other numbers (like height);
and classification problems, in which you need to assign a label, like spam, given a
bunch of numbers, like word counts for spammy words such as “viagra” and “cialis”.
The tools we can use to perform regression and classification are many, but there are
two motivating types of data visualizations we’d like you to carry around in your head
as we move forward.

The first is the stereotypical regression picture. In the regression picture, we make a
scatterplot of our data and see that there’s a hidden shape that relates two columns in
data set. Returning to our beloved heights and weights data, let’s make a scatterplot of
weights against heights.

If you’re not familiar with them, you should know that a scatterplot is a two-dimen-
sional image in which one dimension corresponds to a variable X and another corre-
sponds to a variable Y. To make our scatterplots, we’ll continue using ggplot.

ggplot(heights.weights, aes(x = Height, y = Weight)) + geom_point()

The scatterplot that ggplot generates is shown in Figure 2-25.
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Figure 2-25. Simple scatterplot of heights vs. weights

Looking at this image, it seems pretty clear that there’s a pattern relating heights with
weights: people who are taller also weigh more. To get started at examining the pattern
more carefully, we can use a smoothing tool in ggplot2 to get a visual depiction of the
linear pattern we’re seeing:

ggplot(heights.weights, aes(x = Height, y = Weight)) + geom_point() + geom_smooth()

The new scatterplot with a smooth pattern superimposed is shown in Figure 2-26.
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Figure 2-26. Scatterplot of heights vs. weights with smooth pattern

geom_smooth will generate predictions for people’s weights given their heights as an
input. In this case, the predictions are simply a line. Around the line there is a shaded
region, which describes other plausible predictions that could have been made for
someone’s weight based on the data you’ve seen. As you get more data, these guesses
become more accurate and the shaded region shrinks. Since we already used all of the
data, the best way to see the effect happen is to go in the opposite direction: remove
some of our data and see how the pattern gets weaker and weaker. The results are
shown in Figures 2-27 to Figure 2-29.
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ggplot(heights.weights[1:20,], aes(x = Height, y = Weight)) + geom_point() + 
geom_smooth()

Figure 2-27. Scatterplot of heights vs. weights using only 20 data points
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ggplot(heights.weights[1:200,], aes(x = Height, y = Weight)) + geom_point() + 
geom_smooth()

Figure 2-28. Scatterplot of heights vs. weights using only 200 data points
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ggplot(heights.weights[1:2000,], aes(x = Height, y = Weight)) + geom_point() + 
geom_smooth()

Figure 2-29. Scatterplot of heights vs. weights using only 2000 data points
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Recall that predicting the values in one column using another column is called regres-
sion when the values you’re trying to predict are numbers. In contrast, when you’re
trying to predict labels, we call that classification. For classification, Figure 2-30 is the
image you should keep in mind.

Figure 2-30. Scatterplot of heights vs. weights (classification)

In this image, we’ve shown the heights and weights of every person in our data set, but
we’ve also visualized their gender as the color of each point. That makes it clear that
we see two distinct groups of people in our data. To generate this image in ggplot2, we
run the following code:
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ggplot(heights.weights, aes(x = Height, y = Weight)) + geom_point(aes(color = Gender, 
alpha=0.25)) +
    scale_alpha(legend=FALSE)+scale_color_manual(values=c("Male"="black", 
"Female"="gray"))+theme_bw()

This image is the standard classification picture. In the classification picture, we make
a scatterplots of our data, but use a third column to color in the points with different
labels. For our height and weight data, we added a third column, which is the sex of
each person in our data set. Looking at this picture, it probably seems like we could
guess people’s gender using only their height and weight. Making guesses about cate-
gorical variables like gender from other data is exactly what classification is meant to
do and we’ll describe algorithms for it in some detail in the next chapter. For now, we’ll
just show you in Figure 2-31 what the results would look like after running a standard
classification algorithm.

Figure 2-31. Scatterplot of heights vs. weights, after standard classification algorithm
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The line we’ve drawn has a very fancy sounding name: it’s called the “separating hy-
perplane.” It’s a “separating” hyperplane because it splits the data into two groups: on
one side, you guess that someone is female given their height and weight, and on the
other side you guess that they’re male. This is a pretty good way to make guesses: for
this data set, you’d be right about 92% of the time. In our mind, that’s not bad per-
formance when you’re only using the simplest classification model that’s out there,
with only heights and weights as inputs to your prediction algorithm. In our real clas-
sification tasks, we’ll often have tens, hundreds, or even thousands of inputs to use for
predicting classes. This data set just happens to be particularly easy to work with, which
is why we started with it.

That’s the end of this chapter. As a teaser to get you excited for the next chapter, we’ll
show you the R code that generated the predictions you just saw. As you can see, you
need almost no code at all to get pretty impressive results:

heights.weights <- transform(heights.weights, Male = ifelse(Gender == 'Male', 1, 0))
logit.model <- glm(Male ~  Weight + Height, data = heights.weights, family = 
binomial(link = 'logit'))

ggplot(heights.weights, aes(x = Height, y = Weight)) + geom_point(aes(color = Gender, 
alpha=0.25)) + 
  scale_alpha(legend=FALSE)+scale_color_manual(values=c("Male"="black", 
"Female"="gray"))+theme_bw() +
  stat_abline(intercept = - coef(logit.model)[1] / coef(logit.model)[2],
        slope = - coef(logit.model)[3] / coef(logit.model)[2],
        geom = 'abline',
        color = 'black')

In the next chapter, we’ll more thoroughly show you how to build your own classifiers
using off-the-shelf machine learning tools.
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CHAPTER 3

Classification: Spam Filtering

This or That: Binary Classification
At the very end of the previous chapter, we quickly presented an example of classifi-
cation. We used heights and weights to predict whether a person was a man or a
woman. With our example graph, we were able to draw a line that split the data into
two groups: one group where we would predict “male” and another group where we
would predict “female.” This line was called a separating hyperplane, but we’ll use the
term “decision boundary” from now on, because we’ll be working with data that can’t
be classified properly using only straight lines. For example, imagine that your data
looked like the data set shown in Figure 3-1.

This plot might depict people who are at risk for a certain ailment and those that are
not. Above and below the black horizontal lines we might predict that a person is at
risk, but inside we would predict good health. These black lines are thus our decision
boundary. Suppose that the open circles represent healthy people and the open triangles
represent people who suffer from a disease. If that were the case, the two black lines
would work quite as a decision boundary for classifying people as healthy or sick.

But before we begin to understand how these decision boundaries are determined in
practice, let’s review some of the big ideas in classification.

We’re going to assume that we have a set of labeled examples of the categories we want
to learn how to identify. These examples consist of a label, which we’ll also call a class
or type, and a series of measured variables that describe each example. We’ll call these
measurements features or predictors: the height and weight columns we worked with
earlier are examples of features that we could use to guess the “male” and “female”
labels we were working with before.
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Examples of classifications can be found anywhere you look for them:

1. Given the results of a mammogram, how do we decide whether a patient has breast
cancer or not?

2. Do blood pressure measurements suggest that a patient has hypertension?

3. Does a political candidate’s platform suggest that they are a Republican candidate
or a Democratic candidate?

4. Does a picture uploaded to a social network contain a face in it or not?

5. Was “The Tempest” written by William Shakespeare or Francis Bacon?

Figure 3-1. Classification with multiple decision boundaries
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In this chapter, we’re going to focus on problems with text classification that are closely
related to the tools you could use to answer the last question in our list. In our exercise,
however, we’re going to build a system for deciding whether an email is spam or ham.

Our raw data are The SpamAssassin Public Corpus, available for free download at:
http://spamassassin.apache.org/publiccorpus/. Portions of this corpus are included in the
code/data/ folder for this chapter and will be used throughout this chapter. At the un-
processed stage, the features are simply the contents of the raw email as plain text.

This raw text provides us with our first problem. We need to transform our raw text
data into a set of features that describe qualitative concepts in a quantitative way. In
our case, that will be a 0/1 coding strategy: spam or ham. For example, we may want
to determine the following: “does containing HTML tags make an email more likely to
be spam?” To answer this, we will need a strategy for turning the text in our email into
numbers. Fortunately, the general-purpose text mining packages available in R will do
much of this work for us.

For that reason, much of this chapter will focus on building up your intuition for the
types of features that people have used in the past when working with text data. Feature
generation is a major topic in current machine learning research and is still very far from
being automated in a general purpose way. At present, it’s best to think of the features
being used as part of a vocabulary of machine learning that you become more familiar
with as you perform more machine learning tasks.

Just as learning the words of a new language builds up an intuition for
what could realistically be a word, learning about the features people
have used in the past builds up an intuition for what features could
reasonably be helpful in the future.

When working with text, the most important type of feature that’s been used histori-
cally is word-count. If we think that the text of HTML tags are strong indicators of
whether an email is spam, then we might pick terms like “html” and “table” and count
how often they occur in one type of document versus the other. To show how this
approach would work with the SpamAssassin Public Corpus, we’ve gone ahead and
counted the number of times the terms “html” and “table” occurred: Table 3-1 shows
the results.

Table 3-1. Frequency of “spammy” words

Term Spam Ham

html 377 9

table 1,182 43
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Figure 3-2. Frequency of terms “html” and “table” by email type

For every email in our data set, we’ve also plotted the class memberships (Figure 3-2).
This plot isn’t actually very informative, because too many of the data points in our
data set overlap. This sort of problem comes up quite often when you work with data
that contains only a few unique values for one or more of your variables. As this is a
recurring problem, there is a standard graphical solution: we simply add random noise
to the values before we plot. This noise will “separate out” the points to reduce the
amount of over-plotting. This addition of noise is called jittering, and is very easy to
produce in ggplot2 (Figure 3-3).
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Figure 3-3. Jittered frequency of terms ‘html’ and ‘table’ by email type

This last plot suggests that we could do a so-so job of deciding whether an email is
spam or not simply by counting the number of times the terms “html” and “table”
occur.

The commands used to create the plots in Figure 3-2 and Figure 3-3
begin at line 129 of the email_classify.R file in the code/ folder for this
chapter.
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In practice, we can do a much better job by using many more than just these two very
obvious terms. In fact, for our final analysis we’ll use several thousand terms. Even
though we’ll only use word-count data, we’ll still get relatively accurate classification.
In the real world, you’d want to use other features beyond word-counts, like falsified
headers, IP or email black list, etc.; but here we only wish to introduce the basics of
text classification.

Before we can proceed, we should review some basic concepts of conditional proba-
bility and discuss how they relate to classifying a message based on its text.

Moving Gently into Conditional Probability
At its core, text classification is a 20th century application of the 18th century concept
of conditional probability. A conditional probability is the likelihood of observing one
thing given some other thing that we already know about. For example, we might want
to know the probability that a college student is female, given that we already know
the student’s major is computer science. This is something we can look up in survey
results. According to a National Science Foundation survey in 2005, only 22% of un-
dergraduate computer science majors were female [SR08]. But 51% of undergraduate
science majors overall were female, so conditioning on being a computer science major
lowers the chances of being a woman from 51% to 22%.

The text classification algorithm we’re going to use in this chapter, called the Naive
Bayes classifier, looks for differences of this sort by searching through text for words
that are either (a) noticeably more likely to occur in spam messages or (b) noticeably
more likely to occur in ham messages. When a word is noticeably more likely to occur
in one context rather than the other, its occurrence can be diagnostic of whether a new
message is spam or ham. The logic is simple: if you see a single word that’s more likely
to occur in spam than ham, that’s evidence that the email as a whole is spam. If you
see many words that are more likely to occur in spam than ham and very few words
that are more likely to occur in ham than spam, that should be strong evidence that the
email as a whole is spam.

Ultimately, our text classifier formalizes this intuition by computing (a) the probability
of seeing the exact contents of an email, conditioned on the email being assumed to be
spam and (b) the probability of seeing the same email’s contents, conditioned on the
email being assumed to be ham. If it’s much likely that we would see the email in
question if it were spam, we’ll declare it to be spam.

How much more likely a message needs to be to merit being labeled spam depends
upon an additional piece of information: the base rate of seeing spam messages. This
base rate information is usually called the prior. You can think of the prior in the fol-
lowing way: if most of the birds you see in the park are ducks and you see a bird quacking
one morning, it’s a pretty safe bet to assume that it’s a duck. But if you have never seen
a duck in the park even once, it’s much riskier to assume that anything that quacks
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must be a duck. When working with email, the prior comes into play because the
majority of email sent is spam, which means that even weak evidence that an email is
spam can be sufficient to justify labeling it as spam.

In the following section we will elaborate on this logic in some detail as we write a spam
classifier. To compute the probability of an email being spam, we will assume that the
occurrence counts for every word can be estimated in isolation of all of the other words.
Formally, this amounts to an assumption often referred to as statistical independence.
When we make this assumption without being certain that it’s correct, we say that our
model is naive. Because we will also make use of base rate information about emails
being spam, the model will be also called a Bayes model—in homage to the 18th century
mathematician who first described conditional probabilities. Taken together, these two
traits make our model a Naive Bayes classifier.

Writing Our First Bayesian Spam Classifier
As we mentioned earlier in this chapter, we will be using the SpamAssassin Public
Corpus to both train and test our classifier. These data consist of labelled emails from
three categories: “spam,” “easy ham,” and “hard ham.” As you’d expect, hard ham is
more difficult to distinguish from spam than the easy stuff. For instance, hard ham
messages often include HTML tags. Recall that one way we mentioned to easily identify
spam was by these tags. To more accurately classify hard ham, we will have to include
more information from many more text features. Extracting these features requires
some text mining of the email files and constitutes our initial step in creating a classifier.

All of our raw email files include the headers and the message text. A typical “easy ham”
email looks like the example in Example 3-1. You’ll note several features of this text
that are of interest. First, there is a lot of information about where this email has come
from contained in the header. In fact, due to size constraints, we only included a portion
of the total header in Example 3-1. And despite the fact that there is a lot of useful
information contained in the headers, we will not be using any of this information in
our classifier. Rather than focus on features contained in the transmission of the mes-
sage, we are interested in how the contents of the messages themselves can help predict
an email’s type. This is not to say that one should always ignore header (or other)
information. In fact, all modern sophisticated spam filters utilize information contained
in email message headers, such as whether portions of it appear to have been forged,
whether the message is from a known spammer, or whether there are bits missing.

Example 3-1. Typical “easy ham” email
........................................................
Received: from usw-sf-list1-b.sourceforge.net ([10.3.1.13]
    helo=usw-sf-list1.sourceforge.net) by usw-sf-list2.sourceforge.net with
    esmtp (Exim 3.31-VA-mm2 #1 (Debian)) id 17hsof-00042r-00; Thu,
    22 Aug 2002 07:20:05 -0700
Received: from vivi.uptime.at ([62.116.87.11] helo=mail.uptime.at) by
    usw-sf-list1.sourceforge.net with esmtp (Exim 3.31-VA-mm2 #1 (Debian)) id
    17hsoM-0000Ge-00 for <spamassassin-devel@lists.sourceforge.net>;
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    Thu, 22 Aug 2002 07:19:47 -0700
Received: from [192.168.0.4] (chello062178142216.4.14.vie.surfer.at
    [62.178.142.216]) (authenticated bits=0) by mail.uptime.at (8.12.5/8.12.5)
    with ESMTP id g7MEI7Vp022036 for
    <spamassassin-devel@lists.sourceforge.net>; Thu, 22 Aug 2002 16:18:07
    +0200
From: David H=?ISO-8859-1?B?9g==?=hn <dh@uptime.at>
To: <spamassassin-devel@example.sourceforge.net>
Message-Id: <B98ABFA4.1F87%dh@uptime.at>
MIME-Version: 1.0
X-Trusted: YES
X-From-Laptop: YES
Content-Type: text/plain; charset="US-ASCII”
Content-Transfer-Encoding: 7bit
X-Mailscanner: Nothing found, baby
Subject: [SAdev] Interesting approach to Spam handling..
Sender: spamassassin-devel-admin@example.sourceforge.net
Errors-To: spamassassin-devel-admin@example.sourceforge.net
X-Beenthere: spamassassin-devel@example.sourceforge.net
X-Mailman-Version: 2.0.9-sf.net
Precedence: bulk
List-Help: <mailto:spamassassin-devel-request@example.sourceforge.net?subject=help>
List-Post: <mailto:spamassassin-devel@example.sourceforge.net>
List-Subscribe: <https://example.sourceforge.net/lists/listinfo/spamassassin-devel>,
    <mailto:spamassassin-devel-request@lists.sourceforge.net?subject=subscribe>
List-Id: SpamAssassin Developers <spamassassin-devel.example.sourceforge.net>
List-Unsubscribe: <https://example.sourceforge.net/lists/listinfo/spamassassin-devel>,
    <mailto:spamassassin-devel-request@lists.sourceforge.net?subject=unsubscribe>
List-Archive: <http://www.geocrawler.com/redir-sf.php3?list=spamassassin-devel>
X-Original-Date: Thu, 22 Aug 2002 16:19:48 +0200
Date: Thu, 22 Aug 2002 16:19:48 +0200

Hello, have you seen and discussed this article and his approach?

Thank you

http://www.paulgraham.com/spam.html
-- “Hell, there are no rules here-- we’re trying to accomplish something.”
-- Thomas Alva Edison

-------------------------------------------------------
This sf.net email is sponsored by: OSDN - Tired of that same old
cell phone?  Get a new here for FREE!
https://www.inphonic.com/r.asp?r=sourceforge1&refcode1=vs3390
_______________________________________________
Spamassassin-devel mailing list
Spamassassin-devel@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/spamassassin-devel

Since we are focusing on only the email message body, we need to extract this text from
the message files. If you explore some of the message files contained in this exercise,
you will notice that the email message always begins after the first full line break in the
email file. In Example 3-1, we see that the sentence, “Hello, have you seen and discussed
this article and his approach?” comes directly after the first line break. To begin building
our classifier, we must first create R functions that can access the files and extract the
message text by taking advantage of this text convention.
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The “null line” separating the header from the body of an email is part
of the protocol definition. For reference, see RFC822: http://tools.ietf
.org/html/frc822.

As is always the case, the first thing to do is to load in the libraries we will use for this
exercise. For text classification, we will be using the tm package, which stands for text
mining. Once we have built our classifier and tested it, we will use the ggplot2 package
to visually analyze the results. Another important initial step is to set the path variables
for all of the email files. As mentioned, we have three types of messages: easy ham, hard
ham, and spam. In the data file directory for this exercise, you will notice that there are
two separate sets of file folders for each type of message. We will use the first set of files
to train the classifier and the second set to test it.

library(tm)
library(ggplot2)

spam.path <- "data/spam/"
spam2.path <- "data/spam_2/"
easyham.path <- "data/easy_ham/"
easyham2.path <- "data/easy_ham_2/"
hardham.path <- "data/hard_ham/"
hardham2.path <- "data/hard_ham_2/"

With the requisite packages loaded and the path variables set, we can begin building
up our knowledge about the type of terms used in spam and ham by created text cor-
puses from both sets of files. To do this, we will write a function that opens each file,
finds the first line break, and returns the text below that as a character vector with a
single text element:

get.msg <- function(path) {
    con <- file(path, open="rt", encoding="latin1")
    text <- readLines(con)
    # The message always begins after the first full line break
    msg <- text[seq(which(text=="")[1]+1,length(text),1)]
    close(con)
    return(paste(msg, collapse="\n"))
}

The R language performs file I/O in a very similar way to many other programming
languages. The function above takes a file path as a string and opens that file in “rt”
mode, which stands for read as text. Also notice that the coding is “latin1.” This is
because many of the email messages contain non-ASCII characters, and this encoding
will allow us to use these files. The readLines function will return each line of text in
the file connection as a separate element of a character vector. As such, once we have
read in all of the lines, we want to locate the first empty element of the text and then
extract all the elements afterward. Once we have the email message as a character
vector, we’ll close the file connection and then collapse the vector into a single character
element using the paste function and “\n” (new line) for the collapse argument.
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To train our classifier, we will need to get the email messages from all of our spam and
ham emails. One approach to this is to create a vector containing all of the messages,
such that each element of the vector is a single email. The most straightforward way to
accomplish this in R is to use an apply function with our newly created get.msg function:

spam.docs <- dir(spam.path)
spam.docs <- spam.docs[which(spam.docs!="cmds")]
all.spam <- sapply(spam.docs, function(p) get.msg(paste(spam.path,p,sep="")))

For the spam email, we begin by getting a listing of all of the file names in the data/
spam directory using the dir function. This directory—and all of the directories holding
email data—also contain a cmds file, which is simply a long list of UNIX base commands
to move files in these directories. This is not something we want to include in our
training data, so we ignore it by only keeping files that do not have cmds as a filename.
Now, spam.docs is a character vector containing all of the file names for the spam mes-
sages we will use to train our classifier.

To create our vector of spam messages, we use the sapply function, which will apply
get.msg to all of the spam file names, and construct a vector of messages from the text
returned.

Note that we have to pass an anonymous function to sapply in order to
concatenate the file name with the appropriate directory path using the
paste function. This is a very common construction in R.

Once you have executed this series of commands, you can use the head(all.spam) to
inspect the results. You will note the name of each vector element corresponds to the
file name. This is one of the advantages of using sapply.

The next step is to create a text corpus from our vector of emails using the functions
provided by the tm package. Once we have the text represented as a corpus, we can
manipulate the terms in the messages to begin building our feature set for the spam
classifier. A huge advantage of the tm package is that much of the heavy lifting needed
to clean and normalize the text is hidden from view. What we will accomplish in a few
lines of R code would take many lines of string processing if we had to perform these
operations ourselves in a lower level language.

One way of quantifying the frequency of terms in our spam email is to construct a term
document matrix (TDM). As the name suggests, a TDM is an N x M matrix in which
the terms found among all of the documents in a given corpus define the rows, and all
of the documents in the corpus define the columns. The [i, j] cell of this matrix
corresponds to the number of times term i was found in document j. As before, we
will define a simple function, get.tdm, that will take a vector of email messages and
return a TDM:
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get.tdm <- function(doc.vec) {
    doc.corpus <- Corpus(VectorSource(doc.vec))
    control <- list(stopwords=TRUE, removePunctuation=TRUE, removeNumbers=TRUE, 
        minDocFreq=2)
    doc.dtm <- TermDocumentMatrix(doc.corpus, control)
    return(doc.dtm)
}

spam.tdm <- get.tdm(all.spam)

The tm package allows you to construct a corpus in several ways. In our case, we will
be constructing the corpus from a vector of emails, so we will use the VectorSource
function. To see the various other source types that can be used, enter ?getSources at
the R console. As is often the case when working with tm, once we have loaded our
source text we will use the Corpus function in conjunction with VectorSource to create
a corpus object. Before we can proceed to creating the TDM, however, we must tell
tm how we want it to clean and normalize the text. To do this we use a control, which
is a special list of options specifying how to distill the text.

For this exercise we will use four options. First, we set stopwords=TRUE, which tells tm
to remove 488 common English stop words from all of the documents. To see the list,
type stopwords() at the R console. Next, we set removePunctuation and removeNumbers
to TRUE, which are fairly self-explanatory and are used in order to reduce the noise
associated with these characters—especially since many of our documents contain
HTML tags. Finally, we set minDocFreq=2, which will ensure that only terms that appear
more than once in the corpus will end up in the rows of the TDM.

We now have processed the spam emails to the point where we can begin building our
classifier. Specifically, we can use the TDM to build a set of training data for spam.
Within the context of R, a good approach to doing this is to construct a data frame that
contains all of the observed probabilities for each term, given that we know it is spam.
Then we need to train our classifier to know the probability an email is spam, given the
observation of some term:

spam.matrix <- as.matrix(spam.tdm)
spam.counts <- rowSums(spam.matrix)
spam.df <- data.frame(cbind(names(spam.counts), 
     as.numeric(spam.counts)), stringsAsFactors=FALSE)
names(spam.df) <- c("term","frequency")
spam.df$frequency <- as.numeric(spam.df$frequency)

spam.occurrence <- sapply(1:nrow(spam.matrix), 
     function(i) {length(which(spam.matrix[i,] > 0))/ncol(spam.matrix)})
spam.density <- spam.df$frequency/sum(spam.df$frequency)

spam.df <- transform(spam.df, density=spam.density, 
     occurrence=spam.occurrence)
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To create this data frame, we must first convert the TDM object to a standard R matrix
using the as.matrix command. Then, using the rowSums command, we can create a
vector that contains the total frequency counts for each term across all documents.
Because we will be combining a character vector with a numeric vector with the
data.frame function, by default R will convert these vectors to a common representa-
tion. Since the frequency counts can be represented as characters, they will be conver-
ted, which means we must be mindful to set stringsAsFactors=FALSE. Next, we will do
some housekeeping to set the column names and convert the frequency counts back
to a numeric vector.

With the next two steps, we will generate the critical training data. First, we calculate
the percentage of documents in which a given term occurs. We do this by passing every
row through an anonymous function call through sapply, which counts the number of
cells with a positive element and then divides the total by the number of columns in
the TDM—i.e., by the number of documents in the spam corpus. Second, we calculate
the frequency of each word within the entire corpus. (We will not use the overall fre-
quency information for classification, but it will be useful to see how these numbers
compare when we consider how certain words might be affecting our results.)

In the final step, we add the spam.occurrence and spam.density vectors to the data frame
using the transform function. We have now generated the training data for spam
classification!

Let’s check the data and see which terms are the strongest indicators of spam given our
training data. To do this, we will sort spam.df by the occurrence column and inspect
its head:

head(spam.df[with(spam.df, order(-occurrence)),])
      term frequency     density occurrence
2122  html       377 0.005665595      0.338
538   body       324 0.004869105      0.298
4313 table      1182 0.017763217      0.284
1435 email       661 0.009933576      0.262
1736  font       867 0.013029365      0.262
1942  head       254 0.003817138      0.246

As we have mentioned repeatedly, HTML tags appear to be the strongest text features
associated with spam. Over 30% of the messages in the spam training data contain the
term html, as well as other common HTML-related terms, such as body, table, font,
and head. Note, however, that these terms are not the most frequent by raw count. You
can see this for yourself by replacing -occurrence with -frequency in the above state-
ment. This is very important in terms of how we define our classifier. If we used raw
count data and the subsequent densities as our training data, we might be over-weight-
ing certain kinds of spam—specifically, spam that contain HTML tables. We know,
however, that not all spam are constructed this way. As such, a better approach is to
define the conditional probability of a message being spam based on how many mes-
sages contain the term.
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Now that we have the spam training data, we need to balance it with the ham training
data. As part of the exercise, we will build this training data using only the easy ham
messages. Of course, it would be possible to incorporate the hard ham messages to the
training set; in fact, that would be advisable if we were building a production system.
But, within the context of this exercise, it’s helpful to see how well a text classifier will
work if trained using only a small corpus of easily classified documents.

We will construct the ham training data in exactly the same way we did the spam, and
therefore we will not reprint these commands here. The only way this step differs from
generating the spam training data is that we only use the first 500 email messages in
the data/easy_ham folder.

You may note that there are actually 2,500 ham emails in this directory. So why are we
ignoring 4/5 of the data? When we construct our first classifier, we will assume that
each message has an equal probability of being ham or spam. As such, it is good practice
to ensure that our training data reflect our assumptions. We only have 500 spam mes-
sages, so we will limit our ham training set to 500 messages as well.

To see how we limited the ham training data in this way, see line 102 in
the email_classify.R file for this chapter.

Once the ham training data have been constructed, we can inspect them just as we did
the spam:

head(easyham.df[with(easyham.df, order(-occurrence)),])
       term frequency     density occurrence
3553  yahoo       185 0.008712853      0.180
966    dont       141 0.006640607      0.090
2343 people       183 0.008618660      0.086
1871  linux       159 0.007488344      0.084
1876   list       103 0.004850940      0.078
3240   time        91 0.004285782      0.064

The first thing you will notice in the ham training data is that the terms are much more
sparsely distributed among the emails. The term that occurs in the most documents,
“yahoo,” does so in only 18% of them. The other terms all occur in less than 10% of
the documents. Compare this to the top spam terms, which all occur in over 24% of
the spam emails. Already, we can begin to see how this variation will allow us to separate
spam from ham. If a message contains just one or two terms strongly associated with
spam, it will take a lot of non-spam words for the message to be classified as ham. With
both training sets defined, we are now ready to complete our classifier and test it!
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Defining the Classifier and Testing It with Hard Ham
We want to define a classifier that will take an email message file and calculate the
probability that it is spam or ham. Fortunately, we have already created most of the
functions and generated the data needed to perform this calculation. Before we can
proceed, however, there is one critical complication that we must consider.

To calculate the probability that an email message is spam or ham, we will need to find
the terms that are common between the training data and the message in question. We
can then use the probabilities associated with these terms to calculate the conditional
probability that a message is of the training data’s type. This is fairly straightforward,
but what do we do with the terms from the email being classified that are not in our
training data?

Figure 3-4. How to handle different terms at the training data and message intersection

To calculate the conditional probability of a message, we combine the probabilities of
each term in the training data by taking their product. For example, if the frequency of
seeing html in a spam message is 0.30 and the frequency of seeing table in a spam
message is 0.10, then we’ll say that the probability of seeing both in a spam message is
0.30 * 0.10 = 0.03. But for those terms in the email that are not in our training data, we
have no information about its frequency in either spam or ham messages. One possible
solution would be to assume that because we have not seen a term yet, its probability
of occurring in a certain class is zero. This, however, is very misguided. First, it is foolish
to assume that simply because we have not yet seen a term, we will never see it in the
entire universe of spam and ham. Moreover, because we calculate conditional proba-
bilities using products, if we assigned a zero probability to terms not in our training
data, elementary arithmetic tells us that we would calculate zero as the probability of
most messages, since we would be multiplying all the other probabilities by zero every
time we encountered an unknown term. This would cause catastrophic results for our
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classifier, as many, or even all, messages would be incorrectly assigned a zero proba-
bility to be either spam or ham.

Researchers have come up with many clever ways of trying to get around this problem,
such as drawing a random probability from some distribution or using natural language
processing (NLP) techniques to estimate the “spamminess” of a term given its context.
For our purposes, we will use a very simple rule: assign a very small probability to terms
that are not in the training set. This is, in fact, a common way of dealing with missing
terms in simple text classifiers, and for our purposes it will serve just fine. In this ex-
ercise, by default we will set this probability to 0.0001%, or one-ten-thousandth of a
percent, which is sufficiently small for this data set. Finally, because we are assuming
that all emails are equally likely of being ham or spam, we set our default prior belief
that an email is of some type to 50%. In order to return to this problem later, however,
we construct the classify.email function such that the prior belief can be varied.

Be wary of always using 0.0001% for terms not in the training set. We
are using it in this example, but in others it may be too large or too small,
and then the system you build will not work at all!

classify.email <- function(path, training.df, prior=0.5, c=1e-6) {
    msg <- get.msg(path)
    msg.tdm <- get.tdm(msg)
    msg.freq <- rowSums(as.matrix(msg.tdm))
    # Find intersections of words 
    msg.match <- intersect(names(msg.freq), training.df$term)
    if(length(msg.match) < 1) {
        return(prior*c^(length(msg.freq)))
    }
    else {
        match.probs <- training.df$occurrence[match(msg.match, training.df$term)]
        return(prior * prod(match.probs) * c^(length(msg.freq)-length(msg.match)))
    }
}

You will notice that the first three steps of the classify.email function proceed just as
our training phase did. We must extract the message text with get.msg, turn it into a
term document matrix with get.tdm, and finally calculate the frequency of terms with
rowSums. Next, we need to find how the terms in the email message intersect with the
terms in our training data as depicted in Figure 3-4. To do so, we use the intersect
command, passing the terms found in the email message and those in the training data.
What will be returned are those terms in the grey shaded area of Figure 3-4.

The final step of the classification is to determine whether any of the words in the email
message are present in the training set. If so, we use them to calculate the probability
that this message if of the class in question.

Assume for now that we are attempting to determine if this email message is spam.
Now, msg.match will contain all of the terms from the email message in our spam train-
ing data, spam.df. If that intersection is empty, then the length of msg.match will be less
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than zero and we can only update our prior belief by multiplying it with the product
of the number of terms in the email with our tiny probability value: c. The result will
be that a tiny probability of being spam is assigned to the email.

Conversely, if this intersection is not empty, we need to find those terms from the email
in our training data and look up their occurrence probabilities. We use the match func-
tion to do the lookup, which will return the term’s element position in the term column
of our training data. We use these element positions to return the corresponding prob-
abilities from the occurrence column, and return those values to match.probs. We then
calculate the product of these values and combine it with our prior belief about the
email being spam with the term probabilities and the probabilities of any missing terms.
The result is our Bayesian estimate for the probability that a message is spam given the
matching terms in our training data.

As an initial test, we will use our training data from the spam and easy ham messages
to classify hard ham emails. We know that all of these emails are ham, so ideally our
classifier will assign higher probability of being ham to all of these messages. We know,
however, that hard ham are “hard” to classify because they contain terms that are also
associated with spam. That said, let’s see how our simple classifier does!

Just as before, we need to get all of the file paths in order; then we can test the classifier
for all hard ham messages by wrapping both a spam test and ham test in sapply calls.
The vectors hardham.spamtest and hardham.hamtest contain the conditional probability
calculations for each hard ham email of being either spam or ham given the appropriate
training data. We then use the ifelse command to compare the probabilities in each
vector. If the value in hardham.spamtest is greater than that in hardham.hamtest, then
the classifier has classified the message as spam; otherwise, it is ham. Finally, we use
the summary command to inspect the results:

hardham.docs <- dir(hardham.path)
hardham.docs <- hardham.docs[which(hardham.docs != "cmds")]

hardham.spamtest <- sapply(hardham.docs, 
    function(p) classify.email(paste(hardham.path, p, sep=""), 
    training.df=spam.df))

hardham.hamtest <- sapply(hardham.docs, 
    function(p) classify.email(paste(hardham.path, p, sep=""), 
    training.df=easyham.df))

hardham.res <- ifelse(hardham.spamtest > hardham.hamtest, TRUE, FALSE)
summary(hardham.res)

Table 3-2. Testing our classifier again “hard ham”

Email type Num. classified as ham Num. classified as spam

Hard Ham 184 65
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Congratulations! You’ve written your first classifier, and it did fairly well at identifying
hard ham as non-spam. In this case, we have approximately a 26% false-positive rate.
That is, about one-quarter of the hard ham emails are incorrectly identified as spam.
You may think this is poor performance, and in production we would not want to offer
an email platform with these results, but considering how simple our classifier is, it is
doing quite well. Of course, a better test is to see how the classifier performs again not
only hard ham, but also easy ham and spam.

Testing the Classifier Against All Email Types
The first step is to build a simple function that will do the probability comparison we
did in the previous section, all at once for all emails:

spam.classifier <- function(path) {
    pr.spam <- classify.email(path, spam.df)
    pr.ham <- classify.email(path, easyham.df)
    return(c(pr.spam, pr.ham, ifelse(pr.spam > pr.ham, 1, 0)))
}

For simplicity’s sake, the spam.classifier function will determine whether an email is
spam based on the spam.df and easyham.df training data. If the probability that a mes-
sage is spam is greater than the probability of being ham, it returns one; otherwise, it
returns zero.

As a final step in this exercise, we will test the second sets of spam, easy ham, and hard
ham using our simple classifier. These steps proceed exactly as they did in previous
sections: wrapping the spam.classifier function in an lapply function, passing email
file paths, and building a data frame. As such, we will not reproduce these function
calls here, but you are encouraged to reference the email_classifier.R file starting at line
158 to see how this is done.

The new data frame contains the likelihoods of being either spam or ham, the classifi-
cation, and the email type for each message in all three data sets. The new data set is
called class.df, and we can use the head command to inspect its contents:

head(class.df)
        Pr.SPAM        Pr.HAM Class    Type
1 2.712076e-307 1.248948e-282 FALSE EASYHAM
2  9.463296e-84  1.492094e-58 FALSE EASYHAM
3  1.276065e-59  3.264752e-36 FALSE EASYHAM
4  0.000000e+00 3.539486e-319 FALSE EASYHAM
5  2.342400e-26  3.294720e-17 FALSE EASYHAM
6 2.968972e-314 1.858238e-260 FALSE EASYHAM

From the first six entries, it seems the classifier has done well, but let’s calculate the
false-positive and false-negative rates for the classifier across all data sets. To do this,
we will construct a N x M matrix of our results, where the rows are the actual classifi-
cation types and the columns are the predicted types. Because we have three types of
email being classified into two types, our confusion matrix will have three rows and
two columns (Table 3-3).
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The columns will be the percent predicted as ham or spam, and if our classifier works
perfectly, the columns will read [1,1,0] and [0,0,1] respectively.

Table 3-3. Matrix for classifier results

Email type % Classified as ham % Classified as spam

Easy Ham 0.78 0.22

Hard Ham 0.73 0.27

Spam 0.15 0.85

Unfortunately, we did not write a perfect classifier, but the results are still quite good.
Similarly to our initial test, we get about a 25% false-positive rate, with our classifier
doing slightly better on easy ham than the hard stuff. On the other hand, the false-
negative rate is much lower, at only 15%. To get a better sense of how our classifier
fared, we can plot the results using a scatter plot, with the predicted probabilities of
being ham on the x-axis and spam on the y-axis.

Figure 3-5 shows this scatter plot in log-log scale. A log transformation is done because
many of the predicted probabilities are very tiny, while others are not. With this high
degree of variance, it is difficult to compare the results directly. Taking logs is a simple
way of altering the visual scale to more easily compare values.

We have also added a simple decision boundary to the plots where y = x, or a perfect
linear relationship. This is done because our classifier compares the two predicted
probabilities and determines the email’s type based on whether the probability of being
spam is greater than that of ham. All dots above the black diagonal line, therefore,
should be spam, and all below ham. As you can see, this is not the case—but there is
considerable clustering of message types.

Figure 3-5 also gives some intuition about how the classifier is underperforming in false-
positives. There appear to be two general ways it fails. First, there are many hard ham
messages that have a positive probability of being spam, but a near-zero probability of
being ham. These are the points pressed up against the y-axis. Second, there are both
easy and hard ham messages that have a much higher relative probability of being ham.
Both of these observations may indicate a weak training data set for ham emails, as
there are clearly many more terms that should be associated with ham that currently
are not.
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Figure 3-5. Scatter plot of predicted probabilities for email classification in log-log scale

Improving the Results
In this chapter, we introduced the idea of text classification. To do this, we constructed
a very simple Bayesian classifier using a minimal number of assumptions and features.
This type of classification is—at its core—an application of classic conditional proba-
bility theory in a contemporary context. Despite the fact that we trained our classifier
with only a fraction of the total available data, this simple method performed reasonably
well.

That said, the false-positive and false-negative rates found in the test data are far too
high for any production spam filter. As we mentioned throughout the chapter, there
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are many simple tweaks we could apply to improve the results of the current model.
For example, our approach assumes a priori that each email has an equal probability
of being ham or spam. In practice, however, we know that this relationship is actually
much closer to 80%-20% ham-to-spam. One way we might improve results, then,
would be to simply alter our prior beliefs to reflect this fact, and recalculate the pre-
dicted probabilities:

spam.classifier<-function(path) {
    pr.spam<-classify.email(path, spam.df, prior=0.2)
    pr.ham<-classify.email(path, easyham.df, prior=0.8)
    return(c(pr.spam, pr.ham, ifelse(pr.spam > pr.ham, 1, 0)))
}

You’ll remember that we left the prior parameter as something that could vary in the
classify.email function, so we now only need to make the simple change to
spam.classify above. We could rerun the classifier now and compare the results, and
we encourage you to do so. These new assumptions, however, violate the distributions
of ham and spam messages in our training data. To be more accurate, we should go
back and retrain the classifier with the complete easy ham data set. Recall that we
limited our original ham training data to only the first 500 messages so that our training
data would reflect the Bayesian assumptions. In that vein, we must incorporate the full
data set in order to reflect our new assumptions.

When we rerun the classifier with the new easyham.df and classify.email parameter-
ization, we see a notable improvement in performance on false-positives (see Table 3-4).

Table 3-4. Matrix for improved classifier results

Email type % Classified as ham % Classified as spam

Easy ham 0.90 0.10

Hard ham 0.82 0.18

Spam 0.18 0.82

With these simple changes, we have reduced our false-positive rate by more than 50%!
What is interesting, however, is that by improving performance in this way, our false-
negative results suffer. In essence, what we are doing is moving the decision boundaries
—recall Figure 3-1. By doing so, we are explicitly trading off false positives for im-
provement in false negatives. This is an excellent example of why model specification
is critical, and how each assumption and feature choice can affect all results.

In the following chapter we will expand our view of classification beyond the simple
binary—this or that—example in this exercise. In the next chapter we will explore how
to rank emails based on features that are associated with higher priority. What remains
important as we increase the spectrum of classification tasks are the features we decide
to include in our model. As you’ll see next, we may be limited in feature selection by
our data, which can have a serious impact on our model design.
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CHAPTER 4

Ranking: Priority Inbox

How Do You Sort Something When You Don’t Know the Order?
In Chapter 3, we discussed in detail the concept of binary classification—that is, placing
items into one of two types or classes. In many cases, we will be satisfied with an
approach that can make such a distinction. But what if the items in one class are not
created equally, and we want to rank the items within a class? In short, what if we want
to say that one email is the most spammy, while another is the second, or we want to
distinguish among them in some other meaningful way? Suppose we not only wanted
to filter spam from our email, but we also wanted to place “more important” messages
at the top of the queue. This is a very common problem in machine learning, and it will
be the focus of this chapter.

Generating rules for ranking a list of items is an increasingly common task in machine
learning, yet you may not have thought of it in these terms. More likely, you have heard
of something like a recommendation system, which implicitly produces a ranking of
products. Even if you have not heard of a recommendation system, it’s almost certain
that you have used or interacted with a recommendation system at some point. Some
of the most successful e-commerce websites have benefitted from leveraging data on
their users to generate recommendations for other products their users might be inter-
ested in.

For example, if you have ever shopped at Amazon.com, then you have interacted with
a recommendation system. The problem Amazon faces is simple: what items in their
inventory are you most likely to buy? The implication of that statement is that the items
in Amazon’s inventory have an ordering specific to each user. Likewise, Netflix.com
has a massive library of DVDs available to its customers to rent. In order for those
customers to get the most out of the site, Netflix employs a sophisticated recommen-
dation system to present people with rental suggestions.
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For both companies, these recommendations are based on two kinds of data. First,
there is the data pertaining to the inventory itself. For Amazon, if the product is a
television, this data might contain the type (i.e., plasma, LCD, LED), manufacturer,
price, and so on. For Netflix, this data might be the genre of a film, its cast, director,
running time, etc. Second, there is the data related to the browsing and purchasing
behavior of the customers. This sort of data can help Amazon understand what acces-
sories most people look for when shopping for a new plasma TV and can help Netflix
understand which romantic comedies George A. Romero fans most often rent. For both
types of data, the features are well identified. That is, we know the labels for categorical
data like product type or movie genre; likewise, user-generated data is well structured
in the form of purchase/rental records and explicit ratings.

Because we usually have explicit examples of the outputs of interest when doing ranking,
this is a type of machine learning problem that is often called supervised learning. This
is in contrast to unsupervised learning, where there are no pre-existing examples of the
outputs when we start working with the data. To better understand the difference,
think of supervised learning as a process of learning through instruction. For example,
if you want to teach someone how to bake a cherry pie, you might hand them a recipe
and then let them taste the pie that results. After seeing how the result tastes, they might
decide to adjust the ingredients a bit. Having a record of the ingredients they’ve used
(i.e., the inputs) and the taste of the result (i.e., the output) means that they can analyze
the contributions of each ingredient and try to find the perfect cherry pie recipe.

Alternatively, if you only knew that dishes with refried beans tend to also come with
tortillas, while dishes with baked cherries tend to come with dough, you might be able
to group other ingredients into classes that would ultimately resemble the sorts of things
you’d use to make Mexican food versus the sorts of things you’d use to make American
desserts. Indeed, a common form of unsupervised learning is clustering, where we want
to assign items to a fixed number of groups based on commonalities or differences.

If you have already read and worked through the exercise in Chapter 3, then you have
already solved a supervised learning problem. For spam classification, we knew the
terms associated with spam and ham messages, and we trained our classifier using that
recipe. That was a very simple problem, and so we were able to obtain relatively good
classification results using a feature set with only a single element: email message terms.
For ranking, however, we need to assign a unique weight to each item to stratify them
in a finer way.

So in the next section we will begin to address the question proposed in the title of this
section: how do you sort something when you don’t already know its order? As you
may have guessed, to do this in the context of ordering emails by their importance, we
will have to reword the question in terms of the features available to us in the email
data and how those features relate to an email’s priority.
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Ordering Email Messages by Priority
What makes an email important? To begin to answer this, let’s first step back and think
about what email is. First, it is a transaction-based medium. People send and receive
messages over time. As such, in order to determine the importance of an email, we need
to focus on the transactions themselves. Unlike the spam classification task, where we
could use static information from all emails to determine their type, to rank emails by
importance we must focus on the dynamics of the in- and out-bound transactions.
Specifically, we want to make a determination as to the likelihood a person will interact
with a new email once it has been received. Put differently, given the set of features we
have chosen to study, how likely is the reader to perform an action on this email in the
immediate future?

The critical new dimension that this problem incorporates is time. In a transaction-
based context, in order to rank things by importance, we need to have some concept
of time. A natural way to use time to determine the importance of an email is to measure
how long it takes a user to perform some action on an email. The shorter the average
time it takes a user to perform some action on an email, given its set of features, the
more important emails of that type may be.

The implicit assumption in this model is that more important emails will be acted on
sooner than less important emails. Intuitively this makes sense. All of us have stared at
the queue in our inbox and filtered through emails that needed immediate response
versus those that could wait. The filtering that we do naturally is what we will attempt
to teach our algorithm to do in the following sections. Before we can begin, however,
we must determine which features in email messages are good proxy measures for
priority.

Priority Features Email
If you use Google’s Gmail service for your email, you will know that the idea of a
“priority inbox” was first popularized by Google in 2010. Of course, it was this problem
that inspired the case study on ranking for this chapter, so it will be useful to revisit the
approach that Google took in implementing their ranking algorithm as we move toward
designing our own. Fortunately, several months after the priority inbox feature was
released by Google, they published a paper, entitled “The Learning Behind Gmail Pri-
ority Inbox,” which describes their strategy for designing the supervised learning ap-
proach and how to implement it at scale [DA10]. For the purposes of this chapter, we
are only interested in the former, but we highly recommend the paper as a supplement
to what we discuss here. And at four pages in length, it is well worth the time
commitment.

As we mentioned, measuring time is critical, and in Google’s case they have the luxury
of a long and detailed history of users’ interactions with email. Specifically, Google’s
priority inbox attempts to predict the probability that a user will perform some action
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on an email within a fixed number of seconds from its delivery. The set of actions a
user can perform in Gmail is large: reading, replying, labeling, etc. Also, delivery is not
explicitly the time at which an email is received by the server, but the time at which it
is delivered to the user—i.e., when they check their email.

As with spam classification, this is a relatively simple problem to state: what is the
probability that a user will perform some actions, within our set of possible actions,
between some minimum and maximum numbers of seconds, given a set of features for
that email and the knowledge that the user has recently checked their email?

Within the universe of possible email features, which did Google decide to focus on?
As you might expect, they incorporated a very large number of features. As the authors
of the paper note, unlike spam classification—which nearly all users will code the same
way—everyone has a different way of ordering the priority of email. Given this varia-
bility in how users may evaluate the feature set, Google’s approach needed to incor-
porate multiple features. To begin designing the algorithm, Google engineers explored
various different types of email features, which they describe as follows:

There are many hundred features falling into a few categories. Social features are based
on the degree of interaction between sender and recipient, e.g., the percentage of a
sender’s mail that is read by the recipient. Content features attempt to identify headers
and recent terms that are highly correlated with the recipient acting (or not) on the mail,
e.g., the presence of a recent term in the subject. Recent user terms are discovered as a
pre-processing step prior to learning. Thread features note the user’s interaction with the
thread so far, e.g., if a user began a thread. Label features examine the labels that the user
applies to mail using filters. We calculate feature values during ranking and we tempo-
rarily store those values for later learning. Continuous features are automatically parti-
tioned into binary features using a simple ID3 style algorithm on the histogram of the
feature values.

As we mentioned, Google has a long history of its users’ interactions with Gmail, which
affords them a rich perspective into what actions users perform on emails and when.
Unfortunately, such detailed email logs are not available to us in this exercise. Instead,
we will again be using the SpamAssassin Public Corpus, available for free download
at: http://spamassassin.apache.org/publiccorpus/.

Though this data set was distributed as a means of testing spam classification algo-
rithms, it also contains a convenient timeline of a single user’s email. Given this single
thread, we can repurpose the data set to design and test a priority email ranking system.
Also, we will only focus on the ham emails from this data set, so we know that all of
the messages we will examine are those that the user would want in their inbox.

Before we can proceed, however, we must consider how our data differs from that of
a full-detail email log—such as Google’s—and how that affects the features we will be
able to use in our algorithm. Let’s begin by going through each of the four categories
proposed by Google and determining how they might fit into the data we are using.
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The most critical difference between a full-detail email log and what we
will be working with is that we can only see the messages received. This
means that we will be effectively “flying half-blind,” as we have no data
on when and how a user responded to emails, or if the user was the
originator of a thread. This is a significant limitation, and therefore
the methods and algorithms used in this chapter should be considered
as exercises only, and not examples of how enterprise priority inbox
systems should be implemented. What we hope to accomplish is to
show how, even with this limitation, we can use the data we have to
create proxy measures for email importance and still design a relatively
good ranking system.

Given that email is a transaction-based medium, it follows that social features will be
paramount in assessing the importance of an email. In our case, however, we can only
see half of that transaction. In the full-detail case, we would want to measure the volume
of interactions between the user and various email senders in order to determine which
senders receive more immediate actions from the user. With our data, however, we can
only measure incoming volume. We can, then, assume that this one-way volume is a
good proxy for the type of social features we are attempting to extract from the data.

Clearly this is not ideal. Recall, however, that for this exercise we will be using only the
ham messages from the SpamAssassin Public Corpus. If one receives a large volume of
ham email messages from a certain address, then it may be that the user has a strong
social connection to the sender. Alternatively, it may be the case that the user is signed
up to a mailing list with a high volume and would prefer that these emails not receive
a high priority. It is exactly for this reason why we must incorporate other features to
balance these types of information when developing our ranking system.

One problem with only looking at the volume of messages from a given address is that
the temporal component is protracted. Since our data set is static compared to a fully-
detailed email log, we must partition the data into temporal segments and measure
volume over these periods to get a better understanding of the temporal dynamics.

As we will discuss in detail later, for this exercise we will simply order all of the messages
chronologically, then split the set in half. The first half will be used to train the ranking
algorithm and the second half to test. As such, message volume from each email address
over the entire time period covered by the training data will be used to train our ranker’s
social feature.

Given the nature of our data, this may be a good start, but we will need to achieve a
deeper understanding if we hope to rank messages more accurately. One way to par-
tition the data to gain a more granular view of these dynamics is to identify conversation
threads and then measure the intra-thread activity. (To identify threads, we can borrow
techniques used by other email clients and match message subjects with key thread
terms, such as “RE:”.) The assumption here is that, although we do not know what
actions the user is taking on a thread, if it is very active then it is likely to be more
important than less-active threads. By compressing the temporal partitions into these
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small pieces, we can get a much more accurate proxy for the thread features we need
to model email priority.

Next, there are many content features we could extract from the emails to add to our
feature set. In this case, we will continue to keep things relatively simple by extending
the text mining techniques we used in Chapter 3 to this context. Specifically, if there
are common terms in the subjects and bodies of emails received by a user, then future
emails that contain these terms in the subject and body may be more important than
those that do not. This is actually a common technique, and it is mentioned briefly in
the description of Google’s priority inbox. By adding content features based on terms
for both the email subject and body, we will encounter an interesting problem of
weighting. Typically, there are considerably fewer terms in an email’s subject than the
body; therefore, we should not weight the relative importance of common terms in
these two features equally.

Finally, there are also many features used in enterprise distributed priority inbox im-
plementations—like Gmail’s—that are simply unavailable to us in this exercise. We
have already mentioned that we are blind to much of the social feature set, and therefore
must use proxies to measure these interactions. Furthermore, there are many user ac-
tions that we do not even have the ability to approximate. For example, user actions
such as labeling or moving email messages are completely hidden from our view. In the
Google priority inbox implementation, these actions form a large portion of the action
set, but are completely missing here. Again, while this is a weakness to the approach
described here when compared to those used when full-detail email logs are available,
since they are not available in this case, the fact that they are missing will not affect our
results.

Figure 4-1. Strategy for extracting priority features from email data
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We now have a basic blueprint for the feature set we will use to create our email ranking
system. We begin by ordering the messages chronologically, because in this case much
of what we are interested in predicting is contained in the temporal dimension. The
first half of these messages are used to train our ranker. Next, we have four features we
will use during training. The first is a proxy for the social feature, which measures the
volume of messages from a given user in the training data. Next, we attempt to compress
the temporal measurements by looking for threads, and ranking active threads higher
than inactive ones. Finally, we add two content features based on frequent terms in
email subjects and message bodies. Figure 4-1 is an illustration of how these features
are extracted from an email.

In the next section, we will implement the priority inbox approach described above.
Using the features listed here, we will specify a weighting scheme that attempts to
quickly push more important messages to the top of the stack. As before, however, our
first steps will be to take the raw email data and extract the relevant pieces to fit into
our feature set.

Writing a Priority Inbox
By now you will have noticed a trend: before we can get to the sexy parts of machine
learning, we need to get our hands dirty hacking at the data to split, pull, and parse it
until it’s in a shape fit for our analysis. So far, we have only had to suffer slightly during
this process. To build the spam classifier, we only had to extract the email message
body, and then we let the tm package do all of the heavy lifting. For this exercise, how-
ever, we are adding several other features to our data set and complicating the process
by adding a temporal dimension as well. As such, we will have to operate on the data
considerably more. But we are hackers, and getting dirty with data is what we like!

For this exercise, we will be focusing on only the ham email messages from the Spa-
mAssassin Public Corpus. Unlike the spam classification exercise, here we are not con-
cerned with the type of email but rather with how each should be ranked in terms of
priority. Therefore, we will use the largest easy ham data set, and not worry about
including other types of emails. Since we may safely assume a user would not distin-
guish among emails in this way when determining which emails have a higher priority,
there is no reason to carry this information into our ranking system.* Instead, we want
to be able to learn as much about our features sets from a single user’s emails, which
is why we will use the first easy ham data set emails:

library(tm)
library(ggplot2)

data.path <- "../../03-Classification/code/data/"
easyham.path <- paste(data.path, "easy_ham/", sep="")

* Put more simply, this is the assumption that users are not acting on emails that were harder to identify as
ham than those that were easy.
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Similarly to Chapter 3, the only R packages we will be using in this exercise are tm, for
extracting common terms from the emails subjects and bodies, and ggplot2, for visu-
alizing the results. Also, since the SpamAssassin Public Corpus is a relatively large text
data set, we will not duplicate it in the data/ folder for this chapter. Instead, we will set
the relative path for the data back to its location in the Chapter 3 files.

Next, we will create a series of functions that will work together to parse each email
into the feature set illustrated in Figure 4-1. From this diagram we know that we need
to extract four elements from each email message: the sender’s address, date received,
subject, and message body.

Functions for Extracting the Feature Set
Recall that in Chapter 2, we introduced the idea of data as rectangles. For this exercise,
therefore, the task of constructing the training data is one of “rectangularization.” We
need to shape the email data set to fit into a usable feature set. The features we extract
from the emails will be the columns of our training data, and each row will be the unique
values from a single email filling in the rectangle. Conceptualizing data this way is very
useful, as we need to take the semi-structured text data in the email messages and turn
them into a highly structured training data set that we can use to rank future emails:

parse.email <- function(path) {
    full.msg <- msg.full(path)
    date <- get.date(full.msg)
    from <- get.from(full.msg)
    subj <- get.subject(full.msg)
    msg <- get.msg(full.msg)
    return(c(date, from, subj, msg, path))
}

To explore this process, we will work backwards and begin by examining the
parse.email function. This will call a series of helper functions that extract the appro-
priate data from each message, and then order these elements into a single vector. The
vector created by the command c(date, from, subj, msg, path) constitutes the single
row of data that will populate our training data. The process of turning each email
message into these vectors, however, requires some classic text hacking.

We include the path string as the final column because it will make
ordering the data easier during the testing phase.

msg.full <- function(path) {
    con <- file(path, open="rt", encoding="latin1")
    msg <- readLines(con)
    close(con)
    return(msg)
}
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If you worked through the entire case study in Chapter 3, the msg.full function above
will look very familiar. Here, we are simply opening a connection file path and reading
the file’s contents into a character vector. The readLines function will produce a vector
whose elements are each line in the file. Unlike what we did in Chapter 3, here we do
not preprocess the data at this step because we need to extract various elements from
the messages. Instead, we will return the entire email as a character vector and write
separate functions to work on this vector to extract the necessary data.

With the message vector in hand, we must begin to fight our way through the data in
order to extract as much useable information from the email messages—and organize
them in a uniform way—to build our training data. We will begin with the relatively
easy task of extracting the sender’s address. To do this—and all of the data extraction
in this section—we need to identify the text patterns in the email messages that identify
the data we are looking for. To do so, let’s take a look at a few email messages.

Example 4-1. Examples of email “From” text pattern variation
Email #1
........................................................
X-Sender: fortean3@pop3.easynet.co.uk (Unverified)
Message-Id: <p05100300ba138e802c7d@[194.154.104.171]>
To: Yahoogroups Forteana <zzzzteana@yahoogroups.com>
From: Joe McNally <joe@flaneur.org.uk>
X-Yahoo-Profile: wolf_solent23
MIME-Version: 1.0
Mailing-List: list zzzzteana@yahoogroups.com; contact
    forteana-owner@yahoogroups.com
........................................................

Email #2         
........................................................
Return-Path: paul-bayes@svensson.org
Delivery-Date: Fri Sep  6 17:27:57 2002
From: paul-bayes@svensson.org (Paul Svensson)
Date: Fri, 6 Sep 2002 12:27:57 -0400 (EDT)
Subject: [Spambayes] Corpus Collection (Was: Re: Deployment)
In-Reply-To: <200209061431.g86EVM114413@pcp02138704pcs.reston01.va.comcast.net>
Message-ID: <Pine.LNX.4.44.0209061150430.6840-100000@familjen.svensson.org>
........................................................

After exploring a few email messages, we can observe key patterns in the text that
identify the sender’s email address. Example 4-1 shows two excerpts from emails that
highlight these patterns. First, we need to identify the line in each message that contains
the email address. From the examples above, we can see that this line always has the
term “From:”, which again, is specified by the email protocol mentioned in Chap-
ter 3. So, we will use this information to search the character vector for each email to
identify the correct element. As we can see from Example 4-1, however, there is varia-
tion in how the email address is written among emails. This line always contains the
name of the sender and the sender’s email address, but sometimes encapsulated in
angled brackets (Email #1) while in others it is not enclosed in brackets (Email #2).
For that reason, we will write a get.from function that uses regular expressions to ex-
tract the data for this feature:
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get.from <- function(msg.vec) {
    from <- msg.vec[grepl("From: ", msg.vec)]
    from <- strsplit(from, '[":<> ]')[[1]]
    from <- from[which(from !="" & from !=" ")]
    return(from[grepl("@", from)][1])
}

As we have already seen, R has many powerful functions for working with regular
expressions. The grepl function works just like a regular grep function for matching
regular expression patterns, but the “l” stands for logical. So, rather than returning
vector indices, it will return a vector of the same length as msg.vec with boolean values
indicating whether the pattern was matched in the character vector. After the first line
in this function, the from variable is a character vector with a single element: the “From:”
lines highlighted in Example 4-1.

Now that we have the correct line, we need to extract the address itself. To do this, we
will use the strsplit function, which will split a character element into a list by a given
regular expression pattern. In order to properly extract the addresses, we need to ac-
count for the variation in the text patterns observed in Example 4-1. To do so, we create
a set of characters for our pattern by using the square brackets. Here, the characters we
want to split the text by are colons, angle brackets, and an empty character. This pattern
will always put the address as the first element in the list, so we can pull that from the
list with [[1]]. Because of the variation in the pattern, however, it will also add empty
elements to this vector. In order to return only the email address itself, we will ignore
those empty elements, then look for the remaining element containing the “@” symbol,
and return that. We now have parsed 1/4 of the data needed to generate our training
data.

Extracting the next two features, the message subject and body, is relatively simple. In
Chapter 3, we needed to extract the message body in order to quantify the terms in
spam and ham email messages. The get.msg function, therefore, simply replicates the
pattern we used to perform the same task here. Recall, the message body always appears
after the first empty line break in the email. So, we simply look for the first empty
element in msg.vec and return all of the elements after that. To simplify the text mining
process, we collapse these vectors into a single character vector with the paste function
and return that:

get.msg <- function(msg.vec) {
    msg <- msg.vec[seq(which(msg.vec == "")[1] + 1, length(msg.vec), 1)]
    return(paste(msg, collapse="\n"))
}

Extracting the email’s subject is akin to extracting the sender’s address, but is actually
a bit simpler. With the get.subject function we will again use the grepl function to
look for the “Subject:” pattern in each email to find the line in the message that contains
the subject. There is, however, a catch: as it turns out, not every message in the data
set actually has a subject. As such, the pattern matching we are using will blow up on
these edge cases. In order to guard against this, we will simply test to see if our call to
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grepl has actually returned anything. To test this, we check that the length of subj is
greater than zero. If it is, we split the line based on our pattern and return the second
element. If not, we return an empty character. By default in R, when matching functions
like grepl do not make a match, special values such as integer(0) or character(0) will
be returned. These values have a zero length, so this type of check is always a good idea
when running a function over a lot of messy data:

get.subject <- function(msg.vec) {
    subj <- msg.vec[grepl("Subject: ", msg.vec)]
    if(length(subj) > 0) {
        return(strsplit(subj, "Subject: ")[[1]][2])
    }
    else {
        return("")
    }
}

In the code/data/hard_ham/ folder in the files for Chapter 3, see file
00175.* for a problematic email message. As is often the case when at-
tempting to work a data set into your problem, you will run into edge
cases like this. Getting through them will take some trial and error, as
it did for us in this case. The important thing is to stay calm and dig
deeper into the data to find the problem. You’re not doing it right if you
do not stumble on your way to parsing a data set into a workable form!

We now have three-quarters of our features extracted, but it is the final element—the
date and time the message was received—that will cause us to suffer the most. This
field will be difficult to work with for two reasons. First, dealing with dates is almost
always a painful prospect, as different programming languages often have slightly dif-
ferent ways of thinking about time; and, in this case, R is no different. Eventually, we
will want to convert the date strings into POSIX date objects in order to sort the data
chronologically. But to do this, we need a common character representation of the
dates, which leads directly to the second reason for our suffering: there is considerable
variation within the SpamAssassin Public Corpus in how the dates and times messages
received are represented. Example 4-2 illustrates a few examples of this variation.

Example 4-2. Examples of email date and time received text pattern variation
Email #1
........................................................
Date: Thu, 22 Aug 2002 18:26:25 +0700

    Date:        Wed, 21 Aug 2002 10:54:46 -0500
    From:        Chris Garrigues lt;cwg-dated-1030377287.06fa6d@DeepEddy.Comgt;
    Message-ID:  lt;1029945287.4797.TMDA@deepeddy.vircio.comgt;
........................................................

Email #2 
........................................................
List-Unsubscribe: lt;https://example.sourceforge.net/lists/listinfo/sitescooper-talkgt;,
    lt;mailto:sitescooper-talk-request@lists.sourceforge.net?subject=unsubscribegt;
List-Archive: lt;http://www.geocrawler.com/redir-sf.php3?list=sitescooper-talkgt;
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X-Original-Date: 30 Aug 2002 08:50:38 -0500
Date: 30 Aug 2002 08:50:38 -0500
........................................................

Email #3
........................................................
Date: Wed, 04 Dec 2002 11:36:32 GMT
Subject: [zzzzteana] Re: Bomb Ikea
Reply-To: zzzzteana@yahoogroups.com
Content-Type: text/plain; charset=US-ASCII
........................................................

Email #4
........................................................
Path: not-for-mail
From: Michael Hudson lt;mwh@python.netgt;
Date: 04 Dec 2002 11:49:23 +0000
Message-Id: lt;2madyyyyqa0s.fsf@starship.python.netgt;
........................................................

As you can see, there are many things that we need to be cognizant of when extracting
the date and time information from each email. The first thing to notice from the ex-
amples in Example 4-2 is that the data we want to extract is always identified by “Date:”.
However, there are many traps in using this pattern that we must be mindful of. As
Email #1 from Example 4-2 illustrates, sometimes there will be multiple lines that
match this pattern. Likewise, Email #2 shows that some lines may be partial matches,
and in either case the data on these lines can be conflicting—as it is in Email #1. Next,
we can observe even in these three examples that dates and times are not stored in a
uniform way across all emails. In all emails, there are extraneous GMT offsets and other
types of labeling information. Finally, the format for the date and time in Email #4 is
totally different from the previous two.

All of this information will be critical in getting the data into a uniform and workable
form. For now, however, we will only need to focus on extracting the date and time
information without the extraneous offset information by defining a get.date function.
Once we have all of the date/time strings, we will need to deal with converting the
conflicting date/time formats to a uniform POSIX object, but this will not be handled
by the get.date function:

get.date <- function(msg.vec) {
    date.grep <- grepl("^Date: ", msg.vec)
    date.grepl <- which(date.grep == TRUE)
    date <- msg.vec[date.grep[1]]
    date <- strsplit(date, "\\+|\\-|: ")[[1]][2]
    date <- gsub("^\\s+|\\s+$", "", date)
    return(strtrim(date, 25))
}

As we mentioned, many emails have multiple full or partial matches to the “Date:”
pattern. Notice, however, from Emails #1 and #2 in Example 3-1 that only one line
from the email has “Date:” at the start of the string. In email #1, there are several empty
characters preceding this pattern, and in #2 the pattern is partially matched to “X-
Original-Date:”. We can force the regular expression to match only strings that have
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“Date:” at the start of the string by using the caret operator (“^Date:”). Now, grepl
will only return TRUE when that pattern starts an element of the message vector.

Next, we want to return the first element in msg.vec that matches this pattern. We may
be able to get away with simply returning the element in msg.vec that matches our
pattern in grepl, but what if an email message contains a line that begins “Date:”? If
this edge case were to occur, we know the first element that matched our pattern will
come from the message’s header because header information always comes before the
message body. To prevent this problem, we always return the first matching element.

Now we need to process this line of text in order to return a string that can eventually
be converted into a POSIX object in R. We’ve already noted that there is extraneous
information and that the dates and times are not stored in a uniform format. To isolate
the date and time information, we will split the string by characters that denote extra-
neous information. In this case, that will be a colon, a plus, or a minus character. In
most cases, this will leave us with only the date and time information, plus some trailing
empty characters. The use of the gsub function in the next line will substitute any leading
or training whitespace in the character string. Finally, to deal with the kind of extra-
neous data we observe in Email #3 in Example 4-2, we will simply trim off any char-
acters after a 25 character limit. A standard data/time string is 25 characters long, so
we know that anything over this is extraneous.

easyham.docs <- dir(easyham.path)
easyham.docs <- easyham.docs[which(easyham.docs != "cmds")]
easyham.parse <- lapply(easyham.docs, function(p) 
    {parse.email(paste(easyham.path, p, sep=""))})

ehparse.matrix <- do.call(rbind, easyham.parse)
allparse.df <- data.frame(ehparse.matrix, stringsAsFactors=FALSE)
names(allparse.df) <- c("Date", "From.EMail", "Subject", "Message", "Path")

Congratulations, you have successfully suffered though transforming this amorphous
set of emails into a structured rectangle suitable for training our ranking algorithm!
Now all we have to do is throw the switch. Similar to what we did in Chapter 3, we
will create a vector with all of the “easy ham” files, remove the extra “cmds” file from
the vector, and then use the lapply function to apply the parse.email function to each
email file. Because we are pointing to files in the data directory for the previous chapter,
we also have to be sure to concatenate the relative path to these files using the paste
function and our easyham.path inside the lapply call.

Next, we need to convert the list of vectors returned by lapply into a matrix—i.e., our
data rectangle. As before, we will use the do.call function with rbind to create the
ehparse.matrix object. We will then convert this to a data frame of character vectors,
and then set the column names to c("Date", "From.EMail", "Subject", "Message",
"Path"). To check the results, use head(allparse.df) to inspect the first few rows of
the data frame. We will not reproduce this here to conserve space, but we recommend
you do.
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Before we can proceed to creating a weighting scheme from this data, however, there
is still some remaining housekeeping.

As we mentioned, our first trial with extracting the dates was simply isolating the text.
Now, we need to take that text and convert it into POSIX objects that can be compared
logically. This is necessary because we need to sort the emails chronologically. Recall
that running through this entire exercise is the notion of time, and how temporal dif-
ferences among observed features can be used to infer importance. The character rep-
resentation of dates and times will not suffice.

As we saw in Example 4-2, there are two variations on the date format. From these
examples, Email #3 has a date/time string of the format “Wed, 04 Dec 2002 11:36:32,”
while Email #4 is of the format “04 Dec 2002 11:49:23”. To convert these two strings
into POSIX formats, we will need to use the strptime function, but pass it two different
date/time formats to make the conversion. Each element of these strings matches a
specific POSIX format element, so we will need to specify conversion strings that match
these variants:

date.converter <- function(dates, pattern1, pattern2) {
    pattern1.convert <- strptime(dates, pattern1)
    pattern2.convert <- strptime(dates, pattern2)
    pattern1.convert[is.na(pattern1.convert)] <- 
pattern2.convert[is.na(pattern1.convert)]
    return(pattern1.convert)
}

pattern1 <- "%a, %d %b %Y %H:%M:%S"
pattern2 <- "%d %b %Y %H:%M:%S"

allparse.df$Date <- date.converter(allparse.df$Date, pattern1, pattern2)

R uses the standard POSIX date/time format strings to make these con-
versions. There are many options for these strings, and we recommend
reading through the documentation in the strptime function using
the ?strptime command to see all of the options. Here we will only be
using a select few, but understanding them in greater depth will be very
useful whenever working with dates and times in R.

We need to convert the strings in the Date column of allparse.df to the two different
POSIX formats separately, then recombine them back into the data frame to complete
the conversion. To accomplish this, we will define the date.converter function to take
two different POSIX patterns and a character vector of date strings. When the pattern
passed to strptime does not match the string passed to it, the default behavior is to
return NA. We can use this to recombine the converted character vectors by replacing
the elements with NA from the first conversion with those from the second. Because we
know there are only two patterns present in the data, the result will be a single vector
with all date strings converted to POSIX objects.
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The final bit of cleanup is to convert the character vectors in the Subject and From email
columns to all lowercase. Again, this is done to ensure that all data entries are as uniform
as possible before we move into the training phase. Next, we sort the data chronolog-
ically using a combination of the with and order commands in R. (R has a particularly
unintuitive way of doing sorting, but this shorthand is something you will find yourself
doing very often, so it is best to get familiar with it.) The combination will return a
vector of the element indices in ascending chronological order. Then, to order the data
frame by these indices, we need to reference the elements of allparse.df in that order,
and add the final comma before closing the square bracket so all columns are sorted
this way:

allparse.df$Subject <- tolower(allparse.df$Subject)
allparse.df$From.EMail <- tolower(allparse.df$From.EMail)

priority.df <- allparse.df[with(allparse.df, order(Date)),]

priority.train <- priority.df[1:(round(nrow(priority.df) / 2)),]

Finally, we store the first half of the chronologically-sorted data frame as priority.tran
ing. The data in this data frame will be used to train our ranker. Later, we will use the
second half of priority.df to test the ranker. With the data fully formed, we are ready
to begin designing our ranking scheme. Given our feature set, one way to proceed is to
define weights for each observed feature in the training data.

Creating a Weighting Scheme for Ranking
Before we can proceed to implementing a weighting scheme, we need to take a brief
digression to discuss scales. Consider for a moment your own email activity. Do you
interact with roughly the same people on a regular basis? Do you know about how
many emails you receive in a day? How many emails do you receive from total strangers
in a week? If you are like us, and we suspect most other people, your email activity
crudely adheres to the 80/20 cliche. That is, about 80% of your email activity is con-
ducted with about 20% of the total number of people in your address book. So, why
is this important?

We need to be able to devise a scheme for weighting the observation of certain features
in our data, but because of the potential differences in scale among these observations,
we cannot compare them directly. More precisely, we cannot compare their absolute
values directly. Let’s take the training data that we have just finished parsing. We know
that one of the features that we are adding to our ranker is an approximation of social
interaction based on the volume of emails received from each address in our training
data.

To begin to explore how this scaling affects our first feature, we will need to count the
number of times each email address appears in our data. To do this, we will use the
plyr package, which we have already loaded in as a dependency for ggplot2. If you
worked through the example in Chapter 1, then you have already seen plyr in action.
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Briefly, the family of functions in plyr are used to chop data into smaller squares and
cubes so that we can operate over these pieces all once. (This is very similar to the
popular Map-Reduce paradigm used in many large-scale data analysis environments.)
Here, we will be performing a very simple task: find all of the columns with matching
addresses in the From.EMail column and count them.

To do this, we use the ddply function, which operates on data frames, with our training
data. The syntax has us define the data grouping we want first—which in this case in
only the From.EMail dimension—then the operation we will run over that grouping.
Here, we will use the summarise option to create a new column named Freq with the
count information. You can use the head(from.weight) command to inspect the results:

from.weight <- ddply(priority.train, .(From.EMail), summarise, Freq=length(Subject))

In this case, the operation asks for the length of the vector at column
Subject in the chopped up data frame, but we could have actually used
any column name from the training data to get the same result, because
all columns matching our criteria will have the same length. Becoming
more familiar with plyr for manipulating data will be extremely valuable
to you going forward, and we highly recommend the package author’s
documentation [HW11].

To get a better sense of the scale of this data, let’s plot the results. Figure 4-2 shows a
bar chart of the volume of emails from users who have sent more than six emails. We
have performed this truncation to make it easier to read, but even with this data
removed, we can already see how quickly the data scales. The top emailer,
tim.one@comcast.ent, has sent 45 messages in our data. That’s about 15 times more
emails than the average person in our training data! But tim.one@comcast.ent is pretty
unique. As you can see from Figure 4-2, there are only a few other senders near his
level, and the frequency drops off very quickly after them. How could we weight an
observation from an average person in our training data without skewing that value to
account for outliers like our top emails?

A Log-Weighting Scheme

The answer comes in transforming the scales. We need to make the numerical rela-
tionship among the units in our feature set less extreme. If we compare the absolute
frequency counts, then an email from tim.one@comcast.ent will be weighted as 15 times
more important than email from an average sender. This is very problematic, as we will
eventually want to establish a threshold for being either priority or not based on the
range of weight values produced by our ranker at the learning stage. With such extreme
skewness, our threshold will either be far too low or far too high, so we need to rescale
the units in order to account for the nature of our data.
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Figure 4-2. Number of emails received from various senders in training data
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This brings us to logarithms and log-transformations. You are probably familiar with
logarithms from elementary mathematics, but if not, the concept is quite simple. A
logarithm is a function that returns the exponent value that would satisfy an equation
where some base number is being raised to that exponent equals the number given to
the logarithmic function.

The base value in a log-transformation is critical. As hackers, we are familiar with
thinking of things in base two, or binary. We may very easily construct a log-transfor-
mation of base two. In this case, we would solve an equation for the exponent value
where the input value is equal to two raised to that exponent. For example, if we trans-
formed 16 by log base-two, it would equal four, because two raised to the 4th power
equals 16. In essence, we are “reversing” an exponential, so these types of transforma-
tions work best when the data fit such a function.

Figure 4-3. A natural-log spiral, often observed in nature

The two most common log-transformations are the so-called natural log and the log
base-10 transformation. In the former, the base is the special value e, which is an irra-
tional constant (like pi) equal to approximately 2.718. The name natural log is often
denoted ln. Rates of change equal to this constant are very often observed in nature,
and in fact the derivation can be done geometrically as a function of the angles inside
a circle. You are likely very familiar with shapes and relationships that follow a natural
log, although you may not have thought of them in these terms. Figure 4-3 illustrates
a natural log spiral, which can be observed in many naturally-occurring phenomenon.
Some examples include the interior structure of a nautilus shell, the spiraling winds of
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a hurricane (or tornado)—even the scattering of interstellar particles in our galaxy fol-
low a natural logarithmic spiral. Also, many professional camera settings’ apertures are
set to vary by natural logs.

Given the intimate relationship between this value and many naturally occurring phe-
nomena, it is a great function for re-scaling social data—like email activity—that is
exponential. Alternatively, the log base-10 transformation, often denoted log10, repla-
ces the e value in the natural log-transform with a 10. Given how log-transforms work,
we know that the log base-10 transformation will reduce large values to much smaller
ones than the natural log. For example, the log base-10 transformation of 1,000 is 3;
because 10 raised to the third is 1,000, while the natural log is approximately 6.9.
Therefore, it makes sense to use a log base-10 transformations when our data scale by
a very large exponent.

The ways in which both of these options would transform our email volume data are
illustrated in Figure 4-4. In this figure, we can see that the volume of emails sent by the
users in the training data follows a fairly steep exponential. By transforming those values
by the natural log and log base-10, we significantly flatten out that line. As we know,
the log base-10 transforms the values substantially, while the natural log still provides
some variation that would allow us to pull out meaningful weights from this training
data. For this reason, we will use the natural log to define the weight for our email
volume feature:

from.weight <- transform(from.weight, Weight=log(Freq + 1))

As we have done here, and as we explained in detail in Chapter 2, it is
always a good idea to explore your data visually as you are working
through any machine learning problem. We want to know how all of
the observations in our feature set relate to one another in order to make
the best predictions. Often, the best way to do this is through data
visualization.

Finally, recall from grade school mathematics your rules for exponents. Anything raised
to zero always equals one. This is very important to keep in mind when using log-
transformation in a weighting scheme, because any observation equal to one will be
transformed to zero. This is problematic in a weighting scheme, because multiplying
other weights with zero will zero out the entire value. To avoid this, we always add
one to all observations before taking logs.

There is actually a function in R called log1p that computes log(1 +
p), but for the purposes of learning and being explicit we will do this
addition “by hand.”
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Figure 4-4. Number of emails received, with absolute counts, and ln and log10 transformation
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Given the rescaling, this does not affect our results, and it keeps all weights greater than
zero. In this case, we are using the default base value for the log function, which is the
natural log.

For our purposes we will never have an observation in our feature set
that is equal to zero, because we are counting things. If there are no
observations of something, then it simply doesn’t enter our training
data. In some cases, however, this will not be true, and you may have
zero observations in your data. The log of zero is undefined, and if you
try to compute it in R, it will return the special value -Inf. Often, having
instances of -Inf in your data with cause things to blow up.

Weighting from Email Thread Activity
The second feature we want to extract from the data is email thread activity. As noted,
we have no way of knowing whether the user we are building this ranking for has
responded to any emails, but we can group messages by their thread and measure how
active they have been since they started. Again, our assumption in building this feature
is that time is important, and therefore threads that have more messages sent over a
short period of time are more active and consequently more important.

The emails in our data set do not contain specific thread IDs, but a logical way to identify
threads within the training data is to look for emails with a shared subject line. That
is, if we find a subject that begins with “re: ”, then we know that this is part of some
thread. When we see a message like this, we can look around for other messages in that
thread and measure the activity.

find.threads <- function(email.df) {
    response.threads <- strsplit(email.df$Subject, "re: ")
    is.thread <- sapply(response.threads, function(subj) ifelse(subj[1] == "", 
                                                                TRUE, 
                                                                FALSE))
    threads <- response.threads[is.thread]
    senders <- email.df$From.EMail[is.thread]
    threads <- sapply(threads, function(t) paste(t[2:length(t)], collapse="re: "))
    return(cbind(senders,threads))
}

threads.matrix<-find.threads(priority.train)

This is precisely what the find.threads function attempts to do with our training data.
If we split every subject in our training data by “re:”, then we can find threads by looking
for split character vectors with an empty character as the first element. Once we know
which observations in the training data are part of threads, we can extract the senders
from those threads and the subject. The result matrix will have all of the senders and
initial thread subject in our training data.

email.thread <- function(threads.matrix) {
    senders <- threads.matrix[, 1]
    senders.freq <- table(senders)
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    senders.matrix <- cbind(names(senders.freq), senders.freq, log(senders.freq + 1))
    senders.df <- data.frame(senders.matrix, stringsAsFactors=FALSE)
    row.names(senders.df) <- 1:nrow(senders.df)
    names(senders.df) <- c("From.EMail", "Freq", "Weight")
    senders.df$Freq <- as.numeric(senders.df$Freq)
    senders.df$Weight <- as.numeric(senders.df$Weight)
    return(senders.df)
}

senders.df <- email.thread(threads.matrix)

Now, we will create a weighting based on the senders who are most active in threads.
This will be a supplement to the volume-based weighting we just did for the entire data
set, but now we will focus only on those senders present in the threads.matrix. The
function email.thread will take the threads.matrix as input and generate this secondary
volume-based weighting. This will be very similar to what we did in the previous sec-
tion, except this time we will use the table function to count the frequency of senders
in the threads. This is done simply to show a different method for accomplishing the
same calculation on a matrix in R, rather than a data frame using plyr. Most of this
function simply performs housekeeping on the senders.df data frame, but notice that
we are again using a natural-log weighting.

As the final piece to the email thread feature, we will create a weighting based on threads
that we know are active. We have already identified all of the threads in our training
data and created a weighting based on the terms in those threads. Now, we want to
take that knowledge and give additional weight to known threads that are also active.
The assumption here is that if we already know the threads, we expect a user to place
more importance on those threads that are more active.

Using the threads.matrix we just created, we will go back into the training data to find
all of the emails inside each thread. To do this, we create the get.threads function,
which will take the threads.matrix and out training data as arguments. Using the
unique command, we create a vector of all thread subjects in our data. Now we need
to take this information and measure each thread’s activity:

get.threads <- function(threads.matrix, email.df) {
    threads <- unique(threads.matrix[, 2])
    thread.counts <- lapply(threads, function(t) thread.counts(t, email.df))
    thread.matrix <- do.call(rbind, thread.counts)
    return(cbind(threads, thread.matrix))
}

thread.counts <- function(thread, email.df) {
    thread.times <- email.df$Date[which(email.df$Subject == thread 
    | email.df$Subject == paste("re:", thread))]
    freq <- length(thread.times)
    min.time <- min(thread.times)
    max.time <- max(thread.times)
    time.span <- as.numeric(difftime(max.time, min.time, units="secs"))
    if(freq < 2) {
        return(c(NA,NA,NA))
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    }
    else {
        trans.weight <- freq / time.span
        log.trans.weight <- 10 + log(trans.weight, base=10)
        return(c(freq,time.span, log.trans.weight))
    }
}

thread.weights <- get.threads(threads.matrix, priority.train)
thread.weights <- data.frame(thread.weights, stringsAsFactors=FALSE)
names(thread.weights) <- c("Thread","Freq","Response","Weight")
thread.weights$Freq <- as.numeric(thread.weights$Freq)
thread.weights$Response <- as.numeric(thread.weights$Response)
thread.weights$Weight <- as.numeric(thread.weights$Weight)
thread.weights <- subset(thread.weights, is.na(thread.weights$Freq) == FALSE)

The thread.counts functions will do this. Using the thread subject and training data as
parameters, we will collect all of the date and time stamps for all emails matching the
thread in the thread.times vector. We can measure how many emails have been re-
ceived in training data for this thread by measuring the length of thread.times.

Finally, to measure the activity level, we need to know how long the thread has existed
in our training data. Implicitly, there is truncation on either side of this data. That is,
there may be emails that were received in a thread before our training data started or
after. There is nothing we can do about this, so we will take the minimum and maximum
date/times for each thread and use these to measure the timespan. The function diff
time will calculate the amount of time elapsed between two POSIX objects in some
units. In our case, we want the smallest unit possible: seconds.

Due to the truncation, it may be that we observe only a single message in a thread. This
could be a thread that ended just as the training data got collected or just started when
collection ended. Before we can create a weight based on the activity over the timespan
of a thread, we must flag those threads for which we have only one message. The if-
statement at the end of thread.counts does this check and returns a vector of NA if the
current thread has only one message. We will use this later to scrub these from the
activity weighting data.

The final step is to create a weighting for those messages we can measure. We start by
calculating the ratio of messages-to-seconds elapsed in the thread. So, if a message were
sent every second in a given thread, the result would be one. Of course, in practice, this
number is much lower, with the average number of messages in each thread about 4.5
and the average elapsed time about 31,000 seconds (8.5 hours). Given these scales, the
vast majority of our ratios are tiny fractions. As before, we still want to transform these
values using logs, but because we are dealing with fractional values, this will result in
negative numbers. We cannot have a negative weight value in our scheme, so we
will have to perform an additional transformation that is formally called an affine
transformation.

Writing a Priority Inbox | 117



An affine transformation is simply a linear movement of points in space. Imagine a
square drawn on piece of graph paper. If you wanted to move that square to another
position on the paper, you could do so by defining a function that moved all of the
points in the same direction. This is an affine transformation. To get non-negative
weights in log.trans.weight, we will simply add 10 to all the log-transformed values.
This will insure that all of the values will be proper weights with a positive value.

As before, once we have generated the weight data with the get.threads and
thread.counts, we will perform some housekeeping on the thread.weights data frame
to keep the naming consistent with the other weight data frames. In the final step, we
use the subset function to remove any rows that refer to threads with only one message
(i.e., truncated threads). We can now use head(thread.weights) to check the results:

head(thread.weights)
                                      Thread Freq Response   Weight
1   please help a newbie compile mplayer :-)    4    42309 5.975627
2                 prob. w/ install/uninstall    4    23745 6.226488
3                       http://apt.nixia.no/   10   265303 5.576258
4         problems with 'apt-get -f install'    3    55960 5.729244
5                   problems with apt update    2     6347 6.498461
6 about apt, kernel updates and dist-upgrade    5   240238 5.318328

The first two rows are good examples of how this weighting scheme values thread
activity. In both of these threads, there have been four messages. The prob. w/ install/
uninstall thread, however, has been in the data for about half as many seconds. Given
our assumptions, we would think that this thread is more important and therefore
should have a higher weight. In this case, we give messages form this thread about 1.04
times more weight than those from the please help a newbie compile mplayer :-)
thread. This may or may not seem reasonable to you and therein lies part of the art in
designing and applying a scheme such as this to a general problem. It may be that in
this case, our user would not value things this way (while others might), but because
we want a general solution, we must accept the consequences of our assumptions.

The final weighting data we will produce from the threads are the frequent terms in
these threads. Similar to what we did in Chapter 3, we create a general function
term.counts that takes a vector of terms and a TermDocumentMatrix control list to pro-
duce the TDM and extract the counts of terms in all of the threads. The assumption in
creating this weighting data is that frequent terms in active thread subjects are more
important than terms that are either less frequent or not in active threads. We are
attempting to add as much information as possible to our ranker in order to create a
more granular stratification of emails. To do so, rather than look only for already-active
threads, we want to also weight threads that “look like” previously active threads, and
term weighting is one way to do this:

term.counts <- function(term.vec, control) {
    vec.corpus <- Corpus(VectorSource(term.vec))
    vec.tdm <- TermDocumentMatrix(vec.corpus, control=control)
    return(rowSums(as.matrix(vec.tdm)))
}
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thread.terms <- term.counts(thread.weights$Thread, 
  control=list(stopwords=stopwords()))
thread.terms <- names(thread.terms)

term.weights <- sapply(thread.terms, 
  function(t) mean(thread.weights$Weight[grepl(t, thread.weights$Thread, 
                   fixed=TRUE)]))
term.weights <- data.frame(list(Term=names(term.weights), Weight=term.weights), 
  stringsAsFactors=FALSE, row.names=1:length(term.weights))

The final weighting data we will build is based on term frequency in all email messages
in the training data. This will proceed almost identically to our method for counting
terms in the spam classification exercise; however, this time we will assign log-trans-
formed weights based on these counts. As with the term-frequency weighting for thread
subjects, the implicit assumption in the msg.weights data frame is that a new message
that looks like other messages we have seen before is more important than a message
that is totally foreign to us:

msg.terms <- term.counts(priority.train$Message, 
    control=list(stopwords=stopwords(),
    removePunctuation=TRUE, removeNumbers=TRUE))

msg.weights <- data.frame(list(Term=names(msg.terms), 
    Weight=log(msg.terms, base=10)), stringsAsFactors=FALSE,
    row.names=1:length(msg.terms))

msg.weights <- subset(msg.weights, Weight > 0)

We now have five weight data frames with which to perform our ranking! This includes
from.weight (social activity feature), senders.df (sender activity in threads),
thread.weights (thread message activity), term.weights (terms from active threads),
and msg.weights (common terms in all emails). We are now ready to run our training
data through the ranker to find a threshold for marking a message as important.

Training and Testing the Ranker
To generate a priority rank for each message in our training data, we must multiply all
of the weights produced in the previous section. This means that for each message in
the data, we will need to parse the email, then take the extracted features and match
them to corresponding weight data frames to get the appropriate weighting value. We
will then take the product of these values to produce a single—and unique—rank value
for each message. The rank.message function below is a single function that takes a file
path to a message and produces a priority ranking for that message based on the features
we have defined and their subsequent weights. The rank.message function relies on
many functions we have already defined, as well as a new function, get.weights (which
does the weight lookup when the feature does not map to a single weight—i.e., subject
and message terms):
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get.weights <- function(search.term, weight.df, term=TRUE) {
    if(length(search.term) > 0) {
        if(term) {
            term.match <- match(names(search.term), weight.df$Term)
        }
        else {
            term.match <- match(search.term, weight.df$Thread)
        }
        match.weights <- weight.df$Weight[which(!is.na(term.match))]
        if(length(match.weights) > 1) {
            return(1)
        }
        else {
            return(mean(match.weights))
        }
    }
    else {
        return(1)
    }
}

We first define get.weights, which takes three arguments: some search terms (a string),
the weight data frame in which to do the look up, and a single Boolean value term. This
final parameter will allow us to tell the application if it is doing a lookup on a term data
frame or on a thread data frame. We will treat these lookups slightly differently due to
differences in column labels in the thread.weights data frame, so we need to make this
distinction. The process here is fairly straightforward, as we use the match function to
find the elements in the weight data frame that match search.term and return the weight
value. What is more important to notice here is how the function is handling non-
matches.

First, we do one safety check to be sure that the search term being passed to
get.weights is valid by checking that it has some positive length. This is the same type
of check we performed while parsing the email data to check that an email actually had
a subject line. If it is an invalid search term, then we simply return a 1 (which elementary
mathematics tells us will not alter the product computed in the next step because of
the rules for multiplication by 1). Next, the match function will return an NA value for
any elements in the search vector that do not match search.term. Therefore, we extract
the weight values for only those matched elements that are not NA. If there are no
matches, the term.match vector will be all NA’s, in which case match.weights will have
a zero length. So, we do an additional check for this case, and if we encounter this case
we again return 1. If we have matched some weight values, we return the mean of all
these weights as our result.

The rank.message function uses similar rules to the get.weights function for assigning
weight values to the features extracted from each email in the data set. First, it calls the
parse.email function to extract the four features of interest. It then proceeds to use a
series of if-then clauses to determine whether any of the features extracted from the
current email are present in any of the weight data frames used to rank and assigns
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weights appropriately. The from and thread.from use the social interaction features to
find weight based on the sender’s email address. Note that, in both cases, if the
ifelse function does not match anything in the data weight data frames, a 1 is returned.
This is the same strategy implemented in the get.weights function:

rank.message <- function(path) {
    msg <- parse.email(path)
    # Weighting based on message author

    # First is just on the total frequency
    from <- ifelse(length(which(from.weight$From.EMail == msg[2])) > 0,
        from.weight$Weight[which(from.weight$From.EMail == msg[2])], 1)

    # Second is based on senders in threads, and threads themselves
    thread.from <- ifelse(length(which(senders.df$From.EMail == msg[2])) > 0,
        senders.df$Weight[which(senders.df$From.EMail == msg[2])], 1)

    subj <- strsplit(tolower(msg[3]), "re: ")
    is.thread <- ifelse(subj[[1]][1] == "", TRUE, FALSE)
    if(is.thread) {
        activity <- get.weights(subj[[1]][2], thread.weights, term=FALSE)
    }
    else {
        activity <- 1
    }

    # Next, weight based on terms    

    # Weight based on terms in threads
    thread.terms <- term.counts(msg[3], control=list(stopwords=stopwords()))
    thread.terms.weights <- get.weights(thread.terms, term.weights)
    
    # Weight based terms in all messages
    msg.terms <- term.counts(msg[4], control=list(stopwords=stopwords(),
        removePunctuation=TRUE, removeNumbers=TRUE))
    msg.weights <- get.weights(msg.terms, msg.weights)

    # Calculate rank by interacting all weights
    rank <- prod(from, thread.from, activity, 
        thread.terms.weights, msg.weights)

    return(c(msg[1], msg[2], msg[3], rank))
}

For the thread- and term-based weighting, some internal text parsing is done. For
threads, we first check that the email being ranked is part of a thread in the exact same
way we did during the training phase. If it is, we look up a rank; otherwise, we assign
1. For term-based weighting, we use the term.counts function to get the terms of interest
from the email features and then weight accordingly. In the final step, we generate the
rank by passing all of the weight values we have just looked up to the prod function.
The rank.message function then returns a vector with the email’s data/time, sender’s
address, subject, and rank.
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We are now ready to fire up our ranker! Before we can proceed, we will split our data
into two chronologically divided sets. The first will be the training data, which we call
train.paths. We will use the ranking data generated from here to establish a threshold
value a “priority” message. Once we have this, we can run the ranker over the emails
in test.paths to determine which ones are priority and to estimate their internal rank
ordering. Next, we will apply the rank.messages function to the train.paths vector to
generate a list of vectors containing the features and priority rank for each email. We
then perform some basic housekeeping to convert this list to a matrix. Finally, we we
convert this matrix to a data frame with column names and properly-formatted vectors:

train.paths <- priority.df$Path[1:(round(nrow(priority.df) / 2))]
test.paths <- priority.df$Path[((round(nrow(priority.df) / 2)) + 1):nrow(priority.df)]

train.ranks <- lapply(train.paths, rank.message)
train.ranks.matrix <- do.call(rbind, train.ranks)
train.ranks.matrix <- cbind(train.paths, train.ranks.matrix, "TRAINING")
train.ranks.df <- data.frame(train.ranks.matrix, stringsAsFactors=FALSE)
names(train.ranks.df) <- c("Message", "Date", "From", "Subj", "Rank", "Type")
train.ranks.df$Rank <- as.numeric(train.ranks.df$Rank)

priority.threshold <- median(train.ranks.df$Rank)

train.ranks.df$Priority <- ifelse(train.ranks.df$Rank >= priority.threshold, 1, 0)

You may notice that train.ranks <- lapply(train.paths, rank.mes
sage) causes R to throw a warning. This is not a problem, but simply a
result of the way we have built the ranker. You may wrap the lapply call
in the suppressWarnings function if you wish to turn off this warning.

We now perform the critical step of calculating a threshold value for priority email. As
you can see, for this exercise we have decided to use the median rank value as our
threshold. Of course, we could have used many other summary statistics for this
threshold, as we discussed in Chapter 2. Because we are not using pre-existing examples
of how emails ought to be ranked to determine this threshold, we are performing a task
that is not really a standard sort of supervised learning. But we have chosen the median
for two principled reasons. First, if we have designed a good ranker, then the ranks
should have a smooth distribution, with most emails having low rank and many fewer
emails having a high rank. We are looking for “important emails,” i.e., those that are
most unique or unlike the normal flow of email traffic. Those will be the emails in the
right-tail of the rank distribution. If this is the case, those values greater than the median
will be those somewhat greater than the typical rank. Intuitively, this is how we want
to think about recommending priority email: those with rank larger than the typical
email.
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Second, we know that the test data will contain email messages that have data that does
not match anything in our training data. New emails are flowing in constantly, but
given our setup, we have no way of updating our ranker. As such, we may want to have
a rule about priority that is more inclusive than exclusive. If not, we may miss messages
that are only partial matches to our features. Finally, we add a new binary column
Priority to train.ranks.df indicating whether the email will be recommended as pri-
ority by our ranker.

Figure 4-5 shows the density estimate for the ranks calculated on our training data. The
vertical dashed line is the median threshold, which is about 24. As you can see, our
ranks are very heavy-tailed, so we have created a ranker that performs well on the
training data. We can also see that the median threshold is very inclusive, with a large
portion of the downward sloping density included as priority email. Again, this is done
intentionally. A much less inclusive threshold would be to use the standard deviation
of the distributions, which we can calculate with sd(train.ranks.df$Rank). The stand-
ard deviation is about 90, which would almost exactly exclude any emails outside of
the tail.

We will now calculate the rank values for all of the emails in our test set. This process
proceeds exactly the same way as it did for our training data, so we will not reproduce
the code here to save space. To see the code, refer to the “code/priority_inbox.R” file
included for this chapter at about line 308. Once we have calculated the ranks for the
test data, we can compare the results and see how well our ranker did on new emails.

Figure 4-6 overlays the density of ranks from the test data on the densities in Fig-
ure 4-5. This illustration is very informative regarding the quality of our ranker. First,
we notice that there is much more density in the test data at the very low end of the
distributions. This means that there are many more emails with a low rank. Addition-
ally, the test density estimate is much less smooth than the training data. This is evi-
dence that the test data includes many observations not in our training data. Because
these observations do not match anything in our training data, the ranker effectively
ignores this information.

While this is problematic, we avoid disaster because we used an inclusive threshold for
priority email. Note that there is still a reasonable amount of density for the test data
to the right of the threshold line. This means our ranker was still able to find emails to
recommend as important from the test data. As a final check, let’s actually see which
emails our ranker pushed to the top.

Writing a Priority Inbox | 123



Figure 4-5. Density of weights in training data, with priority threshold as 1 standard deviation of
weights
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Figure 4-6. Density of weights for test data overlaid on training data density
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There is an inherent “unknowable” quality to creating a ranker of this
type. Throughout this entire exercise, we have posted assumptions
about each feature we included in our design and attempted to justify
these intuitively. However, we can never know the “ground truth” as to
how well our ranker is doing, because we can’t go back and ask the user
for whom these emails were sent if the ordering is good or makes sense.
In the classification exercise, we knew the labels for each email in the
training and test set, so we could measure explicitly how well the clas-
sifier was doing using the confusion matrix. In this case we can’t, but
we can try to infer how well the ranker is doing be looking at the results.
This is what makes this exercise something distinct from standard su-
pervised learning.

Table 4-1 shows the 10 newest emails in test data that have been labeled as priority by
our ranker. The table is meant to mimic what you might see in your email inbox if you
were using this ranker to perform priority inbox over your emails with the added in-
formation of the email’s rank. If you can excuse some of the somewhat odd or contro-
versial subject headings, we’ll explore these results to check how the ranker is grouping
emails.

Table 4-1. Results of priority inbox testing

Date From Subject Rank

12/1/02 21:01 geege@barrera.org RE: Mercedes-Benz G55 31.97963566

11/25/02 19:34 deafbox@hotmail.com Re: Men et Toil 34.7967621

10/10/02 13:14 yyyy@spamassassin.taint.org Re: [SAdev] fully-public corpus of mail available 53.94872021

10/9/02 21:47 quinlan@pathname.com Re: [SAdev] fully-public corpus of mail available 29.48898756

10/9/02 18:23 yyyy@spamassassin.taint.org Re: [SAtalk] Re: fully-public corpus of mail available 44.17153847

10/9/02 13:30 haldevore@acm.org Re: From 25.02939914

10/9/02 12:58 jamesr@best.com RE: The Disappearing Alliance 26.54528998

10/8/02 23:42 harri.haataja@cs.helsinki.fi Re: Zoot apt/openssh & new DVD playing doc 25.01634554

10/8/02 19:17 tomwhore@slack.net Re: The Disappearing Alliance 56.93995821

10/8/02 17:02 johnhall@evergo.net RE: The Disappearing Alliance 31.50297057

What’s most encouraging about these results is that the ranker is grouping threads
together very well. You can see several examples of this in the table, where emails from
the same thread have all been marked as priority and are grouped together. Also, the
ranker appears to be giving appropriately high ranks to emails from frequent senders,
as is the case for outlier senders such as tomwhore@slack.net and yyyy@spamassas
sin.taint.org. Finally, and perhaps most encouraging, the ranker is making messages
priority that were not present in the training data. In fact, only 12 out of the 85 threads
in the test data marked as priority are continuations from the training data (about 14%).
This shows that our ranker is able to apply observations from training data to new
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threads in the test data and make recommendations without updating. This is very
good!

In this chapter we have introduced the idea of moving beyond a feature set with only
one element to a more complex model with many features. We have actually accom-
plished a fairly difficult task, which is to design a ranking model for email when we can
only see one half of the transactions. Relying on social interactions, thread activity, and
common terms, we specified four features of interest and generated five weighting data
frames to perform the ranking. The results, which we have just explored, were encour-
aging, though without ground truth, difficult to test explicitly.

With the last two chapters behind us, you’ve worked through a relatively simple ex-
ample of supervised learning used to perform spam classification and a very basic form
of heuristic-based ranking. We hope the experience has piqued your interest in machine
learning.
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