
www.allitebooks.com

http://www.allitebooks.org

Managing Data and Media
in Microsoft Silverlight 4: A
mashup of chapters from
Packt's bestselling Silverlight
books

Manage data in Silverlight, build and maintain rich
dashboards, integrate SharePoint with Silverlight,
and more

Series Editor

Carl Jones

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Managing Data and Media in Microsoft Silverlight 4:
A mashup of chapters from Packt's bestselling
Silverlight books

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2012

Production Reference: 2200212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-564-1

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Series Editor
Carl Jones

Contributors
Gastón C. Hillar

Gill Cleeren

Kevin Dockx

Todd Snyder

Joel Eden, PhD

Jeffrey Smith

Matthew Duffield

Cameron Albert

Frank LaVigne

Vibor Cipan

Technical Editor
Arun Nadar

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Contributors

Gastón C. Hillar has been working with computers since he was eight. He
began programming with the legendary Texas TI-99/4A and Commodore 64 home
computers in the early 80s.

He has a Bachelor's degree in Computer Science—graduated with honors—and an
MBA (Masters in Business Administration)—graduated with an outstanding thesis.
He worked as a developer, architect, and a project manager for many companies in
Buenos Aires, Argentina. Now, he is an independent IT consultant and a freelance
author always looking for new adventures around the world. He also works with
electronics (he is an electronics technician). He is always researching about new
technologies and writing about them. He owns an IT and electronics laboratory with
many servers, monitors, and measuring instruments.

Gastón wrote the C# 2008 and 2005 Threaded Programming: Beginner's Guide also
published by Packt.

He is also the author of more than 40 books in Spanish about computer science,
modern hardware, programming, systems development, software architecture,
business applications, balanced scorecard applications, IT project management, the
Internet, and electronics.

He contributes to Dr. Dobb's Go Parallel programming portal http://www.ddj.com/
go-parallel/ and he is a guest blogger at Intel Software Network
http://software.intel.com

He usually writes articles for Spanish magazines Mundo Linux, Solo Programadores,
and Resistor.

www.allitebooks.com

http://www.allitebooks.org

Gill Cleeren is Microsoft Regional Director (http://www.theregion.com),
Silverlight MVP (former ASP.NET MVP), and Telerik MVP. He lives in Belgium
where he works as a .NET architect at Ordina (http://www.ordina.be/). He is
passionate about .NET and always plays with the newest bits. In his role as Regional
Director, Gill has given many sessions, webcasts, and training on new as well
as existing technologies, such as Silverlight, ASP.NET, and WPF at conferences
including TechEd Berlin 2010, TechDays Belgium – Switzerland – Sweden, DevDays
NL, NDC Oslo Norway, DevReach Bulgaria, NRW Conference Germany, Spring
Conference UK, Telerik Silverlight Roadshow in Sweden, and Telerik RoadShow UK.
He is the author of Packt's Microsoft Silverlight 4 Data and Services Cookbook and is also
the author of many articles in various developer magazines and for SilverlightShow.
net. He organizes the yearly Community Day event in Belgium and also leads Visug
(http://www.visug.be), the largest .NET user group in Belgium. You can find his
blog at http://www.snowball.be and on Twitter by following @gillcleeren.

Kevin Dockx lives in Belgium and works at RealDolmen, one of Belgium's biggest
ICT companies, where he is a 30-year old technical specialist/project leader on .NET
web applications, mainly Silverlight, and a solution manager for Rich Applications
(Silverlight, Windows Phone 7, WPF, Surface, and HTML5). His main focus is on
all things related to Silverlight, but he still keeps an eye on the new developments
concerning other products from the Microsoft .NET (Web) Stack. As a Silverlight
enthusiast, he's a regular speaker on various national and international events, such
as Microsoft DevDays in the Netherlands, Microsoft Techdays in Portugal, NDC
Oslo Norway, and Community Day Belgium. He is the author of Packt's Microsoft
Silverlight 4 Data and Services Cookbook and also writes articles for various Silverlight-
related sites and magazines. His blog, which contains various tidbits on Silverlight,
.NET, and the occasional rambling, can be found at http://blog.kevindockx.com/,
and you can find him on Twitter as well: @KevinDockx.

Todd Snyder has been a software developer/architect for over 16 years. During
that time, he has spent several years as a consultant providing technical guidance
and leadership for the development of enterprise class systems on the Microsoft
Platform. At Infragistics, he is a principal consultant that focuses on the design and
construction of RIA and n-tier based applications. Todd is the co-leader for the New
Jersey .Net user group (http://www.njdotnet.net/) and is a frequent speaker at
trade shows, code camps, and Firestarters.

www.allitebooks.com

http://www.allitebooks.org

Joel Eden, PhD has been working in the area of user experience and design
methods for over 10 years. Currently a Senior Interaction Designer working on
UX Tools at Infragistics, he spent three years in the Infragistics Services group,
consulting for external clients. Prior to Infragistics, he worked at multiple design
agencies in the Philadelphia area, as well as working at Lockheed Martin's Advanced
Technology Labs. Joel holds a B.S. in Computer Science, and a Ph.D in Information
Science, both from Drexel University.

Jeffrey Smith has been a Visual Designer for six years. During that time he has
been an Art Director at various agencies and studied special effects and animation
at NYU. A convert from flash and flex, he has been working with .NET technologies
for the past two years, specializing in WPF and Silverlight. At Infragistics, he is an
UX Visual Designer that focuses on the design, implementation, and user experience.
You can view some of his work at http://www.thinksinkstudio.com.

Matthew Duffield is a .NET architect in designing and developing enterprise
applications. He specializes in .NET with an emphasis on WPF, Silverlight, and
WP7 development. He is a Microsoft MVP in Client Application Development and
has an MSCD.NET certification. He also works in business intelligence, designing,
and developing solutions for data warehouse and data mining initiatives. You can
read his blog at mattduffield.wordpress.com and follow him on Twitter at @
mattduffield.

Cameron Albert is an independent software development consultant with over
10 years of experience, specializing in Microsoft technologies such as Silverlight,
WPF, WCF, SQL Server, and ASP.NET. Having worked in the medical, insurance,
and media/entertainment industries, Cameron has been involved in a variety of
development solutions featuring a broad range of technical issues. He also dabbles
in game development utilizing Silverlight and maintains a blog detailing his exploits
into the development world here: http://www.cameronalbert.com.

www.allitebooks.com

http://www.allitebooks.org

Frank LaVigne has been hooked on with software development since he was 12,
when he got his own Commodore 64 computer. Since then, he's worked as developer
for financial firms on Wall Street and also in Europe. He has worked on various
Tablet PC solutions and on building advanced user experiences in Silverlight and
WPF. He lives in the suburbs of Washington, DC. He founded the CapArea.NET
User Group Silverlight Special Interest Group and has been recognized by Microsoft
as a Tablet PC MVP. He blogs regularly at www.FranksWorld.com.

Vibor Cipan is currently serving as the CEO and Partner of FatDUX Zagreb—a
full service interactive UX and service design agency with offices around the world.
Before joining FatDUX, Vibor, he worked at Microsoft Development Center in
Copenhagen and before that, at Microsoft, Croatia. One thing, however, has stayed
constant—his focus on user experience, service design, usability, and information
architecture. He has been awarded the prestigious title of Microsoft Most Valuable
Professional for three years in a row (and is still currently holding that title). He was
the youngest awardee and the first one in the CEE, Europe to receive the award
while being a full-time student.

www.allitebooks.com

http://www.FranksWorld.com
http://www.allitebooks.org

www.PacktPub.com
Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following
@PacktEnterprise on Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Layouts and General Content Organization 9
Introduction 10
Fluid layout 10
Creating a navigation pane from scratch 17
Window management and positioning 27
Wizards 37
Progressive disclosure—showing additional controls on demand 49
Control docking with DockPanel 54
Journal navigation 59
Tabs 66
Adding a status bar area 75

Chapter 2: Handling Data 85
Data applications 86
Time for action – creating a business object 86
Windows Communication Foundation (WCF) 89
Time for action – creating a Silverlight-enabled WCF service 90
Collecting data 99
Time for action – creating a form to collect data 99
Validating data 111

Data object 111
Time for action – creating a data object 111

Data binding 116
Time for action – binding our data object to our controls 116

Validation	 120
Time for action – validating data input 121
Data submission 125

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Time for action – submitting data to the server 125
Summary 130

Chapter 3: An Introduction to Data Binding 131
Introduction 132
Displaying data in Silverlight applications 134
Creating dynamic bindings 145
Binding data to another UI element 148
Binding collections to UI elements 152
Enabling a Silverlight application to automatically update its UI 156
Obtaining data from any UI element it is bound to 163
Using the different modes of data binding to allow persisting data 168
Data binding from Expression Blend 4 173
Using Expression Blend 4 for sample data generation 176

Chapter 4: Advanced Data Binding 179
Introduction 180
Hooking into the data binding process 180
Replacing converters with Silverlight 4 BindingBase properties 184
Validating databound input 188
Validating data input using attributes 193
Validating using IDataErrorInfo and INotifyDataErrorInfo 195
Using templates to customize the way data is shown by controls 200
Building a change-aware collection type 206
Combining converters, data binding, and DataContext into a custom
DataTemplate 209

Chapter 5: The Data Grid 217
Introduction 217
Displaying data in a customized DataGrid 218
Inserting, updating, and deleting data in a DataGrid 224
Sorting and grouping data in a DataGrid 228
Filtering and paging data in a DataGrid 233
Using custom columns in the DataGrid 237
Implementing master-detail in the DataGrid 244
Validating the DataGrid 248

Chapter 6: Talking to REST and WCF Data Services 253
Introduction 254
Reading data from a REST service 255
Parsing REST results with LINQ-To-XML 260
Persisting data using a REST service 264
Working with the ClientHttpStack 270

Table of Contents

[iii]

Communicating with a REST service using JSON 273
Using WCF Data Services with Silverlight 276
Reading data using WCF Data Services 281
Persisting data using WCF Data Services 286
Talking to Flickr 291
Talking to Twitter over REST 298
Passing credentials and cross-domain access to Twitter from a trusted
Silverlight application 303

Chapter 7: Interacting with Data on the SharePoint Server 315
Managing data in a Silverlight RIA included in a SharePoint solution 316

Working	with	the	SharePoint	2010	Silverlight	Client	Object	Model	
to insert items 316
Inserting	items	in	a	SharePoint	list	with	the	Silverlight	Web	Part	 324
Working	with	successful	and	failed	asynchronous	queries	 327
Retrieving	specific	information	about	fields	 331
Creating	complex	LOB	applications	composed	of	multiple	Silverlight	RIAs	 340
Interacting	with	multiple	Silverlight	Web	Parts	in	the	same	page	 345
Understanding	Line-Of-Business	systems	as	independent	Web	Parts	 347
Expanding	LOB	systems	with	delete	operations	 349
Understanding	how	to	delete	an	item	from	a	list	 352

Expanding	LOB	systems	with	update	operations	 354
Updating	an	item	in	a	list	 357

Summary 359

Chapter 8: Interacting with Rich Media and Animations 361
Bringing life to business applications and complex workflows 362

Creating	asset	libraries	in	SharePoint	2010	 362
Adding	content	to	an	assets	library	 364
Browsing	the	structure	for	SharePoint	Asset	Libraries	 367

Controlling	the	rich	media	library	by	using	controls	in	a	Visual	Web	Part	 369
Creating	a	Silverlight	RIA	rendered	in	a	SharePoint	Visual	Web	Part	 376
Linking	a	SharePoint	Visual	Web	Part	to	a	Silverlight	RIA	 390

Adding	a	SharePoint	Visual	Web	Part	in	a	Web	Page	 393
Organizing	controls	in	a	containing	box	 399
Reading	files	from	an	assets	library	 400

Working	with	interactive	animations	and	effects	 401
Adding	and	controlling	videos	 408
Video	formats	supported	in	Silverlight	4	 412
Adding	and	controlling	sounds	and	music	 412
Audio	formats	supported	in	Silverlight	4	 413

Changing	themes	in	Silverlight	and	SharePoint	 414
Summary 417

Table of Contents

[iv]

Chapter 9: Data Access Strategies 419
Data access overview 420

Core	networking	classes	 420
Working	with	WebClient	 420
Using	Fiddler	 424

Understanding network security 425
Building services with Windows Communication Foundation 427

Working	with	WCF	 429
The	data	access	layer	 430

Building	a	SOAP	service	 433
Building	a	REST	service	 436

Exploring OData data services 439
Building	an	OData	service	 441
Consuming	an	external	service	 444

Summary 446

Chapter 10: Building Dashboards in SharePoint and Silverlight 447
Overview of SharePoint 448

Setting	up	SharePoint	 448
Building a Silverlight web part 450

Using	the	Client	Object	Model	 455
Building a SharePoint Silverlight dashboard 459

Setting	up	our	data	source	 459
Building	our	dashboard	 460

SharePoint Data Access Strategies 466
Summary 466

Chapter 11: Working with 3D Characters 467
The second remake assignment 468
Time for Action – exporting a 3D model without considering textures 468

XAML	3D	models	 473
Time for action – from DCC tools to WPF 475

XBAP	WPF	applications	with	3D	content	 476
Time for action – displaying a 3D model in a 2D screen with WPF 477

Understanding	the	3D	world	 481
X,	Y,	and	Z	in	practice	 483
GPU	3D	acceleration	 484
Understanding	meshes	 485

Time for action – using other XAML exporter for DCC tools 486
Time for action – adding 3D elements and interacting with them
using Expression Blend 488

Interacting	with	3D	elements	using	Expression	Blend	 491

Table of Contents

[v]

Silverlight and the 3D world 492
Time for action – exporting a 3D model to ASE 492
Time for action – installing Balder 3D engine 493
Time for action – from DCC tools to Silverlight 495

Displaying	a	3D	model	in	a	2D	screen	with	Silverlight	 498
Using	3D	vectors	 499

Summary 500
Pop quiz answers 500

Index 501

Preface
A Packt Compendium is a book formed by drawing existing content from
several related Packt titles. In other words, it is a mashup of published Packt
content – Professional Expertise Distilled in the true sense. Such a compendium of
Packt's content allows you to learn from each of the chapters' unique styles and Packt
does its best to compile the chapters without breaking the narrative flow for the
reader.

Please note that the chapters in this compendium were originally written and
intended as a part of various separate Packt titles, so you might find that the
information included in this instance is more akin to that of a standalone chapter,
rather than creating step-by-step, continuous flowing prose. We are sure that you
will find this medley a useful and valuable resource with which you can benefit from
a range of Packt books—and their authors' expertise!

Managing Data and Media in Microsoft Silverlight 4: A mashup of chapters from Packt's
bestselling Silverlight focuses on showing .NET developers how to interact with, and
handle multiple sources of data in Silverlight business applications, and how to solve
particular data problems following a practical hands-on approach, using real-world
examples. This book is a collection of media- and data-based chapters from Packt's
best selling Silverlight books:

1. Silverlight 4 User Interface Cookbook
2. Microsoft Silverlight 4 Business Application Development: Beginner's Guide
3. Microsoft Silverlight 4 Data and Services Cookbook
4. Microsoft Silverlight 4 and SharePoint 2010 Integration
5. Microsoft Silverlight 4: Building Rich Enterprise Dashboards
6. 3D Game Development with Microsoft Silverlight 3: Beginner's Guide

Preface

[2]

Microsoft Silverlight is a programmable web browser plugin that enables
features including animation, vector graphics, and audio-video playback
features that characterize Rich Internet Applications. However, Silverlight is a
great Line-Of-Business platform and is increasingly being used to build data-driven
business applications. This book will enable .NET developers to get their finger on
the pulse of data-driven business applications in Silverlight.

In this book, you will find content in various easy-to-follow styles such as a
recipe-based cookbook format, tutorial-based beginner's guide, and a reference-styled
handbook. The aim of this book is to provide a lot of valuable content to you from
various other Packt Silverlight books. It is designed in such a way that you can refer
to the topics chapter-by-chapter, and read them in no particular order. It offers clear
examples to successfully perform the most important data-related tasks in Silverlight.

What this book covers
The book starts with discussion on layouts and content organization and covers all
the options available to access data and communicate with services to get the most
out of data in your Silverlight business applications, at the same time providing
a rich user experience. Understand sophisticated data access techniques in your
Silverlight business applications by binding data to Silverlight controls, validating
data in Silverlight, getting data from services into Silverlight applications, and much
more! Discover the tips, tricks, and hands on experience to create, customize, and
design rich enterprise dashboards with Silverlight from a distinguished team of User
Experience and Development authors.

Chapter 1, Layouts and General Content Organization, covers important layout
considerations to be made before we start building any application, regardless of
being a web application built with Silverlight or a typical desktop application built
with Windows Presentation Foundation.

Chapter 2, Handling Data, covers the process of collecting and handling data input
from a customer and saving that input on the server. We also looked at how to bind
data to control properties and how to provide simple data validation using the built-
in visual states provided in the textbox control.

Chapter 3, An Introduction to Data Binding, explains how data binding allows us to
build data-driven applications in Silverlight in a much easier and much faster way
compared to old-school methods of displaying and editing data.

Chapter 4, Advanced Data Binding, explores the data binding engine that gives many
points where we can extend or change the binding process.

Preface

[3]

Chapter 5, The Data Grid, shows how to work with the DataGrid. This is an essential
control for applications that rely on (collections of) data.

Chapter 6, Talking to REST and WCF Data Services, here, we'll first look at talking with
REST services from Silverlight. Secondly, we'll look at how to work with WCF Data
Services (formerly known as ADO.NET Data Services), which are also pure REST
services at their base.

Chapter 7, Interacting with Data on the SharePoint Server, will cover many topics that
help us create simple and complex Line-Of-Business Silverlight RIAs that run as
Silverlight Web Parts to interact with data in the SharePoint Server.

Chapter 8, Interacting with Rich Media and Animations, will cover many topics related to
retrieving digital assets from SharePoint libraries through the SharePoint Silverlight
Client Object Model and consuming them in a Silverlight RIA.

Chapter 9, Data Access Strategies, will introduce you to the features included in
SharePoint 2010 for hosting Silverlight dashboard applications. We will explore
how to set up a Silverlight web part, and use the SharePoint Silverlight Client Object
Model to communicate with data hosted in SharePoint.

Chapter 10, Building Dashboards in SharePoint and Silverlight, will explore the different
data access strategies you can use while building a Silverlight application. How to
build your own custom data services using SOAP, REST, and OData, a walkthrough
of how to consume externally-hosted services, and how the cross-domain security
policy system works with Silverlight to call external services.

Chapter 11, Working with 3D Characters, will take 3D elements from popular and
professional 3D DCC tools and we will show them rendered in real-time on the screen.

What you need for this book
As this Packt Compendium is a mash-up of published Packt content, the
prerequisites may vary between each chapter. Everything you will need for
this book is detailed according to the respective source title:

Chapters taken from Silverlight 4 User Interface Cookbook uses Expression Blend 4 for
virtually all recipes in it. You might find it useful to use Visual Studio 2010 (or one
of its free "express" editions) for better code editing and development experience, but
Expression Blend 4 should be your first choice for this book.

Preface

[4]

Though the book covers mostly Silverlight 4 and the user interface patterns and
user experience guidelines are referring to Silverlight, first few chapters utilize WPF
4 (Windows Presentation Foundation) technology. Almost all ideas, approaches,
methods, and guidelines applicable to WPF are also applicable to Silverlight itself.

In order to use and follow all recipes, be sure that, apart from Expression Blend 4
you have installed Silverlight Toolkit. Silverlight toolkit adds support for
numerous additional controls of your Silverlight 4 controls. You can get it from
http://silverlight.codeplex.com.

The last part of the book showcases usage of the PathListBox control. This control
supported under Silverlight 4 is not (at the moment of writing this book) part of the
Silverlight or Silverlight Toolkit. Also, effects, pixel shaders, and numerous other
features are available to you when you install Expression Blend 4 SDK for Silverlight
4 available for free from: http://www.microsoft.com/downloads/details.
aspx?FamilyID=d197f51a-de07-4edf-9cba-1f1b4a22110d&displaylang=en
(short link: http://bit.ly/9KaiIG).

Chapters taken from Microsoft Silverlight 4 Business Application Development:
Beginner's Guide will need the following tools to view the samples and run the code
provided. While the Expression tools are discussed and used within the book they
are not a requirement to build Silverlight applications, they simply make it easier.
Visual Studio 2010 provides a design view of XAML pages so that you can visually
design the interface, which saves a lot of hand coding of XAML.

 f Visual Studio 2010
 f Silverlight 4 Tools for Visual Studio
 f WCF RIA Services
 f Expression Blend
 f Expression Encoder
 f SQL Express
 f A SharePoint VPC or development installation (for the SharePoint samples)

Chapters taken from Microsoft Silverlight 4 Data and Services Cookbook requires that
you have Visual Studio installed. This book targets Silverlight 4, which works only
with Visual Studio 2010. Many of the recipes in the book will also work in Silverlight
3, so for these recipes, you have the choice between Visual Studio 2008 and 2010.
We do recommend using Visual Studio 2010, as it features a lot of enhancements
for developing with Silverlight. In both cases, you'll of course need to install the
Silverlight Tools, which will update your Visual Studio instance to work with
Silverlight. Some recipes also require Blend 4 to be installed on your machine (again,
if working with Silverlight 3, Blend 3 will suffice here as well).

Preface

[5]

The first recipe of Chapter 1, Getting our environment ready to start developing Silverlight
applications, explains in detail how to get these tools and how to install them.

Chapters taken from Microsoft Silverlight 4 and SharePoint 2010 Integration will need
the following software products:

 f Visual Studio 2010 Professional, Premium, or Ultimate
 f SharePoint 2010 Server or SharePoint 2010 Foundation, installed on the same

computer that runs Visual Studio 2010
 f SharePoint Designer 2010

Chapters taken from Microsoft Silverlight 4: Building Rich Enterprise Dashboards will
need to have the following available:

 f Visual Studio 2010 Express or Professional Edition
 f SQL Server 2008 R2 Express or Developer Edition
 f Silverlight 5.0 SDK
 f Silverlight 5.0 Toolkit
 f Microsoft Expression Blend 4.0 (with Updates for Silverlight 5.0)
 f Share Point 2010 Foundations (Optional only required for Chapter 10,

Building Dashboards in SharePoint and Silverlight)

Chapters taken from 3D Game Development with Microsoft Silverlight 3: Beginner's
Guide will need Visual C# 2008 (.NET Framework 3.5) with Service Pack 1, or
greater—Visual C# 2010—installed.

You can use the free Visual Web Developer 2008 Express Edition or greater
(http://www.microsoft.com/express/vwd/). However, you have to read the
documentation to consider its limitations carefully.

Who this book is for
If you are a .NET developer who wants to manage professional data-driven
applications with Silverlight, then this book is for you. Basic experience of
programming Silverlight and familiarity with accessing data using ADO.NET
in normal .NET applications is required.

Preface

[6]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The CakeService.svc.cs file will contain
the implementation of our service interface."

A block of code is set as follows:

 <Grid x:Name="LayoutRoot">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="69"/>
 <ColumnDefinition Width="0.52*"/>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="69"/>
 </Grid.ColumnDefinitions>
 </Grid>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.RootVisual = new MainPage();
 // Initialize the ApplicationContext
 ApplicationContext.Init(e.InitParams,
 System.Threading.SynchronizationContext.Current);
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
UserControl and change its height and width to Auto".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[7]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

This book is a compendium title which is extracted from five different best-selling
books by Packt. The code bundles for these individual titles can be also downloaded
from www.packtpub.com/support.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[8]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

1
Layouts and General

Content Organization

This chapter is taken from Silverlight 4 User Interface
Cookbook (Chapter 1) by Vibor Cipan.

In this chapter, we will cover:

 f Liquid versus fixed layouts

 f Navigation pane and how to create one from scratch

 f Window management and positioning

 f Wizards

 f Progressive disclosure—showing additional controls on demand

 f Control docking with Dock Panel

 f Journal navigation

 f Tabs

 f Status bar area

Layouts and General Content Organization

10

Introduction
Before we start building any application, regardless of being a web application built with
Silverlight or a typical desktop application built with Windows Presentation Foundation, we will
be faced with making some very basic and extremely important decisions. Will our application
be able to scale to all of the different screens and resolutions or are we going for a fixed size?
Other than that, how are we going to navigate through data presented in our application?
How do we deal with windows and their positions, sizes, and states? We might go further and
ask ourselves—can we conceive our application as the number of steps that users have to go
through to complete one or more tasks? In that case, we might consider using the wizard UI
pattern—how to create wizards and use Aero Wizard guidelines instead of older and obsolete
Wizard97 guidelines.

What will happen if we present too much data and information to the users, especially the
data is irrelevant at the moment? It might lead to user confusion and dissatisfaction. Then,
we can consider using the progressive disclosure and interesting UI patterns, which will help
us cope with the "control and data overload" challenges.

When we change the screen resolution or resize our windows or pages (please note that
throughout this book these terms are being used to designate both, windows as parts of
desktop applications and pages as parts of web applications, and in many cases UI patterns
are same for both of those), controls might need to change their position, or even size. How
do we implement and efficiently use control docking and scaling in those scenarios?

Tabs are really useful: they enable us to put different content and controls on them. but
despite them being so well-known, they are often misused and their usage can lead to a
user's frustration. How do we use tabs properly and avoid having our users being frustrated
and unhappy with our UI?

Often, applications need to communicate information to their users. Some use pop-up
windows, message boxes, or status bars. When should you consider using a status bar in
your applications and when might it be a better idea to use some other UI pattern?

This introduction has asked a lot of relevant questions. Now, it's time to proceed to some
concrete answers and patterns.

Fluid layout
There are two basic types of layouts that I want to consider here. First is the "fixed" layout,
which basically means that all of the elements on your page or window will remain of the
same size, irrespective of the screen resolution or other form factor. Then, there is "fluid"
layout, which is good for enabling your content to adjust in a size that is appropriate for the
current screen resolution, page dimensions, or generally the form factor that your users will
be using.

Chapter 1

11

I am going to show you how to create a simple example of fixed and fluid layout in Silverlight.
After that, I will give you some guidance on when to use fixed and when to use fluid layouts.

Getting ready
Start your Expression Blend 4 and then select New project... From the dialog that appears
select Silverlight and then Silverlight Application, make sure that Language is set to C# and
Version is 4.0. At the end hit OK.

Some recipes in this chapter are dealing with WPF, not with
Silverlight. However, ideas, methods, approaches and user
experience guidelines are applicable to both technologies.

Now we will see how to create a fluid layout design.

How to do it...
We will create two examples: the first one will demonstrate fluid layouts and the second one,
fixed layouts.

1. After you have created your new project, under the Objects and Timeline pane,
you will see UserControl and LayoutRoot. LayoutRoot is a grid control hosted in
UserControl.

2. Click on UserControl and change its height and width to Auto. To do that, go to
Properties | Layout and change these properties. You will notice that they are
set to 640 and 480 by default. Click on the little cross-arrows to set them to Auto.

3. Now, let's change the background color of LayoutRoot. Click on it in the Objects and
Timeline pane, then go to Properties pane, navigate to the Brushes section, click on
Background, select Solid color brush (second icon in the row), and select any color.

Layouts and General Content Organization

12

4. Press F5 or go to Project | Test Solution.
5. Your default web browser will start and you will see that the entire surface is covered

in the color that you have previously set for your UserControl. Try resizing the browser
and you will see that the surface is still completely covered with the selected color.

6. Close your browser and return to Blend.
7. Now we will add some objects on top of LayoutGrid and explore their behavior.

8. Change the design-time size of your UserControl by clicking and dragging handlers.
Be sure to select UserControl before you start resizing. Note that this is changing
only the design-time dimensions; run-time dimensions are still set to Auto.

9. On the toolbox (usually a left–aligned, vertical stripe with a number of different
controls and tools), locate and select the Rectangle tool. You can also select it by
pressing the M key. Draw several rectangles on top of LayoutRoot.

Chapter 1

13

10. Again, press F5 to start your project.

11. Play with your web browser now. Try changing the height and width and notice the
behavior of the rectangles; they will also change their dimensions. You don't need to
think about the mechanics behind this behavior right now.

12. Close your browser and return to Blend again.

How it works...
How does it really work? The first step was changing the width and height properties of our
UserControl to Auto. By doing so, we have allowed it to stretch automatically and fill in all
available space. Simple as that! As our LayoutRoot is Grid control and its height and width
properties have been set to Auto as well, LayoutRoot has also filled in all available space. We
have just changed its color to make it more distinguishable. That is why our browser has been
filled with LayoutRoot.

After that, we added several rectangles to our LayoutRoot. And here is where some
interesting behaviors start. Depending on the position of rectangles, some of them have been
aligned horizontally or vertically to different sides of LayoutGrid. You can easily check that by
clicking on them and then looking at HorizontalAlignment and VerticalAlignment under the
Layout section within the Properties pane. Depending on that alignment, rectangles have
been resizing when you have resized your browser. This was a very basic illustration of a liquid
type of layout. We implement such a layout by using the grid control. Next, we will see how to
make a fixed layout design.

How to do it...
The steps are the same as those of the previous example—the creation of liquid fluid layout.
I will assume that you have followed those directions and will take it from there.

So, the main difference will be that instead of using Grid for LayoutRoot, we will use Canvas.

1. Right-click on LayoutRoot in the Objects and Timeline pane and from the menu,
select Change Layout Type | Canvas.

2. Hit F5 to test your project.

3. Try resizing your browser again. Notice that the rectangles are keeping their positions
as well as their dimensions intact. No matter what you do with your web browser size,
they will be the same.

Layouts and General Content Organization

14

How it works...
What happened after we changed our Grid control to Canvas type of control in the second
example? All our rectangles have retained their size and positions, no matter what we have
done with browser. The reason lies in the fact that Canvas control used the so-called "absolute
positioning" and no layout policy is being applied to its child elements (rectangles in our case).
You can literally consider it as a blank canvas.

There's more...
To summarize, if you require maximum layout flexibility, you will use Grid control. It employs
a number of different rules that can be applied to its child elements. For fixed layouts,
which are not dependent on the screen size or resolutions, you will use Canvas control
with absolute positioning.

More info about grid sizing, rows, and columns
The grid is a truly versatile control and it enables you to build very flexible and sometimes
complex layouts.

A really important concept includes the possibility of dividing the grid into rows and columns,
so that you get even more flexibility for your layouts. With grid control selected, position
your mouse pointer over its border. You will notice that the mouse pointer will change its
appearance and look like the following screenshot. You can click to add gridlines and define
columns and rows in that way.

Now it is important to understand that the grid supports three ways of defining sizes for
columns and rows—fixed, star, and auto.

Chapter 1

15

Fixed sizing uses exact pixel values to define row or column dimensions and means that they
will not resize. Star sizing is using relative dimensions. In fact, it just indicates that width
should be relative to the other star-sized columns (or rows, for that matter).

Consider the following examples:

<ColumnDefinition Width="0.5*"/>
<ColumnDefinition Width="0.5*"/>

<ColumnDefinition Width="*"/>
<ColumnDefinition Width="*"/>

<ColumnDefinition Width="1000*"/>
<ColumnDefinition Width="1000*"/>

These three definitions will have the same column width. They will be identical with each
column occupying the same amount of space.

Now, consider this sample:

<ColumnDefinition Width="1000*"/>
<ColumnDefinition Width="2000*"/>

Here, the second column will be exactly two times bigger than the first one—a ratio of 2:1.

Auto sizing means that the elements contained in a grid will also resize when the parent
element resizes. It also means that the size of that column or row will depend on the size of
the object that is located in that specific column or row.

In XAML code, those definitions can look like this:

 <Grid x:Name="LayoutRoot">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="69"/>
 <ColumnDefinition Width="0.52*"/>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="69"/>
 </Grid.ColumnDefinitions>
 </Grid>

If you omit the width definition, Blend will automatically use star sizing.

More detailed information about Grid and Canvas panel controls can be found in the Microsoft
Expression Blend User Guide. Just hit F1 to access it within your application.

www.allitebooks.com

http://www.allitebooks.org

Layouts and General Content Organization

16

When to use fixed and when to use fluid layouts
As you might have guessed already, there is no definite suggestion as to whether you should
use only one of those layout types. Most likely, you will be using both of them. For example,
message boxes or some dialogs will not benefit from resizing, but general application
workspaces and web pages might want to look into using the most or all the space available
to them in a meaningful manner. Also, if you need to preserve some fixed positions, you will
use a fixed layout system.

However, there are some proven practices outlining the usage of fixed and fluid layouts.

Fixed layout works well for message boxes displaying information or errors to end users. They
will not benefit significantly by adding the ability to resize them. Same goes for dialog boxes
presenting users with progress on operations such as file copying or deleting. Keep their sizes
fixed. Of course, you will ensure that they look good at different screen resolutions by testing
them. You can even try to optimize content positioning, depending on the current screen
resolution, but you should not allow users to resize those types of windows. If you consider
web environments (you can apply the same principles here), all those modal windows, pop-up
dialogs, and message boxes should be of a fixed size.

When it comes to fluid layouts, the situation is more complex and it is more challenging
to give design guidelines. But generally, you should use liquid layout type in cases where
your application and dialog boxes can benefit from more space available to them. If you are
building a file browser, you should implement the "liquid layout" system and use all available
space to show as many files and folders as possible, so that your users can select them
without scrolling too much. The same goes for web pages—in general, you would want to use
as much space as possible for your content. But you should be aware that there are limits.
You can put your textual content on the web page in liquid layout and enable it to resize
together with your web browser and use the extra space available to them. But from the
usability point of view, lines of text that are too long will decrease readability dramatically.
Today, screen sizes are often over 20 inches and the trend of increasing sizes will continue
into the future for some time—does that mean that you should enable your text or controls to
scale accordingly? Absolutely not! The general rule is that your line of text should not be longer
than about 66 characters. The reason for that is the fact that the human eye struggles with
reading lines longer than that. I recall seeing that suggestion in The Elements of Typographic
Style written by Canadian typographer, Robert Bringhurst. If you apply some good fonts and
think about the overall appearance, you can go up to 75 characters, but don't go over that.

Chapter 1

17

What I like to do is define three sizes for my UI elements: preferred (which is basically default
or optimal) size, minimum size, and maximum size. Preferred size is the size that the specific
UI element will have on a given screen resolution. Minimum size is the size that will be the
smallest size each element can scale to. For example, you can choose to set the minimum size
of your window to 800 by 600 pixels and optimize all controls within it to fit into that. Also, by
setting maximum size you can ensure that your form and controls will not stretch too much
(as I suggested a moment ago when talking about text length). The great thing is that WPF and
Silverlight also support these sizes and you can set them for each control you add to your UI.

Other suggestions for dealing with controls in liquid layouts include keeping navigation
elements (in web pages) anchored to top and left margins. Controls such as text boxes, tables,
grids, and list views should increase their lengths and possibly even widths but again, recall
what I have said in the previous paragraph about too long text lines—same applies to all
controls. If you are using background colors, patterns, or similar elements, they should fill the
new space completely and that is the only case where you should use all space available.

It is also important to think about what will happen if your window or web page gets too small
for its content. As I said earlier, set the minimum size for each and every control including
container controls such as windows or pages. Optimize the layout for that case. If you don't
do that, your controls might become inaccessible during run-time, aesthetic dimension will be
also destroyed, and your application will become practically useless or extremely hard to use.

Most WPF and Silverlight controls will adjust nicely by adding scrollbars to help adapt to these
changes, so that will spare you from implementing all that logic by yourself.

Don't be afraid to put some constraints on liquid layouts, sometimes too much flexibility
will harm your user's experience though your intentions were quite the opposite. I am a firm
believer that by limiting certain aspects of UI flexibility we are actually helping our users and
building better experiences.

See also
 f Control docking with DockPanel

Creating a navigation pane from scratch
If you have ever used Microsoft Outlook 2007 or even earlier versions (and the chances for
that are pretty high), then you are already familiar with the concept of the navigation pane.

Layouts and General Content Organization

18

Navigation pane consists of two major parts—content and buttons. Depending on the
selected button, the content part will be changed. The content part can host a number of
different controls, such as tree view.

In this recipe, I will show you how easy it is to use tab control from WPF and create a basic
navigation pane control that resembles the look and feel of the Outlook's navigation pane.

However, be sure to understand that this is not a replacement for third-party navigation pane
controls, which offer much better and richer functionalities; but of course, all those goodies
come at some price.

Chapter 1

19

So, if you need a really simple navigation pane, let's say for your prototyping efforts, then you can
use this recipe and create one. If you are creating a commercial, line-of-business application,
then you should consider getting one of those fully blown controls available on the market.

That being said, this recipe is useful even if you go and buy third-party controls because
general usage ideas and guidelines are equally applicable. And, it does seem surprising at the
moment, but basic guidelines used for tabs may be applicable to a navigation pane pattern
too.

Getting ready
Start your Expression Blend 4 and then select New project... From the dialog that appears,
select WPF and then WPF Application. Make sure that Language is set to C# and Version is
4.0. At the end hit OK.

How to do it...
1. After your new WPF project has been created, you should notice that under the

Objects and Timeline pane, Window and LayoutRoot grid controls are visible.

2. Go to Asset Library and draw a TabControl on top of LayoutRoot. With TabControl
selected, go to the Properties pane and set all margin values to 0 and Width to 250.
This will align the tab control to the left-hand side and stretch it from the top to the
bottom of your window, giving it a specified width.

3. Right-click on TabControl under the Objects and Timeline pane and from the
drop-down menu, click on Add TabItem. Repeat this once again so that you end
up with four tab item controls added under the TabControl parent. Your visual
tree should look somewhat similar to the following screenshot:

4. Now select each TabItem and under the Properties pane, locate the Common
Properties section and Header property. For each tab item, type the header value.
You can go with the values found in Outlook 2007, for example, Mail, Calendar,
Contacts, and Tasks.

Layouts and General Content Organization

20

5. Select TabControl and under the Common Properties section, change
TabStripPlacement to Bottom. If you now go and press F5 to test your application,
you will notice that tabs are located at the bottom. We are still fairly far away from
the complete navigation pane found in Outlook but you can start to see where we
are heading.

6. The next step is modifying the control template of the tab control. Right-click on
TabControl and from the drop-down menu, click on Edit Control Parts (Template)
| Edit a Copy...—a new dialog Create Style Resource will appear. Keep the default
Name (Key). Notice the possibility to define this template on an application- or
document-wide scope. Also, you can create a separate resource dictionary and use
that file for all specific styles and templates. I will choose that approach this time and
will use the same file for all other styles that I am going to create in this recipe. So,
click on New... and accept the defaults from the new dialog. Now hit OK on the first
dialog, and just make sure that under the Define in section, the resource dictionary is
selected with the name of the RD file that you have just created.

7. Now you are in template editing mode. If you now take a look at the Objects and
Timeline pane, you will notice that the scope has been set to TabControlStyle1—
our TabControl template. This enables us to modify the look of our controls without
making an impact and destroying their functionality.

8. Click on HeaderPanel and notice that HeaderPanel is of the TabPanel type. You can
see that at the very top under the Properties pane. We need to change TabPanel
to StackPanel. To do that, press F11 to switch to "XAML" or "Split" view, which will
enable you to edit the XAML code. Locate the following line:
<TabPanel Margin="2,2,2,0" x:Name="HeaderPanel" Grid.Column="0"
 Grid.Row="0" IsItemsHost="true" Panel.ZIndex="1"
 KeyboardNavigation.TabIndex="1"/>

Chapter 1

21

And change it to:
<StackPanel Margin="2,2,2,0" x:Name="HeaderPanel" Grid.Column="0"
 Grid.Row="0" IsItemsHost="true" Panel.ZIndex="1"
 KeyboardNavigation.TabIndex="1"/>

9. Now save all your files and go to the Window1.xaml file (basically, your main file).

10. Press F5 to test your application now and notice that the tabs are now stacked pretty
much in the same way as they are in Outlook 2007: one above the other.

11. Let's go and make more changes. Select all tab item controls (CTRL + click) and then
change their height to 32. Also, change the left and right margin values to -2. Now,
your navigation pane is starting to look like a real one from Outlook.

Layouts and General Content Organization

22

12. Take a look at the There's more... section (of this part) for further possibilities of
customization and changes.

How it works...
The key for understanding how this pattern and recipe works is pretty simple. The navigation
pane control seen in Outlook is nothing more than TabControl with tabs stacked vertically,
and that's the whole truth. We have added simple TabControl to our artboard and decided to
change its control template.

Once we were there, everything became pretty simple and straightforward. First step was to
change TabPanel to StackPanel. Literally, we just changed one thing in the whole of XAML
code and our tabs have stacked vertically one above other, which is the basic characteristic of
StackPanel as a control.

After that everything else was pretty much just cosmetics treatment. We've changed the tab
item's height to 32 and we have made some changes to the Margin property in order to align
and stack each and every tab item nicely.

Again, I find it necessary to repeat that this is not a replacement for third-party navigation
pane controls that are offering better and richer functionalities.

There's more...
In this section, I will show you how to add more functionalities and even further customize
your navigation pane.

Hosting content into specific tabs
Remember that we have changed the control template of our TabControl but that the
functionality has been preserved completely. As a consequence, the process of hosting and
adding different content to tabs is the same as it is for regular tabs.

1. Let's continue from the last step in our recipe. If you expand any TabItem under
the Objects and Timeline pane, you will notice that it is comprised of two major
parts—Header and Grid. Click on Grid to make it active.

2. Now you can add any control from Asset Library or any other object like you would
on any other grid-like control. Try experimenting by adding different controls. In the
code sample that you can download from this book's website, I've added a simple
TreeView control under the Mail tab.

Chapter 1

23

How to align header text to left
Again, I will take it from the last step. So, our next challenge is to left-align labels such
as Mail, Calendar, and others. To do this, we will need to edit a control template for the
TabItem control.

1. Right-click on any tab item, let's say the first one with the Mail label. From the
drop-down menu, click on Edit Control Parts (Template) | Edit a Copy..., and the
Create Style Resource dialog will appear. Accept the suggested Name (Key) and
under the Define in section, select Resource dictionary. You'll remember that we
defined our resource dictionary earlier as a single location where we will keep all
our templates and styles. When ready, click on OK.

2. Now we are able to edit the template for our tab item. If you take a look at the
Objects and Timeline pane, you will see the visual tree for our TabItemStyle1.
Expand all nodes until you can see an object called Content (which is of
ContentPresenter type). Click on it and go to the Properties pane. Locate the
Layout section and you will see the HorizontalAlignment and VerticalAlignment
properties. They are surrounded with a yellow border, and from them, you can see
a little, yellow square, which indicates that these values have been bounded to the
control template.

3. We want to set our own bindings. Click on the little square and from the drop-down
menu click on Reset. Do this for both the HorizontalAlignment and VerticalAlignment
properties.

Layouts and General Content Organization

24

4. Now, set Left as the value for HorizontalAlignment and Center for the
VerticalAlignment property.

5. If you now go and hit F5, you will notice that the Mail label has been left-aligned, but
that is not the case for the rest of the labels. The reason for this is the fact that in
previous steps we have edited a copy of the control template and applied it to only
the first tab item.

6. In order to get all labels left-aligned, go to your Window1.xaml file and under the
Objects and Timeline pane, right-click on the next tab item. From the drop-down
menu, select Edit Control Parts (Template) | Apply Resource | TabItemStyle1.

Chapter 1

25

7. Repeat the same procedure for the rest of the tab item controls and then hit F5 to
test your application. Now all the labels are left-aligned.

8. Note that you can also add other controls in our TabItem style, for example, images.

When to use navigation pane?
As its name implies, the navigation pane is a control or pattern (if you like) that is focused on
navigation. But what type of navigation? Is it the same as journal navigation?

First and foremost, a pattern or control (if you prefer calling it that) is never used alone. It is
(or should I say, it must be) used as part of a wider navigation concept. While a regular tab
control with specific tabs is useful for property pages, dialogs, and different types of content
organization, the navigation pane is great for application-specific navigation.

In the real world, it means the following—you will position the navigation pane on the left-hand
side of your application. When you click on specific buttons (tabs that is), they will expose
content in their upper "container" part. In our recipe, that was the TreeView control added on
the Mail tab.

The most relevant and interesting things happen when users click on different items within
the container part of a navigation pane. Then, application-wise navigation occurs. If you
have challenges picturing this, go to Outlook and simply try clicking on Mail, and after that
on the Inbox, Outbox, or Sent Items folders. You will notice that the right-hand part of your
application changes. Virtually the same pattern is available in Microsoft Dynamics products
such as NAV or AX, and many others as well.

Layouts and General Content Organization

26

I've mentioned earlier that most guidelines and suggestions that I've outlined for tabs hold
true for the navigation pane as well. However, I will reiterate some of them and also point out
some differences right here:

 f Tabs (or buttons) such as Mail, Calendar, and so on must be linear in their structure,
which means that there is no hierarchy in their organization—Mail is not a parent
of Calendar and so on. Simply put, each and every tab or button must be mutually
independent. But you are free to host hierarchy-based controls such as a "tree view"
within your navigation pane.

 f The navigation pane is for navigation. It's not a regular tab control used for organizing
your content, controls, and properties. It's not a wizard too: don't ever use it as a
control that should guide users through wizard-like processes.

 f The first tab or button should be the one that is most likely to be most used and
it should be selected by default. Again, using Outlook as a sample, the first tab is
Mail—the one that is being used the most.

 f Feel free to use icons. That was not something that I've been encouraging in the case
of tabs, but here, you have enough space and you don't have to be afraid that you
will make too much of a visual clutter. Sure, that holds true only if you use nice, clear,
recognizable, and understandable icons.

 f Don't use any kind of terminating or similar type of button within the container part
of a navigation pane; no OK, Cancel, or Apply buttons here. It's called the "navigation
pane" and it should do just that—help your users to navigate to or expose different
parts of your application and help them get their jobs done quickly.

 f Have I mentioned that in your real–life applications, you should use full-blown,
third-party navigation pane controls and not this? We've created a really basic one
here? This was a nice learning example and all of the suggestions stated here
are applicable to real-world commercial navigation pane controls. And yes, I'm not
really able to give you any suggestions on which control you should use, but there
are numerous vendors offering them and I'm sure you will find them easily on the
Internet.

See also
 f Tabs

Chapter 1

27

Window management and positioning
Often overlooked or even completely ignored, window management presents the basic of any
window–based desktop application. Though this recipe will be focused on WPF and desktop
applications, today, window management plays an important role in web environments as
well where different types of modal, dialog, and message box windows are appearing. As a
consequence, most ideas and general guidelines presented here might be quite useful for
web solutions as well.

This recipe will cover several basic ideas and approaches regarding window placement, their
positions, and size.

As there are several concepts being described here, I have, when it seemed appropriate to do
so, created smaller sub-recipes that are building on previous ones.

WPF provides a fairly rich window management model but it is upon developers and designers
to come up with the right usage and interactions involving windows. This recipe aims to help
you with that challenge.

Getting ready
Before we proceed any further, it is a good idea to define several concepts that we will be
using and relying on during this recipe. You can think of this as a small dictionary and it is
compatible with Microsoft UX guidelines for Windows Vista and Windows 7 operating systems.

 f Top-level or Primary window: It has no owner window, meaning that this is the one
that is displayed on the taskbar and in most cases, can be considered to be the main
application window.

 f Owned or Secondary window: It has an owner window and as a general rule, it is not
displayed on the taskbar.

 f User–initiated window: It is always being displayed as a direct result of a user's
actions. Action can be clicking on some buttons, commands, menu items, and so on.
Also, there are program-initiated windows—ones that are initiated by an application
itself without user's action—and system-initiated windows—ones that are initiated by
the underlying operating system itself.

 f Contextual window: It is type of a user-initiated window but with a very strong
relationship to the UI object, from which it was invoked and launched. Context is
extremely important here and positioning often plays a very important role (it will be
covered in this recipe).

So, let's start. We are going to explore window management and that's why I will be using WPF.
Start your Expression Blend 4 and then select New project... From the dialog that appears
selectWPF and then WPF Application, make sure that Language is set to C# and Version is
4.0. At the end hit OK.

Layouts and General Content Organization

28

Title bar controls and window borders - How to do it...
After your new WPF project has been created, you should notice under the Objects and
Timeline pane that the Window and LayoutRoot grid controls are visible.

1. Before doing anything, hit F5 and your application will start. Your window will look
like this:

You will see the icon, title, minimize, maximize, and close buttons. If you click on
the icon, the system menu will appear. Positioning the mouse cursor on the window
borders will allow you to resize the window.

2. Click on Window | Properties and locate the Common Properties section.

Changing the icon: By changing the Icon property, you can change the look of the
window icon. You can use a number of picture formats—ICO, PNG, BMP, JPG, TIFF, and
GIF. Feel free to choose any picture that is available to you for testing purposes. The
selected picture will be automatically added to your project.

Setting the ResizeMode: WPF supports several resize modes and you can select
them from the ResizeMode drop-down list. You can pick anything between NoResize,
CanMinimize, CanResize (which is the default choice), and CanResizeWithGrip.
Select CanMinimize.

3. The ShowInTaskbar property enables you to choose whether your window will appear
on the Windows taskbar. As in this case our window is the primary window, we will
want it to appear on the taskbar so leave the ShowInTaskbar property checked.

4. By setting the Title property, you can set your window title. Set the Title property to
Our Main Window.

Chapter 1

29

5. Now locate the Appearance section and WindowStyle property. From the drop-
down list, you can select one of the following options: None, SingleBorderWindow,
ThreeDBorderWindow, and ToolWindow. Select SingleBorderWindow, which is the
default choice.

6. Hit F5 now and your window will appear. It should resemble the following screenshot:

You can see that the icon, title, and control buttons have been affected. We decided
to set the ResizeMode property to CanMinimize and users now can minimize the
window, but there is no ability to change its size (positioning the mouse cursor over
the borders does not enable us to resize it) or maximize it (the Maximize button is
disabled). And as you have enabled the ability to display window in the taskbar, you
can easily locate it there (like it is the case with most other Windows applications).

Window sizes and states - How to do it...
In this recipe we will deal with window sizes and different states.

1. With your window selected (under Objects and Timeline pane), go to Properties and
locate the Layout section and Height and Width properties.

2. Set the Width to 250 and Height to 480. Values are in pixels and they will define the
size of your window during the runtime.

3. Now, click on the little arrow pointing downwards (Show advanced properties) and
some more properties under the Layout section will be exposed. Locate MinWidth,
MinHeight, MaxWidth, and MaxHeight. You can enter your values here and limit the
window's maximum and minimum values for both height and width. By default, all
minimum values are set to 0, and all maximum values are set to infinity. For the test,
set MinWidth and MinHeight both to 200.

Layouts and General Content Organization

30

4. Now go to the Common Properties section and set the ResizeMode to
CanResizeWithGrip. We want to test the MinWidth and MinHeight effects
but in order to do that we have to set ResizeMode to either CanResize or
CanResizeWithGrip.

5. Hit F5 now to test your application. You will notice the resize grip in the lower-right
corner. Try sizing your window; you will notice that you cannot resize it to be smaller
than 200 by 200 pixels.

6. Close the window and return to Blend.

7. Under Common Properties, locate the WindowState property. Click on the drop-
down list and you will see following choices: Normal, Minimized, and Maximized.
Select Maximized and hit F5 to start your application.

8. Your application will now start Maximized. If you click on Restore Down, it will
be restored to the dimensions you have previously set for its Height and Width
properties.

Window positioning - How to do it...
Let's investigate the window positioning options now. As I am going to continue this recipe
from the previous one, I will just go to the WindowState property and set it back to Normal
before I do anything else.

1. Okay, now we are ready to continue. With your window selected, go to the Layout
section and locate the Left and Top properties. Set Left to 100 and Top to 150. Now
when you press F5, your application will start and your window will be positioned 100
pixels from the left and 150 pixels from the top.

Chapter 1

31

2. Close your application and return to Blend. Now under Common Properties, locate
WindowStartupLocation. The drop-down list offers you several choices—Manual,
CenterScreen, and CenterOwner. Select CenterScreen and hit F5.

Layouts and General Content Organization

32

3. In this case, your application will be automatically centered on your screen and
the Left and Top properties that you have set before will be just ignored giving an
advantage to the CenterScreen choice set for the WindowStartupLocation property.

Title bar controls and window borders- How it works...
Typical title bar controls are icon, title, and minimize, maximize, and close buttons. Expression
Blend allows you to set and manipulate all of them by changing the number of properties
described in this recipe.

While Icon and Title and really simple and understandable, let me invest some time and
explain the different ResizeMode and WindowStyle properties.

ResizeMode
ResizeMode is a property that is used to describe window behaviors and abilities when
resizing is in question. You can control how and if, at all, a user can resize your window. Your
choice is reflected in different combinations of Minimize, Maximize, and Close buttons as
well as on the ability to resize window by clicking and dragging its borders.

ResizeMode can be set to one of the following values: NoResize, CanMinimize, CanResize,
and CanResizeWithGrip.

Let me describe them briefly.

 f NoResize will render your window as non-resizable and only a Close button will be
presented in the title bar, allowing users to only close the current window. Positioning
the mouse cursor over borders will not allow for any resizing.

 f CanMinimize is the choice that we have taken in our recipe. With this choice, a
window can be closed, minimized, and then restored after previous operations.
Though both the Minimize and Maximize buttons are shown, the Maximize button is
disabled so the user can click only on the Minimize or Close buttons to terminate the
window. There is no option to resize the window.

 f CanResize is the default choice. All buttons (Minimize, Maximize, and Close) are
present and enabled. Users are able to resize a window by positioning the mouse
cursor over its borders—it is the most flexible option available.

 f CanResizeWithGrip allows for the same interaction as CanResize with the addition
of the resize grip that appears in the bottom-right corner of the window.

WindowStyle
WindowStyle is a property in charge of the window's border appearance. There are four
different possible styles at your disposal: None, SingleBorderWindow, ThreeDBorderWindow,
and ToolWindow.

Chapter 1

33

Let's describe them in more detail:

 f None, as its name suggests, shows no title bar and border. All you can see is a simple
client area.

 f SingleBorderWindow is the default choice: it shows a window with its standard
controls and has a simple, single border.

 f ThreeDBorderWindow is same as SingleBorderWindow but with a pseudo 3D border
and it is much heavier in its appearance, as you can see.

Layouts and General Content Organization

34

 f ToolWindow is a specific window type—a thinner border and a title bar with only
a Close button available. However, it is resizable. It is often used as a secondary
window for applications with a number of tools and options exposed in them (such as
palettes and tools in Paint.NET).

Window sizes and states - How it works...
Blend allows for a really great number of options related to window sizes and their
management.

The easiest and simplest way to set up your window's size is to set its Height and Width
properties. However, you can use even more advanced properties such as MinWidth,
MinHeight, MaxWidth, and MaxHeight. You can change those properties and limit the
window's maximum and minimum values for both height and width. By default, all minimum
values are set to 0, and all max values are set to infinity.

WindowState
By setting the WindowState property, you can control the appearance of the window in one
of the three possible states: normal, minimized, and maximized.

 f Normal state is the default state. In this state a window can be moved and resized,
if it is resizable.

 f Minimized state means that the window is collapsed to its taskbar button (in the
default case, when ShowInTaskbar is set to True). If it is set to False, the window will
collapse to its minimum possible size and place itself in the bottom-left corner of the
desktop. It cannot be resized by using a resize grip or by dragging the border although
it can be dragged around your desktop.

 f Maximized state means that the window will be expanded to the maximum size it
can take. It cannot be resized by using a resize grip or by dragging the border.

Chapter 1

35

Window positioning - How it works...
There are two main ways to go about window positioning. The first one includes setting the
Left and Top property, which enables you to precisely position your window on the screen,
while the other approach requires setting the WindowStartupLocation property.

WindowStartupLocation
The WindowStartupLocation property handles the initial location of your window. Every
window's position can be described with the Left and Top property relative to desktop. You
can also use one of the available options for this property: Manual (default), CenterScreen,
and CenterOwner.

 f Manual startup location means that the window will be displayed based on Left and
Top property values. In case they have been omitted, the underlying operating system
will position the window on a specific location.

 f CenterScreen will position the window exactly at the center of the screen on which
it was opened. It will ignore Left and Top properties in case they have been set
previously.

 f CenterOwner works in a manner similar to CenterScreen but instead of positioning
the window on the center of the screen, it will consider the center of the window that
opened it as its startup location.

There's more...
This section will show you some more ideas and approaches that you should consider and
take into account while designing and using windows as objects in your solutions.

What is the minimum screen resolution you should be targeting?
This is one of the most challenging questions presented in this book, though it seems to
be very simple. Today, on the market, you can find a huge variety of different monitors and
supported resolutions—from small netbooks to huge, widescreen monitors. Obviously, there is
not a single "works for all" resolution. However, when you are designing your application, you
must answer this question.

At the time of writing, the minimum supported resolution for Windows OS is 800×600 pixels,
though I can't really remember when was the last time I saw some desktop or notebook
computer running on this resolution (netbooks might be an exception, for sure).

Taking all this into account, I would strongly suggest that all your fixed size windows do not
exceed the 800×600 dimension and the rest of the windows, ones that can be resized, should
be optimized for 1024×768 resolution. It is your responsibility to invest time and explore how
resizable windows and their content (UI controls) will behave in 800×600 resolution.

www.allitebooks.com

http://www.allitebooks.org

Layouts and General Content Organization

36

Good designers will try to accommodate their application's design and layout for different
resolutions so that in case of a higher resolution, your users can benefit from a bigger
workspace. As always, it is a question of the right balance and compromise between
possibilities, wishes, and limitations.

If you are one of the rare guys around who knows that your application will be used on
exclusively higher resolutions, then you have a nice challenge of creating an application that
can take the full advantage of additional screen space.

General window usage guidelines
As I've mentioned in previous paragraphs, all your fixed size windows should not exceed
the 800×600 dimension and the rest of the windows, ones than can be resized, should
be optimized for 1024×768 resolution. If your application has some critical parts and it is
supposed to be used in a safe mode environment, you might need to lower the bar and design
for 640×480 resolution, but honestly, such cases are really rare, and practically non-existent
in typical consumer applications.

When you are testing your windows, use the following table:

DPI / Percentage Resolution Performs well?
96dpi – 100% 800 × 600
120dpi – 125% 1024 × 768
144dpi – 150% 1200 × 900

Under the Performs well? column, insert Yes or No based on the following criteria:

 f Are there any layout problems?

 f Do you notice control clipping, text readability problems, or anything related?

 f How do icons and bitmaps perform? Are they stretched? What about alignments?

 f Can users access each and every command in all tested cases?

It is better to use larger initial window sizes and use the space effectively (your users will
appreciate that). It's a much better solution than trying to fit everything into a small space.

Don't go over 66 characters for text elements.

Windows User Experience Interaction Guidelines suggest that "centering" the window means
biasing vertical placement slightly towards the top of the monitor, and not placing the window
exactly in the middle of the screen. The reason for this is that our eyes are naturally more
biased towards the top of the screen. However, that difference is quite small—you can go for
45% from the top of the monitor or owner window and 55% from the bottom.

Chapter 1

37

If the window that you are launching is contextual (remember, I've explained this term at the
very beginning of this recipe), then you can go and display it near the object (button, let's say)
that it was launched from. Take into account that you should place it out of the way so that the
source object is not obscured; if possible, position it offset down and to the right.

If your window is being launched from the notification area or system tray, you should display
it close to that area too.

If your window can be described as a process dialog (one that contains a progress bar—for
example, file copy dialog), then you should place it in the lower-right corner of the active
monitor, but not as close to the notification area as was the case with the windows launched
from that area.

If your window is an owned (secondary) window, then you should initially display it centered on
the top of the owner window (you can use the WindowStartupLocation property and set it to
CenterOwner, or you can use the 55% : 45% rule for centering the window (as described in an
earlier guideline).

See also
 f Journal navigation

 f Fluid versus fixed layouts

Wizards
If implemented correctly, wizards can really do some magic for your users and make them
happier and satisfied. This recipe goes after desktop-based wizards. I will show you how to
implement them using the WPF and provide you with some Microsoft Aero Wizard guidelines.

As was the case with the navigation pane pattern, a large number of different vendors
are able to provide you with pre-built, fully capable desktop-based wizard frameworks
implementing a number of rich functionalities.

I will show you how to build a simple wizard but you are encouraged to explore third-party
options. However, the guidelines and suggestions I will be giving here are applicable to those
third-party products, so do yourself and your users a favor and try to take the most out of
these suggestions.

Getting ready
As I've already mentioned, we are going to build a desktop-based wizard in this recipe, and
that's why I will be using WPF. Start your Expression Blend 4 and then select New project.
From the dialog that appears select WPF and then WPF Application. Make sure that Language
is set to C# and Version is 4.0. At the end hit OK.

Layouts and General Content Organization

38

How to do it...
There are several page types that can be used in wizards. They are:

 f Getting started page (optional)

 f Choice page

 f Commit page

 f Progress page (optional)

 f Follow-up page (optional)

Before you start building and implementing your wizard system, you should have a clear
understanding of the task flow and user's actions. In this recipe, I will just mimic some
typical wizard behavior but be sure to read the How to use and implement wizards section
in this chapter.

OK, let's start with our building process—in this recipe, I will build a typical choice page.
After your new WPF project has been created you should notice that under the Objects and
Timeline pane, Window and LayoutRoot grid controls are visible.

1. Click on the window and then under the Properties pane, set its Height to 429 and
Width to 549 pixels. Set its Title to Add Printer. Also under the Common Properties
section, locate the ResizeMode property and set it to NoResize.

2. From the Asset Library, draw a Border control on top of LayoutRoot. Click on Border
control and set the following under the Properties pane:

 � Set the Width to Auto, Height to 40

 � Set all margin values to 0

 � Set HorizontalAlignment to Stretch

 � Set VerticalAlignment to Bottom

3. Under the Appearance section, set the BorderThickness value for Top to be 1.

4. Under the Brushes section set the following colors:

 � For Background: Solid color brush—RGB (240,240,240) or HEX
(#FFF0F0F0)

 � For BorderBrush: Solid color brush—RGB (223,223,223) or HEX
(#FFDFDFDF)

5. If you now hit F5 and start your application, you will notice that Border control is
docked to bottom, looks gray with a bit darker top border. This is the area that we will
refer to as to the command area.

Chapter 1

39

6. In the command area, we put at least one Commit button to commit to the task or
proceed to the next step. We will add two buttons now—Next and Cancel. But as
Border control can have only one child control, we need to add a Grid control and
then draw our buttons on top of that Grid control.

7. With the Border control selected, from toolbox or Asset Library draw a grid control
on top of Border controls itself. Under the Properties pane, set the grid's height
and width to Auto, and all margin values to 0. That will stretch the grid and make it
completely fill in the available space within Border control.

8. As grid is an extremely versatile and flexible control, we can now add our buttons on
it. Select the grid and draw two buttons on it.

9. Call the first button btnNext and second one btnCancel. You can change their names
by selecting them and then under the Properties pane (at the very top), you will find
the Name property.

10. Select btnCancel, find the Content property, and set it to Cancel. Set Width to
65 and Height to 23. Choose Right as the HorizontalAlignment and Top for
VerticalAlignment. For margin values, use 0 for Left and Bottom, 10 for Right, and
8 for Top; this should position our btnCancel nicely.

11. Now, let's change some properties for btnNext. Set the Content property to Next.
Also, set the Width to 65 and Height to 23. Choose Right as HorizontalAlignment,
and Top for VerticalAlignment. For margin values, use 0 for Left and Bottom, 85
for Right, and 8 for Top. And under the Common Properties section, locate the
IsEnabled property and uncheck it.

12. Press F5 now and your wizard should look close to the one in the following
screenshot:

Layouts and General Content Organization

40

13. So far so good. It's good to point out at this stage that you will have to use code to
manipulate when the Next and other buttons are enabled, which will depend on the
current progress and the context of your wizard.

14. Now we need to add the main instructions. It's basically a text label that summarizes
what to do in the current wizard page. We can use Label as a control for this. So,
draw a label (you can get it from Asset Library or toolbox) on top of the LayoutRoot
and set the following properties:

 � Set Name to lblMainInstruction

 � Set Foreground color to RGB (0, 51,153) or HEX (#00003399)

 � Set both Width and Height to Auto

 � Set HorizontalAlignment to Left, and VerticalAlignment to Top

 � For margin values, set Left to 32 and Top to 14

 � Finally, set Choose a local or network printer for the Content
property

15. These settings will always be the same for the main instructions for each and every
wizard step. Only exception is the Content property, which must change appropriately.

16. As you remember, the page that we are currently working on is called "choice page".
We have a main instruction, a command area, and now we will design the content
area that hosts other controls and objects.

17. We will use regular buttons for this part although for the wizard pattern you should
use command links.

18. We will use two buttons that will provide users with choices.

19. Draw two buttons; name the first button btnLocalPrinter and the second one
btnNetworkPrinter.

20. Let's set the following properties for btnLocalPrinter:

 � Under Brushes section set Background to No brush

 � Set Height to 58

 � Set HorizontalAlignment to Stretch and VerticalAlignment to Top

 � For margin values, set 50 for Left, 10 for Right, and 55 for Top

 � Set HorizontalContentAlignment to Left and
VerticalContentAlignment to Top (You might need to click on Show
advanced properties to display these properties.)

 � Under Padding, set Left to 20, Right and Bottom to 1, and Top to 6.

 � Set Content to Add a local printer.

Chapter 1

41

21. Now set the following properties for btnNetworkPrinter:

 � Under the Brushes section set Background to No brush

 � Set Height to 58

 � Set HorizontalAlignment to Stretch and VerticalAlignment to Top

 � For margin values, set 50 for Left, 10 for Right, and 145 for Top

 � Set HorizontalContentAlignment to Left and
VerticalContentAlignment to Top (You might need to click on Show
advanced properties to display these properties.)

 � Under Padding, set Left to 20, Right and Bottom to 1, and Top to 6.

 � Set Content to Add a network, wireless or Bluetooth printer

This basically sets the stage for your further improvements and customizations. The next
steps are defining other page types and adding interaction logic between them. I will describe
those page types and typical considerations that you need to take into account and address
when designing and implementing your wizards.

How it works...
It is of utmost importance for you to have a clear understanding of your wizards' purpose and
flow. Don't go and start designing and implementing wizards before you have that. You need
to come up with a logical flow, specific page designs, and then start designing. However, the
page that you will be designing (in almost 100% of cases) will be a simple choice page. In the
last recipe, I've outlined the basic idea of how to design a page and now we will dig a bit into
some technical details.

First of all, we have set ResizeMode to NoResize in order to keep our windows' dimension
fixed (429 by 549 pixels, in our example). As a consequence, we get only a Close button on
our window. Guidelines do allow implementation of resizable windows for wizards but I am
generally opposed to that approach and I will explain the reason for this under the There's
more... section.

Okay, in the next step, we have used Border control for designing the command area of our
choice page. As border, as a control, can have only a single child element, we have added grid
as a child element of Border and then hosted Next and Cancel buttons within grid control
(which can accept as many child elements as you need).

You must pay special attention when it comes to handling Next, Cancel, Apply, and other
buttons or commands that will appear in this area; this includes taking care if they are
enabled, disabled, visible at all times, and so on. I am outlining those guidelines later on, so
be sure to check them out.

Layouts and General Content Organization

42

After we have designed the command area, we are ready for setting up the main instruction—
the text label that is used for summarization of what to do in the current wizard window. It is
really important to make it as understandable as possible so that users can understand what
is being done in this specific window just by reading the main instruction.

Next step was designing the content area—the main area of your wizard page where you
usually place commands and where the most attention of your users will be focused on. We
have added two "command links". (I am putting them under quotes for a reason: they are
not real action or command links, what I have done basically is just changed some of the
properties of regular buttons.

There's more...
As you've learned so far, wizards can be fairly complex and incorporate numerous page types
given wizard's purpose. In this section, you will gain much more insights about those types and
when and how to use and implement them. Again, this is WPF recipe but the general ideas, user
experience considerations and design itself can be easily applied to Silverlight itself.

Brief overview of different wizard page types
In this recipe, I've guided you through the process of designing the very simple, even incomplete,
choice page as a part of the wizard. According to the general UI guidelines, all wizard pages
have a title bar, main instruction label(s), a content area, and a command area. In the previous
recipe, we have designed all parts of our choice page except for the title bar. The fact is that the
title bar for the so-called "Aero Wizards" looks pretty different from the one we have defined—it
comes with an extended glass surface with the name of the wizard, the Back button in the
upper-left corner, and a Close button with optional Minimize or Maximize buttons.

Anyway, let's go through the typical wizard page types.

Chapter 1

43

There are several typical wizard page types:

 f Getting started page (optional)

 f Choice page

 f Commit page

 f Progress page and (optional)

 f Follow-up page (optional)

Getting started page
It is optional and its purpose is to outline the prerequisites or to explain the purpose of the
wizard. But the general suggestion is not to use this page if all of the necessary information
can be shown on the first choice page.

Layouts and General Content Organization

44

Choice page(s)
Wizards usually have more than one choice page; they are used with the purpose of gathering
information from users in order to complete a specific task. A general suggestion is to use
wizards if you know that users will be presented with more than two choice pages. If, however,
you are dealing with one or two choice pages, you should consider using the regular dialogs
and not the wizard because it is a pretty heavy UI pattern.

Commit page
This type of page looks quite similar to the regular choice page but there is one significant
difference: after a user commits an action, there is no going back; in other words, action
cannot be undone. That also means that the commit page does not have a Next button; it
has buttons that clearly state commands such as Connect or so.

Chapter 1

45

There is no common agreement as to whether there should be only one or more commit
pages in a single wizard. However, personally I am a strong supporter of the single commit
page idea.

Progress page
If during the wizard there is going to be an operation that will take four or more seconds, you
should use the "progress page" type. It is optional, in the sense that if your operations will be
shorter than four seconds, you are fine to drop the progress page.

They are, in most cases, called after the Commit page and with a progress bar animation
(or some other operation's progress indicator such as custom animation); they are good
indicators of the operation's progress for the end users.

Layouts and General Content Organization

46

When an operation is done, the wizard should advance automatically to the next wizard page.

Follow-up page
This type of page is optional and is being used to provide users with final results or outcomes.

I am not a big fan of "Thank you" pages. Stick to the task and get to it; your users will
appreciate that much more than Thank you for installing this device, especially if it has
taken them longer and you are just prolonging that with a useless "Thank you" page.

Chapter 1

47

To design resizable wizards or not
Although Microsoft says that usage of resizable wizards is fine under Aero Wizard
specifications and guidelines, I would advise you to be careful when you decide to go for
resizable wizards.

Let me make it clear that I am not completely against it but I would suggest and play safe and
use ResizeMode = NoResize.

I guess that my strongest argument for this would be having buttons in the command area
always positioned in the same location. Imagine the scenario where you can go through your
wizard just by clicking on Next several times. It is much faster if the Next button is in that case
positioned at the same location. Of course, in this case, I am pointing out the problem where
you are changing your wizard's dimension on a page-by-page basis. However, having wizards
resizable so that they can leverage extra space available might be good idea.

Again, I'd say play it safe; optimize them for minimum resolution supported under Windows
Vista or Windows 7 (800 x 600), and don't go for some wild resizing behaviors.

When to use wizards
I bet you all remember older wizards; you can find them if you are still using Windows XP
or with some third-party applications that are just breaking all known UI or UX guidelines
for wizard applications under Windows Vista or Windows 7. Older wizards were based on a
standard called Wizard97 and that "97" is not there for no reason, so we should think about
the year we are currently in.

Anyways, new wizard standards are in place and some of the changes include more
flexible page layout and text formatting, and removal of the really unnecessary Welcome
or Congratulations or Finish pages. (I bet those are not being missed by anyone.)

Some other pillars are the prominent main instructions with the great idea of unifying the
earlier heading and subheading. Also, implementation of command links is a nice way of
enabling users to have immediate and generally more expressive choices, thus eliminating the
usage of several UI controls such as radio buttons followed with a Next button.

Navigation within wizards is more aligned with the one that is usually found on the Web and
within Windows Explorer. In our recipe, we have not implemented that kind of navigation but
you can read about it in the Journal navigation recipe of this chapter.

You might have noticed that the Back button is not present in the command area, rather it
is now located in its new standard location— upper-left corner. I've had several opportunities
listening to people saying that in the beginning, this was a bit distracting to them but now they
actually see the point; more focus is being given to commit choices.

Layouts and General Content Organization

48

Guidelines
 f Don't go for wizards like there is no tomorrow. Wizards are considered as heavy

user interface elements and should be used sparingly. They are used for multi-step
tasks, especially if they are not frequently performed. You might consider some other
alternatives to wizards—dialogs, task panes, and others.

 f The Next button is used only when advancing to the next page but without
commitment, which means that the Back button is always available and presented
after the Next button. According to Microsoft's guidelines, advancing to the next
wizard page is considered a commitment when its effect cannot be undone by
clicking on Back or Cancel buttons. Sounds quite logical, doesn't it?

 f Commit buttons are as specific as possible; for example, you should use captions
such as Print or Connect instead of Finish or Done. Generic labels such as Next
should not be used because they are suggesting the next step and not a commit
command. However, there are two exceptions: Finish can be used when there is a
collection of settings to be applied and if specific responses (Get, Save, and so on)
are generic. The Commit button should always start with a verb, never a noun.

 f Command links are here for choices, not commitments. They are unifying the
collection of radio buttons and the Next button. So when you are using command
links, hide or disable the Next button but leave the Cancel button. This was exactly
the case in our recipe where we have used two command links.

 f Wizard is a tricky term; never use "wizard" in wizard names. But it is fine to use
"wizard" when referring to it as a specific UI element.

 f User choices must be preserved. This means that when users make a specific
selection, then clicks Next, and after that Back, previous selections should be
preserved.

 f Forget about "welcome", "get started", and similar types of pages. Make the first page
fully functional whenever possible. There are some exceptions but resort to them
sparingly. You can use "getting started" pages only in situations where there are some
prerequisites that are necessary for successful completion of the wizard, when the
purpose of the wizard may not be clearly understandable from the first choice page,
and you don't have enough space on first choice page for additional explanation. In
any of these exceptions, the main instruction text should be Before you begin: and
never some version of welcome, let's get started, or anything like that.

 f Forget about "Thank you" or "Congratulations" pages, too. Wizard's final results should
be clear and apparent enough for the users that you can just close the wizard after
the final Commit button. You can resort to "follow-up" pages if you think that there
are some usual follow-up tasks that users are likely to do as a follow-up. However, in
that case, avoid using familiar, simple, everyday tasks. Follow-up pages are necessary
after progress pages to indicate task completion. But again, if the task is long running
(I'd say longer than five minutes) and can be performed in the background, then just
close the wizard on the "commit" page and resort to notifications (such as balloons)
to give a final feedback to the end users.

Chapter 1

49

 f Commit pages are used to make it clear when users are committing to the task. As
a general rule, the commit page is the last page of choices and it does not contain
the Next button. Rather, the Next button is relabeled in a way that is described in the
guideline about commit buttons (mentioned above). Sometimes, if the wizard was used
for a really risky task or there is a significant doubt that the users have understood their
selections, you might want to use a summary page and outline all of the selections and
choices of the users, so that they can review them and act upon them.

See also
 f Action or command links

 f Journal navigation

Progressive disclosure—showing
additional controls on demand

In some cases, your user interface needs to host a large number of different controls and
present them to the end user. Instead of showing all the available controls at the same
moment, you can take an approach where you will progressively disclose more controls on
user's demand. This can save you some valuable space and, at the same, increase a user's
productivity.

Now I will show you how to implement this UI pattern in a simple WPF application. As always,
the same methods, ideas, and principles can be applied to your Silverlight application as well.

Getting ready
Start your Expression Blend 4 and then select New project... From the dialog that appears
select WPF and then WPF Application. Make sure that Language is set to C# and Version is
4.0. At the end hit OK.

How to do it...
After your new WPF project has been created you should notice that under Objects and
Timeline pane, Window and LayoutRoot grid controls are visible.

1. Click on Window and under the Properties pane change the following things:

 � Under the Layout section, set Width to 350 and Height to 240

 � Under Common properties, set Title to Files Search Sample

We will create a simple file search application but without real functionality.

Layouts and General Content Organization

50

2. On the toolbox, click on Asset Library | Label. Draw a label on your application. With
the Label control selected, under the Properties pane locate the Content property (it
is under the Common properties section) and set its content to Enter file name:. You
can set its height and width to Auto (under the Layout section).

3. Now add the TextBox control in the same way and position it under the previously
added Enter file name: label. Go to the Text property under Common properties and
set it to none.

4. Add the Button control, position it right next to the TextBox control, and set its
Content property to Search.

5. Now you will go and add an Expander control. Select it from Asset Library, draw
it, and position it below the TextBox control on your form. Set its height and width
to Auto.

6. In the Objects and Timeline pane, click on the Expander control so that you can
access the Grid control contained within it. Double-click on the Grid control to make
it active. We will add our additional controls into this Grid control. Under the Layout
section, set Height to 80.

7. Once again, go to Asset Library and select the CheckBox control. Draw it onto the
grid surface (be sure to make it this way, CheckBox must be the child element of the
Grid control contained within Expander control). Repeat the procedure and add one
more CheckBox control and position it below the previous CheckBox control.

8. Select the first CheckBox control and change its Content property to Search
archived files, and set the Content property of the second CheckBox control to
Search files in Recycle Bin.

9. Ensure that the IsExpanded property of the Expander is set to false (unchecked)
under the Common Properties section. We want to keep Expander collapsed. Also,
change Expander Header content to Show advanced options.

10. Hit F5. When your application starts, click on Show advanced options and your
application should look like the following screenshot:

Chapter 1

51

How it works...
Our sample application outlines the basic idea of progressive disclosure. We have created a
simple file search interface where a user enters the filename and clicks on Search to search
for files. That is the basic use case and it is available right after the user starts the application.

By clicking on Show advanced options, users are presented with two more options that can
refine their search results. I have assumed that majority of users will want to use basic search
options and just smaller number of them would be interested in searching for archived files or
files in the Recycle Bin.

In this example, a progressive disclosure pattern has been implemented using the Expander
control. The Expander control consists of two major parts—header and grid. The Header part
contains a chevron and label (we changed its content to Show advanced options). The Grid
part can be considered as a container in which you should put all of the controls that you
want to disclose progressively to the end user. In this example, we have added two CheckBox
controls with options to refine our search—they are not visible right away and therefore, they
are not adding any visual clutter and distraction to users. If users do not want to use them,
they can easily collapse the Expander control and hide those options.

There's more...
The first part of this recipe has introduced to the basic idea of progressive disclosure. What
follows are more details and design and user experience considerations you should take into
account when designing and implementing this pattern in your application.

Changing the expander control's header label
For the users to have a better understanding of the actions being performed and the changes
being made when they click on chevron, it is highly recommended to change label from Show
advanced options before clicking on the chevron to Hide advanced options after the user has
clicked. Same goes for the other way around.

To achieve that, we need some code. As we have created our project as a WPF C# project, we
will obviously write our code in C#.

1. Under the Objects and Timeline pane, click on the Expander control. We will now
change its name so that we can access its properties through the code easily.

2. Under the Properties pane, type expOptions in the Name field.

Layouts and General Content Organization

52

3. We will want to execute different code when users collapse it and when it expands
our Expander control. To do that, we will define event handlers for the Collapsed and
Expanded events.

4. Click on the Events icon under the Properties pane and you will be presented with a
number of events. Let's add our event handlers for Collapsed and Expanded events.
To do that, you will just have to type in the name for those event handlers and once you
press the Enter key, Visual Studio will start and allow you to add code logic. You can
use expOptions_Collapsed and expOptions_Expanded as names for your events.

5. Add the following code:
private void expOptions_Collapsed(object sender,RoutedEventArgs e)
{
 this.expOptions.Header = "Show advanced options";
}

private void expOptions_Expanded(object sender, RoutedEventArgs e)
{
 this.expOptions.Header = "Hide advanced options";
}

Everything what we are doing here is changing the content within the header part of
our expOptions control.

6. Press F5 now and try clicking on the chevron and note how the label will change its
content, making it easy for users to understand what has happened and what will
their next action cause.

When to use progressive disclosure
Many developers tend to expose each and every command and feature that they have built
into their solution. Some even go as far as to argue that by doing that they will actually show
to the end user how powerful and feature-rich their application is. I'd be happy to say that this
story was just my exaggeration but I have witnessed such situations too many times. So, we
are facing a challenge on how to enable users to use our application and make it feature-rich,
but at the same time not to make it too cluttered.

Guess what—users will not judge your application's power by the number of buttons, icons,
and other UI elements that you have exposed to them. They will judge it, among other things,
by how easy it was for them to get to the most needed options really quickly. That will make
them feel that they are in control and will result in significant productivity gains.

Chapter 1

53

So, what to do?

The first step is to identify the commands and controls that your users will use in most cases.
Make a list of all use cases and assign a value to each of those use cases describing how likely
users are to use that very option. You must ensure that users should be able to perform about
70-80% of the use cases easily, without having to look for hidden options within your UI. Of
course, that percentage can scale depending on certain specifics, but practice has shown that
the aforementioned range works very well. Okay, now you have a list with controls and use cases
that your users will use in 70–80% of cases, and the rest will be used much less often. This is a
great input and you can use it from this point on to define the look and feel of your UI.

Add those most commonly used controls on your windows or pages.

Remember, these are the ones that will be used frequently by your users, so ensure that
they are visible and easily accessible. Now, create a separate section and add the rest of the
controls to that section. Hide it and make it hidden by default to your end users. But, be sure
to allow users to get to those options in a single click. You might consider using buttons with
captions such as More details... or even chevrons (>>) as a part of the button or other control
that is being used to show those hidden controls.

It is extremely important that users are able to hide and show sections with additional controls
with a single click. If you show additional controls by clicking on Show advanced options, then
be sure to enable users to get out from those advanced options by clicking on a button saying
something like Hide advanced options.

As I said earlier, controls that are being placed in this "hidden section" will be used rather
infrequently, but you must ensure that your users will be able to access them and leave
them easily.

If you are using chevrons instead of buttons (and that is what I do personally because I feel
that they are visually lighter than buttons, and besides that, buttons are usually associated
with launching other windows or executing commands), you must take care of rearranging
their "pointing direction" after a user clicks on them.

They should always point in the direction of the action being performed, which means the
following: if the chevron is pointing down, when the user clicks on it, additional commands
should appear below that chevron and now the chevron should point up.

Layouts and General Content Organization

54

That will always give a clear understanding to the user what will happen when they click on
the chevron. I strongly suggest that you use labels that will reinforce users' understanding of
the actions being performed.

Look Behavior when user clicks
Section will expand, hidden options will be shown, and
chevron will change its direction to up, and text will change to
something like Hide advanced options
Section will collapse hiding the previously exposed options and
chevron will change its direction to down, and text will change
to something like Show advanced options

See also
 f Responsive enabling

 f Contextual fade-in/-out

 f Progressive disclosure-showing additional controls on demand

Control docking with DockPanel
Windows Presentation Foundation comes with DockPanel—a really versatile control allowing
you to architect and create layout areas within which you can position and organize child
elements.

When building your user interface, often you will want to ensure that specific controls and
parts of your UI are always docked on the top, left, bottom, or right side. For example, the
command bar area is usually docked at the top and the status bar is usually docked at the
very bottom of your application.

A good practice is to use the DockPanel control as a root control and organize other panel
and layout types of controls within it. Of course, you can always think about employing some
different approaches and using controls such as Grid, but the DockPanel control brings you
docking capability right out of the box.

In this recipe, I will show you some basic principles that you should be aware of when thinking
about using the DockPanel control.

Getting ready
Start your Expression Blend 4 and then select New project... From the dialog that appears
select WPF and then WPF Application. Make sure that Language is set to C# and Version is
4.0. At the end hit OK.

Chapter 1

55

Apart from WPF, DockPanel is available as a Silverlight control as well. In
order to be able to use it, you need to have Silverlight Toolkit installed. The
introductory part of this book contains all the information you need to know
about how to obtain Silverlight Toolkits and use controls contained in it.

How to do it...
Once your new WPF project has been created you should notice that under the Objects and
Timeline pane, Window and LayoutRoot grid controls are visible.

1. Right-click on LayoutRoot and in the pop-up menu click on Change Layout Type |
DockPanel. This is the fastest way for us to use DockPanel as our root control. Of
course, another possibility is to click on Asset Library located on the toolbox and
then select and draw DockPanel as control.

2. Click on LayoutRoot to select it and under the Properties tab, within the Layout
section make sure that the LastChildFill property is set to false (unchecked).

Now, let's go and add several rectangles on our LayoutRoot so that we can
understand basic layout principles.

3. Select Rectangle from the toolbox and draw it onto your LayoutRoot. With the first
rectangle selected, under the Properties panel, locate the Layout section and from
the Dock drop-down list select Top. Set Width to Auto and Height to 55.

4. Now draw another rectangle. Instead of selecting and typing in values, we can set
the dock position in a different way. Select Rectangle and drag it towards the top.
You will notice a large four-way cursor showing you directions for possible docking
locations of your object. Dock this second Rectangle at the bottom.

Layouts and General Content Organization

56

5. Set the Width property to Auto and Height to 40.

6. Repeat this procedure for two more rectangles, but align them to the left and right
side respectively. Set Height to Auto for both of them. For the left docked rectangle
set the width to 200, and for the right docked rectangle, set the width to 170. Set
different fill colors for each rectangle so that they are easier to notice and recognize.

7. Press F5 and start your application. It should look similar to the one in the
following screenshot:

Now let's go one step further and add the Grid control to the central part of our
application. But now, we want our Grid control to completely fill in the available space
on the form, so that we can utilize it later; for example, when we decide to extend our
application.

8. From the toolbox, select and draw the Grid control on the LayoutRoot control. Under
Properties and under Brushes, select any color for its Background property. The
purpose of this color selection is only to make our Grid control a bit more distinctive.

9. Now select the LayoutRoot element (the easiest way to do this is to select it under
the Objects and Timeline panel just by clicking on it) and under the Properties pane,
locate a property called LastChildFill, and make sure it is checked.

Chapter 1

57

10. Select the newly added Grid control and set its Height and Width properties to Auto.

11. Press F5 and you should get a layout that looks close to the one in the following
screenshot:

Try resizing the form and you will notice that all our rectangles are keeping their
positions docked to defined sides, and the central part (Grid) is filling in all the available
space. I will explain this kind of behavior in more detail in the following paragraph.

How it works...
The first thing we did after starting a new project was change the layout type. The default
layout type is grid, but we wanted to use DockPanel so that we could explore its behavior.

DockPanel enables us to dock specific child elements. In our example, we have added several
rectangles and set their Dock property. It was obvious that we could dock our objects in two
different ways—by manually setting the Dock property within the Properties pane or by simply
dragging child objects over a large four-way cursor.

We have set specific heights and widths for child objects, but please take into account that in
order to achieve that your docked control will scale appropriately, you need to set Auto for its
Height or Width properties, depending on their docking direction.

At the very beginning of our recipe, we have set the LastChildFill property to false (unchecked
it). the idea behind the LastChildFill property is to enable the last child element added to
DockPanel to fill the remaining space. We achieved exactly that when we added Grid control
and set the LastChildFill to true (checked it).

Layouts and General Content Organization

58

So just to summarize: DockPanel arranges its child elements so that they fill a particular edge
of the panel. What happens if you set up multiple child elements to have the same docking
direction? They will simply stack up against that edge in order.

There's more...

Change the docking order of child elements
Once you have added child elements to your DockPanel you might want to change their order.
That procedure is fairly simple.

1. Make your DockPanel active; the easiest way to achieve that is by double-clicking on
it or selecting it under Objects and Timeline.

2. Click the child element and simply drag-and-drop it on the desired position (you are
not dragging-and-dropping child elements on the artboard). Now you are dealing
with them within the Objects and Timeline pane. Note that by doing this you are
not changing the docking orientation; you are changing only the z-order. It is also
sometimes called stack order.

Try experimenting with this and you will notice that the actual docking order is pretty important
when it comes to the overall UI layout. The reason for that is that when elements fill up the
panel (and that usually happens when we set their heights and widths to Auto), some parts
might be cut off depending on the screen and child element size.

Change the orientation of a dock panel
Sometimes you will face situations where you want to change the docking orientation for
specific child elements after you have already set them. You can do that by following these
instructions:

1. Make your DockPanel active: the easiest way to achieve that is by double-clicking it
or selecting it under Objects and Timeline.

2. Click the child element and simply drag-and-drop it on the desired docking position
on your artboard. Once you start dragging elements you will notice a large four-way
cursor showing you docking directions. Now you only need to drag the element over
the direction arrow you want. You will notice that the direction arrow that you select is
highlighted indicating the docking direction.

 � Another way of changing the docking orientation is to select child
element and under the Layout section in the Properties pane,
select Top, Right, Bottom, or Left from the Dock drop-down list.

Chapter 1

59

Personal view
I will say it bluntly—I am not a big fan of the DockPanel control. Although it is a great and
simple-to-use control that enables you to create a basic layout for your UI, I will always prefer
the Grid control as my control of choice when it comes to layouts. The Grid control is slightly
more complicated, but it is more flexible as well. Anything you can do with DockPanel can be
done with the Grid control, and then some.

Of course, DockPanel gets its credit when we talk about simplicity, and really, if your basic
UI structure is really simple and you need to get things done in a fast and simple manner,
consider using the DockPanel instead of Grid. Use Grid and other controls within DockPanel,
work on their docking positions, and you will probably be able to create the UI you were
looking for. If that doesn't work, you can always rely on Grid—the most powerful of all WPF or
Silverlight layout controls.

See also
 f Fluid versus fixed layouts

Journal navigation
Journal navigation enables you to utilize "back and forward" metaphors usually seen in
web browsers even for your desktop (WPF) applications. As humans, we are often found in
positions where we are thinking in a linear way and we tend to associate web page navigation
and other UI related concepts with that.

As web browsers do support this kind of navigation by default, more challenging is to achieve
this kind of behavior for desktop (WPF) applications. In this recipe, I will show you how to
utilize this model and enable users to go back and forth in their navigation history within your
WPF application.

Getting ready
Start your Expression Blend 4 and then select New project... From the dialog that appears
select WPF and then WPF Application. Make sure that Language is set to C# and Version is
4.0. At the end hit OK..

How to do it...
When you create your new WPF project in Expression Blend, you are presented with the
Window object. In order to implement journal navigation pattern, you need to use Page.

For this example, we will add two pages and show how to navigate between them and retain
the navigation history.

Layouts and General Content Organization

60

1. Click on the Project pane and then right-click on the name of your project. From the
drop-down menu choose Add New Item....

2. A dialog box will appear showing you your possible choices. Select Page. Leave
the name as it is (Page1.xaml) and be sure to have the Include code file option
checked.

3. Repeat the procedure and in the same way, add Page2.xaml to your project. Now
your project tree should look like the one in the following screenshot:

4. Now right-click on Page1.xaml and from the drop-down menu, select Startup.
This will make Page1.xaml a startup object—the first one to appear when you
start your application.

5. If you now hit F5, you should be able to see your Page1.xaml completely blank, but
notice the navigation chrome with back and forward navigation buttons (sometimes
also called "travel buttons") added automagically. It is not functional at this moment,
but very soon you will be able to use it.

Chapter 1

61

6. Let's change some properties and make our pages look a bit more distinctive so that
we can recognize them easily later.

7. We will start with Page1. Under the Objects and Timeline pane, select the Page
object. On the Properties pane, locate Common Properties, find the Title and
WindowTitle properties, and set them both to First page.

8. Repeat the procedure for Page2, but now set the Title and WindowTitle properties to
Second page. (I will explain the difference between Title and WindowTitle properties
later on.)

9. Now, let's add a button on Page1. We will use that button for navigating from Page1
to Page2. To add a button, locate it on the toolbox or add it from Asset Library and
draw it on your Page1.

10. On the top of the Properties pane set its Name property to btnNavigate. Also, find
the Common Properties section and change the Content property to Navigate to
other page.

11. Now, we need to add some code that will enable us to really navigate to the second
page when a user clicks on this button. Basically, we will define an event handler for
the Click event.

12. Under the Properties pane, locate the Events icon and click on it.

13. Under Click, type in btnNavigate_Clicked—the name of your event handler.
Hit Enter and Visual Studio will enable you to type in the code needed.

14. Add the following code in the event handler:
private void btnNavigate_Clicked(object sender, RoutedEventArgs e)
{ ((NavigationWindow)(Application.Current.MainWindow)).Navigate(
 new System.Uri("Page2.xaml", UriKind.RelativeOrAbsolute));
}

15. And add the following line at the very beginning of the code:
using System.Windows.Navigation;

16. Note that Page2.xaml is the file name we are navigating to. Now hit F5 and when the
application starts, click on Navigate to other page.

Layouts and General Content Organization

62

17. Note the changes in the navigation chrome. Explore it by clicking on the back and
forward buttons or drop-down menu.

How it works...
We have added two Page items to our project: Page1.xaml and Page2.xaml. The basic idea
of this recipe was to show you how to navigate from Page1.xaml to Page2.xaml.

By setting Page1.xaml as the startup page, we have ensured that it will be the first page to be
shown when the application starts.

We have added a button and called it btnNavigate and associated the Click event handler.

There is only a single line of code that enables navigation between pages:

((NavigationWindow)(Application.Current.MainWindow)).Navigate(
 new System.Uri("Page2.xaml", UriKind.RelativeOrAbsolute));

However, first we need to add a simple using directive:

using System.Windows.Navigation;

The great thing about implementation of the journal navigation pattern is that the navigation
chrome is automatically being updated. When I say that I am thinking about the fact that the
back and forward button and the drop-down menu are being updated based on the current
navigation context. This pattern is often seen in applications such as web browsers, Windows
Explorer in Windows Vista and Windows 7, or in Microsoft Dynamics NAV and AX line of products.

Chapter 1

63

There's more...
Journal Navigation pattern is very useful. Sometimes, however, you will want to remove
the navigation chrome, or you might be wondering what's the difference between Title and
WindowTitle properties. The following section will explain you that and provide you with even
more information.

Removing the navigation chrome
At some point, you might consider removing the navigation chrome and replacing it with your
own implementation of the same. Although I won't be going into details and explaining how to
replace it with your own, I will show you how easy it is to remove the navigation chrome with
just a single line of code.

All you need to do is add this line of code:
this.ShowsNavigationUI = false;

As an example, and for demonstration purposes only, I've added a new button and
called it btnRemoveNavigation and attached a new Click event handler called
btnRemoveNavigation_Clicked. So my complete code looks like this:

private void btnRemoveNavigation_Clicked(object sender,
 RoutedEventArgs e)
{
 this.ShowsNavigationUI = false;
}

If you now go and hit F5 to start your project and then click on Remove navigation, the
navigation chrome will disappear.

Though you can remove the navigation chrome and navigation functionality will stay intact (one
that you have implemented by adding event handlers), your users will suffer immensely if you
don't implement some sort of navigation UI (that is, if your application is based on this pattern).

Layouts and General Content Organization

64

You must ensure that simple, easy-to-use, and noticeable navigation chromes exist at all times
while your users are using an application based on this pattern.

Difference between Title and WindowTitle
In Step 8 of this recipe, I've mentioned that there is a difference between Title and
WindowTitle properties. So, what's the deal?

Both Title and WindowTitle are Page properties located under the Properties pane, in the
Common properties section.

The Title property sets a title for a specific page. What you enter here will be displayed in the
navigation chrome (including a drop-down menu).

WindowTitle sets the title for a specific Window object. Basically, this means that whatever
you enter for the WindowTitle property will be displayed at the top of the window—in the title
bar.

When to use journal navigation
As people tend to think linearly (probably based on their everyday experiences with time flow
and similar concepts), we also appreciate the ability to navigate through our applications in
the same way. Journal navigation is a good pattern that provides us with a mechanism that
can be used to go back and forth in the navigation history of our application.

We experience software in the same, more or less single thread, single timeline manner. For
example, recall using the web browser of your choice—when you are navigating from one page
to another, you have the impression that the main view is being changed. Implementation of
journal navigation enables us to track and revert to those views or pages in a pretty simple
and straightforward manner.

Journal navigation is not only good (or should I say mandatory) for web browsers but it is also
a good choice for a number of different needs. Wizards, desktop, or RIAs (Rich Interactive
Applications) are just some of the typical, potentially good candidates for this pattern.
Windows Explorer in Windows Vista and Windows 7 uses this same pattern. Microsoft
Dynamics NAV and Microsoft Dynamics AX are also great examples; they are combining
journal navigation with breadcrumb bars.

Chapter 1

65

So, the basic principle about when to use journal navigation as a pattern is a situation
where you want to enable the no forward-only navigational experience, and instead, you
are to utilize abilities to go back and forth, thus enhancing the experience of moving from
one page to another.

Good practice suggests that you concentrate on three main areas when dealing with the
journal navigation implementation. Luckily, when you are using WPF Page and the recipe
described here, they are (mostly) all being taken care of, but just for your reference, I will
describe them.

The first field is surfacing the navigation chrome (user interface). It has to be obvious to the
end user that they are dealing with the navigation UI. I've explained how easy it is to remove
the default navigation chrome, but you must use some sort of navigation UI. Good practice is
also to enable users to get access to back and forward buttons via the keyboard and not just
by clicking with the mouse.

As you can say by your own intuition or from your personal experience, when interacting with
different applications, having a consistent, clear, and easy-to-use navigation system is crucial.
It certainly enables users to feel more in control and empowered when using your application.

Second important thing is to have some sort of history so that users can easily see where
they have been previously and navigate through their history. In our recipe, that list is easily
available by clicking on an arrow pointing downwards, which exposes a drop-down menu with
the list of visited pages.

The third and probably most important thing to take care of is the context of your application.
Do you want to enable users to navigate back and forth or do you require a one-way task flow?
What happens if your users navigate back while some action is still in progress: will you cancel
the action, continue the action, or do something else? How will you notify your users?

Never, and I mean never, use the Back button as an undo operation! Use a specific, single,
understandable command for an undo operation. I've seen too many applications trying to
use the Back button as a replacement for the undo command, and bluntly said, they "suck".
You don't want your application to be characterized as the one that "sucks", do you?

Layouts and General Content Organization

66

See also
 f Wizards

Tabs
Tabs provide a simple way of presenting sets of controls or documents on separate, labeled
pages. They are quite popular and most commonly associated with typical property windows.
On the Web, they are also very popular as a means for content organization.

As a very general guideline, tabs are used when you are dealing with too much information
on one page (it doesn't matter if it is a web or desktop application), which basically creates
confusion making the specific content difficult to find and focus on.

Getting ready
Start your Expression Blend 4 and then select New project... From the dialog that appears
select Silverlight and then Silverlight Application. Make sure that Language is set to C# and
Version is 4.0. At the end hit OK.

How to do it...
In this example, we will add the Tab control as a part of our Silverlight 4 project:

1. After you have created your new project, under the Objects and Timeline pane,
you will see UserControl and LayoutRoot. LayoutRoot is a Grid control hosted in
UserControl.

2. The Tab control is not a part of the "default" Silverlight controls, so in order to use it,
we have to add a reference to it. After you installed the Silverlight 4 SDK, you have
obtained a library that contains a number of controls, among them TabControl.

3. Under the Project tab, go to References | Add Reference....

4. The Add Reference dialog box will appear. Navigate to a file called System.
Windows.Controls.dll, which is usually located in a path similar to: C:\
Program Files\Microsoft SDKs\Silverlight\v4.0\Libraries\Client.

5. Select the file and click Open.

6. Now you will see System.Windows.Controls.dll under your References folder.

7. Now, go to Asset Library available on the toolbox. Be sure to check Show All. Now
you should be able to locate TabControl.

Chapter 1

67

8. Click on TabControl and draw it on the artboard.

9. Take a look at the Objects and Timeline pane and expand the visual tree so that you
can see all parts of the TabControl.

10. Let's add the third TabItem to our TabControl. Right-click on TabControl under the
Objects and Timeline pane and from the drop-down menu, click on Add TabItem.
Now you should see the third TabItem added to your TabControl.

Layouts and General Content Organization

68

11. Click on the first TabItem and under the Properties pane, locate the Header property
(located under Miscellaneous section), and type in First tab. Do the same for the
second and third TabItem typing Second Tab and Third Tab, respectively. Your tab
control should look like the one in the following screenshot:

12. As you will have noticed under the visual tree, each TabItem is comprised of the
Header part and Grid. The Grid part is basically the Grid control in which we can put
any content we want.

13. Select First tab and add two buttons (add them from the toolbox or Asset Library).
Change their content (Properties pane, Common Properties section, Content
property) to Button 01 and Button 02. Be sure that you have selected the Grid
element of the specific TabItem to ensure that the buttons will be added to exactly
that TabItem.

14. Repeat the same procedure: adding one button to the Second tab and one to Third
tab. Set their content to Button 03 and Button 04 respectively.

15. With this, you must have got a pretty clear understanding of how you can add controls
to different TabItems and how to add TabItems as well.

16. Now hit F5 or go to Project | Test Solution.

17. Your default web browser will start and you will see your tab control. Try clicking on
different tabs and notice that you can see only the content that you have added to a
specific Grid under specific TabItem.

Chapter 1

69

How it works...
As TabControl is not a "default" Silverlight 4 control; we had to add a reference to the
System.Windows.Controls.dll file (that file is part of the Silverlight 4 SDK pack). After
adding the reference, TabControl has been added to our Asset Library and is available for
use from there like all other controls.

Right after you have drawn TabControl on the artboard, you will notice two tab items
(colloquially called just "tabs"). By right-clicking on TabControl and using the option Add
TabItem you get the opportunity to add more tab items.

It is a general suggestion that you don't add more than seven tabs. Take a look at the There's
more... section where I will go deeper into general guidelines for using tab as a control.

The next step was adding titles for specific tabs. As shown earlier, specific TabItem is
comprised of Header and Grid parts. By clicking on TabItem and locating the Header property,
you have got the possibility to change the title for a specific TabItem. We have used just
provisional titles, First tab, Second Tab, and so on.

The next step was adding the specific content to specific tabs. Technically speaking, that
content is hosted within the Grid control. That, of course, means that all layout, formatting,
and other Grid-related mechanisms and properties are applied to all controls hosted. Grid is,
without doubt, the most powerful layout control available in WPF and Silverlight.

By hitting F5 and starting your web browser you got the opportunity to explore tabs and
associated buttons (controls).

Layouts and General Content Organization

70

There's more...
In the first part, you've been introduced to the tab control and its main characteristics. Now,
you'll learn how to further customize the control itself and also get the professional and
insightful guidelines for using the tabs in your real life applications - no matter what are you
using, WPF or Silverlight.

Changing tab orientation
Tabs are most commonly oriented horizontally, but TabControl, which is used in our example,
supports different orientations.

I will assume that you are continuing from the previous TabControl example.

1. Select your TabControl under the Objects and Timeline pane. Under the Properties
pane, locate the TabStripPlacement property under Miscellaneous. The drop-down
list offers you the following options: Left, Top, Right, and Bottom.

2. Select Left.
3. You will notice that the tab orientation has been changed. Hit F5 and investigate a

new look within your browser.

As a small digression, Last.fm, a popular music and radio community website, uses this kind
of layout for its profile page's design and I find it to be highly usable and pleasing.

Adding icons in tabs
In the When to use tabs? paragraph, I will give guidelines regarding the usage of icons in tabs,
so be sure to understand when it is correct and acceptable to use icons in tabs.

Again, I will take it from our initial example where we have added TabControl and three
TabItem elements (tabs).

Currently, there is no property like Icon for each TabItem, but we can add them manually by
modifying the Header part of TabItem.

Chapter 1

71

1. Let's just modify the Header for the First tab and you can apply the same method for
the rest of them.

2. The idea is to add Image control and TextBlock into Header and then to place an
icon into Image control and set the content of TextProperty to First tab. We want
Image and TextBlock controls to be stacked horizontally, so we will put them in the
StackPanel container.

3. Double-click on Header under the first TabItem; this will make it active. Now from
the toolbox or Asset Library add StackPanel. Set its Height and Width to Auto
and Orientation to Horizontal. You can do this by going to the Properties pane and
locating them under the Layout section.

4. Now select the newly added StackPanel and add Image control and TextBlock. The
easiest way do to that is just by locating them under the toolbox or Asset Library and
double-clicking on them. They will be automatically added to the selected container,
StackPanel in our case.

5. Select Image control and under Properties locate the Common Properties section.
Find the Source property and click on Choose an image button (ellipses). From the
dialog box, select an image—the one that you want to add as an image. I suggest
using the PNG image with dimensions of about 16x16 pixels.

6. Now select TextBlock and change its Text property, which is under the Common
Properties section within the Properties pane. Set it to First tab.

7. If you now take a look at the XAML code of the selected TabItem, it should look
similar to this:
<basics:TabItem.Header>
 <StackPanel Height="Auto" Width="Auto" Orientation="Horizontal">
 <Image Width="16" Height="16" Source="Help and Support.png"/>
 <TextBlock Text="First Tab" TextWrapping="Wrap"/>
 </StackPanel>
</basics:TabItem.Header>

8. Structure, as can be seen under the Objects and Timeline panel, looks like this:

Layouts and General Content Organization

72

9. Press F5 now and your TabControl should look like this:

When to use tabs
I've already mentioned that tabs are usually good in situations when we are dealing with
large amounts of information on a single page or window and, as a consequence, users are
having difficulties finding, using, and focusing on specific content and possibly, tasks. Tabs are
really handy in such situations, as they allow us to break up related pieces of information and
organize them on individual tabs, making them available one at a time.

According to Microsoft's own Windows user experience guidelines, there are several questions
that are to be asked when deciding whether you should use the tabs as control. They can be
summarized as follows:

 f Can all your controls comfortably fit on a single page? If so, there's no need for tabs,
and the same. The same holds true if you are using just one tab—do not use tabs
just to use them. You might be tempted to do so thinking that this would make your
application or web application more professional, but the reality is quite the opposite.

 f Are you using tabs to organize settings and numerous options? Be sure to check if
the changing of the options on one tab affects options and settings on other tabs.
Each and every tab must be mutually independent. If that is not the case, use wizard
pattern.

 f From the hierarchical point of view, ask yourself: Are the tabs mostly peers (on the
same levels) or do you have a clear hierarchy organization among them? Tabs must
have a peer relationship, never hierarchical. Just think about it: they are linearly
represented—an orientation that is implying the same hierarchy levels.

 f Are you using tabs for wizard-like step-by-step processes where the first tab
represents starting point and tabs that follow are next steps in the process? If that is
the case, again, wizard is the appropriate pattern.

This list, of course, is far from comprehensive but offers you some initial guidelines.

Chapter 1

73

Real-world metaphor
Tabs are taken from the real world and they do aim to leverage familiarity that most users
have from tabbed folders. As we do use tabs in the real world to group related documents,
the same idea must be used in the world of user interfaces.

We benefit from organizing related elements and content onto individual tabs. Furthermore,
you should think about the order of your tabs and set them in a way that will make sense to
your users. Among other things, that is the reason why tabs are pretty popular events on the
Web as navigational controls, although that is not and should not be their primary role.

Implementation guidelines
In most cases, tabs will be presented horizontally or vertically. How do we decide? Again,
Microsoft's and other UI guidelines suggest, among other things, the following:

 f Horizontal tabs should be used if you plan to use seven or fewer tabs and all tabs fit
in one row.

 f Vertical tabs are good for cases when you are dealing with eight or more tabs or if
using the horizontal tabs would require more than one row (the case might be that
you have five tabs but with very long labels in their header).

 f Forget about using scroll bars for horizontal tabs. This pattern has poor discoverability
while usage of scrolling for vertical tabs is acceptable. General idea is to have all tabs
always visible. If you have too much content which must fit on a single tab, then put a
scrollbar on that specific tab, not on the window that is hosting your tab control.

 f By default, make your first tab selected in all cases. Exclusion from this can be only a
specific case when users are likely to start from the last tab that they have selected
before dismissing a window or page with tabs. In that case, make the last tab
selected to persist on a per-window, per-user basis. My personal experience is that
your exceptions like these are extremely rare and you will probably do a better job just
by ensuring that the first tab is always selected for users.

 f Don't use and put icons on tabs' headers. They add visual clutter and consume
screen space. You might be tempted to use them hoping that they will improve
users' comprehension but that is rarely the case.

However, there are some cases when icons might be fitting:

 � Icons you are using are standard symbols, well known, and widely
recognizable, and understandable

 � Use icons if there is not enough space to display significant labels

Layouts and General Content Organization

74

 f Place the terminating buttons (OK, Cancel, Apply, and so on) on the area outside
the tabbed area, onto the dialog. A good example for this is given in the following
screenshot:

By doing that you will avoid confusion in respect to the scope of the actions being carried
away when user clicks on those buttons. Actions triggered by clicks on terminating buttons
placed outside the tabbed area are applied to the whole page or window.

See also
 f Wizards

Chapter 1

75

Adding a status bar area
The area at the bottom of the primary application window can be used for a status bar—
control that is suited for displaying the current state of the window and accompanying actions,
background tasks, or some other contextual information.

In this recipe, I will demonstrate how to add the StatusBar control to our WPF application and
share some guidelines regarding the implementation and usage of this pattern.

Getting ready
Start your Expression Blend 4 and then select New project... From the dialog that appears,
select WPF and then WPF Application. Make sure that Language is set to C# and Version is
4.0. At the end hit OK..

How to do it...
1. Once your new WPF project has been created, you should notice that under the

Objects and Timeline pane, Window and LayoutRoot grid controls are visible.

2. Go to Asset Library and from there click on the StatusBar control. Draw it onto your
artboard. Note that the StatusBar control will probably be hidden, so you should
make sure that the Show All option, located at the Asset Library dialog, is checked.

3. Select StatusBar by clicking on it. Now we will set up some properties. Go to the
Properties pane and under the Layout section change the following:

 � Set Width to Auto and Height to 24

 � Set HorizontalAlignment to Stretch (last icon in the row)

 � Set VerticalAlignment to Bottom (third icon in the row)

 � Set all values for Margin to 0

4. Your StatusBar should now appear docked to the bottom of your window and
stretched from side-to- side.

5. As you can notice, StatusBar looks completely blank. Let's add a single line at the
top of our StatusBar just to make it appear more distinct from the rest of the window
surface.

Layouts and General Content Organization

76

6. Under the Appearance section, set 1 for the Top Border value. Now under Brushes
section, locate the BorderBrush, and click on it. Now click on the Solid color brush
icon and pick some kind of dark gray. You can also enter RGB values: 123,123,123
or HEX: #FF7B7B7B.

7. Your StatusBar should now have a simple gray border at the top.

Let's add some controls to our StatusBar. However, note that I am just adding
random controls now and not following specific guidelines; those can be found
under the There's more... section and you should refer to them when designing and
implementing the status bar pattern.

8. Right-click on the StatusBar control and from the drop-down menu, select Add
StatusBarItem; this will add the simplest possible item to your StatusBar.

9. Now, click on StatusBarItem to select it and under the Properties pane locate the
Common Properties section. Enter Ready for the Content property.

Chapter 1

77

10. In order to change the Content property of StatusBarItem during the run-time, we
need to assign it a name. At the top of the Properties pane, you will find the Name
field; type myFirstItem in that field.

11. Now add a Button control on top of the LayoutRoot control. To do that, select
LayoutRoot under the Object and Timeline pane and then from the toolbox or
Asset Library draw a simple button on your artboard.

12. Give it a name btnChangeStatus (follow the same directions given under Step 26).

13. Set its Content to Change Status (This property is located under the Properties
pane, in the Common Properties section).

14. The next step is adding an event handler that will change the Content property of
StatusBarItem.

15. With Button selected, click on the Events icon under the Properties pane and you
will be presented with a number of events. Let's add our event handlers for the Click
event. To do that, you will just have to type in the name for those event handlers and
once you hit Enter, Visual Studio will start and allow you to add code logic. You can
use btnChangeStatus_Clicked as a name for your event.

16. Add the following code:
private void btnChangeStatus_Clicked(object sender,
 RoutedEventArgs e)
{
 this.myFirstItem.Content = "Status has been changed!";
}

Layouts and General Content Organization

78

17. Press F5 and your application will start. Click on Change Status and note that the
text in your status bar area has changed.

How it works...
After the StatusBar control was added, I set several of its properties. I've set the
height to 24 (it was fairly arbitrarily defined in this particular case), and I've also set
the HorizontalAlignment to Stretch (to ensure that the StatusBar will consume all the
horizontally available space). Also, VerticalAlignment has been set to Bottom (to ensure that
StatusBar will dock to the bottom). By setting values of all margins to zero, I've ensured that
there will be no empty space around the status bar when docked and stretched.

In order to make the StatusBar a bit more distinct (and to show a really simple way of
customizing the control), I've changed the top border width and color.

With all the positioning and the look set, the next step was to add a very simple element to
the StatusBar—StatusBarItem. Later, I will demonstrate how you can add a number of other
different elements to StatusBar, but StatusBarItem was the simplest to do and it served me
well to show you how to update its Content property via code.

This pattern might be used in real applications to update status messages during runtime, but
in case your development knowledge is more advanced, you can take it to a more advanced
level. But the idea remains the same: give the name to StatusBarItem and change its
Content property.

There's more...
Status bar can be used to host more different controls to help you build better and more solid
user experience for your users. In this section, you will learn how to do exactly that but you will
also gain knowledge and valuable guidelines for implementing and designing user interfaces
which are utiling StatusBar control.

Adding other controls to StatusBar
The previous example showed how to add the simplest of all elements to StatusBar. However,
Blend enables you to add a number of other different controls to your StatusBar.

Chapter 1

79

You can take it from the last point in the first example.

1. Select the StatusBar control and under the Properties tab, locate the Common
Properties section. Click on the ellipses button near Items(Collection) and the
Collection Editor (Items) dialog will appear. At the bottom, click on the arrow pointing
downwards near Add another item. From the list, select Separator, and press Enter.

2. Repeat the procedure but this time select Button control from the list.

3. In the right-hand part, scroll down to Common Properties and type Button Content
in the Content property. Press Enter.

4. Click on OK and now press F5 to start and test your application. Now you should
be able to see a button with the Button Content label in your StatusBar control.

Layouts and General Content Organization

80

5. If your button is not completely visible, try changing the StatusBar Height property
to, let's say 32. Press F5 now and your application should like the one in the
following screenshot:

What if we want to add controls that are not listed in the drop-down list the we have
seen in the Collection Editor? For example, how can we add the ProgressBar control?

6. Under Objects and Timeline pane, select the StatusBar control. Now go to
Asset Library and pick the ProgressBar control. The next step is just to draw the
ProgressBar control on top of your StatusBar control.

Alternatively, you can just draw the ProgressBar control on your artboard and simply
drag-and -drop it on top of the StatusBar. If you press the Alt key while dragging,
ProgressBar will be added as an element of the StatusBar.

Take into account, if you want to be able to set or get properties from objects added to
StatusBar control, you need to name them and use that name when referencing them
from code.

Chapter 1

81

Adding SizeGrip to StatusBar
Size grip is a commonly seen and used pattern: it enables you to grab a corner of your
window and pull it to resize the window. Here is how to add a size grip to your status bar
and enable resizing.

I will just continue from the last example. So, return to Expression Blend.

1. Under Objects and Timeline, select Window.

2. Go to the Properties pane and locate the Common Properties section. You will find
the ResizeMode property there.

3. Click on the drop-down list and select CanResizeWithGrip.

4. You will now notice the size grip at the bottom-right corner of your window, on top of
the StatusBar control.

5. Press F5 to start your application. Position your mouse cursor over the size grip and
try resizing the form. As simple as that, zero lines of code!

When to use status bar
A status bar should be used in cases where you want to provide status information to your
users but without harsh interruption of their main activities. It is generally located at the
very bottom of the main (primary) application window and stretches from left to right with no
margins, though specific exceptions might occur.

Information provided in a status bar is usually related to the current window's state, possible
tasks in the background, or some contextual information.

The single most important thing is that a status bar should be used to provide information
to the end users without interrupting them, which also means that information provided in a
status bar should not be extremely critical or something that requires immediate attention.
So, displaying status of loading a web page is fine, but letting the user know that a virus has
been found on their C drive is something that requires immediate attention and should not be
communicated through status bars.

Layouts and General Content Organization

82

Usually, a status bar uses simple text or images (icons) to communicate information, but a
number of other controls can be also used. A progress bar (indicator) is one of them and it
is often seen in web browsers showing the loading process of a web page. Also, menus for
commands and options can be used in status bars.

However, status bars have one disadvantage: they are not easily discoverable. It is fairly easy
to overlook them or even to completely ignore them. What can you do to "fix" this? I hope you
are not thinking about using some aggressive animations, blinking, vivid icons, or some other
means of grabbing users' attention. Recall what I said a few lines earlier: information provided
in the status bar should not be extremely critical or something that requires immediate
attention.

Ensure that the information you are placing into the status bar is relevant and useful and
if that is not the case, well, then don't use the status bar. Also, if a user must see the
information, then don't put it in the status bar—the status bar is not for critical information.

So, to summarize, use the status bar for relevant and useful information, but never for critical
information!

Implementation guidelines
As always, throughout this book, the implementation and other guidelines provided here are
not 100% comprehensive, rather they are suggestions and proven practices extracted from
various resources. However, the ones presented in this book are those most commonly used
and by following them you will avoid common pitfalls and ensure solid quality.

 f A status bar should be presented only on the primary window of your application. You
should never use status bars on all of the windows of your application.

 f Don't use status bars as places to describe usage of controls on your UI. In the past
(and I still see that sometimes), there was a trend to display information relevant
to specific controls in the status bar. For example, if you positioned your mouse
pointer over the printer icon, you would get something like Click here to print current
document in your status bar. You should use tooltips for this pattern, never the status
bar. Same holds true for menu items.

 f Is the information that you want to display in the status bar critical and/or does it
require immediate action? If so, then don't use the status bar for it. Consider a dialog
or message box, they will break the flow and grab user's attention.

 f Although it's not a rule (because of their relatively low discoverability), status bars
might not be suitable for programs intended primarily for users who are beginners.

Chapter 1

83

 f When using icons in the status bar, always choose easily recognizable designs. Also,
use icons with more unique shapes; if possible, avoid rectangular- or square-shaped
icons. You can use tooltips for icons that are not accompanied by related labels.

 f Don't change the status bar content too often. Status bars should present up-to date
information, but they should not appear noisy or distracting.

 f When using textual labels, make them concise. Don't use bold, italic, underline, or
colors to put emphasis on status bar text labels. That will only add visual clutter and
noise without really helping the users and communicating valuable information.

2
Handling Data

This	chapter	is	taken	from	Microsoft Silverlight 4 Business
Application Development Beginner's Guide	(Chapter	5)	by	
Frank	LaVigne,	Cameron	Albert.

Business applications are all about data; input received from clients, metrics
regarding performance or sales, inventory, assets, and so on. Silverlight
provides a robust and easy way to handle, bind, and validate this data.

In addition to data handling capabilities, Silverlight can also communicate via
Windows Communication Foundation (WCF) services, providing an extensible
means of communication with backend servers and data stores.

In	this	chapter,	we	shall:

 � Create	a	WCF	service	and	business	object	for	receiving	data

 � Create	a	form	for	allowing	users	to	submit	information

 � Bind	the	data	from	a	data	object	to	Silverlight	controls

 � Validate	data	and	display	feedback	to	the	user

www.allitebooks.com

http://www.allitebooks.org

Handling Data

[86]

Data applications
When	building	applications	that	utilize	data,	it	is	important	to	start	with	defining	what	
data	you	are	going	to	collect	and	how	it	will	be	stored	once	collected.	We	know	to	create	a	
Silverlight	application	to	post	a	collection	of	ink	strokes	to	the	server.	Now,	we	are	going	to	
expand	the	inkPresenter	control	to	allow	a	user	to	submit	additional	information.

Most	developers	would	have	had	experience	building	business	object	layers,	and	with	
Silverlight	we	can	still	make	use	of	these	objects,	either	by	using	referenced	class	projects/
libraries	or	by	consuming	WCF	services	and	utilizing	the	associated	data	contracts.

Time for action – creating a business object
We'll	create	a	business	object	that	can	be	used	by	both	Silverlight	and	our	ASP.NET	
application.	To	accomplish	this,	we'll	create	the	business	object	in	our	ASP.NET	application,	
define	it	as	a	data	contract,	and	expose	it	to	Silverlight	via	our	WCF	service.

Start	Visual	Studio	and	open	the	CakeORamaData	solution.	When	we	created	the	solution,	
we	originally	created	a	Silverlight	application	and	an	ASP.NET	web	project.

1.	 In	the	web	project,	add	a	reference	to	the	System.Runtime.Serialization
assembly.

Chapter 2

[87]

2.	 Right-click	on	the	web	project	and	choose	to	add	a	new	class.	Name	this	class	
ServiceObjects and click OK.

3. In the ServiceObjects	class	file,	replace	the	existing	code	with	the	
following	code:

using System;
using System.Runtime.Serialization;

namespace CakeORamaData.Web
{
 [DataContract]
 public class CustomerCakeIdea
 {
 [DataMember]
 public string CustomerName { get; set; }
 [DataMember]
 public string PhoneNumber { get; set; }
 [DataMember]
 public string Email { get; set; }
 [DataMember]
 public DateTime EventDate { get; set; }
 [DataMember]
 public StrokeInfo[] Strokes { get; set; }
 }

 [DataContract]
 public class StrokeInfo
 {
 [DataMember]
 public double Width { get; set; }
 [DataMember]
 public double Height { get; set; }
 [DataMember]
 public byte[] Color { get; set; }
 [DataMember]
 public byte[] OutlineColor { get; set; }

Handling Data

[88]

 [DataMember]
 public StylusPointInfo[] Points { get; set; }
 }

 [DataContract]
 public class StylusPointInfo
 {
 [DataMember]
 public double X { get; set; }
 [DataMember]
 public double Y { get; set; }
 }
}

4.	 What	we	are	doing	here	is	defining	the	data	that	we'll	be	collecting	from	
the	customer.

What just happened?
We	just	added	a	business	object	that	will	be	used	by	our	WCF	service	and	our	Silverlight	
application.	We	added	serialization	attributes	to	our	class,	so	that	it	can	be	serialized	with	
WCF	and	consumed	by	Silverlight.

The [DataContract] and [DataMember]	attributes	are	the	serialization	attributes	that	
WCF	will	use	when	serializing	our	business	object	for	transmission.	WCF	provides	an	
opt-in	model,	meaning	that	types	used	with	WCF	must	include	these	attributes	in	order	to	
participate	in	serialization.	The	[DataContract]	attribute	is	required,	however	if	you	wish	
to, you can use	the	[DataMember]	attribute	on	any	of	the	properties	of	the	class.

By	default,	WCF	will	use	the	System.Runtime.Serialization.
DataContractSerialzer	to	serialize	the	DataContract	classes	into	XML.	The	.NET	
Framework	also	provides	a	NetDataContractSerializer	which	includes	CLR	information	
in	the	XML	or	the	JsonDataContractSerializer	that	will	convert	the	object	into	
JavaScript Object Notation (JSON).	The WebGet	attribute	provides	an	easy	way	to	define	
which	serializer	is	used.

Chapter 2

[89]

For	more	information	on	these	serializers	and	the	WebGet	attribute	visit	the	
following	MSDN	web	sites:

http://msdn.microsoft.com/en-us/library/system.
runtime.serialization.datacontractserializer.aspx.

http://msdn.microsoft.com/en-us/library/system.
runtime.serialization.netdatacontractserializer.aspx.

http://msdn.microsoft.com/en-us/library/system.runtime.
serialization.json.datacontractjsonserializer.aspx.

http://msdn.microsoft.com/en-us/library/system.
servicemodel.web.webgetattribute.aspx.

Windows Communication Foundation (WCF)
Windows Communication Foundation (WCF)	provides	a	simplified	development	experience	
for	connected	applications	using	the	service	oriented	programming	model.	WCF	builds	upon	
and	improves	the	web	service	model	by	providing	flexible	channels	in	which	to	connect	and	
communicate	with	a	web	service.	By	utilizing	these	channels	developers	can	expose	their	
services	to	a	wide	variety	of	client	applications	such	as	Silverlight,	Windows	Presentation	
Foundation	and	Windows	Forms.

Service	oriented	applications	provide	a	scalable	and	reusable	programming	model,	allowing	
applications	to	expose	limited	and	controlled	functionality	to	a	variety	of	consuming	clients	
such	as	web	sites,	enterprise	applications,	smart	clients,	and	Silverlight	applications.

When	building	WCF	applications	the	service	contract	is	typically	defined	by	an	interface	
decorated	with	attributes	that	declare	the	service	and	the	operations.	Using	an	interface	
allows	the	contract	to	be	separated	from	the	implementation	and	is	the	standard	practice	
with	WCF.

You	can	read	more	about	Windows	Communication	Foundation	on	the	MSDN	
website at:	http://msdn.microsoft.com/en-us/netframework/
aa663324.aspx.

Handling Data

[90]

Time for action – creating a Silverlight-enabled WCF service
Now	that	we	have	our	business	object,	we	need	to	define	a	WCF	service	that	can	accept	the	
business	object	and	save	the	data	to	an	XML	file.

1. With the CakeORamaData	solution	open,	right-click	on	the	web	project	and	choose	
to add a new folder, rename it to Services.

2. Right-click	on	the	web	project	again	and	choose	to	add	a	new	item.	Add	a	new	
WCF Service named CakeService.svc to the Services folder.	This	will	create	
an	interface	and	implementation	files	for	our	WCF	service.	Avoid	adding	the	
Silverlight-enabled	WCF	service,	as	this	adds	a	service	that	goes	against	the	
standard	design	patterns	used	with	WCF:

The	standard	design	practice	with	WCF	is	to	create	an	interface	that	defines	
the ServiceContract and OperationContracts	of	the	service.	The	
interface	is	then	provided,	a	default	implementation	on	the	server.	When	the	
service	is	exposed	through	metadata,	the	interface	will	be	used	to	define	the	
operations	of	the	service	and	generate	the	client	classes.	The	Silverlight-enabled	
WCF	service	does	not	create	an	interface,	just	an	implementation,	it	is	there	as	a	
quick	entry	point	into	WCF	for	developers	new	to	the	technology.

Chapter 2

[91]

3.	 Replace	the	code	in	the	ICakeService.cs	file	with	the	definition	below.	We	are	
defining	a	contract	with	one	operation	that	allows	a	client	application	to	submit	
a CustomerCakeIdea	instance:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;

namespace CakeORamaData.Web.Services
{
 // NOTE: If you change the interface name "ICakeService" here,
you must also update the reference to "ICakeService" in Web.
config.
 [ServiceContract]
 public interface ICakeService
 {
 [OperationContract]
 void SubmitCakeIdea(CustomerCakeIdea idea);
 }
}

4. The CakeService.svc.cs	file	will	contain	the	implementation	of	our	service	
interface.	Add	the	following	code	to	the	body	of	the	CakeService.svc.cs	file	
to	save	the	customer	information	to	an	XML	file:

using System;
using System.ServiceModel.Activation;
using System.Xml;

namespace CakeORamaData.Web.Services
{
 // NOTE: If you change the class name "CakeService" here, you
must also update the reference to "CakeService" in Web.config.
 [AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
 public class CakeService : ICakeService
 {
 public void SubmitCakeIdea(CustomerCakeIdea idea)
 {
 if (idea == null) return;

 using (var writer = XmlWriter.Create(String.Format(@"C:\
Projects\CakeORama\Customer\Data\{0}.xml", idea.CustomerName)))
 {

Handling Data

[92]

 writer.WriteStartDocument();

 //<customer>
 writer.WriteStartElement("customer");
 writer.WriteAttributeString("name", idea.CustomerName);
 writer.WriteAttributeString("phone", idea.PhoneNumber);
 writer.WriteAttributeString("email", idea.Email);

 // <eventDate></eventDate>
 writer.WriteStartElement("eventDate");
 writer.WriteValue(idea.EventDate);
 writer.WriteEndElement();

 // <strokes>
 writer.WriteStartElement("strokes");

 if (idea.Strokes != null && idea.Strokes.Length > 0)
 {
 foreach (var stroke in idea.Strokes)
 {
 // <stroke>
 writer.WriteStartElement("stroke");

 writer.WriteAttributeString("width", stroke.Width.
 ToString());
 writer.WriteAttributeString("height", stroke.Height.
 ToString());

 writer.WriteStartElement("color");
 writer.WriteAttributeString("a", stroke.Color[0].
 ToString());
 writer.WriteAttributeString("r", stroke.Color[1].
 ToString());
 writer.WriteAttributeString("g", stroke.Color[2].
 ToString());
 writer.WriteAttributeString("b", stroke.Color[3].
 ToString());
 writer.WriteEndElement();

 writer.WriteStartElement("outlineColor");
 writer.WriteAttributeString("a", stroke.
 OutlineColor[0].ToString());
 writer.WriteAttributeString("r", stroke.
 OutlineColor[1].ToString());
 writer.WriteAttributeString("g", stroke.
 OutlineColor[2].ToString());

Chapter 2

[93]

 writer.WriteAttributeString("b", stroke.
 OutlineColor[3].ToString());
 writer.WriteEndElement();

 if (stroke.Points != null && stroke.Points.Length > 0)
 {
 writer.WriteStartElement("points");
 foreach (var point in stroke.Points)
 {
 writer.WriteStartElement("point");
 writer.WriteAttributeString("x", point.
 X.ToString());
 writer.WriteAttributeString("y", point.
 Y.ToString());
 writer.WriteEndElement();
 }
 writer.WriteEndElement();
 }

 // </stroke>
 writer.WriteEndElement();
 }
 }

 // </strokes>
 writer.WriteEndElement();

 //</customer>
 writer.WriteEndElement();

 writer.WriteEndDocument();
 }
 }
 }
}

We added the AspNetCompatibilityRequirements	attribute	to	our	
CakeService	implementation.	This	attribute	is	required	in	order	to	use	a	
WCF	service	from	within	ASP.NET.

5.	 Open	Windows Explorer	and	create	the	path	C:\Projects\CakeORama\
Customer\Data	on	your	hard	drive	to	store	the	customer	XML	files.

Handling Data

[94]

One	thing	to	note	is	that	you	will	need	to	grant	write	permission	to	this	
directory	for	the	ASP.NET	user	account	when	in	a	production	environment.

6.	 When	adding	a	WCF	service	through	Visual	Studio,	binding	information	is	added	to	
the web.config	file.	The	default	binding	for	WCF	is	wsHttpBinding, which is not a
valid	binding	for	Silverlight.	The	valid	bindings	for	Silverlight	are	basicHttpBinding,
binaryHttpBinding	(implemented	with	a	customBinding),	and netTcpBinding.	We	
need to modify the web.config,	so	that	Silverlight	can	consume	the	service.	
Open	the	web.config	file	and	add	this	customBinding	section	to	the	
<system.serviceModel>	node:

<bindings>

 <customBinding>

 <binding name="customBinding0">

 <binaryMessageEncoding />

 <httpTransport>

 <extendedProtectionPolicy policyEnforcement="Never" />

 </httpTransport>

 </binding>

 </customBinding>

</bindings>

7. We'll need to change the <service> node in the web.config to use our new
customBinding, (we use the customBinding	to	implement	binary	HTTP	
which	sends	the	information	as	a	binary	stream	to	the	service),	rather	than	
the wsHttpbinding	from:

<service behaviorConfiguration="CakeORamaData.Web.Services.
CakeServiceBehavior"

 name="CakeORamaData.Web.Services.CakeService">

 <endpoint address="" binding="wsHttpBinding"
contract="CakeORamaData.Web.Services.ICakeService">

 <identity>

 <dns value="localhost" />

 </identity>

 </endpoint>

 <endpoint address="mex" binding="mexHttpBinding" contract="IM
etadataExchange" />

</service>

Chapter 2

[95]

To	the	following:

<service behaviorConfiguration="CakeORamaData.Web.Services.
CakeServiceBehavior"

 name="CakeORamaData.Web.Services.CakeService">

 <endpoint address="" binding="customBinding" bindingConfiguratio
n="customBinding0"

 contract="CakeORamaData.Web.Services.ICakeService" />

 <endpoint address="mex" binding="mexHttpBinding" contract="IMeta
dataExchange" />

</service>

8.	 Set	the	start	page	to	the	CakeService.svc	file,	then	build	and	run	the	solution.	
We	will	be	presented	with	the	following	screen,	which	lets	us	know	that	the	service	
and	bindings	are	set	up	correctly:

Handling Data

[96]

9.	 Our	next	step	is	to	add	the	service	reference	to	Silverlight.	On	the	Silverlight	project,	
right-click	on	the	References node and choose to Add a Service Reference:

10.	 On	the	dialog	that	opens,	click	the	Discover	button	and	choose	the	Services in
Solution option.	Visual	Studio	will	search	the	current	solution	for	any	services:

Chapter 2

[97]

11.	 Visual	Studio	will	find	our	CakeService	and	all	we	have	to	do	is	change	the	
Namespace to something that makes sense such as Services and click
the OK	button:

12.	 We	can	see	that	Visual	Studio	has	added	some	additional	references	and	files	to	
our	project.	Developers	used	to	WCF	or	Web	Services	will	notice	the	assembly	
references and the Service References	folder:

Handling Data

[98]

13.	 Silverlight	creates	a	ServiceReferences.ClientConfig	file	that	stores	the	
configuration	for	the	service	bindings.	If	we	open	this	file,	we	can	take	a	look	at	the	
client	side	bindings	to	our	WCF	service.	These	bindings	tell	our	Silverlight	application	
how	to	connect	to	the	WCF	service	and	the	URL	where	it	is	located:

<configuration>
 <system.serviceModel>
 <bindings>
 <customBinding>
 <binding name="CustomBinding_ICakeService">
 <binaryMessageEncoding />
 <httpTransport
maxReceivedMessageSize="2147483647" maxBufferSize="2147483647">
 <extendedProtectionPolicy policyEnforcemen
t="Never" />
 </httpTransport>
 </binding>
 </customBinding>
 </bindings>
 <client>
 <endpoint address="http://localhost:2268/Services/
CakeService.svc"
 binding="customBinding" bindingConfiguration="Cust
omBinding_ICakeService"
 contract="Services.ICakeService"
name="CustomBinding_ICakeService" />
 </client>
 </system.serviceModel>
</configuration>

What just happened?
We	created	a	Windows	Communication	Foundation	service	that	is	Silverlight	ready.	In	the	
process,	we	also	followed	the	best	practice	guidelines	by	defining	a	service	interface	and	a	
separate	implementation.	The	service	accepts	a	complex	data	object	and	writes	the	data	to	
an	XML	file.

We included the AspNetCompatibilityRequirements	attribute	to	the	CakeService.
svc.cs	class	which	is	required	in	order	to	host	a	WCF	service	from	within	ASP.NET.	We	added	
to	the	class	declaration	rather	than	the	interface,	because	it	is	implementation-specific	and	is	
only	valid	on	class	declarations.

We	saw	how	easy	it	is	to	create	a	WCF	service	and	add	a	service	reference	to	a	
Silverlight	application.

Chapter 2

[99]

Collecting data
Now	that	we	have	created	a	business	object	and	a	WCF	service,	we	are	ready	to	collect	
data	from	the	customer	through	our	Silverlight	application.	Silverlight	provides	all	of	the	
standard	input	controls	that	.NET	developers	have	come	to	know	with	Windows	and	ASP.NET	
development,	and	of	course	the	controls	are	customizable	through	styles.

Time for action – creating a form to collect data
We will begin	by	creating	a	form	in	Silverlight	for	collecting	the	data	from	the	client.	We	are	
going	to	modify	this	page	to	include	a	submission	form	to	collect	the	name,	phone	number,	
email	address,	and	the	date	of	event	for	the	person	submitting	the	sketch.	This	will	allow	the	
client	(Cake	O	Rama)	to	contact	this	individual	and	follow	up	on	a	
potential	sale.

We'll change the layout of MainPage.xaml	to	include	a	form	for	user	input.	We	will	need	
to	open	the	CakeORama	project	in	Expression	Blend	and	then	open	MainPage.xaml for
editing	in	the	Blend	art	board.

1.	 Our Ink capture	controls	are	contained	within	a	Grid, so we will just add a column
to the Grid	and	place	our	input	form	right	next	to	the	Ink	surface.	To	add	columns	
in	Blend,	select	the	Grid from the Objects and Timeline	panel,	position	your	mouse	
in	the	highlighted	area	above	the	Grid	and	click	to	add	a	column:

Handling Data

[100]

2.	 Blend	will	add	a	<Grid.ColumnDefinitions>		node	to	our	XAML:

<Grid.ColumnDefinitions>

<ColumnDefinition Width="0.94*"/>

<ColumnDefinition Width="0.06*"/>

</Grid.ColumnDefinitions>

3.	 Blend	also	added	a	Grid.ColumnSpan="2"	attribute	to	both	the	StackPanel
and InkPresenter	controls	that	were	already	on	the	page.

4. We need to modify the StackPanel and inkPresenter,	so	that	they	do	not	span	both	
columns	and	thereby	forcing	us	to	increase	the	size	of	our	second	column.	In	Blend,	
select the StackPanel from the Objects and Timeline	panel:	

5. In the Properties	panel,	you	will	see	a	property	called	ColumnSpan	with	a	value	of	2.	
Change	this	value	to	1	and	press	the	Enter	key.

Chapter 2

[101]

6.	 We	can	see	that	Blend	moved	the	StackPanel	into	the	first	column,	and	we	now	
have	a	little	space	next	to	the	buttons.	

7. We need to do the same thing to the inkPresenter control, so that it is also
within	the	first	column.	Select	the	inkPresenter control from the Objects and
Timeline panel:

Handling Data

[102]

8.	 Change	the	ColumnSpan from 2 to 1	to	reposition	the	inkPresenter into the
left	column:

9. The inkPresenter	control	should	be	positioned	in	the	left	column	and	aligned	with	
the StackPanel	containing	our	ink	sketch	buttons:	

10.	 Now	that	we	have	moved	the	existing	controls	into	the	first	column,	we	will	change	
the	size	of	the	second	column,	so	that	we	can	start	adding	our	input	controls.	We	
also	need	to	change	the	overall	size	of	the	MainPage.xaml	control	to	fit	more	
information	on	the	right	side	of	the	ink	control.

Chapter 2

[103]

11.	 Click	on the [UserControl] in the Objects and Timeline panel,	and	then	in	the	
Properties	panel	change	the	Width to 800:

12.	 Now	we	need	to	change	the	size	of	our	grid	columns.	We	can	do	this	very	easily	in	
XAML,	so	switch	to	the	XAML	view	in	Blend	by	clicking	on	the	XAML	icon:

13.	 In	the	XAML	view,	change	the	grid	column	settings	to	give	both	columns	an	
equal	width:

<Grid.ColumnDefinitions>

<ColumnDefinition Width="0.5*"/>

<ColumnDefinition Width="0.5*"/>

</Grid.ColumnDefinitions>

14.	 Switch	back	to	the	design	view	by	clicking	on	the	design	button:

Handling Data

[104]

15.	 Our	StackPanel and inkPresenter	controls	are	now	positioned	to	the	left	of	the	
page	and	we	have	some	empty	space	to	the	right	for	our	input	controls:

16. Select the LayoutRoot control in the Objects and Timeline panel	and	then	double-
click on the TextBlock	control	in	the	Blend	toolbox	to	add	a	new	TextBlock control:

17.	 Drag	the	control	to	the	top	and	right	side	of	the	page:

Chapter 2

[105]

18.	 On	the	Properties	panel,	change	the	Text of the TextBlock to Customer
Information, change the FontSize to 12pt and click on the Bold	indicator:

19. The MainPage.xaml	should	look	like	the	following:

20.	 Double-click	the TextBlock	icon	on	the	toolbox	again	and	drop	this	into	the	top-left	
of	column	2,	row	2.	

Handling Data

[106]

21.	 On	the	Properties	panel,	change	the	text	of	the	TextBlock to Name.	This	will	serve	
as the label for our Name	textbox	control:

22.	 Repeat	this	process,	adding	Phone Number, Email Address, and Date of Event
labels,	and	rearranging	them	on	the	page	as	illustrated.	

Duplicating Controls

If you click on a control in the Objects and Timeline	panel,	you	can	make	a	copy	
of the control by holding down the Alt	key,	left-click	the	mouse,	and	drag	the	
copy	into	the	new	position.

Chapter 2

[107]

23.	 Right-click	the	TextBlock	icon	in	the	toolbox	again	and	choose	the	TextBox	control:

24. Double click the TextBox	control,	which	adds	a	new	textbox	to	the	page.	Drag	this	
control	next	to	our	Name	label	and	resize	it	to	maximize	the	available	space:

25.	 Name	the	textbox	customerName in the Properties	panel,	and	set	its	MaxLength
to 40.	The	MaxLength	can	be	found	by	typing	MaxLength	in	the	search	field	of	the
Properties	panel:

Handling Data

[108]

26.	 Create	textbox	controls	for	both	the	Phone Number and Email Address	fields	and	
name them phoneNumber and emailAddress	respectively;	position	them	on	the	
page	next	to	the	appropriate	labels.	Set	the	MaxLength of the phoneNumber	field	
to 15 and the MaxLength of the emailAddress	field	to	120:

27. To make date entry easier for our users, we will add a DatePicker	control	to	our	page	
to	allow	the	user	to	page	through	a	calendar	and	select	the	date	of	their	event.	To	
add a DatePicker control, click the Assets	button,	type	the	word	date into the
search	field	and	select	the	DatePicker	control:

Chapter 2

[109]

28.	 Double-click	on	the	DatePicker	in	the	toolbox	to	add	it	to	the	page,	drag	the	
DatePicker	next	to	the TextBlock label for Date of Event and name the
control eventDate:

29.	 Add	a	button	control	to	the	page,	drag	down	below	the	input	controls,	name	the	
button	submitButton and change the Content of the control to Submit:

Handling Data

[110]

30. Select our Submit	button	and	in	the	Properties	panel	click	on	the	Events	icon:

31.	 Double-click	inside	of	the	Click	event	field	to	have	Blend	auto	create	the	event	
handler	for	the	button	click	event:

32. We added a new Submit	button,	so	now	we	need	to	hide	the	Send Sketch	button.	
Select the btnSend	button	from	the	Objects and Timeline	panel:

33. Set the Visibility of the btnSend control to Collapsed:

Be	sure	to	save	your	work	throughout	the	development	process,	you	would	not	
want	to	lose	all	this	effort!

Chapter 2

[111]

What just happened?
We	modified	an	existing	control	and	added	several	input	controls	in	order	to	collect	some	
information	from	a	potential	customer.	We	learned	how	to	add	columns	to	a	Grid and
used	Blend	to	create	an	event	handler	for	our	submit	button.

By	using	Blend,	we	are	able	to	set	up	our	input	controls	very	quickly	and	have	visual	
feedback	of	our	progress	the	entire	time.	Hand	coding	of	all	this	XAML,	while	possible,	is	
just	not	what	most	developers	are	going	to	want	to	spend	their	time	doing,	not	when	
there	is	code	to	write!

Validating data
With	Silverlight,	data validation	has	been	fully	implemented,	allowing	controls	to	be	bound	
to	data	objects	and	those	data	objects	to	handle	the	validation	of	data	and	provide	feedback	
to	the	controls	via	the	Visual State Machine.

The	Visual	State	Machine	is	a	feature	of	Silverlight	used	to	render	to	views	of	a	control	based	
on	its	state.	For	instance,	the	mouse	over	state	of	a	button	can	actually	change	the	color	of	
the	button,	show	or	hide	parts	of	the	control,	and	so	on.

Controls	that	participate	in	data	validation	contain	a	ValidationStates	group	that	includes	
a Valid, InvalidUnfocused, and InvalidFocused	states.	We	can	implement	custom	styles	for	
these	states	to	provide	visual	feedback	to	the	user.

Data object
In	order	to	take	advantage	of	the	data	validation	in	Silverlight,	we	need	to	create	a	data	
object	or	client	side	business	object	that	can	handle	the	validation	of	data.

Time for action – creating a data object
We are going to create a data	object	that	we	will	bind	to	our	input	form	to	provide	validation.	
Silverlight	can	bind	to	any	properties	of	an	object,	but	for	validation	we	need	to	do	two	
way binding, for which we need both a get and a set	accessor	for	each	of	our	properties.	In	
order	to	use	two	way	binding,	we	will	need	to	implement	the	INotifyPropertyChanged
interface	that	defines	a	PropertyChanged	event	that	Silverlight	will	use	to	update	the	
binding	when	a	property	changes.

Handling Data

[112]

1.	 Firstly,	we	will	need	to	switch	over	to	Visual	Studio	and	add	a	new	class	named	
CustomerInfo	to	the	Silverlight	project:

2.	 Replace	the	body	of	the	CustomerInfo.cs	file	with	the	following	code:

using System;
using System.ComponentModel;

namespace CakeORamaData
{
 public class CustomerInfo : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged =
delegate { };

 private string _cutomerName = null;
 public string CustomerName
 {
 get { return _cutomerName; }
 set
 {
 if (value == _cutomerName)
 return;

 _cutomerName = value;

 OnPropertyChanged("CustomerName");
 }
 }

 private string _phoneNumber = null;
 public string PhoneNumber
 {
 get { return _phoneNumber; }
 set

Chapter 2

[113]

 {
 if (value == _phoneNumber)
 return;

 _phoneNumber = value;

 OnPropertyChanged("PhoneNumber");
 }
 }

 private string _email = null;
 public string Email
 {
 get { return _email; }
 set
 {
 if (value == _email)
 return;

 _email = value;

 OnPropertyChanged("Email");
 }
 }

 private DateTime _eventDate = DateTime.Now.AddDays(7);
 public DateTime EventDate
 {
 get { return _eventDate; }
 set
 {
 if (value == _eventDate)
 return;

 _eventDate = value;

 OnPropertyChanged("EventDate");
 }
 }

 private void OnPropertyChanged(string propertyName)
 {
 PropertyChanged(this, new PropertyChangedEventArgs
 (propertyName));
 }
 }
}

Handling Data

[114]

Code Snippets

Code	snippets	are	a	convenient	way	to	stub	out	repetitive	code	and	increase	
productivity,	by	removing	the	need	to	type	a	bunch	of	the	same	syntax	over	
and	over.

The	following	is	a	code	snippet	used	to	create	properties	that	execute	the	
OnPropertyChanged method and	can	be	very	useful	when	implementing	
properties	on	a	class	that	implements	the	INotifyPropertyChanged	interface.

To	use	the	snippet,	save	the	file	as	propnotify.snippet	to	your	hard	drive.

In Visual Studio go to Tools | Code Snippets Manager (Ctrl + K, Ctrl + B)	and	click	
the Import	button.	Find	the	propnotify.snippet	file	and	click	Open, this will
add	the	snippet.

To	use	the	snippet	in	code,	simply	type	propnotify and hit the Tab	key;	a	property	
will	be	stubbed	out	allowing	you	to	change	the	name	and	type	of	the	property.

<?xml version="1.0" encoding="utf-8" ?>
<CodeSnippets xmlns="http://schemas.microsoft.com/
VisualStudio/2005/CodeSnippet">
 <CodeSnippet Format="1.0.0">
 <Header>
 <Title>propnotify</Title>
 <Shortcut>propnotify</Shortcut>
 <Description>Code snippet for a property that raises
 the PropertyChanged event in a class.</Description>
 <Author>Cameron Albert</Author>
 <SnippetTypes>
 <SnippetType>Expansion</SnippetType>
 </SnippetTypes>
 </Header>
 <Snippet>
 <Declarations>
 <Literal>
 <ID>type</ID>
 <ToolTip>Property type</ToolTip>
 <Default>int</Default>
 </Literal>
 <Literal>
 <ID>property</ID>
 <ToolTip>Property name</ToolTip>

Chapter 2

[115]

 <Default>MyProperty</Default>
 </Literal>
 <Literal>
 <ID>field</ID>
 <ToolTip>Private field</ToolTip>
 <Default>_myProperty</Default>
 </Literal>
 <Literal>
 <ID>defaultValue</ID>
 <ToolTip>Default Value</ToolTip>
 <Default>null</Default>
 </Literal>
 </Declarations>
 <Code Language="csharp">
 <![CDATA[private $type$ $field$ = $defaultValue$;
 public $type$ $property$
 {
 get { return $field$; }
 set
 {
 if (value == $field$)
 return;

 $field$ = value;

 OnPropertyChanged("$property$");
 }
 }
 end]]>
 </Code>
 </Snippet>
 </CodeSnippet>
</CodeSnippets>

What just happened?
We created	a	data	object	or	client-side	business	object	that	we	can	use	to	bind	to	our	
input	controls.

We	implemented	the	INotifyPropertyChanged interface, so that our data object can
raise the PropertyChanged	event	whenever	the	value	of	one	of	its	properties	is	changed.	
We	also	defined	a	default	delegate	value	for	the	PropertyChanged	event	to	prevent	
us	from	having	to	do	a	null	check	when	raising	the	event.	Not	to	mention	we	have	a	nice	
snippet	for	stubbing	out	properties	that	raise	the	PropertyChanged	event.

Handling Data

[116]

Now	we	will	be	able	to	bind	this	object	to	Silverlight	input	controls	and	the	controls	can	
cause	the	object	values	to	be	updated	so	that	we	can	provide	data	validation	from	within	our	
data	object,	rather	than	having	to	include	validation	logic	in	our	user	interface	code.

Data binding
Binding data is one of the most	powerful	features	of	.NET	Windows	and	ASP.NET	
programming,	and	Silverlight	was	not	left	out.	Silverlight	provides	a	Binding class due to
which any	property	of	an	object	can	be	bound	to	any	DependencyProperty of a control.

Because	Silverlight	controls	are	defined	in	XAML,	the	Binding	class	can	also	be	defined	in	
XAML	using	a	Binding Expression,	which	is	just	a	XAML	way	of	declaring	a	Binding	class.

Time for action – binding our data object to our controls
We are going to bind our CustomerInfo object to our data	entry	form,	using	Blend.	Be	sure	
to	build	the	solution	before	switching	back	over	to	Blend.

1. With MainPage.xaml	open	in	Blend,	select	the	LayoutRoot	control.	In	the	
Properties	panel	enter	DataContext	in	the	search	field	and	click	the	New	button:

2.	 In	the	dialog	that	opens,	select the CustomerInfo class and click OK:

Chapter 2

[117]

3.	 Blend	will	set	the	DataContext of the LayoutRoot to an instance of
a CustomerInfo	class:

4.	 Blend	inserts	a	namespace	to	our	class;	set	the	Grid.DataContext	in	the	XAML	
of MainPage.xaml:

xmlns:local="clr-namespace:CakeORamaData"

<Grid.DataContext>

 <local:CustomerInfo/>

</Grid.DataContext>

5.	 Now	we	will	bind	the	value	of	CustomerName to our customerName	textbox.	
Select the customerName	textbox	and	then	on	the	Properties	panel	enter	Text in
the	search	field.	Click	on	the	Advanced property options	icon,	which	will	open	
a	context	menu	for	choosing	an	option:

Handling Data

[118]

6.	 Click	on	the	Data Binding	option	to	open	the	Create Data Binding	dialog:

7. In the Create Data Binding dialog (on the Explicit Data Context	tab),	click the arrow
next	to	the	CustomerInfo entry in the Fields list and select CustomerName:

8.	 At	the	bottom	of	the	Create Data Binding dialog, click on the Show advanced
properties arrow	to	expand	the	dialog	and	display	additional	binding	options:

Chapter 2

[119]

9. Ensure that TwoWay is selected in the Binding direction	option	and	that	Update
source when is set to Explicit.	This	creates	a	two-way	binding,	meaning	that	when	
the	value	of	the	Text	property	of	the	textbox	changes	the	underlying	property,	
bound to Text	will	also	be	updated.	In	our	case	the	customerName	property	of	
the CustomerInfo	class:

10. Click	OK	to	close	the	dialog;	we	can	now	see	that	Blend	indicates	that	this	property	
is	bound	by	the	yellow	border	around	the	property	input	field:

11.	 Repeat	this	process	for	both	the	phoneNumber and emailAddress	textbox	controls,	
to bind the Text	property	to	the	PhoneNumber and Email	properties	of	the	
CustomerInfo	class.	You	will	see	that	Blend	has	modified	our	XAML	using	the	
Binding	Expression:

<TextBox x:Name="customerName" Margin="94,8,8,0" Text="{Binding
CustomerName, Mode=TwoWay, UpdateSourceTrigger=Explicit}"
TextWrapping="Wrap" VerticalAlignment="Top" Grid.Column="1" Grid.
Row="1" MaxLength="40"/>

12. In the Binding Expression code the Binding is using the CustomerName	property	
as the binding Path.	The	Path (Path=CustomerName)	attribute	can	be	omitted	since	
the Binding	class	constructor	accepts	the	path	as	an	argument.

Handling Data

[120]

13. The UpdateSourceTrigger is set to Explicit, which causes any changes in the
underlying	data	object	to	force	a	re-bind	of	the	control.

14. For the eventDate control, enter SelectedDate into the Properties	panel	search	
field	and	following	the	same	process	of	data	binding,	select	the	EventDate	property	
of the CustomerInfo	class.	Remember	to	ensure	that	TwoWay/Explict binding is
selected	in	the	advanced	options:

What just happened?
We	utilized	Silverlight	data	binding	to	bind	our	input	controls	to	properties	of	our	
CustomerInfo	class.	In	the	process,	we	setup	the	binding	to	be	two	way,	allowing	the	
controls	to	set	the	property	values	of	the	CustomerInfo	class,	thus	removing	the	need
to	add	a	bunch	of	text	changed	event	handlers	to	manually	do	it	ourselves,	saving	us	more	
time	in	development.

We	also	had	a	chance	to	see	how	much	time	using	Blend	can	save	and	how	easy	it	is	to	add	
data	bindings	to	controls.	We	saw	the	Binding Expression	syntax	used	to	define	a	Binding
in	XAML	and	also	how	to	setup	a	Binding so that changes to the underlying object cause
the	control	to	re-bind	the	value.

Validation
Before	we	submit	information	to	the	server	using	our	WCF	service,	we	need	to	validate	the	
data	input	from	the	user	and	provide	feedback	to	the	user	if	invalid	information	is	supplied.

Silverlight	can	report	a	validation	error	in	one	of	three	scenarios:

 � Exceptions	thrown	from	the	binding	type	converter

 � Exceptions	thrown	from	the	binding	object's	set	accessor

 � Exceptions	thrown	from	one	of	the	validation	attributes	found	in	the	
DataAnnotations assembly

We will focus on the set	accessor	method	as	this	provides	the	simplest	way	to	get	our	
data	validated.

Chapter 2

[121]

Time for action – validating data input
We	will	make	use	of	some	additional	properties	of	Binding	to	allow	the	controls	to	display	
the	validation	states.	Blend	does	not	provide	a	visual	way	for	us	to	add	these	additional	
properties	so	we	have	to	do	it	manually	in	XAML.

1.	 Switch	to	the	XAML	view	of	the	MainPage.xaml	in	Blend	and	scroll	down	to	where	
our	textbox	controls	are	located.

2. Within the Binding Expression (between the { and } of the Binding),	add	the	
following	two	attributes	to	each	one	of	the	bindings	on	our	input	controls:

{Binding CustomerName, Mode=TwoWay, UpdateSourceTrigger=Explicit,
NotifyOnValidationError=True, ValidatesOnExceptions=True }

3. The NotifyOnValidationError and ValidatesOnException will both cause
the	control	to	display	an	error	message	if	a	validation	or	exception	error	occurs	
when	the	value	of	the	bound	property	changes.

4.	 Now	we	need	to	modify	our	data	object	to	provide	validation	in	the	set
accessor	of	each	property.	Change	the	CustomerInfo.cs	file	to	implement	
our	property	validation:

using System;
using System.ComponentModel;
using System.Text.RegularExpressions;

namespace CakeORamaData
{
 public class CustomerInfo : INotifyPropertyChanged
 {
 private static Regex RegexPhoneNumber = new Regex(@"((\(\
d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}", RegexOptions.Multiline);
 private static Regex RegexEmail = new Regex(@"^([\w\-
\.]+)@((\[([0-9]{1,3}\.){3}[0-9]{1,3}\])|(([\w\-]+\.)+)([a-zA-
Z]{2,4}))$", RegexOptions.Multiline | RegexOptions.IgnoreCase);

 public event PropertyChangedEventHandler PropertyChanged =
delegate { };

 private string _cutomerName = null;
 public string CustomerName
 {
 get { return _cutomerName; }
 set
 {

Handling Data

[122]

 if (value == _cutomerName)
 return;

 if (String.IsNullOrEmpty(value))
 throw new ArgumentException("Customer Name is
 required.");

 if (value.Length < 3 || value.Length > 40)
 throw new ArgumentException("Customer Name must be at
 least 3 characters and not more than 40 characters
 in length.");

 _cutomerName = value;

 OnPropertyChanged("CustomerName");
 }
 }

 private string _phoneNumber = null;
 public string PhoneNumber
 {
 get { return _phoneNumber; }
 set
 {
 if (value == _phoneNumber)
 return;

 if (String.IsNullOrEmpty(value))
 throw new ArgumentException("Phone Number is
 required.");

 if (!RegexPhoneNumber.IsMatch(value))
 throw new ArgumentException("A valid phone number in the
 format (XXX) XXX-XXXX or XXX-XXX-XXXX is required.");

 _phoneNumber = value;

 OnPropertyChanged("PhoneNumber");
 }
 }

 private string _email = null;
 public string Email
 {
 get { return _email; }

Chapter 2

[123]

 set
 {
 if (value == _email)
 return;

 if (String.IsNullOrEmpty(value))
 throw new ArgumentException("Email Address is
 required.");

 if (!RegexEmail.IsMatch(value))
 throw new ArgumentException("A valid email address is
 required.");

 _email = value;

 OnPropertyChanged("Email");
 }
 }

 private DateTime _eventDate = DateTime.Now.AddDays(7);
 public DateTime EventDate
 {
 get { return _eventDate; }
 set
 {
 if (value == _eventDate)
 return;

 _eventDate = value;

 OnPropertyChanged("EventDate");
 }
 }

 private void OnPropertyChanged(string propertyName)
 {
 PropertyChanged(this, new PropertyChangedEventArgs
 (propertyName));
 }
 }
}

Handling Data

[124]

5. Open	the	MainPage.xaml.cs	file	and	in	the	constructor	add	the	following	code	to	
set the LayoutRoot.DataContext with a new instance of CustomerInfo:

public MainPage()
{
 this.Loaded += new RoutedEventHandler(MainPage_Loaded);
 InitializeComponent();
}

private void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 LayoutRoot.DataContext = new CustomerInfo();
}

6.	 Also	within	the	MainPage.xaml	file	in	the	submitButton_Click	event	handler,	
we	will	add	code	to	force	validation	of	our	data	object:

private void submitButton_Click(object sender, System.Windows.
RoutedEventArgs e)
{
 var bindingExpression = customerName.GetBindingExpression(TextBo
x.TextProperty);
 bindingExpression.UpdateSource();

 bindingExpression = phoneNumber.GetBindingExpression(TextBox.
TextProperty);
 bindingExpression.UpdateSource();

 bindingExpression = emailAddress.GetBindingExpression(TextBox.
TextProperty);
 bindingExpression.UpdateSource();
}

7. In Visual Studio, choose Debug | Start without Debugging	from	the	file	menu.	We	
are	not	going	to	debug	because	our	properties	throw	exceptions	and	we	just	want	to	
see	the	result.	Just	click	the	Submit	button	and	all	the	textbox	controls	will	highlight	
with	red	borders:

Chapter 2

[125]

8.	 If	you	hover	over	the	small	arrow	in	the	top-right	corner	of	the	textbox	you	will	see	
the	error	message	from	the	data	object:

What just happened?
We	implemented	simple	data	validation	in	our	objects	and	let	the	built	in	Silverlight	binding	
process	handle	the	rest	by	including	some	additional	attributes	in	the	Binding Expression.	
We	implemented	the	INotifyPropertyChanged interface in our data object so that
the	data	will	be	re-bound	whenever	the	values	are	changed.	We	also	made	use	of	regular	
expressions	to	ensure	that	the	phone	number	and	email	address	are	in	a	valid	format.

Data submission
Data	collected	from	users	does	not	provide	a	benefit	unless	the	user	can	submit	it	and	we	
can	store	the	information	for	later	retrieval.	The	ability	to	analyze	and	report	on	the	data	is	
how	businesses	acquire	and	maintain	clients	and	customers,	which	is	where	the	profits	are	
derived	from.

Time for action – submitting data to the server
Now	that	we	have	setup	a	form	for	data	input	and	validated	the	data,	we	can	now	submit	the	
data	to	the	server	using	our	WCF	service.	We	need	to	submit	the	information	to	the	server	in	
order	for	the	sales	staff	of	Cake	O	Rama	to	be	able	to	review	and	contact	the	customer.

1.	 Switch	back	over	to	Visual	Studio,	open	the	MainPage.xaml.cs	file	and	then	add	
the following to the using	statements:

using CakeORamaData.Services;

2.	 At	the	bottom	of	this	file	add	the	ConvertStrokesToStrokeInfoArray	method.	
This	method	will	convert	the	Silverlight	Stroke objects from the inkPresenter
to StrokeInfo	objects	as	defined	by	our	WCF	service:

private ObservableCollection<StrokeInfo>
ConvertStrokesToStrokeInfoArray()
{

Handling Data

[126]

 var strokeCollection = new ObservableCollection<StrokeInfo>();

 foreach (Stroke stroke in this.inkPresenter.Strokes)
 {
 var strokeInfo = new StrokeInfo
 {
 Width = stroke.DrawingAttributes.Width,
 Height = stroke.DrawingAttributes.Height,
 Color = new byte[]
 {
 stroke.DrawingAttributes.Color.A,
 stroke.DrawingAttributes.Color.R,
 stroke.DrawingAttributes.Color.G,
 stroke.DrawingAttributes.Color.B
 },
 OutlineColor = new byte[]
 {
 stroke.DrawingAttributes.OutlineColor.A,
 stroke.DrawingAttributes.OutlineColor.R,
 stroke.DrawingAttributes.OutlineColor.G,
 stroke.DrawingAttributes.OutlineColor.B
 }
 };
 strokeCollection.Add(strokeInfo);

 var pointCollection = new ObservableCollection
 <StylusPointInfo>();
 strokeInfo.Points = pointCollection;
 foreach (StylusPoint point in stroke.StylusPoints)
 {
 var pointInfo = new StylusPointInfo
 {
 X = point.X,
 Y = point.Y
 };
 pointCollection.Add(pointInfo);
 }
 }
 return strokeCollection;
}

Chapter 2

[127]

Note	here	that	when	we	added	a	reference	to	the	WCF	service,	our	
StrokeInfo[] array on the CustomerCakeIdea	object	was	converted	to	
a System.Collections.ObjectModel.ObservableCollection<S
trokeInfo>	by	Silverlight.

3. Go to the submitButton_Click method and modify it to resemble the
following	code:

private void submitButton_Click(object sender, System.Windows.
RoutedEventArgs e)
{
 var bindingExpression = customerName.GetBindingExpression(TextBo
x.TextProperty);
 bindingExpression.UpdateSource();

 bindingExpression = phoneNumber.GetBindingExpression(TextBox.
TextProperty);
 bindingExpression.UpdateSource();

 bindingExpression = emailAddress.GetBindingExpression(TextBox.
TextProperty);
 bindingExpression.UpdateSource();

 if (!Validation.GetHasError(customerName)
 && !Validation.GetHasError(phoneNumber)
 && !Validation.GetHasError(emailAddress))
 {
 var info = LayoutRoot.DataContext as CustomerInfo;

 var idea = new CustomerCakeIdea
 {
 CustomerName = info.CustomerName,
 PhoneNumber = info.PhoneNumber,
 Email = info.Email,
 EventDate = info.EventDate,
 Strokes = ConvertStrokesToStrokeInfoArray()
 };

 var client = new CakeServiceClient();
 client.SubmitCakeIdeaCompleted += new EventHandler
 <AsyncCompletedEventArgs>(OnCakeIdeaSubmissionComplete);
 client.SubmitCakeIdeaAsync(idea);
 }
}

Handling Data

[128]

4.	 Add	the	following	method	to	handle	the	SubmitCakeIdeaCompleted	event	to	
display	a	MessageBox	once	the	submission	is	complete:

private void OnCakeIdeaSubmissionComplete(object sender,
AsyncCompletedEventArgs e)

{

 MessageBox.Show("Sketch has been submitted.");

}

Now	we	will	test	out	our	cake	idea	submission	form	and	process.	Build	and	run	the	
solution	in	Visual	Studio	and	when	the	Silverlight	application	loads	in	the	browser	
input	some	information	and	draw	a	cake	sketch:

5.	 When	we	submit	the	information	to	the	server,	we	will	get	a	MessageBox telling us
that	we	submitted	the	information,	as	shown	in	the	next	screenshot:

Chapter 2

[129]

6.	 Open Windows Explorer	and	navigate	to	the	path	that	we	setup	in	the	WCF	service	
for	storing	the	customer	XML	files,	and	open	the	newly	submitted	file.	We	should	
now	have	the	data	from	the	cake	sketch	and	customer	information	in	our	XML	file.

If	we	open	the	XML	file,	we	should	see	the	saved	customer	and	ink	stroke	information:

<?xml version="1.0" encoding="utf-8"?>

<customer name="John Doe" phone="555-555-5555" email="jdoe@
somewhere.com">

 <eventDate>2009-10-04T16:03:41.0966771-04:00</eventDate>

 <strokes>

 <stroke width="3" height="3">

 <color a="255" r="0" g="0" b="0" />

 <outlineColor a="0" r="0" g="0" b="0" />

 <points>

 <point x="92" y="189" />

 <point x="91" y="192" />

 <point x="90" y="197" />

 <point x="89" y="199" />

 <point x="88" y="208" />

 <point x="88" y="210" />

 <point x="88" y="212" />

 <point x="88" y="213" />

 </points>

 </strokes>

</customer>

What just happened?
We	placed	code	in	the	MainPage.xaml.cs	file	to	ensure	that	all	of	our	text	input	controls	
did	not	have	any	validation	errors,	by	making	use	of	the	Validation	class.

We made use of the CustomerCakeIdea	business	object	to	store	the	customer	input	
and	ink	stroke	data	and	sent	that	information	to	the	server	via	the	WCF	service,	where	we	
saved	the	information	to	an	XML	file	for	later	use	by	the	sales	staff.	We	used	an	anonymous	
delegate	to	handle	the	asynchronous	response	from	the	WCF	service	and	utilized	a	
messagebox	to	inform	the	user	of	the	successful	submission.

Handling Data

[130]

Summary
In	this	chapter,	we	covered	the	process	of	collecting	and	handling	data	input	from	a	
customer	and	saving	that	input	on	the	server.	We	also	looked	at	how	to	bind	data	to	control	
properties	and	how	to	provide	simple	data	validation	using	the	built	in	visual	states	provided	
in	the	textbox	control.	We	discussed	the	following:

 � How	to	create	a	Windows	Communication	Foundation	service

 � How	to	mark	a	business	object	for	serialization	in	WCF

 � How	to	create	an	input	form	in	Silverlight

 � How	to	create	a	data	object	for	use	with	binding

 � How	to	bind	data	from	a	data	object	to	Silverlight	controls

 � How	to	provide	input	validation	using	the	built-in	validation	states

 � How	to	consume	a	WCF	in	Silverlight	and	process	an	asynchronous	request

3
An Introduction to

Data Binding

This chapter is taken from Silverlight 4 Data and
Services Cookbook (Chapter 2) by Gill Cleeren,
Kevin Dockx.

In this chapter, we will cover:

 f Displaying data in Silverlight applications

 f Creating dynamic bindings

 f Binding data to another UI element

 f Binding collections to UI elements

 f Enabling a Silverlight application to automatically update its UI

 f Obtaining data from any UI element it is bound to

 f Using the different modes of data binding to allow persisting data

 f Data binding from Expression Blend 4

 f Using Expression Blend 4 for sample data generation

An Introduction to Data Binding

132

Introduction
Data binding allows us to build data-driven applications in Silverlight in a much easier and
much faster way compared to old-school methods of displaying and editing data. This chapter
takes a look at how data binding works. We'll start by looking at the general concepts of data
binding in Silverlight 4 in this chapter.

Analyzing the term data binding immediately reveals its intentions. It is a technique that
allows us to bind properties of controls to objects or collections thereof.

The concept is, in fact, not new. Technologies such as ASP.NET, Windows Forms, and even
older technologies such as MFC (Microsoft Foundation Classes) include data binding features.
However, WPF's data binding platform has changed the way we perform data binding; it allows
loosely coupled bindings. The BindingsSource control in Windows Forms has to know of
the type we are binding to, at design time. WPF's built-in data binding mechanism does not.
We simply define to which property of the source the target should bind. And at runtime, the
actual data—the object to which we are binding—is linked. Luckily for us, Silverlight inherits
almost all data binding features from WPF and thus has a rich way of displaying data.

A binding is defined by four items:

 f The source or source object: This is the data we are binding to. The data that is
used in data binding scenarios is in-memory data, that is, objects. Data binding
itself has nothing to do with the actual data access. It works with the objects that
are a result of reading from a database or communicating with a service. A typical
example is a Customer object.

 f A property on the source object: This can, for example, be the Name property
of the Customer object.

 f The target control: This is normally a visual control such as a TextBox or
a ListBox control. In general, the target can be a DependencyObject. In
Silverlight 2 and Silverlight 3, the target had to derive from FrameworkElement;
this left out some important types such as transformations.

 f A property on the target control: This will, in some way—directly or after
a conversion—display the data from the property on the source.

The data binding process can be summarized in the following image:

Chapter 3

133

In the previous image, we can see that the data binding engine is also capable of
synchronization. This means that data binding is capable of updating the display of data
automatically. If the value of the source changes, Silverlight will change the value of the
target as well without us having to write a single line of code. Data binding isn't a complete

black box either. There are hooks in the process, so we can perform custom actions on
the data flowing from source to target, and vice versa. These hooks are the converters.

Our applications can still be created without data binding. However, the manual process—that
is getting data and setting all values manually on controls from code-behind—is error prone
and tedious to write. Using the data-binding features in Silverlight, we will be able to write
more maintainable code faster.

In this chapter, we'll explore how data binding works. We'll start by building a small data-driven
application, which contains the most important data binding features, to get a grasp of the
general concepts. We'll also see that data binding isn't tied to just binding single objects to an
interface; binding an entire collection of objects is supported as well. We'll also be looking at the
binding modes. They allow us to specify how the data will flow (from source to target, target to
source, or both). We'll finish this chapter by looking at the support that Blend 4 provides to build
applications that use data binding features.

In the recipes of this chapter, we'll assume that we are building a simple banking application
using Silverlight. Each of the recipes in this chapter will highlight a part of this application where
the specific feature comes into play. The following screenshot shows the resulting Silverlight
banking application:

An Introduction to Data Binding

134

If you want to take a look at the complete application, run the solution found in the
Chapter03/SilverlightBanking folder in the code bundle that is available on
the Packt website.

Displaying data in Silverlight applications
When building Silverlight applications, we often need to display data to the end user.
Applications such as an online store with a catalogue and a shopping cart, an online
banking application and so on, need to display data of some sort.

Silverlight contains a rich data binding platform that will help us to write data-driven
applications faster and using less code. In this recipe, we'll build a form that displays
the data of the owner of a bank account using data binding.

Getting ready
To follow along with this recipe, you can use the starter solution located in the Chapter03/
SilverlightBanking_Displaying_Data_Starter folder in the code bundle available
on the Packt website. The finished application for this recipe can be found in the Chapter03/
SilverlightBanking_Displaying_Data_Completed folder.

How to do it...
Let's assume that we are building a form, part of an online banking application, in which
we can view the details of the owner of the account. Instead of wiring up the fields of the
owner manually, we'll use data binding. To get data binding up and running, carry out the
following steps:

1. Open the starter solution, as outlined in the Getting Ready section.

2. The form we are building will bind to data. Data in data binding is in-memory data,
not the data that lives in a database (it can originate from a database though).
The data to which we are binding is an instance of the Owner class. The following
is the code for the class. Add this code in a new class file called Owner in the
Silverlight project.
public class Owner
{
 public int OwnerId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string ZipCode { get; set; }
 public string City { get; set; }

Chapter 3

135

 public string State { get; set; }
 public string Country { get; set; }
 public DateTime BirthDate { get; set; }
 public DateTime CustomerSince { get; set; }
 public string ImageName { get; set; }
 public DateTime LastActivityDate { get; set; }
 public double CurrentBalance { get; set; }
 public double LastActivityAmount { get; set; }
}

3. Now that we've created the class, we are able to create an instance of it in the
MainPage.xaml.cs file, the code-behind class of MainPage.xaml. In the
constructor, we call the InitializeOwner method, which creates an instance
of the Owner class and populates its properties.
private Owner owner;
public MainPage()
{
 InitializeComponent();
 //initialize owner data
 InitializeOwner();
}
private void InitializeOwner()
{
 owner = new Owner();
 owner.OwnerId = 1234567;
 owner.FirstName = "John";
 owner.LastName = "Smith";
 owner.Address = "Oxford Street 24";
 owner.ZipCode = "W1A";
 owner.City = "London";
 owner.Country = "United Kingdom";
 owner.State = "NA";
 owner.ImageName = "man.jpg";
 owner.LastActivityAmount = 100;
 owner.LastActivityDate = DateTime.Today;
 owner.CurrentBalance = 1234.56;
 owner.BirthDate = new DateTime(1953, 6, 9);
 owner.CustomerSince = new DateTime(1999, 12, 20);
}

An Introduction to Data Binding

136

4. Let's now focus on the form itself and build its UI. For this sample, we're not making
the data editable. So for every field of the Owner class, we'll use a TextBlock. To
arrange the controls on the screen, we'll use a Grid called OwnerDetailsGrid.
This Grid can be placed inside the LayoutRoot Grid.

We will want the Text property of each TextBlock to be bound to a specific
property of the Owner instance. This can be done by specifying this binding
using the Binding "markup extension" on this property.
<Grid x:Name="OwnerDetailsGrid"
 VerticalAlignment="Stretch"
 HorizontalAlignment="Left"
 Background="LightGray"
 Margin="3 5 0 0"
 Width="300" >
 <Grid.RowDefinitions>
 <RowDefinition Height="100"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="*"></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <Image x:Name="OwnerImage"
 Grid.Row="0"
 Width="100"
 Height="100"
 Stretch="Uniform"
 HorizontalAlignment="Left"
 Margin="3"
 Source="/CustomerImages/man.jpg"
 Grid.ColumnSpan="2">
 </Image>
 <TextBlock x:Name="OwnerIdTextBlock"

Chapter 3

137

 Grid.Row="1"
 FontWeight="Bold"
 Margin="2"
 Text="Owner ID:">
 </TextBlock>
 <TextBlock x:Name="FirstNameTextBlock"
 Grid.Row="2"
 FontWeight="Bold"
 Margin="2"
 Text="First name:">
 </TextBlock>
 <TextBlock x:Name="LastNameTextBlock"
 Grid.Row="3"
 FontWeight="Bold"
 Margin="2"
 Text="Last name:">
 </TextBlock>
 <TextBlock x:Name="AddressTextBlock"
 Grid.Row="4"
 FontWeight="Bold"
 Margin="2"
 Text="Adress:">
 </TextBlock>
 <TextBlock x:Name="ZipCodeTextBlock"
 Grid.Row="5"
 FontWeight="Bold"
 Margin="2"
 Text="Zip code:">
 </TextBlock>
 <TextBlock x:Name="CityTextBlock"
 Grid.Row="6"
 FontWeight="Bold"
 Margin="2"
 Text="City:">
 </TextBlock>
 <TextBlock x:Name="StateTextBlock"
 Grid.Row="7"
 FontWeight="Bold"
 Margin="2"
 Text="State:">
 </TextBlock>
 <TextBlock x:Name="CountryTextBlock"
 Grid.Row="8"
 FontWeight="Bold"
 Margin="2"
 Text="Country:">

An Introduction to Data Binding

138

 </TextBlock>
 <TextBlock x:Name="BirthDateTextBlock"
 Grid.Row="9"
 FontWeight="Bold"
 Margin="2"
 Text="Birthdate:">
 </TextBlock>
 <TextBlock x:Name="CustomerSinceTextBlock"
 Grid.Row="10"
 FontWeight="Bold"
 Margin="2"
 Text="Customer since:">
 </TextBlock>
 <TextBlock x:Name="OwnerIdValueTextBlock"
 Grid.Row="1"
 Grid.Column="1"
 Margin="2"
 Text="{Binding OwnerId}">
 </TextBlock>
 <TextBlock x:Name="FirstNameValueTextBlock"
 Grid.Row="2"
 Grid.Column="1"
 Margin="2"
 Text="{Binding FirstName}">
 </TextBlock>
 <TextBlock x:Name="LastNameValueTextBlock"
 Grid.Row="3"
 Grid.Column="1"
 Margin="2"
 Text="{Binding LastName}">
 </TextBlock>
 <TextBlock x:Name="AddressValueTextBlock"
 Grid.Row="4"
 Grid.Column="1"
 Margin="2"
 Text="{Binding Address}">
 </TextBlock>
 <TextBlock x:Name="ZipCodeValueTextBlock"
 Grid.Row="5"
 Grid.Column="1"
 Margin="2"
 Text="{Binding ZipCode}">
 </TextBlock>
 <TextBlock x:Name="CityValueTextBlock"
 Grid.Row="6"
 Grid.Column="1"

Chapter 3

139

 Margin="2"
 Text="{Binding City}">
 </TextBlock>
 <TextBlock x:Name="StateValueTextBlock"
 Grid.Row="7"
 Grid.Column="1"
 Margin="2"
 Text="{Binding State}">
 </TextBlock>
 <TextBlock x:Name="CountryValueTextBlock"
 Grid.Row="8"
 Grid.Column="1"
 Margin="2"
 Text="{Binding Country}">
 </TextBlock>
 <TextBlock x:Name="BirthDateValueTextBlock"
 Grid.Row="9"
 Grid.Column="1"
 Margin="2"
 Text="{Binding BirthDate}">
 </TextBlock>
 <TextBlock x:Name="CustomerSinceValueTextBlock"
 Grid.Row="10"
 Grid.Column="1"
 Margin="2"
 Text="{Binding CustomerSince}">
 </TextBlock>
 <Button x:Name="OwnerDetailsEditButton"
 Grid.Row="11"
 Grid.ColumnSpan="2"
 Margin="3"
 Content="Edit details..."
 HorizontalAlignment="Right"
 VerticalAlignment="Top">
 </Button>
 <TextBlock x:Name="CurrentBalanceValueTextBlock"
 Grid.Row="12"
 Grid.Column="1"
 Margin="2"
 Text="{Binding CurrentBalance}" >
 </TextBlock>
 <TextBlock x:Name="LastActivityDateValueTextBlock"
 Grid.Row="13"
 Grid.Column="1"
 Margin="2"
 Text="{Binding LastActivityDate}" >

An Introduction to Data Binding

140

 </TextBlock>
 <TextBlock x:Name="LastActivityAmountValueTextBlock"
 Grid.Row="14"
 Grid.Column="1"
 Margin="2"
 Text="{Binding LastActivityAmount}" >
 </TextBlock>
</Grid>

5. At this point, all the controls know what property they need to bind to. However, we
haven't specified the actual link. The controls don't know about the Owner instance
we want them to bind to. Therefore, we can use DataContext. We specify the
DataContext of the OwnerDetailsGrid to be the Owner instance. Each control
within that container can then access the object and bind to its properties . Setting
the DataContext in done using the following code:
public MainPage()
{
 InitializeComponent();
 //initialize owner data
 InitializeOwner();
 OwnerDetailsGrid.DataContext = owner;
}

The result can be seen in the following screenshot:

Chapter 3

141

How it works...
Before we take a look at the specifics of data binding, let's see what code we would need to
write if Silverlight did not support data binding. The following is the ManualOwner class and
we will be binding an instance of this class manually:

public class ManualOwner
{
 public int OwnerId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string ZipCode { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Country { get; set; }
 public DateTime BirthDate { get; set; }
 public DateTime CustomerSince { get; set; }
 public string ImageName { get; set; }
 public DateTime LastActivityDate { get; set; }
 public double CurrentBalance { get; set; }
 public double LastActivityAmount { get; set; }
}

The XAML code would look the same, apart from the binding markup extensions that are
absent as we aren't using the data binding functionality. The following is a part of the code
that has no data binding markup extensions:

<TextBlock x:Name="OwnerIdValueTextBlock"
 Grid.Row="1"
 Grid.Column="1"
 Margin="2" >
</TextBlock>
<TextBlock x:Name="FirstNameValueTextBlock"
 Grid.Row="2"
 Grid.Column="1"
 Margin="2" >
</TextBlock>
<TextBlock x:Name="LastNameValueTextBlock"
 Grid.Row="3"
 Grid.Column="1"
 Margin="2" >
</TextBlock>
<TextBlock x:Name="AddressValueTextBlock"
 Grid.Row="4"
 Grid.Column="1"
 Margin="2" >
</TextBlock>

An Introduction to Data Binding

142

Of course, the DataContext would also not be needed. Instead, we would manually have to
link all the TextBlock controls with a property of the ManualOwner from code-behind as
shown in the following code. As can be seen, this is not the most exciting code one can write!

public MainPage()
{
 InitializeComponent();
 //initialize owner data
 InitializeOwner();
 SetOwnerValues();
}
private void SetOwnerValues()
{
 OwnerIdValueTextBlock.Text = owner.OwnerId.ToString();
 FirstNameValueTextBlock.Text = owner.FirstName;
 LastNameValueTextBlock.Text = owner.LastName;
 AddressValueTextBlock.Text = owner.Address;
 //other values go here
}

It's also easy to make errors this way. When a field gets added to the ManualOwner, we need
to remember the places in which we have to update our code manually.

However, we can do better using data binding. Data binding enables us to write less code and
have fewer opportunities to make errors.

Silverlight's data binding features allow us to bind the properties of the Owner instance to the
Text property of the TextBlock controls using the Binding "markup extension". A markup
extension can be recognized by a pair of curly braces ({}). It's basically a signal for the XAML
parser that more needs to be done than simple attribute parsing. In this case, an instance
of the System.Windows.Data.Binding is to be created for data binding to happen. The
created Binding instance will bind the source object with the target control.

Looking back at the XAML code, we find that this binding is achieved for each TextBlock
using the following code:

<TextBlock Text="{Binding CustomerSince}" />

This is, in fact, the shortened format. We could have written it as the following code:

<TextBlock Text="{Binding Path=CustomerSince}" />

The format for the binding is generally the following:

<TargetControl TargetProperty="{Binding SourceProperty,
 SomeBindingProperties}" />

Chapter 3

143

Note that using SomeBindingProperties, more options can be specified when creating t
he binding. For example, we can specify that data should not only flow from source object
to target control, but also vice versa. We'll explore a whole list of extra binding properties
in the next recipes.

Are we missing something? Each control knows what it should bind to, but we haven't
specified the actual source of the data. This is done using the DataContext. We set the
Owner instance to be the DataContext of the Grid containing the controls. All controls
within the Grid can access the data. We'll look at the DataContext in a later recipe.

Finally, there is one important point to note; we can't just bind everything. Basically, there
are two rules we must follow:

1. The target object must be a DependencyObject (System.Windows.
DependencyObject). In Silverlight 2 and Silverlight 3, the target could
be a FrameworkElement instance only. FrameworkElement is lower
in the class hierarchy than DependencyObject. Because of this, some
important objects could not be used in data binding scenarios such as
Transformations. Silverlight 4 has solved this problem.

2. The target property must be a dependency property. Again, don't panic,
as almost all properties on UI controls (such as text, foreground and so on)
are dependency properties.

Dependency properties were introduced with WPF and can be considered
as properties on steroids. They include a mechanism that at any point
in time determines what the value of the property should be, based on
several influences working on the property such as data binding, styling,
and so on. They can be considered as the enabler for animations, data
binding, styling, and so on.
More on dependency properties can be found at http://msdn.
microsoft.com/en-us/library/system.windows.
dependencyproperty.aspx.

There's more...
Instead of creating the Owner instance in code, we can create it from XAML as well.
First, we need to map the CLR namespace to an XML namespace as follows:

xmlns:local="clr-namespace:SilverlightBanking"

An Introduction to Data Binding

144

In the Resources collection of the container (the UserControl), we instantiate the type
like this:

<UserControl.Resources>
 <local:Owner x:Key="localOwner"
 City="London"
 Country="United Kingdom"
 FirstName="John"
 LastName="Smith"
 OwnerId="1234567 ...>
 </local:Owner>
</UserControl.Resources>

The actual binding is almost the same, apart from specifying the source. We are not using the
DataContext now, but we need to use the Source in each binding, referring to the item in
the Resources:

<TextBlock x:Name="OwnerIdValueTextBlock"
 Grid.Row="1"
 Grid.Column="1"
 Margin="2"
 Text="{Binding OwnerId,
 Source={StaticResource localOwner}}" >
</TextBlock>
<TextBlock x:Name="FirstNameValueTextBlock"
 Grid.Row="2"
 Grid.Column="1"
 Margin="2"
 Text="{Binding FirstName,
 Source={StaticResource localOwner}}" >
</TextBlock>
<TextBlock x:Name="LastNameValueTextBlock"
 Grid.Row="3"
 Grid.Column="1"
 Margin="2"
 Text="{Binding LastName,
 Source={StaticResource localOwner}}" >
</TextBlock>

Whether binding from XAML is useful or not depends on the scenario. In most scenarios, we
bind to objects that are created at runtime from code-behind. In this case, binding from XAML
isn't possible.

See also
The DataContext makes its first appearance in this recipe, but we'll look at it in more
detail in the Obtaining data from any UI element it is bound to recipe in this chapter.

Chapter 3

145

Creating dynamic bindings
In the previous recipe, you've learned how to use data binding in XAML. This is often useful
because it allows you to show data easily to your user, for example, showing user information
or a list of products. In this recipe, you'll learn how to do exactly the same in C# code, instead
of XAML. This can be useful in situations where you want to bind a dependency property to the
property of an object that you'll know only at runtime.

Getting ready
For this recipe, we can continue from the solution that was completed in the previous recipe.
Alternatively, you can find the starter solution in the Chapter03/SilverlightBanking_
Dynamic_Bindings_Starter folder in the code bundle that is available on the Packt website.
Also, the completed solution can be found in the Chapter03/SilverlightBanking_
Dynamic_Bindings_Completed folder.

How to do it...
We're going to change the code from the previous recipe, so we can create the bindings in C#,
instead of XAML. To do this, we'll carry out the following steps:

1. Open the solution created in the previous recipe, Displaying data in Silverlight
applications, locate the grid named OwnersDetailsGrid in MainPage.xaml,
and remove the Binding syntax from the XAML code for each TextBlock as
shown in the following code:
<TextBlock x:Name="OwnerIdValueTextBlock"
 Grid.Row="1"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="FirstNameValueTextBlock
 Grid.Row="2"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="LastNameValueTextBlock"
 Grid.Row="3"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="AddressValueTextBlock"
 Grid.Row="4"
 Grid.Column="1"
 Margin="2">

An Introduction to Data Binding

146

</TextBlock>
<TextBlock x:Name="ZipCodeValueTextBlock"
 Grid.Row="5"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="CityValueTextBlock"
 Grid.Row="6"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="StateValueTextBlock"
 Grid.Row="7"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="CountryValueTextBlock"
 Grid.Row="8"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="BirthDateValueTextBlock"
 Grid.Row="9"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="CustomerSinceValueTextBlock"
 Grid.Row="10"
 Grid.Column="1"
 Margin="2">
</TextBlock>

2. Open the code-behind MainPage.xaml.cs file. Here, we're going to
create the same bindings in the C# code. In the constructor, after the
call to InitializeComponent(), add the following code:
OwnerIdValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("OwnerId"));
FirstNameValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("FirstName"));
LastNameValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("LastName"));
AddressValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("Address"));
ZipCodeValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("ZipCode"));
CityValueTextBlock.SetBinding(TextBlock.TextProperty,

Chapter 3

147

 new Binding("City"));
StateValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("State"));
CountryValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("Country"));
BirthDateValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("BirthDate"));
CustomerSinceValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("CustomerSince"));

3. We can now build and run the application, and you'll notice that the correct data is
still displayed in the details form. The result can be seen in the following screenshot:

How it works...
This recipe shows you how to set the binding using C# syntax. Element.SetBinding
expects two parameters, a dependency property and a binding object. The first parameter
defines the DependencyProperty of the element you want to bind. The second parameter
defines the binding by passing a string that refers to the property path of the object to which
you are binding.

An Introduction to Data Binding

148

There's more...
In our example, we've used new Binding("path") as the syntax. The binding object,
however, has different properties that you can set and which can be of interest. A few of
these properties are Converter, ConverterParameter, ElementName, Path, Mode,
and ValidatesOnExceptions.

To know when and how to use these properties, have a look at the other recipes in this
chapter and the next which explain all the possibilities in detail. They are, however, already
mentioned in this recipe to make it clear you can do everything that is required as far as
bindings are concerned in both C# and XAML.

Binding data to another UI element
Sometimes, the value of the property of an element is directly dependent on the value of the
property of another element. In this case, you can create a binding in XAML called an element
binding or element-to-element binding. This binding links both values. If needed, the data
can flow bidirectionally.

In the banking application, we can add a loan calculator that allows the user to select
an amount and the number of years in which they intend to pay the loan back to the
bank, including (of course) a lot of interest.

Getting ready
To follow this recipe, you can either continue with your solution from the previous recipe
or use the provided solution that can be found in the Chapter03/SilverlightBanking_
Element_Binding_Starter folder in the code bundle that is available on the Packt
website. The finished application for this recipe can be found in the Chapter03/
SilverlightBanking_Element_Binding_Completed folder.

How to do it...
To build the loan calculator, we'll use Slider controls. Each Slider is bound to a TextBlock
using an element-to-element binding to display the actual value. Let's take a look at the steps
we need to follow to create this binding:

1. We will build the loan calculator as a separate screen in the application. Add a new
child window called LoanCalculation.xaml. To do so, right-click on the Silverlight
project in the Solution Explorer, select Add | New Item..., and choose Silverlight
Child Window under Visual C#.

Chapter 3

149

2. Within MainPage.xaml, add a Click event on the LoanCalculationButton
as shown in the following code:
<Button x:Name="LoanCalculationButton"
 Click="LoanCalculationButton_Click" />

3. In the code-behind's event handler for this Click event, we can trigger the display
of this new screen with the following code:
private void LoanCalculationButton_Click(object sender,
 RoutedEventArgs e)
{
 LoanCalculation loanCalculation = new LoanCalculation();
 loanCalculation.Show();
}

4. The UI of the LoanCalculation.xaml is quite simple—it contains two Slider
controls. Each Slider control has set values for its Minimum and Maximum values
(not all UI code is included here; the complete listing can be found in the finished
sample code) as shown in the following code:
<Slider x:Name="AmountSlider"
 Minimum="10000"
 Maximum="1000000"
 SmallChange="10000"
 LargeChange="10000"
 Width="300" >
</Slider>
<Slider x:Name="YearSlider"
 Minimum="5"
 Maximum="30"
 SmallChange="1"
 LargeChange="1"
 Width="300"
 UseLayoutRounding="True">
</Slider>

5. As dragging a Slider does not give us proper knowledge of where we are exactly
between the two values, we add two TextBlock controls. We want the TextBlock
controls to show the current value of the Slider control, even while dragging. This
can be done by specifying an element-to-element binding as shown
in the following code:
<TextBlock x:Name="AmountTextBlock"
 Text="{Binding ElementName=AmountSlider, Path=Value}">
</TextBlock>
<TextBlock x:Name="MonthTextBlock"
 Text="{Binding ElementName=YearSlider, Path=Value}">
</TextBlock>

An Introduction to Data Binding

150

6. Add a Button that will perform the actual calculation called CalculateButton
and a TextBlock called PaybackTextBlock to show the results. This can be
done using the following code:
<Button x:Name="CalculateButton"
 Content="Calculate"
 Click="CalculateButton_Click">
</Button>
<TextBlock x:Name="PaybackTextBlock"></TextBlock>

7. The code for the actual calculation that is executed when the Calculate button
is clicked uses the actual value for either the Slider or the TextBlock. This
is shown in the following code:

private double percentage = 0.0345;
private void CalculateButton_Click(object sender,
 RoutedEventArgs e)
{
 double requestedAmount = AmountSlider.Value;
 int requestedYears = (int)YearSlider.Value;
 for (int i = 0; i < requestedYears; i++)
 {
 requestedAmount += requestedAmount * percentage;
 }
 double monthlyPayback =
 requestedAmount / (requestedYears * 12);
 PaybackTextBlock.Text =
 "€" + Math.Round(monthlyPayback, 2);
}

Having carried out the previous steps, we now have successfully linked the value of the
Slider controls and the text of the TextBlock controls. The following screenshot shows
the LoanCalculation.xaml screen as it is included in the finished sample code
containing some extra markup:

Chapter 3

151

How it works...
An element binding links two properties of two controls directly from XAML. It allows creating
a Binding where the source object is another control. For this to work, we need to create a
Binding and specify the source control using the ElementName property. This is shown in
the following code:

<TextBlock Text="{Binding ElementName=YearSlider, Path=Value}" >
</TextBlock>

Element bindings were added in Silverlight 3. Silverlight 2 did not support this type of binding.

There's more...
An element binding can also work in both directions, that is, from source to target and vice
versa. This can be achieved by specifying the Mode property on the Binding and setting it
to TwoWay.

The following is the code for this. In this code, we replaced the TextBlock by a TextBox.
When entering a value in the latter, the Slider will adjust its position:

<TextBox x:Name="AmountTextBlock"
 Text="{Binding ElementName=AmountSlider, Path=Value,
 Mode=TwoWay}" >
</TextBox>

Element bindings without bindings
Achieving the same effect in Silverlight 2—which does not support this feature—is also possible,
but only through the use of an event handler as shown in the following code. Element bindings
eliminate this need:

private void AmountSlider_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{
 AmountSlider.Value = Math.Round(e.NewValue);
 AmountTextBlock.Text = AmountSlider.Value.ToString();
}

See also
Element-to-element bindings can be easily extended to use converters. For more information
on TwoWay bindings, take a look at the Using the different modes of data
binding to allow persisting data recipe in this chapter.

An Introduction to Data Binding

152

Binding collections to UI elements
Often, you'll want to display lists of data in your application such as a list of shopping items, a
list of users, a list of bank accounts, and so on. Such a list typically contains a bunch of items
of a certain type that have the same properties and need to be displayed in the same fashion.

We can use data binding to easily bind a collection to a Silverlight control (such as a ListBox
or DataGrid) and use the same data binding possibilities to define how every item in the
collection should be bound. This recipe will show you how to achieve this.

Getting ready
For this recipe, you can find the starter solution in the Chapter03/SilverlightBanking_
Binding_Collections_Starter folder and the completed solution in the Chapter03/
SilverlightBanking_Binding_Collections_Completed folder in the code bundle
that is available on the Packt website.

How to do it...
In this recipe, we'll create a ListBox bound to a collection of activities. To complete this task,
carry out the following steps:

1. We'll need a collection of some kind. We'll create a new type, that is,
AccountActivity. Add the AccountActivity class to your Silverlight
project as shown in the following code:
public class AccountActivity
{
 public int ActivityId {get; set;}
 public double Amount { get; set; }
 public string Beneficiary { get; set; }
 public DateTime ActivityDate { get; set; }
 public string ActivityDescription { get; set; }
}

Add an ObservableCollection of AccountActivity to MainPage.xaml.cs
using the following code:

private ObservableCollection<AccountActivity>
 accountActivitiesCollection;

Chapter 3

153

2. Now, we'll instantiate accountActivitiesCollection and fill it with data.
To do this, add the following code to MainPage.xaml.cs:
private void InitializeActivitiesCollection()
{
 accountActivitiesCollection = new
 ObservableCollection<AccountActivity>();
 AccountActivity accountActivity1 = new AccountActivity();
 accountActivity1.ActivityId = 1;
 accountActivity1.Amount = -33;
 accountActivity1.Beneficiary = "Smith Woodworking Shop London";
 accountActivity1.ActivityDescription = "Paid by credit card";
 accountActivity1.ActivityDate = new DateTime(2009, 9, 1);
 accountActivitiesCollection.Add(accountActivity1);
 AccountActivity accountActivity2 = new AccountActivity();
 accountActivity2.ActivityId = 2;
 accountActivity2.Amount = 1000;
 accountActivity2.Beneficiary = "ABC Infrastructure";
 accountActivity2.ActivityDescription = "Paycheck September
 2009";
 accountActivity2.ActivityDate = new DateTime(2009, 9, 1);
 accountActivitiesCollection.Add(accountActivity2);
}

This creates a collection with two items. You can add more if you want to.

3. Add the following code to the MainPage constructor to call the method you created
in the previous step:
InitializeActivitiesCollection();

4. We're going to need a control to display these AccountActivity items. To do
this, add a ListBox called AccountActivityListBox. This ListBox defines
a DataTemplate that defines how each AccountActivity is displayed.
<ListBox x:Name="AccountActivityListBox"
 Width="600"
 Grid.Row="1">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150">
 </ColumnDefinition>

An Introduction to Data Binding

154

 <ColumnDefinition Width="330">
 </ColumnDefinition>
 <ColumnDefinitionWidth="100">
 </ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock
 Grid.Row="0"
 Grid.Column="0"
 Grid.RowSpan="2"
 Text="{Binding ActivityDate}">
 </TextBlock>
 <TextBlock
 Grid.Row="0"
 Grid.Column="1"
 Text="{Binding Beneficiary}"
 FontWeight="Bold">
 </TextBlock>
 <TextBlock
 Grid.Row="0"
 Grid.Column="2"
 HorizontalAlignment="Right"
 Text="{Binding Amount}">
 </TextBlock>
 <TextBlock
 Grid.Row="1"
 Grid.Column="1"
 Text="{Binding ActivityDescription}">
 </TextBlock>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

5. In the MainPage constructor, set the ObservableCollection of
AccountActivity you created in step 2 as the ItemsSource
of the ListBox as shown in the following code:
AccountActivityListBox.ItemsSource = accountActivitiesCollection;

6. If we build and run the application now, we'll see that a list of AccountActivity
items is displayed as shown in the following screenshot:

Chapter 3

155

How it works...
The first three steps aren't important for people who have worked with collections
before. A class is created to define the type of items that are held by the collection, which
is initialized and then items are added to it. The default collection type to use in Silverlight
is ObservableCollection. We're using this collection type here. (For more information about
this, have a look at the There's more... section in this recipe.)

The real magic happens in steps 4 and 5. In step 4, we are creating a ListBox,
which has an ItemTemplate property. This ItemTemplate property should contain
a DataTemplate, and it's this DataTemplate that defines how each item of the collection
should be visualized. So, the DataTemplate corresponds to one item of your collection:
one AccountActivity. This means we can use the data binding syntax that binds
to properties of an AccountActivity in this DataTemplate.

When the ItemsSource property of the ListBox gets set to the ObservableCollection
of AccountActivity, each AccountActivity in the collection is evaluated and visualized
as defined in the DataTemplate.

There's more...
An ObservableCollection is the default collection type you'll want to use in a Silverlight
application because it's a collection type that implements the INotifyCollectionChanged
interface. This makes sure that the UI can automatically be updated when the collection
is changed (by adding or deleting an item). More on this can be found in the Enabling a
Silverlight application to automatically update its UI recipe.

The same principle applies for the properties of classes that implement the
INotifyPropertyChanged interface. More on this can be found in the same
recipe, that is, Enabling a Silverlight application to automatically update its UI.

An Introduction to Data Binding

156

In this recipe, we're using a ListBox to visualize our ObservableCollection. However,
every control that inherits the ItemsControl class (directly or indirectly) can be used in
this way, such as a ComboBox, TreeView, DataGrid, WrapPanel, and so on. For more
information on what operations can be performed using DataGrid, have a look at
Chapter 5, The Data Grid.

See also
To learn how an ObservableCollection enables a UI to be automatically updated,
have a look at the Enabling a Silverlight application to automatically update its UI recipe.

Enabling a Silverlight application to
automatically update its UI

In the previous recipes, we looked at how we can display data more easily using data binding
for both single objects as well as collections. However, there is another feature that data
binding offers us for free, that is, automatic synchronization between the target and the
source. This synchronization will make sure that when the value of the source property
changes, this change will be reflected in the target object as well (being a control on the
user interface). This also works in the opposite direction—when we change the value of
a bound control, this change will be pushed to the data object as well. Silverlight's data
binding engine allows us to opt-in to this synchronization process. We can specify if we
want it to work—and if so, in which direction(s)—using the mode of data binding.

The synchronization works for both single objects bound to the UI as well as entire collections.
But for it to work, an interface needs to be implemented in either case.

This synchronization process is what we'll be looking at in this recipe.

Getting ready
If you want to follow along with this recipe, you can either use the code from the previous
recipes or use the provided solution in the Chapter03/SilverlightBanking_Update_
UI_Starter folder in the code bundle that is available on the Packt website. The finished
solution for this recipe can be found in the Chapter03/SilverlightBanking_Update_
UI_Completed folder.

Chapter 3

157

How to do it...
In this recipe, we'll look at how Silverlight does automatic synchronization, both for a single
object and for a collection of objects. To demonstrate both types of synchronization, we'll
use a timer that adds another activity on the account every 10 seconds. A single instance
of the Owner class is bound to the UI. However, the newly added activities will cause the
CurrentBalance, LastActivity, and LastActivityAmount properties of the Owner
class to get updated. Also, these activities on the account will be reflected in the list of
activities. The following are the steps to achieve automatic synchronization:

1. For the data binding engine to notice changes on the source object, the source
needs to send a notification that the value of one of its properties has changed.
By default, the Owner class does not do so. The original Owner class is shown
by the following code:
public class Owner
{
 public int OwnerId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string ZipCode { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Country { get; set; }
 public DateTime BirthDate { get; set; }
 public DateTime CustomerSince { get; set; }
 public string ImageName { get; set; }
 public DateTime LastActivityDate { get; set; }
 public double CurrentBalance { get; set; }
 public double LastActivityAmount { get; set; }
}

2. To make this class support notifications, an interface has to be implemented, namely
the INotifyPropertyChanged interface. This interface defines one event, that is,
the PropertyChanged event. Whenever one of the properties changes, this event
should be raised. The changed Owner class is shown in the following code. (Only
two properties are shown as they are all similar; the rest can be found in the finished
solution in the book sample code.)
public class Owner : INotifyPropertyChanged
{
 private double currentBalance;
 private string firstName;
 public event PropertyChangedEventHandler PropertyChanged;
 public string FirstName

An Introduction to Data Binding

158

 {
 get
 {
 return firstName;
 }
 set
 {
 firstName = value;
 if(PropertyChanged != null)
 PropertyChanged(this, new
 PropertyChangedEventArgs("FirstName"));
 }
 }
 public double CurrentBalance
 {
 get
 {
 return currentBalance;
 }
 set
 {
 currentBalance = value;
 if(PropertyChanged != null)
 PropertyChanged(this, new
 PropertyChangedEventArgs("CurrentBalance"));
 }
 }
}

3. To simulate updates, we'll use a DispatcherTimer in the MainPage. With every tick
of this timer, a new activity on the account is created. We'll count the new value of the
CurrentBalance with every tick and update the value of the LastActivityDate
and LastActivityAmount as shown in the following code:
private DispatcherTimer timer;
private int currentActivityId = 11;
public MainPage()
{
 InitializeComponent();
 //initialize owner data
 InitializeOwner();
 OwnerDetailsGrid.DataContext = owner;
 timer = new DispatcherTimer();
 timer.Interval = new TimeSpan(0, 0, 10);
 timer.Tick += new EventHandler(timer_Tick);

Chapter 3

159

 timer.Start();
}
void timer_Tick(object sender, EventArgs e)
{
 currentActivityId++;
 double amount = 0 - new Random().Next(100);
 AccountActivity newActivity = new AccountActivity();
 newActivity.ActivityId = currentActivityId;
 newActivity.Amount = amount;
 newActivity.Beneficiary = "Money withdrawal";
 newActivity.ActivityDescription = "ATM In Some Dark Alley";
 newActivity.ActivityDate = new DateTime(2009, 9, 18);
 owner.CurrentBalance += amount;
 owner.LastActivityDate = DateTime.Now;
 owner.LastActivityAmount = amount;
}

4. In XAML, the TextBlock controls are bound as mentioned before. If no Mode is
specified, OneWay is assumed. This causes updates of the source to be reflected
in the target as shown in the following code:
<TextBlock x:Name="CountryValueTextBlock"
 Grid.Row="8"
 Grid.Column="1"
 Margin="2"
 Text="{Binding Country}" >
</TextBlock>
<TextBlock x:Name="BirthDateValueTextBlock"
 Grid.Row="9"
 Grid.Column="1"
 Margin="2"
 Text="{Binding BirthDate}" >
</TextBlock>
<TextBlock x:Name="CustomerSinceValueTextBlock"
 Grid.Row="10"
 Grid.Column="1"
 Margin="2"
 Text="{Binding CustomerSince}" >
</TextBlock>

5. If we run the application now, after 10 seconds, we'll see the values changing.
The values can be seen in the following screenshot:

An Introduction to Data Binding

160

6. In the Binding collections to UI elements recipe, we saw how to bind a list
of AccountActivity items to a ListBox. If we want the UI to update
automatically when changes occur in the list (when a new item is added or
an existing item is removed), then the list to which we bind should implement
the INotifyCollectionChanged interface. Silverlight has a built-in list that
implements this interface, namely the ObservableCollection<T>. If we were
binding to a List<T>, then these automatic updates wouldn't work. Working with
an ObservableCollection<T> is no different than working with a List<T>.
In the following code, we're creating the
ObservableCollection<AccountActivity> and adding items to it:
private ObservableCollection<AccountActivity>
 accountActivitiesCollection;
private void InitializeActivitiesCollection()
{
 accountActivitiesCollection = new
 ObservableCollection<AccountActivity>();
 AccountActivity accountActivity1 = new AccountActivity();
 accountActivity1.ActivityId = 1;
 accountActivity1.Amount = -33;
 accountActivity1.Beneficiary = "Smith Woodworking Shop London";
 accountActivity1.ActivityDescription = "Paid by credit card";
 accountActivity1.ActivityDate = new DateTime(2009, 9, 1);
 accountActivitiesCollection.Add(accountActivity1);
}

7. Update the Tick event, so that each new Activity is added to the collection:
void timer_Tick(object sender, EventArgs e)
{
 ...
 AccountActivity newActivity = new AccountActivity();
 ...
 accountActivitiesCollection.Add(newActivity);
 ...
}

8. To bind this collection to the ListBox, we use the ItemsSource property. The
following code can be added to the constructor to create the collection and perform
the binding:

InitializeActivitiesCollection();
AccountActivityListBox.ItemsSource = accountActivitiesCollection;

When we run the application now, we see that all added activities appear in the ListBox
control. With every tick of the Timer, a new activity is added and the UI refreshes automatically.

Chapter 3

161

How it works...
In some scenarios, we might want to view changes to the source object in the user interface
immediately. Silverlight's data binding engine can automatically synchronize the source and
target for us, both for single objects and for collections.

Single objects
If we want the target controls on the UI to update automatically if a property value
of an instance changes, then the class to which we are binding should implement
the INotifyPropertyChanged interface. This interface defines just one event—
PropertyChanged. It is defined in the System.ComponentModel namespace
using the following code:

public interface INotifyPropertyChanged
{
 event PropertyChangedEventHandler PropertyChanged;
}

This event should be raised whenever the value of a property changes. The name
of the property that has changed is passed as the parameter for the instance of
PropertyChangedEventArgs.

A binding in XAML is set to OneWay by default. OneWay allows updates to be passed on to the
target. (For more information on binding modes, refer to the Using the different modes of data
binding to allow persisting data recipe.) If we had set the binding to Mode=OneTime, then
only the initial values would have been loaded.

Now, what exactly happens when we bind to a class that implements this interface? Whenever
we do so, Silverlight's data binding engine will notice this and will automatically start to check
if the PropertyChanged event is raised by an instance of the class. It will react to this event,
thereby resulting in an update of the target.

Collections
Whenever a collection changes, we might want to get updates of this collection as well. In this
example, we want to view the direct information of all the activities on the account. Normally,
we would have placed these in a List<T>. However, List<T> does not raise an event when
items are being added or deleted. Similar to INotifyPropertyChanged, an interface exists
so that a list/collection should implement for data binding to pick up those changes. This
interface is known as INotifyCollectionChanged.

We didn't directly create a class that implements this interface. However, we used an
ObservableCollection<T>. This collection already implemented this interface for us.

Whenever items are being added, deleted, or the collection gets refreshed, an event will be
raised on which the data binding engine will bind itself. As for single objects, changes will be
reflected in the UI immediately.

An Introduction to Data Binding

162

Cleaning up the code
In the code for the Owner class, we have inputted all the properties as shown in the
following code:

public double CurrentBalance
{
 get
 {
 return currentBalance;
 }
 set
 {
 currentBalance = value;
 if(currentBalance != null)
 PropertyChanged(this, new
 PropertyChangedEventArgs("CurrentBalance"));
 }
}

It's a good idea to move the check whether the event is null (which means that there is no one
actually subscribed to the event) and the raising of the event to a separate method as shown
in the following code:

public void OnPropertyChanged(string propertyName)
{
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new
 PropertyChangedEventArgs(propertyName));
 }
}
public double CurrentBalance
{
 get
 {
 return currentBalance;
 }
 set
 {
 if (currentBalance != value)
 {
 currentBalance = value;
 OnPropertyChanged("CurrentBalance");
 }
 }
}

Chapter 3

163

It may also be a good idea to move this method to a base class and have the entities inherit
from this class as shown in the following code:

public class BaseEntity : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 public void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new
 PropertyChangedEventArgs(propertyName));
 }
 }
}
public class Owner : BaseEntity
{
 ...
}

While automatic synchronization is a nice feature that comes along with data binding for
free, it's not always needed. Sometimes it's not even wanted. Therefore, implement the
interfaces that are described here only when the application needs them. It's an
opt-in model.

Obtaining data from any UI element it is
bound to

When a user who is working with your application performs a certain action, it's often
essential to know on what object this action will be executed. For example, if a user clicks on
a Delete button on an item, it's essential that you know which item is clicked so that you can
write the correct code to delete that item. Also, when a user wants to edit an item in a list, it's
necessary that you—the programmer—know which item in the list the user wants to edit.

In Silverlight, there is a very easy mechanism called DataContext that helps us in this task.
In this recipe, we're going to use the DataContext to get the data when we need it.

Getting ready
If you want to follow along with this recipe, you can either use the code from the previous
recipes or use the provided solution in the Chapter03/SilverlightBanking_
Obtaining_Data_Starter folder in the code bundle that is available on the Packt
website. The completed solution for this recipe can be found in the Chapter03/
SilverlightBanking_Obtaining_Data_Completed folder.

An Introduction to Data Binding

164

How to do it...
We're going to create a Details... button for each item in the ListBox containing
AccountActivities. This Details... button will open a new ChildWindow that will display
details about the selected AccountActivity. To achieve this, carry out the following steps:

1. We'll start by opening the solution we've created by following all the steps of the
Binding data to collections recipe. We add a new item to the Silverlight project—a
ChildWindow named ActivityDetailView—and add the following code to the
XAML defining this new control:
<Grid x:Name="LayoutRoot" Margin="2">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
<Grid x:Name="OwnerDetailsGrid">
 <Grid.RowDefinitions>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="*"></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock x:Name="ActivityIdTextBlock"
 Grid.Row="0"
 FontWeight="Bold"
 Margin="2"
 Text="Activity ID:">
 </TextBlock>
 <TextBlock x:Name="BeneficiaryTextBlock"
 Grid.Row="1"
 FontWeight="Bold"
 Margin="2"
 Text="Beneficiary:">
 </TextBlock>

Chapter 3

165

 <TextBlock x:Name="AmountTextBlock"
 Grid.Row="2"
 FontWeight="Bold"
 Margin="2"
 Text="Amount:">
 </TextBlock>
 <TextBlock x:Name="ActivityDateTextBlock"
 Grid.Row="3"
 FontWeight="Bold"
 Margin="2"
 Text="Date:">
 </TextBlock>
 <TextBlock x:Name="DescriptionTextBlock"
 Grid.Row="4"
 FontWeight="Bold"
 Margin="2"
 Text="Description:">
 </TextBlock>
 <TextBlock x:Name="ActivityIdTextBlockValue"
 Grid.Row="0"
 Grid.Column="1"
 Margin="2"
 Text="{Binding ActivityId}" >
 </TextBlock>
 <TextBlock x:Name="BeneficiaryTextBlockValue"
 Grid.Row="1"
 Grid.Column="1"
 Margin="2"
 Text="{Binding Beneficiary}" >
 </TextBlock>
 <TextBlock x:Name="AmountTextBlockValue"
 Grid.Row="2"
 Grid.Column="1"
 Margin="2"
 Text="{Binding Amount}" >
 </TextBlock>
 <TextBlock x:Name="ActivityDateTextBlockValue"
 Grid.Row="3"
 Grid.Column="1"
 Margin="2"
 Text="{Binding ActivityDate}" >
 </TextBlock>
 <TextBlock x:Name="DescriptionTextBlockValue"
 Grid.Row="4"
 Grid.Column="1"
 Margin="2"
 Text="{Binding ActivityDescription}"
 TextWrapping="Wrap">
 </TextBlock>

An Introduction to Data Binding

166

</Grid>
 <Button x:Name="btnOK"
 Content="OK"
 Click="btnOK_Click"
 Width="75"
 Height="23"
 HorizontalAlignment="Right"
 Margin="0,12,0,0"
 Grid.Row="1" />
</Grid>

2. Next, we open ActivityDetailView.xaml.cs and add the following code:
public ActivityDetailView(AccountActivity activity)
{
 InitializeComponent();
 this.DataContext = activity;
}
private void btnOK_Click(object sender, RoutedEventArgs e)
{
 this.DialogResult = true;
}

3. Now, we open MainPage.xaml, locate the ListBox named
AccountActivityListBox, and add a button named btnDetails
to the DataTemplate of that ListBox. This is shown in the following code:
<Button x:Name="btnDetails"
 Grid.Row="1"
 Grid.Column="2"
 HorizontalAlignment="Right"
 Content="Details..."
 Click="btnDetails_Click">
</Button>

4. Add the following C# code to MainPage.xaml.cs to handle the Click event
of the button we've added in the previous step:
private void btnDetails_Click(object sender, RoutedEventArgs e)
{
 ActivityDetailView activityDetailView = new ActivityDetailView
 ((AccountActivity)((Button)sender).DataContext);
 activityDetailView.Show();
}

Chapter 3

167

5. We can now build and run the solution. When you click on the Details... button, you'll
see the details of the selected AccountActivity in a ChildWindow. You can see
the result in the following screenshot:

How it works...
Once the DataContext of a general control has been set (any CLR object can be used
as DataContext), each child item of that control refers to the same DataContext.

For example, if we have a UserControl containing a Grid that has three columns, with
a TextBox in the first two and a Button in the last column, and if the DataContext of
the UserControl gets set to an object of the Person type, then the Grid, TextBox, and
Button would have that same Person object as their DataContext. To be more precise, if
the DataContext of an item hasn't been set, then Silverlight will find out if the parent of that
item in the visual tree has its DataContext set to an object and use that DataContext as
the DataContext of the child item. Silverlight keeps on trickling right up to the uppermost
level of the application.

If you use an ItemsControl such as a ListBox and give it a collection as an ItemsSource,
then the DataContext of that ListBox is the collection you bound it to.

An Introduction to Data Binding

168

Following the same logic, the DataContext of one ListBoxItem is one item from the
collection. In our example, one item is defined by a DataTemplate containing a Grid,
various TextBlocks, and a Button. Due to the fact that Silverlight keeps on trickling up to
look for a valid DataContext, the DataContext of the Grid, all the TextBlocks, and the
Button are the same; they're one item from the ItemsSource collection of the ListBox.

With this in mind, we can now access the data that is bound to any UI element of our
ListBoxItem. The data we need is the DataContext of the button we're clicking.

The click event of this button has a sender parameter—the Button itself. To access
the DataContext, we cast the sender parameter to a Button object. As we know that
the ListBox is bound to an ObservableCollection of AccountActivity, we can
cast the DataContext to type AccountActivity. To show the details window, all we
need to do now is pass this object to the constructor of the details ChildWindow.

See also
The DataContext is important when you're working with data binding as it's the
DataContext of an element that's looked at as the source of the binding properties.
You can learn more about data binding and the various possibilities it offers by looking
at almost any recipe in this chapter.

Using the different modes of data binding
to allow persisting data

Until now, the data has flowed from the source to the target (the UI controls). However, it can
also flow in the opposite direction, that is, from the target towards the source. This way, not
only can data binding help us in displaying data, but also in persisting data.

The direction of the flow of data in a data binding scenario is controlled by the Mode property
of the Binding. In this recipe, we'll look at an example that uses all the Mode options and
in one go, we'll push the data that we enter ourselves to the source.

Getting ready
This recipe builds on the code that was created in the previous recipes, so if you're following
along, you can keep using that codebase. You can also follow this recipe from the provided
start solution. It can be found in the Chapter03/SilverlightBanking_Binding_
Modes_Starter folder in the code bundle that is available on the Packt website. The
Chapter03/SilverlightBanking_Binding_Modes_Completed folder contains
the finished application of this recipe.

Chapter 3

169

How to do it...
In this recipe, we'll build the "edit details" window of the Owner class. On this window, part
of the data is editable, while some isn't. The editable data will be bound using a TwoWay
binding, whereas the non-editable data is bound using a OneTime binding. The Current
balance of the account is also shown—which uses the automatic synchronization—based on
the INotifyPropertyChanged interface implementation. This is achieved using OneWay
binding. The following is a screenshot of the details screen:

Let's go through the required steps to work with the different binding modes:

1. Add a new Silverlight child window called OwnerDetailsEdit.xaml to the
Silverlight project.

2. In the code-behind of this window, change the default constructor—so that it
accepts an instance of the Owner class—as shown in the following code:
private Owner owner;
public OwnerDetailsEdit(Owner owner)
{
 InitializeComponent();
 this.owner = owner;
}

An Introduction to Data Binding

170

3. In MainPage.xaml, add a Click event on the OwnerDetailsEditButton:
<Button x:Name="OwnerDetailsEditButton"
 Click="OwnerDetailsEditButton_Click" >

4. In the event handler, add the following code, which will create a new instance
of the OwnerDetailsEdit window, passing in the created Owner instance:
private void OwnerDetailsEditButton_Click(object sender,
 RoutedEventArgs e)
{
 OwnerDetailsEdit ownerDetailsEdit = new OwnerDetailsEdit(owner);
 ownerDetailsEdit.Show();
}

5. The XAML of the OwnerDetailsEdit is pretty simple. Take a look at the completed
solution (Chapter03/ SilverlightBanking_Binding_Modes_Completed)
for a complete listing. Don't forget to set the passed Owner instance as the
DataContext for the OwnerDetailsGrid. This is shown in the following code:
OwnerDetailsGrid.DataContext = owner;

6. For the OneWay and TwoWay bindings to work, the object to which we are binding
should be an instance of a class that implements the INotifyPropertyChanged
interface. In our case, we are binding an Owner instance. This instance implements
the interface correctly. The following code illustrates this:
public class Owner : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 ...
}

7. Some of the data may not be updated on this screen and it will never change. For this
type of binding, the Mode can be set to OneTime. This is the case for the OwnerId
field. The users should neither be able to change their ID nor should the value of this
field change in the background, thereby requiring an update in the UI. The following is
the XAML code for this binding:
<TextBlock x:Name="OwnerIdValueTextBlock"
 Text="{Binding OwnerId, Mode=OneTime}" >
</TextBlock>

8. The CurrentBalance TextBlock at the bottom does not need to be editable by
the user (allowing a user to change his or her account balance might not be beneficial
for the bank), but it does need to change when the source changes. This is the
automatic synchronization working for us and it is achieved by setting the Binding
to Mode=OneWay. This is shown in the following code:
<TextBlock x:Name="CurrentBalanceValueTextBlock"
 Text="{Binding CurrentBalance, Mode=OneWay}" >
</TextBlock>

Chapter 3

171

9. The final option for the Mode property is TwoWay. TwoWay bindings allow us to persist
data by pushing data from the UI control to the source object. In this case, all other
fields can be updated by the user. When we enter a new value, the bound Owner
instance is changed. TwoWay bindings are illustrated using the following code:

<TextBox x:Name="FirstNameValueTextBlock"
 Text="{Binding FirstName, Mode=TwoWay}" >
</TextBox>

We've applied all the different binding modes at this point. Notice that when you change
the values in the pop-up window, the details on the left of the screen are also updated.
This is because all controls are in the background bound to the same source object as
shown in the following screenshot:

How it works...
When we looked at the basics of data binding, we saw that a binding always occurs between
a source and a target. The first one is normally an in-memory object, but it can also be a UI
control. The second one will always be a UI control.

Normally, data flows from source to target. However, using the Mode property, we have the
option to control this.

A OneTime binding should be the default for data that does not change when displayed to
the user. When using this mode, the data flows from source to target. The target receives
the value initially during loading and the data displayed in the target will never change. Quite
logically, even if a OneTime binding is used for a TextBox, changes done to the data by the
user will not flow back to the source. IDs are a good example of using OneTime bindings. Also,
when building a catalogue application, OneTime bindings can be used, as we won't change
the price of the items that are displayed to the user (or should we...?).

An Introduction to Data Binding

172

We should use a OneWay binding for binding scenarios in which we want an up-to-date display
of data. Data will flow from source to target here also, but every change in the values of the
source properties will propagate to a change of the displayed values. Think of a stock market
application where updates are happening every second. We need to push the updates to the
UI of the application.

The TwoWay bindings can help in persisting data. The data can now flow from source
to target, and vice versa. Initially, the values of the source properties will be loaded in
the properties of the controls. When we interact with these values (type in a textbox,
drag a slider, and so on), these updates are pushed back to the source object. If
needed, conversions can be done in both directions.

There is one important requirement for the OneWay and TwoWay bindings. If we want
to display up-to-date values, then the INotifyPropertyChanged interface should be
implemented. The OneTime and OneWay bindings would have the same effect, even if
this interface is not implemented on the source. The TwoWay bindings would still send the
updated values if the interface was not implemented; however, they wouldn't notify about
the changed values. It can be considered as a good practice to implement the interface,
unless there is no chance that the updates of the data would be displayed somewhere
in the application. The overhead created by the implementation is minimal.

There's more...
Another option in the binding is the UpdateSourceTrigger. It allows us to specify when a
TwoWay binding will push the data to the source. By default, this is determined by the control.
For a TextBox, this is done on the LostFocus event; and for most other controls, it's done
on the PropertyChanged event.

The value can also be set to Explicit. This means that we can manually trigger the update
of the source.

BindingExpression expression = this.FirstNameValueTextBlock.
 GetBindingExpression(TextBox.TextProperty);
expression.UpdateSource();

See also
Changing the values that flow between source and target can be done using converters.

Chapter 3

173

Data binding from Expression Blend 4
While creating data bindings is probably a task mainly reserved for the developer(s) in the
team, Blend 4—the design tool for Silverlight applications—also has strong support for creating
and using bindings.

In this recipe, we'll build a small data-driven application that uses data binding. We won't
manually create the data binding expressions; we'll use Blend 4 for this task.

How to do it...
For this recipe, we'll create a small application from scratch that allows us to edit the details
of a bank account owner. In order to achieve this, carry out the following steps:

1. We'll need to open Blend 4 and go to File | New Project.... In the New Project
dialog box, select Silverlight 4 Application + Website. Name the project
SilverlightOwnerEdit and click on the OK button. Blend will now create
a Silverlight application and a hosting website.

2. We'll start by adding a new class called Owner. Right-click on the Silverlight project
and select Add New Item.... In the dialog box that appears, select the Class template
and click on the OK button. The following is the code for the Owner class and it can
be edited inside Blend 4:
public class Owner
{
 public string Name {get; set;}
 public int CurrentBalance {get;set;}
 public DateTime LastActivityDate {get;set;}
}

3. In the code-behind of MainPage.xaml, create an instance of the Owner class and
set it as the DataContext for the LayoutRoot of the page.
public partial class MainPage : UserControl
{
 public Owner owner;
 public MainPage()
 {
 // Required to initialize variables
 InitializeComponent();
 owner = new Owner()
 {
 Name="Gill Cleeren",
 CurrentBalance=300,

An Introduction to Data Binding

174

 LastActivityDate=DateTime.Now.Date
 };
 LayoutRoot.DataContext = owner;
 }
}

4. Build the solution, so that the Owner class is known to Blend and it can use the class
in its dialog boxes.

5. Now, in the designer, add a Grid containing three TextBlock and three TextBox
controls as shown in the following screenshot:

6. We're now ready to add the data binding functionality. Select the first TextBox and
in the Properties window, search for the Text property. Instead of typing a value, click
on the small square for the Advanced property options next to the text field. Select
Data Binding... in the menu. The following screenshot shows how to access this option:

Chapter 3

175

7. In the dialog box that appears, we can now couple the Name property of the Owner
type to the Text property of the TextBox. Under the Explicit Data Context tab,
mark the Use a custom path expression checkbox and enter Name as the value.
Click on the down arrow so that the advanced properties are expanded and mark
TwoWay as the Binding direction. The other properties are similar as shown in the
following screenshot:

How it works...
Let's look at the resulting XAML code for a moment. Blend created the bindings for us
automatically taking into account the required options such as Mode=TwoWay.
This is shown in the following code:

<TextBox Grid.Column="1"
 Text="{Binding Name, Mode=TwoWay,
 UpdateSourceTrigger=Default}"
 TextWrapping="Wrap"/>
<TextBox Grid.Column="1"
 Grid.Row="2"
 Text="{Binding LastActivityDate, Mode=TwoWay,
 UpdateSourceTrigger=Default}"
 TextWrapping="Wrap"/>
<TextBox Grid.Column="1"

An Introduction to Data Binding

176

 Grid.Row="1"
 Text="{Binding CurrentBalance, Mode=TwoWay,
 UpdateSourceTrigger=Default}"
 TextWrapping="Wrap"/>

When we have to create many bindings, it's often easier to do so through these dialog boxes
than typing them manually in Visual Studio.

Using Expression Blend 4 for sample data
generation

Expression Blend 4 contains a feature that is capable of generating the sample data while
developing an application. It visualizes the data on which we are working and provides us
with an easier way to create an interface for a data-driven application. This feature was
added to Blend in version 3.

How to do it...
In this recipe, we'll build a small management screen for the usage of the bank employees.
It will show an overview of the bank account owners. We wouldn't want to waste time with
the creation of (sample) data, so we'll hand over this task to Blend. The following are the
steps we need to follow for the creation of this data:

1. Open Blend 4 and go to File | New Project.... In the dialog box that
appears, select Silverlight 4 Application + Website. Name the project as
SilverlightBankingManagement and click on the OK button. Blend will now
create a Silverlight application and a hosting website.

2. With MainPage.xaml open in either the Design View or the Split View, go to the
Data window. In this window, click on the Add sample data source icon and select
Define New Sample Data… as shown in the following screenshot:

3. In the Define New Sample Data dialog box that appears, specify the Data source
name as OwnerDataSource. We have the option to either embed this data source
in the usercontrol (This document) or make it available for the entire project (Project).
Select the latter option by selecting the Project radio button and clicking on the
OK button.

Chapter 3

177

The last option in this window—Enable sample data when application is running—
allows us to switch off the sample data while running the compiled application. If we
leave the checkbox checked, then the sample data will be used for the design time
as well as the runtime. We'll keep this option enabled.

Blend will now generate the data source for us. The result is shown in the
following screenshot:

4. By default, a Collection is created and it contains items with two properties. Each
property has a type. Start by adding two more properties by clicking on the + sign
next to the Collection and select the Add simple property option.

Rename Property1 to Name. Now, change the type options by clicking on the Change
property type icon and selecting Name as the format. The other properties are similar
and are shown in the following screenshot:

5. For the Image type, we can select a folder that contains images. Blend will then
copy these images to the SampleData subfolder inside the project.

6. We're now ready to use the sample data—for example—in a master-detail scenario.
A ListBox will contain all the Owner data from which we can select an instance.
The details are shown in a Grid using some TextBlock controls. Make sure that
the Data window is set to List Mode and drag the collection on to the design surface.
This will trigger the creation of a listbox in which the items are formatted, so we can
see the details.

An Introduction to Data Binding

178

7. Now, to view the details, we have to set the Data window to the Details Mode. Then,
instead of dragging the collection, we select the properties that we want to see in the
detail view and drag those onto the design surface. The result should be similar to
the following screenshot:

Thus, Blend created all the data binding code in XAML as well as the sample data. For each
different type, it generated different values.

4
Advanced Data

Binding

This chapter is taken from Silverlight 4 Data and
Services Cookbook (Chapter 3) by Gill Cleeren,
Kevin Dockx.

In this chapter, we will cover:

 f Hooking into the data binding process

 f Replacing converters with Silverlight 4 BindingBase properties

 f Validating data bound input

 f Validating data input using attributes

 f Validating using IDataErrorInfo and INotifyDataErrorInfo

 f Using templates to customize the way data is shown by controls

 f Building a change-aware collection type

 f Combining converters, data binding, and DataContext into a custom DataTemplate

Advanced Data Binding

180

Introduction
The data binding engine gives us many points where we can extend or change this process.
The most obvious hooks we have in data binding are converters. Converters allow us to grab
a value when it's coming in from a source object, perform some action on it, and then pass
it to the target control. The most obvious action that we can take is formatting, though many
more are possible. We'll look at converters and their possibilities in this chapter.

Data binding also allows us to perform validations. When entering data in data-bound controls
such as a TextBox, it's important that we validate the data before it's sent back to the source.
Silverlight 4 has quite a few options to perform this validation. We'll look at these in this chapter
as well.

We can also change the way our data is being displayed using data templates. Data templates
allow us to override the default behavior of controls such as a ListBox. We will build some
templates in this chapter to complete the look of the Silverlight Banking application.

This chapter continues to use the same sample application, Silverlight Banking. If you
want to run the completed application, take a look at the code within the Chapter03/
SilverlightBanking folder in the code bundle that is available on the Packt website.

Hooking into the data binding process
We may want to perform some additional formatting for some types of data that we want to
display using data binding. Think of a date. Normally, a date is stored in the database as a
combination of a date and time. However, we may only want to display the date part—perhaps
formatted according to a particular culture. Another example is a currency; the value is
normally stored in the database as a double. In an application, we may want to format it
by putting a dollar or a euro sign in front of it.

Silverlight's data binding engine offers us a hook in the data binding process, thereby allowing
us to format, change, or do whatever we want to do with the data in both directions. This is
achieved through the use of a converter.

Getting ready
This recipe builds on the code that was created in the recipes of the previous chapter. If you
want to follow along, you can keep using your own code or use the provided starter solution
that is located in the Chapter04/SilverlightBanking_Converters_Starter folder.
The Chapter04/SilverlightBanking_Converters_Completed folder contains the
completed solution for this recipe.

Chapter 4

181

How to do it...
In this recipe, we'll build two converters. We'll start with a currency converter. This is quite
basic. It will take a value and format it as a currency using the currency symbol based on
the current culture. The second converter will be more advanced; it will convert from a
numeric value to a color.

In the sample code of the book, some more converters have been added.

Carry out the following steps in order to get converters to work in a Silverlight application:

1. We'll start by creating the currency converter. A converter is nothing more than a
class, in this sample called CurrencyConverter, which implements the IValueConverter
interface. This interface defines two methods, that is, Convert and ConvertBack.
Place the CurrencyConverter class in a folder called Converters within the
Silverlight project. The following is the code for this class:
public class CurrencyConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 public object ConvertBack(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
}

2. The code in the Convert method will be applied to the data when it flows from the
source to the target. Similarly, the ConvertBack method is called when the data
flows from the target to the source, so when a TwoWay binding is active. The original
value is passed in the value parameter. We have access to the current culture
via the culture parameter. Also, we add a "minus" sign to the string value that
is returned if the value is less than zero. This is shown in the following code:
public object Convert(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
{
 double amount = double.Parse(value.ToString());
 if (amount < 0)
 return "- " + amount.ToString("c", culture);
 else
 return amount.ToString("c", culture);
}

Advanced Data Binding

182

3. Simply creating the converter doesn't do anything. An instance of the converter has
to be created and passed along with the binding using the Converter property. This
is to be done in the resources collection of the XAML file in which we will be using the
converter or in App.xaml. The following code shows this instantiation in
App.xaml. Note that we also need to add the namespace mapping.
<Application
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="SilverlightBanking.App"
 xmlns:converters="clr-namespace:SilverlightBanking.Converters">
 <Application.Resources>
 <converters:CurrencyConverter x:Key="localCurrencyConverter">
 </converters:CurrencyConverter>
 </Application.Resources>
</Application>

4. After that, we specify this converter as the value for the Converter property in the
Binding declaration. This is shown in the following code:
<TextBlock Text="{Binding Amount,
 Converter={StaticResource localCurrencyConverter}}"
 FontSize="12"
 FontWeight="Bold">
</TextBlock>

5. While this simple converter converts a double into a string, more advanced conversions
can be performed. What if, for example, we want to color negative amounts red and
positive amounts green? The Convert method looks quite similar, except that it now
returns a SolidColorBrush. This is shown in the following code:
public object Convert(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
{
 double amount = (double)value;
 if (amount >= 0)
 return new SolidColorBrush(Colors.Green);
 else
 return new SolidColorBrush(Colors.Red);
}

6. This type of converter can be applied in a Binding expression on a property that
expects a SolidColorBrush, for example, the Foreground. This is shown in the
following code:

<TextBlock Text="{Binding Amount,
 Converter={StaticResource localCurrencyConverter}}"
 Foreground="{Binding Amount,

Chapter 4

183

 Converter={StaticResource
 localAmountToColorConverter}}">
</TextBlock>

The result of the the conversion can be seen in the following screenshot. The balance is
positive, so the value is colored green.

How it works...
A converter is a handy way of allowing us to get a hook in the data binding process. It allows
us to change a value to another format or even another type (for example, a double value into
a SolidColorBrush).

A converter is nothing more than a class that implements an interface called
IValueConverter. This interface defines two methods: Convert and ConvertBack.
When a binding specifies a converter, the Convert method is called automatically when
the data flows from the source to the target. The same holds true for the ConvertBack
method: this method is applied when the binding is happening, with data flowing from the
target to the source. Thus the latter happens when the Mode of the binding is set to TwoWay
and can be used to convert a value back into a format that is understood by the data store.

The ConvertParameter
The Convert as well as the ConvertBack methods of the IValueConverter interface
also define an extra parameter that can be used to pass extra information into the converter
to influence the conversion process. Take for example a DateConverter, which would
require an extra parameter that defines the formatting of the date to be passed in. The
following code shows the Convert method of such a converter:

public object Convert(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
{
 DateTime dt = (DateTime)value;
 return dt.ToString(parameter.ToString(), culture);
}

Advanced Data Binding

184

The ConvertParameter is used in the Binding expression to pass the value to the
parameter. This is shown in the following code:

<TextBlock x:Name="CustomerSinceValueTextBlock"
 Text="{Binding CustomerSince,
 Converter={StaticResource localDateConverter},
 ConverterParameter='dd-MMM-yyyy'}" >
</TextBlock>

Here, we are specifying to the converter that a date should be formatted as dd-MMM-yyyy.

Displaying images based on a URL with converters
Another nice way of using a converter is shown in the following code. Let's assume that in
the database, we store the name of an image of the user. Of course, we want to display the
image, and not the name of the image. The Source property of an Image control is of type
ImageSource. The class best suited for this is the BitmapImage. The converter that
we need for this type of conversion is shown in the following code:

public class ImageConverter:IValueConverter
{
 private string baseUri = "http://localhost:1234/CustomerImages/";
 public object Convert(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
 {
 if (value != null)
 {
 Uri imageUri = new Uri(baseUri + value);
 return new BitmapImage(imageUri);
 }
 else
 return "";
 }
 ...
}

Using the converter in the XAML binding code is similar.

Replacing converters with Silverlight 4
BindingBase properties

In the previous recipe, we saw that using converters in data binding expressions can help us
with a variety of things we want to do with the value that's being bound. It helps us in formatting
the value as well as switching between colors. However, creating the converter can be a bit
cumbersome for some tasks. To use it, we have to create the class that implements

Chapter 4

185

the IValueConverter interface, instantiate it, and change the binding expression. Silverlight 4
has added some properties on the BindingBase class that can relieve us from writing
a converter in some occasions.

In this recipe, we'll look at how these three new properties, namely TargetNullValue,
StringFormat, and FallbackValue, can be used instead of writing a converter.

Getting ready
This recipe builds on the code that was created in the previous recipe. If you want to follow
along with this recipe, you can continue using your own code. Alternatively, you can use the
start solution that can be found in the Chapter04/SilverlightBanking_BindingBase_
Properties_Starter folder. The completed solution for this recipe can be found in the
Chapter04/SilverlightBanking_BindingBase_Properties_Completed folder.

How to do it...
The newly added options that are at our disposal in Silverlight 4 allow us to skip writing a
converter during specific scenarios. We wrote quite a few in the previous example, some of
which can be replaced by applying one or more of the new properties on the data binding
expression. Let's take a look at how we can use these properties.

1. Let's first take a look at the TargetNullValue property. The value that we
specify for TargetNullValue will be applied in the data binding expression
if the value of the property is null. For the purpose of this example, let's say that
a customer can also leave the bank. This DateTime value can be stored in the
NoMoreCustomerSince property, which is a part of the Owner class. Add the
following field and accompanying property to the Owner class:
private DateTime? noMoreCustomerSince;
public DateTime? NoMoreCustomerSince
{
 get
 {
 return noMoreCustomerSince;
 }
 set
 {
 if (noMoreCustomerSince != value)
 {
 noMoreCustomerSince = value;
 OnPropertyChanged("NoMoreCustomerSince");
 }
 }
}

Advanced Data Binding

186

3. For active customers, this value will be null. If we do not change anything in the
initialization of the Owner instance in the MainPage.xaml.cs, then the value will
be equal to null—that is, its default value. To display a value in the UI in any manner,
we can use TargetNullValue and set it to "NA" (Not Available) using the following
data binding expression:
<TextBlock x:Name="NoMoreCustomerSinceValueTextBlock"
 Text="{Binding NoMoreCustomerSince,
 TargetNullValue='NA'}" >
</TextBlock>

4. Very often, converters need to be written to format a value (as we did in the previous
recipe). Formatting a currency or formatting a date is a task that we often encounter
in business applications. Some of these can be replaced with another property of the
BindingBase, that is, the StringFormat property. Instead of writing a converter
to format all the dates, we use this property as shown in the following code. (We're
showing CustomerSince here, but all others are similar.)
<TextBlock x:Name="CustomerSinceValueTextBlock
 Text="{Binding CustomerSince, StringFormat='MM-dd-yyyy'}" >
</TextBlock>

5. StringFormat can also be used for currency formatting. The LastActivityAmount
is formatted using this property as shown in the following code:
<TextBlock x:Name="LastActivityAmountValueTextBlock"
 Text="{Binding LastActivityAmount, StringFormat=C}" >
</TextBlock>

6. If we're binding to a property that does not exist, then the data binding engine will
swallow the error and not display anything. This can be annoying in some situations.
In such situations, the FallbackValue property can help. For example, assume
that we have a class called PreferredOwner that inherits from Owner as shown
in the following code:
public class PreferredOwner: Owner
{
 private DateTime preferredSince { get; set; }
 public DateTime PreferredSince
 {
 get
 {
 return preferredSince;
 }
 set
 {
 if (preferredSince != value)
 {

Chapter 4

187

 preferredSince = value;
 OnPropertyChanged("PreferredSince");
 }
 }
 }
}

7. A situation may arise when an interface would bind to either an instance of
Owner or PreferredOwner. The PreferredSince property is available only
on PreferredOwner. If we are binding an Owner instance, no value would be
displayed for this property. The FallbackValue can be used in this case to
indicate that if the property is not found, a fallback value should be used. This
can be seen in the following code:

<TextBlock x:Name="PreferredSinceValueTextBlock"
 Text="{Binding PreferredSince,
 StringFormat='MM-dd-yyyy', FallbackValue='NA'}" >
</TextBlock>

With these three new properties in action, the UI looks like the following screenshot when an
Owner instance is bound.

How it works...
Converters are a way of hooking into the data binding process. They allow operations to
be executed on the data before it is displayed. While converters can be used for all kinds
of operations, they require quite some code to be written.

In Silverlight 4, the BindingBase class—the abstract base class for the Binding class—has
been extended with some properties that can do some particular tasks for which we would
have needed to write a converter.

The TargetNullValue property allows us to react to the value of the source property being
null. If the value for the property is null, then the value specified for the TargetNullValue
will be displayed.

Advanced Data Binding

188

StringFormat makes it possible to perform the formatting of the value of the source
property. Formatting parameters such as percentage, currency and dates can be formatted
without the need of writing a converter.

Finally, the FallbackValue allows us to display a value when the data binding fails. Assume
that we are binding to a property that is not defined on the type. Data binding will fail, but it
will not cause an exception. No value will be displayed, but the application will keep running.
If we specify the FallbackValue, this value will be displayed.

See also
In the previous recipe, we looked at writing converters.

Validating databound input
Validation of your data is a requirement for almost every application. By using validation, you
make sure that no invalid data is (eventually) persisted in your datastore. When you don't
implement validation, there is a risk that a user will input wrongly formatted or plain incorrect
data on the screen and even persist this data in your datastore. This is something you should
definitely avoid.

In this recipe, we'll learn about implementing client-side validation on the bound fields in the UI.

Getting ready
To get ready for this recipe, you can either use the code from one of the previous recipes or
use the provided starter solution in the Chapter04/SilverlightBanking_Validation_
Starter folder in the code bundle available on the Packt website. The completed solution
for this recipe can be found in the Chapter04/SilverlightBanking_Validation_
Completed folder.

How to do it...
We're going to add validation logic to the OwnerDetailsEdit screen you created by following
all the steps of the Using the different modes of data binding to allow persisting data recipe
in the previous chapter. (Alternatively, you can use the starter solution.) To achieve this, we'll
carry out the following steps:

1. Open the solution that you created in the Using the different modes of data
binding to allow persisting data recipe (or the starter solution) and locate
the OwnerDetailsEdit.xaml file. In this XAML file, locate and change the
LastNameValueTextBlock and the BirthDateValueTextBlock by adding
NotifyOnValidationError=true and ValidatesOnExceptions=true to
the Binding syntax. This is shown in the following code:

Chapter 4

189

<TextBox x:Name="LastNameValueTextBlock"
 Grid.Row="3"
 Grid.Column="1"
 Margin="2"
 Text="{Binding LastName, Mode=TwoWay,
 NotifyOnValidationError=true,
 ValidatesOnExceptions=true}" >
</TextBox>
<TextBox x:Name="BirthDateValueTextBlock"
 Grid.Row="9"
 Grid.Column="1"
 Margin="2"
 Text="{Binding BirthDate, Mode=TwoWay,
 NotifyOnValidationError=true,
 ValidatesOnExceptions=true}" >
</TextBox>

2. Add a handler to the surrounding Grid, that is, OwnerDetailsGrid. This is shown
in the following code:
<Grid x:Name="OwnerDetailsGrid"
 BindingValidationError="OwnerDetailsGrid_
 BindingValidationError">

3. Add the following C# code to OwnerDetailsEdit.xaml.cs. This implements
the handler we defined in the previous step.
private void OwnerDetailsGrid_BindingValidationError(object
 sender, ValidationErrorEventArgs e)
{
 if (e.Action == ValidationErrorEventAction.Added)
 OwnerDetailsGrid.Background = new
 SolidColorBrush(Color.FromArgb(25, 255, 0, 0));
 if (e.Action == ValidationErrorEventAction.Removed)
 OwnerDetailsGrid.Background = new
 SolidColorBrush(Color.FromArgb(0, 0, 0, 0));
}

4. Locate the Owner.cs file, which represents the type of DataContext of
the OwnerDetailsEdit control. Add the following code to the set accessor
of LastName to make sure that a validation error is thrown when needed.
set
{
 if (lastName != value)
 {
 if (value.Length > 20)
 {

Advanced Data Binding

190

 throw new Exception("Length must be <= 20");

 else
 {
 lastName = value;
 OnPropertyChanged("LastName");
 }
 }
}

5. We can now build and run the solution. When invalid data is inputted (a string
that's too long for the Last name field or a value that isn't in a correct format
for the Birthdate field), a validation error will occur.

The result can be observed in the following screenshot:

How it works...
Silverlight automatically reports a validation error in a few cases. These include when
type conversion fails on binding, when an exception is thrown in a property's set accessor,
or when a value doesn't correspond to the applied validation attribute (more on this can be
found in the next recipe, Validating data input using attributes).

In our example, we're throwing an exception in the property's set accessor. This means
Silverlight will report the error. Next to that, Silverlight will also report an error when you try
to input a value that doesn't correspond with the underlying type (you can try to input an
invalid date value in the Birthdate: field)

Chapter 4

191

If you look at the Binding syntax in XAML, you'll see that we've added a few things, that
is, ValidatesOnExceptions and NotifyOnValidationError are set to true.

Setting ValidatesOnExceptions to true makes sure that Silverlight will provide visual
feedback for the validation errors it reports. Setting NotifyOnValidationError to
true makes sure that the binding engine raises the BindingValidationError event
when a validation error occurs.

In the parent grid, this BindingValidationError event gets handled. We've written code
that will change the background color of the complete box if an error occurs (this is optional).

Client-side validation is easily implemented by bringing these three principles together in the
example you've just created.

There's more...
Along with reporting a validation error when type conversion fails on binding or when an
exception is thrown in a property's set accessor, Silverlight also reports an error when a
value doesn't correspond to the applied validation attribute. More on this can be found
in the next recipe, Validating data input using attributes.

As you've noticed while running the solution we've created, Silverlight has a default style
for showing the validation error. This can, of course, be customized by changing the control's
default ControlTemplate. More information on customizing templates can be found in the
Using templates to customize the way data is shown by controls recipe.

And last but not least, we can provide more detailed validation reporting by using the
ValidationSummary control. This ValidationSummary control will automatically
receive the BindingValidationError events of its parent container. On each
BindingValidationError, the ValidationSummary receives a newly created
ValidationSummaryItem (added to ValidationSummary.Errors) with corresponding
Message, MessageHeader, ItemType, and Context properties. Next to that, a new
ValidationSummaryItemSource is created (and added to ValidationSummaryItem.
Sources) with corresponding Control and PropertyName properties.

To use a ValidationSummary in the example created in this recipe, we have to add a
reference to System.Windows.Controls.Data.Input in the Silverlight project and
add the following code to the OwnerDetailsEdit control:

xmlns:datainput="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Data.Input"

Advanced Data Binding

192

This will make sure that we can use the ValidationSummary. Next, we'll have to locate
the OK button and add a ValidationSummary control. This is shown in the following code:

<datainput:ValidationSummary Grid.Row="1"
 Margin="2,5,2,5">
</datainput:ValidationSummary>
<Button x:Name="OKButton"
 Content="OK"
 Click="OKButton_Click"
 Width="75"
 Height="23"
 HorizontalAlignment="Right"
 Margin="0,12,0,0"
 Grid.Row="2" />

When we run our solution and input invalid data, a validation summary will be shown. This
can be seen in the following screenshot:

See also
If you want to learn more about validation, you might want to take a look at the next two
recipes, Validating data input using attributes and Validating using IDataErrorInfo and
INotifyDataErrorInfo. To learn more about two-way data binding, have a look at the Using the
different modes of data binding to allow persisting data recipe in Chapter 3, An Introduction
to Data Binding

Chapter 4

193

Validating data input using attributes
Validation of your data is a requirement for almost every application. By using validation,
you make sure that no invalid data is (eventually) persisted in your datastore. When you don't
implement validation, there's a risk that a user will input wrongly formatted or plain incorrect
data on the screen and even persist this data in your datastore. This is something you should
definitely avoid.

In this recipe, we'll learn about implementing client-side validation on the bound fields in the
UI using attributes (Data Annotations).

Getting ready
To get ready for this recipe, you can either use the code from the previous recipe or use
the provided starter solution in the Chapter04/SilverlightBanking_Validation_
Attributes_Starter folder in the code bundle available on the Packt website. The
completed solution for this recipe can be found in the Chapter04/SilverlightBanking_
Validation_Attributes_Completed folder.

How to do it...
In this recipe, we're going to replace the validation on LastName by using attributes or, to be
more specific, by using data annotations. To achieve this, we'll carry out the following steps:

1. We have to add a reference to System.ComponentModel.DataAnnotations in
our Silverlight project.

2. Locate Owner.cs and add the following using statement:
using System.ComponentModel.DataAnnotations;

3. Next, we should locate the LastName property and change it by adding a data
annotation attribute to limit the maximum length. Add the following code to
actually validate this property:
[StringLength(20, ErrorMessage="Length must be <= 20")]
public string LastName
{
 get
 {
 return lastName;
 }
 set
 {
 if (lastName != value)
 {

Advanced Data Binding

194

 Validator.ValidateProperty(value,
 new ValidationContext(this, null, null)
 { MemberName ="LastName" });
 lastName = value;
 OnPropertyChanged("LastName");
 }
 }
}

4. We can now build and run the solution. When a string having more than 20
characters in length is inputted in the Last name field, the correct error message
will be shown. This can be seen in the following screenshot:

How it works...
Silverlight automatically reports a validation error in a few cases such as when type
conversion fails on binding, when an exception is thrown in a property's set accessor,
or when a value doesn't correspond to the applied validation attribute. To learn about
the first two cases, have a look at the previous recipe, Validating data bound input.

In our example, we've added a StringLength attribute to the LastName property, hereby
passing in the length and the error message that should be shown. Next to that, we've added
a ValidateProperty call. This will make sure that the property is validated. When you don't
add this, no data validation using attributes occurs.

If you look at the Binding syntax in XAML, you'll see that we've added a few things, that
is, ValidatesOnExceptions and NotifyOnValidationError are set to true.

Setting ValidatesOnExceptions to true makes sure that Silverlight will provide visual
feedback for the validation errors it reports. Setting NotifyOnValidationError to
true makes sure that the binding engine raises the BindingValidationError event
when a validation error occurs.

Client-side validation is easily implemented by bringing these principles together in the
example we've just created.

Chapter 4

195

There's more...
In this example, we've only used one data annotation attribute for validation—StringLength—
to explain the principle. However, there are some more attributes you can use such as
CustomValidation, DataType, EnumDataType, Range, RegularExpression,
and Required.

Next to that, you'll notice we've inputted only one NamedParameter value, that is,
ErrorMessage. Most validation attributes accept more NamedParameter values that can
be used to customize the way validation is handled such as ErrorMessageResourceName,
ErrorMessageResourceType, and so on depending on the validation attribute you're using.

Other uses of data annotations
There are various other data annotations that can be used for validation, such as displaying
attributes and modeling attributes. These are used to control how certain information should
be displayed or how certain properties should relate to each other. Data annotations are
heavily used by RIA Services and the DataForm control. You can learn more about this by
looking at the corresponding chapters in this book.

See also
If you want to know more about validation, you might want to take a look at the previous
recipe, Validating data bound input or the next recipe, Validating using IDataErrorInfo and
INotifyDataErrorInfo. To learn more about two-way data binding, have a look at the Using the
different modes of data binding to allow persisting data recipe in Chapter 3, An Introduction
to Data Binding.

Validating using IDataErrorInfo and
INotifyDataErrorInfo

Validation of your data is a requirement for almost every application. By using validation,
you make sure that no invalid data is (eventually) persisted in your datastore. When you don't
implement validation, there's a risk that a user will input wrongly formatted or plain incorrect
data on the screen and even persist this data in your datastore. This is something you should
definitely avoid.

In Silverlight 4, a new way of validating your data is possible by using IDataErrorInfo
or INotifyDataErrorInfo. This allows us to invalidate the properties without throwing
exceptions and the validation code doesn't have to reside in the set accessor of the property.
It can be called whenever it's needed.

In this recipe, we'll learn about implementing validation on the bound fields in the UI using
IDataErrorInfo and INotifyDataErrorInfo.

Advanced Data Binding

196

Getting ready
To get ready for this recipe, you can either use the code from one of the previous recipes such
as the Using the different modes of data binding to allow persisting data recipe in Chapter
3, An Introduction to Data Binding or use the provided starter solution in the Chapter04/
SilverlightBanking_Validation_DataError_Starter folder in the code bundle
available on the Packt website. The completed solution for this recipe can be found in the
Chapter04/SilverlightBanking_Validation_DataError_Completed folder.

How to do it...
We're going to add validation logic to the OwnerDetailsEdit screen, just as we did in
the previous validation recipes. However, this time we're going to notify the UI through
INotifyDataErrorInfo, rather than throwing exceptions. To achieve this, carry out
the following steps:

1. Open the solution you created in the Using the different modes of data binding
to allow persisting data recipe in Chapter 3, An Introduction to Data Binding
(or the starter solution) and locate the OwnerDetailsEdit.xaml file. In
this XAML file, locate and change the LastNameValueTextBlock by adding
NotifyOnValidationError=true to the Binding syntax. This can be seen in
the following code:
<TextBox x:Name="LastNameValueTextBlock"
 Grid.Row="3"
 Grid.Column="1"
 Margin="2"
 Text="{Binding LastName, Mode=TwoWay,
 NotifyOnValidationError=true }" >
</TextBox>

2. Add a button named ValidateButton next to the OKButton as shown in the
following code:
<StackPanel Orientation="Horizontal"
 Grid.Row="1">
 <Button x:Name="ValidateButton"
 Content="Validate"
 Click="ValidateButton_Click"
 Width="75"
 Height="23"
 HorizontalAlignment="Right"
 Margin="0,12,0,0" />
 <Button x:Name="OKButton"
 Content="OK"
 Click="OKButton_Click"
 Width="75"
 Height="23"

Chapter 4

197

 HorizontalAlignment="Right"
 Margin="0,12,0,0"
 Grid.Row="1" />
</StackPanel>

3. Add the following C# code to OwnerDetailsEdit.xaml.cs. This implements the
ValidateButton handler we defined in the previous step.
private void ValidateButton_Click(object sender,
 RoutedEventArgs e)
{
 owner.FireValidation();
}

4. Locate the Owner.cs file, which represents the type of DataContext of the
OwnerDetailsEdit control, and let it implement the INotifyDataErrorInfo
interface as shown in the following code:
public class Owner : INotifyPropertyChanged, INotifyDataErrorInfo
{
 private Dictionary<string, string> FailedRules
 { get; set; }
 public event EventHandler<DataErrorsChangedEventArgs>
 ErrorsChanged;
 public IEnumerable GetErrors(string propertyName)
 {
 if (FailedRules.ContainsKey(propertyName))
 return FailedRules[propertyName];
 else
 return FailedRules.Values;
 }
 public bool HasErrors
 {
 get { return FailedRules.Count > 0; }
 }
 private void NotifyErrorsChanged(string propertyName)
 {
 if (ErrorsChanged != null)
 ErrorsChanged(this, new
 DataErrorsChangedEventArgs(propertyName));
 }
}

5. Add a constructor to Owner.cs to initialize the FailedRules dictionary as shown
in the following code:
public Owner()
{
 FailedRules = new Dictionary<string, string>();
}

Advanced Data Binding

198

6. Implement the FireValidation method, which is called in OwnerDetailsEdit.
xaml.cs, as shown in the following code:
internal void FireValidation()
{
 if (lastName.Length > 20)
 {
 if (!FailedRules.ContainsKey("LastName"))
 FailedRules.Add("LastName",
 "Last name cannot have more than 20 characters");
 }
 else
 {
 if (FailedRules.ContainsKey("LastName"))
 FailedRules.Remove("LastName");
 }
 NotifyErrorsChanged("LastName");
}

7. We can now build and run the solution. When the Validate button is clicked and
there are more than 20 characters entered in the Last name field, a validation
error will be shown.

The result can be observed in the following screenshot:

Chapter 4

199

How it works...
The Silverlight controls observe the INotifyDataErrorInfo interface automatically. This
means the control will display the correct error (invalid state) when a validation rule is violated
by an entity.

In this example, we're firing validation on the LastName property when the Validate button
is clicked. If the Last name field contains too many characters, then the validation rule will
be violated and the UI will show the typical "invalid value" tooltip automatically.

We could have achieved the same result by throwing an exception in the LastName
property's set accessor. However, the main difference is that we can now validate and
have the UI react to it without having to write the validation code in the LastName property's
set accessor. We can call it from anywhere and the UI will still react to it. This is how we can
use the INotifyDataErrorInfo to perform server-side validation and make our UI react
to it. You could call a server-side method in your property's set accessor and notify the UI
through the INotifyDataErrorInfo in the callback of that method.

Nevertheless, in this case, the property's set accessor is probably a better place to do the
validation (through INotifyDataErrorInfo). But for demonstration purposes, it's done
in the click handler of the button.

When we implement the INotifyDataErrorInfo interface, we get an ErrorsChanged
event handler, a GetErrors method that must return the correct error message as
IEnumerable, and a HasErrors method. We need to implement these methods. To
do this, we create a Dictionary called FailedRules, which we initialize in the class
constructor and which will contain a list of errors. The GetErrors method, which accepts
a propertyName parameter, fetches the correct error (or errors, if you keep a list of errors)
from the FailedRules dictionary, while the HasErrors method is implemented by
returning whether or not there are errors in the dictionary.

On clicking the button, the FireValidation method is called. This method will check
if the LastName has more than 20 characters and will add an error to the FailedRules
dictionary if the validation fails (or remove the error if the validation succeeds). After this,
the NotifyErrorsChanged method is called, which fires the ErrorsChanged event.
This event will make sure that the UI is notified (if the Binding syntax states that
NotifyOnValidationError should be true) and will let Silverlight display errors
where applicable.

Advanced Data Binding

200

There's more...
In this recipe, we've implemented validation using the INotifyDataErrorInfo interface.
However, another interface of the same family exists, that is, the IDataErrorInfo interface.
The INotifyDataErrorInfo interface is typically used for more complex scenarios such as
the need for async server-side validation to which the UI has to react, or when multiple errors
have to be represented with different messages. The IDataErrorInfo interface is used for
simpler, client-side validation.

When you implement the IDataErrorInfo interface, you get an Item property (accessible
through an indexer in C#) and an Error property. The first one is used to get a specific error
message on a certain property of your entity, while the second one is typically used to get an
error message related to the complete entity.

See also
If you want to learn more about validation, you might want to take a look at the previous
two recipes, Validating data bound input and Validating data input using attributes.
To learn more about two-way data binding, have a look at the Using the different modes of
data binding to allow persisting data recipe in Chapter 3, An Introduction to Data Binding.

Using templates to customize the way
data is shown by controls

Normally when we ask Silverlight to visualize an object, for example a person or a customer,
it will simply display the result of the ToString() method—which is, of course, a string.
This can be seen when we're binding a collection of items to a ListBox. If we don't specify
a value for the DisplayMemberPath property, we simply see the name of the type (unless
we overloaded the ToString() method). However, it's possible to specify a template called
a DataTemplate, which will be used to visualize an object. It's in fact nothing more than
a block of XAML code that gets rendered when an item of a particular type is visualized.

In this recipe, we'll build a DataTemplate to render the activities in a ListBox occurring on
an account.

Getting ready
To follow along with this recipe, you can either use your own code that has been created
from the previous recipes or use the starter solution that is located in the Chapter04/
SilverlightBanking_DataTemplates_Starter folder in the code bundle available
on the Packt website. The completed solution for this recipe can be found in the Chapter04/
SilverlightBanking_DataTemplates_Completed folder.

Chapter 4

201

How to do it...
Instead of immediately building the template, we'll go through a few steps. We'll start from
the simple text representation and finish with a complete DataTemplate. Let's get started!

1. The collection of AccountActivity items is displayed in a ListBox. The following
is the XAML code for this control:
<ListBox x:Name="AccountActivityListBox"
 Width="600"
 Grid.Row="1">
</ListBox>

2. Getting the items in the ListBox is achieved through setting the ItemsSource
property to the ObservableCollection<AccountActivity> called
accountActivitiesCollection. This is shown in the following code:
AccountActivityListBox.ItemsSource = accountActivitiesCollection;

3. When populating this ListBox with AccountActivity objects and omitting any
information that tells the ListBox what to display (as we did here), it will simply call
the ToString() implementation of the object. This mostly results in displaying the
string representation of the type of the object, as shown in the following screenshot:

4. We can tell the ListBox which property it should display through the
DisplayMemberPath. For example, we can ask it to display the Amount
property. This is shown in the following code:
<ListBox x:Name="AccountActivityListBox"
 DisplayMemberPath="Amount">
</ListBox>

Advanced Data Binding

202

The ListBox now displays the value of the Amount property, as can be seen in
the following screenshot:

5. We can all agree that this is not the best way of displaying data! Now, let's start
by creating an easy DataTemplate. Such a template is in fact nothing more
than some XAML that contains some data binding statements. (Although it's
not mandatory, it won't make sense to create a template without data binding.)
Our first simple template contains a StackPanel with three TextBlock controls
and a Button. We specify this template as a value for the ItemTemplate. This
is shown in the following code:
<ListBox x:Name="AccountActivityListBox">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Beneficiary}"
 FontSize="12" >
 </TextBlock>
 <TextBlock Text=" - "
 FontSize="12">
 </TextBlock>
 <TextBlock Text="{Binding Amount,
 Converter={StaticResource
 localCurrencyConverter}}"
 FontSize="12"
 FontWeight="Bold">
 </TextBlock>
 <Button x:Name="DetailButton"
 Click="DetailButton_Click"
 Content="More..."
 Margin="3 0 0 0">
 </Button>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Chapter 4

203

The following screenshot shows the template in action:

6. If we want to reuse the template several times throughout the application, then
it should be moved to the Resources collection of the App.xaml file. If we want
to limit the scope, we can also place it in the Resources of a container such as a
Grid or the UserControl. However, when placing the template in the Resources,
we need to give it a name using the x:Key property. This key is then used for
specifying which template is to be used. This can be seen in the following code:
<UserControl.Resources>
 <DataTemplate x:Key="SimpleTemplate">
 ...
 </DataTemplate>
</UserControl.Resources>

The following code shows how we should apply the template in a ListBox:

<ListBox x:Name="AccountActivityListBox"
 ItemTemplate="{StaticResource ComplexTemplate}">
</ListBox>

7. A template can also contain complex controls along with the simple controls placed
in a StackPanel. The following code shows a more complex template. It contains a
Border with a LinearGradientBrush. Nested inside this border is a Grid, which
contains some TextBlock controls, bound to a specific property. Note that we can
also specify events such as the MouseLeftButtonDown inside the template.
<DataTemplate x:Key="ComplexTemplate">
 <Border BorderBrush="LightGray"
 BorderThickness="1"
 CornerRadius="2"
 Margin="0 3 0 1"
 Padding="2" >
 <Border.Background>
 <LinearGradientBrush EndPoint="1.207,0.457"
 StartPoint="-0.017,0.467">

Advanced Data Binding

204

 <GradientStop Color="#FF807777"/>
 <GradientStop Color="White" Offset="0.949"/>
 </LinearGradientBrush>
 </Border.Background>
 <Grid Width="580" >
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="40"></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Row="0"
 Grid.Column="0"
 Grid.RowSpan="2"
 Text="{Binding ActivityDate,
 Converter={StaticResource
 localShortDateConverter}}">
 </TextBlock>
 <TextBlock Grid.Row="0"
 Grid.Column="1"
 Text="{Binding Beneficiary}"
 FontWeight="Bold">
 </TextBlock>
 <TextBlock Grid.Row="0"
 Grid.Column="2"
 HorizontalAlignment="Right"
 Text="{Binding Amount,
 Converter={StaticResource
 localCurrencyConverter}}"
 Foreground="{Binding Amount,
 Converter={StaticResource
 localAmountToColorConverter}}">
 </TextBlock>
 <TextBlock Grid.Row="1"
 Grid.Column="1"
 Text="{Binding ActivityDescription}">
 </TextBlock>
 <TextBlock x:Name="DetailsTextBlock"
 Grid.Row="1"
 Grid.Column="2"
 HorizontalAlignment="Right"
 Text="Details..."
 Tag="{Binding ActivityId}"
 MouseLeftButtonDown=

Chapter 4

205

 "DetailsTextBlock_MouseLeftButtonDown"
 TextDecorations="Underline"
 Foreground="Blue" >
 </TextBlock>
 </Grid>
 </Border>
</DataTemplate>

The result of this template is shown in the following screenshot:

How it works...
A DataTemplate allows us to define how a data object should be visualized. They work really
well when binding data to an ItemsControl, such as a ListBox. By default, while binding
the items to this control, it will render the items as a string, coming from the ToString()
method. When specifying a DataTemplate, for each item bound to the ListBox, Silverlight
will render the XAML code specified in the template by taking into account the data binding
expressions contained in the template.

A DataTemplate can contain all types of controls, varying from grids to buttons. Events
such as a click on a Button or a MouseLeftButtonDown on a TextBlock from within
a template are supported as well. To find out which item was clicked, we can use the
DataContext. The DataContext for each item in the list is an AccountActivity.
The following line of code displays a detail window based on the selected item:

ActivityDetailView activityDetailView = new
 ActivityDetailView(accountActivitiesCollection.
 Where<AccountActivity>(a => a.ActivityId ==
 ((AccountActivity)((TextBlock)sender).DataContext).
 ActivityId).First<AccountActivity>());

Advanced Data Binding

206

A DataTemplate can be specified on the control itself. For a ListBox, this is done by
specifying the template as a value for the ItemTemplate. However, it's more often useful
to specify the template at a higher level in the XAML hierarchy, such as the UserControl
or (even better) the App.xaml file. While using the latter, the template will be available
throughout the entire application. One thing to note here is that the template should then
be given a name that is specified through the x:Key property. This value is then used for
retrieving the correct template in the resources collection.

Building a change-aware collection type
We may not always have the option of binding to a collection that implements the
INotifyCollectionChanged interface. For example, what if we have a service that
returns IList<T>? Can't we use the automatic synchronization features that Silverlight's
data binding engine offers us?

The good news is that we can. For that, we need to build a wrapper class around the
IList<T>. This class will implement the necessary interface and will allow data binding
to work in the manner we are used to.

Getting ready
The finished solution for this recipe can be found in the Chapter04/CustomCollections
folder in the code bundle available on the Packt website.

How to do it...
For this recipe, we'll assume that we need to work with an external assembly called
UnchangeableCode in the sample code, which we simply can't change it. Inside the
assembly, a class returns a list of Owner instances as IList<Owner>. However, in our
Silverlight application, we would still like to use the synchronization that data binding offers
us. We'll implement this by building a wrapper class. We need to perform the following steps
in order to achieve this:

1. The UnchangeableCode project contains a class called OwnerService. This class
contains a List<Owner> as shown in the following code:
public class OwnerService
{
 private List<Owner> owners;
 public List<Owner> Owners
 {
 get { return owners; }
 set { owners = value; }
 }

Chapter 4

207

 public OwnerService()
 {
 owners = new List<Owner>();
 Owner o1 = new Owner()
 {
 Name = "Gill Cleeren",
 CurrentBalance = 100
 };
 Owner o2 = new Owner()
 {
 Name = "Kevin Dockx",
 CurrentBalance = 200
 };
 Owner o3 = new Owner()
 {
 Name = "Marina Smith",
 CurrentBalance = 300
 };
 Owner o4 = new Owner()
 {
 Name = "Lindsey Smith",
 CurrentBalance = 400
 };
 owners.Add(o1);
 owners.Add(o2);
 owners.Add(o3);
 owners.Add(o4);
 }
}

2. In our Silverlight application, we would like to bind to the list of Owner instances
not only for displaying the data, but also for viewing any changes done to the list
immediately. We'll create a class that wraps around the List<Owner>. This class
will also implement the INotifyCollectionChanged interface as shown in the
following code:
public class CustomOwnerList : IList<Owner>,
 INotifyCollectionChanged
{
 private IList<Owner> owners;
 public CustomOwnerList(IList<Owner> owner)
 {
 this.owners = owner;
 }
}

Advanced Data Binding

208

3. We can now start implementing all the methods that are defined by both interfaces.
The INotifyCollectionChanged interface defines only one event, which is
called the CollectionChanged event. This is shown in the following line of code:
public event NotifyCollectionChangedEventHandler
 CollectionChanged;

4. The IList interface contains quite a lot of methods that we need to implement. The
following is the code for the Insert method. Notice that we're manually calling the
CollectionChanged event when something changes in the list. We wrap the call
of the CollectionChanged event in the OnCollectionChanged method. This
method includes checking that the event isn't null. The other methods are similar
and the code for these methods can be found in the code bundle available on the
Packt website.
public void Insert(int index, Owner item)
{
 owners.Insert(index, item);
 OnCollectionChanged(new NotifyCollectionChangedEventArgs
 (NotifyCollectionChangedAction.Add, item, index));
}
private void OnCollectionChanged(NotifyCollectionChangedEventArgs
 notifyCollectionChangedEventArgs)
{
 if (CollectionChanged != null)
 CollectionChanged(this,notifyCollectionChangedEventArgs);
}

5. Now that we have the wrapper, we can work with the list as if it's a regular
ObservableCollection. Whenever we add, remove, or change items in the list,
we'll see those changes directly in the UI. The following code shows the instantiation
of the new collection and sets it as the DataContext for a ListBox control:

OwnerService someOldClass = new OwnerService();
CustomOwnerList list = new CustomOwnerList(someOldClass.Owners);
OwnerListBox.ItemsSource = list;

How it works...
If we want to make use of the automatic synchronization offered by Silverlight's data binding
for a collection, then this collection should implement the INotifyCollectionChanged
interface. If it doesn't do this, we can still bind and show the items in the collection.
However, changes to the collection won't be propagated into the UI. Although using the
ObservableCollection is advised, sometimes we need to work with a service or an
assembly from a third party that returns, for example, a generic list.

Chapter 4

209

If we want the data of the generic list to be bound to the UI and the changes to the list to
be visualized, then we need to build a class that wraps around the list. This class needs to
implement the IList<T> interface. As a result, while implementing the methods, we work
with the original list itself. For example, while implementing the Insert method, we insert
an item in a specific location in the underlying list.

Also, the class needs to implement the INotifyCollectionChanged interface. For every
change that is done in the list (such as adding an item), our wrapper class will raise the
CollectionChanged event.

Now, whenever we want to bind, we bind to an instance of our wrapper class. Silverlight notices
that this class implements the INotifyCollectionChanged interface, so it will register for
the events that are raised by an instance of the wrapper class.

See also
Binding to regular collections is explained in the Binding collections to UI elements recipe of
the previous chapter.

Combining converters, data binding, and
DataContext into a custom DataTemplate

A lot of things we've talked about in this chapter are great features on their own, but they really
shine when you combine them and let them work together. This recipe will show you how to
bring some of the most powerful, built-in features of the Silverlight SDK together or, to put it
differently, how to program "The Silverlight Way". We're going to create an editable ComboBox
of people using a custom DataTemplate, the DataContext, an ObservableCollection
with two-way data binding, and Converters to make the UI fluid, interactive, and responsive.

Getting ready
We're starting off with a completely new, blank Silverlight solution for this recipe. So, to get
started, make sure you have one of those. To create an empty Silverlight solution, start a
new Silverlight project in Visual Studio by selecting File | New | Project... and let it create
an accompanying web application automatically for hosting the Silverlight application.

You can find the completed solution for this recipe in the Chapter04/Combining_
Converters_Databinding_And_DataContext_Completed folder in the code bundle
available on the Packt website.

Advanced Data Binding

210

How to do it...
We want to end up with a ComboBox that displays the names of a few people. Each person's
name should be editable from inside the list of items in the ComboBox. To achieve this, we'll
need to carry out the following steps:

1. We're going to start by adding a new class to our Silverlight project. This class
is named Person and it has three properties: an ID, a Name, and a field that
represents the current edit state of the person—InEditMode. This class
implements the INotifyPropertyChanged interface as shown in the
following code:
public class Person : INotifyPropertyChanged
{
 public int PersonID { get; set; }
 private bool pInEditMode;
 public bool InEditMode
 {
 get
 {
 return pInEditMode;
 }
 set
 {
 pInEditMode = value;
 NotifyPropertyChanged("InEditMode");
 }
 }
 private string pName;
 public string Name
 {
 get
 {
 return pName;
 }
 set
 {
 pName = value;
 NotifyPropertyChanged("Name");
 }
 }
 #region INotifyPropertyChanged Members
 public event PropertyChangedEventHandler PropertyChanged;
 public void NotifyPropertyChanged(string propertyName)
 {

Chapter 4

211

 if (PropertyChanged != null)
 {
 PropertyChanged(this, new
 PropertyChangedEventArgs(propertyName));
 }
 }
 #endregion
}

2. Next, we're going to add another class to our Silverlight project. This class is
named BoolToVisibilityConverter. It will implement the IValueConverter
interface and convert a Boolean value to a Visibility value. This is shown in the
following code:
public class BoolToVisibilityConverter : IValueConverter
{
 #region IValueConverter Members
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 bool normalDirection = true;
 if (parameter != null)
 {
 if (parameter.ToString().Trim().ToLower() ==
 "trueiscollapsed")
 normalDirection = false;
 }
 if (value is bool)
 {
 if ((bool)value)
 {
 return normalDirection ?
 Visibility.Visible : Visibility.Collapsed;
 }
 else
 {
 return normalDirection ?
 Visibility.Collapsed : Visibility.Visible;
 }
 }
 else
 {
 return Visibility.Visible;
 }
 }

Advanced Data Binding

212

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 bool normalDirection = true;
 if (parameter.ToString().Trim().ToLower() ==
 "trueiscollapsed")
 normalDirection = false;
 if (value is Visibility)
 {
 if ((Visibility)value == Visibility.Visible)
 {
 return normalDirection ? true : false;
 }
 else
 {
 return normalDirection ? false : true;
 }
 }
 else
 {
 return true;
 }
 }
 #endregion
}

3. Open the MainPage.xaml file. We'll add the following code to represent our UI.
It includes the Binding syntax for the person objects visible in our ComboBox,
the necessary Converter syntax, and an event handler for the Click events of
our Edit and Save buttons.
<UserControl x:Class="Editable_Combobox.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/
 xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
 compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480"
 xmlns:local="clr-namespace:Editable_Combobox">
 <UserControl.Resources>
 <local:BoolToVisibilityConverter
 x:Name="BoolToVisibilityConverter" />
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Margin="10" >
 <Grid.RowDefinitions>

Chapter 4

213

 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock Text="An editable ComboBox"
 HorizontalAlignment="Left"
 VerticalAlignment="Top" >
 </TextBlock>
 <ComboBox x:Name="cmbPersons" Grid.Row="1"
 Width="220" Height="30"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">
 <ComboBox.ItemTemplate>
 <DataTemplate>
 <Grid Width="280" Height="30">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="200"></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock Text="{Binding Name, Mode=TwoWay}"
 HorizontalAlignment="Left"
 VerticalAlignment="Center"
 IsHitTestVisible="False"
 Width="180"
 Visibility="{Binding InEditMode,
 Converter={StaticResource
 BoolToVisibilityConverter},
 ConverterParameter=trueiscollapsed}"/>
 <TextBox Text="{Binding Name, Mode=TwoWay}"
 Width="180" HorizontalAlignment="Left"
 VerticalAlignment="Center"
 Visibility="{Binding InEditMode,
 Converter={StaticResource
 BoolToVisibilityConverter},
 ConverterParameter=trueisvisible}"/>
 <Button x:Name="btnEdit" Width="70" Height="20"
 Click="btnEditSave_Click"
 Content="Edit" Grid.Column="1"
 Visibility="{Binding InEditMode,
 Converter={StaticResource
 BoolToVisibilityConverter},
 ConverterParameter=trueiscollapsed}" />
 <Button x:Name="btnSave" Width="70" Height="20"
 Click="btnEditSave_Click"
 Content="Save" Grid.Column="1"
 Visibility="{Binding InEditMode,
 Converter={StaticResource
 BoolToVisibilityConverter}}"/>
 </Grid>

Advanced Data Binding

214

 </DataTemplate>
 </ComboBox.ItemTemplate>
 </ComboBox>
 </Grid>
</UserControl>

4. Open the MainPage.xaml.cs file. This is our code-behind file in which we'll write
the following code to handle the Click events of our buttons as well as to initialize
an ObservableCollection of the Person type:
public partial class MainPage : UserControl
{
 public ObservableCollection<Person> Persons
 { get; set; }
 public MainPage()
 {
 InitializeComponent();
 InitializeCollection();
 }
 private void InitializeCollection()
 {
 Persons = new ObservableCollection<Person>()
 {
 new Person()
 {
 PersonID=1, Name="Gill Cleeren", InEditMode = false
 },
 new Person()
 {
 PersonID=2, Name="Kevin Dockx", InEditMode = false
 }
 };
 cmbPersons.ItemsSource = Persons;
 }
private void btnEditSave_Click(object sender, RoutedEventArgs e)
{
 Person p = (Person)(((Button)sender).DataContext);
 p.InEditMode = !p.InEditMode;
}

Chapter 4

215

5. We can now build and run this project. The result can be observed in the
following screenshot:

How it works...
This recipe brings together quite a few Silverlight principles into one project. Let's start off
with the Person class. This class represents the people shown in our editable ComboBox.
It implements the INotifyPropertyChanged interface, which makes sure that the UI is
notified when one of the properties changes.

Our converter converts a Boolean value to a Visibility value. We bind the visibility
property of our TextBlock, TextBox, and Buttons to the InEditMode property of
the Person class. This is done by using the converter to convert the Boolean value
to a Visibility value and by using the ConverterParameter to decide how the
value should be converted. As a result of this, the TextBlock and the Edit button
will be Visible when the InEditMode property is false, and Collapsed when it's
true. On the other hand, the TextBox and the Save button will be Collapsed when
the InEditMode property is false and Visible when it's true.

Next, we've got the Click event handler on our buttons. In this handler, we can get the
DataContext of the sender. Due to the fact that the ItemsSource in a ComboBox is
a collection of persons, the DataContext of this Button is always exactly one person.
We can then cast this DataContext in the Person and change its InEditMode property.

Bringing it all together, the ObservableCollection of the Person represents the data
shown in the ComboBox. The Converter makes sure that the correct pieces of the UI are
shown. Due to the DataContext, we can easily access our Person object on the click
of a button. Also, as the INotifyPropertyChanged interface is implemented on the
InEditMode property, the UI is updated when we change this property. Finally, the two-way
data binding makes sure that the changes we make to a person's name are automatically
persisted in the underlying object.

Advanced Data Binding

216

See also
This recipe brought together most of the principles that are covered in this book. To learn
more about data binding, have a look at the following recipes in Chapter 3, An Introduction to
Data Binding:

 f Displaying data in Silverlight applications

 f Creating dynamic bindings

 f Binding data to another UI element

 f Binding collections to UI elements

 f Enabling a Silverlight application to automatically update its UI

To learn more about the DataContext, you can refer to the Obtaining data from any
UI element it is bound to recipe in Chapter 3, An Introduction to Data Binding. Additionally,
Converters are covered in the Hooking into the data binding process recipe in this chapter, and
for more information on the ObservableCollection, have a look at the Binding collections
to UI elements recipe in Chapter 3, An Introduction to Data Binding.

5
The Data Grid

This chapter is taken from Silverlight 4 Data and
Services Cookbook (Chapter 4) by Gill Cleeren,
Kevin Dockx.

This chapter takes an in-depth look at working with the DataGrid using the following recipes:

 f Displaying data in a customized DataGrid
 f Inserting, updating, and deleting data in a DataGrid
 f Sorting and grouping data in a DataGrid
 f Filtering and paging data in a DataGrid
 f Using custom columns in the DataGrid
 f Implementing master-detail in the DataGrid
 f Validating the DataGrid

Introduction
If we want to build applications that deal with large amounts of data, then a control such as a
data grid is vital. This control shows the data in a tabular format and allows for adding, editing,
and deleting the data inline. It allows the sorting of data into columns by clicking on a column
header. Finally, a data grid should support grouping, so that we can create levels in the data.

Silverlight included a data grid from version 2 onwards, even before WPF had one. It's very
powerful, supports all the features outlined previously, and is thus a good solution to work with
large amounts of data in the browser. It lives in the System.Windows.Controls namespace.
However, it's not included in the default assemblies that are installed with the Silverlight core.
When using it in our application, Visual Studio will embed several assemblies into the XAP file.

The Data Grid

218

In order to maintain its performance, Silverlight's DataGrid control features UI virtualization.
This feature means that Silverlight will only create the items that are currently visible. As a
result of this, even if we are displaying thousands, or even millions of rows, the DataGrid
will still keep running fluently.

In the recipes of this chapter, we'll look at how to work with the DataGrid. This is an essential
control for applications that rely on (collections of) data.

Displaying data in a customized DataGrid
Displaying data is probably the most straightforward task we can ask the DataGrid to do
for us. In this recipe, we'll create a collection of data and hand it over to the DataGrid for
display. While the DataGrid may seem to have a rather fixed layout, there are many options
available on this control that we can use to customize it.

In this recipe, we'll focus on getting the data to show up in the DataGrid and customize it
to our likings.

Getting ready
In this recipe, we'll start from an empty Silverlight application. The finished solution for this
recipe can be found in the Chapter05/Datagrid_Displaying_Data_Completed folder
in the code bundle that is available on the Packt website.

How to do it...
We'll create a collection of Book objects and display this collection in a DataGrid. However,
we want to customize the DataGrid. More specifically, we want to make the DataGrid
fixed. In other words, we don't want the user to make any changes to the bound data or move
the columns around. Also, we want to change the visual representation of the DataGrid
by changing the background color of the rows. We also want the vertical column separators
to be hidden and the horizontal ones to get a different color. Finally, we'll hook into the
LoadingRow event, which will give us access to the values that are bound to a row and
based on that value, the LoadingRow event will allow us to make changes to the visual
appearance of the row.

To create this DataGrid, you'll need to carry out the following steps:

1. Start a new Silverlight solution called DatagridDisplayingData in Visual Studio.

We'll start by creating the Book class. Add a new class to the Silverlight project in the
solution and name this class as Book. Note that this class uses two enumerations—one
for the Category and the other for the Language. These can be found in the sample
code. The following is the code for the Book class:

Chapter 5

219

public class Book
{
 public string Title { get; set; }
 public string Author { get; set; }
 public int PageCount { get; set; }
 public DateTime PurchaseDate { get; set; }
 public Category Category { get; set; }
 public string Publisher { get; set; }
 public Languages Language { get; set; }
 public string ImageName { get; set; }
 public bool AlreadyRead { get; set; }
}

2. In the code-behind of the generated MainPage.xaml file, we need to create
a generic list of Book instances (List<Book>) and load data into this collection.
This is shown in the following code:
private List<Book> bookCollection;
public MainPage()
{
 InitializeComponent();
 LoadBooks();
}
private void LoadBooks()
{
 bookCollection = new List<Book>();
 Book b1 = new Book();
 b1.Title = "Book AAA";
 b1.Author = "Author AAA";
 b1.Language = Languages.English;
 b1.PageCount = 350;
 b1.Publisher = "Publisher BBB";
 b1.PurchaseDate = new DateTime(2009, 3, 10);
 b1.ImageName = "AAA.png";
 b1.AlreadyRead = true;
 b1.Category = Category.Computing;
 bookCollection.Add(b1);
 ...
}

The Data Grid

220

3. Next, we'll add a DataGrid to the MainPage.xaml file. For now, we won't add any
extra properties on the DataGrid. It's advisable to add it to the page by dragging it
from the toolbox, so that Visual Studio adds the correct references to the required
assemblies in the project, as well as adds the namespace mapping in the XAML
code. Remove the AutoGenerateColumns="False" for now so that we'll see
all the properties of the Book class appear in the DataGrid. The following line
of code shows a default DataGrid with its name set to BookDataGrid:
<sdk:DataGrid x:Name="BookDataGrid"></sdk:DataGrid>

4. Currently, no data is bound to the DataGrid. To make the DataGrid show the
book collection, we set the ItemsSource property from the code-behind in the
constructor. This is shown in the following code:
public MainPage()
{
 InitializeComponent();
 LoadBooks();
 BookDataGrid.ItemsSource = bookCollection;
}

5. Running the code now shows a default DataGrid that generates a column for each
public property of the Book type. This happens because the AutoGenerateColumns
property is True by default.

6. Let's continue by making the DataGrid look the way we want it to look. By default,
the DataGrid is user-editable, so we may want to change this feature. Setting
the IsReadOnly property to True will make it impossible for a user to edit
the data in the control. We can lock the display even further by setting both the
CanUserResizeColumns and the CanUserReorderColumns properties to
False. This will prohibit the user from resizing and reordering the columns inside
the DataGrid, which are enabled by default. This is shown in the following code:
<sdk:DataGrid x:Name="BookDataGrid"
 AutoGenerateColumns="True"
 CanUserReorderColumns="False"
 CanUserResizeColumns="False"
 IsReadOnly="True">
</sdk:DataGrid>

7. The DataGrid also offers quite an impressive list of properties that we can use
to change its appearance. By adding the following code, we specify alternating the
background colors (the RowBackground and AlternatingRowBackground
properties), column widths (the ColumnWidth property), and row heights
(the RowHeight property). We also specify how the gridlines should be displayed
(the GridLinesVisibility and HorizontalGridLinesBrush properties).
Finally, we specify that we also want a row header to be added
(the HeadersVisibility property).

Chapter 5

221

<sdk:DataGrid x:Name="BookDataGrid"
 AutoGenerateColumns="True"
 CanUserReorderColumns="False"
 CanUserResizeColumns="False"
 RowBackground="#999999"
 AlternatingRowBackground="#CCCCCC"
 ColumnWidth="90"
 RowHeight="30"
 GridLinesVisibility="Horizontal"
 HeadersVisibility="All"
 HorizontalGridLinesBrush="Blue">
</sdk:DataGrid>

8. We can also get a hook into the loading of the rows. For this, the LoadingRow event
has to be used. This event is triggered when each row gets loaded. Using this event,
we can get access to a row and change its properties based on custom code. In the
following code, we are specifying that if the book is a thriller, we want the row to have
a red background:

private void BookDataGrid_LoadingRow(object sender,
 DataGridRowEventArgs e)
{
 Book loadedBook = e.Row.DataContext as Book;
 if (loadedBook.Category == Category.Thriller)
 {
 e.Row.Background = new SolidColorBrush(Colors.Red);
 //It's a thriller!
 e.Row.Height = 40;
 }
 else
 {
 e.Row.Background = null;
 }
}

The Data Grid

222

After completing these steps, we have the DataGrid that we wanted. It displays the
data (including headers), fixes the columns and makes it impossible for the user to edit
the data. Also, the color of the rows and alternating rows is changed, the vertical grid lines
are hidden, and a different color is applied to the horizontal grid lines. Using the LoadingRow
event, we have checked whether the book being added is of the "Thriller" category, and
if so, a red color is applied as the background color for the row. The result can be seen in the
following screenshot:

How it works...
The DataGrid allows us to display the data easily, while still offering us many customization
options to format the control as needed.

The DataGrid is defined in the System.Windows.Controls namespace, which is
located in the System.Windows.Controls.Data assembly. By default, this assembly
is not referenced while creating a new Silverlight application. Therefore, the following extra
references are added while dragging the control from the toolbox for the first time:

 f System.ComponentModel.DataAnnotations

 f System.Windows.Controls.Data

 f System.Windows.Controls.Data.Input

 f System.Windows.Data

Chapter 5

223

While compiling the application, the corresponding assemblies are added to the XAP file (as can
be seen in the following screenshot, which shows the contents of the XAP file). These assemblies
need to be added because while installing the Silverlight plugin, they aren't installed as a part
of the CLR. This is done in order to keep the plugin size small. However, when we use them in
our application, they are embedded as part of the application. This results in an increase of the
download size of the XAP file. In most circumstances, this is not a problem. However,
if the file size is an important requirement, then it is essential to keep an eye on this.

Also, Visual Studio will include the following namespace mapping into the XAML file:

xmlns:sdk="clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data"

From then on, we can use the control as shown in the following line of code:

<sdk:DataGrid x:Name="BookDataGrid"> </sdk:DataGrid>

Once the control is added on the page, we can use it in a data binding scenario. To do so, we
can point the ItemsSource property to any IEnumerable implementation. Each row in the
DataGrid will correspond to an object in the collection.

When AutoGenerateColumns is set to True (the default), the DataGrid uses a
reflection on the type of objects bound to it. For each public property it encounters, it
generates a corresponding column. Out of the box, the DataGrid includes a text column,
 a checkbox column, and a template column. For all the types that can't be displayed, it
uses the ToString method and a text column.

If we want the DataGrid to feature automatic synchronization, the collection should
implement the INotifyCollectionChanged interface. If changes to the objects are
to be reflected in the DataGrid, then the objects in the collection should themselves
implement the INotifyPropertyChanged interface.

There's more
While loading large amounts of data into the DataGrid, the performance will still be very good.
This is the result of the DataGrid implementing UI virtualization, which is enabled by default.

The Data Grid

224

Let's assume that the DataGrid is bound to a collection of 1,000,000 items (whether or
not this is useful is another question). Loading all of these items into memory would be a
time-consuming task as well as a big performance hit. Due to UI virtualization, the control
loads only the rows it's currently displaying. (It will actually load a few more to improve the
scrolling experience.) While scrolling, a small lag appears when the control is loading the
new items. Since Silverlight 3, the ListBox also features UI virtualization.

See also
In the Using custom columns in the DataGrid recipe of this chapter, we'll look at how we can
specify which columns should be included in the DataGrid.

Inserting, updating, and deleting data in
a DataGrid

The DataGrid is an outstanding control to use while working with large amounts of data at
the same time. Through its Excel-like interface, not only can we easily view the data, but also
add new records or update and delete existing ones.

In this recipe, we'll take a look at how to build a DataGrid that supports all of the above
actions on a collection of items.

Getting ready
This recipe builds on the code that was created in the previous recipe. To follow along
with this recipe, you can keep using your code or use the starter solution located in the
Chapter05/Datagrid_Editing_Data_Starter folder in the code bundle available
on the Packt website. The finished solution for this recipe can be found in the Chapter05/
Datagrid_Editing_Data_Completed folder.

How to do it...
In this recipe, we'll work with the same Book class as in the previous recipe. Through the
use of a DataGrid, we'll manage an ObservableCollection<Book>. We'll make it
possible to add, update, and delete the items in the collection through the DataGrid.
An ObservableCollection raises an event when items are added, removed, and so on,
and Silverlight will listen for this event. The existing data will be edited by doing inline edits
to the rows, which will be pushed back to the underlying collection. We'll allow the user to
add or delete an item in the DataGrid by clicking on a button. Behind the scene, an item
is added to or removed from the underlying collection. We'll also include a detail panel
where the user can view more properties on the selected item in the DataGrid.

Chapter 5

225

The following are the steps we need to perform:

1. In the MainPage.xaml.cs file, we bind to a generic list of Book instances
(List<Book>). For the DataGrid to react to the changes in the bound collection,
the collection itself should implement the INotifyCollectionChanged interface.
Thus, instead of a List<Book>, we'll use an ObservableCollection<Book> as
shown in the following line of code:
ObservableCollection<Book> bookCollection =
 new ObservableCollection<Book>();

2. Let's first look at deleting the items. We may want to link the hitting of the Delete key
on the keyboard with the removal of a row in the DataGrid. In fact, we're asking to
remove the currently selected item from the bound collection. For this, we register
for the KeyDown event on the DataGrid as shown in the following code:
<sdk:DataGrid x:Name="BookDataGrid"
 KeyDown="BookDataGrid_KeyDown" ...>

3. In the event handler, we'll need to check whether the key was the Delete key. Also,
the required code for inserting the data—triggered by hitting the Insert key—is
included. This is shown in the following code:
private bool cellEditing = false;
private void BookDataGrid_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.Delete && !cellEditing)
 {
 RemoveBook();
 }
 else if (e.Key == Key.Insert && !cellEditing)
 {
 AddEmptyBook();
 }
}

4. Note the !cellEditing in the previous code. It's a Boolean field that we are
using to check whether we are currently editing a value that is in a cell or we
simply have a row selected. In order to carry out this check, we should add both
the BeginningEdit and the CellEditEnded events in the DataGrid as shown
in the following code. These will be triggered when the cell enters or leaves the edit
mode respectively.
<sdk:DataGrid x:Name="BookDataGrid"
 BeginningEdit="BookDataGrid_BeginningEdit"
 CellEditEnded="BookDataGrid_CellEditEnded" ...>

The Data Grid

226

5. In the event handlers, we change the value of the cellEditing variable as shown
in the following code:
private void BookDataGrid_BeginningEdit(object sender,
 DataGridBeginningEditEventArgs e)
{
 cellEditing = true;
}
private void BookDataGrid_CellEditEnded(object sender,
 DataGridCellEditEndedEventArgs e)
{
 cellEditing = false;
}

6. Next, we need to write the code either to add an empty Book object or to remove an
existing one. Here, we're actually working with the ObservableCollection<Book>.
We're adding items to the collection or removing them from it. The application UI
contains two buttons. We can add two Click event handlers that will trigger adding
or removing an item using the following code. Note that while deleting, we are checking
whether an item is selected.
private void AddButton_Click(object sender, RoutedEventArgs e)
{
 AddEmptyBook();
}
private void DeleteButton_Click(object sender, RoutedEventArgs e)
{
 RemoveBook();
}
private void AddEmptyBook()
{
 Book b = new Book();
 bookCollection.Add(b);
}
private void RemoveBook()
{
 if (BookDataGrid.SelectedItem != null)
 {
 Book deleteBook = BookDataGrid.SelectedItem as Book;
 bookCollection.Remove(deleteBook);
 }
}

Chapter 5

227

7. Finally, let's take a look at updating the items. In fact, simply typing in new values
for the existing items in the DataGrid will push the updates back to the bound
collection. Add a Grid containing the TextBlock controls in order to see this.
The entire Grid should be bound to selected row of the DataGrid. This is done
by means of an element data binding. The following code is a part of this code.
The remaining code can be found in the completed solution in the code bundle.
<Grid DataContext="{Binding ElementName=BookDataGrid,
 Path=SelectedItem}" >
 <TextBlock Text="Title:"
 FontWeight="Bold"
 Grid.Row="1"
 Grid.Column="0">
 </TextBlock>
 <TextBlock Text="{Binding Title}"
 Grid.Row="1"
 Grid.Column="1">
 </TextBlock>
</Grid>

We now have a fully working application to manage the data of the Book collection. We
have a data-entry application that allows us to perform CRUD (create, read, update, and
delete) operations on the data using the DataGrid. The final application is shown in the
following screenshot:

The Data Grid

228

How it works...
The DataGrid is bound to an ObservableCollection<Book>. This way, changes
to the collection are reflected in the control immediately because of the automatic
synchronization that data binding offers us on collections that implement the
INotifyCollectionChanged interface. If the class (in our case, the Book class)
itself implements the INotifyPropertyChanged interface, then the changes to the
individual items are also reflected. Implicitly, a DataGrid implements a TwoWay binding.
We don't have to specify this anywhere.

To remove an item by hitting the Delete key, we first need to check that we're not editing
the value of the cell. If we are, then the row shouldn't be deleted. This is done using the
BeginningEdit and CellEditEnded events. The former one is called before the user
can edit the value. It can also be used to perform some action on the value in the cell such
as formatting. The latter event is called when the focus moves away from the cell.

In the end, managing (inserting, deleting, and so on) the data in the DataGrid comes down
to managing the items in the collection. We leverage this here. We aren't adding any items to
the DataGrid itself, but we are either adding items to the bound collection or removing
items from the bound collection.

See also
For more information on the data binding features, take a look at Chapter 3, An Introduction
to Data Binding and Chapter 4, Advanced Data Binding, where we look carefully at all the
features offered by Silverlight.

Sorting and grouping data in a DataGrid
Sorting the values within a column in a control such as a DataGrid is something that we
take for granted. Silverlight's implementation has some very strong sorting options working
out of the box for us. It allows us to sort by clicking on the header of a column, amongst
other things.

Along with sorting, the DataGrid enables the grouping of values. Items possessing a
particular property (that is, in the same column) and having equal values can be visually
grouped within the DataGrid.

All of this is possible by using a view on top of the bound collection. In this recipe, we'll look
at how we can leverage this view to customize the sorting and grouping of data within the
DataGrid.

Chapter 5

229

Getting ready
This sample continues with the same code that was created in the previous recipes of this
chapter. If you want to follow along with this recipe, you can continue using your code or
use the provided start solution located in the Chapter05/Datagrid_Sorting_And_
Grouping_Starter folder in the code bundle that is available on the Packt website. The
finished code for this recipe can be found in the Chapter05/Datagrid_Sorting_And_
Grouping_Completed folder.

How to do it...
We'll be using the familiar list of Book items again in this recipe. This list, which is
implemented as an ObservableCollection<Book>, will not be directly bound to the
DataGrid in this case. Instead, we'll use a PagedCollectionView that acts as a view
on top of the collection. We'll change the way the DataGrid is sorted by default as well
as introduce grouping within the control. The following are the steps to achieve all of this:

1. Instead of using the AutoGenerateColumns feature, we'll define the columns
that we want to see manually. We'll make use of several DataGridTextColumns,
a DataGridCheckBoxColumn and a DataGridTemplateColumn. The following
is the code for the DataGrid:
<sdk:DataGrid x:Name="CopyBookDataGrid"
 AutoGenerateColumns="False" ... >
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn x:Name="CopyTitleColumn"
 Binding="{Binding Title}"
 Header="Title">
 </sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn x:Name="CopyAuthorColumn"
 Binding="{Binding Author}"
 Header="Author">
 </sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn x:Name="CopyPublisherColumn"
 Binding="{Binding Publisher}"
 Header="Publisher">
 </sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn x:Name="CopyLanguageColumn"
 Binding="{Binding Language}"
 Header="Language">
 </data:DataGridTextColumn>
 <data:DataGridTextColumn x:Name="CopyCategoryColumn"
 Binding="{Binding Category}"
 Header="Category">
 </sdk:DataGridTextColumn>

The Data Grid

230

 <sdk:DataGridCheckBoxColumn x:Name="CopyAlreadyReadColumn"
 Binding="{Binding AlreadyRead,
 Mode=TwoWay}"
 Header="Already read">
 </sdk:DataGridCheckBoxColumn>
 <sdk:DataGridTemplateColumn Header="Purchase date"
 x:Name="CopyPurchaseDateColumn">
 <sdk:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <controls:DatePicker SelectedDate="{Binding
 PurchaseDate}">
 </controls:DatePicker>
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellTemplate>
 </sdk:DataGridTemplateColumn>
 </sdk:DataGrid.Columns>
</sdk:DataGrid>

2. In order to implement both sorting and grouping, we'll use the
PagedCollectionView. It offers us a view on top of our data and allows the data
to be sorted, grouped, filtered and so on without changing the underlying collection.
The PagedCollectionView is instantiated using the following code. We pass in
the collection (in this case, the bookCollection) on which we want to put the view.
PagedCollectionView view = new
 PagedCollectionView(bookCollection);

3. In order to change the manner of sorting from the code, we need to add a new
SortDescription to the SortDescriptions collection of the view. In the
following code, we are specifying that we want the sorting to occur on the Title
property of the books in a descending order:
view.SortDescriptions.Add(new SortDescription("Title",
 ListSortDirection.Descending));

4. If we want our data to appear in groups, we can make it so by adding a new
PropertyGroupDescription to the GroupDescriptions collection of the
view. In this case, we want the grouping to be based on the value of the Language
property. This is shown in the following code:
view.GroupDescriptions.Add(new
 PropertyGroupDescription("Language"));

5. The DataGrid will not bind to the collection, but to the view. We specify this by
setting the ItemsSource property to the instance of the PagedCollectionView.
The following code should be placed in the constructor as well:

Chapter 5

231

public MainPage()
{
 InitializeComponent();
 LoadBooks();
 view = new PagedCollectionView(bookCollection);
 view.SortDescriptions.Add(new SortDescription("Title",
 ListSortDirection.Descending));
 view.GroupDescriptions.Add(new
 PropertyGroupDescription("Language"));
 BookDataGrid.ItemsSource = view;
}

We have now created a DataGrid that allows the user to sort the values in a column
as well as group the values based on a value in the column. The resulting DataGrid
is shown in the following screenshot:

The Data Grid

232

How it works...
The actions such as sorting, grouping, filtering and so on don't work on an actual collection
of data. They are applied on a view that sits on top of the collection (either a List<T> or
an ObservableCollection<T>). This way, the original data is not changed. Due to this,
we can show the same collection more than once in a different format on the same screen.
Different views are applied on the same source data (for example, sorted in one DataGrid
by Title and in another one by Author). This view is implemented through the
PagedCollectionView class.

To change the sorting, we can add a new SortDescription to the SortDescriptions
collection that the view encapsulates. Note that SortDescriptions is a collection in which
we can add more than one sort field. The second SortDescription value will be used only
when equal values are encountered for the first SortDescription value.

Grouping (using the PropertyGroupDescription) allows us to split the grid into different
levels. Each section will contain items that have the same value for a particular property.
Similar to sorting, we can add more than one PropertyGroupDescription, which results
in nested groups.

There's more...
From code, we can control all groups to expand or collapse. The following code shows us how
to do so:

private void CollapseGroupsButton_Click(object sender,
 RoutedEventArgs e)
{
 foreach (CollectionViewGroup group in view.Groups)
 {
 BookDataGrid.CollapseRowGroup(group, true);
 }
}
private void ExpandGroupsButton_Click(object sender,
 RoutedEventArgs e)
{
 foreach (CollectionViewGroup group in view.Groups)
 {
 BookDataGrid.ExpandRowGroup(group, true);
 }
}

Chapter 5

233

Sorting a template column
If we want to sort a template column, we have to specify which value needs to be taken
into account for the sorting to be executed. Otherwise, Silverlight has no clue which field
it should take.

This is done by setting the SortMemberPath property as shown in the following code:

<sdk:DataGridTemplateColumn x:Name="PurchaseDateColumn"
 SortMemberPath="PurchaseDate">

We'll look at the DataGridTemplateColumn in more detail in the Using custom columns in
the DataGrid recipe of this chapter.

See also
In the next recipe, we'll use the PagedCollectionView once more.

Filtering and paging data in a DataGrid
Along with offering us support for the sorting and filtering of data, the
PagedCollectionView has more up its sleeve. It is also the enabler for filtering rows in a
DataGrid and, in combination with the DataPager control (a control added with Silverlight
3), it allows us to spread the data over several pages within the DataGrid.

In this recipe, we'll look at how we can filter based on a value specified by the user and we'll
page the results based on the number of returned results, if needed.

Getting ready
This recipe builds on the code that was created in the previous recipes. You can continue
using your code to follow this recipe. Alternatively, you can use the start solution located in
the Chapter05/Datagrid_Filtering_And_Paging_Starter folder in the code bundle
that is available on the Packt website. The finished code for this recipe can be found in the
Chapter05/Datagrid_Filtering_And_Paging_Completed folder.

How to do it...
For this recipe, we'll again work with the Book class for which an
ObservableCollection<Book> is created. This collection is then used as input for
the PagedCollectionView, which offers a view on the collection. We'll add a search
functionality on the collection of books using a filter and a paging functionality using the
DataPager. The following are the steps to follow:

The Data Grid

234

1. We'll add some XAML controls to the filter. These include a TextBlock for indicating
the purpose of a field, a TextBox in which the user can enter a value, and a Button.
This is shown in the following code:
<TextBlock x:Name="FilterTextBlock"
 Text="Search book titles"
 Margin="3"
 VerticalAlignment="Center"
 Foreground="White">
</TextBlock>
<TextBox x:Name="FilterTextBox"
 Width="200"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Margin="3">
</TextBox>
<Button x:Name="FilterButton"
 Content="Search"
 Margin="3"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Click="FilterButton_Click">
</Button>

2. The DataGrid is bound to the PagedCollectionView, which is a view over
the items of a used collection. This is shown in the following code:
PagedCollectionView view = new
 PagedCollectionView(bookCollection);
BookDataGrid.ItemsSource = view;

3. Upon clicking on the Button, we need to search the collection. Searching means
looping over the collection and checking whether or not each item satisfies the query.
This sounds like a perfect job for a predicate and that's exactly how it's implemented.
In the predicate, we'll check whether a book title contains the value entered by the
user. This is shown in the following code:
private void FilterButton_Click(object sender, RoutedEventArgs e)
{
 view.Filter = null;
 view.Filter = new Predicate<object>(Search);
}
private bool Search(object b)
{
 Book book = b as Book;
 bool foundSearchHit = false;
 if (book != null)
 {
 if (book.Title.Contains(FilterTextBox.Text))
 foundSearchHit = true;

Chapter 5

235

 }
 return foundSearchHit;
}

4. Finally, let's add paging support to the DataGrid. Paging is the job of the
DataPager. This control adds paging support to controls such as the ListBox
and the DataGrid. We simply add a DataPager on the XAML page and specify
the PageSize property as five as shown in the following code:
<sdk:DataPager x:Name="BookPager"
 PageSize="5"
 DisplayMode="PreviousNextNumeric">
</sdk:DataPager>

5. To make the DataPager control display the pages, we need to set its Source to the
same PagedCollectionView as the DataGrid. The following code shows us how
to do this:
public MainPage()
{
 InitializeComponent();
 LoadBooks();
 view = new PagedCollectionView(bookCollection);
 BookDataGrid.ItemsSource = view;
 BookPager.Source = view;
}

We have now implemented a filter on the DataGrid using the
PagedCollectionView. A user can search for a value and filtering of
the in-memory data will be done. The resulting DataGrid is paged using
a DataPager. The following screenshot shows the result:

The Data Grid

236

How it works...
Just like sorting and grouping, filtering is not done on the collection itself, but it's done using
a view on top of the collection. This way, the original collection remains intact and can be used
on the same screen with different filter values more than once.

Filtering is done using a predicate. Silverlight will loop over all the items of the view and
execute the method (in this case the Search method) being passed in as the parameter
for each item. This method contains the logic that will check whether or not the item
should be included in the result set.

Paging is not directly done by the DataGrid. A second control, that is, the DataPager
comes to the rescue. This control does not have a direct link to the DataGrid. Both the
DataGrid.ItemsSource and the DataPager.Source properties point to the same
instance of the PagedCollectionView. This way, the DataPager knows on which
control it should add the paging functionality.

The DataPager control has a DisplayMode property that requires a value of the
PagerDisplayMode enumeration. The following table shows the different options in action:

PagerDisplayMode value Visualization
FirstLastNumeric

FirstLastPreviousNext

FirstLastPreviousNextNumeric

Numeric

PreviousNext

PreviousNextNumeric

There's more...
The DataPager is not exclusively tied to the DataGrid; it can also be used with the
ListBox. The following screenshot shows a DataPager working together with a ListBox:

Chapter 5

237

There is no difference code-wise. Both the ListBox and the DataPager refer to the same
PagedCollectionView instance.

See also
In the previous recipe, Sorting and grouping the data in a DataGrid, we used the
PagedCollectionView for sorting and grouping the data in a DataGrid. In the next
recipe, we'll explain more about defining the columns that we want to appear in the DataGrid.

Using custom columns in the DataGrid
By default, the DataGrid will generate columns for us based on the type of objects that
we pass to the control. We looked at this in the Displaying the data in a customized DataGrid
recipe. However, we'll want more control over what is being displayed most of the time. We'll
want to make decisions such as which columns should be shown, in what order and so on.
On top of that, we may want to allow the user to select a value from a ComboBox for a
particular column or entirely reformat a value.

In this recipe, we'll take full control over what will be displayed by the DataGrid by creating
a number of columns ourselves.

Getting ready
To follow along with this recipe, you can continue using the code that was created in
the previous recipes of this chapter. You can also use the start solution located in the
Chapter05/Datagrid_Custom_Columns_Starter folder in the code bundle that is
available on the Packt website. The completed solution for this recipe can be found in the
Chapter05/Datagrid_Custom_Columns_Completed folder.

The Data Grid

238

How to do it...
There are three types of columns from which we can choose—the DataGridTextColumn,
the DataGridCheckBoxColumn and the DataGridTemplateColumn. We can either
declare columns from XAML by adding them to the Columns collection of the DataGrid
or add them from the code-behind. We'll again work with the Book class. We'll create an
ObservableCollection<Book> in the code-behind and bind this to the DataGrid.
We'll create a few custom columns in the following list of steps:

1. The AutoGenerateColumns property defaults to True. Therefore, in the
declaration of the DataGrid, we set the property to False. The custom-created
columns will be added to the Columns collection. This is shown in the following code:
<sdk:DataGrid x:Name="BookDataGrid"
 AutoGenerateColumns="False">
 <sdk:DataGrid.Columns>
 </sdk:DataGrid.Columns>
</sdk:DataGrid>

2. In order to display plain textual values such as the Title, the Author, and the
Publisher, we can use the DataGridTextColumn as shown in the following
code. We need to specify the Binding for each column. Note that we now need
to set the Mode property to TwoWay. If we omit this, the value will not be pushed
back to the underlying collection.
<sdk:DataGridTextColumn x:Name="TitleColumn"
 Binding="{Binding Title}"
 Header="Title">
</sdk:DataGridTextColumn>
<sdk:DataGridTextColumn x:Name="AuthorColumn"
 Binding="{Binding Author}"
 Header="Author">
</sdk:DataGridTextColumn>
<sdk:DataGridTextColumn x:Name="PublisherColumn"
 Binding="{Binding Publisher,
 Mode=TwoWay}"
 Header="Publisher">
</sdk:DataGridTextColumn>

3. The AlreadyRead property of our Book class is of the bool type. We can bind
such a value to a DataGridCheckBoxColumn as shown in the following code:
<sdk:DataGridCheckBoxColumn x:Name="AlreadyReadColumn"
 Binding="{Binding AlreadyRead,
 Mode=TwoWay}"
 Header="Already read">
</sdk:DataGridCheckBoxColumn>

Chapter 5

239

4. The DataGridTemplateColumn is the most powerful column type. Using this
 type, we can specify the template for the column manually. The following is the
code for the ImageName property. We specify a converter, which is used to convert
the ImageName property of type string into a BitmapImage. This BitmapImage
can then be used for setting the Source property of the Image control. The code for
the converter can be found in the code bundle that is available on the Packt website.
<sdk:DataGridTemplateColumn x:Name="ImageColumn">
 <sdk:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <Image Source="{Binding ImageName,
 Converter={StaticResource localImageConverter}}"
 Margin="2">
 </Image>
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellTemplate>
</sdk:DataGridTemplateColumn>

5. A CellTemplate was defined in the previous template. However, we can also define
a CellEditingTemplate. The cell will switch to the editing template when the user
starts editing inside the cell. For the Language property in edit mode, we want to offer
the user a ComboBox containing the available languages. First, we need to make it
possible to retrieve the different languages. We can do so by creating a helper class
called LanguageHelper, which defines a property. The return value of this property
is a list of Language instances. This is shown in the following code:
public class LanguageHelper
 {
 public List<string> LanguageList
 {
 get
 {
 List<string> languages = new List<string>();
 Type lanugageType = typeof(Languages);
 var fields = from c in lanugageType.GetFields()
 where c.IsLiteral
 select c;

 foreach (var f in fields)
 {
 var value = f.GetValue(lanugageType);
 languages.Add(value.ToString());
 }
 return languages;
 }
 }
 }

The Data Grid

240

6. We can instantiate this class in MainPage.xaml as shown in the following code:
<UserControl.Resources>
 <local:LanguageHelper x:Key="localLanguageHelper">
 </local:LanguageHelper>
</UserControl.Resources>

7. We can now use this instance to fill the ComboBox. The following is the code for the
Language column. The normal, non-editing template shows a TextBlock and the
editing template shows a ComboBox. The ItemsSource property defines the data
binding between the ComboBox and the LangnuageList property on the instance
of the LanguageHelper class:
<sdk:DataGridTemplateColumn x:Name="LanguageColumn"
 Header="Language">
 <sdk:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Language}"
 VerticalAlignment="Center">
 </TextBlock>
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellTemplate>
 <sdk:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <ComboBox VerticalAlignment="Center"
 SelectedItem="{Binding Language,
 Converter={StaticResource localEnumConverter},
 Mode=TwoWay}"
 ItemsSource="{Binding LanguageList,
 Source={StaticResource localLanguageHelper}}" >
 </ComboBox>
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellEditingTemplate>
</sdk:DataGridTemplateColumn>

Not all columns are shown here, but they are all similar to the previous samples.
The completed sample code contains the remaining ones. All the columns have
been added to the DataGrid as shown in the following screenshot:

Chapter 5

241

How it works...
In most cases, we will not use the auto-generate function of the DataGrid. We can specify
the columns ourselves by adding them to the Columns collection. Three types are available,
of which the DataGridTemplateColumn is the most powerful.

If we need to display plain text, then we can use the DataGridTextColumn. However,
we only have limited control over the formatting of the text. For example, we can change the
ForeGround, the FontSize, and the FontWeight properties. However, if we want the text
to wrap, we need to use the ElementStyle property as shown in the following code:

<sdk:DataGridTextColumn x:Name="PublisherColumn"
 Binding="{Binding Publisher, Mode=TwoWay}"
 Header="Publisher">
 <sdk:DataGridTextColumn.ElementStyle>
 <Style TargetType="TextBlock">
 <Setter Property="TextWrapping"
 Value="Wrap">
 </Setter>
 </Style>
 </sdk:DataGridTextColumn.ElementStyle>
</sdk:DataGridTextColumn>

The Data Grid

242

While displaying a boolean property, we can use a DataGridCheckboxColumn, which will
render a checkbox per item.

As mentioned before, the real power lies in the DataGridTemplateColumn because we
can specify how a column will render its contents. We specify a DataTemplate containing
the data binding statements for the CellTemplate property. In this template, we can use
whichever control we want (for example, a DateTimePicker, an Image, or a ComboBox).

Each column can have a CellTemplate as well as a CellEditingTemplate. When
both are specified, the column renders the editing template when the user starts editing
its content.

In this editing template, we can offer the user a way to make a selection from several
options. We have allowed this using a ComboBox. However, we need some way to bind
the list of possible options to this ComboBox. To do so, we can create a helper class that
exposes a property that returns a List<T>. We can then instantiate this helper class in
XAML and perform a data binding with this instance as the source.

There's more...
Silverlight 4 has added more sizing options for the columns of a DataGrid. Silverlight 2 and
Silverlight 3 basically offered us two options. Under these options, we either needed to specify
a width for a column, or else had to leave this task for Silverlight. In the latter case, Silverlight
would basically do an auto-sizing (sizing a column according to its contents).

In Silverlight 4, three new options were added, bringing the total to five options to size the
columns. The following table shows an overview of these size options:

Size option Function
Auto Sized to content and header
Pixel (Fixed) Fixed width in pixels
SizeToCells Sized to fit content of cells
SizeToHeader Sized to fit header
Star Size is a weighted proportion of the available space

The most interesting option is the star option, which works similarly to the star in a regular
Grid. Using this option, we can now, for example, specify a cell to either take all of the
remaining space or become twice as wide as another cell. The following screenshot shows
how the TitleColumn is set to take all the remaining space, the PurchaseDateColumn
and the ImageColumn are set to a size according to their cells, and the AlreadyReadColumn
is set to a size according to its header.

Chapter 5

243

The following code shows how the cells are sized using these sizing options (only the relevant
part of the code is posted here):

<sdk:DataGrid>
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn x:Name="TitleColumn"
 Width="*">
 </sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn x:Name="AuthorColumn"
 Width="100">
 </sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn x:Name="PublisherColumn"
 Width="150">
 </sdk:DataGridTextColumn>
 <sdk:DataGridTemplateColumn x:Name="LanguageColumn"
 Width="100">
 </sdk:DataGridTemplateColumn>
 <sdk:DataGridTemplateColumn x:Name="CategoryColumn"
 Width="100">
 </sdk:DataGridTemplateColumn>
 <sdk:DataGridCheckBoxColumn x:Name="AlreadyReadColumn"
 Width="SizeToHeader>
 </sdk:DataGridTemplateColumn>
 <sdk:DataGridCheckBoxColumn x:Name="PurchaseDateColumn"
 Width="SizeToCells>
 </sdk:DataGridTemplateColumn>
 <sdk:DataGridTemplateColumn x:Name="ImageColumn"
 Width="SizeToCells">
 </sdk:DataGridTemplateColumn>
 </sdk:DataGrid.Columns>
</sdk:DataGrid>

The Data Grid

244

Implementing master-detail in the DataGrid
In order to save screen space, not creating too many columns in a DataGrid may be a good
idea. A better solution in this case is to create a master-detail implementation. The master,
being the original row in the DataGrid, would then contain a few columns only. When clicking
on any row, the details of that row are shown. In the Silverlight DataGrid, this is possible due
to the RowDetailsTemplate.

Getting ready
To follow along with this recipe, you can continue using the code that was created
in the previous recipes. Alternatively, you can use the starter solution located in the
Chapter05/Datagrid_Master_Detail_Starter folder in the code bundle that
is available on the Packt website. The finished solution for this recipe can be found
in the Chapter05/Datagrid_Master_Detail_Completed folder.

How to do it...
For this recipe, we'll again use an ObservableCollection<Book>, which is bound to a
DataGrid. However, we'll display only the Title and the Author in the default view. When
clicking on an item, the details would be shown using a RowDetailsTemplate. The following
are the steps we need to follow in order to implement this:

1. We want the DataGrid to contain only two columns. One of the columns is needed
for the Title property and the other one for the Author property. In the following
code, both of these columns are declared as a DataGridTextColumn and they
contain a Binding to the respective properties of the Book class:
<sdk:DataGrid x:Name="BookDataGrid"
 AutoGenerateColumns="False">
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn x:Name="TitleColumn"
 Binding="{Binding Title}"
 Header="Title">
 </sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn x:Name="AuthorColumn"
 Binding="{Binding Author}"
 Header="Author">
 </sdk:DataGridTextColumn>
 </sdk:DataGrid.Columns>
</sdk:DataGrid>

Chapter 5

245

2. A detail template is defined on the DataGrid itself as shown in the following code:
<sdk:DataGrid>
 <sdk:DataGrid.RowDetailsTemplate>
 </sdk:DataGrid.RowDetailsTemplate>
</sdk:DataGrid>

3. Similar to the CellTemplate, a RowDetailsTemplate is a DataTemplate that
we can define ourselves. The following code defines a DataTemplate containing a
Border. Inside this Border, a Grid is nested containing an Image control, several
TextBlock controls, and a DatePicker. All of these are data bound to display the
value of the selected Book.
<DataTemplate>
 <Border Background="AntiqueWhite"
 BorderThickness="2"
 BorderBrush="Blue"
 CornerRadius="5">
 <Grid>
 <Grid.RowDefinitions>
 ...
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 ...
 </Grid.ColumnDefinitions>
 <Image Grid.Row="0"
 Grid.Column="0"
 Grid.RowSpan="2"
 Source="{Binding ImageName,
 Converter={StaticResource localImageConverter}}"
 Margin="2">
 </Image>
 <StackPanel Grid.Row="0"
 Grid.Column="1"
 Orientation="Horizontal">
 <TextBlock Text="Publisher:"
 FontWeight="Bold"
 HorizontalAlignment="Left">
 </TextBlock>
 <TextBlock Text="{Binding Publisher}"
 HorizontalAlignment="Left"
 Margin="1">
 </TextBlock>
 </StackPanel>
 <StackPanel Grid.Row="1"
 Grid.Column="1"

The Data Grid

246

 Orientation="Horizontal">
 <TextBlock Text="Language:"
 FontWeight="Bold"
 HorizontalAlignment="Left">
 </TextBlock>
 <TextBlock Text="{Binding Language}"
 HorizontalAlignment="Left"
 Margin="1">
 </TextBlock>
 </StackPanel>
 <StackPanel Grid.Row="0"
 Grid.Column="2"
 Orientation="Horizontal">
 <TextBlock Text="Category:"
 FontWeight="Bold"
 HorizontalAlignment="Left">
 </TextBlock>
 <TextBlock Text="{Binding Category}"
 HorizontalAlignment="Left"
 Margin="1">
 </TextBlock>
 </StackPanel>
 <StackPanel Grid.Row="1"
 Grid.Column="2"
 Orientation="Horizontal">
 <TextBlock Text="Purchase date:"
 FontWeight="Bold"
 HorizontalAlignment="Left">
 </TextBlock>
 <controls:DatePicker SelectedDate="{Binding PurchaseDate}"
 VerticalAlignment="Top"
 Margin="1">
 </controls:DatePicker>
 </StackPanel>
 <StackPanel Grid.Row="0"
 Grid.Column="3"
 Orientation="Horizontal">
 <TextBlock Text="Already read:"
 FontWeight="Bold"
 HorizontalAlignment="Left">

Chapter 5

247

 </TextBlock>
 <CheckBox IsChecked="{Binding AlreadyRead}">
 </CheckBox>
 </StackPanel>
 </Grid>
 </Border>
</DataTemplate>

We have now created a master-detail scenario. This can be seen in the
following screenshot:

How it works...
For an easy way of implementing a master-detail scenario, the RowDetailsTemplate of the
DataGrid is a perfect fit. It allows the user to view more details of a record when clicking on it.

The template is defined as a DataTemplate on the RowDetailsTemplate of the
DataGrid control. Inside this template—just like other implementations of the
DataTemplate—we can place whatever controls we want. We can use data binding
to get the values inside the controls. Each detail template gets the object to which the
selected row is bound as the input for this data binding. Inside the data template, the
selected row serves as a data source for the data binding expressions within the template.

The Data Grid

248

There's more...
What if we want to add a Button in the template and based on the selected item, want
to perform a custom action such as navigating to an edit screen where we can edit the
selected item?

This can be solved by binding the Tag property of the Button as shown in the following code:

<Button x:Name="SelectButton"
 Content="Select"
 Click="SelectButton_Click"
 Tag="{Binding Title}">
</Button>

In the Click event handler, we can cast the sender to a Button and get access to the value
of a Tag. In the following code, we bound the Title:

private void SelectButton_Click(object sender, RoutedEventArgs e)
{
 Button templateButton = sender as Button;
 if (templateButton.Tag != null)
 {
 //do something
 }
}

Validating the DataGrid
Validation of your data is a requirement for almost every application in order to make sure
that no invalid input is possible. If you're using a DataGrid, then you can easily implement
validation by using data annotations on your classes or properties. This control picks up
these validation rules automatically and even provides visual feedback. In this recipe,
you'll learn how to get your DataGrid to implement this kind of validation.

Getting ready
You can find a starter solution for this recipe located in the Chapter05\DataGrid_
Validation_Starter folder in the code bundle that is available on the Packt website.
The finished solution for this recipe can be found in the Chapter05\DataGrid_
Validation_Completed folder.

How to do it...
If you're starting from a blank solution, you'll need to create a Person class having ID,
FirstName, LastName, and DateOfBirth properties. The MainPage should contain
an ObservableCollection of Person.

Chapter 5

249

We're going to add a DataGrid to this project and we'll make sure that it react to the
validation attributes that we'll add to the Person class. To achieve this, carry out the
following steps:

1. Open MainPage.xaml and add a DataGrid to this control. Your LayoutRoot
grid looks as shown in the following code:
<Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="40" ></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock Text="Working with the DataGrid"
 Margin="10"
 FontSize="14" >
 </TextBlock>
 <data:DataGrid x:Name="myDataGrid"
 Grid.Row="1"
 Width="400"
 Height="300"
 Margin="10"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">
 </data:DataGrid>
</Grid>

2. Add the following namespace import to MainPage.xaml to make sure that the
DataGrid can be used:
xmlns:data="clrnamespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data"

3. Add a reference to System.ComponentModel.DataAnnotations to your
Silverlight project.

4. Open the Person class and add the following attributes to the FirstName property
of this class:
[StringLength(30, MinimumLength=3,
 ErrorMessage="First name should have between 3 and 30
 characters")]
[Required(ErrorMessage="First name is required")]
public string FirstName { get; set; }

The Data Grid

250

5. We can now build and run our solution. When you enter invalid data into the
FirstName field, you notice that you get visual feedback for these validation
errors and you aren't able to persist your changes unless they are valid. This
can be seen in the following screenshot:

How it works...
This recipe starts by adding a DataGrid and a corresponding namespace import
to MainPage.xaml. As this is done, we can see how it reacts to data annotations.

In the Person class, we've added data annotations to the FirstName property—the
RequiredAttribute, and the StringLengthAttribute. These data annotations
tell that the FirstName is required and should have between 3 and 30 characters to
any control that can interpret them. We've also added a custom error message by filling
out the ErrorMessage NamedParameter.

As a DataGrid is automatically able to look for these validation rules, it will show the
validation errors if validation fails. This feature comes out of the box with a DataGrid or a
DataForm, without us having to do any work. Therefore, you can easily enable validation by
just using data annotations.

By using the named parameters in the constructors of your attributes, you can further
customize how an attribute should behave. For example, an ErrorMessage enables
you to customize the message that is shown when validation fails.

Chapter 5

251

There's more...
In this recipe, we've used just a few of the possible data annotations. DataTypeAttribute,
RangeAttribute, RegularExpressionAttribute, RequiredAttribute,
StringLengthAttribute, and CustomValidationAttribute are the possible data
annotations at your disposal.

For all of these attributes, named parameters are available to further customize the
way validation should occur. ErrorMessage, ErrorMessageResourceName, and
ErrorMessageResourceType are available on all the attributes, but many more are
available depending on the attribute you use. You can check these parameters by looking
at the IntelliSense tool tip that you get on the attribute constructor.

6
Talking to REST and
WCF Data Services

This chapter is taken from Silverlight 4 Data and
Services Cookbook (Chapter 8) by Gill Cleeren,
Kevin Dockx.

In this chapter, we will cover:

 f Reading data from a REST service

 f Parsing REST results with LINQ-To-XML

 f Persisting data using a REST service

 f Working with the ClientHttpStack

 f Communicating with a REST service using JSON

 f Using WCF Data Services from Silverlight

 f Reading data from WCF Data Services

 f Persisting data using WCF Data Services

 f Talking to Flickr

 f Talking to Twitter from a non-trusted application

 f Passing credentials and cross-domain access to Twitter from a trusted
Silverlight application

Talking to REST and WCF Data Services

254

Introduction
While WCF and ASMX services are very powerful and can address almost every situation,
these services might be overkill for some scenarios. Sometimes, a simple exchange of textual
information, preferably in XML or JSON (JavaScript Object Notation—an easy-to-read data
exchange format), might be enough.

The protocol used for this type of communication is REST (REpresentational State Transfer).
Compared to web services (WCF or ASMX), REST has some advantages that can be significant
in the case of Silverlight. The exchanged information is human-readable text, mostly in the
XML format. The XML is clean, meaning there is not a lot of XML markup being added. SOAP
messages—the format for web services—are also XML, but a lot of extra overhead is added
in the so-called SOAP envelope. Using REST will result in less data being sent over the wire,
resulting in better performance from a bandwidth perspective. In general, REST is easier to
use and entirely platform independent. It does not require any extra software as it relies on
standard HTTP methods.

Are RESTful services (a service that follows REST principles is often referred to as being
RESTful) a trend? It's safe to say so. Today, many large web applications such as Flickr,
FaceBook, Twitter, YouTube and so on offer (part of) their functionality using a RESTful
API (a collection of REST services). In .NET, creating RESTful services is fully supported.
Moreover, Silverlight can easily connect to REST services.

In this chapter, we'll first look at talking with REST services from Silverlight. Secondly, we'll
look at how to work with WCF Data Services (formerly known as ADO.NET Data Services),
which are also pure REST services at their base. However, through the use of the client-
side library available for use with Silverlight, a lot of plumbing code (necessary to work with
RESTful services) is abstracted away and we get typed access to the entities made available
over the service. In other words, it provides a wrapper around REST-based access.

Throughout this chapter, all recipes (except where we use Flickr or Twitter) use the same
scenario—the Computer Inventory application. This application could be used by an internal
IT department of an organization to keep track of PCs, laptops, and so on as well as by the
users registered on a particular system. It consists of two parts—the User Management,
which we'll build using pure REST services, and the Computer Management, which will
be built through the use of WCF Data Services. The following image is the schema
for the database used. It shows that a Computer is of a certain ComputerType and has
a Manufacturer. Each Computer can be registered with one or more User instances.

Chapter 6

255

Reading data from a REST service
Let's assume that we are writing a Silverlight application that needs to work with data exposed
by a RESTful service. The first question that comes to mind is: how can we communicate with
such a service and read out the data returned by the service?

This recipe focuses on the communication aspect of REST services, such as how we can
connect to a RESTful service from Silverlight and get data into our application.

In this recipe, we'll retrieve a list of all users in the Users table using a REST service. For now,
we'll show the results in the same format as they are returned, which is plain XML.

Talking to REST and WCF Data Services

256

Getting ready
The finished solution for this recipe can be found in the Chapter06/
TalkingToSimpleRESTServices_ReadingFromRest_Completed folder in the code
bundle available on the Packt website. To follow along with this recipe, the starter solution
located in the Chapter06/TalkingToSimpleRESTServices_ReadingFromRest_
Starter folder can be used.

In this recipe, we're working with a local REST service. The good thing is that building REST
services ourselves using WCF is pretty easy. In the sample code, some REST services have
already been constructed, such as a service that returns all users (GetAllUsers), a service
that retrieves a user based on the passed-in user ID (GetUserById) and a service that
searches for a user based on his/her username (GetUserByUserName). These services
can be found in the TalkingToSimpleRESTServices.Services project in both the
starter and the completed solution.

For this sample (as well as the samples of the other recipes in this chapter) to work, we
need the ComputerInventory database. This database is included both as a Microsoft
SQL Server Database File (MDF) file (CompterInventory.mdf) and as a *.sql script
file. Both the files are located in the Chapter06 folder.

How to do it...
This recipe will mainly focus on the aspect of communication with REST services. We'll call
the RESTful service that returns all users and display the result in its original format—plain
XML. The UI of this recipe is kept very basic, containing just enough to trigger a call to the
service and show the results, so it won't be in our way while exploring the communication
features. The following screenshot shows the application containing a TextBox that
displays the result of a REST service call, namely an XML string. (Don't worry about any
formatting. We'll look at working with XML in the next recipe.)

Chapter 6

257

In order to begin reading data from a REST service, we'll need to complete the following steps:

1. Open the solution file in the Chapter06/TalkingToSimpleRESTServices_
ReadingFromRest_Starter folder. It will open a solution containing a Silverlight
application, a hosting website (TalkingToSimpleRESTServices.Web), and a
website where the REST services are located (TalkingToSimpleRESTServices.
Services).

2. The easiest way to communicate with a RESTful service is through the use of the
WebClient class. This class is part of the System.Net namespace which resides
in the System.Net assembly. If you're working with Visual Studio 2010 (either with
Silverlight 3 or 4), a reference to this assembly should be added automatically.
If you're working with Visual Studio 2008 in combination with Silverlight 3, this
assembly reference has to be created manually. To do so, right-click on the Silverlight
project, select Add reference. In the dialog that appears, on the tab titled .NET,
select System.Net.

3. Let's add some XAML code to MainPage.xaml to build the necessary UI for the
Silverlight application. We'll add a button that will trigger the call to the service.
We'll also add a non-editable textbox in which the results will be shown as plain
text. This can be achieved using the following code:
<Grid x:Name="LayoutRoot"
 Background="LightGray">
 <Grid.RowDefinitions>
 <RowDefinition Height="50"></RowDefinition>
 <RowDefinition Height="40"></RowDefinition>
 <RowDefinition ></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock x:Name="TitleTextBlock"
 Text="Computer Inventory - User Management"
 FontSize="30"
 FontWeight="Bold"
 HorizontalAlignment="Left"
 Margin="5">
 </TextBlock>
 <StackPanel Grid.Row="1"
 Orientation="Horizontal" >
 <TextBlock x:Name="ControlsTextBlock"
 Text="Controls: "
 Margin="3"
 VerticalAlignment="Center">
 </TextBlock>
 <Button x:Name="ReLoadButton"
 Content="Reload data"
 Click="ReLoadButton_Click"
 HorizontalAlignment="Left"
 Margin="3"
 VerticalAlignment="Center">

Talking to REST and WCF Data Services

258

 </Button>
 </StackPanel>
 <TextBox x:Name="ResultTextBox"
 Grid.Row="2"
 VerticalScrollBarVisibility="Visible"
 TextWrapping="Wrap"
 Width="600"
 IsReadOnly="True">
 </TextBox>
</Grid>

4. Let's now look at the service that will be called. The contract for this service is
located in the TalkingToSimpleRESTServices.Services project in the
IUserManagementService.svc.cs file. Calling a RESTful service is nothing
more than sending a request to the URI of the service and reading the returned
response. In this case, we're sending a request to our own service. In fact, we're
sending a request to a method of the service, each method of which has its own
address (a unique URI). The format of this URI is defined by the UriTemplate.
For the GetAllUsers method, the value of the UriTemplate is set to userlist
as shown in the following code:
[OperationContract]
[WebGet(UriTemplate = "userlist",
 BodyStyle = WebMessageBodyStyle.Bare,
 RequestFormat = WebMessageFormat.Xml)]
List<DTO.User> GetAllUsers();.

5. In our Silverlight code, we need to match this format. The URI is composed of
the base URI (the address of the service itself, assigned to the serviceBaseUrl
variable in the following code), appended with the userlist suffix (defined in
the previous code as the value for the UriTemplate and assigned to the
getAllUser variable in the following code). In our case, the complete URI will
be http://localhost:23960/UserManagementService.svc/userlist
(note that the port number, here 23960, may vary on your machine).
string serviceBaseUrl =
 "http://localhost:23960/UserManagementService.svc/";
string getAllUser = "userlist";

Ideally, in real-world applications, this URL would be stored in a configuration file.

6. Now that we have the URI, we need to actually make a call to it. For this, we
use the WebClient class. In the Reload button's Click event handler, we
first create an instance of this type. Just like any other service calls, REST
service calls are asynchronous. Therefore, we need to register an event handler
for the DownloadStringCompleted event, which will be called whenever the
service returns. Finally, we perform the call by using the DownloadStringAsync
method, passing in the URI as the parameter. This is shown in the following code:

Chapter 6

259

private void ReLoadButton_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();
 client.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler
 (DownloadAllUsersCompleted);
 client.DownloadStringAsync(new Uri
 (serviceBaseUrl + getAllUser, UriKind.Absolute));
}

7. When the service call returns, the event handler defined in the previous step will be
called automatically. In this event handler, we have access to the result of the call via
the Result property on the instance of the DownloadStringCompletedEventArgs
named e. The response is plain XML. Each returned User instance is serialized before
being sent. If errors have occurred, we can see them here as well. This is shown in the
following code:
void DownloadAllUsersCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 ResultTextBox.Text = e.Result;
}

How it works...
Let's first take a look at some particulars of REST. One of the most important principles in
REST is the concept of resources. A resource is a container of information. Each resource can
be uniquely identified by a URI. One of the best examples of the REST architecture is the World
Wide Web itself. A page is a resource and it has a unique URI to access it.

While SOAP mainly uses the HTTP POST verb, RESTful services use GET, POST, PUT, and
DELETE. With the default HTTP stack (also known as BrowserHttpStack), Silverlight
can work only with GET and POST because of the limitations of the browser networking APIs
it uses internally. In Silverlight 3, a second stack was introduced—the ClientHttpStack
(we'll be looking at the ClientHttpStack in a later recipe in this chapter).

Communicating with REST services differs from communicating with SOAP-based services
as REST services don't expose a WSDL file that contains the functionalities of the service.
We can't add a reference to these kind of services in Visual Studio. So there will be no
proxy generation and no IntelliSense available.

Talking to REST and WCF Data Services

260

The solution uses the WebClient class that is part of the full .NET framework as well.
The WebClient class has two important ways of requesting data—DownloadString and
OpenRead. DownloadString (which we used in this recipe) can be used when we're reading
textual information such as XML returned by a REST service. OpenRead can be used when we
want to read the result into a stream. The WebClient class defines a pair of an asynchronous
method and a Completed event for both these ways of requesting data. This Completed event
is fired on the UI thread, which means that to update UI elements in the event handler, we can
do so directly and don't have to cross threads.

Instead of using the WebClient class, we can also use the HttpWebRequest class.
This class should be our choice if we need more control over the call to the service.
The WebClient class uses the HttpWebRequest class internally.

Calling REST services is possible only in an asynchronous way. Silverlight allows only
this type of calls. This asynchronous behavior is reflected in both the actual call to
the service (DownloadStringAsync) and the registration of the event handler
(DownloadStringCompleted), which is called whenever the service returns.

Communication with REST services can be summarized as a three-step process:

 f Create a URI to which a request needs to be sent

 f Send the request

 f Get in the results and work with them (parsing and so on)

The format of the URI is defined by the service itself. Each URI corresponds to a
specific method that will return data. The actual sending of a request is done in the
DownloadStringAsync method of the WebClient class. When the service returns,
the callback is invoked and the response is available through the Result property of
DownloadStringCompletedEventArgs.

See also
In the next recipe, we're going to work with the results of the service through the use of
LINQ-To-XML.

Parsing REST results with LINQ-To-XML
We have successfully connected to a REST service from a Silverlight application in the
previous recipe. The response from the service is XML. Most of the time, showing pure XML
to the end user is not the goal of an application, so we'll want to parse the XML. Silverlight
contains several options to work with XML, which include XmlReader/XmlWriter, XmlSerializer,
and LINQ-To-XML (also known as XLinq). The latter is a preferred way to parse XML.

In this recipe, we'll look at how we can use LINQ-To-XML to transform XML into real data.
The raw user data (originally in XML) will be transformed in User objects.

Chapter 6

261

Getting ready
This recipe builds on the code created in the previous recipe, so you can continue
using that solution. Alternatively, you can use the starter solution for this recipe located
in the Chapter06/TalkingToSimpleRESTServices_LinqToXml_Starter folder
in the code bundle available on the Packt website. The finished solution for this recipe
can be found in the Chapter06/TalkingToSimpleRESTServices_LinqToXml_
Completed folder.

How to do it...
In this recipe, we'll transform the plain XML returned by a RESTful service into real,
meaningful data. The XML will be parsed using LINQ-To-XML. Without a doubt, LINQ-To-XML
is the easiest and most efficient way for this task. To begin parsing the XML, we'll complete
the following steps:

1. Either continue working on the solution created in the previous recipe or use the
provided solution as outlined in the Getting ready section.

2. The assembly needed to use LINQ-To-XML in Silverlight applications is not added by
default. Therefore, we need to add a reference to the System.Xml.Linq assembly
in the Silverlight project. The basic features of LINQ, such as the select statement,
live in the System.Linq assembly that is added by default. (Note that the System.
Xml.Linq assembly is about 120KB in file size.)

3. As Visual Studio can't create a proxy for a REST service, we don't get types to work
with on the client side, although this would be a lot easier. Therefore, we'll manually
create a User class ourselves in the TalkingToSimpleRESTServices Silverlight
project that will contain the object representation of the XML data. This is a data-only
type. The User class is shown in the following code:
public class User
{
 public int UserId { get; set; }
 public string UserName { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
 public string Department { get; set; }
 public string ReportsTo { get; set; }
}

Talking to REST and WCF Data Services

262

4. Next, in the DownloadAllUsersCompleted callback method located in the
code-behind of MainPage.xaml, we'll need to load the XML into an XDocument
using the Parse method. An XDocument is able to load in the entire XML stream
given to it. With a query, we search for all User descendants of the root node using
the Descendants method. As we don't want to work with the XElement instances
in our client code, we read each User XElement and load its values into a new
instance of the User class. Note that we can use the Element or Descendants
methods. Both methods have the same result. This is shown in the following code:
void DownloadAllUsersCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 XDocument xml = XDocument.Parse(e.Result);
 var users = from results in xml.Descendants("User")
 select new User
 {
 UserId = Int32.Parse(results.Element("UserId")
 .Value.ToString()),
 UserName = results.Descendants("UserName").First().Value,
 FirstName = results.Descendants("FirstName").First().Value,
 LastName = results.Descendants("LastName").First().Value,
 Department = results.Element("Department").Value.ToString(),
 Email = results.Element("Email").Value.ToString(),
 ReportsTo = results.Element("ReportsTo").Value.ToString()
 };
}

5. We will then need to replace the ResultTextBox in MainPage.xaml with a
DataGrid called UsersDataGrid. The code for this control is as follows:
<sdk:DataGrid x:Name="UsersDataGrid"
 Grid.Row="2"
 AutoGenerateColumns="False"
 Width="600"
 Height="500"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Margin="3">
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn Binding="{Binding UserId}"
 Header="UserId" />
 <sdk:DataGridTextColumn Binding="{Binding UserName}"
 Header="User name" />
 <sdk:DataGridTextColumn Binding="{Binding FirstName}"
 Header="First name" />
 <sdk:DataGridTextColumn Binding="{Binding LastName}"
 Header="Last name" />
 </sdk:DataGrid.Columns>
</sdk:DataGrid>

Chapter 6

263

6. Finally, we can use the data in our application. We can now bind the generic
List<User> to the DataGrid by setting it as the value of the ItemsSource
property. This is shown in the following code:
void DownloadAllUsersCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 ...
 UsersDataGrid.ItemsSource = users.ToList();
}

The following screenshot shows the User instances bound to the DataGrid:

How it works...
When working with data coming from a RESTful service, most of the time it's important to look
at the schema of the XML. Here, the data is quite simple as it's created through serialization of
an object on the server side. Serialization is the process of converting an object into a stream so
that it can be easily sent over the wire. In our case, we are serializing instances of a class called
User that is located in the TalkingToSimpleRestServices.DTO project. Each property of
this class is translated into XML as shown in the following code:

<ArrayOfUser>
 <User>
 <Department />
 <Email />
 <FirstName />
 <LastName />
 <ReportsTo />
 <UserId />
 <UserName />
 </User>
</ArrayOfUser>

Talking to REST and WCF Data Services

264

While RESTful services may respond with more complicated XML code, LINQ-To-XML contains
everything needed to parse the data easily. We should always start by loading the entire XML into
an XDocument or an XElement. XElement may even be a better fit here as we're not using any
particularities of the root node. Using the Descendants method and passing in the name of the
node we want to retrieve, we get a list of all the XElement instances matching the requested
pattern. As this is a list, we can perform a query on it. In this query, for each encountered
XElement, we create a new User instance by passing in the retrieved values of the XML.

With this, we have successfully loaded data from a REST service into the types on the client
side. This data can now be used in all scenarios we want, for example, data binding.

See also
The previous recipe explains how to get the XML data into the application. In the next recipe,
we explore the options to send data from Silverlight to a REST service. In the Communicating
with a REST service using JSON recipe, we'll look at how we can work with a REST service that
returns JSON.

We used very simple data binding here, but if you'd like to explore this topic further, refer to
Chapter 3, An Introduction to Data Binding and Chapter 4, Advanced Data Binding.

Persisting data using a REST service
Some REST services accept data that we send to them as well, so this data can then be
persisted back into a database. In this recipe, we'll make it possible to add, update, or delete
a user in the Computer Inventory application where we're working on the User Management.

Getting ready
This recipe builds on the code created in the previous two recipes. If you want to follow along
with the steps in this recipe, you can also use the starter solution located in the Chapter06/
TalkingToSimpleRESTServices_PersistingData_Starter folder in the code bundle
available on the Packt website. The finished solution for this recipe can be found in the
Chapter06/TalkingToSimpleRESTServices_PersistingData_Completed folder.

How to do it...
Persisting data to a REST service is actually the opposite of reading. We'll use the same class,
namely the WebClient. However, instead of downloading data, we'll serialize client-side data
and send it back to the service. To begin persisting data to the REST service, we'll complete
the following steps:

1. As outlined in the Getting ready section, use either the solution from the previous
recipe or the provided solution in the sample code.

Chapter 6

265

2. We'll be using the WebClient class that resides in the System.Net namespace.
If not yet added, add a reference to this assembly in your Silverlight project. To do
so, right-click on the TalkingToSimpleRESTServices project, select Add reference,
and select the required assembly in the dialog box that appears. Visual Studio 2010
creates this assembly reference automatically.

3. In this recipe, we'll use a detail window to add, update or delete a user. The following
is the XAML code for this user control. This code is placed inside a new Silverlight
child window. To add a child window to the project, right-click on the Silverlight project
node in the Solution Explorer, select Add | New item..., and select Silverlight Child
Window in the template selection dialog box. Name this new file UserDetailEdit.
Such a child window contains out of the box zoom-in or zoom-out effects when
initiated or closed respectively.

Note that we're going to use data binding to show a User instance or to get the
changes back into the object when the values have changed. TwoWay bindings are
used so that the bound CLR object will update automatically as well. The complete
XAML code for this child window can be found in the code bundle. The following code
shows the most relevant parts:

<Grid x:Name="LayoutRoot" Margin="2">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid Grid.Row="0" x:Name="UserDetailGrid" >
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 ...
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 ...
 </Grid.ColumnDefinitions>
 <TextBlock Text="User ID: "
 Grid.Row="0"
 Grid.Column="0"
 VerticalAlignment="Top">
 </TextBlock>
 <TextBlock x:Name="UserIdTextBlock"
 Grid.Row="0"
 Grid.Column="1"
 Text="{Binding UserId}"
 VerticalAlignment="Top">
 </TextBlock>
 <TextBlock Text="User name: "
 Grid.Row="1"
 Grid.Column="0"

Talking to REST and WCF Data Services

266

 VerticalAlignment="Top">
 </TextBlock>
 <TextBox x:Name="UserNameTextBox"
 Grid.Row="1"
 Grid.Column="1"
 Text="{Binding UserName, Mode=TwoWay}"
 VerticalAlignment="Top">
 </TextBox>
 <!-- Similar code omitted-->
 </Grid>
 <Button x:Name="DeleteButton"
 Content="Delete"
 Click="DeleteButton_Click"
 Width="75"
 Height="23"
 HorizontalAlignment="Right"
 Margin="0,12,79,0"
 Grid.Row="1" />
 <Button x:Name="CancelButton"
 Content="Cancel"
 Click="CancelButton_Click"
 Width="75"
 Height="23"
 HorizontalAlignment="Right"
 Margin="0,12,0,0"
 Grid.Row="1" />
 <Button x:Name="SaveButton"
 Content="Save"
 Click="SaveButton_Click"
 Width="75"
 Height="23"
 HorizontalAlignment="Right"
 Margin="0,12,158,0"
 Grid.Row="1" />
</Grid>

4. Similar to reading from a REST service, we need a URI to send a request, as dictated
by the service itself. Each action (add, update, or delete) has a different address.
We'll combine these specific addresses with the base address of the service to get
the correct URI based on the required action. This is shown in the following code:
string serviceBaseUrl =
 "http://localhost:23960/UserManagementService.svc/";
string getUserById = "user/{0}";
string addUser = "user/add";
string updateUser = "user/update";
string deleteUser = "user/delete";

Note that the port number (here 23960) may be different on your machine.

Chapter 6

267

5. Let's now look at the actions required to add a new User. We first need to change the
client-side User class in the Silverlight project. The class itself needs to be decorated
with a DataContract attribute and the members we want to send
over need a DataMember attribute. The updated class is shown in the following
code. Note that we define the Namespace to be empty.
[DataContract(Name = "User", Namespace = "")]
public class User
{
 [DataMember]
 public int UserId { get; set; }
 [DataMember]
 public string UserName { get; set; }
 [DataMember]
 public string FirstName { get; set; }
 [DataMember]
 public string LastName { get; set; }
 [DataMember]
 public string Email { get; set; }
 [DataMember]
 public string Department { get; set; }
 [DataMember]
 public string ReportsTo { get; set; }
}

6. Upon constructing the UserDetailEdit instance, we can check which action
the window is supposed to be performing. This can be either editing an existing
User or adding a new User. These actions are reflected in a new enumeration
called EditingModes that we add to the Silverlight project. This
is shown in the following code:
public enum EditingModes
{
 New,
 Edit
}

7. This enumeration is now used as a parameter type in the constructor. When we
add a User, a new instance is created and is set as the value for the DataContext
property of the UserDetailGrid:
private User user;
private int userId;
private EditingModes editingMode;
public UserDetailEdit(int userId, EditingModes editingMode)
{
 InitializeComponent();

Talking to REST and WCF Data Services

268

 this.userId = userId;
 this.editingMode = editingMode;
 if (editingMode == EditingModes.New)
 {
 user = new User();
 UserDetailGrid.DataContext = user;
 DeleteButton.IsEnabled = false;
 }
}

8. When the user clicks on the Save button, we need to send the User instance to the
RESTful service. However, this can be done only after serializing the object. This can
be done through the use of the DataContractSerializer type as shown in the
following code:
private void SaveButton_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();
 Uri uri = new Uri(serviceBaseUrl + addUser);
 DataContractSerializer dataContractSerializer = new
 DataContractSerializer(typeof(User));
 MemoryStream memoryStream = new MemoryStream();
 dataContractSerializer.WriteObject(memoryStream, user);
 string xmlData = Encoding.UTF8.GetString(memoryStream.ToArray(),
 0, (int)memoryStream.Length);
}

9. Now that we have the XML available, we need to send it. This will be done through the
use of the WebClient, but instead of using the DownloadString method, we'll use
the UploadString method. It's required to set the content-type. It should be set to
application/xml as shown in the following code. Also, in the UploadStringAsync
method, we're using POST as the method for the HTTP request and are adding data:
client.UploadStringCompleted += new
 UploadStringCompletedEventHandler(UploadCompleted);
client.Headers[HttpRequestHeader.ContentType] = "application/xml";
client.UploadStringAsync(uri, "POST", xmlData);

10. In the UploadCompleted event handler for the callback, we can check if the upload
went well using the Error property of the UploadStringCompletedEventArgs
event arguments. This is shown in the following code:
private void UploadCompleted(object sender,
 UploadStringCompletedEventArgs e)
{
 if (e.Error == null)
 this.DialogResult = true;
 else
 MessageBox.Show(e.Error.Message);
}

Chapter 6

269

11. At this point, the child window is ready. The only thing left to do is calling it from
MainPage.xaml. To do so, start by adding a new Button called NewUserButton
in the StackPanel within MainPage.xaml. This is shown in the following code:
<Button x:Name="NewUserButton"
 Content="Add user"
 Click="NewUserButton_Click"
 HorizontalAlignment="Left"
 Margin="3"
 VerticalAlignment="Center">
</Button>

12. In the Click event handler, we instantiate the UserDetail child window as shown
in the following code:
private void NewUserButton_Click(object sender, RoutedEventArgs e)
{
 UserDetailEdit editView = new
 UserDetailEdit(0, EditingModes.New);
 editView.Show();
}

With that, we've created all the necessary code to allow the persisting of User instances
over the REST service. In the following screenshot, the child window is shown in its "New"
editing mode:

Updating and deleting User instances are similar. The sample code contains all the logic for
these actions as well.

Talking to REST and WCF Data Services

270

How it works...
When persisting data to a RESTful service, the first concern is getting the data on the
service. Data is almost always available on the client side in the form of objects. We can't
just go sending the objects straight away; they have to be serialized first. For the service
and the client to understand one another, the XML should be in a correct format. Hence,
the DataContract and the DataMember attributes are used in the User class on the
client side. The client-side and the server-side objects must have the same names for
their properties, otherwise the (de)serialization will fail.

The process of serialization from and to XML has often been the job of the XmlSerializer
class and it has been included since NET 1.0. When WCF arrived, a new serializer called the
DataContractSerializer was included, in the first place intended for use with WCF.
However, as seen in this recipe, it can be used for any serialization purpose.

Since version 3, Silverlight contains has contained two network stacks—the browser stack
used in this sample and the ClientHttpStack. The browser stack is named so because
Silverlight internally uses the browser networking APIs. Through this stack, only HTTP GET
and POST are supported. In the sample code, you can see that we use a POST request to
perform an add, an update, or a delete. Another way of using PUT and DELETE is through
POST by passing in the real HTTP value as a custom header. This technique isn't perfectly
RESTful either, because the request method and what we want to achieve don't match,
which is a tenet of the REST principle. This technique is also used in WCF Data Services.
The ClientHttpStack does allow Silverlight to use real PUT or DELETE messages.

There's more...
For the serialization process, we could have used the XmlSerializer class. While this
class also does the job and is included in Silverlight, the DataContractSerializer is
easier to use (as you have more control over the namespace, and so on). The sample code
also contains some code where the XmlSerializer class is used.

See also
Reading and persisting data using REST services is very similar. Read both the Reading data
from a REST service and Parsing REST results with LINQ-To-XML recipes in this chapter and
notice the link between the two.

Working with the ClientHttpStack
When communicating with a REST service, Silverlight uses the BrowserHttpStack by
default. Due to this, Silverlight can't use all HTTP verbs such as PUT and DELETE. Silverlight
3 added a new option, namely the ClientHttpStack. This new stack bypasses the browser
stack and performs its communication directly through the operating system.

Chapter 6

271

In this recipe, we'll look at the changes we need to make to use this networking stack.

Getting ready
To follow along with this recipe, you can use the code created in the previous
recipe. Alternatively, you can use the starter solution located in the Chapter06/
TalkingToSimpleRESTServices_ClientHttp_Starter folder in the code bundle
available on the Packt website. The completed solution can be found in the Chapter06/
TalkingToSimpleRESTServices_ClientHttp_Completed folder.

How to do it...
To make a Silverlight application that talks with REST services use the ClientHttpStack
instead of the BrowserHttpStack, we need to perform a few simple steps. We'll use the
application built in the previous recipes (Computer Inventory) to use the new stack. Let's
take a look at what we need to do:

To make an application use the ClientHttpStack, we need to tell Silverlight to
do so. The easiest way is telling Silverlight that all traffic for addresses beginning
with http:// has to use this stack. This can be done using the following code:

public MainPage()
{
 InitializeComponent();
 HttpWebRequest.RegisterPrefix("http://",
 WebRequestCreator.ClientHttp);
}

With the previous code executed, all calls will be executed over the ClientHttpStack.

How it works...
The REST protocol specifies that we can identify any resource with a unique URL. This
resource can be any information on the Web, for example, a user instance in the application.
Using REST, we can get this user with the GET command, create or update the user using the
PUT command, use the POST command to create a new instance, delete the user using the
DELETE command, and so on.

Silverlight supports communication with REST services, but as it works by default through
the browser stack, it's limited to use only GET and POST. With Silverlight 3, a new stack
was introduced, namely the ClientHttpStack.

Talking to REST and WCF Data Services

272

Working with this new stack requires almost no changes to existing applications as the
API is identical. The only thing we need to do is let Silverlight know that we want to use
this stack. This can be done by saying that all requests starting with http:// should
use the ClientHttpStack. This is shown in the following line of code:

HttpWebRequest.RegisterPrefix("http://",
 WebRequestCreator.ClientHttp);

If we have requests over HTTPS and want these to happen over the client stack as well,
we need to register them using the following line of code:

HttpWebRequest.RegisterPrefix("https://",
 WebRequestCreator.ClientHttp);

We can also be more specific. For example, assume we have an application that
communicates with http://www.snowball.be and http://www.packtpub.com.
If we want the REST communication with http://www.snowball.be to go over the
ClientHttpStack and http://www.packtpub.com to use the default browser stack,
we can specify this using the following code:

HttpWebRequest.RegisterPrefix("http://www.snowball.be",
 WebRequestCreator.ClientHttp);

Advantages of ClientHttpStack
Using the ClientHttpStack has some advantages over using the BrowserHttpStack.
As already mentioned, it supports more HTTP verbs (GET, POST, PUT, and DELETE). It does
not support other HTTP verbs such as CONNECT, TRACE and so on. However, the service
can be limited in the keywords it supports. It's possible to specify in the client access
policy file (clientaccesspolicy.xml) which verbs are supported and which aren't.

The error messages when using the BrowserHttpStack are limited. With this stack,
we have access to only 200 and 404. The ClientHttpStack supports all error
messages, making it easier to see what's wrong with the service.

Starting with Silverlight 4, it's also possible to perform authentication using the
ClientHttpStack (we'll look at this in the Passing credentials and cross-domain
access to Twitter from a trusted Silverlight application recipe later in this chapter).

Chapter 6

273

When we download an image with the BrowserHttpStack, it's automatically cached by the
browser as it is its default behavior. However, when working with the ClientHttpStack, the
browser won't cache it; it simply won't see the image passing by. In Silverlight 3, there was no
option to cache using the ClientHttpStack. Silverlight 4 adds support for caching though.

The same goes for cookies. When using the BrowserHttpStack, all cookies coming in from
a site or going out to a site are managed by the browser. Due to this, when we're logged in to
a site based on cookies (the way ASP.NET works), the requests made to that same site from a
Silverlight application are also authenticated. With the ClientHttpStack, again this won't
work. With the ClientHttpStack, we can work with cookies, but this is manual work and
can be done using the CookieContainer.

See also
In the previous recipes of this chapter, we looked at the specifics of working with REST
services from Silverlight.

Communicating with a REST service
using JSON

When we work with REST services, data is sent over the wire in XML by default. However,
REST services can also send back their information in another format such as JavaScript
Object Notation (JSON). This can be the case if the service has also got to be accessible
from JavaScript code or if the transferred data is to be very compact.

In this recipe, we'll look at how to communicate from Silverlight with a REST service in the
JSON format.

Getting ready
This recipe builds on the code created in the previous recipes, so you can continue using your
own code for this recipe. Alternatively, you can also use the provided starter solution located
in the Chapter06/TalkingToSimpleRESTServices_ReadingWithJSON_Starter
folder in the code bundle available on the Packt website. The finished solution for this recipe
can be found in the Chapter06/TalkingToSimpleRESTServices_ReadingWithJSON_
Completed folder.

Talking to REST and WCF Data Services

274

How to do it...
Communicating with a REST service using JSON data is a matter of changing the format of
the data sent over the wire and parsing this data using a JsonArray. To do this, we have to
complete following steps:

1. Open the solution as outlined in the Getting ready section and locate the project
containing your services called TalkingToSimpleRESTServices.Services.
In this project, find the IUserManagementService interface and add the
following code to it. Notice that the RequestFormat and the ResponseFormat
NamedParameters are set to Json as shown in the following code:
[OperationContract]
[WebGet(UriTemplate = "userlistjson",
 BodyStyle = WebMessageBodyStyle.Bare,
 RequestFormat = WebMessageFormat.Json),
 ResponseFormat = WebMessageFormat.Json)])]
List<DTO.User> GetAllUsersJson();

2. We can now implement this method. To do so, add the following code to the
UserManagementService class:
public List<DTO.User> GetAllUsersJson()
{
 List<DTO.User> dtoUserList = new List<DTO.User>();
 List<User> userList = new UserRepository().GetAllUsers();
 foreach (var user in userList)
 {
 DTO.User dtoUser = ConvertUserToDTOUser(user);
 dtoUserList.Add(dtoUser);
 }
 return dtoUserList;
}

3. In the Silverlight project, we need to add a reference to System.Json.

4. We'll now try to retrieve all users using JSON, instead of XML. In the UI, add
a new Button to the StackPanel as shown in the following code:
<Button x:Name="NewUserButton"
 Content="Create new"
 Click="NewUserButton_Click"
 HorizontalAlignment="Left"
 Margin="3"
 VerticalAlignment="Center">
</Button>

Chapter 6

275

5. In the event handler of this Button, we can perform a call to the GetAllUsersJson
method using the following code:
private void JsonButton_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();
 client.OpenReadCompleted += new
 OpenReadCompletedEventHandler(client_OpenReadCompleted);
 client.OpenReadAsync(new Uri(serviceBaseUrl + "userlistjson",
 UriKind.Absolute));
}

6. Add the following code to handle the OpenReadCompleted event of
our JSON request. In this method, we're parsing the result of the request.
void client_OpenReadCompleted(object sender,
 OpenReadCompletedEventArgs e)
{
 if (e.Error == null)
 {
 JsonArray items = (JsonArray)JsonArray.Load(e.Result);
 var query = from user in items
 select new User
 {
 Department = user["Department"],
 Email = user["Email"],
 FirstName = user["FirstName"],
 LastName = user["LastName"],
 ReportsTo = user["ReportsTo"],
 UserId = user["UserId"],
 UserName = user["UserName"]
 };
 UsersDataGrid.ItemsSource = query.ToList();
 }
}

Build and run your application. If we place a breakpoint in the returning method, we can see
that the data is effectively returned in a JSON format.

How it works...
By setting the RequestFormat and the ResponseFormat NamedParameters to
WebMessageFormat.Json in our OperationContract, we're telling our service
that it should use JSON as the data format while transferring data for both requests
and responses. Whenever we send or receive data using this OperationContract,
everything is done using JSON.

Talking to REST and WCF Data Services

276

To easily parse this result, Silverlight includes classes to easily handle JSON data. They're
located in the System.Json namespace. By calling JsonArray.Load in the response stream,
we can load the response into a JsonArray object. This represents a collection of JsonValue.
In this example, each JsonValue is a User, so all that's left to do is convert these items into
User objects and set the ItemsSource collection of the DataGrid.

See also
To get data in the XML format rather than the JSON format, have a look at the Reading data
from a REST service recipe in this chapter.

Using WCF Data Services with Silverlight
Above our data layer, we may have an entity model that exposes entities (for example, created
using the ADO.NET Entity Framework) for our application to use. WCF Data Services allows
exposing these entities over REST-based services. In this recipe, we'll look at how we can use
WCF Data Services from Silverlight.

WCF Data Services is the new name for ADO.NET Data Services. This name change was made
in the .NET Framework 4 timeframe.

In the previous recipes, we worked on the User Management part of the Computer Inventory
application. In this and the following two recipes, we'll work on the Computer Management.

Getting ready
This recipe, along with the following two recipes, uses the same database called
ComputerInventory as used in the RESTful services recipes. This database is included as a
Microsoft SQL Server Database File (MDF) in the code bundle available on the Packt website.

This recipe starts from an empty Silverlight application. Refer to Chapter 1 for more
information on how to do so.

How to do it...
We'll first set up WCF Data Services and then build a model using Entity Framework. In the
following recipes, we'll connect to these services from a Silverlight client application. The
following are the steps we need to perform to get this working:

1. We'll build the entire application from scratch. Create a new Silverlight solution and
select ASP.NET Web Application as the type for the hosting website. The latter is
needed to create the model and host the service. If you have an existing Silverlight
solution to which you want to add a WCF Data Service, you can add the model in the
hosting web application.

Chapter 6

277

2. WCF Data Services work on a model, not directly on a database. Add a
new Entity Framework Model by right-clicking on the web project, selecting
Add | New Item..., and selecting ADO.NET Entity Data Model. Name the
model as ComputerInventory.edmx.

 3. In the wizard that appears, select Generate from Database in the first dialog box. This
indicates that we want to start creating the model based on the tables in the database.

4. The next step allows us to configure the connection to the database by clicking on the
New Connection button. Leave the checkbox checked to allow storing the connection
string in the web.config file.

5. The final step in the wizard allows us to select which items from the database
we want to make part of the model. Select all tables, excluding the sysdiagrams.
When we click on Finish, Visual Studio generates the model as shown in the
following screenshot:

Talking to REST and WCF Data Services

278

6. Next, we create the actual WCF Data Service. To do so, add an WCF Data Service
called ComputerInventoryService.svc to your web project.

The generated code needs some changes done to it. A link needs to be
created between the model and the data service by making the latter
inherit from DataService<ComputerInventoryEntities>. The
ComputerInventoryEntities type parameter is often referred to
as the context or context object representing the model.

7. In the InitializeService method, we need to explicitly allow access-specific
entities by using the EntitySetRights enumeration. In the following code, we
are saying that all rights are allowed on the specified entities:
public static void InitializeService(DataServiceConfiguration
 config)
{
 config.UseVerboseErrors = true;
 config.SetEntitySetAccessRule("Computer", EntitySetRights.All);
 config.SetEntitySetAccessRule("User", EntitySetRights.All);
 config.SetEntitySetAccessRule("ComputerType",
 EntitySetRights.All);
 config.SetEntitySetAccessRule("Manufacturer",
 EntitySetRights.All);
}

8. Go to the Silverlight application and add a service reference to the *.svc file by
right-clicking on the Silverlight application and selecting Add Service Reference....
Then, click on the Discover button in the Add Service Reference dialog box. Change
the namespace to ComputerInventoryService. Visual Studio will now generate a
proxy for this service and a reference to System.Data.Services.Client will
be automatically added. You now have typed access to the entities exposed by the
service, although we're in the background and using REST to communicate with
the service.

How it works...
WCF Data Services is a server-side technology that allows making entities of a model available
on the web. Underlying, it uses REST as its communication platform. So, it's possible to connect
to the services using the WebClient class or the HttpWebRequest class. Each entity of the
model is exposed as a resource and can be connected to via a unique URI. However, the data
source used has to have an IQueryable interface for exposing the entities. If we want updates
to be sent to the data, the IUpdatable interface should be implemented as well. A good
example of this is the ADO.NET Entity Framework, which exposes such a data source through
the Entity Model. Note that you can create your own data source and attach WCF Data Services
to it as well.

Chapter 6

279

One important thing to understand is that WCF Data Services have nothing to do with the
actual data access itself. It works with entities exposed by a model (in this example, the
model from Entity Framework).

It's easy to see that WCF Data Services actually use REST under the hood. To get data,
we need to send a request to a specifically formed URI, combined with one of the standard
HTTP keywords such as GET, POST, PUT, or DELETE. Sounds familiar? Indeed, it is exactly
the same way of working as we did with REST in the previous recipes.

The URIs created by WCF Data Services to expose the entities are simple to understand.
In the following example, which will retrieve a Computer entity with ID equal to 1, we
can see that the URI is composed of the name of the service, followed by the name of
the entity (Computer), and the ID we want to retrieve http://localhost:12345/
ComputerInventoryService.svc/Computer(1).

The resulting response can be sent in an XML or JSON format. XML, in the form of AtomPub,
is the default format and is actually easiest to read. The Atom Publishing Protocol (AtomPub)
is a protocol based on HTTP that allows creating and publishing web resources. The response
sent when invoking the above URI is shown in the following code:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<entry
 xml:base="http://localhost:8624/ComputerInventoryService.svc/"
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/
 metadata"
 xmlns="http://www.w3.org/2005/Atom">
 <id>http://localhost:8624/ComputerInventoryService.svc/Computer(1)
 </id>
 <title type="text" />
 <updated>2009-07-19T12:37:26Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Computer" href="Computer(1)" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices
 /related/ComputerType"
 type="application/atom+xml;type=entry" title="ComputerType"
 href="Computer(1)/ComputerType" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/
related/Manufacturer" type="application/atom+xml;type=entry"
title="Manufacturer" href="Computer(1)/Manufacturer" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices
 /related/User"
 type="application/atom+xml;type=feed" title="User"
 href="Computer(1)/User" />
 <category term="ComputerInventoryModel.Computer" scheme="http://
schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 - <content type="application/xml">

Talking to REST and WCF Data Services

280

 - <m:properties>
 <d:ComputerId m:type="Edm.Int32">1</d:ComputerId>
 <d:ComputerName>Lenovo W500</d:ComputerName>
 <d:OS>Windows 7</d:OS>
 <d:WarrantyUntil m:type="Edm.DateTime">2012-07-01T00:00:00</
d:WarrantyUntil>
 <d:DateAdded m:type="Edm.DateTime">2009-07-01T00:00:00</
d:DateAdded>
 </m:properties>
 </content>
</entry>

The big difference in working with plain REST services is the existence of the WCF Data
Service Client library in Silverlight. It frees us from manually having to create the URIs to
request data and writing XML parsing code to read out the response. It's basically a large
wrapper around these tasks, allowing us to work with data on the client as if the service
barrier isn't there.

This is achieved through code-generation. It's possible to add a service reference to an WCF.
Data Service in your Silverlight project. This will result in the creation of client-side data
classes and a class derived from DataServiceContext that represents the service itself.
All these classes are located in the reference.cs file. The following screenshot shows
where all this generated code is located:

Also, the required assembly—System.Data.Services.Client.dll—is added to the
Silverlight project. Finally, a client-side version of the server-side entity model (*.edmx)
is generated that contains the structure of the entity model.

We can write LINQ queries in the Silverlight application that are translated into a URI to
which a request is sent. The response is parsed for us and available as objects of the
generated classes. Thus, we have full IntelliSense inside Visual Studio as well, which
makes coding a lot easier. We'll look at writing queries to get and update data in the
next two recipes.

Chapter 6

281

Locked-down services
WCF Data Services are completely locked down by default. Access is not permitted to the
entities automatically. Due to this, in the InitializeService method of the DataService
class, we have to configure this access using the DataServiceConfiguration instance.
Several options exist to give more or less permissions to the entities such as All, AllRead,
None, and so on. Go to http://msdn.microsoft.com/en-us/library/system.data.
services.entitysetrights.aspx for a complete overview of this enumeration.

See also
In the next recipe, we'll build further on this recipe by showing how we can read data from
services. The Persisting data using WCF Data Services recipe will show how we can perform
create, update, and delete operations on the data.

Reading data using WCF Data Services
Let's assume we have decided that WCF Data Services is going to be the technology to get
data inside our Silverlight application, which admittedly is a great choice. In the previous
recipe, we saw how we can set up Silverlight to use WCF Data Services. However, we didn't
actually exchange any data with the service (which is quite ironic for a data service).

In this recipe, we'll perform read operations on the data by building on the code created
in the previous recipe. This time, we'll focus on the Computer data in the database.

Getting ready
This recipe continues on the code created in the previous recipe. If you want to follow
along, you can continue using your code or use the provided starter solution located in the
Chapter06/WorkingWithWcfDataServices_Reading_Starter folder in the code
bundle available on the Packt website. The finished solution for this recipe can be found in
the Chapter06/WorkingWithWcfDataServices_Reading_Completed folder.

How to do it...
In the previous recipe, we introduced the client library that dramatically reduces the amount
of code we need to write compared to plain REST services. Using this library, we can load data
in several formats such as an entire list, a single object with or without related entities, and
so on. We'll build an application that shows a list of computers. The details of each computer
can be seen using a detail screen. Perform the following steps to start reading data from WCF
Data Services:

1. The XAML for the application is similar to the XAML we used in the previous recipes.
The application's UI mainly consists of a DataGrid with defined columns. The code
for this DataGrid can be found in the code bundle.

Talking to REST and WCF Data Services

282

Thanks to the client library, we have the possibility to write LINQ queries. These LINQ
queries are executed using an instance of the context, so creating this context
instance should be our first step. Note that the context instance accepts a URI
to the .svc file of the service as a parameter. After this, we can write a LINQ query
in which we load all Computer entities. A little caution though: WCF Data Services
wouldn't load the related Manufacturer objects by default, although we want to
show this information as well in the DataGrid. Therefore, we specify this using the
Expand method as shown in the following code:

ComputerInventoryEntities context =
 new ComputerInventoryEntities(new
 Uri("ComputerInventoryService.svc", UriKind.Relative));
public MainPage()
{
 InitializeComponent();
}
private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 ComputerLoadStart();
}
private void ComputerLoadStart()
{
 var query = from c in context.Computer.Expand("Manufacturer")
 select c;
}

2. While the query looks rather normal, do keep in mind that all Silverlight's service
requests are carried out asynchronously. Therefore, the query is cast to a
DataServiceQuery<T> (in this case, the return type T is Computer). On this
instance, the BeginExecute method is called, which triggers an asynchronous
call to the service. Similar to other asynchronous calls, a callback method is passed
in. The query itself is also passed in, so we have access to it in the callback method.
This is shown in the following code:
private void ComputerLoadStart()
{
 ...
 DataServiceQuery<Computer> dsq =
 (DataServiceQuery<Computer>)query;
 dsq.BeginExecute(ComputerLoadCompleted, dsq);
}

Chapter 6

283

3. When the service is ready, the ComputerLoadCompleted callback method is
invoked. This method receives an IAsyncResult instance as parameter, which
contains the DataServiceQuery<T>. By calling the EndExecute method on
this instance, we get access to the returned Computer instances. We place these
instances in an ObservableCollection called computerCollection for
data binding purposes. The collection is bound to the DataGrid using the
ItemsSource property as shown in the following code:
ObservableCollection<Computer> computerCollection =
 new ObservableCollection<Computer>();
private void ComputerLoadCompleted(IAsyncResult asr)
{
 DataServiceQuery<Computer> dsq =
 (DataServiceQuery<Computer>)asr.AsyncState;
 foreach (var computer in dsq.EndExecute(asr).ToList())
 {
 computerCollection.Add(computer);
 }
 ComputersDataGrid.ItemsSource = computerCollection;
}

The result is a list of computers as shown on the following screenshot:

4. Let's now take a look at the detail page. When clicking on a View button in the
grid, we load a Silverlight Child Window named ComputerDetailView.xaml
that features a nice zoom-in effect when opened. The XAML for this window is
straightforward and can be found in the code bundle.

5. To show the details of the selected computer in the DataGrid, we pass the context
as well as the computerID of the selected computer via the constructor. This is
shown in the following code:
private ComputerInventoryEntities context;
private int computerId;
private Computer computer;

Talking to REST and WCF Data Services

284

public ComputerDetailView(ComputerInventoryEntities context,
 int computerId)
{
 InitializeComponent();
 this.context = context;
 this.computerId = computerId;
 LoadComputer();
}

6. In the LoadComputer method, we load the details of the selected computer.
However, the computer is already being tracked by the context because of the list
display, but not all the data we need is loaded (the computer type is omitted in the
list). Thus, we need to explicitly tell the context that it has to reload the computer
using the OverWriteChanges of the MergeOption enumeration. The following
code shows this loading process:
private void LoadComputer()
{
 context.MergeOption = MergeOption.OverwriteChanges;
 var query = from c in context.Computer.Expand("ComputerType")
 where c.ComputerId == computerId
 select c;
 DataServiceQuery<Computer> dsq =
 (DataServiceQuery<Computer>)query;
 dsq.BeginExecute(ComputerLoadCompleted, dsq);
}
private void ComputerLoadCompleted(IAsyncResult asr)
{
 DataServiceQuery<Computer> dsq =
 (DataServiceQuery<Computer>)asr.AsyncState;
 computer = dsq.EndExecute(asr).FirstOrDefault<Computer>();
 ComputerDetailGrid.DataContext = computer;
}

After all the previous code is added, we have successfully created a master-detail
implementation based on WCF Data Services. The detail screen is shown in the
following screenshot:

Chapter 6

285

How it works...
The most important part of this recipe is the LINQ query. When executing a LINQ query against
an WCF Data Service, the query is translated into a format that the service understands—a URI.
All the options we specify in the query are translated into the URI. The URI to which a request is
sent is http://127.0.0.1:8624/ComputerInventoryService.svc/Computer()?$ex
pand=Manufacturer. (This can be seen using Fiddler2).

Note that the Expand option instructs the service to retrieve all Computer instances and
expand the results to include the related Manufacturer instances for each Computer
instance. This process is called eager loading. In this process, we explicitly ask to load
the related entities initially. If we omit eager loading, the property will have a null value.

To see what the AtomPub (XML) response of the service looks like, simply copy/paste
the previously mentioned URI in your browser or view it in Fiddler2.

The context is the real workhorse in this recipe. It keeps track of all the loaded items
(this is called object tracking). However, sometimes we need to ask for a complete reload.
In the example at hand, we need to do so in the detail screen. We have the MergeOption
enumeration at our disposal for this. The OverwriteChanges explicitly tells the context
that it should replace the item loaded in the context.

Talking to REST and WCF Data Services

286

There's more...
We might know that there are related entities, but not want to load them initially. We can load
on demand using the LoadProperty method. This method is used in the detail screen of
the application. When loading, the allowed users are not retrieved automatically (for example
not to stress the database). By clicking on the Load button, we load them asynchronously on
demand using the LoadProperty method. The result is that the Computer entity will have
its property filled with the related User entities. This is shown in the following code:

private void LoadUsersButton_Click(object sender, RoutedEventArgs e)
{
 context.BeginLoadProperty(computer, "User", UsersLoadCompleted,
 null);
}
private void UsersLoadCompleted(IAsyncResult asr)
{
 context.EndLoadProperty(asr);
 // do something with the loaded values here
}

See also
In the Reading data from ADO.NET Data Services recipe, we create the ADO.NET Data Service
and set up communication with it.

Persisting data using WCF Data Services
In the previous recipe, we saw how to read data from WCF Data Services. Apart from reading
data, we should be able to persist data using these services. In other words, adding, updating,
and deleting data to make the CRUD story complete (CRUD: Create, Read, Update, and
Delete, this term is often used to refer to the four basic operations on data).

This recipe will add a new screen to the application built in the previous two recipes to make
it possible to create new computers and to update and delete the existing ones. The screen
in the following screenshot is similar to the View screenshot, but it has editable fields and
some extra buttons:

Chapter 6

287

Getting ready
This recipe builds on the code created in the previous two recipes. This means that you
can continue using your own solution to follow along with this recipe. Alternatively, you can
use the starter solution located in the Chapter06/WorkingWithWcfDataServices_
Persisting_Starter folder in the code bundle available on the Packt website. The finished
solution for this recipe can be found in the Chapter06/WorkingWithWcfDataServices_
Persisting_Completed folder.

How to do it...
We'll follow a small scenario, where we'll create a new computer object, update it, and finally
remove it from the database. Along the way, we'll come across the specifics of each operation.
In order to do this, we'll need to complete the following steps:

1. As this screen is used for both adding new items and editing existing ones, we add
an enumeration to the Silverlight application called EditingModes to see in which
state we are. This is shown in the following code:
public enum EditingModes
{
 New,
 Edit
}

Talking to REST and WCF Data Services

288

2. The UI contains two ComboBox controls that allow the user to select a
Manufacturer and a Type. Also, all Users should be loaded in the ListBox at the
bottom of the screen. Loading data into these controls is similar. The code to load the
Manufacturer objects is as follows:
public ComputerDetailEdit(ComputerInventoryEntities context,
 int computerId, EditingModes editingMode)
{
 InitializeComponent();
 ...
 ManufacturerLoadStart();
}
private void ManufacturerLoadStart()
{
 var query = from m in context.Manufacturer
 select m;
 DataServiceQuery<Manufacturer> dsq =
 (DataServiceQuery<Manufacturer>)query;
 dsq.BeginExecute(ManufacturerLoadCompleted, dsq);
}
private void ManufacturerLoadCompleted(IAsyncResult asr)
{
 DataServiceQuery<Manufacturer> dsq =
 (DataServiceQuery<Manufacturer>)asr.AsyncState;
 ComputerManufacturerComboBox.ItemsSource = dsq.EndExecute(asr);
 ComputerManufacturerComboBox.DisplayMemberPath =
 "ManufacturerName";
}

3. Let's now look at how we can add an item. We create a new instance of the Computer
class and set it as the DataContext of the main grid—ComputerDetailGrid. As
this is a new object, the context doesn't know it yet, so we make the context track it
using the AddObject method. This is shown in the following code:
Computer computer = new Computer();
ComputerDetailGrid.DataContext = computer;
context.AddObject("Computer", computer);

4. The selected ComputerType and Manufacturer should be linked to the
Computer object so that the context can track this link. Also, every selected user in
the listbox should be linked to the computer. It's important that the context knows
which links exist between objects. When persisting, it needs to know which relations
in the database need to be created. This is shown in the following code:
private void SaveButton_Click(object sender, RoutedEventArgs e)
{
 context.SetLink(computer, "ComputerType",
 computer.ComputerType);

Chapter 6

289

 context.SetLink(computer, "Manufacturer",
 computer.Manufacturer);
 foreach (var user in ComputerUsersListBox.SelectedItems)
 {
 context.AddLink(computer, "User", (User)user);
 }
}

5. Once the user clicks on the Save button, the actual save operation should start.
Again, this is done asynchronously by making use of the BeginSaveChanges
method available on the context. We pass in a callback method that will be
called when the service returns. This is shown in the following code:
context.BeginSaveChanges(SaveChangesOptions.None, new
 AsyncCallback(PersistChanges), null);

6. In the callback, we use the EndSaveChanges method, which returns a
DataServiceResponse object, containing the response of the server. If errors
were encountered, we can retrieve them by looping over this object. This is shown
in the following code:
private void PersistChanges(IAsyncResult asr)
{
 try
 {
 DataServiceResponse dataServiceResponse =
 (DataServiceResponse)context.EndSaveChanges(asr);
 foreach (OperationResponse operationResponse in
 dataServiceResponse)
 {
 if (operationResponse.Error != null)
 {
 //do something with the error
 }
 }
 if (errorsOccurred)
 MessageBox.Show(builder.ToString());
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

Talking to REST and WCF Data Services

290

7. When we want to update the instance, the code is quite similar. As shown in
the following code, we call the UpdateObject method to mark the object as
Modified. The same callback is used as when adding new items:
context.UpdateObject(computer);
context.BeginSaveChanges(SaveChangesOptions.Batch, new
 AsyncCallback(PersistChanges), null);

8. Finally, deleting the object is done using the DeleteObject method. This is shown
in the following line of code:
context.DeleteObject(computer);

Take a look at the sample code where the full code listing is available.

How it works...
When creating a new instance, we immediately set it as the DataContext for the main grid
of the user control. This way, all changes done by the user on the text boxes that are bound
using the TwoWay binding are propagated back into the object. However, as this object is new,
it is unknown to the context. It's not yet being tracked by the context, so we need to add it to
the collection of tracked objects.

The Computer class has links to other classes, namely the ComputerType, the
Manufacturer, and the User. Thus, we need to create links in the context using SetLink
(for links with multiplicity = 1) or AddLink (for links with multiplicity > 1). Links also need to
be made or recreated when updating or deleted when deleting a Computer instance.

Just like all other operations towards services, the actual save operation is asynchronous.
That's why we use the BeginSaveChanges method and specify the callback method in one
go. Saving is actually sending data to one or more specific URIs. In the callback method, we
use the EndSaveChanges method, which returns a DataServiceResponse object. This
object contains the responses for all calls made to the service (one for saving the actual
object, one for linking, and so on). If an operation fails, we can get the error information
from the DataServiceResponse object as well.

Updating and deleting are very similar. All changes are done initially on the objects tracked by
the context. Afterwards, the changes are persisted using exactly the same code as for adding
new objects.

Chapter 6

291

There's more...
When calling the BeginSaveChanges method, we have the option to pass along how
we want the subsequent operations to be executed through the SaveChangeOptions
enumeration. We can use the Batch option, which creates a unit of work containing
all operations. This can be compared to working with a transaction—either all operations
work or they all fail. Other options include None and ContinueOnError. More information
on this enumeration can be found at http://msdn.microsoft.com/en-us/library/
system.data.services.client.savechangesoptions.aspx.

Talking to Flickr
There are quite a few large websites out there that expose (part of) their functionality through
services, most of the time through the use of RESTful services. A great example is Flickr
(www.flickr.com). Flickr exposes many services that allow searching for pictures, tagging
existing pictures, uploading pictures, and so on. We can leverage all the goodness that Flickr
provides inside our applications to provide more functionality to our end users.

Flickr is a popular website where people can upload and share images
and videos. Apart from viewing this content on the site, Flickr offers a
wide range of services for interaction with its content. Currently, Flickr
has millions of users sharing several billion images!

One thing that is very important is the open crossdomain.xml file Flickr exposes. It allows
connecting from every domain (so also from a Silverlight application running locally). This
is why we can connect directly from Silverlight to Flickr. However, most Web 2.0 websites
aren't that open, for example, Twitter. Communication with such a service from Silverlight
is explained in the following recipe.

Note that not all code for this sample is printed in this book. Refer to the code in the
downloadable samples for this.

Getting ready
Most sites that expose public services, such as Flickr, Amazon, Digg and so on allow us free
access to their services, however you'll often need to register to get a key/identification. This
is then used by the issuing site to track where the call came from. Some services allow only
a limited number of calls for a particular key within a certain time span to discourage overuse.
For the code in this recipe, you'll need a Flickr API key, which can be obtained for free from
http://www.flickr.com/services/api/keys/. This key can be pasted in the sample
code that can be downloaded for this book.

Talking to REST and WCF Data Services

292

The recipe uses a WrapPanel—a control that's part of the Silverlight Control Toolkit. The
toolkit is a collection of controls and extensions on Silverlight. This can be obtained from
www.codeplex.com/silverlight.

To follow along with this recipe, a starter solution has been provided in the Chapter06/
SilverFlickr_Starter folder in the code bundle available on the Packt website.
The completed solution for this recipe can be found in the Chapter06/SilverFlickr_
Completed folder.

How to do it...
In this recipe, we'll build a simple application that allows us to search for photos based on a
search term the user can enter. On clicking on one of the results, the details of the photo are
shown. For this, the application uses two of the many methods available from Flickr, namely
flickr.photos.search and flickr.photos.getinfo. These methods allow searching
for photos matching a search string and getting more information on a photo respectively.
To begin building this application, we'll need to complete the following steps:

1. We start from an empty Silverlight application. Therefore, create a new Silverlight
solution called SilverFlickr.

 2. As we are going to use REST services, we'll be making use of the WebClient class.
This class resides in the System.Net namespace, which is part of the System.
Net assembly. If you're using Visual Studio 2008, you need to add a reference to
this assembly yourself. Visual Studio 2010 refers this assembly by default for new
projects for both Silverlight 3 and 4 projects.

3. The XAML code for the UI of the application is quite easy to understand. A
StackPanel resides at the top of the page, containing an Image, a TextBox to
enter the search query and a Button. The page also contains a ScrollViewer
with a WrapPanel (part of the Silverlight Control Toolkit, refer to the Getting ready
section of this recipe) on the left. The XAML code for this is as follows:
<Grid x:Name="LayoutRoot"
 Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="50"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="300"></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <StackPanel Grid.Row="0"
 Grid.Column="0"
 HorizontalAlignment="Left"
 Orientation="Horizontal"

Chapter 6

293

 Grid.ColumnSpan="2">
 <Image Source="flickr.png"
 Stretch="None"
 Margin="3 0 0 0" >
 </Image>
 <TextBox x:Name="SearchTextBox"
 Width="200"
 Height="30"
 Margin="5">
 </TextBox>
 <Button x:Name="SearchButton"
 Content="Search Flickr"
 Click="SearchButton_Click"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Margin="5">
 </Button>
 </StackPanel>
 <ScrollViewer Grid.Row="1"
 Grid.Column="0"
 Background="DarkGray">
 <toolkit:WrapPanel x:Name="ResultPanel"
 HorizontalAlignment="Center">
 </toolkit:WrapPanel>
 </ScrollViewer>
</Grid>

4. As mentioned before, Flickr's API is a REST API. Thus, we need to send a request to a
specific URI and read out the response being sent back. Let's first take a look at the
URI. As defined by Flickr, this URI needs to be in a specific format. As we'll be doing a
search, we'll use the flickr.photos.search method. It requires two parameters:
your personal API key and the search term entered in the search field. This is shown
in the following code:
string api_key = "123456";//TODO: replace with your own key
string searchUrl = "http://api.flickr.com/services/rest
 /?method=flickr.photos.search&api_key={0}&text={1}";

5. We now have the URI; we can use it to send a request to. To send this request,
we'll use the WebClient class again. In the Click event handler of the button,
we'll create an instance of this class. We need to register the callback method via
DownloadStringCompleted and send the request using DownloadStringAsync,
passing in the URI as a parameter. As with other services, these calls are asynchronous.
This is shown in the following code:
private void SearchButton_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();

Talking to REST and WCF Data Services

294

 client.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler
 (client_DownloadStringCompleted);
 client.DownloadStringAsync(new Uri(string.Format(searchUrl,
 api_key, SearchTextBox.Text)));
}

6. In the callback, we have access to the result of the call via the Result property on
the instance of the DownloadStringCompletedEventArgs. The response is plain
XML, formatted by Flickr in a specific format. We'll use LINQ-To-XML to parse this XML
code and create a list of ImageInfo objects (shown in the following code), a custom
type defined to have typed access to our data in the Silverlight application. Note that
the ImageUrl implementation creates the link to the image as used by Flickr. Add
the following class to the Silverlight project:
public class ImageInfo
{
 public string ImageId { get; set; }
 public string FarmId { get; set; }
 public string ServerId { get; set; }
 public string Secret { get; set; }
 public string ImageUrl
 {
 get
 {
 return string.Format
 ("http://farm{0}.static.flickr.com/{1}/{2}_{3}_m.jpg",
 FarmId, ServerId, ImageId, Secret);
 }
 }
}

7. Add a reference to the System.Xml.Linq assembly inside the Silverlight project.

8. Finally, each ImageInfo instance is used to dynamically create an image and add it
to the WrapPanel. Every image also gets a click event attached to it, which is used
to open the detail page. This is shown in the following code:
void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 XDocument xml = XDocument.Parse(e.Result);
 var photos = from results in xml.Descendants("photo")
 select new ImageInfo
 {
 ImageId = results.Attribute("id").Value.ToString(),
 FarmId = results.Attribute("farm").Value.ToString(),
 ServerId = results.Attribute("server").Value.ToString(),
 Secret = results.Attribute("secret").Value.ToString()
 };

Chapter 6

295

 foreach (var image in photos)
 {
 Image img = new Image();
 BitmapImage bmi = new BitmapImage(new
 Uri(image.ImageUrl, UriKind.Absolute));
 img.Source = bmi;
 img.Width = 200;
 img.Height = 200;
 img.Stretch = Stretch.Uniform;
 img.Tag = image;
 img.Margin = new Thickness(3);
 img.HorizontalAlignment = HorizontalAlignment.Center;
 ResultPanel.Children.Add(img);
 }
}

At this point, we can search Flickr for images. The following screenshot shows the
finished application. Note that this final application includes extra code that allows
clicking an image and viewing its details. However, the code for this is very similar
and can be found in the code bundle.

Talking to REST and WCF Data Services

296

How it works...
Communicating with Flickr's REST services is, in fact, no different from communicating
with a self-created REST service, as was done in the beginning of this chapter.

The URI is created according to the specifications given by the Flickr API. At http://www.
flickr.com/services/api, you can find an overview of all the methods exposed by Flickr,
varying from searching for pictures and reading out comments on a picture to finding pictures
based on a location. For this recipe, we use the flickr.photos.search and flickr.
photos.getinfo methods. Both require the API key sent as a parameter, apart from the
specific parameters depending on the method.

The format of the XML sent by Flickr's services is fixed. It's safe to build our code around this API
as the format can be considered to be a contract between the service and the client application.
The service will always return the response formatted according to this specification. The
following is the XML structure used by Flickr:

<rsp>
 <photos>
 <photo id="1234567890"
 secret="0987654321"
 server="1234"
 farm="1" />
 </photos>
</rsp>

There's more...
Communication with the services exposed by Flickr from Silverlight is possible because Flickr
has a crossdomain.xml file in place that allows calls from any domain, as explained in the
introduction of the recipe. The following is the complete crossdomain.xml (http://api.
flickr.com/crossdomain.xml) file of Flickr.

<?xml version="1.0" ?>
 <!DOCTYPE cross-domain-policy (View Source for full doctype...)>
 <cross-domain-policy>
 <allow-access-from domain="*" secure="true" />
 <site-control permitted-cross-domain-policies="master-only" />
 </cross-domain-policy>

However, other sites don't open up their API as much as Flickr does. A good example is Twitter
(http://twitter.com/crossdomain.xml), which allows calls only from particular
domains. This can be seen in the following code:

<?xml version="1.0" encoding="UTF-8" ?>
 <cross-domain-policy xmlns:xsi="http://www.w3.org/2001/

http://www.flickr.com/services/api

Chapter 6

297

 XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://www.adobe.com/xml/schemas/
 PolicyFile.xsd">
 <allow-access-from domain="twitter.com" />
 <allow-access-from domain="api.twitter.com" />
 <allow-access-from domain="search.twitter.com" />
 <allow-access-from domain="static.twitter.com" />
 <site-control permitted-cross-domain-policies="master-only" />
 <allow-http-request-headers-from domain="*.twitter.com"
 headers="*" secure="true" />
 </cross-domain-policy>

The consequence of such a crossdomain.xml file is that Silverlight can't connect directly
with these services. The solution is creating an extra service on the same domain as the
Silverlight application, which will in turn call the REST services. Your application then only
has to connect with the new service, which shouldn't be a problem. We'll look at this
scenario in the following recipe. A second possible solution is building a Trusted Silverlight
application, which we'll look at in the last recipe of this chapter..

Flickr… more information
The accompanying code for this book also contains the code to create the detail screen.
For this, we can use another method, namely flickr.photos.getinfo to retrieve
more information about an image based on the photo ID.

Displaying the values is done through the use of data binding. The DataContext property
of the grid, located in the Details portion of the interface, is set to an instance of another
type called ImageDetail.

One particularity is certainly worth mentioning here, that is, data binding the image
is done through the use of a converter. The link to the image is stored as a Uri in the
instance of ImageDetail. However, binding in XAML expects a BitmapImage. The
conversion of type A to type B is done through the use of a converter—a class that
implements the IValueConverter interface. This interface has two
methods—Convert and ConvertBack. This is shown in the following code:

public class ImageConverter:IValueConverter
{
 public object Convert(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
 {
 if (value != null)
 return new BitmapImage((Uri)value);
 else
 return "";//can be link to a "NoImage.png" of some kind
 }

Talking to REST and WCF Data Services

298

 public object ConvertBack(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
 {
 ...
 }
}

See also
In the Reading data from a REST service and Parsing REST results with LINQ-To-XML
recipes from this chapter, we go deeper into the details of communication with a REST
service. The following recipe shows the scenario to connect with services that don't allow
cross-domain calls.

For more information on data binding, refer to the recipes in Chapter 3, An Introduction to
Data Binding and Chapter 4, Advanced Data Binding.

Talking to Twitter over REST
Like Flickr, Twitter has a great API that allows us to build applications incorporating
its functionality.

Twitter is a social networking site where people can post small messages
of up to 140 characters, also known as tweets. These messages are
shared with people that follow you, meaning they're interested in what
you're doing. Twitter is often referred to as being a micro-blogging site.
Using Twitter is free.

However, as explained in the There's more... section of the previous recipe, where we
compared the crossdomain.xml files of Flickr and Twitter, Twitter is much more locked
down. It doesn't allow client-side applications built in Silverlight to make cross-domain calls.
In this recipe, which can be generalized for all types of REST services that don't have an open
cross-domain file, we'll look at how we can still succeed in communicating with the service.

Getting ready
To work with the application built in this sample, you'll need an account on Twitter. Twitter is
free and you can register at www.twitter.com. Unlike Flickr, you don't have an API key. In
this recipe, we'll start from an empty Silverlight application.

A starter solution for this chapter is provided in the Chapter06/SilverWitter_Starter
folder in the code bundle available on the Packt website. The finished solution for this recipe
can be found in the Chapter06/SilverWitter_Completed folder.

Chapter 6

299

How to do it...
The way we architect the application that will work with Twitter is quite important, as we can't
call the Twitter services from Silverlight directly. However, services that run on a server don't
mind cross-domain restrictions. They can call Twitter's REST services without a problem. The
solution for the problem is adding an extra service layer in our architecture. The Silverlight
application will communicate with our own services and in turn, these services can talk to
Twitter. The following screenshot demonstrates this idea clearly:

To get up and running, we'll need to complete the following steps:

1. Open the starter solution as outlined in the Getting ready section, containing an ASP.
NET Web Application.

2. Add another ASP.NET web application to the solution called SilverWitter.Services.

3. In this web application, add a WCF service called TwitterService.svc. Thus, you'll
have three projects in your solution: the Silverlight application, the hosting web
application, and an extra website containing a WCF service.

4. Silverlight will communicate only with the WCF service and the service will
communicate with Twitter. Only the functionality we expose on our own service will
be available for the Silverlight application. Let's first define the contract, an interface,
of our WCF service in the ITwitterService.svc.cs file. We want to be able to
validate user credentials, get all tweets from the public time line, get all tweets from
a specified user and his/her friends and finally add a tweet (a small message). Note
that this is a WCF service, and not a REST service, although we could create a REST
service if we wanted to. The following code shows the contract:
[ServiceContract]
public interface ITwitterService
{
 [OperationContract]
 List<TwitterUpdate> GetPublicTimeLine();
 [OperationContract]
 List<TwitterUpdate> GetUserTimeLine(string twitterUser,
 string userName, string userPassword);
 [OperationContract]
 List<TwitterUpdate> GetFriendsTimeLine(string twitterUser,
 string userName, string userPassword);

Talking to REST and WCF Data Services

300

 [OperationContract]
 string AddMessage(string message, string userName,
 string userPassword);
 [OperationContract]
 bool CheckCredentials(string userName, string userPassword);
}

5. We use the TwitterUpdate class in some of the above methods. This class
should be added to the services project—SilverWitter.Services. As instances
of this class will be sent over the wire (to the Silverlight application), this class
should be attributed with the DataContractAttribute. Its members have the
DataMemberAttribute applied to them. This class is shown as follows:
[DataContract]
public class TwitterUpdate
{
 [DataMember]
 public string Message { get; set; }
 [DataMember]
 public string User { get; set; }
 [DataMember]
 public string Location { get; set; }
}

6. In the implementations of these methods, in the TwitterService.cs file, we'll
write the code to talk with Twitter. Twitter's API is REST based and can communicate
using XML, JSON, RSS, and ATOM. This means that we have to send a request to a
particular URI and capture the results sent back by Twitter. This result can then be
parsed using LINQ-To-XML and mapped to the CLR objects.

Let's take a look at the code we need to write in the service method implementations.
We'll implement the GetUserTimeLine method here; the other ones are similar and
can be found in the code bundle available on the Packt website. As the service is a
REST service, we need to use a specific URL, as defined by Twitter.

public List<TwitterUpdate> GetUserTimeLine(string twitterUser,
 string userName, string userPassword)
{
 try
 {
 string userTimeLine =
 "http://twitter.com/statuses/user_timeline/"
 + twitterUser + ".xml";
 }
 catch (Exception)
 {
 return null;
 }
}

Chapter 6

301

7. Although we're not writing Silverlight code here to access Twitter (we're writing a WCF
service implementation), the concepts are the same. We can use the WebClient
class to perform the call to the service. One big difference here is that service
communication can be done synchronously. Note that Twitter requires that we pass
in credentials to access this service method.
WebClient client = new WebClient();
client.Credentials = new
 NetworkCredential(userName, userPassword);
ServicePointManager.Expect100Continue = false;
string result = client.DownloadString(
 string.Format(userTimeLine, twitterUser));

8. Once the result is available, we'll parse it using LINQ-To-XML as shown in the
following code. On parsing the XML, we are creating a List<TwitterUpdate>.
XDocument document = XDocument.Parse(result);
List<TwitterUpdate> twitterData =
 (from status in document.Descendants("status")
 select new TwitterUpdate
 {
 Message = status.Element("text").Value.Trim(),
 User = status.Element("user").Element("name").Value.Trim()
 }).ToList();
return twitterData;

9. As this service is in another site than the Silverlight application, Silverlight will need
to perform a cross-domain call to it. To allow this, we have to add a policy file. Add a
new XML file called clientaccesspolicy.xml to the services site and insert the
following code:
<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

Talking to REST and WCF Data Services

302

10. After having implemented the methods on the WCF service, let's focus on the
Silverlight application. First, in the Silverlight project, add a service reference to the
TwitterService WCF service. Set the service namespace to TwitterService.

11. The UI of the application built in this sample is shown in the following screenshot.
The XAML code can be found in the code bundle. When opening the application, the
statuses of the public timeline are shown as they don't require any credentials. The
user can log in to Twitter, and when authenticated, add a tweet and view his/her
tweets and those of his/her friends as the following screenshot demonstrates:

12. The Silverlight application now talks to our own service. In the following code, we are
asynchronously invoking the service to get the time line (status updates) of the user:
private void LoadUserTimeLine()
{
 TwitterService.TwitterServiceClient client = new
 SilverWitter.TwitterService.TwitterServiceClient();
 client.GetUserTimeLineCompleted += new EventHandler
 <SilverWitter.TwitterService.GetUserTimeLineCompleted
 EventArgs>(client_GetUserTimeLineCompleted);
 client.GetUserTimeLineAsync(UserNameTextBox.Text,
 UserNameTextBox.Text, PasswordTextBox.Password);
}

Chapter 6

303

void client_GetUserTimeLineCompleted(object sender,
 SilverWitter.TwitterService.GetUserTimeLineCompletedEventArgs e)
{
 if (e.Result != null)
 {
 UserTimeLineListBox.ItemsSource = e.Result;
 }
}

The other methods are similar and can be found in the sample code.

How it works...
As previously explained, Twitter, along with most Web 2.0-type applications, has a locked-down
cross-domain file. Silverlight's cross-domain restrictions prohibit us from directly calling the
REST API from Silverlight. Therefore, we need to build a service layer in between the Silverlight
application and the REST service. As services themselves don't mind cross-domain restrictions,
we can call whatever type of REST services (or other types) we want. Our own service will act as
a pass-through for data in both directions.

See also
To understand why Twitter and Flickr need such a different approach, read the previous recipe
in this chapter. In the following recipe, we'll see how trusted Silverlight applications can talk
directly to Twitter as they aren't tied to cross-domain restrictions.

Passing credentials and cross-domain
access to Twitter from a trusted Silverlight
application

Whenever we need to communicate with a service that is not hosted in the same domain as
the Silverlight application, we need to think of cross-domain restrictions. Silverlight will check
if a cross-domain policy file is in place at the root of the domain.

Silverlight 4 applications can not only run out-of-browser (a capability added with Silverlight
3 that allows applications to run as a standalone application instead of in the browser), they
can also run as a Trusted Application. Such an application runs with elevated permissions. On
the agreement of the user, the application is installed and has more permissions on the local
system and other capabilities than the in-browser or regular out-of-browser applications. One
of these capabilities is accessing cross-domain services without restrictions, meaning that the
service will be accessible from Silverlight even if there's no policy file present.

Talking to REST and WCF Data Services

304

Another added feature with Silverlight 4 is the ability to send credentials to a service when
using a WebClient instance.

The combination of these two new features in Silverlight 4 makes it possible to write a
standalone Twitter client that does not need the intermediary service layer, like we used
in the previous recipe. Instead, we can now directly communicate with Twitter's API from
Silverlight because there are no cross-domain restrictions. To authorize on the services
of Twitter, we need to be able to send credentials, which has also become possible. In this
recipe, we'll change the SilverWitter client to run as a trusted, out-of-browser application.

Getting ready
To follow along with this recipe, you can use your code created with the previous recipe.
Alternatively, a starter solution is provided with the samples for the book in the Chapter06/
TrustedSilverWitter_Starter folder. The finished solution for this recipe can be found
in the Chapter06/TrustedSilverWitter_Completed folder.

How to do it...
In the previous recipe, we have already built SilverWitter as an in-browser Silverlight
application. Due to this, we required a service layer. Silverlight communicates with this
service layer and the service layer in turn communicates with the API of Twitter. If we create
the application as a trusted application (that is, with elevated permissions), this service layer
becomes obsolete as there are no cross-domain restrictions. We also need to authenticate
with Twitter. We'll do so by sending credentials over the service. The following are the steps
we need to follow to create this application:

1. While the UI of the application is similar to the one created for the in-browser version,
we need to add a few extra controls. We need to make it possible for the user to
install the application. The complete XAML can be found in the code bundle. The
following code outlines the changes. We add a StackPanel called InstallPanel,
in which the controls for the installation are placed. All other controls are placed in
a Grid called MainGrid, for which the Visibility has been set to Collapsed
initially. Both the InstallPanel and the MainGrid are now children of the
LayoutRoot Grid.
<Grid x:Name="LayoutRoot">
 <StackPanel x:Name="InstallPanel"
 Orientation="Vertical"
 HorizontalAlignment="Center"
 Margin="10"
 VerticalAlignment="Top">
 <TextBlock x:Name="InstallTextBlock"
 Text="This application needs to be installed before
 it can be used. Click the button below to
 install."

Chapter 6

305

 Width="500"
 TextWrapping="Wrap"
 FontWeight="Bold"
 FontSize="20">
 </TextBlock>
 <Button x:Name="InstallButton"
 Click="InstallButton_Click"
 Content="Install"
 Width="100"
 Height="35">
 </Button>
 <TextBlock x:Name="InstallErrorTextBlock"
 Foreground="Red" >
 </TextBlock>
 </StackPanel>
 <Grid x:Name="MainGrid"
 Visibility="Collapsed">
 <Grid.RowDefinitions>
 <RowDefinition Height="50"></RowDefinition>
 <RowDefinition Height="100"></RowDefinition>
 <RowDefinition Height="*"></RowDefinition>
 </Grid.RowDefinitions>
 ...
 </Grid>
</Grid>

2. On starting the application, we need to check if we're running the application inside
the browser or as a stand-alone, trusted application. We can do so using the following
code where the Boolean IsRunningOfflineAndElevated contains true if the
conditions are met:
private bool IsRunningOfflineAndElevated = false;
public MainPage()
{
 InitializeComponent();
 CheckApplicationState();
}
private void CheckApplicationState()
{
 if (Application.Current.IsRunningOutOfBrowser &&
 Application.Current.HasElevatedPermissions)
 IsRunningOfflineAndElevated = true;
 else
 IsRunningOfflineAndElevated = false;
}

Talking to REST and WCF Data Services

306

3. Based on the value of IsRunningOfflineAndElevated, we can change the UI.
If it is false, meaning that we're still in the browser, we display the InstallPanel.
If it is true, meaning that the application is running as a trusted application, the
InstallPanel is hidden and the real application UI is shown. This check is done
using the following code, which is called from the constructor as well:
private void ChangeUI()
{
 if (IsRunningOfflineAndElevated)
 {
 MainGrid.Visibility = System.Windows.Visibility.Visible;
 InstallPanel.Visibility = System.Windows.Visibility.Collapsed;
 }
 else
 {
 MainGrid.Visibility = System.Windows.Visibility.Collapsed;
 InstallPanel.Visibility = System.Windows.Visibility.Visible;
 }
}

4. If the application is not yet installed, we can perform the installation from code. To do
so, we can add the following code in the Click event handler of the InstallButton,
which will check the current state of the application and install it if needed:
private void InstallButton_Click(object sender, RoutedEventArgs e)
{
 if (Application.Current.InstallState ==
 InstallState.NotInstalled)
 {
 Application.Current.Install();
 }
 else if (Application.Current.InstallState ==
 InstallState.InstallFailed)
 {
 InstallErrorTextBlock.Text = "This application failed
 to install, please try again";
 }
 else if (Application.Current.InstallState ==
 InstallState.Installed)
 {
 InstallErrorTextBlock.Text = "Application is already
 installed. Please run offline.";
 }
}

Chapter 6

307

5. To store the results coming from Twitter, we need the TweetUpdate class again.
However, this class should now be in the Silverlight project. (In the previous recipe
where we had an intermediate service layer, this class was part of the service
project.) The code for this class is as follows:
public class TweetUpdate
{
 public string Message { get; set; }
 public string User { get; set; }
 public string Location { get; set; }
}

Note that the DataContractAttribute as well as the DataMemberAttribute
are removed. Both these attributes were needed previously because instances of
this class were used in communication with the intermediate service.

6. We're now ready to start the communication with Twitter. If the
IsRunningOfflineAndElevated Boolean variable is true, we can perform a call
to Twitter to load the public timeline. This call does not require authentication. Note that
we're now writing almost the same code we were writing earlier in the service layer, but
now inside the Silverlight application itself. The difference is that now the call to the
service happens asynchronously. The code below performs the call to Twitter using a
WebClient instance, uses LINQ-To-XML to parse the XML and
create a List<TweetUpdates>:
public MainPage()
{
 InitializeComponent();
 CheckApplicationState();
 ChangeUI();
 if (IsRunningOfflineAndElevated)
 GetPublicTimeLine();
}
private List<TweetUpdate> publicTimelineTwitterData;
private void GetPublicTimeLine()
{
 string publicTimeLine =
 "http://twitter.com/statuses/public_timeline.xml";
 WebClient client = new WebClient();
 client.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler
 (client_DownloadStringCompleted);
 client.DownloadStringAsync(new Uri(publicTimeLine,
 UriKind.Absolute));
}
void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 XDocument document = XDocument.Parse(e.Result);

Talking to REST and WCF Data Services

308

 publicTimelineTwitterData =
 (from status in document.Descendants("status")
 select new TweetUpdate
 {
 Message = status.Element("text").Value.Trim(),
 User = status.Element("user").Element("name").Value.Trim()
 }).ToList();
 PublicTimeLineListBox.ItemsSource = publicTimelineTwitterData;
}

7. The application also allows the user to log in. When logged in, the user timeline and
friends timeline can be loaded. Both these methods of the Twitter API require that
we authorize. With Silverlight 4, we can send credentials when using the WebClient
class using its Credentials property. However, sending credentials is only possible
when using the ClientHttpStack and not the default BrowserHttpStack.
Making Silverlight use the ClientHttpStack is done by using the WebRequest.
RegisterPrefix and passing in http://. This code makes sure that all requests
over http:// are now executed using the ClientHttpStack. The code below
shows the code to retrieve the user timeline (the friends timeline is similar, the code
for this can be found in the samples):
private void LoginButton_Click(object sender, RoutedEventArgs e)
{
 LoadAuthorizedContent();
}
private List<TweetUpdate> userTimelineTwitterData;
private void LoadAuthorizedContent()
{
 if (UserNameTextBox.Text != string.Empty &&
 PasswordTextBox.Password != string.Empty)
 {
 WebRequest.RegisterPrefix("http://",
 System.Net.Browser.WebRequestCreator.ClientHttp);
 string userTimeLine =
 "http://twitter.com/statuses/user_timeline/"
 + UserNameTextBox.Text + ".xml";
 WebClient client = new WebClient();
 client.Credentials = new NetworkCredential(
 UserNameTextBox.Text, PasswordTextBox.Password);
 client.UseDefaultCredentials = false;
 client.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler
 (user_DownloadStringCompleted);
 client.DownloadStringAsync(new Uri(userTimeLine,
 UriKind.Absolute));

Chapter 6

309

 }
}
void user_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 XDocument document = XDocument.Parse(e.Result);
 userTimelineTwitterData =
 (from status in document.Descendants("status")
 select new TweetUpdate
 {
 Message = status.Element("text").Value.Trim(),
 User = status.Element("user").Element("name").Value.Trim()
 }).ToList();
 UserTimeLineListBox.ItemsSource = userTimelineTwitterData;
}

8. To add a message to Twitter from our client, we need to post it using the HTTP POST
method. We are using an HttpWebRequest for this and set its method to POST.
To this HttpWebRequest, we also add the user-entered credentials because this
service method requires authorization as well. Silverlight will then send the message
to Twitter.
private void AddTweetButton_Click(object sender,
 RoutedEventArgs e)
{
 string uri = @"http://twitter.com/statuses/update.xml";
 try
 {
 string message = AddTweetTextBox.Text.Trim();
 string parameters = string.Format("status={0}&source={1}",
 HttpUtility.HtmlEncode(message), "Trusted SilverWitter");
 WebRequest.RegisterPrefix("http://",
 System.Net.Browser.WebRequestCreator.ClientHttp);
 HttpWebRequest request = (HttpWebRequest)
 WebRequestCreator.ClientHttp.Create
 (new Uri(uri, UriKind.Absolute));
 request.Method = "POST";
 request.Credentials = new
 NetworkCredential(UserNameTextBox.Text,
 PasswordTextBox.Password);
 request.ContentType = "application/x-www-form-urlencoded";
 request.BeginGetRequestStream(new AsyncCallback(result =>
 {
 using (StreamWriter writer =
 new StreamWriter(request.EndGetRequestStream(result)))
 {
 writer.Write(parameters);

Talking to REST and WCF Data Services

310

 }
 request.BeginGetResponse(response =>
 {
 try
 {
 WebResponse rs = request.EndGetResponse(response);
 Dispatcher.BeginInvoke(LoadAuthorizedContent);
 }
 catch (WebException ex)
 {
 Dispatcher.BeginInvoke(() =>
 HandleError(ex.Message));
 }
 }, request);
 }),
 null);
 }
 catch (Exception ex)
 {
 Dispatcher.BeginInvoke(() => HandleError(ex.Message));
 }
 AddTweetTextBox.Text = string.Empty;
}
private void HandleError(string exceptionMessage)
{
 ErrorTextBlock.Text = "An error occurred: " + exceptionMessage;
}

9. The code is now ready. However, we still need to configure the application to
allow it to run out-of-browser and with elevated permissions. To do so, right-click
on the Silverlight project node in the Solution Explorer and select Properties. In
the Silverlight tab of the Properties window, select the Enable running application
out of the browser checkbox. Finally, click on the Out-Of-Browser settings button
on the same tab and in the resulting dialog, select the Require elevated trust when
running outside the browser checkbox.

Chapter 6

311

With these steps completed, we have created a standalone Twitter client. Because it runs
with elevated permissions, there's no need to add an intermediate service layer between the
Silverlight client and Twitter. The running application can be seen in the following screenshot:

How it works...
To build this application, two major new features added to the platform with the release of
Silverlight 4 were put to work: no more cross-domain restrictions when running with elevated
permissions and passing credentials using the ClientHttpStack. Let's take a look at these
in some more detail.

Let's go cross-domain!
In many recipes in this book, we talked about the cross-domain restrictions that Silverlight
has in place. Basically, these come down to Silverlight not allowing us to make requests to
services that are not in the same domain as the Silverlight application. Silverlight will make the
request only if there's a cross-domain policy file in place that allows the request. Cross-domain
restrictions are required for security reasons.

Talking to REST and WCF Data Services

312

With Silverlight 3, it became possible to create out-of-browser Silverlight applications, allowing
us to create standalone Silverlight applications, which do not require a browser to be open
to run. However, they still run in the sandbox like in-browser applications, meaning these
applications do not have extra permissions on the system. Silverlight 4 extends this model.

With version 4, it becomes possible to create Trusted Silverlight applications, which run with
elevated permissions. As a result, they have more permissions on the system and can perform
some tasks in a different manner. One of these is the ability for this type of applications to
perform cross-domain calls without the need of a policy file.

For some applications, this is a big plus. Take, for example, our Twitter application. In the
in-browser version, which we created in the previous recipe, we had to build a service layer
that sits between the Silverlight client and Twitter itself. The reason is that Twitter does not
expose a policy file, so Silverlight applications can't directly communicate with Twitter's API.
With trusted Silverlight 4 applications, the fact that this file isn't there is no problem. When
running with elevated permissions, Silverlight will not check for the existence of the file and
will perform the service request anyhow.

Applying elevated permissions to Silverlight can be done through Visual Studio. In the
Project Properties, under the Out-Of-Browser settings, we can check that the application
should request to the user to run with these permissions. On installation, the user will not be
prompted with the regular install screen. Instead, the following dialog box shown in that asks
the user if he or she fully trusts the application:

Silverlight 4 also gives us the option to sign the XAP file, which results in a more relaxed
installation screen being displayed when installing a trusted Silverlight application. The
process of signing the XAP file is outside the scope of this book.

Chapter 6

313

Pass me those credentials, will you?
Being able to access Twitter without cross-domain restrictions is one thing. We also need to be
able to pass credentials to a service when it requires us to. In Silverlight 3, the WebClient
class already had a Credentials property, but this property was not working properly.
Silverlight 4 changed this and now allows us to pass credentials to a service. One thing
that is required is that we use the ClientHttpStack.

Passing credentials is very simple and can be done using the following code:

WebRequest.RegisterPrefix("http://",
 System.Net.Browser.WebRequestCreator.ClientHttp);
WebClient client = new WebClient();
client.Credentials = new NetworkCredential(UserNameTextBox.Text,
 PasswordTextBox.Password);

We are specifying that we want the application to use the ClientHttpStack using
the WebRequest.Register method: basically we're saying for all traffic that goes over
http://, use the ClientHttpStack.

Interacting with Data on the
SharePoint Server

This chapter is taken from Microsoft Silverlight
4 and SharePoint 2010 Integration (Chapter 3) by
Gastón C. Hillar.

In this chapter, we will cover many topics that help us create simple and complex
Line-Of-Business Silverlight RIAs that run as Silverlight Web Parts to interact with
data in the SharePoint Server.

In this chapter, we will:

•	 Use a Silverlight RIA to insert items into a SharePoint list
•	 Retrieve and process metadata information about a SharePoint list
•	 Prepare code to handle errors when remote operations fail
•	 Work with messages to allow multiple Silverlight RIAs to communicate

with each other
•	 Work with Visual Studio 2010 code editor features to track the execution flow
•	 Enhance a Silverlight RIA to delete specific items from a SharePoint list
•	 Enhance a Silverlight RIA to update specific fields for an item in a

SharePoint list

Interacting with Data on the SharePoint Server

[316]

Managing data in a Silverlight RIA
included in a SharePoint solution
So far, we have been able to create, deploy, and debug a Silverlight RIA that read
data from a list in the SharePoint server. It is also possible to insert, update, and
remove items from these lists. In fact, the typical LOB (Line-Of-Business) RIA
performs CRUD (Create, Read, Update, and Delete) operations. Therefore, we can
create a Silverlight RIA to perform some of the CRUD operations with the existing
list of tasks, by using more features provided by the SharePoint 2010 Silverlight
Client OM.

We could improve our existing Silverlight RIA that displays data from the existing
list in a grid. However, we are going to create a new Silverlight RIA and then, we
will improve both applications to work together to offer a complex LOB solution.

We will analyze diverse alternatives to simplify the deployment process and show
how to debug a Silverlight RIA that queries data from a SharePoint server.

Working with the SharePoint 2010 Silverlight
Client Object Model to insert items
Now, we are going to create a new solution in Visual Studio. It will include two
new projects:

•	 A Silverlight application project, SLTasksCRUD
•	 An empty SharePoint 2010 project with a module, SPTasksCRUD

Follow these steps to create the new Silverlight RIA that allows a user to insert
a new item into the list in the SharePoint server:

1. Start Visual Studio as a system administrator user.
2. Select File | New | Project... or press Ctrl+Shift+N. Select Other Project

Types | Visual Studio Solutions under Installed Templates in the New
Project dialog box. Then, select Blank Solution and enter TasksCRUD as the
project's name and click OK. Visual Studio will create a blank solution with
no projects.

3. Right-click on the solution's name in Solution Explorer and select Add |
New Project… from the context menu that appears.

4. Select Visual C# | Silverlight under Installed Templates in the New Project
dialog box. Then, select Silverlight Application, enter SLTasksCRUD as the
project's name and click OK.

Chapter 7

[317]

5. Deactivate the Host the Silverlight application in a new Web site checkbox
in the New Silverlight Application dialog box and select Silverlight 4
in Silverlight Version. Then, click OK. Visual Studio will add the new
Silverlight application project to the existing solution.

6. Follow the necessary steps to add the following two references to access the
new SharePoint 2010 Silverlight Client OM:

	° Microsoft.SharePoint.Client.Silverlight.dll

	° Microsoft.SharePoint.Client.Silverlight.Runtime.
dll

7. Open App.xaml.cs and add the following using statement:
using Microsoft.SharePoint.Client;

8. Add the following code in the StartUp event handler to initialize the
Microsoft.SharePoint.Client.ApplicationContext with the same
initialization parameters and the synchronization context for the current
thread (the UI thread).
private void Application_Startup(object sender, StartupEventArgs
e)

{

 this.RootVisual = new MainPage();

 // Initialize the ApplicationContext

 ApplicationContext.Init(e.InitParams,
 System.Threading.SynchronizationContext.Current);

}

9. Open MainPage.xaml, define a new width and height for the Grid, 800 and
600, add the following controls, and align them as shown in the following
screenshot:

	° Six Label controls aligned at the left with the following
values for their Content properties. They are Title,
Priority, Status, % Complete, Start Date and Due Date.

	° One Label control, located at the bottom, lblStatus.
	° One TextBox control, txtTitle.
	° One ComboBox control, cboPriority.
	° One ComboBox control, cboStatus.
	° One Slider control, sldPercentComplete. Set LargeChange

to 10, Maximum to 100, and Minimum to 0. This slider will
allow the user to set the percentage of the total work that has
been completed.

Interacting with Data on the SharePoint Server

[318]

	° One DatePicker control, dtStartDate.
	° One DatePicker control, dtDueDate.
	° One Button control, butInsert. Set its Title property

to Insert.

10. Select the Grid, LayoutRoot. Click on the Categorized button to arrange the
properties by category. Then, click on Brushes | Background and a color
palette with many buttons located at the top and the bottom will appear.
Click on the Gradient Brush button, located at the top and then on the
Vertical Gradient one, located at the bottom. Define both the start and the
stop colors. The rectangle that defines the background Grid will display a
nice linear gradient, as shown in the previous screenshot.

11. Open MainPage.xaml.cs and add the following using statements to include
the Microsoft.SharePoint.Client namespace:
using Microsoft.SharePoint.Client;

using SP = Microsoft.SharePoint.Client;

Add the following two private variables

private SP.ClientContext _context;

private SP.List _projects;

Add the following method to fill the drop-down lists that will display the
different options for the priority and the status:
private void FillComboBoxes()

{

Chapter 7

[319]

 cboPriority.Items.Add("(1) High");

 cboPriority.Items.Add("(2) Normal");

 cboPriority.Items.Add("(3) Low");

 cboStatus.Items.Add("Not Started");

 cboStatus.Items.Add("In Progress");

 cboStatus.Items.Add("Completed");

 cboStatus.Items.Add("Deferred");

 cboStatus.Items.Add("Waiting on someone else");

}

It is possible to retrieve the possible choices for both the Priority
and Status fields. However, we will improve this application later.
In this case, we add the possible values in this method and then
we will learn how to retrieve the choices through queries to the
SharePoint server.

12. Add the following line to the page MainPage constructor:
public MainPage()

{

 InitializeComponent();

 FillComboBoxes();

}

13. Now, it is necessary to add code to execute the following tasks:
i. Connect to the SharePoint server and load the current

user that logged on the server, ConnectAndAddItemToList method.
ii. Add a new item to the ProjectsList2010 list, considering the

values entered by the user in the controls, AddItemToList method.
private void ConnectAndAddItemToList()

{

 // Runs in the UI Thread

 lblStatus.Content = "Started";

 _context = new
 SP.ClientContext(SP.ApplicationContext.Current.Url);

 _context.Load(_context.Web);

 // Load the current user

 _context.Load(_context.Web.CurrentUser);

 _context.ExecuteQueryAsync(OnConnectSucceeded, null);

}

private void AddItemToList()

Interacting with Data on the SharePoint Server

[320]

{

 // Runs in the UI Thread

 lblStatus.Content = "Web Connected. Adding new item to List...";

 _projects = _context.Web.Lists.GetByTitle("ProjectsList2010");

 ListItem listItem = _projects.AddItem(new
 ListItemCreationInformation());

 listItem["Title"] = txtTitle.Text;

 listItem["StartDate"] =
 Convert.ToString(dtStartDate.SelectedDate);

 listItem["DueDate"] = Convert.ToString(dtDueDate.SelectedDate);

 listItem["Status"] = "Not Started";

 var fieldUserValue = new FieldUserValue();

 // Assign the current user to the Id

 fieldUserValue.LookupId = _context.Web.CurrentUser.Id;

 listItem["AssignedTo"] = fieldUserValue;

 listItem["Priority"] = "(2) Normal";

 listItem["PercentComplete"] =
 Convert.ToString(Math.Round(sldPercentComplete.Value, 0)/100);

 listItem.Update();

 // Just load the list Title proprty

 _context.Load(_projects, list => list.Title);

 _context.ExecuteQueryAsync(OnAddItemToListSucceeded,
 OnAddItemToListFailed);

}

14. All the previously added methods are going to run in the UI thread. The
following methods, which are going to be fired as asynchronous callbacks,
schedule the execution of other methods to continue with the necessary
program flow in the UI thread:

	° When the connection to the SharePoint server, requested
by the ConnectAndAddItemToList method, is successful,
the OnConnectSucceeded method schedules the
execution of the AddItemToList method in the UI thread.
If the ConnectAndAddItemToList method fails, the
OnConnectFailed method schedules the execution of the
ShowErrorInformation method in the UI thread, sending
the ClientRequestFailedEventArgs args instance as a
parameter to the delegate.

Chapter 7

[321]

	° When the insert operation performed on the list available
in the SharePoint server, requested by the AddItemToList
method, is successful, the OnAddItemToListSucceeded
method schedules the execution of the ShowInsertResult
method in the UI thread. If the AddItemToList method fails,
the OnAddItemToList method schedules the execution of the
ShowErrorInformation method in the UI thread, sending
the ClientRequestFailedEventArgs args instance as a
parameter to the delegate.

private void ShowErrorInformation(ClientRequestFailedEventArgs
args)

{

 System.Windows.Browser.HtmlPage.Window.Alert(

 "Request failed. " + args.Message + "\n" +

 args.StackTrace + "\n" +

 args.ErrorDetails + "\n" + args.ErrorValue);

}

private void ShowInsertResult()

{

 lblStatus.Content = "New item added to " + _projects.Title;

}

private void OnConnectSucceeded(Object sender, SP.ClientRequestSuc
ceededEventArgs args)

{

 // This callback isn't called on the UI thread

 Dispatcher.BeginInvoke(AddItemToList);

}

private void OnConnectFailed(object sender,
ClientRequestFailedEventArgs args)

{

 // This callback isn't called on the UI thread

 // Invoke a delegate and send the args instance as a parameter

 Dispatcher.BeginInvoke(() => ShowErrorInformation(args));

}

private void OnAddItemToListSucceeded(Object sender, SP.ClientRequ
estSucceededEventArgs args)

{

 // This callback isn't called on the UI thread

 //Dispatcher.BeginInvoke(GetListData);

 Dispatcher.BeginInvoke(ShowInsertResult);

Interacting with Data on the SharePoint Server

[322]

}

private void OnAddItemToListFailed(object sender,
ClientRequestFailedEventArgs args)

{

 // This callback isn't called on the UI thread

 // Invoke a delegate and send the args instance as a parameter

 Dispatcher.BeginInvoke(() => ShowErrorInformation(args));

}

Add the following line to the Click event for the butInsert Button. This
way, when the user clicks on this button, the application will connect to the
SharePoint server and will insert the new item.
private void butInsert_Click(object sender, RoutedEventArgs e)

{

 ConnectAndAddItemToList();

}

Now, follow these steps to create a new SharePoint module and link it to the
previously created Silverlight RIA, SLTasksCRUD.

1. Stay in Visual Studio as a system administrator user.
2. Right-click on the solution's name in Solution Explorer and select

Add | New Project… from the context menu that appears.
3. Select Visual C# | SharePoint | 2010 under Installed Templates in

the New Project dialog box. Then, select Empty SharePoint Project,
enter SPTasksCRUD as the project's name, and click OK. The SharePoint
Customization Wizard dialog box will appear.

4. Enter the URL for the SharePoint server and site in What local site do you
want to use for debugging?

5. Click on Deploy as a sandboxed solution. Then, click on Finish and the new
SPTasksCRUD empty SharePoint 2010 project will be added to the solution.

6. Add a new item to the project, that is a SharePoint 2010 module, Module1.
7. Expand the new SharePoint 2010 module, Module1, in the Solution Explorer

and delete the Sample.txt file.
8. Now, right-click on Module1 and select Properties in the context menu that

appears. In the Properties palette, click the ellipsis (...) button for the Project
Output References property. The Project Output References dialog box
will appear.

9. Click on Add, below the Members list. The empty SharePoint 2010 project's
name, SPTasksCRUD, will appear as a new member.

Chapter 7

[323]

10. Go to its properties, shown in the list, located at the right. Select the
Silverlight application project's name, SLTasksCRUD, in the Project Name
drop-down list.

11. Select ElementFile in the Deployment Type drop-down list. The following
value will appear in Deployment Location: {SharePointRoot}\Template\
Features\{FeatureName}\Module1\, as shown in the next screenshot:

Click OK and the SharePoint project now includes the Silverlight application
project, SLTasksCRUD.

12. Now, right-click on the SharePoint 2010 project, SPTasksCRUD, and select
Properties in the context menu that appears. Click on the SharePoint tab in
the properties panel and different options for the SharePoint deployment
configuration will be shown.

13. Activate the Enable Silverlight debugging (instead of Script debugging)
checkbox. Remember that this option will allow us to debug code in the
Silverlight application that adds items to the list in the SharePoint server.

14. Right-click on the solution's name in Solution Explorer and select Properties
from the context menu that appears. Select Startup Project in the list on the
left, activate Single startup project, and choose the SharePoint project's name
in the drop-down list below it, SPTasksCRUD. Then, click OK.

15. Build and deploy the solution.
16. Now that the WSP package has been deployed to the SharePoint site, follow

the necessary steps to create a new web page, add the Silverlight Web Part,
and include the Silverlight RIA in it. Remember that in this case, it is not
necessary to upload the .xap file because it was already deployed with the
WSP package.

Interacting with Data on the SharePoint Server

[324]

Inserting items in a SharePoint list with the
Silverlight Web Part
Now, follow these steps to insert an item with the recently deployed Silverlight RIA
running in a Silverlight Web Part.

1. Enter the URL for the previously added page that contains the Silverlight
Web Part in the web browser. This way, the Silverlight RIA will appear.

2. Enter a value for the Title. Select a value for both the Priority and the Status
drop-down lists and use the slider to specify the percentage of the work
completed so far and select both the Start Date and the Due Date by clicking
on the datetime pickers. The following screenshot shows some values and
the elegant drop-down list that offers the five alternatives for Status:

Chapter 7

[325]

3. Click on the Insert button. The application is going to display its different
status values in the label located at the bottom:

	° Ready
	° Started
	° Web Connected. Adding new item to List...
	° New item added to ProjectsList2010

4. Open or refresh the items for the list in the corresponding SharePoint
2010 page and you will see the new item added to the list with the values
entered in the application and the user logged on to the SharePoint server
in the Assigned To column. The following screenshot shows the new item
in the list:

Interacting with Data on the SharePoint Server

[326]

5. The Silverlight RIA doesn't include code to validate the data that is going
to be added to the list in the SharePoint server. Thus, the user can enter
inappropriate values for the fields. Enter a new title and delete the value
for Start Date. Then, click on the Insert button and a new dialog box will
appear, indicating that the request failed, because the String was not
recognized as a valid DateTime. The problem is that the StartDate field
has the invalid value 0. The following screenshot shows the dialog box
with the error message:

Chapter 7

[327]

This dialog box is the result of the execution of the OnAddItemToListFailed
callback, the second parameter of the _context.ExecuteQueryAsync
method in AddItemToList. As something went wrong, this callback
invokes a delegate that send the args instance as a parameter to the
ShowErrorInformation method.
Dispatcher.BeginInvoke(() => ShowErrorInformation(args));

6. Debug the Silverlight RIA.

Working with successful and failed
asynchronous queries
The following sequence diagram shows the interaction between the methods defined
in MainPage that are going to run in the UI thread, the Microsoft.SharePoint.
Client.ClientContext instance, _context, and the methods defined in MainPage
that are going to run in another thread, that is, a worker thread. This sequence
represents the situation in which all the asynchronous operations against the
SharePoint server have a successful completion:

Interacting with Data on the SharePoint Server

[328]

When the user clicks the Insert button, the Click event handler calls the
ConnectAndAddItemToList method, in the UI thread. This method uses the current
URL to generate a ClientContext instance, saved in the private_context variable.
Then, it calls the Load method to build a query to load the Web and its current user,
the user that logged on to the SharePoint site. Then, it calls the ExecuteQueryAsync
to run it with an asynchronous execution.

_context.Load(_context.Web);
_context.Load(_context.Web.CurrentUser);

If the query has a successful execution, the OnConnectSucceeded callback schedules
the asynchronous execution of the AddItemToList method in the UI thread from a
worker thread that runs this code after the query has succeeded.

private void OnConnectSucceeded(Object sender, SP.ClientRequestSucceed
edEventArgs args)
{
 Dispatcher.BeginInvoke(AddItemToList);
}

In this example, we also specified the OnConnectFailed callback and used it as the
second parameter for the ExecuteQueryAsync method. If something goes wrong,
it invokes a delegate that calls the ShowErrorInformation method and sends the
ClientRequestFailedEventArgs args instance as a parameter to it. The code uses
a lambda expression to define the delegate:

private void OnConnectFailed(object sender,
ClientRequestFailedEventArgs args)
{
 Dispatcher.BeginInvoke(() => ShowErrorInformation(args));
}

Remember that a lambda expression, introduced in C# 3.0, is an
anonymous function that can contains expressions and statements
and can be used to create delegates or expression tree types. They
are useful to simplify the code when we use delegates. All lambda
expressions use the lambda operator => (read as goes to). Lambda
expressions are described in depth in WCF Multi-tier Services
Development with LINQ by Mike Liu, Packt Publishing.

Chapter 7

[329]

The following lines show equivalent code to define a delegate and invoke it to run
asynchronously in the UI thread without using a lambda expression. It requires
more lines of code, because it is necessary to declare a delegate type, create a new
instance with the method to run, use the Dispatcher.BeginInvoke method to call
the delegate instance, and send the args instance as a parameter encapsulated in an
array of object.

private delegate void ShowErrorInformationCaller
(ClientRequestFailedEventArgs args);

private void OnConnectFailed(object sender,
ClientRequestFailedEventArgs args)
{
 // This callback isn't called on the UI thread
 // Create the delegate instance
 ShowErrorInformationCaller ShowErrorInformationD =
 new ShowErrorInformationCaller(ShowErrorInformation);
 // Invoke the delegate
 Dispatcher.BeginInvoke(
 ShowErrorInformationD, new object[] { args });
}

It is convenient to use lambda expressions, because they require less code
to achieve the same goal. However the previously shown lines make it
easier to understand the way the method is called in the delegate.

If everything works as expected, then the AddItemToList method is going to run in
the UI thread. This method calls the GetByTitle method to save a reference to the
ProjectsList2010 list, in the _projects private variable. Then, it calls its AddItem
method to add a new ListItemCreationInformation empty instance. This method
returns a new ListItem instance that allows us to access the fields for the new item
in the list and fill their values.

_projects = _context.Web.Lists.GetByTitle("ProjectsList2010");
ListItem listItem = _projects.AddItem(new
ListItemCreationInformation());

Interacting with Data on the SharePoint Server

[330]

Then, the code completes the value for each field by using its InternalName and
assigning a string value, as shown in the next line.

listItem["Title"] = txtTitle.Text;

The AssignedTo field is a special case, because it is a FieldUserValue that
references a SharePoint server user through a lookup ID. Remember that this field
had a Microsoft.SharePoint.SPFieldUserValue value in its FieldValueType
property. Thus, it is necessary to use the Id for the user currently logged on the
SharePoint server to assign it to the LookupId property of a new FieldUserValue
instance, fieldUserValue. Then, it is possible to assign fieldUserValue to
listItem["AssignedTo"] to store the current user as the value for this field.

var fieldUserValue = new FieldUserValue();
fieldUserValue.LookupId = _context.Web.CurrentUser.Id;
listItem["AssignedTo"] = fieldUserValue;

Remember, it is possible to access the _context.Web.CurrentUser.
Id property because we queried _context.Web.CurrentUser in the
ConnectAndAddItemToList method.

Once all the fields are filled with the corresponding values, the code calls the Update
method for the new ListItem instance that holds the new row, listItem. At this
point, the new item isn't still inserted in the list, because it is necessary to execute
the query. The code requests the Title for the list as a response and then calls the
ExecuteQueryAsync method:

listItem.Update();
_context.Load(_projects, list => list.Title);
_context.ExecuteQueryAsync(OnAddItemToListSucceeded,
OnAddItemToListFailed);

The following diagram shows the detailed execution flowchart for the asynchronous
query that adds the item to the list. Besides, it indicates the code that runs in the
UI thread. If the query execution isn't successful, the application will run the
OnAddItemToListFailed callback and it will display information about the error
that made the query fail in a dialog box. If the query execution succeeds, the
application will run the OnAddItemToListSucceeded callback and it will display
status information to let the user know that the item was inserted in the list.

Chapter 7

[331]

Retrieving specific information about fields
If we examine the default dialog box that allows a user to insert items into the list
in the SharePoint server, we will notice that there is a default value for both the
Priority and Status fields, as shown in the following screenshot:

•	 (2) Normal for Priority
•	 Not Started for Status

Besides, when we use this dialog box to insert a new item or edit an existing one,
the two drop-down lists offer many choices as their possible values.

Interacting with Data on the SharePoint Server

[332]

Follow these steps to access the value for the SchemaXml property in the Priority
and Status fields by using Server Explorer.

1. Stay in Visual Studio as a system administrator user.
2. Activate the Server Explorer palette and navigate to the previously created

list, ProjectsList2010.
3. Now, expand the list of tasks, ProjectsList2010, and then expand its Fields

node. This way, you will see all the fields for this list.
4. Now, click on the Priority field, display its properties, and check the value

for its SchemaXml property. As the content for this property is XML markup,
you won't be able to analyze all the information in the Properties palette,
because you will see only the first characters

5. You can copy the value for the SchemaXml property and paste it in a new
XML File in Visual Studio. This way, you will be able to see the three choices
and their mappings, and a default value, as shown in the following lines and
in the next screenshot with the contents pasted in a Visual Studio XML File
that organizes the markup code.

Chapter 7

[333]

<Field ID="{a8eb573e-9e11-481a-a8c9-1104a54b2fbd}"

 Type="Choice" Name="Priority" DisplayName="Priority"

 SourceID="http://schemas.microsoft.com/sharepoint/v3"

 StaticName="Priority" ColName="nvarchar3">

 <CHOICES>

 <CHOICE>(1) High</CHOICE>

 <CHOICE>(2) Normal</CHOICE>

 <CHOICE>(3) Low</CHOICE>

 </CHOICES>

 <MAPPINGS>

 <MAPPING Value="1">(1) High</MAPPING>

 <MAPPING Value="2">(2) Normal</MAPPING>

 <MAPPING Value="3">(3) Low</MAPPING>

 </MAPPINGS>

 <Default>(2) Normal</Default>

</Field>

6. Now, repeat the aforementioned steps (4 and 5) with the Status field. You
will be able to see the five choices and their mappings, as shown in the
following lines:
<Field Type="Choice"

 ID="{c15b34c3-ce7d-490a-b133-3f4de8801b76}"

 Name="Status" DisplayName="Status"

 SourceID="http://schemas.microsoft.com/sharepoint/v3"

 StaticName="Status" ColName="nvarchar4">

 <CHOICES>

 <CHOICE>Not Started</CHOICE>

 <CHOICE>In Progress</CHOICE>

 <CHOICE>Completed</CHOICE>

 <CHOICE>Deferred</CHOICE>

 <CHOICE>Waiting on someone else</CHOICE>

 </CHOICES>

 <MAPPINGS>

 <MAPPING Value="1">Not Started</MAPPING>

 <MAPPING Value="2">In Progress</MAPPING>

 <MAPPING Value="3">Completed</MAPPING>

 <MAPPING Value="4">Deferred</MAPPING>

 <MAPPING Value="5">Waiting on someone else</MAPPING>

 </MAPPINGS>

 <Default>Not Started</Default>

</Field>

Interacting with Data on the SharePoint Server

[334]

We now have the information that we need to enhance the Silverlight LOB RIA.
Follow these steps to add new code that retrieves the choices defined in the
SharePoint list for both the Priority and Status fields and uses their default values.

1. Stay in Visual Studio as a system administrator user, in the
TasksCRUD solution.

2. Open MainPage.xaml.cs and add the following private variable:
private SP.FieldCollection _collField;

3. Now, it is necessary to add code to execute the following tasks:
1. Connect to the SharePoint server and load information about

the Priority and Status fields from the ProjectsList2010,
ConnectAndFillComboBoxes method.

2. Iterate through a collection of fields, find and return a FieldChoice
instance, according to an InternalName value, received as a
parameter, ReturnFieldByInternalName method.

3. Add each choice defined for the retrieved Priority and Status
FieldChoice fields as a new item in the corresponding combo
boxes and set their default value, AddFieldChoicesToComboBoxes
method.

private void ConnectAndFillComboBoxes()

{

 // Runs in the UI Thread

 lblStatus.Content = "Started";

 _context = new SP.ClientContext(

 SP.ApplicationContext.Current.Url);

 // Load the Web

 _context.Load(_context.Web);

 // Get the ProjectsList2010 list

 _projects = _context.Web.Lists.

 GetByTitle("ProjectsList2010");

 _context.Load(_projects);

 // Just load the two necessary fields for the List:

 // Status and Priority

 _collField = _projects.Fields;

 _context.Load(_collField,

 fields => fields.Where(

 field => field.InternalName == "Status"

 || field.InternalName == "Priority")

 .IncludeWithDefaultProperties());

Chapter 7

[335]

 _context.ExecuteQueryAsync(

 OnConnectAndFillComboBoxesSucceeded,

 OnConnectAndFillComboBoxesFailed);

}

private SP.FieldChoice ReturnFieldByInternalName(string
internalName)

{

 for (int i = 0; i < _collField.Count; i++)

 {

 if (_collField[i].InternalName == internalName)

 {

 return (_collField[i] as FieldChoice);

 }

 }

 return null;

}

private void AddFieldChoicesToComboBoxes()

{

 // Runs in the UI Thread

 SP.FieldChoice statusField =

 ReturnFieldByInternalName("Status");

 SP.FieldChoice priorityField =

 ReturnFieldByInternalName("Priority");

 // Add each choice to the corresponding ComboBox control

 foreach (string item in statusField.Choices)

 {

 cboStatus.Items.Add(item);

 }

 foreach (string item in priorityField.Choices)

 {

 cboPriority.Items.Add(item);

 }

 // Set default values

 cboStatus.SelectedValue = statusField.DefaultValue;

 cboPriority.SelectedValue = priorityField.DefaultValue;

}

Interacting with Data on the SharePoint Server

[336]

4. All the previously added methods are going to run in the UI thread. The
following methods, which are going to be fired as asynchronous callbacks,
schedule the execution of other methods to continue with the necessary
program flow in the UI thread:

	° When the connection to the SharePoint server
and the query execution, requested by the
ConnectAndFillComboBoxes method, is successful, the
OnConnectAndFillComboBoxesSucceeded method schedules
the execution of the AddFieldChoicesToComboBox method in
the UI thread.

	° If the ConnectAndFillComboBoxes method fails, the
OnConnectAndFillComboBoxesFailed method schedules the
execution of the ShowErrorInformation method in the UI
thread, sending the ClientRequestFailedEventArgs args
instance as a parameter to the delegate.

private void OnConnectAndFillComboBoxesSucceeded(Object sender,
 SP.ClientRequestSucceededEventArgs args)

{

 // This callback isn't called on the UI thread

 Dispatcher.BeginInvoke(AddFieldChoicesToComboBoxes);

}

private void OnConnectAndFillComboBoxesFailed(object sender,
 ClientRequestFailedEventArgs args)

{

 // This callback isn't called on the UI thread

 // Invoke a delegate and send the args instance as a parameter

 Dispatcher.BeginInvoke(() => ShowErrorInformation(args));

}

Replace the code in the MainPage constructor with the following lines to fill
the combo boxes by calling the new ConnectAndFillComboBoxes method
instead of the previously defined FillComboBoxes:
public MainPage()

{

 InitializeComponent();

 ConnectAndFillComboBoxes();

}

5. Build and deploy the solution.

Chapter 7

[337]

6. Enter the URL for the previously added page that contains the Silverlight Web
Part in the Web browser. This way, the updated Silverlight RIA will appear
and it will load the choices and default values for the Priority and Status
fields from the information retrieved from the list in the SharePoint server:

The following diagram shows the detailed execution flowchart for the asynchronous
query that retrieves information for both the Priority and Status fields. The
diagram indicates the code that runs in the UI thread. If the query execution isn't
successful, the application will run the OnConnectAndFillComboBoxesFailed
callback and it will display information about the error that made the query
fail in a dialog box. If the query execution succeeds, the application will run the
OnConnectAndFillComboBoxesSucceeded callback and it will fill the two combo
boxes with the retrieved choices and will set their default values.

Interacting with Data on the SharePoint Server

[338]

As the asynchronous executions make it a bit difficult to track the execution flow,
we can use one of the features offered by the Visual Studio code editor to help us.
Locate the cursor over a method's name and press F12 or right-click on it and select
Go To Definition in the context menu that appears. For example, you can do it for
OnConnectAndFillComboBoxesSucceeded in the line that sends this callback as a
parameter to the _context.ExecuteQueryAsync method.

This way, the code editor will locate the cursor at the line that defines the selected
method's name, OnConnectAndFillComboBoxesSucceeded. You can take advantage
of this feature to track the execution flow by accessing the code for the different
methods involved in the sequence.

Chapter 7

[339]

Now, the MainPage constructor calls the new ConnectAndFillComboBoxes method
that creates a new ClientContext instance, requests it to load the Web and the list,
ProjectsList2010. Then, it is necessary to load just two fields, Priority and
Status, and therefore, we specified a LINQ expression as the second parameter
for the Load method to limit the information that has to be retrieved. We used
a lambda expression as a parameter of the Where method to filter the sequence
of values based on a predicate. We just wanted to retrieve the fields whose
InternalName property value was Status or Priority. We added the call to the
IncludeWithDefaultProperties extension method without parameters, because
we just want to retrieve the default properties for the two Field instances in the
_collField FieldCollection.

_context.Load(_collField,
 fields => fields.Where(
 field => field.InternalName == "Status"
 || field.InternalName == "Priority")
 .IncludeWithDefaultProperties());

This way, we query for two fields and we request their default properties. Once
this query is successful, the AddFieldChoicesToComboBoxes method retrieves
the two fields from the _collField FieldCollection as FieldChoice instances,
statusField and prioriryField. The ReturnFieldByInternalName method
receives a string with the required value for the InternalName property and returns
the field from the _collField FieldCollection that satisfies this simple condition
as a FieldChoice instance. The FieldChoice class, Microsoft.SharePoint.
Client.FieldChoice, represents a choice field control. As this is the real class for
the two field instances, it is necessary to cast them to FieldChoice to access the
specific field and properties that allow us to retrieve the choices.

SP.FieldChoice statusField =
 ReturnFieldByInternalName("Status");
SP.FieldChoice priorityField =
 ReturnFieldByInternalName("Priority");

Then, the code adds a new item to each combo box, cboStatus and cboPriority,
for each string in the FieldChoice instance Choices string array. The following lines
show the foreach loop that adds items to the cboStatus ComboBox:

foreach (string item in statusField.Choices)
{
 cboStatus.Items.Add(item);
}

Interacting with Data on the SharePoint Server

[340]

Once the code has filled the two combo boxes with the possible choices, it assigns the
value for each field DefaultValue property to the ComboBox SelectedValue property.
This way, the drop-down list displayed by these controls will show the same default
value as the dialog box that allows inserting items in the SharePoint list.

cboStatus.SelectedValue = statusField.DefaultValue;

Creating complex LOB applications
composed of multiple Silverlight RIAs
One of the interesting features provided by Silverlight applications is the possibility
to establish a simple communication channel between them and use it to send
messages between many applications. This feature is very useful when we have
many Silverlight applications included in Web Parts. Silverlight applications running
on the same computer can communicate over the boundaries of tabs inside a web
browser and even over the limits of web browser instances.

Follow these steps to add new code that sends a message to a listener application
when the application inserts a new item in the list:

1. Stay in Visual Studio as a system administrator user, in the
TasksCRUD solution.

2. Open MainPage.xaml.cs and add the following using statements to
include the System.Windows.Messaging namespace:
using System.Windows.Messaging;

3. Add the following two private constants:
private const string MSG_RECEIVER_NAME = "MessageReceiver";

private const string MSG_TASKSCRUD_NEWITEM = "TASKSCRUD_NEWITEM";

4. Add the following method that sends the message received as a parameter to
the receiver:
private void SendMessage(string message)

{

 // Create a new LocalMessageSender instance

 // with the receiver name as a parameter

 LocalMessageSender messageSender =
 new LocalMessageSender(MSG_RECEIVER_NAME);

 // Attach a SendCompletedEventArgs handler

 messageSender.SendCompleted +=

 (object s, SendCompletedEventArgs args) =>

Chapter 7

[341]

 {

 // Update the status label

 lblStatus.Content = "Message sent successfully. " +

 "Response: " + args.Response;

 };

 // Send the asynchronous message to the receiver

 messageSender.SendAsync(message);

}

5. Add the following line in the ShowInsertResult method to send a message
to another Silverlight application when the item was successfully added to
the list:
private void ShowInsertResult()

{

 lblStatus.Content =

 "New item added to " + _projects.Title;

 // Send a message to another Silverlight RIA

 // in order to force a refresh

 SendMessage(MSG_TASKSCRUD_NEWITEM);

}

6. Build and deploy the solution.

Now, follow these steps to add new code that listens to the messages sent by the
previously modified Silverlight application and runs code as a response to them:

1. Stay in Visual Studio as a system administrator user or run a new instance.
2. Open the TasksViewer solution.
3. Open MainPage.xaml.cs and add the following using statements to include

the System.Windows.Messaging namespace:
using System.Windows.Messaging;

4. Add the following two private constants:
private const string MSG_RECEIVER_NAME = "MessageReceiver";

private const string MSG_TASKSCRUD_NEWITEM = "TASKSCRUD_NEWITEM";

Interacting with Data on the SharePoint Server

[342]

5. Add the following code to the MainPage constructor that starts receiving
messages and refreshes the items from the list shown in the DataGrid,
dataGridProjects, each time it receives the MSG_TASKSCRUD_NEWITEM
message:
public MainPage()

{

 InitializeComponent();

 LocalMessageReceiver messageReceiver =

 new LocalMessageReceiver(MSG_RECEIVER_NAME);

 messageReceiver.MessageReceived +=

 (object sender, MessageReceivedEventArgs e) =>

 {

 if (e.Message == MSG_TASKSCRUD_NEWITEM)

 {

 Connect();

 }

 e.Response = "OK";

 };

 try

 {

 messageReceiver.Listen();

 }

 catch (ListenFailedException)

 {

 // There is another receiver with the same name

 // and the application cannot receive messages

 lblStatus.Content = "Cannot receive messages.";

 }

}

6. Build and deploy the solution.

Follow these steps to test the two Silverlight Web Parts in different web
browser instances:

1. Start two web browser instances.
2. Load the SharePoint page that shows SLTasksViewer.xap as a Silverlight

Web Part in one web browser's window, SilverlightProjectsList2010.
aspx.

Chapter 7

[343]

3. Load the SharePoint page that shows SLTasksCRUD.xap as a Silverlight Web
Part in the other web browser's window, SilverlightProjectsCRUD2010.
aspx. Make both Web Parts visible at the same time.

Interacting with Data on the SharePoint Server

[344]

4. Complete the data to insert a new item in the list and click on the Insert
button. The new item will be added to the list and the Silverlight Web Part
that displays the grid will refresh its contents to show the new item, because
it receives the message from the other Silverlight Web Part. The status label
at the bottom of SLTasksCRUD.xap will display Message sent successfully.
Response: OK., because it receives OK as a response from SLTasksViewer.
xap, the listener application:

5. Test the behavior by showing each Web Part in a different browser tab and
you will achieve the same results.

Chapter 7

[345]

Interacting with multiple Silverlight Web Parts
in the same page
We took advantage of Silverlight's messaging capabilities to establish a
communication channel between multiple Silverlight Web Parts in SharePoint. This
way, it is possible to create complex solutions composed of multiple Silverlight Web
Parts that interact with each other. Then, we can decide the best layout for these
Silverlight Web Parts in one or many SharePoint pages.

Follow these steps to test the two Silverlight Web Parts in the same SharePoint page:
1. Open the web page that shows SLTasksCRUD.xap as a Silverlight Web Part in

the other web browser's window, SilverlightProjectsCRUD2010.aspx.
2. Click Site Actions | Edit Page and SharePoint will display the editing tools

for this page.
3. Follow the necessary steps to insert a second Silverlight Web Part to this

page, SLTasksViewer.xap. This way, the page will show SLTasksCRUD.xap
at the top and SLTasksViewer.xap at the bottom.

Interacting with Data on the SharePoint Server

[346]

4. Remember to apply the settings learned in the previous examples to the new
Silverlight Web Part and click on the Save button in the ribbon. Now, the
new page will appear, displaying the two previously created Silverlight RIAs
running as two Silverlight Web Parts in the same page.

5. Complete the data to insert a new item in the list and click on the Insert
button. The new item will be added to the list and the Silverlight Web Part
that displays the grid at the bottom of the page will refresh its contents to
show the new item, because it receives the message from the other Silverlight
Web Part.

The user inserts a new item into the list and doesn't need to refresh
the Silverlight Web Part that displays the data for the list, because
the application receives the message and updates its content.
This simple example demonstrates one of the most interesting
possibilities offered by Silverlight RIAs included as Silverlight Web
Parts: they make it simpler to refresh content without having to
reload a page in the Web browser.

Chapter 7

[347]

Understanding Line-Of-Business systems as
independent Web Parts
The System.Windows.Messaging namespace offers the necessary classes and event
types that allowed us to send messages between two Silverlight Web Parts running
on the same computer.

The SendMessage method in the SLTasksCRUD Silverlight application receives the
message to be sent as a string parameter. It creates a new LocalMessageSender
instance (System.Windows.Messaging.LocalMessageSender) with the receiver
name, defined in the MSG_RECEIVER_NAME constant, as a parameter for the
constructor.

LocalMessageSender messageSender =
 new LocalMessageSender(MSG_RECEIVER_NAME);

Then, it attaches a SendCompleted event handler to the SendCompleted event
for the LocalMessageSender instance, messageSender. In this case, a lambda
expression defines the code to run in the event handler that receives the
SendCompletedEventArgs args as the second parameter. This event will fire when
the message has been sent. If everything worked as expected, args.Response will
contain the response added by the receiver to acknowledge the message's reception.
The code just updates the text shown in the lblStatus Label and adds the value for
args.Response to this text. This value should be OK if the SLTasksViewer Silverlight
application received the message.

messageSender.SendCompleted +=
 (object s, SendCompletedEventArgs args) =>
{
 // Update the status label
 lblStatus.Content = "Message sent successfully. " +
 "Response: " + args.Response;
};

If the message wasn't received, the args.Error property would be set to a
SendFailedException instance. In this case, in order to keep the example simple,
the code doesn't consider this situation. However, when you work with more
complex Silverlight Web Parts, it is convenient to add more code to handle the
potential exceptions that could be thrown.

Interacting with Data on the SharePoint Server

[348]

Then, the code sends the string received as a parameter, message, as an
asynchronous message to the previously specified receiver. Remember that the code
defined in the previously explained event handler will run after the receiver receives
the asynchronous message.

messageSender.SendAsync(message);

Each time a user adds a new item to a list, the SLTasksCRUD Silverlight application
calls the SendMessage method to send the MSG_TASKSCRUD_NEWITEM string to the
registered listener.

SendMessage(MSG_TASKSCRUD_NEWITEM);

The MainPage constructor in the SLTasksViewer Silverlight application creates
a new LocalMessageReceiver instance (System.Windows.Messaging.
LocalMessageReceiver) with the receiver name, defined in the MSG_RECEIVER_NAME
constant, and with the same value as the one defined in SLTasksCRUD, as a parameter
for the constructor.

LocalMessageReceiver messageReceiver =
new LocalMessageReceiver(MSG_RECEIVER_NAME);

Then, the code performs the following sequence:

It attaches a MessageReceived event handler to the MessageReceived event for the
LocalMessageReceiver instance, messageReceiver.

A lambda expression defines the code to run in the event handler that receives the
MessageReceivedEventArgs e as the second parameter.

The event will fire if the Listen method was called and a message was received for
the registered receiver. e.Message contains a string with the received message and it
is possible to send a response to the sender by assigning a string to e.Response.

If the message received is MSG_TASKSCRUD_NEWITEM, it means that the SLTasksCRUD
Silverlight application added a new item to the list that this application is showing in
a DataGrid. Thus, it is necessary to refresh the data shown in the grid and the code
calls the Connect method to query the data from the SharePoint server and assigns
OK as a response to the sender to acknowledge the message's reception.

messageReceiver.MessageReceived += (object sender,
MessageReceivedEventArgs e) =>

{

 if (e.Message == MSG_TASKSCRUD_NEWITEM)

 {

 Connect();

 }

Chapter 7

[349]

 e.Response = "OK";

};

In order to be able to receive messages, it is necessary to call the Listen method for
the LocalMessageReceiver instance, messageReceiver. This method will throw a
ListenFailedException, if something goes wrong. For example, if there is another
receiver registered with the same name, this application is not going to be able to
receive messages targeting the indicated receiver. Thus, the code encloses the call to
the Listen method in a try-catch block.

If the call to the Listen method is successful, each time a message is sent to the
registered receiver, this application will run the code in the previously explained
MessageReceived attached event handler. In this case, in order to keep things
simple, the application doesn't use flags to determine whether a received message
that suggests a data refresh is being processed or not. However, as the refresh
process can take some time, because it requests data from the SharePoint server and
at the same time, other messages can arrive, it is convenient to add some kind of
mechanism to run only one refresh process at a time.

Expanding LOB systems with delete
operations
So far, we have created Silverlight Web Parts that can retrieve the items from a
list in the SharePoint server, add new items to this list, and communicate between
themselves to refresh the data shown to the user when necessary.

Now, follow these steps to add a new button in the SLTasksViewer Silverlight
application to allow the user to delete the item selected in the DataGrid from the list
in the SharePoint server, ProjectsList2010.

1. Stay in Visual Studio as a system administrator user, in the
TasksViewer solution.

2. Open MainPage.xaml, add a new Button control, butDelete, and set its
Content property to Delete.

3. Add a new DataPager control, dataPager and locate it at the bottom of the
dataGridProjects DataGrid. Set its DisplayMode property to Numeric and
PageSize to 5. This control will simplify the navigation and will display 5
items per page.

Interacting with Data on the SharePoint Server

[350]

4. Apply data binding to the Source property for the DataPager control,
dataPager. Click Apply Data Binding..., select ElementName in Source,
dataGridProjects and then ItemsSource in Path. This way, the Source
property will be set to dataGridProjects.ItemsSource. The XAML
markup that defines the data binding will be the following:
Source="{Binding ElementName=dataGridProjects, Path=ItemsSource}"

5. Open MainPage.xaml.cs and add the following private variable:
private System.Windows.Data.PagedCollectionView
_projectsPagedView;

6. Replace the line that assigns the value for ItemSource in the ShowItems
method, dataGridProjects.ItemsSource = _projectsList;, with the
following lines. Now, the ItemsSource property will have a representation
of a view of _projectsList for navigating a paged data collection.
_projectsPagedView = new System.Windows.Data.PagedCollectionView(
_projectsList);

dataGridProjects.ItemsSource = _projectsPagedView;

7. Now, add the following code to the Click event for the butDelete Button.
This way, when the user clicks on this button, the application will retrieve
the Project instance selected in the dataGridProjects DataGrid, and use
its ID to retrieve and delete the item form the list in the SharePoint server.
private void butDelete_Click(object sender, RoutedEventArgs e)

{

 _context = new

 SP.ClientContext(SP.ApplicationContext.Current.Url);

 _projects =

 _context.Web.Lists.GetByTitle("ProjectsList2010");

 var selectedProject =

 (dataGridProjects.SelectedItem as Project);

 SP.ListItem listItem =

 _projects.GetItemById(selectedProject.ProjectId);

 // Remove the item from the list

 listItem.DeleteObject();

 _context.ExecuteQueryAsync(

 OnDeleteSucceeded, OnDeleteFailed);

}

Chapter 7

[351]

8. The code in the Click event for the butDelete Button is going to run
in the UI thread. The following methods, which are going to be fired as
asynchronous callbacks, schedule the execution of other methods to continue
with the necessary program flow in the UI thread:

	° When the connection to the SharePoint server and the
query execution that deletes an item from the list, requested
by the butDelete_Click method, is successful, the
OnDeleteSucceeded method schedules the execution of the
Connect method in the UI thread, to refresh the data shown
in the dataGridProjects DataGrid.

	° If the butDelete_Click method fails, the
OnDeleteFailed method schedules the execution of the
ShowErrorInformation method in the UI thread, sending
the ClientRequestFailedEventArgs args instance as a
parameter to the delegate.

private void ShowErrorInformation(ClientRequestFailedEventArgs
args)

{

 MessageBox.Show("Request failed. " + args.Message + "\n"
+ args.StackTrace + "\n" + args.ErrorDetails + "\n" + args.
ErrorValue);

}

private void OnDeleteSucceeded(Object sender, SP.ClientRequestSucc
eededEventArgs args)

{

 // This callback isn't called on the UI thread

 Dispatcher.BeginInvoke(Connect);

}

private void OnDeleteFailed(Object sender,
SP.ClientRequestFailedEventArgs args)

{

 // This callback isn't called on the UI thread

 // Invoke a delegate and send the args instance as a parameter

 Dispatcher.BeginInvoke(() => ShowErrorInformation(args));

}

9. Build and deploy the solution.

Interacting with Data on the SharePoint Server

[352]

10. Load the SharePoint page that shows SLTasksViewer.xap as a Silverlight
Web Part, SilverlightProjectsList2010.aspx.

11. Click on the row that you want to delete in the grid and then click on the
Delete button.

12. The application will request the SharePoint server to delete the selected
item from the list and then it will refresh the data shown in the grid. If the
operation was successful, the row will not appear in the grid.

Understanding how to delete an item from a list
When the user clicks the Delete button, the Click event handler, butDelete_Click,
runs in the UI thread. It uses the current URL to generate a ClientContext instance,
saved in the private _context variable. Then, it calls the GetByTitle method to
save a reference to the ProjectsList2010 list that was previously created in the
SharePoint server, in the private _projects variable.

Chapter 7

[353]

_context = new SP.ClientContext(SP.ApplicationContext.Current.Url);
_projects = _context.Web.Lists.GetByTitle("ProjectsList2010");

Then, it assigns the value for the data item corresponding to the selected row in the
dataGridProjects DataGrid to the selectedProject local variable. It does so by
accessing the dataGridProjects.SelectedItem property and casting it to Project,
because it represents a Project instance.

var selectedProject = (dataGridProjects.SelectedItem as Project);

The next line calls the GetItemById method for the reference to the
ProjectsList2010 list, _projects. This method receives the value for the unique
ID field, an int or string, and returns a reference to the ListItem instance that is
going to be retrieved when the query is executed. In this case, the value for ID was
set in selectedProject.ProjectID and it is an int.

SP.ListItem listItem =
 _projects.GetItemById(selectedProject.ProjectId);

Once the code has a reference to the desired item in the list, it calls the DeleteObject
method to remove it. Remember that at this point, we don't have access to the
ListItem instance properties, because the query hasn't yet been executed. However,
we can schedule many queries in a single call to ExecuteQueryAsync.

listItem.DeleteObject();

The call to the ExecuteQueryAsync will perform the following actions in the
SharePoint server:

Retrieve the element with the specified ID value from the ProjectsList2010 list.
If found, delete it.

If the query has a successful execution, the OnDeleteSucceeded callback schedules
the asynchronous execution of the Connect method in the UI thread from a
worker thread that runs this code after the query succeeds. It will refresh the data
shown in the dataGridProjects DataGrid to reflect the new contents of the
ProjectsList2010 list.

private void OnDeleteSucceeded(Object sender, SP.ClientRequestSucceede
dEventArgs args)
{
 Dispatcher.BeginInvoke(Connect);
}

In this example, we also specified the OnDeleteFailed callback and used it as the
second parameter for the ExecuteQueryAsync method. If something goes wrong,
it invokes a delegate that calls the ShowErrorInformation method and sends the
ClientRequestFailedEventArgs args instance as a parameter to it.

Interacting with Data on the SharePoint Server

[354]

Expanding LOB systems with update
operations
Now, follow these steps to add a new feature in the SLTasksViewer Silverlight
application to allow the user to edit and update the value for the Title row
in the item selected in the DataGrid from the list in the SharePoint server,
ProjectsList2010.

1. Stay in Visual Studio as a system administrator user, in the TasksViewer
solution.

2. Open MainPage.xaml.cs and add the following code to the CellEditEnded
event for the dataGridProjects DataGrid. This way, when the user finishes
editing the cell corresponding to the Title row, the application will retrieve
the Project instance selected in the dataGridProjects DataGrid and use
its ID to update the value for the Title field in the corresponding item in the
list in the SharePoint server.
private void dataGridProjects_CellEditEnded(object sender,
DataGridCellEditEndedEventArgs e)

{

 if ((e.EditAction == DataGridEditAction.Commit) &&

 (e.Column.Header.Equals("Title")))

 {

 _context = new SP.ClientContext(

 SP.ApplicationContext.Current.Url);

 _projects = _context.Web.Lists.GetByTitle("ProjectsList2010");

 var selectedProject = (dataGridProjects.SelectedItem as
 Project);

 SP.ListItem listItem = _projects.GetItemById(selectedProject.
 ProjectId);

 // Assign the new value for the Title field

 listItem["Title"] = selectedProject.Title;

 // Update the item in the list

 listItem.Update();

 _context.ExecuteQueryAsync(

 OnUpdateSucceeded,

 OnUpdateFailed);

 }

}

Chapter 7

[355]

3. The code in the CellEditEnded event for the dataGridProjects DataGrid
is going to run in the UI thread. The following methods, which are going to
be fired as asynchronous callbacks, schedule the execution of other methods
to continue with the necessary program flow in the UI thread:

	° When the connection to the SharePoint server and the query
execution that updates an item in the list, requested by the
dataGridProjects_CellEditEnded method, is successful,
the OnUpdateSucceeded method schedules the execution of
a delegate defined in the UI thread with a lambda expression
that updates the text shown in the lblStatus Label. The
lambda expression appears highlighted in the next code
snippet.

	° If the dataGridProjects_CellEditEnded method fails,
the OnUpdateFailed method schedules the execution of the
ShowErrorInformation method in the UI thread, sending
the ClientRequestFailedEventArgs args instance as a
parameter to the delegate.

private void OnUpdateSucceeded(Object sender, SP.ClientRequestSucc
eededEventArgs args)

{

 // This callback isn't called on the UI thread

 Dispatcher.BeginInvoke(

 () =>

 {

 // This code will run on the UI thread

 lblStatus.Content =

 "The title field was updated successfully.";

 }

);

}

private void OnUpdateFailed(Object sender,
SP.ClientRequestFailedEventArgs args)

{

 // This callback isn't called on the UI thread

 // Invoke a delegate and send the args instance as a parameter

 Dispatcher.BeginInvoke(

 () => ShowErrorInformation(args)

);

}

Interacting with Data on the SharePoint Server

[356]

4. Build and deploy the solution.
5. Load the SharePoint page that shows SLTasksViewer.xap as a Silverlight

Web Part, SilverlightProjectsList2010.aspx.
6. Double-click on the cell that contains the title that you want to update and

you will enter in the edit mode:

7. Press Tab and the application will request the SharePoint server to update
the value for the Title field of the selected item from the list. If the operation
was successful, the status label will display the following message, The title
field was updated successfully.

Chapter 7

[357]

8. You can access the page for the list to check that the value for the Title field
also appears updated in this view:

Updating an item in a list
When the user finishes editing a cell in the dataGridProjects DataGrid, the
CellEditEnded event handler, dataGridProjects_CellEditEnded, runs in the
UI thread. If the edited column was the one corresponding to the Title field
and the user committed the edit action, it runs the necessary code to update the
corresponding item in the list with the new value for the Title field. It uses the
values provided in the EditAction and Column.Header properties from the
DataGridCellEditEndedEventArgs e parameter to determine that the conditions
are satisfied.

if ((e.EditAction == DataGridEditAction.Commit) &&
 (e.Column.Header.Equals("Title")))

It uses the current URL to generate a ClientContext instance, saved in the private
_context variable. Then, it calls the GetByTitle method to save a reference to the
ProjectsList2010 list, in the private _projects variable.

_context = new SP.ClientContext(SP.ApplicationContext.Current.Url);
_projects = _context.Web.Lists.GetByTitle("ProjectsList2010");

Interacting with Data on the SharePoint Server

[358]

As it needs to access the new value for the Title field, it assigns the value for the
data item corresponding to the selected row in the dataGridProjects DataGrid to
the selectedProject local variable. It does so by accessing the dataGridProjects.
SelectedItem property and casting it to Project, because it represents a Project
instance. At this point, the new value is available in the selectedProject.Title
property.

var selectedProject = (dataGridProjects.SelectedItem as Project);

The next line calls the GetItemById method for the reference to the
ProjectsList2010 list, _projects, with selectedProject.ProjectID as the ID
for ListItem instance to retrieve from the list.

SP.ListItem listItem =
 _projects.GetItemById(selectedProject.ProjectId);

Once the code has a reference to the desired item in the list, it assigns the new value
for the Title field to the ListItem instance:

listItem["Title"] = selectedProject.Title;

The next step is to call the Update method for the ListItem instance to update this
row with the new value for the Title field. Remember that at this point, we don't
have access to the ListItem instance properties because the query hasn't yet been
executed. However, we can assign new values to its contents and then perform all
the operations that require many queries in a single call to ExecuteQueryAsync.

listItem.Update();

The call to ExecuteQueryAsync will perform the following actions in the
SharePoint server:

•	 Retrieve the element with the specified ID value from the ProjectsList2010
list.

•	 If found, assign the new value to the Title field for the row and update it.

If the query has a successful execution, the OnUpdateSucceeded callback schedules
the asynchronous execution of the delegate defined through a lambda expression in
the UI thread from a worker thread that runs this code after the query has succeeded.
In this case, the code is written inside the lambda expression that defines the delegate
and displays a message in the lblStatus Label, indicating that the update operation
was successful.

private void OnUpdateSucceeded(Object sender, SP.ClientRequestSucceede
dEventArgs args)
{
 // Code that runs in a worker thread

Chapter 7

[359]

 Dispatcher.BeginInvoke(() =>
 {
 // The code inside this delegate
 // runs in the UI thread
 lblStatus.Content =
 "The title field was updated successfully.";
 });
 // Back in the worker thread
}

We also specified the OnUpdateFailed callback and used it as the second
parameter for the ExecuteQueryAsync method. If something goes wrong, it
invokes a delegate that calls the ShowErrorInformation method and sends the
ClientRequestFailedEventArgs args instance as a parameter to it.

Summary
In this chapter, we learned about developing and deploying Silverlight 4 applications
in SharePoint 2010 sites that interact with data in lists by performing insert, update,
and delete operations. Specifically, we created a new Silverlight 4 RIA that allowed
us to insert new items into a remote SharePoint list. Then, we enhanced this simple
application to retrieve metadata information for the fields that compose the list to
offer the possible choices and default values for some of the fields.

We worked with messages to allow multiple Silverlight Web Parts to communicate
when some events occur. Besides, we performed delete and update operations on
the remote SharePoint list through the SharePoint Silverlight Client Object Model.
Now, we are able to begin adding Silverlight RIAs that interact with data from the
SharePoint server and deploy them by enhancing the examples learned in this chapter.

Interacting with Rich Media
and Animations

This chapter is taken from Microsoft Silverlight
4 and SharePoint 2010 Integration (Chapter 6) by
Gastón C. Hillar.

We want to take advantage of Silverlight 4 features to work with rich media and
perform animations. In this chapter, we will cover many topics related to retrieving
digital assets from SharePoint libraries through the SharePoint Silverlight Client
Object Model and consuming them in a Silverlight RIA. We will:

•	 Create and manage asset libraries in SharePoint 2010
•	 Access the digital assets in a SharePoint library from a Visual Web Part

and a Silverlight RIA
•	 Create a SharePoint Visual Web Part that sends parameters and renders

a Silverlight RIA
•	 Link a SharePoint Visual Web Part to a Silverlight RIA
•	 Add a SharePoint Visual Web Part in a web page
•	 Work with multiple interactive animations and effects
•	 Display and control videos
•	 Add background music from the assets library
•	 Change themes in Silverlight and SharePoint

Interacting with Rich Media and Animations

[362]

Bringing life to business applications
and complex workflows
So far, we have been able to interact with data from the SharePoint Server through
the SharePoint Silverlight Client Object Model and WCF Data Services. Sometimes,
we need to share, manage, and consume rich media, related to data.

SharePoint 2010 improves rich media management by introducing asset libraries
and we can take advantage of this new feature by consuming it in a Silverlight
RIA through the SharePoint Silverlight Client OM. Silverlight 4 offers outstanding
features to create amazing User eXperiences (UX) when combining rich media with
effects and animations.

Creating asset libraries in SharePoint 2010
SharePoint Server 2010 introduced a new asset library specially designed for
managing and sharing digital assets and rich media files such as images, audio, and
video. It is possible to combine workflows, routing, rules, and policies with asset
libraries. However, in this case, we will focus on creating simple asset libraries to
allow us to store images, videos, and audio files and we will consume them through
the SharePoint Silverlight Client Object Model.

We will combine a new SharePoint Visual Web Part with a Silverlight RIA to allow
users to select their desired asset library and to browse its images and videos with
interactive animations and dazzling effects. The SharePoint Visual Web Part will
display a drop-down list with the available asset libraries that store images, videos,
or audio files and when the user selects one of them, the Silverlight RIA will use
the capabilities offered by the Client OM to retrieve and display the digital assets.
This way, with this new composite Web Part, it is going to be possible to create a
new asset library and to upload the necessary images and videos to display, and the
desired background music as an audio file. The Web Part will allow a user to interact
with any asset library.

Chapter 8

[363]

First, follow these steps to create two asset libraries in a SharePoint site:

1. Open your default web browser, view the SharePoint site, and log in with
your username and password.

2. Click Site Actions | More Options... in the ribbon and the Create dialog
box will appear.

3. Select Library under Filter By: and then Asset Library in Installed Items,
as shown in the following screenshot:

4. Enter BeginnersGuides in the Name textbox.
5. Click on More Options. SharePoint will display a new panel with additional

options for the new asset library.
6. Enter Beginner's Guides in Description and select Yes in Display this list

on the Quick Launch?
7. Click on Create; SharePoint will create the new asset library with no digital

assets and it will appear in the Quick Launch for the SharePoint site.
8. Now, follow the aforementioned steps (1 to 7) to create another asset library.

Use Cookbooks as the Name and Description for this new asset library.

Interacting with Rich Media and Animations

[364]

Adding content to an assets library
Follow these steps to prepare and add images, videos, and audio files to the
previously created asset libraries.

1. Prepare two folders, BeginnersGuides and Cookbooks. Add many JPG and/
or PNG images to these folders. Add a WMV (Windows Media Video) video
file and an MP3 audio file to both folders. The following screenshot shows an
example of the contents of the BeginnersGuides folder with 17 JPG images,
a WMV video file, and an MP3 audio file:

By default, SharePoint 2010 establishes 50 MB as the maximum upload
file size setting. This setting specifies the maximum size of a file that a
user can upload to the server. If a user tries to upload a file larger than the
specified maximum upload size, the upload will fail.

Chapter 8

[365]

2. Click on the hyperlink for the BeginnersGuides asset library in the Quick
Launch for the SharePoint site.

3. Click on Add new item. The Upload document dialog box will appear.
Click on Upload Multiple files... and a panel to which to drag files and
folders will appear.

4. Open an Explorer window and navigate to your BeginnersGuides folder.
Select all the files within the folder and drag-and-drop them in the Drag files
and folder here panel within the Upload Document dialog box. All the file
names will appear in the panel.

5. Click on OK and SharePoint will upload all the dropped files to the
previously created asset library. Click on Done and the new digital assets
will appear in the asset library. By default, SharePoint will display a
thumbnail preview for the image files:

Interacting with Rich Media and Animations

[366]

6. Click on one of the thumbnails for the images and a bigger thumbnail will
appear with detailed properties for the digital asset:

7. Click on Edit Properties, located at the top of the bigger thumbnail preview;
a new dialog box will appear and you will be able to edit many properties
related to the digital asset. The Content Type drop-down list will display
Image, because SharePoint automatically recognized the digital asset as
an image. As we uploaded many images dragging and dropping them to
the panel, SharePoint assigned the name but it didn't set values for Title,
Keywords, Comments, Author, and Copyright. You can use this dialog box
to set the values for these properties in order to organize the contents of the
asset library. Then, click on Save.

Chapter 8

[367]

8. Now, follow the aforementioned steps (1 to 7) to add an audio file, images,
and videos to the other asset library, Cookbooks. Remember to upload the
files stored in the Cookbooks folder.

We added images, videos and audio files to the two asset libraries, BeginnerGuides
and Cookbooks, in the SharePoint site. Now, we can browse the asset libraries'
structure and then create an interactive Silverlight RIA capable of consuming the
uploaded digital assets.

Browsing the structure for SharePoint Asset
Libraries
Once we have created the two asset libraries in SharePoint, we can use Server
Explorer in Visual Studio to analyze the new asset libraries' structures.

1. Start Visual Studio as a system administrator user.

Interacting with Rich Media and Animations

[368]

2. Activate the Server Explorer palette by clicking on View | Server Explorer.
3. Click on the expand button for SharePoint Connections and then on the

expand button for the SharePoint server. You will be able to browse its
different nodes.

4. Expand Lists and Libraries and then Document Libraries for the Site
Collection in which you created the new asset libraries. Remember that
the default Site Collection is Home. There are asset libraries and document
libraries within Document Libraries and therefore, it is going to be necessary
to use a smart filter to display the right asset library names in the drop-down
list that the user will use to select the desired asset library with pictures,
videos, and audio files.

Chapter 8

[369]

Controlling the rich media library by using
controls in a Visual Web Part
This time, we are going to create a new solution in Visual Studio that will include
two new projects:

•	 A SharePoint 2010 Visual Web Part, SPAssetsBrowserWebPart
•	 A Silverlight application project, SLAssetsBrowser

SharePoint is built on top of ASP.NET, and therefore, a Visual Web Part inherits key
features from the ASP.NET Web Part architecture. The Visual Web Part will display
the available asset libraries with videos, pictures, and/or audio files in a SharePoint
site and it will send the selected asset library as a parameter to the Silverlight host
control that will render the Silverlight application. We will take advantage of one
of the new project templates in Visual Studio 2010, the Visual Web Part project
template, which enables us to visually design a Web Part that can be deployed to
SharePoint. The necessary steps to display a Silverlight application within the Visual
Web Part are a bit complex but the flexibility offered by this combination is worth the
effort.

Follow these steps to create the new Visual Web Part that accesses the available asset
libraries in a SharePoint site:

1. Stay in Visual Studio as a system administrator user.
2. Select File | New | Project.... Expand Other Project Types and select Visual

Studio Solutions under Installed Templates in the New Project dialog box.
Then, select Blank Solution, make sure that .NET Framework 4 version
is selected, and enter AssetsBrowser as the project's name and click OK.
Visual Studio will create a blank solution with no projects.

Interacting with Rich Media and Animations

[370]

3. Right-click on the solution's name in Solution Explorer and select
Add | New Project… from the context menu. Expand Visual C# and
then expand SharePoint and select 2010 under Installed Templates in
the Add New Project dialog box. Then, select Visual Web Part, enter
SPAssetsBrowserWebPart as the project's name, and click OK. The
SharePoint Customization Wizard dialog box will appear.

4. Enter the URL for the SharePoint server and site in What local site do you
want to use for debugging?

5. Click on Deploy as a farm solution. Sandboxed solutions don't support
the Visual Web Parts and therefore, it is necessary to deploy projects
that include them as a farm solution. Then, click on Finish and the new
SPAssetsBrowserWebPart empty SharePoint 2010 Visual Web Part project
will be added to the solution. The code editor will open the source code
for the VisualWebPart1UserControl.ascx UserControl (System.Web.
UI.UserControl). This UserControl defines the UI for the Visual Web Part
and it has a code-behind file, VisualWebPart1UserControl.ascx.cs.

6. Right-click on the VisualWebPart1 folder in Solution Explorer and select
Delete in the context menu. Click OK in the confirmation dialog box.

Chapter 8

[371]

7. Now, right-click on the recently added project's name in Solution Explorer,
SPAssetsBrowserWebPart, and select Add | New Item… in the context
menu. Expand Visual C# and then expand SharePoint and then select 2010
under Installed Templates in the New Item dialog box. Then, select Visual
Web Part, enter AssetsBrowserWebPart in Name, and click OK. The code
editor will open the source code for the AssetsBrowserWebPart.ascx
UserControl (System.Web.UI.UserControl). Its new code-behind file is
AssetsBrowserWebPartUserControl.ascx.cs. Renaming a Visual Web
Part can be a very complex process and therefore, it is easier to delete the
default VisualWebPart1 folder and add a new Visual Web Part item with the
desired name. This way, Visual Studio will create the container folder and all
its related files with the new name.

8. Switch to the Design view for the AssetsBrowserWebPart.ascx
UserControl and use the Toolbox to drag-and-drop the following server
controls. The names for the server controls are assigned in the ID property
in the Properties window.

	° One Label control, Label1. Set its Text property to Select
the Asset Library to display.

Interacting with Rich Media and Animations

[372]

	° One DropDownList control, cboDocumentLibraries. Set
its AutoPostBack property to true. This way, the page will
automatically post back to the server after the user changes
the selection for this drop-down list.

9. Now, open the code-behind file for the AssetsBrowserWebPart.ascx
UserControl, AssetsBrowserWebPartUserControl.ascx.cs and add
the following using statements.
using Microsoft.SharePoint;

using Microsoft.SharePoint.WebControls;

10. Add the following public property for the
AssetsBrowserWebPartUserControl partial class.
public string SelectedList { get; private set; }

11. Add the following lines to the Page_Load event. This code will run at the
server when a user requests the Visual Web Part for the first time and each
time a postback occurs. Thus, it is necessary to run different code when it
is a postback by checking the Boolean value of the IsPostBack property.
When the code runs for the first time (IsPostBack == false), it will add
the titles for the lists of SPBaseType.DocumentLibrary type with at least one
item (libraryList.RootFolder.ItemCount > 0) and with content types of
Picture, Image, Audio, or Video.
if (!IsPostBack)

{

 var _context = SPContext.Current;

 var documentLibraries =

 _context.Web.GetListsOfType(SPBaseType.DocumentLibrary);

 foreach (SPList libraryList in documentLibraries)

 {

 if ((libraryList.RootFolder.ItemCount > 0) &&

 ((libraryList.ContentTypes[0].Name == "Picture") ||

 (libraryList.ContentTypes[0].Name == "Image") ||

 (libraryList.ContentTypes[0].Name == "Audio") ||

Chapter 8

[373]

 (libraryList.ContentTypes[0].Name == "Video")))

 {

 // The list has at least 1 element

 cboDocumentLibraries.Items.Add(

 new ListItem(libraryList.Title));

 }

 }

 // Select the first item in the dropdown list

 cboDocumentLibraries.SelectedIndex = 0;

}

SelectedList = cboDocumentLibraries.SelectedValue;

12. Go back to the Design view for AssetsBrowserWebPartUserControl.
ascx and define a SelectedIndexChanged event handler for the
cboDocumentLibraries DropDownList and add the following code in it.
This way, when the user selects a different item in the drop-down list, the
SelectedList property will hold the name for the new list that has been
selected.
SelectedList = cboDocumentLibraries.SelectedValue;

13. Now, open the AssetsBrowserWebPart.cs code file within the
AssetsBrowserWebPart folder. This file defines the AssetsBrowserWebPart
class as a subclass of WebPart. Its original code defines a path for the
UserControl, AssetsBrowserWebPartUserControl.ascx, that this WebPart
subclass will load and add to the Controls ControlCollection. This way,
the WebPart renders the UserControl. The following lines show the original
code for this file.
using System;

using System.ComponentModel;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using Microsoft.SharePoint;

using Microsoft.SharePoint.WebControls;

namespace SPAssetsBrowserWebPart.AssetsBrowserWebPart

{

 [ToolboxItemAttribute(false)]

 public class AssetsBrowserWebPart : WebPart

 {

 // Visual Studio might automatically update this path when you
 change the Visual Web Part project item.

Interacting with Rich Media and Animations

[374]

 private const string _ascxPath = @"~/_CONTROLTEMPLATES/
SPAssetsBrowserWebPart/AssetsBrowserWebPart/
AssetsBrowserWebPartUserControl.ascx";

 protected override void CreateChildControls()

 {

 Control control = Page.LoadControl(_ascxPath);

 Controls.Add(control);

 }

 }

}

14. Add the following private variable to the AssetsBrowserWebPart
class. This variable will hold a reference to the Control instance cast as
AssetsBrowserWebPartUserControl. This way, it will be possible to access
the value for the SelectedList public property to send it as a parameter to
the Silverlight host control in the OnPreRender method.
private AssetsBrowserWebPartUserControl _control;

15. Add the following lines in the CreateChildControls method to save the
reference to the AssetsBrowserWebPartUserControl instance.
protected override void CreateChildControls()

{

 Control control = Page.LoadControl(_ascxPath);

 Controls.Add(control);

 _control = (control as AssetsBrowserWebPartUserControl);

 base.CreateChildControls();

}

16. Override the OnPreRender event to add the Silverlight host control that will
load and display the Silverlight RIA and it will send the selected asset library
title as a parameter. The highlighted lines define the .xap file location and
the parameter called Name.
protected override void OnPreRender(EventArgs e)

{

 var name = _control.SelectedList;

 string webUrl = SPContext.Current.Web.Url;

 string renderHost = @"<div id='silverlightControlHost'>

 <object data='data:application/x-silverlight-2,'
type='application/x-silverlight-2' width='100%' height='100%'>

 <param name='source' value='/_catalogs/wp/SLAssetsBrowser.xap'/>

 <param name='background' value='white' />

 <param name='minRuntimeVersion' value='4.0.50303.0' />

Chapter 8

[375]

 <param name='autoUpgrade' value='true' />

 <param name='initParams' value='Name=" + name.Trim() + @"' />

 <a href='http://go.microsoft.com/fwlink/?LinkID=149156
&v=4.0.50303.0' style='text-decoration:none'>

 <img src='http://go.microsoft.com/fwlink/?LinkId=161376'
alt='Get Microsoft Silverlight' style='border-style:none'/>

 </object><iframe id='_sl_historyFrame' style='visibility:hidden;
height:0px;width:0px;border:0px'></iframe></div>";

 LiteralControl host = new LiteralControl(renderHost);

 Controls.Add(host);

 base.OnPreRender(e);

}

The values for the renderHost string define a Silverlight control host. You can
check the test page generated by Visual Studio for the Silverlight application to
find the most up to date definition.

Once you have built your application, click on the Show All Files button in Solution
Explorer. Then, expand the Bin\Debug folder for your Silverlight project. You
will find many folders and files; open the HTML file that ends with TestPage.
html, in our example, SLAssetsBrowserTestPage.html. You can copy from <div
id="silverlightControlHost"> to </div> and you can assign this value to
renderHost to create a Silverlight host control. However, you have to change the
following line that defines the path for the .xap file:

<param name="source" value="SLAssetsBrowser.xap"/>

It has to be replaced with the path for the .xap file inside the SharePoint
_catalogs/wp folder.

<param name='source' value='/_catalogs/wp/SLAssetsBrowser.xap'/>

In this case, then, it was necessary to add a parameter after the last param name,
because we want to send a specific value to the Silverlight RIA.

Interacting with Rich Media and Animations

[376]

Creating a Silverlight RIA rendered in a
SharePoint Visual Web Part
Follow these steps to create the new Silverlight RIA that loads the images, videos,
and audio from the asset library selected in the Visual Web Part that renders this
application and sends the selected name as a parameter:

1. Stay in Visual Studio as a system administrator user.
2. Select File | New | Project.... Expand Visual C# and select Silverlight under

Installed Templates in the New Project dialog box. Then, select Silverlight
Application, enter SLAssetsBrowser as the project's name, choose Add to
Solution in the Solution drop-down list, and click OK.

3. Deactivate the Host the Silverlight application in a new Web site checkbox
in the New Silverlight Application dialog box and select Silverlight 4
in Silverlight Version. Then, click OK. Visual Studio will add the new
Silverlight application project to the existing solution.

4. Follow the necessary steps to add the following two references to access the
SharePoint 2010 Silverlight Client OM:

	° Microsoft.SharePoint.Client.Silverlight.dll

	° Microsoft.SharePoint.Client.Silverlight.Runtime.
dll

5. Open App.xaml.cs and add the following using statement:
using Microsoft.SharePoint.Client;

6. Replace the code in the StartUp event handler with the following lines.
The code stores the value for the Name parameter, specified by the Visual
Web Part in the string that creates the Silverlight host control, in the
parameterName local variable. Then, it creates a new instance of MainPage
sending this value as a parameter to the constructor.
private void Application_Startup(object sender, StartupEventArgs
e)

{

 string parameterName = e.InitParams["Name"];

 this.RootVisual = new MainPage(parameterName);

 ApplicationContext.Init(e.InitParams,

 System.Threading.SynchronizationContext.Current);

}

Chapter 8

[377]

7. Select Start | All Programs | Microsoft Silverlight 4 Toolkit April 2010
| Binaries and Windows will open the folder that contains the Silverlight
Toolkit binaries. By default, they are located at C:\Program Files
(x86)\Microsoft SDKs\Silverlight\v4.0\Toolkit\Apr10\Bin in
64-bit Windows versions, and at C:\Program Files\Microsoft SDKs\
Silverlight\v4.0\Toolkit\Apr10\Bin in 32-bit Windows versions.

8. Add a reference to System.Windows.Controls.Toolkit.dll. Remember
that it is located in the aforementioned Bin sub-folder. This way, we will
have access to the WrapPanel control.

9. Open MainPage.xaml and activate the Toolbox. Right-click on the All
Sivlerlight Controls header and select Choose Items... in the context menu.
The Choose Toolbox Items dialog box will appear with the Silverlight
Components tab activated. Make sure that the checkbox located at the left of
the WrapPanel item in the Name column is checked. This way, the Toolbox
will display the WrapPanel control and you will be able to add it by dragging
and dropping it to the desired location within the design view.

10. Define a new width and height for the Grid, 800 and 600, and add the
following controls. The following lines show the XAML that defines all the
controls and some effects for the lblLibraryName Label and the wrapPanel
WrapPanel.

	° One Label control, lblLibraryName, located at the top
	° One ScrollViewer control, scrollViewer
	° One WrapPanel control, wrapPanel, within the

ScrollViewer control
	° One Label control, lblStatus, located at the bottom
	° One ProgressBar control, pgbLoadingStatus, located at the

bottom

Interacting with Rich Media and Animations

[378]

<UserControl x:Class="SLAssetsBrowser.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:toolkit="http://schemas.microsoft.com/winfx/2006/xaml/
presentation/toolkit"

 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"

 mc:Ignorable="d"

 d:DesignHeight="600" d:DesignWidth="800" xmlns:sdk="http://
schemas.microsoft.com/winfx/2006/xaml/presentation/sdk">

 <Grid x:Name="LayoutRoot" Loaded="LayoutRoot_Loaded"
Width="Auto" Height="Auto">

 <sdk:Label Height="28" HorizontalAlignment="Left"
Margin="12,12,0,0" Name="lblLibraryName" VerticalAlignment="Top"
Width="776" FontSize="20" FontWeight="Bold" >

 <sdk:Label.Effect>

 <DropShadowEffect ShadowDepth="5" Color="Orange" />

 </sdk:Label.Effect>

 </sdk:Label>

 <ProgressBar Height="22" HorizontalAlignment="Left"
Margin="12,554,0,0" Name="pgbLoadingStatus"
VerticalAlignment="Top" Width="776" />

 <sdk:Label Height="22" HorizontalAlignment="Left"
Margin="12,534,0,0" Name="lblStatus" VerticalAlignment="Top"
Width="776" Content="Status" />

 <ScrollViewer Height="487" HorizontalAlignment="Left"
Margin="12,41,0,0" Name="scrollViewer" VerticalAlignment="Top"
Width="776">

 <toolkit:WrapPanel Name="wrapPanel" Width="Auto"
Height="Auto" RenderTransformOrigin="0.497,0.493">

 <toolkit:WrapPanel.Effect>

 <DropShadowEffect ShadowDepth="10"/>

 </toolkit:WrapPanel.Effect>

 </toolkit:WrapPanel>

 </ScrollViewer>

 </Grid>

</UserControl>

11. You can also define the effects in Expression Blend without having to edit
the XAML code. You can do so by right-clicking on MainPage.xaml and
selecting Open in Expression Blend… in the context menu. This way, you
will be able to work with the additional effects offered by this tool.

Chapter 8

[379]

There are many open source projects that provide additional effects that
you can use in your RIAs, such as Silverlight.FX, http://projects.
nikhilk.net/SilverlightFX.

12. Open MainPage.xaml.cs. Now, it is necessary to add a using statement to
include the Microsoft.SharePoint.Client namespace, as we want to work
with the SharePoint Silverlight Client OM. We also have to work with the
BitmapImage class, included in System.Windows.Media.Imaging.
Add the following lines of code:
using Microsoft.SharePoint.Client;

using SP = Microsoft.SharePoint.Client;

using System.Windows.Media.Imaging;

Add the following seven private variables:
private ClientContext _context;

private SP.List _documents;

private string _assetLibraryName;

private int _maxImageWidth = 150;

Interacting with Rich Media and Animations

[380]

private int _imageMargin = 5;

// The background music can be added just once

private bool _backgroundMusicAdded = false;

// The current document to load

private int _documentToLoad;

13. Replace the MainPage constructor with this new constructor that
receives the asset library name as a parameter, assigns its value to the
_assetLibraryName private variable, and displays it in the
lblLibraryName Label.
public MainPage(string assetLibraryName)

{

 InitializeComponent();

 _assetLibraryName = assetLibraryName;

 lblLibraryName.Content = assetLibraryName;

}

We are going to work with three media file types, Audio, Video, and
Picture. Add the following code to define an enumeration and a method
that returns the media file type according to the received file name's
extension:
private enum MediaFileType

{

 Audio,

 Video,

 Picture

}

private MediaFileType GetMediaFileType(string fileName)

{

 switch (System.IO.Path.GetExtension(fileName).ToUpper())

 {

 // It isn't necessary to add break;

 // after each line because the code

 // exits with the return statement

 case ".JPG":

 return MediaFileType.Picture;

 case ".JPEG":

 return MediaFileType.Picture;

 case ".GIF":

 return MediaFileType.Picture;

Chapter 8

[381]

 case ".WMA":

 return MediaFileType.Audio;

 case ".MP3":

 return MediaFileType.Audio;

 case ".AAC":

 return MediaFileType.Audio;

 case ".WMV":

 return MediaFileType.Video;

 case ".MP4":

 return MediaFileType.Video;

 default:

 return MediaFileType.Picture;

 }

}

14. Add the following event handlers that will define and start animations
when the user right-clicks on a button that displays an image or a video:
private void imageButton_MouseRightButtonDown(object sender,
MouseButtonEventArgs e)

{

 // This ensures that Silverlight won't show up

 // the default Silverlight context menu

 e.Handled = true;

 var hlButton = (sender as HyperlinkButton);

 var image = hlButton.Content as Image;

 // Add a doubleAnimation for a MaxWidth animation

 var doubleAnimMaxWidth = new DoubleAnimation();

 doubleAnimMaxWidth.Duration =
 new Duration(TimeSpan.FromSeconds(6));

 doubleAnimMaxWidth.From = image.ActualWidth;

 doubleAnimMaxWidth.To = scrollViewer.ActualWidth -
 (_imageMargin * 2);

 doubleAnimMaxWidth.FillBehavior = FillBehavior.HoldEnd;

 // Create a new Storyboard to handle the MaxWidth animation

 var storyboardMaxWidth = new Storyboard();

 storyboardMaxWidth.Children.Add(doubleAnimMaxWidth);

 Storyboard.SetTarget(doubleAnimMaxWidth, image);

 Storyboard.SetTargetProperty(doubleAnimMaxWidth,
 new PropertyPath("MaxWidth"));

 storyboardMaxWidth.AutoReverse = true;

 storyboardMaxWidth.RepeatBehavior = new RepeatBehavior(1);

 // Add a doubleAnimation for a MaxHeight animation

Interacting with Rich Media and Animations

[382]

 var doubleAnimMaxHeight = new DoubleAnimation();

 doubleAnimMaxHeight.Duration = new
 Duration(TimeSpan.FromSeconds(6));

 doubleAnimMaxHeight.From = image.ActualHeight;

 doubleAnimMaxHeight.To = scrollViewer.ActualHeight -
 (_imageMargin * 2);

 doubleAnimMaxHeight.FillBehavior = FillBehavior.HoldEnd;

 // Create a new Storyboard to handle the MaxHeight animation

 var storyboardMaxHeight = new Storyboard();

 storyboardMaxHeight.Children.Add(doubleAnimMaxHeight);

 Storyboard.SetTarget(doubleAnimMaxHeight, image);

 Storyboard.SetTargetProperty(doubleAnimMaxHeight,
 new PropertyPath("MaxHeight"));

 storyboardMaxHeight.AutoReverse = true;

 storyboardMaxHeight.RepeatBehavior = new RepeatBehavior(1);

 // Start the previously defined storyboards

 storyboardMaxWidth.Begin();

 storyboardMaxHeight.Begin();

}

private void videoButton_MouseRightButtonDown(object sender,
MouseButtonEventArgs e)

{

 // This ensures that Silverlight won't show up

 // the default Silverlight context menu

 e.Handled = true;

 var hlb = (sender as HyperlinkButton);

 var element = hlb.Content as MediaElement;

 // Add a doubleAnimation for a MaxWidth animation

 var doubleAnimMaxWidth = new DoubleAnimation();

 doubleAnimMaxWidth.Duration = new
 Duration(TimeSpan.FromSeconds(9));

 doubleAnimMaxWidth.From = element.ActualWidth;

 doubleAnimMaxWidth.To = scrollViewer.ActualWidth -
 (_imageMargin * 2);

 doubleAnimMaxWidth.FillBehavior = FillBehavior.HoldEnd;

 // Create a new Storyboard to handle the MaxWidth animation

 var storyboardMaxWidth = new Storyboard();

 storyboardMaxWidth.Children.Add(doubleAnimMaxWidth);

 Storyboard.SetTarget(doubleAnimMaxWidth, element);

Chapter 8

[383]

 Storyboard.SetTargetProperty(doubleAnimMaxWidth,
 new PropertyPath("MaxWidth"));

 storyboardMaxWidth.AutoReverse = true;

 storyboardMaxWidth.RepeatBehavior = new RepeatBehavior(1);

 // Add a doubleAnimation for a MaxHeight animation

 var doubleAnimMaxHeight = new DoubleAnimation();

 doubleAnimMaxHeight.Duration = new
 Duration(TimeSpan.FromSeconds(9));

 doubleAnimMaxHeight.From = element.ActualHeight;

 doubleAnimMaxHeight.To = scrollViewer.ActualHeight -
 (_imageMargin * 2);

 doubleAnimMaxHeight.FillBehavior = FillBehavior.HoldEnd;

 // Create a new Storyboard to handle the MaxHeight animation

 var storyboardMaxHeight = new Storyboard();

 storyboardMaxHeight.Children.Add(doubleAnimMaxHeight);

 Storyboard.SetTarget(doubleAnimMaxHeight, element);

 Storyboard.SetTargetProperty(doubleAnimMaxHeight,
 new PropertyPath("MaxHeight"));

 storyboardMaxHeight.AutoReverse = true;

 storyboardMaxHeight.RepeatBehavior = new RepeatBehavior(1);

 // Start the previously defined storyboards

 storyboardMaxWidth.Begin();

 storyboardMaxHeight.Begin();

}

Add the following event handler that will restart the reproduction of a video
after it ends:
private void media_MediaEnded(object sender, RoutedEventArgs e)

{

 var media = (sender as MediaElement);

 // It is necessary to stop it or to set its Position to
TimeSpan.Zero

 media.Stop();

 // Play again

 media.Play();

}

15. Add the following two methods that add and return a HyperlinkButton to
the wrapPanel WrapPanel with an image and a video:
private HyperlinkButton AddImage(string url)

{

 var image = new Image();

Interacting with Rich Media and Animations

[384]

 image.MaxWidth = _maxImageWidth;

 image.Stretch = Stretch.Uniform;

 var bitmapImage = new BitmapImage(new Uri(url,
 UriKind.Absolute));

 image.Source = bitmapImage;

 var imageButton = new HyperlinkButton();

 imageButton.Visibility = System.Windows.Visibility.Collapsed;

 imageButton.Margin = new Thickness(_imageMargin);

 imageButton.Content = image;

 imageButton.NavigateUri = new Uri(url);

 imageButton.MouseRightButtonDown += new
 MouseButtonEventHandler(imageButton_MouseRightButtonDown);

 imageButton.TargetName = "_blank";

 imageButton.Cursor = Cursors.Hand;

 // Add the new Hyperlink button with the image

 // to the WrapPanel wrapPanel

 wrapPanel.Children.Add(imageButton);

 return imageButton;

}

private HyperlinkButton AddVideo(string url)
{
 MediaElement media = new MediaElement();
 media.MaxWidth = (_maxImageWidth * 3);
 media.Stretch = Stretch.UniformToFill;
 media.Source = new Uri(url, UriKind.Absolute);
 media.AutoPlay = true;
 media.MediaEnded += new RoutedEventHandler(media_MediaEnded);
 var videoButton = new HyperlinkButton();
 videoButton.Visibility = System.Windows.Visibility.Collapsed;
 videoButton.Margin = new Thickness(_imageMargin);
 videoButton.Content = media;
 videoButton.NavigateUri = new Uri(url);
 videoButton.MouseRightButtonDown += new
 MouseButtonEventHandler(videoButton_MouseRightButtonDown);
 videoButton.TargetName = "_blank";
 videoButton.Cursor = Cursors.Hand;
 // Add the new Hyperlink button with the video
 // to the WrapPanel wrapPanel
 wrapPanel.Children.Add(videoButton);
 return videoButton;
}

Chapter 8

[385]

16. Add the following method that defines and starts animations for the
HyperlinkButton that displays an image or a video received as a parameter:
private void AddImageVideoAnimation(HyperlinkButton hlButton)

{

 // Add a projection to the button

 var projection = new PlaneProjection();

 hlButton.Projection = projection;

 // Add a doubleAnimation for a Projection's RotationZ animation

 var doubleAnimProjectionZ = new DoubleAnimation();

 doubleAnimProjectionZ.Duration = new
 Duration(TimeSpan.FromSeconds(5));

 doubleAnimProjectionZ.From = 0.0;

 doubleAnimProjectionZ.To = 360.0;

 doubleAnimProjectionZ.FillBehavior = FillBehavior.HoldEnd;

 // Create a new Storyboard to handle the Projection's RotationZ
animation

 var storyboardProjectionZ = new Storyboard();

 storyboardProjectionZ.Children.Add(doubleAnimProjectionZ);

 Storyboard.SetTarget(doubleAnimProjectionZ, projection);

 Storyboard.SetTargetProperty(doubleAnimProjectionZ,
 new PropertyPath("RotationZ"));

 // Add a doubleAnimation for a Projection's RotationY animation

 var doubleAnimProjectionY = new DoubleAnimation();

 doubleAnimProjectionY.Duration = new
 Duration(TimeSpan.FromSeconds(3));

 doubleAnimProjectionY.From = -45.0;

 doubleAnimProjectionY.To = 45.0;

 doubleAnimProjectionY.FillBehavior = FillBehavior.HoldEnd;

 doubleAnimProjectionY.RepeatBehavior = RepeatBehavior.Forever;

 doubleAnimProjectionY.AutoReverse = true;

 // Create a new Storyboard to handle the Projection's RotationY
animation

 var storyboardProjectionY = new Storyboard();

 storyboardProjectionY.Children.Add(doubleAnimProjectionY);

 Storyboard.SetTarget(doubleAnimProjectionY, projection);

 Storyboard.SetTargetProperty(doubleAnimProjectionY,
 new PropertyPath("RotationY"));

 // Add a doubleAnimation for an Opacity animation

 var doubleAnimOpacity = new DoubleAnimation();

 doubleAnimOpacity.Duration = new
 Duration(TimeSpan.FromSeconds(5));

 doubleAnimOpacity.From = 0.0;

Interacting with Rich Media and Animations

[386]

 doubleAnimOpacity.To = 1.0;

 doubleAnimOpacity.FillBehavior = FillBehavior.HoldEnd;

 // Create a new Storyboard to handle the Opacity animation

 var storyboardOpacity = new Storyboard();

 storyboardOpacity.Children.Add(doubleAnimOpacity);

 Storyboard.SetTarget(doubleAnimOpacity, hlButton);

 Storyboard.SetTargetProperty(doubleAnimOpacity,
 new PropertyPath("Opacity"));

 // Start the previously defined storyboards

 storyboardProjectionZ.Begin();

 storyboardOpacity.Begin();

 storyboardProjectionY.Begin();

 hlButton.Visibility = System.Windows.Visibility.Visible;

}

17. Add the following method that plays an audio file as background music
for the application. It will just play background music once, no matter the
number of times it is called.
private void AddBackgroundMusic(string url)

{

 if (_backgroundMusicAdded)

 {

 // Background music already loaded

 return;

 }

 _backgroundMusicAdded = true;

 MediaElement backgroundMusic = new MediaElement();

 LayoutRoot.Children.Add(backgroundMusic);

 backgroundMusic.Volume = 0.8;

 backgroundMusic.Source = new Uri(url);

 backgroundMusic.Play();

}

18. Now, it is necessary to add code to connect to the SharePoint server,
connect to the lists, retrieve data from the assets library name stored in
_assetLibraryName, request its files, and process each picture, video,
and audio file to add it to the wrapPanel WrapPanel. These methods
will run in the UI thread. Replace "http://gaston-pc" with the
SharePoint website's URL.
private void Connect()

{

 // Runs in the UI Thread

Chapter 8

[387]

 lblStatus.Content = "Started";

 // Replace http://gaston-pc with

 // your SharePoint 2010 Server URL and Site

 _context = new SP.ClientContext(new Uri("http://gaston-pc",
UriKind.Absolute));

 _context.Load(_context.Web);

 _context.ExecuteQueryAsync(OnConnectSucceeded, null);

}

private void ConnectLists()

{

 // Runs in the UI Thread

 lblStatus.Content = "Web Connected. Connecting to Lists...";

 _context.Load(_context.Web.Lists);

 _context.ExecuteQueryAsync(OnConnectListsSucceeded, null);

}

private void GetListData()

{

 // Runs in the UI Thread

 lblStatus.Content = "Lists Connected. Getting List data...";

 _documents = _context.Web.Lists.GetByTitle(_assetLibraryName);

 _context.Load(_documents);

 _context.Load(_documents.RootFolder);

 // Request the files

 _context.Load(_documents.RootFolder.Files);

 _context.ExecuteQueryAsync(OnGetListDataSucceeded, null);

}

private void LoadItems()

{

 // Runs in the UI Thread

 lblStatus.Content = String.Format("Loading {0} items...",
 _documents.RootFolder.Files.Count);

 pgbLoadingStatus.Maximum = _documents.RootFolder.Files.Count;

 pgbLoadingStatus.Value = 0;

 _documentToLoad = 0;

 // Clear the WrapPanel children

 wrapPanel.Children.Clear();

 foreach (File file in _documents.RootFolder.Files)

 {

Interacting with Rich Media and Animations

[388]

 _context.Load(file);

 _context.ExecuteQueryAsync(

 OnLoadItemsSucceeded,

 OnLoadItemsFailed);

 }

}

private void ShowItem()

{

 // Runs in the UI Thread

 lblStatus.Content = String.Format("Processing item # {0}",
 _documentToLoad);

 string fileName =

 _documents.RootFolder.Files[_documentToLoad].Name;

 string Url = _context.Url + _documents.RootFolder.Files
 [_documentToLoad].ServerRelativeUrl;

 switch (GetMediaFileType(fileName))

 {

 case MediaFileType.Audio:

 AddBackgroundMusic(Url);

 break;

 case MediaFileType.Picture:

 var imageButton = AddImage(Url);

 AddImageVideoAnimation(imageButton);

 break;

 case MediaFileType.Video:

 var videoButton = AddVideo(Url);

 AddImageVideoAnimation(videoButton);

 break;

 }

 // Update the progress bar

 pgbLoadingStatus.Value++;

 _documentToLoad++;

 if (_documentToLoad >= _documents.RootFolder.Files.Count)

 {

 // All documents loaded

 lblStatus.Content = "Displaying animations for all the
documents.";

 }

}

Chapter 8

[389]

19. Most of the methods added in the previous step execute asynchronous
queries to the SharePoint server. Both the successful and failed requests fire
asynchronous callbacks that are going to run in another thread, different
from the UI thread. Hence, if you have to update the UI, it is necessary to
invoke the code to run in the UI thread. The following methods, which are
going to be fired as asynchronous callbacks, schedule the execution of other
methods to continue with the necessary program flow in the UI thread:
private void ShowErrorInformation(ClientRequestFailedEventArgs
args)

{

 MessageBox.Show("Request failed. " + args.Message + "\n" +
 args.StackTrace + "\n" +

 args.ErrorDetails + "\n" + args.ErrorValue);

}

private void OnConnectSucceeded(Object sender,
 SP.ClientRequestSucceededEventArgs args)

{

 // This callback isn't called on the UI thread

 Dispatcher.BeginInvoke(ConnectLists);

}

private void OnConnectListsSucceeded(Object sender, SP.ClientReque
stSucceededEventArgs args)

{

 // This callback isn't called on the UI thread

 Dispatcher.BeginInvoke(GetListData);

}

private void OnGetListDataSucceeded(Object sender, SP.ClientReques
tSucceededEventArgs args)

{

 // This callback isn't called on the UI thread

 Dispatcher.BeginInvoke(LoadItems);

}

private void OnLoadItemsFailed(Object sender,
SP.ClientRequestFailedEventArgs args)

{

 // This callback isn't called on the UI thread

 // Invoke a delegate and send the args instance as a parameter

 Dispatcher.BeginInvoke(() => ShowErrorInformation(args));

}

Interacting with Rich Media and Animations

[390]

private void OnLoadItemsSucceeded(Object sender, SP.ClientRequestS
ucceededEventArgs args)

{

 // This callback isn't called on the UI thread

 Dispatcher.BeginInvoke(ShowItem);

}

20. Add the following line to the LayoutRoot_Loaded event:
Connect();

We created a new Silverlight RIA that receives an asset library name as a parameter
from the Visual Web Part that renders this application. When the user selects an asset
library from a drop-down list in the Visual Web Part, the Silverlight RIA will load
the images, videos, and audio from the chosen asset library. We added the necessary
code to create an application that displays the images and videos with many
animations and effects.

Linking a SharePoint Visual Web Part to a
Silverlight RIA
Follow these steps to link the previously created Visual Web Part,
AssetsBrowserWebPart, with this new Silverlight RIA, SLAssetsBrowser. This way,
the Silverlight RIA will be part of the package that contains the Visual Web Part.

1. Stay in Visual Studio as a system administrator user.
2. Expand the SharePoint Visual Web Part folder, AssetsBrowserWebPart, in

the Solution Explorer.
3. Now, right-click on AssetsBrowserWebPart and select Properties in the

context menu that appears. You will see the values for its properties in the
Properties panel.

4.. In the Properties palette, click the ellipsis (…) button for the Project Output
References property. The Project Output References dialog box will appear.

5. Click on Add below the Members: list. The SharePoint 2010 Visual
Web Part's project name, SPAssetsBrowserWebPart, will appear as
a new member.

6. Go to its properties, shown on the list located at the right. Select the
Silverlight application project's name, SLAssetsBrowser, in the Project
Name drop-down list.

Chapter 8

[391]

7. Select Element File in the Deployment Type drop-down list. The following
value will appear in Deployment Location, {SharePointRoot}\Template\
Features\{FeatureName}\AssetsBrowserWebPart\. The following
screenshot shows the dialog box with the explained values:

8. Click OK. The SharePoint Visual Web Part project now includes a reference
to the Silverlight application project, SLTasksViewer. However, it is still
necessary to add a line to the Elements.xml file to make the Silverlight RIA
be part of the Visual Web Part.

9. Open the Elements.xml file. The following lines are the initial contents of
this XML file. They describe the elements that compose this SharePoint 2010
Visual Web Part.
<?xml version="1.0" encoding="utf-8"?>

<Elements xmlns="http://schemas.microsoft.com/sharepoint/" >

 <Module Name="AssetsBrowserWebPart" List="113"
 Url="_catalogs/wp">

 <File Path="AssetsBrowserWebPart\AssetsBrowserWebPart.webpart"
Url="AssetsBrowserWebPart.webpart" Type="GhostableInLibrary" >

 <Property Name="Group" Value="Custom" />

 </File>

 </Module>

</Elements>

Interacting with Rich Media and Animations

[392]

10. Add the highlighted line before </Module>. The new contents of this
XML file will include a reference to the linked Silverlight project .xap file,
SLAssetsBrowser.xap. This is a new element for this SharePoint 2010 Visual
Web Part. During the deployment process, the SLAssetsBrowser.xap file
will be located in the AssetsBrowserWebPart folder in the SharePoint
package file, also known as the WSP package, because it has a .wsp
extension. Thus, the WSP package will also deploy the Silverlight application
to the SharePoint server.
<?xml version="1.0" encoding="utf-8"?>

<Elements xmlns="http://schemas.microsoft.com/sharepoint/" >

 <Module Name="AssetsBrowserWebPart" List="113" Url="_catalogs/
wp">

 <File Path="AssetsBrowserWebPart\AssetsBrowserWebPart.webpart"
Url="AssetsBrowserWebPart.webpart" Type="GhostableInLibrary" >

 <Property Name="Group" Value="Custom" />

 </File>

 <!-- Added -->

 <File Path="AssetsBrowserWebPart\SLAssetsBrowser.xap"
 Url="SLAssetsBrowser.xap" />

 <!-- EOF Added -->

 </Module>

</Elements>

11. Remember to enable Silverlight debugging instead of the default script
debugging capabilities.

12. Right-click on the solution's name in Solution Explorer and select
Properties from the context menu that appears. Select Startup Project
in the list on the left, activate Single startup project, and choose the
SharePoint Visual Web Part project's name in the drop-down list below it,
SPAssetsBrowserWebPart. This way, the solution is going to start with
the SharePoint project and not with the Silverlight application. This is very
important because it will allow us to debug the Silverlight application when
it runs in a SharePoint site. Then, click OK.

13. Expand Features | Feature1 in Solution Explorer and double-click on
Feature1.feature. Visual Studio will display a new panel with the
feature title, description, scope, and its items. The feature will include
three files in the Items in the feature list, AssetsBrowserWebPart,
AssetsBrowsersWebPartUserControl.ascx and Elements.xml.

Chapter 8

[393]

14. Build and deploy the solution.

Adding a SharePoint Visual Web Part
in a Web Page
Now that the WSP package has been deployed to the SharePoint site, follow these
steps to create a new web page and add the Visual Web Part that includes and
renders the Silverlight RIA. In this case, it isn't necessary to upload the .xap file,
because it was already deployed with the WSP package.

1. Open your default web browser, view the SharePoint site, and log in with
your username and password.

2. Click Site Actions | New Page and SharePoint will display a new dialog
box requesting a name for the new page. Enter AssetsBrowser and click on
Create. SharePoint will display the editing tools for the new page.

Interacting with Rich Media and Animations

[394]

3. Click Insert | Web Part in the ribbon and a new panel will appear. Select
Custom in Categories and then the previously deployed Visual Web Part
name, AssetsBrowserWebPart, in Web Parts.

4. Click Add. The Select the Asset Library to display legend and the drop-
down list will appear. Click on the down arrow, located at the top, and then
select Edit Web Part. The AssetsBrowserWebPart pane will appear at the
right. It will enable us to define many properties that affect the appearance
and behavior for this Visual Web Part that renders a Silverlight RIA.

5. Enter Assets Browser in Title.
6. Click on Yes in Should the Web Part have a fixed height? and enter 700

in Pixels.

Chapter 8

[395]

7. Click on No. Adjust width to fit zone. in Should the Web Part have a fixed
width?, and then on OK.

8. Click on the Save button in the ribbon. Now, the new page will appear
displaying the previously created Visual Web Part. This Web Part is going to
display the drop-down list of asset libraries with pictures, videos, and audio
files. The Silverlight RIA will appear below the drop-down list displaying the
images and videos found in the first asset library in the drop-down list with
interactive animations and dazzling effects. It is going to load and then it will
display its different status values in the label located at the bottom:

	° Started
	° Web Connected. Connecting to Lists...
	° Lists Connected. Getting List data...
	° Loading n items...
	° Processing item #x..., where x is the number of picture, video

or audio file being processed
	° Displaying animations for all the documents. (this should

be Bullet end)

Interacting with Rich Media and Animations

[396]

The following screenshot shows this value for the label and the Silverlight RIA
displaying the images and videos for the chosen asset library.

9. Now, go back to Visual Studio and open the code-behind
file for AssetsBrowserWebPartUserControl.ascx,
AssetsBrowserWebPartUserControl.ascx.cs. Insert a breakpoint in
the first line of the Page_Load event handler, if (!IsPostBack). Insert
another breakpoint in the line of code of the cboDocumentLibraries_
SelectedIndexChanged event handler, SelectedList =
cboDocumentLibraries.SelectedValue;.

Chapter 8

[397]

10. Open AssetsBrowserWebPart.cs and insert a breakpoint in the first line of
the OnPreRender event handler.

11. Select Debug | Start Debugging from the Visual Studio's main menu or
press F5 to start debugging the solution.

12. Visual Studio will display a new window for your default web browser with
the server and Site Collection in which you deployed the WSP package.

13. Enter the URL for the previously added page that contains the Visual
Web Part in the web browser. This way, the ASP.NET code for the Visual
Web Part will start running and Visual Studio will stop in the breakpoint
established in the Page_Load event handler in the code-behind file,
AssetsBrowserWebPartUserControl.ascx.cs.

14. Inspect the value for IsPostBack and it will be false, because it is the first
time that the Visual Web Part is rendered. Thus, the method will run the code
to add the titles of the document libraries that have pictures, images, audio,
or video files. The first item for the cboDocumentLibraries DropDownList
will be selected as the default library and the SelectedList property is
going to save the selected title. Run the code step-by-step to understand the
execution flow.

Interacting with Rich Media and Animations

[398]

15. Then, Visual Studio will stop in the breakpoint established in the
OnPreRender event handler, in AssetsBrowserWebPart.cs. The renderHost
string will include a line that defines the value for the Name parameter. This
parameter will specify a string with the value stored in the SelectedList
public property. In this method, the code defines a new LiteralControl
instance initialized with the renderHost string and adds it to the Controls
ControlCollection.

16. Press F5 and the web browser will display the Silverlight RIA with the first
asset library contents.

17. Now, select a different asset library to display in the drop-down list located
at the top of the Visual Web Part. This way, the ASP.NET code for the Visual
Web Part will start running again, performing a postback, and Visual Studio
will stop in the breakpoint established in the Page_Load event handler in the
code-behind file, AssetsBrowserWebPartUserControl.ascx.cs.

18. Inspect the value for IsPostBack and it will be true because it is a postback
for the UserControl. Thus, the method won't run the code to add the titles of
the document libraries to the drop-down list. It will just run the line that sets
the SelectedList property to the selected title. Run the code step-by-step to
understand the execution flow.

19. Then, Visual Studio will stop in the breakpoint established in the
OnPreRender event handler, in AssetsBrowserWebPart.cs. The renderHost
string will include a line that defines the new value for the Name parameter,
held in the previously explained SelectedList public property. This way,
the new LiteralControl instance will add a Silverlight RIA with a different
parameter value.

Chapter 8

[399]

20. Press F5 and the web browser will display the Silverlight RIA with the
new asset library contents. The images and the videos will appear with
animations and effects.

We added the SharePoint Visual Web Part to a new Web page in the SharePoint
Site Collection. Then, we used Visual Studio to debug the Visual Web Part and
we learned how Visual Web Parts renders a Silverlight RIA with parameters. We
inserted many breakpoints to analyze the postback performed by the UserControl
within the Visual Web Part.

Organizing controls in a containing box
The Silverlight RIA displays a WrapPanel control, wrapPanel, within a
ScrollViewer, scrollViewer. The WrapPanel control works as a container and it
locates its child elements in sequential positions from left to right, in columns, when
its Orientation property is set to Horizontal. At the edge of the containing box,
it breaks the content to the next row and therefore, it simplifies the organization of
HyperlinkButton controls.

Interacting with Rich Media and Animations

[400]

As we don't know the number of rows that will be necessary to display all the
pictures and videos in the WrapPanel control, the ScrollViewer control defines a
scrollable viewport. When the content of the WrapPanel is not entirely visible, the
ScrollViewer will display scrollbars to allow the user to move the content area that
is visible. The visible content is known as, viewport and all of the content included in
the ScrollViewer is known as the extent.

The XAML markup in MainPage.xaml defines a DropShadowEffect for the
WrapPanel control, with its ShadowDepth property set to 10. This way, all the
HyperlinkButton controls added as wrapPanel's children will inherit this effect and
will drop a shadow with a depth of 10 pixels.

<ScrollViewer Height="487" HorizontalAlignment="Left"
Margin="12,41,0,0" Name="scrollViewer" VerticalAlignment="Top"
Width="776">
 <toolkit:WrapPanel Name="wrapPanel" Width="Auto" Height="Auto"
RenderTransformOrigin="0.497,0.493">
 <toolkit:WrapPanel.Effect>
 <DropShadowEffect ShadowDepth="10"/>
 </toolkit:WrapPanel.Effect>
 </toolkit:WrapPanel>
</ScrollViewer>

Reading files from an assets library
The GetListData method requests the asset library, a special list, specified in _
assetLibraryName, and loads it, its RootFolder Folder, and its RootFolder.Files
FileCollection.

_documents = _context.Web.Lists.GetByTitle(_assetLibraryName);
_context.Load(_documents);
_context.Load(_documents.RootFolder);
_context.Load(_documents.RootFolder.Files);

After the successful asynchronous execution of the queries, the LoadItems method
clears the children for the wrapPanel WrapPanel. Then, it runs an asynchronous
query to load each File in the asset library, _documents, RootFolder.Files
FileCollection.

wrapPanel.Children.Clear();
foreach (File file in _documents.RootFolder.Files)
{
 _context.Load(file);
 _context.ExecuteQueryAsync(
 OnLoadItemsSucceeded,
 OnLoadItemsFailed);
}

Chapter 8

[401]

Each successful asynchronous query will schedule the ShowItem method to run
in the UI thread. The first time this method is called, _documentToLoad is set to 0
and the code in this method will increment _documentToLoad each time it finishes
processing a file. The method retrieves the file name, stored in the Name property
for the File instance to determine the media file type and saves it in the local
fileName string. Then, it computes an absolute Url to access the file, _context.Url
concatenated with the ServerRelativeUrl property for the File instance, and saves
it in the local Url string.

string fileName = _documents.RootFolder.Files[_documentToLoad].Name;
string Url = _context.Url + _documents.RootFolder.Files[_
documentToLoad].ServerRelativeUrl;

Working with interactive animations
and effects
A switch statement considers the results of the GetMediaFileType method
that receives the fileName string as a parameter. As previously explained this
method determines the media file type according to the extension and returns a
MediaFileType as a result.

If the file type is MediaFileType.Picture, the method calls the AddImage
method with the Url string as a parameter and it saves the HyperlinkButton
instance returned by this method in imageButton. Then, it calls the
AddImageVideoAnimation with imageButton as a parameter.

case MediaFileType.Picture:
 var imageButton = AddImage(Url);
 AddImageVideoAnimation(imageButton);
 break;

The AddImage method creates a new Image instance, sets values for its MaxWidth
and Stretch properties, creates a BitmapImage, bitmapImage, with the absolute Uri
from the URL received as a parameter, url, and assigns bitmapImage to the image.
Source property.

var image = new Image();
image.MaxWidth = _maxImageWidth;
image.Stretch = Stretch.Uniform;
var bitmapImage = new BitmapImage(new Uri(url, UriKind.Absolute));
image.Source = bitmapImage;

Interacting with Rich Media and Animations

[402]

Then, the code creates a new invisible HyperlinkButton, imageButton, and
sets its Content property to the previously created Image instance, image. When
imageButton becomes visible, it will show the bitmap image. The NavigateUri
property for imageButton is set to a new Uri from the URL received as a parameter,
url. The TargetName property is set to _blank, and therefore, when the user clicks
the HyperlinkButton, the web browser will open a new window and will display
the image from the URL.

The code attaches an event handler to the MouseRightButtonDown event that occurs
when the user clicks the right mouse button and the mouse pointer is over the
Hyperlinkbutton. It assigns a new MouseButtonEventHandler that will fire the
imageButton_MouseRightButtonDown method. This method runs an animation for
the Hyperlinkbutton.

var imageButton = new HyperlinkButton();
imageButton.Visibility = System.Windows.Visibility.Collapsed;
imageButton.Margin = new Thickness(_imageMargin);
imageButton.Content = image;
imageButton.NavigateUri = new Uri(url);
imageButton.MouseRightButtonDown += new MouseButtonEventHandler(imageB
utton_MouseRightButtonDown);
imageButton.TargetName = "_blank";
imageButton.Cursor = Cursors.Hand;

Finally, it is necessary to add the HyperlinkButton as a child to the wrapPanel
WrapPanel and return the instance. As previously explained, wrapPanel will
take care of organizing the layout of all the HyperlinkButton instances added
as children.

wrapPanel.Children.Add(imageButton);
return imageButton;

At this point, the HyperlinkButton is invisible, because its Visibility property
was set to System.Windows.Visibility.Collapsed. However, when the AddImage
method returns, the AddImageVideoAnimation receives the HyperlinkButton
control as a parameter, hlButton, and brings life to the image that it displays.

Firstly, it adds a PlaneProjection instance to the HyperlinkButton, hlButton, by
setting its Projection property to a new PlaneProjection instance, projection.
PlaneProjection is a subclass of the Projection class. The latter allows describing
how to project a 2D object in the 3D space by using perspective transforms. Then, the
code will run an animation with the values that define the perspective transform for
hlButton.

var projection = new PlaneProjection();
hlButton.Projection = projection;

Chapter 8

[403]

The RotationX, RotationY, and RotationZ properties
for a PlaneProjection instance specify the number of
degrees to rotate the HyperlinkButton in the space. The
LocalOffsetX and LocalOffsetY properties specify the
distance the HyperlinkButton is translated along each axis
of the HyperlinkButton's plane.

Then, the code defines three DoubleAnimation (System.Windows.Media.
Animation.DolubleAnimation) instances and adds them as children of their
corresponding Storyboard (System.Windows.Media.Animation.Storyboard)
instances. A DoubleAnimation instance allows us to animate the value of a Double
property between two target values specified by their From and To properties. It
uses a linear interpolation over a specified duration, specified by the Duration
property. Each Storyboard instance defines a container timeline that provides
object and property targeting information for its child DoubleAnimation instance.
The code creates the DoubleAnimation and Storyboard instances summarized in
the following table:

DoubleAnimation
instance

Storyboard
instance

Animates From To Duration
(seconds)

doubleAnim
ProjectionZ

storyboard
ProjectionZ

projection.
RotationZ

0.0 360.0 5

doubleAnim
ProjectionY

storyboard
ProjectionY

projection.
RotationY

45.0 45.0 3

doubleAnim
Opacity

storyboard
Opacity

hlButton.
Opacity

0.0 1.0 5

The following lines create the doubleAnimProjectionZ DoubleAnimation and
set its properties. The FillBehavior property is set to FillBehavior.HoldEnd to
specify that the animation must hold its value after it reaches the end of its active
period. This way, the target property for this animation will remain at its end value
after the animation ends and it won't revert to its non-animated value.

var doubleAnimProjectionZ = new DoubleAnimation();
doubleAnimProjectionZ.Duration = new Duration(TimeSpan.
FromSeconds(5));
doubleAnimProjectionZ.From = 0.0;
doubleAnimProjectionZ.To = 360.0;
doubleAnimProjectionZ.FillBehavior = FillBehavior.HoldEnd;

Interacting with Rich Media and Animations

[404]

The next lines create the Storyboard instance and add doubleAnimProjectionZ as
a child. Then, it is necessary to set the target object and the target property by calling
the static methods Storyboard.SetTarget and Storyboard.SetTargetProperty
with doubleAnimProjectionZ as its first parameter.

var storyboardProjectionZ = new Storyboard();
storyboardProjectionZ.Children.Add(doubleAnimProjectionZ);
Storyboard.SetTarget(doubleAnimProjectionZ, projection);
Storyboard.SetTargetProperty(doubleAnimProjectionZ, new
PropertyPath("RotationZ"));

The animations defined in doubleAnimProjectionZ and doubleAnimOpacity
will run just one. However, doubleAnimProjectionY will run forever and it will
auto reverse its execution, because its RepeatBehavior is set to RepeatBehavior.
Forever and Autoreverse to true. Once it reaches the value specified by To for
projection.RotationY, it will start a new animation from this value to the value
specified by From, in the reverse direction.

doubleAnimProjectionY.RepeatBehavior = RepeatBehavior.Forever;
doubleAnimProjectionY.AutoReverse = true;

Once the method defines all the properties for the DoubleAnimation and
Storyboard instances, it applies the animations associated with each Storyboard to
their targets and initiates them by calling the Begin method.

storyboardProjectionZ.Begin();
storyboardOpacity.Begin();
storyboardProjectionY.Begin();
hlButton.Visibility = System.Windows.Visibility.Visible;

It is also possible for a single Storyboard instance to have many
DoubleAnimation or other Animation subclasses as children. In
this case, we used an independent Storyboard instance for each
animation, because we want to have full control over each one to
allow us to start and/or stop each animation to experience different
alternatives for the UX in the future. However, if we just need to
start all the animations at the same time, we can create a single
Storyboard instance, add all the DoubleAnimation instances
as their children, set the Target and TargetProperty for each
DoubleAnimation, and call the Begin method.

Chapter 8

[405]

When you open the page that contains the Visual Web Part, the Silverlight RIA
will display all the hyperlink buttons that display images and videos with dazzling
movements. doubleAnimProjectionY will run forever. The following screenshot
shows one of the frames for the animations:

Interacting with Rich Media and Animations

[406]

When you click on a dancing image, an animated Hyperlink button, the web
browser will open a new window with the image displayed with its full size.
When you right-click on a dancing image, the code in the imageButton_
MouseRightButtonDown method will run and the image will go on performing the
same animation but it will also grow and then stretch. The container WrapPanel
will make sure that the different elements displayed reorganize as the hyperlink
button grows and stretches. The following picture shows one of the frames for the
animation.

The imageButton_MouseRightButtonDown method receives two parameters, object
sender and MouseButtonEventArgs e. The first line sets the Handled property for
e to true. This way, it ensures that Silverlight won't show the default Silverlight
context menu that appears when the user right-clicks within the Silverlight
application area.

e.Handled = true;

Chapter 8

[407]

As we attached this method as an event handler for the MouseRightButtonDown
event for a HyperlinkButton, sender can be cast to HyperlinkButton, hlb and we
can access its Content property to access its associated Image and store its reference
in image.

var hlButton = (sender as HyperlinkButton);
var image = hlButton.Content as Image;

Then, the code defines two DoubleAnimation instances and adds them as children of
their corresponding Storyboard instances. The code creates the DoubleAnimation
and Storyboard instances summarized in the following table.

DoubleAnimation
instance

Storyboard
instance

Animates From To Duration
(seconds)

doubleAnim
MaxWidth

storyboard
MaxWidth

image.
MaxWidth

image.
Actual
Width

scrollViewer.
ActualWidth -
(_imageMargin
* 2)

6

doubleAnim
MaxHeight

storyboard
MaxHeight

image.
MaxHeight

Image.
Actual
Height

scrollViewer.
ActualHeight -
(_imageMargin
* 2)

6

Both DoubleAnimation instances have their AutoReverse property set to true and
RepeatBehavior set to RepeatBehavior(1). This means that the image will grow
and then it will auto-reverse the animation to stretch to its original width and height.

Once the method defines all the properties for the DoubleAnimation and
Storyboard instances, it applies the animations associated with each Storyboard to
their targets and initiates them by calling the Begin method.

storyboardMaxWidth.Begin();
storyboardMaxHeight.Begin();

Interacting with Rich Media and Animations

[408]

You can right-click on many images and the animation will run for all these images.
The following screenshot shows one of the frames for the animation.

Adding and controlling videos
When the file type is MediaFileType.Video, the ShowItem method calls
the AddVideo method with the Url string as a parameter and it saves the
HyperlinkButton instance returned by this method in videoButton. Then, it
calls the AddImageVideoAnimation with videoButton as a parameter.

case MediaFileType.Video:
 var videoButton = AddVideo(Url);
 AddImageVideoAnimation(videoButton);
 break;

The AddVideo method creates a new MediaElement instance, media, and sets values
for its MaxWidth and Stretch properties. Then, it assigns the absolute Uri from the
URL received as a parameter, url, to the media.Source property.

MediaElement media = new MediaElement();
media.MaxWidth = (_maxImageWidth * 3);
media.Stretch = Stretch.UniformToFill;
media.Source = new Uri(url, UriKind.Absolute);

Chapter 8

[409]

Then, the code sets the AutoPlay property to true to automatically start the
playback of the video specified in the Source property. The code attaches an event
handler to the MediaEnded event that occurs when the video finishes. It assigns
a new RoutedEventHandler that will fire the media_MediaEnded method. This
method plays the video again from the beginning and therefore, the video is going to
play forever while the Silverlight RIA performs all the animations.

media.AutoPlay = true;
media.MediaEnded += new RoutedEventHandler(media_MediaEnded);

Then, the code creates a new invisible HyperlinkButton, videoButton, and sets
its Content property to the previously created MediaElement instance, media.
When videoButton becomes visible, it will show the video being reproduced. The
NavigateUri property for videoButton is set to a new Uri from the URL received as
a parameter, url. The TargetName property is set to _blank and therefore, when the
user clicks the HyperlinkButton, the web browser will open the video from the URL
in the default player associated with the file extension.

The code attaches an event handler to the MouseRightButtonDown event that occurs
when the user clicks the right mouse button and the mouse pointer is over the
Hyperlinkbutton. It assigns a new MouseButtonEventHandler that will fire the
videoButton_MouseRightButtonDown method. This method runs the previously
explained animation for the Hyperlinkbutton. This animation is very similar to the
one explained for the imageButton_MouseRightButtonDown method.

var videoButton = new HyperlinkButton();
videoButton.Visibility = System.Windows.Visibility.Collapsed;
videoButton.Margin = new Thickness(_imageMargin);
videoButton.Content = media;
videoButton.NavigateUri = new Uri(url);
videoButton.MouseRightButtonDown += new MouseButtonEventHandler(videoB
utton_MouseRightButtonDown);
videoButton.TargetName = "_blank";
videoButton.Cursor = Cursors.Hand;

Finally, it is necessary to add the HyperlinkButton as a child to the wrapPanel
WrapPanel and return the instance.

wrapPanel.Children.Add(videoButton);
return videoButton;

At this point, the HyperlinkButton is invisible, because its Visibility property
was set to System.Windows.Visibility.Collapsed. However, when the AddVideo
method returns, the AddImageVideoAnimation receives the HyperlinkButton
control as a parameter, hlButton, and brings life to the video that it displays, as
explained for the images.

Interacting with Rich Media and Animations

[410]

The following screenshot shows one of the frames for the animated HyperlinkButton
reproducing the video and growing after the user right-clicked on it:

We defined the horizontal reproduction area for the video to be _maxImageWidth * 3
pixels and we assigned the UniformToFill value to the Stretch property. Thus, the
MediaElement resizes the original to fill the container's dimensions while preserving
the video's native aspect ratio.

The following screenshot shows the results of using the four possible values in the
Stretch property with the same original video:

Chapter 8

[411]

The following table explains the results of using the aforementioned values:

Stretch value Description Aspect ratio
None The video preserves its original size. Preserved
Uniform The video is resized to fit in the

destination dimensions.
Preserved

UniformToFill The video is resized to fill the
destination dimensions. The video
content that does not fit in the
destination rectangle is clipped.

Preserved

Fill The video is resized to fill the
destination dimensions.

Not preserved

Interacting with Rich Media and Animations

[412]

Video formats supported in Silverlight 4
Silverlight 4 supports the video encodings shown in the following table:

Encoding name Description and restrictions
None Raw video
YV12 YCrCb(4:2:0)
RGBA 32-bit Red, Green, Blue, and Alpha
WMV1 Windows Media Video 7
WMV2 Windows Media Video 8
WMV3 Windows Media Video 9
WMVA Windows Media Video Advanced Profile

(non-VC-1)
WMVC1 Windows Media Video Advanced Profile

(VC-1)
H.264

(ITU-T H.264 / ISO MPEG-4 AVC)

H.264 and MP43 codecs; base main and high
profiles; only progressive (non-interlaced)
content and only 4:2:0 chroma sub-sampling
profiles

Silverlight 4 doesn't support interlaced
video content.

If we want to use a video with an encoding that does not appear in the previously
shown table in a Silverlight RIA, we will have to convert it to one of the supported
formats before uploading it to a SharePoint assets library.

Adding and controlling sounds and music
When the file type is MediaFileType.Audio, the ShowItem method calls the
AddBackgroundMusic method with the Url string as a parameter.

case MediaFileType.Audio:
 AddBackgroundMusic(Url);
 break;

The AddBackgroundMusic method checks whether it was called before
(_backgroundMusicAdded == true) before running the rest of the code, because
it doesn't want to reproduce two audio files as the background music. If
_backgroundMusicAdded is true, it assigns true to _backgroundMusicAdded.

Chapter 8

[413]

The code creates a new MediaElement instance, backgroundMusic, adds it to a
parent container, LayoutRoot, and sets its Volume property to 80% (0.8). The Volume
ranges from 0 to 1. It uses a linear scale.

_backgroundMusicAdded = true;
MediaElement backgroundMusic = new MediaElement();
LayoutRoot.Children.Add(backgroundMusic);

Then, it assigns the absolute Uri from the URL received as a parameter, url, to the
backgroundMusic.Source property and calls the Play method to start reproducing
the audio file with the specified volume level. The background music will be
reproduced just once.

backgroundMusic.Volume = 0.8;
backgroundMusic.Source = new Uri(url);
backgroundMusic.Play();

Audio formats supported in Silverlight 4
Silverlight 4 supports the audio encodings shown in the following table:

Encoding name Description and restrictions
LPCM Linear 8 or 16-bit Pulse Code Modulation.
WMA Standard Windows Media Audio 7, 8, and 9 Standard.
WMA Professional Windows Media Audio 9 and 10 Professional;

Multichannel (5.1 and 7.1 surround) is automatically
mixed down to stereo. It supports neither 24-bit
audio nor sampling rates beyond 48 kHz.

MP3 ISO MPEG-1 Layer III.
AAC ISO Advanced Audio Coding; AAC-LC (Low

Complexity) is supported at full fidelity (up to 48
kHz). HE-AAC (High Efficiency) will decode only at
half fidelity (up to 24 kHz); Multichannel (5.1) audio
content is not supported.

If we want to use an audio file with an encoding that does not appear in the
previously shown table, we will have to convert it to one of the supported formats
before uploading it to a SharePoint assets library.

Interacting with Rich Media and Animations

[414]

Changing themes in Silverlight and
SharePoint
The Visual Web Part is a great candidate for applying the themes included in
Silverlight's Toolkit to offer the user a more exciting UI.

1. Stay in Visual Studio as a system administrator user.
2. Add a reference to System.Windows.Controls.Theming.Toolkit.dll.

Remember that it is located in the Bin sub-folder.
3. Add a reference to the DLL for System.Windows.Controls.Theming.

ShinyRed in the Themes sub-folder. This way, we are going to be able to
apply the ShinyRed theme.

4. Add the following line to include the namespace that defines the theme in
the UserControl defined in MainPage.xaml:
xmlns:shinyRed="clr-namespace:System.Windows.Controls.
Theming;assembly=System.Windows.Controls.Theming.ShinyRed"

5. Add the following line before the definition of the main Grid, LayoutRoot:
<shinyRed:ShinyRedTheme>

6. Add the following line after the definition of the main Grid, LayoutRoot:
</shinyRed:ShinyRedTheme>

7. This way, the ShinyRed theme will be applied to the main Grid, LayoutRoot,
and all its child controls. Build and deploy the solution and open the page
that displays the Visual Web Part. The Silverlight RIA looks really more
attractive. However, the colors displayed by the rest of the SharePoint UI
don't match the ShinyRed theme colors.

Chapter 8

[415]

8. Click Site Actions | Site Settings and a list of customization options
organized by categories will appear.

9. Click on Site theme under Look and Feel. A page that allows us to change
the fonts and color scheme for our site will appear.

Interacting with Rich Media and Animations

[416]

10. Select the Municipal theme in the list located at the right. This theme uses
a color scheme that is appropriate for Silverlight applications that use the
ShinyRed theme.

11. Click on Preview and the web browser will open a new window with your
site's home page with the new color schemes and fonts that the selected
theme defines.

12. Close this window and click on Apply. SharePoint will apply the new theme
to the pages that haven't been individually themed. The new theme won't
affect the site's layout.

Chapter 8

[417]

13. Now, refresh the page that displays the Visual Web Part and the combination
of a new SharePoint theme with the theme applied to the Silverlight RIA will
look really nice.

Summary
We learnt a lot in this chapter about accessing asset libraries in a Silverlight RIA
rendered in a SharePoint Visual Web Part. Specifically, we were able to send
parameters to the Silverlight control host to define the desired asset library to
display. We worked with classic lists but this time we consumed files. We took
advantage of Silverlight 4 rich media features to add effects and interactive
animations to the images and videos.

We have learned many alternatives to integrate Silverlight 4 with SharePoint
2010 and we have understood the great possibilities offered by Silverlight RIAs
in SharePoint sites.

Data Access Strategies

This chapter is taken from Microsoft Silverlight 4:
Building Rich Enterprise Dashboards (Chapter 9) by
Todd Snyder, Joel Eden, Ph.D., Jeff Smith, Matthew
Duffi eld.

Silverlight is a Rich Internet Application (RIA) platform that allows you to use a
rich multimedia experience to showcase application data. This is one of the main
advantages that Silverlight has over other platforms for making your dashboard
come alive. No matter how flashy you make the application, the most important part
that your users care about is information (data). Whether it's the CIO of a fortune
500 company looking to track sales, or a fantasy football owner tracking his team's
trends, information is power.

In this chapter, we will explore the different data access strategies you can use while
building a Silverlight application. How to build your own custom data services
using SOAP, REST, and OData, a walkthrough of how to consume externally hosted
services, and how the cross-domain security policy system works with Silverlight to
call external services.

In this chapter, we will cover the following topics:

•	 Data access overview
•	 Understanding network security
•	 Building services with Windows Communication Foundation
•	 Exploring OData data services

Data Access Strategies

[420]

Data access overview
Silverlight offers a rich set of options for integrating data services into
your applications:

•	 You can use basic HTTP and socket-based networking classes to perform
low-level network calls.

•	 Take advantage of the Windows Communication Foundation (WCF)
and Language Integrated Query (LINQ) application programming
interfaces included in the Silverlight runtime to consume simple and
complex data services.

•	 Integrate externally hosted services using the Silverlight cross-domain
security policy system.

Core networking classes
The Silverlight networking stack includes classes for communication using
raw sockets and over the HTTP protocol. The HTTP classes allow for simple
communication to external resources, such as an image or XML file. For more
advanced scenarios, you can use the socket classes for communication.

•	 HTTP classes (HttpWebRequest.HttpWebResponse or WebClient) included
in the System.Net namespace. These classes allow you to communicate to a
server using the HTTP or HTTPS protocol. They are the best options when
you need to call an external web service or download files directly.

•	 Sockets and Multicast classes included in the System.Net.Sockets
namespace. These classes allow you to perform general networking
calls using a socket interface, real-time duplex communication with
a remote network service, or set up a one-to-many or many-to-many
multicast communication.

Working with WebClient
The simplest way to get data into your Silverlight application is to use the
WebClient class to access a XML data file stored on the server. By default,
WebClient can use a relative path to access files in the Silverlight application's
XAP file's host directory (ClientBin) or one of its sub directories. For more
advanced scenarios, where you may need to set the HTTP headers sent to a
server, you would want to use the HttpWebRequest class.

Chapter 9

[421]

All network operations in Silverlight are performed asynchronously; so you will
need to create a callback method for when the operation is complete. Depending
on the type of networking call you make, you may need to use the Dispatcher
class to marshal data back to the UI thread. For example, WebClient operations are
automatically returned to the UI thread, but HttpWebRequest requires you to use a
Dispatcher to marshal data.

The following code uses the WebClient class to retrieve the Products.xml from
the host domain of the running Silverlight application. Because the operation is
asynchronous, you will need to set up a callback method that will be called after the
file has finished being downloaded.

WebClient client = new WebClient();
client.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler
 (client_DownloadStringCompleted);
client.DownloadStringAsync(new Uri("products.xml", UriKind.Relative));

We will be using XLINQ to load data from the Products.xml file into a collection
of products. To make it easier to map the data into the product class, let's set up a
couple of extensions methods. Extensions methods were added in .NET 3.5, and
allow you to add helper methods to externally defined classes. To create an extension
method, define a static class with one or more static methods. The first parameter to
each method must be the class being extended. To use your own custom extension
method, just add the using statement to the namespace where you defined your
extension methods as follows:

using System.Xml.Linq;
namespace Chapter9.Common
{
 public static class XElementExtension
 {
 public static int GetIntValue(this XElement element)
 {
 int value = 0;
 int.TryParse(element.Value, out value);
 return value;
 }
 public static double GetDoubleValue(this XElement element)
 {
 double value = 0d;
 double.TryParse(element.Value, out value);
 return value;
 }
 }
}

Data Access Strategies

[422]

The data in the Products.xml file will be loaded into a collection of the Product
class. The class contains properties (ID, Name, Unit Price, etc…) that match
the columns in the data grid that will be used for displaying the data from the
Products.xml file. Throughout the chapter, we will be reusing the Product class,
so refer back to this code snippet when creating the other samples.

public class Product
{
 public string ProductId {get; set;}
 public string ProductName {get; set;}
 public string Supplier {get; set;}
 public string Category {get; set;}
 public double UnitPrice {get; set;}
 public int UnitsInStock {get; set;}
}

After the WebClient asynchronous asynchronously completes, the
client_DownloadStringCompleted method will be called. If the operation
was successful, the contents of the Products.xml file will be stored in the
e.Result property. We will now use XLINQ, along with the extension methods
and product class we previously defined, to load a collection of products. Once
the collection is loaded, we will set the item source of the ProductList data grid
as follows:

void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{

 XDocument document = XDocument.Load(new StringReader(e.Result));

 var result = from d in document.Root.Descendants("Product")
 selectnewProduct
 {
 ProductId = d.Element("ProductID").Value,
 ProductName = d.Element("ProductName").Value,
 Supplier = d.Element("Supplier").Value,
 Category = d.Element("Category").Value,
 UnitPrice = d.Element("UnitPrice").GetDoubleValue(),
 UnitsInStock = d.Element("UnitsInStock").GetIntValue()
 };

 this.ProductList.ItemsSource = result;
}

Chapter 9

[423]

The following XAML defines the DataGrid we will be using to display the
collection of products returned from downloading the requested file. Throughout
the chapter, we will be using a similarly defined grid to display the data for our
sample applications.

<navigation:Page x:Class="Chapter9.Views.WebClientData"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/
 markup-compatibility/2006"
 mc:Ignorable="d"
 xmlns:navigation="clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Navigation"
 xmlns:Controls="clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data"
 d:DesignWidth="640" d:DesignHeight="480"
 Title="WebClientData Page">
 <Grid x:Name="LayoutRoot">
 <Controls:DataGrid x:Name="ProductList"
 AutoGenerateColumns="False">
 <Controls:DataGrid.Columns>
 <Controls:DataGridTextColumn Binding=
 "{Binding ProductId}"Header="Product ID" />
 <Controls:DataGridTextColumn Binding=
 "{Binding ProductName}" Header="Product" />
 <Controls:DataGridTextColumn Binding=
 "{Binding Supplier}" Header="Supplier" />
 <Controls:DataGridTextColumn Binding=
 "{Binding Category}" Header="Category" />
 <Controls:DataGridTextColumn Binding=
 "{Binding UnitPrice}" Header="Unit Price" />
 <Controls:DataGridTextColumn Binding=
 "{Binding UnitsInStock}" Header="Units in Stock" />
 </Controls:DataGrid.Columns>
 </Controls:DataGrid>
 </Grid>
</navigation:Page>

Data Access Strategies

[424]

Using Fiddler
While building a Silverlight application, it can be problematic to troubleshoot
network communication. Fiddler (http://www.fiddler2.com/fiddler2/)
is a HTTP communication tool that you should download to troubleshoot
networking issues.

By default, Fiddler cannot trace traffic sent to http://localhost. To work around
this, you can use your computer name instead of the local host, or add a period in
front of the port number (http://localhost.:38090) of your services URI. To
monitor your Silverlight application, fire up Fiddler. It will monitor all the HTTP
traffic on your machine. As each HTTP request is sent, you can see the contents of the
request and result returned from the server. Always remember to fire up Fiddler if
you start encountering errors communicating from your Silverlight application.

Chapter 9

[425]

Understanding network security
Silverlight uses a security policy-based approach for allowing cross-domain access.
Depending on how you have configured your Silverlight application and the
location of the resource (File or Web Service) you are trying to access, Silverlight will
download and verify that your application (Host Domain) can access the resource.
If you are running an out-browser Silverlight application with evaluated trust or
accessing a resource on the same host domain (and port) as your Silverlight XAP file,
the policy file is not required.

The following image shows the different rules that Silverlight uses for deterring
when to download and verify the cross-domain policy file. For resources on the
same domain, the file is not required. Unless you have an out-of-browser application
with evaluated trusted enabled, the cross-domain policy file is required for
the other scenarios: Different Protocols (HTTP vs HTTPS), Sub-Domains,
Ports, or Host Domains.

Data Access Strategies

[426]

Silverlight supports two different types of security policy files. The Flash policy file
(Crossdomain.xml) and the Silverlight policy file (ClientsaccessPolicy.xml).
If neither file can be found when your application makes a cross-domain, calling
Silverlight will raise a security exception.

•	 Flash policy file (crossdomain.xml): This is the same cross-domain policy
file that Adobe Flash uses. This file can only be used by the HTTP and Web
Client classes in the System.Net namespace. The Silverlight runtime requires
that all domains have full access to work.

•	 Silverlight policy files (ClientAccessPolicy.xml): The policy file supports
cross-domain access for the Web Client and HTTP classes; the classes in the
System.Net.Socket namespace, and the client libraries used by Windows
Communication Foundation (WCF).

The structure of the Silverlight cross-domain policy file allows you to define the host
URI and the network path that external domains have access to. If you want to allow
full access to your server, set up the policy file using "*" to allow all domains, and set
the resource path to the root "/".

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

You can restrict access by defining specific domains and paths. For example if you
want to restrict access to only the http://www.mycompany.com domain and services
located in the services folder, set up your ClientAccessPolicy.xml like the policy
file as follows:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="www.mycompany.com"/>
 </allow-from>

Chapter 9

[427]

 <grant-to>
 <resource path="/services/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

To allow clients to send HTTP headers, you need to include the http-request-header
attribute. To set up different access rules, define one or more policy elements with
the correct corresponding configuration. To allow externally hosted Silverlight
applications to call your services, you need to deploy a ClientAccessPolicy.xml
at the root folder (domain) of the service's URI. For example if your services are
deployed at the http://www.mycompany.com/services/v1/dataservice.svc, you
need to deploy the policy file at the root URI (http://www.mycompany.com).

Building services with Windows
Communication Foundation
When building your own data services, you want to take advantage of the rich
programming model that Windows Communication Foundation (WCF) provides.
Depending on the type of application and its requirements, there are different service
frameworks you can use as follows:

•	 WCF Core Services offers the most flexible programming model. It allows
you to define a web service class that can be consumed by your Silverlight
application. You can use Visual Studio to generate proxy classes for the
service, and use the WCF client library to asynchronously interact with the
service. These types of services offer the most flexibility by allowing you to
configure end points using different data formats and protocols.

•	 WCF Data Services allows you to expose your data source using a
Representational State Transfer (REST) style. Data is exposed as an Open
Data Protocol (OData) feed. You can use the HTTP networking classes or
the WCF Data Service Client Library to make REST-based queries or actions
(Create, Update, or Delete) method calls.

•	 WCF RIA Services offers a simplified programming model for building n-tier
applications. It allows you to define and share data model classes between a
Silverlight client and a web service. In addition, RIA services offers built-in
methods for validation, concurrency, and security. RIA services are ideally
suited for simple forms over data type applications.

Data Access Strategies

[428]

Windows Communication Foundation (WCF) is a rich and extensible Application
Programming Interface (API) for building and consuming services. As mentioned
above, there are several different programming models you can use when working
with WCF. When designing a WCF service, you will create service and data
contracts. Service contracts define the operations (methods) of your service and
data contracts define the message structure you are passing and returning from the
services. Service behaviors are used for defining cross-cutting operations that run
before or after each request. The channel used by WCF for communicating is based
on the protocol and formats you defined for your services.

Now that we understand the different data access options and security restrictions
for building a Silverlight consumable data service, let's put this knowledge to
work. When building a WCF service, one of the most important technical design
decisions you need to make is what protocol and data formats you want your service
to support. Depending on your application needs, it might make sense to build a
SOAP-based service that uses a binary format, or a REST-based service that returns
data using the JSON format.

There is a lot of debate in the industry over which is better with regards to SOAP
and REST. For now, we will skip the debate; both protocols have advantages and
disadvantages, and ultimately it's up to you to decide which options work best for
the type of application you need to build. If you're consuming an externally hosted
or cloud-based service, more than likely it will be REST or OData-based service.

Chapter 9

[429]

Working with WCF
Before we dig into the details of how to build a SOAP or REST-based WCF service,
let's walk through the common data access classes our services will share. After we
walk through building the service layer, we will dig into how to consume each type
of service in our Silverlight application.

Instead of adding our WCF services directly to the ASP.NET application that
hosts our Silverlight application, we can instead create a separate host application.
Using Visual Studio, add a new WCF Service application. After Visual Studio has
finished generating the WCF project, add a ClientAccessPolicy.xml file, and
set it up to allow access to all domains. As we previously discussed, this file is
required because our services will be hosted on a different URI than the Silverlight
application XAP file.

If you haven't done so already, download and run the sample project for this chapter.
The project includes the web client sample we previously talked about, along with
the samples and WCF services we are about to build.

Data Access Strategies

[430]

The data access layer
To keep things simple, our WCF services will be returning a collection of products
stored in an XML data file (Products.xml). We will be using XLINQ to load the
data stored in the XML file into a collection of products inside of the WCF service we
will be creating. Following is the structure of the Products.xml file. Each product
contains an ID, Name, Category, and so on.

<Products>
 <Product>
 <ProductID>401043204-423</ProductID>
 <ProductName>Tunnbröd</ProductName>
 <Supplier>PB Knäckebröd AB</Supplier>
 <Category>Grains/Cereals</Category>
 <QuantityPerUnit>12 - 250 g pkgs.</QuantityPerUnit>
 <UnitPrice>9.00</UnitPrice>
 <UnitsInStock>61</UnitsInStock>
 <UnitsOnOrder>10</UnitsOnOrder>
 </Product>
 <Product>
 <ProductID>534041202-345</ProductID>
 <ProductName>Guaraná Fantástica</ProductName>
 <Supplier>Refrescos Americanas LTDA</Supplier>
 <Category>Beverages</Category>
 <QuantityPerUnit>12 - 355 ml cans</QuantityPerUnit>
 <UnitPrice>4.50</UnitPrice>
 <UnitsInStock>20</UnitsInStock>
 <UnitsOnOrder>15</UnitsOnOrder>
 </Product>
…
</Products>

The product class looks very similar to the one we used previously. The only change
is that the class and its member properties are decorated with the DataContract and
DataMember attributes. These attributes are used by WCF to serialize the product
class. If you omit the DataMemberattribute, the property will not be serialized.

using System.Runtime.Serialization;

namespace Chapter9.Model
{

 [DataContract]
 public class Product
 {
 [DataMember]

Chapter 9

[431]

 public string ProductId {get; set;}

 [DataMember]
 public string ProductName { get; set; }

 [DataMember]
 public string Supplier { get; set; }

 [DataMember]
 public string Category { get; set; }

 [DataMember]
 public double UnitPrice { get; set; }

 [DataMember]
 public int UnitsInStock { get; set; }
 }

To load the data from the Products.xml file, we will be using the repository pattern.
The ProductRepository class contains two methods. The GetProduct method will
return a single product based on its ID, and the GetProducts method will return a
collection of all the products defined in the Products.xml file. We will use XLINQ to
load the data from Products.xml into a collection of products.

Note: The code uses the extension methods we previously defined.
The GetProducts method calls the GetProducts method,
and then uses LINQ to filter the returned collection, based on the
product ID passed into the method.

using System.Collections.Generic;
using System.Linq;
using System.Web.Hosting;
using System.Xml.Linq;
using Chapter9.Common;
using Chapter9.Model;

namespace Chapter9.Service.Model
{
 public IList<Product> GetProducts()
 {
 return this.LoadProducts();
 }

 private IList<Product> LoadProducts()
 {
 string dataFilePath =
 HostingEnvironment.MapPath("~/App_Data/products.xml");
 XDocument document = XDocument.Load(dataFilePath);

Data Access Strategies

[432]

 var result = from d in document.Root.Descendants("Product")
 select new Product
 {
 ProductId = d.Element("ProductID").Value,
 ProductName = d.Element("ProductName").Value,
 Supplier = d.Element("Supplier").Value,
 Category = d.Element("Category").Value,
 UnitPrice = d.Element("UnitPrice").GetDoubleValue(),
 UnitsInStock = d.Element("UnitsInStock").GetIntValue()
 };

 return result.ToList();
 }

 public Product GetProduct(string productId)
 {
 IList<Product> products = this.LoadProducts();
 var result = products.Where(
 q => q.ProductId == productId).SingleOrDefault();

 return result;
 }
}

To load the Products.xml file, we use the class HostingEnvironment to map the
path to the XML file. Any type of .NET applications (WPF, ASP.Net, Windows
Services, and so on) can be used to host a WCF service. So it's important that you
develop the service in a host-independent way.

string dataFilePath =
 HostingEnvironment.MapPath("~/App_Data/products.xml");
XDocument document = XDocument.Load(dataFilePath);

Now that we have defined the data access code for or service, we will switch gears
and take a look at how to build SOAP and REST-based services using WCF. Both of
the services we are about to define will use the product repository we just created.

Chapter 9

[433]

Building a SOAP service
Silverlight only supports a subset of the Windows Communication Foundation
(WCF) features that are normally available with .NET. To create a Silverlight-enabled
WCF service using Visual Studio, add a new item and select the correct template
under the Silverlight node. Name the new service ProductSoapService. After the
service is created, there are a few things that you should modify.

1. Create an interface for your service, and name it IProductSoapService, and
add a service contract attribute to the class:
[ServiceContract(Namespace = «http://mydomain»)]
public interface IProductSoapService

2. Add the following using statements to the interface:
using System.Collections.Generic;
using System.ServiceModel;
using Chapter9.Model;

3. Now, define the contents of the interface to include a GetProduct and
GetProducts method. Add an operation contract attribute to each method.
[OperationContract]
Product GetProduct(string productId);

[OperationContract]
IList<Product> GetProducts();

4. Update the ProductSoapService class so that it implements the interface
you just created:
public class ProductSoapService : IProductSoapService

5. Make sure the soap service class has the AspNetCompatibility and that the
RequrementsMode is set to Allowed:
[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]

6. Add the following using statements to the top of the class:
using System.Collections.Generic;
using System.ServiceModel.Activation;
using Chapter9.Model;
using Chapter9.Service.Model;

7. Update the GetProducts and GetProduct methods to call the
product repository:
public Product GetProduct(string productId)

Data Access Strategies

[434]

{

 public IList<Product> GetProducts()
 {
 ProductRepository repository = new ProductRepository();
 return repository.GetProducts();
 }

Before we try calling the service from Silverlight, make sure the
web.config for the WCF service project has the necessary end-point
configuration settings defined. You should make sure the end point
is using the service interface IProductSoapService.
<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name=»»>
 <serviceMetadata httpGetEnabled=»true» />
 <serviceDebug include ExceptionDetailInFaults=»false» />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <bindings>
 <customBinding>
 <binding name=»Chapter9.Service.Services.Soap.
 ProductSoapService.customBinding0»>
 <binaryMessageEncoding />
 <httpTransport />
 </binding>
 </customBinding>
 </bindings>
 <serviceHostingEnvironment aspNetCompatibilityEnabled=»false»
 multipleSiteBindingsEnabled=»true» />
 <services>
 <service name=»Chapter9.Service.Services.Soap.
 ProductSoapService»>
 <endpoint address=»»binding=»customBinding
 » bindingConfiguration=»Chapter9.Service.Services.Soap.
 ProductSoapService.customBinding0»
 contract=»Chapter9.Service.Services.Soap.
 IProductSoapService» />
 <endpoint address=»mex»binding=»mexHttpBinding»
 contract=»IMetadataExchange» />
 </service>
 </services>
</system.serviceModel>

Chapter 9

[435]

8. In order to use the WCF SOAP service we have just created, you need to add
a service reference to the service. To do this:

	° Right-click on your Silverlight project and select Add service
reference.

	° Click the discover button to find the WCF services available in same
solution as the Silverlight application.

	° The service wizard will create a set of proxy classes that can be
used to call the service. Instead of using the service wizard, you can
alternatively use the WCF client library directly, and manually create
the proxy classes used to load the products returned from the service.

After the wizard has finished generating the proxy classes, you can use
them to call the WCF service. You can do this by creating an instance of the
ProductSoapServiceClient class, and subscribing to the completed and async
methods. Each operation method defined in your WCF service contract will have a
completed and async method generated. To call the service method, invoke its async
method. When the call to service is done, the completed method will be called. In
the completed method, you can check to see whether the call was a success. If it was
successful, set the item source of the DataGrid to the returned product collection.

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Navigation;
using Chapter9.ProductSoapService;

namespace Chapter9.Views
{
 public partial class CallSoapService : Page
 {
 public CallSoapService()
 {
 InitializeComponent();

 this.Loaded += new RoutedEventHandler(CallSoapService_Loaded);
 }

 void CallSoapService_Loaded(object sender, RoutedEventArgs e)
 {
 ProductSoapServiceClientserviceCient = new
 ProductSoapServiceClient();
 serviceCient.GetProductsCompleted
 += new EventHandler<GetProductsCompletedEventArgs>
 (serviceCient_GetProductsCompleted);

Data Access Strategies

[436]

 serviceCient.GetProductsAsync();
 }

 void serviceCient_GetProductsCompleted(object sender,
 GetProductsCompletedEventArgs e)
 {
 if (e.Error == null)
 {
 this.ProductList.ItemsSource = e.Result;
 }
 }

 }
}

Building a REST service
Starting with the release of the .NET Framework 3.5 (.NET 4.0 adds additional
support), it is possible to easily build a REST-based service using WCF.
Representational State Transfer (REST) is an architectural style, based on the
concept of accessing resources using the HTTP protocol. Each resource is
uniquely identified using a URI (http://.../products), and can be accessed
using one of the HTTP verbs (GET, POST, PUT, or DELETE).

To learn more about REST and JSON see the following links:

REST: http://msdn.microsoft.com/en-us/netframework/dd547388

JSON: http://msdn.microsoft.com/en-us/library/
bb299886.aspx

Let's walk through building a WCF REST (HTTP)-based data service and consuming
it in our Silverlight application. We will use the same WCF service application we
have previously created.

1. Add a new item to the service project by selecting the WCF service template.
Name the new service ProductRestService.

2. Add an interface to the project named IProductService, add the Service
Contract attribute above the interface.
[ServiceContract]
public interface IProductRestService

Chapter 9

[437]

3. Add the following using statements:
using System.Collections.Generic;
using System.ServiceModel;
using System.ServiceModel.Web;
using Chapter9.Model;

4. Add the GetProduct and GetProducts methods to the interface. Add the
operation contract and web get attributes to each method. Make sure you
see the Name parameter for the operation contract. Additionally, define the
UriTemplate and response format for each method.
[OperationContract(Name = "GetProducts")]
[WebGet(UriTemplate = «/», ResponseFormat =
 WebMessageFormat.Json)]
IList<Product> GetProducts();

[OperationContract(Name = «GetProduct»)]
[WebGet(UriTemplate = «/product/{productId}»,
 ResponseFormat = WebMessageFormat.Json)]
Product GetProduct(string productId);

5. Update the Product Rest Service so that it implements the IProductService
interface.
public class ProductRestService : IProductRestService

6. Add the following using statements to the class:
using System.Collections.Generic;
using System.ServiceModel;
using System.ServiceModel.Web

7. Update the GetProducts and GetProduct methods to call the product
repository:
public Product GetProduct(stringproductId)
{
 public IList<Product> GetProducts()
 {
 ProductRepository repository = new ProductRepository();
 return repository.GetProducts();
 }

8. The service class for our REST service looks very similar to its corresponding
SOAP counterpart. The only major difference is that we do not need to add
the AspNetCompatibilityRequirements attribute, because we will be using
the WebClient class to call the REST service.

Data Access Strategies

[438]

9. There are a couple other things we need to define for our REST service to
work. Switch to the markup for the SVC file, and add the following:
Factory="System.ServiceModel.Activation.WebServiceHostFactory"

10. This defines the factory that WCF will use to process calls to your REST
service. Change the response format for both GetProduct and GetProducts
to XML. Then load your very favorite web browser, navigate to the following
URI to display the default (/) URI for the REST service:
http://localhost:38090/Services/Rest/
ProductRestService.svc/.

11. The Port # for the service maybe different, because Visual Studio picks a
dynamic port to load the WCF service project. Using the default URI (/)
for the service, you should see a list of products returned from the service.
If we change the URI to product/534041202-345, we will see a single
product displayed.

Chapter 9

[439]

12. After testing our REST service using a web browser, make sure you change
the format to JSON in the service interface. Our Silverlight application will
use the JSON format to deserialize the data returned from the service.

13. To call our REST service, we will use the WebClient class by passing in
the URI for the service. When the service call is completed, we use the
DataContractJsonSerializer class to deserialize the JSON data returned
from the class into a collection of products.
void CallRestService_Loaded(object sender,
 System.Windows.RoutedEventArgs e)
{
 Uri serviceUri = new Uri(«http://localhost:38090/Services/Rest/
 ProductRestService.svc/»);

 WebClient client = new WebClient();
 client.OpenReadCompleted += new OpenReadCompletedEventHandler
 (client_OpenReadCompleted);
 client.OpenReadAsync(serviceUri);
}

void client_OpenReadCompleted(object sender,
 OpenReadCompletedEventArgs e)
{
 DataContractJsonSerializerserializer =
 newDataContractJsonSerializer(typeof(IList<Product>));

 IList<Product> data = (IList<Product>)serializer.ReadObject
 (e.Result);
 this.ProductList.ItemsSource = data;

}

Exploring OData data services
The Open Data Protocol (OData) is a protocol based on the principles of REST
for building queryable data services. It is built on the concepts behind the Atom
publishing Protocol (AtomPub) and the Java Script Object Notation (JSON) data
format. It provides a standard way for data consumer and producers to interact
with each other.

The core data type in OData is a feed, which is defined as a collection of entry
types. An entry is a structured record that includes a key and a list of properties.
Properties can be defined as simple (e.g., string) or complex (e.g., address) types.
An entry can have related entries named links and be part of a hierarchy. For
example to access a feed of customer entries, we would use the following
URI (http://...//OData.svc/Customers).

Data Access Strategies

[440]

A number of OData-supported client libraries are available that make it easier to
call OData producers. In Silverlight, you can use the WCF Data Service client library
to query an OData source using LINQ. The Language Integrated Query (LINQ)
language is a set of extensions introduced with .NET 3.5 that allows you to query a
data source easily. LINQ can be used to query any data source that implements the
IQueryable interface such as IEnumerable Collections, WCF Data Services, Entity
Framework, and so on.

To use the WCF Data Service client library, add a service reference using the
Visual Studio | Add Service Reference wizard. This wizard will generate the
service context and proxy classes you will use in your Silverlight application as in
the following image:

For a more in-depth overview of OData AND a list of consumers and producers, see
the OData portal at http://www.odata.org.

Chapter 9

[441]

Building an OData service
We will be using the WCF Data Service framework to host our custom OData
service. WCF Data Services is a framework that allows you to publish an OData-
based service easily by defining an Entity Data Model (EDM). You can easily define
an EDM by using the Entity Framework designer in Visual Studio or using attributes
to define a custom EDM model class.

To create a custom entity model class, all we need to do is decorate a class with
the following properties: EntityPropertyMapping and DataServiceKey. The
EntityPropertyMapping attribute is used to map a property of an entity to the
metadata element for the feed.

DataServiceKey is used for defining the key used for identifying an
entity.using System.Data.Services.Common;

namespace Chapter9.Service.Model
{

 [EntityPropertyMapping("ProductName",
 SyndicationItemProperty.Title,
 SyndicationTextContentKind.Plaintext, true)]
 [DataServiceKey("ProductId")]
 public class ProductRecord
 {
 public string ProductId { get; set; }
 public string ProductName { get; set; }
 public string Supplier { get; set; }
 public string Category { get; set; }
 public double UnitPrice { get; set; }
 public int UnitsInStock { get; set; }
 }
}

The product record repository class contains the IQueryable data source that
will be hosted by WCF Data Service. The class uses XLINQ to load a collection of
product records. The products property returns the loaded product collection as an
IQueryable data source as follows:

using System.Collections.Generic;
using System.Linq;
using System.Web.Hosting;
using System.Xml.Linq;
using Chapter9.Common;

namespace Chapter9.Service.Model
{

Data Access Strategies

[442]

 public class ProductRecordRepository
 {
 public ProductRecordRepository()
 {
 this.LoadProducts();
 }

 public IQueryable<ProductRecord> Products
 {
 get
 {
 return productRecordList.AsQueryable();
 }
 }

 private List<ProductRecord> productRecordList;
 private void LoadProducts()
 {
 string dataFilePath = HostingEnvironment.MapPath
 ("~/App_Data/products.xml");
 XDocument document = XDocument.Load(dataFilePath);

 var result = from d in document.Root.Descendants("Product")
 select new ProductRecord
 {
 ProductId = d.Element("ProductID").Value,
 ProductName = d.Element("ProductName").Value,
 Supplier = d.Element("Supplier").Value,
 Category = d.Element("Category").Value,
 UnitPrice = d.Element("UnitPrice").GetDoubleValue(),
 UnitsInStock = d.Element("UnitsInStock").GetIntValue()
 };

 productRecordList = result.ToList();
 }
 }
}

Chapter 9

[443]

To host our custom IQueryable data source using WCF Data Services, we need to
create a class that inherits from the DataService<T> base class, where the generic
type <T> contains one or more IQueryable properties. The InitializeService
method is used for defining the service's behaviors and the security (read/write)
access for the entries returned from the service.

using System.Data.Services;
using System.Data.Services.Common;
using Chapter9.Service.Model;

namespace Chapter9.Service.Services.OData
{

 public class ProductODataService :
 DataService<ProductRecordRepository>
 {
 public static void InitializeService
 (DataServiceConfigurationconfig)
 {
 config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);
 config.SetServiceOperationAccessRule
 ("*", ServiceOperationRights.All);
 config.MaxResultsPerCollection = 100;
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 }
 }
}

In our Silverlight application, we can consume the OData service we just built by
adding a service reference to the hosted WCF Data Service. To call the service,
we need to pass the URI for the service to the service data context, and then
asynchronously invoke the data service query by calling it's begin execute method.
When the async call completes, we can get the results returned from the service call,
and then bind it to a grid defined in our view. You will need to make sure that you
set the grid's item source on the UI thread by invoking the UI dispatcher as follows:

Uri dataSourceUri = new Uri("http://localhost:38090/Services/OData/
 ProductODataService.svc/");
ProductDataSource context = new ProductDataSource(dataSourceUri);

IEnumerable<ProductRecord> results;

var query = (from p in context.Products
 where p.UnitPrice > 25
 select p);

DataServiceQuery<ProductRecord> dataServiceQuery =
 query as DataServiceQuery<ProductRecord>;

Data Access Strategies

[444]

dataServiceQuery.BeginExecute((asyncResult) =>
{
 results = dataServiceQuery.EndExecute(asyncResult);
 Dispatcher.BeginInvoke(() =>
 {
 this.ProductList.ItemsSource = results.ToList();
 });

}, null);

We will need to use LINQ to define the query we will be sending to the OData
service. When the service gets invoked, the LINQ query is converted into the correct
URI for calling the service.

var query = (from p in context.Products
 where p.UnitPrice > 25 select p);

The LIQN query above will be converted into the following URI: …/
ProductODataService.svc/Products()?$filter=UnitPrice%20gt%2025.0.
The query will only return products that have a unit price that is greater than 25.

Consuming an external service
Throughout this chapter, we have looked at how to build and consume our own
custom services. While in most cases, you will build your own service, there are
times that you will need to consume one or more external services hosted by a third-
party vendor or deploy in the cloud-based platform.

To consume an external service, we follow the same process we have been using to
call our own custom services. The only extra step is to make sure the external service
we are calling has a client policy file deployed that allows access for all domains or
allows access to the host domain for our Silverlight applications.

In the following sample, we will be calling the NorthWnd OData service hosted by
the OData portal (http://www.odata.org). The NorthWnd service is hosted at the
following URI: http://services.odata.org/Northwind/Northwind.svc.

Add a service reference to the externally hosted ODataService. The service wizard
will generate the NorthWindEnities class and the service proxy for the NorthWind
service. Using the NorthWindEntities class, set up a LINQ query to get a list of
customers who have a title of owner. To call the service invoked, begin the execute
method of the data service class. When the call to the external service is complete,
the end execute method will be called to return a collection of customers. Using the
UI dispatcher, return the execution to the UI thread, and set the item source of the
CustomerList data grid.

Chapter 9

[445]

As we did in the previous OData sample, we will need to use the WCF Data Service
client and LINQ to query the NorthWndService.

void NorthWndOData_Loaded(object sender, RoutedEventArgs e)
{
 Uri dataSourceUri = new Uri("http://services.odata.org/Northwind/
 Northwind.svc/");
 NorthwindEntities context = new NorthwindEntities(dataSourceUri);

 IEnumerable<Customer> results;

 var query = (from c in context.Customers
 where c.ContactTitle == "Owner"
 select c);

 DataServiceQuery<Customer> dataServiceQuery = query as
 DataServiceQuery<Customer>;
 dataServiceQuery.BeginExecute((asyncResult) =>
 {
 results = dataServiceQuery.EndExecute(asyncResult);
 Dispatcher.BeginInvoke(() =>
 {
 this.CustomerList.ItemsSource = results.ToList();
 });

 }, null);
}

The LINQ query returns a list of customers from the NorthWnd data service that has
a contact title of Owner. When the query is invoked, the following URI is sent to the
externally hosted service: http://services.odata.org/Northwind/Northwind.
svc/Customers()?$filter=ContactTitle%20eq%20'Owner'.

One of the powerful attributes of the REST and OData protocol is that it is possible to
test the service call by just using a web browser. If you want to directly test out your
own custom service or external service, you can use your favorite web browser to
test out the service's URI configuration.

Data Access Strategies

[446]

Summary
In this chapter, we discussed the different data access strategies we could use for
building a Silverlight application. We looked at how to use the basic HTTP classes
included in the Silverlight runtime. Additionally, we discussed the advanced
techniques for building and consuming SOAP, REST, or OData-based services, and
how the Silverlight security policy system works for allowing cross-domain calls to
external hosted resources.

In the next chapter, we will look into how to build Silverlight dashboards hosted
in SharePoint. We will examine how to create a Silverlight web part, and use the
SharePoint client library to access SharePoint list data, and display it in Silverlight.

Building Dashboards in
SharePoint and Silverlight

This chapter is taken from Microsoft Silverlight 4:
Building Rich Enterprise Dashboards (Chapter 10) by
Todd Snyder, Joel Eden, Ph.D., Jeff Smith, Matthew
Duffi eld.

This chapter will introduce you to the features included in SharePoint 2010 for
hosting Silverlight dashboard applications. We will explore how to set up a
Silverlight web part, and use the SharePoint Silverlight Client Object Model to
communicate with data hosted in SharePoint.

In order to run the samples for this chapter, you will need to have a SharePoint 2010
development environment set up. If you don't have one available, follow the steps
below for setting up SharePoint 2010 on Windows 7. If you are not familiar with
SharePoint 2010, spend some time getting up to speed before tackling the samples in
this chapter.

In this chapter, we will cover the following topics:

•	 Overview of SharePoint
•	 Building a SharePoint Silverlight Dashboard
•	 SharePoint Data Access Strategies

Building Dashboards in SharePoint and Silverlight

[448]

Overview of SharePoint
Microsoft SharePoint 2010 is a portal platform that includes features for
building content, collaboration, document management, and business intelligence
applications. Prior to SharePoint 2010, it was possible to host a Silverlight application
by manually creating a SharePoint hosted page or web part that included the
HTML object tag. SharePoint 2010 introduces a Silverlight web part and Client
Object Model, which makes it easier for Silverlight applications to access data
hosted in SharePoint.

Setting up SharePoint
Before we can walk through how to host a Silverlight dashboard application
in SharePoint and use the Client Object Model, we need to set up a version of
SharePoint 2010 to use. There are two versions of SharePoint 2010: SharePoint
2010 Foundations and SharePoint Server 2010. Since our main focus is going to be
on how to use the Client Object model, we will be setting up SharePoint Foundation
2010 on Windows 7.

If you need to have all the features enabled for SharePoint, or you are building a
production machine, you will need to install it on a Windows 2008 64-bit machine.
Even for Windows 7, you will need to have the 64-bit version installed.

In order to set up SharePoint to run on Windows 7, you will need to do
the following:

1. Download SharePoint 2010 Foundation from the following:
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=
49c79a8a-4612-4e7d-a0b4-3bb429b46595&displaylang=en

2. After the file is complete, follow the given steps to install it on Windows 7:
	° Copy the downloaded file to a directory on your machine e.g.,

c:\SharePointInstall.
	° Open a command prompt, and run the following: c:\

SharePointInstall\SharePoint /extract:c:\
SharePointInstall; this will extract the installation files from the
download. If you download the SharePoint Server 2010 edition, run
this command line instead: c:\SharePointInstall\Office Server
/extract:c:\SharePointInstall.

Chapter 10

[449]

	° Using a text editor (e.g., Notepad), open the installation configuration
file config.xml located under c:\SharePointInstalltion\files\
Setup\config.xml, and add the following line to the configuration
section: <Setting Id="AllowWindowsClientInstall"
Value="True"/>.

	° Run and install the prerequisite for SharePoint 2010 Foundation.
	° At the Command prompt, type the following c:\

SharePointInstall\ PrerequisiteInstallerFiles\
FilterPack\FilterPack.msi to install the Microsoft FilterPack 2.0.

	° You will need to install the following items also: Microsoft Sync
Framework, SQL Server NativeClient, and Windows Identify
PrerequisiteInstallerFiles\FilterPack\FilterPack.msi.

	° Open a command prompt, and run the following script. Note: all the
parameters should be on the same line. You can also manually enable
these features by running the Turn Windows Features On and Off
under Control Panel\Program and Features.

The following script will enable the necessary Windows and IIS features
required for running SharePoint 2010. It's important that this script is
run successfully. If you run into issues, SharePoint may not install or run
correctly. If you download the source code for this chapter, you will find a
SharePointSetup.txt file that contains the script below you need to run to
set up IIS to properly run SharePoint.

start /w pkgmgr /iu:IIS-WebServerRole;IIS-WebServer;
IIS-CommonHttpFeatures;
IIS-StaticContent;IIS-DefaultDocument;IIS-DirectoryBrowsing;
IIS-HttpErrors;
IIS-ApplicationDevelopment;IIS-ASPNET;IIS-NetFxExtensibility;
IIS-ISAPIExtensions;IIS-ISAPIFilter;IIS-HealthAndDiagnostics;
IIS-HttpLogging;IIS-LoggingLibraries;IIS-RequestMonitor;
IIS-HttpTracing;IIS-CustomLogging;IIS-ManagementScriptingTools;
IIS-Security;IIS-BasicAuthentication;
IIS-WindowsAuthentication;IIS-DigestAuthentication;
IIS-RequestFiltering;IIS-Performance;
IIS-HttpCompressionStatic;IIS-HttpCompressionDynamic;
IIS-WebServerManagementTools;IIS-ManagementConsole;
IIS-IIS6ManagementCompatibility;
IIS-Metabase;IIS-WMICompatibility;
WAS-WindowsActivationService;WAS-ProcessModel;
WAS-NetFxEnvironment;WAS-ConfigurationAPI;WCF-HTTP-Activation;
WCF-NonHTTP-Activation

Building Dashboards in SharePoint and Silverlight

[450]

3. Run the SharePoint installation (C:\SharePointInstall\setup.exe), and
select the standalone installation.

4. When the installation is finished, make sure you install the SQL Server 2008
KB 970315 x64 hotfix: http://support.microsoft.com/kb/970315.

5. When the hotfix is being installed, run the SharePoint 2010 Configuration
Wizard. After the wizard is complete, you should be able to load the default
SharePoint site.

If you experience any issues when creating the SharePoint 2010 configuration
database, you may need to delete the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Shared Tools\Web Server Extensions\14.0\Secure\FarmAdmin registry key
and rerun the SharePoint configuration wizard. Additional details about setting up
SharePoint 2010 on Windows 7 can be found here: http://msdn.microsoft.com/
en-us/library/ee554869(office.14).aspx

Building a Silverlight web part
Now that our SharePoint development environment is set up and ready to go,
let's build a simple "hello world" style Silverlight web part. Later on in the chapter,
we will talk about how to create a Silverlight dashboard and connect it to SharePoint.

To begin building our Silverlight web part, you will need to complete the
following steps:

1. Open Visual Studio 2010, and create a new Silverlight Navigation
Application. When you are prompted to create a website, uncheck the
Host the Silverlight application in a new Web site check box. We do
not need a hosting application, because we will be using SharePoint to
host the application.

Chapter 10

[451]

2. Open the view\home.xaml in the Silverlight application, and add a text block
that says "Hello SharePoint".
<Grid x:Name="LayoutRoot">
 <TextBlock Text=»Hello SharePoint»
 Margin=»10,10,0,0» />
</Grid>

3. To use the Silverlight application you just created in SharePoint, you need
to create a SharePoint project using Visual Studio 2010. Make sure you are
running Visual Studio under elevated Administrator permissions. This is
necessary so we can deploy and debug the application under SharePoint.

4. To load Visual Studio as an administrator, save your work, and close
Visual Studio, then right click on the Visual Studio 2010 shortcut and
select Run as Administrator.

Building Dashboards in SharePoint and Silverlight

[452]

5. Back in Visual Studio, reload your Silverlight project, and add a new
SharePoint 2010 (select Empty SharePoint Project) Project as follows:

6. When the SharePoint customization wizard is displayed, select Deploy as a
sandboxed solution.

Chapter 10

[453]

7. After the wizard is complete, right-click on the SharePoint project in the
solution explorer, and add a new SharePoint module item.

8. Right-click on the newly added module file and select properties. When the
property window is displayed, click on the ellipse button (…) in the Project
Output Reference property.

Building Dashboards in SharePoint and Silverlight

[454]

9. Click the Add button to add a new entry. Expand the deployment location
property. Now change the Deployment Type to ElementFile, and set the
Product Name to the name of your Silverlight project.

10. Expand the module element and delete the Sample.txt file. Open the
Elements.xml file, and remove the file listing for Sample.txt.

11. Add a new entry for your Silverlight application XAP file. The XAP will
be deployed to a document library named Silverlight. Either create the
document library before running this solution, or change the deployed path
to an existing document library.
<?xmlversion="1.0" encoding="utf-8"?>
<Elementsxmlns=»http://schemas.microsoft.com/sharepoint/»>
 <ModuleName=»DashboardModule»>
 <FilePath=»DashboardModule\Chapter10.xap»
 Url=»Silverlight/Chapter10.xap» />
 </Module>
</Elements>

12. At this point, our Silverlight application is ready to be deployed. Right-click
on the project, and set it as the Startup Project, and then right click and select
Properties. When the property dialog appears, click on the SharePoint tab.
Make sure the Enabled Silverlight debugging (instead of Script debugging)
check box is checked. This will allow you to debug the Silverlight application
running under SharePoint. Run the application by pressing F5.

13. Now that your Silverlight application has been deployed to SharePoint,
let's add it to the default SharePoint page by adding a Silverlight web part
(located under the Media and Content Category), and set the path to the URI
for your application XAP file for example, Silverlight/Chapter10.xap.

Chapter 10

[455]

14. When you display your Silverlight application for the first time, it will
appear squished. To modify the width and height of the web part, click on
edit web part, and modify the width to be 400.

Using the Client Object Model
To fully take advantage of hosting your Silverlight application in SharePoint, you
need to use the SharePoint Client Object Model. The Client Object Model offers a rich
API for interacting with SharePoint and content (data) it is hosting. Under the covers,
the Client Object Model calls the SharePoint Window Communication Foundation
(WCF) services. It is possible to call these WCF services directly, but the Client Object
Model offers you a much easier way to interact with SharePoint.

Building Dashboards in SharePoint and Silverlight

[456]

To use the Client Object Model, you need to reference the Silverlight Client Object
Model assemblies (Microsoft.SharePoint.Client.Silverlight.dll and
Microsoft.SharePoint.Client.Silverlight.Runtime.dll). These assemblies
can be found in the %ProgramFiles%\Common Files\Microsoft Shared\web
server extensions\14\TEMPLATE\LAYOUTS\ClientBin folder on your SharePoint
development machine.

To use the SharePoint Client Object Model, you will need to get the current
SharePoint ClientContext.Current context. Using this context, you can access the
website, and list data in SharePoint. The following sample gets the names of all the
lists in SharePoint. The code uses the client context to query SharePoint. A LINQ
expression is defined that includes the list title and its fields. SharePoint will only
return the fields defined in the query. When the query is complete, it will load the
listInfo collection we defined; this is the collection we will use later to access the
returned data from SharePoint.

private IEnumerable<List>listInfo;
void SharePointLists_Loaded(object sender, RoutedEventArgs e)
{
 ClientContext clientContext = ClientContext.Current;
 ListCollection collList = clientContext.Web.Lists;

 listInfo = clientContext.LoadQuery(
 collList.Include(
 list =>list.Title,
 list =>list.Fields.Include(
 field =>field.Title).Where(
 field =>field.Required == true && field.Hidden != true)));

 clientContext.ExecuteQueryAsync(onQuerySucceeded, onQueryFailed);
}

The onQuerySucceded method will be called when the query operation
has completed.

If an error occurs while the query is executing, the onQueryFailed method will be
called. If the query is successful, we need to use the UI dispatcher so that the result
is marshalled to the UI thread. In the DisplayInfo method, we loop through the
listInfo collection we set up previously and create a collection of spLists that will
bind to the data grid.

private void onQuerySucceeded(object sender,
 ClientRequestSucceededEventArgsargs)
{
 this.Dispatcher.BeginInvoke(DisplayInfo);
}

Chapter 10

[457]

private void DisplayInfo()
{
 IList<spList>listData = new List<spList>();

 foreach (List oList in listInfo)
 {
 listData.Add(new spList { Title = oList.Title });
 }

 this.ListGrid.ItemsSource = listData;
}

private void onQueryFailed(object sender,
 ClientRequestFailedEventArgs args)
{
 this.Dispatcher.BeginInvoke(() =>
 {
 MessageBox.Show("Request failed. " + args.Message + "\n" +
 args.StackTrace);
 });
}

In the next sample, we will use the client object model to retrieve the announcement
list from SharePoint. The following screenshot shows the retrieved announcement
displayed in a Silverlight web part:

The following code retrieves a SharePoint list using its title. The ClientContext.
Current method uses the current user credentials to log into SharePoint and
gain access to the host SharePoint website the Silverlight web part is currently
running under.

ClientContext clientContext = ClientContext.Current;
oWebsite = clientContext.Web;
this.oList = oWebsite.Lists.GetByTitle("Announcements");

Building Dashboards in SharePoint and Silverlight

[458]

To get the items from a list, we need to set up a CAML Query and define the fields
to return from the list to get the field using the following pattern item [{FieldName}].
CAML is an XML query language used by SharePoint to filter data returned from a
list. The following CAML query has a row limit set to 100 to restrict the query to only
return 100 rows of data:

CamlQueryc amlQuery = new CamlQuery();
camlQuery.ViewXml = "<View><RowLimit>100</RowLimit></View>";

this.collListItem = oList.GetItems(camlQuery);

clientContext.Load(collListItem,
items =>items.Include(
 item =>item.Id,
 item =>item.DisplayName,
 item => item["Title"],
 item => item["Body"],
 item => item["Expires"],
 item =>item.HasUniqueRoleAssignments));

clientContext.ExecuteQueryAsync(onQuerySucceeded, onQueryFailed);

When the query is returned from executing, we load the data returned in a class
named spAnnouncement by looping through the collection loaded by the CAML
query. We then notify the view that the announcement is ready to be displayed.

public class spAnnouncement
{
 public class spAnnouncement
 {
 public string Title { get; set; }
 public string Body { get; set; }
 public string Expires { get; set; }
 }

 spAnnouncement announcement = new spAnnouncement();

 foreach (ListItem item in this.collListItem)
 {
 announcement.Title = item["Title"].ToString();
 announcement.Body = item["Body"].ToString();
 announcement.Expires = item["Expires"].ToString();
 }

Chapter 10

[459]

Building a SharePoint
Silverlight dashboard
Now that we have a good understanding of what the SharePoint platform offers
and its support for hosting Silverlight applications, let's walk through building a
Silverlight dashboard application that we will host in a SharePoint 2010 website.

Setting up our data source
To keep things simple, we will be using a SharePoint list as our sample's data source.
In most real world scenarios, you would want to use the Business Data Catalog or
deploy your own custom WCF services to the SharePoint server, and use SQL Server
2008 or another RDBMS to host your dashboard's data.

To create the data source for the dashboard, add a new list to SharePoint named
products. After the new list is created, rename the title field to Product Id, you will
still need to use the title field to access the product ID data. Add a ProductName
(string), UnitPrice(Currency), and UnitsInStock (Numeric) to the products list. Add
one or more rows of data to the list using the SharePoint UI.

Building Dashboards in SharePoint and Silverlight

[460]

Building our dashboard
We will be building a simple dashboard that displays the data from the SharePoint
list as read-only text. The number of units available will be displayed using a bar
chart. This will enable the end user to see quickly what products have the highest
and lowest number of items in stock.

1. To build our dashboard application, we will be using the MVVM pattern
and SharePoint Client Object Model we discussed in the previous section. To
get started, let's define a base view model class that has the code for sending
property notification, and a helper method for calling the view's dispatcher.
using System;
usingSystem.ComponentModel;

namespace Chapter10.ViewModel
{
 public class BaseViewModel : INotifyPropertyChanged
 {

 private IView view;
 public BaseViewModel(IView view)
 {
 this.view = view;
 }

 public void CallDispatcher(Action action)
 {
 this.view.ViewDispatcher.BeginInvoke(action);
 }

 public event
 PropertyChangedEventHandler
 PropertyChanged;

 protected void

Chapter 10

[461]

 SendChangedNotification(stringpropertyName)
 {
 if (this.PropertyChanged != null)
 {
 this.PropertyChanged
 (this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
 }
}

2. The next step is to create the product class we will load with the data
returned from SharePoint. We must create a child collection for the Units in
Stock so we can bind the result to the bar chart.
using System.Collections.Generic;

namespace Chapter10.Model
{
 public class Product
 {public class Product
 {
 public string ProductId { get; set; }
 public string ProductName { get; set; }
 public double UnitPrice { get; set; }
 public IList<NameValueItem>UnitsInStock { get; set; }

 public void AddUnitsInStock(int value)
 {
 IList<NameValueItem> data = new List<NameValueItem>();
 data.Add(new NameValueItem {Name = «UnitsInStock»,
 Value = value});
 this.UnitsInStock = data;
 }
 }

 public class NameValueItem
 {public class NameValueItem
 {
 public string Name { get; set; }
 public int Value { get; set; }
 }
}

Building Dashboards in SharePoint and Silverlight

[462]

3. Set up the view for the Dashboard so it contains a data grid. Add the
following text columns to the grid: Product ID, Product Name, and Unit
Price. Add a template column that will display the bar chart for the number
of units in stock.
<navigation:Page x:Class="Chapter10.Views.ShareDashboard"
 xmlns=»http://schemas.microsoft.com/winfx/2006/xaml/
 presentation»
 xmlns:x=»http://schemas.microsoft.com/winfx/2006/xaml»
 xmlns:d=»http://schemas.microsoft.com/expression/blend/2008»
 xmlns:mc=»http://schemas.openxmlformats.org/
 markup-compatibility/2006»
 mc:Ignorable=»d»
 xmlns:navigation=»clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Navigation»
 xmlns:Controls=»clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data» d:DesignWidth=»640»
 d:DesignHeight=»480»
 xmlns:dv=»clr-namespace:System.Windows.Controls.
 DataVisualization.Charting;assembly=System.Windows.Controls.
 DataVisualization.Toolkit»
 xmlns:chartingPrimitivesToolkit=»clr-namespace:System.Windows.
 Controls.DataVisualization.Charting.Primitives;
 assembly=System.Windows.Controls.DataVisualization.Toolkit»
 xmlns:datavis=»clr-namespace:System.Windows.Controls.
 DataVisualization;assembly=System.Windows.Controls.
 DataVisualization.Toolkit» Title=»ShareDashboard Page»>
 <Grid x:Name=»LayoutRoot»>
 <Controls:DataGrid x:Name=»ProductsGrid»
 ItemsSource=»{Binding Products}»
 Margin=»5, 5, 0, 0»
 HorizontalAlignment=»Left»
 VerticalAlignment=»Top»
 Style=»{StaticResourceDataGridStyle}» >
 <Controls:DataGrid.Columns>
 <Controls:DataGridTextColumn Header=»Product
 Id»IsReadOnly=»True» Binding=»{BindingProductId}»
 Width=»150» />
 <Controls:DataGridTextColumn Header=»Product
 Name»IsReadOnly=»True» Binding=»{BindingProductName}»
 Width=»150» />
 <Controls:DataGridTextColumn Header=»Unit
 Price»IsReadOnly=»True» Binding=»{BindingUnitPrice}»
 Width=»100» />
 <Controls:DataGridTemplateColumn Header=»Units in Stock»
 Width=»100*» >
 <Controls:DataGridTemplateColumn.CellTemplate>

Chapter 10

[463]

 <DataTemplate>
 <Grid Height=»30»VerticalAlignment=»Center»
 Margin=»5,5,0,0»>
 <dv:ChartVerticalContentAlignment=»Center»
 HorizontalContentAlignment=»Center»>
 <dv:Chart.LegendStyle>
 <StyleTargetType=»datavis:Legend»>
 <Setter Property=»Width» Value=»0»/>
 <Setter Property=»Height» Value=»0»/>
 </Style>
 </dv:Chart.LegendStyle>
 <dv:Chart.Series>
 <dv:BarSeriesItemsSource=»
 {BindingUnitsInStock}»
 IndependentValueBinding=»{Binding Name}»
 DependentValueBinding=»{Binding Value}»
 Height=»40» >
 </dv:BarSeries>
 </dv:Chart.Series>
 <dv:Chart.Template>
 <ControlTemplateTargetType=»dv:Chart»>
 <chartingPrimitivesToolkit:EdgePanel
 x:Name=»ChartArea» Height=»40»>
 <GridCanvas.ZIndex=»-1» />
 </chartingPrimitivesToolkit:EdgePanel>
 </ControlTemplate>
 </dv:Chart.Template>
 <dv:Chart.Axes>
 <dv:LinearAxis Orientation=»x»
 Opacity=»0»MinWidth=»1» Minimum=»0»
 Maximum=»1000» />
 <dv:LinearAxis Orientation=»y»
 Opacity=»0»MinWidth=»1» />
 <dv:CategoryAxis Orientation=»y»
 Opacity=»0» />
 </dv:Chart.Axes>
 </dv:Chart>
 </Grid>
 </DataTemplate>
 </Controls:DataGridTemplateColumn.CellTemplate>
 </Controls:DataGridTemplateColumn>
 </Controls:DataGrid.Columns>
 </Controls:DataGrid>
 </Grid>
</navigation:Page>

Building Dashboards in SharePoint and Silverlight

[464]

4. In the code behind for the view, implement the IView interface. This is used
for exposing the UI dispatcher to the view model. Make sure you set the data
context for the view to an instance of its view model.
using System.Windows;
using System.Windows.Controls;
using System.Windows.Navigation;
using System.Windows.Threading;
using Chapter10.ViewModel;

namespace Chapter10.Views
{
 public partial classShareDashboard : Page, IView
 {
 {public ShareDashboard()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler
 (ShareDashboard_Loaded);
 }

 void ShareDashboard_Loaded(object sender, RoutedEventArgs e)
 {
 this.DataContext = new DashboardViewModel(this);
 }

 public Dispatcher ViewDispatcher

 {
 get { return this.Dispatcher; }
 }

 // Executes when the user navigates to this page.
 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 }

 }
}

5. In the view model, create a new method named LoadData. Inside of the
method, create the following CAML query. This query will retrieve the listed
fields from the Products List stored in SharePoint.

ClientContext clientContext = ClientContext.Current;
oWebsite = clientContext.Web;
this.oList = oWebsite.Lists.GetByTitle(«Products»);

CamlQuery camlQuery = new CamlQuery();
camlQuery.ViewXml = «<View><RowLimit>100</RowLimit></View>»;

Chapter 10

[465]

this.collListItem = oList.GetItems(camlQuery);

clientContext.Load(collListItem,
 items =>items.Include(
 item =>item.Id,
 item => item[«Title»],
 item => item[«ProductName»],
 item => item[«UnitPrice»],
 item => item[«UnitsInStock»],
 item =>item.HasUniqueRoleAssignments));

clientContext.ExecuteQueryAsync(onQuerySucceeded, onQueryFailed);
 }

6. Add a new property to the view model named Products, and set it up so it
notifies the view when its value changes. We will set this property when the
product list is successfully retrieved from SharePoint.
private IList<Product> products = null;
public IList<Product> Products
{
 get { return this.products; }
 set
 {
 if (this.products != value)
 {
 this.products = value;
 this.SendChangedNotification(
 «Products»);
 }
 }
}

7. Add the OnQuertSucceeded and OnQueryFailed methods to the view
model. The OnQuertSucceeded method will be called when the query
execution is completed. OnQueryFailed will be called if an error occurs when
the query is executed.

8. Add the DisplayInfo method that will be called when the query execution
is completed successfully. This method will loop through the list items
returned from SharePoint and create a collection of products that will bind to
the dashboard.

private voidDisplayInfo()
{
 IList<Product> products = new List<Product>();

 foreach (ListItem item inthis.collListItem)

Building Dashboards in SharePoint and Silverlight

[466]

 {
 Product product = new Product
 {
 ProductId = item[«Title»].ToString(),
 ProductName = item[«ProductName»].ToString(),
 UnitPrice = double.Parse(item[«UnitPrice»].ToString())
 };
 product.AddUnitsInStock(int.Parse(item[«UnitsInStock»].
 ToString()));
 products.Add(product);
 }

 this.Products = products;

}

SharePoint Data Access Strategies
When working with SharePoint, there are several different approaches you can take
for accessing data. While it fairly easy to set up a SharePoint list, it is usually not the
best option for a production application; especially if you have a large amount of
data or a complex data structure. In such cases, you should use a RDMBS database,
such as SQL server, and build custom Windows Communication Foundation (WCF)
services that expose your application data to your Silverlight Dashboard.

If you are using SharePoint Office Server 2010, you can use the Business Connectivity
Services (BCS) to set up number of external data sources, including RDMBS, AS400
Links, or external Web Services. To access the BCS, you need to use the SharePoint
Object Model from your custom Windows Communication Foundation service.

Summary
In this chapter we gave an overview of how to use SharePoint 2010 to host Silverlight
dashboard applications. We walked through how to setup SharePoint 2010 on
Windows 7, and introduced you to building Silverlight web parts and use the
client object model to retrieve data from SharePoint. Whether you are building a
dashboard or other line of business application, the combination of SharePoint and
Silverlight in a powerful platform to utilize.

11
Working with 3D Characters

This	chapter	is	taken	from	3D Game Development with
Microsoft Silverlight 3 Beginner's Guide	(Chapter	4)	by	
Gastón	C.	Hillar.

In order to create a nice 3D scene for a game, we must be able to work with 3D
DCC tools and then be able to load the models in our application. This seems to
be an easy task, involving just a few steps. However, it involves many file format
conversions that usually generate a lot of incompatibilities. There is always
trouble just around the corner when working with 3D meshes.Hence, we must
use the right tools and procedures to achieve our desired result.

In	this	chapter,	we	will	take	3D	elements	from	popular	and	professional	3D	DCC	tools	and	we	
will	show	them	rendered	in	real-time	on	the	screen.	By	reading	it	and	following	the	exercises	
we	will	learn	to:

 � Understand	how	to	work	in	a	3D	world	that	is	shown	in	a	2D	screen

 � Take	advantage	of	3D	DCC	tools	to	create	3D	models	for	our	games

 � Prepare	the	3D	elements	to	be	loaded	into	our	games

 � Understand	hardware	and	software	real-time	rendering	processes

 � Control	transformations	applied	to	meshes	and	3D	elements

Working with 3D Characters

[468]

The second remake assignment
So	far,	we	have	been	working	with	raster	and	vector	based	sprites	in	2D	scenes.	We	were	
able	to	use	a	good	object-oriented	design	to	generalize	the	most	common	tasks	related	to	
sprite	management.	However,	our	first	goal	is	to	develop	3D	scenes	using	Silverlight	3.	How	
can	we	load	and	display	3D	characters	in	a	3D	space	using	Silverlight?

We	can	do	this	by	exploiting	the	powerful	features	offered	by	many	3D	DCC	tools	to	create	and	
export	3D models	to	the	file	formats	that	are	compatible	with	the	Silverlight	3D engine.	Then,	
we	can	combine	these	models	with	a	good	object-oriented	design	and	we	will	be	able	to	use	
similar	principles	to	the	ones	learned	for	raster	and	vector	based	sprites,	but	working	in	a	3D	
space.	It	is	time	to	begin	working	with	3D	games,	in	particular	a	3D	space	invaders	game.

The	key	to	success	is	preparing	the	3D	models	before	exporting	them	to	the	
required	file	formats.	We	must	understand	how	3D	DCC	tools	work	in	order	
to	create	compatible	models	for	our	games.	

Time for Action – exporting a 3D model without
considering textures
The	vector-based	prototype	of	the	remake	was	indeed	successful.	You	have	signed	your	first	
contract	to	develop	a	new	remake!	This	time,	you	will	have	to	create	a	3D	remake.	Your	first	
assignment	is	to	work	with	a	3D	digital	artist	to	choose	a	3D	model	for	the	spaceship.	In	
order	to	do	so,	you	have	to	watch	the	model	being	rendered,	and	rotate	it	in	the	3D	space.	
This	will	allow	you	and	the	3D	digital	artist	to	decide	whether	the	spaceship	is	suitable	or	not	
for	this	new	game.

The	3D	digital	artist	has	been	creating	3D	models	for	DirectX	games.	Therefore,	he	is	used	to	
working	with	the	DirectX	.x	file	format.	As	you	do	not	know	the	appropriate	3D	engine	to	use	
with	Silverlight	in	order	to	load	the	model,	your	first	tests	will	be	done	using	an	XBAP	WPF	
application	and	an	XAML	3D	model.	This	will	allow	you	to	interact	with	the	3D	model.

Chapter 11

[469]

First,	we	are	going	to	convert	the	model	to	the	XAML	file	format	using	an	open	source	
3D	DCC	tool:

1. Download	the	spaceship	model	in	Direct	X	.x	format	from	XNA	Fusion's	website	
(http://www.xnafusion.com).	This	website	offers	many	3D	models	with	low	
polygon	counts,	with	a	Creative	Commons	License	(http://creativecommons.
org/licenses/by/3.0),	appropriate	for	usage	in	games	using	real-time
rendering.	The	link	for	the	spaceship	preview	http://www.xnafusion.
com/?p=97	and	the	link	for	downloading	the	compressed	(.zip)	file	with	the	
model	and	the	textures	is	http://www.xnafusion.com/wp-content/
uploads/2009/02/ship_06.zip.	Save	all	the	uncompressed	files	and	folders	
in a new folder (C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01).	
The	decompression	process	will	create	two	new	folders:	Models and Textures.

This 3D model, called Ship_06,	was	created	by	Skonk	(e-mail:	
skonk@xnafusion.com).	You	are	free	to	use,	modify	and	share	
the	content	providing	credit	is	given	to	the	author.

2. You	can	preview,	zoom,	and	rotate	the	DirectX	.x	format	using	the	DirectX	
Viewer	included	in	DirectX	Software	Development	Kit.	You	can	download	
and install it from http://www.microsoft.com/downloads/details.
aspx?FamilyID=24a541d6-0486-4453-8641-1eee9e21b282&disp
laylang=en.	Once	installed,	you	can	preview	the	.x	files,	as	shown	in	the	
following	screenshot,	by	double	clicking	on	them	in	Windows	Explorer:

Working with 3D Characters

[470]

3. If	you	do	not	have	it	yet,	download	and	install	Blender	
(http://www.blender.org/download/get-blender/).

Blender	is	an	excellent	open	source	3D	DCC	tool	available	for	all	major	
operating	systems.	It	is	distributed	under	the	GNU	General	Public	License	
(http://www.blender.org/education-help/faq/gpl-for-
artists/).	The	creation	of	3D	architectural	visualizations	of	buildings,	
interiors,	and	environmental	scenery	using	Blender	is	described	in	depth	in	
Blender 3D Architecture, Buildings, and Scenery	by	Allan	Brito,	Packt	Publishing.

4. Download	the	latest	version	of	the	XAML	Exporter	for	Blender	from	
http://xamlexporter.codeplex.com/.	For	example,	one	of	the	latest	versions	
is http://xamlexporter.codeplex.com/Release/ProjectReleases.
aspx?ReleaseId=25481#DownloadId=63694.	This	script	is	developed	
by	TheRHogue	and	released	under	the	Microsoft Public License (Ms-PL).

5. Save	the	downloaded	Python	script	(the	file	with	the	.py	extension)	to	Blender's	
scripts	folder.	By	default,	it	is	C:\Program Files\Blender Foundation\.
blender\scripts.	The	filename	for	the	version	v0.48	of	this	script	is	
xaml_export.py.	On	some	installations,	the	location	for	Blender's	scripts	
folder could also be C:\Documents and Settings\<username>\
Application Data\Blender Foundation\Blender\.blender\scripts.

6. Start	Blender.	Right-click	on	the	cube	(represented	by	a	square	in	
the	view).	Press	Del and click on Erase selected object(s).	This	step	is	
necessary	because	we	do	not	want	the	cube	in	our	new	3D	model.

7. Select File | Import | DirectX (.x)….	Browse	to	the	folder	that	holds	the	.x	file	
(C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01\Models)	and	
select	the	file	to	import,	Ship_06.x.	Then,	click	on	Import DirectX.	The	
spaceship	mesh's	default	top	view	will	appear	on	the	screen,	as	shown	in	the	
following	screenshot:

Chapter 11

[471]

8. Save	the	model	in	Blender's	native	format.	It	will	be	useful	for	further	format	
conversions.	Select	File | Save….	Browse	to	the	folder	created	to	hold	the	new	
models (C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01)	and	enter	
the desired name, Ship01.blend.	Then,	click	on	Save As.	Now,	the	model	is	
available	to	be	loaded	in	Blender	without	the	need	to	follow	the	aforementioned	steps.

9. Click	on	Select | Select/Deselect All	in	the	menu	that	appears	at	the	bottom	of	
the	3D	model.	There	will	be	no	elements	selected	on	the	viewport,	as	shown	in	
the	following	screenshot:

10. Click	on	Select | Select/Deselect All	again.	Now,	you	will	see	all	the	elements	
selected	on	the	viewport.	These	two	steps	are	necessary	to	ensure	that	all	the	
elements	are	going	to	be	exported	in	the	new	file	format.

11. Now, select File | Export | XAML (.xaml)…	in	the	main	menu.	The	default	folder	
will	be	the	same	as	the	one	used	in	the	previous	step.	Hence,	you	will	not	need	to	
browse	to	another	folder.	Enter	the	desired	name,	Ship01.xaml.	Then,	click	on	
Export Xaml.	Now,	the	model	is	available	as	an	XAML	3D	model.

Working with 3D Characters

[472]

12. Select View | Camera	in	the	menu	that	appears	at	the	bottom	of	the	3D	model.	
The	spaceship	mesh	will	appear	as	seen	by	the	active	camera.	Select	Render |
Render current frame	in	the	main	menu	and	a	new	window	will	appear	showing	
the	spaceship	rendered	by	Blender's	internal	render	engine,	without	using	
the	texture	to	envelope	the	mesh,	as	shown	in	the	following	screenshot:

What just happened?
We	used	Blender's	import	and	export	capabilities	to	convert	an	existing	3D	model	designed	
to	work	with	DirectX	or	XNA	Framework	to	the	new	XAML	3D	file	format.	We	imported	the	
DirectX	.x	model	into	Blender	and	then	we	exported	it	to	XAML.

We	used	the	default	camera	to	render	the	model	without	textures	on	a	2D	screen.	The	
rendering	process	takes	a	few	seconds	to	show	the	results,	because	it	is	focused	on	offering	
an	accurate	scene.	When	we	render	a	scene	using	3D	DCC	tools	like	Blender	or	3D	Studio	
Max,	they	take	the	necessary	time	to	offer	the	best	possible	2D	image	that	represents	the	
3D	scene,	according	to	the	rendering	technique	used.

However,	3D	games	need	to	show	many	3D	models	performing	animations	on	the	screen	
in real-time.	They	require	many	successive	rendering	processes	per	second,	in	order	to	
generate	many	2D	images,	representing	the	3D	scene,	per	second.	A	3D	game	needs	more	
than	30	frames	per	second	(FPS)	to	create	a	fluid	animation.

Chapter 11

[473]

For	this	reason,	the	real-time	rendering	engines	used	for	3D	games	require	
3D	models	with	a	lower	polygon	counts	than	the	ones	used	to	create	realistic	
3D	scenes	in	3D	DCC	tools.	On	one	hand,	this	reduces	the	rendering	process'	
accuracy,	but	on	the	other	hand,	it	allows	the	game	to	show	a	fluid	animation.

The	animation	speed	is	often	more	important	than	the	scene's	definition	in	a	3D	game.	A	
game	showing	excellent	scenes	but	running	at	less	than	5	FPS	does	not	make	sense.	It	will	
make	the	player	quit	the	game	as	soon	as	he	notices	the	low	animation	speed.	A	3D	game	
needs	to	provide	a	real-time	response	to	the	player.

XAML 3D models
If we	open	the	previously	exported	XAML	3D	model	(Ship01.xaml)	using	Internet	
Explorer,	it	will	show	us	the	3D	spaceship	rendered	in	the	browser's	window,	as	shown	
in	the	following	screenshot:

Working with 3D Characters

[474]

This happens	because	the	XAML	3D	model	includes	a	definition	for	a	3D	viewport	and	a	
camera	targeting	the	model	(the	spaceship).	Internet	Explorer	is	performing	the	rendering	
process	necessary	to	display	a	3D	model	defined	using	XAML	in	a	2D	screen.

We	can	display	an	XAML	3D	model	in	any	WPF	application.	We	can	create	a	3D	model	using	
XAML	directives.	However,	this	does	not	make	sense	when	working	with	3D	games.	We	
would	need	a	few	days	to	create	the	spaceship	model	writing	XAML	code.	As	previously	
explained	for	2D	art	assets,	drawing	is	easier	than	writing	XAML	code.	3D	modelling	is	also	
easier	and	more	efficient	than	writing	XAML	code	to	define	the	3D	meshes	that	represent	
the	model.	Besides,	you	are	working	with	a	great	3D	digital	artist	that	will	provide	you	with	
the	necessary	3D	models	for	your	games.

We can	also	preview	an	XAML	3D	model	copying	and	pasting	the	XAML	code	in	XamlPad,	as	
shown	in	the	following	screenshot:

The	creation	of	XAML	3D	models	by	writing	XAML	code	is	described	in	depth	in	3D
Programming for Windows Three-Dimensional Graphics Programming for the Windows
Presentation Foundation	by	Charles	Petzold,	Microsoft	Press.

Chapter 11

[475]

Time for action – from DCC tools to WPF
Now,	we	are	going	to	display	the	XAML	3D	model	exported	from	Blender	in	an	
XBAP	WPF	application:

1. Create	a	new	C#	project	using	the	WPF Browser Application	template	in	Visual	
Studio	or	Visual	C#	Express.	Use	3DInvadersXBAP	as	the	project's	name.

2. Open	the	file	that	defines	the	XAML	3D	model	using	Notepad	or	any	
other	text	editor.	Select	all	the	content	and	copy	it	to	the	clipboard.

3. Open	the	XAML	code	for	Page1.xaml	(double-click	on	it	in	the	Solution Explorer)	
and	paste	the	previously	copied	XAML	3D	model	after	the	line	that	begins	defining	
the main Grid (<Grid>).	You	will	see	the	spaceship	appear	in	the	page	in	the	
designer	window.	You	can	understand	how	an	XAML	3D	model	is	defined	and	
inserted in a Viewport3D	container	navigating	through	the	document's outline,
as	shown	in	the	following	screenshot:

Working with 3D Characters

[476]

4. Build	and	run	the	solution.	The	default	web	browser	will	appear	showing	the	
spaceship	rendered	in	the	2D	window.	Resize	the	web	browser's	window	and	
the	model	will	scale.	This	time,	it	is	running	an	XBAP	WPF	application.

What just happened?
We	showed	the	spaceship	rendered	in	a	viewport	just	copying	and	pasting	the	XAML	3D	
model	definition	previously	exported	from	a	3D	DCC	tool.

One	of	the	great	advantages	of	WPF	applications	is	that	we	can	preview	the	XAML	3D	model	
in	design-time.	We	can	also	see	the	changes	while	we	modify	the	properties	in	XAML	code.

XBAP WPF applications with 3D content
The key is the Viewport3D element (System.Windows.Controls.Viewport3D).	It	
allows	the	definition	of	3D	elements	like	cameras,	models,	meshes,	lights,	materials,	
and	3D	transforms,	among	others.

This	line	defines	the	Viewport3D	element.	The	XAML	export	filter	created	it:

<Viewport3D xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

Inside	the	Viewport3D,	we	can	find	the	Viewport3D.Camera	element	that	defines	a	
camera	targeting	the	model	and	the	ModelVisual3D element (System.Windows.
Media3D.ModelVisual3D)	that,	in	this	case,	defines	many	transformations,	lights,	
materials,	brushes	and	meshes.

We	did	not	need	to	write	a	single	line	of	code	to	preview	and	display	the	3D	model	exported	
from	the	3D	DCC	tool.	The	tool	created	the	necessary	XAML	code	to	describe	the	viewport,	
a	camera	and	the	model's	components,	as	shown	in	the	following	screenshot	presenting	a	
more	complete	document's	outline:

Chapter 11

[477]

Time for action – displaying a 3D model in a 2D screen
with WPF

The 3D digital	artist	is	still	waiting	to	see	the	spaceship	from	different	angles.	He	needs	
to	know	if	the	model	is	appropriate	for	your	game.	You	want	to	see	the	ship	moving	and	
rotating	in	the	screen.	In	order	to	do	this,	we	must	add	some	transformations	and	some	
code	to	control	them.	We	will	add	both	XAML	and	C#	code:

1. Stay in the 3DInvadersXBAP	project.

Working with 3D Characters

[478]

2. Open	the	XAML	code	for	Page1.xaml and add the following lines of
code	after	<ModelVisual3D>	(we	are	adding	transformations	for	the	
ModelVisual3D	element):
<ModelVisual3D.Transform>
 <Transform3DGroup>
 <RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D x:Name="rotateShip" Axis="1 0 0"
 Angle="100" />
 </RotateTransform3D.Rotation>
 </RotateTransform3D>
 <TranslateTransform3D x:Name="translateShip" OffsetX="0.0"
 OffsetY="0.0" OffsetZ="0.0" />
 <ScaleTransform3D x:Name="scaleShip" ScaleX="0.5"
 ScaleY="0.5" ScaleZ="0.5" />
 </Transform3DGroup>
</ModelVisual3D.Transform>

3. You will	see	the	spaceship	rotated	and	scaled	down,	as	shown	in	the	
following	screenshot:

Chapter 11

[479]

4. Change	the	definition	of	the	Grid element by the following (the grid must be
focusable	and	we	are	defining	an	event	handler	to	capture	the	keys	pressed):

<Grid x:Name="grdGrid" KeyDown="Grid_KeyDown" Focusable="True">

5. Now,	expand	Page1.xaml	in	the	Solution	Explorer	and	open	Page1.xaml.cs—the
C#	code	for	Page1.xaml.	(double-click	on	it).	We	need	to	add	an	event	handler	to	
change	the	values	of	some	properties	for	the	previously	defined	transformations	
according	to	the	keys	pressed.

6. Add	the	following lines of code in the public partial class Page1 : Page,
to	program	the	event	handler	for	the	KeyDown	event:

private void Grid_KeyDown(object sender, KeyEventArgs e)
{
 switch (e.Key)
 {
 // Move the ship in the X; Y and Z axis
 case Key.Left:
 translateShip.OffsetX -= 0.05f;
 break;
 case Key.Right:
 translateShip.OffsetX += 0.05f;
 break;
 case Key.Up:
 translateShip.OffsetY += 0.05f;
 break;
 case Key.Down:
 translateShip.OffsetY -= 0.05f;
 break;
 case Key.Z:
 translateShip.OffsetZ -= 0.05f;
 break;
 case Key.X:
 translateShip.OffsetZ += 0.05f;
 break;
 // Rotate the ship
 case Key.G:
 rotateShip.Angle -= 1;
 break;
 case Key.H:
 rotateShip.Angle += 1;
 break;
 }
}

Working with 3D Characters

[480]

7. Add	the	following	line	of	code	to	the	constructor	after	the	line	
InitializeComponent();	(we	set	the	focus	to	the	grid	to	capture	
the	keyboard	events):

grdGrid.Focus();

8. Build	and	run	the	solution.	The	default	web	browser	will	appear	showing	the	
spaceship	3D	model	rendered	in	the	2D	screen.	Use	the	cursor	movement	keys	
and the Z and X	keys	to	move	the	spaceship	in	the	X,	Y,	and	Z	axis.	Use	the	G and
H	keys	to	rotate	the	spaceship.	You	will	see	the	spaceship	moving	and	rotating	in	
real-time	inside	the	web	browser's	viewport	as	shown	in	the	following	screenshot:

What just happened?
The	3D	digital	artist	could	move	and	rotate	the	spaceship	in	real-time.	You	have	decided	that	
the	spaceship	is	suitable	for	this	new	game.	The	same	code	base	could	be	used	for	many	
other	3D	models	in	order	to	watch	them	from	different	angles.

We	changed	the	definition	of	the	Grid element to allow it to be focusable
(Focusable="True"),	because	we	wanted	to	capture	the	keys	pressed	by	the	
user.	Besides,	we	defined	an	event	handler	for	the	KeyDown	event.

Chapter 11

[481]

Understanding the 3D world
We added tree transforms for the ModelVisual3D	that	contains	the	meshes	that	define	
the	3D	model.	They	transform	the	model,	not	the	camera.	However,	the	model	is	viewed	
through	the	camera	defined	in	the	Viewport3D	container.	This	is	one	of	the	main	
differences	between	the	2D	world	and	the	3D	world.

In	a	2D	scene,	we	can	easily	understand	dimensions,	because	we	work	with	pixels	and	a	
great	pixel	grid.

In	a	3D	scene,	the	active	camera	defines	an	eye	for	the	models.	Hence,	when	this	scene	
is	rendered	in	a	2D	screen,	we	can	see	a	part	of	the	entire	3D	world	through	the	camera's	
lens.	The	camera	changes	the	perspective	for	the	3D	models	that	compose	the	3D	world.	
Hence,	we	work	with	relative	dimensions,	because	what	is	seen	in	the	2D	screen	can	change	
according	to	the	camera	used	and	its	properties.

In	this	case,	we	apply	the	transforms	to	the	model	and	we	are	keeping	the	camera	stationary.	
We	defined	a	Transform3DGroup	to	group	the	three	transforms.

The ScaleTransform3D, named scaleShip, enables us to change its ScaleX, ScaleY,
and ScaleZ	properties	to	shrink	or	stretch	the	meshes	that	compose	the	model.	This	is	done	
in	the	following	line:

<ScaleTransform3D x:Name="scaleShip" ScaleX="0.5" ScaleY="0.5"
 ScaleZ="0.5" />

Initially,	we	scale	down	the	spaceship	proportionally	to	50%	of	its	original	size.

The TranslateTransform3D, named translateShip,	enables	us	to	move	the	model's	
meshes	through	the	3D	space.	We	can	do	this	changing	its	OffsetX, OffsetY, and
OffsetZ	properties	in	order	to	change	its	position	in	the	X;	Y	and	Z	axis.	This	is	done	in	
the	following	line:

<TranslateTransform3D x:Name="translateShip" OffsetX="0.0"
 OffsetY="0.0" OffsetZ="0.0" />

The RotateTransform3D	is	a	little	more	complex,	because	it	adds	a	Rotation and an
AxisAngleRotation3D named rotateShip.	It	enables	us	to	rotate	the	model's	meshes	
through	its	X-axis.	We	can	do	this	by	changing	its	Angle	property	to	rotate	the	model	around	
its	defined	central	point.	This	is	done	in	the	following	lines:

<RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D x:Name="rotateShip" Axis="1 0 0" Angle="100"
 />
 </RotateTransform3D.Rotation>
</RotateTransform3D>

Working with 3D Characters

[482]

The	central	points	can	be	defined	in	the	RotateTransform3D element, using the CenterX,
CenterY, and CenterZ	properties.	In	this	case,	we	defined	a	single	rotation,	around	the	
X-axis.	However,	we	can	add	more	RotateTransform3D	groups	to	define	new	rotations	
around	different	axes.	The	Axis	property	specifies	the	axis	that	will	rotate	according	to	
the	value	assigned	to	the	Angle	property.	It	requires	three	binary	numbers	separated	by	a	
space,	a	1	indicates	that	the	axis	represented	in	the	position	(X;	Y	and	Z)	should	rotate.	For	
example,	the	following	line	indicates	that	the	rotation	should	be	done	in	the	X-axis

<AxisAngleRotation3D x:Name="rotateShip" Axis="1 0 0" Angle="100" />

If	we	want	to	rotate	in	the	Y-axis,	we	should	change	Axis="1 0 0" by Axis="0 1 0".

We	can	define	many	RotateTransform3D	groups,	like	in	the	following	lines	of	code,	in	which	
we	create	three	independent	rotations:	rotateShipX, rotateShipY, and rotateShipZ:

<RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D x:Name="rotateShipX" Axis="1 0 0"
 Angle="100" />
 </RotateTransform3D.Rotation>
</RotateTransform3D>
<RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D x:Name="rotateShipY" Axis="0 1 0" Angle="50"
 />
 </RotateTransform3D.Rotation>
</RotateTransform3D>
<RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D x:Name="rotateShipZ" Axis="0 0 1" Angle="25"
 />
 </RotateTransform3D.Rotation>
</RotateTransform3D>

One	of	the	simplest	ways	of	mastering	the	3D	world	and	understanding	how	
3D	models	move	in	the	3D	space	is	defining	transformations	and	changing	
the	values	of	their	properties.	Using	a	WPF	application	and	XAML	code,	
we	can	see	a	preview	in	real-time,	while	we	change	the	rotation	values,	as	
shown	in	the	following	screenshot	that	presents	the	spaceship	with	the	
three	aforementioned	rotations	defined:

Chapter 11

[483]

X, Y, and Z in practice
As	previously	explained,	the	2D	world	uses	a	bi-dimensional	coordinate	system.	The	3D	
world	uses	a	three-dimensional	coordinate	system.	It	adds	the	Z-axis.	However,	WPF	
also	changes	the	way	the	Y-axis	works	in	the	3D	world,	because	the	model	moves	up	
when	the	Y-axis	increases.

Working with 3D Characters

[484]

The	following	diagram	illustrates	the	way	the	X-coordinate,	Y-coordinate,	and	Z-coordinate	
values	work	to	display	elements	in	a	3D	scene:

- (reduce)

- (reduce)

- (reduce)

Y axis

X axis

Z axis

+ (increase)

+ (increase)

+ (increase)

The	following	list	explains	the	previous	diagram	in	detail:

 � If	we	want	to	move	right,	we	must	increase	the	X-coordinate's	value

 � If	we	want	to	move	left,	we	must	reduce	the	X-coordinate's	value

 � If	we	want	to	move	up,	we	must	increase	the	Y-coordinate's	value

 � If	we	want	to	move	down,	we	must	reduce	the	Y-coordinate's	value

 � If	we	want	to	move	front,	we	must	increase	the	Z-coordinate's	value

 � If	we	want	to	move	back,	we	must	reduce	the	Z-coordinate's	value

Nevertheless,	we	must	be	very	careful,	because	the	three-dimensional	
coordinate	system	used	in	our	games	will	be	relative	to	the	active	camera.	The	
camera's	position	and	its	target	in	the	3D	space	will	set	the	baselines	for	the	
three-dimensional	coordinate	system.	A	camera	can	view	the	three-dimensional	
coordinate	system	from	any	direction.

The	code	programmed	in	the	KeyDown	event	handler	takes	into	account	the	key	that	
is	pressed	and	reduces	or	increases	the	value	of	the	OffsetX, OffsetY, or OffsetZ
properties	for	the	translate	transform.

It also changes the Angle	value	of	the	previously	explained	X-axis	rotate	transform.

GPU 3D acceleration
Real-time	rendering	of	3D	scenes	is	a	very	complex	process.	On	one	hand,	we	have	a	screen	
capable	of	showing	2D	images	(X	and	Y),	but	on	the	other	hand,	we	have	3D	models	in	a	
3D	world	(X,	Y,	and	Z).	There	is	a	very	easy	to	understand	asymmetry	problem.	Therefore,	
in	order	to	show	the	3D	scene	in	a	2D	screen,	a	rendering	process	must	create	a	2D	image	

Chapter 11

[485]

in	a	specific	resolution	that	shows	the	portion	of	the	whole	3D	world	seen	by	the	lens	of	an	
active	camera.	The	screen	can	display	the	resulting	2D	image.

The	rendering	process	for	a	single	frame	requires	thousands	of	complex	mathematics	
operations.	We	need	a	performance	of	at	least	30	FPS	to	create	a	responsive	3D	game.	
For	this	reason,	the	real-time	rendering	process	will	require	hundreds	of	thousands	of	
mathematics	operations	per	second.

Therefore,	there	is	specialized	hardware	dedicated	to	accelerating	real-time	3D	rendering	
processes.	We	have	already	talked	about	GPUs.

WPF	and	XBAP	WPF	applications	take	advantage	of	the	presence	of	GPUs	to	perform	
real-time	3D	rendering	processes.	Hence,	they	can	offer	great	performance	for	3D	games	
that	need	to	render	complex	models.

So	far,	Silverlight	3	does	not	offer	the	possibility	to	use	a	GPU	to	perform	real-
time	3D	rendering	processes.	When	working	with	Silverlight,	we	will	have	to	
use	software	based	rendering.	This	means	that	the	rendering	process	will	run	
on	the	CPU(s)	and	their	available	processing	cores.	Hence,	if	we	need	more	
power	for	our	game,	we	can	take	advantage	of	XBAP	WPF	applications'	advanced	
capabilities.

Understanding meshes
In	the	following	diagram,	we	can	see	the	wire-mesh	view	of	the	3D	model	that	represents	
the	spaceship:

Working with 3D Characters

[486]

This	mesh	defines	the	spaceship	using	many	primitive	elements	(points,	lines,	triangles,	and	
polygons).	We	can	use	materials	and	textures	to	paint	and	envelope	the	different	faces.	As	
we	can	see,	this	is	a	wire-mesh	with	a	low	polygon	counts.	This	is	very	important,	because	3D	
DCC	tools	are	able	to	work	with	meshes	with	hundreds	of	thousands	of	polygons.	However,	
they	would	require	too	much	processing	time	to	successfully	render	them	in	real-time.	We	
must	remember	that	we	must	show	at	least	30	FPS.

We	can	understand	how	to	work	with	meshes	using	3D	DCC	tools.	They	will	
provide	us	an	interactive	experience	with	the	3D	models	and	we	will	be	able	to	use	
this	knowledge	in	developing	3D	games	that	interact	with	meshes	and	models.	

We	are	going	to	work	with	3D	DCC	tools	in	order	to	create	the	3D	models	and	their	meshes	
for	our	games.

Time for action – using other XAML exporter for DCC tools
The	3D	digital	artist	has	to	develop	new	models	for	the	game.	However,	he	is	going	to	
develop	them	using	3D	Studio	Max.	He	wants	to	see	a	few	spheres	in	the	scene	to	check	
whether	the	XAML	exporter	he	found	works	fine	or	not.

Now,	we	are	going	to	convert	the	model	to	the	XAML	file	format	using	an	open	source	XAML	
exporter	for	3D	Studio	Max:

1. Download	the	most	recent	release	of	the	XAML	exporter	for	3D	
Studio	Max	from	http://max2xaml.codeplex.com/.

Timmy	Kokke	(Sorskoot)	developed	the	XAML	exporter	for	3D	Studio	Max	
as	an	open	source	project	in	CodePlex.

2. Save	all	the	uncompressed	files	in	a	new	folder	(C:\Silverlight3D\
Invaders3D\3DModels\MAX_XAML_EXPORTER).	The	decompression	
process	will	create	three	files:	XamlExport.ms, Main.ms, and Utils.ms.

3. Now,	start	3D	Studio	Max.

3D	Studio	Max	is	commercial	software.	However,	you	can	download	a	free	
fully	functional	30-day	trial	for	non-commercial	use	from	Autodesk's	website:	
http://usa.autodesk.com/

Chapter 11

[487]

4. Add	three	spheres	using	15	segments	and	assign	each	one	a	material,	as	shown	
in	the	following	screenshot:

5. It	is	very	important	to	assign	a	material	to	each	element,	because	if	there	is	an	
element	without	a	material,	the	script	used	to	export	to	XAML	will	not	work.	If	you	
are	facing	problems,	remember	that	the	3D	digital	artist	left	the	spheres.max	file	
in the following folder (C:\Silverlight3D\Invaders3D\3DModels\SPHERES).

6. Save	the	file	using	the	name	spheres.max	in	the	aforementioned	folder.

7. Select MAXScript | Run script….	Browse	to	the	folder	in	which	you	decompressed	
the	export	scripts	(C:\Silverlight3D\Invaders3D\3DModels\MAX_XAML_
EXPORTER)	and	choose	Main.ms.	Then,	click	on	Open.	A	new	window	will	
appear	showing	the	title	Max2Xaml.

8. Click	on	Export.	Browse	to	the	same	folder	in	which	you	saved	the	original	3D	Studio	
Max	model	and	enter	spheres.xaml in the Name	textbox.	Then,	click	on	Save.
The	exporter	will	show	the	XAML	output.	Now,	the	model	is	available	as	an	XAML	
resource dictionary.

What just happened?
We	used	an	open	source	XAML	exporter	to	create	an	XAML	3D	model	from	a	3D	Studio	Max	
file.	However,	we	cannot	preview	the	model	using	a	web	browser	or	XamlPad,	as	previously	
done	with	the	spaceship.

Working with 3D Characters

[488]

This	XAML	exporter	creates	a	resource	dictionary	with	all	the	data	for	the	meshes	and	
materials.	Hence,	there	is	no	Viewport3D	definition.	We	will	have	to	work	a	bit	harder	
to	include	the	meshes	in	a	3D	scene.

Time for action – adding 3D elements and interacting with
them using Expression Blend
Now,	we	are	going	to	add	the	3D	elements	exported	from	3D	Studio	Max	to	our	existing	
XBAP	WPF	application:

1. Open	the	project	3DInvadersXBAP	in	Expression	Blend.

2. Select Project | Add existing item….	Choose	the	previously	exported	
spheres.xaml and click on Open.

3. Click	on	the	Resources	panel	and	expand	spheres.xaml.	You	will	see	three	
MeshGeometry3D, three MaterialGroup, and a Model3DGroup listed,
as	shown	in	the	following	screenshot:

4. Now,	open	the	XAML	code	for	Page1.xaml and add the following lines of code
after	the	Page	definition	(we	are	merging	the	resource	dictionary	that	contains	
the	definition	for	the	3D	elements	in	the	main	page):

<Page.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="spheres.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Page.Resources>

Chapter 11

[489]

You	can	also	do	the	previous	step	without	adding	any	code,	by	right-clicking	on	
the Page	element	and	selecting	Linking to Resource Dictionary, spheres.
xaml.

5. Add	the	following	code	after	the	line	</Viewport3D.Camera> that ends the
definition	for	the	camera	element	(we	are	adding	a	new	GeometryModel3D
element	for	each	sphere,	using	the	names	sphere01, sphere02, and sphere03):

<ModelVisual3D>
 <ModelVisual3D.Content>
 <GeometryModel3D x:Name="sphere01" />
 </ModelVisual3D.Content>
</ModelVisual3D>
<ModelVisual3D>
 <ModelVisual3D.Content>
 <GeometryModel3D x:Name="sphere02" />
 </ModelVisual3D.Content>
</ModelVisual3D>
<ModelVisual3D>
 <ModelVisual3D.Content>
 <GeometryModel3D x:Name="sphere03" />
 </ModelVisual3D.Content>
</ModelVisual3D>

6. Click	on	Viewport3D under Objects and Timeline	and	expand	its	children.	Select	
sphere01 go to its Properties	tab.

7. Expand	Miscellaneous, click on Geometry and select Local resource | gSphere01
from	the	context	menu	that	appears.	This	step	assigns	the	MeshGeometry3D
resource	defined	in	the	resource	dictionary.

Working with 3D Characters

[490]

8. Expand	Materials, click on Material and select Local resource | m01_-_Default from
the	context	menu	that	appears.	This	step	assigns	the	MaterialGroup resource
defined	in	the	resource	dictionary.	Now,	you	will	see	a	new	sphere	in	the	scene,	
as	shown	in	the	following	screenshot:

9. Go	back	to	the	XAML	code	and	you	will	see	that	new	code	was	added	to	the	
GeometryModel3D	element.	The	line	that	defines	this	element	will	be	this:

<GeometryModel3D x:Name="sphere01"
 Geometry="{DynamicResource gSphere01}"
 Material="{DynamicResource m01_-_Default}" />

10. Repeat	the	steps	6	to	9	for	the	other	two	spheres,	sphere02 and sphere03,
assigning them the MeshGeometry3D gSphere02 and gSphere03, and
then the MaterialGroup m02_-_Default and m03_-_Default.

Chapter 11

[491]

What just happened?
We	added	the	XAML	3D	models	created	in	3D	Studio	Max	to	our	3D	scene	in	an	XBAP	
WPF	application.

First,	we	added	the	resource	dictionary	to	the	solution.	Then,	we	created	new	
GeometryModel3D	elements	for	each	sphere.	Finally,	we	assigned	the	mesh	
definitions	and	the	materials	to	each	sphere.

Interacting with 3D elements using Expression Blend
Expression	Blend	is	very	helpful	when	we	need	to	interact	with	3D	elements	contained	in	
a Viewport3D.	We	can	see	and	change	properties	for	the	3D	elements	that	generate	the	
scene.	Therefore,	we	can	also	learn	how	things	work	in	the	3D	space	without	the	need	to	
write	XAML	code.

Visual	Studio	shows	a	preview	of	the	scene,	but	it	does	not	allow	the	same	interaction	than	
this	tool.	Expression	Blend	allows	us	to	interact	visually	with	the	3D	elements,	offering	the	
possibility	to	design	the	scenes	placing	and	moving	elements.	For	example,	we	can	rotate	the	
spaceship	using	the	mouse,	as	shown	in	the	following	diagram:

Working with 3D Characters

[492]

Silverlight and the 3D world
So far,	we	have	been	adding	3D	models	to	an	XBAP	WPF	application.	We	exported	the	
models	from	Blender	and	3D	Studio	Max	and	we	were	able	to	include	them	in	a	3D	scene.	
However,	we	want	to	do	this	using	Silverlight,	which	does	not	have	official	support	for	3D	
XAML	models.	How	can	we	create	3D	scenes	using	real-time	rendering	in	Silverlight	3?	

We	can	do	this	using	a	3D	graphics	engine	designed	to	add	software	based	real-time	
rendering	capabilities	to	Silverlight.	We	have	two	excellent	open	source	alternatives	
for	this	goal:

 � Kit3D	(http://www.codeplex.com/Kit3D).	It	is	developed	by	Mark	Dawson.	
Matches	the	System.Windows.Media.Media3D	namespace	from	WPF.	It	offers	
a	subset	of	WPF	3D	capabilities	and	it	offers	a	very	fast	rendering	pipeline.	Its	main	
drawback	is	that	it	does	not	offer	a	mechanism	to	load	meshes.	Therefore,	you	have	
to	create	the	meshes	using	C#	code.	It	is	a	good	alternative	for	3D	games	that	use	
simple	basic	meshes	like	boxes,	cubes,	and	spheres.

 � Balder	(http://www.codeplex.com/Balder).	Einar	Ingebrigtsen	leads	its	
development	team.	It	is	intended	to	be	used	in	games,	for	this	reason	it	uses	a	
model	similar	than	the	one	found	in	XNA	Framework.	It	offers	many	features	that	
make	it	simple	to	begin	developing	games	with	this	engine.	It	offers	the	possibility	
to	load	models	from	many	popular	file	formats.	It	is	an	excellent	alternative	for	
3D	games	that	need	to	show	many	3D	models	designed	using	DCC	tools.

We	will	use	Balder	to	add	3D	real-time	rendering	capabilities	to	Silverlight	for	our	
games.	However,	in	some	cases,	you	may	find	Kit3D	to	be	a	very	useful	alternative.

Time for action – exporting a 3D model to ASE
So far,	Balder	does	not	offer	support	for	XAML	3D	models.	However,	it	works	fine	with	the	
ASE	(3D	Studio	Max	ASCII	Scene	Exporter)	file	format.	3D	Studio	Max	offers	the	possibility	to	
export	ASE	files	from	a	3D	scene.	However,	the	spaceship	model	is	now	in	Blender	format.

First,	we	are	going	to	install	a	script	to	allow	Blender	to	export	models	to	the	ASE	format	and	
then	we	will	save	the	spaceship	in	the	new	file	format	which	is	compatible	with	Balder:

1. Download	the	latest	version	of	the	Goofos	ASE	export	script	for	Blender	from	
http://www.katsbits.com/htm/tools_utilities.htm.	For	example,	one	
of	the	latest	versions	is	http://www.katsbits.com/files/blender/
goofosASE-2.44v0.6.10b_9sept07.zip.	This	script	is	developed	by	Goofos	
and	released	under	the	GNU	GPL	license.

Chapter 11

[493]

2. Decompress	the	downloaded	ZIP	file	and	copy	the	Python	script	(the	file	with	
the	.py	extension)	to	Blender's	scripts	folder.	By	default,	it	is	C:\Program
Files\Blender Foundation\.blender\scripts.	The	file	name	for	the	
version	6.10b	of	this	script	is	goofosASE-2.44v0.6.10b_9sept07.py.

3. Restart	Blender	and	open	the	spaceship	model	(previously	saved	in	
Blender's	native	format	as	Ship01.blend in C:\Silverlight3D\
Invaders3D\3DModels\SPACESHIP01).

4. Now,	select File | Export | ASCII Scene (.ase) v0.6.10.	The	default	folder	will	be	
the	same	used	in	the	previous	step.	Hence,	you	will	not	need	to	browse	to	another	
folder.	Enter	the	desired	name,	Ship01.ase.	Then,	click	on	Export ASCII Scene.	
A	dialog	box	will	appear.

5. Click	on	Selection only	to	deselect	this	option.	This	will	tell	the	script	to	export	
all the elements in the scene and not just the selected ones, as shown in the
following	screenshot:

6. Click	on	OK.	Now,	the	model	is	available	as	an	ASE	3D	model,	ready	to	be	loaded	
in	Silverlight	using	Balder.

What just happened?
We	used	Blender's	export	capabilities	to	convert	an	existing	3D	model	to	the	ASE	file	format,	
using	the	Goofos	ASE	export	script.

Time for action – installing Balder 3D engine
Now,	we	are	going	to	create	a	new	Silverlight	application	adding	the	necessary	references	to	
use	the	Balder	3D	engine:

1. Download	the	most	recent	release	of	Balder	from	
http://www.codeplex.com/Balder.

Working with 3D Characters

[494]

Balder	is	a	very	active	project.	Thus,	it	regularly	releases	new	versions	adding	
additional	features	and	fixing	bugs.	Sometimes,	a	new	version	can	introduce	
changes	to	classes	or	methods.	In	the	following	examples,	we	will	use	version	1.0.

2. Save	all	the	uncompressed	files	in	a	new	folder	(C:\Balder).

3. Create	a	new	C#	project	using	the	Silverlight Application template	in	Visual	Studio	
or	Visual	C#	Express.	Use	3DInvadersSilverlight	as	the	project's	name.

4. Select File | Add Reference…	and	add	the	following	DLLs	from	Balder's	folder:

 � Balder.Core.Silverlight.dll

 � Balder.Silverlight.dll

5. Now,	the	project	will	list	the	references	to	the	aforementioned	Balder's	DLLs	in	
the Solution Explorer,	as	shown	in	the	following	screenshot:

What just happened?
We	downloaded	Balder	and	we	added	the	necessary	references	to	use	it	in	a	Silverlight	
project.	The	previously	explained	steps	are	the	only	ones	required	to	access	Balder's	
components	and	services	in	any	new	Silverlight	application.

Chapter 11

[495]

Time for action – from DCC tools to Silverlight
Now,	we	are	going	to	display	the	ASE	3D	model	exported	from	Blender	in	a	Silverlight	
application	with	Balder's	help:

1. Stay in the 3DInvadersSilverlight	project.

2. Create	a	new	folder	in	3DInvadersSilverlight	(the	main	project	that	will	
generate	the	XAP	output	file).	Rename	it	to	Assets.

3. Right-click	on	the	previously	mentioned	folder	and select Add | Existing item…
from	the	context	menu	that	appears.

4. Go	to	the	folder	in	which	you	saved	the	3D	model	in	the	ASE	format	
(C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01).	
Select	the	ASE	file	and	click	on	Add.

5. Click	on	the	ASE	file	added	in	the	previous	step.	Change	its	Build Action
property	to	Resource.

6. Open	the	XAML	code	for	MainPage.xaml	(double-click	on	it	in	the	
Solution Explorer)	and	replace	the	existing	code	with	the	following:

<UserControl x:Class="_3DInvadersSilverlight.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="1366" Height="768" >
 <Grid x:Name="LayoutRoot" Background="White" >
 </Grid>
</UserControl>

7. Create	a	new class, InvadersGame.

8. Add	the	following lines of code at the beginning (as we are going to use many
Balder's	classes	and	interfaces):

using Balder.Core;
using Balder.Core.FlatObjects;
using Balder.Core.Geometries;
using Balder.Core.Lighting;
using Balder.Core.Math;

9. Replace	the	new	InvadersGame	class	declaration	with	the	following	(it	has	to	be	a	
subclass of Game):

public class InvadersGame : Game

Working with 3D Characters

[496]

10. Add	the	following	lines	to	define	two	private	variables:
// The spaceship's mesh
private Mesh _ship;
// A light
private Light _light;

11. Override	the	Initialize	method	to	change	some	properties	on	the	main	
viewport	defined	by	Balder:

public override void Initialize()
{
 base.Initialize();
 Display.BackgroundColor = Colors.White;
 Viewport.XPosition = 0;
 Viewport.YPosition = 0;
 Viewport.Width = 1366;
 Viewport.Height = 768;
}

12. Override	the	LoadContent	method	to	load	the	spaceship's	mesh,	create	a	light,	
and	define	the	main	camera's	target:

public override void LoadContent()
{
 base.LoadContent();
 _ship = ContentManager.Load<Mesh>("ship01.ase");
 Scene.AddNode(_ship);

 _light = new OmniLight();
 _light.Position.X = 0;
 _light.Position.Y = 0;
 _light.Position.Z = -30;
 _light.ColorAmbient = Colors.Red;
 _light.ColorDiffuse = Colors.Purple;
 _light.ColorSpecular = Colors.Magenta;
 Scene.AddNode(_light);
 Camera.Target.X = 0;
 Camera.Target.Y = 0;
 Camera.Target.Z = 15;
}

Chapter 11

[497]

13. Override	the	Update	method	to	leave	it	ready	to	add	some	scene	management	
code	in	it	later:

public override void Update()
{
 base.Update();
 // TODO: Add code to update the scene
}

14. Now,	expand	App.xaml in the Solution Explorer	and	open	App.xaml.cs—the	C#	
code for App.xaml.	We	need	to	add	some	code	to	the	StartUp	event	handler	
to	initialize	Balder	with	our	game	class.

15. Add	the	following	lines	of	code	at	the	beginning	(as	we	are	going	to	use	many	
Balder's	classes	and	interfaces):

using Balder.Core.Runtime;
using Balder.Silverlight.Services;

16. Add	the	following	lines	of	code	to	the	event	handler	for	the	Application_
Startup	event,	after	the	line	this.RootVisual = new MainPage();:

TargetDevice.Initialize<InvadersGame>();

17. Build	and	run	the	solution.	The	default	web	browser	will	appear	showing	
the	spaceship	colored	in	red,	as	shown	in	the	following	screenshot:

Working with 3D Characters

[498]

What just happened?
The	3D	digital	artist	is	very	happy	because	the	spaceship	can	be	loaded	and	shown	using	
Silverlight.	Now,	he	trusts	you	and	he	will	continue	to	work	on	exciting	3D	models	for	your	
game.	However,	do	not	be	quiet,	because	you	still	have	to	learn	many	things	about	cameras	
and	lights.

We	showed	the	spaceship	rendered	in	a	Balder's	viewport.	We	had	to	work	a	bit	more	than	
with	the	XAML	3D	model	in	the	XBAP	WPF	application.	However,	we	could	load	and	render	
a	3D	model	previously	exported	from	a	3D	DCC	tool	using	the	ASE	file	format.

One	of	the	drawbacks	of	Silverlight	3D	applications	using	Balder	is	that	we	cannot	preview	
the	3D	model	during	design-time.	However,	we	can	experiment	with	an	XBAP	WPF	
application	and	then,	we	can	work	with	Silverlight.

Displaying a 3D model in a 2D screen with Silverlight
Once	we	have	the	model	in	the	ASE	file	format	and	Balder	is	installed	and	added	as	a	
reference,	the	steps	to	load	and	show	a	3D	model	in	Silverlight	are	the	following:

1.	 Add	the	ASE	model	to	the	Assets	folder.	It	must	be	built	as	a	Resource.

2.	 Override	the	game	class's	LoadContent	method	to	load	the	model,	creating	a	new	
mesh using the ContentManager,	as	done	in	the	following	line:

_ship = ContentManager.Load<Mesh>("ship01.ase");

3.	 Add	the	new	mesh	to	the	scene	using	the	AddNode	method:

Scene.AddNode(_ship);

4.	 Override	the	game	class's	Update method to manage the scene, the cameras, the
lights,	and	the	meshes:

Before	following	those	steps,	we	must	be	sure	that	we	have	configured	the	main	viewport,	
the	main	camera,	and	the	necessary	lights.

In	order	to	start	the	engine's	run-time,	Balder	requires	just	one	line	of	code,	such	as	the	
following	one:

TargetDevice.Initialize<InvadersGame>();

We	must	replace	InvadersGame by the main game class (it must be a
Balder.Core.Game	subclass).

Chapter 11

[499]

Using 3D vectors
Balder	works	with	3D	vectors	(Balder.Core.Math.Vector)	to	define	positions	in	the	
3D	space.	For	example,	the	common	Position	property	is	a	3D	vector,	with	the	following	
fields:	X;	Y	and	Z.

We	used	Balder's	3D	vectors	to	define	the	position	for	the	light:

_light.Position.X = 0;
_light.Position.Y = 0;
_light.Position.Z = -30;

And,	we	used	another	3D	vector	to	specify	the	main	camera's	target:

Camera.Target.X = 0;
Camera.Target.Y = 0;
Camera.Target.Z = 15;

These	vectors	allow	many	complex	math	operations,	like	translations	and	transforms.	They	
will	simplify	the	code	needed	to	control	perspectives	and	cameras.

Have a go hero – working with multiple 3D characters
The	project	manager	that	hired	you	wants	to	see	your	recent	work.	He	is	very	happy	to	
know	you	are	able	to	work	with	existing	3D	models	in	your	new	games	in	XBAP	WPF	and	
in	Silverlight.

He	asks	you	to	prepare	a	new	XBAP	WPF	application	showing	a	model	of	a	car.	He	wants	the	
main	camera	to	rotate	around	the	car.

But	wait,	he	also	wants	a	Silverlight	version	of	the	same	application.	You	can	do	it	using	
Balder	as	the	3D	engine.

Remember	the	elapsed	time	technique	learned	when	working	with	2D	characters.	You	can	
also	use	it	with	3D	models.

Once	you	finish	these	new	applications,	you	can	add	a	motorbike	and	make	some	effects	
using	different	colors	in	the	lights.

Pop quiz – 3D models and real-time rendering
1.	 Real-time	rendering	is	more	efficient	when	working	with	meshes	that	have:

a.	 Millions	of	polygons

b.	 Hundreds	of	thousands	of	polygons

c.	 A	low	polygon	count	(less	than	2,000	polygons	per	mesh)

Working with 3D Characters

[500]

2.	 Silverlight	3	allows	us	to	load:

a.	 The	XAML	3D	models	using	a	third	party	3D	engine—Pentium.

b.	 The	ASE	3D	models	using	a	third	party	3D	engine—Balder.

c.	 The	3DS	3D	models	using	Silverlight	3	native	controls.

3.	 A	3D	vector	represents:

a.	 Three	fields:	X,	Y,	and	Z.

b.	 Three	fields:	W,	X,	and	Y.

c.	 Three	dimensions	using	2	fields:	2D	(X	and	Y)	and	3D	(X,	Y,	and	Z).

4.	 Expression	Blend	allows	us	to:

a.	 Load	and	interact	with	3D	models	in	XAML	3D	format	in	
WPF	applications.

b.	 Load	and	interact	with	3D	models	in	3DS	3D	format	in	WPF	applications.

c.	 Import	.X	3D	models	and	export	them	as	Silverlight	3D	mesh	
open	format.

5.	 When	rendering	a	3D	scene	in	a	2D	screen:

a.	 We	can	see	the	whole	3D	scene	in	3D.

b.	 We	can	see	a	portion	of	the	whole	3D	world	simulated	in	a	2D	screen,	
as	seen	through	a	specific	camera.

c.	 We	can	see	the	whole	3D	world	as	polygons	without	textures.

Summary
We	learned	a	lot	in	this	chapter	about	3D	models,	meshes,	and	other	elements.	Specifically,	
we	imported,	exported	and	prepared	3D	models	using	3D	DCC	tools	in	order	to	load	them	in	
our	applications.	We	showed	models	in	XBAP	WPF	using	XAML	and	in	Silverlight	applications	
using	the	services	provided	by	a	specialized	3D	engine.	We	rendered	and	transformed	the	
meshes	in	real-time	using	both	hardware-based	and	software-based	rendering	processes.	
We	understood	the	usage	of	a	Silverlight	3D	engine	and	we	began	controlling	some	aspects	
of	the	3D	elements.

Pop quiz answers
1 2 3 4 5
c b a a b

Index
Symbols
3D elements

interacting with, Expression Blend used
491

3D model
converting, to XAML file format 469, 471
displaying, in 2D screen with Silverlight

498
exporting 468

3D vectors
3D models, with real-time rendering 499,

500
about 499
multiple 3D characters, working with 499

3D world 481, 482
3D world, in Silverlight

3D model, displaying in 2D screen 498
3D model, exporting to ASE 492, 493
3D vectors, using 499
about 492
ASE 3D model, displaying 495, 497
Balder 3D engine, installing 493

_context.ExecuteQueryAsync method 327
_context.Web.CurrentUser.Id property 330
[DataContract] attribute 88
[DataMember] attribute 88

A
AddBackgroundMusic method 412
AddFieldChoicesToComboBoxes method

334
AddFieldChoicesToComboBox method 336
AddImage method 401
AddItem method 329

AddItemToList method 319, 321, 328, 329
AddObject method 288
ADO.NET Data Services

about 279, 280
locked-down services 281
used, for persisting data 286-290

AlreadyRead property 238
Application Programming Interface (API)

428
ASE 3D model

displaying, in Silverlight application
495-497

ASP.NET application
business object, creating 86-88

AspNetCompatibilityRequirements
attribute 93

asset library, SharePoint 2010
content, adding to 364-366
creating 362
creating, steps 363
structures, browsing 367, 368

AssetsBrowserWebPart class 374
Atom Publishing Protocol (AtomPub) 279,

439
Author property 244
AutoGenerateColumns property 220, 238
automatic synchronization 156
AutoPostBack property 372
Auto sizing 15

B
backgroundMusic.Source property 413
Balder 492
Balder 3D engine

installing 493

[502]

basicHttpBinding 94
BeginExecute method 282
BeginSaveChanges method 289-291
binaryHttpBinding 94
BindingBase class 185
BindingBase properties

converters, replacing with 184-188
Binding class 116, 187
Binding Expression 116
BindingsSource control 132
BitmapImage class 379
Blender

downloading 470
installing 470

boolean property 242
BrowserHttpStack

versus ClientHttpStack 272
business object

creating 86

C
CakeService.svc.cs class 90
CellTemplate property 242
change-aware collection type

building 206
building, steps 206-208

class
AssetsBrowserWebPart 374
BitmapImage 379
Projection 402

Click event 149
ClientAccessPolicy.xml file 429
client_DownloadStringCompleted method

422
ClientHttpStack

advantages, over BrowserHttpStack 272
using, as default 273
working with 270-272

CLR namespace
mapping, to XML namespace 143

code snippets 114
ColumnWidth property 220
command area 38
Computer class 288, 290
computerCollection 283

Computer instances 283
ComputerInventoryEntities type parameter

278
ComputerLoadCompleted callback method

283
ConnectAndAddItemToList method 319,

320, 328
ConnectAndFillComboBoxes method 336
ConvertBack method 181
Converter property 182
converters 133

about 180
replacing, with Silverlight 4 BindingBase

properties 184-188
ConvertStrokesToStrokeInfoArray method

125
CreateChildControls method 374
Create, Read, Update, and Delete. See

CRUD
credentials

passing, to Twitter from trusted Silverlight
application 303-307, 313

Credentials property 308
cross-domain access

passing, to Twitter from trusted Silverlight
application 303-307, 313

CRUD
about 286, 316

CurrencyConverter class 181
customBinding 94
custom columns

DataGridCheckBoxColumn 238
DataGridTemplateColumn 238
DataGridTextColumn 238
using, in DataGrid 238

CustomerCakeIdea business object 127
CustomerInfo class 117, 120
CustomerInfo object 116

D
data

applications 86
collection 99
collection form, creating 99-110

[503]

datainput validating, attributes used 193-
195

datapersisting, ADO.NET Data Services
used 286-290

datapersisting, REST service used 270
datareading, WCF Data Services used 281-

285
datavalidating, IDataErrorInfo used 195-

199
datavalidating, INotifyDataErrorInfo used

195-199
datavisualization, customizing 200-206
submitting, to server 125-129
validating 111
Visual State Machine 111

data access
overview 420

data access layer, WCF 430, 431, 432
data annotations

uses 195
data binding

about 132, 180
ConvertParameter 183, 184
creating from Expression Blend 4, steps

173-175
creating from Expression Blend 4, working

175, 176
definging, terms 132
from Expression Blend 4 173
images displaying, URL based 184
persisting data allowing, modes used

168-172
process 132
process, steps 181, 182
process, working 183
to another UI element 148
to another UI element, steps 148-150
to another UI element, working 151

data binding, data validation
data object, binding to controls 116-120

data-bound input
validating, steps 188, 189
validating, working 190, 191

DataContext property 297

DataGrid
custom columns, using 237-239
data, deleting 225
data, displaying 218-223
data, filtering 233
DataGridCheckBoxColumn, custom column

238
DataGridTemplateColumn, custom column

238, 239
DataGridTextColumn, custom column 238
data, grouping 228, 230
data, inserting 226
data, paging 235
data, sorting 228, 230
data, updating 227
LoadingRow event 218
master-detail, implementing 244-247
sorting 229
template column, sorting 233
validating 248-250

DataGridCellEditEndedEventArgs e param-
eter 357

DataGrid control 218, 247
dataGridProjects_CellEditEnded method

355
dataGridProjects.SelectedItem property

358
data input

data inputvalidating, attributes used 193-
195

data object, data validation
binding, to controls 116-120
code snippets 114, 115
creating 111-114

DataPager control 233, 236
DataService class 281
data templates 155, 180
data validation

data, binding 116
data input, validating 121-124
data object, binding to controls 116-120
data object, creating 111-114

DeleteObject method 290
dependency properties 143

[504]

DependencyProperty 116
DirectX Software Development Kit

downloading 469
installing 469

Dispatcher.BeginInvoke method 329
Dispatcher class 421
DisplayMode property 236
DockPanel

about 54, 59
child element docking order, changing 58
docking, controlling 55-57
orientation, changing 58
working 57

dynamic bindings
about 145
creating, steps 145-147
creating, working 147

E
element binding

about 148
without bindings 151

ElementName property 151
ElementStyle property 241
element-to-element binding 148
EndExecute method 283
EndSaveChanges method 289
EntitySetRights enumeration 278
event

MouseRightButtonDown 402
OnPreRender 374

ExecuteQueryAsync method 328
Expand method 282
Expression Blend 4

data binding from 173-176
used, for generating sample data 176-178

extent 400

F
FallbackValue property 186
Fiddler

about 424
URL 424
using 424

FillBehavior property 403
filtering 236
FirstName property 250
fixed layout

creating 13
using, situations 16, 17
working 14

flash policy file (crossdomain.xml) 426
Flickr

about 291, 297
application, building 292-294
crossdomain.xml file 291
values, displaying 297
WrapPanel used 292

flickr.photos.getinfo method 292
flickr.photos.search method 292, 293
fluid layout

about 10
columns 14, 15
creating 11-13
grid sizing 14, 15
rows 14, 15
Star sizing 15
using, situations 16, 17
working 13

G
GetByTitle method 329
GetItemById method 358
GetMediaFileType method 401
GetUserTimeLine method 300
GPU 3D acceleration 484

H
HeadersVisibility property 220
HorizontalAlignment property 23
HTTP 420
HTTP classes 420
HTTP POST method 309
HTTPS protocol 420
HttpWebRequest class 420
HttpWebResponse class 420

[505]

I
IDataServiceConfiguration instance 281
IList interface 208
imageButton_MouseRightButtonDown

method 402, 406
Image control 239
ImageInfo instance 294
ImageName property 239
InitializeOwner method 135
InitializeService method 278, 281, 443
Ink control 99
InkPresenter controls 100
INotifyCollectionChanged interface 155,

160, 161, 207
INotifyDataErrorInfo interface 199
INotifyPropertyChanged interface 111, 125,

161, 210, 223
interactive animations

working with 401-408
IProductSoapService interface 433
IsReadOnly property 220
ItemsSource property 160, 220, 223, 230, 283
ItemTemplate property 155
IValueConverter interface 211

J
JavaScript Object Notation. See JSON
journal navigation

about 59
navigation chrome, removing 63
Title 64
using, need for 64, 65
utilizing 59-61
WindowTitle 64
working 62

JSON
about 88, 439
URL 436
used, for REST service communication 273-

276
JsonDataContractSerializer 88

K
Kit3D 492

L
Language Integrated Query. See LINQ
Language property 230
LastName property 193
layout

fixed 10
fluid 10

Line-Of-Business. See LOB
LINQ 420
LoadComputer method 284
LoadingRow event 218
LoadProperty method 286
LOB

about 316
as independent WebParts 347-349
expanding, with delete operations 349-352
expanding, with update operations 354-357
item, deleting from list 352
item, updating in list 357-359

LookupId property 330

M
Margin property 22
master-detail implementation 244-247
maximum size 17
media_MediaEnded method 409
meshes

3D elements, adding 488, 489
about 485, 486
XAML exporter, using for DCC tools 486,

487
method

_context.ExecuteQueryAsync 327
AddBackgroundMusic 412
AddFieldChoicesToComboBoxes 334
AddItem 329
AddItemToList 319, 321, 328, 329
ConnectAndAddItemToList 319, 320, 328
ConnectAndFillComboBoxes 336
CreateChildControls 374
dataGridProjects_CellEditEnded 355
Dispatcher.BeginInvoke 329
ExecuteQueryAsync 328
GetByTitle 329

[506]

GetItemById 358
GetMediaFileType 401
imageButton_MouseRightButtonDown

402, 406
media_MediaEnded 409
OnConnectSucceeded 320
OnUpdateFailed 355
OnUpdateSucceeded 355
ReturnFieldByInternalName 334
ShowErrorInformation 327

MFC (Microsoft Foundation Classes) 132
minimum size 17
Mode property 151, 171, 238
MouseRightButtonDown event 402
MSDN website

URL 89

N
NavigateUri property 402
navigation pane

components, buttons 17
components, content 17
content, hosting into specific tabs 22-25
creating, from scratch 19-21
tab control, using 18
using, situation 25, 26
working 22

NetDataContractSerializer 88
netTcpBinding 94
network security 425
NoMoreCustomerSince property 185

O
ObservableCollection 283
OData

about 439
data services, building 441-444
external service, consuming 444, 445
URL 440

OData data services
exploring 440

OData service
building 441-444

OnConnectSucceeded method 320
OneWay bindings 161

OnPreRender event 374
OnPropertyChanged method 114
OnUpdateFailed method 355
OnUpdateSucceeded method 355
Owner class 185

P
PageSize property 235
paging 236
parameter

DataGridCellEditEndedEventArgs e 357
persisting data

allowing, data binding modes used 168-172
PreferredOwner class 186
PreferredSince property 187
preferred size 17
Products.xml file 422
progressive disclosure

using, conditions 52, 54
working 51

Projection class 402
property

_context.Web.CurrentUser.Id 330
about 358
AutoPostBack 372
dataGridProjects.SelectedItem 358
InternalName 354
LookupId 330
NavigateUri 402
propertyShowInTaskbar 28
SchemaXml 332
SelectedList 397, 398
selectedProject.Title 358
TargetName 402

PropertyChanged event 157

R
Representational State Transfer. See REST
ResizeMode property

about 32
styles, setting to 32

ResponseFormat NamedParameters 274
REST 436

[507]

REST service
about 436
building 436-439
communicating with, JSON used 273-276
used, for persisting data 270

ReturnFieldByInternalName method 334
Rich Internet Application (RIA) 419
RowHeight property 220

S
sample data

generating, Expression Blend 4 used 176-
178

SchemaXml property 332
second remake assignment

3D elements, interacting with 491
3D model, exporting 468
3D world 481
about 468
GPU 3D acceleration 484
meshes 485
three-dimensional coordinate system 483
XAML 3D models 473
XBAP WPF applications with 3D content

476
security policy files, Silverlight

ClientAccessPolicy.xml 426
crossdomain.xml 426

SelectedList property 397, 398
selectedProject.Title property 358
ServerRelativeUrl property 401
ServiceObjects class 87
services

building, with WCF 427, 428
set accessor method 120
SharePoint

themes, changing 414-417
SharePoint 2010

asset library, creating 362
rich media management, improving 362

SharePoint package file 392
ShowErrorInformation method 327
ShowInTaskbar property 28
Silverlight

about 419

basicHttpBinding 94
binaryHttpBinding 94
core networking classes 420
customBinding 94
data access overview 420
data object, binding 116-120
data validating, IDataErrorInfo used 195-

199
data validating, INotifyDataErrorInfo used

195-199
features, merging 209-215
netTcpBinding 94
security policy files 426
validation error, scenarios 120

Silverlight 3
ClientHttpStack 270-272

Silverlight 4
supported audio formats 413
supported video formats 412

Silverlight application
code, cleaning up 162, 163
collections 161
data displaying, steps 134-140
data displaying, working 141-143
data persisting, REST service used 270
enabling to automatically update UI, steps

156-160
enabling to automatically update UI, work-

ing 161
Flickr 291
REST service communicating with, JSON

used 273-276
single objects 161
Twitter, over REST 298
WCF Data Services, using 276, 278

Silverlight-enabled WCF service
creating 90, 5, 90, 91, 93, 96, 97, 98

Silverlight policy files (ClientAccessPolicy.
xml) 426

Silverlight RIA
linking, to Visual Web Part 390-393
themes, modifying 414-417

Silverlight RIA, included in a SharePoint
solution

asynchronous operations, working with
327-330

[508]

complex LOB applications, creating 340-
344

data, managing 316
item insertion, Silverlight Web Part used

324-327
LOB systems, as independent WebParts

347-349
LOB systems, expanding with delete opera-

tions 349-352
LOB systems, expanding with update op-

erations 354-357
multiple Silverlight Web Parts in same

page, interacting with 345, 346
Silverlight Client Object Model, working

with 316-323
specific field information, retrieving

331- 340
Silverlight RIA, rendered in SharePoint

Visual Web Part
creating 376-390

SOAP service
about 433
building 433, 435

socket-based networking classes 420
SortMemberPath property 233
Source property 184, 239
Star sizing 15
startup object 60
status bar

about 75
adding, steps 75-77
implementation guidelines 82, 83
other controls, adding 78-80
SizeGrip, adding 81
using 81, 82
working 78

StringFormat property 186
StringLength attribute 194
StrokeInfo[] array 127
StrokeInfo objects 125
submitButton_Click method 127
SubmitCakeIdeaCompleted event 128
System.ComponentModel namespace 161
System.Net.Sockets namespace 420
System.Windows.Controls namespace 217

T
tabs

about 66
adding 66-68
icons, adding 70-72
implementation guidelines 73, 74
orientation, changing 70
using 72
using, queries 72
working 69

Tag property 248
TargetName property 402
TargetNullValue property 187
target property 143
TextBlock controls 227, 245
Text property 136
three-dimensional coordinate system 483,

484
Tick event 160
ToString method 223
Trusted Silverlight application

creating 312
credentials, passing 313
credentials, passing to Twitter 303-311
cross-domain access, passing to Twitter

303-311
TweetUpdate class 307
Twitter

about 298
credentials, passing from trusted Silverlight

application 303-311
cross-domain access, passing from trusted

Silverlight application 303-311
running, steps 299-302
versus Flickr 298

TwitterUpdate class 300
TwoWay bindings 151, 171, 172

U
UI elements

collections, binding 152
collections binding, steps 152-154
collections binding, working 155

[509]

data obtaining from, steps 163, 166
data obtaining from, working 167, 168

UI pattern
implementing, in WPF application 49

UI pattern, implementing in WPF applica-
tion

expander control's header label 51, 52
steps 49, 50
working 51

UpdateObject method 290
using statement 421

V
ValidationSummary class 191
VerticalAlignment property 24
videos

adding 408-411
controlling 408-411
formats, in Silverlight 4 412

viewport 400
Visual Web Part

about 369
adding, in Web page 393-399
controls, organizing 399, 400
creating 369-375
files, reading from assets library 400, 401
linking to Silverlight RIA 390-393

W
WCF

about 420
core services 426, 427
data access layer 430-432
data services 427
RIA services 427
services, building with 427, 428
Silverlight enabled service, creating 90-98
working with 429
wsHttpBinding 94

WCF Core Services 427
WCF Data Services

about 427
used, for reading data 281-285
using, with Silverlight 276, 278

WCF RIA Services 427
WebClient

working with 420-423
WebClient class 420
WebGet attribute 89
WebRequest.Register method 313
window management

about 27
contextual window 27
general window usage, guidelines 36, 37
icon, changing 28
minimum screen resolution target,

determining 35
primary window (top-level) 27
program-initiated 27
ResizeMode property 32
ResizeMod, setting 28
secondary window(owned) 27
states 30
system-initiated windows 27
Title bar controls 28
window borders 28
window sizes 29, 34
window states 34
WindowStyle property 32

Windows Communication Foundation. See
WCF

Windows Media Video. See WMV
Windows Presentation Foundation. See

WPF
WindowStartupLocation property

about 32, 35
CenterOwner option 35
CenterScreen option 35
manual option 35

WindowState property
about 30
maximized state 34
minimized state 34
normal state 34
window positioning, using 35
WindowStartupLocation property 35

WindowStyle property
about 29
styles, setting to 33

[510]

wizards
about 37
building 37-40
resizable wizard, designing 47
types, overview 42
using, guidelines 48, 49
using, situations 47
working 41

wizards, types
choice page(s) 44
commit page 44
follow-up page 46
Getting started page 43
progress page 45

WMV 364
WPF

about 27
UI pattern, implementing 49

wsHttpBinding 94
WSP package 392

X
XAML 3D models

about 473
displaying, in XBAP WPF application 475,

476
features 474

XAML Exporter
downloading 470

XAML parser 142
XBAP WPF applications

3D elements, adding 488
XBAP WPF applications, with 3D content

3D model, displaying in 2D screen 476-480
XLINQ 421, 430
XML namespace

mapping, to CLR namespace 143
XmlSerializer class 270

Thank you for buying
Managing Data and Media in Microsoft Silverlight 4: A mashup

of chapters from Packt's bestselling Silverlight books

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Silverlight 4 User Interface
Cookbook
ISBN: 978-1-847198-86-0 Paperback: 280 pages

Build and implement rich, standard-friendly user
interfaces with Silverlight and Expression Blend

1. The first and only book to focus exclusively on
Silverlight UI development

2. Have your applications stand out from the
crowd with leading, innovative, and friendly
user interfaces

3. Detailed instructions on how to implement
specific user interface patterns together with
XAML and C# (where needed) code, and
explainations that are easy-to-understand and
follow

Microsoft Silverlight 4 Business
Application Development:
Beginner’s Guide
ISBN: 978-1-847199-76-8 Paperback: 412 pages

Build Enterprise-Ready Business Applications with
Silverlight

1. An introduction to building enterprise-ready
business applications with Silverlight quickly

2. Get hold of the basic tools and skills needed
to get started in Silverlight application
development

3. Integrate different media types, taking the RIA
experience further with Silverlight, and much
more!

4. Rapidly manage business focused controls,
data, and business logic connectivity

Please check www.PacktPub.com for information on our titles

Microsoft Silverlight 4 Data and
Services Cookbook
ISBN: 978-1-847199-84-3 Paperback: 476 pages

Over 85 practical recipes for creating rich, data-driven
business applications in Silverlight

1. Will get the reader developing applications for
processing XML in JDeveloper 11g quickly and
easily

2. Self-contained chapters provide thorough,
comprehensive instructions on how to use
JDeveloper to create, validate, parse, transform,
and compare XML documents

3. The only title to cover XML processing in Oracle
JDeveloper 11g, this book includes information
on the Oracle XDK 11g APIs

Microsoft Silverlight 4 and
SharePoint 2010 Integration
ISBN: 978-1-849680-06-6 Paperback: 336 pages

Techniques, practical tips, hints, and tricks for
Silverlight interactions with Sharepoint

1. Develop Silverlight RIAs that interact with
SharePoint 2010 data and services

2. Explore the diverse alternatives for hosting a
Silverlight RIA in a SharePoint 2010 Page

3. Work with the new SharePoint Silverlight
Client Object Model to interact with elements in
a SharePoint Site

4. Use Visual Studio 2010's new features to debug
Silverlight RIAs that interact with SharePoint
2010

Please check www.PacktPub.com for information on our titles

Microsoft Silverlight 5 and
Windows Azure Enterprise
Integration
ISBN: 978-1-84968-312-8 Paperback: 361 pages

A step-by-step guide to creating and running scalable
Silverlight Enterprise Applications on the Windows
Azure platform

1. This book and e-book details how enterprise
Silverlight applications can be written to take
advantage of the key features of Windows
Azure to create scalable applications

2. Provides an overview of the Windows Azure
platform and how the different technologies can
be integrated within your enterprise application

3. Examines ways that distributed asynchronous
systems can be created to allow scalable
processing

MVVM Survival Guide for
Enterprise Architectures in
Silverlight and WPF
ISBN: 978-1-84968-342-5 Paperback: 412 pages

Eliminate unnecessary code by taking advantage of
the MVVM pattern—less code means less bugs

1. Build an enterprise application using Silverlight
and WPF, taking advantage of the powerful
MVVM pattern, with this book and e-book

2. Discover the evolution of presentation
patterns—by example—and see the benefits of
MVVM in the context of the larger picture of
presentation patterns

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Contributors
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Layouts and General Content Organization
	Introduction
	Fluid layout
	Creating a navigation pane from scratch
	Window management and positioning
	Wizards
	Progressive disclosure—showing additional controls on demand
	Control docking with DockPanel
	Journal navigation
	Tabs
	Adding a status bar area

	Chapter 2: Handling Data
	Data applications
	Time for action – creating a business object
	Windows Communication Foundation (WCF)
	Time for action – creating a Silverlight-enabled WCF service
	Collecting data
	Time for action – creating a form to collect data
	Validating data
	Data object

	Time for action – creating a data object
	Data binding

	Time for action – binding our data object to our controls
	Validation

	Time for action – validating data input
	Data submission
	Time for action – submitting data to the server
	Summary

	Chapter 3: An Introduction to Data Binding
	Introduction
	Displaying data in Silverlight applications
	Creating dynamic bindings
	Binding data to another UI element
	Binding collections to UI elements
	Enabling a Silverlight application to automatically update its UI
	Obtaining data from any UI element it is bound to
	Using the different modes of data binding to allow persisting data
	Data binding from Expression Blend 4
	Using Expression Blend 4 for sample data generation

	Chapter 4: Advanced Data Binding
	Introduction
	Hooking into the data binding process
	Replacing converters with Silverlight 4 BindingBase properties
	Validating databound input
	Validating data input using attributes
	Validating using IDataErrorInfo and INotifyDataErrorInfo
	Using templates to customize the way data is shown by controls
	Building a change-aware collection type
	Combining converters, data binding, and DataContext into a custom DataTemplate

	Chapter 5: The Data Grid
	Introduction
	Displaying data in a customized DataGrid
	Inserting, updating, and deleting data in a DataGrid
	Sorting and grouping data in a DataGrid
	Filtering and paging data in a DataGrid
	Using custom columns in the DataGrid
	Implementing master-detail in the DataGrid
	Validating the DataGrid

	Chapter 6: Talking to REST and WCF Data Services
	Introduction
	Reading data from a REST service
	Parsing REST results with LINQ-To-XML
	Persisting data using a REST service
	Working with the ClientHttpStack
	Communicating with a REST service using JSON
	Using WCF Data Services with Silverlight
	Reading data using WCF Data Services
	Persisting data using WCF Data Services
	Talking to Flickr
	Talking to Twitter over REST
	Passing credentials and cross-domain access to Twitter from a trusted Silverlight application

	Chapter 7: Interacting with Data on the SharePoint Server
	Managing data in a Silverlight RIA included in a SharePoint solution
	Working with the SharePoint 2010 Silverlight Client Object Model to insert items
	Inserting items in a SharePoint list with the Silverlight Web Part
	Working with successful and failed asynchronous queries
	Retrieving specific information about fields
	Creating complex LOB applications composed of multiple Silverlight RIAs
	Interacting with multiple Silverlight Web Parts in the same page
	Understanding Line-Of-Business systems as independent Web Parts
	Expanding LOB systems with delete operations
	Understanding how to delete an item from a list

	Expanding LOB systems with update operations
	Updating an item in a list

	Summary

	Chapter 8: Interacting with Rich Media and Animations
	Bringing life to business applications and complex workflows
	Creating asset libraries in SharePoint 2010
	Adding content to an assets library
	Browsing the structure for SharePoint Asset Libraries

	Controlling the rich media library by using controls in a Visual Web Part
	Creating a Silverlight RIA rendered in a SharePoint Visual Web Part
	Linking a SharePoint Visual Web Part to a Silverlight RIA

	Adding a SharePoint Visual Web Part
in a Web Page
	Organizing controls in a containing box
	Reading files from an assets library

	Working with interactive animations
and effects
	Adding and controlling videos
	Video formats supported in Silverlight 4
	Adding and controlling sounds and music
	Audio formats supported in Silverlight 4

	Changing themes in Silverlight and SharePoint

	Summary

	Chapter 9: Data Access Strategies
	Data access overview
	Core networking classes
	Working with WebClient
	Using Fiddler

	Understanding network security
	Building services with Windows Communication Foundation
	Working with WCF
	The data access layer

	Building a SOAP service
	Building a REST service

	Exploring OData data services
	Building an OData service
	Consuming an external service

	Summary

	Chapter 10: Building Dashboards in SharePoint and Silverlight
	Overview of SharePoint
	Setting up SharePoint

	Building a Silverlight web part
	Using the Client Object Model

	Building a SharePoint Silverlight dashboard
	Setting up our data source
	Building our dashboard

	SharePoint Data Access Strategies
	Summary

	Chapter 11: Working with 3D Characters
	The second remake assignment
	Time for Action – exporting a 3D model without considering textures
	XAML 3D models

	Time for action – from DCC tools to WPF
	XBAP WPF applications with 3D content

	Time for action – displaying a 3D model in a 2D screen with WPF
	Understanding the 3D world
	X, Y, and Z in practice
	GPU 3D acceleration
	Understanding meshes

	Time for action – using other XAML exporter for DCC tools
	Time for action – adding 3D elements and interacting with them using Expression Blend
	Interacting with 3D elements using Expression Blend

	Silverlight and the 3D world
	Time for action – exporting a 3D model to ASE
	Time for action – installing Balder 3D engine
	Time for action – from DCC tools to Silverlight
	Displaying a 3D model in a 2D screen with Silverlight
	Using 3D vectors

	Summary

	Index

