Mastering .NET
Machine Learning

Master the art of machine learning with .NET and gain insight into
real-world applications

PACKT z

vww.allitebooks.conl

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

IVEASLET G AN 1 1VEdUIIC 1,Caliiinl

[vww allitebooks.cond

http://www.allitebooks.org

1dUIC Ul LUUIIWKCLIL

Mastering .NET Machine Learning
Credits

About the Author

Acknowledgments

About the Reviewers

www.PacktPub.com

eBooks, discount offers, and more

Why subscribe?

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support

Downloading the example code
Errata
Piracy
Questions
1. Welcome to Machine Learning Using the .NET Framework
What is machine learning?
Why .NET?

What version of the .NET Framework are we using?

Why write your own?

Why open data?

Why F#?
Getting ready for machine learning
Setting up Visual Studio

Learning F#

vww allitebooks.conl

http://www.allitebooks.org

Math.NET
Accord. NET

Numl

Summary
2. AdventureWorks Regression
Simple linear regression
Setting up the environment
Preparing the test data

Standard deviation

Pearson’s correlation

Linear regression
Math.NET

Regression try 1

Regression try 2
Accord. NET

Regression
Regression evaluation using RMSE

Regression and the real world

Regression against actual data

AdventureWorks app

Setting up the environment

Updating the existing web project
Implementing the regression
Summary

3. More AdventureWorks Regression

Introduction to multiple linear regression

Intro example

Keep adding x variables?

AdventureWorks data

Adding multiple regression to our production application

vww allitebooks.conl

http://www.allitebooks.org

Adding a third x variable to our model

Logistic regression
Intro to logistic regression
Adding another x variable
Applying a logistic regression to AdventureWorks data
Categorical data
Attachment point
Analyzing results of the logistic regression
Adding logistic regression to the application
Summary
4. Traffic Stops — Barking Up the Wrong Tree?
The scientific process

Open data
Hack-4-Good

FsLab and type providers

Data exploration

Visualization

Decision trees

Accord

numl

Summary
5. Time Out — Obtaining Data

Overview

SQL Server providers

Non-type provider

SqlProvider
Deedle

MicrosoftSqlProvider

SQL Server type provider wrap up

Non SQL type providers

vww allitebooks.conl

http://www.allitebooks.org

Parallelism

JSON type provider — authentication

Summary
6. AdventureWorks Redux — k-NN and Naive Bayes Classifiers

k-Nearest Neighbors (k-NN)

k-NN example

Naive Bayes

Naive Bayes in action

One thing to keep in mind while using Naive Bayes
AdventureWorks

Getting the data ready
k-NN and AdventureWorks data

Naive Bayes and AdventureWorks data

Making use of our discoveries

Getting the data ready

Expanding features

Summary
7. Traffic Stops and Crash Locations — When Two Datasets Are Better Than One

Unsupervised learning

k-means

Principle Component Analysis (PCA)

Traffic stop and crash exploration

Preparing the script and the data

Geolocation analysis

PCA

Analysis summary
The Code-4-Good application

Machine learning assembly
The Ul

Adding distance calculations

vww allitebooks.conl

http://www.allitebooks.org

Summary
8. Feature Selection and Optimization
Cleaning data
Selecting data
Collinearity

Feature selection

Normalization

Scaling
Overfitting and cross validation

Cross validation — train versus test

Cross validation — the random and mean test
Cross validation — the confusion matrix and AUC

Cross validation — unrelated variables

Summary

9. AdventureWorks Production — Neural Networks

Neural networks

Background

Neural network demo

Neural network — try #1

Neural network — try #2

Building the application
Setting up the models

Building the UX

Summary
10. Big Data and IoT

AdventureWorks and the Internet of Bikes

Data considerations

MapReduce
MBrace

Distributed logistic regression

vww allitebooks.conl

http://www.allitebooks.org

PCL linear regression

Service layer

Universal Windows app and Raspberry Pi 2
Next steps
Summary

Index

vww allitebooks.conl

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

IVEASLET G AN 1 1VEdUIIC 1,Caliiinl

IVEASLET G AN 1 1VEdUIIC 1,Caliiinl
Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016
Production reference: 1210316
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-840-3

www.packtpub.com

http://www.packtpub.com

GICUIL

Author

Jamie Dixon
Reviewers

Reed Copsey, Jr.

César Roberto de Souza
Commissioning Editor
Vedika Naik
Acquisition Editor
Meeta Rajani
Technical Editor
Pankaj Kadam

Copy Editor

Laxmi Subramanian
Proofreader

Safis Editing

Indexer

Rekha Nair

Graphics

Jason Monteiro
Production Coordinator
Aparna Bhagat

Cover Work

Aparna Bhagat

AU UIC AUUIUI

Jamie Dixon has been writing code for as long as he can remember and has been getting
paid to do it since 1995. He was using C# and JavaScript almost exclusively until
discovering F#, and now combines all three languages for the problem at hand. He has a
passion for discovering overlooked gems in datasets and merging software engineering
techniques to scientific computing. When he codes for fun, he spends his time using
Phidgets, Netduinos, and Raspberry Pis or spending time in Kaggle competitions using F#
or R.

Jamie is a bachelor of science in computer science and has been an F# MVP since 2014.
He is the former chair of his town’s Information Services Advisory Board and is an
outspoken advocate of open data. He is also involved with his local .NET User Group
(TRINUG) with an emphasis on data analytics, machine learning, and the Internet of
Things (IoT).

Jamie lives in Cary, North Carolina with his wonderful wife Jill and their three awesome
children: Sonoma, Sawyer, and Sloan. He blogs weekly at jamessdixon.wordpress.com
and can be found on Twitter at @jamie_dixon.

http://jamessdixon.wordpress.com

ACKINNUOWICUGIIICIIL

I had never considered writing a book until Meeta from Packt Publishing sent me an e-
mail, asking me if I was interested in writing the book that you are holding. My first
reaction was excitement immediately followed by fear. I have heard that writing a book is
an arduous and painful undertaking with scant reward—was I really ready to dive into
that? Fortunately, writing this book was nothing of the sort—all due to the many
wonderful people that helped me along the way.

First and foremost are the technical reviewers Reed Copsey, Jr. and César Roberto de
Souza. Their attention to detail, their spot-on suggestions, and occasional words of
encouragement made all of the difference. Next, the team at Packt of Meeta Rajani, Pankaj
Kadam, and Laxmi Subramanian took my words, code samples, and screenshots and
turned them into something, well, beautiful. Mathias Brandiveder, Evalina Gasborova,
Melinda Thielbar, James McCaffrey, Phil Trelford, Seth Jurez, and Chris Kalle all helped
me at different points with questions about what and how to present the machine learning
models and ideas. Dmitry Morozov and Ross McKinlay were indispensable for explaining
the finer points of type providers. Isaac Abraham helped me with the section on MBrace
and Tomas Petricek helped me with the section on Deedle. Chris Matthews and Mark
Hutchinson reviewed the initial outline and gave me great feedback. Ian Hoppes saved me
hours (days?) by sharing his expertise on the finer points of Razor and JavaScript. Finally,
Rob Seder, Mike Esposito, and Kevin Allen encouraged and supported me throughout the
entire process.

To everyone I mentioned and the people I may have missed, please accept my sincerest
thanks.

Finally, my deepest love for the initial proofreader, soul mate, and best wife any person
could have: Jill Dixon. I am truly the luckiest man in the world to be with you.

ADOUL UIC NCVICWCID

Reed Copsey, Jr. is the executive director of the F# Software Foundation and the CTO
and co-owner of C Tech Development Corporation, a software company focused on
applications and tooling for the Earth Sciences. After attending the University of Chicago,
he went on to consult and work in many industries, including medical imaging,
geographical information systems, analysis of retail market data, and more. He has been
involved with technical and business support for numerous nonprofit organizations, and
most recently enjoys spending his free time involved with the software community.

He is the organizer of the Bellingham Software Developers Network, has been a Microsoft
MVP in .NET since 2010, is an avid StackOverflow contributor, and regularly speaks on
F# and .NET at various user groups and conferences.

César Roberto de Souza is the author of the Accord. NET Framework and an experienced
software developer. During his early university years in Brazil, he decided to create the
Accord.NET Framework, a framework for machine learning, image processing, and
scientific computing for .NET. Targeted at both professionals and hobbyists, the project
has been used by large and small companies, big corporations, start-ups, universities, and
in an extensive number of scientific publications. After finishing his MSc in the Federal
University of Sdo Carlos, the success of the project eventually granted him an opportunity
to work and live in Europe, from where he continues its development and interacts with
the growing community of users that now helps advance the project even further.

He is a technology enthusiast, with keen interest in machine learning, computer vision,
and image processing, and regularly writes articles on those topics for the CodeProject,
where he has won its article writing competition multiple times.

WWW.rdChiruv.ooiil

CDUURKS, UIBLOUIIL U11ICTS, dilU 1IUIC

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT!L E°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

\AJ lly JUUOLL IUC .

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

To Sonoma, Sawyer, and Sloan Dixon

riciadc

The .NET Framework is one of the most successful application frameworks in history.
Literally billions of lines of code have been written on the .NET Framework, with billions
more to come. For all of its success, it can be argued that the .NET Framework is still
underrepresented for data science endeavors. This book attempts to help address this issue
by showing how machine learning can be rapidly injected into the common .NET line of
business applications. It also shows how typical data science scenarios can be addressed
using the .NET Framework. This book quickly builds upon an introduction to machine
learning models and techniques in order to build real-world applications using machine
learning. While by no means a comprehensive study of predictive analytics, it does
address some of the more common issues that data scientists encounter when building
their models.

Many books about machine learning are written with every chapter centering around a
dataset and how to implement a model on that dataset. While this is a good way to build a
mental blueprint (as well as some code boilerplate), this book is going to take a slightly
different approach. This book centers around introducing the same application for the line
of business development and one common open data dataset for the scientific programmer.
We will then introduce different machine techniques, depending on the business scenario.
This means you will be putting on different hats for each chapter. If you are a line of
business software engineer, Chapters 2, 3, 6, and 9 will seem like old hat. If you are a
research analyst, Chapters 4, 7, and 10 will be very familiar to you. I encourage you to try
all chapters, regardless of your background, as you will perhaps gain a new perspective
that will make you more effective as a data scientist. As a final note, one word you will
not find in this book is “simply”. It drives me nuts when I read a tutorial-based book and
the author says “it is simply this” or “simply do that”. If it was simple, I wouldn’t need the
book. I hope you find each of the chapters accessible and the code samples interesting, and
these two factors can help you immediately in your career.

Yviidt uUlld DUUK CUVLEDS

Chapter 1, Welcome to Machine Learning Using the .NET Framework, contextualizes
machine learning in the .NET stack, introduces some of the libraries that we will use
throughout the book, and provides a brief primer to F#.

Chapter 2, AdventureWorks Regression, introduces the business that we will use in this
book—AdventureWorks Bicycle company. We will then look at a business problem where
customers are dropping orders based on reviews of the product. It looks at creating a linear
regression by hand, using Math.NET and Accord.NET to solve this business problem. It
then adds this regression to the line of business application.

Chapter 3, More AdventureWorks Regression, looks at creating a multiple linear regression
and a logistic regression to solve different business problems at AdventureWorks. It will
look at different factors that affect bike sales and then categorize potential customers into
potential sales or potential lost leads. It will then implement the models to help our
website convert potential lost leads into potential sales.

Chapter 4, Trdffic Stops — Barking Up the Wrong Tree?, takes a break from
AdventureWorks. You will put on your data scientist hat, use an open dataset of traffic
stops, and see if we can understand why some people get a verbal warning and why others
get a ticket at a traffic stop. We will use basic summary statistics and decision trees to help
in understanding the results.

Chapter 5, Time Out — Obtaining Data, stops with introducing datasets and machine
learning models and concentrates on one of the hardest parts of machine learning—
obtaining and cleaning the data. We will look at using F# type providers as a very
powerful language feature that can vastly speed up this process of “data munging”.

Chapter 6, AdventureWorks Redux — k-NN and Naive Bayes Classifiers, goes back to
AdventureWorks and looks at a business problem of how to improve cross sales. We will
implement two popular machine learning classification models, k-NN and Naive Bayes, to
see which is better at solving this problem.

Chapter 7, Trdffic Stops and Crash Locations — When Two Datasets Are Better Than One,
returns back to the traffic stop data and adds in two other open datasets that can be used to
improve the predictions and gain new insights. The chapter will introduce two common
unsupervised machine learning techniques: k-means and PCA.

Chapter 8, Feature Selection and Optimization, takes another break from introducing new
machine learning models and looks at another key part of building machine learning
models—selecting the right data for the model, preparing the data for the model, and
introducing some common techniques to deal with outliers and other data abnormalities.

Chapter 9, AdventureWorks Production — Neural Networks, goes back to AdventureWorks
and looks at how to improve bike production by using a popular machine learning
technique called neural networks.

Chapter 10, Big Data and IoT, wraps up by looking at a more recent problem—how to

variability, and Veloci{y. We will then look at how IoT devices can zgvenerate this big data
and how to deploy machine learning models onto these devices so that they become self-
learning.

vww allitebooks.conl

http://www.allitebooks.org

vvilidl you 11Ccd 105 uUliS voon

You will need Visual Studio 2013 (any version) or beyond installed on your computer.
You can also use VS Code or Mono Develop. The examples in this book use Visual Studio
2015 Update 1.

YVI1U UlS DOOUAK DD 106

The lines between business computing and scientific computing are becoming
increasingly blurred. Indeed, an argument can be made that the distinction was never
really as clear as it has been made out to be in the past. With that, machine learning
principles and models are making their way into mainstream computing applications.
Consider the Uber app that shows how far Uber drivers are from you, and product
recommendations built into online retail sites such as Jet.

Also, the nature of the .NET software developer’s job is changing. Earlier, when the cliché
of ours is a changing industry was being thrown around, it was about languages (need to
know JavaScript, C#, and TSql) and frameworks (Angular, MVC, WPF, and EF). Now,
the cliché means that the software developer needs to know how to make sure their code is
correct (test-driven development), how to get their code off of their machine onto the
customer’s machine (DevOps), and how to make their applications smarter (machine
learning).

Also, the same forces that are pushing the business developer to retool are pushing the
research analyst into unfamiliar territory. Earlier, analysts focused on data collection,
exploration, and visualization in the context of an application (Excel, PowerBI, and SAS)
for point-in-time analysis. The analyst would start with a question, grab some data, build
some models, and then present the findings. Any kind of continuous analysis was done via
report writing or just re-running the models. Today, analysts are being asked to sift
through massive amounts of data (IoT telemetry, user exhaust, and NoSQL data lakes),
where the questions may not be known beforehand. Also, once models are created, they
are pushed into production applications where they are continually being re-trained in real
time. No longer just a decision aid for humans, research is being done by computers to
impact users immediately.

The newly-minted data scientist title is at the confluence of these forces. Typically, no one
person can be an expert on both sides of the divide, so the data scientist is a bit of a jack of
all trades, master of none who knows machine learning a little bit better than all of the
other software engineers on the team and knows software engineering a little bit better
than any researcher on the team. The goal of this book is to help move from either
software engineer or business analyst to data scientist.

G OIIVAIIUOLDS

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “The
Scripti. fsx file is then added to the project.”

A block of code is set as follows:

let multipliedAndIsEven =
ints
|> Array.map (fun i -> multiplyByTwo i)
|> Array.map (fun i -> isEven 1)

Any command-line input or output is written as follows:

val multipliedAndIsEven : string [] =
[|"even"; "even"; "even"; "even"; "even"; "even"|]

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “When the Add New
Item dialog box appears, select Script File.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

NCauldl 1ccdaln

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

G USWOIIICT SUpportt

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

UUWIIIUCIUIIIS CLAT CAClllllJlC CUuUC

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you’re looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

N A WN

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support

i i1aua

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

1 11 aL_y

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

CULCOUVUi1o

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Llldpierl 1. vvaltolllc to vialiiic 1.,cariil

Using the .NET Framework

This is a book on creating and then using Machine Learning (ML) programs using the
.NET Framework. Machine learning, a hot topic these days, is part of an overall trend in
the software industry of analytics which attempts to make machines smarter. Analytics,
though not really a new trend, has perhaps a higher visibility than in the past. This chapter
will focus on some of the larger questions you might have about machine learning using
the .NET Framework, namely: What is machine learning? Why should we consider it in
the .NET Framework? How can I get started with coding?

VWildt 15 IHaCiilic 1ICarig ¢

If you check out on Wikipedia, you will find a fairly abstract definition of machine
learning;:

“Machine learning explores the study and construction of algorithms that can learn
from and make predictions on data. Such algorithms operate by building a model
from example inputs in order to make data-driven predictions or decisions, rather
than following strictly static program instructions.”

I like to think of machine learning as computer programs that produce different results as
they are exposed to more information without changing their source code (and
consequently needed to be redeployed). For example, consider a game that I play with the
computer.

I show the computer this picture . and tell it “Blue Circle”. I then show it this picture

. and tell it “Red Circle”. Next I show it this picture A and say “Green Triangle.”

Finally, I show it this picture . and ask it “What is this?”. Ideally the computer would
respond, “Green Circle.”

This is one example of machine learning. Although I did not change my code or recompile
and redeploy, the computer program can respond accurately to data it has never seen
before. Also, the computer code does not have to explicitly write each possible data
permutation. Instead, we create models that the computer applies to new data. Sometimes
the computer is right, sometimes it is wrong. We then feed the new data to the computer to
retrain the model so the computer gets more and more accurate over time—or, at least, that
is the goal.

Once you decide to implement some machine learning into your code base, another
decision has to be made fairly early in the process. How often do you want the computer
to learn? For example, if you create a model by hand, how often do you update it? With
every new data row? Every month? Every year? Depending on what you are trying to
accomplish, you might create a real-time ML model, a near-time model, or a periodic
model. We will discuss the implications and implementations of each of these in several
chapters in the book as different models lend themselves to different retraining strategies.

vily AN

If you are a Windows developer, using .NET is something you do without thinking.
Indeed, a vast majority of Windows business applications written in the last 15 years use
managed code—most of it written in C#. Although it is difficult to categorize millions of
software developers, it is fair to say that .NET developers often come from nontraditional
backgrounds. Perhaps a developer came to .NET from a BCSC degree but it is equally
likely s/he started writing VBA scripts in Excel, moving up to Access applications, and
then into VB.NET/C# applications. Therefore, most .NET developers are likely to be
familiar with C#VB.NET and write in an imperative and perhaps OO style.

The problem with this rather narrow exposure is that most machine learning classes,
books, and code examples are in R or Python and very much use a functional style of
writing code. Therefore, the .NET developer is at a disadvantage when acquiring machine
learning skills because of the need to learn a new development environment, a new
language, and a new style of coding before learning how to write the first line of machine
learning code.

If, however, that same developer could use their familiar IDE (Visual Studio) and the same
base libraries (the .NET Framework), they can concentrate on learning machine learning
much sooner. Also, when creating machine learning models in .NET, they have immediate
impact as you can slide the code right into an existing C#VB.NET solution.

On the other hand, .NET is under-represented in the data science community. There are a
couple of different reasons floating around for that fact. The first is that historically
Microsoft was a proprietary closed system and the academic community embraced open
source systems such as Linux and Java. The second reason is that much academic research
uses domain-specific languages such as R, whereas Microsoft concentrated .NET on
general purpose programming languages. Research that moved to industry took their
language with them. However, as the researcher’s role is shifted from data science to
building programs that can work at real time that customers touch, the researcher is getting
more and more exposure to Windows and Windows development. Whether you like it or
not, all companies which create software that face customers must have a Windows
strategy, an iOS strategy, and an Android strategy.

One real advantage to writing and then deploying your machine learning code in .NET is
that you can get everything with one stop shopping. I know several large companies who
write their models in R and then have another team rewrite them in Python or C++ to
deploy them. Also, they might write their model in Python and then rewrite it in C# to
deploy on Windows devices. Clearly, if you could write and deploy in one language stack,
there is a tremendous opportunity for efficiency and speed to market.

¥Yvilal vCIsiull U6 UIC (N1 FTdllICWUINK al
we using?

The .NET Framework has been around for general release since 2002. The base of the
framework is the Common Language Runtime or CLR. The CLR is a virtual machine that
abstracts much of the OS specific functionality like memory management and exception
handling. The CLR is loosely based on the Java Virtual Machine (JVM). Sitting on top
of the CLR is the Framework Class Library (FCL) that allows different languages to
interoperate with the CLR and each other: the FCL is what allows VB.Net, C#, F#, and
Iron Python code to work side-by-side with each other.

Since its first release, the .NET Framework has included more and more features. The first
release saw support for the major platform libraries like WinForms, ASP.NET, and
ADO.NET. Subsequent releases brought in things like Windows Communication
Foundation (WCF), Language Integrated Query (LINQ), and Task Parallel Library
(TPL). At the time of writing, the latest version is of the .Net Framework is 4.6.2.

In addition to the full-Monty .NET Framework, over the years Microsoft has released
slimmed down versions of the .NET Framework intended to run on machines that have
limited hardware and OS support. The most famous of these releases was the Portable
Class Library (PCL) that targeted Windows RT applications running Windows 8. The
most recent incantation of this is Universal Windows Applications (UWA), targeting
Windows 10.

At connect(); in November 2015, Microsoft announced GA of the latest edition of the
.NET Framework. This release introduced the .Net Core 5. In January, they decided to
rename it to .Net Core 1.0. .NET Core 1.0 is intended to be a slimmed down version of the
full .NET Framework that runs on multiple operating systems (specifically targeting OS X
and Linux). The next release of ASP.NET (ASP.NET Core 1.0) sits on top of .NET Core
1.0. ASP.NET Core 1.0 applications that run on Windows can still run the full .NET
Framework.

[vww allitebooks.cond

http://www.allitebooks.org

ASPNET 4.6 ASP.NET Core 1.0

NET Framework 4.6 B NET Core10 L C‘ =

NET framework libraries .NET core libraries

(https://blogs.msdn.microsoft.com/webdev/2016/01/19/asp-net-5-is-dead-introducing-asp-
net-core-1-0-and-net-core-1-0/)

In this book, we will be using a mixture of ASP.NET 4.0, ASP.NET 5.0, and Universal
Windows Applications. As you can guess, machine learning models (and the theory
behind the models) change with a lot less frequency than framework releases so the most
of the code you write on .NET 4.6 will work equally well with PCL and .NET Core 1.0.
Saying that, the external libraries that we will use need some time to catch up—so they
might work with PCL but not with .NET Core 1.0 yet. To make things realistic, the
demonstration projects will use .NET 4.6 on ASP.NET 4.x for existing (Brownfield)
applications. New (Greenfield) applications will be a mixture of a UWA using PCL and
ASP.NET 5.0 applications.

https://blogs.msdn.microsoft.com/webdev/2016/01/19/asp-net-5-is-dead-introducing-asp-net-core-1-0-and-net-core-1-0/

vwily wiliitc your owiisd

It seems like all of the major software companies are pitching machine learning services
such as Google Analytics, Amazon Machine Learning Services, IBM Watson, Microsoft
Cortana Analytics, to name a few. In addition, major software companies often try to sell
products that have a machine learning component, such as Microsoft SQL Server Analysis
Service, Oracle Database Add-In, IBM SPSS, or SAS JMP. I have not included some
common analytical software packages such as PowerBI or Tableau because they are more
data aggregation and report writing applications. Although they do analytics, they do not
have a machine learning component (not yet at least).

With all these options, why would you want to learn how to implement machine learning
inside your applications, or in effect, write some code that you can purchase elsewhere? It
is the classic build versus buy decision that every department or company has to make.
You might want to build because:

¢ You really understand what you are doing and you can be a much more informed
consumer and critic of any given machine learning package. In effect, you are
building your internal skill set that your company will most likely prize. Another way
to look at it, companies are not one tool away from purchasing competitive advantage
because if they were, their competitors could also buy the same tool and cancel any
advantage. However, companies can be one hire away or more likely one team away
to truly have the ability to differentiate themselves in their market.

¢ You can get better performance by executing locally, which is especially important
for real-time machine learning and can be implemented in disconnected or slow
connection scenarios. This becomes particularly important when we start
implementing machine learning with Internet of Things (IoT) devices in scenarios
where the device has a lot more RAM than network bandwidth. Consider the
Raspberry Pi running Windows 10 on a pipeline. Network communication might be
spotty, but the machine has plenty of power to implement ML models.

¢ You are not beholden to any one vendor or company, for example, every time you
implement an application with a specific vendor and are not thinking about how to
move away from the vendor, you make yourself more dependent on the vendor and
their inevitable recurring licensing costs. The next time you are talking to the CTO of
a shop that has a lot of Oracle, ask him/her if they regret any decision to implement
any of their business logic in Oracle databases. The answer will not surprise you. A
majority of this book’s code is written in F#—an open source language that runs
great on Windows, Linux, and OS X.

¢ You can be much more agile and have much more flexibility in what you implement.
For example, we will often re-train our models on the fly and when you write your
own code, it is fairly easy to do this. If you use a third-party service, they may not
even have API hooks to do model training and evaluation, so near-time model
changes are impossible.

Once you decide to go native, you have a choice of rolling your own code or using some

you, highlight some of the pros and cons of each technique, and let you decide how you
want to implement them. For example, you can easily write your own basic classifier that
is very effective in production but certain models, such as a neural network, will take a
considerable amount of time and energy and probably will not give you the results that the
open source libraries do. As a final note, since the libraries that we will look at are open
source, you are free to customize pieces of it—the owners might even accept your
changes. However, we will not be customizing these libraries in this book.

vvily opcil ddaid @

Many books on machine learning use datasets that come with the language install (such as
R or Hadoop) or point to public repositories that have considerable visibility in the data
science community. The most common ones are Kaggle (especially the Titanic
competition) and the UC Irvine’s datasets. While these are great datasets and give a
common denominator, this book will expose you to datasets that come from government
entities. The notion of getting data from government and hacking for social good is
typically called open data. I believe that open data will transform how the government
interacts with its citizens and will make government entities more efficient and
transparent. Therefore, we will use open datasets in this book and hopefully you will
consider helping out with the open data movement.

ny rwrd

As we will be on the .NET Framework, we could use either C#, VB.NET, or F#. All three
languages have strong support within Microsoft and all three will be around for many
years. F# is the best choice for this book because it is unique in the .NET Framework for
thinking in the scientific method and machine learning model creation. Data scientists will
feel right at home with the syntax and IDE (languages such as R are also functional first
languages). It is the best choice for .NET business developers because it is built right into
Visual Studio and plays well with your existing C#/VB.NET code. The obvious alternative
is C#. Can I do this all in C#? Yes, kind of. In fact, many of the .NET libraries we will use
are written in C#.

However, using C# in our code base will make it larger and have a higher chance of
introducing bugs into the code. At certain points, I will show some examples in C#, but
the majority of the book is in F#.

Another alternative is to forgo .NET altogether and develop the machine learning models
in R and Python. You could spin up a web service (such as AzureML), which might be
good in some scenarios, but in disconnected or slow network environments, you will get
stuck. Also, assuming comparable machines, executing locally will perform better than
going over the wire. When we implement our models to do real-time analytics, anything
we can do to minimize the performance hit is something to consider.

A third alternative that the .NET developers will consider is to write the models in T-SQL.
Indeed, many of our initial models have been implemented in T-SQL and are part of the
SQL Server Analysis Server. The advantage of doing it on the data server is that the
computation is as close as you can get to the data, so you will not suffer the latency of
moving large amount of data over the wire. The downsides of using T-SQL are that you
can’t implement unit tests easily, your domain logic is moving away from the application
and to the data server (which is considered bad form with most modern application
architecture), and you are now reliant on a specific implementation of the database. F# is
open source and runs on a variety of operating systems, so you can port your code much
more easily.

uciudllg ICdly 101 HHlaCilic 1ICaliiilg

In this section, we will install Visual Studio, take a quick lap around F#, and install the
major open source libraries that we will be using.

L)Cl.lllls upy vioddadl Jgtuuilv

To get going, you will need to download Visual Studio on a Microsoft Windows machine.
As of this writing, the latest (free) version is Visual Studio 2015 Community. If you have a
higher version already installed on your machine, you can skip this step. If you need a
copy, head on over to the Visual Studio home page at https://www.visualstudio.com.
Download the Visual Studio Community 2015 installer and execute it.

Now, you will get the following screen:

Setup requires up to 7 GB across all drives.

Choose the type of installation

Typical
Includes C#/AVE Web and Desktop features

Custom

Allows you to customize features for your installation

You can add or remove additional features at any time after setup via
Programs and Features in the Control Panel.

Select Custom installation and you will be taken to the following screen:

https://www.visualstudio.com

pq Visual Studio

Enterprise 2015

Features Languages

Select features

B Programming Languages
Visual C++
Common Tools for Visual C++ 2015
Microsoft Foundation Classes for C++
Windows XP Support for C++
v Visual F#
Python Tools for Visual Studio

Windows and Web Development
ClickOnce Publishing Tools
LightSwitch

Microsoft Office Developer Tools

B Select All

Setup requires up to 10 MB across all drives.

Make sure Visual F# has a check mark next to it. Once it is installed, you should see

LTl llllls L 1T

One of the great features about F# is that you can accomplish a whole lot with very little
code. It is a very terse language compared to C# and VB.NET, so picking up the syntax is
a bit easier. Although this is not a comprehensive introduction, this is going to introduce
you to the major language features that we will use in this book. I encourage you to check
out http://www.tryfsharp.org/ or the tutorials at http://fsharpforfunandprofit.com/ if you

want to get a deeper understanding of the language. With that in mind, let’s create our 1st
F# project:

1. Start Visual Studio.
2. Navigate to File | New | Project as shown in the following screenshot:

Dq Microsoft Visual Studio

' File | Edit View Debug Team Tools Architecture Test Analyze Window Help

New » | 3 Project... Ctrl+Shift+N
Open * | % Web Site... Shift+Alt+N
Close % Team Project...
Close Solution &= Repository...
Save Selected ltems Ctrl+S "0 File.. Ctrl+N
Save Selected ltems As... Project From Existing Code...
¥ Save All Ctrl+Shift+S
Export Template...
Page Setup...

Print... Ctrl+P

Account Settings...

Recent Files >
Recent Projects and Solutions »
B4 Exit Alt+F4

3. When the New Project dialog box appears, navigate the tree view to Visual F# |
Windows | Console Application. Have a look at the following screenshot:

http://www.tryfsharp.org/
http://fsharpforfunandprofit.com/

P Recent NET Framework 452 = Sart by: | Default g =l Search Installed Templates (Ctrl+E) P -
4 |nstalled Fe
o a Cansole Application Visual F# Type: Visual F#
4 Templates = . A project for creating a command-line
b Visual C# g‘ﬁ! Library Visual F# application
I Visual Basic &
b Visual C++ g&! Portable Library (MET 4.5, Windows Stare, Silverlight 5, Xam.. Visual F#
4 Visyal F# (1]
Silverlight .[.‘-lqﬁ_! Portable Library (MET 4.5, Windows Store, Windows Phone... Visual F#
Windows n Fi
i LMET 4.5 i 5 i ... Visual F
5OL Server .&ﬁ! Portable Library (.MET 4.5, Windows Store, Windows Phone... Visual F#
b JavaScript HHF i » :
e s : . J i
HDInsight ﬁ;! Portable Library [[MET 4.5, Windows Store, Xamarin) Visual F#
PawerShell F#
) I Tutarial Wisual F#
b Python (2]
I+ TypeScript ==
b Online Click here to go online and find templates.
Marne: Consolespplication
Location: CAMLDaotMet!, -
Solution name: |l‘.nnso}ehpplirarinn1] [w] Create directory for solution
[] Add 1o source control
| ok || cancel

4. Give your project a name, hit OK, and the Visual Studio Template generator will
create the following boilerplate:

w ConsoleApplication - Microsoft Visual Studio

File Edit View Project Build Debug Team Tools Architecture Test Analyze Window Help

' |F|3'"c’ ﬂ#‘ v ~ | |Debug ~ AnyCPU b ’Start"l,ér =

Program.fs + X Solution Explorer

R|o-59|s=8

Search Solution Explorer (Ctrl+;)

// Learn more about F# at http://fsharp.org
// See the 'F# Tutorial' project for more help.

[<EntryPoint>]
let main argv =
printfn "%A" argv
@ // return an integer exit code

faJ Solution ‘ConsoleApplication1’ (1 project)
| 4 ConsoleApplication1
P =B References

F* Assemblylnfo.fs

0O~ o B WM

F* Program.fs

¥.) App.config

Although Visual Studio created a Progranm. fs file that creates a basic console .exe
application for us, we will start learning about F# in a different way, so we are going
to ignore it for now.

5. Right-click in the Solution Explorer and navigate to Add | New Item.

File Edit View Project Build Debug Team Tools Architecture Test Analyze ‘Window Help
--‘[H-‘.‘.ll'lsH'-- Debug ~! AnyCPU -rsm'|;i‘f= '] | M A,
Programfs & X Al Solution Explorer
1 // Learn more about F# at http://fsharp.org £ . , AR =
2 // See the 'F# Tutorial' project for more help. « N [:I| -5 d | & &
3 Search Solution Explorer (Ctrl+
4 <EntryPoint>
5 J[.e‘t ﬂl!in argv]= i8] Sohuson I‘:qnm‘EApEWﬁﬂm.“ o
6 print‘Fn wag argy Fi [CTE] onsole Apr IIM‘I
7 @ // return an integer exit code P 8 Referenc| ki Build
B F* Assembl Rebuild
F* Program| Clean
¥ App.con
Send Project Output to F# Interactive
Scope to This
& New Solution Explorer View
¥ Show on Code Map
3 New ltem... Ctrl+Shift+A Add 3
%0 Edsting Item... Shift+Alt+A B Manage NuGet Packages...
Reference... £ Set as StartUp Project
% Connected Semvice... Debug »
i Source Control 3
& cut Ctrl+X
X Remove Del
[Rename
Unload Project
i Open Folder in File Expl
100% - 4 3 Solution Explorer [RE e ot Rt e
5 1 z P Properties Alt+Enter
F# Interactive Error List Package Manager Console Output
6. When the Add New Item dialog box appears, select Script File.
Add Mew Item - Consolefpplicationl ? o
4 Installed Sort by: | Detault -| &= Search Installed Temnplates (Ctrl+E) P~
F# : -
ol nies Source File Wisual F# Iterms Type: Visual £# Items
Code A blank F# script file (. fsx)
Data Seript File Visual F# Items
General
F
Powershell D Signature File Wisual F# ltems
b Online -
°—= 501 Database Connection (LING to 501, type provider) Wisual F# [terms
'E? SOL Database Connection (LING to Entities, type provid.. Visual F# tems
ami OData Service Connection (LING, type provider) Wisual F# Items
;[‘i WSDL Service Connection (type provider) Visual F# Items
?D Application Configuration File Visual F# Items
% Text File Visual F# Items
-
Click here to go online and find templates.
Marme: Script1.fsx
Add || Cancet

The Scripti. fsx file is then added to the project.

ST LA RS ST

@ o-5 | p -
Search Solution Explorer (Ctrl+;)

&J Solution ‘ConsoleApplication1’ (1 project)
4 ConsoleApplication1
P =W References
F#* AssemblyInfo.fs
F* Program.fs
¢ App.config

@ Script1.fsx

7. Once Scriptl.fsx is created, open it up, and enter the following into the file:

let x = "Hello World"

8. Highlight that entire row of code, right-click and select Execute In Interactive (or

press Alt + Enter):

Pq ConsoleApplication1 - Microsoft Visual Studio
File Edit View Project Build Debug Team Tools Architecture

°' lﬁﬂ"-’:uuf‘|9'("|ﬂlebug*AnyCPLI -

Scriptlfsx* # X

Test Analyze

P Start ~

P

let x = "Hello W

Execute In Interactive

Debug In Interactive

= Go To Definition

1
2
3
4

Breakpoint

k Run To Cursor

Run Flagged Threads To Cursor

X Cut
| @ Copy

Paste

Source Control

Alt+Enter

F12

Ctrl+F10

Ctrl+X
Ctrl+C

Ctrl+V

And the F# Interactive console will pop up and you will see this:

T Interactve

Microsoft (R) F# Interactive version 14.0.23020.0
Copyright (c) Microsoft Corporation. All Rights Reserved.

For help type #help;;

val x : string = "Hello World"

The F# Interactive is a type of REPL, which stands for Read-Evaluate-Print-Loop. If you
are a .NET developer who has spent any time in SQL Server Management Studio, the F#
Interactive will look very familiar to the Query Analyzer where you enter your code at the
top and see how it executes at the bottom. Also, if you are a data scientist using R Studio,
you are very familiar with the concept of a REPL. I have used the words REPL and FSI
interchangeably in this book.

There are a couple of things to notice about this first line of F# code you wrote. First, it
looks very similar to C#. In fact, consider changing the code to this:

Script1l.fsx* +# X
1 var x = "Hello World";

2

It would be perfectly valid C#. Note that the red squiggly line, showing you that the F#
compiler certainly does not think this is valid.

Going back to the correct code, notice that type of x is not explicitly defined. F# uses the
concept of inferred typing so that you don’t have to write the type of the values that you
create. I used the term value deliberately because unlike variables, which can be assigned
in C# and VB.NET, values are immutable; once bound, they can never change. Here, we
are permanently binding the name x to its value, Hello World. This notion of
immutability might seem constraining at first, but it has profound and positive
implications, especially when writing machine learning models.

With our basic program idea proven out, let’s move it over to a compliable assembly; in

+ C, and then open up Program. fs. Go into the code that was generated and paste it in:

[<EntryPoint>]
let main argv =
printfn "%A" argv
let x = "Hello World"
©@ // return an integer exit code

Tip
Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you’re looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

Then, add the following lines of code around what you just added:

// Learn more about F# at http://fsharp.org
// See the 'F# Tutorial' project for more help.
open System

[<EntryPoint>]
let main argv =
printfn "%A" argv
let x = "Hello World"
Console.WriteLine(x)
let y = Console.ReadKey()
0 // return an integer exit code

Press the Start button (or hit F5) and you should see your program run:

http://www.packtpub.com
http://www.packtpub.com/support

B ' C\MLDotNet\ConsoleApplication1

[|]]
Hello World

You will notice that I had to bind the return value from Console.ReadKey() to y. In C# or
VB.NET, you can get away with not handling the return value explicitly. In F#, you are
not allowed to ignore the returned values. Although some might think this is a limitation,
it is actually a strength of the language. It is much harder to make a mistake in F# because
the language forces you to address execution paths explicitly versus accidentally sweeping
them under the rug (or into a null, but we’ll get to that later).

In any event, let’s go back to our script file and enter in another line of code:
let ints = []1;2;3;4;5;6]]

If you send that line of code to the REPL, you should see this:

val ints : int [] = [|1; 2; 3; 4; 5; 6]]

This is an array, as if you did this in C#:

var ints = new[] {1,2,3,4,5,6};

Notice that the separator is a semicolon in F# and not a comma. This differs from many
other languages, including C#. The comma in F# is reserved for tuples, not for separating
items in an array. We’ll discuss tuples later.

Now, let’s sum up the values in our array:

let summedValue = ints |> Array.sum

While sending that line to the REPL, you should see this:

val summedValue : int = 21

There are two things going on. We have the |> operator, which is a pipe forward operator.
If you have experience with Linux or PowerShell, this should be familiar. However, if you
have a background in C#, it might look unfamiliar. The pipe forward operator takes the
result of the value on the left-hand side of the operator (in this case, ints) and pushes it
into the function on the right-hand side (in this case, sum).

The other new language construct is Array . sum. Array is a module in the core F# libraries,
which has a series of functions that you can apply to your data. The function sum, well,
sums the values in the array, as you can probably guess by inspecting the result.

let multiplied = ints |> Array.map (fun i -> i * 2)
If you send it to the REPL, you should see this:
val multiplied : int [] = [|2; 4; 6; 8; 10; 12]]

Array.map is an example of a high ordered function that is part of the Array type. Its
parameter is another function. Effectively, we are passing a function into another function.
In this case, we are creating an anonymous function that takes a parameter i and returns i
* 2. You know it is an anonymous function because it starts with the keyword fun and the
IDE makes it easy for us to understand that by making it blue. This anonymous function is
also called a lambda expression, which has been in C# and VB.NET since .Net 3.5, so you
might have run across it before. If you have a data science background using R, you are
already quite familiar with lambdas.

Getting back to the higher-ordered function Array.map, you can see that it applies the
lambda function against each item of the array and returns a new array with the new
values.

Array.map(

ints funi->i*2)multiplied
1 7 R 2
2%2 4
3 32 6
4 4*2 8
5 < i 10
6 6*2 12

We will be using Array.map (and its more generic kin Seq.map) a lot when we start
implementing machine learning models as it is the best way to transform an array of data.
Also, if you have been paying attention to the buzz words of map/reduce when describing
big data applications such as Hadoop, the word map means exactly the same thing in this
context. One final note is that because of immutability in F#, the original array is not
altered, instead, multiplied is bound to a new array.

Let’s stay in the script and add in another couple more lines of code:

let multiplyByTwo x =
X * 2

If you send it to the REPL, you should see this:

val multiplyByTwo : x:int -> int

single parameter x and then returns the value of the parameter multiplied by 2. This is
exactly the same as our anonymous function we created earlier in-line that we passed into
the map function. The syntax might seem a bit strange because of the -> operator. You can
read this as, “the function multiplyByTwo takes in a parameter called x of type int and
returns an int.”

Note three things here. Parameter x is inferred to be an int because it is used in the body
of the function as multiplied to another int. If the function reads x * 2.0, the x would
have been inferred as a float. This is a significant departure from C# and VB.NET but
pretty familiar for people who use R. Also, there is no return statement for the function,
instead, the final expression of any function is always returned as the result. The last thing
to note is that whitespace is important so that the indentation is required. If the code was
written like this:

let multiplyByTwo(x) =
X * 2

The compiler would complain:

Scriptl.fsx(8,1): warning FS0058: Possible incorrect indentation: this
token is offside of context started at position (7:1).

Since F# does not use curly braces and semicolons (or the end keyword), such as C# or
VB.NET, it needs to use something to separate code. That separation is whitespace. Since
it is good coding practice to use whitespace judiciously, this should not be very alarming
to people having a C# or VB.NET background. If you have a background in R or Python,
this should seem natural to you.

Since multiplyByTwo is the functional equivalent of the lambda created in Array.map
(fun 1 -> i * 2), we can do this if we want:

let multiplied' = ints |> Array.map (fun i -> multiplyByTwo 1)
If you send it to the REPL, you should see this:
val multiplied' : int [] = [|2; 4; 6; 8; 10; 12]]

Typically, we will use named functions when we need to use that function in several
places in our code and we use a lambda expression when we only need that function for a
specific line of code.

There is another minor thing to note. I used the tick notation for the value multiplied when
I wanted to create another value that was representing the same idea. This kind of notation
is used frequently in the scientific community, but can get unwieldy if you attempt to use
it for a third or even fourth (multiplied””) representation.

Next, let’s add another named function to the REPL.:

let isEven x =
match x % 2 = 0@ with
| true -> "even"
| false -> "odd"

isEven 3

If you send it to the REPL, you should see this:
val isEven : x:int -> string

This is a function named isEven that takes a single parameter x. The body of the function
uses a pattern-matching statement to determine whether the parameter is odd or even.
When it is odd, then it returns the string odd. When it is even, it returns the string even.

There is one really interesting thing going on here. The match statement is a basic
example of pattern matching and it is one of the coolest features of F#. For now, you can
consider the match statement much like the switch statement that you may be familiar
within R, Python, C#, or VB.NET, but we will see how it becomes much more powerful in
the later chapters. I would have written the conditional logic like this:

let isEven' x =
if X % 2 = 0 then "even" else "odd"

But I prefer to use pattern matching for this kind of conditional logic. In fact, I will
attempt to go through this entire book without using an if..then statement.

With isEven written, I can now chain my functions together like this:

let multipliedAndIsEven =
ints
|> Array.map (fun i -> multiplyByTwo 1)
|> Array.map (fun i -> isEven 1)

If you send it to REPL, you should see this:

val multipliedAndIsEven : string [] =
[|"even"; "even"; "even"; "even"; "even"; "even"|]

In this case, the resulting array from the first pipe Array.map (fun i -> multiplyByTwo
i)) gets sent to the next function Array.map (fun i -> isEven i). This means we
might have three arrays floating around in memory: ints which is passed into the first pipe,
the result from the first pipe that is passed into the second pipe, and the result from the
second pipe. From your mental model point of view, you can think about each array being
passed from one function into the next. In this book, I will be chaining pipe forwards
frequently as it is such a powerful construct and it perfectly matches the thought process
when we are creating and using machine learning models.

You now know enough F# to get you up and running with the first machine learning
models in this book. I will be introducing other F# language features as the book goes
along, but this is a good start. As you will see, F# is truly a powerful language where a
simple syntax can lead to very complex work.

11HTAd-pal’ty 1ordrics

The following are a few third-party libraries that we will cover in our book later on.

1vViditilel N B

Math.NET is an open source project that was created to augment (and sometimes replace)
the functions that are available in System.Math. Its home page is
http://www.mathdotnet.com/. We will be using Math.Net’s Numerics and Symbolics
namespaces in some of the machine learning algorithms that we will write by hand. A nice
feature about Math.Net is that it has strong support for F#.

http://www.mathdotnet.com/

LAC ULUl N 1

Accord.NET is an open source project that was created to implement many common
machine learning models. Its home page is http://accord-framework.net/. Although the
focus of Accord.NET was for computer vision and signal processing, we will be using
Accord.Net extensively in this book as it makes it very easy to implement algorithms in
our problem domain.

http://accord-framework.net/

1NeLiaal

Numl is an open source project that implements several common machine learning models
as experiments. Its home page is http://numl.net/. Numl is newer than any of the other
third-party libraries that we will use in the book, so it may not be as extensive as the other
ones, but it can be very powerful and helpful in certain situations. We will be using Numl
in several chapters of the book.

http://numl.net/

ouliiiiary

We covered a lot of ground in this chapter. We discussed what machine learning is, why
you want to learn about it in the .NET stack, how to get up and running using F#, and had
a brief introduction to the major open source libraries that we will be using in this book.
With all this preparation out of the way, we are ready to start exploring machine learning.

In the next chapter, we will apply our newly found F# skills to create a simple linear
regression to see if we can help AdventureWorks improve their sales.

UlldpPiclh 4. AUVEIHIWUICTCYVYUI RS NREGICOH10U1

Imagine you’re a business developer at AdventureWorks, a bicycle manufacturing
company based in Seattle, Washington. You are responsible for three applications that run
at the top of a single SQL Server instance. The applications are:

e A customer ordering website with a section for direct customer sales and another
section for resellers to buy in bulk

e A desktop inventory control management application

¢ A reporting solution using Power BI as a frontend

All three of these applications share similar characteristics:

e They are database-first applications where their primary role is to wireframe the
database

e They are all .NET applications that use standard Microsoft templating and
frameworks, such as MVC for the website and Entity Frameworks for both web and
desktop solutions

One day, your boss calls you into her office and says, “we are concerned about the
reseller’s section of the website. We’ve noticed through some basic charting in the Power
BI that many resellers are dropping their order depending on the average customer reviews
of the product.

Here is the one of the charts we are looking at:

Customer Reviews and Order Quantity
450
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50

0.00
0 500 1,000 1,500 2,000 2,500 3,000 3,500

Obviously, if we can prevent people from doing this, we will maximize sales. We want to
maximize our existing code assets, so your solution needs to integrate with the existing
website and we want our customers to experience the same look and feel they currently
have.”

This is what the current webpage looks like:

Create
Order Your Bikes

ProductlD Road-150 Red, 62:33,578.27 (3.90)

OrderCty

Create

Back to List

© 2015 - My ASP.NET Application

You tell your boss that you will take a look, think about it for a couple of days, and come
up with some ideas. Inside, you are thrilled because this will take you out of the traditional
role of web dev and into data science. After researching some different machine learning
techniques, you settle on using a simple regression to help achieve this goal.

OLIIPIC 1HICAT 1'EgI 551011

Regressions attempt to predict one number given a set of different numbers. For example,
imagine we had a box where we enter in a number and another number comes out:

o--0

I enter the number 1 into the box, and the number 6 comes out. Then, I enter another 1
into the box and the number 7 comes out. I do this five times and I get the following
results:

->
->
->
->
->

PR RRR
oo N

Before entering in another one, what do you think the output will be? You probably
guessed 6. However, if I asked you whether you were 100% sure that 6 would come out,
you would say, “no, but it will probably be 6.” In fact, you might say that 6 has a 60%
chance of coming out based on prior experience (three sixes in five total attempts).

What you are doing mentally is a kind of regression. Typically, linear regressions are
written using a formula like this:

y = X0 + x1 + x2 + E

Here, y is the number you want to predict and x0, x1, and x2 are some numbers that might
affect y. Back to AdventureWorks, y is the number of bikes a retail store will order in a
month, x0 is the month of the year, x1 is the order from the previous three months, and x2
is the number of other bikes that are being ordered by their immediate competitors. E is all
of the things that our formula cannot account for that still affects the bike sales—Ilike an
individual store losing a key sales person. If we knew that x0 + x1 + x2 accounted for
75% of y, we would know that 25% of y cannot be explained.

Our goal, then, is to find as few x parameters as possible that have the greatest impact on y
and then make a reasonable attempt to have our website reflect both the predicted value
and to influence the users for our benefit.

There are many types of regressions, and we will start with the most basic, though
surprisingly powerful one—the simple regression. In a simple regression, there is only one
input variable and one output, so the formula is y = x0 + E. Because there are only two

F o
4.75

o WM

We can plot the data like this:

6

5]

[

What we want to do with a simple regression is find the line that “fits” best through all of
the data points:

In this example, you can see that the line goes through points 1, 2, and 5. If the line does
not intersect a given point, we want to know the distance from the line to the point. In this
example, we want to know the distance of the dotted red line for points 3 and 4.

If we add up the distance of all of the dotted red lines and divide by the number of total
points on our graph, we have a pretty good idea of how well this line represents the plot. If
we are then given a number that is on our graph, we can make a prediction about where it
will land. For example, if we are given another 2, we can predict that we will probably
result in a 2. Not only that, we can make predictions about where the line is headed (slope)

will p}obably be close to 6.

In a real-word example, we typically don’t have a single input for a given number. So, we
might get a hundred 1s and 90% of the time the output will be 1, 5% of the time the output
will be 1.25, and 5% of the time, the output will be 0.75. If we placed all the 100s on our
scatter plot, we will see lots of points on 1 (or a really dark dot), some on 1.25, and some
on 0.75. With this mental model in place, let’s go ahead and create a simple linear
regression from scratch.

L)Cllllls LIlJ CAATC TCLiIVII UM

Open Visual Studio 2015 and create a new F# Library:

I+ Recent

4 |nstalled

4 Templates
b Visual C#
t Visual Basic
b Visual C++
4 Visual F#
Andreid
p i0S
Silverlight
Windows
WPF
SOL Server
DataFactory
b JavaScript
HDInsight
I Python

B Online

Mame:
Location:
Solution:

Selution name:

MET Framework 461 = Sort by: Default

E#
Console Application

E#
EQE! Library

EF#
fnﬁi! Portable Library (MET 4.5, Windo..,
E#
fnqi! Portable Library (,MET 4.3, Windo..,
E#
fnlii! Portable Library (.MET 4.5, Windo...

(33
94,5! Partable Library (.NET 4.5, Windo...

Ej Tutorial

Visual F#

Visual F#

Wisual F#

Yisual F#

Yisual F#

Visual F#

Visual F#

Click here to go enline and find templates.

Regression
ChMLDotMet
Create new solution

Regression.Solution

~| ii° 1=|| Search Installed Templ 2 -

Type: Visual F#
A project for creating an F# library

- Browsze...

X

Create directory for solution
[] Add to source control

OK | | Cancel

Once Visual Studio finishes creating the project and files for you, go into the solution
explorer, and open Script1.fsx and delete all the contents in the file. You should now
have an empty script file ready for your code.

Ligtpal llls LAIT LUOUL Udaua

The first thing we will do is create a dataset that we can use in our regression that gives us
predictable results. Create an array like this:

let input =[|1,1.;2,2.;3,2.25;4,4.75;5,5.|]

Here, input is an array of tuples. A tuple is a data structure that contains groups of data
that are unnamed—usually there are two items. The types do not have to be the same as a
tuple’s items. If you are familiar with the concept of a key/value pair, you can use that as a
mental model of a tuple. The only real “gotcha” is that tuples can have many items so this
it is a perfectly valid tuple: 2, true, "dog" where the first position is an int, the second is
a Boolean, and the third is a string.

If you highlight our single line of code and send it to the REPL using Alt + Enter, you will
get this back:

val input : (int * float) [] =

[1(1, 1.0); (2, 2.0); (3, 2.25); (4, 4.75); (5, 5.0)]]
The F# compiler is telling us that we have an array that contains tuples of type int and
float. In this example, we will use the first value of the tuples to be the X and the second
to be the Y of our simple linear regression.

With the data set up, let’s think about how to calculate a regression. A more mathematical
definition than what I used earlier is y = A + Bx, where A is the Y intercept of the line and
B is the slope of the line. Therefore, we need to figure out how to calculate the intercept of
the line and the slope of the line. Turns out that we need to calculate the standard deviation
of the x and y values and something called the Person’s correlation. Let’s tackle each one
of these separately.

Jwaliudi U udulviauivil

The best explanation of standard deviation that I have run across is at
http://www.mathsisfun.com/data/standard-deviation.html.

Standard deviation is the square root of the variance; to calculate the variance:

1. Work out the mean (the simple average of the numbers).

2. Then, for each number, subtract the mean and square the result (the squared
difference).

3. Then, work out the average of those squared differences.

So, taking MathIsFun’s explanation and applying it to F#, we can write:

let variance (source:float seq) =
let mean = Seq.average source
let deltas = Seqg.map (fun x -> pown (Xx-mean) 2) source
Seq.average deltas

Sending that to the REPL gives us:

val variance : source:seq<float> -> float

Notice how there is a one-to-one correspondence between each line of the English
explanation and the F# code. This is not an accident. F# is really great at matching your
thought process. In fact, we even resisted to temptation to for..each in code when we saw
those words in the English version.

There is some new F# code here that might be confusing. Notice that when I calculated the
mean, I called the Seq.average function:

Seq.average source

And hence, the source argument came after the function. I could have just as well written:

source |> Seq.average

This is something you will have seen before if you worked through Chapter 1, Welcome to
Machine Learning Using the .NET Framework. There is really no consensus in the F#
community about which way is more idiomatic, though the style guidelines argue for the
non-pipe forward way. Since both are supported by the languages and widely used, I use
both depending on the code. Typically, when I have a string of thoughts to push together I
use the pipe operator, but if there is only one calculation, I just call the function directly.
Notice that I did this after syntax technique in all three lines: mean, deltas, and the return
of the function.

With variance out of the way, we can make our standard deviation:

let standardDeviation values =
sqrt (variance values)

Sending that to the REPL gives us:

http://www.mathsisfun.com/data/standard-deviation.html

With the standard deviation ready, we can plug in our numbers. Since we will be
calculating the standard deviation of X and Y independently, let’s break the tuple apart into
separate arrays and calculate their average and standard deviations:

let x = input |> Seq.map (fun (x,y) -> float x)
let y = input |> Seq.map (fun (Xx,y) ->vVy)

let mX = Seq.average x

let mY = Seq.average y

let sX = standardDeviation x

let sY = standardDeviation y

Sending that to the REPL gives us:

val x : seq<float>

val y : seq<float>

val mX : float 3.0

val my : float 3.0

val sX : float 1.414213562
val sY : float 1.589024858

There is one thing new here. Notice that when calculating x, I used this syntax:

Seq.map(fun (x,y) -> float x)

With float x as the return. float is a function that casts the int into, well, a float. If you
are coming from VB.NET/C#, the comparable syntax will be (float)x.

4L CAlLOUll O LJVlLrLiliauvil

Next, let’s calculate the Pearson’s correlation. The best explanation I have found for it is

available at http://onlinestatbook.com/2/describing_bivariate_data/calculation.html. You

can think of creating the Pearson’s correlation as filling in columns in an Excel
spreadsheet and then doing some calculations on the column totals. Start a grid with x and
y in different rows:

L x [v | x | yv [xy [» [y* |
1 1
2 2
3 2.25
4 4.75
5 5
Total
Mean
Then, calculate the mean for X and Y:
L x [v | x | vy [xy [»x [y?
1 1
2 2
3 2.25
4 4.75
5 5
Total 15 15
Mean 3 3

Next, calculate x and y. x is calculated by subtracting the mean of X from X and y is
calculated by subtracting the mean of Y from Y:

L x [v | x | yv [xy [» [y* |
1 1 -2 -2
2 2 -1 -1
3 2.25 0 -0.75
4 4.75 1 1.75
5 5 2 2
Total 15 15
Mean 3 3

Next, fill in xy, X2 ,and y 2.

http://onlinestatbook.com/2/describing_bivariate_data/calculation.html

s = it ¥y -y | A | ¥
1 1 -2 -2 4 4 4
2 2 -1 -1 1 1 1
3 2.25 0 -0.75 0 0 0.563
4 4.75 1 1.75 1.75 1 3.063
5 5 2 2 4 4 4
Total 15 15
Mean 3 3
With the grid filled in, you can sum up xy, X2 , and y2 :
L x [¥y | x [v [xy | x [y
1 1 =4 & 4 4 4
2 2 -1 -1 1 1 1
3 235 0 -0.75 0 0 0.563
4 4.75 1 1.75 1.75 1 3.063
5 5 2 2 4 4 4
Total 15 15 10.75 10 12.63
Mean 3 3

The final answer is computed by dividing the sum of the xy column (Xxy) by the square

root of the product of the sum of the x2 column (sz) and the sum of the y2 2).

So, in our example, it will be:

column (Xy

10.75/ V(10 * 12.63)
I now want to repeat these steps without that grid in English:

1. Calculate the mean for X.
. Calculate the mean for Y.
Calculate x.
Calculate y.

Fill in xy, x2, and y2 .

Sum up y2

Sum up X2,

Sum up y2 .
Do the final formula.

Lo NN

And this is how I would write it in F#:

let pearsonsCorrelation(a:float seq, b:float seq) =
let mX = Seq.average a

let x
let y

a |> Seqg.map (fun x -> x - mX)
b |> Seq.map (fun y ->vy - mY)

let xys = Seq.zip x y

let xy = xys |> Seqg.map (fun (x, y) -> X*y, X*X, y*y)
let sxy = xy |> Seq.sumBy (fun (xy, X2, y2) -> Xxy)
let sx2 = xy |> Seq.sumBy (fun (xy, X2, y2) -> Xx2)
let sy2 = xy |> Seq.sumBy (fun (xy, x2, y2) -> y2)
sxy / sqrt (sx2*sy2)

Sending that to the REPL gives us:
val pearsonsCorrelation : a:seq<float> * b:seq<float> -> float

Again, you can see that there is almost a one-to-one correspondence between the formula
and the code. There are a couple of things to note.

Seq.zip x y is a function that takes in two sequences of equal length and combines them
together into a single tuple. So for x and y zipped:

X y Xys
1.00 1.00 1.00,1.00
2.00 Zip 2.00 = 2.00,2.00
3.00 2.25 3.00,2.25
4.00 4.75 4.00,4.75
5.00 5.00 5.00,5.00

Another thing to notice is that there is a three-item tuple being used in the Seq.SumBys.

Each item of the tuple represents a different column in the grid we were filling out: xy, X2,

and y2 . Although I normally don’t like to create tuples greater than two items, I can make
an exception in this case because I am only using the tuple in the context of these higher-
order functions. Because the data structure is contained and short-lived, a tuple is the best
choice. If I needed that data structure outside of the higher-order function, a record type
would have been more appropriate. We’ll get more exposure to a record type later in this
chapter.

A final thing to notice is the Seq. sumBy higher-ordered function. As you may expect,
sumBy computes the sum of things. The key thing to realize is that the sumBy expects a
function to be passed, not a data structure. If you just want to sum up the values in an
array, you can use the Seq.sum() function:

Seq.sum ([1;2;3])
val it : int = 6

Seq.sumBy ([1;2;3])
Does not compile

Seq.sumBy (fun i -> i) [1;2;3]
val it : int = 6

And so to run a Pearson’s correlation for x and y, type this into the script:

let r = pearsonsCorrelation (x,Yy)

Sending that to the REPL gives us:

val r : float = 0.9567374429

A J/51EC AL 1 CSI. COoJo1vU1il

With standard deviation and r calculated, we are ready for our linear regression:

let b = r*(sY/sX)
let A = mY - b*mX
val b : float = 1.075
val A : float = -0.225

What these two values mean is that our y intercept is - .22, or very close to the origin, and
our slope is 1.075. Laying them out on the same grid, you can see that the predicted
numbers are close to the actual:

L x [v | v |
0 0 -0.2
1 1 0.9
2 2 1.9
3 2.25 3.0
4 4.75 4.1
5 5 L

These are still different enough on the plot that we eye-balled earlier with the red line
going directly through 1, 2, 3, 4, 5 (solid line) and the regression line taking a slightly
different path (dashed line):

We will revisit how good this regression is at describing our data (and making predictions)
in a bit. Until then, we can safely say that we have a regression, which seems to fit our
data pretty well.

We now have a library we could compile for our AdventureWorks problem. However, we
may not want to roll our own because this is a fairly limited implementation. For example,
when we calculated variance and standard deviation, we were using the formula for the
variance and standard deviation for an entire population. If we had only a small sample of
the population, there is a different formula that we will implement. Also, linear regressions
have several parameters that we can enter to try and tune up the model in our
implementation. As you can guess, there is quite a bit of effort in writing your own library,
and you still may not get it right. If you were wondering in the middle of the prior exercise
of rolling our own, “is there an easier way?” The answer is “yes.”

1Ividul.INIS 1

We had a brief introduction to Math.Net in Chapter 1, Welcome to Machine Learning
Using the .NET Framework. In this section, we will add it to our project and see how it
can help us do a simple linear regression. In the solution explorer of your open project,
add a new script file and name it MathDotNet . fsx.

Next, open the NuGet Package Manager Console (Tools | NuGet Package Manger |
Package Manager Console):

File Edit View Project Build Debug Team | Tools | Architecture Test RTools Analyze Window Help
e - i3 - e HH - = | Debug Android *
105 ¥
Xarmarin Account...

Connect to Database...

saoqdig 159

Connect to Server...
Connect to Microsoft Azure Subscription...

SOL Server r

LA
i
2
1]
m
&
]
©

Code Snippets Manager... Ctrl+K, Ctrl+B

Choose Toolbox Items...

Paket Dependencies Manager *
Bl Package Manager Console MuGet Package Manager b
ﬁ Manage MuGet Packages for Solution... Python Tools ¥
o g Package Manager Settings Visual Studio Emulator for Android...

Extensions and Updates...

Create GUID

Error Lookup

In the console, enter the following line:

PM> install-package MathNet.Numerics

You will see that the package installs successfully:

PM> install-package MathNet.Numerics

Attempting to gather dependencies information for package 'MathMet.Numerics.3.8.8°
'Checikensoftware.MathTestDrive', targeting '.METFramework,Version=v4.5.2"
Attempting to resolve dependencies for package 'MathNet.Mumerics.3.8.8' with Depen
Resolving actions to install package 'MathMet.Numerics.3.3.8°

Resolved actions to install package 'MathMet.Numerics.3.8.8°

Adding package 'MathMet.Numerics.3.8.8' to folder 'F:\DocumentsiBook - ML\Intro Ex|
Added package 'MathMNet.Numerics.3.8.8' to folder 'F:‘\DocumentsiBook - ML\Intro Exa
Added package 'MathNet.Mumerics.3.8.8' to 'packages.cunfi31

Successfully installed 'MathMet.MNumerics 3.8.8' to ChcikenSoftware.MathTestDrive

Close the Package Manager Console and the readme. txt file that opens when you install
Math.NET. In the future, I will assume that you know how to open and enter commands to
install NuGet packages.

I\CSI. COooluil L1 y 4

In the script file, create the same input that we saw in the hand-rolled script and calculate
the means of x and y:

let input =1[|1,1.;2,2.;3,2.25;4,4.75;5,5.|]

let x = input |> Array.map(fun (x,y) -> float x)
let y = input |> Array.map(fun (Xx,y) ->vVy)

let mX = Array.average X

let mY = Array.average y

The following is the output:

val input : (int * float) [] =

[1(1, 1.0); (2, 2.0); (3, 2.25); (4, 4.75); (5, 5.0)]]
val x : float [] = [|]1.0; 2.0; 3.0; 4.0; 5.0]]
val y : float [] = [|1.0; 2.0; 2.25; 4.75; 5.0]]
val mX : float = 3.0
val my : float = 3.0

Then, point to the Math.NET library installed with the nugget package and add a reference
to it:

#r "../packages/MathNet.Numerics.3.8.0/1ib/net40/MathNet.Numerics.dll"
open MathNet.Numerics.Statistics

Next, use Math.Net to calculate the standard deviation of x and y:

let sX
let sY

ArrayStatistics.StandardDeviation Xx
ArrayStatistics.StandardDeviation y

The preceding code statements will give you:

val sX : float
val sY : float

1.58113883
1.7765838

Finally, use Math.Net to calculate the r:
let r = Correlation.Pearson (X,Yy)
The following will be the output:

val r : float = 0.9567374429
Now, you can calculate the regression:

let b
let A

= r*(sY/sX)
=mY - b*mX

And here is what you will get in the output:

val b : float
val A : float

1.075
-0.225

There is one new thing I want to point out in the script. You had to type:

#r "../packages/MathNet.Numerics.3.8.0/1lib/net40/MathNet.Numerics.dll"

[vww allitebooks.cond

http://www.allitebooks.org

The #r stands for reference and points the FSI to the filesystem to locate the assembly that
we want to use. The FSI loads with very few libraries installed, so you typically have to
add a reference the ones you need. Notice the ".." shorthand as the prefix for the file
path. This is a relative locator that translates into the solution location.

The open command tells the FSI to open up the .d11 file that we pointed to in the previous
line. This is the same as using in C#, Imports in VB.NET, and library in R.

So, this is a much easier way to calculate the components of a simple linear regression
than by hand. But wait, there is even more.

I\CSI. COooluil L1 y e

Math.NET makes it even easier to calculate the regression without going into the
components. In the script, enter the following code:

open MathNet.Numerics
let fit = Fit.Line(Xx,y)
let i = fst fit

let s = snd fit

You will get the following output:

val fit : float * float = (-0.225, 1.075)
val i : float -0.225
val s : float 1.075

Math.Numerics already has the regression available via the Fit () function. Fit () takes in
two arrays (in our case, x and y) and returns a tuple. The first item of the tuple is the
intercept and the second is the slope. The only new code that I introduced here are the fst
and snd operators. These are shorthand notations for tuples that have a length of two.
Calling fst on a tuple returns the first item and snd returns the second. If you call fst and
snd on a tuple that has more than two items, you will get a type mismatch compiler error.

ACCUIU.INLI 1

With Math.NET doing all of our heavy lifting, we have a better way to get the results of a
simple linear regression. However, there is another way I want to discuss, Accord.NET.
Open the NuGet Package Manager and install the following three packages:

e Accord
e Accord.Statistics
e FSharp.Data

Note that you will get a pop-up window when you install FSharp.Data:

Visual F# Type Provider Security x

You have opened a source code file in a project that references a type provider.

Publizher information: Unknown Publisher

Type provider assemnbly: ChUsers\Dixonh\Desktop'Library 1\ packages\Fsharp. Data.2.2.5\ib\ netd0
“FSharp.Data.dll
Project using type provider: Library1

Do you want to enable this type provider?

Enable || Disable

I Type providers can connect to remote data sources and execute custom code for build and
* IntelliSense features. You should only enable type providers from a trusted source.

Click on Enable.

INC HILOOLIULL
Back in the script file, enter the following lines of code:

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"
#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dll"
#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.dl11l"

open Accord
open Accord.Statistics.Models.Regression.Linear

let input =1[|1,1.;2,2.;3,2.25;4,4.75;5,5.|]

let x = input |> Array.map (fun (x,y) -> float x)

let y = input |> Array.map (fun (x,y) ->vy) let regression =
SimplelLinearRegression()

let sse = regression.Regress(Xx,y)

let intercept = regression.Intercept

let slope = regression.Slope

let mse = sse/float x.Length

let rmse = sqrt mse

let r2 = regression.CoefficientOfDetermination(x,y)

When you send this to the REPL, you will see the following code:

val input : (int * float) [] =
[1(1, 2.0); (2, 2.0); (3, 2.25); (4, 4.75); (5, 5.0)]]
val x : float [] = [|]1.0; 2.0; 3.0; 4.0; 5.0]]
val y : float [] = [|1.0; 2.0; 2.25; 4.75; 5.0]]
val regression : SimplelLinearRegression = y(x) = 1.075x +
-0.224999999999998
val sse : float = 1.06875
val intercept : float = -0.225
val slope : float = 1.075
val mse : float = 0.21375
val rmse : float = 0.4623310502
val r2 : float = 0.9153465347

What you see here is the exact same calculation as before with the formula kindly printed
out (I have rounded it to three decimal places):

y(x) = 1.075x + -0.225

I\CSI. COoolVlil Tvaiuatuivis uauls ANIVIO R

Accord.NET goes one better than Math.NET Fit () as it returns the sum of the squared
errors and the coefficient of determination (called r squared). In this case, the sum of
squared errors is 1.06875 and the r squared is 0.915 (rounded to three decimal places).
This is great because we now have two vital pieces of information:

e A model to predict
e Some way to help us evaluate how good the model is at predicting

In machine learning, it is not enough to simply implement a model and get some answers.
We also have to be able to speak to know how good our answer really is. The sum of
squares error, often called SSE, is a common way to evaluate a simple linear regression.
To start thinking about SSE, we need to know two pieces of information for each y that we
used—what we guessed and what the actual value is. Using our existing dataset:

Difference
X Actual Guess |Difference| Squared

1 1 0.9 -0.1 0.021
2 2 1.9 -0.1 0.005
3 2.25 3.0 0.8 0.570
4 4.75 4.1 -0.7 0.449
3 5 5.2 0.2 0.024
| 1.DﬂE||
|]

You can see that the model was created based on all of the y data points, and then
Accord.NET went back and checked how close that model fits each data point. These
differences are squared, then the squared values are summed. The goal is to get the sums
of squares as low as possible. Once we have the SSE, we can change our model to try to
get the sum of squares lower. For example, what if we changed the slope from 1.075x to
1.000x, which is what we were eyeballing earlier?

Difference

X Actual Guess |Difference| Squared
1 1 0.8 -0.2 0.048
2 2 1.8 -0.2 0.048
3 2.25 2.8 0.5 0.281
4 4.75 3.8 -1.0 0.941
3 5 4.8 -0.2 0.048
| 1.36?'
| |

Since we have all five data points that are available for the initial model calculation, you

regression is the best way of describing the relationship among these five data points. It is
important to note that the SSE is a context-free measure. This means 1.069 does not have
any value in and of itself. We only know that 1.069 is better than 1.367. Basically, we
want the SSE to be as low as possible.

A slightly better variation of the SSE is the Mean Square Error (MSE). The MSE is the
SSE divided by the number of observations of the regression:

Difference
X Actual Guess |Difference| Squared
1 1 0.9 -0.1 0.021
2 2 1.9 -0.1 0.005
3 2.25 3.0 0.8 0.570
4 4.75 4.1 -0.7 0.449
3 5 5.2 0.2 0.024
55E 1.069
MSE D.213??5.

In this case, the MSE is 0.2138. Like the MSE, the number itself is not particularly useful.
However, if we take the square root of the MSE, often called the Root Of Mean Square
Error, or RMSE, the result is an error measure in the same units as our original numbers.

RMSE = Square Root of MSE = sqrt(.2137) = .462

In our case, the RMSE is 0.462 means that any given guess is likely off by 0.46. When
you talk to other data scientists at your next cocktail party (you do go to cocktail parties
with data scientists, don’t you?), you will typically use the RMSE when evaluating the
predictive capabilities of a simple linear model.

Using the RMSE, we now have a measure of how accurate our model is when predicting
values. We also have a second measure, called the r2, that calculates how much correlation
our model has. The r2 takes the r (in this case, Pearson’s correlation) and squares it. The r2
is always between zero and one, with zero meaning that there is no correlation between x
and y and one meaning that the regression line perfectly fits the data. In practical terms,
we want a low as possible RMSE with a high as possible r2.

I\CSI. COOl1Ull diliu UiIT 1 T4l vwuyliriu

So far, we really haven’t done any machine learning, in that we can’t make our model any
better. The initial regression is the best and explains 91.5% of the data. However, the
world does not work in such a straightforward manner.

The challenge is that we will start applying a simple linear regression on a dataset that
represents human activity (in our case, AdventureWorks sales), and human activity is
fraught with uncertainty. Consider a more realistic data frame with a product, its list price,
and its customer reviews:

Productld Mame ListPrice ReviewerMame Rating
799 Road-650 Red, 58 732.99 sean andrews 4]
789 Foad-650 Red, 58 78259 dikra langerak 3
789 Foad-650 Red, 58 78259 keasper latt 4
799 Road-650 Red, 58 732.99 oskari maki 4]
759 Road-650 Red, 58 732.99 clarence fletcher 2
759 Road-650 Red, 58 78259 chloe lee]
789 Foad-650 Red, 58 78259 leana nguyen 1
759 Road-650 Red, 58 78253 jack reid 3
759 Road-650 Red, 58 732.99 mark castro 4
759 Road-650 Red, 58 732.99 leta adams 4
759 Road-650 Red, 58 732.99 izzie bates 5

Notice that the rating seems to have some wide variance. Some customers gave the bike a

5 while others gave it a 1 or 2. You would think for the same product, the average reviews
would be fairly similar. Perhaps we have a problem with manufacturing quality or perhaps
the price is such that low-end customers expect more from what they perceive to be a very
expensive bike and high-end customers are thrilled with the value they got from what they
perceive to be a low-cost bike. Now can we start with our model? Yes! Let’s take the data

from AdventureWorks and see how it stacks up with an initial model using Accord.NET.

I\CSI. COool1vil asaulat dlLtiialL uawta

As this is the first time we are using AdventureWorks, there are a couple of housekeeping
items we need to take care of. We will be using the AdventureWorks 2014 full database
found at https://msftdbprodsamples.codeplex.com/releases/view/125550. If you want to
bring the data locally, you can do that by restoring the .bak file from their website. If you
go this route, note that I added some additional data to the Production.ProductReview
table for this chapter. You will need to run the populateProductReview.sql script found
in this chapter’s GitHub repository after your database is installed to match the examples
found in the book. In addition, you will have to generate your own connection string. If
you just want to use the data on our server, you can use the connection string that is in the
upcoming code sample.

You might be thinking that I am nuts to put a connection string out in the public domain
like this. First, don’t tell anyone you have it. Second, if by some stroke of fortune millions
of people buy this book and they all pound on this server to do the examples, I will be
happy to pay Microsoft more $$ for the compute time.

In Visual Studio, add a new script to your project and call it AccordDotNet2. fsx. Then,
add the following references and open the script file:

#r "System.Transactions.dll"

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"

#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dll"
#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.dl1l"

#r "../packages/FSharp.Data.2.2.5/1ib/net40/FSharp.Data.dll"

open Accord
open Accord.Statistics
open Accord.Statistics.Models.Regression.Linear

open System
open System.Data.SglClient

Next, add a record type, a list of that record type, a connection string, and a query:
type ProductReview = {ProductID:int; TotalOrders:float; AvgReviews:float}
let reviews = ResizeArray<ProductReview>()

[<Literal>]

let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=AdventurewWorks2014;user

id=chickenskills@nc54a9m5kk; password=skllzm@tter;"

[<Literal>]
let query = "Select
A.ProductID, TotalOrders, AvgReviews
From
(Select
ProductID,
Sum(OrderQty) as TotalOrders
from [Sales].[SalesOrderDetail] as SOD

https://msftdbprodsamples.codeplex.com/releases/view/125550

on SOD.SalesOrderID = SOH.SalesOrderID

inner join [Sales].[Customer] as C

on SOH.CustomerID = C.CustomerID

Where C.StoreID is not null

Group By ProductID) as A

Inner Join

(Select

ProductID,

(Sum(Rating) + 0.0) / (Count(ProductID) + 0.0) as
AvgReviews

from [Production].[ProductReview] as PR

Group By ProductID) as B

on A.ProductID = B.ProductID"

There are three new language features here. The first is a record type called
ProductReview. Record types are immutable named data structures and stand in contrast
to tuples, which are unnamed. You can think of a record type as an immutable
DTO/POCO that you might encounter in the VB.NET/C# world. ProductReview has three
members: ProductId, TotalOrders, and AvgReviews. You can think of these members as
properties of a POCO in the C#/VB.NET world.

The second new language feature is the attribute added to the connectionString and
query values. Most .NET developers are familiar with attributes, so you should be
comfortable using them. By making connectionString and query literal, I can pass them
into type providers in the script file.

Finally, we will use a ResizeArray datatype to keep our seq of product reviews. Because
arrays are immutable in F# and we don’t know how many reviews we will be getting back
from the database, we need to use a special array that does allow resizing. This is
equivalent to System.Collections.Generic.List<> that you might be familiar with in
your C#VB.NET code.

Next, add some ADO.Net code to extract the data from the database and put it into the list:

let connection = new SqglConnection(connectionString)

let command = new SqglCommand(query,connection)

connection.Open()

let reader = command.ExecuteReader ()

while reader.Read() do
reviews.Add({ProductID=reader.GetInt32(0);TotalOrders=(float)

(reader.GetInt32(1));AvgReviews=(float)(reader.GetDecimal(2))})

This code should be familiar to most .Net developers. Sending it to the REPL, we can see:

type ProductReview =
{ProductID: int;
TotalOrders: float;
AvgReviews: float;}
val reviews : System.Collections.Generic.List<ProductReview>
val connectionString : string =
"data source=nc54a9m5kk.database.windows.net;initial catalog=A"+[72
chars]
val query : string =

A.ProductID, AvgOrders, AvgReviews

"+[814 chars]

val connection : System.Data.SqlClient.SqglConnection =
System.Data.SqglClient.SglConnection

val command : System.Data.SqlClient.SqlCommand =
System.Data.SglClient.SqlCommand

val reader : System.Data.SqlClient.SqglDataReader

val it : unit = ()

With the data coming down, let’s see if our models reflect what our manager noticed in the
power bi' charting:

let x = reviews |> Seq.map (fun pr -> pr.AvgReviews) |> Seq.toArray
let y = reviews |> Seq.map (fun pr -> pr.TotalOrders) |> Seq.toArray
let regression = SimplelLinearRegression()

let sse = regression.Regress(Xx,y)

let mse = sse/float x.Length

let rmse = sqrt mse

let r2 = regression.CoefficientOfDetermination(x,y)

You will see the following:

val regression : SimplelLinearRegression =
y(x) = 1277.89025884053x + -4092.62506538369
val sse : float = 39480886.74
val mse : float 203509.7254
val rmse : float = 451.1205221
val r2 : float = 0.2923784167

We now see a 0.29 r2 and a 451 rmse, which shows a weak relationship between
customer reviews and order quantity and that there is a 450 order margin of error.

Another point is that simple linear regressions tend to have a problem with outliers. We’ll
have a lot to say about this topic in the next chapter. Also, by doing a one-shot analysis,
we have a large problem with over-fitting. We’ll be talking about over-fitting extensively
in Chapter 8, Feature Selection and Optimization. For now, I just wanted to acknowledge
that although we have a pretty good model, it is far from perfect. However, it is still better
than eyeballing a chart and it does have some statistical validity. We now have a model
and we can predict some sales. How do we put this in production?

AUVEIIWUICcvwuiL ns dpp

We will start by thinking about how we want to prevent users from abandoning orders
based on low product reviews. One option would be to drop the review entirely. While this
will prevent that undesirable effect of people dropping orders because of a low rating, it
also prevents the desirable effect of people purchasing items based on a high rating. We
could also hide the ratings for low-score items, but that would be seen through very easily.
Another possibility is to lower the price of low-rated products, but lowering prices is
anathema to most companies. Perhaps a better way is to have our site have knowledge of
low-rated products and give people an incentive to order them by prefilling the amount
that most people order for that given review. Consumer behaviorists have demonstrated
that if you prefill a quantity, the consumer is less likely to abandon their purchase.

L)Cllllls LIlJ CAATC CLiIVIiII UM

Go get a copy of AdventureWorks Ul from GitHub at this uri. Next, open the copy using

Visual Studio 2015.

Now, follow these steps, which will guide you to set up the environment:

1. Let’s go into our Solution Explorer and add an F# project (File | New Project).

Add MNew Project T X
P Recent MNET Framework 452 = Sort by: Default ~| 5% [i=|| search Installed Templ 2 ~
4 |nstalled = e .
Console Application Visual F2 Type: Visual F=
b Visual C# A project for creating an F# library
. . F*
i Visual Basic Eqi! Library Visual F2
I Visual C++ -
. . F#
4 Visual F# Eé! Portable Library (MET 4.5, Winde... Visual F#
Android -
= E#
b i0s E[si! Portable Library (NET 4.5, Windo... Visual F#
Silverlight z
S E
Windows Egi! Portable Library (NET 4.5, Windo... Visual F#
WPF 2
E#
S Server Eﬁi! Portable Library (NET 4.5, Windo... Visual F#
I+ JavaScript 7
i Bt
Hiinsmit ™~ Tutarial Visual F#
I Pythen e
b TypeScript
Game
I+ Other Project Types
Modeling Praojects
B Online
Click here to go enline and find ternplates.
MName: |Adventure‘~“.‘nrk5.|'\u’|achineLearningl |
Location: F\Documents\Book - ML\First Adventure Works Application\Adventurel -
| 0K Cancel

2. Delete the script file and rename Library1.fs to OrderPrediction. fs.

|, clgal et TR PR A A A e A
4 T] AdventureWorks

- Properties
[+ =B References
App_Data
App_Start
Content
Controllers
fonts
Models
Scripts

VWV VY VY v

Views
favicon.ico
b 41 Global.asax
v packages.config
b ¢ Web.config
4 AdventureWorks.Machinelearning
[» =W References
F# Ascemnblylnfo.fs
F# OrderPrediction.fs
¥_1 packages.config

. Open NuGet Package Manager and install Accord.NET to the F# project:

PM> install-package Accord
PM> install-package Accord.Statistics

. Make sure that the default project is Adventureworks.MachineLearning:

Package Manager Console

Package source: nuget.org - 43 | Default project: AdventureWorks.Machinelearning o | =
PM> install-package f-‘.ccur‘d|

. Open up OrderPrediction.fs and rename Classl to OrderPrediction.

namespace AdventureWorks.MachinelLearning

type OrderPrediction() =
member this.X = "F#"

. Then, rename X to PredictQuantity with a single integer parameter of ProductId
and a return value of a float. For now, make it 0. 0. Make the type public.

namespace AdventureWorks.MachinelLearning

type public OrderPrediction() =
member this.PredictQuantity(productId:int) = 0.0

. Compile the F# project.

Upuauug CLAT CAlDlllls WLU pPlLUjtit

Next, go to the C# project in the Solution Explorer and add a reference to the F# project:

Solution Explorer * 1 X
B -5 ITBE|F -

Search Solution Explorer (Ctrl+;) P~

fa] Solution 'AdventureWorks.Solution' (2 projects) -

4] AdventureWorks
b Properties

& Analyzers [Add Reference...

=B Antir3.Runtime Add Service Reference...
=8 EntityFramework | #» 444 Connected Service...
T oo S

=B Microsoft.CodeDory

=8 Microsoft.CSharp B Manage NuGet Packages...

-8 Microsoft.Web.Infra Scnpe to This
=8 Mewtonsoft.)son

Mew Solution Explorer View

Reference Manager - AdventureWorks ? bt
b Assemblies Search Projects (Ctrl+E) P~
4 Projects

LEE Mame Path bl

Solution AdventureWorks.MachinelLearning ST A S A dventureWorks. Machinelearnin

4
b COM
I Browsze
4 3
Browse... || QK H Cancel

Go into PurchaseOrderDetailsController.cs and add a using statement to
AdventurewWorks.MachinelLearning:

=] AdventureWorks ~ | #z AdventureWorks.Controllers - aﬂ db

= R B-sCcamlop -

1 Slusing System; - - =

o :) ; Search S alorer (Ctrl+:)
2 using System.Collections.Generic; - Search Solution Explorer (Ctrl+2)
3 using System.Data; —8] Solution 'AdventureWorks.Solution' (2 projects)
= using System.Data.Entity; 4] AdventureWorks
5 using System.Ling; b J Properties
6 using System.Net; b mE References
7 using System.Web;
8 using System.Web.Mvc; App_Data
g 4 using AdventureWorks.Models;] 4 App_Start
10 using AdventureWorks.Machinelearning; 4 Content
11 4 Controllers
12 -Inamespace Adventurelorks.Controllers b ©* HomeController.cs
13 i 1 B e PurchaseOrderDetailsController.cs
14 = public class PurchaseOrderDetailsController : Controller P fonts
15 { B Models
i6 private AdventureWorksEntities db = new AdventureWorksEniw P Scripts

Next, create an endpoint that can take in a productId and predict the quantity of the order:

// GET: PurchaseOrderDetails/PredictQuantity/1
public Int32 PredictQuantity(int id)

{

var orderPrediction = new OrderPrediction();
return (Int32)orderPrediction.PredictQuantity(id);

}

Forgive me that this is RPC and not very RESTful. The intention of this exercise is about
machine learning and not web development. If you want to rewrite, this is a more MVC
idiomatic form, feel free.

With the controller set up, hop over to the Create view:

fa] Solution 'AdventureWorks.Solution’
4 T] AdventureWorks
b Properties
[=B References
App_Data
App_Start
Content
Controllers
fonts
Madels
Scripts

[A A

Views
[Home
] PurchazeQrderDetails
(@] Delete.cshtml
(@] Details.cshtml
(@] Edit.cshtml
[@] Index.cshtml

Add the following JavaScript at the bottom of the page in the @section Scripts block:

@Scripts.Render("~/bundles/jqueryval")
<script type="text/javascript">
$(document).ready(function(){
$("#ProductID").change(function(){

var productID = $(this).val();
$.get("/PurchaseOrderDetails/PredictQuantity/" + productID,

function(result){

$("#0rderQty").val(result);
1)
1)
1)

</script>

¥

With that in place, you should be able to run the project and after selecting a new product
from the dropdown, the order quantity should populate with a 0. 0.

Create - My ASP.NET App X

C || [localhost:5516/PurchaseOrderDetails/Create

Create
Order Your Bikes

ProductlD Road-150 Red, 52:33,578.27 (4.02)
OrderQty 0
Create
Back to List

© 2015 - My ASP.NET Application

llllPlClllClllllls CAAT 1 CSI. COoo1vU1il

With the app wired up, let’s hop back to the F# project and implement the prediction for
real. First, make sure that you have a reference to System.Data.

Reference Manager - AdventureWorks.Machinelearning ? .
4 Assemblies Targeting: .MET Framework 4.5.2 Search Assemblies (Ctrl+E) P ~
Framework Marne Version N Plasine
Extensions Systern.Activities.Presentation 4,000 Systern.Data
Recent Systern.Addin 40,00 Created by:
System.AddlIn.Contract 4000 Microsoft Corporation
b Projects System.ComponentModel.Composition 4.0.0.0 Version:
System.ComponentModel. Composition.Regist.. 4.0.0.0 4.0.0.0
b COM System.ComponentModel.DataAnnotations 4.0.0.0 File Version: _
b Bria System.Configuration 4000 2}?4?3?%13;;[;9 built by:
Systern.Configuration.Install 40,00
System.Core 4000
v System.Data 4.0.0.0
System.Data.DataSetExtensions 4.0.0.0
System.Data.Entity 4.0.0.0
System.Data.Entity.Design 4.0.0.0
Cuerdmmn Mk | fma Annn
Browse... | | oK | ‘ Cancel

Next, open up OorderPrediction.fs and enter this in the following code:

Tip

Since this is (almost) verbatim from the REPL project, you can go ahead with copying and
pasting if you want to avoid some typing.

namespace AdventureWorks.MachinelLearning

open Accord
open Accord.Statistics
open Accord.Statistics.Models.Regression.Linear

open System
open System.Data.SglClient
open System.Collections.Generic

type internal ProductReview = {ProductID:int; TotalOrders:float;
AvgReviews: float}

type public OrderPrediction () =
let reviews = List<ProductReview>()

[<Literal>]

let connectionString = "data
source=nc54a9m5kk.database.windows.net;initial
catalog=AdventureWorks2014;user
id=chickenskills@nc54a9m5kk; password=skllzm@tter;"

[<Literal>]
let query = "Select

From

(Select

ProductID,

Sum(OrderQty) as TotalOrders

from [Sales].[SalesOrderDetail] as SOD

inner join [Sales].[SalesOrderHeader] as SOH
on SOD.SalesOrderID = SOH.SalesOrderID

inner join [Sales].[Customer] as C

on SOH.CustomerID = C.CustomerID

Where C.StoreID is not null

Group By ProductID) as A

Inner Join

(Select

ProductID,

(Sum(Rating) + 0.0) / (Count(ProductID) + 0.0) as

AvgReviews

from [Production].[ProductReview] as PR
Group By ProductID) as B
on A.ProductID = B.ProductID"

member this.PredictQuantity(productId:int) =

(reader.

use connection = new SglConnection(connectionString)

use command = new SqglCommand(query,connection)

connection.Open()

use reader = command.ExecuteReader ()

while reader.Read() do
reviews.Add({ProductID=reader.GetInt32(0);TotalOrders=(float)

GetInt32(1));AvgReviews=(float)(reader.GetDecimal(2))})

let x
let y

reviews |> Seqg.map (fun pr -> pr.AvgReviews) |> Seq.toArray
reviews |> Seq.map (fun pr -> pr.TotalOrders) |>

Seq. toArray

The only

let regression = SimplelLinearRegression()

let sse = regression.Regress(Xx,y)

let mse sse/float x.Length

let rmse = sqrt mse

let r2 = regression.CoefficientOfDetermination(x,y)

let review = reviews |> Seq.find (fun r -> r.ProductID = productId)
regression.Compute(review.AvgReviews)

change from the REPL code is that connection, command, and reader are now

assigned with the use keyword and not let. This is equivalent to the using statement in
C# so that all resources are cleaned up in the most efficient manner.

With that in place, you can run the Ul and see the actual value being predicted from the
regression that uses all of our data:

C | [3 localhost:5516/PurchaseOrderDetails/Create

Create
Order Your Bikes

ProductiD Road-450 Red, 58:31,457.99 (3.97) ~
OrderCty 974
Create

Back to List

© 2015 - My ASP.NET Application

Congratulations! You have successfully wired up a website with a simple linear
regression. This prediction is dynamic because the regression is calculated on every page
refresh. This means as more data goes into our database, the websites reflect changes in
the product reviews at real time. The software architect in you should be pulling the alarm
because this will have a severe impact on performance; we pull the aggregate data and
then do the regression calculation on each call. We will discuss better strategies later in the
book that allow our site to have real-time or near-time performance to go with a machine
learning algorithm.

ouliiiiary

This chapter dipped our toes into the water of creating a machine learning model and
implementing those models in a line of business application. There are many things that
we glossed over that will get all of your data science friends mad, such as my dumbed-
down formula for a regression, overfitting, and using a regression without dealing with
outliers. Also, the web developers in the room have plenty to be mad about, including my
rudimentary website design and injecting a data-intensive operation in a page load. Fear
not. We will address these issues (and many more) in the coming chapters.

GUlldpierl o, VIUIC AUvVEIIIUICYVYOI RS
Regression

In the last chapter, you had your software developer hat on and you stuck your toe into
machine learning waters. You created a simple linear regression and implemented it in
your website. The regression attempted to explain how customer reviews affected bike
sales quantity to retail shops. In this chapter, we are going to pick up where we left off and
use a multiple linear regression to explain bike sales with more precision. Then we will
switch over to a logistic regression to see if we can predict whether an individual customer
will or will not purchase a bike based on the same factors. We will then consider how to
implement the regression in an experiment that will help with the model’s accuracy and
repeatability. Finally, we will wrap up by considering some of the strengths and
weaknesses of regressions.

LU OUUuUUIl 0 1Hidiupic 1iicar 1€giossioi

A multiple linear regression has the same concept as a simple linear regression, in that we
are trying to find the best fit. The major difference is that we have more than one
independent variable that is trying to explain the dependent variable. If you remember
from the last chapter, we made a regression like this: Y = x0 + E, where Y was bike sales
and x0 was average ratings.

If we want to see whether there is a relationship between average rating and price of the
bike on bike sales, we can use the formula Y = x0 + x1 + E, where Y is bike sales, x0 is
the average ratings, and x1 is the price of the bike.

11101 U CAallllJlC

Before diving into actual data, let’s dissect a multiple linear regression. Open up Visual
Studio and create a new F# library project. Add a script file called AccordDotNet . fsx.
Next, add a NuGet reference to Accord.Statistics. If you are unfamiliar with how to do
any of those tasks, review Chapter 1, Welcome to Machine Learning Using the .NET
Framework, and Chapter 2, AdventureWorks Regression, where each step is detailed using
screenshots.

At the top of your script, add in the following references:

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dl1"
#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dl1"
#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.d11l"

open Accord
open Accord.Statistics.Models.Regression.Linear

Next, let’s create a dummy dataset. In this case, let’s see if there is a relationship between
a student’s age, their IQ, and their GPA. Since there are two independent variables (x6 and
x1), we will create an input value called, well, xs and see it with five observations. Since
there are two values for each observation, xs is a jagged array.

let xs = [| [|15.0;130.0]];[]18.0;127.0|];[]|15.0,;128.0|];[|17.0;120.0]];
[116.0;115.0]] |]

Sending it to the REPL, we get:

val xs : float [] [] =
[1[]15.0; 130.0]|]; [|18.0; 127.0]|]; [|15.0; 128.0|]; [|17.0; 120.0]|];
[]116.0; 115.0]]]]

In this dataset, the first observation is a 15 year old with a 130 IQ, the second is an 18 year
old with a 127 IQ, and so on. With the inputs taken care of, let’s create the y, which is the
student’s GPA:

let y = []3.6;3.5;3.8;3.4;2.6|]
Sending to the REPL, we get:
val y : float [] = [|3.6; 3.5; 3.8; 3.4; 2.6]]

The first student has a 3.6 GPA, the second has a 3.5, and so on. Notice that since our
output is a single number, we only need a simple array to hold the values. With our inputs
taken care of, let’s create a multiple linear regression with our xs and y:

let regression = MultiplelLinearRegression(2, true)
let error = regression.Regress(xs, Vy)

let a = regression.Coefficients.[0]
let b = regression.Coefficients.[1]
let ¢ = regression.Coefficients.[2]

Sending this to the REPL, we get:

y(x0, x1) = 0.0221298495645295*x0 + 0.0663103721298495*x1 +
-5.20098970704672
val error : float = 0.1734125099
val a : float 0.02212984956
val b : float 0.06631037213
val ¢ : float -5.200989707

There are a couple of things to notice. First, Accord printed the formula of our multiple
linear regression for us as y(x0, x1) = 0.0221298495645295*x0 +
0.0663103721298495*x1 + -5.20098970704672. The key thing to notice is that you
cannot interpret the results of multiple regressions the same as the simple regression, for
example, summing x1 and x2 together to be the slope of a line would be incorrect. Rather,
each x is the slope of the line if the other x is held constant. So, in this case, if x1 is held
constant, each change of one unit of xo changes y .022. Back to our example, we can say
that if we increase a person’s age by one year, a person’s GPA increases by .022, holding
the IQ constant. Similarly, we can say that for every one point drop in a person’s 1Q, the
person’s GPA drops 0.066, holding the person’s age constant. We can’t use a scatterplot to
show all of the results of a multiple regression the way we can with a simple regression
because you would need an axis for each x value and that quickly will get unwieldy, if not
impossible.

Next, let’s see how good our regression is using our old friends r2 and rmse:

let sse regression.Regress(xs, Yy)

let mse sse/float xs.Length

let rmse = sqrt(mse)

let r2 = regression.CoefficientOfDetermination(xs,y)

Sending this to the REPL, we get:

val sse : float 0.1734125099
val mse : float 0.03468250198
val rmse : float = 0.186232387
val r2 : float = 0.7955041157

Notice that sse is the same as the error from above. Accord. NET returns sse as an error,
so I will just use that in the future. Also, looking at our result, we can see that we have an
r2 of .79, which is pretty good and that our rmse is .18, which is also low enough that the
regression is a viable one.

I\CCP CIUUIIIS A VALIAQULICO .

If two x variables are good, are three better? Let’s take a look. Let’s add another variable,
in this case, the student’s prior year GPA as a third x value. Go back to the REPL and add
this:

|18.0;127.0;3.5|];

let xs' =[] []15.0;130.0;3.6|];I
[[17.0;120.0;3.5]|];
]

I
[115.0;128.0;3.7]]
[117.0;120.0;2.5]]

]

let regression' = MultiplelLinearRegression(3,true)

let error' = regression'.Regress(xs',y)

let a' = regression'.Coefficients.[0]

let b' = regression'.Coefficients.[1]

let ¢' = regression'.Coefficients.[2]

let d' = regression'.Coefficients.[3]

let mse' = error'/float xs'.Length

let rmse' = sqrt(mse')

let r2' = regression'.CoefficientOfDetermination(xs',y)

Sending this to the REPL, we get:

val xs' : float [] [] =

[I[]15.0; 130.0; 3.6|]; [|18.0; 127.0; 3.5|];
[|117.0; 120.0; 3.5|]; []17.0; 120.0; 2.5|]]]

val regression' : MultiplelLinearRegression =
y(x0, x1, x2) = -0.0202088664499619*x0 + 0.0116951379763468*x1 +

0.834082578324918*x2 + -0.552984300435694

val error' : float = 0.01071166747

val a' : float = -0.02020886645

val b' : float 0.01169513798

val ¢' : float 0.8340825783

val d' : float -0.5529843004

val mse' : float = 0.002142333495

val rmse' : float = 0.0462853486

val r2' : float = 0.9873683167

[115.0; 128.0; 3.7]|]1;

So the r2 is now up to 99%, which means we can explain 99% of the change in a person’s
GPA using their age, 1Q, and prior year GPA. Also, note that the rmse is .04, which is nice
and low. We have a pretty good model.

FAUYVTCIILUHIT VYYUL N UUawa

With the demo out of the way, let’s implement a multiple linear regression back at the bike
company. Since we are using more realistic data, I don’t think we will get a 99% r2, but
we can hope. In your Solution Explorer, add another F# script called
AccordDotNet2.fsx. Then, add a reference to System. Transactions so that we can use
ADO.NET to access our data. Go back to AccordDotNet2.fsx and add the following
code:

#r "System.Transactions.dll"

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"

#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dl1"
#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.d11l"

open Accord
open Accord.Statistics
open Accord.Statistics.Models.Regression.Linear

open System
open System.Data.SqlClient

type ProductInfo = {ProductID:int; AvgOrders:float; AvgReviews: float;
ListPrice: float}

let productInfos = ResizeArray<ProductInfo>()
[<Literal>]
let connectionString = "data source=nc54a9m5kk.database.windows.net;initial

catalog=AdventurewWorks2014;user
id=chickenskills@nc54a9m5kk; password=skllzm@tter;"

[<Literal>]
let query = "Select
A.ProductID, AvgOrders, AvgReviews, ListPrice
From
(Select
ProductID,
(Sum(OrderQty) + 0.0)/(Count(Distinct SOH.CustomerID) + 0.0) as
AvgOrders
from [Sales].[SalesOrderDetail] as SOD
inner join [Sales].[SalesOrderHeader] as SOH
on SOD.SalesOrderID = SOH.SalesOrderID
inner join [Sales].[Customer] as C
on SOH.CustomerID = C.CustomerID
Where C.StoreID is not null
Group By ProductID) as A
Inner Join
(Select
ProductID,
(Sum(Rating) + 0.0) / (Count(ProductID) + 0.0) as AvgReviews
from [Production].[ProductReview] as PR
Group By ProductID) as B
on A.ProductID = B.ProductID
Inner Join

ProductID,

ListPrice

from [Production].[Product]

) as C

On A.ProductID = C.ProductID"

let connection = new SqlConnection(connectionString)

let command = new SqlCommand(query,connection)

connection.Open()

let reader = command.ExecuteReader ()

while reader.Read() do

productInfos.Add({ProductID=reader.GetInt32(0);

AvgOrders=(float)(reader.GetDecimal(1));
AvgReviews=(float) (reader.GetDecimal(2));
ListPrice=(float)(reader.GetDecimal(3));})

Notice that this is very similar to the code that you wrote in the prior chapter. In fact, you
might want to copy and paste that code and make the following changes:

1. Add a ListPrice field to the ProductInfo record type.

2. Update the query to add a clause to pull down the list price of the bike.

3. Update productInfos. Add a method to include the third value we are bringing
down.

The code itself shapes a data frame of a number of orders, average reviews, and average
price by productId in SQL and brings it local. Sending this code to the REPL, we get the
following:

type ProductInfo =

{ProductID: int;

AvgOrders: float;

AvgReviews: float;

ListPrice: float;}
val productInfos : Collections.Generic.List<ProductInfo>
val connectionString : string =

"data source=nc54a9m5kk.database.windows.net;initial catalog=A"+[72
chars]
val query : string =

"Select

A.ProductID, AvgOrders, AvgReviews, ListP"+[937 chars]

val connection : SqlConnection = System.Data.SqlClient.SqglConnection
val command : SgqlCommand = System.Data.SqlClient.SqglCommand
val reader : SqlDataReader
val it : unit = ()

With the data down, let’s create a multiple linear regression. Add the following code to the
script file:

let xs =
productInfos
|> Seq.map (fun pi -> [|pi.AvgReviews; pi.ListPrice]|])
|> Seq.toArray

let y =

|> Seq.map (fun pi -> pi.AvgOrders)

|> Seq.toArray
let regression = MultiplelLinearRegression(2, true)
let error = regression.Regress(xs, Vy)

let a = regression.Coefficients.[0]
let b = regression.Coefficients.[1]
let ¢ = regression.Coefficients.[2]

let mse = error/float xs.Length
let rmse = sqrt mse
let r2 = regression.CoefficientOfDetermination(xs, vy)

Sending this code to the REPL, we get:

val regression : MultiplelLinearRegression =
y(x0, x1) = 9.68314848116308*x0 + -0.000913619922709572*x1 +
-26.1836956342657
val error : float = 682.6439378
val a : float 9.683148481
val b : float -0.0009136199227
val ¢ : float -26.18369563
val mse : float = 7.037566369
val rmse : float = 2.652841188
val r2 : float = 0.3532529168

By adding the price of the bike, our r2 moves from .29 to .35. Also, our rmse moves from
2.77 to 2.65. This change means we have a more accurate model with a smaller amount

of error. Because this is better, let’s add this to our production application.

HUUIIIS lllLIlllPlC I.CSI. COJ1vUil WU Uul Pl UUUiILLivil
application

Open up the Adventureworks solution that you started working on in the last chapter. In
the Solution Explorer, navigate to the AdventurewWorks.MachineLearning project and
open OrderPrediction.fs.

Locate the ProductReview type and replace it with this:

type ProductInfo = {ProductID:int; AvgOrders:float; AvgReviews: float;
ListPrice: float}

Next, go into the orderPrediction type and find the line where the reviews value is
assigned and replace it with this:

let productInfos = ResizeArray<ProductInfo>()

Next, locate the query value and replace its contents with this:

[<Literal>]
let query = "Select
A.ProductID, AvgOrders, AvgReviews, ListPrice
From
(Select
ProductID,
(Sum(OrderQty) + 0.0)/(Count(Distinct SOH.CustomerID) + 0.0) as
AvgOrders,
Sum(OrderQty) as TotalOrders
from [Sales].[SalesOrderDetail] as SOD
inner join [Sales].[SalesOrderHeader] as SOH
on SOD.SalesOrderID = SOH.SalesOrderID
inner join [Sales].[Customer] as C
on SOH.CustomerID = C.CustomerID
Where C.StoreID is not null
Group By ProductID) as A
Inner Join
(Select
ProductID,
(Sum(Rating) + 0.0) / (Count(ProductID) + 0.0) as AvgReviews
from [Production].[ProductReview] as PR
Group By ProductID) as B
on A.ProductID = B.ProductID
Inner Join
(Select
ProductID,
ListPrice
from [Production].[Product]
) as C
On A.ProductID = C.ProductID"

Next, scroll down to the PredictQuantity function and locate the reader.Read() line of
codes. Replace it with this:

while reader.Read() do

AvgOrders=(float)(reader.GetDecimal(1));
AvgReviews=(float)(reader.GetDecimal(2));
ListPrice=(float)(reader.GetDecimal(3));})

Finally, remove all of the remaining code in the PredictQuantity function starting with:

let x = reviews |> Seq.map(fun pr -> pr.AvgReviews) |> Seq.toArray
Replace it with this:

let xs =
productInfos
|> Seqg.map (fun pi -> [|pi.AvgReviews; pi.ListPrice|])
| > Seq.toArray
let y =
productInfos
|> Seq.map (fun pi -> pi.AvgOrders)
| > Seq.toArray
let regression = MultiplelLinearRegression(2, true)
let error = regression.Regress(xs, V)

let a = regression.Coefficients.[0]
let b = regression.Coefficients.[1]
let ¢ = regression.Coefficients.[2]

let mse = error/float xs.Length
let rmse = sqrt mse
let r2 = regression.CoefficientOfDetermination(xs, V)

let productInfo =

productInfos
|> Seq.find (fun r -> r.ProductID = productId)
let xs' = [|[|productInfo.AvgReviews; productInfo.ListPrice|]]|]

regression.Compute(xs') |> Seq.head

Notice we have to create a jagged array even though we are only entering in one
productInfo for the final regression.Compute(). Also, notice that the Compute function
returns an array, but since we are only entering in one value, the resulting array will
always have a length of one. We used the Seq.head to pull the first value of the array. The
head function comes in quite handy at certain times and we will be seeing it again in this
book.

Build the project and open up the UI; you can see that our prediction has been adjusted:

C || localhostoo106/PurchaselUrderDetalls/Create

Application name

Create
Order Your Bikes
ProductlID Road-650 Red, 60:$782.99 (4.04) X
OrderQty 12
Create
Back to List
© 2015 - My ASP.NET Application

UULIIOIULUL AUV YWwiilil uauls lllu1llPlC A VALIAQULICDO

At this point, you might be thinking, “This is great! I can keep adding more and more
variables to my multiple linear regression and I will get a better and better r2 and a lower
rmse.” As Lee Corso might say, “Not so fast!” Without getting too far into the details,
every time you add a new feature of a linear multiple regression, you will always get a
better result, or, at least, not a worse result. This means, if you add in the average
temperature from different cities on June 29, 1999, the model might improve. Also, as you
increase the number of features, the chance of introducing unwanted side effects into your
model increases; we will talk about that in a little bit. In fact, I have seen some models
where the number of features outnumber the number of observations. As a rule, this is a
not a good idea.

To combat feature growth, you can take two approaches. First, you can combine common
sense with Occam’s Razor. Occam’s Razor is the notion that given a choice of possible
solutions, the simplest one should always be chosen. This combination of sense and
simplicity is more common and powerful than most people realize. The gray matter
between the ears is a pretty powerful computer in its own right and can do a good job of
seeing patterns and making relationships.

Indeed, the business analyst who has spent time in the domain might know of relationships
that are not apparent to an external data scientist looking at a laundry list of features or a
basic machine learning model that is thrown at the data. Granted, humans do have biases
and sometimes miss relationships, but on the whole, they are still good at matching
patterns. Applying Occam’s Razor to feature selection means that you are trying to find
the fewest number of features that has the greatest impact on the model’s predictability.

Let’s head over to our friendly business analyst at AdventureWorks and ask him what he
thinks influences the quantity of bicycles purchased by our resellers. He says, “Well, I
think that price and customer reviews are certainly very important, but I think that the
weight of the bike influences our resellers. The heavier the bike, the less likely they are to
order some.”

nuulus C Uil U A VA1L1QUICT VU JUul 111Ut

With the business analyst’s idea in mind, let’s add a third independent variable to our
model, bike weight. Go back to the Selution Explorer and add another script file. Add the
following code to the script:

#r "System.Transactions.dll"

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"

#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dll"
#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.dl11l"

open Accord
open Accord.Statistics
open Accord.Statistics.Models.Regression.Linear

open System
open System.Data.SqglClient

type ProductInfo = {ProductID:int; AvgOrders:float; AvgReviews: float;
ListPrice: float; Weight: float}

let productInfos = ResizeArray<ProductInfo>()

[<Literal>]

let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=AdventureWorks2014;user

id=chickenskills@nc54a9m5kk; password=skllzm@tter;"

[<Literal>]
let query = "Select
A.ProductID, AvgOrders, AvgReviews, ListPrice, Weight
From
(Select
ProductID,
(Sum(OrderQty) + 0.0)/(Count(Distinct SOH.CustomerID) + 0.0) as
AvgOrders
from [Sales].[SalesOrderDetail] as SOD
inner join [Sales].[SalesOrderHeader] as SOH
on SOD.SalesOrderID = SOH.SalesOrderID
inner join [Sales].[Customer] as C
on SOH.CustomerID = C.CustomerID
Where C.StoreID is not null
Group By ProductID) as A
Inner Join
(Select
ProductID,
(Sum(Rating) + 0.0) / (Count(ProductID) + 0.0) as AvgReviews
from [Production].[ProductReview] as PR
Group By ProductID) as B
on A.ProductID = B.ProductID
Inner Join
(Select
ProductID,
ListPrice,
Weight

) as C
On A.ProductID = C.ProductID"

let connection = new SqlConnection(connectionString)

let command = new SglCommand(query, connection)

connection.Open()

let reader = command.ExecuteReader ()

while reader.Read() do

productInfos.Add({ProductID=reader.GetInt32(0);

AvgOrders=(float)(reader.GetDecimal(1));
AvgReviews=(float)(reader.GetDecimal(2));
ListPrice=(float)(reader.GetDecimal(3));
Weight=(float)(reader.GetDecimal(4));})

let xs =
productInfos
|> Seq.map (fun pi -> [|pli.AvgReviews; pi.ListPrice; pi.Weight|])
|> Seq.toArray
let y =
productInfos
|> Seq.map (fun pi -> pi.AvgOrders)
|> Seq.toArray
let regression = MultiplelLinearRegression(3, true)
let error = regression.Regress(xs, V)

let a = regression.Coefficients.[0]
let b = regression.Coefficients.[1]
let ¢ = regression.Coefficients.[2]
let d = regression.Coefficients.[3]

let mse = error/float xs.Length
let rmse = sqrt mse
let r2 = regression.CoefficientOfDetermination(xs, Vy)

Sending this to the REPL, notice that our r2 goes to .36 and our rmse drops to 2.63:

val regression : MultiplelLinearRegression =
y(x0, x1, x2) = 8.94836007927991*x0 + -0.00103754084861455*x1 +
-0.0848953592695415*x2 + -21.2973971475571
val error : float = 671.2299241
val a : float 8.948360079
val b : float -0.001037540849
val ¢ : float -0.08489535927
val d : float -21.29739715
val mse : float = 6.919896125
val rmse : float = 2.630569544
val r2 : float = 0.3640667242

Our analyst’s intuition about price and customer reviews was spot on, the weight...not so
much. Using Occam’s Razor, we can use price and customer reviews for our model and
ignore the weight variable.

LOgIoul 1'cgios51011

Now that we are becoming more comfortable with regressions, let’s introduce another type
of regression—the logistic regression. Up to this point, the regressions have had a numeric
output value—Ilike predicting a person’s GPA or predicting the number of bikes sold.
Logistic regressions use the same technique of fitting a group of independent features to a
line, but they do not attempt to predict a number. Rather, a logistic regression attempts to
predict a binary value (yes/no, true/false, tastes great/less filling) and then assigns a
probability to that value.

11101 U WU lUSlDllL 1 B CSI COoolvlil

Since you have already had an introduction to regressions, we can skip straight to the code
and see one in action. Open up the regression project and add a script called
AccordDotNet7.fsx. Copy in the following lines of code:

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"
#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dll"
#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.dl11"

open Accord

open Accord.Statistics.Analysis

open Accord.Statistics.Models.Regression

open Accord.Statistics.Models.Regression.Fitting

let xs = [|

let y = []|0.0;0.0;0.0;0.

Sending this to the REPL gives us:

val xs : float [] [] =
[Iglglfi’:SI]; [l1e.75]1; [l1.e]]; [I1.25]]1; [I11.511; [I11.75]]1; [11.75]];
.[I2t25I]; [12.511; [12.75]]1; [I3.0]]1; [I3.25]]; [I3.511; [l4.0]];
[14.25]];
[14.511; [14.75]]1; [I5.e]]1; [I5.5]111]
val y : float [] =
[|e.0; 0.6; 0.0; 0.0; 0.0; 0.0; 1.0; 0.0; 1.0; 0.0; 1.0; 0.0; 1.0; 0.0;
1.0;
1.0; 1.0; 1.0; 1.0; 1.0]]

I pulled this dataset from Wikipedia and it represents 20 students, how many hours of
studying they did the day before an exam, and whether they passed the exam represented

as 0.0 for failure and 1.0 for pass. Looking at the xs, student 0 studied 0.5 hours and
looking at the y, we can see that s/he did not pass the exam.

Next, let’s create our regression analysis and look at some results:

let analysis = new LogisticRegressionAnalysis(xs, V)
analysis.Compute() |> ignore

let pValue = analysis.ChiSquare.PValue

let coefficientOdds = analysis.Regression.GetOddsRatio(0)

let hoursOfStudyingOdds = analysis.Regression.GetOddsRatio(1)
let coefficients = analysis.CoefficientValues

Sending this to the REPL gives this:

val analysis : LogisticRegressionAnalysis

val coefficientOdds : float = 0.01694617045
val hoursOfStudying0dds : float = 4.502556825
val coefficients : float [] = [|-4.077713403; 1.504645419]|]

There are plenty of new things going on here, so let’s take a look at them in turn. After we
create an analysis, we compute the regression. The next item is pvalue. pvalue is a
common measure of accuracy for logistic regressions. As we saw earlier, linear
regressions typically use rmse and r2 as a way to measure model accuracy. Logistic
regressions can use those measures, but usually don’t. Unlike the linear regression where
the model spits out an exact number using something called least-squares, the logistic
regression uses something called maximum-likelihood where the regression iterates and
tries different combinations of the input values to maximize the likelihood of the result.
Therefore, the logistic regression needs to be run many times over the dataset and we can
configure how precise we want the model to be. Graphically, it looks like this:

Create a Evaluate the
model ‘ model

Coming back to pvalue, it is a measure of how well our model compares to the null
hypothesis, or basically, how well our model compares to a completely random model. If
the pvalue is less than 0.05, our model is valid. If the number is above 0.05, the model is
no better than a random one. You might be asking yourself, “What is so special about
0.05?” The exact answer resides in some low-level mathematical functions that are beyond
the scope of this book. The rough answer is, well, that is what everyone uses so that is
what Accord baked in. If you don’t find that explanation satisfactory, take a look at this
post on Wikipedia (https://en.wikipedia.org/wiki/P-value). In any event, the 0.0006 is very
good.

Moving on to the next values, we see GetOddsRatio results:

val coefficientOdds : float = 0.01694617045
val hoursOfStudying0dds : float = 4.502556825

https://en.wikipedia.org/wiki/P-value

the exam. If we want to pass the exam, we need to study 4.5 hours. Next, take a look at the
coefficients:

val coefficients : float [] = [|-4.077713403; 1.504645419]|]

Accord.NET passes back an array for the coefficients, with the first value being the
intercept. With these, you can create a formula to predict if a student can pass the exam
given any input of hours of studying. For example, here are the predictions from our base
dataset:

1.00

0.60

0.50

0.40

Chance Of Passing

05 075 1 125 15 175175 2 2325 25 275 3 325 35 4 425 45 475 5 55
Hours Of Studying

If we want to start playing with beer and hours of studying combinations (for example,
“Will I pass if I study for 4.5 hours?”), we can do that using the Compute function. At the
bottom of the script file, enter in:

let result = analysis.Regression.Compute([]|3.75]|])

Send it to the REPL for this:

val result : float = 0.8270277278

So you have an 82% chance of passing if you study for 3.75 hours.

HUUIIIS CGliIULIICIL A VALIQUILIT

Next, let’s add in another variable to our model—the number of beers you drank the night
before the exam. Go back to your script file and add this to the bottom:

let xs' =[] []0.5;2.5]];
[10.75;1.5]|];
[[1.0;4.0]|];

mmbbhhwwwmmmm~ ~
U'I
°
(o]

5;0-0|];|]

let analysis' = new LogisticRegressionAnalysis(xs', V)
analysis'.Compute() |> ignore

let pvValue' = analysis'.ChiSquare.PValue

let coefficientOdds' = analysis'.Regression.GetOddsRatio(0)

let hoursOfStudyingOdds' = analysis'.Regression.GetOddsRatio(1)
let numberOfBeersDrankOdds' = analysis'.Regression.GetOddsRatio(2)
let coefficients' = analysis'.CoefficientValues

Sending this to the REPL, we see:

val analysis' : LogisticRegressionAnalysis

val pvalue' : float = 0.002336631577

val coefficientOdds' : float = 0.02748131566

val hoursOfStudyingOdds' : float = 4.595591714

val numberOfBeersDrankOdds' : float = 0.7409200941

val coefficients' : float [] = [|-3.594248936; 1.525097521; -0.2998624947|]

Evaluating the results, we still need to study 4.59 hours to pass, holding the number of
beers constant. Also, we will need to drink less than .74 of a beer to pass. Notice that the
odds ratio is positive, even though consuming more beer actually decreases our chance to
pass. We know that there is an inverse relationship between the number of beers and the
odds of passing because the coefficient for beer (-.029986) is negative.

Now, we can start trading off studying hours and drinking beer on the chance of us passing
the exam. Go to the script file and add in studying 4.5 hours and drinking one beer:

let result' = analysis'.Regression.Compute([|4.50; 1.00]|])
Sending it to the REPL:

So you have a 95% chance of passing if you drink a beer and study 4.5 hours. To further
cement your odds, try filling out “B” on question 4 to push you over the top—that always
worked for me in middle school.

nppl_y llls (@ | lUSlDllL) § CSI. COJ1VU1l LU /Al VvVaiiliii T vyvyvulL o
data

So going back to a more realistic dataset, let’s take a look at AdventureWorks. Go ahead
and add a new script file to the project. Call it AccordbotNet8. fsx. Copy and paste the
following code into the script file:

#r "System.Transactions.dll"

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"

#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dll"
#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.dl11l"

open Accord

open Accord.Statistics.Filters

open Accord.Statistics.Analysis

open Accord.Statistics.Models.Regression

open Accord.Statistics.Models.Regression.Fitting

open System
open System.Data.SqglClient

type ProductInfo
float}
let productInfos

{ProductID:int; Color:string; AvgReviews: float; Markup:

ResizeArray<ProductInfo>()

[<Literal>]

let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=AdventurewWorks2014;user

id=chickenskills@nc54a9m5kk; password=skllzm@tter;"

[<Literal>]
let query = "Select
A.ProductID,
A.Color,
B.AvgReviews,
A.MarkUp
From
(Select P.ProductID,
Color,
ListPrice - StandardCost as Markup
from [Sales].[SalesOrderDetail] as SOD
inner join [Sales].[SalesOrderHeader] as SOH
on SOD.SalesOrderID = SOH.SalesOrderID
inner join [Sales].[Customer] as C
on SOH.CustomerID = C.CustomerID
inner join [Production].[Product] as P
on SOD.ProductID = P.ProductID
inner join [Production].[ProductSubcategory] as PS
on P.ProductSubcategoryID = PS.ProductSubcategoryID
Where C.StoreID is null
and PS.ProductCategoryID = 1) as A
Inner Join
(Select PR.ProductlID,
(Sum(Rating) + 0.0) / (Count(ProductID) + 0.0) as AvgReviews

Group By ProductID) as B
on A.ProductID = B.ProductID"

let connection = new SqlConnection(connectionString)

let command = new SglCommand(query, connection)

connection.Open()

let reader = command.ExecuteReader ()

while reader.Read() do

productInfos.Add({ProductID=reader.GetInt32(0);

Color=(string)(reader.GetString(1));
AvgReviews=(float)(reader.GetDecimal(2));
Markup=(float)(reader.GetDecimal(3));})

Sending this to the REPL, you should see:

type ProductInfo =
{ProductID: int;
Color: string;
AvgReviews: float;
Markup: float;}
val productInfos : List<ProductInfo>
val connectionString : string =
"data source=nc54a9m5kk.database.windows.net;initial catalog=A"+[72
chars]
val query : string =
"Select
A.ProductID,
A.Color,
B.AvgReviews,
A."+[803 chars]
val connection : SqlConnection = System.Data.SqlClient.SqglConnection
val command : SgqlCommand = System.Data.SqlClient.SqglCommand
val reader : SqlDataReader
val it : unit = ()

There’s no new code here, so we can safely press on. However, I would like to note that
this query might take a bit longer than any other query we have run against the database so
far. This has an implication for how we architect our code when we integrate it to our

application. We will discuss this in length in Chapter 5, Time Out — Obtaining Data, but
for now, we just want to note it.

Going back to the script file, go ahead and add this code to the bottom:

type ProductInfo' = {ProductID:int; BlackInd:float; BlueInd:float;
RedInd:float; SilverInd:float; OtherInd: float; AvgReviews: float;
HighMargin:float}

let getProductInfo'(productInfo:ProductInfo) =
{ProductInfo'.ProductID=productInfo.ProductID;

BlackInd = (match productInfo.Color with | "Black" -> 1.0 | _ ->
0.0);

BlueInd = (match productInfo.Color with | "Blue" -> 1.0 | _ ->
0.0);

RedInd = (match productInfo.Color with | "Red" -> 1.0 | _ -> 0.0);

SilverInd = (match productInfo.Color with | "Silver" -> 1.0 | _ ->

OtherInd = (match productInfo.Color with | "Silver" | "Blue" |
"Red" -> 0.0 | _ ->1.0);

AvgReviews = productInfo.AvgReviews;

HighMargin = (match productInfo.Markup > 800.0 with | true -> 1.0 |
false -> 0.0);}

let productInfos' =

productInfos

|> Seq.map (fun pi -> getProductInfo'(pi))
let xs =

productInfos'

|> Seq.map (fun pi -> [|pi.BlackInd; pi.BlueInd; pi.RedInd;
pi.SilverInd; pi.OtherInd; pi.AvgReviews]|])

|> Seq.toArray
let y =

productInfos'

|> Seq.map (fun pi -> pi.HighMargin)

|> Seq.toArray

let analysis = new LogisticRegressionAnalysis(xs, VY)
analysis.Compute() |> ignore

let pValue = analysis.ChiSquare.PValue

let coefficientOdds = analysis.Regression.GetOddsRatio(0)
let blackIndOdds = analysis.Regression.GetOddsRatio(1)
let blueIndOdds = analysis.Regression.GetOddsRatio(2)
let redIndOdds = analysis.Regression.GetOddsRatio(3)
let silverIndOdds = analysis.Regression.GetOddsRatio(4)
let otherIndOdds = analysis.Regression.GetOddsRatio(5)
let ratingsOdds = analysis.Regression.GetOddsRatio(6)
let coefficients = analysis.CoefficientValues

Sending this to the REPL, you should get:

val analysis : LogisticRegressionAnalysis
val pvalue : float = 0.0
val coefficientOdds : float = 4.316250806e-07
val blackIndOdds : float = 6.708924364
val blueIndOdds : float = 0.03366007966
val redIndOdds : float = 0.0897074697
val silverIndOdds : float = 0.04618907808
val otherIndOdds : float = 0.003094736179
val ratingsOdds : float = 127.5863311
val coefficients : float [] =
[|-14.65570849; 1.903438635; -3.391442724; -2.411201239; -3.075011914;
-5.778052618; 4.848793242]|]

There are some new pieces of code to look at and two new concepts. First, notice that a
new record type was created for ProductInfo and the colors are broken out from a single
column (ProductType.Color) to a series of 0.0/1.0 columns (ProductType'.BlackInd,
ProductType'BlueInd, and so on). The reason I did not make the columns bool is that
Accord.NET expects inputs to be a float and 0.0/1.0 serves the purpose just as well. These
columns are called “dummy” variables and they are used by logistic regressions to
accommodate categorical data. At this point, you are probably asking, “What the heck is
categorical data?” Fair question.

wua I.CSUI. A1Ldl uaua

You might not have noticed, but all of the x variables that we have used until this last
query have been numeric—number of bikes sold, average reviews, number of beers drank,
and the like. These values are considered continuous because they can be of infinite value.
I can have one, two, or three beers. Similarly, the average reviews of a bike can be 3.45,
3.46, and so on. Because these values are treated as numbers, they can be added, averaged,
and manipulated in all of the ways that you’ve learned since first grade. Note that
continuous values can be range-bound: the average review can only be between 0.0 and
5.0 because that is what we limited users to enter.

Categorical values are different. Typically, they are integers that stand in for a non-
numeric concept. For example, 0 might be male and 1 might be female. Similarly, the
status of the sales order might be 1 for open, 2 for pending, 3 for closed, and 4 for
returned. Although these values are stored in the database as integers, they cannot be
added, averaged, or otherwise manipulated. Categorical values may also be stored as
strings, like we have seen for a bike color: “black”, “blue”, and the like. In this case, the
range of strings is limited to a set from which numbers can be chosen.

Going back to our analysis, we have the bike color, which is a categorical value and is
being stored as a string. We can’t send this string to Accord.NET as a single x variable
because the LogisticRegressionAnalysis only takes in floats in the array. Note that in
other statistical packages like R or SAS, you can pass in a string because there is behind-
the-scenes code that translates those string values to numeric. So, back to color. We want
to use it, but it has to become a float. We could create a new field called color1d and hook
up a translation function that turns each of the colors to a numeric representation like this:

let getColorId (color:string) =
match color.ToLower() with
| "black" -> 1.0

"blue" -> 2.0

"red" -> 3.0

"silver" -> 4.0

|
|
|
| _ -> 5.0

And we will do that in other places in the book. However, using those numeric values
makes no sense in our logistic regression because there is no real meaning in comparing
values: an oddsRatio of 2.3 means what? In fact, no type of regression can make sense of
categorical data coded in this way. Instead of building nonsensical values, we create
dummy variables that can be interpreted with meaning in a regression. For each of the
possible values of our categorical variable, we create a bool column that indicates whether
that particular record has that value. Technically, we can create one less than the total
possible values, but I find it easier to reason and display a column for each value. We can
then pass these dummy variables into a regression and get a meaningful response.

Also notice that I did the pattern matching for the colors assignment on one line like this:

BlackInd = (match productInfo.Color with | "Black" -> 1.0 | _ -> 0.0);

bad form: some people want to see each possible outcome of the pattern matching
statement to be on one line, and others do not. I find it much more readable to keep
everything on one line in cases like this, but I acknowledge it is a bit harder for someone
new to F# from a curly-braced language like C#. If, however, you use ternary operators
you should be comfortable with the syntax.

Also, notice that we changed our continuous variable of Markup to High Margin using this
line of code:

HighMargin = (match productInfo.Markup > 800.0 with | true -> 1.0 | false -
> 0.0);}

LACUCICRIRNET IR PUlll 8

Since logistic regressions need to have a 0.0 or 1.0 as a y variable, we need a way of
splitting the data into something that has both business meaning and can be evaluated into
0.0 or 1.0. How did I pick $8007? I eyeballed it after doing this in the database:

Select

ProductID,

P.Name,

ProductNumber,

Color,

StandardCost,

ListPrice,

ListPrice - StandardCost as Markup

from [Production].[Product] as P

Inner Join [Production].[ProductSubcategory] as PS
on P.ProductSubcategoryID = PS.ProductSubcategoryID
Where PS.ProductCategoryID = 1

Order by ListPrice - StandardCost

That $800 number is often called the “attachment point” and is often the most discussed
part of any logistic regression model. In the real world, that number is often set by the
President of a small company on the back of a napkin, or, in a large company, a multi-
disciplinary team that takes six weeks. The key thing to remember is that you want that
number in your config file (if you are running your regression at real-time) or a separate
variable at the top of your script (if doing it ad hoc). Note that to make our script even
smarter, it is possible to inject in another model that determines the attachment point
dynamically, so it will not require a human to update it, but that will be an exercise for
another day.

nucu_ybulg ACOUILD UL Ui lUSlDllL I.CSI. COoJo1vU1il

Let’s look at the odds ratios and coefficients, and we’ll see two things stand out. First,
notice that black odds (6.7) is much higher than all of the other numbers and that it has a
positive coefficient while all of the other colors have a negative one. Since all of the bikes
are available in all the colors, in this context, we can reasonably conclude that black is the
new black. People are buying our higher margin bikes and preferring the color black when
they do so.

The other striking number is the average review’s 0ddsRatio, which is 127. How can a
number that usually falls between 3 and 5 have an odds ratio of 127? Should we interpret
it to mean that increasing the average review 1,270 times will move a customer from a
low-margin to a high-margin bike? Well, no. When we get an abnormally high oddsRatio,
it means that our predictors are highly correlated with each other (you might hear data
scientists talk about sparse matrices, and the like here). As we learned from Occam’s
Razor, we want to remove variables whenever we can. Since ratings and colors are
correlated (which is in itself an interesting discovery), let’s drop the average rating and
only focus on color.

Since black seems to be associated with higher margin products, what should we do?
Should we suggest to the management that we should be like Harry Ford and offer our
bikes, “In any color they like, as long as it is black?” No, we want to offer other colors,
because some people don’t want black and we want their business. However, what we can
do is use black to drive higher-margin sales. Here is a small snippet from the order form
for individuals on our website:

| 1QCallniusl.oo 1D/ INdividualiidel /i eleale

Application name

Create
Order Your Bikes

Build Your Bike Mountain-100 v
38 v
Red v
Pick Quantity 1
Create
Back to List

© 2015 - My ASP.NET Application

Notice that the colors are ordered in a random manner and are placed after the customer
selects the model. What if we moved the colors to the first selection to get the user in the
“black frame of mind” and then offer models? Also, perhaps we should move the color
selection so that black is on top?

While this is pretty good, this is a book about machine learning and there is little machine
learning here to this point (unless you count the logistic regression’s methodology in
determining the answer, which I don’t). How can we update our site automatically as
customers’ preferences change? What if all the cool kids started riding silver bikes? How
can we quickly take advantage of this? How can the machine learn faster than the research
analysts running the model periodically?

We could do what we did in the last chapter and run the model on each page creation,
create an evaluator of the model, and then populate the select list. However, if you
remember about how long it took to run, it is a suboptimal solution because by the time it

using a mobile device, we can always blame the network connection; developers have
never done this before). As an alternative, what if we created a process when the website
started that constantly runs the model and caches the result? This way, each time the page

is created, the data behind the select list is as fresh as it can be. Let’s drop into Visual
Studio and make it happen.

ﬂLILIllls lUSlDllL I.CSI. CoolUll U Uit dpputauivil

Open up the AdventurewWorks solution and go to the AdventurewWorks.MachineLearning
project:

Solution Explorer
Q| o-s | p=58
Search Solution Explorer (Ctrl+;)

sk Solution 'AdventureWorks.Solution' (2 projects)
P 551 AdventureWorks

4 AdventureWorks.Machinelearning
P =B References

a F* AssemblyInfo.fs
a F* OrderPrediction.fs
a¥) packages.config

Add a new F# source file and name it ColorPrediction.fs. You will notice that it is
placed at the bottom of the project. The order of the files is important in an F# project
because of the type inference system. What you can do is right-click on the file and move
it up above the .config file:

Saolution Explorer » = X
@B o-5&| p =

gl Solution “AdventureWorks Solution’ (2 projects)
reWorks
eWorks. MachineLearming

("‘ Open
Open With..

+ Move Up AltsUp Arrow

Add Above -
Add Below]

> View Code F7

Scope to This

Mew Solution Exploner View

Unda...

3 B

Commit.

Exchede From Project

db Cut Crl+X

I} Copy Cirl+C

X Delete Dl

2 o R ——

Go into the ColorPrediction. fs file and replace all the existing code with the following
code:

namespace AdventureWorks.MachinelLearning

open Accord

open Accord.Statistics.Filters

open Accord.Statistics.Analysis

open Accord.Statistics.Models.Regression

open Accord.Statistics.Models.Regression.Fitting

open System
open System.Data.SqglClient

Next, let’s add in the types that we created in the regression project and the one type we
need for this compiled assembly. While we’re at it, add in the list of ProductInfos and the
connection string and query values from the regression project:

type ProductInfo = {ProductID:int; Color:string; AvgReviews: float; Markup:
float}

type ProductInfo' = {ProductID:int; BlackInd:float; BlueInd:float;
RedInd:float; SilverInd:float; OtherInd: float; AvgReviews: float;
HighMargin:float}

type public ColorPrediction () =
let productInfos = ResizeArray<ProductInfo>()

[<Literal>]

let connectionString = "data
source=nc54a9m5kk.database.windows.net;initial
catalog=AdventurewWorks2014;user
id=chickenskills@nc54a9m5kk; password=skllzm@tter;"

[<Literal>]
let query = "Select
A.ProductlID,
A.Color,
B.AvgReviews,
A.MarkUp
From
(Select P.ProductID,
Color,
ListPrice - StandardCost as Markup
from [Sales].[SalesOrderDetail] as SOD
inner join [Sales].[SalesOrderHeader] as SOH
on SOD.SalesOrderID = SOH.SalesOrderID
inner join [Sales].[Customer] as C
on SOH.CustomerID = C.CustomerID
inner join [Production].[Product] as P
on SOD.ProductID = P.ProductID
inner join [Production].[ProductSubcategory] as PS
on P.ProductSubcategoryID = PS.ProductSubcategoryID

and PS.ProductCategoryID = 1) as A
Inner Join

(Select PR.ProductlID,
(Sum(Rating) + 0.0) / (Count(ProductID) + 0.0) as AvgReviews

from [Production].[ProductReview] as PR
Group By ProductID) as B
on A.ProductID = B.ProductID"

Next, let’s add a method that will return an ordered list of colors with the most important
one on top:

member this.GetColors(attachmentPoint) =
let connection = new SqlConnection(connectionString)
let command = new SqlCommand(query, connection)
connection.Open()
let reader = command.ExecuteReader ()
while reader.Read() do
productInfos.Add({ProductID=reader.GetInt32(0);
Color=(string)(reader.GetString(1));
AvgReviews=(float)(reader.GetDecimal(2));
Markup=(float)(reader.GetDecimal(3));})

let getProductInfo'(productInfo:ProductInfo) =
{ProductInfo'.ProductID=productInfo.ProductID;
BlackInd = (match productInfo.Color with | "Black" -> 1.0 |

_ ->0.0);

BlueInd = (match productInfo.Color with | "Blue" -> 1.0 | _
-> 0.0);

RedInd = (match productInfo.Color with | "Red" -> 1.0 | _ -
> 0.0);

SilverInd = (match productInfo.Color with | "Silver" -> 1.0
| _ -> 0.0);

OtherInd = (match productInfo.Color with | "Silver" |
"Blue" | "Red" | "Silver" -> 0.0 | _ -> 1.0);

AvgReviews = productInfo.AvgReviews;

HighMargin = (match productInfo.Markup > attachmentPoint

with | true -> 1.0 | false -> 0.0);}

let productInfos' =

productInfos

|> Seq.map (fun pi -> getProductInfo'(pi))
let xs =

productInfos'

|> Seq.map (fun pi -> [|pi.BlackInd; pi.BlueInd; pi.RedInd;

pi.SilverInd; pi.OtherInd; pi.AvgReviews]|])

|> Seq.toArray
let

y = productInfos'

|> Seq.map (fun pi -> pi.HighMargin)

|> Seq.toArray

let colors = [|"Black";"Blue";"Red";"Silver";"Other"|]

let analysis = new LogisticRegressionAnalysis(xs, Y)
match analysis.Compute() with

let coefficientValues = analysis.CoefficientValues |>
Seq.skip 1
let colors' = Seq.zip colors coefficientValues
colors' |> Seq.mapi (fun i (c,cv) -> c, (abs(cv)/cv),
analysis.Regression.GetOddsRatio(1i))
|> Seq.map (fun (c, s, odr) ->c, s * odr)
|> Seq.sortBy (fun (c, odr) -> odr)
|> Seq.map (fun (c, odr) -> c)
|> Seq.toArray
| false -> colors

Most of the code is the same as the work we did in the regression project, but there is
some new code that needs some explanation. There is now a string array called colors
that lists all of the colors that we sent to our regression. After the analysis.Compute() is
called, we remove the first value from the analysis.CoefficientValues via this line:

analysis.CoefficientValues |> Seq.skip 1

Skip is a handy function that allows us to, well, skip the first rows of Seq. We are calling it
here because the analysis.CoefficientValues returns the coefficient in the first value of
the array.

Next, we call the following:

let colors' = Seq.zip colors coefficientValues

We have seen Seq.zip before. We are gluing together the colors array with the coefficient
values array so each row is a tuple of the color name and its coefficient. With that array set
up, we then implement the final transformation pipeline:

colors' |> Seq.mapi (fun i (c,cv) -> c, (abs(cv)/cv),
analysis.Regression.GetOddsRatio(i+1))
|> Seq.map (fun (c, s, odr) ->c, s * odr)
| > Seq.sortByDescending (fun (c,odr)-> odr)
|> Seq.map (fun (c, odr) -> c)
|> Seq.toArray

The first step is as follows:

|> Seq.mapi(fun i (c,cv) -> c, (abs(cv)/cv),
analysis.Regression.GetOddsRatio(i+1))

This applies a mapi function to colors. Seq.mapi is a high order function that is just like
the Seq.map function with one extra parameter, the index of each row. So the index i is
passed in and then the tuple (c, cv), which is the color and the coefficientvalue. We
return a tuple with the color, a -1 or +1 depending on the sign of the coefficientVvalue,
and the odds ratio ->, which we look up based on the index.

The next step is as follows:
|> Seq.map(fun (c, s, odr) ->c, s * odr)

This applies another function that returns the color and a signed odds ratio. If you
remember from before, Regression.Get0ddsRatio is always positive. We are applying

The next step is as follows:

|> Seq.sortByDescending(fun (c,odr)-> odr)

This applies a function that sorts the array based on the odds ratio so that the tuple with
the highest oddsRatio is on top.

The next two steps turn the tuple into a simple string. The color name then transforms our
Seq to an array:

|> Seq.map(fun (c, odr) -> c)
|> Seq.toArray

With the code in place, let’s hop over to our MVC project and implement it. Find the
Global.asax file and open it up. Replace the code with the following:

using System;

using System.Collections.Generic;
using System.Configuration;

using System.Linq;

using System.Threading;

using System.Web;

using System.Web.Mvc;

using System.Web.Optimization;

using System.Web.Routing;

using AdventureWorks.MachinelLearning;

namespace AdventureWorks

{
public class MvcApplication : System.Web.HttpApplication

{
static Object _lock = new Object();
Timer _timer = null;
static String[] _bikeColors = null;

protected void Application_Start()
{
AreaRegistration.RegisterAllAreas();
FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
RouteConfig.RegisterRoutes(RouteTable.Routes);
BundleConfig.RegisterBundles(BundleTable.Bundles);
_bikeColors = new string[5] { "Red", "White", "Blue", "Black",
"Silver" };
_timer = new
Timer (UpdateBikeColors,null, ®, TimeSpan.FromMinutes(1).Milliseconds);

}

private void UpdateBikeColors(object state)
{
var attachmentPoint =
Double.Parse(ConfigurationManager .AppSettings["attachmentPoint"]);
var colorPrediction = new ColorPrediction();
BikeColors = colorPrediction.GetColors(attachmentPoint);

public static String[] BikeColors

{
get
{
lock(_lock)
{
return _bikeColors;
}
3
set
{
lock(_lock)
{
_bikeColors = value;
3
3
3

}

Some of this code might be new, so let’s take a closer look. First, we created two class-
level variables: _lock and _timer. We use _lock to prevent our color array to be read
while our regression could be updating it. You can see _lock in action in the public
property that exposes the color array:

public static String[] BikeColors

{
get
{
lock(_lock)
{
return _bikeColors;
}
}
set
{
lock(_lock)
{
_bikeColors = value;
}
}
3

Next, we create a method that will be called when our timer fires:

private void UpdateBikeColors(object state)

{
var attachmentPoint =
Double.Parse(ConfigurationManager .AppSettings["attachmentPoint"]);
var colorPrediction = new ColorPrediction();
BikeColors = colorPrediction.GetColors(attachmentPoint);

}

Notice that we are creating an instance of our ColorPrediction class, which then invokes
the GetColors method. We assign the BikeColors property with the return of our recently-

Finally, we instantiate the _timer variable in the Application.Start method, passing in
the method that gets invoked when the timer counts down:

_timer = new
Timer (UpdateBikeColors, null, @, TimeSpan.FromMinutes(1).Milliseconds);

This means, every minute we call the color prediction to run the logistic regression based
on the most recent data. Meanwhile, clients will be calling our website continuously and
they will be getting an array of colors based on the most recent calculation.

Next, go to the .config file and add the attachment point to the appSettings section:
<add key="attachmentPoint" value="800" />

Finally, open the individualorder controller and replace the hardcoded values of colors
with our generated one in the Create method:

var colors = MvcApplication.BikeColors;

Run the site and you will see that our color list has changed:

[localhost:5516/IndividualOrder/Create

Application name Home About

Create
Order Your Bikes

Build Your Bike Mountain-100 v
38 v
Black v
Pick Quantity
Create

Back to List

major performance hit. However, our solution so far has a fatal flaw. We are guilty of
overfitting. As mentioned in Chapter 2, AdventureWorks Regression, overfitting, is the
notion that the model we create only works against the data we have on hand and fails
miserably when we introduce it to new data. Every machine learning technique has a
problem with overfitting, and there are some common ways to mitigate its impact. We will
look at that in the coming chapters.

ouliiiiary

We covered a lot of ground in this chapter. We looked at multiple linear regressions,
logistic regressions, and then considered a couple of techniques to normalize our dataset.
Along the way, we learned some new F# code and learned a way to update a machine
learning model without impact on our end user experience.

In the next chapter, we take a break from AdventureWorks and line of business
development and start working with some open data as a data scientist using a decision
tree. As Dick Clark used to say, “The hits just keep coming.”

Ullaplicl 4. 11diliC OWUpPS — DdifRillg UpP UlC

Wrong Tree?

In the prior two chapters, you were a software developer who was injecting machine
learning into their existing line of business application. In this chapter, we are going to put
on our research analyst hat and see if we can discover some hidden insights from an

existing dataset.

1 11T SLICiuiIC process

The research analyst historically followed this pattern of discovery and analysis:

Analyze
and Report
Results

Formulate Test With

Hypothesis Experiment

With the rise of the data scientist, that workflow has changed to something like this:

Analyze
and Report
Results

Formulate Test With
Hypothesis Experiment

Deploy To
Application

Notice how the work does not end after reporting the results of a model. Rather, the data
scientist is often responsible for moving the working models from their desktop and into a
production application. With this new responsibility, comes new power, to reverse-
paraphrase Spider-Man. The data scientist’s skillset becomes broader because they have to
understand software engineering techniques to go along with their traditional skill set.

One thing that the data scientist knows by heart is this following workflow. Inside the Test
With Experiment block, there is this:

Gather Clean Create and Evaluate Select best
Data Data run model model model

In terms of time spent, the clean data block is very large compared to the other blocks.
This is because most of the work effort is spent with data acquisition and preparation.
Historically, much of this data munging was dealing with missing, malformed, and
illogical data. The traditional way to try to minimize the work effort on this step was to

warehouse (sometimes called the Extract, Transform, Load, or ETL process). While this
had some limited success, it was a fairly expensive endeavor and a fixed schema meant
that changes became particularly difficult. More recent efforts in this space have
surrounded gathering data in its native format, dumping it into data lakes and then
building jobs on top of the lake that are specific to the data’s native format and structure.
Sometimes, this is called putting the data in a rectangle because you may be taking
unstructured data, cleaning and aggregating it, and then outputting it in a two-dimensional
data frame. The power of this data frame is that you can then combine it with other data
frames to do some more interesting analysis.

upcil Uald

One of the most exciting civic movements that align with Big Data and Machine Learning
is Open Data. Although there is not as much buzz around it, it’s a very exciting and
important transformation in data science. The premise of open data is that local, state, and
national governments will become much more accountable and efficient if they expose the
public data that they currently maintain in a RESTful format. Currently, most government
agencies might have paper records, charge a significant sum to output an ad-hoc query, or
occasionally have an FTP site with some .x1s or .pdf files that get refreshed from time to
time. Open Data is a movement that takes the same, if not more, data and places it on a
web service that can be consumed by applications and/or research analysts. The key thing
is security and privacy of the data. Historically, some government agencies have practised
security by obscurity (we have the records online but the only way to get to it is by our
custom web frontend) and open data makes that kind of defense obsolete. Truth be told,
security by obscurity has never really worked (how hard is it to write a screen scraper?)
and all it has really done is made it harder for well-intentioned people to accomplish their
goals.

The rise of open data also coincides with the formulation of groups of people who are
hacking for civic good. Sometimes these are ad hoc meetup groups that center on a single
technology stack and other groups are much more formal. For example, Code for America
has brigades in many cities across the world. If you are interested in helping a local
chapter, you can find information on their website http://www.codeforamerica.org/.

http://www.codeforamerica.org/

INMdCKh-4-UJUUuu

Let’s pretend we are a member of a local chapter of a fictional organization civic hacking
called “Hack-4-Good”. At the latest meeting, the leader announces, “Through a public
record request, we have obtained all of the traffic stop information in our town. Does
anyone know what to do with this dataset?” You immediately throw your hand in the air
and say, “Heck yeah, Baby!” Okay, maybe you don’t use those exact words but your

enthusiasm is undeniable.

Since you are a research analyst by training, the first thing you want to do is load the data

into your IDE and start exploring the data.

Open up Visual Studio and create a new Solution called
Hack4Good.TrafficStop.Solution:

MNew Project

I Recent MET Framewaork 4.6.1

i MI | Blank Solution

- Sort by: | Default

4 |nstalled
Visual Studio Solutions

4 Templates
I Visual C#
I Wisual Basic
B Visual C++
I Visual F#
S0OL Server
DataFactory
I JavaScript
HDInsight
I Python
I TypeScript
Game
Build Accelerator
4 Other Project Types
Setup and Deployment
Visual Studic Solutions

L B B R b P w
b Dnfine Click here to go online and find templates.
MName: |Hack4Gu:u:u:l.TraFficStu:up.lSu:qutiu:un
Location: FAGItWMLDotNet\Book Chapters\ChapterQd,

Solution name:

? p ot

~| iz |i=|| Search Installed Templ 2 ~

Type: Visual Studio Selutions

Create an empty solution containing no
projects

il Browse...

| Create directory for solution
[] Add to source control

| 0K | | Cancel

Add a new F# Library project to the solution:

I Recent

4 [nstalled

b Visual C#
I Visual Basic
I Visual C++
4 Visual F#
Android
b i0S
Silverlight
Windows
WPF
S0L Server
DataFactory
I JavaScript
HDInsight
I Python
B TypeScript
Game

Build Accelerator
b Other Project Types
Modeling Projects

b Online

Mame:

Location:

MET Framework 4.6.1

F#

= Sort by: Default

i=|| Search Installed Templ 2~

Type: Visual F#
A project for creating an F# library

Console Application Visual F#
E#
Eé! Library Visual F2
E#
Eﬁi! Portable Library (.NET 4.5, Windo... Visual F#
E#
Eﬂi! Portable Library (.MET 4.5, Windo... Visual F#
E#
Eé! Portable Library (MET 4.5, Winde.., Visual F#
E@i! Portable Library (MET 4.5, Winde.., Visual F#
E#
E_‘| Tutorial Visual F2
Click here to go online and find templates.
|Hack4Good. TrafficStop| |

F\Git\MLDotMet\Book Chapters\Chapterdd\HackdGood. TrafficStop.Solu =

| 0K | ‘ Cancel

1 0L./QU dallilu l.)’PC pLuyvildcLLo

Now that the project skeleton has been set up, open up the Script.fsx file and remove all
of its contents. Next, let’s take a look at a really neat library called FsLab
(http://fslab.org/). Go to the NuGet package manager console and enter this:

PM> Install-Package fslab

Next, we will install SqlClient, so we can access our data. Go to the NuGet package
manager and enter:

PM> Install-Package FSharp.Data.SqlClient

With the ceremony out of the way, let’s get to coding. Let’s first bring the traffic ticket
dataset into our script. Go into Script.fsx and enter this at the top:

#load "../packages/FsLab.0.3.11/FsLab.fsx"

You should get a series of dialog boxes from Visual Studio that looks like this:

Visual F# Type Provider Security x

You have ocpened a script file that references a type provider.

Publisher information: Unknown Publisher

Type provider assembly: FAGIE\MLDotMNet\Book Chapters\ChapterldiHackd4Good, TrafficStop.Selution
‘packages\Fsharp.Data.2.2. 5\ lib\netd0\FSharp.Data.dll

File using type provider: FAGIt\MLDotMet\Book Chapters\Chapterdd\HackdGood. TrafficStop.Solution
‘\HackdGood. TrafficStophScript.fsx

Do you want to enable this type provider?

Enable || Disable

| Type providers can connect to remote data sources and execute custom code for build and
* IntelliSense features. You should only enable type providers from a trusted source.

Click on Enable. As a general point, whenever you get a dialog box from Visual Studio
like this, click on Enable. For example, depending on our machine’s configuration, you
might get these dialog boxes when you run the following open statements.

Back in our script, enter this:

#r "System.Data.Entity.dll"
#r "FSharp.Data.TypeProviders.dll"
#r "System.Data.Linqg.dll"

open System

open Foogle

open Deedle

open FSharp.Data

open FSharp.Charting

open System.Data.Linq

open System.Data.Entity

open Microsoft.FSharp.Data.TypeProviders

http://fslab.org/

[<Literal>]
let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=Traffic;user id=chickenskills@nc54a9m5kk;password=skillzm@tter;"

type EntityConnection = SqlEntityConnection<connectionString,Pluralize =
true>

let context = EntityConnection.GetDataContext()

context.dbo_TrafficStops |> Seq.iter(fun ts -> printfn "%s"
ts.StreetAddress)

The first line should look familiar; it’s a connection string just like we used in the last
chapter. The only difference is the database. But what’s with the next line of code?

type EntityConnection = SglEntityConnection<connectionString,Pluralize =
true>

This is an example of a type provider. Type providers are one of the best features of F#
and it is unique to the language. I like to think of type providers as object relational
mapping (ORM) on steroids. This type provider is inspecting the database and generating
F# types for me to use in the REPL—which we will see in action in a second. In fact, the
type provider is sitting on top of Entity Framework (EF), which is sitting on top of
ADO.NET. If you got excited about how much more productive you were when you went
from hand-rolling ADO.NET code to EF, you should be equally excited about how much
more productive you can be working with type providers; it is really the next generation of
data access. Another cool thing is that type providers are not just for relational database
management systems—there is a JSON type provider, a .csv type provider, and others.
You can read more about type providers at https://msdn.microsoft.com/en-
us/library/hh156509.aspx and once you see them in action, you will find them
indispensable in your coding tasks.

Back to the code. The next line is:

let context = EntityConnection.GetDataContext()

It creates the actual instance of the type to be used. The next line is where the rubber
meets the road:

context.dbo_TrafficStops |> Seq.iter(fun ts -> printfn "%s"
ts.StreetAddress)

In this line, we are traversing the TrafficStop table and printing out the street address. If
you highlight all of the code in the script so far and send it to the REPL, you will see the
last part of 30,000 addresses:

128 SW MAYNARD RD/KILMAYNE DR

1 WALNUT ST TO US 1 RAMP NB/US 1 EXIT 101 RAMP NB
2333 WALNUT ST

1199 NW MAYNARD RD/HIGH HOUSE RD

3430 TEN TEN RD

val connectionString : string =

https://msdn.microsoft.com/en-us/library/hh156509.aspx

chars]
type EntityConnection =
class
static member GetDataContext : unit ->
EntityConnection.ServiceTypes.SimpleDataContextTypes.EntityContainer
+ 1 overload
nested type ServiceTypes
end
val context
EntityConnection.ServiceTypes.SimpleDataContextTypes.EntityContainer
val it : unit = ()

Before we press on, I want to mention how cool type providers are. With three lines of
code, I defined a database schema, connected to it, and then pulled down records. Not only

that, but the result set from the database is IEnumerable. So everything I have done with
Seq in prior chapters to transform and shape the data, I can do here.

atlta TAPYIUL alivuil
With this new found power, let’s start exploring. Enter this into the script:

context.dbo_TrafficStops |> Seq.head
Sending to the REPL, we will see the following:

val it : EntityConnection.ServiceTypes.dbo_TrafficStops =

SqlEntityConnectionl.dbo_TrafficStops
{CadCallId = 120630019.0;
DispositionDesc = "VERBAL WARNING";
DispositionId = 7;
EntityKey = System.Data.EntityKey;
EntityState = Unchanged;
Id = 13890;
Latitude = 35.7891;
Longitude = -78.8289,
StopDateTime = 6/30/2012 12:36:38 AM;

StreetAddress = "4348 NW CARY PKWY/HIGH HOUSE RD";}
>

We see our data frame has some interesting elements we can analyze: the date and time of
the traffic stop, the geocoordinate of the traffic stop, and the final disposition of the stop.
We also have some data that does not seem useful for analysis: the cadcall1id which is
probably the primary key of the source system. This might be useful for later auditing. We
also have StreetAddress, which is the same as the geocoordinate, but in a less analyzable
form. Finally, we have some fields thrown in by Entity Framework (EntityKey,
EntityState, and Id).

Let’s make a data frame with only the fields we care about. Enter this into the script:

let trafficStops =

context.dbo_TrafficStops

|> Seq.map(fun ts -> ts.StopDateTime, ts.Latitude, ts.Longitude,
ts.DispositionId)

And sending it to the REPL, we get this:

val trafficStops :
seq<System.Nullable<System.DateTime> * System.Nullable<float> *
System.Nullable<float> * System.Nullable<int>>

>

It is interesting that although F# really, really tries to prevent you from using null, it does
support it. In fact, all four of our fields are nullable. I’ll show you how to deal with nulls a
bit further on in the chapter as they are often a major headache when coding.

There is one more data frame we should create before getting too far down the analysis.
As a general rule, the machine learning models that we use, prefer primitive types such as
ints, floats, and bools. They have a much harder time with strings, especially strings that
represent categorical data. You probably noticed that I brought in bispositionId into the
trafficStops data frame and not DispositionDesc. However, we still don’t want to lose

frame for this lookup data. In the script, enter this:

let dispoistions =
context.dbo_TrafficStops
|> Seq.distinctBy(fun ts -> ts.DispositionId, ts.DispositionDesc)
|> Seq.map (fun d -> d.DispositionId, d.DispositionDesc)
|> Seq.toArray

And then send it to the REPL to get this:

val dispoistions : (System.Nullable<int> * string) [] =
[1(7, "VERBAL WARNING"); (15, "CITATION"); (12, "COMPLETED AS

REQUESTED") ;

(4, "WRITTEN WARNING"); (13, "INCIDENT REPORT"); (9, "ARREST");

(14, "UNFOUNDED"); (19, "None Provided");

(16, "NO FURTHER ACTION NECESSARY"); (5, "OTHER SEE NOTES");

(2, "UNABLE TO LOCATE"); (16, "FIELD CONTACT"),

(6, "REFERRED TO PROPER AGENCY"); (17, "BACK UP UNIT");

(11, "CIVIL PROBLEM"); (1, "FURTHER ACTION NECESSARY"); (3, "FALSE
ALARM");

(18, "CITY ORDINANCE VIOLATION")]|]

>

Looking at the code, we have a couple of new things. First, we are using the high order
function Seq.distinctBy, which you can probably guess return records with the distinct
values specified in the argument. Interestingly, the entire traffic stop record is being
returned, not just the values in the lambda. If you are wondering which record gets picked
by F# to represent the distinct disposition, you have to chalk it up to magic. Okay, maybe
not. As it was traversing the data frame, F# picked the first record where there was a new
unique value for DispositionID and DispositionDesc. In any event, since we only care
about the DispositionId and DispositionDesc, we then mapped the traffic stop record
into a tuple on this line of code: seq.map (fun d -> d.DispositionId,
d.DispositionDesc. That should look familiar to you by now.

With our data frames set up, let’s start digging into the data. One of the nice things about
having a DateTime value is that it represents many different factors that might be worth
exploring. For example, how many traffic stops are performed by month? What about the
day of the week? Is there a time factor in the stops? Does more happen at night or in the
day? Let’s start writing some code. Go to the script and enter this code block:

let months =
context.dbo_TrafficStops
|> Seq.groupBy (fun ts -> ts.StopDateTime.Value.Month)
|> Seq.map (fun (m, ts) -> m, Seq.length ts)
|> Seq.sortBy (fun (m, ts) ->m)
| > Seq.toArray

And sending it to the REPL, you should see this:

val months : (int * int) [] =
[1(2, 2236); (2, 2087); (3, 2630); (4, 2053); (5, 2439); (6, 2499);

>

Just a quick glance tells you that there are a whole lot of traffic stops being performed in
September, and December looks like a light month. Digging into the code, there is a new
high-order function that I used:

|> Seq.groupBy (fun ts -> ts.StopDateTime.Value.Month)

groupBy is a very powerful function, but it can be a bit confusing the first time you use it
(it was for me, at least). I came to a better understanding of groupBy by working
backwards and looking at the output of a simple array. Go into the script file and enter
this:

let testArray = [[|1;1;2;3;4;5;3;4;5;5;2;1;5]]
testArray |> Array.groupBy (id)

Sending that to the REPL gives this:

val testArray : int [] = [|21; 1; 2; 3; 4; 5; 3; 4; 5; 5; 2; 1; 5]]
val it : (int * int []) [] =

C1(x, [11; 1; 111); (2, [12; 2]11); (3, [I3; 311); (4, [14; 411);

(5, [15; 5; 5; 5]]1)11]

You will notice that the output is a tuple. The first item of the tuple is the value on which
the groupBy grouped the data. The next item is a subarray with only the values from the
original array that match the tuple’s first item. Diving into the ones, (1, [|1; 1; 1]]),
we can see that the number 1 was the groupBy value and that there were three 1s in the
original array. groupBy can be applied to record types too. Consider this data frame. From
left to right, the columns are USState, Gender, YearO0fBirth, NameGiven, and
NumberOfInstances:

USState||Gender|| YearOfBirth||NameGiven{|[NumberOfInstances
AK |F |1910 Annie ||12 |
AK ||F ||1910 Anna ||10 |
AK ||F ||1910 Margaret ||8 |
AL ||F ||1910 Annie ||90 |
AL "F "1910 Anna "88 |
AL ||F ||1910 Margaret ||86 |
AZ "F "1910 Annie "46 |
AZ "F "1910 Anna "34 |
AZ ||F ||1910 Margaret ||12 |

=g}

St

(

72}
=
(=9

—_
©
—_

—_
©
—_

—_
©
—_

o

o

o

nnie

—_
©
[y
o

©
=
= = = = =
= = = = =
D D 5 5 =4
HNEE RN R R R EE

—_
©
[y
o
=

t argaret

—_
©
—_
o
=

argaret

—_
©
—_
o
=

a

=1

(0)e}
[=5}
=
(0]
—
—_

@
Slelx|S8]E R[] &5]
I < < = < < 0 ==

—_
©
[y
o

With the fst of the tuple the NameGiven, and the snd being a data frame with only the
records that match the fst.

Let’s continue with the next line of code |> Seq.map (fun (m, ts) ->m, ts |>
Seq.length).

We can see that we are mapping the original tuple of month and trafficStops to a new
tuple of month and the length of the array that was snd of the original tuple. This
effectively reduces our data into a sequence of length 12 (one for each month). The fst is
the month and the snd is the number of stops that occurred. Next we sort it by month and
then push it to an array.

With this pattern set, let’s do a couple of more groupBy. Let’s do Day and DayOofweek. Go
into the script and enter this:

let dayOfMonth =
context.dbo_TrafficStops
|> Seq.groupBy (fun ts -> ts.StopDateTime.Value.Day)
|> Seq.map (fun (d, ts) -> d, Seq.length ts)
|> Seq.sortBy (fun (d, ts) -> d)
|> Seq.toArray
let weekDay =
context.dbo_TrafficStops
|> Seq.groupBy (fun ts -> ts.StopDateTime.Value.DayOfWeek)
|> Seq.map (fun (dow, ts) -> dow, Seq.length ts)
|> Seq.sortBy (fun (dow, ts) -> dow)
|> Seq.toArray

You will notice one subtle change from the month analysis that we just did—|> Seq.map
(fun (dow, ts) -> dow, Seq.length ts) has a different syntax for getting the length of

perfectly valid F#, but the latter is considered more idiomatic. T will begin usiné this style
more frequently in the book.

So once we send this to the REPL, we can see:

val dayOfMonth : (int * int) [] =
[1(1, 918); (2, 911); (3, 910); (4, 941); (5, 927); (6, 840); (7, 940);
(8, 785); (9, 757); (10, 805); (11, 766); (12, 851); (13, 825); (14,
911);
(15, 977); (16, 824); (17, 941); (18, 956); (19, 916); (20, 977);
(21, 988); (22, 906); (23, 1003); (24, 829); (25, 1036); (26, 1031);
(27, 890); (28, 983); (29, 897); (30, 878); (31, 659)]]

val weekDay : (System.DayOfWeek * int) [] =
[| (Sunday, 3162); (Monday, 3277); (Tuesday, 3678); (Wednesday, 4901);
(Thursday, 5097); (Friday, 4185); (Saturday, 3478)]|]

Looking at the results, it should be pretty obvious what we are doing. The 25th of every
month looks like the day where most of the traffic stops occur and Thursday sure has a lot
of stops. I wonder what would happen if the 25th fell on a Thursday for a given month?

Before we dive deeper into the data, I want to point out that the last three blocks of code
are very similar. They all follow this pattern:

let weekDay =
context.dbo_TrafficStops
|> Seq.groupBy (fun ts -> ts.StopDateTime.Value.XXXXX)
|> Seq.map (fun (fst, snd) -> fst, Seq.length snd)
|> Seq.sortBy (fun (fst, snd) -> fst)
|> Seq.toArray

Instead of having three chunks of code that are almost identical, is there a way we can
consolidate them into a single function? Yes there is. What if we wrote a function like this:

let transform grouper mapper =
context.dbo_TrafficStops
|> Seq.groupBy grouper
|> Seq.map mapper
|> Seq.sortBy fst
|> Seq.toArray

And then we called it like this:

transform (fun ts -> ts.StopDateTime.Value.Month) (fun (m, ts) ->m,
Seq.length ts)

transform (fun ts -> ts.StopDateTime.Value.Day) (fun (d, ts) ->d,
Seq.length ts)

transform (fun ts -> ts.StopDateTime.Value.DayOfWeek) (fun (dow, ts) ->
dow, Seq.length ts)

Would that work? You bet your bippy. Sending it to the REPL, we can see we are getting
the same results:

val transform :
grouper: (EntityConnection.ServiceTypes.dbo_TrafficStops -> 'a) ->

'b * 'c) -> ('b * 'c) [] when 'a : equality and 'b :
comparison
val it : (System.DayOfWeek * int) [] =
[l (Sunday, 3162); (Monday, 3277); (Tuesday, 3678); (Wednesday, 4901);
(Thursday, 5097); (Friday, 4185); (Saturday, 3478)]|]

Those of you coming from C# and VB.NET might have gotten very uncomfortable with
the transform’s interface. You probably would have been much more comfortable with this
syntax:

let transform (grouper, mapper) =

The () and the commas make it look much more like C# and VB.NET. Although both are
perfectly valid F#, this is another place where it is considered more idiomatic to remove
the parenthesis and the commas. I will begin using this style more frequently in this book.

Also, notice that I am passing two functions into the transform function. This is very
different from imperative C#/VB.NET where we usually pass data into a method. I have
noticed that functional programming is more about bringing the operations to the data than
bringing the data to the operations, which has profound implications once we start
applying machine learning to big data.

Going back to our transform function, we can see that the mapper function is pretty the
same in the three times we invoked it: (fun (dow, ts) -> dow, Seq.length ts). The
only difference is the name we gave the first part of the tuple. This seems like another
great place where we can consolidate some code. Let’s rewrite transform like this:

let transform grouper =
context.dbo_TrafficStops
|> Seq.groupBy grouper
|> Seq.map (fun (fst, snd) -> fst, Seq.length snd)
|> Seq.sortBy fst
|> Seq.toArray

transform (fun ts -> ts.StopDateTime.Value.Month)
transform (fun ts -> ts.StopDateTime.Value.Day)
transform (fun ts -> ts.StopDateTime.Value.DayOfWeek)

And sending that to the REPL, we get this:

val transform :
grouper: (EntityConnection.ServiceTypes.dbo_TrafficStops -> 'a) ->
('a * int) [] when 'a : comparison

>

val it : (System.DayOfWeek * int) [] =
[l (Sunday, 3162); (Monday, 3277); (Tuesday, 3678); (Wednesday, 4901);
(Thursday, 5097); (Friday, 4185); (Saturday, 3478)]|]

Pretty cool, huh? We will be doing this kind of programming more and more in this book.
Once you get the hang of it, you will start seeing patterns in your code that you never had
seen before, and you have yet another powerful arrow in your toolbox (as I mix

Since you are now up to speed on groupBy, I want to rewrite our transform function to
ditch it. Instead of using the groupBy and map functions, let’s rewrite it using the countBy
high order function. While we are at it, let’s rename our function to something that is a bit
more intention revealing. Type this into the script:

let getCounts counter =
context.dbo_TrafficStops
|> Seq.countBy counter
|> Seq.sortBy fst
|> Seq.toArray

getCounts (fun ts -> ts.StopDateTime.Value.DayOfWeek)

Sending this to the REPL, we get the same values:

val getCounts :
counter: (EntityConnection.ServiceTypes.dbo_TrafficStops -> 'a) ->
('a * int) [] when 'a : comparison
val it : (System.DayOfWeek * int) [] =
[| (Sunday, 3162); (Monday, 3277); (Tuesday, 3678); (Wednesday, 4901);
(Thursday, 5097); (Friday, 4185); (Saturday, 3478)]|]

viouaiinzauivis

Looking at the data in the REPL is a good start, but pictures are a much more powerful
and effective way to communicate information. For example, is there some kind of
monthly seasonality for traffic stops? Let’s put the data into a chart to find out. In your
script, enter this:

let months' = Seq.map (fun (m,c) -> string m,c) months
Chart.LineChart months'

Your REPL should look like this:

val months' : seq<string * int>
val it : FoogleChart = (Foogle Chart)

>

Your default browser should be trying to open and should show you this:

B Foogle Chart X S

O localhost ST

3,200

— Value

3,000

2,500

2,000

1,500

So we see the spike in September and the drop off in December that had already caught
our eye. If the date/time has some curious patterns, what about the geolocation? Enter this
into the script file:

let locations =

|> Seq.filter (fun ts -> ts.Latitude.HasValue && ts.Longitude.HasValue

)
|> Seq.map (fun ts -> ts.StreetAddress, ts.Latitude.Value,
ts.Longitude.Value)
|> Seq.map (fun (sa,lat,lon) -> sa, lat.ToString(), lon.ToString())
|> Seq.map (fun (sa,lat,lon) -> sa, lat + "," + lon)
|> Seq.take 2
|> Seq.toArray

Chart.GeoChart(locations, DisplayMode=GeoChart.DisplayMode.Markers, Region="U
SII)

Not very helpful. The problem is that the FsLab geomap covers Google’s geoMap API, and
that API only goes to the country level. Instead of using Fslab then, we can roll our own.
This is a fairly complex process using Bing maps, WPF dependency properties, and the
like, so I will not explain it in this book. The code is available for you to review on the
download section of our site. So, close your eyes and pretend the last 3 hours I spent
working on this went by in 2 seconds and we have this map:

Z .,,_ e o
% pam = " e .10
f" e 4 i
T A ".'-— s :
‘a-u--‘.- Ry
q.- wh . CRE S S
3 l M " ‘.g'v' i L1
?'h\!qulwfﬂe."' 5 *f.{ i
': _{' *: ;} T *.- " y ‘i’ RLUBMNYMEDE ROAD
S L 3 .?.' & - . %A\fﬂ
L 11‘:‘ '1'5‘:'1_- _\-"". .
) - et e et e -
; M'!i A o T Raleigh
+ .« Toll ¥t ‘;*'*-'t‘ - by L =
AMITY FIELDS 40|+ Wkl i i I \
; \-m-.'.'#‘-':rte-f - = ‘,,-r ik a Bk
F H;-i et _ 3 RLEASANT RiOGEs=s 1)
. ol :f'l =
CR i A A fe] g
Fe - Tl MHcELLACE ;' UBHEIRS .L!.:\.:Rll
Apex y Lt A
Toll B U »w
540 - o 5 miles
f BELLA SERA .!" " I]
[. '#. . RECVWDIOD HILLS é_‘ge
22015 Mlcmsc\f‘ Corporation & 2015 HER
WHEMM MEA |.-_|'||'

So what can we tell off the bat? There are traffic stops everywhere, though they seem to
concentrate on main streets. Based on the initial analysis, the term “speed trap” might be
less about location and more about month, day, and time. Also, we can’t draw too much
from this map because we don’t know the traffic patterns—more stops might be on more
traveled streets or might be an indicator of key areas where there are traffic stops. To help
us dig into the data more, let’s move away from simple descriptive statistics and apply a

common machine learning technique called a decision tree.

AJCLI01ULL LACTCO

The principle of decision tree is this: you can use a tree-like structure to make predictions.
Here is a cantonal example of whether we will play tennis today:

I
Temp =

s— ——

PIJ D

Each decision is called a node and the final result (in our case, the Yes/No boxes) is called
the leaf. The analogy to a tree is somewhat appropriate. In fact, I would call it a decision
branch with each decision called a crook and the final results being called leaves.
However, J.R. Quinlan didn’t ask me in 1986 when he invented this methodology. In any
event, the number of levels of the tree is called the height of the tree. In our prior example,
the tree has a maximum height of two. The nodes that are possible for a given point is
called the features. In our prior example, Outlook has three features (sunny, overcast, and
rain) and Strong Wind has two features (yes and no).

One of the real benefits of the decision tree is its simplicity of conveying information.
Humans often do mental decision trees as long as the number of nodes are small and the
calculation to move to the next node is simple. (Should I order decaf or regular? Do I need
to study tonight?) Computers come in handy when there are many nodes and the
calculations are complex. For example, we can hand the computer a whole bunch of
historical data from people who decide to play tennis and it can determine that, for sunny
days, the actual decision point is not 30°, but 31.2°. Something to keep in mind though is
that decision trees often become less meaningful as the number of features increase and
the depth gets too large. We’ll look at ways to handle this a little bit later.

L7ACLUL U

Let’s make a decision tree with our traffic stop data. Go back to Visual Studio, open up
Solution Explorer, and add a new script called Accord. fsx. Enter this into the script:

#r "System.Data.Entity.dl1l"
#r "FSharp.Data.TypeProviders.dll"
#r "System.Data.Ling.dl1l"

open System

open System.Data.Linq

open System.Data.Entity

open Microsoft.FSharp.Data.TypeProviders

[<Literal>]
let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=Traffic;user id=chickenskills@nc54a9m5kk;password=skllzm@tter;"

type EntityConnection = SglEntityConnection<connectionString,Pluralize =
true>
let context = EntityConnection.GetDataContext()

This code is the same that you used in Script.fsx . Send it to the REPL to make sure you
copy-pasted it correctly:

val connectionString : string =
"data source=nc54a9m5kk.database.windows.net;initial catalog=T"+[61
chars]
type EntityConnection =
class
static member GetDataContext : unit ->
EntityConnection.ServiceTypes.SimpleDataContextTypes.EntityContainer
+ 1 overload
nested type ServiceTypes
end
val context
EntityConnection.ServiceTypes.SimpleDataContextTypes.EntityContainer

>
Next, open up the NuGet package manager and enter in the following command:

PM> Install-Package Accord.MachineLearning

Go back to the script and enter in this:

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"

#r
"../packages/Accord.MachineLearning.3.0.2/1ib/net40/Accord.MachinelLearning.
dii"

#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dll"
open Accord

open Accord.MachinelLearning

open Accord.MachinelLearning.DecisionTrees

open Accord.MachinelLearning.DecisionTrees.Learning

mentioned earlier, decision trees often have a problem with a large number of features. A
common technique to mitigate this is to bin the data. When you bin the data, you take your
original data and put them into large groups. For example, we can take all of the times for
the traffic stops and bin them into AM or PM, depending on whether they occurred before
or after noon. Binning is a commonly used technique in data science—sometimes
justifiably and sometimes just as a way to make the model conform to a desired output.

Going back to our script, create the following record type for our decision tree:

type TrafficStop = {Month:int; DayOfWeek:DayOfWeek; AMPM: string;
ReceviedTicket: bool option }

You will see that I created two bins of data. The first is called AMPM and it is for the time of
the stop. The second is called ReceviedTicket as a Boolean. If you remember, there are
18 different values for the disposition. We only care whether the person received a ticket
(called citation), so we are binning citations to true and noncitations to false. There is one
more thing that you probably noticed—ReceivedTicket isn’t simply a bool, it is a bool
option. As you might remember, F# really doesn’t like nulls. Although it can support null,
F# instead encourages you to use something called an option type in its place.

An option type can have two values: Some<T> or None. If you are not familiar with the
syntax of Some<T>, it means that Some is limited to only one type. Therefore, you can write
Some<bool>, Some<int>, or Some<string>. With an option type, you can verify if a field
has a value that you care about: Some or None. Not only that, the compiler forces you to be
explicit with the choice. This compiler checking forces you to be explicit with the value
and is an extremely powerful construct. Indeed, it is one of the reasons that F# code often
has fewer bugs than other languages because it forces the developer to confront problems
sooner and prevents them from sweeping them under the rug into a null where they can be
accidentally ignored.

Going back to our code, let’s write two functions that will bin our original data:

let getAMPM (stopDateTime:System.DateTime) =
match stopDateTime.Hour < 12 with
| true -> "AM"
| false -> "PM"

let receviedTicket (disposition:string) =

match disposition.ToUpper() with

| "CITATION" -> Some true

| "VERBAL WARNING" | "WRITTEN WARNING" -> Some false
| -> None

Sending that to the REPL, we see:

val getAMPM : stopDateTime:DateTime -> string
val receviedTicket : disposition:string -> bool option

Notice that ReceivedTicket returns three possibilities with the option type: Some true,
Some false, and None. The reason I did not include the other disposition values into Some
false versus None was because we are only concentrating on traffic violations, not all of

science to help make the dataset align with what we are trying to prove. We are not getting
into more detail here about filtering as there are entire books written about the best way to
deal with outliers and non-conforming data.

Back to our code. Let’s take the data out of the database and put it into our TrafficStop
record type. Go into the script and enter this:

let dataFrame = context.dbo_TrafficStops

|> Seq.map (fun ts ->
{Month=ts.StopDateTime.Value.Month;DayOfWeek=ts.StopDateTime.Value.DayOfWee
k;

AMPM=getAMPM(ts.StopDateTime.Value);

ReceviedTicket= receviedTicket(ts.DispositionDesc) })

|> Seq.filter (fun ts -> ts.ReceviedTicket.IsSome)

| > Seq.toArray

Sending this to the REPL, we see the last bit of all of our records in the data frame:

{Month = 7;
DayOfWeek = Sunday;
AMPM = "PM";
ReceviedTicket = Some false;}; {Month = 7;
DayOfWeek = Sunday;
AMPM = "PM";
ReceviedTicket = Some false;}; ...|]

>

With the data shaped somewhat, let’s get it ready for Accord. As I mentioned earlier,
Accord wants the input data for the decision tree to be in a int[][] and the output to be in
a int[]. However, it also needs the inputs to be tagged to make the model work. We
achieve that by passing in an array of attributes. Back in the script file, add this code
block:

let month = DecisionVariable("Month",6 13)
let dayOfWeek = DecisionVariable("DayOfWeek", 7)
let ampm = DecisionVariable("AMPM", 2)

let attributes
let classCount

[[month;dayOfWeek;ampm|]
2

Sending this to the REPL, we see:

val month : Accord.MachineLearning.DecisionTrees.DecisionVariable

val dayOfwWeek : Accord.MachineLearning.DecisionTrees.DecisionVariable

val ampm : Accord.MachineLearning.DecisionTrees.DecisionVariable

val attributes : Accord.MachinelLearning.DecisionTrees.DecisionVariable [] =

[|Accord.MachineLearning.DecisionTrees.DecisionVariable;

Accord.MachineLearning.DecisionTrees.DecisionVariable;
Accord.MachineLearning.DecisionTrees.DecisionVariable]|]

val classCount : int = 2

Some of the sharp-eyed people reading this book might have noticed that the month
decision variable has a range of 13 and not 12. This is because the values for month are 1-

12.99—we know that won’t exist but Accord does nbt). Dasi of week is 0 to‘6, so it ;gets a
7.

So going back to our script, add in the following blocks:

let getAMPM' (ampm: string) =
match ampm with
| IIAMII -> 0
| - ->1

let receivedTicket' value =
match value with
| true -> 1
| false -> 0

let inputs =

dataFrame

|> Seqg.map (fun ts -> []|(ts.Month); int ts.DayOfWeek;
getAMPM' (ts.AMPM)|])

| > Seq.toArray

let outputs =
dataFrame
|> Seq.map (fun ts -> receivedTicket'(ts.ReceviedTicket.Value))
|> Seq.toArray

Sending this to the REPL, we get the end of our data frame being converted into int
arrays:

[17; o, o]|1; [17; o; o]1; [17; o; o]|1; [|7; o; o]]1; [|7; 0; o0]];

[17; o, o]|1; [17; o; o]|1; [17; o; o]|1; [|7; o; o]|]1; [|7; 0; o0]];

[17; o, 111; [17; o; 1|11; [17; o; 1]11; [|7; o; 1]|1; [|7; 0; 1]];

[17; o, 111; [17; o; 1|11; [17; o; 1|1; [|7; o; 1]|1; [|7; 0; 1]];

[17; o, 111; [17; o; 1|11; [17; o; 1|1; [|7; o; 1]|1; [|7; 0; 1]];

[17; o, 111; [17; o; 1|11; [17; o; 1|1; [|7; o; 1]|1; [|7; 0; 1]]; -]
val outputs : int [] =

[|o; 1; 0; 1; 0; O0; 1; 0, O0; O; O0; O; O0; 1; O0; O; O0; 0; O0; 0; 1; 1; 1; 0O,

1,

0, 6; 0; 6; 0; 1; 0; 0; 0; 0; 0; 1; 1; 1; 6; 1; 1; 0; 1; 0; 0; 1; 0; 0O
0,

0, 6; 0; 1; 0; 1; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 0; 0O;
0,

1; 06; 0; 6; 0; 0; O0; ©0; 0; 0; 0; O0; 0; 1; 0; O0; 0; O0; 0; O0; 0; O0; 0; 0O;
0,

1]

>

With everything setup, let’s go ahead and run our tree. Enter this to the script:

let tree = DecisionTree(attributes, classCount)
let id3learning = ID3Learning(tree)
let error = id3learning.Run(inputs, outputs)

Sending this to the REPL gives us:

Just like all the other models we have seen so far, we need both an output from the model
and some information about how good our model is at predicting based on the data that we
provided. In this case, the model is off by 28%, which is pretty high for a decision tree.
With the model created, we can now ask the tree to predict if we will get a ticket or a
warning on a Saturday in October in the evening.

Enter this script:

let query = ([]10;6;1]])
let output = tree.Compute(query)

Sending it to the REPL, we see:

val query : int [] = [|10; 6; 1]]
val output : int = 0

It looks like we will get a warning and not a ticket.

As I mentioned, 28% is high for a decision tree. Is there a way to get that number down?
Perhaps binning will help. Go back to the REPL and type in this:

dataFrame
|> Seq.countBy (fun ts -> ts.Month)
|> Seq.sort
|> Seq.iter (fun t -> printfn "%A" t)

dataFrame
|> Seq.countBy (fun ts -> ts.DayOfWeek)
|> Seq.sort
|> Seq.iter (fun t -> printfn "%A" t)

dataFrame
|> Seq.countBy (fun ts -> ts.AMPM)
|> Seq.sort
|> Seq.iter (fun t -> printfn "%A" t)

dataFrame
|> Seq.countBy (fun ts -> ts.ReceviedTicket)
|> Seq.sort
|> Seq.iter (fun t -> printfn "%A" t)

Sending this to the REPL, we see:

(1, 2125)
(2, 1992)
(3, 2529)
(4, 1972)
(5, 2342)
(6, 2407)
(7, 2198)
(8, 2336)
(9, 3245)
(10, 1910)
(11, 1989)

(Sunday, 3019)
(Monday, 3169)
(Tuesday, 3549)
(Wednesday, 4732)
(Thursday, 4911)
(Friday, 4012)
(Saturday, 3317)
("AM", 9282)
("PM", 17427)
(Some false, 19081)
(Some true, 7628)

val it : unit = ()

Perhaps we can bin the months of the year in quarters? Let’s create a function that does
that. Go into the script file and enter this:

let getQuarter(month:int) =
match month with
|11 2] 3 ->1

| 4 | 5] 6 ->2
| 71 8] 9 ->3
| _->4

let inputs' =
dataFrame

|> Seq.map (fun ts -> [|getQuarter((ts.Month)); int ts.DayOfWeek;
getAMPM' (ts.AMPM)|])
|> Seq.toArray

let outputs' =
dataFrame
|> Seq.map (fun ts -> receivedTicket'(ts.ReceviedTicket.Value))

|> Seq.toArray

let error' = id3learning.Run(inputs', outputs')
Sending this to the REPL, we see this:

val error' : float = 0.2851473286

This did not improve our model. Perhaps we can keep working with the data, or perhaps
there is not a correlation between a ticket/warning based on the data that we have. Walking
away from a model is often one of the hardest things you have to do in data science,
especially if you have spent a considerable amount of time on it, but it is often the right
thing to do.

L1ACANREE

Before we leave decision trees, I want to look at another way of calculating them. Instead
of using Accord.Net, I want to introduce another .Net machine learning library called
numl. numl is a new kid on the block and can offer a lower barrier entry to machine
learning. Although not as expansive as Accord, it does offer many common models,
including a decision tree.

Go to Solution Explorer and add another script called numl. fsx. Then go into the NuGet
package manager and pull down numl:

PM> Install-Package numl

Go back to the numl script and enter in the following code:

#r "System.Data.Entity.dl1l"
#r "FSharp.Data.TypeProviders.dll"
#r "System.Data.Linqg.dl1l"

open System

open System.Data.Linq

open System.Data.Entity

open Microsoft.FSharp.Data.TypeProviders

[<Literal>]
let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=Traffic;user id=chickenskills@nc54a9m5kk;password=skllzm@tter;"

type EntityConnection = SqlEntityConnection<connectionString,Pluralize =
true>
let context = EntityConnection.GetDataContext()

type TrafficStop = {Month:int; DayOfWeek:DayOfWeek; AMPM: string;
ReceivedTicket: option<bool>}

let getAMPM (stopDateTime:System.DateTime) =
match stopDateTime.Hour < 12 with
| true -> "AM"
| false -> "PM"

let receviedTicket (disposition:string) =

match disposition.ToUpper() with

| "CITATION" -> Some true

| "VERBAL WARNING" | "WRITTEN WARNING" -> Some false
| -> None

let dataFrame =
context.dbo_TrafficStops
|> Seq.map (fun ts ->
{Month=ts.StopDateTime.Value.Month;DayOfWeek=ts.StopDateTime.Value.DayOfWee
k;
AMPM=getAMPM(ts.StopDateTime.Value); ReceivedTicket=
receviedTicket(ts.DispositionDesc) })

|> Seq.toArray

This is the same code as the Accord. fsx script, so you can copy and paste it from there.
Send it to the REPL to make sure you copy-pasted it correctly. Next, add in this block to
reference numl.

#r "../packages/numl.0.8.26.0/1ib/net40/numl.d11"
open numl

open numl.Model

open numl.Supervised.DecisionTree

Next, enter this block of code:

type TrafficStop' = {[<Feature>] Month:int; [<Feature>] DayOfWeek:int;
[<Feature>] AMPM: string; [<Label>] ReceivedTicket: bool}

let dataFrame' =

dataFrame

|> Seq.map (fun ts -> {TrafficStop'.Month = ts.Month; DayOfWeek = int
ts.DayOfWeek; AMPM=ts.AMPM; ReceivedTicket=ts.ReceivedTicket.Value})

|> Seq.map box

let descriptor = Descriptor.Create<TrafficStop'>()

Sending that to the REPL, returns this:

type TrafficStop' =
{Month: int;
DayOfWeek: int;
AMPM: string;
ReceivedTicket: bool;}
val dataFrame' : seq<obj>
val descriptor : Descriptor =
Descriptor (TrafficStop') {
[Month, -1, 1]
[DayOfWeek, -1, 1]
[AMPM, -1, 0]
*[ReceivedTicket, -1, 1]
}
There are two things to notice here. First, just like Accord, numl wants the input to its
modeling engine to be in a certain format. In this case, it is not arrays of ints. Rather, it
wants object types (as of the time of writing). In order to know what to make of each
object, it needs to have attributes associated with each element, hence the TrafficStop'
type that has either [Feature] or [Label] added. As you can guess, features are for input
and labels are for outputs. The second thing to notice is that we call |> Seq.map box. This
converts our types such as int, string, and bool to object, which is what numl wants.

With that out of the way, we can see what numl comes up with. Enter this into the script
window:

let generator = DecisionTreeGenerator(descriptor)
generator.SetHint(false)
let model = Learner.Learn(dataFrame', 0.80, 25, generator)

val generator : DecisionTreeGenerator
val model : LearningModel =
Learning Model:
Generator numl.Supervised.DecisionTree.DecisionTreeGenerator
Model:
[AM, 0.0021]
|- ©
[Month, 0.0021]
|- 1 = x<6.5
| [DayOfWeek, 0.0001]
| |- @ = x<3
| | +(False, -1)
| |- 3= x<6.01
| | +(False, -1)
|- 6.5 < x < 12.01
| +(False, -1)
1

I
I
I
I
I
I
I
I
I
| -
| +(False, -1)

Accuracy: 71.98 %

>

One of the nice things about numl is that the ToString() overload prints out a graphical
representation of our tree. This is a great way to quickly visually inspect to see what we
have. You can also see that the accuracy of the model is pretty much the same as Accord.
If you run this script several times, you will get slightly different answers because of the
way numl splits the data. Taking another look at the tree, let’s see if we can interpret it in
more detail.

The modeling engine found that the best feature to start splitting on was AM/PM. If the
traffic stop was in the afternoon, you will get a warning and not a ticket. If it was in the
morning, we moved down to the next decision point on the tree. What we can see is that, if
the traffic stop occurred in the AM between July and December, we would not get a ticket.
If the AM traffic stop was between Jan and June, we would have to go to the next level,
which is the day of the week. In this case, the model split between Sunday-Tuesday and
Wednesday-Saturday. You will notice that both terminal nodes are false too. Where is the
true? Can the model predict that I will get a ticket? No, this model cannot reasonably
predict when you will get a ticket. As before, we will have to leave this model behind.
However, this exercise was not a waste because we will use this data with some more data
and a different model to create something that has some practical value.

One last question before we leave this chapter, “What machine learning is going on here?”
We can say that numl is using machine learning because it is doing several iterations with
the data. But what does that mean? If you look at the last line of code we wrote, let

model = Learner.Learn(dataFrame', 0.80, 25, generator),yOU(Inlseethatthe
third argument is 25. This is the number of times the model is run and then numl picks the
best model. In effect, then, the machine is “learning” but evaluating several possible

are not introducing new data to the learning to make it smarter.

In the next chapter, we will look at using testing and training sets to accomplish some of
that, but we still have the problem that this is a point-in-time analysis. How would you
make this model self-teaching? Point of fact, I would not bother with the model in its
current state because the model has been demonstrated to be useless. However, if the
model was useful, I can imagine a scenario where we constantly update the dataset and
run the model based on more datasets that our open data friends can get their hands on.
With that, we can have an application running that might remind drivers before they leave
the house in the morning that based on the date/time/weather/other factors, they should be
taking it easier than normal. Perhaps a simple text or tweet to the driver? In any event,
once we have a real model, we can see an application like this in action.

ouliiiiary

In this chapter, we put on our data scientist hat and took a look at using F# to do data
exploration and analysis. We were exposed to open data and the awesomeness of type
providers. We then implemented a decision tree, though ultimately we concluded that the

data did not show a significant relationship.

In the next chapter, we will address some of the issues that we have been glossing over so
far and take a deep dive into obtaining, cleaning, and organizing our data.

Gilldaplicl . L1IIIC UUl — Ubuwdiiiilg Udld

In this chapter, we are going to break from looking at various machine learning models.
Instead, we are going to revisit some of the issues that I glossed over in Chapter 2,
AdventureWorks Regression, Chapter 3, More AdventureWorks Regression, and Chapter 4,
Traffic Stops — Barking Up the Wrong Tree?. We are going to look at different ways in
which we can obtain data using Visual Studio and type providers. We will then look at
how type providers help us solve problems of missing data, how we can use parallelism to
speed up our data extraction, and how we can use type providers on secured web services.

UVCILVICEW

One of the underappreciated skills that a data scientist must possess is the ability to gather
and assimilate heterogeneous data. Heterogeneous data is data from different sources,
structures, and formats. Heterogeneous stands in contrast to homogenous data which
assumes that all of the data that is imported is the same as all of the other data that may
already exist. When the data scientist gets heterogeneous data, one of the first things they
will do is transform the data to a point that it can be combined with the other data. The
most common shape of that transformation is the data frame—sometimes called the
rectangle because the columns are attributes and the rows are the data. For example, here
is a data frame that we have seen earlier:

|F'rc|ductl[]| Sales |Cu5t Review| LogReiews |Cu5t Review|
757 156 3.94 2.1931245398 3.94
933 272 3.458 2.434563904 3.48
960 281 3.57 2.44870632 3.57
989 282 3.39 2.4502439108 3.39
978 292 3.31 2.465382851 3.31

Ideally, each frame has a unique key that allows it to be combined with other data frames.
In this case, ProductID is the primary key. If you are thinking that this is a lot like
RDBMS theory—you are right.

One of the bigger differences between a research analysts and a line of business developer
is how they approach using data in their project. For the software engineer, data elements
must be meticulously defined, created, and tracked. For the research analyst, all of that
mental effort is noise that is tangential to solving the problem.

This is where the power of type providers comes in. Instead of spending any effort on
extracting data, we spend our time transforming, shaping, and analyzing it.

OWL, OCI'VEL PIoviucLs

Even though there is lots of buzz surrounding no-sql databases like MongoDb and
unstructured data stores like data lakes (or data swamps, depending on your point of
view), a significant percentage of data that our industry works with is still stored in
relational databases. As we have seen in prior chapters, the data scientist must be able to
effectively communicate with relational databases using SQL. However, we also saw that
F# offers the ability to use something called a type provider to access SQL Server.

IR AV I.y PC Pl UVvVilucll

Let’s go back to the SQL that was used in Chapter 3, More AdventureWorks Regression, to
bring down the Average Orders, Average Reviews, and List Price for individual customers
and see how to do it differently. Go into Visual Studio and create an F# Windows Library
called TypeProviders.

Notice that I am using .NET Framework 4.5.2. The framework’s minor version does not
matter, as long as it is 4.x. It is important to note that you cannot use type providers with
Portable Class Libraries (PCLs).

Mew Project ? bt
b Recent MET Framework 45.2 - Sortby: Default ~| ii7 [i=| | Search Installed Templ 2 -
4 |nstalled E# _—]
Console Application Visual F# Type: Visual F#
4 Templates A project for creating an F# library
g ; F#
b Visual C# Eqi! Library Visual F#
 Visual Basic E
. E#
b Visual C++ Eﬂi! Portable Library (.MET 4.5, Windo... Visual F#
4 Visual F# i
2 E#
Android ,ﬂgi! Portable Library (NET 4.5, Windo... Visual F#
b i05 -
: 5 E#
Silverlight ,ﬂé! Portable Library (.NET 4.5, Windo... Visual F#
Windows A
E#
WPF Eei! Portable Library (.NET 4.5, Windo... Visual F#
SOL Server £
. Bt
F faatcopt B Tuoria Visual F#
HDInsight
b Python
I TypeScript
-
b Online Click here to go online and find templates.
MName: TypeProviders
Location: CihUsers\Dixon\Desktoph, B
Solution: Create new solution -
Solution name: |T}rpel:'rmriders.50|utian| | Create directory for solution
[] Add to source control
oK !| Cancel

Once Visual Studio generates the files for you, go ahead and delete Library1.fs and
remove all the contents of Script1.fsx. Rename Scipti.fsx to
SqlServerProviders. fsx. Next, add a reference to System.Transactions:

Tt e T, R o e ot P T St e e X, L e e
4 Assemblies Targeting: .MET Framework 4.5.2

Marme Version

Extensions System.ServiceModel Activation 4.0.0.0

Recent Systemn.ServiceModel Activities 4.0.0.0

Systemn.ServiceModel.Channels 4.0.0.0

b Projects Systemn.ServiceModel . Discovery 4.0.0.0

Systemn.ServiceModel .Routing 4.0.0.0

b COM System.ServiceModel.Web 4.0.0.0

e Systemn.ServiceProcess 4.0.0.0

Systermn.Speech 4.0.0.0

Systermn. Transactions 4.0.0.0

System.Web 4.0.0.0

Go into SqlServerProviders. fsx and add this code (you can copy it from Chapter 3,
More AdventureWorks Regression, it is identical):

#r "System.Transactions.dll"

open System
open System.Text
open System.Data.SqglClient

type ProductInfo = {ProductID:int; AvgOrders:float; AvgReviews: float;
ListPrice: float}

let productInfos = ResizeArray<ProductInfo>()

[<Literal>]

let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=AdventurewWorks2014;user id= PacktReader;password=
P@cktM@chinele@rning;"

[<Literal>]
let query =

"Select

A.ProductID, AvgOrders, AvgReviews, ListPrice

From

(Select

ProductID,

(Sum(OrderQty) + 0.0)/(Count(Distinct SOH.CustomerID) + 0.0) as
AvgOrders

from [Sales].[SalesOrderDetail] as SOD

inner join [Sales].[SalesOrderHeader] as SOH

on SOD.SalesOrderID = SOH.SalesOrderID

inner join [Sales].[Customer] as C

on SOH.CustomerID = C.CustomerID

Where C.StoreID is not null

Group By ProductID) as A

Inner Join

(Select

ProductID,

(Sum(Rating) + 0.0) / (Count(ProductID) + 0.0) as AvgReviews

Group By ProductID) as B

on A.ProductID = B.ProductID
Inner Join

(Select

ProductID,

ListPrice

from [Production].[Product]

) as C

On A.ProductID = C.ProductID"

let connection = new SqlConnection(connectionString)

let command = new SqlCommand(query,connection)

connection.Open()

let reader = command.ExecuteReader ()

while reader.Read() do

productInfos.Add({ProductID=reader.GetInt32(0);

AvgOrders=(float)(reader.GetDecimal(1));
AvgReviews=(float) (reader.GetDecimal(2));
ListPrice=(float)(reader.GetDecimal(3));})

productInfos

There are 52 lines of total code here, 26 of which are SQL inside the string called query.
This seems like a lot of work for something that appears to be pretty basic. Also, if we
want to change our output rectangle, we would have to rewrite this SQL and hope we got
it right. Also, we now need to know some fairly advanced SQL even though we don’t care
one whit that the data is stored in a SQL Server database. How can type providers help us
here?

Uil 1UVvViULL

Go back into Visual Studio, open up the nugget package manager, and enter this:

PM> Install-Package SQLProvider -prerelease

Next, go into the script file and add this:

#r "../packages/SQLProvider.0.0.11-alpha/lib/ FSharp.Data.SQLProvider.dl1l"
Tip

Warning

Type Providers are constantly changing their version number. Therefore,
SQLProvider.0.0.11 will fail unless you edit it. To determine the correct version, go into
the packages folder in your solution and look at the path.

Once you put in the correct version of the provider, you might get a dialog box that looks
like this (this is from the last chapter):

Visual F# Type Provider Security x

You have opened a script file that references a type provider,

Publisher information: Unknown Publisher

Type provider assembly: FAGIE\MLDotMNet\Book Chapters\ChapterldiHackd4Good, TrafficStop.Selution
‘packages\Fsharp.Data.2.2. 5\ lib\netd0\FSharp.Data.dll

File using type provider: FAGIt\MLDotMet\Book Chapters\Chapterdd\HackdGood. TrafficStop.Solution
‘\HackdGood. TrafficStophScript.fsx

Do you want to enable this type provider?

Enable || Disable

| Type providers can connect to remote data sources and execute custom code for build and
* IntelliSense features. You should only enable type providers from a trusted source.

Click on Enable. Heading back to the script, go ahead and enter the following code:

open System
open System.Ling
open FSharp.Data.Sql

[<Literal>]

let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=AdventurewWorks2014;user id= PacktReader;password=
P@cktM@chinele@rning;"

type AdventureWorks =
SqlDataProvider<Common.DatabaseProviderTypes.MSSQLSERVER, connectionString>
let context = AdventureWorks.GetDataContext()

Sending that to the FSI gives us this:
val connectionString : string =
"data source=nc54a9m5kk.database.windows.net;initial catalog=A"+[72

type AdventureWorks = SqglDataProvider<...>
val context : SglDataProvider<...>.dataContext

Enter the following code in the script file:

let customers =
guery {for c in context.Sales.Customer do
where (c.Storeld > 0)
select c.CustomerId}
|> Seq.toArray

Sending that to the FSI gives us the following:

val customers : int [] =
[11;, 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 2
21;

22; 23; 24; 25; 26; 27, 28; 29; 30; 31; 32; 33, 34; 35; 36; 37; 38,
40;

41; 42; 43; 44; 45; 46, 47, 48; 49; 50; 51, 52, 53; 54, 55; 56; 57,
59;

60, 61; 62; 63; 64; 65; 66; 67; 68; 69, 70, 71, 72; 73; 74; 75; 76,
78;

79; 80; 81; 82; 83; 84; 85; 86; 87; 88; 89; 90; 91; 92; 93; 94; 95;
97;

98; 99; 100; ...|]

There are a couple of things to notice here. First, we are sending a query (sometimes
referred to as a computational expression) to the type provider. In this case, we are

selecting all customers where the storelId is greater than e—the individual customers.
The expression is everything between the {} symbols. Notice that it is LINQ-syntax,

0;

39;
58;
77;

96;

because it is LINQ. If you are not familiar, LINQ stands for language Integrated Query

and is a language within a language—it allows for querying capabilities to be placed

inside your .NET language of choice. The other thing to notice is that the results of the
expression are piped to our familiar F# Seq type. This means we can get any result from
the expression and use Seq to further shape or refine the data. To see this in action, enter

this into the script file:

let products =
guery {for soh in context.Sales.SalesOrderHeader do
join sod in context.Sales.SalesOrderDetail on (soh.SalesOrder
sod.SalesOrderId)
join c¢ in context.Sales.Customer on (soh.CustomerId =

c.CustomerId)

join p in context.Production.Product on (sod.ProductId =
p.ProductId)

where (c.CustomerId |=| customers)

select (p.ProductId)}
|> Seq.distinct
|> Seq.toArray

When you send it to the FSI, you should see an array of product IDs:

val products : int [] =
[|776; 777; 778; 771; 772; 773; 774; 714; 716; 709; 712; 711; 762; 758

Id

.
14

743; 747; 715; 742; 775; 741; 708; 764; 770; 730; 754; 725; 765; 768;
753’756; 763; 732; 729; 722; 749; 760; 726; 733; 738; 766; 755; 707; 710;
761’748; 739, 744; 736; 767, 717, 769; 727, 718; 759, 751; 752,; 750; 757,
723’786; 787, 788; 782, 783, 779, 780; 781; 815; 816; 808; 809; 810; 823,
824;

Going back to the code, we are joining three tables from the AdventureWorks database
together via their foreign keys:

join sod in context.Sales.SalesOrderDetail on (soh.SalesOrderId =
sod.SalesOrderId)

join ¢ in context.Sales.Customer on (soh.CustomerId = c.CustomerId)
join p in context.Production.Product on (sod.ProductId = p.ProductId)

In the next line, we are selecting only those customers that are in the customers’ table that
we created previously. Notice that we are using the F# in operator of |=|:

where (c.CustomerId |=| customers)

Finally, we are selecting only the product IDs and then pulling down all of the values and
then selecting the unique values:

select (p.ProductId)}
|> Seq.distinct
|> Seq.toArray

Let’s keep going and see what else we can do. Enter the following into the script:

let averageReviews =
query {for pr in context.Production.ProductReview do
where (pr.ProductId |=| products)
select pr}
|> Seq.groupBy(fun pr -> pr.ProductId)
|> Seq.map(fun (id,a) -> id, a |> Seq.sumBy(fun pr ->
pr.Rating), a |> Seq.length)
|> Seq.map(fun (id,r,c) -> id, float(r)/float(c))
|> Seq.sortBy(fun (id, apr) -> id)
|> Seq.toArray

Sending this to the REPL we see:

val averageReviews : (int * float) [] =
[1(749, 3.9); (750, 3.977272727); (751, 3.93877551); (752, 4.02173913);
(753, 3.939393939); (754, 3.965517241); (755, 3.628571429);
(756, 3.742857143); (757, 3.9375); (758, 3.845070423); (759,
3.483870968);
(760, 4.035874439);

In this block of code, we are pulling down all the reviews. We are then grouping the
reviews by productId. From there, we can sum up the ratings and the count of the number
of reviews (using Seq.length). We can then divide the total ratings amount by the number
of reviews and get the average review for each productId. Finally, we throw in a

simﬂar to How wé fnanipulated deita in Chapter 2, AdventureWorks Regression, Chapvter 3,
More AdventureWorks Regression, and Chapter 4, Traffic Stops — Barking Up the Wrong
Tree?.

Next, let’s create a data frame (sometimes called a rectangle of data if you are
geometrically inclined) of prices for each product:

let listPrices =
guery {for p in context.Production.Product do
where (p.ProductId |=]| products)
select p}
|> Seq.map(fun p -> p.ProductId, p.ListPrice)
|> Seq.sortBy(fun (id, 1lp) -> id)
| > Seq.toArray

Sending that to the REPL, you should see the following:

val listPrices : (int * decimal) [] =
[1(707, 34.9900M); (768, 34.9900M); (709, 9.5000M); (710, 9.5000M);
(711, 34.9900M); (712, 8.9900M); (714, 49.9900M); (715, 49.9900M);
(716, 49.9900M); (717, 1431.5000M); (718, 1431.5000M); (719,
1431.5000M);
(722, 337.2200M); (723, 337.2200M); (725, 337.2200M); (726, 337.2200M);
(727, 337.2200M)

This code does not introduce anything new. We pull down all of the products that are in
our array, take the productId and list price, sort it, and send it to an array. Finally,
enter the following into the script file:

let averageOrders =
gquery {for soh in context.Sales.SalesOrderHeader do

join sod in context.Sales.SalesOrderDetail on (soh.SalesOrderId
= sod.SalesOrderId)

join ¢ in context.Sales.Customer on (soh.CustomerId =
c.CustomerId)

where (c.CustomerId |=| customers)

select (soh,sod)}

|> Seq.map (fun (soh,sod) -> sod.ProductId, sod.OrderQty,
soh.CustomerId)

|> Seq.groupBy (fun (pid,q,cid) -> pid)

|> Seq.map (fun (pid,a) -> pid, a |> Seq.sumBy (fun (pid,q,cid)
-> q), a |> Seq.distinctBy (fun (pid,qg,cid) -> cid))

|> Seq.map (fun (pid,q,a) -> pid,q, a |> Seq.length)

|> Seq.map (fun (pid,q,c) -> pid, float(q)/float(c))

|> Seq.sortBy (fun (id, ao) -> id)

|> Seq.toArray

Sending this to the REPL gives us the following:

val averageOrders : (int * float) [] =
[1(707, 17.24786325); (708, 17.71713147); (709, 16.04347826);
(710, 3.214285714); (711, 17.83011583); (712, 22.33941606);
(714, 15.35576923); (715, 22.82527881); (716, 13.43979058);
(717, 4.708737864); (718, 5.115789474); (719, 3.303030303);

pulling down all of the salesOrderHeaders and SalesOrderDetails as a tuple select
(soh, sod). We then pipe that set into a Seq.map that returns a sequence of a tuple that has
three elements: ProductId, OrderQty, and CustomerId |> Seq.map(fun (soh,sod) ->
sod.ProductId, sod.OrderQty, soh.CustomerId).From there we pipe those tuples into
a groupBy for the ProductId |> Seq.groupBy(fun (pid,q,cid) -> pid). From there,
we go a bit crazy. Take a look at the next line:

|> Seq.map(fun (pid,a) -> pid, a |> Seq.sumBy(fun (pid,q,cid) -> q), a |>
Seq.distinctBy(fun (pid,q,cid) -> cid))

Hopefully, you remember the discussion about GroupBy, so you realize that the input is a
tuple of ProductId and an array of the three-item tuple of (ProductId, OrderQty, and
CustomerId). We create a new three-item tuple that has Product1d, the sum of the
orderQty, and yet another tuple that has the CustomerId and a sequence of the distinct
customerId items.

When we pipe this to the next line, we take the length of that last tuple (CustomerId,
Array of CustomerIds) as that is the number of unique customers that ordered the product.
The three-item tuple is ProductId, SumofQuantityOrdered, and
CountOfUniqueCustomersThatOrdered. Since that is a bit verbose, I used the standard
tuple notation of (pid, g, c), where q is SumOfQuantityOrdered and c is
CountOfUniqueCustomersThatordered. This tuple is then piped to the following:

|> Seq.map(fun (pid,q,c) -> pid, float(q)/float(c))

We can now get the average number of orders for each product. We then finish off with a
sort and send it to an array. We now have three arrays of tuples:

averageOrders: ProductId, AverageNumberOfOrders
averageReviews: ProductId, AverageReviews
listPrices: ProductId, PriceOfProduct

Ideally, we can then combine these into one array that has ProductId,
AverageNumberoforders, AverageReviews, and Price0fProduct. To do that, you might
think that we can just zip these three arrays up. Go into the script and enter the following:

Seq.zip3 averageOrders averageReviews 1listPrices

When you send it to the FSI, you will see something disappointing;:

val it : seg<(int * float) * (int * float) * (int * decimal)> =
seq
[((707, 17.24786325), (749, 3.9), (707, 34.9900M));
((708, 17.71713147),

The arrays are not matching up. Apparently, some products do not have any ratings. What
we need is a way to join these three arrays into one array and have the join occur on the
ProductId. Although we could go back and play around with our where clauses in the
LINQ expressions, there is an alternative way.

AJCCUIC
Go into the script file and enter the following code:

#load "../packages/FsLab.0.3.17/FsLab.fsx"
open Foogle

open Deedle

open FSharp.Data

As we did earlier, you will have to make sure the version numbers match. When you send
it to the REPL, you will see the following:

[Loading F:\Git\MLDotNet\Book
Chapters\Chapter05\TypeProviders.Solution\packages\FsLab.0.3.10\FsLab.fsx]

namespace FSI_0009.FsLab
val server : Foogle.SimpleHttp.HttpServer option ref
val tempDir : string
val pid : int
val counter : int ref
val displayHtml : html:string -> unit
namespace FSI_0009.FSharp.Charting
type Chart with
static member

Line : data:Deedle.Series<'K, #FSharp.Charting.value> * ?Name:string *
?Title:string * ?Labels:#seq<string> * ?Color:Drawing.Color *

What we have done is loaded Deedle. Deedle is a neat library created for time-series
analysis. Let’s see if Deedle can help us with our unbalanced array issue. The first thing
we want to do is to take our array of tuples and turn them into data frames. Enter this into
the script:

let averageOrders' = Frame.ofRecords averageOrders
let listPrices' = Frame.ofRecords listPrices
let averageReviews' = Frame.ofRecords averageReviews

Sending this to the FSI, you will see something like the following:

Iteml Item2
-> 749 3.9
-> 750 3.97727272727273
-> 751 3.93877551020408
-> 752 4.,02173913043478
-> 753 3.9393939393939

A OWNPRELO

Let’s rename Iteml1 and Item2 to something that has a bit more meaning and make the

first vector of the fame the primary key of the frame. Enter the following into the script
file:

let orderNames ["ProductId"; "AvgOrder"]
let priceNames ["ProductId"; "Price"]
let reviewNames = ["ProductId"; "AvgReview"]

let adjustFrame frame headers =

|> Frame.indexRowsInt "ProductId"
| > Frame.sortRowsByKey

let averageOrders'' = adjustFrame averageOrders' orderNames
let listPrices'' = adjustFrame listPrices' priceNames
let averageReviews'' = adjustFrame averageReviews' reviewNames
Sending that to the REPL, should see something like:
val averageReviews'' : Frame<int,string> =

AvgReview
749 -> 3.9

750 -> 3.97727272727273
751 -> 3.93877551020408

This code should be fairly self-explanatory. We are creating a function called adjustFrame
that takes in two arguments: a data frame and an array of strings that will become the
header values. We apply the headers via the first pipe, make the first column (ProductId)
the primaryKey via the second pipe, and then sort the frame via the third pipe. We then
apply this function to our three data frames: orders, prices, and reviews. Notice that we are
using the tick notation.

From there, we can now combine the frames based on their key. Go to the script file and
add this:

averageOrders'' |> Frame.join JoinKind.Inner listPrices''
|> Frame.join JoinKind.Inner averageReviews''

Sending this to the FSI, you should see the following:

AvgReview Price AvgOrder
749 -> 3.9 3578.2700 4.47457627118644
750 -> 3.97727272727273 3578.2700 4.72727272727273
751 -> 3.93877551020408 3578.2700 4.875
752 -> 4.02173913043478

Cool huh? Deedle is a very powerful library that you can use in a variety of scenarios.

Going back to our original task, we now have two different ways to pull data out from a
database and transform it. When you do a side-by-side comparison of the ADO.NET SQL
ways and the type-provider approach, there are some pretty strong arguments to be made
to use the type provider method. First, SqlDataProvider is designed for most of the
popular relational databases out there. If you moved your AdventureWorks database
from MS SQL Server to MySq], all you would have to change is the connection string and
all the code would be the same. Second, consider that there is no SQL in the type provider
implementation. Instead, we are using an F# computational expression to pick what tables
and what records we want. This means we don’t have to know any SQL and we have even
more portability. If we move our AdventureWorks database to a NoSQL database like
Mongo or DocumentDb, we would have to swap out a type provider and then change our
connection string. Finally, consider our approach to the data using the type provider. We
do not have to build any classes ahead of time to put our data into, as types are
automatically generated for us.

transformed, we can run each step of our though process independently. I can’t emphasize
how important that is; we are extracting and transforming the data with small viewable
steps that align with our thought process. We can spend our mental energy and time
focusing on the problem at hand and not wading through the syntax of a language we may
or may not be comfortable with. The downside of the type provider method is that it may
be slower than the ADO.NET approach because there is less opportunity to hand-adjust
query optimization. In this case, we are doing ad hoc data exploration and analysis on a
small dataset so the performance differences are minor. However, even if it was a large
dataset, I would still follow the software engineering mantra of, “Make it right. Then make
it fast.”

1VAIL1 UOUL lOlllf ALUVIUCTL

Before we leave our discussion on type providers, I want to show another type provider
that is built upon Entity Framework 7 that has a lot of promise, especially when you want
to start using type providers as a replacement to your current ORM. It is called the
EntityFramework.MicrosoftSqlServer type provider.

Go back to Visual Studio, open the package manager console and enter the following:

PM> Install-Package FSharp.EntityFramework.MicrosoftSqlServer -Pre

Next, go to your script file and enter the following:

#I @"..\packages"

#r @"EntityFramework.Core.7.0.0-rcl-
final\lib\net451\EntityFramework.Core.d1ll"

#r @"EntityFramework.MicrosoftSqlServer.7.0.0-rcl-
final\lib\net451\EntityFramework.MicrosoftSqlServer.dll"

#r @"EntityFramework.Relational.7.0.0-rcl-
final\lib\net451\EntityFramework.Relational.dll"

#r @"Inflector.1.0.0.0\1ib\net45\Inflector.dll"

#r @"Microsoft.Extensions.Caching.Abstractions.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Caching.Abstractions.dl1"
#r @"Microsoft.Extensions.Caching.Memory.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Caching.Memory.dl1l"

#r @"Microsoft.Extensions.Configuration.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Configuration.dll"

#r @"Microsoft.Extensions.Configuration.Abstractions.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Configuration.Abstractions.dll"
#r @"Microsoft.Extensions.Configuration.Binder.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Configuration.Binder.dl1l"
#r @"Microsoft.Extensions.DependencyInjection.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.DependencyInjection.dll"
#r @"Microsoft.Extensions.Logging.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Logging.dll"

#r @"Microsoft.Extensions.Logging.Abstractions.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Logging.Abstractions.dll"
#r @"Microsoft.Extensions.OptionsModel.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.OptionsModel.dl11l"

#r @"Microsoft.Extensions.Primitives.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Primitives.dll"

#r @"Remotion.Linqg.2.0.1\1lib\net45\Remotion.Ling.d11"

#r @"System.Collections.Immutable.1.1.36\1ib\portable-
net45+win8+wp8+wpa81\System.Collections.Immutable.d1ll"

#r @"System.Diagnostics.DiagnosticSource.4.0.0-beta-
23516\1ib\dotnet5.2\System.Diagnostics.DiagnosticSource.dll"

#r @"Ix-Async.1.2.5\1ib\net45\System.Interactive.Async.dll"

#r
"../packages/Microsoft.Extensions.DependencyInjection.Abstractions.1.0.0-
rcil-
final/lib/net451/Microsoft.Extensions.DependencyInjection.Abstractions.dll"
#r @"FSharp.EntityFramework.MicrosoftSglServer.0.0.2.0-
alpha\lib\net451\FSharp.EntityFramework.MicrosoftSqlServer.dll"

over to your . fs file. If>you don’t want to copy and paste this code over to your script, yvou
can just install all of Entity Framework, and these packages will be available. In any
event, enter the following into the script file:

open System

open System.Data.SqglClient
open Microsoft.Data.Entity
open FSharp.Data.Entity

[<Literal>]

let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=AdventureWorks2014; user id= PacktReader;password=
P@cktM@chinele@rning;"

type AdventureWorks = SqlServer<connectionString, Pluralize = true>

let context = new AdventurewWorks()

Sending this to the REPL will give you this:
nested type Sales.SpecialOffer
nested type Sales.SpecialOfferProduct
nested type Sales.Store
nested type dbo.AwBuildVersion
nested type dbo.Databaselog
nested type dbo.ErrorLog

end
val context : AdventureWorks

Go back to the script file and enter the following:

let salesOrderQuery =
gquery { for soh in context. "Sales.SalesOrderHeaders ~ do
join sod in context. "Sales.SalesOrderDetails " on
(soh.SalesOrderID = sod.SalesOrderID)
where (soh.OrderDate > DateTime(2013,5,1))
select(soh)} |> Seq.head

When you send this to the FSI, you will see the Salesorderheader Entity Framework
type in all its glory:

FK_SalesOrderHeader_Address_BillToAddressID = null;
FK_SalesOrderHeader_CreditCard_CreditCardID = null;
FK_SalesOrderHeader_CurrencyRate_CurrencyRateID = null;
FK_SalesOrderHeader_Customer_CustomerID = null;
FK_SalesOrderHeader_SalesPerson_SalesPersonID = null;
FK_SalesOrderHeader_SalesTerritory_TerritoryID = null;
FK_SalesOrderHeader_ShipMethod_ShipMethodID = null;
Freight = 51.7855M;

ModifiedDate = 5/9/2013 12:00:00 AM;

OnlineOrderFlag = true;

OrderDate = 5/2/2013 12:00:00 AM;

PurchaseOrderNumber = null;

RevisionNumber = 8uy;

SalesOrderDetail = null;

SalesOrderHeaderSalesReason = null;

SalesOrderID = 50788;

SalesPersonID = null;

ShipDate = 5/9/2013 12:00:00 AM;

ShipMethodID = 1;

ShipToAddressID = 20927,

Status = 5uy;

SubTotal = 2071.4196M;

TaxAmt = 165.7136M;

TerritoryID = 4;

TotalDue = 2288.9187M;

rowguid = 74fca7f8-654b-432f-95fb-0dd42b0e3cf1;}
>

The implications are that anything you do with Entity Framework, you can do with the
type provider—with no upfront code. No templates, no designers, no nothin’.

Let’s press on and see how the type provider handles null. Go into the script and enter the
following:

let salesOrderQuery' =
query { for soh in context. "Sales.SalesOrderHeaders ~ do

join sod in context. "Sales.SalesOrderDetails " on
(soh.SalesOrderID = sod.SalesOrderID)

join p in context. “Production.Products " on (sod.ProductID =
p.ProductID)

where (soh.OrderDate > DateTime(2013,5,1) &&
p.ProductSubcategoryID = new System.Nullable<int>(1))

select(soh)} |> Seq.head
salesOrderQuery'

When you send this to the FSI, you will see something like the following:

SalesPersonID = null;

ShipDate = 5/9/2013 12:00:00 AM;

ShipMethodID = 1;

ShipToAddressID = 20927;

Status = 5uy;

SubTotal = 2071.4196M;

TaxAmt = 165.7136M;

TerritoryID = 4;

TotalDue = 2288.9187M;

rowguid = 74fca7f8-654b-432f-95fb-0dd42b0e3cf1;}
>

Notice that we have to use System.Nullable<int> in the where condition to account for
the fact that ProductSubcategoyID is nullable on the database. This leads to one small
gotcha with using the type provider. You can’t use the out of the box |=| operator to
search for an array of values. For example, if you sent the following to the REPL.:

let salesOrderQuery''' =
query { for soh in context. “Sales.SalesOrderHeaders °~ do

join sod in context. "Sales.SalesOrderDetails "~ on
(soh.SalesOrderID = sod.SalesOrderID)

join p in context. "Production.Products " on (sod.ProductID =
p.ProductID)

where (soh.OrderDate > DateTime(2013,5,1) &&

select(soh)} |> Seq.head
You will get the following back:

SqglServerProviders.fsx(199,105): error FS0001: This expression was expected
to have type

Nullable<int>
> but here has type

int

We now need to create an array of nullable ints. Will that work?

let produceSubcategories = [|new System.Nullable<int>(1); new
System.Nullable<int>(2); new System.Nullable<int>(3)]|]

let salesOrderQuery''' =
query { for soh in context. "Sales.SalesOrderHeaders ~ do

join sod in context. "Sales.SalesOrderDetails " on
(soh.SalesOrderID = sod.SalesOrderID)

join p in context. “Production.Products " on (sod.ProductID =
p.ProductID)

where (soh.OrderDate > DateTime(2013,5,1) && p.ProductSubcategoryID
|=|] produceSubcategories)

select(soh)} |> Seq.head

Alas, no:

System.ArgumentException: The input sequence was empty.
Parameter name: source
at Microsoft.FSharp.Collections.SeqModule.Head[T](IEnumerable 1 source)
at <StartupCode$FSI_0024>.$FSI_0024.main@() in F:\Git\MLDotNet\Book
Chapters\Chapter05\TypeProviders.Solution\TypeProviders\SqlServerProviders.
fsx:1line 206
Stopped due to error

So there are a couple of ways out of this problem. Option number 1, is that you can create
a function. Enter the following into your script file:

let isBikeSubcategory id =
let produceSubcategories = [|new System.Nullable<int>(1);
new System.Nullable<int>(2); new System.Nullable<int>(3)]|]
Array.contains id produceSubcategories

isBikeSubcategory(new System.Nullable<int>(1))
isBikeSubcategory(new System.Nullable<int>(6))

let salesOrderQuery''' =
gquery { for soh in context. "Sales.SalesOrderHeaders ~ do

join sod in context. "Sales.SalesOrderDetails "~ on
(soh.SalesOrderID = sod.SalesOrderID)

join p in context. "Production.Products " on (sod.ProductID =
p.ProductID)

where (soh.OrderDate > DateTime(2013,5,1) &&
isBikeSubcategory(p.ProductSubcategoryID))

select(soh)} |> Seq.head
salesOrderQuery'"'

Status = 5uy;

SubTotal = 2071.4196M;

TaxAmt = 165.7136M;

TerritoryID = 4;

TotalDue = 2288.9187M;

rowguid = 74fca7f8-654b-432f-95fb-0dd42b0e3cf1;}
>

There is no new code here. We created a function.

But wait! There’s more! Go back to the script file and enter the following:

let produceSubcategories = [|new System.Nullable<int>(1);
new System.Nullable<int>(2); new System.Nullable<int>(3)]|]
let (|=|) id a = Array.contains id a

let salesOrderQuery4 =
query { for soh in context. "Sales.SalesOrderHeaders ~ do
join sod in context. "Sales.SalesOrderDetails ~ on
(soh.SalesOrderID = sod.SalesOrderID)
join p in context. “Production.Products " on (sod.ProductID =
p.ProductID)
where (soh.OrderDate > DateTime(2013,5,1) &&

p.ProductSubcategoryID |=| produceSubcategories)
select(soh)} |> Seq.head
salesOrderQuery4

So what is this line of code?

let (|=|) id a = Array.contains id a

It is a function named |=| that takes in two parameters: the id to search and the array that
gets searched. This function is called an infix operator because we are assigning symbols
to stand in for a more descriptive name. Consider how the + operator stands in for Add.
With that infix operator in place, we can go back and make our syntax more intuitive here:

where (soh.OrderDate > DateTime(2013,5,1) && p.ProductSubcategoryID |=|
produceSubcategories)

There is one more option to consider: just ditching the extra function and inlining
Array.contains. Go back to the script and enter this in:

let produceSubcategories = [|new System.Nullable<int>(1);
new System.Nullable<int>(2); new System.Nullable<int>(3)]|]

let salesOrderQuery5 =
query { for soh in context. “Sales.SalesOrderHeaders °~ do

join sod in context. "Sales.SalesOrderDetails "~ on
(soh.SalesOrderID = sod.SalesOrderID)

join p in context. "Production.Products " on (sod.ProductID =
p.ProductID)

where (soh.OrderDate > DateTime(2013,5,1) && Array.contains
p.ProductSubcategoryID produceSubcategories)

select(soh)} |> Seq.head

Sending this to the REPL gives us the expected return:

ShipDate = 5/9/2013 12:00:00 AM;

ShipMethodID = 1;

ShipToAddressID = 20927;

Status = 5uy,

SubTotal = 2071.4196M;

TaxAmt = 165.7136M;

TerritoryID = 4;

TotalDue = 2288.9187M;

rowguid = 74fca7f8-654b-432f-95fb-0dd42b0e3cf1;}
>

So we have three different ways to handle the problem. Do we pick the named function,
the in-fix operator, or the in-line function? In this case, I would pick the in-fix operator
because we are replacing an existing operator that should work and makes the line the
most readable. Others might disagree and you have to be prepared as a data scientist to be
able to read other people’s code, so it is good that you are familiar with all three ways.

s &

1 JCL V1 l.yPC pLuUvildci wiap up

I have already highlighted two SQL type providers in this chapter. There are actually five
different type providers that you can use when accessing SQL databases that I know of,
and there are certainly more. When you first start using F#, you might be confused about
which one to use. For your reference, here is my basic run down:

FSharp.Data.TypeProviders.SqglServerProvider: This is a part of Visual Studio
install, is supported by Microsoft, and no new development is going on. Since this is
the end of life, you would not want to use this.
FSharp.Data.TypeProviders.EntityFrameworkProvider: This is a part of Visual
Studio install, is supported by Microsoft, and no new development is going on. It is
good for vanilla databases.

FSharp.Data.Sqlclient: This was created by the community. It is a very stable way
to pass SQL commands to the server. It does not support LINQ-style computational
expressions. It is good for CRUD-based F# operations.

FSharp.Data.SqlProvider: This was created by the community in pre-release, so
there is some instability. It is very good for doing LINQ-style computation
expressions. It supports different RDMS like Oracle, MySQL, and SQL Server.
FSharp.EntityFramework.MicrosoftSqlServer: This was created by the
community. It is in its very early stages, but holds tons of promise to be a great
replacement to traditional ORM coding. It is good for doing LINQ-style computation
expressions.

1NULL UYWL, lyPC pLrLuvildcio

Type providers are not just for relational database management systems. In fact, there are
JSON type providers, XML type providers, CSV type providers, the list goes on. Let’s
take a look at a couple and see how we can use them to make some really interesting data
frames based on heterogeneous data.

Go into Visual Studio and add a new script file called NonSqlTypeProviders. fsx. At the
top, bring in all of the references that we’ll be using and open up the needed libraries:

#load "../packages/FsLab.0.3.17/FsLab.fsx"

#I @"..\packages"

#r @"EntityFramework.Core.7.0.0-rcl-
final\lib\net451\EntityFramework.Core.d1ll"

#r @"EntityFramework.MicrosoftSqlServer.7.0.0-rcl-
final\lib\net451\EntityFramework.MicrosoftSqlServer.dll"

#r @"EntityFramework.Relational.7.0.0-rcl-
final\lib\net451\EntityFramework.Relational.dll"

#r @"Inflector.1.0.0.0\1ib\net45\Inflector.dll"

#r @"Microsoft.Extensions.Caching.Abstractions.1.0.0-rcl1-
final\lib\net451\Microsoft.Extensions.Caching.Abstractions.dl1"
#r @"Microsoft.Extensions.Caching.Memory.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Caching.Memory.dl1l"

#r @"Microsoft.Extensions.Configuration.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Configuration.dll"

#r @"Microsoft.Extensions.Configuration.Abstractions.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Configuration.Abstractions.dll"
#r @"Microsoft.Extensions.Configuration.Binder.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Configuration.Binder.dl1l"
#r @"Microsoft.Extensions.DependencyInjection.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.DependencyInjection.dll"
#r @"Microsoft.Extensions.Logging.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Logging.dll"

#r @"Microsoft.Extensions.Logging.Abstractions.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Logging.Abstractions.dll"
#r @"Microsoft.Extensions.OptionsModel.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.OptionsModel.dl1l"

#r @"Microsoft.Extensions.Primitives.1.0.0-rcl-
final\lib\net451\Microsoft.Extensions.Primitives.dll"

#r @"Remotion.Linqg.2.0.1\1lib\net45\Remotion.Ling.d11l"

#r @"System.Collections.Immutable.1.1.36\1ib\portable-
net45+win8+wp8+wpa81\System.Collections.Immutable.d1l1l"

#r @"System.Diagnostics.DiagnosticSource.4.0.0-beta-
23516\1ib\dotnet5.2\System.Diagnostics.DiagnosticSource.dll"

#r @"Ix-Async.1.2.5\1ib\net45\System.Interactive.Async.dll"

#r
"../packages/Microsoft.Extensions.DependencyInjection.Abstractions.1.0.0-
rcil-
final/lib/net451/Microsoft.Extensions.DependencyInjection.Abstractions.dll"
#r @"FSharp.EntityFramework.MicrosoftSglServer.0.0.2.0-
alpha\lib\net451\FSharp.EntityFramework.MicrosoftSqlServer.dll"

open System

open Deedle

open FSharp.Data

open System.Data.SglClient
open Microsoft.Data.Entity

Send it to the REPL to make sure you have all of the needed libraries. In the script, add the
following code to bring in data from our AdventureWorks SQL Server database. You will
notice that I am piping straight to Deedle’s dataframe:

[<Literal>]

let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=AdventurewWorks2014;user

id=chickenskills@nc54a9m5kk; password=skllzm@tter;"

type AdventureWorks = SqlServer<connectionString, Pluralize = true>
let context = new AdventurewWorks()

let salesNames
let salesByDay
query { for soh in context. "Sales.SalesOrderHeaders ~ do
join sod in context. "Sales.SalesOrderDetails " on
(soh.SalesOrderID = sod.SalesOrderID)
where (soh.OrderDate > DateTime(2013,5,1))
select(soh)}
| > Seq.countBy(fun soh -> soh.OrderDate)
| > Frame.ofRecords
|> Frame.indexColsWith salesNames
| > Frame.indexRowsDate "Date"
| > Frame.sortRowsByKeySend it to the REPL to get this:
Sales
5/2/2013 12:00:00 AM -> 9
5/3/2013 12:00:00 AM -> 9

["Date"; "Sales"]

6/30/2014 12:00:00 AM -> 96

Go back to the script and add some data that is stored in a CSV file from Yahoo Finance.
In this case, it is the change in daily stock price for the Dow Jones Industrial Average:

let stockNames = ["Date"; "PriceChange"]
type Stocks = CsvProvider<"http://ichart.finance.yahoo.com/table.csv?
s=ADJI">
let dow = Stocks.Load("http://ichart.finance.yahoo.com/table.csv?s=ADJI")
let stockChangeByDay =
dow.Rows |> Seq.map(fun r -> r.Date, (r. "Adj Close °~ - r.Open)/r.Open)
|> Frame.ofRecords
|> Frame.indexColsWith stockNames
| > Frame.indexRowsDate "Date"
|> Frame.sortRowsByKey

Send it to the REPL to get the following:

type Stocks = CsvProvider<...>
val dow : CsvProvider<...>
val stockChangeByDay : Frame<int,string> =

1/29/1985 12:00:00 AM -> 0.0116614159112959501515062411
1/30/1985 12:00:00 AM -> -0.0073147907201291486627914499

11/25/2015 12:00:00 AM -> -0.000416362767587419771025076
11/27/2015 12:00:00 AM -> 0.0004128690819110368634773694

Go back to the script and add some data that is served up by an API in JSON format from
Quandl. In this case, it is the number of sunspots recorded by the Royal Observatory in
Belgium.

let sunspotNames = ["Date"; "Sunspots"]

type Sunspots =
JsonProvider<"https://www.quandl.com/api/v3/datasets/SIDC/SUNSPOTS_D.json?
start_date=2015-10-01&end_date=2015-10-01">
let sunspots =
Sunspots.Load("https://www.quandl.com/api/v3/datasets/SIDC/SUNSPOTS_D.json?
start_date=2013-05-01")
let sunspotsByDay =
sunspots.Dataset.Data |> Seq.map(fun r -> r.DateTime, Seq.head

r.Numbers)

|> Frame.ofRecords

|> Frame.indexColsWith sunspotNames

| > Frame.indexRowsDate "Date"

| > Frame.sortRowsByKey

When you send it to the FSI, you should get something like the following:

val sunspotsByDay : Frame<DateTime,string> =

Sunspots
5/1/2013 12:00:00 AM -> 142.0
5/2/2013 12:00:00 AM -> 104.0

10/36/2015 12:00:00 AM -> 88.0
10/31/2015 12:00:00 AM -> 83.0

Finally, go back to the script and join all three data frames:

let dataFrame = salesByDay |> Frame.join JoinKind.Inner stockChangeByDay
|> Frame.join JoinKind.Inner sunspotsByDay

Sending that to the REPL gives:

val dataFrame : Frame<DateTime,string> =

PriceChange Sales Sunspots
5/2/2013 12:00:00 AM -> 0.0088858122275952653140731221 9 104.0

5/3/2013 12:00:00 AM -> 0.0095997784626598973212920005 9 98.0

6/27/2014 12:00:00 AM -> 0.0002931965456766616196704027 82 67.0
6/30/2014 12:00:00 AM -> -0.0015363085597738848688182542 96 132.0

We’ll leave the process of creating a model to see if there is a relationship among the
Down Jones Price Change and the number of sunspots on the amount of Sales by Day up
to the reader. Before you get too carried away, you might want to consider this website

(http://tylervigen.com/spurious-correlations). I think this is my favorite one:

Swimming pool drownings

140 drownings

120 drownings

100 drownings

80 drownings

Number of people who drowned by falling into a pool

1959

correlates with

Films Nicolas Cage appeared in

2001

Correlation: 66.6% (r=0.666004)

2002 2003 2004 2005 2006 2007 2008

2009

1999

2000

2001

2002 2003 2004 2005 2006 2007 2008

-8 Nicholas Cage -# Swimming pool drownings

2009

& films

4films

2 film:

n

ade) sejoydiN

0 films

n

http://tylervigen.com/spurious-correlations

Lolpig ddtid

Sometimes the data that you obtain from a source system is incomplete. Consider this
dataset of crash locations that was obtained from the State Department of Transportation
office:

Id OnRoad Miles FromRoad TowardRoad Latitude Longitude
46 | PALACE GREEN 0057 W LOCHMERE DR KILDAIRE FARM RD NULL NULL
220 KILDAIRE FARM RD 2 SHANNON OAKS CIR CARY PKY NULL NULL
240 US1 0564 KILDAIRE FARMRD SE CARY PKY NULL NULL
363 1107 WALNUT ST 0019 HUBBARD LANE SE MAYNARD RD NULL NULL
814 KILDAIRE FARM RD 03 STEEPBANKDR LOCH HIGHLANDS DR NULL NULL
8786 BUCKJONES RD 3 WANUT ST NOTTINGHAM DR NULL NULL
948 WALNUT ST 05 MEETING ST DILLARD DR NULL NULL

Notice that latitude and longitude are missing and that location does not use a normal
address/city/state pattern. Rather, it is OnRoad, Miles, FromRoad, and TowardRoad.
Unfortunately, this is fairly common when getting data from public entities—systems may
have been built before lat/lon became mainstream and the system’s addressing might be
designed to only work inside the system. This means we need a way to figure out the
latitude and longitude from this atypical addressing.

If you pull the source code down from the site, you will see a couple of script files. The
first is called BingGeocode. This is a script that goes out to the Bing maps API and returns
a geolocation for a given address. The key thing is that, although Bing does not recognize
OnRoad/FromRoad/TowardRoad, it does recognize cross streets. Therefore, we can
take a sample from the crash dataset of incidents that happened at or near intersections—
which we can determine from the OnRoad/FromRoad as long as the Miles value is fairly
low. In fact, 90 percent of the records are within a quarter mile of an intersection.

If you inspect the code, you will see that there is nothing particularly new here. We use the
JSON type provider to make the call to Bing, and we parse the results, using the Option
type to return none or some Geolocation. If you want to run this on your machine, we will
need to sign up for the Bing Map API developer program here
(https://www.bingmapsportal.com/) and put your value into the apikKey:

#r "../packages/FSharp.Data.2.2.5/1ib/net40/FSharp.Data.dl1l"

open System.IO
open System.Text
open FSharp.Data

[<Literal>]
let sample = "..\Data\BingHttpGet.json"
type Context = JsonProvider<sample>

let getGeocode address =
let apiKey = "yourApiKeyHere"
let baseUri = "http://dev.virtualearth.net/REST/v1l/Locations?q=" +

https://www.bingmapsportal.com/

let searchResult = Context.Load(baseUri)
let resourceSets = searchResult.ResourceSets
match resourceSets.Length with
| ® -> None
| _ -> let resources = resourceSets.[0].Resources
match resources.Length with
| © -> None
| _ -> let resource = resources.[0]
Some resource.GeocodePoints

let address = "1%20Microsoft%20Way%20Redmond%20WA%2098052"
let address' = "Webser st and Holtz 1ln Cary,NC"

getGeocode address'

In the solution, there is another script file that does the actual heavy lifting of pulling the
original crash data from the database, updating it with the latitude and longitude, and then
putting it back into the database. This script file is called updateCrashLatLon. fsx. If you
look at the code, the first part pulls down crashes that happened in the same town as the
traffic stops and occurred within a quarter mile of an intersection. It then creates an
address string that is passed to the Bing geocode file and creates a frame with the ID and
the latitude and longitude. We then filter that Array with only the values that returned as
some:

#r "../packages/FSharp.Data.2.2.5/1ib/net40/FSharp.Data.dl1l"
#r "System.Data.Entity.dl1l"

#r "FSharp.Data.TypeProviders.dll"

#r "System.Data.Linqg.dl1l"

#load "BingGeocode.fsx"

open System

open System.Data.Linq

open System.Data.Entity

open Microsoft.FSharp.Data.TypeProviders

[<Literal>]
let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=Traffic;user id=chickenskills@nc54a9m5kk;password=skllzm@tter;"

type EntityConnection = SqlEntityConnection<connectionString,Pluralize =
true>
let context = EntityConnection.GetDataContext()

type Crash = {Id: int; OnRoad:string; FromRoad:string }

let trafficCrashes =
context.dbo_TrafficCrashes
|> Seq.filter(fun tc -> tc.MunicipalityId = Nullable<int>(13))
|> Seq.filter(fun tc -> (float)tc.Miles <= 0.25)
|> Seq.map(fun tc -> {Id=tc.Id; OnRoad=tc.OnRoad;
FromRoad=tc.FromRoad})
|> Seq.toArray

trafficCrashes

|> Array.map(fun ¢ -> c¢.Id, c.OnRoad + " and " + c.FromRoad + "
Cary,NC")

|> Array.map(fun (i,1) -> i, BingGeocode.getGeocode(1l))

let trafficCrashes'' =

trafficCrashes'

|> Array.filter(fun (i,p) -> p.IsSome)

|> Array.map(fun (i,p) -> i, p.Value.[0].Coordinates.[0], p.Value.
[0].Coordinates.[1])

There is one new line of code in this script: #1oad "BingGeocode.fsx". This adds a
reference to the script file we already created, so we can go ahead and invoke the
getGeocode() function.

Before we update the database with our data, I wrote a script to write the data to the local
disk:

//Write so we can continue to work without going to Bing again
//They throttle so you really only want to go there once

open System.IO
let baseDirectory
let dataDirectory

= System.IO.DirectoryInfo(__SOURCE_DIRECTORY_)
= baseDirectory.Parent.Parent.FullName + @"\Data"
use outFile = new StreamWriter(dataDirectory + @"\crashGeocode.csv")
trafficCrashes'' |> Array.map (fun (i,1t,1g) -> 1i.ToString()
,1t.ToString(), lg.ToString())

|> Array.iter (fun (i,1t,lg) -> outFile.WriteLine(sprintf
"%s,%s,%s" 1 1t 1g))
outFile.Flush
outFile.Close()

As the comment says, Bing throttles how many requests you can make per hour. The last
thing you want is to have to re-query Bing because you are experimenting with the data
and get a 401 error back because you are at your limit. Rather, it is much better to bring it
local once and work off a local copy.

With the data local, we can then pull down each record from the database that we want to
update, update the lat/long, and write it back to the database:

type Crash' = {Id: int; Latitude: float; Longitude: float}

let updateDatabase (crash:Crash') =
let trafficCrash =
context.dbo_TrafficCrashes
|> Seq.find(fun tc -> tc.Id = crash.Id)
trafficCrash.Latitude <- Nullable<float>(crash.Latitude)
trafficCrash.Longitude <- Nullable<float>(crash.Longitude)
context.DataContext.SaveChanges() |> ignore

open FSharp.Data

type CrashProvider = CsvProvider<"../Data/crashGeocode.csv'">

let crashes =
CrashProvider.Load("../Data/crashGeocode.csv").Rows

float r.longitude})
|> Seq.toArray
|> Array.iter(fun ¢ -> updateDatabase(c))

1 ALG1iI110111

I want to show you one more trick that will greatly speed up your data extraction—
parallelism. My machine has four cores, but only one core is being used in the prior
example when making the API calls to Bing. It would be much faster if I could use all of
the cores and make the requests in parallel. F# makes this a snap. As a demonstration, I re-
queried Bing for the first 200 crash records and wrote the time out to the FSI:

let trafficCrashes =

context.dbo_TrafficCrashes

|> Seq.filter (fun tc -> tc.MunicipalityId = Nullable<int>(13))

|> Seq.filter (fun tc -> (float)tc.Miles <= 0.25)

|> Seq.map (fun tc -> {Id=tc.Id; OnRoad=tc.OnRoad;
FromRoad=tc.FromRoad})

|> Seq.take 200

|> Seq.toArray

open System.Diagnostics
let stopwatch = Stopwatch()
stopwatch.Start()
let trafficCrashes' =
trafficCrashes
|> Array.map (fun ¢ -> c.Id, c.OnRoad + " and " + c.FromRoad + "
Cary,NC")
|> Array.map (fun (i,1) -> 1, BingGeocode.getGeocode(1l))

stopwatch.Stop()
printfn "serial - %A" stopwatch.Elapsed.Seconds

When I ran it, it took 33 seconds:

serial - 33

Next, I added this code:

stopwatch.Reset()
open Microsoft.FSharp.Collections.Array.Parallel

stopwatch.Start()
let pTrafficCrashes' =

trafficCrashes

|> Array.map (fun ¢ -> c.Id, c.OnRoad + " and " + c.FromRoad + "
Cary,NC")

|> Array.Parallel.map (fun (i,1) -> i, BingGeocode.getGeocode(1l))

stopwatch.Stop()
printfn "parallel - %A" stopwatch.Elapsed.Seconds

Notice that the only change was adding a reference to Collections.Array.Parallel and
then considering the following line:

|> Array.map (fun (i,1) -> i, BingGeocode.getGeocode(1l))
Change this line to the following:

When I ran it, I saw this in the FSI:

parallel - 12

So I got a 3x speed improvement by changing one line. Because F# was built from the
ground-up with parallelism and async in mind, it is very easy to take advantage of these
concepts. The other languages have these features bolted on and can be very cumbersome
to use and often can lead to race conditions or worse.

There is one more thing to note when you are pulling mass data from a web service.
Unless you explicitly code it, you have no real way of monitoring the progress. I often pop
open Fiddler (http://www.telerik.com/fiddler) and monitor the HTTP traffic to see how

things are progressing.

4> Fiddler Web Debugger
File Edit Rules Tools View Help GET/book Ef GeoEdge
== WinConfig L__:J 4 Replay >(v F Go ‘ Stream %fﬁ Decode | Keep: All sessions ~
Result Protocol Host LIRL
= eq 200 HTTP dev.virtualearth.net /[REST/v1/Locations?g=
{565 200 HTTP dev.virtualearth.net [REST/v1/Locations?g=
{566 200 HTTP dev virtualearth.net [RESTjv1/Locations?q=
=67 200 HTTP dev.virtualearth.net /REST/v1/Locations?g=
{563 200 HTTP dev.virtualearth.net /REST/v1/Locations?g=
{259 200 HTTP dev.virtualearth.net fREST/v1/Locations?g=
=70 200 HTTP dev.virtualearth.net /[REST/v1/Locations?g=
=71 200 HTTP dev.virtualearth.net /REST/v1/Locations?g=
=72 200 HTTP dev.virtualearth.net /REST/v1/Locations?g=
{273 200 HTTP dev.virtualearth.net /[REST/v1/Locations?g=
(=74 200 HTTP dev.virtualearth.net /REST/v1/Locations?g=
{575 200 HTTP dev.virtualearth.net /[REST/v1/Locations?g=
=78 200 HTTP dev.virtualearth.net [REST/v1/Locations?g=
i.%:ﬁ:' 77 200 HTTP dev.virtualearth.net [REST/v1/Locations?g=

http://www.telerik.com/fiddler

JIIUJLN lyPC PLUVIULL ™ auuitiititauyuis

The JSON type provider is a very handy tool, but there is a limitation to its out of the box
implementation—it assumes that the web service does not have any authentication or the
authentication token is part of the query string. Some datasets are not like that—in fact
most web services use headers for authentication. Fortunately, there is a way to code
around this.

Consider this open dataset—the NOAA archives (http://www.ncdc.noaa.gov/cdo-
web/webservices/v2). If you look at the solution that comes with the chapter, there is a
script file called GetWeatherData. fsx. In this script, I picked a single zip code for the
town where the traffic stops and crashes occurred and pulled down the daily precipitation:

#r "System.Net.Http.dll"
#r "../packages/FSharp.Data.2.2.5/1ib/net40/FSharp.Data.d1l"

open System

open System.Net

open FSharp.Data

open System.Net.Http

open System.Net.Http.Headers
open System.Collections.Generic

[<Literal>]

let uri = "http://www.ncdc.noaa.gov/cdo-web/api/v2/data?
datasetid=GHCND&locationid=ZIP:27519&startdate=2012-01-01&enddate=2012-12-
31&1imit=1000"

let apiToken = "yourApiTokenHere"

use client = new WebClient()

client.Headers.Add("token", apiToken)

let resultJson = client.DownloadString(uri)

[<Literal>]

let weatherSample = "..\Data\NOAAHttpGet.json"

type weatherServiceContext = JsonProvider<weatherSample>
let searchResult = weatherServiceContext.Parse(resultJson)
let results = searchResult.Results

let dailyPrecipitation =

results

|> Seq.where (fun r -> r.vValue > 0)

|> Seq.groupBy (fun r -> r.Date)

|> Seq.map (fun (d,a) -> d, a |> Seq.sumBy (fun r -> r.Value))

|> Seq.sortBy (fun (d,c) -> d)
There is one thing new here. I am using the JSON type provider but the authorization
token needs to be in the header of the request. Since the JSON type provider does not
allow you to set headers, you need to pull the data down via the System.Net.wWebClient
class (where you can set the auth token in the header) and then use the JSON type
provider to parse the results. You can see that I am using Parse() and not Load() in the
following line to accomplish that:

let searchResult = weatherServiceContext.Parse(resultJson)

http://www.ncdc.noaa.gov/cdo-web/webservices/v2

requests are limited:

open System.IO
let baseDirectory
let dataDirectory

= System.IO.DirectoryInfo(__SOURCE_DIRECTORY_)
= baseDirectory.Parent.Parent.FullName + @"\Data"
use outFile = new StreamWriter(dataDirectory + @"\dailyPrecipitation.csv")
dailyPrecipitation
|> Seq.map(fun (d,p) -> d.ToString(), p.ToString())
|> Seq.iter(fun (d,p) -> outFile.WriteLine(sprintf "%s,%s" d p))

outFile.Flush
outFile.Close()

Also, like the data geolocation data, you can do this on your machine but you will need an
apiToken. You can go to the NOAA developer website to apply for one. I also added the
data as a table on the SQL Server so you don’t have to pull the data from the source code
to write the remaining code in the chapter. Go into the active kmeans. fsx script file and
enter this to get the data from the database:

type DailyPercipitation = {WeatherDate: DateTime; Amount: int; }

let dailyWeather =
context.dbo_DailyPercipitation
|> Seq.map(fun dw -> {WeatherDate=dw.RecordDate; Amount=dw.Amount;})
|> Seq.toArray

When you send it to the FSI, you will get the following:

type DailyPercipitation =
{WeatherDate: DateTime;
Amount: int;}
val dailyWeather : DailyPercipitation [] =
[|{WeatherDate = 1/9/2012 12:00:00 AM;
Amount = 41;};

{WeatherDate = 1/10/2012 12:00:00 AM;
Amount = 30;}; {WeatherDate = 1/11/2012 12:00:00 AM;
Amount = 5;};

{WeatherDate = 1/12/2012 12:00:00 AM;

Amount = 124;};

{WeatherDate = 1/13/2012 12:00:00 AM;
Amount = 5;};

{WeatherDate = 1/21/2012 12:00:00 AM;

ouliiiiary

If you ask a data scientist what they like least about their day, they will tell you meetings,
building slide decks, and munging data in no particular order. Although F# type providers
can’t help you with meetings and building slide decks, it can decrease the amount of time
spent obtaining and cleaning data. Although not completely frictionless, type providers
can help you with relational and non-relational data stores and enable you to spend more
time with the “fun” parts of data science. Speaking of which, let’s jump back into the fun
with KNN and Naive Bayes modeling.

Llildpicl 0. AUVEIIIUICYYVUI RS REUUX — K-

NN and Naive Bayes Classifiers

Let’s jump back to AdventureWorks and put our software engineer hat back on. A couple
weeks after your successful implementation of a model to improve high-margin bike sales
to individual customers, the CEO comes to your desk and says, “Can you help us with a
problem? If you were not aware, we started out as a bike-only company. Then, in May of
2013, we added additional merchandise to our product offering. Although it went well in
the beginning, we seem to have plateaued. We want to try to push a bit harder in this area.
Through some basic PowerBI reporting, we see that anywhere from 86 percent to 88
percent of the customers who buy a bike also buy additional merchandise at the time of
purchase.”

Year Month||Cross||Solo ||Total [|% Cross
201305 ||25 ||295 ||320 |7.8%

201306 ||429 ||69 ||498 ||86.1% |
201307 ||441 ||56 ||497 ||88.7% |
201308 ||525 ||83 ||608 ||86.3% |
201309 ||536 ||68 ||604 ||88.7% |
201310 ||649 ||100 ||749 ||86.6% |
201311 ||868 ||136 ||1,004 ||86.5% |
201312 ||698 ||99 ||797 ||87.6% |
201401 ||800 ||97 ||897 ||89.2% |
201402 ||702 ||96 ||798 ||88.0% |
201403 ||891 ||135 ||1,026 ||86.8% |
201404 ||965 ||121 ||1,086 ||88.9% |
201405 ||1,034 ||152 ||1,186 ||87.2% |
TOTAL ||8,563 ||1,507||10,070||85.0% |

1,404

1,200
1,000
800
600
400
200
0
’\:563 ’3’%{0 '{”& *3’%% *;”Q% *»”-“’Q N”;;\r *Q’Q *»b‘@ *»@W *»&gb *39% w@%
BRSSP S R S R

B Cross M Solo

The CEO continues, “We would love to be able to get that up above 90 percent. We
launched an expensive marketing campaign, but it really didn’t move the needle. Is there
any way you can help us be more focused and identify those people on the fence for cross-
selling opportunities?”

You say, “Sure,” and immediately start thinking of a way to implement her instructions.
Perhaps if you could identify some unique characteristics of those customers who buy
additional merchandise compared to those customers who do not, a more targeted method
might be implemented to get more people to buy additional merchandise. You
immediately think of classification models like K-Nearest Neighbor (k-NN) and Naive
Bayes. Since you are not sure which one might work, you decide to try them both out.

KRINCAICOU INCIgHIDOLS (KR-ININ)

k-NN stands for k-Nearest Neighbors and is one of the most basic classification models
available. Since a picture is worth a thousand words, let’s take a look at k-NN from a
graphical perspective. Consider a group of students who spent some amount of time
studying and also drinking beers the night before the exam. On a graph, it looks like this:

o
i
e ﬁ
'ﬁ it
=
e
W
W
-
—
@]
i
Beers Drank
$¥ Passed Exam @ Failed Exam

If I added a seventh student to the graph like this, would you think that the student passed
or failed the exam?

) o

*
O

Hours Studying

QO
()

Beers Drank

*Passed Exam Q Failed Exam

You would likely say they are a star—they passed the exam. If I asked you why, you
would probably say that are more like the other stars. This kind of mental processing is
very much how our minds work—if everyone in your neighborhood buys a Japanese car
and thinks it has high quality, you are more likely to buy one too if you are looking for a
high quality car. In fact, much of marketing is based on the k-NN theory.

Unlike the brain, which makes associations effortlessly, k-NN actually uses some math to
classify. Going back to our seventh student, k-NN would put them in the passing students’
group because the distance it is from the other passing students is short relative to the
distance from the failing students:

\Q

Hours Studying

Beers Drank

In fact, one of the simplest k-NN implementations is to take the average of all of the items
of the category (five hours of studies and drinking one beer for the stars, on average) and
measure that distance to the new item. Hopefully, the name k-NN makes sense now—for a
given new item K, what are its nearest neighbors?

NTINLN CACllllPlC

Let’s take a look at k-NN in action using Accord.NET. Open up Visual Studio and create
a new Visual F# Windows Library project called classification:

Mew Project ? x
I Recent NET Framework 6.1 = Sort by: Default -« &i° i=||Search Installed Templ 2 =
4 |nstalled E# iR :
E Console Application Visual F# Type: Visual F#
4 Templates A project for creating an F# library
: . F#
b Visual C# Hi! Library Visual F#
. ; e
b Visual Basic
. E#
b Visual C++ Eé! Portable Library (.MET 4.5, Windo... Visual F2
4 Visual F# -
E E#
Android “i! Portable Library (MET 4.5, Windo... Visual F2
: %
F 05
2 - E#
Silverlight Eqi! Portable Library (.NET 4.5, Windo... Visual F#
Windows ¥
. F#
WPF Eé! Portable Library (.MET 4.5, Windo... Visual F#
SQL Server ¥
E#
Ly B Tuterial Visual F#
I JavaScript e
HDInsight
i Python

b TypeScript

o w

b Onling Click here to go online and find terplates,

Mame: Classification

Location: FA\Git\MLDotNet\Book Chapters\Chapter06\ -

Solution name: | Classification.Solution] | Create directory for solution

[] Add to source control

Ok i | Cancel

Go into the Script . fsx file and remove all of its contents. Rename Scipt.fsx to k-
NNAccord. fsx. Open up NuGet Package Manager console and enter this:

PM> install-package Accord.MachinelLearning

Go back to your script and enter in the following code:

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"

#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.dl11l"

#r
"../packages/Accord.MachinelLearning.3.0.2/1ib/net40/Accord.MachinelLearning.
di1"

open Accord
open Accord.Math
open Accord.MachinelLearning

let inputs = [|[]5.0;1.0]];[]|4.5;1.5]],;[15.2;0.75|];[1]1.0;3.5]];
[10.5;4.0]];[]1.25;4.0]]]]
let outputs = [|1;1;1;0;0;0]|]

let classes = 2
let k = 3
let knn = new KNearestNeighbors(k, classes, inputs, outputs)

Send this to the REPL to see the following:

val inputs : float [] [] =

[I[15.0; 1.0]]; [14.5; 1.5]]; [I5.1; 0.75]]; [I1.0; 3.5]]; [l0.5; 4.0]];

[11.25; 4.0]|]]]

val outputs : int [] = [|1; 1; 1; 0; 0; 0]]
val classes : int = 2
val k : int = 3
val knn : KNearestNeighbors
Most of this code should look familiar to you by now. The inputs represent six students
with two characteristics: how many hours they spent studying the night before an exam
and how much beer they drank. The outputs represent whether they passed the exam: 1 if
they passed, 0 if they did not. The class’s value tells Accord that there are two types of
values to consider. In this case, those values are the hours spent in studying and the
quantity of beer consumed. The k value tells Accord how many data points we want to use
for the calculation for each class. If we changed that to 4, then we would have included
one failing student with the three passing students (and vice versa), which would have
watered down our result.

Go back to the script and enter these lines that represent the seventh student:

let input = [|5.0;0.5]]
let output = knn.Compute input

When you send it to the FSI, you will see that student number 7 will most likely pass the
exam:

val input : float [] = [|5.0; 0.5]]

val output : int = 1

As I mentioned earlier, k-NN is one of the most basic machine learning models you can
use, but in certain circumstances it can be surprisingly powerful. One of the more common
adjustments to k-NN is weighing the distance from the neighbors. The closer a point is to
the neighbors, the more weight that distance gets. The biggest criticism of k-NN is that it
can overweigh if there are many observations that center around one point, so it is
important to have a balanced dataset, if possible.

INdlVE DAyES

Naive Bayes is a classification model that attempts to predict if an entity belongs to a
series of predefined sets. When you aggregate all the sets together, you have a pretty good
estimation of the final result. In order to illustrate, let’s go back to the tennis example that
we used when talking about decision trees.

We have the following observations for two weeks:

ID—ayI Outlook||Temperature[|Humidity[|Wind ||Play Tennis?
Msunny Hot ||High weak [|[No

ZI sunny ||Hot ||High strong||No |
Zlovercast Hot ||High weak [|Yes |
zlrain ||Mild ||High weak [|Yes |
erain Cool Normal [fweak [|Yes |
zl rain Cool Normal ||strong||[No |
zl overcast [|Cool Normal |[strong||Yes |
leunny ||Mild ||High weak [|[No |
zlsunny Cool Normal [fweak |lyes |
zlrain ||Mild Normal [fweak |lyes |
EI sunny ||Mild Normal ||strongllyes |
EI overcast |[|[Mild ||High strong|lyes |
Elovercast Hot Normal [fweak |lyes |
;I rain ||Mild ||High strong|lno |

For each one of the classes, let’s break down whether they wound up playing tennis that
day and then do a percentage for each possibility:

Total

=)
~
N

(=]
o
N

Juiilﬁﬂ
Il

—
o
o
=
o
o

]ﬂﬂ]ﬁ[ﬂ
(=]
w
w
[«
N
o

]
]

4
o
X

Y

(4]
»
X
Z
(=]

Yes

S
R
N
e
N
S

mild

<)
N
=
o
N
o

S
w
w
e
)
S

cool

—_
o
(e
[
oS
(=]

Total

I I

i
i

X
=
»
o
S
Z
(=]

D

5

Humidity

S
W
w
e
ooy
S

normal

=
o
o
—_
o
o

Total

i

i
|

'Wind

=
»
X
=
»
o
S
2
(=]

o
(@)
S|
o
n
o

strong

(=)
W
w

—_
o
o
—_
o
o

i ,
s g gl
! S 5 % S ! S S S
o
S

|

D % No

bl bbb e

With these grids available, we can then predict if a person will or will not play tennis for a
series of conditions. For example, will a person play on a sunny, cool day with high
humidity and strong winds? We can pull the percentages from each grid:

=
2]

inal i}

}%H:HTlLH;HiEH_H;I@LD}_I&ILI@g

=
A

|| Yes |[INo
Outlook sunny 0.222||0.600|
Temperature||cool 0.333||0.200|
Humidity ||high ||0.333||0.800|
Wind strong 0.333||0.600|

final 0.643||0.357|

And then the values can be multiplied together for each possibility:

o Probabilitil of No =0.600 * 0.200 * 0.800 * 0.600 * 0.357 = 0.021

You can see that there is a higher percentage not playing than playing. We can also take
the two percentages and compare them to each other like this:

0.005 + 0.021 = 0.026
0.005/0.026 = 0.205 and 0.021/0.026 = 0.795

There is about a 20 percent chance of playing tennis and 80 percent chance of not playing.

1NALVYV T JJCI)’CD 111 GILUL1VU1i1

Let’s see how Accord.NET calculates a Naive Bayes model. Go to Visual Studio and add a
new script file called NaiveBayesAccord. fsx:

In that script, add the following code:

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"

#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.dl11"

#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dll"
#Hr
"../packages/Accord.MachineLearning.3.0.2/1ib/net40/Accord.MachineLearning.
dil"

open Accord

open Accord.Math

open Accord.Statistics

open Accord.MachinelLearning.Bayes

let inputs = [|

let outputs = [|0;0;1;1;1;0;1;0;1;1;1;1;1;0]|]
let symbols = [|3;3;2;2]]
When you send them to the FSI, you will see the following:

val inputs : int [] [] =
[I[le; o; o; o]]1; [|e; o; 0; 1]]1; [|1; o; 0; ©o]]; [|2; 1; 0; O]];
[12; 2; 1; o]1; [12; 2; 1; 1]1]1; [l2; 2; 1; 1]]; [lo; 1; o; 0]];
[le; 2; 1; o]1; [I12; 1; 1; o]]; [le; 2; 1; 1]]; [l1; 1; o; 1]];
[11; 0; 1; o]]; [12; 1; o; 1]]]]

>

val outputs : int [] []o; 6; 1; 1; 1; 06; 1; 0; 1; 1; 1; 1; 1; 0]]

>

val symbols : int [] [138; 3; 2, 2]]

The inputs are the values turned into integers. Consider the following example:

Outlook |

Sunny

Overcast

bk

Aciipciatuaic

[

R = =

sl

ot

Mild

Cool

'Wind

'Weak

[y

HURILRLINN

The position in each array is [outlook;temperature; humidity;wind].

The outputs are the result values turned into integers:

a1
The symbols value is an array that tells Accord the total number of possible values for

each feature. For example, the first position is for outlook and there are three possible
values: (0, 1, 2).

Go back to the script and add in the Naive Bayes calculation:

new Accord.MachinelLearning.Bayes.NaiveBayes(4, symbols)
bayes.Estimate(inputs, outputs)

let bayes
let error

Sending to the REPL gives the following:

val bayes : Bayes.NaiveBayes
val error : float = 0.1428571429

The error is calculated by Accord re-running its estimate several times and comparing the
actual to the expected. A good way of interpreting the error is that the lower the number is
better, and the domain dictates if the actual number is “good enough”. For example, a 14
percent error is great for social experiments, where humans are capable for random and
unpredictable behaviors. Conversely, a 14 percent error rate for predicting airplane engine
failure would not be considered acceptable.

weak wind. Go to the script and add this:

let input = [|0;1;1;0]]
let output = bayes.Compute(input)

Sending to the REPL gives us the following:

val input : int [] [1e; 1; 1; 0]]

val output : int 1

So we will be playing tennis on that day.

\U S ilu lllllls (A0 I\CCP 158 REREBIERE VVIiLLACT ualus 1NALVYV T]J(ly o

Created in the 1950s, Naive Bayes is a highly effective classification model that has stood
the test of time. In fact, many spam filters today still use, in part, Naive Bayes. The
biggest advantages of using Naive Bayes are its simplicity and its ability to, well, be right.
The biggest downside is the key assumption that every x variable is completely and utterly
independent. If there is any chance that the x variables are collinear, Naive Bayes breaks
down. Also, Naive Bayes, historically, has been applied to datasets that are Gaussian—
that it follows a bell curve. If you are not familiar with a bell curve, it is a distribution of
data where the most observations occur in the middle values with the outliers to both sides
of the middle having roughly the same number of observations. Here is an example:

10

@-IIIII-

Mon Tues Wed Thurs

In contrast, a skewed distribution has the most observations at one end or the other:

Mon Tues Wed Thurs

10
8

=

When you use Naive Bayes, you will have to make sure the distribution you select
matches your data. Let’s now see if k-NN and/or Naive Bayes can help us with
AdventureWorks.

AUVCIIUICYYUIL RS

In this section, we are going to take the knowledge that we gained in Chapter 5, Time Out
— Obtaining Data, to extract and transform data and apply both k-NN and Naive Bayes
machine learning models. Let’s see if none, one, or both methodologies will help us
increase cross-sales.

\JCllllls LAIT Udaua 1t:auy

Go into Visual Studio and add another script called Adventureworks. fsx. Open up the
script, remove all of the contents, and open NuGet Package Manager console. In the
package manager, run the following lines:

PM> Install-Package FSharp.EntityFramework.MicrosoftSqlServer -Pre
PM> Install-Package fslab

PM> Install-Package FSharp.Data.SqlClient

PM> Install-Package Microsoft.SqlServer.Types

Go back to the script file and add the following references:
#1 "../packages"

#r "EntityFramework.Core.7.0.0-rcl-
final/lib/net451/EntityFramework.Core.d1l"

#r "EntityFramework.MicrosoftSqlServer.7.0.0-rcl-
final/lib/net451/EntityFramework.MicrosoftSqlServer.dl1l"

#r "EntityFramework.Relational.7.0.0-rcl-
final/lib/net451/EntityFramework.Relational.dll"

#r "Inflector.1.0.0.0/1lib/net45/Inflector.dll”

#r "Microsoft.Extensions.Caching.Abstractions.1.0.0-rcl-
final/lib/net451/Microsoft.Extensions.Caching.Abstractions.dl1"
#r "Microsoft.Extensions.Caching.Memory.1.0.0-rcl-
final/lib/net451/Microsoft.Extensions.Caching.Memory.dl1l"

#r "Microsoft.Extensions.Configuration.1.0.0-rcl-
final/lib/net451/Microsoft.Extensions.Configuration.dll"

#r "Microsoft.Extensions.Configuration.Abstractions.1.0.0-rcl-
final/lib/net451/Microsoft.Extensions.Configuration.Abstractions.dll"
#r "Microsoft.Extensions.Configuration.Binder.1.0.0-rcl-
final/lib/net451/Microsoft.Extensions.Configuration.Binder.dl1l"
#r "Microsoft.Extensions.DependencyInjection.1.0.0-rcl-
final/lib/net451/Microsoft.Extensions.DependencyInjection.dll"
#r "Microsoft.Extensions.Logging.1.0.0-rcl-
final/lib/net451/Microsoft.Extensions.Logging.dll"

#r "Microsoft.Extensions.Logging.Abstractions.1.0.0-rcl-
final/lib/net451/Microsoft.Extensions.Logging.Abstractions.dll"
#r "Microsoft.Extensions.OptionsModel.1.0.0-rcl-
final/lib/net451/Microsoft.Extensions.OptionsModel.dl11"

#r "Microsoft.Extensions.Primitives.1.0.0-rcl-
final/lib/net451/Microsoft.Extensions.Primitives.dll"

#r "Remotion.Linqg.2.0.1/1lib/net45/Remotion.Linqg.d11"

#r "System.Collections.Immutable.1.1.36/1ib/portable-
net45+win8+wp8+wpa8l/System.Collections.Immutable.d1ll"

#r "System.Diagnostics.DiagnosticSource.4.0.0-beta-
23516/1ib/dotnet5.2/System.Diagnostics.DiagnosticSource.dll"

#r "System.Xml.Ling.dll"

#r "Ix-Async.1.2.5/1ib/net45/System.Interactive.Async.dl1l"

#r "FSharp.EntityFramework.MicrosoftSqlServer.0.0.2.0-
alpha/lib/net451/FSharp.EntityFramework.MicrosoftSqlServer.dll"

#r
"../packages/Microsoft.Extensions.DependencyInjection.Abstractions.1.0.0-
rcil-

#r
"../packages/FSharp.Data.SqlClient.1.7.7/1ib/net40/FSharp.Data.SgqlClient.dl
lll

#Hr
"../packages/Microsoft.SqlServer.Types.11.0.2/1ib/net20/Microsoft.SqlServer
.Types.dll"

#r "../packages/FSharp.Data.2.2.5/1ib/net40/FSharp.Data.dl1"

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"

#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.dl11l"

#Hr
"../packages/Accord.MachineLearning.3.0.2/1ib/net40/Accord.MachineLearning.
dil"

#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dl1"

open System

open FSharp.Data

open FSharp.Data.Entity
open Microsoft.Data.Entity

open Accord

open Accord.Math

open Accord.Statistics

open Accord.MachinelLearning

open Accord.Statistics.Filters

open Accord.Statistics.Analysis

open Accord.MachinelLearning.Bayes

open Accord.Statistics.Models.Regression

open Accord.Statistics.Models.Regression.Fitting

Next add the following lines of code:

[<Literal>]

let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=AdventurewWorks2014;user
id=PacktReader;password=P@cktM@chinele@rning;"

type AdventureWorks = SqlServer<connectionString, Pluralize = true>

let context = new AdventureWorks()

If you remember from Chapter 5, Time Out — Obtaining Data, this is creating our type
provider to pull data from the database. Send everything so far to the REPL to see the
following:

nested type Sales.SalesTerritoryHistory
nested type Sales.ShoppingCartItem
nested type Sales.SpecialOffer
nested type Sales.SpecialOfferProduct
nested type Sales.Store
nested type dbo.AwBuildVersion
nested type dbo.DatabaselLog
nested type dbo.ErrorLog
end
val context : AdventureWorks

Go back to the script and add this:

let productSubcategories = [|new System.Nullable<int>(1); new
System.Nullable<int>(2); new System.Nullable<int>(3)]]

Sending this to the FSI gives the following:

val (|=]) : id:'a -> a:'a [] -> bool when 'a : equality
val productSubcategories : Nullable<int> [] = [|1; 2; 3]|]

This is also from Chapter 5, Time Out — Obtaining Data; we are overriding the in operator
to handle null values in the database.

Go back to the script and add the following code:

let orderCustomers =
query { for soh in context. "Sales.SalesOrderHeaders ~ do

join sod in context. "Sales.SalesOrderDetails "~ on
(soh.SalesOrderID = sod.SalesOrderID)

join p in context. “Production.Products™ " on (sod.ProductID =
p.ProductID)

join ¢ in context. “Sales.Customers ~ on (soh.CustomerID =
c.CustomerID)

where (soh.OrderDate > DateTime(2013,5,1) &&
p.ProductSubcategoryID |=| productSubcategories && c.StoreID =
System.Nullable<int>())

select(soh.SalesOrderID,c.CustomerID)} |> Seq.toArray

Sending this to the REPL, we get:

val orderCustomers : (int * int) [] =
[| (50788, 27575); (50789, 13553); (506790, 21509); (50791, 15969);
(50792, 15972); (50793, 14457); (50794, 27488); (50795, 27489);
(50796, 27490); (50797, 17964); (50798, 17900); (50799, 21016);
(50800, 11590); (50801, 15989); (50802, 14494); (50803, 15789);
(50804, 24466); (50805, 14471); (50806, 17980); (50807, 11433);
(50808, 115

Even though we haven’t seen this exact code before, we have seen code that is pretty
close. In this block, we are creating a computational expression. We are joining together
the SalesOrderHeader, SalesOrderDetail, Products, and Customer tables so we can
select only the records we are interested in for this analysis. This would be: all bike sales
to individual customers after May 1, 2013. Notice that we are returning two integers as a
tuple: the SalesorderId and the CustomerId.

Go back to the script and add the following code block:

let salesOrderIds = orderCustomers |> Array.distinctBy(fun (soid,coid) ->
soid)
|> Array.map(fun (soid,cid) -> soid)

Sending this to the FSI gives us the following:

val salesOrderIds : int [] =
[|50788; 50789; 50790; 50791; 50792; 50793; 50794; 50795; 50796; 50797;
50798; 50799; 50800; 50801; 50802; 50803; 50804; 50805; 50806; 50807;
50808; 50809

might have bought two bikes, they might have two SalesorderIds so we need to call the
distinctBy high-ordered function.

Go back to the script and enter this:

let orderDetailCounts =
guery { for soh in context. "Sales.SalesOrderHeaders ~ do

join sod in context. "Sales.SalesOrderDetails” " on
(soh.SalesOrderID = sod.SalesOrderID)

join p in context. "Production.Products’™ " on (sod.ProductID =
p.ProductID)

join ¢ in context. “Sales.Customers” on (soh.CustomerID =
c.CustomerID)

where (sod.SalesOrderID |=| salesOrderIds)

select(sod.SalesOrderID, sod.SalesOrderDetaillD)}

| > Seq.countBy(fun (soid, sodid) -> soid)

| > Seq.toArray

Send this to the FSI to get this (it takes a couple of seconds):

val orderDetailCounts : (int * int) [] =
[| (50788, 1); (50789, 1); (50790, 1); (50791, 1); (50792, 1); (50793, 1);
(50794, 1); (50795, 1); (50796, 1); (50797, 1); (50798, 1); (50799, 1);
(50800, 1); (50801, 1); (50802, 1); (50803, 1); (50804, 1); (50805, 1);
(50806, 1); (50807
This is a similar query to the first one. Here we are joining together the same four tables
and then selecting both the SalesOrderId and the SalesOrderDetailld for the customers
we have already identified. We then apply the countBy high-order function to count up all
of the details for each order. If there is only one orderbDetailId, then only the bike was
purchased. If there is more than one, then the customer purchased items along with the

bike.

We now have to pull individual details for a given customer. Since the database is in third
normal form, these details are scattered across many tables. Instead of generating a pretty
nasty expression, let’s use the built-in view that has already been created in the database:
vIndividualCustomer.

The catch is that the EF type provider cannot handle views at the time of this writing. The
answer to this problem is another type provider.

Go to the script and enter this:

[<Literal>]

let commandText = "Select * from [Sales].[vIndividualCustomer]"

let command = new SqlCommandProvider<commandText,connectionString>()
let output = command.Execute()

let customers = output |> Seq.toArray

Sending this to the REPL, you can see the following:

val commandText : string = "Select * from [Sales].[vIndividualCustomer]"
val command : SgqlCommandProvider<...>
val output

val customers : SqlCommandProvider<...>.Record [] =

[1{ BusinessEntityID = 9196; Title = None; FirstName = "Calvin";
MiddleName = Some "A"; LastName = "Raji"; Suffix = None; PhoneNumber = Some
"230-555-0191"; PhoneNumberType = Some "Cell"; EmailAddress = Some
"calvin20@adventure-works.com"; EmailPromotion = 2; AddressType
"Shipping"; AddressLinel = "5415 San Gabriel Dr."; AddressLine2 None;
City = "Bothell"; StateProvinceName = "Washington"; PostalCode = "98011";
CountryRegionName = "United States"; Demographics = Some

"<IndividualSurvey
xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/IndividualSurvey"><TotalPurchaseYTD>-13.5</TotalPurchaseYTD>
<DateFirstPurchase>2003-02-06Z</DateFirstPurchase><BirthDate>1963-06-
14Z</BirthDate><MaritalStatus>M</MaritalStatus><YearlyIncome>50001-
75000</YearlyIncome><Gender>M</Gender><TotalChildren>4</TotalChildren>
<NumberChildrenAtHome>2</NumberChildrenAtHome><Education>Bachelors
</Education><Occupation>Professional</Occupation>
<HomeOwnerFlag>1</HomeOwnerFlag><NumberCarsOwned>2</NumberCarsOwned>
<CommuteDistance>2-5 Miles</CommuteDistance></IndividualSurvey>" };

{ BusinessEntityID

Each record is a beast! It looks like the database has a field called I1ndividualSurvey that
contains data about some of the customers that was collected on a survey. Interestingly,
they decide to store it as XML. I think this proves the axiom that if given a datatype,
developers will use it, whether it make sense or not. In any event, how are we going to
parse this XML? I’ll give you a hint: it rhymes with hype divider. That’s right, the XML
type provider. Go back to the script and add this code:

[<Literal>]

let samplexml = """<IndividualSurvey
xmlns="http://schemas.microsoft.com/sglserver/2004/07/adventure-
works/IndividualSurvey"><TotalPurchaseYTD>-13.5</TotalPurchaseYTD>
<DateFirstPurchase>2003-02-06Z</DateFirstPurchase><BirthDate>1963-06-
14Z</BirthDate><MaritalStatus>M</MaritalStatus><YearlyIncome>50001-
75000</YearlyIncome><Gender>M</Gender><TotalChildren>4</TotalChildren>
<NumberChildrenAtHome>2</NumberChildrenAtHome><Education>Bachelors
</Education><0Occupation>Professional</Occupation>
<HomeOwnerFlag>1</HomeOwnerFlag><NumberCarsOwned>2</NumberCarsOwned>
<CommuteDistance>2-5 Miles</CommuteDistance></IndividualSurvey>"""

#r "System.Xml.Ling.dll"

type IndividualSurvey = XmlProvider<sampleXml>

let getIndividualSurvey (demographic:Option<string>) =
match demographic.IsSome with
| true -> Some (IndividualSurvey.Parse(demographic.Value))
| false -> None

Sending this to the REPL gives us the following:

type IndividualSurvey = XmlProvider<...>
val getIndividualSurvey :
demographic:0Option<string> -> XmlProvider<...>.IndividualSurvey option

The XML type provider takes a representative sample to generate the types. In this case,
sampleXML is being used to generate the types. With this type provider handling the heavy

and their demographic information in an easy-to-use format.
Go back to the script and enter this:

let customerDemos = customers |> Array.map(fun c ->
c.BusinesseEntityID, getIndividualSurvey(c.Demographics))
|> Array.filter(fun (id,s) -> s.IsSome)
|> Array.map(fun (id,s) -> id, s.Value)
|> Array.distinctBy(fun (id,s) -> id)

Sending this to the FSI gives us the following:

</IndividualSurvey>);
(2455,
<IndividualSurvey
xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/IndividualSurvey">
<TotalPurchaseYTD>26.24</TotalPurchaseYTD>
<DateFirstPurchase>2004-01-24Z</DateFirstPurchase>
<BirthDate>1953-04-10Z</BirthDate>
<MaritalStatus>M</MaritalStatus>
<YearlyIncome>25001-50000</YearlyIncome>
<Gender>F</Gender>
<TotalChildren>2</TotalChildren>
<NumberChildrenAtHome>0</NumberChildrenAtHome>
<Education>Bachelors </Education>
<Occupation>Management</Occupation>
<HomeOwnerFlag>1</HomeOwnerFlag>
<NumberCarsOwned>1</NumberCarsOwned>
<CommuteDistance>5-10 Miles</CommuteDistance>
</IndividualSurvey>);

el

There is not much new code here. Since we have to take into account customers that do
not have demographic information recorded, we are using Option types. If there is
demographic information, a Some is returned with the values. If not, a None is returned. We
then filter that to only give us the customers with demographic records and distinct is
called to make sure that we have only one record per customer.

With the customer demographic ready, we can now build a final data frame that contains
all of the information we need. Go back to the script file and enter this:

let getDemoForCustomer customerId =
let exists = Array.exists(fun (id,d) -> id = customerId) customerDemos
match exists with
| true -> Some (customerDemos
|> Array.find(fun (id,d) -> id = customerlId)
|> snd)
| false -> None

let orderCustomerDemo =
orderCustomers
|> Array.map(fun oc -> oc, getDemoForCustomer(snd oc))
|> Array.map(fun (oc,d) -> fst oc, snd oc,

|> Array.filter(fun (oid,cid,d) -> d.IsSome)
|> Array.map(fun (oid,cid,d) ->
oid, cid, d.value)

Sending this to the FSI, you can see the following:

</IndividualSurvey>);
(50949, 19070,
<IndividualSurvey
xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/IndividualSurvey">
<TotalPurchaseYTD>27.7</TotalPurchaseYTD>
<DateFirstPurchase>2003-08-20Z</DateFirstPurchase>
<BirthDate>1966-07-08Z</BirthDate>
<MaritalStatus>S</MaritalStatus>
<YearlyIncome>greater than 100000</YearlyIncome>
<Gender>F</Gender>
<TotalChildren>2</TotalChildren>
<NumberChildrenAtHome>2</NumberChildrenAtHome>
<Education>Bachelors </Education>
<Occupation>Management</Occupation>
<HomeOwnerFlag>0</HomeOwnerFlag>
<NumberCarsOwned>4</NumberCarsOwned>
<CommuteDistance>0-1 Miles</CommuteDistance>
</IndividualSurvey>);

el

We now have a tuple with three elements: orderId, CustomerId, and the demographic
information. Note that the output still shows the demographic information as XML though
we will be able to see in a second that indeed, those elements are part of the demographic

type.

Go into the script file and enter this:

let getMultiOrderIndForOrderId orderId =
orderDetailCounts
|> Array.find(fun (oid,c) -> oid = orderId)
|> snd > 1

let orders =

orderCustomerDemo

|> Array.map(fun (oid,cid,d) -> oid, getMultiOrderIndForOrderId(oid),
d)

Sending this to the REPL gives us the following:

(50949, false,
<IndividualSurvey
xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/IndividualSurvey">
<TotalPurchaseYTD>27.7</TotalPurchaseYTD>
<DateFirstPurchase>2003-08-20Z</DateFirstPurchase>
<BirthDate>1966-07-08Z</BirthDate>
<MaritalStatus>S</MaritalStatus>
<YearlyIncome>greater than 100000</YearlyIncome>

<TotalChildren>2</TotalChildren>
<NumberChildrenAtHome>2</NumberChildrenAtHome>
<Education>Bachelors </Education>
<Occupation>Management</Occupation>
<HomeOwnerFlag>0</HomeOwnerFlag>
<NumberCarsOwned>4</NumberCarsOwned>
<CommuteDistance>0-1 Miles</CommuteDistance>
</IndividualSurvey>);

]

getMultiOrderIndForOrderId is a function that takes in the orderId and finds the record
in the orderDetailsCounts frame. If there is more than one, it returns true. If there is
only one order (just the bike), it returns false.

With that function, we can create a tuple that has orderId, multiorderind, and the
demographics. I think we are ready to start doing some modeling! Before we start, we
need to ask ourselves one question: what values do we want to use? The y variable is clear
—the multiorderInd. But which one of the demographic values do we want to plug into
our model as x variables? Since we want to change our website to account for the model
results, we probably need variables that are usable on the site. Some features like
BirthDate are available if the person logs into our site via their Facebook or Google
accounts, those accounts have that information accurately populated and the user agrees to
let our site access that information. Those are big ifs. Alternatively, we might be able to
use the inferred analytics via the cookies that advertisers place on the user’s device, but
that is also an imprecise measure, depending on the feature used. It is better to design our
model assuming that any information that will be input to the model will be accurately
self-reported, and let’s give the user an incentive to accurately self-report. This means
education, yearly income, and other sensitive measures are out. Let’s look at the gender
and marital status, which we should be able to get from the user, if asked correctly. So our
model will be MultiOrder = Gender + MartialStatus + E.

Go to the script and enter this:

let getValuesForMartialStatus martialStatus =
match martialStatus with
| |lsl| -> 0.0
| _ ->1.0

let getValuesForGender gender =
match gender with
| |IMI| -> 0.0
| _ ->1.0

let getValuesForMultiPurchaseInd multiPurchaseInd =
match multiPurchaseInd with
| true -> 1
| false -> 0

Sending this to the REPL, we see the following:

val getValuesForMartialStatus : martialStatus:string -> float
val getValuesForGender : gender:string -> float

Since Accord deals with input float values and output int values, we need a function to
convert the features of our attributes (current as strings) to those types. If you want to
make sure we have all of the cases covered, you can also send this to the FSI:

orders |> Array.distinctBy(fun (oid,ind,d) -> d.Gender)
|> Array.map(fun (oid,ind,d) -> d.Gender)
//val it : string [] = [|"M"; "F"|]

orders |> Array.distinctBy(fun (oid,ind,d) -> d.MaritalStatus)
|> Array.map(fun (oid,ind,d) -> d.MaritalStatus)
//val it : string [] = [|"M"; "S"|]

There is one danger with how the getvalues function is written. If you remember from
the previous chapter, dealing with missing values is an ongoing concern when doing any
kind of modeling. The functions deal with the null issue by running away from it.
Consider the getvaluesForGender function:

let getValuesForGender gender =
match gender with
| IIMII _> 0.0
| _ -> 1.0

If a gender code comes in as UNK, YOMAMA, null, or any other string, it gets assigned the
female code. This means we would be over reporting the number of females in our model.
We can get away with that with this dataset because every record had values M or F, but if

they did not, we would need a way to handle the incorrect values. In this case, I would
create some code like this:

let mutable lastGender = "M"
let getValuesForGender gender =
match gender, lastGender with

| "M",_ -> 0.0
| "F",_ -> 1.0
| _,"M" -> lastGender = "F"
1.0
| _,_ -> lastGender = "M"
0.0

This would balance the inferred values equally across males and females. In any event,
let’s get to modeling.

NTINLIN QiU /AAUVYUTLIItUIT VY UL VDO Uuaua
Go back to the script and enter this:

let inputs = orders |> Array.map(fun (oid,ind,d) ->
[|lgetValuesForMartialStatus(d.MaritalStatus);getValuesForGender(d.Gender)|]
)

let outputs = orders |> Array.map(fun (oid,ind,d)
getValuesForMultiPurchaseInd(ind))

let classes = 2
let k =
let knn = new KNearestNeighbors(k, classes, inputs, outputs)

Sending this to the REPL gives us the following:
1]

val classes : int = 2
val k : int = 3
val knn : KNearestNeighbors

Now that we have our model set up, let’s pass in the four possible scenarios. Go to the
script and enter this:

knn.Compute([]0.0;0.0]|])
knn.Compute([]1.0;0.0]])
knn.Compute([]0.0;1.0]])
knn.Compute([]1.0;1.0]])
Sending this to the FSI give us the following:
>

val it : int = 1

>

val it : int = 1

>

val it : int = 0

>

val it : int = 1

So it looks like single women are NOT buying multiple items.

INGQIVE DAdyto daliud /AUuyviiituIi Tt vvul no uata
Go back to the script and enter this:

let inputs' = orders |> Array.map(fun (oid,ind,d) ->
[|int(getValuesForMartialStatus(d.MaritalStatus));

int(getValuesForGender(d.Gender)); |])

let outputs' = orders |> Array.map(fun (oid,ind,d) ->
getValuesForMultiPurchaseInd(ind))

let symbols = [|2;2]]

let bayes
let error

new Accord.MachinelLearning.Bayes.NaiveBayes(2,symbols)
bayes.Estimate(inputs', outputs')

Sending that to the FSI gives us the following:

—
val symbols : int [] = [|2; 2]]
val bayes : NaiveBayes
val error : float = 0.148738812

So we have a Naive Bayes with a 15 percent error. Not great, but let’s press on. Enter in
the same four options for gender/martialStatus in the script file:

bayes.Compute([]|0;0]])
bayes.Compute([|1;0]])
bayes.Compute([]|0;1]])
bayes.Compute([|1;1]])

When you send it to the REPL, you will get the following:

val it : int = 1
>
val it : int
>
val it : int
>
val it : int
>

1

1

1

Rut Row Raggy. Looks like we have a problem. In fact, we do. If you remember the
previous description of using the Naive Bayes model, it needs to have the values
distributed along a bell curve to be effective. 90 percent of the bike purchases have a
cross-sale—which means we are heavily skewed. No matter what kind of tweaks you do
to the model, you can’t get around the fact that you are multiplying by 0.9 to Yes for
multiPurchase.

Ividiiilg Uusc U1 our unioverios

What should we do? We have a k-NN telling us that single women are not buying
additional items and we have Naive Bayes being no help at all. We could do some more
classification models, but let’s assume we feel good enough about our analysis and want to
go to production with this model. How should we do that? A key issue to consider is that
the model is based on some static data in one of our database tables that is not updated via
the normal transactions of the company. This means we really don’t need to retrain the
model frequently. Another problem we have is that we need to figure out the gender and
marital status of the people ordering our bikes. Perhaps we are asking the wrong question.
Instead of asking how to get the gender and marital status of the user, what if we already
knew it? You may be thinking that we don’t know because we haven’t asked yet. But we
might—based on the bike selected for purchase!

UL LIt U4dta 1tauy
Go back into the script and enter this code block:

let customerProduct =
gquery { for soh in context. "Sales.SalesOrderHeaders ~ do
join sod in context. "Sales.SalesOrderDetails” " on
(soh.SalesOrderID = sod.SalesOrderID)
join p in context. "Production.Products”™ on (sod.ProductID =
p.ProductID)
join ¢ in context. “Sales.Customers” on (soh.CustomerID =
c.CustomerID)
where (sod.SalesOrderID |=| salesOrderIds)
select(c.CustomerID, sod.ProductID)}
| > Seq.toArray

Sending this to the REPL, we see the following:

val customerProduct : (int * int) [] =
[1(27575, 780); (13553, 779); (21509, 759); (15969, 769); (15972, 760);
(14457, 798); (27488, 763); (27489, 761); (27490, 770); (17964, 793);
(17900,

Hopefully, this code should look pretty boring to you by now. It is creating a tuple of
customerId and ProductId from all of the bike sales.

Go back to the script and enter this:

let getProductId customerId =
customerProduct |> Array.find(fun (cid,pid) -> cid = customerId)
|> snd

let getSingleFemaleInd (martialStatus:string, gender:string) =
match martialStatus, gender with
| |ISII’ IIFII -> 1
| —r — -> 0

let customerDemo = orderCustomerDemo |> Array.map(fun (oid,cid,d) -> cid,
getSingleFemaleInd(d.MaritalStatus, d.Gender))

|> Array.map(fun (cid,sfInd) -> cid,
getProductId(cid),sfInd)

Sending this to the REPL, we can see the following:

val getProductId : customerId:int -> int
val getSingleFemaleInd : martialStatus:string * gender:string -> int
val customerDemo : (int * int * int) [] =

[|(13553, 779, 0); (15969, 769, 0); (15972, 760, 0); (14457, 798, 0);

(17964, 793, 0);

This code block is shaping our data for Accord by creating a frame of tuples of
customerId, productId, and singleFemaleInd. We are almost ready to throw this data at
a model, but we still need to determine which model we want to use. We are trying to
determine the probability of a customer being a single female based on the bike purchased.
This seems like a question that is well-suited for a logistic regression (Chapter 3, More

regression:
singleFemale = BikeldO + Bikeldl + Bikeld? + BikeldN + E

If you throw this code into your script and send it to the FSI, you will see we have 80
different bike IDs:

let numberOfBikeIds = customerDemo |> Array.map (fun (cid,pid,sfInd) ->
pid)

|> Array.distinct

|> Array.length
val numberOfBikeIds : int = 80

So how do we create an input of 80 features from the original frame? Certainly not by
hand. Let’s see if Accord can help us.

.l_'.lAlJalll,llllS ACAlUL O

Open up the script you were using from the previous section and enter this:

let inputs'' = customerDemo |> Array.map(fun (cid,pid,sfInd) -> pid)
let outputs'' = customerDemo |> Array.map(fun (cid,pid,sfInd) ->
(float)sfInd)

let expandedInputs = Tools.Expand(inputs'')

Sending this to the REPL, we see the following:

val expandedInputs : float [] [] =
[I[|lo.o; 06.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0, 0.0;
0.0, 0.0; 0.0; 0.0, 0.0, 0.0; 0.0; 0.0; 0.0, 0.0; 0.0; 0.0; 0.0; 0.0,

0.0; 0.0

What we are doing is taking the customerbemo frame and selecting the productId. We are
then sending that array to Accord’s Tools.Expand method that explodes the array so that
each value becomes its own feature. Graphically, it looks like this:

Index Color Index Blue Red Black
0 Blue 0 1 0 0
1 Blue 1 1 0 0
2 Blue 2 4 0] 0
3 Red - 0 1 0
4 Red 4 0 1 0
9 Black 5 0 0] 1

As you can guess after reading Chapter 5, Time Out — Obtaining Data, this is considered a
sparse data frame. With the input and output ready, go back to the script file and enter this:

let analysis = new LogisticRegressionAnalysis(expandedInputs, outputs'')
analysis.Compute() |> ignore
let pValue = analysis.ChiSquare.PValue
let coefficients = analysis.CoefficientValues
let coefficients' = coefficients |> Array.mapi(fun i ¢ -> 1i,c)
|> Array.filter(fun (i,c) -> c > 5.0)

Before you send this to the REPL, let me warn you. The reason we identify a sparse frame
is that computing a regression on 80 features takes a while. So hit ALT + ENTER and go
get a cup of coffee. From Starbucks. Across town. Eventually, you will get this back:

val analysis : Analysis.LogisticRegressionAnalysis
>

val it : unit = ()

>

val pvalue : float = 1.0

val coefficients : float [] =

-8.762459325e-11; -2.16833771e-10; -7.952785344e-12; 1.992174635e-10,
2.562929393e-11; -2.957572867e-11; 2.060678611le-10; -2.103176298e-11;
-2.3

And when we filter at the coefficient table, we can see that there is one bike model that is
favored by single women. Add this to your script file and send to the FSI:

let coefficients' = coefficients |> Array.mapi(fun i ¢ -> i,c)
|> Array.filter(fun (i,c) -> c > 5.0)

val coefficients' : (int * float) [] = [|(765, 15.85774698)]|]

>

So perhaps when a person purchases item number 765, we try to give them an incentive to
buy other products, either via a coupon or a really slick website experience. This is where
an excellent UX person with a knowledgeable marketing person can pay dividends. Since
I am neither, I will leave that exercise to the reader.

ouliiiiary

In this chapter, we took a look at two common machine learning classifiers: k-Nearest
Neighbors and Naive Bayes. We saw them both in action with our AdventureWorks
dataset to see if we can increase cross sales. We saw that k-NN had some limited success
and Naive Bayes was not useful. We then used our old friend logistic regression to help us
narrow down a specific bike model that can be used to promote cross sales. Finally, we
considered that since the data is ad hoc, we can’t implement any real-time training on our
website. We would want to periodically run this analysis to see if our original findings
continued to hold.

In the next chapter, we are going to take off our software engineer hat and put on our data
scientist hat to see if we can do anything with that traffic stop data. We are going to look at
augmenting the original dataset with another dataset and then using a couple of clustering
models: k-means and PCA. See you on the next page!

b[l&:lpIEl." /. A1 dlllIC D[O[)S diilll Ul asll
L.ocations — When Two Datasets Are
Better Than One

If you remember from Chapter 4, Traffic Stops — Barking Up the Wrong Tree?, we used a
decision tree to help us determine if a person received a ticket or a warning based on
several seasonality factors like time of day, day of the week, and the like. Ultimately, we
could not find a relationship. Your first inclination might be to throw out the dataset,
which I think is a mistake because there might be data gold in them thar hills, but we are
just using the wrong model. Also, if a single dataset is not profitable, I typically start
augmenting that set with others to see if the combination of features will provide a more
satisfactory answer. In this chapter, let’s go back to our Code-4-Good group and see if we
can both augment the traffic stop dataset and apply some different models that will help us
formulate interesting questions and answers. Perhaps even if we are not asking the right
questions, the computer can help us ask the right questions too.

JILUpCIvisclu 1Cariiig

To this point in the book, we have used several different models to answer our questions:
linear regression, logistic regression, and kNN to name a few. Although different in their
methodology, they share a common thread; we told the computer the answer (called the
dependent or y variable) and then provided a series of features (called independent or x
variables) that can be associated with that answer. Consider the following diagram for
example:

Hours Of | Number Of Passed
Studying Beers Exam?

2 4 No
1 o No
§) 0 Yes

We then presented the computer with some combination of independent variables that it
had not seen before and asked it to guess the answer:

Hours Of | Number Of Passed
Studying Beers Exam?

5 1 ?
), 8 ?
4 4 ?

We then compared to the known answers via the test and, if it did a good job guessing, we
would use the model in production:

Hours Of | Number Of Passed
Studying Beers Exam?

5 1 Yes Yes
2 8 .- \\}' No No
4 4 Yes No

Actual

This methodology of telling the computer the answer ahead of time is called supervised
learning. The term supervised is used because we provide the computer an answer
explicitly and then tell it which model to use.

There is another class of models that do not provide the answer to the computer. This class
is called unsupervised learning. If your mental model of unsupervised learning is the
chaos that engulfs a sixth grade class when a substitute teacher shows up the day before
summer vacation, you are not far off. Okay, maybe not that bad. With unsupervised
learning, we hand the computer a data frame of only attributes and ask it to tell us about
the data. With that information, we can then narrow down the data that might help us
make insightful business decisions. For example, let’s say you send this data frame to the
computer:

Hours Of | Number Of
Studying Beers

2 4

B~ N OO B
> 00 B O O

It might tell you that the data seems to cluster in two areas:

Beer

Although you might have eye-balled this relationship on this simple 2D data frame, the
task becomes much harder, if not impossible, when adding more rows and features. In this

Also, we can use the computer to tell us what features are useful in a data frame and what
features are just noise. For example, consider this dataset:

Hours Of Studying||[Number Of Beers||StudyLocation
2 ||4 Dorm |
1 ||5 Dorm |
6 ||0 Dorm |
5 ||1 Dorm |
2 ||8 Dorm |
4 ||4 Dorm |

Will the inclusion of StudyLocation in our data frame lead to any insights? The answer is
no, because the values are all the same. In this chapter, we are going to use Principle
Component Analysis (PCA) to this kind of feature filtering; it will tell us what features
are important and what can be safely removed.

NTI1ICAlLlY

As mentioned in the prior section, k-means is an unsupervised technique: observations are
grouped based on mean of each cluster. Let’s take a look at k-means in action. Open up
Visual Studio and create a new Visual F# Windows Library Project. Rename the
Script.fsx file to kmeans. fsx. Open up the NuGet Package Manager console and enter
the following:

PM> install-package Accord.MachineLearning

Next, go to the script and replace all of the contents with this:

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dl1"

#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.d1l"

#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dl1l"
H#Hr
"../packages/Accord.MachinelLearning.3.0.2/1ib/net40/Accord.MachinelLearning.
dil"

open Accord.MachinelLearning

Next, let’s create an array of different beverages that are served at our local restaurant:

let drinks = ["Boones Farm", O;
"Mad Dog", 1;
"Night Train", 2;
"Buckfast", 3;
"Smirnoff", 4;
"Bacardi", 5;
"Johhnie Walker", 6;
"Snow", 7;
"Tsingtao", 8;
"Budweiser", 9;
"Skol", 10;
"Yanjing", 11;
"Heineken", 12;
"Harbin", 13]

Sending this to the FSI, you will see the following:

val drinks : (string * int) list =
[("Boones Farm", 0); ("Mad Dog", 1); ("Night Train", 2); ("Buckfast", 3);
("Smirnoff", 4); ("Bacardi", 5); ("Johhnie walker", 6); ("Snow", 7);
("Tsingtao", 8); ("Budweiser", 9); ("Skol", 10); ("Yanjing", 11);
("Heineken", 12); ("Harbin", 13)]

>

Go back to the script and enter in some records of some patrons of the restaurant. We are
using a float value because that is what Accord expects as an input.:

let observations = []|[]1.0;2.0;3.0]],;[]1.0;1.0;0.0]|];
[15.0;4.0;4.0]];

[/]4.0;4.0;5.0|];[]14.0;5.0;5.0]],[]6.0;4.0;5.0]];
[|11.0;8.0;7.0]|1;

Sending that to the REPL gives us the following:

val observations : float [] [] =
[I[l1.0; 2.0; 3.0]|]; [|1.0; 1.0; 0.0|]; [|5.0; 4.0; 4.0]|]; [|4.0; 4.0;

5.0]];

[|4.0; 5.0; 5.0]]; [|6.0; 4.0; 5.0|]; [|11.0; 8.0; 7.0]|];

[|12.0; 8.0; 9.0|]; [|16.0; 8.0; 9.0]|]]]
You will notice that there are nine different patrons and each had three drinks. Patron
number 1 had a Boone’s Farm, a Mad Dog, and a Night Train. With this data ready, let’s
run a k-means against it. Enter this into the script file:

let numberOfClusters = 3
let kmeans = new KMeans(numberOfClusters);
let labels = kmeans.Compute(observations)

When you send this to the FSI, you will see the following:

val numberOfClusters : int = 3

val kmeans : KMeans

val labels : int [] = [|0; ©0; 1; 1; 1; 1; 2; 2; 2|]

This output takes each patron and assigns them to one of the three clusters. For example,
Patrons number 1 and 2 are in cluster number 0. If we wanted more observations in each
cluster, we could change the numberofClusters like this:

let numberOfClusters = 2
let kmeans new KMeans(numberOfClusters);
let labels kmeans.Compute(observations)

And sending that to the FSI would give the following:

val numberOfClusters : int = 2

val kmeans : KMeans

val labels : int [] = [|1; 1; 1; 1; 1; 1; 0; 0; 0]]

Notice that the computer does not try to label or otherwise assign any value to each of the
clusters. The data scientist would then need to assign a meaningful value, if one is
possible. Go back to the script and change the numberofclusters back to three and resend
to the FSI. Looking at the input array, we can say that the cluster assigned o is for fortified
wine drinkers, cluster 1 is for hard liquor drinkers, and cluster 2 is for beer drinkers.
However, sometimes you may not be able to tell what each cluster means by eye-balling
the input array. In that case, you can ask Accord for some (limited) help. Enter this into
the script file:

kmeans.Clusters.[0]

Sending this to the FSI will give the following:

val it : KMeansCluster =
Accord.MachineLearning.KMeansCluster
{Covariance = [[4.3; 2.6; 3.2]
[2.6; 2.266666667; 2.733333333]
[3.2; 2.733333333; 3.866666667]];

Mean = [|3.5; 3.333333333; 3.666666667]|];
Proportion = 0.6666666667;}

Notice the mean is mid-threes, which is a low number as we are counting from 0 to 13. We
could say that category 0’s label should be Buckfast-like drinkers, which is generally
correct.

fllllLlPlC LJUlllPUllClll ﬂllal)’ 10 \f L,lﬂ’

Another common task we can do with unsupervised learning is to help us throw out
features that are not relevant. If you remember from the last chapter, we used a stepwise
regression to determine the best features when building our model and then used Occum’s
Razor to toss insignificant features. One of the more common things you can do with PCA
is use this unsupervised model as a way of picking the best features—the principle
components of the frame.

Add another script file to your project and name it pca. fsx. Add in the following code:

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dl1"
#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.d1l"
#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dl1"

open Accord.Statistics.Analysis

let sourceMatrix = [2. 5, 2.4
' I

I\)
I\)

I
1.
1.

| [
[l
[l

; 1. 1|
Sending this to the FSI gives the following:

val sourceMatrix : float [] [] =

[I[12.5; 2.4]]; [le.5; e.7]]; [l2.2; 2.9]]; [|1.9; 2.2]]; [|

[12.3; 2.7]]1; [l2.0; 1.6]]; [|1.6; 1.1]]; [I1.5; 1.6]]; [I

In this case, the sourceMatix is a list of students that studied for a certain number of hours
for an exam and the number of beers that they consumed before the exam. For example,
the first student studied 2.5 hours and drank 2.4 beers. Unlike similar examples you have
seen in the book so far, you will notice that there is not a dependent variable (Y) in this
frame. We don’t know if these students passed or not. But with just these features, we can
determine which ones would be the most useful for an analysis. You might be saying to
yourself, “How is that possible?” Without going too much into the math, the PCA will
look at the variance of each of the variables under a series of scenarios. If the variable can
explain differences, it is given a higher score. If it cannot, it is given a lower one.

Let’s see what PCA tells us about this dataset. Enter this code into the script:

let pca = new PrincipalComponentAnalysis(sourceMatrix,
AnalysisMethod.Center)

pca.Compute()

pca.Transform(sourceMatrix)

pca.ComponentMatrix

Sending this to the REPL, we will get the following:

val pca : PrincipalComponentAnalysis
val it : float [,] = [[0.6778733985; -0.7351786555]
[0.7351786555; 0.6778733985]]

You will notice that the output of the ComponentMatrix property is a 2 x 2 array with the

and the contents of the array are called eigenvalues. If you start working deeply with PCA,
you will need to come up to speed with what those words mean and the implications of the
values. For our purposes here, we can safely ignore these values (unless you want to toss
around the word, eigenvalue, at your next family gathering).

The important property that we do need to pay attention to with PCA is the component
proportions. Go back to the script file and enter this:

pca.ComponentProportions

Sending this to the REPL gives the following:

val it : float [] = [|©.9631813143; 0.03681868565]]

These values are important for our analysis. Notice how adding these two values together
amounts to 100 percent? These percentages tell you the amount of variance (and therefore
the amount of usefulness) in the data frame. In this case, the hours of studying is 96
percent of the variance with the amount of beer being only 4 percent, so if we wanted to
use this data in some kind of analysis, we would certainly pick the hours of studying and
safely discard the beer drinking. Note that if we increased the range of beers being drunk,
the percentages would shift and perhaps we would want to use both variables. This is a
fairly simple example with two features. PCA really shines when you have lots and lots of
features and you need to determine their usefulness.

11di1IC S0P dill Ciasll exApPluliaudvil

With the k-means and PCA theory under our belts, let’s see what we can do with open
data. If you remember, we had a dataset for traffic stops. Let’s bring in two more datasets:

the number of car crashes over the same time period, and also the amount of precipitation
on the day of the crash/ticket.

Ligtpal llls CIIC Ol iptl alifiu Uit uawa

In Visual Studio, create a new Visual F# Library Project called Hack4Good. Traffic:

MNew Project

?

*

~| ii° |2=|| Search Installed Templ 2 -

Type: Visual F#

A project for creating an F# library

- Browse...

b Recent MET Framework 452~ Sortby: Default
4 |nstalled E#
E Console Application Visual F#
F
4 Templates
] F#
I Visual C# ‘nﬁi! Library Visual F#
I+ Visual Basic -
. Fe
b Visual C++ ,”qi! Portable Library (MET 4.5, Windo.., Visual F#
4 Visual F# 3
% E#
Android Eqi! Portable Library (MET 4.5, Windo... Visual F#
b 05 2
= £ E#
Silverlight ,ﬂt‘i! Portable Library (.MET 4.5, Windo... Visual F#
Windows £
J 4
WPF ,”[é! Portable Library (.NET 4.5, Windo... Visual F#
SOL Server .
E#
Datakactary E Tutorial Visual F#
I JavaScript
HDInsight
I Python
I TypeScript
e -
b Online Click here to go online and find termplates.
Mame: Hack4Good. Traffic
Location: FAGit\MLDotMet\Book Chaptersi\ Chapter0™,
Solution name: |Hack4Good. Traffic.Solution|

| Create directory for solution

[] Add to source control

[ok ||

Cancel

Once the project is created, rename the Script.fsx file to Clustering. fsx:

Solution Explorer > | X
@ o-5d p-
Search Solution Explorer (Ctrl+;) pol

byl Solution 'Hack4Good. Traffic.Solution’ (1 project)
4 +[F# Hack4Good.Traffic
[» =B References
a F* fAssemblylnfo.fs
+F# Libraryl.fs
&[T Clusteringfsx
ay_] packages.config

Next, open the NuGet Package Manager console and enter this:

PM> install-package Accord.MachineLearning

Inside Clustering.fsx, enter in the following code into the script:

#r "FSharp.Data.TypeProviders.dll"

#r "System.Data.Linqg.dl1l"

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"

#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.dl11l"

#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dll"
#r
"../packages/Accord.MachineLearning.3.0.2/1ib/net40/Accord.MachineLearning.
dil"

open System

open System.Ling

open System.Data.Linq

open System.Data.Entity

open Accord.MachinelLearning

open System.Collections.Generic

open Accord.Statistics.Analysis

open Microsoft.FSharp.Data.TypeProviders

[<Literal>]

let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=Traffic;user id=chickenskills@nc54a9m5kk;password=skllzm@tter;"
type Geolocation = {Latitude: float; Longitude: float}

type EntityConnection = SqglEntityConnection<connectionString,Pluralize =
true>
let context = EntityConnection.GetDataContext()

When you send this to the FSI, you will see the following:

val connectionString : string =
"data source=nc54a9m5kk.database.windows.net;initial catalog=T"+[61
chars]
type Geolocation =
{Latitude: float;
Longitude: float;}
type EntityConnection =
class
static member GetDataContext : unit ->
EntityConnection.ServiceTypes.SimpleDataContextTypes.EntityContainer
+ 1 overload
nested type ServiceTypes
end
val context
EntityConnection.ServiceTypes.SimpleDataContextTypes.EntityContainer

With this prep code out of the way, let’s bring down the stop data from the database. Put
the following code into the script file:

//Stop Data
type TrafficStop = {StopDateTime: DateTime; Geolocation: Geolocation;
DispositionId: int}
let trafficStops =
context.dbo_TrafficStops
|> Seq.map(fun ts -> {StopDateTime = ts.StopDateTime.Value;
Geolocation = {Latitude =

Longitude = Math.Round(ts.Longitude.Value, 3)};
DispositionId = ts.DispositionId.Value})
|> Seq.toArray

When you send it to the REPL, you will see the following:

type TrafficStop =
{StopDateTime: DateTime;
Geolocation: Geolocation;
DispositionId: int;}
val trafficStops : TrafficStop [] =
[|{StopDateTime = 6/30/2012 12:36:38 AM;
Geolocation = {Latitude = 35.789;
Longitude = -78.829;},
DispositionId = 7;}; {StopDateTime = 6/30/2012 12:48:38 AM;
Geolocation = {Latitude = 35.821;
Longitude = -78.901;},;
DispositionId = 15;};
{StopDateTime = 6/30/2012 1:14:29 AM;
Geolocation = {Latitude = 35.766;

All of this data should be familiar to you from Chapter 4, Traffic Stops — Barking Up the
Wrong Tree?. The only real difference is that there is now a geolocation type that holds
both latitude and longitude. Notice that we assign whatever values are in the database first
in this line:

|> Seq.map(fun ts -> {StopDateTime = ts.StopDateTime.Value;
Geolocation = {Latitude =
Math.Round(ts.Latitude.Value, 3);
Longitude = Math.Round(ts.Longitude.Value, 3)};
DispositionId = ts.DispositionId.Value})

Also, you will notice that we are making the values to three decimal point precision with
the Math.Round. With this data local, let’s bring in the crash data. Enter the following code
into the script:

//Crash Data
type TrafficCrash = {CrashDateTime: DateTime; Geolocation: Geolocation;
CrashSeverityId: int; CrashTypeld: int; }
let trafficCrashes=
context.dbo_TrafficCrashes
|> Seq.filter(fun tc -> tc.MunicipalityId = Nullable<int>(13))
|> Seq.filter(fun tc -> not (tc.Latitude = Nullable<float>()))
|> Seq.map(fun tc -> {CrashDateTime=tc.CrashDateTime.Value;
Geolocation = {Latitude
=Math.Round(tc.Latitude.Value, 3);
Longitude=Math.Round(tc.Longitude.Value, 3)};
CrashSeverityId=tc.CrashSeverityId.Value;
CrashTypeId =tc.CrashTypeId.Value})
|> Seq.toArray

Sending this to the FSI gives us the following:

type TrafficCrash =
{CrashDateTime: DateTime;

CrashSeverityId: int;
CrashTypeId: int;}
val trafficCrashes : TrafficCrash [] =
[|{CrashDateTime = 12/30/2011 1:00:00 AM;
Geolocation = {Latitude = 35.79;
Longitude = -78.781;};
CrashSeverityId = 4;
CrashTypeld = 3;}; {CrashDateTime = 12/30/2011 3:12:00 AM;
Geolocation = {Latitude = 35.783;
Longitude = -78.781;};
CrashSeverityId = 3;
CrashTypeld = 24;};

We have one more dataset we want to use: the traffic conditions for each day. Enter the
following into the script:

//Weather Data

type DailyPercipitation = {WeatherDate: DateTime; Amount: int; }

let dailyWeather =
context.dbo_DailyPercipitation
|> Seqg.map(fun dw -> {WeatherDate=dw.RecordDate; Amount=dw.Amount;})
| > Seq.toArray

Sending this to the FSI gives us the following:

type DailyPercipitation =
{WeatherDate: DateTime;
Amount: int;}
val dailyWeather : DailyPercipitation [] =
[|{WeatherDate = 1/9/2012 12:00:00 AM;
Amount = 41;}; {WeatherDate = 1/10/2012 12:00:00 AM;
Amount = 30;}; {WeatherDate = 1/11/2012 12:00:00 AM;
Amount = 5;};
{WeatherDate = 1/12/2012 12:00:00 AM;

With these three datasets available, let’s combine the traffic stop and traffic crash datasets
together into a single data frame to see if there is anything going on with geolocation.

JlvivLauvil diialyolo
Go to the script file and add the following:

let stopbData =
trafficStops
|> Array.countBy(fun ts -> ts.Geolocation)

Sending this to the REPL gives us the following:

val stopData : (Geolocation * int) [] =
[l ({Latitude = 35.789;
Longitude = -78.829;}, 178); ({Latitude = 35.821;
Longitude = -78.901;}, 8);
({Latitude = 35.766;
Longitu..

This code should look familiar to you by now; we are counting up the number of traffic
stops by geolocation. For the first record, geopoint 35.789/-78.829 had 178 traffic stops.

Next, go back to the script and enter the following:

let crashData =
trafficCrashes
|> Array.countBy(fun tc -> tc.Geolocation)

Sending this to the REPL gives us the following:

val crashData : (Geolocation * int) [] =
[l ({Latitude = 35.79;
Longitude = -78.781;}, 51); ({Latitude = 35.783;

This code is identical to the stop data; we are counting up the number of traffic crashes by
geolocation. For the first record, geopoint 35.790/-78.781 had 51 traffic crashes.

Our next step is to combine these two datasets into a single data frame that we can send to
Accord. As for most things in F#, let’s use types and functions to achieve this. Go back to
the script file and enter the following:

type GeoTraffic = {Geolocation:Geolocation; CrashCount: int; StopCount:
int}

let trafficGeo =
Enumerable.Join(crashData, stopData,
(fun crashbData -> fst crashData),
(fun stopbata -> fst stopData),
(fun crashbData stopData -> { Geolocation = fst crashData;
StopCount = snd crashData ; CrashCount = snd stopData }))
|> Seq.toArray

When you send this to the FSI, you will see something like the following:

type GeoTraffic =
{Geolocation: Geolocation;
CrashCount: int;
StopCount: int;}

[|{Geolocation = {Latitude = 35.79;
Longitude = -78.781;};
CrashCount = 9;
StopCount = 51;}; {Geolocation = {Latitude = 35.783;
Longitude = -78.781;};
CrashCount = 16;
StopCount = 5;};
{Geolocation = {Latitude = 35.803;
Longitude = -78.775;};
CrashCount = 76;
StopCount = 2;};

There is some new code here that can seem intimidating at first (at least, it was to me). We

are using the LINQ class Enumerable’s Join method to join the crashData and stopData
together. The Join method takes in several parameters:

o The first dataset (in this case crashbata).

e The second dataset (in this case stopbData).

¢ A lambda that extracts the value from the first dataset, which we will use to join. In
this case, the first item of the tuple, which is the geolocation value.

¢ A lambda that extracts the value from the second dataset, which we will use to join.
In this case, the first item of the tuple, which is the geolocation value.

¢ A lambda that specifies what the output of the join operation will look like. In this
case, it is the record type called GeoTraffic that we defined on the first line of this
code block.

The key thing to realize about using the Join method is that it only keeps records that are
in both datasets (an inner join to you SQL fans). This means if there is a geolocation that
has one traffic ticket and no traffic stops, it is dropped from our analysis. If you want to do
an outer join, there is the GroupJoin method that does this. Since we are only really
interested in high-activity areas, an inner join seems more appropriate.

With our data frame created, we are now ready to send the data to Accord’s k-means. If
you remember, Accord’s k-means wants the input to be a jagged array of floats. Therefore,
we have one last transformation. Go to the script file and enter the following:

let kmeansInput =
trafficGeo
|> Array.map(fun cs -> [|float cs.CrashCount; float cs.StopCount |])

Sending to the FSI, we get the following:

val kmeansInput : float [] [] =
[I[]9.0; 51.0|]; [|16.0; 5.0]]; []76.0; 2.0|]; [|10.0; 1.0]|]; []|80.0;
7.0]];
[192.0; 27.0]]; [|8.0; 2.0|]1; [|104.0; 11.0|]; [|47.0; 4.0]];
[136.0; 16.0

Go back to the script file and enter the following:

let numberOfClusters = 3
let kmeans = new KMeans(numberOfClusters)

kmeans.Clusters.[0]
kmeans.Clusters.[1]
kmeans.Clusters.[2]

Sending to the REPL, we will get the following:

val numberOfClusters : int = 3

val kmeans : KMeans

val labels : int [] =

[11; 1; 0; 1; 0; 0; 1, 0; O0; 1; 0; 0; 0; 1; 1, 0; 1; 1; 0; 0; 0, 2; 1; 0;

1,
2, 0; 2,

Woot! We have a k-means working on our traffic data. If you inspect each of the clusters,
you will see the following:

val it : KMeansCluster =
Accord.MachinelLearning.KMeansCluster
{Covariance = [[533.856744; 25.86726804]
[25.86726804; 42.23152921]];
Index = 0;
Mean = [|67.50515464; 6.484536082]|];
Proportion = 0.1916996047;}
>
val it : KMeansCluster =
Accord.MachinelLearning.KMeansCluster
{Covariance = [[108.806009; 8.231942669]
[8.231942669; 16.71306776]];
Index = 1;
Mean = [|11.69170984; 2.624352332]|];
Proportion = 0.7628458498;}
>
val it : KMeansCluster =
Accord.MachinelLearning.KMeansCluster
{Covariance = [[5816.209486; -141.4980237]
[-141.4980237; 194.4189723]];
Index = 2;
Mean = [|188.8695652; 13.34782609]];
Proportion = 0.04545454545;}

We have three clusters. I pulled the means and the proportions from each of the clusters
and put them into a spreadsheet like this:

Crashes||Stops|| % of records|

67.5 ||6.48 ||20.2%

188.87

11.69 ||2.62 ||76.3% |
4.5% |

|13.35|

Looking at all the three clusters, it is notable that there are a lot more traffic crashes than
stops. Also of interest is that the first and second cluster have about a 10:1 ratio of crashes
to stops but the really high crash areas have a higher proportion of crashes to stops—about

police are very active there, but they could be even more active. I would name each cluster
after their activity level: (low, medium, and high). If the geolocation was not in our data
frame (a majority of the points in town), we could call that no activity.

Finally, enter this into the script file:

let trafficGeo' = Array.zip trafficGeo labels

Sending this to the FSI gives us the following:

val trafficGeo' : (GeoTraffic * int) [] =
[l ({Geolocation = {Latitude = 35.79;
Longitude = -78.781;},
CrashCount = 9;
StopCount = 51;}, 1); ({Geolocation = {Latitude = 35.783;
Longitude = -78.781;};

CrashCount = 16;
StopCount = 5;}, 1);

We have seen .zip before. We are merging our data frame that contains the geolocation,
number of stops, and number of crashes with the labels frame that came out k-means.

Then we can look up a given geolocation and see its cluster assignment. For example,
geolocation 35.790/-78.781 is in Cluster 1—or medium activity.

L U/l

Now that we have a pretty good sense of the data via k-means, let’s see if we can use PCA
to uncover even more insights in our traffic data. Instead of location, let’s look at date. As
we found in Chapter 4, Traffic Stops — Barking Up the Wrong Tree?, using our decision
tree, there was nothing we could conclude with different bins of date/time and our traffic
tickets. Perhaps augmenting the stop data with crash and weather will lead to something.

Go back into the Clustering. fsx script file and enter the following:

let crashCounts =
trafficCrashes
|> Array.countBy(fun tc -> tc.CrashDateTime.DayOfYear)

Sending this to the FSI gives the following:

val crashCounts : (int * int) [] =

[1(364, 10); (365, 3); (1, 2); (2, 3); (3, 12); (4, 5); (5, 3); (6, 1);

(7, 9); (8, 6); (9, 10); (10, 6); (11, 9);

This code is very much like the code we already wrote when creating the crashbata for k-
means. In this case, we are counting up traffic crashes by bayofyear. DayofYear assigns
each day of the year an index value. For example, January 1 gets a 1, January 2 gets a 2
and December 31 gets a 365 or 366, depending on if it is a leap year or not. Notice that it
is one-based because DateTime.DayOfYear is one-based.

Go back into the script file and enter the following:

let stopCounts =
trafficStops
|> Array.countBy(fun ts -> ts.StopDateTime.DayOfYear)

Sending this to the FSI gives us the following:

val stopCounts : (int * int) [] =

[1(182, 58); (183, 96); (184, 89); (185, 65); (38, 65);
As you can probably guess, this sums up the number of traffic stops by the day of the year.
Pressing onward, go to the script file and enter the following:

let weatherData' =
dailyweather
|> Array.map(fun w -> w.WeatherDate.DayOfYear, w.Amount)

Sending this to the REPL gives us the following:

val weatherData' : (int * int) [] =

[1(9, 41); (10, 30); (11, 5); (12, 124);
Just like crash and stop data, this creates a dataset with the amount of precipitation by day
of year. You will notice that the data was already at the date level (sometimes called the
level of atomicity), so an Array.map was used to transform the date; we don’t need to use
countBy.

With the initial datasets created, we now need a way to join all three together. The

will have to build our own joiner function. Go into the script file and enter the following:

let getItem dataSet item =
let found = dataSet |> Array.tryFind(fun sd -> fst(sd) = item)
match found with
| Some value -> snd value
| None -> 0O

When you send this to the FSI, you will get the following:

val getItem : dataSet:('a * int) [] -> item:'a -> int when 'a : equality

This is a pretty complicated function signature. It might help if I added parameter hints to
the method as shown in the following code:

let getItem (dataSet:(int*int)[], item:int) =
let found = dataSet |> Array.tryFind(fun sd -> fst(sd) = item)
match found with
| Some value -> snd value
| None -> 0

When you send this to the FSI, you will get the following:
val getItem : dataSet:(int * int) [] * item:int -> int

This should be slightly more accessible but less generic, which is fine because all of our
datasets (crash, stops, and weather) are arrays of int*int. Reading the output, we see that
getItem is a function that takes in one parameter named dataset that is an array of int
tuples (int * int)[] and another parameter named item that is an int. The function then
attempts to find the tuple in the array whose fst has the same value as the item. If it is
found, it returns the second value of the tuple. If it does not find the item in the array, it
returns 0.

This function will work well for all three of our datasets (crash, stops, and weather)
because all three only hold records for days they have observations. For traffic stops, this
is not a problem because there was at least one traffic stop on each day of the year.
However, there were 16 days where there were no traffic crashes recorded, so stopData
has 350 records and there were over 250 days where there was not any precipitation, so
weatherData only has 114 records.

Since the first way of creating getItem is more generic and idiomatic to F#, I will use it
for the remaining part of the chapter. Both the examples are in the example script file that
you can download.

Going back to the script, enter the following:

type TrafficDay = {DayNumber:int; CrashCount: int; StopCount: int;
RainAmount: int}

let trafficDates =
[11..366]]
|> Array.map(fun d -> {DayNumber=d;
CrashCount=getItem crashCounts d;

RainAmount=getItem weatherData' d})

When you send this to the REPL, you will see the following:

type TrafficDay =
{DayNumber: int;
CrashCount: int;
StopCount: int;
RainAmount: int;}
val trafficDates : TrafficDay [] =
[| {DayNumber = 1;
CrashCount = 2;
StopCount = 49;
RainAmount = 0;}; {DayNumber = 2;
CrashCount = 3;
StopCount = 43;
RainAmount = 0;};

The first line creates a record type that contains the number of crashes, stops, and
precipitation for the day. I used rain as the field name because we rarely get snow in North
Carolina and I want to rub it in to any reader who lives up north. Of course, when we do
get snow, it is borderline Armageddon.

The next block of code is where we create our final data frame. First, an integer array is
created with every day of the year. A mapper function is then applied that calls getItem
three times for each item of the array: the first time for crashbata, the second for stop
data, and finally for weather data. The results are put into the Trafficbay record.

With the data frame setup, we are now ready for Accord. Go to the script file and enter the
following:

let pcaInput =

trafficDates

|> Array.map(fun td -> [|float td.CrashCount; float td.StopCount; float
td.RainAmount |])

When you send it to the REPL, you will get the following:

val pcaInput : float [] [] =
[I[l12.0; 49.0; 0.0|]; [|3.0; 43.0; 0.0]]; [|12.0; 52.0; 0.0]|];
[|5.0; 102.0; 0.0|];

This is a jagged array that Accord wants. Go back to the script and enter the following:

let pca = new PrincipalComponentAnalysis(pcaInput, AnalysisMethod.Center)
pca.Compute()

pca.Transform(pcalInput)

pca.ComponentMatrix

pca.ComponentProportions

When you send this to the REPL, you will get the following:

val pca : PrincipalComponentAnalysis
val it : unit = ()

val it : float [] [] =
[|[]-43.72753865; 26.15506878; -4.671924583]|];

val it : float [,] = [[0.00127851745; 0.01016388954; 0.999947529]
[0.01597172498; -0.999821004; 0.01014218229]

[0.9998716265; 0.01595791997; -0.001440623449]]
>

val it : float [] = []|]0.9379825626; 0.06122702459; 0.0007904128341]]
>

>

This shows that 94 percent of the variance in our data frame is from crashes, not stops or
the weather. This is interesting because common wisdom is that, once it rains (or <gasp>
snows <gasp>) in North Carolina, traffic accidents spike. Although that might make a
good press story, this one-year sample does not bear it out.

nual_y i OuUliiiiIdl y

We now have a couple of models that point to some interesting ideas:

e There are a few locations that account for most of the traffic crashes and tickets in
town
e Weather is not as important as you might think

With this knowledge, we are ready to put machine learning to work for us.

1 11C LOUC-4-gluld appiitduinl

Let’s create a Windows application that helps people drive more safely. In addition, let’s
make the application “smart” so that it will progressively get more accurate. Let’s start in
Visual Studio with the project you have already created.

IVACICELE1AT I AL llllls ClDDClllUly

Go into the Solution Explorer and rename Libraryi.fs to TrafficML.fs. Add a
reference to System.Data, System.Data.Entity, System.Data.Ling, and
FSharp.Data.TypeProviders:

Reference Manager - HackdGood. Traffic

4 Accemblies e
Reference Manager - HackdGood. Traffic b NCLEmment 40
: Framework Marmne
4 Assemblies Targeting: .NET Framewark 4.5.2 TR EnvDTESD
Framework Mame Rl Envggga
v a
Extensions System.ComponentModel Compo :
b Projects EventSource
Recent System.ComponentModel. Compo
EventSource
System.ComponentModel.DataAn, ¢ COM EventSource
b Projects System.Configuration Eienibopmee
b i System.Configuration.|nstall b Browse EventSource
g}rstem.guge Expression Task Assembly
I Browse YT ; Expression Task Assembly
System.Data.DataSetExtensions Extensibility
USRI . . FSharp.Core
System.Data.Entity.Design ESharn Core
System.Data.Ling FSharElCure

System.Data.OracleClient

Adding references

Go into the TrafficML. fs file and enter the following code:

namespace Hack4Good.Traffic

open System

open System.Ling

open System.Data.Linq

open System.Data.Entity

open Accord.MachinelLearning

open System.Collections.Generic

open Accord.Statistics.Analysis

open Microsoft.FSharp.Data.TypeProviders

type Geolocation = {Latitude: float; Longitude: float}

type private EntityConnection = SqlEntityConnection<"data
source=nc54a9m5kk.database.windows.net;initial catalog=Traffic;user
id=chickenskills@nc54a9m5kk; password=skllzm@tter;",Pluralize = true>
type TrafficStop = {StopDateTime: DateTime; Geolocation: Geolocation;
DispositionId: int}

type TrafficCrash = {CrashDateTime: DateTime; Geolocation: Geolocation;
CrashSeverityId: int; CrashTypeld: int; }

type GeoTraffic = {Geolocation:Geolocation; CrashCount: int; StopCount:
int}

type GeoTraffic' = {Geolocation:Geolocation; CrashCount: int; StopCount:
int; Cluster: int}

I know it feels weird not to send code you just wrote to FSI, but there is no way of getting

in the next chapter when we talk TDD. Until then, jﬁst compile the project to make sure
you are on the right track.

Back to the TrafficML. fs file, enter the following wall of code or copy it from the book’s
download:

type TrafficML(connectionString:string) =
let context = EntityConnection.GetDataContext(connectionString)

let trafficStops =

context.dbo_TrafficStops

|> Seqg.map(fun ts -> {StopDateTime = ts.StopDateTime.Value;
Geolocation = {Latitude

=Math.Round(ts.Latitude.Value, 3);

Longitude=Math.Round(ts.Longitude.Value, 3)};
DispositionId = ts.DispositionId.Value})

| > Seq.toArray

let trafficCrashes=

context.dbo_TrafficCrashes

|> Seq.filter(fun tc -> tc.MunicipalityId = Nullable<int>(13))

|> Seq.filter(fun tc -> not (tc.Latitude = Nullable<float>()))

|> Seq.map(fun tc -> {CrashDateTime=tc.CrashDateTime.Value;
Geolocation = {Latitude

=Math.Round(tc.Latitude.Value, 3);

Longitude=Math.Round(tc.Longitude.Value, 3)};
CrashSeverityId=tc.CrashSeverityId.Value;
CrashTypeId =tc.CrashTypeld.Value})

| > Seq.toArray

let stopbData =
trafficStops
|> Array.countBy(fun ts -> ts.Geolocation)

let crashData =
trafficCrashes
|> Array.countBy(fun tc -> tc.Geolocation)

let trafficGeo =
Enumerable.Join(crashData, stopData,
(fun crashbData -> fst crashData),
(fun stopbata -> fst stopData),
(fun crashbData stopData -> { GeoTraffic.Geolocation

fst crashData;
StopCount = snd crashData ;
CrashCount = snd stopData }))
|> Seq.toArray

let kmeansInput =
trafficGeo
|> Array.map(fun cs -> [|float cs.CrashCount; float cs.StopCount

1)

let numberOfClusters = 3

let labels = kmeans.Compute(kmeansInput.ToArray())
let trafficGeo' = Array.zip trafficGeo labels
|> Array.map(fun (tg,1l) ->
{Geolocation=tg.Geolocation;CrashCount=tg.CrashCount;StopCount=tg.StopCount
;Cluster=1})

This code is very similar to the k-means code we wrote in the Clustering. fsx script file.
Notice that all the work of getting the data, shaping it, and running a k-means on it
happens in the constructor of the TrafficML type. This means every time you create a new
instance of the class from another location, you are making database calls and running the
model. Also, notice that the connection string is hardcoded into the SqlEntity type
provider for the type but then passed in via the constructor parameter when
GetDataContext () is actually called. This allows you to move to code around
environments (dev/test/prod). The downside is that you need to have your DEV
environment exposed always so that the type is generated. One way to avoid this is to
hardcode your Entity Framework .edmx/schema into the project.

Go back to the TrafficML. fs file and enter in the following function to the TrafficML
type:

member this.GetCluster(latitude: float, longitude: float, distance:
float) =
let geolocation = {Latitude=latitude; Longitude=longitude}
let found = trafficGeo'
|> Array.map(fun gt -> gt, (haversine gt.Geolocation
geolocation))
|> Array.filter(fun (gt,d) -> d < distance)
| > Array.sortByDescending(fun (gt,d) -> gt.Cluster)
match found.Length with
| @ -> -1
| _ -> let first = found |> Array.head
let gt = fst first
gt.Cluster

This does a search of the geolocations. If there is a match, the cluster is returned. If there
is no match, a-1 is returned, signifying that there was not a match. We now have enough to
make a first pass at creating a real time “smart” traffic application.

A 1AC U1

In the Solution Explorer, add a new Visual C# WPF Application:

Add Mew Project
I Recent

4 |nstalled

4 Visual CZ¥

I Windows
Web
Android
Cloud
Extensibility

B i0S
LightSwitch

MET Framework 4.5.2 = | Sort by: | Default

-.CF
B] Blank App (Universal Windows) Visual C#
F

-C#
B] Blank App (Universal Windows 8.1) Visual C#

C#
| | Windows Forms Application Visual C#
ﬂ WPF Application Visual C#

C#
Conscle Application Visual C#

Micro Framework

? b
~| 3" |i=|| Search Installed Templ O -

Type: Visual C#

Windows Presentation Foundation client
application

. C#
Mobile Apps] Hub App (Universal Windows 8.1) Visual C#
Office/SharePoint
: c
Repoiting _r Pivot App (Windows Phone) Visual C#
Silverlight abc
Test Fﬂ* . - "
Shared Project Yisual C2
WCF =l !
Workflow %
ni Clasz Library (Portable for i05, &n..Visual C#
& Visual Basic 3 ! il ‘
b Visual C++ Hic* Class Lib Visual C#
4 Visual F# y ,E! ass Librarny isual 23
b Bnling Click here to go online and find templates.
Mame: HackdGood. Traffic. Ul
Location: FAGIt\MLDotMNet\Book Chapters\Chapterl P Hack4Good. Traffic.Solution =

| OK | | Cancel

After the project is created, add a reference from the C# Ul project to the F# one,
System.Configuration and System.Device:

I Aszemblies
4 Projects

Solution

=

¢ COM

I Browse

Reference Manager - Hack4Good, Traffic.Ul

Shared Projects

Mame
HackdGood. Traffic

b

Assemblies Targeting: .MET Framework 4.5.2

Framewaork Marne
Extensions Systermn.Addin.Contract
Recent Systemn.ComponentModel. Composition
Systemn.ComponentModel. Composition.Regist..,
b Projects System.ComponentModel.DatafAnnotations
Systemn.Configuration

=

Shared Projects System.Configuration.Install

Systemn.Core

Systemn.Data
Systemn.Data.DataSetExtensions
Systern.Data.Entity
Systemn.Data.Entity.Design
Systemn.Data.Ling
Systermn.Data. OracleClient
Systemn.Data.Services
Systern.Data.Services. Client
Systemn.Data.Services.Design
System.Data.5ql¥ml
System.Deployment
Systern.Design
Systermn.Device

E COM

RIRIE]

I Browse

As a quick preparatory note, you are supposed to follow MVVM and command relay
patterns when writing WFP applications which we will not cover in this book. This is a
book about machine learning, not coddling humans via a delightful UI, so I code up
enough of the Ul just to get it to work. If you are interested in doing WPF following best
practices, consider Windows Presentation Foundation 4.5 Cookbook.

Inside the UI project, open up the Mainwindow.xaml file, locate the Grid element, and
enter in this XAML inside the grid:

<Button x:Name="crashbutton" Content="Crash" Click="notifyButton_Click"
HorizontalAlignment="Left" Height="41" Margin="31,115,0,0"
VerticalAlignment="Top" Width="123"/>

<Button x:Name="stopButton" Content="Stop" Click="notifyButton_Click"
HorizontalAlignment="Left" Height="41" Margin="171,115,0,0"
VerticalAlignment="Top" Width="132"/>

<TextBlock x:Name="statusTextBlock" HorizontalAlignment="Left" Height="100"
Margin="31,10,0,0" TextWrapping="Wrap" Text="Current Status: No Risk"
VerticalAlignment="Top" Width="272"/>

Next, open up Mainwindow.xaml.cs and enter the following using statements to the block
of using at the top of the file:

using System.Configuration;
using System.Device.lLocation;

Your file should look like the following:

P T PR T

using sSystem.Configuration;
using sSystem.Device.Location;

[R T]

m

Inside the Mmainwindow class, enter three class-level variables:

TrafficML _trafficML = null;
GeoCoordinatewWatcher _watcher = null;
String _connectionString = null;

Your file should look like the following:

public partial class MainWindow : Window

1

afficML _trafficML = nullj|

GeoCoordinatelWatcher _watcher = null;
_connectionString = null;

Tr

Then, in the Mainwindow() constructor, add in the following code below
InitializeComponent():

InitializeComponent();

_connectionString =
ConfigurationManager.ConnectionStrings["trafficDatabase"].ConnectionString;

_trafficML = new TrafficML(_connectionString);

_watcher = new GeoCoordinateWatcher (GeoPositionAccuracy.High);

_watcher.PositionChanged += Watcher_PositionChanged;

bool started = this._watcher.TryStart(false,
TimeSpan.FromMilliseconds(2000));

StartUpdateLoop();

Your file should look like this:

public MainWindow()

1
InitializeComponent();
_connectionString = ConfiguraticnManager.ConnectionStrings["trafficDatabase™].ConnectionString;
_trafficML = new TrafficML(_connectionString);

_watcher = new GecCoordinateWatcher({GecPositionAccuracy.High);
_watcher.PositionChanged += Watcher_PositionChanged;

bool started = this._watcher.TryStart(false, TimeSpan.FromMilliseconds(2868));
StartUpdateloop();

E e e e e e e e

private void Watcher_PositionChanged(object sender,
GeoPositionChangedEventArgs<GeoCoordinate> e)
{
var location = e.Position.Location;
var latitude =
Double.Parse(location.Latitude.ToString("00.000"));
var longitude =
Double.Parse(location.Longitude.ToString("00.000"));

var cluster = _trafficML.GetCluster(latitude, longitude);
var status = "No Risk";
switch(cluster)
{
case 0:
status = "Low Risk";
break;
case 1:
status = "Medium Risk";
break;
case 2.
status
break;
default:
status
break;

"High Risk";

"No Risk";

}

this.statusTextBlock.Text = "Current Status: " + status;

}

Next, create a loop to refresh the MachineLearning model every minute:

private async Task StartUpdateLoop()
{

while (true)

{

await Task.Delay(TimeSpan.FromMinutes(1.0));
_trafficML = await Task.Run(() => new
TrafficML(_connectionString));

b
b

Finally, add an event handler placeholder for the button clicks on the screen:

private void notifyButton_Click(object sender, RoutedEventArgs e)

{

}

If you collapse the code to definitions (CTRL + M, L), your code should look like the
following:

//T0ODO

TrafficML _trafficML = null;
GeoCoordinatelWatcher _watcher = null;
_connectionstring = nullj|

public Mainwinduw(j[::
private void Watcher_PositionChanged(object sender, GecPositiocnChanged
private async Task StartUpdatELDDp(j[::

private void notifyButton_Click{object sender, RoutedEventirgs Ej[:]

Next, go into Selution Explorer, right-click to add a new Application Configuration
file:

4 |nstalled

4 Visual C#
Code
Data
General

b Web

Windows Forms
WPF
Reporting
SOL Server
Storm ltems
Workflow

B Online

Existing Herm...
New Folder
REST AP Chent...

Reference..

Service Reference..
Connected Service_
Analyzer,
Window...

Page...

User Control...

Resource Dictionary

Clese..,

Add New Item - HackdGood. Traffic. Ul

mgnied |

y

r® [F R EE

Shift« Alt+A

i Build
Rebuild
Clean
View
Anabyze
& Publish..,
Scope to This
0 Mew Solution Explorer View
5 Show on Code Map
Build Dependencies

Add

Manage NulGet Packages...
Set as StatUp Progect
Debug

Source Control

B

-

D-S0@@| A -0

HackdGood Traffec. Solution’ (2 projects)
VGood. Traffic

periies

ETENCES
p-xaml
binWWirdew.xaml

Component Class

Bitmap File

Class Diagram

Code Analysis Rule Set

Cursor File

Debugger Visualizer

lcon File

.o —

Click here to ge online and find templates.

*

i

A file for storing application configuration

Mame:

[App.config|

Cut Cerl= X
Revicrve Dred
Rename
Unload Project
Dpen Folder in File Explorer 3
Design in Blend...
Properties
Default == Search Installed Templates (Ctrl+E)
ah .)
Visual C2 Type: Visual C#
Application Configuration File Visual C# and settings values
Application Manifest File Visual C#
Assembly Information File Visual C#
Visual C#
Visual C#
Visual C#
Visual C#
Visual C#
Visual C#
i .

| Add

‘ ‘ Cancel

Adding new Application Configuration file

Inside that app.config file, replace the contents with this XML (replace the connection
string with your connection string if you are using a local instance of the database):

<configuration>
<startup>
<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5.2"
/>
</startup>
<connectionStrings>
<add name="trafficDatabase"
connectionString="data
source=nc54a9m5kk.database.windows.net;initial catalog=Traffic;
user id=chickenskills@nc54a9m5kk;password=skllzm@tter;" />
</connectionStrings>
</configuration>

Go to Solution Explorer and make the UI project the startup project:

wxaml € X MainWindow.xaml.cs LLclifd Sclution Explorer * 52 X
@lo-sCcam|lp=
Search Solution Explorer (Ctrl+:) 2 -
% Build Solution 'HackdGood. Traffic.5olution’ (2 project
Rebuild i[F2] Hack4Good.Traffic
Hack4Good. Traffic.Ul
Clean b &~ Properties
View r [w=® References
Analyze 3 ay) App.config
@ Publish.. 4 55) Appxaml
b &ty Appxamles
Scope to This 4 <% MainWindow.xaml
Ff]:i‘ Mew Solution Explorer View P+ MainWindow.saml.cs

¥ Show on Code Map

Build Dependencies 4
Add 3
Manage MuGet Packages...

I =

Set as StartUp Project

Debug 4

Compile your project. If all is well, try to run it. You should get a warning dialog like this:

Enable Location Services >

This app wants to use your location. Do you want to tum on location services?

Mo

And then you will get a screen like this:

Current Status; Mo Risk

Crash Stop

Once you completely take in the awesomeness of the user experience, stop running the
application. So far, this is pretty good. If we put this application on a location-aware
device (like a GPS) in the car and drive around, the status bar will warn us if we are within
a quarter mile of a geolocation that might have a crash or stop risk. However, if we want
to give ourselves more of a heads up, we need to add a bit more of code.

MUUIIIS C9ILIOUWALILT LdiltTuiauvin

Go back to the F# project and open up the TrafficML.fs file. Locate the last line of the
constructor. It looks like the following code:

let trafficGeo' = Array.zip trafficGeo labels
|> Array.map(fun (tg,1l) ->
{Geolocation=tg.Geolocation;CrashCount=tg.CrashCount;StopCount=tg.StopCount
;Cluster=1})

Below this line, enter the following;:
let toRadian x = (Math.PI/180.0) * X

let haversine x y =
let dlon = toRadian (x.Longitude - y.Longitude)
let dLat = toRadian (x.Latitude - y.Latitude)
let a® = pown (Math.Sin(dLat/2.0)) 2
let al = Math.Cos(toRadian(x.Latitude)) *
Math.Cos(toRadian(y.Latitude))
let a2 = pown (Math.Sin(dlon/2.0)) 2

let a = a®@ + a1l * a2

let ¢ = 2.0 * Math.Atan2(sqrt(a),sqrt(1.0-a))
let R = 3956.0

R *c

These two functions allow us to calculate the distance between geolocations. Since the
earth is curved, we can’t simply subtract the latitudes and longitudes between the two
geolocations. The Haversine formula is the most common way to do this calculation.

Go to the end of the file and add the following:

member this.GetCluster(latitude: float, longitude: float, distance:
float) =
let geolocation = {Latitude=latitude; Longitude=longitude}
let found = trafficGeo' |> Array.map(fun gt -> gt, (haversine
gt.Geolocation geolocation))
|> Array.filter(fun (gt,d) -> d < distance)
|> Array.sortByDescending(fun (gt,d) ->
gt.Cluster)
match found.Length with
| 0 -> -1
| _ -> let first = found |> Array.head
let gt = fst first
gt.Cluster

What we are doing is overloading the GetCluster function with an additional parameter
called distance. Using this input distance, we can calculate how far it is between the
geolocation parameter and every geolocation in our trafficGeo array. If there are any
matches, we sort by the highest number of cluster (sortByDescending) and return it.

Go back to our Ul project and open the Mainwindow.xaml.cs file and locate the
watcher_PositionChanged method. Find the following line of code:

var cluster = _trafficML.GetCluster(latitude, longitude);

var cluster = _trafficML.GetCluster(latitude, longitude, 2.0);

We now have a two mile heads-up to any problem area on the roads.

MUSlllClllllls VYVIilll 11U1111d11 UUoLllL vAauivlilo

There is one more thing we want to do to our UL If you look at some of the crowd source
road applications like Waze, they provide real-time notifications. Our app bases its
classification based on historical data. However, if we were driving down the street in an
area that was classified as low risk, and we saw a traffic crash, we would want to elevate
the location to a high risk. Ideally, all the users of our application would get this update
and override the model’s classification of the geolocation (at least for the time being) and
then we would update our database so that, as we retrain our model, the information gets
more accurate.

Go to the notifyButton_Click event holder and replace //T0D0 with the following:

var location = _watcher.Position.Location;

var latitude =
Double.Parse(location.Latitude.ToString("00.000"));

var longitude =
Double.Parse(location.Longitude.ToString("00.000"));

_trafficML.AddGeolocationToClusterOverride(latitude,
longitude);

The compiler will complain to you because we have not implemented the
AddGeolocationToClusterOverride yet. Go back over to the F# project and open the
TrafficML.fs file. At the very bottom, add the following:

member this.AddGeolocationToClusterOverride(latitude: float, longitude:
float) =
let clusterOverride =
EntityConnection.ServiceTypes.dbo_ClusterOverride()
clusterOverride.Latitude <- latitude
clusterOverride.Longitude <- longitude
clusterOverride.Cluster <- 2
clusterOverride.OverrideDateTime <- DateTime.UtcNow
context.dbo_ClusterOverride.AddObject(clusterOverride)
context.DataContext.SaveChanges() |> ignore

We now have a way of updating the database for any override. Note that you will not be
able to write to the shared database on Azure that was created for this book, but you will
be able to write to your local copy. As a final step, go up to where we created the
trafficGeo on the following line:

let trafficGeo' = Array.zip trafficGeo labels
|> Array.map(fun (tg,l) ->
{Geolocation=tg.Geolocation;CrashCount=tg.CrashCount;StopCount=tg.StopCount
;Cluster=1})

Replace that line with the following code block:

let overrides = context.dbo_ClusterOverride
|> Seq.filter(fun co -> (DateTime.UtcNow -
co.OverrideDateTime) > TimeSpan(0,5,0))
| > Seq.toArray

let found = overrides
|> Array.tryFind(fun o -> o.Latitude =
geoTraffic.Geolocation.Latitude &&
0.Longitude = geoTraffic.Geolocation.Longitude)
match found.IsSome with
| true -> {Geolocation=geoTraffic.Geolocation;
CrashCount=geoTraffic.CrashCount;
StopCount=geoTraffic.StopCount;
Cluster=found.Value.Cluster}
| false -> geoTraffic

let trafficGeo' = Array.zip trafficGeo labels
|> Array.map(fun (tg,l) ->
{Geolocation=tg.Geolocation;
CrashCount=tg.CrashCount;
StopCount=tg.StopCount;
Cluster=1})
|> Array.map(fun gt -> checkForOverride(gt))

This block goes to the database and pulls down all overrides that occurred within the last 5
minutes and places them in the overrides array. It then creates a function called
checkForoverride that takes in the geoTraffic value. If the latitude and longitude match
the override table, the geoTraffic value is replaced with a new value that has the override
value assigned by the database and not from the k-means model. If no match is found, the
original value is returned. Finally, we pipe this function to the creation of trafficGeo.
Note that if you try and execute this on our shared server, it will throw an exception
because you don’t have rights to write to the database. Hopefully, though, the intention is
clear with this example. With that, we have a real-time system where we combine machine
learning and human observations to give our end user the best possible predictions.

ouliiiiary

We covered a lot of ground in this chapter. We looked at k-means and PCA to help us find
hidden relationships in our traffic datasets. We then built an application that took
advantage of the insights we gleaned to make drivers more aware and, hopefully, safer.
This application is unique because it blended both real-time machine learning modeling
and human observations to provide the best possible outcome for the driver.

In the next chapter, we are going to look at some of the limitations of our coding so far in
this book and see if we can improve on both model and feature selection.

Ulldapicl 0. Fdiuri’c ociciuoil 411
Optimization

In software engineering, there is an old saying: make it work first, then make it fast. In this
book, we have adopted the strategy to make it run, then make it better. Many of the
models that we covered in the initial chapters were correct in a very limited sense and
could stand some optimization to make them more correct. This chapter is all about
making it better.

uicallillg Udid

As we saw in Chapter 5, Time Out — Obtaining Data, obtaining and shaping the data
(which is often the largest problem in many projects) is a snap using F# type providers.
However, once our data is local and shaped, our work in preparing the data for machine
learning is not complete. There might still be abnormalities in each frame. Things like null
values, empty values, and values outside a reasonable range need to be addressed. If you
come from an R background, you will be familiar with null.omit and na.omit, which
remove all of the rows from a data frame. We can achieve functional equivalence in F# by
applying a filter function to the data. In the filter, you can search for null if it is a reference
type, or .isNone if the column is an option type. While this is effective, it is a bit of a
blunt hammer because you are throwing out a row that might have valid values in the
other fields when only one field has an inappropriate value.

Another way to handle missing data is to replace it with a value that will not skew an
analysis. Like most things in data science, there are plenty of opinions on the different
techniques, and I won’t go into too much detail here. Rather, I want to make you aware of
the issue and show you a common way to remediate it:

Go into Visual Studio and create a Visual F# Windows Library project called
FeatureCleaning:

I+ Recent

4 |nstalled

4 Templates
B Visual C#
Visual Basic
B Visual C++
Visual F#
Android
r 105
Silverlight
Windows
WPF
S0L Server
DataFactory
b JavaScript
HDInsight
I Python
b TypeScript

I -

I Online

=

9

| MName: FeatureCleaning
Location:

Solution name:

MET Framework 46,1 = Sort by: | Default
E#
Console Application Visual F#
E#
F,{é! Library Visual F2
E#
Hé! Portable Library (MET 4.5, Windo.., Visual F#
E#
gﬁi! Portable Library (MET 4.5, Windo.., Visual F#
g@i! Portable Library (MET 4.5, Windo.., Visual F#
H:i! Portable Library (MET 4.5, Windo.., Visual F#
E#
E_‘| Tutorial Visual F#

Click here to go online and find templates,

FAGINMLDotMet\Book Chapters\ Chapterl®,

FeatureCleaning.Solution

== || Search Instal

Type: Visual F#

A project for creating an F#

- Browse...

Create directory for solution
[] Add to source control

Locate Scripti.fsx in the Solution Explorer and rename it CleanData. fsx:

Solution Explorer
@& -5
Search Solution Explorer (Ctrl+;

dﬁ Solution 'FeatureCleaning

4 +[F# FeatureCleaning
[=B References
+F# fczcemblylnfo.fs
+F# Libraryl.fs
+ [T CleanData.fsx

a |,

Open that script file, and replace the existing code with this:

type User =
let users

{Id: int; FirstName: string; LastName: string; Age: float}
[|{Id=1; FirstName="Jim"; LastName="Jones"; Age=25.5},;

{Id=2; FirstName="Joe"; LastName="Smith"; Age=10.25};
{Id=3; FirstName="Sally"; LastName="Price"; Age=1000.0};|]

type User =
{Id: int;
FirstName: string;
LastName: string;
Age: float;}
val users : User [] = [|{Id = 1;

FirstName = "Jim";
LastName = "Jones";
Age = 25.5;}; {Id = 2;
FirstName = "Joe";
LastName = "Smith";
Age = 10.25;}; {Id = 3;
FirstName
= llsallyu ;
LastName = "Price";

Age = 1000.0;}]]

User is a record type that represents the users of an application while users is an array of
three users. It looks pretty vanilla except user 3, Sally Price, has an age of 1000.0. What
we want to do is take that age out but still keep Sally’s record. To do that, let’s remove
1,000 and replace it with the average of the ages of all of remaining users. Go back to the
script file and enter this:

let validUsers
let averageAge

= Array.filter(fun u -> u.Age < 100.0) users
= Array.averageBy(fun u -> u.Age) validUsers
let invalidUsers =

users

|> Array.filter(fun u -> u.Age >= 100.0)

|> Array.map(fun u -> {u with Age = averageAge})

let users' = Array.concat [validUsers; invalidUsers]

Sending this to the FSI should give you the following:

val averageAge : float = 17.875

val invalidUsers : User [] = [|{Id = 3;
FirstName = "Sally",;
LastName = "Price";
Age = 17.875;1}]]

val users' : User [] = [|{Id = 1;

FirstName = "Jim";
LastName = "Jones";
Age = 25.5;}; {Id = 2;
FirstName = "Joe";
LastName = "Smith";
Age = 10.25;}; {Id = 3;
FirstName =
||Sa11y||;
LastName =
"Price";

Age = 17.875;}]|1

Notice that we create a subarray of the valid users and then get their average ages. We then

mutability, we create a new record for each of the invalid users and use the with syntax
effectively, creating a new record that has all the same values as the original record, except
the age. We then wrap up by concatenating the valid users and the updated user back into a
single array. Although this is a fairly rudimentary technique, it can be surprisingly
effective. As you get further into machine learning, you will develop and refine your own
techniques for dealing with invalid data—and you have to keep in mind that the model
that you are using will dictate how you clean that data. In some models, taking the average
might throw things off.

Ociclilllg Udid

When we are confronted with a large number of independent variables, we often run into
the problem of which values to select. In addition, the variable might be binned, combined
with other variables, or altered—all of which might make or break a particular model.

\WAV IS wel iyl ly

Collinearity is when we have multiple x variables that are highly related to each other;
they have a high degree of correlation. When using regressions, you always have to be on
the watch for collinearity as you can’t be sure which individual variable really affects the
outcome variable. Here is a classic example. Suppose you wanted to measure the
happiness of a college student. You have the following input variables: age, sex, money
available for beer, money available for textbooks. In this case, there is a direct relationship
between money available for beer and money available for textbooks. The more money
spent on textbooks, the less there is available for beer. To solve for collinearity, you can do
a couple of things:

e Drop one of the highly-correlated variables. In this case, perhaps drop money
available for text books.

e Combine correlated variables into a single variable. In this case, perhaps just have a
category of money in checking account.

A common way to test for collinearity is to run your multiple regressions several times,
each time removing one x variable. If there is not a dramatic change when two different
variables are removed, they are good candidates for collinearity. In addition, you can
always do a visual scan of the correlation matrix of the x variables, which you can do
using Accord.Net with the Tools.Corrlelation method. Let’s take a look at this. Go back
into Visual Studio and add a new script file called Accord. fsx. Open the NuGet Package
Manager Console and add in Accord:

PM> install-package Accord.Statistics

Next, go into the script file and enter this:

#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.dl1l"

#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dll"

open Accord.Statistics

//Age

//Sex - 1 or O
//money for textbooks
//money for beer

let matrix = array2D [[19.0;1.0;50.0;10.0];
[18.0;0.0;40.0;15.0];
[21.0;1.0;10.0;40.0]]

let correlation = Tools.Correlation(matrix)

This represents three students who we interviewed. We asked each their age, their gender,
how much money they had for textbooks, and how much money they had for beer. The
first student is a 19-year-old, female, had $50.00 for text books, and $10.00 for beer.

When you send this to the FSI, you get the following:

val correlation : float [,] =
[[1.0; 0.755928946; -0.8386278694; 0.8824975033]
[0.755928946; 1.0; -0.2773500981; 0.3592106041]

[0.8824975033; 0.3592106041; -0.9962709628; 1.0]]

It is a bit hard to read, so I reformatted it:

Age ||1.0

Gender||$ Books||$ Beer

88|
.

||—O.84 ||O
||—O.28 ||O
[o]

Age

$ Books||-0.84

||0 76
Sex ||0.76 ||1.0
||—0.28

99|

$ Beer

0.88|0.35 ||—O.99 ||1.0 |

Notice the diagonal values in matrix, 1.0, which means that age is perfectly correlated
with age, sex is perfectly correlated with sex, and so on. The key thing from this example
is that there is an almost perfect negative correlation between the amount of money for
books and the amount of money for beer: it is -0.99. What this means is that, if you have
more money for books, you have less for beer, which makes sense. By reading the
correlation matrix, you can get a quick understanding of what variables are correlated and
can possibly be removed.

A related topic to collinearity is to always keep your y variable as independent as possible
from the x variable. For example, if you made a regression where you were trying to pick
the amount of money available for beer for our student, you would not pick any
independent variable that related to the amount of money the student has. Why? Because
they are measuring the same thing.

L CAiuUlL T OTiTlLwiIvil

A related topic to collinearity is feature selection. If you have a whole mess of x variables,
how do you decide which ones will be the best ones for your analysis? You can start
picking and choosing, but that is time-consuming and can possibly lead to errors. Instead
of guessing, there are some modeling techniques that run simulations across all your data
to determine the best combination of x variables to use. One of the most common
techniques is called forward-selection step-wise regression. Consider a data frame that has
five independent variables and one dependent variable:

Xo

i

oY | ugS
<

e

4=.><

Using forward-selection step-wise regression, the technique starts out with a single
variable, runs a regression, and calculates (in this case) a rmse:

X, ¥ RMSE = 25%

Next, the technique goes back and adds in another variable and calculates the rmse:

Y RMSE = 21%

Next, the technique goes back and further adds in another variable and calculates the rmse:

Y RMSE = 20%

By now, you probably have the idea. Depending on the implementation, the stepwise
might be re-run with different combinations of independent variables and/or different test
and training sets. When the step-wise is done, you can have a good idea about what
features are important and what can be discarded.

Let’s take a look at a step-wise regression example in Accord. Go back to your script and
enter this code (note that this is verbatim from the Accord help file on stepwise
regression):

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"
open Accord.Statistics.Analysis

//Age/Smoking

let inputs = [|[]55.0;0.0|];[|28.0;0.0]];
[165.0;1.0|]1;[|46.0;0.0]];
[186.0;1.0|];[|56.0;1.0]];
[185.0;0.0|]1;[133.0;0.0]];
[]121.0;1.0]|];[|42.0;1.0]];
[133.0;0.0]]1;[120.0;1.0]];
[143.0;1.0]]1;[131.0;1.0]];
[122.0;1.0]]1;[143.0;1.0]];
[146.0;0.0|]1;[186.0;1.0]|];
[156.0;1.0[];[[55.0;0.0[];]]

//Have Cancer

0.0;1.0;1.0;1.0;1.0;1.0;0.0;1.0;1.0;0.0]]

let regression =
StepwiselLogisticRegressionAnalysis(inputs, output,
[|"Age"; "Smoking"|], "Cancer")

Send this to the FSI to get the following:

val inputs : float [] [] =
[I[I55.0; 0.0|]; [|28.0; 0.0|]; [|65.0; 1.0|]; [|46.0; 0.0]|]; [|86.0;
1.0|];
[|I56.0; 1.0|]; [|85.0; 0.0|]; [|33.0; 0.0]|]; [|21.0; 1.0]|]; [|42.0;
1.0]];
[133.0; 0.0]|]; [|20.0; 1.0|]; [|43.0; 1.0|]; [|31.0; 1.0]]; [|22.0;
1.0]];
[143.0; 1.0]|]; [|46.0; 0.0|]; [|86.0; 1.0|]; [|56.0; 1.0]]; [|55.0;
0.0]]11]
val output : float [] =
[|le.o; 0.0; 0.0; 1.0; 1.0; 1.0; 0.0; 0.0; 0.0; 1.0; 0.0; 1.0; 1.0; 1.0;
1.0;
1.0; 0.0; 1.0; 1.0; 0.0]]
val regression : StepwiselLogisticRegressionAnalysis

As you can tell from the comments in the code, the inputs are 20 fictional people that have

been recently screened for cancer. The features are their ages and whether or not they
smoke. The output is whether the person actually did have cancer.

Go back to the script and add this:

let results = regression.Compute()
let full = regression.Complete;
let best = regression.Current;

full.Coefficients

best.Coefficients

When you send this to the FSI, you will see something very interesting. The
full.Coefficients returns all of the variables but the best.Coefficients returns this:

val it : NestedLogisticCoefficientCollection =
seq
[Accord.Statistics.Analysis.NestedLogisticCoefficient
{Confidence = 0.0175962716285245, 1.1598020423839;
ConfidenceLower = 0.01759627163;

ConfidenceUpper = 1.159802042;
LikelihoodRatio = null;
Name = "Intercept";

OddsRatio = 0.1428572426;

StandardError = 1.068502877;

Value = -1.945909451;

wWald = 0.0685832853132018; };
Accord.Statistics.Analysis.NestedLogisticCoefficient

{Confidence = 2.63490696729824, 464.911388747606;

ConfidenceLower = 2.634906967;

LikelihoodRatio = null;

Name = "Smoking";

OddsRatio = 34.99997511;
StandardError = 1.319709922;
Value = 3.55534735;

Wald = 0.00705923290736891; }]

You can now see that Smoking is the most important variable when predicting cancer. If
two or more variables were considered important, Accord would have told you the number
1 variable, then the next one, and so on. Stepwise regressions are a bit on the outs these
days as the community has moved to Lasso and some other techniques. However, it is still
an important tool in your toolkit and is something that you should know about.

1NUL111Al1172,alivil

Sometimes our models can be improved by adjusting the data. I am not talking about
“adjusting numbers” in the Enron accounting or US politician sense. I am talking about
adjusting the data using some standard scientific techniques that might improve the
model’s accuracy. The general term for this is normalization.

There are many different ways to normalize data. I want to show you two common ones
that work well with regressions. First, if your data is clustered together, you can take the
log of the values to help tease out relationships that might otherwise be hidden. For
example, look at our scatterplot of product reviews from the beginning of Chapter 2,
AdventureWorks Regression. Notice that most of the order quantity centered around 250 to
1,000.

Customer Reviews and Order Quantity

4.50

4.00 o> Slp® o, o
3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00
0.00 5.00 10.00 15.00 20.00

By applying the log to the order quantity and doing the same kind of scatterplot, you can
see the relationship much more clearly:

Customer Reviews and Order Quantity

4,20
% (-
@ B
& L LI
wo R PO T
.
.
.
3.80 - -' » o
L &
s ‘
[]
3.60 Py e o °
L] ‘. o
3.40 & “
@
e @
3.20
3.00
2 2.2 2.4 2.6 2.8 3 32 34 3.6

Note that taking the log typically does not change the relationship among the dependent
and independent variables, so you can use it safely in replacement of the natural values in
regressions.

If you go back to the solution in Chapter 2, AdventureWorks Regression, you can open up
the regression project and add a new file called Accord.Net4. fsx. Copy and paste in the
contents from Accord.Net2.fsx. Next, replace the data reader lines of code with this:

while reader.Read() do
productInfos.Add({ProductID=reader.GetInt32(0);
AvgOrders=(float)(reader.GetDecimal(1));
AvgReviews=log((float)(reader.GetDecimal(2)));
ListPrice=(float)(reader.GetDecimal(3));})

Sending this to the REPL, we get the following:

val regression : MultiplelLinearRegression =
y(x0, x1) = 35.4805245757214*x0 + -0.000897944878777119*x1 +
-36.7106228824185
val error : float = 687.122625
val a : float 35.48052458
val b : float -0.0008979448788
val ¢ : float -36.71062288
val mse : float = 7.083738402
val rmse : float = 2.661529335
val r2 : float = 0.3490097415

Notice the change. We are taking the 1og() of our x variables. Also, notice that our r2
slightly decreases. The reason for this is that although the log does not change the
relationship among AvgReviews, it does impact how it relates to the other x variables and

Besides using log, we can trim outliers. Going back to our graph, do you notice that lonely
dot at 2.2 average order quantity/3.90 average review?

Customer Reviews and Order Quantity

4.20
oo &
° &
. * o LI
4.00 ¢, S oo o} o0
o ® % o *
3.80 % ':' '.': ’ e
. ® ®
3.60 ® W .. ®
& Y o
3.40 "
L ﬂ
"]
3.20
3.00
2 232 2.4 26 2.8 3 3.2 3.4 3.6

Looking at all of the other data points, we would expect that a 3.90 average review should
have a 2.75 average order quantity at least. Although we might want to dive into the
details to figure out what is going on, we’ll save that exercise for another day. Right now,
what it is really doing is messing up our model. Indeed, the biggest criticism of
regressions is that they are overly sensitive to outliers. Let’s look at a simple example. Go
to Chapter 2, AdventureWorks Regression, regression project and create a new script,
called Accords. fsx. Copy the first part of the code from Accordi. fsx into it:

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"
#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dll"
#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.dl11l"

open Accord
open Accord.Statistics.Models.Regression.Linear

let xs = [| []15.0;130.0]];[|18.0;127.0|];[|15.0;128.0|]; [|17.0;120.0]|];
[116.0;115.0|] |]
let y = []3.6;3.5;3.8;3.4;2.6|]

let regression = MultiplelLinearRegression(2, true)
let error = regression.Regress(xs,y)

let b = regression.Coefficients.[1]

let sse regression.Regress(xs, Yy)

let mse sse/float xs.Length

let rmse = sqrt(mse)

let r2 = regression.CoefficientOfDetermination(xs,y)

Next, let’s add a child prodigy who is bored with school so he has a low GPA. Add in a
student with an age of 10, an IQ of 150, and a GPA of 1.0:

let xs = [| [|15.0;130.0|];[|18.0;127.0|];[|15.0;128.0|]; [|17.0;120.0]|];
[116.0;115.0|];[]10.0;150.0|] |]

let y = [|3.6;3.5;3.8;3.4;2.6;1.0]]
Sending the entire script to the REPL gives us the following:

val regression : MultiplelLinearRegression =
y(x0, x1) = 0.351124295971452*x0 + 0.0120748957392838*x1 +
-3.89166344210844
val error : float = 1.882392837
val a : float = 0.351124296
val b : float = 0.01207489574
val sse : float = 1.882392837
val mse : float = 0.3137321395
val rmse : float = 0.5601179693
val r2 : float = 0.6619468116

Notice what happens to our model. Our r2 moves from 0.79 to 0.66 and our rmse climbs
from 0.18 to 0.56! Holy cow, that’s dramatic! As you can guess, how you deal with
outliers will have a large impact on your model. If the intention of the model is to predict a
majority of students’ GPAs, we can safely remove the outlier because it’s not typical.
Another way of handling outliers is to use a model that does a better job of dealing with
them.

With that under our belts, let’s try it with real data. Add a new script file and call it
AccordDotNet6.fsx. Copy and paste all of AccordDotNet2. fsx into it. Next, locate these
lines:

while reader.Read() do
productInfos.Add({ProductID=reader.GetInt32(0);
AvgOrders=(float)(reader.GetDecimal(1));
AvgReviews=(float)(reader.GetDecimal(2));
ListPrice=(float)(reader.GetDecimal(3));})

let xs = productInfos |> Seq.map(fun pi -> [|pi.AvgReviews;
pi.ListPrice|]) |> Seq.toArray

let y = productInfos |> Seq.map(fun pi -> pi.AvgOrders) |>
Seq.toArray

And replace them with these:
while reader.Read() do
productInfos.Add({ProductID=reader.GetInt32(0);
AvgOrders=(float)(reader.GetDecimal(1));

ListPrice=(float)(reader.GetDecimal(3));})

let productInfos' = productInfos |> Seq.filter(fun pi ->
pi.ProductID <> 757)

let xs = productInfos' |> Seq.map(fun pi -> [|pi.AvgReviews;
pi.ListPrice|]) |> Seq.toArray

let y = productInfos' |> Seq.map(fun pi -> pi.AvgOrders) |>
Seq.toArray

Sending this to the REPL, we get the following:

val regression : MultiplelLinearRegression =
y(x0, x1) = 9.89805316193142*x0 + -0.000944004141999501*x1 +
-26.8922595356297
val error : float = 647.4688586
val a : float 9.898053162
val b : float -0.000944004142
val ¢ : float -26.89225954
val mse : float = 6.744467277
val rmse : float = 2.59701122
val r2 : float = 0.3743706412

The r2 moves up from 0.35 to 0.37 and our rmse drops from 2.65 to 2.59. Quite an
improvement for removing one data point! Feel free to move this change over to the
AdventureWorks project if you want. I am not going to walk you through it, but you now
have the skills to do it independently. Dropping outliers is a very powerful way to make
regressions more accurate, but there’s a cost. Before we start dropping data elements that
don’t work from our model, we have to use some judgement. In fact, there are textbooks
devoted to the science of what to do with outliers and missing data. We are not going to
get into that in this book, other than acknowledge that the issue exists and to advise you to
use some common sense when dropping elements.

OLallllS

I want to acknowledge a common misperception about normalization and units of
measure. You might notice that the different x variables have significantly different units
of measure in Chapter 2, AdventureWorks Regression, and Chapter 3, More
AdventureWorks Regression. In our examples, the Units of Customer Review is a 1-5
rating and the Price of Bikes is 0-10,000 US dollars. You might think that comparing such
a large range of numbers would adversely affect the model. Without going into details,
you can be rest assured that regressions are immune to different units of measure.

However, other models (especially classification and clustering models like k-NN, k-
means, and PCA) are impacted. When we created these kinds of models in Chapter 6,
AdventureWorks Redux — k-NN and Naive Bayes Classifiers, and Chapter 7, Traffic Stops
and Crash Locations — When Two Datasets Are Better Than One, we ran a risk that we
were getting erroneous results because the data was not scaled. Fortunately, the features
we selected, and the libraries we used (Numl.net and Accord), bailed us out. Numl.NET
automatically scales input variables in all of the classification models. Depending on the
type of model, Accord might scale for you. For example, in the PCA we wrote in Chapter
7, Traffic Stops and Crash Locations — When Two Datasets Are Better Than One, we
passed in an input parameter called AnalysisMethod.Center on this line:

let pca = new PrincipalComponentAnalysis(pcaInput.ToArray(),
AnalysisMethod.Center)

This scales the input variables to the mean, which is good enough for our analysis. When
we did the k-NN in Chapter 6, AdventureWorks Redux — k-NN and Naive Bayes
Classifiers, using Accord, we did not scale the data because our two input variables were
categorical (MartialStatus and Gender) with only two possibilities (married or not, male
or female) and you only need to scale continuous variables or categorical variables with
more than two values. If we had used a continuous variable or a three-factor categorical
variable in the k-NN, we would have had to scale it.

Let’s walk through a quick example of scaling using Accord. Open up the
FeatureCleaning solution from this chapter and add a new script file called AccordKNN:

[l Solution 'FeatureCleaning

4 FeatureCleaning
[=B References
F# Ascemblylnfo.fs
F# Libraryl.fs
IT CleanData.fsx
IT Accord.fsx
IT AccordKMM.fsx
¥_1 packages.config

Go into the NuGet Package Manager Console and enter this:

Go into the AccordKNN. fsx file and add the code we used in Chapter 6, AdventureWorks
Redux —k-NN and Naive Bayes Classifiers, for students who study and drink beer:

#r "../packages/Accord.3.0.2/1ib/net40/Accord.dll"

#r "../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.dl11l"

#r "../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dll"
#Hr
"../packages/Accord.MachineLearning.3.0.2/1ib/net40/Accord.MachineLearning.
dil"

open Accord

open Accord.Math

open Accord.MachinelLearning
open Accord.Statistics.Analysis

let inputs = [|[]|5.0;1.0]];[|4.5;1.5]];
[15.1;0.75[];[[1.0;3.5]];
[10.5;4.0]];[]1.25;4.0]]]]
let outputs = [|1;1;1;0;0;0]]

let classes = 2
let k = 3
let knn = KNearestNeighbors(k, classes, inputs, outputs)

let input = [|5.0;0.5]]

let output = knn.Compute(input)

Now, let’s scale the data so that studying and drinking beer are equivalent. We are going to
take the simplest methodology of scaling called mean scaling. Go back to the script and
enter this:

let studyingAverage
let drinkingAverage

= inputs |> Array.map(fun i -> i.[0]) |> Array.average
= inputs |> Array.map(fun i -> i.[1]) |> Array.average
let scaledInputs = inputs |> Array.map(fun i -> [|1.[0]/studyingAverage; 1i.
[1]/drinkingAverage]|])

let scaledKNN = KNearestNeighbors(k, classes, scaledInputs, outputs)

When you send this to the REPL, you will see the following:

val studyingAverage : float 2.891666667
val drinkingAverage : float 2.458333333
val scaledInputs : float [] [] =
[1[11.729106628; 0.406779661|]; [|1.556195965; 0.6101694915|];
[11.763688761; 0.3050847458|]; [|0.3458213256; 1.423728814|];
[10.1729106628; 1.627118644|]; []|0.4322766571; 1.627118644]|]]|]
val scaledKNN : KNearestNeighbors

Notice that the inputs are now relative to their means. The person who studied five hours
and drank one beer now studied 73% more than the average and drank 41% less than the
average. This k-NN model is now scaled and will give a better “apples to apples”
comparison when used in practice.

uveariiuuilg diiia Cross vdildauioil

If you remember from Chapters 2, 3, and 4, one of the problems with our methodology
when building models was that we were guilty of overfitting. Overfitting, the bane of
predictive analytics, is what happens when we build a model that does a great job with
past data but then falls apart when new data is introduced. This phenomenon is not just for
data science; it happens a lot in our society: Professional athletes get lucrative contracts
and then fail to live up to their prior performances; fund managers get hefty salary bumps
because of last year’s performance, and the list goes on.

ULl UJOO VALIUAULIUILIL T L1 dill VoL ouo Ltoot

Unlike the Yankees, who never seem to learn, our profession has learned from its mistakes
and has a great, if imperfect, tool to combat overfitting. We use the methodology of
train/test/eval to build several models and then select the best one not based on how well it
did against an existing dataset, but how it does against data it has never seen before. To
accomplish that, we take our source data, import it, clean it, and split it into two subsets:
training and testing. We then build our model on the training set and, if it seems viable,
apply our test data to the model. If the model is still valid, we can think about pushing it to
production. This is represented graphically as follows:

Source data

Validate
maodel

Training data Create model

Import data Clean data Split data

Testing data

But there is one more step we can add. We can split our data several times and build new
models to be validated. The actual splitting of the dataset is its own science, but typically
each time the base dataset is split into Training and Testing subsets, the records are
selected randomly. That means if you split your base data five times, you will have five
completely different training and test subsets:

VEIEIG
model

Training data Create model

Split data

Testing data

This kind of technique can be more important than the actual model selection. Both
Accord and Numl do some kind of splitting under the hoods and in this book, we will trust
that they are doing a good job. However, once you start working on models in the wild,
you will want to dedicate a certain amount of time on every project for cross validation.

ULUOOD VAILIUAULIUILL T UIC 1 diiUVULEL GIIU 11503l ool

Going back to our k-NN example of students that studied and drank beer, how do we
know if we are predicting accurately? If we want to guess whether a student passed or not,
we could just flip a coin: heads they pass, tails they fail. The assumption in our analysis is
that the number of hours studying and the number of beers consumed have some kind of
causality on the exam outcome. If our model does no better than a coin flip, then it is not a
model worth using. Open up Visual Studio and go back to the AccordKnN. fsx file. At the
bottom, enter in the following code:

let students = []0..5]]
let random = System.Random()
let randomPrediction =
students
|> Array.map(fun s -> random.Next(0,2))

Sending this to the FSI, we get the following (your results will be different):

val students : int [] = []0; 1; 2; 3; 4; 5]]
val random : System.Random
val randomPrediction : int [] = []0; 1; 0; 0; 1; 1]]

Now, let’s enter in some information about each student: the number of hours they studied
and the number of beers they drank and run the unscaled k-NN on it:

let testInputs =

let knnPrediction =
testInputs
|> Array.map(fun ti -> knn.Compute(ti))

Sending this to the REPL gives us the following:

val testInputs : float [] [] =
[I[I5.0; 1.0]]1; [|4.0; 1.0|]; []|6.2; 0.5]]; [|e.e; 2.0]]; [|0.5; 4.0]];
[13.0; 6.0]]]]
val knnPrediction : int [] = [|1; 1; 1; 0; 0; 0]]

Finally, let’s see how they actually did on the exam. Add this to the script:
let actual = []|1;1;1;0;0;0]]

Sending this to the FSI gives us the following:

val actual : int [] = [|1; 1; 1; 0; 0; 0]]

Combining these arrays together in a chart, will give us the following:

‘Student ‘Randum‘ KMNMN ‘ Actual ‘

[O T =
= R -
[T T = T R
[T T = T R

If we then scored how well the random test and k-NN did predicting the actual results, we
can see that the random test correctly predicted the result 66% of the time and k-NN
correctly predicted the result 100% of the time:

Random KNN
Student
Correct? | Correct?
0 1 1
1 0 1
2 1 1
3 1 1
a 0 1
3 1 1
TOTAL a4]
% Total 67% 100%

Because our k-NN did better than the random coin flip, we can consider the model useful.

This kind of yes/no random test works well when our model is a logistic regression or a
classification model like k-NN, but what about when the dependent (Y) variable is a
continuous value like in a linear regression? In that case, instead of using a random coin
flip, we can plug in the mean of the known values. If the outcome predicts better than the
mean, we probably have a good model. If it does worse than the mean, we need to rethink
our model. For example, consider predicting average bike reviews from AdventureWorks:

) Predicted
Customer [Mean Rating : Actual
Rating
0 3.5 4.2 4.1
1 3.5 2.9 2.8
2 3.5 3.7 3.5
3 3.5 4.1 4.1
4 3.5 3.6 3.5
3 3.5 2.8 3.0

being both higher and lower) and then aggregate the results, you can see that our linear
regression did a better job in predicting the rating than the mean:

Abs
Abs Mean ;
Customer | Regression
Difference | __
Difference
0 0.6 0.1
1 0.8 0.2
2 0.0 0.2
3 0.6 0.0
a 0.0 0.1
3 0.5 0.2
TOTAL 2.5 0.8
ANG 1% 13%

If you are thinking we have already done something like this in Chapters 2 and 3, you are
right—this is the same concept as the RMSE.

ULUJOOD VAILIUAULIULL 7 UIC LU UOLIVULL 111duL 1A Gl AV O

Going back to our k-NN example, imagine that we ran our k-NN against many students.
Sometimes the k-NN guessed correctly, sometimes the k-NN did not. There are actually
four possible outcomes:

k-NN predicted that the student would pass and they did pass
k-NN predicted that the student would fail and they did fail
k-NN predicted that the student would pass and they failed
k-NN predicted that the student would fail and they passed

Each of these outcomes has a special name:

Predict Pass and Did Pass: True Positive
Predict Fail and Did Fail: True Negative
Predict Pass and Failed: False Positive
Predict Fail and Passed: False Negative

And in a chart format, it would look like this:

False Positive
{Predict Pass/Actual
Fail)

True Postive (Predict
Pass/Actual Pass)

False Megative True Nagative
{Predict Fail/Actual | (Predict Fail/Actual
Pass) Fail)

Sometimes the False Positive is called a Type I error and the False Negative is called a
Type II error.

If we ran the k-NN against 100 students, we could add values to that chart like this:

Passed Failed
50 3
2 40
TOTAL 52 43

Reading this chart, 52 students passed the exam. Of that, we correctly predicted 50 of
them would pass, but we incorrectly predicted two of the passing students would fail.

predicted would fail, and three we incorrectly predicted would pass. This matrix is often
called a confusion matrix.

With this confusion matrix, we can then do some basic statistics like:

Accuracy = True Positives + True Negatives / Total Population = (50 + 40) /100 = 90%
True Positive Rate (TPR) = True Positives / Total Positives = 50 /52 = 96%

False Negative Rate (FNR) = False Negatives / Total Positives = 2 /52 = 4%

False Positive Rate (FPR) = False Positives / Total Negatives = 3 /43 = 7%

True Negative Rate (TNR) = True Negatives / Total Negatives = 40 /43 = 93%

(Note that TPR is sometimes called Sensitivity, the FNR is sometimes called Miss Rate,
the False Positive Rate is sometimes called Fall-Out and the TNR is sometimes called
Specificity.)

Positive Likelihood Ratio (LR+) = TPR/FPR =96 % /1 —93% = 13.8
Negative Likelihood Ratio (LR-) = FNR / TNR = 4% / 93% = .04
Diagnostic Odds Ratio (DOR) = LR+ /LR- = 33.3

Since the DOR is greater than 1, we know that the model is working well.

Putting this into code, we could handwrite these formulas, but Accord.Net has already
taken care of this for us. Go back into Visual Studio and open AccordKNN. fsx. At the
bottom, enter in this code:

1
0

let positiveValue
let negativeValue

let confusionMatrix =
ConfusionMatrix(knnPrediction, actual, positiveValue, negativeValue)

On the next line, type confusionMatrix and hit dot to see all of the properties that are
available to you:

let confusionMatrix = new Confuslior ix(knnPrediction,actual positivevalue, negativevalue)
confusionMatrix]
& |OddsRatio * | property ConfusionMatrix.OddsRatio: float
& OwverallDiagnosticPower
& PositivePredictivelalue
& Precision
y 4 PredictedMegatives
B PredictedPositives

Odds-ratia.

This is a very useful class indeed. Let’s select the odds ratio:

confusionMatrix.0ddsRatio

And then send the entire code block to the FSI:

val positivevValue : int = 1

val confusionMatrix : ConfusionMatrix = TP:3 FP:0, FN:O0 TN:3
val it : float = infinity

Since our k-NN is was 100% accurate, we got an odds ratio of infinity (and beyond). In a
real-world model, the odds ratio would obviously be much lower.

Uil UOOD VALiIUdiivlil T udllidialttu vaLiauico

There is one more technique that I want to cover to for cross-validation—adding in
unrelated variables and seeing the impact on the model. If your model is truly useful, it
should be able to handle extraneous “noise” variables without significantly impacting the
model’s result. As we saw in Chapter 2, AdventureWorks Regression, any additional
variable will have a positive impact on most models, so this is a measure of degree. If
adding an unrelated variable makes the model seem much more accurate, then the model
itself is suspect. However, if the extra variable only has a marginal impact, then our model
can be considered solid.

Let’s see this in action. Go back into AccordKNN. fsx and add the following code at the
bottom:

let inputs' = [

let knn' = KNearestNeighbors(k, classes, inputs', outputs)

let testInputs' = [

let knnPrediction' =
testInputs'
|> Array.map(fun ti -> knn'.Compute(ti))

I added a third variable that represents each student’s zodiac symbol (1.0 = Aquarius, 2.0
= Pisces, and so on). When I passed in the same test input (also with random zodiac
symbols), the predictions were the same as the original k-NN.

val knnPrediction' : int [] = []|1; 1; 1; 0; 0O; 0|]

We can conclude that the extra variable, although it had an impact at some point in the
modeling process, was not important enough to alter our original model. We can then use
this model with a higher degree of confidence.

ouliiiiary

This chapter is a bit different than other machine learning books that you might have read
because it did not introduce any new models, but instead concentrated on the dirty job on
gathering, cleaning, and selecting your data. Although not as glamorous, it is absolutely
essential that you have a firm grasp on these concepts because they will often make or
break a project. In fact, many projects spend over 90% of their time acquiring data,
cleaning the data, selecting the correct features, and building the appropriate cross-
validation methodology. In this chapter, we looked at cleaning data and how to account for
missing and incomplete data. Next, we looked at collinearity and normalization. Finally,
we wrapped up with some common cross-validation techniques.

We are going to apply all of these techniques in the coming chapters. Up next, let’s go
back to the AdventureWorks company and see if we can help them improve their
production process using a machine learning model based on how the human brain works.

b[l&:l[.)IEl" Je AUVCCIIWUICYVYUILIKS F'10O00uCu1oI11 —
Neural Networks

One day you are sitting in your office, basking in the glow of your new-found rock star
status at AdventureWorks when your boss knocks on the door. She says, “Since you did
such a good job with the consumer-facing portion of our existing website, we want to
know if you would be interested in working on an internally-facing greenfield project.”
You cut her off with a resounding, “Yes!” She smiles and continues, “Okay. The problem
is in our production area. Management is very interested in how we can reduce our scrap
amount. Every month we get a report from Excel that looks like this:”

Scrap Percent By Month
0.012
0.01
0.008
0.006
@
0.004 _e
PR \
2 & \
0.002 > 4 A b
“H’: ’ ‘ - L)
v v —=-8==9
0
1 2 3 4 s 6 7 8 9 10 11 12
— @ =2011 =-g==2012 2013 =g 2014

“The problem is that we don’t know what to do with this data. Production is a complex
workflow with many variables that can impact whether an item gets scrapped. We are
looking for two things:

e A way of identifying the items that most impact whether items get scrapped
e A tool that allows our planners to alter the key variables to play what if... and make
changes to the production process™

You tell your boss okay. Since this is a greenfield application and you have been hearing
the hype around ASP.NET Core 1.0, this seems like a great place to try it. Also, you have
heard about one of the hot models in data science, neural networks, and want to see
whether the reality matches the hype.

INCUIdl IICTWUIL' DS

A relative latecomer to data science, neural networks attempt to have the computer imitate
how the brain operates. The gray matter between our ears is very good, up to a point, at
making connections and drawing inferences. The promise of neural networks is that if we
can build models that are patterned after how our brain works, we can combine the speed
of computers and the pattern-matching ability of our wetware to make a learning model
that can provide insights that computers or humans alone might miss.

JJCILI\SI. Uil

Neural networks takes their vocabulary from the actual brain; a neural network is a
collection of neurons. If you remember from Biology 101 (or Crysis 2), the brain has
billions of neurons that look more or less like this:

Dendrite

' Nucleus

Axon Terminals

Axon

The axon terminal of one neuron connects to another neuron’s dendrite. Since an
individual neuron can have multiple dendrites and axon terminals, neurons can connect,
and be connected to, numerous other neurons. The actual connection area between two
neurons is called the synapse. Our brains use electrical signals to pass messages among
neurons.

! Neurotransmitters !
Electrical Dendrite

Impulse (Neuron #2)

Axon Terminal
(Neuron #1)

will use the same vocabulary. In a neural network, we have a series of inputs and an
output. Between the inputs and outputs, there is a hidden layer comprising neurons. Any
connection from the inputs into the hidden layer, among the neurons inside the hidden
layer, and from the hidden layer to the output is called a synapse.

Hidden Layer Neurons

Synapses

Notice that every synapse connects only to the neurons (or output) to its immediate right.
Data always flows in one direction in a neural network and synapses never connect to
themselves or any other preceding neuron in the network. One more thing to note is that
when the hidden layer has many neurons, it is called a deep belief network (or deep
learning). We will not be covering deep belief networks in this book, though it is certainly
something you might want to toss around the next time you are out bowling with friends.

In a neural network, the synapse has only one job. They form a connection from one
neuron to the next, applying a weight to that connection. For example, Neuron 1 activates
the synapse with a weight of two, so that Neuron 2 receives an input of two:

Neurons have a more complicated job. They take in the values from all of their input
synapses, take input from something called a bias (I’ll get to that in a second), apply an
activation function to the inputs, and then either output a signal or do nothing. The
activation function can treat each input separately, combine them, or do a mixture of both.
There are many kinds of activation functions, ranging from simple to mind-boggling. In
this example, the inputs are added together:

Some neural networks are smart enough to add and drop neurons as needed. For this book,
we will not be doing anything like that—we will fix the number of neurons in each layer.
Going back to some vocabulary that I dropped on you in the preceding paragraph, there
are two kinds of inputs for any given activation function inside a neuron: the weights as

synapse, depending on the nature of the synapse, and does not change during the lifetime
of the neural network. The bias is a global value that is assigned to all neurons (and
output) which, unlike the weights, changes frequently. The machine learning component
of the neural network is the many iterations that the computer does to create the best
combination of weights and bias to give the optimal predictive score.

AINCULIdAdL 1ICLyYWwWuL Y Uliilv

With this mental model in place, let’s take a look at a neural network in action. Let’s look
at a series of students who studied and drank beer before an exam and compare whether
they passed that exam or not:

Hours Beers

: ?
Studying il Passed"

Student

2 S

0 o B W

1.2

~N O 00 WO N B O
N P, W N O O
O O WG e e ke

Since we have two input (x) variables (Hours Studying and Beers Drank), our neural
network will have two inputs. We have one dependent variable (Passed?) so our neural
network will have one output:

Hidden Layer

Passed

?

One thing to note is that the number of inputs depends on the range of values. So if we had
a categorical input (such as male/female), we would have a number of inputs that
correspond to the range of values in the category:

Hidden Layer

Female

1. Go into Visual Studio and create a new C# ASP.NET web application:

P Recent .NET Framework 4.6.1 ~ Sort by: Default -

4 |nstalled c
i |-_] ASP.NET Web Application Visual C#
. @
4 Templates o
b Visual F# E‘:!g Class Library (Package) Visual C#
DataFactory .
HDInsight E Console Application (Package) Visual C#

4 Other Languages

Build Accelerator

Game
Python
4 Visual C#
P Windows
Web
Android
I Cloud -
b Online Click here to go online and find templates.
Name: AdventureWorks.ProcessAnalysisTool
Location: CAGIt\MLDotNet\Book Chapters\Chapter09\ - [
Solution name: |AdvenTureWorks.P:'ocessf-\nalysisTooI.Squtior{ |
"

2. In the next dialog box, select ASP.NET 5 Templates and change the authentication

type to No Authentication. Note that the templates will probably change from
ASP.NET 5 to ASP.NET Core 1 after the writing of this book. You can consider these

two terms synonymously.

Select a template:

" ADFNEI 4.b.1 1empiates

Empty Web Forms MVC Web API

o S e B

Azure APl App Azure Mobile Azure Mobile

Single Page
Application

App Service
ASP.NET 5 Templates
P_S r; 5
ol = =
Empty Web AP Web
Application

Add folders and core references for:

Web Forms MVC Web API

Add unit tests

Test project name: | AdventureWorks.ProcessAnalysisTool.Tests

A project template for creating an ASP.NET 5
application. The template uses ASP.NET MVC
used to build Web Applications and RESTful
Services.

Learn more

‘ Chahge Authentication

Authentication: No Authentication

Microsoft Azure

Host in the cloud

App Service]

If everything code-gens as it should, you will get the following project:

R o-c B p =

Search Solution Explorer (Ctrl+;)

xa] Solution ‘AdventureWorks.ProcessAnalysisTool.
4 Solution Items
39) global.json
4 Src
4 /7] AdventureWorks.ProcessAnalysisTool
b & Properties
P =B References
ﬁ@ wwwroot
Pe Dependencies

Controllers

=}

VOV VvV

Views
JEJ appsettings.json
+LT gulpfilejjs

p "'.;'U project.json
v i:l Project_Readme.html
v C* Startup.cs

&

4. Next, let’s add an F# Windows Library project:

F Recent NET Framework 4.6.1 = Sort by: | Default v| & ji= Search Installed Templates

4 [nstalled EF' ol Aalication Visual F# Type: Visual F#
4 Visual F# - .
Silverlight E.',‘i! Library Wisual F#
Windows 4
DataFactory T.‘i! Portable Library (MET 4.5, Windows Store, Silverlight 5, Xam...Visual F#
HDInsight

Fﬁ
4 Other Languages Eli:&! Portable Library (NET 4.5, Windows Store, Windows Phone... Visual F#

Build Accelerator F#
Eé! Partable Library (NET 4.5, Windows Store, Windows Phone... Wisual F#
u!

Garne
Python e s . -
4 Visuol C& ,é! Portable Library (NET 4.5, Windows Store, Xamarin) Visual F#
5 ? -
E Windows E#
Wil EJ Tutorial Visual F#
(4]
Android
b Cloud
Extensibility
-
b Online Click here to go online and tind templates,
Name: I.E«duenrureWc|'ks.ProcessAna|vsisToo!.I'S| |

Location: CAGI\MLDotNet\Book Chapters\Chapter0®AdventureWorks.ProcessAnalysisTool Solution -
OK

5. Once the F# project has been created, open up the NuGet Package Manager Console

and install numl. Make sure that you are targeting the F# project for the NuGet
installation:

PM> install-package numl

Package Manager Console

Package source: nuget.org ~ | i] Default project: AdventureWorks.ProcessAnalysisTool.FS v | &

Each package is licensed to you by its owner. NuGet is not responsible for, nor does it grant any licenses
governed by additional licenses. Follow the package source (feed) URL to determine any dependencies.

Package Manager Console Host Version 3.3.8.167
Type ‘get-help NuGet® to see all available NuGet commands.

PM> install-package num]J

6. Rename Scipti.fsx to StudentNeuralNetwork. fsx.
7. Go to the script and replace everything in it with this code:

#r "../packages/numl.0.8.26.0/1ib/net40/numl.d11"
open numl

open numl.Model

open numl.Supervised.NeuralNetwork

type Student = {[<Feature>]Study: float;

let data =

[{Study=2.
{Study=3.
{Study=1.
{Study=4.
{Study=6.
{Study=8.

[<Label>] mutable Passed: bool}

0,;Beer=3.
0, Beer=4.
.0;Passed=false};
0,;Beer=5.
0, Beer=2.
0,;Beer=3.

0;Beer=6

0,;Passed=false};
0,;Passed=false};

0,;Passed=false};
0,;Passed=true};
0,;Passed=true};

{Study=12.0;Beer=1.0;Passed=true};
{Study=3.0;Beer=2.0;Passed=true};]

let data' = data |> Seq.map box

let descriptor = Descriptor.Create<Student>()

let generator = NeuralNetworkGenerator()
generator.Descriptor <- descriptor

let model = Learner.Learn(data', 0.80, 100, generator)
let accuracy = model.Accuracy

8. When you send this to the FSI, you will get the following:

val generator : NeuralNetworkGenerator
val model : LearningModel =
Learning Model:
Generator numl.Supervised.NeuralNetwork.NeuralNetworkGenerator
Model:
numl.Supervised.NeuralNetwork.NeuralNetworkModel
Accuracy: 100.00 %

val accuracy : float = 1.0

If you worked through the example in Chapter 3, More AdventureWorks Regression, this
code will look familiar. The Student type has three properties: Study, Beer, and Passed.
Note that Passed is marked as mutable because numl expects any prediction data type to
be of the same type that was used when the model was created. Numl then mutates the
response variable to whatever the model comes up with, so we have to use the mutable
keyword. Alternative implementations would be to pass into the prediction function a type
without that response variable or return a new instance so the value can be immutable.
Feel free to contribute to the open source project if you feel strongly about this (I’ll see
you there J).

In any event, the data is an array of instances of our students. We then create a descriptor
of the student type and a generator of a neural network. Notice that we know the
generator’s descriptor property is mutable because we assign it using the <- symbol in
this line:

generator.Descriptor <- descriptor

Next, we pass the generator to the learner and create the model. Under the hood, numl is
scaling our data and running multiple instances of a neural network to determine the
optimal solution. Once the generator has finished its work, it reports that it has an

script and add this:

let testData = {Study=7.0;Beer=1.0;Passed=false}
let predict = model.Model.Predict(testData)

When you send this to the FSI, you will get this:

val testData : Student = {Study = 7.0;

Beer = 1.0;
Passed = false;}
>
val predict : obj = {Study = 7.0;
Beer = 1.0,
Passed = true;}

In this case, our student who studies 7 hours and has 1 beer will pass the test.

INCULI AL 1iIclyYywuLrLn — I.l.y TmAa

With the theory out of the way, let’s see if neural networks can help us with
AdventureWorks. As in Chapter 3, More AdventureWorks Regression, let’s see if we can
use a business area expert to help us formulate some viable hypotheses. When we visit the
manager of manufacturing, he says, “I think there are a couple of areas that you should
look at. See if the production location has an impact. We have seven major locations”:

ID Location

10 Frame Forming
20 Frame Welding
30 Debur and Polish
40 Paint

45 Specialized Paint
50 Subassembly

60 Final Assembly

“I am curious if our Paint location generates more than expected defects because we have
high turnover in that area.”

“Also, see if there is a relationship between vendors and products with defects. In some
cases, we purchase parts for a single vendor; in other cases, we have two or three vendors
supplying us parts. We don’t track which part came from which vendor when we build a
bike, but perhaps you can find that certain vendors are associated with purchase orders
that have defects.”

These seem like two good places to start, so let’s head over to the Selution Explorer and
create a new script file called AwNeuralNetwork. fsx in the F# project:

@ o-5F|F=8
Search Solution Explorer (Ctrl+;) P~

&7H Solution ‘AdventureWorks.ProcessAnalysisTool.Solution' (2 projects) |

P Solution lterns
P SFC
4 <[F# AdventureWorks.ProcessAnalysisTool. FS
[=B References
a F* fAssemblylnfo.fs
&[T StudentMeuralMetwork.fsx
alT AWNeuralMetwork.fsx
& F* Librarylfs
ay_] packages.config

Next, open up the NuGet Package Manager and enter this:

PM> Install-Package SQLProvider -prerelease

Next, open the script file and enter this (note that the version number might be different
for you):

#r "../packages/SQLProvider.0.0.11-alpha/lib/FSharp.Data.SQLProvider.dll"
#r "../packages/numl.0.8.26.0/1ib/net40/numl.d11"

#r
"../packages/FSharp.Collections.ParallelSeq.1.0.2/1ib/net40/FSharp.Collecti
ons.ParallelSeq.dl1l"

open numl

open System

open numl.Model

open System.Ling

open FSharp.Data.Sql

open numl.Supervised.NeuralNetwork
open FSharp.Collections.ParallelSeq

[<Literal>]

let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=AdventurewWorks2014;user id= PacktReader;password=
P@cktM@chinele@rning;"

type AdventureWorks = SqglDataProvider<ConnectionString=connectionString>
let context = AdventureWorks.GetDataContext()

Sending this to the REPL will give you the following:

val connectionString : string =
"data source=nc54a9m5kk.database.windows.net;initial catalog=A"+[70
chars]
type AdventureWorks = SqlDataProvider<...>
val context : SglDataProvider<...>.dataContext

Next, let’s tackle the location hypothesis. Go to the script and enter the following:

type worklrderLocatlion

= 1L<Feature~>|
[<Feature>]
[<Feature>]
[<Feature>]
[<Feature>]
[<Feature>]
[<Feature>]

Locationlu.
Location20:
Location30:
Location40:
Location45:
Location50:
Location60:

00o0o.l,
bool;
bool;
bool;
bool;
bool;
bool;

[<Label>] mutable Scrapped: bool}

context.

[Production].

match workOrderRoutings.Length with

let getWorkOrderLocation (workOrderId, scrappedQty:inti16) =
let workOrderRoutings =
[WorkOrderRouting] "~ .Where(fun wor -> wor.WorkOrderID =
Seq.toArray

workOrderId)

| ® -> None
| _ ->
let locationl10@ = workOrderRoutings |> Array.exists(fun wor ->
wor .LocationID = intl16 10)
let location20 = workOrderRoutings |> Array.exists(fun wor ->
wor.LocationID = intl6 20)
let location30 = workOrderRoutings |> Array.exists(fun wor ->
wor.LocationID = intl16 30)
let location40 = workOrderRoutings |> Array.exists(fun wor ->
wor.LocationID = intl16 40)
let location45 = workOrderRoutings |> Array.exists(fun wor ->
wor.LocationID = intl16 45)
let location50 = workOrderRoutings |> Array.exists(fun wor ->
wor.LocationID = intl1l6 50)
let location60 = workOrderRoutings |> Array.exists(fun wor ->
wor.LocationID = intl1l6 60)
let scrapped = scrappedQty > intl6 0
Some

{Locationl0=location10;Location20=1ocation20;Location30=location30;Location
40=1ocation40;

Location45=1ocation45;Location50=1ocation50;Location60=1ocation60; Scrapped=
scrapped}

Sending this to the REPL gives you the following:

type WorkOrderLocation =

{Locationl10: bool;
Location20: bool;
Location30: bool;
Location40: bool;
Location45: bool;
Location50: bool;
Location60: bool;

mutable Scrapped: bool;}
val getWorkOrderLocation
workOrderId:int * scrappedQty:intl6 -> WorkOrderLocation option

You can see we have a record type with each location as a field and an indicator if there
was anything scrapped. The level of automacy for this data structure is work order. Each
order might visit one or all of the locations and might have some scrap quantity. The

in the table, and flattens into this WorkOrderLocation record type.

Next, go back to the script and enter this:

let locationData =
context. "[Production].[WorkOrder] °
|> PSeq.map(fun wo ->
getWorkOrderLocation(wo.WorkOrderID,wo.ScrappedQty))
|> Seq.filter(fun wol -> wol.IsSome)
|> Seq.map(fun wol -> wol.Value)
|> Seq.toArray

Sending this to the REPL gives us the following:

val locationData : WorkOrderLocation [] =

[|{Locationl1l0 = true;
Location20 = true;
Location30 = true;
Location40 = false;
Location45 = true;
Location50 = true;
Location60 = true;

Scrapped = false;}; {Locationl10 = false;

Location20 = false;

Location30 = false;

Location40 = false;

This code is very much what you saw in Chapter 5, Time Out — Obtaining Data. We go to
the database and pull in all the work orders and then map the locations into our
wWorkorderLocation record. Notice that we are using the PSeq so that we can get a
performance boost by making simultaneous calls to the database to get the locations for
each work order.

With the data local, let’s try out a neural network. Go into the script file and enter this:

let locationData' = locationData |> Seq.map box

let descriptor = Descriptor.Create<wWorkOrderLocation>()

let generator = NeuralNetworkGenerator()
generator.Descriptor <- descriptor

let model = Learner.Learn(locationData', 0.80, 5, generator)
let accuracy = model.Accuracy

Sending that to the REPL, after a long wait, will give you the following:

val generator : NeuralNetworkGenerator
val model : LearningModel =
Learning Model:
Generator numl.Supervised.NeuralNetwork.NeuralNetworkGenerator
Model:
numl.Supervised.NeuralNetwork.NeuralNetworkModel
Accuracy: 0.61 %

val accuracy : float = 0.006099706745

So, ugh, it does not look like the location can predict where defects might occur. As we

working model to make the experiment worthwhile. In this case, we can go back to the
director and tell him that scraps are occurring all over his production location, not just in
the painting (so much for blaming the new guy).

AINCULI AL It LyYywuLrLn — I.l.y T b

Let’s see if we can find anything using the director’s second hypothesis that certain
vendors might have higher defect rates than others. Go back to the script and enter this:

type VendorProduct = {WorkOrderID: int;
[<Feature>]BusinessEntityID: int;
[<Feature>]ProductID: int;
[<Label>] mutable Scrapped: bool}

let workOrders = context. "[Production].[WorkOrder] " |> Seq.toArray
let maxWorkOrder = workOrders.Length
let workOrderIds = Array.zeroCreate<int>(1000)
let workOrderIds' = workOrderIds |> Array.mapi(fun idx i -> workOrders.
[System.Random(idx).Next(maxWorkOrder)])

|> Array.map(fun wo -> wo.WorkOrderID)

When you send it to the FSI, you will get the following:

type VendorProduct =
{WorkOrderID: int;
BusinessEntityID: int;
ProductID: int;
mutable Scrapped: bool;}

FSharp.Data.Sql.Common.SqlEntity; FSharp.Data.Sql.Common.SqlEntity;
FSharp.Data.Sql.Common.SqlEntity; FSharp.Data.Sql.Common.SqlEntity;
el
val maxWorkOrder : int = 72591
val workOrderIds : int [] =
[le; ©; 0; ©; 0; 6; 0, 0; ©6; 0; 6; 0; 0; 0; 0; 0, 0; 06; 0; 0; 0; 0; 0; O;

0;

0! 0I 0' 0! 0! 0’ 0! 0! 0’ 0' 0! 0; 0' 0! 0’ 0' 0! 0, 0' 0! 0I 0' 0! 0!
0;

6; 0; 0; 0; 6, 0; 0; 0; 0; 0; 0; 0; O0; 0; O0; 0; O0; 0; O0; 0; O0; 0; O; 0O,
0;

6; 0; 0; 0; 6, 0; 0; 0; 0; 0; 0; 0; 0; 0; O0; 0; O0; 0; O0; 0; O0; 0; O; 0O,
0;

_—
val workOrderIds' : int [] =

The vendorpProduct record type should be familiar to you. The next code block creates an
array of 1,000 random work order IDs. As we learned from the first experiment, neural
networks take a long time to complete. We will look at some big-data solutions in the next
chapter, but until then we’ll do what data scientists have done for as long as they have
done data science—take a sample of the larger dataset. Notice that we are using the
Array.Mapi high-order function so that we can use the index value to locate the correct
value in the work orders array. Unfortunately, we can’t pass the index into the type
provider and have it evaluate on the server, so the entire work order table is brought local
so that we can use the index.

Next, enter this into the script:

let vendorData =
guery{for p in context. "[Production].[Product] " do

for wo in p.FK_WorkOrder_Product_ProductID do

for bom in p.FK_BillOfMaterials_Product_ProductAssemblyID do

join pv in context. "[Purchasing].[ProductVendor] " on
(bom.ComponentID = pv.ProductID)

join v in context. "[Purchasing].[Vendor] " on
(pv.BusinessentityID = v.BusinessEntityID)

select ({WorkOrderID = wo.WorkOrderID;BusinesseEntityID =
v.BusinessEntityID; ProductID = p.ProductID; Scrapped = wo.ScrappedQty >
int16 0})}

|> Seq.filter(fun vp -> vp.WorkOrderID |=| workOrderIds')

| > Seq.toArray

When you send it to the FSI, after a bit of a wait, you will get the following:

val (|=]) : id:'a -> a:'a [] -> bool when 'a : equality
val vendorData : VendorProduct [] =
[|{WorkOrderID = 25;
BusinessEntityID = 1576;
ProductID = 764;
Scrapped = false;}; {WorkOrderID = 25;
BusinessEntityID = 1586;
ProductID = 764;
Scrapped = false;}; {WorkOrderID = 25;

The first line is the in (| =]) operator that we ran across in Chapter 5, Time Out —
Obtaining Data. The next code block hydrates the vendorData array with the data from
the 1,000 randomly selected work orders. Notice that there is some repetition because each
work order will use several parts and each part might be supplied by a variety of vendors
(in this case, called business entities).

With the data local, go into the script and enter this:

let vendorData'
let descriptor'

vendorData |> Seq.map box
Descriptor.Create<VendorProduct>()

let generator' = NeuralNetworkGenerator()
generator'.Descriptor <- descriptor'

let model' = Learner.Learn(vendorData',K 0.80, 5, generator')
let accuracy' = model'.Accuracy

When you send it to the FSI, you will get the following:

val generator' : NeuralNetworkGenerator
val model' : LearningModel =
Learning Model:
Generator numl.Supervised.NeuralNetwork.NeuralNetworkGenerator
Model:
numl.Supervised.NeuralNetwork.NeuralNetworkModel
Accuracy: 99.32 %

val accuracy' : float = 0.9931740614

So, this is interesting. We have a very high accuracy rate. One wonders: is this because in

with them because they are the only ones. However, since a single vendor might supply
multiple input products and those products might have different scrap rates, you can use
the model to predict if a given vendor and a given product will have a scrap rate. Also,
notice that instead of adding an input for each vendor and product (which would have
made a very sparse data frame), there is one input for vendor and one for product.
Although these can be considered categorical values, we can sacrifice some precision for
this exercise.

The key thing about the neural network that you will want to remember is that the neural
network can’t tell you how it got its answer (very much like the human brain, no?). So the
neural network won’t report back which combination of vendors and products will lead to
defects. To do that, you would need to use a different model.

Dulidiiilg uic appiicduvil

With this neural network giving us enough of what we need, let’s go ahead and build out
our ASP.NET 5.0 application with the model. At the time of writing, ASP.NET 5.0 only
supports C# so we will have to translate our F# into C# and port the code into the
application. Once the other languages are supported by ASP.NET, we will update the
sample code on the website.

If you are not familiar with C#, it is the most popular language on the .NET stack and is
very similar to Java. C# is a general-purpose language that initially combined imperative
and object-oriented language features. Lately, functional constructs have been bolted onto
the language specifications. However, as the old carpenter axiom goes, “If it’s a screw, use
a screwdriver. If it’s a nail, use a hammer.” Since that’s the case, you are much better
served to do .NET functional programming with F#. I’ll do my best in the next section to
explain any differences in the C# implementation when we port the code over.

OCllllls Upy it 1ivucio

You already have the boilerplate MVC site created. Open up NuGet Package Manager
Console and install numl into it:

PM > install-package numl

Package Manager Console
Package source: nuget.org - L&t | Default project: srchAdventureWorks.ProcessAnalysisTool = | = il

PM> install-package numl
Installing MuGet package numl.®.8.26.
Successfully installed 'numl 8.8.26"' to AdventureWorks.ProcessfinalysisTool

Next, create a folder called Models in the Solution Explorer:

4 751 AdventureWorks.ProcessAnalysisTool
b & Properties
P =B References
b a@D wwwroot
b 7 Dependencies
P & Controllers

& Models

P &0 Views

In that folder, add a new class file named vendorProduct:

4 |nstalled Sort by: Default v & 1= Search Installed Templates (Ctri+F) P
ey 5 Dpe B
Client-side An empty class declaration

b Online &0 Interface Server-side

¥ : ’ ;
";_I MVC Controller Class Server-side
rcat
‘GJ Web API Controller Class Server-side
C#
E MVC View Page Server-side
Ca
B MVC View Layout Page Server-side
=
E’I MVC View Start Page Server-side
C
E MVC View Imports Page Server-side
|—C=t
‘GJ Razor Tag Helper Server-side
w
Click here to go online and find templates.
Mame: VendorProduct.cs
Add || cancel

Inside that file, replace all of the code with the following:

using numl.Model;

namespace AdventureWorks.ProcessAnalysisTool.Models

{

public class VendorProduct

{
public int WorkOrderID { get; set; }
[Feature]
public int BusinessEntityID { get; set; }
[Feature]
public int ProductID { get; set; }
[Label]
public bool Scrapped { get; set; }

b

}

As you can guess, this is the equivalent of the record type we create in F#. The only real

difference is that the properties are mutable by default (so be careful). Go to the Solution

Explorer and find the Project. json file. Open it and remove this entry in the
frameworks section:

"dnxcore50": { }

This section should now look like the following:

“"frameworks": {
Tdnx451": {
"dependencies”: {
"numl”: "@©.8.26"

-1

¥s

Go ahead and run the website to make sure it is good:

ASP.NET 5 Linux OSX

Windows

Learn how to build ASP.NET apps that can run anywhere.

[YeNole

Application uses How to Overview Run & Deploy

MYVC 6

= Gulp and Bower for managing
client-side libraries

= Theming using Boolstrap

- Sample pages using ASP.NET

© 2016 - AdventureWorks.ProcessAnalysisTool

= Add a Confroller and View
= Add an appseiting in config and

access it in app.

= Manage User Secrets using Secret

Manager

- Use logging to log a message.

- Add packages using NuGet.

= Add client packages using Bower
= Target development, staging or

production environment.

- Conceptual overview of what is

ASPNET 5

« Fundamentals of ASP_NET 5 such

as Startup and middleware.

- Working with Data

=« Security

- Client side development

= Develop on different platforms

« Read more on the documentation

Site

+ Run your app

« Run your app on NET Core

* Run commands in your project json
» Publish to Microsoft Azure Web

Apps

What we are doing is removing the site’s dependency on .NET Core. Although numl does

support .NET Core, we don’t need it right now.

If the site is up and running, let’s add the rest of our helper classes. Go back into the
Solution Explorer and add a new class file named Product .cs. Go into that class and
replace the existing code with this:

using System;

namespace AdventureWorks.ProcessAnalysisTool.Models

{

public int ProductID { get; set; }
public string Description { get; set; }

}

This is another record-equivalent class which will be used when the user selects the
Product they want to model.

Go back to the Solution Explorer and add a new class file named vendor .cs. Go into that
class and replace the existing code with this:

using System;

namespace AdventureWorks.ProcessAnalysisTool.Models

{
public class Vendor
{
public int VendorID { get; set; }
public String Description { get; set; }
3
}

Like the Product class, this will be used to populate the select list for the user.

Go back into the Solution Explorer and add a new class file named Repository.cs. Go
into that class and replace the existing code with the following:

using System;

using System.Collections.Generic;
using System.Data.SqlClient;
using System.Ling;

namespace AdventureWorks.ProcessAnalysisTool.Models

{

public class Repository

{

public String ConnectionString { get; private set; }
public Repository(String connectionString)

{
this.ConnectionString = connectionString;
¥
public ICollection<Vendor> GetAllVendors()
{

var vendors = new List<Vendor>();
using (var connection = new
SqlConnection(this.ConnectionString))
{
var commandText =
"Select distinct V.BusinessEntityID, V.Name from
[Purchasing].[Vendor] as V " +
"Inner join[Purchasing].[ProductVendor] as PV " +
"on V.BusinessEntityID = PV.BusinessEntityID " +

using (var command = new SglCommand(commandText,
connection))

{

connection.Open();
var reader = command.ExecuteReader();
while (reader.Read())

{
vendors.Add(new Vendor() { VendorID =
(int)reader[0], Description = (string)reader([1] });

}
}
3
return vendors;
3
public ICollection<Product> GetAllProducts()
{

var products = new List<Product>();
using (var connection = new
SglConnection(this.ConnectionString))
{
var commandText =
"Select distinct P.ProductID, P.Name from [Production].
[Product] as P " +
"Inner join[Purchasing].[ProductVendor] as PV " +
"on P.ProductID = PV.ProductID " +
"order by 2 asc";

using (var command = new SglCommand(commandText,
connection))

{

connection.Open();
var reader = command.ExecuteReader();
while (reader.Read())

{
products.Add(new Product() { ProductID =
(int)reader[0], Description = (string)reader[1] });

¥
¥
¥
return products;
by
public ICollection<VendorProduct> GetAllVendorProducts()
{

var vendorProducts = new List<VendorProduct>();
using (var connection = new
SqglConnection(this.ConnectionString))
{
var commandText =
"Select WO.WorkOrderID, PV.BusinessgEntityID,
PV.ProductID, WO.ScrappedQty " +
"from[Production].[Product] as P " +
"inner join[Production].[WorkOrder] as WO " +

"inner join[Production].[BillOfMaterials] as BOM " +
"on P.ProductID = BOM.ProductAssemblyID " +

"inner join[Purchasing].[ProductVendor] as PV " +
"on BOM.ComponentID = PV.ProductID ";

using (var command = new SglCommand(commandText,
connection))

{
connection.Open();
var reader = command.ExecuteReader();
while (reader.Read())
{
vendorProducts.Add(new VendorProduct()
{
WorkOrderID = (int)reader[0],
BusinesseEntityID = (int)reader[1],
ProductID = (int)reader[2],
Scrapped = (short)reader[3] > 0
3);
}
}
¥
return vendorProducts;
¥
public ICollection<VendorProduct> GetRandomVendorProducts(Int32
number)
{
var returnValue = new List<VendorProduct>();
var vendorProducts = this.GetAllVendorProducts();
for (int 1 = 0; 1 < number; i++)
{
var random = new System.Random(1i);
var index = random.Next(vendorProducts.Count - 1);
returnValue.Add(vendorProducts.ElementAt(index));
¥
return returnvalue;
¥
b
}

As you can probably guess, this is the class that calls out to the database. Since C# does
not have type providers, we need to handwrite the ADO.NET code. We will need to add a
reference to System.Data to make this code work. Go into the References in Solution
Explorer and add it:

P Projects Add Reference to DNX 4.5.1 Framework Assemblies Search Assemblies

4 Assemblies Name - Name:
System.ComponentModel. Composition.regist System.Data
System.ComponentModel. DataAnnotations Version:
Recent System.configuration 4.0.0.0
System.Configuration.Install
System.Core
System.Data
System.Data.DataSetExtensions
System.Data.Entity
System.Data.Entity.Design
System.Data.Ling
System.Data.OracleClient
Svstem.Data.Services

DNX 4.5.1

Browse... OK

You can run the site again to make sure we are on the right track. In the Solution
Explorer, add a class file called NeuralNetwork.cs. Replace all of its code with this:

using numl;

using numl.Model;

using numl.Supervised.NeuralNetwork;
using System;

using System.Collections.Generic;

namespace AdventureWorks.ProcessAnalysisTool.Models

{

public class NeuralNetwork

{

set; }

public ICollection<VendorProduct> VendorProducts { get; private
public LearningModel Model { get; private set; }

public NeuralNetwork(ICollection<VendorProduct> vendorProducts)

{
if(vendorProducts == null)
{
throw new ArgumentNullException("vendorProducts");
}
this.VendorProducts = vendorProducts;
this.Train();
}

internal void Train()

{

var vendorData = VendorProducts;
var descriptor Descriptor.Create<VendorProduct>();

generator.Descriptor = descriptor;
var model = Learner.Learn(vendorData, 0.80, 5, generator);
if (model.Accuracy > .75)

{
this.Model = model;
}
}
public bool GetScrappedInd(int vendorId, int productId)
{
if(this.Model == null)
{
return true;
3
else
{
var vendorProduct = new VendorProduct()
{
BusinessEntityID = vendorId, ProductID = productlId,
Scrapped = false
3
return
(bool)this.Model.Model.Predict((object)vendorProduct);
}
3

}

This class does the heavy lifting of the neural network calculations for us. Notice that the
class is data—agnostic, so it can be ported over to .NET Core easily. All we need is a
collection of VendorProducts to be passed into the constructor for the neural network to
calculate.

With all of these classes created, your solution explorer should look like this:

4 5% AdventureWorks.ProcessAnalysisTool
P &4 Properties
P =W References
b @ wwwroot
P .7 Dependencies
P &0 Controllers
4 5. Models
7 C* NeuralNetwork.cs
v C* Product.cs
¥ C* Repository.cs
v C* Vendor.cs
a C* VendorProduct.cs

for the neural network.

1) UIIUIIIS LLIC U /N

The following steps will guide you to build the UX:

Go into the Solution Explorer and select AdventureWorks.ProcessAnalysisTool.

Navigate to Add | New Item:

- | Debug =~ Any CPU

-

Ctrl+Shift+A
[0 Existing tem... Shift+Alt+A
New Folder £

13 New ltem...

Reference...

p Connected Service...

% Class... o

- P iSExpress = € ~| B _

Build

Rebuild

Clean

View

Publish...

Add Application Insights Telemetry...

Scope to This

New Solution Explorer View
Show on Code Map

Build Dependencies

Add

Restore Packages

Manage NuGet Packages...
Manage Bower Packages...

Manage User Secrets

Set as StartUp Project

Ctrl+Shift+K, Ctrl+Shift+R

B =R

Al 4
ptrl

Vorks.ProcessAnalysisTool.

orks.ProcessAnalysisTool

ties

5.j50n

In the next dialog, select Class and name it Global.cs:

4 |nstalled Sort by: | Default

Server-side @ Class Server-side
Client-side
b Online .-o Interface Server-side
o
‘ﬁ-] MVC Controller Class Server-side
e
q:_] Web API Controller Class Server-side
=
i MVC View Page Server-side
c=
] MVC View Layout Page Server-side
{ w
o MVC View Start Page Server-side
C=
EI MVC View Imports Page Server-side
e
0,:‘] Razor Tag Helper Server-side
Click here to go online and find templates.
Name: Global.cs

Go to the Global class and replace all of the contents with the following:

using AdventurewWorks.ProcessAnalysisTool.Models;

namespace AdventureWorks.ProcessAnalysisTool

{

public static class Global

{

static NeuralNetwork _neuralNetwork = null;
public static void InitNeuralNetwork()

{

var connectionString = "data
source=nc54a9m5kk.database.windows.net;initial
catalog=AdventureWorks2014;user id= PacktReader ;password=
P@cktM@chinele@rning;";

var repository = new Repository(connectionString);

var vendorProducts = repository.GetRandomVendorProducts(1000);

_neuralNetwork = new NeuralNetwork(vendorProducts);

}

public static NeuralNetwork NeuralNetwork
{ get

return _neuralNetwork;

}

This class creates a new neural network for us. We can access the neural network’s
functions via the read-only property called Neural Network. Because it is marked static,
the class will stay in memory as long as the application is running.

Next, locate the Startup.cs file in the main site:

4 5% AdventureWorks.ProcessAnalysisTool
D & Properties
P =B References
s@ wwwroot
" Dependencies
Controllers
Models

o Views

=]

VOV VYTV
=]

19 appsettings.json
+ C* Global.cs
aLl' gulpfile,js
b > project.json
&) Project Readme.html
v C* Startup.cs

Open the file and replace the constructor (called startup) with this code:

public Startup(IHostingEnvironment env)

{
// Set up configuration sources.
var builder = new ConfigurationBuilder ()
.AddJsonFile("appsettings.json")
.AddEnvironmentVariables();
Configuration = builder.Build();
Global.InitNeuralNetwork();
by

When the website starts up, it will create a global neural network that all requests can use.

Next, locate the HomeController in the Controllers directory.

L AMYETTIUIE VYOI RS FTOLEsaRAlNal Yy >l
b &4 Properties
P =W References
b a@D wwwroot
P " Dependencies
4 5 Controllers
p Models
p Views

=]

=}

ad) appsettings.json
+ C* Global.cs
aLl gulpfile,js
b adJ projectjson
&) Project Readme.html
v C* Startup.cs
a[F*] AdventureWorks.ProcessAnalysisTool.FS

Open that file and add this method to populate some drop lists of vendors and products:

[HttpGet]
public IActionResult PredictScrap()
{

var connectionString = "data

source=nc54a9m5kk.database.windows.net;initial
catalog=AdventurewWorks2014;user id= PacktReader;password=
P@cktM@chinele@rning;";

var repository = new Repository(connectionString);

var vendors = repository.GetAllVendors();

var products = repository.GetAllProducts();

ViewBag.Vendors = new SelectList(vendors, "VendorID",
"Description");

ViewBag.Products = new SelectList(products, "ProductID",
"Description");

return View();

}

Next, add this method to run calculate on the global neural network when the vendor
and product are posted back to the server:

[HttpPost]
public IActionResult PredictScrap(Int32 vendorId, Int32 productId)

{
ViewBag.ScappedInd =
Global.NeuralNetwork.GetScrappedInd(vendorId, productId);

var connectionString = "data
source=nc54a9m5kk.database.windows.net;initial
catalog=AdventurewWorks2014;user id= PacktReader;password=
P@cktM@chinele@rning;";

var repository = new Repository(connectionString);

var vendors = repository.GetAllVendors();

var products = repository.GetAllProducts();

ViewBag.Vendors = new SelectList(vendors, "VendorID",
"Description", vendorId);

ViewBag.Products = new SelectList(products, "ProductID",
"Description", productId);

return View();

}

If you collapse to definitions, the HomeController will look like this:

namespace AdventureWorks.ProcessAnalysisTool.Controllers

{

public class HomeController : Controller

{
public IActionResult Index()'
hublic TActionResult Abduf().;J
public IActionResult Contéét()[:]
bubiic TActionResult Erroﬁ()[i:
[HttpGet]
public IActiohﬁesult-PfédictScrap()[:]
[HttpPost]

bublic IActiohﬁesuit-PfédictScrap(vendorId, productId)[::

Next, go into Selution Explorer and navigate to AdventureWorks.ProcessAnalysisTool
| Views | Home. Right-click on the folder and navigate to Add | New Item:

Solution Explorer v
|- 0@ p -

Search Solution Explorer (Ctrl+;)

4 5] AdventureWorks.ProcessAnalysis|
b 5 Properties
b =B References
b a@ wwwroot
b A Dependencies

P 57 Controllers

View in Browser (Microsoft Edge) Ctrl+Shift+W Is

Browse With...
Hide from Solution Explorer About.cshtml
New Item... Ctrl+Shift+A Add » | Contact.cshtml
= hift s Alt+ A Thi Index.cshtml
Bsting e SHfERAk: SEopetoThis PredictScrap.cshtml
New Folder B New Solution Explorer View b ared
Class... “ Undo.. Jiewlmports.cshtml
& Commit. r'lefvStart.cshtml
ettings.json

In the next dialog box, select MVC View Page and name it PredictScrap.cshtml:

Add Mew Item - AdventureWorks.ProcessAnalysisTool
4 Installed Sort by: Default -| " E: Search Installed Templates
_cj Ch = 5o
Server-side CI;J Class Sarver-side Type: Server-side
Client-side MV View Page with Razor
b Onkne 0 Interface Server-side
e
‘t:_] MVC Controller Class Server-side
ey
":_] Wb API Controller Class Server-side
o=
ﬁ MVC View Page Senver-side
c:
ﬁ MV View Layout Fage Server-side
E’] MV View Start Page Server-side
[]
i) MVC View Imports Page Server-side
By
‘Iﬁ-] Razor Tag Helper Server-side
w
Click here to go online and find templates.
Marne: PredictScrap|cshtml
Add

Open this page and replace all of the contents with the following:

@using (Html.BeginForm())
{
<div class="form-horizontal">
<h4>Select Inputs</h4>
<hr />

<div class="form-group">
<div class="col-md-10">
@Html.DropDownList("VendorID", (SelectList)ViewBag.Vendors,
htmlAttributes: new { @class = "form-control" })
@Html.DropDownList("ProductID",

(SelectList)ViewBag.Products, htmlAttributes: new { @class = "form-control"
1)
</div>
</div>

<div class="form-group">
<div class="col-md-offset-2 col-md-10">
<input type="submit" value="Predict!" class="btn btn-
default" />
</div>
</div>
<h4>Will Have Scrap?</h4>
<div class="form-group">
<div class="col-md-offset-2 col-md-10">
@viewBag.ScappedInd
</div>
</div>
</div>

}

This is the input form that will allow users to select vendors and products and see what the
neural network will predict—whether this combination will have scrap. When you run the
site and navigate to localhost:port/home/PredictScrap for the first time, you will see
the droplists ready for you:

Fohd W Sl Fafdl b ¥ F AT T e |1 S R B N

— O | localhost

AdventureWorks.ProcessAnalysisTool

Determine Scrap Rate

Select Inputs

Advanced Bicycles N4

Adjustable Race s

Predict!

Will Have Scrap?

© 2015 - AdventureWorks.ProcessAnalysisTool

Select a vendor and a product and click on Predict!:

L] - AdventureWorks.rFroce < =

é — O | localhost

AdventureWorks.ProcessAnalysisTool

Determine Scrap Rate

Select Inputs
Bicycle Specialists e
Cone-Shaped Race bod

Predict!

Will Have Scrap?

False

© 2015 - AdventureWorks.ProcessAnalysisTool

We now have a fully functioning ASP .NET Core 1.0 website that uses a neural network to
predict AdventureWorks scrap percentages. With this skeleton, we can hand the site off to

a UX expert to make the site have a better look and feel—with the core functionality in
place.

ouliiiiary

This chapter broke some new ground. We dove into ASP.NET 5.0 for our website design.
We used numl to create two neural networks: one that showed that there is no relationship
between the area of the company and the scrap rate, and another that can be used to
predict if there will be scrap based on the vendor and product. We then implemented the

second model in our website.

Ullaplicl 1V, Dig DUdld dill 101

Up to this point, this book has followed a pattern of extracting data, cleaning and shaping
the data, and then building machine learning models. A common element in all of the
examples is that when we’ve extracted data, we have brought it from the server (or other
external sources) locally to our machine. This means our analysis is confined to whatever
data fits in the memory on our local machines. While this is good for small- and medium-
sized datasets, there are plenty of datasets and questions that do not fit in RAM. The last
couple of years have seen the rise of big data, where we can ask questions of datasets that
are too large, unstructured, or fast-moving to be analyzed using our conventional machine
learning techniques. One domain that fits well with big data is the proliferation of small,
inexpensive devices that can send a vast quantity of data to a server for analysis. These
Internet of Things (I0T) devices have the potential to reshape the world around us in
ways that typical computers and smartphones cannot. In this chapter, let’s run though a
potential big data and the Internet of Things scenario at AdventureWorks.

AUVCIIUICVYVYUILI KRS dilU UIC 1HICricL Ul

Bikes

One day you are sitting in your office, your boss comes in and says, “Since you did such a
great job on helping reduce our scrap rate, we would like you to work on a proof of
concept with our research and development department. L.ast month, the management
team went to a conference about the Internet of Things and we think we have an
interesting use case: the Internet of Bikes (IoB). We are going to put sensors on a bike
model that can read certain diagnostic information about the bike and its riding patterns.
We think that a certain segment of our customers would love to have a “smart bike”.

You head over to the research and development area, where they have tricked out a bike
like this:

Tire pressure sensors

Speedometer sensor

Gear sensor

A Raspberry Pi 2 mounted under the seat

A wireless Ethernet shield attached to the PI
A GPS shield attached to the PI

The head of the R&D department tells you, “We are trying to find cost-effective wireless
sensors. Until then, we are stringing wires through the frame’s tube to the PI. We initially

less bulky and weighs much less than a phone—bike riders are very concerned about
weight. The PI gets its power from a rechargeable battery and when the bike gets docked
at home to recharge, all of its on-board data is uploaded to our servers at that time. We
want to transmit data from the PI to our servers only at the bike’s home for security
reasons and so the riders are not hit with data plan limitations by using cell networks.”

The head of R&D continues, “We envision a dashboard for people to keep track of their
cycling route, their biking habits, and whatnot. Where you come in is on the machine
learning piece. We need a way of analyzing these huge amounts of data we are going to
collect to provide an enhanced customer experience when they are riding this bike.”

AJALA LJVloiuliL duwuvilo

You look at the data (called telemetry) coming from the bike as two different problems.
Problem one is getting the data to the server from individual bikes and problem two is
having the data in a format that allows for machine learning on a large scale. You decide
to solve both those problems by using the Microsoft Azure IoT suite to stream the data
from the bikes into the current Northwind SQL Azure database. You add a table called
telemetry and add a foreign key to PurchaseOrderHeader.

You then populate the table with some data from riders in the AdventureWorks Early
Adopter program. Although there is not much data in the table to start, it is expected to
grow rapidly. The level of atomacy of the table is a single reading that occurs about every
second. That means for a 30-minute bike ride, we capture 1,800 rows of data. Since we
have about 200 bike riders in our early adopter program, we will generate about 360,000
rows of data every time they take a ride. This one ride generates about as much data as the
current AdventureWorks database maintains for the entire company. After one month of
data where these bikers go out about every other day, we will have 5.4 million rows of
data.

One of the data elements that we are capturing is latitude and longitude. Fortunately, all of
our bike riders live in Enderlin, North Dakota, and all travel on the straightest road in the
United States, Highway 46

(https://en.wikipedia.org/wiki/North_Dakota_Highway 46 (54st_SE)). This means our
longitude does not change. Also, we are capturing feet per second as a speed gauge so we
can easily compare how riders perform against each other.

With the data in place, let’s take a look at how to analyze data at scale.

https://en.wikipedia.org/wiki/North_Dakota_Highway_46_(54st_SE)

AVIGPJIANTUTURLT

Open Visual Studio and create a new Visual F# Windows Library called
AdventurewWorks.IOB:

Mew Project
b Recent MET Framework 4.6.1 = Sort by: Default
4 |nstalled E#
Console Application Visual F#
il
4 Templates
: = F#
b Visual C# F,{é! Library Visual F#
I Vizual Basic =
H F#
b Visual C++ i Portable Library (.NET 4.5, Windo... Visual F#
& ry
4 Visual F# p
. F#
Android ‘H'rsi! Portable Library (.NET 4.5, Windo... Visual F2£
b i0S -
. . E#
Silverlight F,{é! Portable Library (.NET 4.5, Windo... Visual F#
Windows 2
E#
AR F,{é! Portable Library (.NET 4.5, Windo... Visual F#
S0L Server o
E#
Datalarfon) 5_‘| Tutorial Visual F#
 JavaScript
HDInsight
i Python
I TypeScript
e w
b Online Click here to go online and find templates.
Mame: AdventureWorks. OB
Location: FA\Git\MLDotNet\Book Chapters\Chapter!0\ -
Solution name: AdventureWorks. |OB.Solution
L]

Go into the NuGet Package Manager Console and enter this:

PM> install-package Accord.MachineLearning

Next, rename scriptil.fsx to MapReduce . fsx. Now, enter in the same code from Chapter
5, Time Out — Obtaining Data, that created a k-NN:

#r'"../packages/Accord.3.0.2/1ib/net40/Accord.d1l"
#r'"../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.d1l"
#r"../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.d11l"
#r"../packages/Accord.MachinelLearning.3.0.2/1ib/net40/Accord.MachineLearnin
g.dll"

open Accord

open System

open Accord.Math

open Accord.MachinelLearning

[10.5;4.0]];[[1.25;4.0]]]]
let outputs = [|1;1;1;0;0;0]|]

let classes = 2
let k = 3
let knn = new KNearestNeighbors(k, classes, inputs, outputs)

let input = [|5.0;0.5]]
let output = knn.Compute(input)

Sending this to the FSI gives us the following:

val inputs : float [] [] =
[I[l5.0; 1.0]]; [|4.5; 1.5]]; [|5.1; 0.75]]; [|1.0; 3.5|]; [|0.5; 4.0]];
[11.25; 4.0]]]]
val outputs : int [] = [|1; 1; 1; O; 0; 0]]
val classes : int = 2
val k : int = 3
val knn : Accord.MachineLearning.KNearestNeighbors
val input : float [] = [|5.0; 0.5]]
val output : int = 1

Notice this line:

let output = knn.Compute(input)

We called knn.compute to do a calculation on a single input after the k-NN model was
created.

This works well enough or a single calculation, but what if we want to do thousands of
calculations? For example, let’s call knn.Compute () on 250,000 random samples. After
we finish all 250,000 calculations, let’s add up the results and then divide that total by the
number of observations and see if the dataset is biased towards a particular category.

First, let’s create a function that will create a random input:

let createInput i =
let random = Random(1)
[|float(random.Next(0,6)) + Math.Round(random.NextDouble(),2);
float(random.Next(0,6)) + Math.Round(random.NextDouble(),2);|]

Sending this to the FSI gives us the following:

val createInput : i:int -> float []

Next, let’s create an array of 250,000 items and populate it with the random values:

let observations = Array.zeroCreate<int> 250000
let inputs' =

observations

|>Array.mapi (fun idx _ -> createInput idx)

Sending this to the REPL gives us the following:

val observations : int [] =
[|le; ©; 0; 0; ©0; 06; O; O; O0; O0; O0; O0; 0; 0; 0, 0; 0; 0; 0; 0; 0, 0; 0; 0O;

©; 0; 0; 6; 0; 0; 0; 0; 0; 0; 0; 0; O0; 0; 0; O0; 0; 0; O0; 0; 0; 0; 0; O;

0;

©; 0; 0; 6; 0; 0; 0; 0; 0; O0; 0; 0; O0; 0; 0; O0; 0; 0; O0; 0; 0; 0; 0; O;
0;

©; 0; 0; 6; 0; 0; 0; 0; 0; 0; 0; 0; O0; 0; 0; O0; 0; 0; O0; 0; 0; 0; 0; O;
0;

]
val inputs' : float [] [] =

[I[]4.82; 4.56|]; [|1.11; 2.77]|];

With our data ready, let’s do our calculation. I added a timer to give us an idea of the
performance hit for running 250,000 records:

let stopwatch = System.Diagnostics.Stopwatch()
stopwatch.Start()
let predictionTotal =

inputs'

|>Seqg.map(fun i -> knn.Compute 1)

| >Seq.reduce(fun acc i -> acc + 1)

let predictionBias = float predictionTotal/float 250000
stopwatch.Stop()
stopwatch.Elapsed.TotalSeconds

Sending this to the FSI will give us the following:

val stopwatch : Diagnostics.Stopwatch
val predictionTotal : int = 109826
val predictionBias : float = 0.439304
val it : float = 0.1787221

The interesting piece of code is this:

let predictionTotal =
inputs'
|>Seqg.map(fun i -> knn.Compute 1)
| >Seq.reduce(fun acc 1 -> acc + 1)

Notice that we are mapping and reducing. Mapping is old hat to you by now, but you
might not be familiar with reducing. Reduce is a high-ordered function that takes in two
parameters: an accumulator and a value. Both parameters are of the same type (in this
case, int). What reduce is doing is going through each of the items of the array and
applying a function. It then takes the results of that calculation and adds it to the
accumulator. In this case, the accumulator acc is added to the value from the array (i).

Visually, this looks like the following:

I acc acc+i

Element 0 0 0 0
Element 1 2 0 2
Element 2 1 2 3
Element 3 2 3 5

You might have heard the expression map/reduce used in the context of big data. That’s
because some of the pioneers in big data analytics such as Google and Yahoo created
Hadoop based on the concept of map/reduce. Hadoop is a platform for big data, including
a filesystem (HDFS), query languages (Hive and PIG), and machine learning (Mahdut).
Typically, when you hear people talking about Hadoop and map/reduce, they are talking
about a specialized implementation using key/value pairs. Also, usually the map part of
map/reduce is distributed across thousands of commodity machines. The reduce can be
distributed depending on the nature of the function that is passed to reduce. If the function
does a groupBy or some other calculation on a section of the entire dataset, it can be
distributed. In this chapter, we are going to distribute map and are not going to distribute
reduce.

To illustrate why map/reduce is popular for big data, let’s distribute the mapping across all
of the cores on my machine. This can simulate the way Hadoop distributes processing
across thousands of networked computers. Go into Visual Studio and open the NuGet
Package Manager and enter this:

PM> Install-Package FSharp.Collections.ParallelSeq

Next, go into MapReduce. fsx and enter this at the bottom:

#r'"../packages/FSharp.Collections.ParallelSeq.1.0.2/1ib/net40/FSharp.Collec
tions.ParallelSeq.dl1"
open FSharp.Collections.ParallelSeq

let stopwatch' = new System.Diagnostics.Stopwatch()
stopwatch'.Start()
let predictionTotal' =

inputs'

|>PSeq.map(fun i -> knn.Compute 1)

| >Seq.reduce(fun acc 1 -> acc + 1)
let predictionBias' = float predictionTotal'/float 250000
stopwatch'.Stop()
stopwatch'.Elapsed.TotalSeconds

Sending this to the FSI gives us the following:

val stopwatch' : Diagnostics.Stopwatch
val predictionTotal' : int = 109826

val it : float = 0.0700362

Notice that the code is identical to the preceding code except that we are now
implementing PSeq for the mapping function, so we are distributing it across all of my
cores. You can see that the time dropped significantly by implementing parallelism to the
mapping function.

If you are thinking we have an answer for our big data scenario, you are incorrect. Look
what happens when we try and do 5.4 million records:

System.OutOfMemoryException: Exception of type
'System.OutOfMemoryException' was thrown.
> at Microsoft.FSharp.Collections.ArrayModule.ZeroCreate[T](Int32 count)

We can’t analyze the data only with my machine. To do map/reduce and distribute the
mapping across many machines, we could implement Hadoop or its faster cousin, Spark,
but then we would have to leave Visual Studio and .NET, and journey into the JVM. Also,
we would have to learn Java/Python/Scala and be unable to easily integrate with our
existing .NET applications. As an alternative, we could use the Azure implementation
called HDInsight, but then we are locked-in to a specific cloud vendor. Instead, let’s use
MBrace to handle our distributed computations.

VAR DL AT

MBrace is an open source project for scalable data scripting using F# or C#. You can find
the website at http://mbrace.io/. MBrace supports a local simulation of distributed
computing and actual implementation on Azure and, coming soon, AWS. For this chapter,
we are going to stick with the local simulation so you don’t have to get an Azure or AWS
subscription to work through the samples.

Go back to Visual Studio, open the NuGet Package Manager, and enter this:
PM> Install-Package MBrace.Thespian -pre

Once all of the packages install, go into MapReduce. fsx and add this at the bottom (note
that the version number might be different for you):

#load"../packages/MBrace.Thespian.1.0.19/MBrace.Thespian.fsx"

open MBrace.Core.Builders
open MBrace.Thespian

open MBrace.Core

open MBrace.Library.Cloud

//Spin up your clusters
let cluster = ThespianCluster.InitOnCurrentMachine(4)

//Basic Example
let number = cloud { return 5 + 10 } |> cluster.Run

Sending this to the REPL gives us the following:
namespace FSI_0007.MBrace

>

val cluster : ThespianCluster

>

val number : int = 15

But also notice what is happening outside of Visual Studio on your machine. You probably
got this dialog:

http://mbrace.io/

@ Windows Firewall has blocked some features of this app

Windows Firewall has blocked some features of mbrace. thespian. warker.exe on all public and
private networks,

@ Mame: nrace, thespian. wi
Publisher: Unknown

Path: F:\git\mbrace. starterkit\packagesmbrace. thespian'tools
\mbrace, thespian.worker.exe

Allow mbrace, thespian.worker.exe to communicate on these networks:

[]Private networks, such as my home or work netwark

Public networks, such as those in airports and coffee shops (not recommended
because these networks often have litte or no security)

What are the risks of allowing an app through a firewall?

0 Allow access Cancel

If so, click on Allow access.

Next, four dialog boxes popped up, representing the four machines that you initialized on
this line:

let cluster = ThespianCluster.InitOnCurrentMachine(4)

2 LR

@' MEBrace. Thespian Slave Mode [pid: 10720, port:4479]

FO : X ace.Thespian Worker node

If you cycle through the dialog boxes, you will notice that one of them looks like this:

Consider executing the following line:

let number = cloud { return 5 + 10 } |> cluster.Run

MBrace sends the job to one of the four consoles. When working with MBrace, everything
inside of the curly braces {} is executed. In this case, it is 5 + 10, but soon enough it will
contain much more complicated calculations.

Go back into MapReduce. fsx and add this script at the bottom:

let mBraceTotal =
inputs'
| >Seq.map(fun 1 ->cloud { return knn.Compute 1 })
|> Cloud.Parallel
|> cluster.Run
| >Seq.reduce(fun acc i -> acc + 1)

let mBracePrediction = float mBraceTotal/float 250000

When you send this to the REPL, nothing much will happen for quite a while. If you look
at the four console windows, you will see that they are working hard calculating knn.map
on each of those 250,000 values:

processes, it is much slower than running the in-memory map/reduce that we have seen
earlier in the chapter. However, out in the real world when we have more data than any
one machine can handle and we can spin up several machines on Azure or AWS, MBrace
really shines. You will also notice that we did nothing to install Accord.NET on those four
other machines. Vagabond, part of the MBrace NuGet package, handles installing missing
assemblies for us. This is a brand of awesome that should never be on sale. Instead of
worrying about standing up and configuring machines, we can let MBrace handle all of
that for us.

There is one last bit of syntax we want to use. Go back into MapReduce. fsx and add this at
the bottom:

let mBraceTotal' =
inputs' |>Balanced.map(fun i -> knn.Compute i) |> cluster.Run
| >Seq.reduce(fun acc i -> acc + 1)

let mBracePrediction' = float mBraceTotal/float 250000

Sending it to the REPL has the same effect as the first MBrace example. Consider the
following line:

|>Balanced.map(fun i -> knn.Compute i) |> cluster.Run

This line replaces these lines from the first MBrace example:

|>Seq.map(fun i ->cloud { return knn.Compute i })
|> Cloud.Parallel
|> cluster.Run

This is the syntax we will be using for the AdventureWorks implementation. If you want
to dig into MBrace further, download the starter pack found on GitHub at
https://github.com/mbraceproject/MBrace.StarterKit/blo. With our intro to MapReduce
and MBrace out of the way, let’s see what we can do with AdventureWorks data.

https://github.com/mbraceproject/MBrace.StarterKit

410Ul 1UudilCu IUSID CAL 1 CSI. COoJo1vU1il

In the Visual Studio Solution Explorer, add a new F# script file called
AdventurewWorksLR. Go back into Visual Studio, open up the NuGet Package Manager,
and enter this:

PM> Install-Package SQLProvider -prerelease

In that script, add the following code (your version number might be different):

#r "../packages/SQLProvider.0.0.11-
alpha/lib/net40/FSharp.Data.SQLProvider.d1l"

open System
open System.Ling
open FSharp.Data.Sql

[<Literal>]

let connectionString = "data source=nc54a9m5kk.database.windows.net;initial
catalog=AdventureWorks2014;user id=PacktReader;password=
P@cktM@chinele@rning;"

type AdventureWorks = SqglDataProvider<ConnectionString=connectionString>
let context = AdventureWorks.GetDataContext()

type Telemetry = {ID:int; BusinessEntityID: int; TimeStamp:
System.DateTime;
Longitude: float; Latitude: float;
FrontTirePressure: float; BackTirePressure: float;
GearId: int; TireSpeed: float; RiderLevel: int}

let telemetry = query {for t in context.''[Person].[Telemetry]'' do
join rl in context.''[Person].[RiderLevel]'' on (t.BusinesseEntityID =
rl.BusinessgentityID)
select {ID=t.ID; BusinessEntityID=t.BusinessEntityID;
TimeStamp=t.TimeStamp;
Longitude=t.Longitude; Latitude=t.Latitude;
FrontTirePressure=t.FrontTirePressure;
BackTirePressure=t.BackTirePressure;
GearId=t.GearID;TireSpeed=t.TireSpeed;
RiderLevel=rl.RiderLevel}}
| >Seq.toArray

Sending this to the FSI gives us the following:

val connectionString : string =
"data source=nc54a9m5kk.database.windows.net;initial catalog=A"+[72
chars]
type AdventurewWorks = FSharp.Data.Sql.SqlDataProvider<...>
val context : FSharp.Data.Sql.SqlDataProvider<...>.dataContext
type Telemetry =
{ID: int;
BusinessEntityID: int;
TimeStamp: System.DateTime;
Longitude: float;

FrontTirePressure: float;

BackTirePressure: float;

GearId: int;

TireSpeed: float;

RiderLevel: int;}

val telemetry : Telemetry [] =

[I{ID = 1;
BusinessEntityID = 295;
TimeStamp = 12/30/2015 3:19:02 PM;
Longitude = 46.6297;
Latitude = -97.6087;
FrontTirePressure = 100.0;
BackTirePressure = 100.0;
GearId = 2;
TireSpeed = 20.04;
RiderLevel = 0;}; {ID = 2;

BusinessgEntityID = 775;

There is no new code here. We are creating a telemetry type that contains all of the useful
data that we are capturing from the IoT bikes. We then create an array of telemetries from
all of the data in the database. If you were wondering, there are 360,000 records in the
telemetry table.

Go back to the script and enter this:

#r'"../packages/Accord.3.0.2/1ib/net40/Accord.dl1l"
#r'"../packages/Accord.Math.3.0.2/1ib/net40/Accord.Math.d1l"
#r'"../packages/Accord.Statistics.3.0.2/1ib/net40/Accord.Statistics.dll"
#r'"../packages/Accord.MachineLearning.3.0.2/1ib/net40/Accord.MachinelLearnin
g.dll"

open System

open Accord

open Accord.Math

open Accord.Statistics

open Accord.MachinelLearning

open Accord.Statistics.Models.Regression.Linear

Tools.Shuffle(telemetry)

let attachmentPoint = float telemetry.Length * 0.7 |> int
let train = telemetry.[..attachmentPoint]

let test = telemetry.[attachmentPoint+1..]

let trainInputs = train |> Array.map(fun t -> [|float t.GearId; float
t.RiderLevel|])

let trainOutputs = train |> Array.map(fun t -> t.TireSpeed)

let target = new MultiplelLinearRegression(2, false)
target.Regress(trainInputs, trainOutputs)

Sending this to the FSI gives us the following:

RiderLevel = 1;}; ...]|]
val trainInputs : float [] [] =
[1[11.0; 1.0]]; [|2.0; 2.0]]; [|2.0; 1.0]]; [[3.0; 1.0]];
[13.0; 1.0]]; [|4.0; 2.0]]; [|2.0; 0.0]]; [|3.0; 1.0]];

val trainOutputs : float [] =
[123.3934008; 30.5693388; 18.2111048; 19.3842; 14.007411; 21.861742;
36.6713256; 14.5381236; 16.2; 25.451495; 25.4571174; 14.5671708;
20.1900384; 19.3655286; 27.8646144; 21.6268866; 19.3454316; ...|]
val target : MultipleLinearRegression =
y(x0, x1) = 5.72463678857853*x0 + 6.83607853679457*x1
val it : float = 18472679.55

This chunk of code creates a multiple linear regression to predict bike speeds based on the
level of the rider and the gear they are using. Instead of looking at the r2, let’s do a sniff
test. Go back to the script and add this:

let possible =
[10..4]]
|> Array.collect(fun i -> []0..2]]

|> Array.map(fun j -> [|float i; float j|]))
let predict =
possible
|> Array.map(fun 1 -> i, target.Compute(i))
Sending this to the REPL, gives us the following:
val possible : float [] [] =
[I[le.e; o0.0]]; [|e.o; 1.0]]; [|e.0; 2.0]|]; [|1.0; 0.0]]; [|1.0; 1.0]];
[11.0; 2.0]|]; [|2.0; 0.0]]; [|2.0; 1.0]]; [|2.0; 2.0]]; [|3.0; 0.0]];
[13.0; 1.0]]; [I|3.0; 2.0]]; [|4.0; 0.0]]; [|4.0; 1.0]]; [|4.0; 2.0]|]]]
val predict : (float [] * float) [] =
[I([]|e.0; 0.0]], 0.0); ([|0.6; 1.0]], 6.836078537);
([]0.0; 2.0]], 13.67215707); ([]|1.0; 0.0|], 5.724636789);
([]1.0; 1.0]], 12.56071533); ([]|1.0; 2.0|], 19.39679386);
([]2.0; 0.0]], 11.44927358); ([]2.0; 1.0|], 18.28535211);
([]2.0; 2.0]|], 25.12143065); ([]|3.0; 0.0|], 17.17391037);
([13.0; 1.0|], 24.0099889); ([13.0; 2.0|], 30.84606744);
([]4.0;, 0.0|], 22.89854715); ([|4.0; 1.0|], 29.73462569);
([14.0; 2.0]], 36.57070423)]]

In this script, possible is a jagged array of all the possible combination of gears (values 0
to 4) and biker level (values 0 to 2). We then populate this matrix with the results of the
Compute () method. When you take this data and put it in a more user-friendly way, you
can see that there is a relationship—the elite cyclists go faster in all gears than the
beginners and it looks like the beginners don’t use the lowest gear at all:

Biker Level
0 1 2
Beginner| Average Elite
0 Low 0.00 6.84 13.67
. 1 Med Low 5.72 12.56 19.40
E 2 Medium 11.45 18.29 25.12
3 Med High 17.17 17.17 24.00
4 High 22.90 29.73 36.57

With this model created, we can then run classifiers on the data and get expected speeds
for a given gear and biker level. Go into the script file and enter this:

#load"../packages/MBrace.Thespian.1.0.19/MBrace.Thespian.fsx"

open MBrace.Core.Builders
open MBrace.Thespian

open MBrace.Core

open MBrace.Library.Cloud

let cluster = ThespianCluster.InitOnCurrentMachine(4)

let testInputs = test |> Array.map(fun t -> [|float t.GearId; float
t.RiderLevel|])

let mBraceTotal =
testInputs
| > Balanced.map(fun i ->
target.Compute(i)) |> cluster.Run

When you send this to the REPL, you will see that the console windows pop up and start
doing work. After a couple of minutes, you will get this:

val mBraceTotal : float [] =
[136.57070423; 25.12143065; 36.57070423; 18.28535211; 5.724636789;
24.0099889; 5.724636789; 25.12143065; 24.0099889; 18.28535211;
24.0099889;
5.724636789; 36.57070423; 12.56071533; 24.0099889; 11.44927358; 0.0;
11.44927358; 25.12143065; 12.56071533; 30.84606744; 12.56071533;
11.44927358; 18.28535211;

You might be wondering if there is a way to distribute the creation of the model (the
target.Regress(trainInputs, trainOutputs) line). The short answer is no, you cannot
be using the frameworks that we are using to do that. However, some models might lend
themselves to distribution and then re-aggregation, but you would have to extend what is
offered in numl and Accord.

111C 101

But before we leave machine learning and IoT, let’s get crazy. The PI is not just an input
device—heck, it is more powerful than the laptop you bought five years ago. Let’s make
our Raspberry Pl-enabled bike the ultimate power in the tri-state area.

L ULl 118IC QL 1 CSI COoolvlil

Go into Visual Studio and add a new Visual F# Windows Portable Library (.NET 4.5)
called Adventureworks.IOB.PCL:

| Add New Project

I Recent

t TypeScript
Game
Build Accelerator

t Other Project Types
Medeling Projects

Click here to go online and find templates.

_ MET Framewerk 4861 - Sort by: Default sl =
| 4 Installed Fo
Console Application Visual F#
b Visual C&#
: ’ F#
I+ Visual Basic Ellti! Library Visual F#
b Visual C++ -
) F#
4 Visual F# P.[‘i! Portable Library (.MET 4.5, Windows Store, Silverlight 5, Xamarin) Visual F#
Android i
: E#
b ids Elqi! Portable Library (.MET 4.5, Windows Store, Windows Phone 8 Silverlight, Xamari...Visual F#
Silverlight 2
i E#
Windows Elqi! Portable Library (.NET 4.5, Windows Store, Windows Phone 8.1, Windows Phon... Visual F#
WPF :
E#
SQL Server E{é! Portable Library (.NET 4.5, Windows Store, Xamarin) Visual F2
DataFactory ;
. E#
b JavaScript F_'I Tutorial Visual F#
HDInsight e
I Python

b Online
MName: | AdventureWorks.|OB.PCL |
Location: FAGit\MLDotMet\Book Chapters\ Chapter1 0V AdventureWorks.|OB.Solution i |:

Once the project is created, go into the NuGet Package Manager Console and enter this:

PM> Install-Package portable.accord.statistics
PM> Install-Package portable.accord.MachinelLearning

Make sure that the default project is pointed to Adventureworks.IOB.PCL:

/

Package source: nuget.org - {i} | Default projéct: AdventureWorks.JOB.PCL -
PM> Install-Package portable.accord.statistics |

Package Manager Console

of the .NET Framework, they have no data access support. This means we can’t use our
friendly neighborhood type provider to get the telemetry data to train our models. Instead,
we will need to get our data from a different project and push that data into the PCL for it
to train the model. Another “gotcha” is that the script file created in the PCL project is
evaluated inside the FSI, which is a full-on .NET Framework. This means you can’t
assume that all of the code you write inside the . fsx file can be copied and pasted into the
.fs file. Since we are building on code we already wrote, we won’t be using the script file
for this section. I know...take a deep breath...functional programming without an REPL.

Go into the PCL project and delete the Script.fsx file and rename PortableLibraryl.fs
to SpeedModel. fs.

Inside the SpeedModel. fs file, replace all of the existing code with this:

namespace AdventureWorks.IOB.PCL

open System

open Accord

open Accord.Math

open Accord.Statistics

open Accord.MachinelLearning

open Accord.Statistics.Models.Regression.Linear

typeTelemetry = {ID:int; BusinessEntityID: int;
TimeStamp: System.DateTime;
Longitude: float; Latitude: float;
FrontTirePressure: float;
BackTirePressure: float;
GearId: int; TireSpeed: float; RiderLevel: int}
typeSpeedModel () =
letmutable model = newMultiplelLinearRegression(2, false)

member this.CurrentModel
with get() = model
and set (value) = model <- value

member this.Train(telemetries:Telemetry array) =
Tools.Shuffle(telemetries)

let inputs = telemetries |>Array.map(fun t -> [|float t.GearId; float

t.RiderLevel|])

let outputs = telemetries |>Array.map(fun t -> t.TireSpeed)
model.Regress(inputs, outputs)

member this.Classify telemetry =
let input = [|float telemetry.GearId; float telemetry.RiderlLevel]|]
model.Compute(input)

This code creates two .NET classes. The Telemetry class is equivalent to a read-only
DTO/POCO that you would see in C# or VB.NET. The SpeedModel class is a bit more
involved. The class has one property and two methods:

e CurrentModel is a property that allows the linear regression model to be set. Note

e Train is a method where an array of telemetries is passed and the linear regression
model will be updated. The implementation of Train() can be copied and pasted
from the script file that you worked on previously.

e Classify is a method where a single telemetry is passed and the linear regression
computes the score. The implementation of Classify() can be copied and pasted
from the script file that you worked on previously.

You can check to see if everything is OK by compiling the project.

JUCL VILCU 1ay Ci

With our PCL ready, let’s build a service layer to deploy the model to devices in the field:
1. Go into Visual Studio and add a new Visual C# Web ASP.NET Web Application:

Add Mew Project

b Recent MET Framework 4.6.1 |~ Sort by: Default

4 |nstalled c#
F_‘l ASP.MET Web Application Visual C#

4 Visual C#

I Windows Ets E Class Library (Package) Yisual CF
Web .
Android aﬂ Console Application (Package) Visual C#
Cloud
Extensibility

b 05
Light5witch
Micro Framework
Mobile Apps
Office/SharePoint
Reporting
Sitverlight
Test
WCF
Worlkflow

i Visual Basic
b Visual C++
b Visual F#

b Online Click here to go online and find templates.

Mame: | AdventureWorks.|OB.Services| |

Location: FAGIWMLDotMet\Book Chapters\Chapterl W AdventureWorks.| OB, Solutio - |:

Select a template:
A project template for creating RESTful HTTP services
ASENET 4.6.1 Templates that can reach a broad range of clients including
browsers and mobile devices.
F_J Fﬂl 4 4 d
e_l el B o) &= Learn more
Empty Web Forms MV Web API Single Page
Application
4 4 c
o
0 R v
Azure APl App Azure Mobile Azure Mobile
App Service
ASENET 5 Templates
F5 r.r) 5
@J -}J E o
Change Authentication
Empty Web AP Web
Application
Authentication: Mo Authentication
Add folders and core references fon = Microsoft Azure
[] WebForms | MVC [Web API (A) [[] Hostin the cloud
App Service =
[] Add unit tests
Test project name: | AdventureWorks.|OB.Services, Tests
OK | | Cancel
2. Add a reference:
Reference Manager - AdventureWorks,|0OB.5ervices [{ >
b Assemblies Search Projects (Ctrl+E) P~
4 Projects Mame Path Mame:
Solution e L FAGIt\MLDotNet AdventureWorks.|OB.PCL
AdventureWorks.|OB.PCL FAGH\MLDotMet
b COM AdventureWorks.|OB.RP2 FAGHAMLDotMet
I Browse
4 2
Browse... | ‘ 0K | | Cancel

3. Next, go into the NuGet Package Manager Console and add a reference to
Accord.Statistics. Make sure the Default project is pointing to
AdventureWorks.IOB.Services:

Package source: nuget.org = L Default project: AdventureWDrks.IGB.SENices__? =
Each package is licensed to you by its owner. NuGe ponzihle for Ooc.d +="Erant any licen|

packages may include dependencies which are governed by additional licenses. Follow the package source

Package Manager Console Host Version 3.3.8.167
Type "get-help NuGet' to see all available NuGet commands.

PM> install-package Accord.5tatistics

4. Next, go into the web.Config file and add a connection string entry:

<configuration>

<connectionStrings>
<addname="Northwind"connectionString="data
source=nc54a9m5kk.database.windows.net;initial
catalog=AdventureWorks2014;user id=PacktReader;password=
P@cktM@chinele@rning;" />

</connectionStrings>

<appSettings>

<addkey="webpages:Version'value="3.0.0.0" />

5. Head over to the Global.asax.cs file and replace the entire contents with the
following:

using System;

using System.Collections.Generic;
using System.Web.Http;

using System.Web.Mvc;

using System.Web.Optimization;
using System.Web.Routing;

using AdventureWorks.IOB.PCL;
using System.Threading;

using System.Configuration;

using System.Data.SqlClient;

namespace AdventureWorks.IOB.Services

{
publicclassWebApiApplication : System.Web.HttpApplication

{
staticObject _lock = newObject();
Timer _timer = null;
staticSpeedModel _speedModel = null;

protectedvoid Application_Start()

{
AreaRegistration.RegisterAllAreas();
GlobalConfiguration.Configure(WebApiConfig.Register);
FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
RouteConfig.RegisterRoutes(RouteTable.Routes);
BundleConfig.RegisterBundles(BundleTable.Bundles);

_speedModel = newSpeedModel();

TimeSpan.FromMinutes(5).Milliseconds);

}

protectedTelemetry[] CreateTelemetries(String connectionString)

{

var telemetries = newlList<Telemetry>();

using (var connection = newSqglConnection(connectionString))
{
var commandText = "Select T.*,RL.RiderLevel from [Person].[Telemetry]
as T " +
"inner join[Person].[RiderLevel] as RL " +
"on T.BusinessEntityID = rl.BusinessEntityID";
using (var command = newSglCommand(commandText, connection))
{
connection.Open();
var reader = command.ExecuteReader();
while(reader.Read())

{
telemetries.Add(newTelemetry((int)reader[0],
(int)reader[1],
(DateTime)reader[2],
(double)reader[3],
(double)reader[4],
(double)reader[5],
(double)reader[6], (int)reader([7],
(double)reader[8],
(int)reader[9]));
¥
}
¥
return telemetries.ToArray();
3
private void TrainModel(object state)
{

var connectionString =

ConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
var telemetries = CreateTelemetries(connectionString);
lock (_lock)

¢ SpeedModel.Train(telemetries);
by
b
publicstaticSpeedModel SpeedModel
{
get
{

lock (_lock)
{

return _speedModel;

}

set

{
lock (_lock)

_speedModel = value;

You can compile the project now. This code is much like Chapter 3, More AdventureWorks
Regression, in that we create a timer that fires every 5 minutes. Also, we use a lock to
prevent the model being read in an illegal state. When the timer fires, the model is
recreated, based on the data from the database. Notice that this is where the C# application
is responsible for getting the data that is passed into the SpeedModel class.

Head over to the controllers and rename ValuesController to SpeedModelController.
Go into the file and replace all of the code with this:

using System.Web.Http;

using System.Net.Http;

using System.IO;

using System.Xml.Serialization;
using System.Net;

namespace AdventureWorks.IOB.Services.Controllers

{
publicclassSpeedModelController : ApiController

{
// GET api/SpeedModel

publicHttpResponseMessage Get()
{

HttpResponseMessage result = null;

if (WebApiApplication.SpeedModel != null)
{

using (MemoryStream stream = newMemoryStream())

{

var formatter = newXmlSerializer(typeof(double[]));

formatter.Serialize(stream,
WebApiApplication.SpeedModel.CurrentModel.Coefficients);

var content = stream.ToArray();

result = Request.CreateResponse(HttpStatusCode.OK);
result.Content = newByteArrayContent(content);
return result;

}
3
else

{
b

return Request.CreateResponse(HttpStatusCode.Gone);

}

If you compile the project and run the website, when you navigate to the controller, you
will get this:

localhost:3899/api/Speed! X
= C | [localhost:3899/api/SpeedMode

5.7287646856442143 6.8207375008326005

We now have a way of creating a model based on all the data in the database that we can
share to individual clients.

Viiiviiodl yviliuuvwo appy diiu I\CIDPUCI.I.)’ 114

This universal app has a couple of moving parts:

e When the app is connected to its home network, it will:

o Upload all of the telemetry that is collected to Azure’s [oT Suite
o Download the most recent global model that was created based on all the riders

in the AdventureWorks database from our service layer

e When the app is running, it will collect telemetry data from the sensors hooked up to
the bike. After a certain point, it will start generating its own local model and
compare it to the global AdventureWorks model. If the local model begins diverging
from the expected speed of the global model, it will instruct the biker to shift. The
app will keep the telemetry data on local storage until it is connected to the network,
then it will upload the data.

Let’s code this up:

1.

Go into the Solution Explorer and add a new Visual C# Windows Universal Blank
App named Adventureworks.IOB.RP2:

Add Mew Project
b Recent

4 |nstalled

4 Visual C#
4 Windows
Universal
P Windows
Classic Desktop
Windows loT Core
Web
Android
Cloud
Extensibility
B i0s
LightSwitch
Micre Framework
Meobile Apps
Office/SharePoint
Reporting
Silverlight
Test
WCF

B Online

MNET Framework 4.6.1

- Sort by: Default

Blank App (Universal Windows) Visual C#
Class Library (Universal Windows) Visual C#
Windows Runtime Component (... Visual C#
Unit Test App (Universal Windows) Visual C#

Coded Ul Test Project (Windows.., Visual C#

Coded Ul Test Project (Windows) Visual C#

Click here to go online and find templates.

MName:

[AdventureWorks|OB.RP]

Location:

?

Pt

~| i5° [i= || Search Installed Templ 2 -

Type: Visual C#

A project for a single-page Universal
Windows Platform app that has no
predefined controls or layout.

[] Show telemetry in the Windows
Dev Center

Installs the Application Insights SDK
to send usage telemetry to the
Windows Dev Center.

Help me understand Application

Insights

Privacy statement

FAGit\MLDotNet\Book Chapters\Chapter]O\AdventureWorks.IOB.Solutic -

ol

)

| Ok | | Cancel

Once the project is created, go to its References section and select Add Reference:

Solution Explorer ko
Ble-SCag|F -

Search Solutic

2 -
<& Solution AdvertureWarks. 0B Sclution” (3 projects]
b <[1n] AdventureWorks 108

b o] AdventureWeros I0BRPCL

4 +[on] AdventureWorks JOBRP2 (Universal Windows)
I+ B Properties

il core

J smsojdey uonnjog

IR

Add Reference...

Add Service Reference..,
i Add Connected Service...

Add Anabyzer...

o[F] Adver
b o[y Appx B Manage NuGet Packages...
B+ L) Mainl Seope te This

E Packd o pyew Solution Explorer View
+£T projecupmes

The Add Reference... option

3. Then navigate to Projects | Solution and select the location of your PCL project:

Reference Manager - AdventureWorks.|OB.RP2

b Assemnblies
4 Projects Mame Path
e AdventureWorks.|OB FAGt\MLDotMet\Book Chapters\Chapter1 0AdventureWork:
AdventureWorks.|OB.PCL FAG\MLDotNet\Book Chapters\Chapterl 0\ AdventureWor
k' Shared Projects

-

Universal Windows

I Browse

4. Now navigate to Universal Windows | Extensions | Windows IoT Extensions for
the UWP:

b Assemnblies
b Projects
b Shared Projects

4 Universal Windows

Core
Extensions
Recent

B Browse

Filtered to: SDKs applicable to AdventureWorks.|OB.RP2

i

Mame

Microsoft NET MNative Runtime Package for Win...
Microsoft Advertising SDK for Windows 8.1 (Xaml)
Microsoft General MIDI DLS for Universal Windo...
Microsoft General MIDI DLS for Universal Windo...
Microsoft Universal CRT Debug Runtime
Microsoft Universal CRT Debug Runtime
Microsoft Universal CRT Debug Runtime
Microsoft Visual C++ 2013 Runtime Package for...
Microsoft Visual C++ 2013 Runtime Package for...
Microsoft Visual C++ Runtime Package
Microsoft Visual Studio Test Care

Microsoft Visual Studio Test Core

MS5Test for Managed Projects

M5Test for Managed Projects

Visual C++ 2015 Runtime for Universal Windows...
Windows Desktop Extensions for the UWP
Windows Desktop Extensions for the UWP
Windows loT Extensions for the UWP

Windows loT Extensions for the UWP

Windows Mobile Extenszions for the UWP
Windows Mobile Bxtensions for the UWP
Windows Team Extensions for the UWP

Windows Team Bxtensions for the WP

Wersion
13
8.1

10.0.1058...
10.0.1024...
10.0.1058...
10.0.1024...
10.0.1015...

14.0
1.0
140
14.0
140
14.0
14.0

10.0.1058...
10.0.1024..,
10.0.1058...
10.0.1024...
10.0.1058...
10.0.1024...
10.0.1058...
10.0.1024...

g

Browse.

5. Next, go into the NuGet Package Manager Console and enter this:

PM> Install-Package portable.accord.statistics

6. Make sure that the Default project is pointing to Adventureworks.IOB.RP2:

Package Manager Conscle

Package source: nuget.org

- 43 | Default project: AdventureWorks.|OB.RP2

Each package is licensed to you by its owner. NuGet is not responsible for, nor does it grant any licen
packages may include dependencies which are governed by additional licenses. Follow the package source

Package Manager Console Host Version 3.3.8.167

Type 'get-help HuGet' to see all available NuGet commands.

PM> Install-Package portable.accord.statistics

-

Build the project to make sure all is well.

7. Next, go to the Solution Explorer and add a new folder called Sensors:

ot B

] Mew lem... Ctri+Shift+4&

0 Existing ltem... Shift=Alt+A

Td Mew Folder #
REST API Client... 10
Reference...

Service Reference...
::}5 Connected Service... o,

Analyzer...

Class...

0 x

Build
Rebuild

Deploy

Clean

View

Analyze

Scope to This

Mew Selution Explorer View
Show on Code Map

Build Dependencies

Add

Store

Manage NuGet Packages...
Set as StartUp Project
Debug

Source Control

Cut

Paste

Remove

Rename

Unload Project

SCHULIGN ExXpiorer

Search Solution Explorer (Ctrl=:)

@R o--¢FH|

wventureWorks.[OB.5q
reWorks.|0B
reWorks.|0OB.PCL
reWorks.|0B.RP2 (Unij
rties

Pagesxaml

ge.apprrnanifest
' Et.jstm

reWorks.l0OB.Servid

Ctrd+ X

I'_II +

Del

Adding new folder

8. Navigate to the Sensors folder:

@ - F=5

Search Solution Explorer (Ctrl+;)

I &[FE] AdventureWorks. OB
I &[F¥ AdventureWorks.OB.PCL
4 &[cE AdventureWorks./OB.RP2 (Universal Windows)
I+ & Properties
[=B References
4 Assets
P Sensors
s AdventureWorks.|OB.RP2_TemporaryKey.pfx
b &l Appxaml
b &l MainPagexaml
ak5) Package.appxmanifest
a8] projectjson
b &) AdventureWorks.lOB.Services

Solution Explorer > X

10.

11.

Solution Explorer
@ o-sa|p,=8

Search Solution Explorer (Clrl+:) P -

+fa] Selution ‘AdventureWorks,|0B.Solution’ (4 projects
b &= AdventureWorks 0B
B <[F=] AdventureWorksIOB.PCL
4 2| AdventureWorks IOB.RP2 (Universal Windows)
b & Properties
[=@ References

sauojdig uonnjos FANIEEIU| £

Assets
EN5Oors

Add * | 3 Newltem.. Ctrl+Shift+ A

Scope to This O Bsting ftem... Shift+Alt+A
BER Mew Solution Explorer View il Mew Folder
¥ Show on Code Map REST API Client...
€D View History... s Class..

Exclude From Project ;;:I;c:g:a prl;ﬂl‘li[l:st
3 Cut Crl+X project.json
M Copy Crl+C entureWorks.|0B.Services

Adding a new class

In TelemetryEventArgs.cs, replace the existing code with the following:

using AdventureWorks.IOB.PCL;
using System;

namespace AdventureWorks.IOB.RP2.Sensors

{
Public class TelemetryEventArgs : EventArgs
{
Public Telemetry Telemetry { get; set; }
¥
¥

In the sensors folder, add a new interface called 1BikeController. After it is created,
replace all of the code with the following:

using System;

namespace AdventureWorks.IOB.RP2.Sensors

{
Public interface IBikeController
{
Event EventHandler<TelemetryEventArgs> TelemetryCreated;
void SwitchGear(int targetGear);
3
3

This interface will be used by the main app to, well, interface with the Raspberry Pi.
The Pi communicates back to the main app via an event called TelemetryCreated.

12.

13.

to borrow a bit from the SOLID principles and have several implementations for our
app: an in-memory bike controller that we can use to make sure everything is hooked
up correctly and a Raspberry Pi bike controller that actually talks to the hardware that
we currently have available. Also, there are so many sensors available on the market,
we need a way of adding in new sensors without changing the existing code.

Go into the Sensors folder and add a new class called InMemoryBikeController.
Replace the existing code with this:

using AdventureWorks.IOB.PCL;
using System;
using System.Threading;

namespace AdventureWorks.IOB.RP2.Sensors

{

public class InMemoryBikeController : IBikeController

{
Timer _timer = null;

public InMemoryBikeController()

{
_timer = new Timer(GenerateTelemetry, null, 0,
TimeSpan.FromSeconds(1).Milliseconds);

}

public event EventHandler<TelemetryEventArgs> TelemetryCreated;
private void GenerateTelemetry(object state)
{

var telemetry = new Telemetry(0, 0, DateTime.UtcNow,

46.6297, -97.6087, 100.0, 100.0, 2, 10.0, 1);
var args = new TelemetryEventArgs() { Telemetry = telemetry

Iy
if (TelemetryCreated != null)
{
TelemetryCreated(this, args);
b
b
public void SwitchGear(int targetGear)
{
b
¥
}

This code simulates an actual Raspberry Pi. Every second, it fires an event with some
hardcoded telemetry data. It also has a method stub for the switchGears that does
nothing.

Make sure everything compiles and jumps over to the MainPage.xaml file and

14.

<Page
x:Class="AdventureWorks.IOB.RP2.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:AdventureWorks.IOB.RP2"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource
ApplicationPageBackgroundThemeBrush}">

<StackPanel HorizontalAlignment="Center" VerticalAlignment="Center">

<TextBox x:Name="StatusMessage" Text="IOB Ready!" Margin="10"
IsReadOnly="True"/>

</StackPanel>

</Grid>
</Page>

This creates a status box that you can use for debugging. When you deploy this app
to the Raspberry Pi, this is unnecessary because there is no graphical user interface.

Next, go into the MainPage.xaml.cs file and replace everything with this:

using System;

using System.IO;

using System.Ling;

using Windows.UI.Xaml;

using Windows.Web.Http;

using AdventureWorks.IOB.PCL;

using Windows.UI.Xaml.Controls;

using System.Xml.Serialization;

using System.Collections.Generic;
using AdventureWorks.IOB.RP2.Sensors;
using Windows.Networking.Connectivity;
using Accord.Statistics.Models.Regression.Linear;

namespace AdventureWorks.IOB.RP2

{

publicsealedpartialclassMainPage : Page
{

String _networkName = String.Empty;
SpeedModel _globalSpeedModel = null;
SpeedModel _localSpeedModel = null;
List<Telemetry> _telemetries = null;
IBikeController _bikeController = null;
DispatcherTimer _timer = null;

public MainPage()

{
this.InitializeComponent();
_networkName = "MySafeNetwork";
_globalSpeedModel = newSpeedModel();
_localSpeedModel = newSpeedModel();

_bikeController = newInMemoryBikeController();
_timer = newDispatcherTimer();

_timer.Interval = newTimeSpan(0, 0, 1);

NetworkInformation.NetworkStatusChanged +=
NetworkInformation_NetworkStatusChanged;

_bikeController.TelemetryCreated +=
_bikeController_TelemetryCreated;

_timer.Tick += _timer_Tick;

}
privatevoid _timer_Tick(object sender, object e)
{

if(_telemetries.Count > 300)

{
_localSpeedModel.Train(_telemetries.ToArray());

var targetGlobalGear =
_globalSpeedModel.Classify(_telemetries.Last());

var targetLocalGear =
_localSpeedModel.Classify(_telemetries.Last());

if (targetGlobalGear < targetLocalGear)

{
b

_bikeController.SwitchGear ((int)targetGlobalGear);

}

privatevoid _bikeController_TelemetryCreated(object sender,
TelemetryEventArgs e)

{
b

privatevoid NetworkInformation_NetworkStatusChanged(object

_telemetries.Add(e.Telemetry);

sender)

{

var connectionProfile =
NetworkInformation.GetInternetConnectionProfile();
if (connectionProfile.ProfileName == _networkName)
{
GetGlobalModel();
UploadLocalTelemetryData();

}

privateasyncvoid GetGlobalModel()
{

var client = newHttpClient();
var uri = newUri("http://localhost:3899/api/SpeedModel");
try

{

var response = await client.GetAsync(uri);

{

var content = await
response.Content.ReadAsInputStreamAsync();
using (var stream = content.AsStreamForRead())

{
var formatter =
newXmlSerializer (typeof(double[]));
var coefficients =
(double[])formatter.Deserialize(stream);
var regression = newMultiplelLinearRegression(2);
Array.Copy(coefficients,
regression.Coefficients, coefficients.Length);
_globalSpeedModel.CurrentModel = regression;
}
}
}

catch (Exception e)

{
¥

this.StatusMessage.Text = e.ToString();

privateasyncvoid UploadLocalTelemetryData()

{
//T0ODO: Send _telemetries to Azure IoT Suite

}

}

This is where the heavy lifting occurs. When the app starts, it begins a timer that fires
every second (_timer_Tick). If there are over 5 minutes’ worth of data in the local
collection, it generates a SpeedModel. It then compares this speed model to the global
one and if the global output is less than the local one, it signals the biker via the
.SwitchGear (). The actual implementation is up to the controller. As you will see in
a minute, the Raspberry Pi controller turns on an LED that the biker can see. In other
examples, we could hook the Pi up to the bike’s shifting assembly and shift the gears
for the biker—an automatic transmission for the bike, as it were.

. Next, go into the Solution Explorer and right-click on Properties and change the
startup project to Multiple startup projects with the Services and RP2 projects
changed to Start. The Services project has to be listed before the RP2 one:

MN/A | MN/A Configuration Manager...

4 Common Prgper‘ties OCurrent selection
Startup Project () Single startup project
Project Dependencies A SR
Code Anslyoe Selings ventureWaorks.|OB.5ervices
Debug Source Files (®) Multiple startup projects:
I Configuration Properties
Project Action
AdventureWorks. /0B Mone
AdventureWorks.IOB.PCL Mone
AdventureWorks. /OB, Services Start
AdventureWorks.|OB.RP2 Start

16. One last thing you need to do before we run this is to deploy the Universal Windows
application. If you ask me why you need to deploy it first, I will tell you, “Because
Microsoft said so.” Go into the Solution Explorer and right-click on the Rp2 project
and select Deploy:

rxamles € X SpeedMode EEIRIEREST-IEEY B xX
Page o @lo-sco@m ,=8
&y Buid [P
Rebuild forks 0B Salution’ (4 proje
f
Depler
- bect
Clean LRP2 [Universal Windows]
View b BServices
Analyze k
Scope to This
B Mew Solution Exploer View
r{-‘i-_ Show on Code Map
Bimld Dependendsss ¥
Add k
Store *
B Manage Nulet Packages...

The Deploy option

17. Now you can run the app and both, the browser will pop up for the service layer and
the universal Windows app will start:

000 001

IOB Ready!

Notice nothing much is happening—at least on the screen. That is pretty typical of IoT
projects; the action is on the device and connected peripherals. If the device fired the
NetworkStatus_Changed event, the device would get the most recent global model and
upload the global model. You can simulate this by placing GetGlobalModelinMainPage()
and then write it to the status box if you are the type of person who wants to see something
on the screen.

Let’s build out the Raspberry Pi implementation of the BikeController. Since this is a
book on machine learning and not on 10T, I will not be covering the details of setting up a
Raspberry Pi and doing all of the wiring and coding. As a frame of reference, I used the
example found at http://ms-iot.github.io/content/en-US/win10/samples/Potentiometer.htm.
Basically, each of the sensors would be considered an analog input device (such as a
potentiometer) that converts its signal to a digital signal. For each of the inputs, a
SpiConnection was created like this:

privateasyncTask<SpiDevice> InitSPI(int pin)
{
var settings = newSpiConnectionSettings(pin);
settings.ClockFrequency = 500000;
settings.Mode = SpiMode.ModeO;

http://ms-iot.github.io/content/en-US/win10/samples/Potentiometer.htm

string spiAqs = SpiDevice.GetDeviceSelector("SPIO");
var deviceInfo = awaitDeviceInformation.FindAllAsync(spiAqQs);
returnawaitSpiDevice.FromIdAsync(deviceInfo[0].Id, settings);

}

And every second, each device’s buffer was read:

privatevoid SensorTimer_Tick(ThreadPoolTimer timer)

{
byte[] readBuffer = newbyte[3];

byte[] writeBuffer = newbyte[3] { 0x00, 0x00, Ox00 };
writeBuffer[0] = 0x06;

//Gear
_gear.TransferFullDuplex(writeBuffer, readBuffer);
var gear = convertToInt(readBuffer);

The readings were aggregated into telemetry data and the event was raised:

var telemetry = newTelemetry(0, _businessEntityID, DateTime.UtcNow,
latitude, longitude, frontTire, backTire, gear, tireSpeed,

_riderLevel);

var args = newTelemetryEventArgs() { Telemetry = telemetry };

if (TelemetryCreated != null)
{

}

Meanwhile, a different timer was running and shutting off the LED every two seconds.
The LED was set when the switchGear method was called:

TelemetryCreated(this, args);

public void SwitchGear(int targetGear)

{
b

So the controller app can turn the LED on, and then the Pi turns it off after two seconds.
You can see the final result in the code sample that accompanies the book.

_led.Write(GpioPinValue.Low);

LNCTAL O PO

I glossed over some important [oT issues that would need to be addressed to make this
bike app fully functional:

e There are hundreds of input devices that I could have used. You will have to write a
specific implementation for the devices that you are interested in. Thank goodness we
have an interface!

e How to deploy this app to a Raspberry Pi is beyond the scope of this book. You can
learn more about this at https://dev.windows.com/en-US/iot.

e Telemetry to local storage is beyond the scope of this book. This is a universal
Windows app issue that can be researched at https://msdn.microsoft.com/en-
us/library/windows/apps/dn894631.aspx.

e Uploading the data to the Azure IoT suite is beyond the scope of this book. You can
find more information on that at https://www.microsoft.com/en-us/server-

cloud/internet-of-things/azure-iot-suite.aspx.

https://dev.windows.com/en-US/iot
https://msdn.microsoft.com/en-us/library/windows/apps/dn894631.aspx
https://www.microsoft.com/en-us/server-cloud/internet-of-things/azure-iot-suite.aspx

ouliiiiary

This was a fairly ambitious chapter. We looked at some of the challenges of big data and
how to use MBrace to help us with distributed machine learning. We then created a sample
IoT project to show an example of how big data is generated and how we can deploy ML
models to devices. The IoT app used two ML models to give optimal results. We then
looked (briefly) at how we can use the power of .NET to build multiple input devices so
that we can extend across the variety of hardware that is, and will be, available for IoT.

Accord / Accord
Accord.NET
about / Accord. NET, Accord NET
URL / Accord.NET
regression / Regression
regression evaluation, RSME used / Regression evaluation using RMSE
regression, using with real world / Regression and the real world
regression, against actual data / Regression against actual data
AdventureWorks
o and Internet of Bikes (IoB) / AdventureWorks and the Internet of Bikes
Adventure Works / Deedle
URL / Regression against actual data
about / AdventureWorks
data, making available / Getting the data ready
and k-NN / k-NN and AdventureWorks data
and Naive Bayes / Naive Bayes and AdventureWorks data
Adventure Works app
o about / AdventureWorks app
o environment, setting up / Setting up the environment
o existing web project, updating / Updating the existing web project
o regression, implementing / Implementing the regression
AdventureWorks data
o multiple linear regression, applying / AdventureWorks data
o logistic regression, applying / Applying a logistic regression to AdventureWorks
data
Adventure Works data
o and k-NN / k-NN and AdventureWorks data
Adventure Works database / SqlProvider
application
o logistic regression, adding / Adding logistic regression to the application
building / Building the application
models, setting up / Setting up the models
UX, building / Building the UX
attachment point, logistic regressions / Attachment point
Azure [0T suite
o URL / Next steps

O O O O O O

O O O O O

(e]

(e]

(e]

1)

e Bing Map API
o URL / Combining data

classification models discoveries

o using / Making use of our discoveries
o data, making available / Getting the data ready

o features, expanding / Expanding features
clean data block / The scientific process
Code-4-Good application
about / The Code-4-Good application
machine learning assembly / Machine learning assembly
Ul / The Ul
distance calculations, adding / Adding distance calculations
human observations, augmenting with / Augmenting with human observations
Code for America
o URL / Open data
collinearity / Collinearity
cross validation
o about / Overfitting and cross validation
training, versus testing / Cross validation — train versus test
random test / Cross validation — the random and mean test
mean test / Cross validation — the random and mean test
confusion matrix / Cross validation — the confusion matrix and AUC
AUC / Cross validation — the confusion matrix and AUC
unrelated variables / Cross validation — unrelated variables

O O O O O

O O O O O O

data

o cleaning / Cleaning data

o selecting / Selecting data
data combinations
about / Combining data
geolocation data / Combining data
parallelism / Parallelism
JSON type provider / JSON type provider — authentication
data elements

o reference / Non SQL type providers
data frame

o about / Overview

data lakes / The scientific process
data munging / The scientific process
data selection
about / Selecting data
collinearity / Collinearity
o normalization / Normalization
scaling / Scaling
decision trees

o about / Decision trees

o benefits / Decision trees

o Accord / Accord

o numl / numl
Deedle / Deedle

(e]

(e]

(e]

(e]

(e]

(e]

(e]

1

e Entity Framework (EF) / FsLab and type providers

sy
3

about / Why F#?
features / Learning F#
learning / Learning F#
URLs / Learning F#
Fiddler
o URL / Parallelism
Framework Class Library (FCL) / What version of the .NET Framework are we
using?
FsLab

o reference / FsLab and type providers

O O O

(e]

A\

e GroupJoin method / Geolocation analysis

e Hack-4-Good
about / Hack-4-Good

FsLab / FsLab and type providers

type providers / FsLab and type providers
data exploration / Data exploration

o visualization / Visualization
e high risk / Augmenting with human observations
e Highway 46

o URL / Data considerations

O O O o

¢ Internet of Bikes (IoB)
o and AdventureWorks / AdventureWorks and the Internet of Bikes
overview / AdventureWorks and the Internet of Bikes
data considerations / Data considerations
MapReduce / MapReduce
MBrace / MBrace
o distributed logistic regression / Distributed logistic regression
¢ Internet of Things (IoT) / Why write your own?

O O O o

e [oT
o about/ The IoT
o PCL linear regression / PCL linear regression
o service layer, building / Service layer
o Universal Windows app / Universal Windows app and Raspberry Pi 2
o Raspberry PI 2 / Universal Windows app and Raspberry Pi 2
o issues / Next steps

J

e Java Virtual Machine (JVM) / What version of the .NET Framework are we using?
e Join method

o parameters / Geolocation analysis
e JSON type provider

o about / JSON type provider — authentication

e k-means / k-means
e k-NN
o about / k-Nearest Neighbors (k-NIN)

o example / k-NIN example
o and Adventure Works data / k-NN and AdventureWorks data

a1

e lambda expression / Learning F#
e Language Integrated Query (LINQ) / What version of the .NET Framework are we
using?, SqlProvider
e logistic regressions
o about / Intro to logistic regression
URL / Intro to logistic regression
x variable, adding / Adding another x variable

applying, to AdventureWorks data / Applying a logistic regression to
AdventureWorks data

categorical data / Categorical data
attachment point / Attachment point

results, analyzing / Analyzing results of the logistic regression
o adding, to application / Adding logistic regression to the application
e low risk / Augmenting with human observations

O O O

O O O

R &

e machine learning (ML)
o about / What is machine learning?, Getting ready for machine learning
o implementing / Why write your own?
o Visual Studio, setting up / Setting up Visual Studio
e Math.NET
o URL/Math.NET
o about / Math.NET, Math.NET
o regression, calculating / Regression try 1, Regression try 2
e MBrace
o URL / MBrace
o about / MBrace
o starter pack, URL / MBrace
e Mean Square Error (MSE) / Regression evaluation using RMSE
e multiple linear regression
about / Introduction to multiple linear regression
example / Intro example

x variables, adding / Keep adding x variables?
applying, to AdventureWorks data / AdventureWorks data

adding, to production application / Adding multiple regression to our production

application

o multiple x variables, considerations / Considerations when using multiple x
variables

o third x variable, adding to model / Adding a third x variable to our model

(e]

O O O o

NET

o advantages / Why .NET?

o about / Why .NET?
.NET Framework

o version / What version of the .NET Framework are we using?

o URL / What version of the .NET Framework are we using?
Naive Bayes

o about / Naive Bayes

o using / Naive Bayes in action

o using, consideration / One thing to keep in mind while using Naive Bayes
neural networks

o demo / Neural network demo

o testing / Neural network — try #1, Neural network — try #2
NOAA archives

o reference / JSON type provider — authentication
numl

o about / numl
Numl

o about / Numl

o URL / Numl

object relational mapping (ORM) / FsLab and type providers

Open Data
o about / Open data
open data

o about / Why open data?
overfitting / Overfitting and cross validation

Pearson’s Correlation
o about / Preparing the test data, Pearson’s correlation
o URL / Pearson’s correlation
Pearson’s Correlation
o about / Pearson’s correlation
Portable Class Libraries (PCLs) / Non-type provider
Portable Class Library (PCL) / What version of the .NET Framework are we using?
potentiometer
o URL / Universal Windows app and Raspberry Pi 2
Principle Component Analysis (PCA)
o about / Unsupervised learning, Principle Component Analysis (PCA)
principle components, frame / Principle Component Analysis (PCA)

ProductID / Overview
production application

o multiple linear regression, adding / Adding multiple regression to our production
application

AN

e Raspberry Pi
o URL / Next steps
e RSME
o used, for evaluating regression / Regression evaluation using RMSE

J

e scientific process / The scientific process
e simple linear regression

o about / Simple linear regression
environment, setting up / Setting up the environment

test data, preparing / Preparing the test data
standard deviation / Standard deviation

Pearson’s Correlation / Pearson’s correlation
o performing / Linear regression
e SpeedModel class
o CurrentModel property / PCL linear regression
o Train method / PCL linear regression
o Classify method / PCL linear regression
e SQL Server providers

about / SQL Server providers, SQL Server type provider wrap up

non-type provider / Non-type provider
SqlProvider / SglProvider

Deedle / Deedle
MicrosoftSqlProvider / MicrosoftSqlProvider
FSharp.Data. TypeProviders.SqlServerProvider / SQL Server type provider wrap
up
o FSharp.Data.TypeProviders.EntityFrameworkProvider / SQL Server type
provider wrap up
o FSharp.Data.SqlClient / SQL Server type provider wrap up
o FSharp.Data.SqlProvider / SQL Server type provider wrap up
o FSharp.EntityFramework.MicrosoftSqlServer / SQL Server type provider wrap
up
o non SQL type providers / Non SQL type providers
e standard deviation
o URL / Standard deviation
o about / Standard deviation
e sum of squares error (SSE) / Regression evaluation using RMSE
e supervised learning / Unsupervised learning

O O O O

O O O O O O

Task Parallel Library (TPL) / What version of the .NET Framework are we using?
Test With Experiment block / The scientific process

third-party libraries

about / Third-party libraries

Math.NET / Math.NET

Accord.NET / Accord. NET

Numl / Numl

traffic stop and crash exploration

o about / Traffic stop and crash exploration
script, preparing / Preparing the script and the data

data, preparing / Preparing the script and the data
geolocation analysis / Geolocation analysis

PCA/PCA
o analysis summary / Analysis summary
type providers

o about / Fsl.ab and type providers

o URL / FslLab and type providers
o overview / Overview

(¢]

(¢]

(¢]

(¢]

O O O O

O

e Universal Windows Applications (UWA) / What version of the .NET Framework are
we using?
e unsupervised learning

o about / Unsupervised learning
o k-means / k-means

o Principle Component Analysis (PCA) / Principle Component Analysis (PCA)

v

e Visual Studio

o setting up / Setting up Visual Studio
o URL / Setting up Visual Studio

¢ Windows Communication Foundation (WCF) / What version of the .NET Framework
are we using?

L\

e Xx variable
o adding, to multiple linear regression / Keep adding x variables?

	Mastering .NET Machine Learning
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Welcome to Machine Learning Using the .NET Framework
	What is machine learning?
	Why .NET?
	What version of the .NET Framework are we using?
	Why write your own?
	Why open data?
	Why F#?
	Getting ready for machine learning
	Setting up Visual Studio
	Learning F#
	Third-party libraries
	Math.NET
	Accord.NET
	Numl
	Summary
	2. AdventureWorks Regression
	Simple linear regression
	Setting up the environment
	Preparing the test data
	Standard deviation
	Pearson's correlation
	Linear regression
	Math.NET
	Regression try 1
	Regression try 2
	Accord.NET
	Regression
	Regression evaluation using RMSE
	Regression and the real world
	Regression against actual data
	AdventureWorks app
	Setting up the environment
	Updating the existing web project
	Implementing the regression
	Summary
	3. More AdventureWorks Regression
	Introduction to multiple linear regression
	Intro example
	Keep adding x variables?
	AdventureWorks data
	Adding multiple regression to our production application
	Considerations when using multiple x variables
	Adding a third x variable to our model
	Logistic regression
	Intro to logistic regression
	Adding another x variable
	Applying a logistic regression to AdventureWorks data
	Categorical data
	Attachment point
	Analyzing results of the logistic regression
	Adding logistic regression to the application
	Summary
	4. Traffic Stops – Barking Up the Wrong Tree?
	The scientific process
	Open data
	Hack-4-Good
	FsLab and type providers
	Data exploration
	Visualization
	Decision trees
	Accord
	numl
	Summary
	5. Time Out – Obtaining Data
	Overview
	SQL Server providers
	Non-type provider
	SqlProvider
	Deedle
	MicrosoftSqlProvider
	SQL Server type provider wrap up
	Non SQL type providers
	Combining data
	Parallelism
	JSON type provider – authentication
	Summary
	6. AdventureWorks Redux – k-NN and Naïve Bayes Classifiers
	k-Nearest Neighbors (k-NN)
	k-NN example
	Naïve Bayes
	Naïve Bayes in action
	One thing to keep in mind while using Naïve Bayes
	AdventureWorks
	Getting the data ready
	k-NN and AdventureWorks data
	Naïve Bayes and AdventureWorks data
	Making use of our discoveries
	Getting the data ready
	Expanding features
	Summary
	7. Traffic Stops and Crash Locations – When Two Datasets Are Better Than One
	Unsupervised learning
	k-means
	Principle Component Analysis (PCA)
	Traffic stop and crash exploration
	Preparing the script and the data
	Geolocation analysis
	PCA
	Analysis summary
	The Code-4-Good application
	Machine learning assembly
	The UI
	Adding distance calculations
	Augmenting with human observations
	Summary
	8. Feature Selection and Optimization
	Cleaning data
	Selecting data
	Collinearity
	Feature selection
	Normalization
	Scaling
	Overfitting and cross validation
	Cross validation – train versus test
	Cross validation – the random and mean test
	Cross validation – the confusion matrix and AUC
	Cross validation – unrelated variables
	Summary
	9. AdventureWorks Production – Neural Networks
	Neural networks
	Background
	Neural network demo
	Neural network – try #1
	Neural network – try #2
	Building the application
	Setting up the models
	Building the UX
	Summary
	10. Big Data and IoT
	AdventureWorks and the Internet of Bikes
	Data considerations
	MapReduce
	MBrace
	Distributed logistic regression
	The IoT
	PCL linear regression
	Service layer
	Universal Windows app and Raspberry Pi 2
	Next steps
	Summary
	Index

