
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Mastering	.NET	Machine	Learning

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

Mastering	.NET	Machine	Learning

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Welcome	to	Machine	Learning	Using	the	.NET	Framework

What	is	machine	learning?

Why	.NET?

What	version	of	the	.NET	Framework	are	we	using?

Why	write	your	own?

Why	open	data?

Why	F#?

Getting	ready	for	machine	learning

Setting	up	Visual	Studio

Learning	F#

www.allitebooks.com

http://www.allitebooks.org

Third-party	libraries

Math.NET

Accord.NET

Numl

Summary

2.	AdventureWorks	Regression

Simple	linear	regression

Setting	up	the	environment

Preparing	the	test	data

Standard	deviation

Pearson’s	correlation

Linear	regression

Math.NET

Regression	try	1

Regression	try	2

Accord.NET

Regression

Regression	evaluation	using	RMSE

Regression	and	the	real	world

Regression	against	actual	data

AdventureWorks	app

Setting	up	the	environment

Updating	the	existing	web	project

Implementing	the	regression

Summary

3.	More	AdventureWorks	Regression

Introduction	to	multiple	linear	regression

Intro	example

Keep	adding	x	variables?

AdventureWorks	data

Adding	multiple	regression	to	our	production	application

www.allitebooks.com

http://www.allitebooks.org

Considerations	when	using	multiple	x	variables

Adding	a	third	x	variable	to	our	model

Logistic	regression

Intro	to	logistic	regression

Adding	another	x	variable

Applying	a	logistic	regression	to	AdventureWorks	data

Categorical	data

Attachment	point

Analyzing	results	of	the	logistic	regression

Adding	logistic	regression	to	the	application

Summary

4.	Traffic	Stops	–	Barking	Up	the	Wrong	Tree?

The	scientific	process

Open	data

Hack-4-Good

FsLab	and	type	providers

Data	exploration

Visualization

Decision	trees

Accord

numl

Summary

5.	Time	Out	–	Obtaining	Data

Overview

SQL	Server	providers

Non-type	provider

SqlProvider

Deedle

MicrosoftSqlProvider

SQL	Server	type	provider	wrap	up

Non	SQL	type	providers

www.allitebooks.com

http://www.allitebooks.org

Combining	data

Parallelism

JSON	type	provider	–	authentication

Summary

6.	AdventureWorks	Redux	–	k-NN	and	Naïve	Bayes	Classifiers

k-Nearest	Neighbors	(k-NN)

k-NN	example

Naïve	Bayes

Naïve	Bayes	in	action

One	thing	to	keep	in	mind	while	using	Naïve	Bayes

AdventureWorks

Getting	the	data	ready

k-NN	and	AdventureWorks	data

Naïve	Bayes	and	AdventureWorks	data

Making	use	of	our	discoveries

Getting	the	data	ready

Expanding	features

Summary

7.	Traffic	Stops	and	Crash	Locations	–	When	Two	Datasets	Are	Better	Than	One

Unsupervised	learning

k-means

Principle	Component	Analysis	(PCA)

Traffic	stop	and	crash	exploration

Preparing	the	script	and	the	data

Geolocation	analysis

PCA

Analysis	summary

The	Code-4-Good	application

Machine	learning	assembly

The	UI

Adding	distance	calculations

www.allitebooks.com

http://www.allitebooks.org

Augmenting	with	human	observations

Summary

8.	Feature	Selection	and	Optimization

Cleaning	data

Selecting	data

Collinearity

Feature	selection

Normalization

Scaling

Overfitting	and	cross	validation

Cross	validation	–	train	versus	test

Cross	validation	–	the	random	and	mean	test

Cross	validation	–	the	confusion	matrix	and	AUC

Cross	validation	–	unrelated	variables

Summary

9.	AdventureWorks	Production	–	Neural	Networks

Neural	networks

Background

Neural	network	demo

Neural	network	–	try	#1

Neural	network	–	try	#2

Building	the	application

Setting	up	the	models

Building	the	UX

Summary

10.	Big	Data	and	IoT

AdventureWorks	and	the	Internet	of	Bikes

Data	considerations

MapReduce

MBrace

Distributed	logistic	regression

www.allitebooks.com

http://www.allitebooks.org

The	IoT

PCL	linear	regression

Service	layer

Universal	Windows	app	and	Raspberry	Pi	2

Next	steps

Summary

Index

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Mastering	.NET	Machine	Learning

Mastering	.NET	Machine	Learning
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2016

Production	reference:	1210316

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-840-3

www.packtpub.com

http://www.packtpub.com

Credits
Author

Jamie	Dixon

Reviewers

Reed	Copsey,	Jr.

César	Roberto	de	Souza

Commissioning	Editor

Vedika	Naik

Acquisition	Editor

Meeta	Rajani

Technical	Editor

Pankaj	Kadam

Copy	Editor

Laxmi	Subramanian

Proofreader

Safis	Editing

Indexer

Rekha	Nair

Graphics

Jason	Monteiro

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Author
Jamie	Dixon	has	been	writing	code	for	as	long	as	he	can	remember	and	has	been	getting
paid	to	do	it	since	1995.	He	was	using	C#	and	JavaScript	almost	exclusively	until
discovering	F#,	and	now	combines	all	three	languages	for	the	problem	at	hand.	He	has	a
passion	for	discovering	overlooked	gems	in	datasets	and	merging	software	engineering
techniques	to	scientific	computing.	When	he	codes	for	fun,	he	spends	his	time	using
Phidgets,	Netduinos,	and	Raspberry	Pis	or	spending	time	in	Kaggle	competitions	using	F#
or	R.

Jamie	is	a	bachelor	of	science	in	computer	science	and	has	been	an	F#	MVP	since	2014.
He	is	the	former	chair	of	his	town’s	Information	Services	Advisory	Board	and	is	an
outspoken	advocate	of	open	data.	He	is	also	involved	with	his	local	.NET	User	Group
(TRINUG)	with	an	emphasis	on	data	analytics,	machine	learning,	and	the	Internet	of
Things	(IoT).

Jamie	lives	in	Cary,	North	Carolina	with	his	wonderful	wife	Jill	and	their	three	awesome
children:	Sonoma,	Sawyer,	and	Sloan.	He	blogs	weekly	at	jamessdixon.wordpress.com
and	can	be	found	on	Twitter	at	@jamie_dixon.

http://jamessdixon.wordpress.com

Acknowledgments
I	had	never	considered	writing	a	book	until	Meeta	from	Packt	Publishing	sent	me	an	e-
mail,	asking	me	if	I	was	interested	in	writing	the	book	that	you	are	holding.	My	first
reaction	was	excitement	immediately	followed	by	fear.	I	have	heard	that	writing	a	book	is
an	arduous	and	painful	undertaking	with	scant	reward—was	I	really	ready	to	dive	into
that?	Fortunately,	writing	this	book	was	nothing	of	the	sort—all	due	to	the	many
wonderful	people	that	helped	me	along	the	way.

First	and	foremost	are	the	technical	reviewers	Reed	Copsey,	Jr.	and	César	Roberto	de
Souza.	Their	attention	to	detail,	their	spot-on	suggestions,	and	occasional	words	of
encouragement	made	all	of	the	difference.	Next,	the	team	at	Packt	of	Meeta	Rajani,	Pankaj
Kadam,	and	Laxmi	Subramanian	took	my	words,	code	samples,	and	screenshots	and
turned	them	into	something,	well,	beautiful.	Mathias	Brandiveder,	Evalina	Gasborova,
Melinda	Thielbar,	James	McCaffrey,	Phil	Trelford,	Seth	Jurez,	and	Chris	Kalle	all	helped
me	at	different	points	with	questions	about	what	and	how	to	present	the	machine	learning
models	and	ideas.	Dmitry	Morozov	and	Ross	McKinlay	were	indispensable	for	explaining
the	finer	points	of	type	providers.	Isaac	Abraham	helped	me	with	the	section	on	MBrace
and	Tomas	Petricek	helped	me	with	the	section	on	Deedle.	Chris	Matthews	and	Mark
Hutchinson	reviewed	the	initial	outline	and	gave	me	great	feedback.	Ian	Hoppes	saved	me
hours	(days?)	by	sharing	his	expertise	on	the	finer	points	of	Razor	and	JavaScript.	Finally,
Rob	Seder,	Mike	Esposito,	and	Kevin	Allen	encouraged	and	supported	me	throughout	the
entire	process.

To	everyone	I	mentioned	and	the	people	I	may	have	missed,	please	accept	my	sincerest
thanks.

Finally,	my	deepest	love	for	the	initial	proofreader,	soul	mate,	and	best	wife	any	person
could	have:	Jill	Dixon.	I	am	truly	the	luckiest	man	in	the	world	to	be	with	you.

About	the	Reviewers
Reed	Copsey,	Jr.	is	the	executive	director	of	the	F#	Software	Foundation	and	the	CTO
and	co-owner	of	C	Tech	Development	Corporation,	a	software	company	focused	on
applications	and	tooling	for	the	Earth	Sciences.	After	attending	the	University	of	Chicago,
he	went	on	to	consult	and	work	in	many	industries,	including	medical	imaging,
geographical	information	systems,	analysis	of	retail	market	data,	and	more.	He	has	been
involved	with	technical	and	business	support	for	numerous	nonprofit	organizations,	and
most	recently	enjoys	spending	his	free	time	involved	with	the	software	community.

He	is	the	organizer	of	the	Bellingham	Software	Developers	Network,	has	been	a	Microsoft
MVP	in	.NET	since	2010,	is	an	avid	StackOverflow	contributor,	and	regularly	speaks	on
F#	and	.NET	at	various	user	groups	and	conferences.

César	Roberto	de	Souza	is	the	author	of	the	Accord.NET	Framework	and	an	experienced
software	developer.	During	his	early	university	years	in	Brazil,	he	decided	to	create	the
Accord.NET	Framework,	a	framework	for	machine	learning,	image	processing,	and
scientific	computing	for	.NET.	Targeted	at	both	professionals	and	hobbyists,	the	project
has	been	used	by	large	and	small	companies,	big	corporations,	start-ups,	universities,	and
in	an	extensive	number	of	scientific	publications.	After	finishing	his	MSc	in	the	Federal
University	of	São	Carlos,	the	success	of	the	project	eventually	granted	him	an	opportunity
to	work	and	live	in	Europe,	from	where	he	continues	its	development	and	interacts	with
the	growing	community	of	users	that	now	helps	advance	the	project	even	further.

He	is	a	technology	enthusiast,	with	keen	interest	in	machine	learning,	computer	vision,
and	image	processing,	and	regularly	writes	articles	on	those	topics	for	the	CodeProject,
where	he	has	won	its	article	writing	competition	multiple	times.

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

To	Sonoma,	Sawyer,	and	Sloan	Dixon

Preface
The	.NET	Framework	is	one	of	the	most	successful	application	frameworks	in	history.
Literally	billions	of	lines	of	code	have	been	written	on	the	.NET	Framework,	with	billions
more	to	come.	For	all	of	its	success,	it	can	be	argued	that	the	.NET	Framework	is	still
underrepresented	for	data	science	endeavors.	This	book	attempts	to	help	address	this	issue
by	showing	how	machine	learning	can	be	rapidly	injected	into	the	common	.NET	line	of
business	applications.	It	also	shows	how	typical	data	science	scenarios	can	be	addressed
using	the	.NET	Framework.	This	book	quickly	builds	upon	an	introduction	to	machine
learning	models	and	techniques	in	order	to	build	real-world	applications	using	machine
learning.	While	by	no	means	a	comprehensive	study	of	predictive	analytics,	it	does
address	some	of	the	more	common	issues	that	data	scientists	encounter	when	building
their	models.

Many	books	about	machine	learning	are	written	with	every	chapter	centering	around	a
dataset	and	how	to	implement	a	model	on	that	dataset.	While	this	is	a	good	way	to	build	a
mental	blueprint	(as	well	as	some	code	boilerplate),	this	book	is	going	to	take	a	slightly
different	approach.	This	book	centers	around	introducing	the	same	application	for	the	line
of	business	development	and	one	common	open	data	dataset	for	the	scientific	programmer.
We	will	then	introduce	different	machine	techniques,	depending	on	the	business	scenario.
This	means	you	will	be	putting	on	different	hats	for	each	chapter.	If	you	are	a	line	of
business	software	engineer,	Chapters	2,	3,	6,	and	9	will	seem	like	old	hat.	If	you	are	a
research	analyst,	Chapters	4,	7,	and	10	will	be	very	familiar	to	you.	I	encourage	you	to	try
all	chapters,	regardless	of	your	background,	as	you	will	perhaps	gain	a	new	perspective
that	will	make	you	more	effective	as	a	data	scientist.	As	a	final	note,	one	word	you	will
not	find	in	this	book	is	“simply”.	It	drives	me	nuts	when	I	read	a	tutorial-based	book	and
the	author	says	“it	is	simply	this”	or	“simply	do	that”.	If	it	was	simple,	I	wouldn’t	need	the
book.	I	hope	you	find	each	of	the	chapters	accessible	and	the	code	samples	interesting,	and
these	two	factors	can	help	you	immediately	in	your	career.

What	this	book	covers
Chapter	1,	Welcome	to	Machine	Learning	Using	the	.NET	Framework,	contextualizes
machine	learning	in	the	.NET	stack,	introduces	some	of	the	libraries	that	we	will	use
throughout	the	book,	and	provides	a	brief	primer	to	F#.

Chapter	2,	AdventureWorks	Regression,	introduces	the	business	that	we	will	use	in	this
book—AdventureWorks	Bicycle	company.	We	will	then	look	at	a	business	problem	where
customers	are	dropping	orders	based	on	reviews	of	the	product.	It	looks	at	creating	a	linear
regression	by	hand,	using	Math.NET	and	Accord.NET	to	solve	this	business	problem.	It
then	adds	this	regression	to	the	line	of	business	application.

Chapter	3,	More	AdventureWorks	Regression,	looks	at	creating	a	multiple	linear	regression
and	a	logistic	regression	to	solve	different	business	problems	at	AdventureWorks.	It	will
look	at	different	factors	that	affect	bike	sales	and	then	categorize	potential	customers	into
potential	sales	or	potential	lost	leads.	It	will	then	implement	the	models	to	help	our
website	convert	potential	lost	leads	into	potential	sales.

Chapter	4,	Traffic	Stops	–	Barking	Up	the	Wrong	Tree?,	takes	a	break	from
AdventureWorks.	You	will	put	on	your	data	scientist	hat,	use	an	open	dataset	of	traffic
stops,	and	see	if	we	can	understand	why	some	people	get	a	verbal	warning	and	why	others
get	a	ticket	at	a	traffic	stop.	We	will	use	basic	summary	statistics	and	decision	trees	to	help
in	understanding	the	results.

Chapter	5,	Time	Out	–	Obtaining	Data,	stops	with	introducing	datasets	and	machine
learning	models	and	concentrates	on	one	of	the	hardest	parts	of	machine	learning—
obtaining	and	cleaning	the	data.	We	will	look	at	using	F#	type	providers	as	a	very
powerful	language	feature	that	can	vastly	speed	up	this	process	of	“data	munging”.

Chapter	6,	AdventureWorks	Redux	–	k-NN	and	Naïve	Bayes	Classifiers,	goes	back	to
AdventureWorks	and	looks	at	a	business	problem	of	how	to	improve	cross	sales.	We	will
implement	two	popular	machine	learning	classification	models,	k-NN	and	Naïve	Bayes,	to
see	which	is	better	at	solving	this	problem.

Chapter	7,	Traffic	Stops	and	Crash	Locations	–	When	Two	Datasets	Are	Better	Than	One,
returns	back	to	the	traffic	stop	data	and	adds	in	two	other	open	datasets	that	can	be	used	to
improve	the	predictions	and	gain	new	insights.	The	chapter	will	introduce	two	common
unsupervised	machine	learning	techniques:	k-means	and	PCA.

Chapter	8,	Feature	Selection	and	Optimization,	takes	another	break	from	introducing	new
machine	learning	models	and	looks	at	another	key	part	of	building	machine	learning
models—selecting	the	right	data	for	the	model,	preparing	the	data	for	the	model,	and
introducing	some	common	techniques	to	deal	with	outliers	and	other	data	abnormalities.

Chapter	9,	AdventureWorks	Production	–	Neural	Networks,	goes	back	to	AdventureWorks
and	looks	at	how	to	improve	bike	production	by	using	a	popular	machine	learning
technique	called	neural	networks.

Chapter	10,	Big	Data	and	IoT,	wraps	up	by	looking	at	a	more	recent	problem—how	to

build	machine	learning	models	on	top	of	data	that	is	characterized	by	massive	volume,
variability,	and	velocity.	We	will	then	look	at	how	IoT	devices	can	generate	this	big	data
and	how	to	deploy	machine	learning	models	onto	these	devices	so	that	they	become	self-
learning.

www.allitebooks.com

http://www.allitebooks.org

What	you	need	for	this	book
You	will	need	Visual	Studio	2013	(any	version)	or	beyond	installed	on	your	computer.
You	can	also	use	VS	Code	or	Mono	Develop.	The	examples	in	this	book	use	Visual	Studio
2015	Update	1.

Who	this	book	is	for
The	lines	between	business	computing	and	scientific	computing	are	becoming
increasingly	blurred.	Indeed,	an	argument	can	be	made	that	the	distinction	was	never
really	as	clear	as	it	has	been	made	out	to	be	in	the	past.	With	that,	machine	learning
principles	and	models	are	making	their	way	into	mainstream	computing	applications.
Consider	the	Uber	app	that	shows	how	far	Uber	drivers	are	from	you,	and	product
recommendations	built	into	online	retail	sites	such	as	Jet.

Also,	the	nature	of	the	.NET	software	developer’s	job	is	changing.	Earlier,	when	the	cliché
of	ours	is	a	changing	industry	was	being	thrown	around,	it	was	about	languages	(need	to
know	JavaScript,	C#,	and	TSql)	and	frameworks	(Angular,	MVC,	WPF,	and	EF).	Now,
the	cliché	means	that	the	software	developer	needs	to	know	how	to	make	sure	their	code	is
correct	(test-driven	development),	how	to	get	their	code	off	of	their	machine	onto	the
customer’s	machine	(DevOps),	and	how	to	make	their	applications	smarter	(machine
learning).

Also,	the	same	forces	that	are	pushing	the	business	developer	to	retool	are	pushing	the
research	analyst	into	unfamiliar	territory.	Earlier,	analysts	focused	on	data	collection,
exploration,	and	visualization	in	the	context	of	an	application	(Excel,	PowerBI,	and	SAS)
for	point-in-time	analysis.	The	analyst	would	start	with	a	question,	grab	some	data,	build
some	models,	and	then	present	the	findings.	Any	kind	of	continuous	analysis	was	done	via
report	writing	or	just	re-running	the	models.	Today,	analysts	are	being	asked	to	sift
through	massive	amounts	of	data	(IoT	telemetry,	user	exhaust,	and	NoSQL	data	lakes),
where	the	questions	may	not	be	known	beforehand.	Also,	once	models	are	created,	they
are	pushed	into	production	applications	where	they	are	continually	being	re-trained	in	real
time.	No	longer	just	a	decision	aid	for	humans,	research	is	being	done	by	computers	to
impact	users	immediately.

The	newly-minted	data	scientist	title	is	at	the	confluence	of	these	forces.	Typically,	no	one
person	can	be	an	expert	on	both	sides	of	the	divide,	so	the	data	scientist	is	a	bit	of	a	jack	of
all	trades,	master	of	none	who	knows	machine	learning	a	little	bit	better	than	all	of	the
other	software	engineers	on	the	team	and	knows	software	engineering	a	little	bit	better
than	any	researcher	on	the	team.	The	goal	of	this	book	is	to	help	move	from	either
software	engineer	or	business	analyst	to	data	scientist.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
Script1.fsx	file	is	then	added	to	the	project.”

A	block	of	code	is	set	as	follows:

let	multipliedAndIsEven	=	

				ints

				|>	Array.map	(fun	i	->	multiplyByTwo	i)

				|>	Array.map	(fun	i	->	isEven	i)

Any	command-line	input	or	output	is	written	as	follows:

val	multipliedAndIsEven	:	string	[]	=

		[|"even";	"even";	"even";	"even";	"even";	"even"|]

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“When	the	Add	New
Item	dialog	box	appears,	select	Script	File.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Welcome	to	Machine	Learning
Using	the	.NET	Framework
This	is	a	book	on	creating	and	then	using	Machine	Learning	(ML)	programs	using	the
.NET	Framework.	Machine	learning,	a	hot	topic	these	days,	is	part	of	an	overall	trend	in
the	software	industry	of	analytics	which	attempts	to	make	machines	smarter.	Analytics,
though	not	really	a	new	trend,	has	perhaps	a	higher	visibility	than	in	the	past.	This	chapter
will	focus	on	some	of	the	larger	questions	you	might	have	about	machine	learning	using
the	.NET	Framework,	namely:	What	is	machine	learning?	Why	should	we	consider	it	in
the	.NET	Framework?	How	can	I	get	started	with	coding?

What	is	machine	learning?
If	you	check	out	on	Wikipedia,	you	will	find	a	fairly	abstract	definition	of	machine
learning:

“Machine	learning	explores	the	study	and	construction	of	algorithms	that	can	learn
from	and	make	predictions	on	data.	Such	algorithms	operate	by	building	a	model
from	example	inputs	in	order	to	make	data-driven	predictions	or	decisions,	rather
than	following	strictly	static	program	instructions.”

I	like	to	think	of	machine	learning	as	computer	programs	that	produce	different	results	as
they	are	exposed	to	more	information	without	changing	their	source	code	(and
consequently	needed	to	be	redeployed).	For	example,	consider	a	game	that	I	play	with	the
computer.

I	show	the	computer	this	picture	 	and	tell	it	“Blue	Circle”.	I	then	show	it	this	picture	

	and	tell	it	“Red	Circle”.	Next	I	show	it	this	picture	 	and	say	“Green	Triangle.”

Finally,	I	show	it	this	picture	 	and	ask	it	“What	is	this?”.	Ideally	the	computer	would
respond,	“Green	Circle.”

This	is	one	example	of	machine	learning.	Although	I	did	not	change	my	code	or	recompile
and	redeploy,	the	computer	program	can	respond	accurately	to	data	it	has	never	seen
before.	Also,	the	computer	code	does	not	have	to	explicitly	write	each	possible	data
permutation.	Instead,	we	create	models	that	the	computer	applies	to	new	data.	Sometimes
the	computer	is	right,	sometimes	it	is	wrong.	We	then	feed	the	new	data	to	the	computer	to
retrain	the	model	so	the	computer	gets	more	and	more	accurate	over	time—or,	at	least,	that
is	the	goal.

Once	you	decide	to	implement	some	machine	learning	into	your	code	base,	another
decision	has	to	be	made	fairly	early	in	the	process.	How	often	do	you	want	the	computer
to	learn?	For	example,	if	you	create	a	model	by	hand,	how	often	do	you	update	it?	With
every	new	data	row?	Every	month?	Every	year?	Depending	on	what	you	are	trying	to
accomplish,	you	might	create	a	real-time	ML	model,	a	near-time	model,	or	a	periodic
model.	We	will	discuss	the	implications	and	implementations	of	each	of	these	in	several
chapters	in	the	book	as	different	models	lend	themselves	to	different	retraining	strategies.

Why	.NET?
If	you	are	a	Windows	developer,	using	.NET	is	something	you	do	without	thinking.
Indeed,	a	vast	majority	of	Windows	business	applications	written	in	the	last	15	years	use
managed	code—most	of	it	written	in	C#.	Although	it	is	difficult	to	categorize	millions	of
software	developers,	it	is	fair	to	say	that	.NET	developers	often	come	from	nontraditional
backgrounds.	Perhaps	a	developer	came	to	.NET	from	a	BCSC	degree	but	it	is	equally
likely	s/he	started	writing	VBA	scripts	in	Excel,	moving	up	to	Access	applications,	and
then	into	VB.NET/C#	applications.	Therefore,	most	.NET	developers	are	likely	to	be
familiar	with	C#/VB.NET	and	write	in	an	imperative	and	perhaps	OO	style.

The	problem	with	this	rather	narrow	exposure	is	that	most	machine	learning	classes,
books,	and	code	examples	are	in	R	or	Python	and	very	much	use	a	functional	style	of
writing	code.	Therefore,	the	.NET	developer	is	at	a	disadvantage	when	acquiring	machine
learning	skills	because	of	the	need	to	learn	a	new	development	environment,	a	new
language,	and	a	new	style	of	coding	before	learning	how	to	write	the	first	line	of	machine
learning	code.

If,	however,	that	same	developer	could	use	their	familiar	IDE	(Visual	Studio)	and	the	same
base	libraries	(the	.NET	Framework),	they	can	concentrate	on	learning	machine	learning
much	sooner.	Also,	when	creating	machine	learning	models	in	.NET,	they	have	immediate
impact	as	you	can	slide	the	code	right	into	an	existing	C#/VB.NET	solution.

On	the	other	hand,	.NET	is	under-represented	in	the	data	science	community.	There	are	a
couple	of	different	reasons	floating	around	for	that	fact.	The	first	is	that	historically
Microsoft	was	a	proprietary	closed	system	and	the	academic	community	embraced	open
source	systems	such	as	Linux	and	Java.	The	second	reason	is	that	much	academic	research
uses	domain-specific	languages	such	as	R,	whereas	Microsoft	concentrated	.NET	on
general	purpose	programming	languages.	Research	that	moved	to	industry	took	their
language	with	them.	However,	as	the	researcher’s	role	is	shifted	from	data	science	to
building	programs	that	can	work	at	real	time	that	customers	touch,	the	researcher	is	getting
more	and	more	exposure	to	Windows	and	Windows	development.	Whether	you	like	it	or
not,	all	companies	which	create	software	that	face	customers	must	have	a	Windows
strategy,	an	iOS	strategy,	and	an	Android	strategy.

One	real	advantage	to	writing	and	then	deploying	your	machine	learning	code	in	.NET	is
that	you	can	get	everything	with	one	stop	shopping.	I	know	several	large	companies	who
write	their	models	in	R	and	then	have	another	team	rewrite	them	in	Python	or	C++	to
deploy	them.	Also,	they	might	write	their	model	in	Python	and	then	rewrite	it	in	C#	to
deploy	on	Windows	devices.	Clearly,	if	you	could	write	and	deploy	in	one	language	stack,
there	is	a	tremendous	opportunity	for	efficiency	and	speed	to	market.

What	version	of	the	.NET	Framework	are
we	using?
The	.NET	Framework	has	been	around	for	general	release	since	2002.	The	base	of	the
framework	is	the	Common	Language	Runtime	or	CLR.	The	CLR	is	a	virtual	machine	that
abstracts	much	of	the	OS	specific	functionality	like	memory	management	and	exception
handling.	The	CLR	is	loosely	based	on	the	Java	Virtual	Machine	(JVM).	Sitting	on	top
of	the	CLR	is	the	Framework	Class	Library	(FCL)	that	allows	different	languages	to
interoperate	with	the	CLR	and	each	other:	the	FCL	is	what	allows	VB.Net,	C#,	F#,	and
Iron	Python	code	to	work	side-by-side	with	each	other.

Since	its	first	release,	the	.NET	Framework	has	included	more	and	more	features.	The	first
release	saw	support	for	the	major	platform	libraries	like	WinForms,	ASP.NET,	and
ADO.NET.	Subsequent	releases	brought	in	things	like	Windows	Communication
Foundation	(WCF),	Language	Integrated	Query	(LINQ),	and	Task	Parallel	Library
(TPL).	At	the	time	of	writing,	the	latest	version	is	of	the	.Net	Framework	is	4.6.2.

In	addition	to	the	full-Monty	.NET	Framework,	over	the	years	Microsoft	has	released
slimmed	down	versions	of	the	.NET	Framework	intended	to	run	on	machines	that	have
limited	hardware	and	OS	support.	The	most	famous	of	these	releases	was	the	Portable
Class	Library	(PCL)	that	targeted	Windows	RT	applications	running	Windows	8.	The
most	recent	incantation	of	this	is	Universal	Windows	Applications	(UWA),	targeting
Windows	10.

At	Connect();	in	November	2015,	Microsoft	announced	GA	of	the	latest	edition	of	the
.NET	Framework.	This	release	introduced	the	.Net	Core	5.	In	January,	they	decided	to
rename	it	to	.Net	Core	1.0.	.NET	Core	1.0	is	intended	to	be	a	slimmed	down	version	of	the
full	.NET	Framework	that	runs	on	multiple	operating	systems	(specifically	targeting	OS	X
and	Linux).	The	next	release	of	ASP.NET	(ASP.NET	Core	1.0)	sits	on	top	of	.NET	Core
1.0.	ASP.NET	Core	1.0	applications	that	run	on	Windows	can	still	run	the	full	.NET
Framework.

www.allitebooks.com

http://www.allitebooks.org

(https://blogs.msdn.microsoft.com/webdev/2016/01/19/asp-net-5-is-dead-introducing-asp-
net-core-1-0-and-net-core-1-0/)

In	this	book,	we	will	be	using	a	mixture	of	ASP.NET	4.0,	ASP.NET	5.0,	and	Universal
Windows	Applications.	As	you	can	guess,	machine	learning	models	(and	the	theory
behind	the	models)	change	with	a	lot	less	frequency	than	framework	releases	so	the	most
of	the	code	you	write	on	.NET	4.6	will	work	equally	well	with	PCL	and	.NET	Core	1.0.
Saying	that,	the	external	libraries	that	we	will	use	need	some	time	to	catch	up—so	they
might	work	with	PCL	but	not	with	.NET	Core	1.0	yet.	To	make	things	realistic,	the
demonstration	projects	will	use	.NET	4.6	on	ASP.NET	4.x	for	existing	(Brownfield)
applications.	New	(Greenfield)	applications	will	be	a	mixture	of	a	UWA	using	PCL	and
ASP.NET	5.0	applications.

https://blogs.msdn.microsoft.com/webdev/2016/01/19/asp-net-5-is-dead-introducing-asp-net-core-1-0-and-net-core-1-0/

Why	write	your	own?
It	seems	like	all	of	the	major	software	companies	are	pitching	machine	learning	services
such	as	Google	Analytics,	Amazon	Machine	Learning	Services,	IBM	Watson,	Microsoft
Cortana	Analytics,	to	name	a	few.	In	addition,	major	software	companies	often	try	to	sell
products	that	have	a	machine	learning	component,	such	as	Microsoft	SQL	Server	Analysis
Service,	Oracle	Database	Add-In,	IBM	SPSS,	or	SAS	JMP.	I	have	not	included	some
common	analytical	software	packages	such	as	PowerBI	or	Tableau	because	they	are	more
data	aggregation	and	report	writing	applications.	Although	they	do	analytics,	they	do	not
have	a	machine	learning	component	(not	yet	at	least).

With	all	these	options,	why	would	you	want	to	learn	how	to	implement	machine	learning
inside	your	applications,	or	in	effect,	write	some	code	that	you	can	purchase	elsewhere?	It
is	the	classic	build	versus	buy	decision	that	every	department	or	company	has	to	make.
You	might	want	to	build	because:

You	really	understand	what	you	are	doing	and	you	can	be	a	much	more	informed
consumer	and	critic	of	any	given	machine	learning	package.	In	effect,	you	are
building	your	internal	skill	set	that	your	company	will	most	likely	prize.	Another	way
to	look	at	it,	companies	are	not	one	tool	away	from	purchasing	competitive	advantage
because	if	they	were,	their	competitors	could	also	buy	the	same	tool	and	cancel	any
advantage.	However,	companies	can	be	one	hire	away	or	more	likely	one	team	away
to	truly	have	the	ability	to	differentiate	themselves	in	their	market.
You	can	get	better	performance	by	executing	locally,	which	is	especially	important
for	real-time	machine	learning	and	can	be	implemented	in	disconnected	or	slow
connection	scenarios.	This	becomes	particularly	important	when	we	start
implementing	machine	learning	with	Internet	of	Things	(IoT)	devices	in	scenarios
where	the	device	has	a	lot	more	RAM	than	network	bandwidth.	Consider	the
Raspberry	Pi	running	Windows	10	on	a	pipeline.	Network	communication	might	be
spotty,	but	the	machine	has	plenty	of	power	to	implement	ML	models.
You	are	not	beholden	to	any	one	vendor	or	company,	for	example,	every	time	you
implement	an	application	with	a	specific	vendor	and	are	not	thinking	about	how	to
move	away	from	the	vendor,	you	make	yourself	more	dependent	on	the	vendor	and
their	inevitable	recurring	licensing	costs.	The	next	time	you	are	talking	to	the	CTO	of
a	shop	that	has	a	lot	of	Oracle,	ask	him/her	if	they	regret	any	decision	to	implement
any	of	their	business	logic	in	Oracle	databases.	The	answer	will	not	surprise	you.	A
majority	of	this	book’s	code	is	written	in	F#—an	open	source	language	that	runs
great	on	Windows,	Linux,	and	OS	X.
You	can	be	much	more	agile	and	have	much	more	flexibility	in	what	you	implement.
For	example,	we	will	often	re-train	our	models	on	the	fly	and	when	you	write	your
own	code,	it	is	fairly	easy	to	do	this.	If	you	use	a	third-party	service,	they	may	not
even	have	API	hooks	to	do	model	training	and	evaluation,	so	near-time	model
changes	are	impossible.

Once	you	decide	to	go	native,	you	have	a	choice	of	rolling	your	own	code	or	using	some

of	the	open	source	assemblies	out	there.	This	book	will	introduce	both	the	techniques	to
you,	highlight	some	of	the	pros	and	cons	of	each	technique,	and	let	you	decide	how	you
want	to	implement	them.	For	example,	you	can	easily	write	your	own	basic	classifier	that
is	very	effective	in	production	but	certain	models,	such	as	a	neural	network,	will	take	a
considerable	amount	of	time	and	energy	and	probably	will	not	give	you	the	results	that	the
open	source	libraries	do.	As	a	final	note,	since	the	libraries	that	we	will	look	at	are	open
source,	you	are	free	to	customize	pieces	of	it—the	owners	might	even	accept	your
changes.	However,	we	will	not	be	customizing	these	libraries	in	this	book.

Why	open	data?
Many	books	on	machine	learning	use	datasets	that	come	with	the	language	install	(such	as
R	or	Hadoop)	or	point	to	public	repositories	that	have	considerable	visibility	in	the	data
science	community.	The	most	common	ones	are	Kaggle	(especially	the	Titanic
competition)	and	the	UC	Irvine’s	datasets.	While	these	are	great	datasets	and	give	a
common	denominator,	this	book	will	expose	you	to	datasets	that	come	from	government
entities.	The	notion	of	getting	data	from	government	and	hacking	for	social	good	is
typically	called	open	data.	I	believe	that	open	data	will	transform	how	the	government
interacts	with	its	citizens	and	will	make	government	entities	more	efficient	and
transparent.	Therefore,	we	will	use	open	datasets	in	this	book	and	hopefully	you	will
consider	helping	out	with	the	open	data	movement.

Why	F#?
As	we	will	be	on	the	.NET	Framework,	we	could	use	either	C#,	VB.NET,	or	F#.	All	three
languages	have	strong	support	within	Microsoft	and	all	three	will	be	around	for	many
years.	F#	is	the	best	choice	for	this	book	because	it	is	unique	in	the	.NET	Framework	for
thinking	in	the	scientific	method	and	machine	learning	model	creation.	Data	scientists	will
feel	right	at	home	with	the	syntax	and	IDE	(languages	such	as	R	are	also	functional	first
languages).	It	is	the	best	choice	for	.NET	business	developers	because	it	is	built	right	into
Visual	Studio	and	plays	well	with	your	existing	C#/VB.NET	code.	The	obvious	alternative
is	C#.	Can	I	do	this	all	in	C#?	Yes,	kind	of.	In	fact,	many	of	the	.NET	libraries	we	will	use
are	written	in	C#.

However,	using	C#	in	our	code	base	will	make	it	larger	and	have	a	higher	chance	of
introducing	bugs	into	the	code.	At	certain	points,	I	will	show	some	examples	in	C#,	but
the	majority	of	the	book	is	in	F#.

Another	alternative	is	to	forgo	.NET	altogether	and	develop	the	machine	learning	models
in	R	and	Python.	You	could	spin	up	a	web	service	(such	as	AzureML),	which	might	be
good	in	some	scenarios,	but	in	disconnected	or	slow	network	environments,	you	will	get
stuck.	Also,	assuming	comparable	machines,	executing	locally	will	perform	better	than
going	over	the	wire.	When	we	implement	our	models	to	do	real-time	analytics,	anything
we	can	do	to	minimize	the	performance	hit	is	something	to	consider.

A	third	alternative	that	the	.NET	developers	will	consider	is	to	write	the	models	in	T-SQL.
Indeed,	many	of	our	initial	models	have	been	implemented	in	T-SQL	and	are	part	of	the
SQL	Server	Analysis	Server.	The	advantage	of	doing	it	on	the	data	server	is	that	the
computation	is	as	close	as	you	can	get	to	the	data,	so	you	will	not	suffer	the	latency	of
moving	large	amount	of	data	over	the	wire.	The	downsides	of	using	T-SQL	are	that	you
can’t	implement	unit	tests	easily,	your	domain	logic	is	moving	away	from	the	application
and	to	the	data	server	(which	is	considered	bad	form	with	most	modern	application
architecture),	and	you	are	now	reliant	on	a	specific	implementation	of	the	database.	F#	is
open	source	and	runs	on	a	variety	of	operating	systems,	so	you	can	port	your	code	much
more	easily.

Getting	ready	for	machine	learning
In	this	section,	we	will	install	Visual	Studio,	take	a	quick	lap	around	F#,	and	install	the
major	open	source	libraries	that	we	will	be	using.

Setting	up	Visual	Studio
To	get	going,	you	will	need	to	download	Visual	Studio	on	a	Microsoft	Windows	machine.
As	of	this	writing,	the	latest	(free)	version	is	Visual	Studio	2015	Community.	If	you	have	a
higher	version	already	installed	on	your	machine,	you	can	skip	this	step.	If	you	need	a
copy,	head	on	over	to	the	Visual	Studio	home	page	at	https://www.visualstudio.com.
Download	the	Visual	Studio	Community	2015	installer	and	execute	it.

Now,	you	will	get	the	following	screen:

Select	Custom	installation	and	you	will	be	taken	to	the	following	screen:

https://www.visualstudio.com

Make	sure	Visual	F#	has	a	check	mark	next	to	it.	Once	it	is	installed,	you	should	see

Visual	Studio	in	your	Windows	Start	menu.

Learning	F#
One	of	the	great	features	about	F#	is	that	you	can	accomplish	a	whole	lot	with	very	little
code.	It	is	a	very	terse	language	compared	to	C#	and	VB.NET,	so	picking	up	the	syntax	is
a	bit	easier.	Although	this	is	not	a	comprehensive	introduction,	this	is	going	to	introduce
you	to	the	major	language	features	that	we	will	use	in	this	book.	I	encourage	you	to	check
out	http://www.tryfsharp.org/	or	the	tutorials	at	http://fsharpforfunandprofit.com/	if	you
want	to	get	a	deeper	understanding	of	the	language.	With	that	in	mind,	let’s	create	our	1st
F#	project:

1.	 Start	Visual	Studio.
2.	 Navigate	to	File	|	New	|	Project	as	shown	in	the	following	screenshot:

3.	 When	the	New	Project	dialog	box	appears,	navigate	the	tree	view	to	Visual	F#	|
Windows	|	Console	Application.	Have	a	look	at	the	following	screenshot:

http://www.tryfsharp.org/
http://fsharpforfunandprofit.com/

4.	 Give	your	project	a	name,	hit	OK,	and	the	Visual	Studio	Template	generator	will
create	the	following	boilerplate:

Although	Visual	Studio	created	a	Program.fs	file	that	creates	a	basic	console	.exe
application	for	us,	we	will	start	learning	about	F#	in	a	different	way,	so	we	are	going
to	ignore	it	for	now.

5.	 Right-click	in	the	Solution	Explorer	and	navigate	to	Add	|	New	Item.

6.	 When	the	Add	New	Item	dialog	box	appears,	select	Script	File.

The	Script1.fsx	file	is	then	added	to	the	project.

7.	 Once	Script1.fsx	is	created,	open	it	up,	and	enter	the	following	into	the	file:

let	x	=	"Hello	World"

8.	 Highlight	that	entire	row	of	code,	right-click	and	select	Execute	In	Interactive	(or
press	Alt	+	Enter):

And	the	F#	Interactive	console	will	pop	up	and	you	will	see	this:

The	F#	Interactive	is	a	type	of	REPL,	which	stands	for	Read-Evaluate-Print-Loop.	If	you
are	a	.NET	developer	who	has	spent	any	time	in	SQL	Server	Management	Studio,	the	F#
Interactive	will	look	very	familiar	to	the	Query	Analyzer	where	you	enter	your	code	at	the
top	and	see	how	it	executes	at	the	bottom.	Also,	if	you	are	a	data	scientist	using	R	Studio,
you	are	very	familiar	with	the	concept	of	a	REPL.	I	have	used	the	words	REPL	and	FSI
interchangeably	in	this	book.

There	are	a	couple	of	things	to	notice	about	this	first	line	of	F#	code	you	wrote.	First,	it
looks	very	similar	to	C#.	In	fact,	consider	changing	the	code	to	this:

It	would	be	perfectly	valid	C#.	Note	that	the	red	squiggly	line,	showing	you	that	the	F#
compiler	certainly	does	not	think	this	is	valid.

Going	back	to	the	correct	code,	notice	that	type	of	x	is	not	explicitly	defined.	F#	uses	the
concept	of	inferred	typing	so	that	you	don’t	have	to	write	the	type	of	the	values	that	you
create.	I	used	the	term	value	deliberately	because	unlike	variables,	which	can	be	assigned
in	C#	and	VB.NET,	values	are	immutable;	once	bound,	they	can	never	change.	Here,	we
are	permanently	binding	the	name	x	to	its	value,	Hello	World.	This	notion	of
immutability	might	seem	constraining	at	first,	but	it	has	profound	and	positive
implications,	especially	when	writing	machine	learning	models.

With	our	basic	program	idea	proven	out,	let’s	move	it	over	to	a	compliable	assembly;	in

this	case,	an	.exe	that	targets	the	console.	Highlight	the	line	that	you	just	wrote,	press	Ctrl
+	C,	and	then	open	up	Program.fs.	Go	into	the	code	that	was	generated	and	paste	it	in:

[<EntryPoint>]

let	main	argv	=	

				printfn	"%A"	argv

				let	x	=	"Hello	World"

				0	//	return	an	integer	exit	code

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
Click	on	Code	Downloads	&	Errata.
Enter	the	name	of	the	book	in	the	Search	box.
Select	the	book	for	which	you’re	looking	to	download	the	code	files.
Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

Then,	add	the	following	lines	of	code	around	what	you	just	added:

//	Learn	more	about	F#	at	http://fsharp.org

//	See	the	'F#	Tutorial'	project	for	more	help.

open	System

[<EntryPoint>]

let	main	argv	=	

				printfn	"%A"	argv

				let	x	=	"Hello	World"

				Console.WriteLine(x)

				let	y	=	Console.ReadKey()

				0	//	return	an	integer	exit	code

Press	the	Start	button	(or	hit	F5)	and	you	should	see	your	program	run:

http://www.packtpub.com
http://www.packtpub.com/support

You	will	notice	that	I	had	to	bind	the	return	value	from	Console.ReadKey()	to	y.	In	C#	or
VB.NET,	you	can	get	away	with	not	handling	the	return	value	explicitly.	In	F#,	you	are
not	allowed	to	ignore	the	returned	values.	Although	some	might	think	this	is	a	limitation,
it	is	actually	a	strength	of	the	language.	It	is	much	harder	to	make	a	mistake	in	F#	because
the	language	forces	you	to	address	execution	paths	explicitly	versus	accidentally	sweeping
them	under	the	rug	(or	into	a	null,	but	we’ll	get	to	that	later).

In	any	event,	let’s	go	back	to	our	script	file	and	enter	in	another	line	of	code:

let	ints	=	[|1;2;3;4;5;6|]

If	you	send	that	line	of	code	to	the	REPL,	you	should	see	this:

val	ints	:	int	[]	=	[|1;	2;	3;	4;	5;	6|]

This	is	an	array,	as	if	you	did	this	in	C#:

var	ints	=	new[]	{1,2,3,4,5,6};

Notice	that	the	separator	is	a	semicolon	in	F#	and	not	a	comma.	This	differs	from	many
other	languages,	including	C#.	The	comma	in	F#	is	reserved	for	tuples,	not	for	separating
items	in	an	array.	We’ll	discuss	tuples	later.

Now,	let’s	sum	up	the	values	in	our	array:

let	summedValue	=	ints	|>	Array.sum

While	sending	that	line	to	the	REPL,	you	should	see	this:

val	summedValue	:	int	=	21

There	are	two	things	going	on.	We	have	the	|>	operator,	which	is	a	pipe	forward	operator.
If	you	have	experience	with	Linux	or	PowerShell,	this	should	be	familiar.	However,	if	you
have	a	background	in	C#,	it	might	look	unfamiliar.	The	pipe	forward	operator	takes	the
result	of	the	value	on	the	left-hand	side	of	the	operator	(in	this	case,	ints)	and	pushes	it
into	the	function	on	the	right-hand	side	(in	this	case,	sum).

The	other	new	language	construct	is	Array.sum.	Array	is	a	module	in	the	core	F#	libraries,
which	has	a	series	of	functions	that	you	can	apply	to	your	data.	The	function	sum,	well,
sums	the	values	in	the	array,	as	you	can	probably	guess	by	inspecting	the	result.

So,	now,	let’s	add	a	different	function	from	the	Array	type:

let	multiplied	=	ints	|>	Array.map	(fun	i	->	i	*	2)

If	you	send	it	to	the	REPL,	you	should	see	this:

val	multiplied	:	int	[]	=	[|2;	4;	6;	8;	10;	12|]

Array.map	is	an	example	of	a	high	ordered	function	that	is	part	of	the	Array	type.	Its
parameter	is	another	function.	Effectively,	we	are	passing	a	function	into	another	function.
In	this	case,	we	are	creating	an	anonymous	function	that	takes	a	parameter	i	and	returns	i
*	2.	You	know	it	is	an	anonymous	function	because	it	starts	with	the	keyword	fun	and	the
IDE	makes	it	easy	for	us	to	understand	that	by	making	it	blue.	This	anonymous	function	is
also	called	a	lambda	expression,	which	has	been	in	C#	and	VB.NET	since	.Net	3.5,	so	you
might	have	run	across	it	before.	If	you	have	a	data	science	background	using	R,	you	are
already	quite	familiar	with	lambdas.

Getting	back	to	the	higher-ordered	function	Array.map,	you	can	see	that	it	applies	the
lambda	function	against	each	item	of	the	array	and	returns	a	new	array	with	the	new
values.

We	will	be	using	Array.map	(and	its	more	generic	kin	Seq.map)	a	lot	when	we	start
implementing	machine	learning	models	as	it	is	the	best	way	to	transform	an	array	of	data.
Also,	if	you	have	been	paying	attention	to	the	buzz	words	of	map/reduce	when	describing
big	data	applications	such	as	Hadoop,	the	word	map	means	exactly	the	same	thing	in	this
context.	One	final	note	is	that	because	of	immutability	in	F#,	the	original	array	is	not
altered,	instead,	multiplied	is	bound	to	a	new	array.

Let’s	stay	in	the	script	and	add	in	another	couple	more	lines	of	code:

let	multiplyByTwo	x	=

				x	*	2

If	you	send	it	to	the	REPL,	you	should	see	this:

val	multiplyByTwo	:	x:int	->	int

These	two	lines	created	a	named	function	called	multiplyByTwo.	The	function	that	takes	a
single	parameter	x	and	then	returns	the	value	of	the	parameter	multiplied	by	2.	This	is
exactly	the	same	as	our	anonymous	function	we	created	earlier	in-line	that	we	passed	into
the	map	function.	The	syntax	might	seem	a	bit	strange	because	of	the	->	operator.	You	can
read	this	as,	“the	function	multiplyByTwo	takes	in	a	parameter	called	x	of	type	int	and
returns	an	int.”

Note	three	things	here.	Parameter	x	is	inferred	to	be	an	int	because	it	is	used	in	the	body
of	the	function	as	multiplied	to	another	int.	If	the	function	reads	x	*	2.0,	the	x	would
have	been	inferred	as	a	float.	This	is	a	significant	departure	from	C#	and	VB.NET	but
pretty	familiar	for	people	who	use	R.	Also,	there	is	no	return	statement	for	the	function,
instead,	the	final	expression	of	any	function	is	always	returned	as	the	result.	The	last	thing
to	note	is	that	whitespace	is	important	so	that	the	indentation	is	required.	If	the	code	was
written	like	this:

let	multiplyByTwo(x)	=

x	*	2

The	compiler	would	complain:

Script1.fsx(8,1):	warning	FS0058:	Possible	incorrect	indentation:	this	

token	is	offside	of	context	started	at	position	(7:1).

Since	F#	does	not	use	curly	braces	and	semicolons	(or	the	end	keyword),	such	as	C#	or
VB.NET,	it	needs	to	use	something	to	separate	code.	That	separation	is	whitespace.	Since
it	is	good	coding	practice	to	use	whitespace	judiciously,	this	should	not	be	very	alarming
to	people	having	a	C#	or	VB.NET	background.	If	you	have	a	background	in	R	or	Python,
this	should	seem	natural	to	you.

Since	multiplyByTwo	is	the	functional	equivalent	of	the	lambda	created	in	Array.map
(fun	i	->	i	*	2),	we	can	do	this	if	we	want:

let	multiplied'	=	ints	|>	Array.map	(fun	i	->	multiplyByTwo	i)

If	you	send	it	to	the	REPL,	you	should	see	this:

val	multiplied'	:	int	[]	=	[|2;	4;	6;	8;	10;	12|]

Typically,	we	will	use	named	functions	when	we	need	to	use	that	function	in	several
places	in	our	code	and	we	use	a	lambda	expression	when	we	only	need	that	function	for	a
specific	line	of	code.

There	is	another	minor	thing	to	note.	I	used	the	tick	notation	for	the	value	multiplied	when
I	wanted	to	create	another	value	that	was	representing	the	same	idea.	This	kind	of	notation
is	used	frequently	in	the	scientific	community,	but	can	get	unwieldy	if	you	attempt	to	use
it	for	a	third	or	even	fourth	(multiplied””)	representation.

Next,	let’s	add	another	named	function	to	the	REPL:

let	isEven	x	=

				match	x	%	2	=	0	with

				|	true	->	"even"

				|	false	->	"odd"

isEven	2

isEven	3

If	you	send	it	to	the	REPL,	you	should	see	this:

val	isEven	:	x:int	->	string

This	is	a	function	named	isEven	that	takes	a	single	parameter	x.	The	body	of	the	function
uses	a	pattern-matching	statement	to	determine	whether	the	parameter	is	odd	or	even.
When	it	is	odd,	then	it	returns	the	string	odd.	When	it	is	even,	it	returns	the	string	even.

There	is	one	really	interesting	thing	going	on	here.	The	match	statement	is	a	basic
example	of	pattern	matching	and	it	is	one	of	the	coolest	features	of	F#.	For	now,	you	can
consider	the	match	statement	much	like	the	switch	statement	that	you	may	be	familiar
within	R,	Python,	C#,	or	VB.NET,	but	we	will	see	how	it	becomes	much	more	powerful	in
the	later	chapters.	I	would	have	written	the	conditional	logic	like	this:

let	isEven'	x	=

				if	x	%	2	=	0	then	"even"	else	"odd"

But	I	prefer	to	use	pattern	matching	for	this	kind	of	conditional	logic.	In	fact,	I	will
attempt	to	go	through	this	entire	book	without	using	an	if…then	statement.

With	isEven	written,	I	can	now	chain	my	functions	together	like	this:

let	multipliedAndIsEven	=	

				ints

				|>	Array.map	(fun	i	->	multiplyByTwo	i)

				|>	Array.map	(fun	i	->	isEven	i)

If	you	send	it	to	REPL,	you	should	see	this:

val	multipliedAndIsEven	:	string	[]	=

		[|"even";	"even";	"even";	"even";	"even";	"even"|]

In	this	case,	the	resulting	array	from	the	first	pipe	Array.map	(fun	i	->	multiplyByTwo
i))	gets	sent	to	the	next	function	Array.map	(fun	i	->	isEven	i).	This	means	we
might	have	three	arrays	floating	around	in	memory:	ints	which	is	passed	into	the	first	pipe,
the	result	from	the	first	pipe	that	is	passed	into	the	second	pipe,	and	the	result	from	the
second	pipe.	From	your	mental	model	point	of	view,	you	can	think	about	each	array	being
passed	from	one	function	into	the	next.	In	this	book,	I	will	be	chaining	pipe	forwards
frequently	as	it	is	such	a	powerful	construct	and	it	perfectly	matches	the	thought	process
when	we	are	creating	and	using	machine	learning	models.

You	now	know	enough	F#	to	get	you	up	and	running	with	the	first	machine	learning
models	in	this	book.	I	will	be	introducing	other	F#	language	features	as	the	book	goes
along,	but	this	is	a	good	start.	As	you	will	see,	F#	is	truly	a	powerful	language	where	a
simple	syntax	can	lead	to	very	complex	work.

Third-party	libraries
The	following	are	a	few	third-party	libraries	that	we	will	cover	in	our	book	later	on.

Math.NET
Math.NET	is	an	open	source	project	that	was	created	to	augment	(and	sometimes	replace)
the	functions	that	are	available	in	System.Math.	Its	home	page	is
http://www.mathdotnet.com/.	We	will	be	using	Math.Net’s	Numerics	and	Symbolics
namespaces	in	some	of	the	machine	learning	algorithms	that	we	will	write	by	hand.	A	nice
feature	about	Math.Net	is	that	it	has	strong	support	for	F#.

http://www.mathdotnet.com/

Accord.NET
Accord.NET	is	an	open	source	project	that	was	created	to	implement	many	common
machine	learning	models.	Its	home	page	is	http://accord-framework.net/.	Although	the
focus	of	Accord.NET	was	for	computer	vision	and	signal	processing,	we	will	be	using
Accord.Net	extensively	in	this	book	as	it	makes	it	very	easy	to	implement	algorithms	in
our	problem	domain.

http://accord-framework.net/

Numl
Numl	is	an	open	source	project	that	implements	several	common	machine	learning	models
as	experiments.	Its	home	page	is	http://numl.net/.	Numl	is	newer	than	any	of	the	other
third-party	libraries	that	we	will	use	in	the	book,	so	it	may	not	be	as	extensive	as	the	other
ones,	but	it	can	be	very	powerful	and	helpful	in	certain	situations.	We	will	be	using	Numl
in	several	chapters	of	the	book.

http://numl.net/

Summary
We	covered	a	lot	of	ground	in	this	chapter.	We	discussed	what	machine	learning	is,	why
you	want	to	learn	about	it	in	the	.NET	stack,	how	to	get	up	and	running	using	F#,	and	had
a	brief	introduction	to	the	major	open	source	libraries	that	we	will	be	using	in	this	book.
With	all	this	preparation	out	of	the	way,	we	are	ready	to	start	exploring	machine	learning.

In	the	next	chapter,	we	will	apply	our	newly	found	F#	skills	to	create	a	simple	linear
regression	to	see	if	we	can	help	AdventureWorks	improve	their	sales.

Chapter	2.	AdventureWorks	Regression
Imagine	you’re	a	business	developer	at	AdventureWorks,	a	bicycle	manufacturing
company	based	in	Seattle,	Washington.	You	are	responsible	for	three	applications	that	run
at	the	top	of	a	single	SQL	Server	instance.	The	applications	are:

A	customer	ordering	website	with	a	section	for	direct	customer	sales	and	another
section	for	resellers	to	buy	in	bulk
A	desktop	inventory	control	management	application
A	reporting	solution	using	Power	BI	as	a	frontend

All	three	of	these	applications	share	similar	characteristics:

They	are	database-first	applications	where	their	primary	role	is	to	wireframe	the
database
They	are	all	.NET	applications	that	use	standard	Microsoft	templating	and
frameworks,	such	as	MVC	for	the	website	and	Entity	Frameworks	for	both	web	and
desktop	solutions

One	day,	your	boss	calls	you	into	her	office	and	says,	“we	are	concerned	about	the
reseller’s	section	of	the	website.	We’ve	noticed	through	some	basic	charting	in	the	Power
BI	that	many	resellers	are	dropping	their	order	depending	on	the	average	customer	reviews
of	the	product.

Here	is	the	one	of	the	charts	we	are	looking	at:

Obviously,	if	we	can	prevent	people	from	doing	this,	we	will	maximize	sales.	We	want	to
maximize	our	existing	code	assets,	so	your	solution	needs	to	integrate	with	the	existing
website	and	we	want	our	customers	to	experience	the	same	look	and	feel	they	currently
have.”

This	is	what	the	current	webpage	looks	like:

You	tell	your	boss	that	you	will	take	a	look,	think	about	it	for	a	couple	of	days,	and	come
up	with	some	ideas.	Inside,	you	are	thrilled	because	this	will	take	you	out	of	the	traditional
role	of	web	dev	and	into	data	science.	After	researching	some	different	machine	learning
techniques,	you	settle	on	using	a	simple	regression	to	help	achieve	this	goal.

Simple	linear	regression
Regressions	attempt	to	predict	one	number	given	a	set	of	different	numbers.	For	example,
imagine	we	had	a	box	where	we	enter	in	a	number	and	another	number	comes	out:

I	enter	the	number	1	into	the	box,	and	the	number	6	comes	out.	Then,	I	enter	another	1
into	the	box	and	the	number	7	comes	out.	I	do	this	five	times	and	I	get	the	following
results:

1	->	6

1	->	7

1	->	6

1	->	5

1	->	6

Before	entering	in	another	one,	what	do	you	think	the	output	will	be?	You	probably
guessed	6.	However,	if	I	asked	you	whether	you	were	100%	sure	that	6	would	come	out,
you	would	say,	“no,	but	it	will	probably	be	6.”	In	fact,	you	might	say	that	6	has	a	60%
chance	of	coming	out	based	on	prior	experience	(three	sixes	in	five	total	attempts).

What	you	are	doing	mentally	is	a	kind	of	regression.	Typically,	linear	regressions	are
written	using	a	formula	like	this:

y	=	x0	+	x1	+	x2	+	E

Here,	y	is	the	number	you	want	to	predict	and	x0,	x1,	and	x2	are	some	numbers	that	might
affect	y.	Back	to	AdventureWorks,	y	is	the	number	of	bikes	a	retail	store	will	order	in	a
month,	x0	is	the	month	of	the	year,	x1	is	the	order	from	the	previous	three	months,	and	x2
is	the	number	of	other	bikes	that	are	being	ordered	by	their	immediate	competitors.	E	is	all
of	the	things	that	our	formula	cannot	account	for	that	still	affects	the	bike	sales—like	an
individual	store	losing	a	key	sales	person.	If	we	knew	that	x0	+	x1	+	x2	accounted	for
75%	of	y,	we	would	know	that	25%	of	y	cannot	be	explained.

Our	goal,	then,	is	to	find	as	few	x	parameters	as	possible	that	have	the	greatest	impact	on	y
and	then	make	a	reasonable	attempt	to	have	our	website	reflect	both	the	predicted	value
and	to	influence	the	users	for	our	benefit.

There	are	many	types	of	regressions,	and	we	will	start	with	the	most	basic,	though
surprisingly	powerful	one—the	simple	regression.	In	a	simple	regression,	there	is	only	one
input	variable	and	one	output,	so	the	formula	is	y	=	x0	+	E.	Because	there	are	only	two

variables,	we	can	plot	them	on	a	two-dimensional	graph.	For	example,	if	we	had	this	data:

We	can	plot	the	data	like	this:

What	we	want	to	do	with	a	simple	regression	is	find	the	line	that	“fits”	best	through	all	of
the	data	points:

In	this	example,	you	can	see	that	the	line	goes	through	points	1,	2,	and	5.	If	the	line	does
not	intersect	a	given	point,	we	want	to	know	the	distance	from	the	line	to	the	point.	In	this
example,	we	want	to	know	the	distance	of	the	dotted	red	line	for	points	3	and	4.

If	we	add	up	the	distance	of	all	of	the	dotted	red	lines	and	divide	by	the	number	of	total
points	on	our	graph,	we	have	a	pretty	good	idea	of	how	well	this	line	represents	the	plot.	If
we	are	then	given	a	number	that	is	on	our	graph,	we	can	make	a	prediction	about	where	it
will	land.	For	example,	if	we	are	given	another	2,	we	can	predict	that	we	will	probably
result	in	a	2.	Not	only	that,	we	can	make	predictions	about	where	the	line	is	headed	(slope)

for	inputs	that	we	have	not	seen	before.	For	example,	if	we	input	6,	we	can	guess	that	it
will	probably	be	close	to	6.

In	a	real-word	example,	we	typically	don’t	have	a	single	input	for	a	given	number.	So,	we
might	get	a	hundred	1s	and	90%	of	the	time	the	output	will	be	1,	5%	of	the	time	the	output
will	be	1.25,	and	5%	of	the	time,	the	output	will	be	0.75.	If	we	placed	all	the	100s	on	our
scatter	plot,	we	will	see	lots	of	points	on	1	(or	a	really	dark	dot),	some	on	1.25,	and	some
on	0.75.	With	this	mental	model	in	place,	let’s	go	ahead	and	create	a	simple	linear
regression	from	scratch.

Setting	up	the	environment
Open	Visual	Studio	2015	and	create	a	new	F#	Library:

Once	Visual	Studio	finishes	creating	the	project	and	files	for	you,	go	into	the	solution
explorer,	and	open	Script1.fsx	and	delete	all	the	contents	in	the	file.	You	should	now
have	an	empty	script	file	ready	for	your	code.

Preparing	the	test	data
The	first	thing	we	will	do	is	create	a	dataset	that	we	can	use	in	our	regression	that	gives	us
predictable	results.	Create	an	array	like	this:

let	input	=	[|1,1.;2,2.;3,2.25;4,4.75;5,5.|]

Here,	input	is	an	array	of	tuples.	A	tuple	is	a	data	structure	that	contains	groups	of	data
that	are	unnamed—usually	there	are	two	items.	The	types	do	not	have	to	be	the	same	as	a
tuple’s	items.	If	you	are	familiar	with	the	concept	of	a	key/value	pair,	you	can	use	that	as	a
mental	model	of	a	tuple.	The	only	real	“gotcha”	is	that	tuples	can	have	many	items	so	this
it	is	a	perfectly	valid	tuple:	2,true,"dog"	where	the	first	position	is	an	int,	the	second	is
a	Boolean,	and	the	third	is	a	string.

If	you	highlight	our	single	line	of	code	and	send	it	to	the	REPL	using	Alt	+	Enter,	you	will
get	this	back:

val	input	:	(int	*	float)	[]	=

		[|(1,	1.0);	(2,	2.0);	(3,	2.25);	(4,	4.75);	(5,	5.0)|]

The	F#	compiler	is	telling	us	that	we	have	an	array	that	contains	tuples	of	type	int	and
float.	In	this	example,	we	will	use	the	first	value	of	the	tuples	to	be	the	X	and	the	second
to	be	the	Y	of	our	simple	linear	regression.

With	the	data	set	up,	let’s	think	about	how	to	calculate	a	regression.	A	more	mathematical
definition	than	what	I	used	earlier	is	y	=	A	+	Bx,	where	A	is	the	Y	intercept	of	the	line	and
B	is	the	slope	of	the	line.	Therefore,	we	need	to	figure	out	how	to	calculate	the	intercept	of
the	line	and	the	slope	of	the	line.	Turns	out	that	we	need	to	calculate	the	standard	deviation
of	the	x	and	y	values	and	something	called	the	Person’s	correlation.	Let’s	tackle	each	one
of	these	separately.

Standard	deviation
The	best	explanation	of	standard	deviation	that	I	have	run	across	is	at
http://www.mathsisfun.com/data/standard-deviation.html.

Standard	deviation	is	the	square	root	of	the	variance;	to	calculate	the	variance:

1.	 Work	out	the	mean	(the	simple	average	of	the	numbers).
2.	 Then,	for	each	number,	subtract	the	mean	and	square	the	result	(the	squared

difference).
3.	 Then,	work	out	the	average	of	those	squared	differences.

So,	taking	MathIsFun’s	explanation	and	applying	it	to	F#,	we	can	write:

let	variance	(source:float	seq)	=

				let	mean	=	Seq.average	source

				let	deltas	=	Seq.map	(fun	x	->	pown	(x-mean)	2)	source

				Seq.average	deltas

Sending	that	to	the	REPL	gives	us:

val	variance	:	source:seq<float>	->	float

Notice	how	there	is	a	one-to-one	correspondence	between	each	line	of	the	English
explanation	and	the	F#	code.	This	is	not	an	accident.	F#	is	really	great	at	matching	your
thought	process.	In	fact,	we	even	resisted	to	temptation	to	for…each	in	code	when	we	saw
those	words	in	the	English	version.

There	is	some	new	F#	code	here	that	might	be	confusing.	Notice	that	when	I	calculated	the
mean,	I	called	the	Seq.average	function:

	Seq.average	source

And	hence,	the	source	argument	came	after	the	function.	I	could	have	just	as	well	written:

	source	|>	Seq.average

This	is	something	you	will	have	seen	before	if	you	worked	through	Chapter	1,	Welcome	to
Machine	Learning	Using	the	.NET	Framework.	There	is	really	no	consensus	in	the	F#
community	about	which	way	is	more	idiomatic,	though	the	style	guidelines	argue	for	the
non-pipe	forward	way.	Since	both	are	supported	by	the	languages	and	widely	used,	I	use
both	depending	on	the	code.	Typically,	when	I	have	a	string	of	thoughts	to	push	together	I
use	the	pipe	operator,	but	if	there	is	only	one	calculation,	I	just	call	the	function	directly.
Notice	that	I	did	this	after	syntax	technique	in	all	three	lines:	mean,	deltas,	and	the	return
of	the	function.

With	variance	out	of	the	way,	we	can	make	our	standard	deviation:

let	standardDeviation	values	=

					sqrt	(variance	values)

Sending	that	to	the	REPL	gives	us:

http://www.mathsisfun.com/data/standard-deviation.html

val	standardDeviation	:	values:seq<float>	->	float

With	the	standard	deviation	ready,	we	can	plug	in	our	numbers.	Since	we	will	be
calculating	the	standard	deviation	of	X	and	Y	independently,	let’s	break	the	tuple	apart	into
separate	arrays	and	calculate	their	average	and	standard	deviations:

let	x	=	input	|>	Seq.map	(fun	(x,y)	->	float	x)

let	y	=	input	|>	Seq.map	(fun	(x,y)	->	y)	

let	mX	=	Seq.average	x

let	mY	=	Seq.average	y

let	sX	=	standardDeviation	x

let	sY	=	standardDeviation	y

Sending	that	to	the	REPL	gives	us:

val	x	:	seq<float>

val	y	:	seq<float>

val	mX	:	float	=	3.0

val	mY	:	float	=	3.0

val	sX	:	float	=	1.414213562

val	sY	:	float	=	1.589024858

There	is	one	thing	new	here.	Notice	that	when	calculating	x,	I	used	this	syntax:

Seq.map(fun	(x,y)	->	float	x)

With	float	x	as	the	return.	float	is	a	function	that	casts	the	int	into,	well,	a	float.	If	you
are	coming	from	VB.NET/C#,	the	comparable	syntax	will	be	(float)x.

Pearson’s	correlation
Next,	let’s	calculate	the	Pearson’s	correlation.	The	best	explanation	I	have	found	for	it	is
available	at	http://onlinestatbook.com/2/describing_bivariate_data/calculation.html.	You
can	think	of	creating	the	Pearson’s	correlation	as	filling	in	columns	in	an	Excel
spreadsheet	and	then	doing	some	calculations	on	the	column	totals.	Start	a	grid	with	x	and
y	in	different	rows:

Then,	calculate	the	mean	for	X	and	Y:

Next,	calculate	x	and	y.	x	is	calculated	by	subtracting	the	mean	of	X	from	X	and	y	is
calculated	by	subtracting	the	mean	of	Y	from	Y:

Next,	fill	in	xy,	x2,	and	y	2:

http://onlinestatbook.com/2/describing_bivariate_data/calculation.html

With	the	grid	filled	in,	you	can	sum	up	xy,	x2,	and	y2:

The	final	answer	is	computed	by	dividing	the	sum	of	the	xy	column	(Σxy)	by	the	square
root	of	the	product	of	the	sum	of	the	x2	column	(Σx2)	and	the	sum	of	the	y2	column	(Σy2).
So,	in	our	example,	it	will	be:

10.75/	√(10	*	12.63)

I	now	want	to	repeat	these	steps	without	that	grid	in	English:

1.	 Calculate	the	mean	for	X.
2.	 Calculate	the	mean	for	Y.
3.	 Calculate	x.
4.	 Calculate	y.
5.	 Fill	in	xy,	x2,	and	y2.
6.	 Sum	up	y2.
7.	 Sum	up	x2.
8.	 Sum	up	y2.
9.	 Do	the	final	formula.

And	this	is	how	I	would	write	it	in	F#:

let	pearsonsCorrelation(a:float	seq,	b:float	seq)	=

				let	mX	=	Seq.average	a

				let	mY	=	Seq.average	b

				let	x	=	a	|>	Seq.map	(fun	x	->	x	-	mX)

				let	y	=	b	|>	Seq.map	(fun	y	->	y	-	mY)

				let	xys	=	Seq.zip	x	y

				let	xy	=	xys	|>	Seq.map	(fun	(x,	y)	->	x*y,	x*x,	y*y)

				let	sxy	=	xy	|>	Seq.sumBy	(fun	(xy,	x2,	y2)	->	xy)

				let	sx2	=	xy	|>	Seq.sumBy	(fun	(xy,	x2,	y2)	->	x2)

				let	sy2	=	xy	|>	Seq.sumBy	(fun	(xy,	x2,	y2)	->	y2)

				sxy	/	sqrt	(sx2*sy2)

Sending	that	to	the	REPL	gives	us:

val	pearsonsCorrelation	:	a:seq<float>	*	b:seq<float>	->	float

Again,	you	can	see	that	there	is	almost	a	one-to-one	correspondence	between	the	formula
and	the	code.	There	are	a	couple	of	things	to	note.

Seq.zip	x	y	is	a	function	that	takes	in	two	sequences	of	equal	length	and	combines	them
together	into	a	single	tuple.	So	for	x	and	y	zipped:

Another	thing	to	notice	is	that	there	is	a	three-item	tuple	being	used	in	the	Seq.SumBys.
Each	item	of	the	tuple	represents	a	different	column	in	the	grid	we	were	filling	out:	xy,	x2,
and	y2.	Although	I	normally	don’t	like	to	create	tuples	greater	than	two	items,	I	can	make
an	exception	in	this	case	because	I	am	only	using	the	tuple	in	the	context	of	these	higher-
order	functions.	Because	the	data	structure	is	contained	and	short-lived,	a	tuple	is	the	best
choice.	If	I	needed	that	data	structure	outside	of	the	higher-order	function,	a	record	type
would	have	been	more	appropriate.	We’ll	get	more	exposure	to	a	record	type	later	in	this
chapter.

A	final	thing	to	notice	is	the	Seq.sumBy	higher-ordered	function.	As	you	may	expect,
sumBy	computes	the	sum	of	things.	The	key	thing	to	realize	is	that	the	sumBy	expects	a
function	to	be	passed,	not	a	data	structure.	If	you	just	want	to	sum	up	the	values	in	an
array,	you	can	use	the	Seq.sum()	function:

Seq.sum	([1;2;3])

val	it	:	int	=	6

Seq.sumBy	([1;2;3])

Does	not	compile

Seq.sumBy	(fun	i	->	i)	[1;2;3]

val	it	:	int	=	6

And	so	to	run	a	Pearson’s	correlation	for	x	and	y,	type	this	into	the	script:

let	r	=	pearsonsCorrelation	(x,y)

Sending	that	to	the	REPL	gives	us:

val	r	:	float	=	0.9567374429

Linear	regression
With	standard	deviation	and	r	calculated,	we	are	ready	for	our	linear	regression:

let	b	=	r*(sY/sX)

let	A	=	mY	-	b*mX

val	b	:	float	=	1.075

val	A	:	float	=	-0.225

What	these	two	values	mean	is	that	our	y	intercept	is	-.22,	or	very	close	to	the	origin,	and
our	slope	is	1.075.	Laying	them	out	on	the	same	grid,	you	can	see	that	the	predicted
numbers	are	close	to	the	actual:

These	are	still	different	enough	on	the	plot	that	we	eye-balled	earlier	with	the	red	line
going	directly	through	1,	2,	3,	4,	5	(solid	line)	and	the	regression	line	taking	a	slightly
different	path	(dashed	line):

We	will	revisit	how	good	this	regression	is	at	describing	our	data	(and	making	predictions)
in	a	bit.	Until	then,	we	can	safely	say	that	we	have	a	regression,	which	seems	to	fit	our
data	pretty	well.

We	now	have	a	library	we	could	compile	for	our	AdventureWorks	problem.	However,	we
may	not	want	to	roll	our	own	because	this	is	a	fairly	limited	implementation.	For	example,
when	we	calculated	variance	and	standard	deviation,	we	were	using	the	formula	for	the
variance	and	standard	deviation	for	an	entire	population.	If	we	had	only	a	small	sample	of
the	population,	there	is	a	different	formula	that	we	will	implement.	Also,	linear	regressions
have	several	parameters	that	we	can	enter	to	try	and	tune	up	the	model	in	our
implementation.	As	you	can	guess,	there	is	quite	a	bit	of	effort	in	writing	your	own	library,
and	you	still	may	not	get	it	right.	If	you	were	wondering	in	the	middle	of	the	prior	exercise
of	rolling	our	own,	“is	there	an	easier	way?”	The	answer	is	“yes.”

Math.NET
We	had	a	brief	introduction	to	Math.Net	in	Chapter	1,	Welcome	to	Machine	Learning
Using	the	.NET	Framework.	In	this	section,	we	will	add	it	to	our	project	and	see	how	it
can	help	us	do	a	simple	linear	regression.	In	the	solution	explorer	of	your	open	project,
add	a	new	script	file	and	name	it	MathDotNet.fsx.

Next,	open	the	NuGet	Package	Manager	Console	(Tools	|	NuGet	Package	Manger	|
Package	Manager	Console):

In	the	console,	enter	the	following	line:

PM>	install-package	MathNet.Numerics

You	will	see	that	the	package	installs	successfully:

Close	the	Package	Manager	Console	and	the	readme.txt	file	that	opens	when	you	install
Math.NET.	In	the	future,	I	will	assume	that	you	know	how	to	open	and	enter	commands	to
install	NuGet	packages.

Regression	try	1
In	the	script	file,	create	the	same	input	that	we	saw	in	the	hand-rolled	script	and	calculate
the	means	of	x	and	y:

let	input	=	[|1,1.;2,2.;3,2.25;4,4.75;5,5.|]

let	x	=	input	|>	Array.map(fun	(x,y)	->	float	x)

let	y	=	input	|>	Array.map(fun	(x,y)	->	y)	

let	mX	=	Array.average	x

let	mY	=	Array.average	y	

The	following	is	the	output:

val	input	:	(int	*	float)	[]	=

		[|(1,	1.0);	(2,	2.0);	(3,	2.25);	(4,	4.75);	(5,	5.0)|]

val	x	:	float	[]	=	[|1.0;	2.0;	3.0;	4.0;	5.0|]

val	y	:	float	[]	=	[|1.0;	2.0;	2.25;	4.75;	5.0|]

val	mX	:	float	=	3.0

val	mY	:	float	=	3.0

Then,	point	to	the	Math.NET	library	installed	with	the	nugget	package	and	add	a	reference
to	it:

#r	"../packages/MathNet.Numerics.3.8.0/lib/net40/MathNet.Numerics.dll"

open	MathNet.Numerics.Statistics

Next,	use	Math.Net	to	calculate	the	standard	deviation	of	x	and	y:

let	sX	=	ArrayStatistics.StandardDeviation	x

let	sY	=	ArrayStatistics.StandardDeviation	y

The	preceding	code	statements	will	give	you:

val	sX	:	float	=	1.58113883

val	sY	:	float	=	1.7765838

Finally,	use	Math.Net	to	calculate	the	r:

let	r	=	Correlation.Pearson	(x,y)

The	following	will	be	the	output:

val	r	:	float	=	0.9567374429

Now,	you	can	calculate	the	regression:

let	b	=	r*(sY/sX)

let	A	=	mY	-	b*mX

And	here	is	what	you	will	get	in	the	output:

val	b	:	float	=	1.075

val	A	:	float	=	-0.225

There	is	one	new	thing	I	want	to	point	out	in	the	script.	You	had	to	type:

#r	"../packages/MathNet.Numerics.3.8.0/lib/net40/MathNet.Numerics.dll"

www.allitebooks.com

http://www.allitebooks.org

open	MathNet.Numerics.Statistics

The	#r	stands	for	reference	and	points	the	FSI	to	the	filesystem	to	locate	the	assembly	that
we	want	to	use.	The	FSI	loads	with	very	few	libraries	installed,	so	you	typically	have	to
add	a	reference	the	ones	you	need.	Notice	the	".."	shorthand	as	the	prefix	for	the	file
path.	This	is	a	relative	locator	that	translates	into	the	solution	location.

The	open	command	tells	the	FSI	to	open	up	the	.dll	file	that	we	pointed	to	in	the	previous
line.	This	is	the	same	as	using	in	C#,	Imports	in	VB.NET,	and	library	in	R.

So,	this	is	a	much	easier	way	to	calculate	the	components	of	a	simple	linear	regression
than	by	hand.	But	wait,	there	is	even	more.

Regression	try	2
Math.NET	makes	it	even	easier	to	calculate	the	regression	without	going	into	the
components.	In	the	script,	enter	the	following	code:

open	MathNet.Numerics

let	fit	=	Fit.Line(x,y)

let	i	=	fst	fit

let	s	=	snd	fit

You	will	get	the	following	output:

val	fit	:	float	*	float	=	(-0.225,	1.075)

val	i	:	float	=	-0.225

val	s	:	float	=	1.075

Math.Numerics	already	has	the	regression	available	via	the	Fit()	function.	Fit()	takes	in
two	arrays	(in	our	case,	x	and	y)	and	returns	a	tuple.	The	first	item	of	the	tuple	is	the
intercept	and	the	second	is	the	slope.	The	only	new	code	that	I	introduced	here	are	the	fst
and	snd	operators.	These	are	shorthand	notations	for	tuples	that	have	a	length	of	two.
Calling	fst	on	a	tuple	returns	the	first	item	and	snd	returns	the	second.	If	you	call	fst	and
snd	on	a	tuple	that	has	more	than	two	items,	you	will	get	a	type	mismatch	compiler	error.

Accord.NET
With	Math.NET	doing	all	of	our	heavy	lifting,	we	have	a	better	way	to	get	the	results	of	a
simple	linear	regression.	However,	there	is	another	way	I	want	to	discuss,	Accord.NET.
Open	the	NuGet	Package	Manager	and	install	the	following	three	packages:

Accord
Accord.Statistics
FSharp.Data

Note	that	you	will	get	a	pop-up	window	when	you	install	FSharp.Data:

Click	on	Enable.

Regression
Back	in	the	script	file,	enter	the	following	lines	of	code:

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

open	Accord

open	Accord.Statistics.Models.Regression.Linear

let	input	=	[|1,1.;2,2.;3,2.25;4,4.75;5,5.|]

let	x	=	input	|>	Array.map	(fun	(x,y)	->	float	x)

let	y	=	input	|>	Array.map	(fun	(x,y)	->	y)	let	regression	=	

SimpleLinearRegression()

let	sse	=	regression.Regress(x,y)

let	intercept	=	regression.Intercept

let	slope	=	regression.Slope

let	mse	=	sse/float	x.Length	

let	rmse	=	sqrt	mse

let	r2	=	regression.CoefficientOfDetermination(x,y)

When	you	send	this	to	the	REPL,	you	will	see	the	following	code:

val	input	:	(int	*	float)	[]	=

		[|(1,	1.0);	(2,	2.0);	(3,	2.25);	(4,	4.75);	(5,	5.0)|]

val	x	:	float	[]	=	[|1.0;	2.0;	3.0;	4.0;	5.0|]

val	y	:	float	[]	=	[|1.0;	2.0;	2.25;	4.75;	5.0|]

val	regression	:	SimpleLinearRegression	=	y(x)	=	1.075x	+	

-0.224999999999998

val	sse	:	float	=	1.06875

val	intercept	:	float	=	-0.225

val	slope	:	float	=	1.075

val	mse	:	float	=	0.21375

val	rmse	:	float	=	0.4623310502

val	r2	:	float	=	0.9153465347

What	you	see	here	is	the	exact	same	calculation	as	before	with	the	formula	kindly	printed
out	(I	have	rounded	it	to	three	decimal	places):

y(x)	=	1.075x	+	-0.225

Regression	evaluation	using	RMSE
Accord.NET	goes	one	better	than	Math.NET	Fit()	as	it	returns	the	sum	of	the	squared
errors	and	the	coefficient	of	determination	(called	r	squared).	In	this	case,	the	sum	of
squared	errors	is	1.06875	and	the	r	squared	is	0.915	(rounded	to	three	decimal	places).
This	is	great	because	we	now	have	two	vital	pieces	of	information:

A	model	to	predict
Some	way	to	help	us	evaluate	how	good	the	model	is	at	predicting

In	machine	learning,	it	is	not	enough	to	simply	implement	a	model	and	get	some	answers.
We	also	have	to	be	able	to	speak	to	know	how	good	our	answer	really	is.	The	sum	of
squares	error,	often	called	SSE,	is	a	common	way	to	evaluate	a	simple	linear	regression.
To	start	thinking	about	SSE,	we	need	to	know	two	pieces	of	information	for	each	y	that	we
used—what	we	guessed	and	what	the	actual	value	is.	Using	our	existing	dataset:

You	can	see	that	the	model	was	created	based	on	all	of	the	y	data	points,	and	then
Accord.NET	went	back	and	checked	how	close	that	model	fits	each	data	point.	These
differences	are	squared,	then	the	squared	values	are	summed.	The	goal	is	to	get	the	sums
of	squares	as	low	as	possible.	Once	we	have	the	SSE,	we	can	change	our	model	to	try	to
get	the	sum	of	squares	lower.	For	example,	what	if	we	changed	the	slope	from	1.075x	to
1.000x,	which	is	what	we	were	eyeballing	earlier?

Since	we	have	all	five	data	points	that	are	available	for	the	initial	model	calculation,	you

are	not	going	to	improve	on	the	model	by	making	manual	changes	like	this.	The	original
regression	is	the	best	way	of	describing	the	relationship	among	these	five	data	points.	It	is
important	to	note	that	the	SSE	is	a	context-free	measure.	This	means	1.069	does	not	have
any	value	in	and	of	itself.	We	only	know	that	1.069	is	better	than	1.367.	Basically,	we
want	the	SSE	to	be	as	low	as	possible.

A	slightly	better	variation	of	the	SSE	is	the	Mean	Square	Error	(MSE).	The	MSE	is	the
SSE	divided	by	the	number	of	observations	of	the	regression:

In	this	case,	the	MSE	is	0.2138.	Like	the	MSE,	the	number	itself	is	not	particularly	useful.
However,	if	we	take	the	square	root	of	the	MSE,	often	called	the	Root	Of	Mean	Square
Error,	or	RMSE,	the	result	is	an	error	measure	in	the	same	units	as	our	original	numbers.

RMSE	=	Square	Root	of	MSE	=	sqrt(.2137)	=	.462

In	our	case,	the	RMSE	is	0.462	means	that	any	given	guess	is	likely	off	by	0.46.	When
you	talk	to	other	data	scientists	at	your	next	cocktail	party	(you	do	go	to	cocktail	parties
with	data	scientists,	don’t	you?),	you	will	typically	use	the	RMSE	when	evaluating	the
predictive	capabilities	of	a	simple	linear	model.

Using	the	RMSE,	we	now	have	a	measure	of	how	accurate	our	model	is	when	predicting
values.	We	also	have	a	second	measure,	called	the	r2,	that	calculates	how	much	correlation
our	model	has.	The	r2	takes	the	r	(in	this	case,	Pearson’s	correlation)	and	squares	it.	The	r2
is	always	between	zero	and	one,	with	zero	meaning	that	there	is	no	correlation	between	x
and	y	and	one	meaning	that	the	regression	line	perfectly	fits	the	data.	In	practical	terms,
we	want	a	low	as	possible	RMSE	with	a	high	as	possible	r2.

Regression	and	the	real	world
So	far,	we	really	haven’t	done	any	machine	learning,	in	that	we	can’t	make	our	model	any
better.	The	initial	regression	is	the	best	and	explains	91.5%	of	the	data.	However,	the
world	does	not	work	in	such	a	straightforward	manner.

The	challenge	is	that	we	will	start	applying	a	simple	linear	regression	on	a	dataset	that
represents	human	activity	(in	our	case,	AdventureWorks	sales),	and	human	activity	is
fraught	with	uncertainty.	Consider	a	more	realistic	data	frame	with	a	product,	its	list	price,
and	its	customer	reviews:

Notice	that	the	rating	seems	to	have	some	wide	variance.	Some	customers	gave	the	bike	a
5	while	others	gave	it	a	1	or	2.	You	would	think	for	the	same	product,	the	average	reviews
would	be	fairly	similar.	Perhaps	we	have	a	problem	with	manufacturing	quality	or	perhaps
the	price	is	such	that	low-end	customers	expect	more	from	what	they	perceive	to	be	a	very
expensive	bike	and	high-end	customers	are	thrilled	with	the	value	they	got	from	what	they
perceive	to	be	a	low-cost	bike.	Now	can	we	start	with	our	model?	Yes!	Let’s	take	the	data
from	AdventureWorks	and	see	how	it	stacks	up	with	an	initial	model	using	Accord.NET.

Regression	against	actual	data
As	this	is	the	first	time	we	are	using	AdventureWorks,	there	are	a	couple	of	housekeeping
items	we	need	to	take	care	of.	We	will	be	using	the	AdventureWorks	2014	full	database
found	at	https://msftdbprodsamples.codeplex.com/releases/view/125550.	If	you	want	to
bring	the	data	locally,	you	can	do	that	by	restoring	the	.bak	file	from	their	website.	If	you
go	this	route,	note	that	I	added	some	additional	data	to	the	Production.ProductReview
table	for	this	chapter.	You	will	need	to	run	the	populateProductReview.sql	script	found
in	this	chapter’s	GitHub	repository	after	your	database	is	installed	to	match	the	examples
found	in	the	book.	In	addition,	you	will	have	to	generate	your	own	connection	string.	If
you	just	want	to	use	the	data	on	our	server,	you	can	use	the	connection	string	that	is	in	the
upcoming	code	sample.

You	might	be	thinking	that	I	am	nuts	to	put	a	connection	string	out	in	the	public	domain
like	this.	First,	don’t	tell	anyone	you	have	it.	Second,	if	by	some	stroke	of	fortune	millions
of	people	buy	this	book	and	they	all	pound	on	this	server	to	do	the	examples,	I	will	be
happy	to	pay	Microsoft	more	$$	for	the	compute	time.

In	Visual	Studio,	add	a	new	script	to	your	project	and	call	it	AccordDotNet2.fsx.	Then,
add	the	following	references	and	open	the	script	file:

#r	"System.Transactions.dll"

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

#r	"../packages/FSharp.Data.2.2.5/lib/net40/FSharp.Data.dll"

open	Accord

open	Accord.Statistics

open	Accord.Statistics.Models.Regression.Linear

open	System

open	System.Data.SqlClient

Next,	add	a	record	type,	a	list	of	that	record	type,	a	connection	string,	and	a	query:

type	ProductReview	=	{ProductID:int;	TotalOrders:float;	AvgReviews:float}

let	reviews	=	ResizeArray<ProductReview>()

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	

id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;"

[<Literal>]

let	query	=	"Select	

																A.ProductID,	TotalOrders,	AvgReviews

																From

																(Select	

																ProductID,

																Sum(OrderQty)	as	TotalOrders

																from	[Sales].[SalesOrderDetail]	as	SOD

https://msftdbprodsamples.codeplex.com/releases/view/125550

																inner	join	[Sales].[SalesOrderHeader]	as	SOH

																on	SOD.SalesOrderID	=	SOH.SalesOrderID

																inner	join	[Sales].[Customer]	as	C

																on	SOH.CustomerID	=	C.CustomerID

																Where	C.StoreID	is	not	null

																Group	By	ProductID)	as	A

																Inner	Join	

																(Select

																ProductID,

																(Sum(Rating)	+	0.0)	/	(Count(ProductID)	+	0.0)	as	

AvgReviews

																from	[Production].[ProductReview]	as	PR

																Group	By	ProductID)	as	B

																on	A.ProductID	=	B.ProductID"

There	are	three	new	language	features	here.	The	first	is	a	record	type	called
ProductReview.	Record	types	are	immutable	named	data	structures	and	stand	in	contrast
to	tuples,	which	are	unnamed.	You	can	think	of	a	record	type	as	an	immutable
DTO/POCO	that	you	might	encounter	in	the	VB.NET/C#	world.	ProductReview	has	three
members:	ProductId,	TotalOrders,	and	AvgReviews.	You	can	think	of	these	members	as
properties	of	a	POCO	in	the	C#/VB.NET	world.

The	second	new	language	feature	is	the	attribute	added	to	the	connectionString	and
query	values.	Most	.NET	developers	are	familiar	with	attributes,	so	you	should	be
comfortable	using	them.	By	making	connectionString	and	query	literal,	I	can	pass	them
into	type	providers	in	the	script	file.

Finally,	we	will	use	a	ResizeArray	datatype	to	keep	our	seq	of	product	reviews.	Because
arrays	are	immutable	in	F#	and	we	don’t	know	how	many	reviews	we	will	be	getting	back
from	the	database,	we	need	to	use	a	special	array	that	does	allow	resizing.	This	is
equivalent	to	System.Collections.Generic.List<>	that	you	might	be	familiar	with	in
your	C#/VB.NET	code.

Next,	add	some	ADO.Net	code	to	extract	the	data	from	the	database	and	put	it	into	the	list:

let	connection	=	new	SqlConnection(connectionString)

let	command	=	new	SqlCommand(query,connection)

connection.Open()

let	reader	=	command.ExecuteReader()

while	reader.Read()	do

				reviews.Add({ProductID=reader.GetInt32(0);TotalOrders=(float)

(reader.GetInt32(1));AvgReviews=(float)(reader.GetDecimal(2))})

This	code	should	be	familiar	to	most	.Net	developers.	Sending	it	to	the	REPL,	we	can	see:

type	ProductReview	=

		{ProductID:	int;

			TotalOrders:	float;

			AvgReviews:	float;}

val	reviews	:	System.Collections.Generic.List<ProductReview>

val	connectionString	:	string	=

		"data	source=nc54a9m5kk.database.windows.net;initial	catalog=A"+[72	

chars]

val	query	:	string	=

		"Select	

																A.ProductID,	AvgOrders,	AvgReviews

		"+[814	chars]

val	connection	:	System.Data.SqlClient.SqlConnection	=

		System.Data.SqlClient.SqlConnection

val	command	:	System.Data.SqlClient.SqlCommand	=

		System.Data.SqlClient.SqlCommand

val	reader	:	System.Data.SqlClient.SqlDataReader

val	it	:	unit	=	()

With	the	data	coming	down,	let’s	see	if	our	models	reflect	what	our	manager	noticed	in	the
power	bi'	charting:

let	x	=	reviews	|>	Seq.map	(fun	pr	->	pr.AvgReviews)	|>	Seq.toArray

let	y	=	reviews	|>	Seq.map	(fun	pr	->	pr.TotalOrders)	|>	Seq.toArray

let	regression	=	SimpleLinearRegression()

let	sse	=	regression.Regress(x,y)

let	mse	=	sse/float	x.Length	

let	rmse	=	sqrt	mse

let	r2	=	regression.CoefficientOfDetermination(x,y)

You	will	see	the	following:

val	regression	:	SimpleLinearRegression	=

		y(x)	=	1277.89025884053x	+	-4092.62506538369

val	sse	:	float	=	39480886.74

val	mse	:	float	=	203509.7254

val	rmse	:	float	=	451.1205221

val	r2	:	float	=	0.2923784167

We	now	see	a	0.29	r2	and	a	451	rmse,	which	shows	a	weak	relationship	between
customer	reviews	and	order	quantity	and	that	there	is	a	450	order	margin	of	error.

Another	point	is	that	simple	linear	regressions	tend	to	have	a	problem	with	outliers.	We’ll
have	a	lot	to	say	about	this	topic	in	the	next	chapter.	Also,	by	doing	a	one-shot	analysis,
we	have	a	large	problem	with	over-fitting.	We’ll	be	talking	about	over-fitting	extensively
in	Chapter	8,	Feature	Selection	and	Optimization.	For	now,	I	just	wanted	to	acknowledge
that	although	we	have	a	pretty	good	model,	it	is	far	from	perfect.	However,	it	is	still	better
than	eyeballing	a	chart	and	it	does	have	some	statistical	validity.	We	now	have	a	model
and	we	can	predict	some	sales.	How	do	we	put	this	in	production?

AdventureWorks	app
We	will	start	by	thinking	about	how	we	want	to	prevent	users	from	abandoning	orders
based	on	low	product	reviews.	One	option	would	be	to	drop	the	review	entirely.	While	this
will	prevent	that	undesirable	effect	of	people	dropping	orders	because	of	a	low	rating,	it
also	prevents	the	desirable	effect	of	people	purchasing	items	based	on	a	high	rating.	We
could	also	hide	the	ratings	for	low-score	items,	but	that	would	be	seen	through	very	easily.
Another	possibility	is	to	lower	the	price	of	low-rated	products,	but	lowering	prices	is
anathema	to	most	companies.	Perhaps	a	better	way	is	to	have	our	site	have	knowledge	of
low-rated	products	and	give	people	an	incentive	to	order	them	by	prefilling	the	amount
that	most	people	order	for	that	given	review.	Consumer	behaviorists	have	demonstrated
that	if	you	prefill	a	quantity,	the	consumer	is	less	likely	to	abandon	their	purchase.

Setting	up	the	environment
Go	get	a	copy	of	AdventureWorks	UI	from	GitHub	at	this	uri.	Next,	open	the	copy	using
Visual	Studio	2015.

Now,	follow	these	steps,	which	will	guide	you	to	set	up	the	environment:

1.	 Let’s	go	into	our	Solution	Explorer	and	add	an	F#	project	(File	|	New	Project).

2.	 Delete	the	script	file	and	rename	Library1.fs	to	OrderPrediction.fs.

3.	 Open	NuGet	Package	Manager	and	install	Accord.NET	to	the	F#	project:

PM>	install-package	Accord

PM>	install-package	Accord.Statistics

4.	 Make	sure	that	the	default	project	is	AdventureWorks.MachineLearning:

5.	 Open	up	OrderPrediction.fs	and	rename	Class1	to	OrderPrediction.

namespace	AdventureWorks.MachineLearning

type	OrderPrediction()	=	

				member	this.X	=	"F#"

6.	 Then,	rename	X	to	PredictQuantity	with	a	single	integer	parameter	of	ProductId
and	a	return	value	of	a	float.	For	now,	make	it	0.0.	Make	the	type	public.

namespace	AdventureWorks.MachineLearning

type	public	OrderPrediction()	=	

				member	this.PredictQuantity(productId:int)	=	0.0

7.	 Compile	the	F#	project.

Updating	the	existing	web	project
Next,	go	to	the	C#	project	in	the	Solution	Explorer	and	add	a	reference	to	the	F#	project:

Go	into	PurchaseOrderDetailsController.cs	and	add	a	using	statement	to
AdventureWorks.MachineLearning:

Next,	create	an	endpoint	that	can	take	in	a	productId	and	predict	the	quantity	of	the	order:

								//	GET:	PurchaseOrderDetails/PredictQuantity/1

								public	Int32	PredictQuantity(int	id)

								{

												var	orderPrediction	=	new	OrderPrediction();

												return	(Int32)orderPrediction.PredictQuantity(id);

								}

Forgive	me	that	this	is	RPC	and	not	very	RESTful.	The	intention	of	this	exercise	is	about
machine	learning	and	not	web	development.	If	you	want	to	rewrite,	this	is	a	more	MVC
idiomatic	form,	feel	free.

With	the	controller	set	up,	hop	over	to	the	Create	view:

Add	the	following	JavaScript	at	the	bottom	of	the	page	in	the	@section	Scripts	block:

@section	Scripts	{

				@Scripts.Render("~/bundles/jqueryval")

<script	type="text/javascript">

								$(document).ready(function(){

												$("#ProductID").change(function(){

																var	productID	=	$(this).val();

																$.get("/PurchaseOrderDetails/PredictQuantity/"	+	productID,	

function(result){

																				$("#OrderQty").val(result);

																});

												});

								});

</script>

}

With	that	in	place,	you	should	be	able	to	run	the	project	and	after	selecting	a	new	product
from	the	dropdown,	the	order	quantity	should	populate	with	a	0.0.

Implementing	the	regression
With	the	app	wired	up,	let’s	hop	back	to	the	F#	project	and	implement	the	prediction	for
real.	First,	make	sure	that	you	have	a	reference	to	System.Data.

Next,	open	up	OrderPrediction.fs	and	enter	this	in	the	following	code:

Tip
Since	this	is	(almost)	verbatim	from	the	REPL	project,	you	can	go	ahead	with	copying	and
pasting	if	you	want	to	avoid	some	typing.

namespace	AdventureWorks.MachineLearning

open	Accord

open	Accord.Statistics

open	Accord.Statistics.Models.Regression.Linear

open	System

open	System.Data.SqlClient

open	System.Collections.Generic

type	internal	ProductReview	=	{ProductID:int;	TotalOrders:float;	

AvgReviews:	float}

type	public	OrderPrediction	()	=	

				let	reviews	=	List<ProductReview>()

				[<Literal>]

				let	connectionString	=	"data	

source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	

id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;"

				[<Literal>]

				let	query	=	"Select	

																A.ProductID,	TotalOrders,	AvgReviews

																From

																(Select	

																ProductID,

																Sum(OrderQty)	as	TotalOrders

																from	[Sales].[SalesOrderDetail]	as	SOD

																inner	join	[Sales].[SalesOrderHeader]	as	SOH

																on	SOD.SalesOrderID	=	SOH.SalesOrderID

																inner	join	[Sales].[Customer]	as	C

																on	SOH.CustomerID	=	C.CustomerID

																Where	C.StoreID	is	not	null

																Group	By	ProductID)	as	A

																Inner	Join	

																(Select

																ProductID,

																(Sum(Rating)	+	0.0)	/	(Count(ProductID)	+	0.0)	as	

AvgReviews

																from	[Production].[ProductReview]	as	PR

																Group	By	ProductID)	as	B

																on	A.ProductID	=	B.ProductID"

				member	this.PredictQuantity(productId:int)	=	

								use	connection	=	new	SqlConnection(connectionString)

								use	command	=	new	SqlCommand(query,connection)

								connection.Open()

								use	reader	=	command.ExecuteReader()

								while	reader.Read()	do

												reviews.Add({ProductID=reader.GetInt32(0);TotalOrders=(float)

(reader.GetInt32(1));AvgReviews=(float)(reader.GetDecimal(2))})

								let	x	=	reviews	|>	Seq.map	(fun	pr	->	pr.AvgReviews)	|>	Seq.toArray

								let	y	=	reviews	|>	Seq.map	(fun	pr	->	pr.TotalOrders)	|>	

Seq.toArray

								let	regression	=	SimpleLinearRegression()

								let	sse	=	regression.Regress(x,y)

								let	mse	=	sse/float	x.Length	

								let	rmse	=	sqrt	mse

								let	r2	=	regression.CoefficientOfDetermination(x,y)

								let	review	=	reviews	|>	Seq.find	(fun	r	->	r.ProductID	=	productId)

								regression.Compute(review.AvgReviews)

The	only	change	from	the	REPL	code	is	that	connection,	command,	and	reader	are	now
assigned	with	the	use	keyword	and	not	let.	This	is	equivalent	to	the	using	statement	in
C#	so	that	all	resources	are	cleaned	up	in	the	most	efficient	manner.

With	that	in	place,	you	can	run	the	UI	and	see	the	actual	value	being	predicted	from	the
regression	that	uses	all	of	our	data:

Congratulations!	You	have	successfully	wired	up	a	website	with	a	simple	linear
regression.	This	prediction	is	dynamic	because	the	regression	is	calculated	on	every	page
refresh.	This	means	as	more	data	goes	into	our	database,	the	websites	reflect	changes	in
the	product	reviews	at	real	time.	The	software	architect	in	you	should	be	pulling	the	alarm
because	this	will	have	a	severe	impact	on	performance;	we	pull	the	aggregate	data	and
then	do	the	regression	calculation	on	each	call.	We	will	discuss	better	strategies	later	in	the
book	that	allow	our	site	to	have	real-time	or	near-time	performance	to	go	with	a	machine
learning	algorithm.

Summary
This	chapter	dipped	our	toes	into	the	water	of	creating	a	machine	learning	model	and
implementing	those	models	in	a	line	of	business	application.	There	are	many	things	that
we	glossed	over	that	will	get	all	of	your	data	science	friends	mad,	such	as	my	dumbed-
down	formula	for	a	regression,	overfitting,	and	using	a	regression	without	dealing	with
outliers.	Also,	the	web	developers	in	the	room	have	plenty	to	be	mad	about,	including	my
rudimentary	website	design	and	injecting	a	data-intensive	operation	in	a	page	load.	Fear
not.	We	will	address	these	issues	(and	many	more)	in	the	coming	chapters.

Chapter	3.	More	AdventureWorks
Regression
In	the	last	chapter,	you	had	your	software	developer	hat	on	and	you	stuck	your	toe	into
machine	learning	waters.	You	created	a	simple	linear	regression	and	implemented	it	in
your	website.	The	regression	attempted	to	explain	how	customer	reviews	affected	bike
sales	quantity	to	retail	shops.	In	this	chapter,	we	are	going	to	pick	up	where	we	left	off	and
use	a	multiple	linear	regression	to	explain	bike	sales	with	more	precision.	Then	we	will
switch	over	to	a	logistic	regression	to	see	if	we	can	predict	whether	an	individual	customer
will	or	will	not	purchase	a	bike	based	on	the	same	factors.	We	will	then	consider	how	to
implement	the	regression	in	an	experiment	that	will	help	with	the	model’s	accuracy	and
repeatability.	Finally,	we	will	wrap	up	by	considering	some	of	the	strengths	and
weaknesses	of	regressions.

Introduction	to	multiple	linear	regression
A	multiple	linear	regression	has	the	same	concept	as	a	simple	linear	regression,	in	that	we
are	trying	to	find	the	best	fit.	The	major	difference	is	that	we	have	more	than	one
independent	variable	that	is	trying	to	explain	the	dependent	variable.	If	you	remember
from	the	last	chapter,	we	made	a	regression	like	this:	Y	=	x0	+	E,	where	Y	was	bike	sales
and	x0	was	average	ratings.

If	we	want	to	see	whether	there	is	a	relationship	between	average	rating	and	price	of	the
bike	on	bike	sales,	we	can	use	the	formula	Y	=	x0	+	x1	+	E,	where	Y	is	bike	sales,	x0	is
the	average	ratings,	and	x1	is	the	price	of	the	bike.

Intro	example
Before	diving	into	actual	data,	let’s	dissect	a	multiple	linear	regression.	Open	up	Visual
Studio	and	create	a	new	F#	library	project.	Add	a	script	file	called	AccordDotNet.fsx.
Next,	add	a	NuGet	reference	to	Accord.Statistics.	If	you	are	unfamiliar	with	how	to	do
any	of	those	tasks,	review	Chapter	1,	Welcome	to	Machine	Learning	Using	the	.NET
Framework,	and	Chapter	2,	AdventureWorks	Regression,	where	each	step	is	detailed	using
screenshots.

At	the	top	of	your	script,	add	in	the	following	references:

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

open	Accord

open	Accord.Statistics.Models.Regression.Linear

Next,	let’s	create	a	dummy	dataset.	In	this	case,	let’s	see	if	there	is	a	relationship	between
a	student’s	age,	their	IQ,	and	their	GPA.	Since	there	are	two	independent	variables	(x0	and
x1),	we	will	create	an	input	value	called,	well,	xs	and	see	it	with	five	observations.	Since
there	are	two	values	for	each	observation,	xs	is	a	jagged	array.

let	xs	=	[|	[|15.0;130.0|];[|18.0;127.0|];[|15.0;128.0|];[|17.0;120.0|];

[|16.0;115.0|]	|]

Sending	it	to	the	REPL,	we	get:

val	xs	:	float	[]	[]	=

		[|[|15.0;	130.0|];	[|18.0;	127.0|];	[|15.0;	128.0|];	[|17.0;	120.0|];	

[|16.0;	115.0|]|]

In	this	dataset,	the	first	observation	is	a	15	year	old	with	a	130	IQ,	the	second	is	an	18	year
old	with	a	127	IQ,	and	so	on.	With	the	inputs	taken	care	of,	let’s	create	the	y,	which	is	the
student’s	GPA:

let	y	=	[|3.6;3.5;3.8;3.4;2.6|]

Sending	to	the	REPL,	we	get:

val	y	:	float	[]	=	[|3.6;	3.5;	3.8;	3.4;	2.6|]

The	first	student	has	a	3.6	GPA,	the	second	has	a	3.5,	and	so	on.	Notice	that	since	our
output	is	a	single	number,	we	only	need	a	simple	array	to	hold	the	values.	With	our	inputs
taken	care	of,	let’s	create	a	multiple	linear	regression	with	our	xs	and	y:

let	regression	=	MultipleLinearRegression(2,	true)

let	error	=	regression.Regress(xs,	y)

let	a	=	regression.Coefficients.[0]

let	b	=	regression.Coefficients.[1]

let	c	=	regression.Coefficients.[2]

Sending	this	to	the	REPL,	we	get:

val	regression	:	MultipleLinearRegression	=

		y(x0,	x1)	=	0.0221298495645295*x0	+	0.0663103721298495*x1	+	

-5.20098970704672

val	error	:	float	=	0.1734125099

val	a	:	float	=	0.02212984956

val	b	:	float	=	0.06631037213

val	c	:	float	=	-5.200989707

There	are	a	couple	of	things	to	notice.	First,	Accord	printed	the	formula	of	our	multiple
linear	regression	for	us	as	y(x0,	x1)	=	0.0221298495645295*x0	+
0.0663103721298495*x1	+	-5.20098970704672.	The	key	thing	to	notice	is	that	you
cannot	interpret	the	results	of	multiple	regressions	the	same	as	the	simple	regression,	for
example,	summing	x1	and	x2	together	to	be	the	slope	of	a	line	would	be	incorrect.	Rather,
each	x	is	the	slope	of	the	line	if	the	other	x	is	held	constant.	So,	in	this	case,	if	x1	is	held
constant,	each	change	of	one	unit	of	x0	changes	y	.022.	Back	to	our	example,	we	can	say
that	if	we	increase	a	person’s	age	by	one	year,	a	person’s	GPA	increases	by	.022,	holding
the	IQ	constant.	Similarly,	we	can	say	that	for	every	one	point	drop	in	a	person’s	IQ,	the
person’s	GPA	drops	0.066,	holding	the	person’s	age	constant.	We	can’t	use	a	scatterplot	to
show	all	of	the	results	of	a	multiple	regression	the	way	we	can	with	a	simple	regression
because	you	would	need	an	axis	for	each	x	value	and	that	quickly	will	get	unwieldy,	if	not
impossible.

Next,	let’s	see	how	good	our	regression	is	using	our	old	friends	r2	and	rmse:

let	sse	=	regression.Regress(xs,	y)

let	mse	=	sse/float	xs.Length	

let	rmse	=	sqrt(mse)

let	r2	=	regression.CoefficientOfDetermination(xs,y)

Sending	this	to	the	REPL,	we	get:

val	sse	:	float	=	0.1734125099

val	mse	:	float	=	0.03468250198

val	rmse	:	float	=	0.186232387

val	r2	:	float	=	0.7955041157

Notice	that	sse	is	the	same	as	the	error	from	above.	Accord.NET	returns	sse	as	an	error,
so	I	will	just	use	that	in	the	future.	Also,	looking	at	our	result,	we	can	see	that	we	have	an
r2	of	.79,	which	is	pretty	good	and	that	our	rmse	is	.18,	which	is	also	low	enough	that	the
regression	is	a	viable	one.

Keep	adding	x	variables?
If	two	x	variables	are	good,	are	three	better?	Let’s	take	a	look.	Let’s	add	another	variable,
in	this	case,	the	student’s	prior	year	GPA	as	a	third	x	value.	Go	back	to	the	REPL	and	add
this:

let	xs'	=	[|	[|15.0;130.0;3.6|];[|18.0;127.0;3.5|];

												[|15.0;128.0;3.7|];[|17.0;120.0;3.5|];

												[|17.0;120.0;2.5|]	|]

let	regression'	=	MultipleLinearRegression(3,true)

let	error'	=	regression'.Regress(xs',y)

let	a'	=	regression'.Coefficients.[0]

let	b'	=	regression'.Coefficients.[1]

let	c'	=	regression'.Coefficients.[2]

let	d'	=	regression'.Coefficients.[3]

let	mse'	=	error'/float	xs'.Length	

let	rmse'	=	sqrt(mse')

let	r2'	=	regression'.CoefficientOfDetermination(xs',y)

Sending	this	to	the	REPL,	we	get:

val	xs'	:	float	[]	[]	=

		[|[|15.0;	130.0;	3.6|];	[|18.0;	127.0;	3.5|];	[|15.0;	128.0;	3.7|];

				[|17.0;	120.0;	3.5|];	[|17.0;	120.0;	2.5|]|]

val	regression'	:	MultipleLinearRegression	=

		y(x0,	x1,	x2)	=	-0.0202088664499619*x0	+	0.0116951379763468*x1	+	

0.834082578324918*x2	+	-0.552984300435694

val	error'	:	float	=	0.01071166747

val	a'	:	float	=	-0.02020886645

val	b'	:	float	=	0.01169513798

val	c'	:	float	=	0.8340825783

val	d'	:	float	=	-0.5529843004

val	mse'	:	float	=	0.002142333495

val	rmse'	:	float	=	0.0462853486

val	r2'	:	float	=	0.9873683167

So	the	r2	is	now	up	to	99%,	which	means	we	can	explain	99%	of	the	change	in	a	person’s
GPA	using	their	age,	IQ,	and	prior	year	GPA.	Also,	note	that	the	rmse	is	.04,	which	is	nice
and	low.	We	have	a	pretty	good	model.

AdventureWorks	data
With	the	demo	out	of	the	way,	let’s	implement	a	multiple	linear	regression	back	at	the	bike
company.	Since	we	are	using	more	realistic	data,	I	don’t	think	we	will	get	a	99%	r2,	but
we	can	hope.	In	your	Solution	Explorer,	add	another	F#	script	called
AccordDotNet2.fsx.	Then,	add	a	reference	to	System.Transactions	so	that	we	can	use
ADO.NET	to	access	our	data.	Go	back	to	AccordDotNet2.fsx	and	add	the	following
code:

#r	"System.Transactions.dll"

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

open	Accord

open	Accord.Statistics

open	Accord.Statistics.Models.Regression.Linear

open	System

open	System.Data.SqlClient

type	ProductInfo	=	{ProductID:int;	AvgOrders:float;	AvgReviews:	float;	

ListPrice:	float}

let	productInfos	=		ResizeArray<ProductInfo>()

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	

id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;"

[<Literal>]

let	query	=	"Select	

												A.ProductID,	AvgOrders,	AvgReviews,	ListPrice

												From

												(Select	

												ProductID,

												(Sum(OrderQty)	+	0.0)/(Count(Distinct	SOH.CustomerID)	+	0.0)	as	

AvgOrders

												from	[Sales].[SalesOrderDetail]	as	SOD

												inner	join	[Sales].[SalesOrderHeader]	as	SOH

												on	SOD.SalesOrderID	=	SOH.SalesOrderID

												inner	join	[Sales].[Customer]	as	C

												on	SOH.CustomerID	=	C.CustomerID

												Where	C.StoreID	is	not	null

												Group	By	ProductID)	as	A

												Inner	Join	

												(Select

												ProductID,

												(Sum(Rating)	+	0.0)	/	(Count(ProductID)	+	0.0)	as	AvgReviews

												from	[Production].[ProductReview]	as	PR

												Group	By	ProductID)	as	B

												on	A.ProductID	=	B.ProductID

												Inner	Join

												(Select

												ProductID,

												ListPrice

												from	[Production].[Product]

)	as	C

												On	A.ProductID	=	C.ProductID"

												

let	connection	=	new	SqlConnection(connectionString)

let	command	=	new	SqlCommand(query,connection)

connection.Open()

let	reader	=	command.ExecuteReader()

while	reader.Read()	do

				productInfos.Add({ProductID=reader.GetInt32(0);

																								AvgOrders=(float)(reader.GetDecimal(1));

																								AvgReviews=(float)(reader.GetDecimal(2));

																								ListPrice=(float)(reader.GetDecimal(3));})

Notice	that	this	is	very	similar	to	the	code	that	you	wrote	in	the	prior	chapter.	In	fact,	you
might	want	to	copy	and	paste	that	code	and	make	the	following	changes:

1.	 Add	a	ListPrice	field	to	the	ProductInfo	record	type.
2.	 Update	the	query	to	add	a	clause	to	pull	down	the	list	price	of	the	bike.
3.	 Update	productInfos.	Add	a	method	to	include	the	third	value	we	are	bringing

down.

The	code	itself	shapes	a	data	frame	of	a	number	of	orders,	average	reviews,	and	average
price	by	productId	in	SQL	and	brings	it	local.	Sending	this	code	to	the	REPL,	we	get	the
following:

type	ProductInfo	=

		{ProductID:	int;

			AvgOrders:	float;

			AvgReviews:	float;

			ListPrice:	float;}

val	productInfos	:	Collections.Generic.List<ProductInfo>

val	connectionString	:	string	=

		"data	source=nc54a9m5kk.database.windows.net;initial	catalog=A"+[72	

chars]

val	query	:	string	=

		"Select	

												A.ProductID,	AvgOrders,	AvgReviews,	ListP"+[937	chars]

val	connection	:	SqlConnection	=	System.Data.SqlClient.SqlConnection

val	command	:	SqlCommand	=	System.Data.SqlClient.SqlCommand

val	reader	:	SqlDataReader

val	it	:	unit	=	()

With	the	data	down,	let’s	create	a	multiple	linear	regression.	Add	the	following	code	to	the
script	file:

let	xs	=	

				productInfos	

				|>	Seq.map	(fun	pi	->	[|pi.AvgReviews;	pi.ListPrice|])	

				|>	Seq.toArray

let	y	=	

				productInfos	

				|>	Seq.map	(fun	pi	->	pi.AvgOrders)	

				|>	Seq.toArray

let	regression	=	MultipleLinearRegression(2,	true)

let	error	=	regression.Regress(xs,	y)

let	a	=	regression.Coefficients.[0]

let	b	=	regression.Coefficients.[1]

let	c	=	regression.Coefficients.[2]

let	mse	=	error/float	xs.Length	

let	rmse	=	sqrt	mse

let	r2	=	regression.CoefficientOfDetermination(xs,	y)

Sending	this	code	to	the	REPL,	we	get:

val	regression	:	MultipleLinearRegression	=

		y(x0,	x1)	=	9.68314848116308*x0	+	-0.000913619922709572*x1	+	

-26.1836956342657

val	error	:	float	=	682.6439378

val	a	:	float	=	9.683148481

val	b	:	float	=	-0.0009136199227

val	c	:	float	=	-26.18369563

val	mse	:	float	=	7.037566369

val	rmse	:	float	=	2.652841188

val	r2	:	float	=	0.3532529168

By	adding	the	price	of	the	bike,	our	r2	moves	from	.29	to	.35.	Also,	our	rmse	moves	from
2.77	to	2.65.	This	change	means	we	have	a	more	accurate	model	with	a	smaller	amount
of	error.	Because	this	is	better,	let’s	add	this	to	our	production	application.

Adding	multiple	regression	to	our	production
application
Open	up	the	AdventureWorks	solution	that	you	started	working	on	in	the	last	chapter.	In
the	Solution	Explorer,	navigate	to	the	AdventureWorks.MachineLearning	project	and
open	OrderPrediction.fs.

Locate	the	ProductReview	type	and	replace	it	with	this:

type	ProductInfo	=	{ProductID:int;	AvgOrders:float;	AvgReviews:	float;	

ListPrice:	float}

Next,	go	into	the	OrderPrediction	type	and	find	the	line	where	the	reviews	value	is
assigned	and	replace	it	with	this:

let	productInfos	=	ResizeArray<ProductInfo>()

Next,	locate	the	query	value	and	replace	its	contents	with	this:

[<Literal>]

let	query	=	"Select	

												A.ProductID,	AvgOrders,	AvgReviews,	ListPrice

												From

												(Select	

												ProductID,

												(Sum(OrderQty)	+	0.0)/(Count(Distinct	SOH.CustomerID)	+	0.0)	as	

AvgOrders,

												Sum(OrderQty)	as	TotalOrders

												from	[Sales].[SalesOrderDetail]	as	SOD

												inner	join	[Sales].[SalesOrderHeader]	as	SOH

												on	SOD.SalesOrderID	=	SOH.SalesOrderID

												inner	join	[Sales].[Customer]	as	C

												on	SOH.CustomerID	=	C.CustomerID

												Where	C.StoreID	is	not	null

												Group	By	ProductID)	as	A

												Inner	Join	

												(Select

												ProductID,

												(Sum(Rating)	+	0.0)	/	(Count(ProductID)	+	0.0)	as	AvgReviews

												from	[Production].[ProductReview]	as	PR

												Group	By	ProductID)	as	B

												on	A.ProductID	=	B.ProductID

												Inner	Join

												(Select

												ProductID,

												ListPrice

												from	[Production].[Product]

)	as	C

												On	A.ProductID	=	C.ProductID"

Next,	scroll	down	to	the	PredictQuantity	function	and	locate	the	reader.Read()	line	of
codes.	Replace	it	with	this:

								while	reader.Read()	do

												productInfos.Add({ProductID=reader.GetInt32(0);

																																AvgOrders=(float)(reader.GetDecimal(1));

																																AvgReviews=(float)(reader.GetDecimal(2));

																																ListPrice=(float)(reader.GetDecimal(3));})

Finally,	remove	all	of	the	remaining	code	in	the	PredictQuantity	function	starting	with:

let	x	=	reviews	|>	Seq.map(fun	pr	->	pr.AvgReviews)	|>	Seq.toArray

Replace	it	with	this:

								let	xs	=	

												productInfos	

												|>	Seq.map	(fun	pi	->	[|pi.AvgReviews;	pi.ListPrice|])	

												|>	Seq.toArray

								let	y	=	

												productInfos	

												|>	Seq.map	(fun	pi	->	pi.AvgOrders)	

												|>	Seq.toArray

								let	regression	=	MultipleLinearRegression(2,	true)

								let	error	=	regression.Regress(xs,	y)

								let	a	=	regression.Coefficients.[0]

								let	b	=	regression.Coefficients.[1]

								let	c	=	regression.Coefficients.[2]

								let	mse	=	error/float	xs.Length	

								let	rmse	=	sqrt	mse

								let	r2	=	regression.CoefficientOfDetermination(xs,	y)

								let	productInfo	=	

												productInfos	

												|>	Seq.find	(fun	r	->	r.ProductID	=	productId)

								let	xs'	=	[|[|productInfo.AvgReviews;	productInfo.ListPrice|]|]

								regression.Compute(xs')	|>	Seq.head

Notice	we	have	to	create	a	jagged	array	even	though	we	are	only	entering	in	one
productInfo	for	the	final	regression.Compute().	Also,	notice	that	the	Compute	function
returns	an	array,	but	since	we	are	only	entering	in	one	value,	the	resulting	array	will
always	have	a	length	of	one.	We	used	the	Seq.head	to	pull	the	first	value	of	the	array.	The
head	function	comes	in	quite	handy	at	certain	times	and	we	will	be	seeing	it	again	in	this
book.

Build	the	project	and	open	up	the	UI;	you	can	see	that	our	prediction	has	been	adjusted:

Considerations	when	using	multiple	x	variables
At	this	point,	you	might	be	thinking,	“This	is	great!	I	can	keep	adding	more	and	more
variables	to	my	multiple	linear	regression	and	I	will	get	a	better	and	better	r2	and	a	lower
rmse.”	As	Lee	Corso	might	say,	“Not	so	fast!”	Without	getting	too	far	into	the	details,
every	time	you	add	a	new	feature	of	a	linear	multiple	regression,	you	will	always	get	a
better	result,	or,	at	least,	not	a	worse	result.	This	means,	if	you	add	in	the	average
temperature	from	different	cities	on	June	29,	1999,	the	model	might	improve.	Also,	as	you
increase	the	number	of	features,	the	chance	of	introducing	unwanted	side	effects	into	your
model	increases;	we	will	talk	about	that	in	a	little	bit.	In	fact,	I	have	seen	some	models
where	the	number	of	features	outnumber	the	number	of	observations.	As	a	rule,	this	is	a
not	a	good	idea.

To	combat	feature	growth,	you	can	take	two	approaches.	First,	you	can	combine	common
sense	with	Occam’s	Razor.	Occam’s	Razor	is	the	notion	that	given	a	choice	of	possible
solutions,	the	simplest	one	should	always	be	chosen.	This	combination	of	sense	and
simplicity	is	more	common	and	powerful	than	most	people	realize.	The	gray	matter
between	the	ears	is	a	pretty	powerful	computer	in	its	own	right	and	can	do	a	good	job	of
seeing	patterns	and	making	relationships.

Indeed,	the	business	analyst	who	has	spent	time	in	the	domain	might	know	of	relationships
that	are	not	apparent	to	an	external	data	scientist	looking	at	a	laundry	list	of	features	or	a
basic	machine	learning	model	that	is	thrown	at	the	data.	Granted,	humans	do	have	biases
and	sometimes	miss	relationships,	but	on	the	whole,	they	are	still	good	at	matching
patterns.	Applying	Occam’s	Razor	to	feature	selection	means	that	you	are	trying	to	find
the	fewest	number	of	features	that	has	the	greatest	impact	on	the	model’s	predictability.

Let’s	head	over	to	our	friendly	business	analyst	at	AdventureWorks	and	ask	him	what	he
thinks	influences	the	quantity	of	bicycles	purchased	by	our	resellers.	He	says,	“Well,	I
think	that	price	and	customer	reviews	are	certainly	very	important,	but	I	think	that	the
weight	of	the	bike	influences	our	resellers.	The	heavier	the	bike,	the	less	likely	they	are	to
order	some.”

Adding	a	third	x	variable	to	our	model
With	the	business	analyst’s	idea	in	mind,	let’s	add	a	third	independent	variable	to	our
model,	bike	weight.	Go	back	to	the	Solution	Explorer	and	add	another	script	file.	Add	the
following	code	to	the	script:

#r	"System.Transactions.dll"

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

open	Accord

open	Accord.Statistics

open	Accord.Statistics.Models.Regression.Linear

open	System

open	System.Data.SqlClient

type	ProductInfo	=	{ProductID:int;	AvgOrders:float;	AvgReviews:	float;	

ListPrice:	float;	Weight:	float}

let	productInfos	=	ResizeArray<ProductInfo>()

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	

id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;"

[<Literal>]

let	query	=	"Select	

												A.ProductID,	AvgOrders,	AvgReviews,	ListPrice,	Weight

												From

												(Select	

												ProductID,

												(Sum(OrderQty)	+	0.0)/(Count(Distinct	SOH.CustomerID)	+	0.0)	as	

AvgOrders

												from	[Sales].[SalesOrderDetail]	as	SOD

												inner	join	[Sales].[SalesOrderHeader]	as	SOH

												on	SOD.SalesOrderID	=	SOH.SalesOrderID

												inner	join	[Sales].[Customer]	as	C

												on	SOH.CustomerID	=	C.CustomerID

												Where	C.StoreID	is	not	null

												Group	By	ProductID)	as	A

												Inner	Join	

												(Select

												ProductID,

												(Sum(Rating)	+	0.0)	/	(Count(ProductID)	+	0.0)	as	AvgReviews

												from	[Production].[ProductReview]	as	PR

												Group	By	ProductID)	as	B

												on	A.ProductID	=	B.ProductID

												Inner	Join

												(Select

												ProductID,

												ListPrice,

												Weight

												from	[Production].[Product]

)	as	C

												On	A.ProductID	=	C.ProductID"

												

let	connection	=	new	SqlConnection(connectionString)

let	command	=	new	SqlCommand(query,	connection)

connection.Open()

let	reader	=	command.ExecuteReader()

while	reader.Read()	do

				productInfos.Add({ProductID=reader.GetInt32(0);

																								AvgOrders=(float)(reader.GetDecimal(1));

																								AvgReviews=(float)(reader.GetDecimal(2));

																								ListPrice=(float)(reader.GetDecimal(3));

																								Weight=(float)(reader.GetDecimal(4));})

let	xs	=	

				productInfos	

				|>	Seq.map	(fun	pi	->	[|pi.AvgReviews;	pi.ListPrice;	pi.Weight|])	

				|>	Seq.toArray

let	y	=	

				productInfos	

				|>	Seq.map	(fun	pi	->	pi.AvgOrders)	

				|>	Seq.toArray

let	regression	=	MultipleLinearRegression(3,	true)

let	error	=	regression.Regress(xs,	y)

let	a	=	regression.Coefficients.[0]

let	b	=	regression.Coefficients.[1]

let	c	=	regression.Coefficients.[2]

let	d	=	regression.Coefficients.[3]

let	mse	=	error/float	xs.Length	

let	rmse	=	sqrt	mse

let	r2	=	regression.CoefficientOfDetermination(xs,	y)

Sending	this	to	the	REPL,	notice	that	our	r2	goes	to	.36	and	our	rmse	drops	to	2.63:

val	regression	:	MultipleLinearRegression	=

		y(x0,	x1,	x2)	=	8.94836007927991*x0	+	-0.00103754084861455*x1	+	

-0.0848953592695415*x2	+	-21.2973971475571

val	error	:	float	=	671.2299241

val	a	:	float	=	8.948360079

val	b	:	float	=	-0.001037540849

val	c	:	float	=	-0.08489535927

val	d	:	float	=	-21.29739715

val	mse	:	float	=	6.919896125

val	rmse	:	float	=	2.630569544

val	r2	:	float	=	0.3640667242

Our	analyst’s	intuition	about	price	and	customer	reviews	was	spot	on,	the	weight…not	so
much.	Using	Occam’s	Razor,	we	can	use	price	and	customer	reviews	for	our	model	and
ignore	the	weight	variable.

Logistic	regression
Now	that	we	are	becoming	more	comfortable	with	regressions,	let’s	introduce	another	type
of	regression—the	logistic	regression.	Up	to	this	point,	the	regressions	have	had	a	numeric
output	value—like	predicting	a	person’s	GPA	or	predicting	the	number	of	bikes	sold.
Logistic	regressions	use	the	same	technique	of	fitting	a	group	of	independent	features	to	a
line,	but	they	do	not	attempt	to	predict	a	number.	Rather,	a	logistic	regression	attempts	to
predict	a	binary	value	(yes/no,	true/false,	tastes	great/less	filling)	and	then	assigns	a
probability	to	that	value.

Intro	to	logistic	regression
Since	you	have	already	had	an	introduction	to	regressions,	we	can	skip	straight	to	the	code
and	see	one	in	action.	Open	up	the	regression	project	and	add	a	script	called
AccordDotNet7.fsx.	Copy	in	the	following	lines	of	code:

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

open	Accord

open	Accord.Statistics.Analysis

open	Accord.Statistics.Models.Regression

open	Accord.Statistics.Models.Regression.Fitting

let	xs	=	[|	[|0.5|];[|0.75|];

												[|1.0|];[|1.25|];[|1.5|];[|1.75|];[|1.75|];

												[|2.0|];[|2.25|];[|2.5|];[|2.75|];

												[|3.0|];[|3.25|];[|3.5|];

												[|4.0|];[|4.25|];[|4.5|];[|4.75|];

												[|5.0|];[|5.5|];|]

let	y	=	[|0.0;0.0;0.0;0.0;0.0;0.0;1.0;0.0;1.0;0.0;

										1.0;0.0;1.0;0.0;1.0;1.0;1.0;1.0;1.0;1.0|]

Sending	this	to	the	REPL	gives	us:

val	xs	:	float	[]	[]	=

		[|[|0.5|];	[|0.75|];	[|1.0|];	[|1.25|];	[|1.5|];	[|1.75|];	[|1.75|];	

[|2.0|];

				[|2.25|];	[|2.5|];	[|2.75|];	[|3.0|];	[|3.25|];	[|3.5|];	[|4.0|];	

[|4.25|];

				[|4.5|];	[|4.75|];	[|5.0|];	[|5.5|]|]

val	y	:	float	[]	=

		[|0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	1.0;	0.0;	1.0;	0.0;	1.0;	0.0;	1.0;	0.0;	

1.0;

				1.0;	1.0;	1.0;	1.0;	1.0|]

I	pulled	this	dataset	from	Wikipedia	and	it	represents	20	students,	how	many	hours	of
studying	they	did	the	day	before	an	exam,	and	whether	they	passed	the	exam	represented
as	0.0	for	failure	and	1.0	for	pass.	Looking	at	the	xs,	student	0	studied	0.5	hours	and
looking	at	the	y,	we	can	see	that	s/he	did	not	pass	the	exam.

Next,	let’s	create	our	regression	analysis	and	look	at	some	results:

let	analysis	=	new	LogisticRegressionAnalysis(xs,	y)

analysis.Compute()	|>	ignore

let	pValue	=	analysis.ChiSquare.PValue

let	coefficientOdds	=	analysis.Regression.GetOddsRatio(0)

let	hoursOfStudyingOdds	=	analysis.Regression.GetOddsRatio(1)

let	coefficients	=	analysis.CoefficientValues

Sending	this	to	the	REPL	gives	this:

val	analysis	:	LogisticRegressionAnalysis

val	pValue	:	float	=	0.0006364826185

val	coefficientOdds	:	float	=	0.01694617045

val	hoursOfStudyingOdds	:	float	=	4.502556825

val	coefficients	:	float	[]	=	[|-4.077713403;	1.504645419|]

There	are	plenty	of	new	things	going	on	here,	so	let’s	take	a	look	at	them	in	turn.	After	we
create	an	analysis,	we	compute	the	regression.	The	next	item	is	pValue.	pValue	is	a
common	measure	of	accuracy	for	logistic	regressions.	As	we	saw	earlier,	linear
regressions	typically	use	rmse	and	r2	as	a	way	to	measure	model	accuracy.	Logistic
regressions	can	use	those	measures,	but	usually	don’t.	Unlike	the	linear	regression	where
the	model	spits	out	an	exact	number	using	something	called	least-squares,	the	logistic
regression	uses	something	called	maximum-likelihood	where	the	regression	iterates	and
tries	different	combinations	of	the	input	values	to	maximize	the	likelihood	of	the	result.
Therefore,	the	logistic	regression	needs	to	be	run	many	times	over	the	dataset	and	we	can
configure	how	precise	we	want	the	model	to	be.	Graphically,	it	looks	like	this:

Coming	back	to	pValue,	it	is	a	measure	of	how	well	our	model	compares	to	the	null
hypothesis,	or	basically,	how	well	our	model	compares	to	a	completely	random	model.	If
the	pValue	is	less	than	0.05,	our	model	is	valid.	If	the	number	is	above	0.05,	the	model	is
no	better	than	a	random	one.	You	might	be	asking	yourself,	“What	is	so	special	about
0.05?”	The	exact	answer	resides	in	some	low-level	mathematical	functions	that	are	beyond
the	scope	of	this	book.	The	rough	answer	is,	well,	that	is	what	everyone	uses	so	that	is
what	Accord	baked	in.	If	you	don’t	find	that	explanation	satisfactory,	take	a	look	at	this
post	on	Wikipedia	(https://en.wikipedia.org/wiki/P-value).	In	any	event,	the	0.0006	is	very
good.

Moving	on	to	the	next	values,	we	see	GetOddsRatio	results:

val	coefficientOdds	:	float	=	0.01694617045

val	hoursOfStudyingOdds	:	float	=	4.502556825

https://en.wikipedia.org/wiki/P-value

What	this	means	is	that	if	we	didn’t	study	at	all,	we	would	have	1.6%	chance	of	passing
the	exam.	If	we	want	to	pass	the	exam,	we	need	to	study	4.5	hours.	Next,	take	a	look	at	the
coefficients:

val	coefficients	:	float	[]	=	[|-4.077713403;	1.504645419|]

Accord.NET	passes	back	an	array	for	the	coefficients,	with	the	first	value	being	the
intercept.	With	these,	you	can	create	a	formula	to	predict	if	a	student	can	pass	the	exam
given	any	input	of	hours	of	studying.	For	example,	here	are	the	predictions	from	our	base
dataset:

If	we	want	to	start	playing	with	beer	and	hours	of	studying	combinations	(for	example,
“Will	I	pass	if	I	study	for	4.5	hours?”),	we	can	do	that	using	the	Compute	function.	At	the
bottom	of	the	script	file,	enter	in:

let	result	=	analysis.Regression.Compute([|3.75|])

Send	it	to	the	REPL	for	this:

val	result	:	float	=	0.8270277278

So	you	have	an	82%	chance	of	passing	if	you	study	for	3.75	hours.

Adding	another	x	variable
Next,	let’s	add	in	another	variable	to	our	model—the	number	of	beers	you	drank	the	night
before	the	exam.	Go	back	to	your	script	file	and	add	this	to	the	bottom:

let	xs'	=	[|	[|0.5;2.5|];

			[|0.75;1.5|];

												[|1.0;4.0|];

		[|1.25;1.0|];

		[|1.5;0.0|];

		[|1.75;3.0|];

		[|1.75;0.0|];

												[|2.0;3.0|];

												[|2.25;1.0|];

												[|2.5;4.5|];

												[|2.75;1.5|];

												[|3.0;1.0|];

												[|3.25;2.5|];

												[|3.5;0.0|];

												[|4.0;2.0|];

												[|4.25;1.5|];

												[|4.5;4.5|];

												[|4.75;0.0|];

												[|5.0;1.0|];

												[|5.5;0.0|];|]

let	analysis'	=	new	LogisticRegressionAnalysis(xs',	y)

analysis'.Compute()	|>	ignore

let	pValue'	=	analysis'.ChiSquare.PValue

let	coefficientOdds'	=	analysis'.Regression.GetOddsRatio(0)

let	hoursOfStudyingOdds'	=	analysis'.Regression.GetOddsRatio(1)

let	numberOfBeersDrankOdds'	=	analysis'.Regression.GetOddsRatio(2)

let	coefficients'	=	analysis'.CoefficientValues

Sending	this	to	the	REPL,	we	see:

val	analysis'	:	LogisticRegressionAnalysis

val	pValue'	:	float	=	0.002336631577

val	coefficientOdds'	:	float	=	0.02748131566

val	hoursOfStudyingOdds'	:	float	=	4.595591714

val	numberOfBeersDrankOdds'	:	float	=	0.7409200941

val	coefficients'	:	float	[]	=	[|-3.594248936;	1.525097521;	-0.2998624947|]

Evaluating	the	results,	we	still	need	to	study	4.59	hours	to	pass,	holding	the	number	of
beers	constant.	Also,	we	will	need	to	drink	less	than	.74	of	a	beer	to	pass.	Notice	that	the
odds	ratio	is	positive,	even	though	consuming	more	beer	actually	decreases	our	chance	to
pass.	We	know	that	there	is	an	inverse	relationship	between	the	number	of	beers	and	the
odds	of	passing	because	the	coefficient	for	beer	(-.029986)	is	negative.

Now,	we	can	start	trading	off	studying	hours	and	drinking	beer	on	the	chance	of	us	passing
the	exam.	Go	to	the	script	file	and	add	in	studying	4.5	hours	and	drinking	one	beer:

let	result'	=	analysis'.Regression.Compute([|4.50;	1.00|])

Sending	it	to	the	REPL:

val	result'	:	float	=	0.9511458187

So	you	have	a	95%	chance	of	passing	if	you	drink	a	beer	and	study	4.5	hours.	To	further
cement	your	odds,	try	filling	out	“B”	on	question	4	to	push	you	over	the	top—that	always
worked	for	me	in	middle	school.

Applying	a	logistic	regression	to	AdventureWorks
data
So	going	back	to	a	more	realistic	dataset,	let’s	take	a	look	at	AdventureWorks.	Go	ahead
and	add	a	new	script	file	to	the	project.	Call	it	AccordDotNet8.fsx.	Copy	and	paste	the
following	code	into	the	script	file:

#r	"System.Transactions.dll"

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

open	Accord

open	Accord.Statistics.Filters

open	Accord.Statistics.Analysis

open	Accord.Statistics.Models.Regression

open	Accord.Statistics.Models.Regression.Fitting

open	System

open	System.Data.SqlClient

type	ProductInfo	=	{ProductID:int;	Color:string;	AvgReviews:	float;	Markup:	

float}

let	productInfos	=	ResizeArray<ProductInfo>()

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	

id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;"

[<Literal>]

let	query	=	"Select

				A.ProductID,

				A.Color,

				B.AvgReviews,

				A.MarkUp

				From

				(Select	P.ProductID,

						Color,

						ListPrice	-	StandardCost	as	Markup

						from	[Sales].[SalesOrderDetail]	as	SOD

								inner	join	[Sales].[SalesOrderHeader]	as	SOH

								on	SOD.SalesOrderID	=	SOH.SalesOrderID

								inner	join	[Sales].[Customer]	as	C

								on	SOH.CustomerID	=	C.CustomerID

						inner	join	[Production].[Product]	as	P

						on	SOD.ProductID	=	P.ProductID

						inner	join	[Production].[ProductSubcategory]	as	PS

						on	P.ProductSubcategoryID	=	PS.ProductSubcategoryID

						Where	C.StoreID	is	null

						and	PS.ProductCategoryID	=	1)	as	A

				Inner	Join

				(Select	PR.ProductID,

						(Sum(Rating)	+	0.0)	/	(Count(ProductID)	+	0.0)	as	AvgReviews

								from	[Production].[ProductReview]	as	PR

								Group	By	ProductID)	as	B

				on	A.ProductID	=	B.ProductID"

												

let	connection	=	new	SqlConnection(connectionString)

let	command	=	new	SqlCommand(query,	connection)

connection.Open()

let	reader	=	command.ExecuteReader()

while	reader.Read()	do

				productInfos.Add({ProductID=reader.GetInt32(0);

																								Color=(string)(reader.GetString(1));

																								AvgReviews=(float)(reader.GetDecimal(2));

																								Markup=(float)(reader.GetDecimal(3));})

Sending	this	to	the	REPL,	you	should	see:

type	ProductInfo	=

		{ProductID:	int;

			Color:	string;

			AvgReviews:	float;

			Markup:	float;}

val	productInfos	:	List<ProductInfo>

val	connectionString	:	string	=

		"data	source=nc54a9m5kk.database.windows.net;initial	catalog=A"+[72	

chars]

val	query	:	string	=

		"Select

				A.ProductID,

				A.Color,

				B.AvgReviews,

				A."+[803	chars]

val	connection	:	SqlConnection	=	System.Data.SqlClient.SqlConnection

val	command	:	SqlCommand	=	System.Data.SqlClient.SqlCommand

val	reader	:	SqlDataReader

val	it	:	unit	=	()

There’s	no	new	code	here,	so	we	can	safely	press	on.	However,	I	would	like	to	note	that
this	query	might	take	a	bit	longer	than	any	other	query	we	have	run	against	the	database	so
far.	This	has	an	implication	for	how	we	architect	our	code	when	we	integrate	it	to	our
application.	We	will	discuss	this	in	length	in	Chapter	5,	Time	Out	–	Obtaining	Data,	but
for	now,	we	just	want	to	note	it.

Going	back	to	the	script	file,	go	ahead	and	add	this	code	to	the	bottom:

type	ProductInfo'	=	{ProductID:int;	BlackInd:float;	BlueInd:float;	

RedInd:float;	SilverInd:float;	OtherInd:	float;	AvgReviews:	float;	

HighMargin:float}

let	getProductInfo'(productInfo:ProductInfo)	=

								{ProductInfo'.ProductID=productInfo.ProductID;

								BlackInd	=	(match	productInfo.Color	with	|	"Black"	->	1.0	|	_	->	

0.0);

								BlueInd	=	(match	productInfo.Color	with	|	"Blue"	->	1.0	|	_	->	

0.0);

								RedInd	=	(match	productInfo.Color	with	|	"Red"	->	1.0	|	_	->	0.0);

								SilverInd	=	(match	productInfo.Color	with	|	"Silver"	->	1.0	|	_	->	

0.0);

								OtherInd	=	(match	productInfo.Color	with	|	"Silver"	|	"Blue"	|	

"Red"		->	0.0	|	_	->	1.0);

								AvgReviews	=	productInfo.AvgReviews;

								HighMargin	=	(match	productInfo.Markup	>	800.0	with	|	true	->	1.0	|	

false	->	0.0);}

let	productInfos'	=	

				productInfos	

				|>	Seq.map	(fun	pi	->	getProductInfo'(pi))

let	xs	=	

				productInfos'	

				|>	Seq.map	(fun	pi	->	[|pi.BlackInd;	pi.BlueInd;	pi.RedInd;	

pi.SilverInd;	pi.OtherInd;	pi.AvgReviews|])	

				|>	Seq.toArray

let	y	=	

				productInfos'	

				|>	Seq.map	(fun	pi	->	pi.HighMargin)	

				|>	Seq.toArray

let	analysis	=	new	LogisticRegressionAnalysis(xs,	y)

analysis.Compute()	|>	ignore

let	pValue	=	analysis.ChiSquare.PValue

let	coefficientOdds	=	analysis.Regression.GetOddsRatio(0)

let	blackIndOdds	=	analysis.Regression.GetOddsRatio(1)

let	blueIndOdds	=	analysis.Regression.GetOddsRatio(2)

let	redIndOdds	=	analysis.Regression.GetOddsRatio(3)

let	silverIndOdds	=	analysis.Regression.GetOddsRatio(4)

let	otherIndOdds	=	analysis.Regression.GetOddsRatio(5)

let	ratingsOdds	=	analysis.Regression.GetOddsRatio(6)

let	coefficients	=	analysis.CoefficientValues

Sending	this	to	the	REPL,	you	should	get:

val	analysis	:	LogisticRegressionAnalysis

val	pValue	:	float	=	0.0

val	coefficientOdds	:	float	=	4.316250806e-07

val	blackIndOdds	:	float	=	6.708924364

val	blueIndOdds	:	float	=	0.03366007966

val	redIndOdds	:	float	=	0.0897074697

val	silverIndOdds	:	float	=	0.04618907808

val	otherIndOdds	:	float	=	0.003094736179

val	ratingsOdds	:	float	=	127.5863311

val	coefficients	:	float	[]	=

		[|-14.65570849;	1.903438635;	-3.391442724;	-2.411201239;	-3.075011914;

				-5.778052618;	4.848793242|]

There	are	some	new	pieces	of	code	to	look	at	and	two	new	concepts.	First,	notice	that	a
new	record	type	was	created	for	ProductInfo	and	the	colors	are	broken	out	from	a	single
column	(ProductType.Color)	to	a	series	of	0.0/1.0	columns	(ProductType'.BlackInd,
ProductType'BlueInd,	and	so	on).	The	reason	I	did	not	make	the	columns	bool	is	that
Accord.NET	expects	inputs	to	be	a	float	and	0.0/1.0	serves	the	purpose	just	as	well.	These
columns	are	called	“dummy”	variables	and	they	are	used	by	logistic	regressions	to
accommodate	categorical	data.	At	this	point,	you	are	probably	asking,	“What	the	heck	is
categorical	data?”	Fair	question.

Categorical	data
You	might	not	have	noticed,	but	all	of	the	x	variables	that	we	have	used	until	this	last
query	have	been	numeric—number	of	bikes	sold,	average	reviews,	number	of	beers	drank,
and	the	like.	These	values	are	considered	continuous	because	they	can	be	of	infinite	value.
I	can	have	one,	two,	or	three	beers.	Similarly,	the	average	reviews	of	a	bike	can	be	3.45,
3.46,	and	so	on.	Because	these	values	are	treated	as	numbers,	they	can	be	added,	averaged,
and	manipulated	in	all	of	the	ways	that	you’ve	learned	since	first	grade.	Note	that
continuous	values	can	be	range-bound:	the	average	review	can	only	be	between	0.0	and
5.0	because	that	is	what	we	limited	users	to	enter.

Categorical	values	are	different.	Typically,	they	are	integers	that	stand	in	for	a	non-
numeric	concept.	For	example,	0	might	be	male	and	1	might	be	female.	Similarly,	the
status	of	the	sales	order	might	be	1	for	open,	2	for	pending,	3	for	closed,	and	4	for
returned.	Although	these	values	are	stored	in	the	database	as	integers,	they	cannot	be
added,	averaged,	or	otherwise	manipulated.	Categorical	values	may	also	be	stored	as
strings,	like	we	have	seen	for	a	bike	color:	“black”,	“blue”,	and	the	like.	In	this	case,	the
range	of	strings	is	limited	to	a	set	from	which	numbers	can	be	chosen.

Going	back	to	our	analysis,	we	have	the	bike	color,	which	is	a	categorical	value	and	is
being	stored	as	a	string.	We	can’t	send	this	string	to	Accord.NET	as	a	single	x	variable
because	the	LogisticRegressionAnalysis	only	takes	in	floats	in	the	array.	Note	that	in
other	statistical	packages	like	R	or	SAS,	you	can	pass	in	a	string	because	there	is	behind-
the-scenes	code	that	translates	those	string	values	to	numeric.	So,	back	to	color.	We	want
to	use	it,	but	it	has	to	become	a	float.	We	could	create	a	new	field	called	ColorId	and	hook
up	a	translation	function	that	turns	each	of	the	colors	to	a	numeric	representation	like	this:

let	getColorId	(color:string)	=

				match	color.ToLower()	with

				|	"black"	->	1.0

				|	"blue"	->	2.0

				|	"red"	->	3.0

				|	"silver"	->	4.0

				|	_	->	5.0

And	we	will	do	that	in	other	places	in	the	book.	However,	using	those	numeric	values
makes	no	sense	in	our	logistic	regression	because	there	is	no	real	meaning	in	comparing
values:	an	oddsRatio	of	2.3	means	what?	In	fact,	no	type	of	regression	can	make	sense	of
categorical	data	coded	in	this	way.	Instead	of	building	nonsensical	values,	we	create
dummy	variables	that	can	be	interpreted	with	meaning	in	a	regression.	For	each	of	the
possible	values	of	our	categorical	variable,	we	create	a	bool	column	that	indicates	whether
that	particular	record	has	that	value.	Technically,	we	can	create	one	less	than	the	total
possible	values,	but	I	find	it	easier	to	reason	and	display	a	column	for	each	value.	We	can
then	pass	these	dummy	variables	into	a	regression	and	get	a	meaningful	response.

Also	notice	that	I	did	the	pattern	matching	for	the	colors	assignment	on	one	line	like	this:

BlackInd	=	(match	productInfo.Color	with	|	"Black"	->	1.0	|	_	->	0.0);

There	is	some	heated	controversy	in	the	F#	community	about	whether	this	is	considered
bad	form:	some	people	want	to	see	each	possible	outcome	of	the	pattern	matching
statement	to	be	on	one	line,	and	others	do	not.	I	find	it	much	more	readable	to	keep
everything	on	one	line	in	cases	like	this,	but	I	acknowledge	it	is	a	bit	harder	for	someone
new	to	F#	from	a	curly-braced	language	like	C#.	If,	however,	you	use	ternary	operators
you	should	be	comfortable	with	the	syntax.

Also,	notice	that	we	changed	our	continuous	variable	of	Markup	to	High	Margin	using	this
line	of	code:

HighMargin	=	(match	productInfo.Markup	>	800.0	with	|	true	->	1.0	|	false	-

>	0.0);}

Attachment	point
Since	logistic	regressions	need	to	have	a	0.0	or	1.0	as	a	y	variable,	we	need	a	way	of
splitting	the	data	into	something	that	has	both	business	meaning	and	can	be	evaluated	into
0.0	or	1.0.	How	did	I	pick	$800?	I	eyeballed	it	after	doing	this	in	the	database:

Select	

ProductID,

P.Name,

ProductNumber,

Color,

StandardCost,

ListPrice,

ListPrice	-	StandardCost	as	Markup

from	[Production].[Product]	as	P

Inner	Join	[Production].[ProductSubcategory]	as	PS

on	P.ProductSubcategoryID	=	PS.ProductSubcategoryID

Where	PS.ProductCategoryID	=	1

Order	by	ListPrice	-	StandardCost

That	$800	number	is	often	called	the	“attachment	point”	and	is	often	the	most	discussed
part	of	any	logistic	regression	model.	In	the	real	world,	that	number	is	often	set	by	the
President	of	a	small	company	on	the	back	of	a	napkin,	or,	in	a	large	company,	a	multi-
disciplinary	team	that	takes	six	weeks.	The	key	thing	to	remember	is	that	you	want	that
number	in	your	config	file	(if	you	are	running	your	regression	at	real-time)	or	a	separate
variable	at	the	top	of	your	script	(if	doing	it	ad	hoc).	Note	that	to	make	our	script	even
smarter,	it	is	possible	to	inject	in	another	model	that	determines	the	attachment	point
dynamically,	so	it	will	not	require	a	human	to	update	it,	but	that	will	be	an	exercise	for
another	day.

Analyzing	results	of	the	logistic	regression
Let’s	look	at	the	odds	ratios	and	coefficients,	and	we’ll	see	two	things	stand	out.	First,
notice	that	black	odds	(6.7)	is	much	higher	than	all	of	the	other	numbers	and	that	it	has	a
positive	coefficient	while	all	of	the	other	colors	have	a	negative	one.	Since	all	of	the	bikes
are	available	in	all	the	colors,	in	this	context,	we	can	reasonably	conclude	that	black	is	the
new	black.	People	are	buying	our	higher	margin	bikes	and	preferring	the	color	black	when
they	do	so.

The	other	striking	number	is	the	average	review’s	OddsRatio,	which	is	127.	How	can	a
number	that	usually	falls	between	3	and	5	have	an	odds	ratio	of	127?	Should	we	interpret
it	to	mean	that	increasing	the	average	review	1,270	times	will	move	a	customer	from	a
low-margin	to	a	high-margin	bike?	Well,	no.	When	we	get	an	abnormally	high	OddsRatio,
it	means	that	our	predictors	are	highly	correlated	with	each	other	(you	might	hear	data
scientists	talk	about	sparse	matrices,	and	the	like	here).	As	we	learned	from	Occam’s
Razor,	we	want	to	remove	variables	whenever	we	can.	Since	ratings	and	colors	are
correlated	(which	is	in	itself	an	interesting	discovery),	let’s	drop	the	average	rating	and
only	focus	on	color.

Since	black	seems	to	be	associated	with	higher	margin	products,	what	should	we	do?
Should	we	suggest	to	the	management	that	we	should	be	like	Harry	Ford	and	offer	our
bikes,	“In	any	color	they	like,	as	long	as	it	is	black?”	No,	we	want	to	offer	other	colors,
because	some	people	don’t	want	black	and	we	want	their	business.	However,	what	we	can
do	is	use	black	to	drive	higher-margin	sales.	Here	is	a	small	snippet	from	the	order	form
for	individuals	on	our	website:

Notice	that	the	colors	are	ordered	in	a	random	manner	and	are	placed	after	the	customer
selects	the	model.	What	if	we	moved	the	colors	to	the	first	selection	to	get	the	user	in	the
“black	frame	of	mind”	and	then	offer	models?	Also,	perhaps	we	should	move	the	color
selection	so	that	black	is	on	top?

While	this	is	pretty	good,	this	is	a	book	about	machine	learning	and	there	is	little	machine
learning	here	to	this	point	(unless	you	count	the	logistic	regression’s	methodology	in
determining	the	answer,	which	I	don’t).	How	can	we	update	our	site	automatically	as
customers’	preferences	change?	What	if	all	the	cool	kids	started	riding	silver	bikes?	How
can	we	quickly	take	advantage	of	this?	How	can	the	machine	learn	faster	than	the	research
analysts	running	the	model	periodically?

We	could	do	what	we	did	in	the	last	chapter	and	run	the	model	on	each	page	creation,
create	an	evaluator	of	the	model,	and	then	populate	the	select	list.	However,	if	you
remember	about	how	long	it	took	to	run,	it	is	a	suboptimal	solution	because	by	the	time	it

takes	to	run	the	model,	most	of	our	customers	would	abandon	the	site	(though	if	they	were
using	a	mobile	device,	we	can	always	blame	the	network	connection;	developers	have
never	done	this	before).	As	an	alternative,	what	if	we	created	a	process	when	the	website
started	that	constantly	runs	the	model	and	caches	the	result?	This	way,	each	time	the	page
is	created,	the	data	behind	the	select	list	is	as	fresh	as	it	can	be.	Let’s	drop	into	Visual
Studio	and	make	it	happen.

Adding	logistic	regression	to	the	application
Open	up	the	AdventureWorks	solution	and	go	to	the	AdventureWorks.MachineLearning
project:

Add	a	new	F#	source	file	and	name	it	ColorPrediction.fs.	You	will	notice	that	it	is
placed	at	the	bottom	of	the	project.	The	order	of	the	files	is	important	in	an	F#	project
because	of	the	type	inference	system.	What	you	can	do	is	right-click	on	the	file	and	move
it	up	above	the	.config	file:

The	Move	Up	option

Go	into	the	ColorPrediction.fs	file	and	replace	all	the	existing	code	with	the	following
code:

namespace	AdventureWorks.MachineLearning

open	Accord

open	Accord.Statistics.Filters

open	Accord.Statistics.Analysis

open	Accord.Statistics.Models.Regression

open	Accord.Statistics.Models.Regression.Fitting

open	System

open	System.Data.SqlClient

Next,	let’s	add	in	the	types	that	we	created	in	the	regression	project	and	the	one	type	we
need	for	this	compiled	assembly.	While	we’re	at	it,	add	in	the	list	of	ProductInfos	and	the
connection	string	and	query	values	from	the	regression	project:

type	ProductInfo	=	{ProductID:int;	Color:string;	AvgReviews:	float;	Markup:	

float}

type	ProductInfo'	=	{ProductID:int;	BlackInd:float;	BlueInd:float;	

RedInd:float;	SilverInd:float;	OtherInd:	float;	AvgReviews:	float;	

HighMargin:float}

type	public	ColorPrediction	()	=	

				let	productInfos	=	ResizeArray<ProductInfo>()

				[<Literal>]

				let	connectionString	=	"data	

source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	

id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;"

				[<Literal>]

				let	query	=	"Select

								A.ProductID,

								A.Color,

								B.AvgReviews,

								A.MarkUp

								From

								(Select	P.ProductID,

										Color,

										ListPrice	-	StandardCost	as	Markup

										from	[Sales].[SalesOrderDetail]	as	SOD

												inner	join	[Sales].[SalesOrderHeader]	as	SOH

												on	SOD.SalesOrderID	=	SOH.SalesOrderID

												inner	join	[Sales].[Customer]	as	C

												on	SOH.CustomerID	=	C.CustomerID

												inner	join	[Production].[Product]	as	P

												on	SOD.ProductID	=	P.ProductID

												inner	join	[Production].[ProductSubcategory]	as	PS

												on	P.ProductSubcategoryID	=	PS.ProductSubcategoryID

												Where	C.StoreID	is	null

												and	PS.ProductCategoryID	=	1)	as	A

								Inner	Join

								(Select	PR.ProductID,

												(Sum(Rating)	+	0.0)	/	(Count(ProductID)	+	0.0)	as	AvgReviews

												from	[Production].[ProductReview]	as	PR

												Group	By	ProductID)	as	B

								on	A.ProductID	=	B.ProductID"

Next,	let’s	add	a	method	that	will	return	an	ordered	list	of	colors	with	the	most	important
one	on	top:

				member	this.GetColors(attachmentPoint)	=	

								let	connection	=	new	SqlConnection(connectionString)

								let	command	=	new	SqlCommand(query,	connection)

								connection.Open()

								let	reader	=	command.ExecuteReader()

								while	reader.Read()	do

												productInfos.Add({ProductID=reader.GetInt32(0);

														Color=(string)(reader.GetString(1));

														AvgReviews=(float)(reader.GetDecimal(2));

														Markup=(float)(reader.GetDecimal(3));})

								let	getProductInfo'(productInfo:ProductInfo)	=

																{ProductInfo'.ProductID=productInfo.ProductID;

																BlackInd	=	(match	productInfo.Color	with	|	"Black"	->	1.0	|	

_	->	0.0);

																BlueInd	=	(match	productInfo.Color	with	|	"Blue"	->	1.0	|	_	

->	0.0);

																RedInd	=	(match	productInfo.Color	with	|	"Red"	->	1.0	|	_	-

>	0.0);

																SilverInd	=	(match	productInfo.Color	with	|	"Silver"	->	1.0	

|	_	->	0.0);

																OtherInd	=	(match	productInfo.Color	with	|	"Silver"	|	

"Blue"	|	"Red"	|	"Silver"	->	0.0	|	_	->	1.0);

																AvgReviews	=	productInfo.AvgReviews;

																HighMargin	=	(match	productInfo.Markup	>	attachmentPoint	

with	|	true	->	1.0	|	false	->	0.0);}

								let	productInfos'	=	

												productInfos	

												|>	Seq.map	(fun	pi	->	getProductInfo'(pi))

								let	xs	=	

												productInfos'	

												|>	Seq.map	(fun	pi	->	[|pi.BlackInd;	pi.BlueInd;	pi.RedInd;	

pi.SilverInd;	pi.OtherInd;	pi.AvgReviews|])

												|>	Seq.toArray

								let	

												y	=	productInfos'	

												|>	Seq.map	(fun	pi	->	pi.HighMargin)	

												|>	Seq.toArray

								

								let	colors	=	[|"Black";"Blue";"Red";"Silver";"Other"|]

								let	analysis	=	new	LogisticRegressionAnalysis(xs,	y)

								match	analysis.Compute()	with	

												|	true	->

																let	coefficientValues	=	analysis.CoefficientValues	|>	

Seq.skip	1

																let	colors'	=	Seq.zip	colors	coefficientValues

																colors'	|>	Seq.mapi	(fun	i	(c,cv)	->	c,	(abs(cv)/cv),	

analysis.Regression.GetOddsRatio(i))

																								|>	Seq.map	(fun	(c,	s,	odr)	->	c,	s	*	odr)

																								|>	Seq.sortBy	(fun	(c,	odr)	->	odr)

																								|>	Seq.map	(fun	(c,	odr)	->	c)

																								|>	Seq.toArray

												|	false	->	colors

Most	of	the	code	is	the	same	as	the	work	we	did	in	the	regression	project,	but	there	is
some	new	code	that	needs	some	explanation.	There	is	now	a	string	array	called	colors
that	lists	all	of	the	colors	that	we	sent	to	our	regression.	After	the	analysis.Compute()	is
called,	we	remove	the	first	value	from	the	analysis.CoefficientValues	via	this	line:

analysis.CoefficientValues	|>	Seq.skip	1

Skip	is	a	handy	function	that	allows	us	to,	well,	skip	the	first	rows	of	Seq.	We	are	calling	it
here	because	the	analysis.CoefficientValues	returns	the	coefficient	in	the	first	value	of
the	array.

Next,	we	call	the	following:

let	colors'	=	Seq.zip	colors	coefficientValues

We	have	seen	Seq.zip	before.	We	are	gluing	together	the	colors	array	with	the	coefficient
values	array	so	each	row	is	a	tuple	of	the	color	name	and	its	coefficient.	With	that	array	set
up,	we	then	implement	the	final	transformation	pipeline:

																colors'	|>	Seq.mapi	(fun	i	(c,cv)	->	c,	(abs(cv)/cv),	

analysis.Regression.GetOddsRatio(i+1))

																								|>	Seq.map	(fun	(c,	s,	odr)	->	c,	s	*	odr)

																	|>	Seq.sortByDescending	(fun	(c,odr)->	odr)

																								|>	Seq.map	(fun	(c,	odr)	->	c)

																								|>	Seq.toArray

The	first	step	is	as	follows:

|>	Seq.mapi(fun	i	(c,cv)	->	c,	(abs(cv)/cv),	

analysis.Regression.GetOddsRatio(i+1))

This	applies	a	mapi	function	to	colors.	Seq.mapi	is	a	high	order	function	that	is	just	like
the	Seq.map	function	with	one	extra	parameter,	the	index	of	each	row.	So	the	index	i	is
passed	in	and	then	the	tuple	(c,cv),	which	is	the	color	and	the	coefficientValue.	We
return	a	tuple	with	the	color,	a	-1	or	+1	depending	on	the	sign	of	the	coefficientValue,
and	the	odds	ratio	->,	which	we	look	up	based	on	the	index.

The	next	step	is	as	follows:

|>	Seq.map(fun	(c,	s,	odr)	->	c,	s	*	odr)

This	applies	another	function	that	returns	the	color	and	a	signed	odds	ratio.	If	you
remember	from	before,	Regression.GetOddsRatio	is	always	positive.	We	are	applying

the	sign	so	we	can	order	the	ratios	from	most	probable	to	the	least	probable.

The	next	step	is	as	follows:

|>	Seq.sortByDescending(fun	(c,odr)->	odr)

This	applies	a	function	that	sorts	the	array	based	on	the	odds	ratio	so	that	the	tuple	with
the	highest	oddsRatio	is	on	top.

The	next	two	steps	turn	the	tuple	into	a	simple	string.	The	color	name	then	transforms	our
Seq	to	an	array:

|>	Seq.map(fun	(c,	odr)	->	c)

|>	Seq.toArray

With	the	code	in	place,	let’s	hop	over	to	our	MVC	project	and	implement	it.	Find	the
Global.asax	file	and	open	it	up.	Replace	the	code	with	the	following:

using	System;

using	System.Collections.Generic;

using	System.Configuration;

using	System.Linq;

using	System.Threading;

using	System.Web;

using	System.Web.Mvc;

using	System.Web.Optimization;

using	System.Web.Routing;

using	AdventureWorks.MachineLearning;

namespace	AdventureWorks

{

				public	class	MvcApplication	:	System.Web.HttpApplication

				{

								static	Object	_lock	=	new	Object();

								Timer	_timer	=	null;

								static	String[]	_bikeColors	=	null;

								protected	void	Application_Start()

								{

												AreaRegistration.RegisterAllAreas();

												FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);

												RouteConfig.RegisterRoutes(RouteTable.Routes);

												BundleConfig.RegisterBundles(BundleTable.Bundles);

												_bikeColors	=	new	string[5]	{	"Red",	"White",	"Blue",	"Black",	

"Silver"	};

												_timer	=	new	

Timer(UpdateBikeColors,null,0,TimeSpan.FromMinutes(1).Milliseconds);

								}

								private	void	UpdateBikeColors(object	state)

								{

												var	attachmentPoint	=	

Double.Parse(ConfigurationManager.AppSettings["attachmentPoint"]);

												var	colorPrediction	=	new	ColorPrediction();

												BikeColors	=	colorPrediction.GetColors(attachmentPoint);

								}

								public	static	String[]	BikeColors

								{

												get

												{

																lock(_lock)

																{

																				return	_bikeColors;

																}

												}

												set

												{

																lock(_lock)

																{

																				_bikeColors	=	value;

																}

												}

								}

				}

}

Some	of	this	code	might	be	new,	so	let’s	take	a	closer	look.	First,	we	created	two	class-
level	variables:	_lock	and	_timer.	We	use	_lock	to	prevent	our	color	array	to	be	read
while	our	regression	could	be	updating	it.	You	can	see	_lock	in	action	in	the	public
property	that	exposes	the	color	array:

								public	static	String[]	BikeColors

								{

												get

												{

																lock(_lock)

																{

																				return	_bikeColors;

																}

												}

												set

												{

																lock(_lock)

																{

																				_bikeColors	=	value;

																}

												}

								}

Next,	we	create	a	method	that	will	be	called	when	our	timer	fires:

								private	void	UpdateBikeColors(object	state)

								{

												var	attachmentPoint	=	

Double.Parse(ConfigurationManager.AppSettings["attachmentPoint"]);

												var	colorPrediction	=	new	ColorPrediction();

												BikeColors	=	colorPrediction.GetColors(attachmentPoint);

								}

Notice	that	we	are	creating	an	instance	of	our	ColorPrediction	class,	which	then	invokes
the	GetColors	method.	We	assign	the	BikeColors	property	with	the	return	of	our	recently-

calculated	solution.

Finally,	we	instantiate	the	_timer	variable	in	the	Application.Start	method,	passing	in
the	method	that	gets	invoked	when	the	timer	counts	down:

_timer	=	new	

Timer(UpdateBikeColors,null,0,TimeSpan.FromMinutes(1).Milliseconds);

This	means,	every	minute	we	call	the	color	prediction	to	run	the	logistic	regression	based
on	the	most	recent	data.	Meanwhile,	clients	will	be	calling	our	website	continuously	and
they	will	be	getting	an	array	of	colors	based	on	the	most	recent	calculation.

Next,	go	to	the	.config	file	and	add	the	attachment	point	to	the	appSettings	section:

				<add	key="attachmentPoint"	value="800"	/>

Finally,	open	the	individualOrder	controller	and	replace	the	hardcoded	values	of	colors
with	our	generated	one	in	the	Create	method:

var	colors	=	MvcApplication.BikeColors;

Run	the	site	and	you	will	see	that	our	color	list	has	changed:

We	now	have	a	pretty	good	model	that	seems	to	be	working	in	production,	without	a
major	performance	hit.	However,	our	solution	so	far	has	a	fatal	flaw.	We	are	guilty	of
overfitting.	As	mentioned	in	Chapter	2,	AdventureWorks	Regression,	overfitting,	is	the
notion	that	the	model	we	create	only	works	against	the	data	we	have	on	hand	and	fails
miserably	when	we	introduce	it	to	new	data.	Every	machine	learning	technique	has	a
problem	with	overfitting,	and	there	are	some	common	ways	to	mitigate	its	impact.	We	will
look	at	that	in	the	coming	chapters.

Summary
We	covered	a	lot	of	ground	in	this	chapter.	We	looked	at	multiple	linear	regressions,
logistic	regressions,	and	then	considered	a	couple	of	techniques	to	normalize	our	dataset.
Along	the	way,	we	learned	some	new	F#	code	and	learned	a	way	to	update	a	machine
learning	model	without	impact	on	our	end	user	experience.

In	the	next	chapter,	we	take	a	break	from	AdventureWorks	and	line	of	business
development	and	start	working	with	some	open	data	as	a	data	scientist	using	a	decision
tree.	As	Dick	Clark	used	to	say,	“The	hits	just	keep	coming.”

Chapter	4.	Traffic	Stops	–	Barking	Up	the
Wrong	Tree?
In	the	prior	two	chapters,	you	were	a	software	developer	who	was	injecting	machine
learning	into	their	existing	line	of	business	application.	In	this	chapter,	we	are	going	to	put
on	our	research	analyst	hat	and	see	if	we	can	discover	some	hidden	insights	from	an
existing	dataset.

The	scientific	process
The	research	analyst	historically	followed	this	pattern	of	discovery	and	analysis:

With	the	rise	of	the	data	scientist,	that	workflow	has	changed	to	something	like	this:

Notice	how	the	work	does	not	end	after	reporting	the	results	of	a	model.	Rather,	the	data
scientist	is	often	responsible	for	moving	the	working	models	from	their	desktop	and	into	a
production	application.	With	this	new	responsibility,	comes	new	power,	to	reverse-
paraphrase	Spider-Man.	The	data	scientist’s	skillset	becomes	broader	because	they	have	to
understand	software	engineering	techniques	to	go	along	with	their	traditional	skill	set.

One	thing	that	the	data	scientist	knows	by	heart	is	this	following	workflow.	Inside	the	Test
With	Experiment	block,	there	is	this:

In	terms	of	time	spent,	the	clean	data	block	is	very	large	compared	to	the	other	blocks.
This	is	because	most	of	the	work	effort	is	spent	with	data	acquisition	and	preparation.
Historically,	much	of	this	data	munging	was	dealing	with	missing,	malformed,	and
illogical	data.	The	traditional	way	to	try	to	minimize	the	work	effort	on	this	step	was	to

create	data	warehouses	and	clean	the	data	as	it	transferred	from	the	source	system	into	the
warehouse	(sometimes	called	the	Extract,	Transform,	Load,	or	ETL	process).	While	this
had	some	limited	success,	it	was	a	fairly	expensive	endeavor	and	a	fixed	schema	meant
that	changes	became	particularly	difficult.	More	recent	efforts	in	this	space	have
surrounded	gathering	data	in	its	native	format,	dumping	it	into	data	lakes	and	then
building	jobs	on	top	of	the	lake	that	are	specific	to	the	data’s	native	format	and	structure.
Sometimes,	this	is	called	putting	the	data	in	a	rectangle	because	you	may	be	taking
unstructured	data,	cleaning	and	aggregating	it,	and	then	outputting	it	in	a	two-dimensional
data	frame.	The	power	of	this	data	frame	is	that	you	can	then	combine	it	with	other	data
frames	to	do	some	more	interesting	analysis.

Open	data
One	of	the	most	exciting	civic	movements	that	align	with	Big	Data	and	Machine	Learning
is	Open	Data.	Although	there	is	not	as	much	buzz	around	it,	it’s	a	very	exciting	and
important	transformation	in	data	science.	The	premise	of	open	data	is	that	local,	state,	and
national	governments	will	become	much	more	accountable	and	efficient	if	they	expose	the
public	data	that	they	currently	maintain	in	a	RESTful	format.	Currently,	most	government
agencies	might	have	paper	records,	charge	a	significant	sum	to	output	an	ad-hoc	query,	or
occasionally	have	an	FTP	site	with	some	.xls	or	.pdf	files	that	get	refreshed	from	time	to
time.	Open	Data	is	a	movement	that	takes	the	same,	if	not	more,	data	and	places	it	on	a
web	service	that	can	be	consumed	by	applications	and/or	research	analysts.	The	key	thing
is	security	and	privacy	of	the	data.	Historically,	some	government	agencies	have	practised
security	by	obscurity	(we	have	the	records	online	but	the	only	way	to	get	to	it	is	by	our
custom	web	frontend)	and	open	data	makes	that	kind	of	defense	obsolete.	Truth	be	told,
security	by	obscurity	has	never	really	worked	(how	hard	is	it	to	write	a	screen	scraper?)
and	all	it	has	really	done	is	made	it	harder	for	well-intentioned	people	to	accomplish	their
goals.

The	rise	of	open	data	also	coincides	with	the	formulation	of	groups	of	people	who	are
hacking	for	civic	good.	Sometimes	these	are	ad	hoc	meetup	groups	that	center	on	a	single
technology	stack	and	other	groups	are	much	more	formal.	For	example,	Code	for	America
has	brigades	in	many	cities	across	the	world.	If	you	are	interested	in	helping	a	local
chapter,	you	can	find	information	on	their	website	http://www.codeforamerica.org/.

http://www.codeforamerica.org/

Hack-4-Good
Let’s	pretend	we	are	a	member	of	a	local	chapter	of	a	fictional	organization	civic	hacking
called	“Hack-4-Good”.	At	the	latest	meeting,	the	leader	announces,	“Through	a	public
record	request,	we	have	obtained	all	of	the	traffic	stop	information	in	our	town.	Does
anyone	know	what	to	do	with	this	dataset?”	You	immediately	throw	your	hand	in	the	air
and	say,	“Heck	yeah,	Baby!”	Okay,	maybe	you	don’t	use	those	exact	words	but	your
enthusiasm	is	undeniable.

Since	you	are	a	research	analyst	by	training,	the	first	thing	you	want	to	do	is	load	the	data
into	your	IDE	and	start	exploring	the	data.

Open	up	Visual	Studio	and	create	a	new	Solution	called
Hack4Good.TrafficStop.Solution:

Add	a	new	F#	Library	project	to	the	solution:

FsLab	and	type	providers
Now	that	the	project	skeleton	has	been	set	up,	open	up	the	Script.fsx	file	and	remove	all
of	its	contents.	Next,	let’s	take	a	look	at	a	really	neat	library	called	FsLab
(http://fslab.org/).	Go	to	the	NuGet	package	manager	console	and	enter	this:

PM>	Install-Package	fslab

Next,	we	will	install	SqlClient,	so	we	can	access	our	data.	Go	to	the	NuGet	package
manager	and	enter:

PM>	Install-Package	FSharp.Data.SqlClient

With	the	ceremony	out	of	the	way,	let’s	get	to	coding.	Let’s	first	bring	the	traffic	ticket
dataset	into	our	script.	Go	into	Script.fsx	and	enter	this	at	the	top:

#load	"../packages/FsLab.0.3.11/FsLab.fsx"

You	should	get	a	series	of	dialog	boxes	from	Visual	Studio	that	looks	like	this:

Click	on	Enable.	As	a	general	point,	whenever	you	get	a	dialog	box	from	Visual	Studio
like	this,	click	on	Enable.	For	example,	depending	on	our	machine’s	configuration,	you
might	get	these	dialog	boxes	when	you	run	the	following	open	statements.

Back	in	our	script,	enter	this:

#r	"System.Data.Entity.dll"

#r	"FSharp.Data.TypeProviders.dll"

#r	"System.Data.Linq.dll"

open	System

open	Foogle

open	Deedle

open	FSharp.Data

open	FSharp.Charting

open	System.Data.Linq

open	System.Data.Entity

open	Microsoft.FSharp.Data.TypeProviders

http://fslab.org/

Next,	enter	this	into	the	script:

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=Traffic;user	id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;"

type	EntityConnection	=	SqlEntityConnection<connectionString,Pluralize	=	

true>

let	context	=	EntityConnection.GetDataContext()

context.dbo_TrafficStops	|>	Seq.iter(fun	ts	->	printfn	"%s"	

ts.StreetAddress)

The	first	line	should	look	familiar;	it’s	a	connection	string	just	like	we	used	in	the	last
chapter.	The	only	difference	is	the	database.	But	what’s	with	the	next	line	of	code?

type	EntityConnection	=	SqlEntityConnection<connectionString,Pluralize	=	

true>

This	is	an	example	of	a	type	provider.	Type	providers	are	one	of	the	best	features	of	F#
and	it	is	unique	to	the	language.	I	like	to	think	of	type	providers	as	object	relational
mapping	(ORM)	on	steroids.	This	type	provider	is	inspecting	the	database	and	generating
F#	types	for	me	to	use	in	the	REPL—which	we	will	see	in	action	in	a	second.	In	fact,	the
type	provider	is	sitting	on	top	of	Entity	Framework	(EF),	which	is	sitting	on	top	of
ADO.NET.	If	you	got	excited	about	how	much	more	productive	you	were	when	you	went
from	hand-rolling	ADO.NET	code	to	EF,	you	should	be	equally	excited	about	how	much
more	productive	you	can	be	working	with	type	providers;	it	is	really	the	next	generation	of
data	access.	Another	cool	thing	is	that	type	providers	are	not	just	for	relational	database
management	systems—there	is	a	JSON	type	provider,	a	.csv	type	provider,	and	others.
You	can	read	more	about	type	providers	at	https://msdn.microsoft.com/en-
us/library/hh156509.aspx	and	once	you	see	them	in	action,	you	will	find	them
indispensable	in	your	coding	tasks.

Back	to	the	code.	The	next	line	is:

let	context	=	EntityConnection.GetDataContext()

It	creates	the	actual	instance	of	the	type	to	be	used.	The	next	line	is	where	the	rubber
meets	the	road:

context.dbo_TrafficStops	|>	Seq.iter(fun	ts	->	printfn	"%s"	

ts.StreetAddress)

In	this	line,	we	are	traversing	the	TrafficStop	table	and	printing	out	the	street	address.	If
you	highlight	all	of	the	code	in	the	script	so	far	and	send	it	to	the	REPL,	you	will	see	the
last	part	of	30,000	addresses:

128	SW	MAYNARD	RD/KILMAYNE	DR

1	WALNUT	ST	TO	US	1	RAMP	NB/US	1	EXIT	101	RAMP	NB

2333	WALNUT	ST

1199	NW	MAYNARD	RD/HIGH	HOUSE	RD

3430	TEN	TEN	RD

val	connectionString	:	string	=

https://msdn.microsoft.com/en-us/library/hh156509.aspx

		"data	source=nc54a9m5kk.database.windows.net;initial	catalog=T"+[61	

chars]

type	EntityConnection	=

		class

				static	member	GetDataContext	:	unit	->	

EntityConnection.ServiceTypes.SimpleDataContextTypes.EntityContainer

					+	1	overload

				nested	type	ServiceTypes

		end

val	context	:

		EntityConnection.ServiceTypes.SimpleDataContextTypes.EntityContainer

val	it	:	unit	=	()

Before	we	press	on,	I	want	to	mention	how	cool	type	providers	are.	With	three	lines	of
code,	I	defined	a	database	schema,	connected	to	it,	and	then	pulled	down	records.	Not	only
that,	but	the	result	set	from	the	database	is	IEnumerable.	So	everything	I	have	done	with
Seq	in	prior	chapters	to	transform	and	shape	the	data,	I	can	do	here.

Data	exploration
With	this	new	found	power,	let’s	start	exploring.	Enter	this	into	the	script:

context.dbo_TrafficStops	|>	Seq.head

Sending	to	the	REPL,	we	will	see	the	following:

val	it	:	EntityConnection.ServiceTypes.dbo_TrafficStops	=

		SqlEntityConnection1.dbo_TrafficStops

				{CadCallId	=	120630019.0;

					DispositionDesc	=	"VERBAL	WARNING";

					DispositionId	=	7;

					EntityKey	=	System.Data.EntityKey;

					EntityState	=	Unchanged;

					Id	=	13890;

					Latitude	=	35.7891;

					Longitude	=	-78.8289;

					StopDateTime	=	6/30/2012	12:36:38	AM;

					StreetAddress	=	"4348	NW	CARY	PKWY/HIGH	HOUSE	RD";}

>

We	see	our	data	frame	has	some	interesting	elements	we	can	analyze:	the	date	and	time	of
the	traffic	stop,	the	geocoordinate	of	the	traffic	stop,	and	the	final	disposition	of	the	stop.
We	also	have	some	data	that	does	not	seem	useful	for	analysis:	the	CadCallId	which	is
probably	the	primary	key	of	the	source	system.	This	might	be	useful	for	later	auditing.	We
also	have	StreetAddress,	which	is	the	same	as	the	geocoordinate,	but	in	a	less	analyzable
form.	Finally,	we	have	some	fields	thrown	in	by	Entity	Framework	(EntityKey,
EntityState,	and	Id).

Let’s	make	a	data	frame	with	only	the	fields	we	care	about.	Enter	this	into	the	script:

let	trafficStops	=	

				context.dbo_TrafficStops	

				|>	Seq.map(fun	ts	->	ts.StopDateTime,	ts.Latitude,	ts.Longitude,	

ts.DispositionId)

And	sending	it	to	the	REPL,	we	get	this:

val	trafficStops	:

		seq<System.Nullable<System.DateTime>	*	System.Nullable<float>	*

						System.Nullable<float>	*	System.Nullable<int>>

>

It	is	interesting	that	although	F#	really,	really	tries	to	prevent	you	from	using	null,	it	does
support	it.	In	fact,	all	four	of	our	fields	are	nullable.	I’ll	show	you	how	to	deal	with	nulls	a
bit	further	on	in	the	chapter	as	they	are	often	a	major	headache	when	coding.

There	is	one	more	data	frame	we	should	create	before	getting	too	far	down	the	analysis.
As	a	general	rule,	the	machine	learning	models	that	we	use,	prefer	primitive	types	such	as
ints,	floats,	and	bools.	They	have	a	much	harder	time	with	strings,	especially	strings	that
represent	categorical	data.	You	probably	noticed	that	I	brought	in	DispositionId	into	the
trafficStops	data	frame	and	not	DispositionDesc.	However,	we	still	don’t	want	to	lose

that	description	because	we	might	want	to	refer	to	it	later.	Let’s	create	a	separate	data
frame	for	this	lookup	data.	In	the	script,	enter	this:

let	dispoistions	=

				context.dbo_TrafficStops	

				|>	Seq.distinctBy(fun	ts	->	ts.DispositionId,	ts.DispositionDesc)			

				|>	Seq.map	(fun	d	->	d.DispositionId,	d.DispositionDesc)

				|>	Seq.toArray

And	then	send	it	to	the	REPL	to	get	this:

val	dispoistions	:	(System.Nullable<int>	*	string)	[]	=

		[|(7,	"VERBAL	WARNING");	(15,	"CITATION");	(12,	"COMPLETED	AS	

REQUESTED");

				(4,	"WRITTEN	WARNING");	(13,	"INCIDENT	REPORT");	(9,	"ARREST");

				(14,	"UNFOUNDED");	(19,	"None	Provided");

				(10,	"NO	FURTHER	ACTION	NECESSARY");	(5,	"OTHER				SEE	NOTES");

				(2,	"UNABLE	TO	LOCATE");	(16,	"FIELD	CONTACT");

				(6,	"REFERRED	TO	PROPER	AGENCY");	(17,	"BACK	UP	UNIT");

				(11,	"CIVIL	PROBLEM");	(1,	"FURTHER	ACTION	NECESSARY");	(3,	"FALSE	

ALARM");

				(18,	"CITY	ORDINANCE	VIOLATION")|]

>

Looking	at	the	code,	we	have	a	couple	of	new	things.	First,	we	are	using	the	high	order
function	Seq.distinctBy,	which	you	can	probably	guess	return	records	with	the	distinct
values	specified	in	the	argument.	Interestingly,	the	entire	traffic	stop	record	is	being
returned,	not	just	the	values	in	the	lambda.	If	you	are	wondering	which	record	gets	picked
by	F#	to	represent	the	distinct	disposition,	you	have	to	chalk	it	up	to	magic.	Okay,	maybe
not.	As	it	was	traversing	the	data	frame,	F#	picked	the	first	record	where	there	was	a	new
unique	value	for	DispositionID	and	DispositionDesc.	In	any	event,	since	we	only	care
about	the	DispositionId	and	DispositionDesc,	we	then	mapped	the	traffic	stop	record
into	a	tuple	on	this	line	of	code:	Seq.map	(fun	d	->	d.DispositionId,
d.DispositionDesc.	That	should	look	familiar	to	you	by	now.

With	our	data	frames	set	up,	let’s	start	digging	into	the	data.	One	of	the	nice	things	about
having	a	DateTime	value	is	that	it	represents	many	different	factors	that	might	be	worth
exploring.	For	example,	how	many	traffic	stops	are	performed	by	month?	What	about	the
day	of	the	week?	Is	there	a	time	factor	in	the	stops?	Does	more	happen	at	night	or	in	the
day?	Let’s	start	writing	some	code.	Go	to	the	script	and	enter	this	code	block:

let	months	=	

				context.dbo_TrafficStops

				|>	Seq.groupBy	(fun	ts	->	ts.StopDateTime.Value.Month)

				|>	Seq.map	(fun	(m,	ts)	->	m,	Seq.length	ts)

				|>	Seq.sortBy	(fun	(m,	ts)	->	m)

				|>	Seq.toArray

And	sending	it	to	the	REPL,	you	should	see	this:

val	months	:	(int	*	int)	[]	=

		[|(1,	2236);	(2,	2087);	(3,	2630);	(4,	2053);	(5,	2439);	(6,	2499);

				(7,	2265);	(8,	2416);	(9,	3365);	(10,	1983);	(11,	2067);	(12,	1738)|]

>

Just	a	quick	glance	tells	you	that	there	are	a	whole	lot	of	traffic	stops	being	performed	in
September,	and	December	looks	like	a	light	month.	Digging	into	the	code,	there	is	a	new
high-order	function	that	I	used:

|>	Seq.groupBy	(fun	ts	->	ts.StopDateTime.Value.Month)

groupBy	is	a	very	powerful	function,	but	it	can	be	a	bit	confusing	the	first	time	you	use	it
(it	was	for	me,	at	least).	I	came	to	a	better	understanding	of	groupBy	by	working
backwards	and	looking	at	the	output	of	a	simple	array.	Go	into	the	script	file	and	enter
this:

let	testArray	=	[|1;1;2;3;4;5;3;4;5;5;2;1;5|]

testArray	|>	Array.groupBy	(id)

Sending	that	to	the	REPL	gives	this:

val	testArray	:	int	[]	=	[|1;	1;	2;	3;	4;	5;	3;	4;	5;	5;	2;	1;	5|]

val	it	:	(int	*	int	[])	[]	=

		[|(1,	[|1;	1;	1|]);	(2,	[|2;	2|]);	(3,	[|3;	3|]);	(4,	[|4;	4|]);

				(5,	[|5;	5;	5;	5|])|]

You	will	notice	that	the	output	is	a	tuple.	The	first	item	of	the	tuple	is	the	value	on	which
the	groupBy	grouped	the	data.	The	next	item	is	a	subarray	with	only	the	values	from	the
original	array	that	match	the	tuple’s	first	item.	Diving	into	the	ones,	(1,	[|1;	1;	1|]),
we	can	see	that	the	number	1	was	the	groupBy	value	and	that	there	were	three	1s	in	the
original	array.	groupBy	can	be	applied	to	record	types	too.	Consider	this	data	frame.	From
left	to	right,	the	columns	are	USState,	Gender,	YearOfBirth,	NameGiven,	and
NumberOfInstances:

USState Gender YearOfBirth NameGiven NumberOfInstances

AK F 1910 Annie 12

AK F 1910 Anna 10

AK F 1910 Margaret 8

AL F 1910 Annie 90

AL F 1910 Anna 88

AL F 1910 Margaret 86

AZ F 1910 Annie 46

AZ F 1910 Anna 34

AZ F 1910 Margaret 12

Applying	a	groupBy	on	NameGiven	to	this	data	frame	gives	the	following	output:

fst snd

Annie AK F 1910 Annie 12

	 AL F 1910 Annie 90

	 AZ F 1910 Annie 46

Anna AK F 1910 Anna 10

	 AL F 1910 Anna 88

	 AZ F 1910 Anna 34

Margaret AK F 1910 Margaret 8

	 AL F 1910 Margaret 86

	 AZ F 1910 Margaret 12

With	the	fst	of	the	tuple	the	NameGiven,	and	the	snd	being	a	data	frame	with	only	the
records	that	match	the	fst.

Let’s	continue	with	the	next	line	of	code	|>	Seq.map	(fun	(m,	ts)	->	m,	ts	|>
Seq.length).

We	can	see	that	we	are	mapping	the	original	tuple	of	month	and	trafficStops	to	a	new
tuple	of	month	and	the	length	of	the	array	that	was	snd	of	the	original	tuple.	This
effectively	reduces	our	data	into	a	sequence	of	length	12	(one	for	each	month).	The	fst	is
the	month	and	the	snd	is	the	number	of	stops	that	occurred.	Next	we	sort	it	by	month	and
then	push	it	to	an	array.

With	this	pattern	set,	let’s	do	a	couple	of	more	groupBy.	Let’s	do	Day	and	DayOfWeek.	Go
into	the	script	and	enter	this:

let	dayOfMonth	=	

				context.dbo_TrafficStops

				|>	Seq.groupBy	(fun	ts	->	ts.StopDateTime.Value.Day)

				|>	Seq.map	(fun	(d,	ts)	->	d,	Seq.length	ts)

				|>	Seq.sortBy	(fun	(d,	ts)	->	d)

				|>	Seq.toArray

let	weekDay	=	

				context.dbo_TrafficStops

				|>	Seq.groupBy	(fun	ts	->	ts.StopDateTime.Value.DayOfWeek)

				|>	Seq.map	(fun	(dow,	ts)	->	dow,	Seq.length	ts)

				|>	Seq.sortBy	(fun	(dow,	ts)	->	dow)

				|>	Seq.toArray

You	will	notice	one	subtle	change	from	the	month	analysis	that	we	just	did—|>	Seq.map

(fun	(dow,	ts)	->	dow,	Seq.length	ts)	has	a	different	syntax	for	getting	the	length	of

the	snd.	Instead	of	writing	ts	|>	Seq.length,	I	wrote	Seq.length	ts.	Both	styles	are
perfectly	valid	F#,	but	the	latter	is	considered	more	idiomatic.	I	will	begin	using	this	style
more	frequently	in	the	book.

So	once	we	send	this	to	the	REPL,	we	can	see:

val	dayOfMonth	:	(int	*	int)	[]	=

		[|(1,	918);	(2,	911);	(3,	910);	(4,	941);	(5,	927);	(6,	840);	(7,	940);

				(8,	785);	(9,	757);	(10,	805);	(11,	766);	(12,	851);	(13,	825);	(14,	

911);

				(15,	977);	(16,	824);	(17,	941);	(18,	956);	(19,	916);	(20,	977);

				(21,	988);	(22,	906);	(23,	1003);	(24,	829);	(25,	1036);	(26,	1031);

				(27,	890);	(28,	983);	(29,	897);	(30,	878);	(31,	659)|]

val	weekDay	:	(System.DayOfWeek	*	int)	[]	=

		[|(Sunday,	3162);	(Monday,	3277);	(Tuesday,	3678);	(Wednesday,	4901);

				(Thursday,	5097);	(Friday,	4185);	(Saturday,	3478)|]

Looking	at	the	results,	it	should	be	pretty	obvious	what	we	are	doing.	The	25th	of	every
month	looks	like	the	day	where	most	of	the	traffic	stops	occur	and	Thursday	sure	has	a	lot
of	stops.	I	wonder	what	would	happen	if	the	25th	fell	on	a	Thursday	for	a	given	month?

Before	we	dive	deeper	into	the	data,	I	want	to	point	out	that	the	last	three	blocks	of	code
are	very	similar.	They	all	follow	this	pattern:

let	weekDay	=	

			context.dbo_TrafficStops

				|>	Seq.groupBy	(fun	ts	->	ts.StopDateTime.Value.XXXXX)

				|>	Seq.map	(fun	(fst,	snd)	->	fst,	Seq.length	snd)

				|>	Seq.sortBy	(fun	(fst,	snd)	->	fst)

				|>	Seq.toArray

Instead	of	having	three	chunks	of	code	that	are	almost	identical,	is	there	a	way	we	can
consolidate	them	into	a	single	function?	Yes	there	is.	What	if	we	wrote	a	function	like	this:

let	transform	grouper	mapper	=

				context.dbo_TrafficStops	

				|>	Seq.groupBy	grouper

													|>	Seq.map	mapper

																													|>	Seq.sortBy	fst	

																													|>	Seq.toArray

And	then	we	called	it	like	this:

transform	(fun	ts	->	ts.StopDateTime.Value.Month)	(fun	(m,	ts)	->	m,	

Seq.length	ts)

transform	(fun	ts	->	ts.StopDateTime.Value.Day)	(fun	(d,	ts)	->	d,	

Seq.length	ts)

transform	(fun	ts	->	ts.StopDateTime.Value.DayOfWeek)	(fun	(dow,	ts)	->	

dow,	Seq.length	ts)

Would	that	work?	You	bet	your	bippy.	Sending	it	to	the	REPL,	we	can	see	we	are	getting
the	same	results:

val	transform	:

		grouper:(EntityConnection.ServiceTypes.dbo_TrafficStops	->	'a)	->

				mapper:('a	*	seq<EntityConnection.ServiceTypes.dbo_TrafficStops>	->

														'b	*	'c)	->	('b	*	'c)	[]	when	'a	:	equality	and	'b	:	

comparison

val	it	:	(System.DayOfWeek	*	int)	[]	=

		[|(Sunday,	3162);	(Monday,	3277);	(Tuesday,	3678);	(Wednesday,	4901);

				(Thursday,	5097);	(Friday,	4185);	(Saturday,	3478)|]

Those	of	you	coming	from	C#	and	VB.NET	might	have	gotten	very	uncomfortable	with
the	transform’s	interface.	You	probably	would	have	been	much	more	comfortable	with	this
syntax:

let	transform	(grouper,	mapper)	=

The	()	and	the	commas	make	it	look	much	more	like	C#	and	VB.NET.	Although	both	are
perfectly	valid	F#,	this	is	another	place	where	it	is	considered	more	idiomatic	to	remove
the	parenthesis	and	the	commas.	I	will	begin	using	this	style	more	frequently	in	this	book.

Also,	notice	that	I	am	passing	two	functions	into	the	transform	function.	This	is	very
different	from	imperative	C#/VB.NET	where	we	usually	pass	data	into	a	method.	I	have
noticed	that	functional	programming	is	more	about	bringing	the	operations	to	the	data	than
bringing	the	data	to	the	operations,	which	has	profound	implications	once	we	start
applying	machine	learning	to	big	data.

Going	back	to	our	transform	function,	we	can	see	that	the	mapper	function	is	pretty	the
same	in	the	three	times	we	invoked	it:	(fun	(dow,	ts)	->	dow,	Seq.length	ts).	The
only	difference	is	the	name	we	gave	the	first	part	of	the	tuple.	This	seems	like	another
great	place	where	we	can	consolidate	some	code.	Let’s	rewrite	transform	like	this:

let	transform	grouper		=

				context.dbo_TrafficStops	

				|>	Seq.groupBy	grouper

				|>	Seq.map	(fun	(fst,	snd)	->	fst,	Seq.length	snd)	

				|>	Seq.sortBy	fst	

				|>	Seq.toArray

transform	(fun	ts	->	ts.StopDateTime.Value.Month)	

transform	(fun	ts	->	ts.StopDateTime.Value.Day)	

transform	(fun	ts	->	ts.StopDateTime.Value.DayOfWeek)

And	sending	that	to	the	REPL,	we	get	this:

val	transform	:

		grouper:(EntityConnection.ServiceTypes.dbo_TrafficStops	->	'a)	->

				('a	*	int)	[]	when	'a	:	comparison

>	

val	it	:	(System.DayOfWeek	*	int)	[]	=

		[|(Sunday,	3162);	(Monday,	3277);	(Tuesday,	3678);	(Wednesday,	4901);

				(Thursday,	5097);	(Friday,	4185);	(Saturday,	3478)|]

Pretty	cool,	huh?	We	will	be	doing	this	kind	of	programming	more	and	more	in	this	book.
Once	you	get	the	hang	of	it,	you	will	start	seeing	patterns	in	your	code	that	you	never	had
seen	before,	and	you	have	yet	another	powerful	arrow	in	your	toolbox	(as	I	mix

metaphors).

Since	you	are	now	up	to	speed	on	groupBy,	I	want	to	rewrite	our	transform	function	to
ditch	it.	Instead	of	using	the	groupBy	and	map	functions,	let’s	rewrite	it	using	the	countBy
high	order	function.	While	we	are	at	it,	let’s	rename	our	function	to	something	that	is	a	bit
more	intention	revealing.	Type	this	into	the	script:

let	getCounts	counter	=

				context.dbo_TrafficStops	

				|>	Seq.countBy	counter

				|>	Seq.sortBy	fst	

				|>	Seq.toArray

getCounts	(fun	ts	->	ts.StopDateTime.Value.DayOfWeek)

Sending	this	to	the	REPL,	we	get	the	same	values:

val	getCounts	:

		counter:(EntityConnection.ServiceTypes.dbo_TrafficStops	->	'a)	->

				('a	*	int)	[]	when	'a	:	comparison

val	it	:	(System.DayOfWeek	*	int)	[]	=

		[|(Sunday,	3162);	(Monday,	3277);	(Tuesday,	3678);	(Wednesday,	4901);

				(Thursday,	5097);	(Friday,	4185);	(Saturday,	3478)|]

Visualization
Looking	at	the	data	in	the	REPL	is	a	good	start,	but	pictures	are	a	much	more	powerful
and	effective	way	to	communicate	information.	For	example,	is	there	some	kind	of
monthly	seasonality	for	traffic	stops?	Let’s	put	the	data	into	a	chart	to	find	out.	In	your
script,	enter	this:

let	months'	=	Seq.map	(fun	(m,c)	->	string	m,c)	months

Chart.LineChart	months'

Your	REPL	should	look	like	this:

val	months'	:	seq<string	*	int>

val	it	:	FoogleChart	=	(Foogle	Chart)

>

Your	default	browser	should	be	trying	to	open	and	should	show	you	this:

So	we	see	the	spike	in	September	and	the	drop	off	in	December	that	had	already	caught
our	eye.	If	the	date/time	has	some	curious	patterns,	what	about	the	geolocation?	Enter	this
into	the	script	file:

let	locations	=	

				context.dbo_TrafficStops	

				|>	Seq.filter	(fun	ts	->	ts.Latitude.HasValue	&&	ts.Longitude.HasValue	

)

				|>	Seq.map	(fun	ts	->	ts.StreetAddress,	ts.Latitude.Value,	

ts.Longitude.Value)

				|>	Seq.map	(fun	(sa,lat,lon)	->	sa,	lat.ToString(),	lon.ToString())

				|>	Seq.map	(fun	(sa,lat,lon)	->	sa,	lat	+	","	+	lon)

				|>	Seq.take	2

				|>	Seq.toArray

Chart.GeoChart(locations,DisplayMode=GeoChart.DisplayMode.Markers,Region="U

S")

Not	very	helpful.	The	problem	is	that	the	FsLab	geomap	covers	Google’s	geoMap	API,	and
that	API	only	goes	to	the	country	level.	Instead	of	using	Fslab	then,	we	can	roll	our	own.
This	is	a	fairly	complex	process	using	Bing	maps,	WPF	dependency	properties,	and	the
like,	so	I	will	not	explain	it	in	this	book.	The	code	is	available	for	you	to	review	on	the
download	section	of	our	site.	So,	close	your	eyes	and	pretend	the	last	3	hours	I	spent
working	on	this	went	by	in	2	seconds	and	we	have	this	map:

So	what	can	we	tell	off	the	bat?	There	are	traffic	stops	everywhere,	though	they	seem	to
concentrate	on	main	streets.	Based	on	the	initial	analysis,	the	term	“speed	trap”	might	be
less	about	location	and	more	about	month,	day,	and	time.	Also,	we	can’t	draw	too	much
from	this	map	because	we	don’t	know	the	traffic	patterns—more	stops	might	be	on	more
traveled	streets	or	might	be	an	indicator	of	key	areas	where	there	are	traffic	stops.	To	help
us	dig	into	the	data	more,	let’s	move	away	from	simple	descriptive	statistics	and	apply	a
common	machine	learning	technique	called	a	decision	tree.

Decision	trees
The	principle	of	decision	tree	is	this:	you	can	use	a	tree-like	structure	to	make	predictions.
Here	is	a	cantonal	example	of	whether	we	will	play	tennis	today:

Each	decision	is	called	a	node	and	the	final	result	(in	our	case,	the	Yes/No	boxes)	is	called
the	leaf.	The	analogy	to	a	tree	is	somewhat	appropriate.	In	fact,	I	would	call	it	a	decision
branch	with	each	decision	called	a	crook	and	the	final	results	being	called	leaves.
However,	J.R.	Quinlan	didn’t	ask	me	in	1986	when	he	invented	this	methodology.	In	any
event,	the	number	of	levels	of	the	tree	is	called	the	height	of	the	tree.	In	our	prior	example,
the	tree	has	a	maximum	height	of	two.	The	nodes	that	are	possible	for	a	given	point	is
called	the	features.	In	our	prior	example,	Outlook	has	three	features	(sunny,	overcast,	and
rain)	and	Strong	Wind	has	two	features	(yes	and	no).

One	of	the	real	benefits	of	the	decision	tree	is	its	simplicity	of	conveying	information.
Humans	often	do	mental	decision	trees	as	long	as	the	number	of	nodes	are	small	and	the
calculation	to	move	to	the	next	node	is	simple.	(Should	I	order	decaf	or	regular?	Do	I	need
to	study	tonight?)	Computers	come	in	handy	when	there	are	many	nodes	and	the
calculations	are	complex.	For	example,	we	can	hand	the	computer	a	whole	bunch	of
historical	data	from	people	who	decide	to	play	tennis	and	it	can	determine	that,	for	sunny
days,	the	actual	decision	point	is	not	30°,	but	31.2°.	Something	to	keep	in	mind	though	is
that	decision	trees	often	become	less	meaningful	as	the	number	of	features	increase	and
the	depth	gets	too	large.	We’ll	look	at	ways	to	handle	this	a	little	bit	later.

Accord
Let’s	make	a	decision	tree	with	our	traffic	stop	data.	Go	back	to	Visual	Studio,	open	up
Solution	Explorer,	and	add	a	new	script	called	Accord.fsx.	Enter	this	into	the	script:

#r	"System.Data.Entity.dll"

#r	"FSharp.Data.TypeProviders.dll"

#r	"System.Data.Linq.dll"

open	System

open	System.Data.Linq

open	System.Data.Entity

open	Microsoft.FSharp.Data.TypeProviders

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=Traffic;user	id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;"

type	EntityConnection	=	SqlEntityConnection<connectionString,Pluralize	=	

true>

let	context	=	EntityConnection.GetDataContext()

This	code	is	the	same	that	you	used	in	Script.fsx	.	Send	it	to	the	REPL	to	make	sure	you
copy-pasted	it	correctly:

val	connectionString	:	string	=

		"data	source=nc54a9m5kk.database.windows.net;initial	catalog=T"+[61	

chars]

type	EntityConnection	=

		class

				static	member	GetDataContext	:	unit	->	

EntityConnection.ServiceTypes.SimpleDataContextTypes.EntityContainer

					+	1	overload

				nested	type	ServiceTypes

		end

val	context	:

		EntityConnection.ServiceTypes.SimpleDataContextTypes.EntityContainer

>

Next,	open	up	the	NuGet	package	manager	and	enter	in	the	following	command:

PM>	Install-Package	Accord.MachineLearning

Go	back	to	the	script	and	enter	in	this:

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	

"../packages/Accord.MachineLearning.3.0.2/lib/net40/Accord.MachineLearning.

dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

open	Accord

open	Accord.MachineLearning

open	Accord.MachineLearning.DecisionTrees

open	Accord.MachineLearning.DecisionTrees.Learning

With	that	out	of	the	way,	let’s	create	a	data	structure	that	we	can	pass	to	Accord.	As	I
mentioned	earlier,	decision	trees	often	have	a	problem	with	a	large	number	of	features.	A
common	technique	to	mitigate	this	is	to	bin	the	data.	When	you	bin	the	data,	you	take	your
original	data	and	put	them	into	large	groups.	For	example,	we	can	take	all	of	the	times	for
the	traffic	stops	and	bin	them	into	AM	or	PM,	depending	on	whether	they	occurred	before
or	after	noon.	Binning	is	a	commonly	used	technique	in	data	science—sometimes
justifiably	and	sometimes	just	as	a	way	to	make	the	model	conform	to	a	desired	output.

Going	back	to	our	script,	create	the	following	record	type	for	our	decision	tree:

type	TrafficStop	=	{Month:int;	DayOfWeek:DayOfWeek;	AMPM:	string;	

ReceviedTicket:	bool	option	}

You	will	see	that	I	created	two	bins	of	data.	The	first	is	called	AMPM	and	it	is	for	the	time	of
the	stop.	The	second	is	called	ReceviedTicket	as	a	Boolean.	If	you	remember,	there	are
18	different	values	for	the	disposition.	We	only	care	whether	the	person	received	a	ticket
(called	citation),	so	we	are	binning	citations	to	true	and	noncitations	to	false.	There	is	one
more	thing	that	you	probably	noticed—ReceivedTicket	isn’t	simply	a	bool,	it	is	a	bool
option.	As	you	might	remember,	F#	really	doesn’t	like	nulls.	Although	it	can	support	null,
F#	instead	encourages	you	to	use	something	called	an	option	type	in	its	place.

An	option	type	can	have	two	values:	Some<T>	or	None.	If	you	are	not	familiar	with	the
syntax	of	Some<T>,	it	means	that	Some	is	limited	to	only	one	type.	Therefore,	you	can	write
Some<bool>,	Some<int>,	or	Some<string>.	With	an	option	type,	you	can	verify	if	a	field
has	a	value	that	you	care	about:	Some	or	None.	Not	only	that,	the	compiler	forces	you	to	be
explicit	with	the	choice.	This	compiler	checking	forces	you	to	be	explicit	with	the	value
and	is	an	extremely	powerful	construct.	Indeed,	it	is	one	of	the	reasons	that	F#	code	often
has	fewer	bugs	than	other	languages	because	it	forces	the	developer	to	confront	problems
sooner	and	prevents	them	from	sweeping	them	under	the	rug	into	a	null	where	they	can	be
accidentally	ignored.

Going	back	to	our	code,	let’s	write	two	functions	that	will	bin	our	original	data:

let	getAMPM	(stopDateTime:System.DateTime)	=

				match	stopDateTime.Hour	<	12	with

				|	true	->	"AM"

				|	false	->	"PM"

let	receviedTicket	(disposition:string)	=

				match	disposition.ToUpper()	with

				|	"CITATION"	->	Some	true

				|	"VERBAL	WARNING"	|	"WRITTEN	WARNING"	->	Some	false

				|	_	->	None

Sending	that	to	the	REPL,	we	see:

val	getAMPM	:	stopDateTime:DateTime	->	string

val	receviedTicket	:	disposition:string	->	bool	option

Notice	that	ReceivedTicket	returns	three	possibilities	with	the	option	type:	Some	true,
Some	false,	and	None.	The	reason	I	did	not	include	the	other	disposition	values	into	Some
false	versus	None	was	because	we	are	only	concentrating	on	traffic	violations,	not	all	of

the	reasons	why	an	officer	might	stop	a	car.	This	kind	of	filtering	is	often	used	in	data
science	to	help	make	the	dataset	align	with	what	we	are	trying	to	prove.	We	are	not	getting
into	more	detail	here	about	filtering	as	there	are	entire	books	written	about	the	best	way	to
deal	with	outliers	and	non-conforming	data.

Back	to	our	code.	Let’s	take	the	data	out	of	the	database	and	put	it	into	our	TrafficStop
record	type.	Go	into	the	script	and	enter	this:

let	dataFrame	=	context.dbo_TrafficStops

																|>	Seq.map	(fun	ts	->	

{Month=ts.StopDateTime.Value.Month;DayOfWeek=ts.StopDateTime.Value.DayOfWee

k;

																																						AMPM=getAMPM(ts.StopDateTime.Value);	

ReceviedTicket=	receviedTicket(ts.DispositionDesc)	})

																|>	Seq.filter	(fun	ts	->	ts.ReceviedTicket.IsSome)

																|>	Seq.toArray

Sending	this	to	the	REPL,	we	see	the	last	bit	of	all	of	our	records	in	the	data	frame:

				{Month	=	7;

					DayOfWeek	=	Sunday;

					AMPM	=	"PM";

					ReceviedTicket	=	Some	false;};	{Month	=	7;

																																					DayOfWeek	=	Sunday;

																																					AMPM	=	"PM";

																																					ReceviedTicket	=	Some	false;};	...|]

>

With	the	data	shaped	somewhat,	let’s	get	it	ready	for	Accord.	As	I	mentioned	earlier,
Accord	wants	the	input	data	for	the	decision	tree	to	be	in	a	int[][]	and	the	output	to	be	in
a	int[].	However,	it	also	needs	the	inputs	to	be	tagged	to	make	the	model	work.	We
achieve	that	by	passing	in	an	array	of	attributes.	Back	in	the	script	file,	add	this	code
block:

let	month	=	DecisionVariable("Month",13)

let	dayOfWeek	=	DecisionVariable("DayOfWeek",7)

let	ampm	=	DecisionVariable("AMPM",2)

let	attributes	=[|month;dayOfWeek;ampm|]

let	classCount	=	2	

Sending	this	to	the	REPL,	we	see:

val	month	:	Accord.MachineLearning.DecisionTrees.DecisionVariable

val	dayOfWeek	:	Accord.MachineLearning.DecisionTrees.DecisionVariable

val	ampm	:	Accord.MachineLearning.DecisionTrees.DecisionVariable

val	attributes	:	Accord.MachineLearning.DecisionTrees.DecisionVariable	[]	=

		[|Accord.MachineLearning.DecisionTrees.DecisionVariable;

				Accord.MachineLearning.DecisionTrees.DecisionVariable;

				Accord.MachineLearning.DecisionTrees.DecisionVariable|]

val	classCount	:	int	=	2

Some	of	the	sharp-eyed	people	reading	this	book	might	have	noticed	that	the	month
decision	variable	has	a	range	of	13	and	not	12.	This	is	because	the	values	for	month	are	1-

12	and	Accord	needs	13	to	account	for	the	possibility	of	any	feature	value	up	to	13	(like
12.99—we	know	that	won’t	exist	but	Accord	does	not).	Day	of	week	is	0	to	6,	so	it	gets	a
7.

So	going	back	to	our	script,	add	in	the	following	blocks:

let	getAMPM'	(ampm:	string)	=

				match	ampm	with

				|	"AM"	->	0

				|	_	->	1

let	receivedTicket'	value	=

				match	value	with

				|	true	->	1

				|	false	->	0

let	inputs	=	

				dataFrame	

				|>	Seq.map	(fun	ts	->	[|(ts.Month);	int	ts.DayOfWeek;	

getAMPM'(ts.AMPM)|])

				|>	Seq.toArray

let	outputs	=	

				dataFrame	

				|>	Seq.map	(fun	ts	->	receivedTicket'(ts.ReceviedTicket.Value))

				|>	Seq.toArray

Sending	this	to	the	REPL,	we	get	the	end	of	our	data	frame	being	converted	into	int
arrays:

				[|7;	0;	0|];	[|7;	0;	0|];	[|7;	0;	0|];	[|7;	0;	0|];	[|7;	0;	0|];

				[|7;	0;	0|];	[|7;	0;	0|];	[|7;	0;	0|];	[|7;	0;	0|];	[|7;	0;	0|];

				[|7;	0;	1|];	[|7;	0;	1|];	[|7;	0;	1|];	[|7;	0;	1|];	[|7;	0;	1|];

				[|7;	0;	1|];	[|7;	0;	1|];	[|7;	0;	1|];	[|7;	0;	1|];	[|7;	0;	1|];

				[|7;	0;	1|];	[|7;	0;	1|];	[|7;	0;	1|];	[|7;	0;	1|];	[|7;	0;	1|];

				[|7;	0;	1|];	[|7;	0;	1|];	[|7;	0;	1|];	[|7;	0;	1|];	[|7;	0;	1|];	...|]

val	outputs	:	int	[]	=

		[|0;	1;	0;	1;	0;	0;	1;	0;	0;	0;	0;	0;	0;	1;	0;	0;	0;	0;	0;	0;	1;	1;	1;	0;	

1;

				0;	0;	0;	0;	0;	1;	0;	0;	0;	0;	0;	1;	1;	1;	0;	1;	1;	0;	1;	0;	0;	1;	0;	0;	

0;

				0;	0;	0;	1;	0;	1;	0;	0;	0;	0;	1;	0;	0;	0;	0;	0;	0;	0;	0;	0;	1;	1;	0;	0;	

0;

				1;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	1;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	

0;

				...|]

>

With	everything	setup,	let’s	go	ahead	and	run	our	tree.	Enter	this	to	the	script:

let	tree	=	DecisionTree(attributes,	classCount)

let	id3learning	=	ID3Learning(tree)

let	error	=	id3learning.Run(inputs,	outputs)

Sending	this	to	the	REPL	gives	us:

val	error	:	float	=	0.2843236362

Just	like	all	the	other	models	we	have	seen	so	far,	we	need	both	an	output	from	the	model
and	some	information	about	how	good	our	model	is	at	predicting	based	on	the	data	that	we
provided.	In	this	case,	the	model	is	off	by	28%,	which	is	pretty	high	for	a	decision	tree.
With	the	model	created,	we	can	now	ask	the	tree	to	predict	if	we	will	get	a	ticket	or	a
warning	on	a	Saturday	in	October	in	the	evening.

Enter	this	script:

let	query	=	([|10;6;1|])

let	output	=	tree.Compute(query)	

Sending	it	to	the	REPL,	we	see:

val	query	:	int	[]	=	[|10;	6;	1|]

val	output	:	int	=	0

It	looks	like	we	will	get	a	warning	and	not	a	ticket.

As	I	mentioned,	28%	is	high	for	a	decision	tree.	Is	there	a	way	to	get	that	number	down?
Perhaps	binning	will	help.	Go	back	to	the	REPL	and	type	in	this:

dataFrame	

				|>	Seq.countBy	(fun	ts	->	ts.Month)	

				|>	Seq.sort

				|>	Seq.iter	(fun	t	->		printfn	"%A"	t)

dataFrame	

				|>	Seq.countBy	(fun	ts	->	ts.DayOfWeek)	

				|>	Seq.sort

				|>	Seq.iter	(fun	t	->		printfn	"%A"	t)

dataFrame	

				|>	Seq.countBy	(fun	ts	->	ts.AMPM)	

				|>	Seq.sort

				|>	Seq.iter	(fun	t	->		printfn	"%A"	t)

dataFrame	

				|>	Seq.countBy	(fun	ts	->	ts.ReceviedTicket)	

				|>	Seq.sort

				|>	Seq.iter	(fun	t	->		printfn	"%A"	t)

Sending	this	to	the	REPL,	we	see:

(1,	2125)

(2,	1992)

(3,	2529)

(4,	1972)

(5,	2342)

(6,	2407)

(7,	2198)

(8,	2336)

(9,	3245)

(10,	1910)

(11,	1989)

(12,	1664)

(Sunday,	3019)

(Monday,	3169)

(Tuesday,	3549)

(Wednesday,	4732)

(Thursday,	4911)

(Friday,	4012)

(Saturday,	3317)

("AM",	9282)

("PM",	17427)

(Some	false,	19081)

(Some	true,	7628)

val	it	:	unit	=	()

Perhaps	we	can	bin	the	months	of	the	year	in	quarters?	Let’s	create	a	function	that	does
that.	Go	into	the	script	file	and	enter	this:

let	getQuarter(month:int)	=

				match	month	with

				|	1	|	2	|	3	->	1

				|	4	|	5	|	6	->	2

				|	7	|	8	|	9	->	3

				|	_	->	4

let	inputs'	=	

				dataFrame	

				|>	Seq.map	(fun	ts	->	[|getQuarter((ts.Month));	int	ts.DayOfWeek;	

getAMPM'(ts.AMPM)|])

				|>	Seq.toArray

let	outputs'	=	

				dataFrame	

				|>	Seq.map	(fun	ts	->	receivedTicket'(ts.ReceviedTicket.Value))

				|>	Seq.toArray

	

let	error'	=	id3learning.Run(inputs',	outputs')

Sending	this	to	the	REPL,	we	see	this:

val	error'	:	float	=	0.2851473286

This	did	not	improve	our	model.	Perhaps	we	can	keep	working	with	the	data,	or	perhaps
there	is	not	a	correlation	between	a	ticket/warning	based	on	the	data	that	we	have.	Walking
away	from	a	model	is	often	one	of	the	hardest	things	you	have	to	do	in	data	science,
especially	if	you	have	spent	a	considerable	amount	of	time	on	it,	but	it	is	often	the	right
thing	to	do.

numl
Before	we	leave	decision	trees,	I	want	to	look	at	another	way	of	calculating	them.	Instead
of	using	Accord.Net,	I	want	to	introduce	another	.Net	machine	learning	library	called
numl.	numl	is	a	new	kid	on	the	block	and	can	offer	a	lower	barrier	entry	to	machine
learning.	Although	not	as	expansive	as	Accord,	it	does	offer	many	common	models,
including	a	decision	tree.

Go	to	Solution	Explorer	and	add	another	script	called	numl.fsx.	Then	go	into	the	NuGet
package	manager	and	pull	down	numl:

PM>	Install-Package	numl

Go	back	to	the	numl	script	and	enter	in	the	following	code:

#r	"System.Data.Entity.dll"

#r	"FSharp.Data.TypeProviders.dll"

#r	"System.Data.Linq.dll"

open	System

open	System.Data.Linq

open	System.Data.Entity

open	Microsoft.FSharp.Data.TypeProviders

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=Traffic;user	id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;"

type	EntityConnection	=	SqlEntityConnection<connectionString,Pluralize	=	

true>

let	context	=	EntityConnection.GetDataContext()

type	TrafficStop	=	{Month:int;	DayOfWeek:DayOfWeek;	AMPM:	string;	

ReceivedTicket:	option<bool>}

let	getAMPM	(stopDateTime:System.DateTime)	=

				match	stopDateTime.Hour	<	12	with

				|	true	->	"AM"

				|	false	->	"PM"

let	receviedTicket	(disposition:string)	=

				match	disposition.ToUpper()	with

				|	"CITATION"	->	Some	true

				|	"VERBAL	WARNING"	|	"WRITTEN	WARNING"	->	Some	false

				|	_	->	None

let	dataFrame	=	

				context.dbo_TrafficStops

				|>	Seq.map	(fun	ts	->	

{Month=ts.StopDateTime.Value.Month;DayOfWeek=ts.StopDateTime.Value.DayOfWee

k;

							AMPM=getAMPM(ts.StopDateTime.Value);	ReceivedTicket=	

receviedTicket(ts.DispositionDesc)	})

				|>	Seq.filter	(fun	ts	->	ts.ReceivedTicket.IsSome)

				|>	Seq.toArray

This	is	the	same	code	as	the	Accord.fsx	script,	so	you	can	copy	and	paste	it	from	there.
Send	it	to	the	REPL	to	make	sure	you	copy-pasted	it	correctly.	Next,	add	in	this	block	to
reference	numl.

#r	"../packages/numl.0.8.26.0/lib/net40/numl.dll"

open	numl

open	numl.Model

open	numl.Supervised.DecisionTree

Next,	enter	this	block	of	code:

type	TrafficStop'	=	{[<Feature>]	Month:int;	[<Feature>]	DayOfWeek:int;	

				[<Feature>]	AMPM:	string;	[<Label>]	ReceivedTicket:	bool}

let	dataFrame'	=	

				dataFrame	

				|>	Seq.map	(fun	ts	->	{TrafficStop'.Month	=	ts.Month;	DayOfWeek	=	int	

ts.DayOfWeek;	AMPM=ts.AMPM;	ReceivedTicket=ts.ReceivedTicket.Value})

				|>	Seq.map	box

let	descriptor	=	Descriptor.Create<TrafficStop'>()

Sending	that	to	the	REPL,	returns	this:

type	TrafficStop'	=

		{Month:	int;

			DayOfWeek:	int;

			AMPM:	string;

			ReceivedTicket:	bool;}

val	dataFrame'	:	seq<obj>

val	descriptor	:	Descriptor	=

		Descriptor	(TrafficStop')	{

			[Month,	-1,	1]

			[DayOfWeek,	-1,	1]

			[AMPM,	-1,	0]

		*[ReceivedTicket,	-1,	1]

}

There	are	two	things	to	notice	here.	First,	just	like	Accord,	numl	wants	the	input	to	its
modeling	engine	to	be	in	a	certain	format.	In	this	case,	it	is	not	arrays	of	ints.	Rather,	it
wants	object	types	(as	of	the	time	of	writing).	In	order	to	know	what	to	make	of	each
object,	it	needs	to	have	attributes	associated	with	each	element,	hence	the	TrafficStop'
type	that	has	either	[Feature]	or	[Label]	added.	As	you	can	guess,	features	are	for	input
and	labels	are	for	outputs.	The	second	thing	to	notice	is	that	we	call	|>	Seq.map	box.	This
converts	our	types	such	as	int,	string,	and	bool	to	object,	which	is	what	numl	wants.

With	that	out	of	the	way,	we	can	see	what	numl	comes	up	with.	Enter	this	into	the	script
window:

let	generator	=	DecisionTreeGenerator(descriptor)

generator.SetHint(false)

let	model	=	Learner.Learn(dataFrame',	0.80,	25,	generator)

Sending	that	to	the	REPL,	we	get:

val	generator	:	DecisionTreeGenerator

val	model	:	LearningModel	=

		Learning	Model:

		Generator	numl.Supervised.DecisionTree.DecisionTreeGenerator

		Model:

		[AM,	0.0021]

			|-	0

			|		[Month,	0.0021]

			|			|-	1	≤	x	<	6.5

			|			|		[DayOfWeek,	0.0001]

			|			|			|-	0	≤	x	<	3

			|			|			|			+(False,	-1)

			|			|			|-	3	≤	x	<	6.01

			|			|			|			+(False,	-1)

			|			|-	6.5	≤	x	<	12.01

			|			|			+(False,	-1)

			|-	1

			|			+(False,	-1)

		Accuracy:	71.98	%

>

One	of	the	nice	things	about	numl	is	that	the	ToString()	overload	prints	out	a	graphical
representation	of	our	tree.	This	is	a	great	way	to	quickly	visually	inspect	to	see	what	we
have.	You	can	also	see	that	the	accuracy	of	the	model	is	pretty	much	the	same	as	Accord.
If	you	run	this	script	several	times,	you	will	get	slightly	different	answers	because	of	the
way	numl	splits	the	data.	Taking	another	look	at	the	tree,	let’s	see	if	we	can	interpret	it	in
more	detail.

The	modeling	engine	found	that	the	best	feature	to	start	splitting	on	was	AM/PM.	If	the
traffic	stop	was	in	the	afternoon,	you	will	get	a	warning	and	not	a	ticket.	If	it	was	in	the
morning,	we	moved	down	to	the	next	decision	point	on	the	tree.	What	we	can	see	is	that,	if
the	traffic	stop	occurred	in	the	AM	between	July	and	December,	we	would	not	get	a	ticket.
If	the	AM	traffic	stop	was	between	Jan	and	June,	we	would	have	to	go	to	the	next	level,
which	is	the	day	of	the	week.	In	this	case,	the	model	split	between	Sunday-Tuesday	and
Wednesday-Saturday.	You	will	notice	that	both	terminal	nodes	are	false	too.	Where	is	the
true?	Can	the	model	predict	that	I	will	get	a	ticket?	No,	this	model	cannot	reasonably
predict	when	you	will	get	a	ticket.	As	before,	we	will	have	to	leave	this	model	behind.
However,	this	exercise	was	not	a	waste	because	we	will	use	this	data	with	some	more	data
and	a	different	model	to	create	something	that	has	some	practical	value.

One	last	question	before	we	leave	this	chapter,	“What	machine	learning	is	going	on	here?”
We	can	say	that	numl	is	using	machine	learning	because	it	is	doing	several	iterations	with
the	data.	But	what	does	that	mean?	If	you	look	at	the	last	line	of	code	we	wrote,	let
model	=	Learner.Learn(dataFrame',	0.80,	25,	generator),	you	can	see	that	the
third	argument	is	25.	This	is	the	number	of	times	the	model	is	run	and	then	numl	picks	the
best	model.	In	effect,	then,	the	machine	is	“learning”	but	evaluating	several	possible

models	and	selecting	one	for	us.	I	don’t	really	consider	this	machine	learning	because	we
are	not	introducing	new	data	to	the	learning	to	make	it	smarter.

In	the	next	chapter,	we	will	look	at	using	testing	and	training	sets	to	accomplish	some	of
that,	but	we	still	have	the	problem	that	this	is	a	point-in-time	analysis.	How	would	you
make	this	model	self-teaching?	Point	of	fact,	I	would	not	bother	with	the	model	in	its
current	state	because	the	model	has	been	demonstrated	to	be	useless.	However,	if	the
model	was	useful,	I	can	imagine	a	scenario	where	we	constantly	update	the	dataset	and
run	the	model	based	on	more	datasets	that	our	open	data	friends	can	get	their	hands	on.
With	that,	we	can	have	an	application	running	that	might	remind	drivers	before	they	leave
the	house	in	the	morning	that	based	on	the	date/time/weather/other	factors,	they	should	be
taking	it	easier	than	normal.	Perhaps	a	simple	text	or	tweet	to	the	driver?	In	any	event,
once	we	have	a	real	model,	we	can	see	an	application	like	this	in	action.

Summary
In	this	chapter,	we	put	on	our	data	scientist	hat	and	took	a	look	at	using	F#	to	do	data
exploration	and	analysis.	We	were	exposed	to	open	data	and	the	awesomeness	of	type
providers.	We	then	implemented	a	decision	tree,	though	ultimately	we	concluded	that	the
data	did	not	show	a	significant	relationship.

In	the	next	chapter,	we	will	address	some	of	the	issues	that	we	have	been	glossing	over	so
far	and	take	a	deep	dive	into	obtaining,	cleaning,	and	organizing	our	data.

Chapter	5.	Time	Out	–	Obtaining	Data
In	this	chapter,	we	are	going	to	break	from	looking	at	various	machine	learning	models.
Instead,	we	are	going	to	revisit	some	of	the	issues	that	I	glossed	over	in	Chapter	2,
AdventureWorks	Regression,	Chapter	3,	More	AdventureWorks	Regression,	and	Chapter	4,
Traffic	Stops	–	Barking	Up	the	Wrong	Tree?.	We	are	going	to	look	at	different	ways	in
which	we	can	obtain	data	using	Visual	Studio	and	type	providers.	We	will	then	look	at
how	type	providers	help	us	solve	problems	of	missing	data,	how	we	can	use	parallelism	to
speed	up	our	data	extraction,	and	how	we	can	use	type	providers	on	secured	web	services.

Overview
One	of	the	underappreciated	skills	that	a	data	scientist	must	possess	is	the	ability	to	gather
and	assimilate	heterogeneous	data.	Heterogeneous	data	is	data	from	different	sources,
structures,	and	formats.	Heterogeneous	stands	in	contrast	to	homogenous	data	which
assumes	that	all	of	the	data	that	is	imported	is	the	same	as	all	of	the	other	data	that	may
already	exist.	When	the	data	scientist	gets	heterogeneous	data,	one	of	the	first	things	they
will	do	is	transform	the	data	to	a	point	that	it	can	be	combined	with	the	other	data.	The
most	common	shape	of	that	transformation	is	the	data	frame—sometimes	called	the
rectangle	because	the	columns	are	attributes	and	the	rows	are	the	data.	For	example,	here
is	a	data	frame	that	we	have	seen	earlier:

Ideally,	each	frame	has	a	unique	key	that	allows	it	to	be	combined	with	other	data	frames.
In	this	case,	ProductID	is	the	primary	key.	If	you	are	thinking	that	this	is	a	lot	like
RDBMS	theory—you	are	right.

One	of	the	bigger	differences	between	a	research	analysts	and	a	line	of	business	developer
is	how	they	approach	using	data	in	their	project.	For	the	software	engineer,	data	elements
must	be	meticulously	defined,	created,	and	tracked.	For	the	research	analyst,	all	of	that
mental	effort	is	noise	that	is	tangential	to	solving	the	problem.

This	is	where	the	power	of	type	providers	comes	in.	Instead	of	spending	any	effort	on
extracting	data,	we	spend	our	time	transforming,	shaping,	and	analyzing	it.

SQL	Server	providers
Even	though	there	is	lots	of	buzz	surrounding	no-sql	databases	like	MongoDb	and
unstructured	data	stores	like	data	lakes	(or	data	swamps,	depending	on	your	point	of
view),	a	significant	percentage	of	data	that	our	industry	works	with	is	still	stored	in
relational	databases.	As	we	have	seen	in	prior	chapters,	the	data	scientist	must	be	able	to
effectively	communicate	with	relational	databases	using	SQL.	However,	we	also	saw	that
F#	offers	the	ability	to	use	something	called	a	type	provider	to	access	SQL	Server.

Non-type	provider
Let’s	go	back	to	the	SQL	that	was	used	in	Chapter	3,	More	AdventureWorks	Regression,	to
bring	down	the	Average	Orders,	Average	Reviews,	and	List	Price	for	individual	customers
and	see	how	to	do	it	differently.	Go	into	Visual	Studio	and	create	an	F#	Windows	Library
called	TypeProviders.

Notice	that	I	am	using	.NET	Framework	4.5.2.	The	framework’s	minor	version	does	not
matter,	as	long	as	it	is	4.x.	It	is	important	to	note	that	you	cannot	use	type	providers	with
Portable	Class	Libraries	(PCLs).

Once	Visual	Studio	generates	the	files	for	you,	go	ahead	and	delete	Library1.fs	and
remove	all	the	contents	of	Script1.fsx.	Rename	Scipt1.fsx	to
SqlServerProviders.fsx.	Next,	add	a	reference	to	System.Transactions:

Go	into	SqlServerProviders.fsx	and	add	this	code	(you	can	copy	it	from	Chapter	3,
More	AdventureWorks	Regression,	it	is	identical):

#r	"System.Transactions.dll"

open	System

open	System.Text

open	System.Data.SqlClient

type	ProductInfo	=	{ProductID:int;	AvgOrders:float;	AvgReviews:	float;	

ListPrice:	float}

let	productInfos	=	ResizeArray<ProductInfo>()

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	id=	PacktReader;password=	

P@cktM@chine1e@rning;"

[<Literal>]

let	query	=

				"Select	

				A.ProductID,	AvgOrders,	AvgReviews,	ListPrice

				From

				(Select	

				ProductID,

				(Sum(OrderQty)	+	0.0)/(Count(Distinct	SOH.CustomerID)	+	0.0)	as	

AvgOrders

				from	[Sales].[SalesOrderDetail]	as	SOD

				inner	join	[Sales].[SalesOrderHeader]	as	SOH

				on	SOD.SalesOrderID	=	SOH.SalesOrderID

				inner	join	[Sales].[Customer]	as	C

				on	SOH.CustomerID	=	C.CustomerID

				Where	C.StoreID	is	not	null

				Group	By	ProductID)	as	A

				Inner	Join	

				(Select

				ProductID,

				(Sum(Rating)	+	0.0)	/	(Count(ProductID)	+	0.0)	as	AvgReviews

				from	[Production].[ProductReview]	as	PR

				Group	By	ProductID)	as	B

				on	A.ProductID	=	B.ProductID

				Inner	Join

				(Select

				ProductID,

				ListPrice

				from	[Production].[Product]

)	as	C

				On	A.ProductID	=	C.ProductID"

												

let	connection	=	new	SqlConnection(connectionString)

let	command	=	new	SqlCommand(query,connection)

connection.Open()

let	reader	=	command.ExecuteReader()

while	reader.Read()	do

				productInfos.Add({ProductID=reader.GetInt32(0);

																								AvgOrders=(float)(reader.GetDecimal(1));

																								AvgReviews=(float)(reader.GetDecimal(2));

																								ListPrice=(float)(reader.GetDecimal(3));})

productInfos

There	are	52	lines	of	total	code	here,	26	of	which	are	SQL	inside	the	string	called	query.
This	seems	like	a	lot	of	work	for	something	that	appears	to	be	pretty	basic.	Also,	if	we
want	to	change	our	output	rectangle,	we	would	have	to	rewrite	this	SQL	and	hope	we	got
it	right.	Also,	we	now	need	to	know	some	fairly	advanced	SQL	even	though	we	don’t	care
one	whit	that	the	data	is	stored	in	a	SQL	Server	database.	How	can	type	providers	help	us
here?

SqlProvider
Go	back	into	Visual	Studio,	open	up	the	nugget	package	manager,	and	enter	this:

PM>	Install-Package	SQLProvider	-prerelease

Next,	go	into	the	script	file	and	add	this:

#r	"../packages/SQLProvider.0.0.11-alpha/lib/	FSharp.Data.SQLProvider.dll"

Tip
Warning

Type	Providers	are	constantly	changing	their	version	number.	Therefore,
SQLProvider.0.0.11	will	fail	unless	you	edit	it.	To	determine	the	correct	version,	go	into
the	packages	folder	in	your	solution	and	look	at	the	path.

Once	you	put	in	the	correct	version	of	the	provider,	you	might	get	a	dialog	box	that	looks
like	this	(this	is	from	the	last	chapter):

Click	on	Enable.	Heading	back	to	the	script,	go	ahead	and	enter	the	following	code:

open	System

open	System.Linq

open	FSharp.Data.Sql

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	id=	PacktReader;password=	

P@cktM@chine1e@rning;"

type	AdventureWorks	=	

SqlDataProvider<Common.DatabaseProviderTypes.MSSQLSERVER,connectionString>

let	context	=	AdventureWorks.GetDataContext()

Sending	that	to	the	FSI	gives	us	this:

val	connectionString	:	string	=

		"data	source=nc54a9m5kk.database.windows.net;initial	catalog=A"+[72	

chars]

type	AdventureWorks	=	SqlDataProvider<...>

val	context	:	SqlDataProvider<...>.dataContext

Enter	the	following	code	in	the	script	file:

let	customers	=		

				query	{for	c	in	context.Sales.Customer	do

											where	(c.StoreId	>	0)

											select	c.CustomerId}

											|>	Seq.toArray	

Sending	that	to	the	FSI	gives	us	the	following:

val	customers	:	int	[]	=

		[|1;	2;	3;	4;	5;	6;	7;	8;	9;	10;	11;	12;	13;	14;	15;	16;	17;	18;	19;	20;	

21;

				22;	23;	24;	25;	26;	27;	28;	29;	30;	31;	32;	33;	34;	35;	36;	37;	38;	39;	

40;

				41;	42;	43;	44;	45;	46;	47;	48;	49;	50;	51;	52;	53;	54;	55;	56;	57;	58;	

59;

				60;	61;	62;	63;	64;	65;	66;	67;	68;	69;	70;	71;	72;	73;	74;	75;	76;	77;	

78;

				79;	80;	81;	82;	83;	84;	85;	86;	87;	88;	89;	90;	91;	92;	93;	94;	95;	96;	

97;

				98;	99;	100;	...|]

There	are	a	couple	of	things	to	notice	here.	First,	we	are	sending	a	query	(sometimes
referred	to	as	a	computational	expression)	to	the	type	provider.	In	this	case,	we	are
selecting	all	customers	where	the	storeId	is	greater	than	0—the	individual	customers.
The	expression	is	everything	between	the	{}	symbols.	Notice	that	it	is	LINQ-syntax,
because	it	is	LINQ.	If	you	are	not	familiar,	LINQ	stands	for	language	Integrated	Query
and	is	a	language	within	a	language—it	allows	for	querying	capabilities	to	be	placed
inside	your	.NET	language	of	choice.	The	other	thing	to	notice	is	that	the	results	of	the
expression	are	piped	to	our	familiar	F#	Seq	type.	This	means	we	can	get	any	result	from
the	expression	and	use	Seq	to	further	shape	or	refine	the	data.	To	see	this	in	action,	enter
this	into	the	script	file:

let	products	=	

				query	{for	soh	in	context.Sales.SalesOrderHeader	do

											join	sod	in	context.Sales.SalesOrderDetail	on	(soh.SalesOrderId	

=	sod.SalesOrderId)

											join	c	in	context.Sales.Customer	on	(soh.CustomerId	=	

c.CustomerId)

											join	p	in	context.Production.Product	on	(sod.ProductId	=	

p.ProductId)

											where	(c.CustomerId	|=|	customers)

											select	(p.ProductId)}

											|>	Seq.distinct

											|>	Seq.toArray	

When	you	send	it	to	the	FSI,	you	should	see	an	array	of	product	IDs:

val	products	:	int	[]	=

		[|776;	777;	778;	771;	772;	773;	774;	714;	716;	709;	712;	711;	762;	758;	

745;

				743;	747;	715;	742;	775;	741;	708;	764;	770;	730;	754;	725;	765;	768;	

753;

				756;	763;	732;	729;	722;	749;	760;	726;	733;	738;	766;	755;	707;	710;	

761;

				748;	739;	744;	736;	767;	717;	769;	727;	718;	759;	751;	752;	750;	757;	

723;

				786;	787;	788;	782;	783;	779;	780;	781;	815;	816;	808;	809;	810;	823;	

824;

Going	back	to	the	code,	we	are	joining	three	tables	from	the	AdventureWorks	database
together	via	their	foreign	keys:

join	sod	in	context.Sales.SalesOrderDetail	on	(soh.SalesOrderId	=	

sod.SalesOrderId)

join	c	in	context.Sales.Customer	on	(soh.CustomerId	=	c.CustomerId)

join	p	in	context.Production.Product	on	(sod.ProductId	=	p.ProductId)

In	the	next	line,	we	are	selecting	only	those	customers	that	are	in	the	customers’	table	that
we	created	previously.	Notice	that	we	are	using	the	F#	in	operator	of	|=|:

where	(c.CustomerId	|=|	customers)

Finally,	we	are	selecting	only	the	product	IDs	and	then	pulling	down	all	of	the	values	and
then	selecting	the	unique	values:

select	(p.ProductId)}

|>	Seq.distinct

|>	Seq.toArray

Let’s	keep	going	and	see	what	else	we	can	do.	Enter	the	following	into	the	script:

let	averageReviews	=	

				query	{for	pr	in	context.Production.ProductReview	do

												where	(pr.ProductId	|=|	products)

												select	pr}

												|>	Seq.groupBy(fun	pr	->	pr.ProductId)

												|>	Seq.map(fun	(id,a)	->	id,	a	|>	Seq.sumBy(fun	pr	->	

pr.Rating),	a	|>	Seq.length)

												|>	Seq.map(fun	(id,r,c)	->	id,	float(r)/float(c))

												|>	Seq.sortBy(fun	(id,	apr)	->	id)

												|>	Seq.toArray

Sending	this	to	the	REPL	we	see:

val	averageReviews	:	(int	*	float)	[]	=

		[|(749,	3.9);	(750,	3.977272727);	(751,	3.93877551);	(752,	4.02173913);

				(753,	3.939393939);	(754,	3.965517241);	(755,	3.628571429);

				(756,	3.742857143);	(757,	3.9375);	(758,	3.845070423);	(759,	

3.483870968);

				(760,	4.035874439);

In	this	block	of	code,	we	are	pulling	down	all	the	reviews.	We	are	then	grouping	the
reviews	by	productId.	From	there,	we	can	sum	up	the	ratings	and	the	count	of	the	number
of	reviews	(using	Seq.length).	We	can	then	divide	the	total	ratings	amount	by	the	number
of	reviews	and	get	the	average	review	for	each	productId.	Finally,	we	throw	in	a

Seq.sortBy	and	pipe	it	to	an	array.	All	of	this	F#	code	should	be	familiar	as	it	is	very
similar	to	how	we	manipulated	data	in	Chapter	2,	AdventureWorks	Regression,	Chapter	3,
More	AdventureWorks	Regression,	and	Chapter	4,	Traffic	Stops	–	Barking	Up	the	Wrong
Tree?.

Next,	let’s	create	a	data	frame	(sometimes	called	a	rectangle	of	data	if	you	are
geometrically	inclined)	of	prices	for	each	product:

let	listPrices	=	

				query	{for	p	in	context.Production.Product	do

												where	(p.ProductId	|=|	products)

												select	p}

												|>	Seq.map(fun	p	->	p.ProductId,	p.ListPrice)			

												|>	Seq.sortBy(fun	(id,	lp)	->	id)

												|>	Seq.toArray

Sending	that	to	the	REPL,	you	should	see	the	following:

val	listPrices	:	(int	*	decimal)	[]	=

		[|(707,	34.9900M);	(708,	34.9900M);	(709,	9.5000M);	(710,	9.5000M);

				(711,	34.9900M);	(712,	8.9900M);	(714,	49.9900M);	(715,	49.9900M);

				(716,	49.9900M);	(717,	1431.5000M);	(718,	1431.5000M);	(719,	

1431.5000M);

				(722,	337.2200M);	(723,	337.2200M);	(725,	337.2200M);	(726,	337.2200M);

				(727,	337.2200M)

This	code	does	not	introduce	anything	new.	We	pull	down	all	of	the	products	that	are	in
our	array,	take	the	productId	and	list	price,	sort	it,	and	send	it	to	an	array.	Finally,
enter	the	following	into	the	script	file:

let	averageOrders	=	

				query	{for	soh	in	context.Sales.SalesOrderHeader	do

												join	sod	in	context.Sales.SalesOrderDetail	on	(soh.SalesOrderId	

=	sod.SalesOrderId)

												join	c	in	context.Sales.Customer	on	(soh.CustomerId	=	

c.CustomerId)

												where	(c.CustomerId	|=|	customers)

												select	(soh,sod)}

												|>	Seq.map	(fun	(soh,sod)	->	sod.ProductId,	sod.OrderQty,	

soh.CustomerId)

												|>	Seq.groupBy	(fun	(pid,q,cid)	->	pid)

												|>	Seq.map	(fun	(pid,a)	->	pid,	a	|>	Seq.sumBy	(fun	(pid,q,cid)	

->	q),	a	|>	Seq.distinctBy	(fun	(pid,q,cid)	->	cid))

												|>	Seq.map	(fun	(pid,q,a)	->	pid,q,	a	|>	Seq.length)

												|>	Seq.map	(fun	(pid,q,c)	->	pid,	float(q)/float(c))

												|>	Seq.sortBy	(fun	(id,	ao)	->	id)

												|>	Seq.toArray

Sending	this	to	the	REPL	gives	us	the	following:

val	averageOrders	:	(int	*	float)	[]	=

		[|(707,	17.24786325);	(708,	17.71713147);	(709,	16.04347826);

				(710,	3.214285714);	(711,	17.83011583);	(712,	22.33941606);

				(714,	15.35576923);	(715,	22.82527881);	(716,	13.43979058);

				(717,	4.708737864);	(718,	5.115789474);	(719,	3.303030303);

This	is	a	pretty	sizable	code	block	so	it	can	look	daunting.	What	we	are	doing	is	first
pulling	down	all	of	the	SalesOrderHeaders	and	SalesOrderDetails	as	a	tuple	select
(soh,sod).	We	then	pipe	that	set	into	a	Seq.map	that	returns	a	sequence	of	a	tuple	that	has
three	elements:	ProductId,	OrderQty,	and	CustomerId	|>	Seq.map(fun	(soh,sod)	->
sod.ProductId,	sod.OrderQty,	soh.CustomerId).	From	there	we	pipe	those	tuples	into
a	groupBy	for	the	ProductId	|>	Seq.groupBy(fun	(pid,q,cid)	->	pid).	From	there,
we	go	a	bit	crazy.	Take	a	look	at	the	next	line:

|>	Seq.map(fun	(pid,a)	->	pid,	a	|>	Seq.sumBy(fun	(pid,q,cid)	->	q),	a	|>	

Seq.distinctBy(fun	(pid,q,cid)	->	cid))

Hopefully,	you	remember	the	discussion	about	GroupBy,	so	you	realize	that	the	input	is	a
tuple	of	ProductId	and	an	array	of	the	three-item	tuple	of	(ProductId,	OrderQty,	and
CustomerId).	We	create	a	new	three-item	tuple	that	has	ProductId,	the	sum	of	the
OrderQty,	and	yet	another	tuple	that	has	the	CustomerId	and	a	sequence	of	the	distinct
customerId	items.

When	we	pipe	this	to	the	next	line,	we	take	the	length	of	that	last	tuple	(CustomerId,
Array	of	CustomerIds)	as	that	is	the	number	of	unique	customers	that	ordered	the	product.
The	three-item	tuple	is	ProductId,	SumOfQuantityOrdered,	and
CountOfUniqueCustomersThatOrdered.	Since	that	is	a	bit	verbose,	I	used	the	standard
tuple	notation	of	(pid,	q,	c),	where	q	is	SumOfQuantityOrdered	and	c	is
CountOfUniqueCustomersThatOrdered.	This	tuple	is	then	piped	to	the	following:

|>	Seq.map(fun	(pid,q,c)	->	pid,	float(q)/float(c))

We	can	now	get	the	average	number	of	orders	for	each	product.	We	then	finish	off	with	a
sort	and	send	it	to	an	array.	We	now	have	three	arrays	of	tuples:

averageOrders:	ProductId,	AverageNumberOfOrders

averageReviews:	ProductId,	AverageReviews

listPrices:	ProductId,	PriceOfProduct

Ideally,	we	can	then	combine	these	into	one	array	that	has	ProductId,
AverageNumberOfOrders,	AverageReviews,	and	PriceOfProduct.	To	do	that,	you	might
think	that	we	can	just	zip	these	three	arrays	up.	Go	into	the	script	and	enter	the	following:

Seq.zip3	averageOrders		averageReviews		listPrices	

When	you	send	it	to	the	FSI,	you	will	see	something	disappointing:

val	it	:	seq<(int	*	float)	*	(int	*	float)	*	(int	*	decimal)>	=

		seq

				[((707,	17.24786325),	(749,	3.9),	(707,	34.9900M));

					((708,	17.71713147),

The	arrays	are	not	matching	up.	Apparently,	some	products	do	not	have	any	ratings.	What
we	need	is	a	way	to	join	these	three	arrays	into	one	array	and	have	the	join	occur	on	the
ProductId.	Although	we	could	go	back	and	play	around	with	our	where	clauses	in	the
LINQ	expressions,	there	is	an	alternative	way.

Deedle
Go	into	the	script	file	and	enter	the	following	code:

#load	"../packages/FsLab.0.3.17/FsLab.fsx"

open	Foogle

open	Deedle

open	FSharp.Data

As	we	did	earlier,	you	will	have	to	make	sure	the	version	numbers	match.	When	you	send
it	to	the	REPL,	you	will	see	the	following:

[Loading	F:\Git\MLDotNet\Book	

Chapters\Chapter05\TypeProviders.Solution\packages\FsLab.0.3.10\FsLab.fsx]

namespace	FSI_0009.FsLab

		val	server	:	Foogle.SimpleHttp.HttpServer	option	ref

		val	tempDir	:	string

		val	pid	:	int

		val	counter	:	int	ref

		val	displayHtml	:	html:string	->	unit

namespace	FSI_0009.FSharp.Charting

		type	Chart	with

				static	member

						

Line	:	data:Deedle.Series<'K,#FSharp.Charting.value>	*	?Name:string	*

													?Title:string	*	?Labels:#seq<string>	*	?Color:Drawing.Color	*

What	we	have	done	is	loaded	Deedle.	Deedle	is	a	neat	library	created	for	time-series
analysis.	Let’s	see	if	Deedle	can	help	us	with	our	unbalanced	array	issue.	The	first	thing
we	want	to	do	is	to	take	our	array	of	tuples	and	turn	them	into	data	frames.	Enter	this	into
the	script:

let	averageOrders'	=	Frame.ofRecords	averageOrders

let	listPrices'	=	Frame.ofRecords	listPrices

let	averageReviews'	=	Frame.ofRecords	averageReviews

Sending	this	to	the	FSI,	you	will	see	something	like	the	following:

						Item1	Item2												

0		->	749			3.9														

1		->	750			3.97727272727273	

2		->	751			3.93877551020408	

3		->	752			4.02173913043478	

4		->	753			3.9393939393939

Let’s	rename	Item1	and	Item2	to	something	that	has	a	bit	more	meaning	and	make	the
first	vector	of	the	fame	the	primary	key	of	the	frame.	Enter	the	following	into	the	script
file:

let	orderNames	=	["ProductId";	"AvgOrder"]

let	priceNames	=	["ProductId";	"Price"]

let	reviewNames	=	["ProductId";	"AvgReview"]

let	adjustFrame	frame	headers	=

				frame	|>	Frame.indexColsWith	headers

										|>	Frame.indexRowsInt	"ProductId"

										|>	Frame.sortRowsByKey

let	averageOrders''	=	adjustFrame	averageOrders'	orderNames

let	listPrices''	=	adjustFrame	listPrices'	priceNames

let	averageReviews''	=	adjustFrame	averageReviews'	reviewNames

Sending	that	to	the	REPL,	should	see	something	like:

val	averageReviews''	:	Frame<int,string>	=

		

							AvgReview								

749	->	3.9														

750	->	3.97727272727273	

751	->	3.93877551020408

This	code	should	be	fairly	self-explanatory.	We	are	creating	a	function	called	adjustFrame
that	takes	in	two	arguments:	a	data	frame	and	an	array	of	strings	that	will	become	the
header	values.	We	apply	the	headers	via	the	first	pipe,	make	the	first	column	(ProductId)
the	primaryKey	via	the	second	pipe,	and	then	sort	the	frame	via	the	third	pipe.	We	then
apply	this	function	to	our	three	data	frames:	orders,	prices,	and	reviews.	Notice	that	we	are
using	the	tick	notation.

From	there,	we	can	now	combine	the	frames	based	on	their	key.	Go	to	the	script	file	and
add	this:

averageOrders''	|>	Frame.join	JoinKind.Inner	listPrices''

																|>	Frame.join	JoinKind.Inner	averageReviews''

Sending	this	to	the	FSI,	you	should	see	the	following:

							AvgReview								Price					AvgOrder									

749	->	3.9														3578.2700	4.47457627118644	

750	->	3.97727272727273	3578.2700	4.72727272727273	

751	->	3.93877551020408	3578.2700	4.875												

752	->	4.02173913043478

Cool	huh?	Deedle	is	a	very	powerful	library	that	you	can	use	in	a	variety	of	scenarios.

Going	back	to	our	original	task,	we	now	have	two	different	ways	to	pull	data	out	from	a
database	and	transform	it.	When	you	do	a	side-by-side	comparison	of	the	ADO.NET	SQL
ways	and	the	type-provider	approach,	there	are	some	pretty	strong	arguments	to	be	made
to	use	the	type	provider	method.	First,	SqlDataProvider	is	designed	for	most	of	the
popular	relational	databases	out	there.	If	you	moved	your	AdventureWorks	database
from	MS	SQL	Server	to	MySql,	all	you	would	have	to	change	is	the	connection	string	and
all	the	code	would	be	the	same.	Second,	consider	that	there	is	no	SQL	in	the	type	provider
implementation.	Instead,	we	are	using	an	F#	computational	expression	to	pick	what	tables
and	what	records	we	want.	This	means	we	don’t	have	to	know	any	SQL	and	we	have	even
more	portability.	If	we	move	our	AdventureWorks	database	to	a	NoSQL	database	like
Mongo	or	DocumentDb,	we	would	have	to	swap	out	a	type	provider	and	then	change	our
connection	string.	Finally,	consider	our	approach	to	the	data	using	the	type	provider.	We
do	not	have	to	build	any	classes	ahead	of	time	to	put	our	data	into,	as	types	are
automatically	generated	for	us.

Also,	since	we	are	bringing	down	small	chunks	of	data	to	the	client	that	are	then
transformed,	we	can	run	each	step	of	our	though	process	independently.	I	can’t	emphasize
how	important	that	is;	we	are	extracting	and	transforming	the	data	with	small	viewable
steps	that	align	with	our	thought	process.	We	can	spend	our	mental	energy	and	time
focusing	on	the	problem	at	hand	and	not	wading	through	the	syntax	of	a	language	we	may
or	may	not	be	comfortable	with.	The	downside	of	the	type	provider	method	is	that	it	may
be	slower	than	the	ADO.NET	approach	because	there	is	less	opportunity	to	hand-adjust
query	optimization.	In	this	case,	we	are	doing	ad	hoc	data	exploration	and	analysis	on	a
small	dataset	so	the	performance	differences	are	minor.	However,	even	if	it	was	a	large
dataset,	I	would	still	follow	the	software	engineering	mantra	of,	“Make	it	right.	Then	make
it	fast.”

MicrosoftSqlProvider
Before	we	leave	our	discussion	on	type	providers,	I	want	to	show	another	type	provider
that	is	built	upon	Entity	Framework	7	that	has	a	lot	of	promise,	especially	when	you	want
to	start	using	type	providers	as	a	replacement	to	your	current	ORM.	It	is	called	the
EntityFramework.MicrosoftSqlServer	type	provider.

Go	back	to	Visual	Studio,	open	the	package	manager	console	and	enter	the	following:

PM>	Install-Package	FSharp.EntityFramework.MicrosoftSqlServer	–Pre

Next,	go	to	your	script	file	and	enter	the	following:

#I	@"..\packages"	

#r	@"EntityFramework.Core.7.0.0-rc1-

final\lib\net451\EntityFramework.Core.dll"

#r	@"EntityFramework.MicrosoftSqlServer.7.0.0-rc1-

final\lib\net451\EntityFramework.MicrosoftSqlServer.dll"

#r	@"EntityFramework.Relational.7.0.0-rc1-

final\lib\net451\EntityFramework.Relational.dll"

#r	@"Inflector.1.0.0.0\lib\net45\Inflector.dll"

#r	@"Microsoft.Extensions.Caching.Abstractions.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Caching.Abstractions.dll"

#r	@"Microsoft.Extensions.Caching.Memory.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Caching.Memory.dll"

#r	@"Microsoft.Extensions.Configuration.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Configuration.dll"

#r	@"Microsoft.Extensions.Configuration.Abstractions.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Configuration.Abstractions.dll"

#r	@"Microsoft.Extensions.Configuration.Binder.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Configuration.Binder.dll"

#r	@"Microsoft.Extensions.DependencyInjection.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.DependencyInjection.dll"

#r	@"Microsoft.Extensions.Logging.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Logging.dll"

#r	@"Microsoft.Extensions.Logging.Abstractions.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Logging.Abstractions.dll"

#r	@"Microsoft.Extensions.OptionsModel.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.OptionsModel.dll"

#r	@"Microsoft.Extensions.Primitives.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Primitives.dll"

#r	@"Remotion.Linq.2.0.1\lib\net45\Remotion.Linq.dll"

#r	@"System.Collections.Immutable.1.1.36\lib\portable-

net45+win8+wp8+wpa81\System.Collections.Immutable.dll"

#r	@"System.Diagnostics.DiagnosticSource.4.0.0-beta-

23516\lib\dotnet5.2\System.Diagnostics.DiagnosticSource.dll"

#r	@"Ix-Async.1.2.5\lib\net45\System.Interactive.Async.dll"

#r	

"../packages/Microsoft.Extensions.DependencyInjection.Abstractions.1.0.0-

rc1-

final/lib/net451/Microsoft.Extensions.DependencyInjection.Abstractions.dll"

#r	@"FSharp.EntityFramework.MicrosoftSqlServer.0.0.2.0-

alpha\lib\net451\FSharp.EntityFramework.MicrosoftSqlServer.dll"

Yes,	I	know	that	is	a	lot,	but	you	only	have	to	enter	this	once	and	you	don’t	have	to	bring	it
over	to	your	.fs	file.	If	you	don’t	want	to	copy	and	paste	this	code	over	to	your	script,	you
can	just	install	all	of	Entity	Framework,	and	these	packages	will	be	available.	In	any
event,	enter	the	following	into	the	script	file:

open	System

open	System.Data.SqlClient

open	Microsoft.Data.Entity

open	FSharp.Data.Entity

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;	user	id=	PacktReader;password=	

P@cktM@chine1e@rning;"

type	AdventureWorks	=	SqlServer<connectionString,	Pluralize	=	true>

let	context	=	new	AdventureWorks()

Sending	this	to	the	REPL	will	give	you	this:

				nested	type	Sales.SpecialOffer

				nested	type	Sales.SpecialOfferProduct

				nested	type	Sales.Store

				nested	type	dbo.AWBuildVersion

				nested	type	dbo.DatabaseLog

				nested	type	dbo.ErrorLog

		end

val	context	:	AdventureWorks

Go	back	to	the	script	file	and	enter	the	following:

let	salesOrderQuery	=	

				query	{	for	soh	in	context.``Sales.SalesOrderHeaders``	do

												join	sod	in	context.``Sales.SalesOrderDetails``	on	

(soh.SalesOrderID	=	sod.SalesOrderID)

												where	(soh.OrderDate	>	DateTime(2013,5,1))

												select(soh)}	|>	Seq.head

When	you	send	this	to	the	FSI,	you	will	see	the	SalesOrderheader	Entity	Framework
type	in	all	its	glory:

					FK_SalesOrderHeader_Address_BillToAddressID	=	null;

					FK_SalesOrderHeader_CreditCard_CreditCardID	=	null;

					FK_SalesOrderHeader_CurrencyRate_CurrencyRateID	=	null;

					FK_SalesOrderHeader_Customer_CustomerID	=	null;

					FK_SalesOrderHeader_SalesPerson_SalesPersonID	=	null;

					FK_SalesOrderHeader_SalesTerritory_TerritoryID	=	null;

					FK_SalesOrderHeader_ShipMethod_ShipMethodID	=	null;

					Freight	=	51.7855M;

					ModifiedDate	=	5/9/2013	12:00:00	AM;

					OnlineOrderFlag	=	true;

					OrderDate	=	5/2/2013	12:00:00	AM;

					PurchaseOrderNumber	=	null;

					RevisionNumber	=	8uy;

					SalesOrderDetail	=	null;

					SalesOrderHeaderSalesReason	=	null;

					SalesOrderID	=	50788;

					SalesOrderNumber	=	"SO50788";

					SalesPersonID	=	null;

					ShipDate	=	5/9/2013	12:00:00	AM;

					ShipMethodID	=	1;

					ShipToAddressID	=	20927;

					Status	=	5uy;

					SubTotal	=	2071.4196M;

					TaxAmt	=	165.7136M;

					TerritoryID	=	4;

					TotalDue	=	2288.9187M;

					rowguid	=	74fca7f8-654b-432f-95fb-0dd42b0e3cf1;}

>

The	implications	are	that	anything	you	do	with	Entity	Framework,	you	can	do	with	the
type	provider—with	no	upfront	code.	No	templates,	no	designers,	no	nothin’.

Let’s	press	on	and	see	how	the	type	provider	handles	null.	Go	into	the	script	and	enter	the
following:

let	salesOrderQuery'	=	

				query	{	for	soh	in	context.``Sales.SalesOrderHeaders``	do

												join	sod	in	context.``Sales.SalesOrderDetails``	on	

(soh.SalesOrderID	=	sod.SalesOrderID)

												join	p	in	context.``Production.Products``	on	(sod.ProductID	=	

p.ProductID)

												where	(soh.OrderDate	>	DateTime(2013,5,1)	&&	

p.ProductSubcategoryID	=		new	System.Nullable<int>(1))

												select(soh)}	|>	Seq.head

salesOrderQuery'

When	you	send	this	to	the	FSI,	you	will	see	something	like	the	following:

					SalesPersonID	=	null;

					ShipDate	=	5/9/2013	12:00:00	AM;

					ShipMethodID	=	1;

					ShipToAddressID	=	20927;

					Status	=	5uy;

					SubTotal	=	2071.4196M;

					TaxAmt	=	165.7136M;

					TerritoryID	=	4;

					TotalDue	=	2288.9187M;

					rowguid	=	74fca7f8-654b-432f-95fb-0dd42b0e3cf1;}

>

Notice	that	we	have	to	use	System.Nullable<int>	in	the	where	condition	to	account	for
the	fact	that	ProductSubcategoyID	is	nullable	on	the	database.	This	leads	to	one	small
gotcha	with	using	the	type	provider.	You	can’t	use	the	out	of	the	box	|=|	operator	to
search	for	an	array	of	values.	For	example,	if	you	sent	the	following	to	the	REPL:

let	salesOrderQuery'''	=

	query	{	for	soh	in	context.``Sales.SalesOrderHeaders``	do

												join	sod	in	context.``Sales.SalesOrderDetails``	on	

(soh.SalesOrderID	=	sod.SalesOrderID)

												join	p	in	context.``Production.Products``	on	(sod.ProductID	=	

p.ProductID)

												where	(soh.OrderDate	>	DateTime(2013,5,1)	&&	

p.ProductSubcategoryID	|=|	[|1;2;3|])

												select(soh)}	|>	Seq.head

You	will	get	the	following	back:

SqlServerProviders.fsx(199,105):	error	FS0001:	This	expression	was	expected	

to	have	type

				Nullable<int>				

>	but	here	has	type

				int		

We	now	need	to	create	an	array	of	nullable	ints.	Will	that	work?

let	produceSubcategories	=	[|new	System.Nullable<int>(1);	new	

System.Nullable<int>(2);	new	System.Nullable<int>(3)|]

let	salesOrderQuery'''	=	

query	{	for	soh	in	context.``Sales.SalesOrderHeaders``	do

								join	sod	in	context.``Sales.SalesOrderDetails``	on	

(soh.SalesOrderID	=	sod.SalesOrderID)

								join	p	in	context.``Production.Products``	on	(sod.ProductID	=	

p.ProductID)

								where	(soh.OrderDate	>	DateTime(2013,5,1)	&&	p.ProductSubcategoryID	

|=|	produceSubcategories)

								select(soh)}	|>	Seq.head

Alas,	no:

System.ArgumentException:	The	input	sequence	was	empty.

Parameter	name:	source

			at	Microsoft.FSharp.Collections.SeqModule.Head[T](IEnumerable`1	source)

			at	<StartupCode$FSI_0024>.$FSI_0024.main@()	in	F:\Git\MLDotNet\Book	

Chapters\Chapter05\TypeProviders.Solution\TypeProviders\SqlServerProviders.

fsx:line	206

Stopped	due	to	error

So	there	are	a	couple	of	ways	out	of	this	problem.	Option	number	1,	is	that	you	can	create
a	function.	Enter	the	following	into	your	script	file:

let	isBikeSubcategory	id	=

				let	produceSubcategories	=	[|new	System.Nullable<int>(1);

				new	System.Nullable<int>(2);	new	System.Nullable<int>(3)|]

				Array.contains	id	produceSubcategories

isBikeSubcategory(new	System.Nullable<int>(1))

isBikeSubcategory(new	System.Nullable<int>(6))

let	salesOrderQuery'''	=	

				query	{	for	soh	in	context.``Sales.SalesOrderHeaders``	do

												join	sod	in	context.``Sales.SalesOrderDetails``	on	

(soh.SalesOrderID	=	sod.SalesOrderID)

												join	p	in	context.``Production.Products``	on	(sod.ProductID	=	

p.ProductID)

												where	(soh.OrderDate	>	DateTime(2013,5,1)	&&	

isBikeSubcategory(p.ProductSubcategoryID))

												select(soh)}	|>	Seq.head

salesOrderQuery'''

Sending	this	to	the	FSI	gives	you	the	following:

					Status	=	5uy;

					SubTotal	=	2071.4196M;

					TaxAmt	=	165.7136M;

					TerritoryID	=	4;

					TotalDue	=	2288.9187M;

					rowguid	=	74fca7f8-654b-432f-95fb-0dd42b0e3cf1;}

>

There	is	no	new	code	here.	We	created	a	function.

But	wait!	There’s	more!	Go	back	to	the	script	file	and	enter	the	following:

let	produceSubcategories	=	[|new	System.Nullable<int>(1);

new	System.Nullable<int>(2);	new	System.Nullable<int>(3)|]

let	(|=|)	id	a	=	Array.contains	id	a

let	salesOrderQuery4	=	

				query	{	for	soh	in	context.``Sales.SalesOrderHeaders``	do

												join	sod	in	context.``Sales.SalesOrderDetails``	on	

(soh.SalesOrderID	=	sod.SalesOrderID)

												join	p	in	context.``Production.Products``	on	(sod.ProductID	=	

p.ProductID)

												where	(soh.OrderDate	>	DateTime(2013,5,1)	&&	

p.ProductSubcategoryID	|=|	produceSubcategories)

												select(soh)}	|>	Seq.head

salesOrderQuery4

So	what	is	this	line	of	code?

let	(|=|)	id	a	=	Array.contains	id	a

It	is	a	function	named	|=|	that	takes	in	two	parameters:	the	id	to	search	and	the	array	that
gets	searched.	This	function	is	called	an	infix	operator	because	we	are	assigning	symbols
to	stand	in	for	a	more	descriptive	name.	Consider	how	the	+	operator	stands	in	for	Add.
With	that	infix	operator	in	place,	we	can	go	back	and	make	our	syntax	more	intuitive	here:

where	(soh.OrderDate	>	DateTime(2013,5,1)	&&	p.ProductSubcategoryID	|=|	

produceSubcategories)

There	is	one	more	option	to	consider:	just	ditching	the	extra	function	and	inlining
Array.contains.	Go	back	to	the	script	and	enter	this	in:

let	produceSubcategories	=	[|new	System.Nullable<int>(1);

new	System.Nullable<int>(2);	new	System.Nullable<int>(3)|]

let	salesOrderQuery5	=	

				query	{	for	soh	in	context.``Sales.SalesOrderHeaders``	do

												join	sod	in	context.``Sales.SalesOrderDetails``	on	

(soh.SalesOrderID	=	sod.SalesOrderID)

												join	p	in	context.``Production.Products``	on	(sod.ProductID	=	

p.ProductID)

												where	(soh.OrderDate	>	DateTime(2013,5,1)	&&		Array.contains	

p.ProductSubcategoryID	produceSubcategories)

												select(soh)}	|>	Seq.head

salesOrderQuery5

Sending	this	to	the	REPL	gives	us	the	expected	return:

					ShipDate	=	5/9/2013	12:00:00	AM;

					ShipMethodID	=	1;

					ShipToAddressID	=	20927;

					Status	=	5uy;

					SubTotal	=	2071.4196M;

					TaxAmt	=	165.7136M;

					TerritoryID	=	4;

					TotalDue	=	2288.9187M;

					rowguid	=	74fca7f8-654b-432f-95fb-0dd42b0e3cf1;}

>

So	we	have	three	different	ways	to	handle	the	problem.	Do	we	pick	the	named	function,
the	in-fix	operator,	or	the	in-line	function?	In	this	case,	I	would	pick	the	in-fix	operator
because	we	are	replacing	an	existing	operator	that	should	work	and	makes	the	line	the
most	readable.	Others	might	disagree	and	you	have	to	be	prepared	as	a	data	scientist	to	be
able	to	read	other	people’s	code,	so	it	is	good	that	you	are	familiar	with	all	three	ways.

SQL	Server	type	provider	wrap	up
I	have	already	highlighted	two	SQL	type	providers	in	this	chapter.	There	are	actually	five
different	type	providers	that	you	can	use	when	accessing	SQL	databases	that	I	know	of,
and	there	are	certainly	more.	When	you	first	start	using	F#,	you	might	be	confused	about
which	one	to	use.	For	your	reference,	here	is	my	basic	run	down:

FSharp.Data.TypeProviders.SqlServerProvider:	This	is	a	part	of	Visual	Studio
install,	is	supported	by	Microsoft,	and	no	new	development	is	going	on.	Since	this	is
the	end	of	life,	you	would	not	want	to	use	this.
FSharp.Data.TypeProviders.EntityFrameworkProvider:	This	is	a	part	of	Visual
Studio	install,	is	supported	by	Microsoft,	and	no	new	development	is	going	on.	It	is
good	for	vanilla	databases.
FSharp.Data.SqlClient:	This	was	created	by	the	community.	It	is	a	very	stable	way
to	pass	SQL	commands	to	the	server.	It	does	not	support	LINQ-style	computational
expressions.	It	is	good	for	CRUD-based	F#	operations.
FSharp.Data.SqlProvider:	This	was	created	by	the	community	in	pre-release,	so
there	is	some	instability.	It	is	very	good	for	doing	LINQ-style	computation
expressions.	It	supports	different	RDMS	like	Oracle,	MySQL,	and	SQL	Server.
FSharp.EntityFramework.MicrosoftSqlServer:	This	was	created	by	the
community.	It	is	in	its	very	early	stages,	but	holds	tons	of	promise	to	be	a	great
replacement	to	traditional	ORM	coding.	It	is	good	for	doing	LINQ-style	computation
expressions.

Non	SQL	type	providers
Type	providers	are	not	just	for	relational	database	management	systems.	In	fact,	there	are
JSON	type	providers,	XML	type	providers,	CSV	type	providers,	the	list	goes	on.	Let’s
take	a	look	at	a	couple	and	see	how	we	can	use	them	to	make	some	really	interesting	data
frames	based	on	heterogeneous	data.

Go	into	Visual	Studio	and	add	a	new	script	file	called	NonSqlTypeProviders.fsx.	At	the
top,	bring	in	all	of	the	references	that	we’ll	be	using	and	open	up	the	needed	libraries:

#load	"../packages/FsLab.0.3.17/FsLab.fsx"

#I	@"..\packages"	

#r	@"EntityFramework.Core.7.0.0-rc1-

final\lib\net451\EntityFramework.Core.dll"

#r	@"EntityFramework.MicrosoftSqlServer.7.0.0-rc1-

final\lib\net451\EntityFramework.MicrosoftSqlServer.dll"

#r	@"EntityFramework.Relational.7.0.0-rc1-

final\lib\net451\EntityFramework.Relational.dll"

#r	@"Inflector.1.0.0.0\lib\net45\Inflector.dll"

#r	@"Microsoft.Extensions.Caching.Abstractions.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Caching.Abstractions.dll"

#r	@"Microsoft.Extensions.Caching.Memory.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Caching.Memory.dll"

#r	@"Microsoft.Extensions.Configuration.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Configuration.dll"

#r	@"Microsoft.Extensions.Configuration.Abstractions.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Configuration.Abstractions.dll"

#r	@"Microsoft.Extensions.Configuration.Binder.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Configuration.Binder.dll"

#r	@"Microsoft.Extensions.DependencyInjection.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.DependencyInjection.dll"

#r	@"Microsoft.Extensions.Logging.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Logging.dll"

#r	@"Microsoft.Extensions.Logging.Abstractions.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Logging.Abstractions.dll"

#r	@"Microsoft.Extensions.OptionsModel.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.OptionsModel.dll"

#r	@"Microsoft.Extensions.Primitives.1.0.0-rc1-

final\lib\net451\Microsoft.Extensions.Primitives.dll"

#r	@"Remotion.Linq.2.0.1\lib\net45\Remotion.Linq.dll"

#r	@"System.Collections.Immutable.1.1.36\lib\portable-

net45+win8+wp8+wpa81\System.Collections.Immutable.dll"

#r	@"System.Diagnostics.DiagnosticSource.4.0.0-beta-

23516\lib\dotnet5.2\System.Diagnostics.DiagnosticSource.dll"

#r	@"Ix-Async.1.2.5\lib\net45\System.Interactive.Async.dll"

#r	

"../packages/Microsoft.Extensions.DependencyInjection.Abstractions.1.0.0-

rc1-

final/lib/net451/Microsoft.Extensions.DependencyInjection.Abstractions.dll"

#r	@"FSharp.EntityFramework.MicrosoftSqlServer.0.0.2.0-

alpha\lib\net451\FSharp.EntityFramework.MicrosoftSqlServer.dll"

open	System

open	Foogle

open	Deedle

open	FSharp.Data

open	System.Data.SqlClient

open	Microsoft.Data.Entity

Send	it	to	the	REPL	to	make	sure	you	have	all	of	the	needed	libraries.	In	the	script,	add	the
following	code	to	bring	in	data	from	our	AdventureWorks	SQL	Server	database.	You	will
notice	that	I	am	piping	straight	to	Deedle’s	dataframe:

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	

id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;"

type	AdventureWorks	=	SqlServer<connectionString,	Pluralize	=	true>

let	context	=	new	AdventureWorks()

let	salesNames	=	["Date";	"Sales"]

let	salesByDay	=	

				query	{	for	soh	in	context.``Sales.SalesOrderHeaders``	do

												join	sod	in	context.``Sales.SalesOrderDetails``	on	

(soh.SalesOrderID	=	sod.SalesOrderID)

												where	(soh.OrderDate	>	DateTime(2013,5,1))

												select(soh)}

												|>	Seq.countBy(fun	soh	->	soh.OrderDate)

												|>	Frame.ofRecords

												|>	Frame.indexColsWith	salesNames

												|>	Frame.indexRowsDate	"Date"

												|>	Frame.sortRowsByKeySend	it	to	the	REPL	to	get	this:

																									Sales	

5/2/2013	12:00:00	AM		->	9					

5/3/2013	12:00:00	AM		->	9					

:																								...			

6/30/2014	12:00:00	AM	->	96				

Go	back	to	the	script	and	add	some	data	that	is	stored	in	a	CSV	file	from	Yahoo	Finance.
In	this	case,	it	is	the	change	in	daily	stock	price	for	the	Dow	Jones	Industrial	Average:

let	stockNames	=	["Date";	"PriceChange"]

type	Stocks	=	CsvProvider<"http://ichart.finance.yahoo.com/table.csv?

s=^DJI">

let	dow	=	Stocks.Load("http://ichart.finance.yahoo.com/table.csv?s=^DJI")

let	stockChangeByDay	=	

				dow.Rows	|>	Seq.map(fun	r	->	r.Date,	(r.``Adj	Close``	-	r.Open)/r.Open)

													|>	Frame.ofRecords

													|>	Frame.indexColsWith	stockNames

													|>	Frame.indexRowsDate	"Date"

													|>	Frame.sortRowsByKey

Send	it	to	the	REPL	to	get	the	following:

type	Stocks	=	CsvProvider<...>

val	dow	:	CsvProvider<...>

val	stockChangeByDay	:	Frame<int,string>	=

		

																										PriceChange																					

1/29/1985	12:00:00	AM		->	0.0116614159112959501515062411		

1/30/1985	12:00:00	AM		->	-0.0073147907201291486627914499	

:																									...																													

11/25/2015	12:00:00	AM	->	-0.000416362767587419771025076		

11/27/2015	12:00:00	AM	->	0.0004128690819110368634773694		

Go	back	to	the	script	and	add	some	data	that	is	served	up	by	an	API	in	JSON	format	from
Quandl.	In	this	case,	it	is	the	number	of	sunspots	recorded	by	the	Royal	Observatory	in
Belgium.

let	sunspotNames	=	["Date";	"Sunspots"]

type	Sunspots	=	

JsonProvider<"https://www.quandl.com/api/v3/datasets/SIDC/SUNSPOTS_D.json?

start_date=2015-10-01&end_date=2015-10-01">

let	sunspots	=	

Sunspots.Load("https://www.quandl.com/api/v3/datasets/SIDC/SUNSPOTS_D.json?

start_date=2013-05-01")

let	sunspotsByDay	=	

				sunspots.Dataset.Data	|>	Seq.map(fun	r	->	r.DateTime,	Seq.head	

r.Numbers)	

																										|>	Frame.ofRecords

																										|>	Frame.indexColsWith	sunspotNames

																										|>	Frame.indexRowsDate	"Date"

																										|>	Frame.sortRowsByKey

When	you	send	it	to	the	FSI,	you	should	get	something	like	the	following:

val	sunspotsByDay	:	Frame<DateTime,string>	=

		

																										Sunspots	

5/1/2013	12:00:00	AM			->	142.0				

5/2/2013	12:00:00	AM			->	104.0				

:																									...						

10/30/2015	12:00:00	AM	->	88.0					

10/31/2015	12:00:00	AM	->	83.0

Finally,	go	back	to	the	script	and	join	all	three	data	frames:

let	dataFrame	=	salesByDay	|>	Frame.join	JoinKind.Inner	stockChangeByDay

																											|>	Frame.join	JoinKind.Inner	sunspotsByDay

Sending	that	to	the	REPL	gives:

val	dataFrame	:	Frame<DateTime,string>	=

		

																									PriceChange																					Sales	Sunspots	

5/2/2013	12:00:00	AM		->	0.0088858122275952653140731221		9					104.0				

5/3/2013	12:00:00	AM		->	0.0095997784626598973212920005		9					98.0					

:																													

6/27/2014	12:00:00	AM	->	0.0002931965456766616196704027		82				67.0					

6/30/2014	12:00:00	AM	->	-0.0015363085597738848688182542	96				132.0				

We’ll	leave	the	process	of	creating	a	model	to	see	if	there	is	a	relationship	among	the
Down	Jones	Price	Change	and	the	number	of	sunspots	on	the	amount	of	Sales	by	Day	up
to	the	reader.	Before	you	get	too	carried	away,	you	might	want	to	consider	this	website

about	data	elements	that	have	no	relation	but	are	correlated
(http://tylervigen.com/spurious-correlations).	I	think	this	is	my	favorite	one:

http://tylervigen.com/spurious-correlations

Combining	data
Sometimes	the	data	that	you	obtain	from	a	source	system	is	incomplete.	Consider	this
dataset	of	crash	locations	that	was	obtained	from	the	State	Department	of	Transportation
office:

Notice	that	latitude	and	longitude	are	missing	and	that	location	does	not	use	a	normal
address/city/state	pattern.	Rather,	it	is	OnRoad,	Miles,	FromRoad,	and	TowardRoad.
Unfortunately,	this	is	fairly	common	when	getting	data	from	public	entities—systems	may
have	been	built	before	lat/lon	became	mainstream	and	the	system’s	addressing	might	be
designed	to	only	work	inside	the	system.	This	means	we	need	a	way	to	figure	out	the
latitude	and	longitude	from	this	atypical	addressing.

If	you	pull	the	source	code	down	from	the	site,	you	will	see	a	couple	of	script	files.	The
first	is	called	BingGeocode.	This	is	a	script	that	goes	out	to	the	Bing	maps	API	and	returns
a	geolocation	for	a	given	address.	The	key	thing	is	that,	although	Bing	does	not	recognize
OnRoad/FromRoad/TowardRoad,	it	does	recognize	cross	streets.	Therefore,	we	can
take	a	sample	from	the	crash	dataset	of	incidents	that	happened	at	or	near	intersections—
which	we	can	determine	from	the	OnRoad/FromRoad	as	long	as	the	Miles	value	is	fairly
low.	In	fact,	90	percent	of	the	records	are	within	a	quarter	mile	of	an	intersection.

If	you	inspect	the	code,	you	will	see	that	there	is	nothing	particularly	new	here.	We	use	the
JSON	type	provider	to	make	the	call	to	Bing,	and	we	parse	the	results,	using	the	Option
type	to	return	none	or	some	Geolocation.	If	you	want	to	run	this	on	your	machine,	we	will
need	to	sign	up	for	the	Bing	Map	API	developer	program	here
(https://www.bingmapsportal.com/)	and	put	your	value	into	the	apiKey:

#r	"../packages/FSharp.Data.2.2.5/lib/net40/FSharp.Data.dll"

open	System.IO

open	System.Text

open	FSharp.Data

[<Literal>]

let	sample	=	"..\Data\BingHttpGet.json"

type	Context	=	JsonProvider<sample>

let	getGeocode	address	=

				let	apiKey	=	"yourApiKeyHere"

				let	baseUri	=	"http://dev.virtualearth.net/REST/v1/Locations?q="	+	

https://www.bingmapsportal.com/

address	+	"&o=json&key="	+	apiKey

				let	searchResult	=	Context.Load(baseUri)

				let	resourceSets	=	searchResult.ResourceSets

				match	resourceSets.Length	with

				|	0	->	None

				|	_	->	let	resources	=	resourceSets.[0].Resources

											match	resources.Length	with

											|	0	->	None

											|	_	->	let	resource	=	resources.[0]

																		Some	resource.GeocodePoints

let	address	=	"1%20Microsoft%20Way%20Redmond%20WA%2098052"

let	address'	=	"Webser	st	and	Holtz	ln	Cary,NC"

getGeocode	address'

In	the	solution,	there	is	another	script	file	that	does	the	actual	heavy	lifting	of	pulling	the
original	crash	data	from	the	database,	updating	it	with	the	latitude	and	longitude,	and	then
putting	it	back	into	the	database.	This	script	file	is	called	UpdateCrashLatLon.fsx.	If	you
look	at	the	code,	the	first	part	pulls	down	crashes	that	happened	in	the	same	town	as	the
traffic	stops	and	occurred	within	a	quarter	mile	of	an	intersection.	It	then	creates	an
address	string	that	is	passed	to	the	Bing	geocode	file	and	creates	a	frame	with	the	ID	and
the	latitude	and	longitude.	We	then	filter	that	Array	with	only	the	values	that	returned	as
some:

#r	"../packages/FSharp.Data.2.2.5/lib/net40/FSharp.Data.dll"

#r	"System.Data.Entity.dll"

#r	"FSharp.Data.TypeProviders.dll"

#r	"System.Data.Linq.dll"

#load	"BingGeocode.fsx"

open	System

open	System.Data.Linq

open	System.Data.Entity

open	Microsoft.FSharp.Data.TypeProviders

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=Traffic;user	id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;"

type	EntityConnection	=	SqlEntityConnection<connectionString,Pluralize	=	

true>

let	context	=	EntityConnection.GetDataContext()

type	Crash	=	{Id:	int;	OnRoad:string;	FromRoad:string	}

let	trafficCrashes	=	

				context.dbo_TrafficCrashes	

				|>	Seq.filter(fun	tc	->	tc.MunicipalityId	=	Nullable<int>(13))

				|>	Seq.filter(fun	tc	->	(float)tc.Miles	<=	0.25)

				|>	Seq.map(fun	tc	->	{Id=tc.Id;	OnRoad=tc.OnRoad;	

FromRoad=tc.FromRoad})

				|>	Seq.toArray

let	trafficCrashes'	=	

				trafficCrashes	

				|>	Array.map(fun	c	->	c.Id,	c.OnRoad	+	"	and	"	+	c.FromRoad	+	"	

Cary,NC")

				|>	Array.map(fun	(i,l)	->	i,	BingGeocode.getGeocode(l))

let	trafficCrashes''	=	

				trafficCrashes'	

				|>	Array.filter(fun	(i,p)	->	p.IsSome)

				|>	Array.map(fun	(i,p)	->	i,	p.Value.[0].Coordinates.[0],	p.Value.

[0].Coordinates.[1])

There	is	one	new	line	of	code	in	this	script:	#load	"BingGeocode.fsx".	This	adds	a
reference	to	the	script	file	we	already	created,	so	we	can	go	ahead	and	invoke	the
getGeocode()	function.

Before	we	update	the	database	with	our	data,	I	wrote	a	script	to	write	the	data	to	the	local
disk:

//Write	so	we	can	continue	to	work	without	going	to	Bing	again

//They	throttle	so	you	really	only	want	to	go	there	once

open	System.IO

let	baseDirectory	=	System.IO.DirectoryInfo(__SOURCE_DIRECTORY__)

let	dataDirectory	=	baseDirectory.Parent.Parent.FullName	+	@"\Data"

use	outFile	=	new	StreamWriter(dataDirectory	+	@"\crashGeocode.csv")

trafficCrashes''	|>	Array.map	(fun	(i,lt,lg)	->	i.ToString()	

,lt.ToString(),	lg.ToString())

																	|>	Array.iter	(fun	(i,lt,lg)	->	outFile.WriteLine(sprintf	

"%s,%s,%s"	i	lt	lg))

outFile.Flush

outFile.Close()

As	the	comment	says,	Bing	throttles	how	many	requests	you	can	make	per	hour.	The	last
thing	you	want	is	to	have	to	re-query	Bing	because	you	are	experimenting	with	the	data
and	get	a	401	error	back	because	you	are	at	your	limit.	Rather,	it	is	much	better	to	bring	it
local	once	and	work	off	a	local	copy.

With	the	data	local,	we	can	then	pull	down	each	record	from	the	database	that	we	want	to
update,	update	the	lat/long,	and	write	it	back	to	the	database:

type	Crash'	=	{Id:	int;	Latitude:	float;	Longitude:	float}

let	updateDatabase	(crash:Crash')	=

				let	trafficCrash	=	

								context.dbo_TrafficCrashes	

								|>	Seq.find(fun	tc	->	tc.Id	=	crash.Id)

				trafficCrash.Latitude	<-	Nullable<float>(crash.Latitude)

				trafficCrash.Longitude	<-	Nullable<float>(crash.Longitude)

				context.DataContext.SaveChanges()	|>	ignore

open	FSharp.Data

type	CrashProvider	=	CsvProvider<"../Data/crashGeocode.csv">

let	crashes	=	

				CrashProvider.Load("../Data/crashGeocode.csv").Rows

				|>	Seq.map(fun	r	->	{Id=r.id;	Latitude=float	r.latitude;	Longitude=	

float	r.longitude})

				|>	Seq.toArray

				|>	Array.iter(fun	c	->	updateDatabase(c))

Parallelism
I	want	to	show	you	one	more	trick	that	will	greatly	speed	up	your	data	extraction—
parallelism.	My	machine	has	four	cores,	but	only	one	core	is	being	used	in	the	prior
example	when	making	the	API	calls	to	Bing.	It	would	be	much	faster	if	I	could	use	all	of
the	cores	and	make	the	requests	in	parallel.	F#	makes	this	a	snap.	As	a	demonstration,	I	re-
queried	Bing	for	the	first	200	crash	records	and	wrote	the	time	out	to	the	FSI:

let	trafficCrashes	=	

				context.dbo_TrafficCrashes

				|>	Seq.filter	(fun	tc	->	tc.MunicipalityId	=	Nullable<int>(13))

				|>	Seq.filter	(fun	tc	->	(float)tc.Miles	<=	0.25)

				|>	Seq.map	(fun	tc	->	{Id=tc.Id;	OnRoad=tc.OnRoad;	

FromRoad=tc.FromRoad})

				|>	Seq.take	200

				|>	Seq.toArray

open	System.Diagnostics

let	stopwatch	=	Stopwatch()

stopwatch.Start()

let	trafficCrashes'	=	

				trafficCrashes	

				|>	Array.map	(fun	c	->	c.Id,	c.OnRoad	+	"	and	"	+	c.FromRoad	+	"	

Cary,NC")

				|>	Array.map	(fun	(i,l)	->	i,	BingGeocode.getGeocode(l))

stopwatch.Stop()

printfn	"serial	-	%A"	stopwatch.Elapsed.Seconds	

When	I	ran	it,	it	took	33	seconds:

serial	-	33

Next,	I	added	this	code:

stopwatch.Reset()

open	Microsoft.FSharp.Collections.Array.Parallel

stopwatch.Start()

let	pTrafficCrashes'	=	

				trafficCrashes	

				|>	Array.map	(fun	c	->	c.Id,	c.OnRoad	+	"	and	"	+	c.FromRoad	+	"	

Cary,NC")

				|>	Array.Parallel.map	(fun	(i,l)	->	i,	BingGeocode.getGeocode(l))

stopwatch.Stop()

printfn	"parallel	-	%A"	stopwatch.Elapsed.Seconds

Notice	that	the	only	change	was	adding	a	reference	to	Collections.Array.Parallel	and
then	considering	the	following	line:

|>	Array.map	(fun	(i,l)	->	i,	BingGeocode.getGeocode(l))

Change	this	line	to	the	following:

|>	Array.Parallel.map	(fun	(i,l)	->	i,	BingGeocode.getGeocode(l))

When	I	ran	it,	I	saw	this	in	the	FSI:

parallel	-	12

So	I	got	a	3x	speed	improvement	by	changing	one	line.	Because	F#	was	built	from	the
ground-up	with	parallelism	and	async	in	mind,	it	is	very	easy	to	take	advantage	of	these
concepts.	The	other	languages	have	these	features	bolted	on	and	can	be	very	cumbersome
to	use	and	often	can	lead	to	race	conditions	or	worse.

There	is	one	more	thing	to	note	when	you	are	pulling	mass	data	from	a	web	service.
Unless	you	explicitly	code	it,	you	have	no	real	way	of	monitoring	the	progress.	I	often	pop
open	Fiddler	(http://www.telerik.com/fiddler)	and	monitor	the	HTTP	traffic	to	see	how
things	are	progressing.

http://www.telerik.com/fiddler

JSON	type	provider	–	authentication
The	JSON	type	provider	is	a	very	handy	tool,	but	there	is	a	limitation	to	its	out	of	the	box
implementation—it	assumes	that	the	web	service	does	not	have	any	authentication	or	the
authentication	token	is	part	of	the	query	string.	Some	datasets	are	not	like	that—in	fact
most	web	services	use	headers	for	authentication.	Fortunately,	there	is	a	way	to	code
around	this.

Consider	this	open	dataset—the	NOAA	archives	(http://www.ncdc.noaa.gov/cdo-
web/webservices/v2).	If	you	look	at	the	solution	that	comes	with	the	chapter,	there	is	a
script	file	called	GetWeatherData.fsx.	In	this	script,	I	picked	a	single	zip	code	for	the
town	where	the	traffic	stops	and	crashes	occurred	and	pulled	down	the	daily	precipitation:

#r	"System.Net.Http.dll"

#r	"../packages/FSharp.Data.2.2.5/lib/net40/FSharp.Data.dll"

	

open	System

open	System.Net

open	FSharp.Data

open	System.Net.Http

open	System.Net.Http.Headers

open	System.Collections.Generic

[<Literal>]

let	uri	=	"http://www.ncdc.noaa.gov/cdo-web/api/v2/data?

datasetid=GHCND&locationid=ZIP:27519&startdate=2012-01-01&enddate=2012-12-

31&limit=1000"

let	apiToken	=	"yourApiTokenHere"

use	client	=	new	WebClient()

client.Headers.Add("token",	apiToken)

let	resultJson	=	client.DownloadString(uri)

[<Literal>]

let	weatherSample	=	"..\Data\NOAAHttpGet.json"

type	weatherServiceContext	=	JsonProvider<weatherSample>

let	searchResult	=	weatherServiceContext.Parse(resultJson)

let	results	=	searchResult.Results

let	dailyPrecipitation	=	

				results	

				|>	Seq.where	(fun	r	->	r.Value	>	0)

				|>	Seq.groupBy	(fun	r	->	r.Date)

				|>	Seq.map	(fun	(d,a)	->	d,	a	|>	Seq.sumBy	(fun	r	->	r.Value))

				|>	Seq.sortBy	(fun	(d,c)	->	d)	

There	is	one	thing	new	here.	I	am	using	the	JSON	type	provider	but	the	authorization
token	needs	to	be	in	the	header	of	the	request.	Since	the	JSON	type	provider	does	not
allow	you	to	set	headers,	you	need	to	pull	the	data	down	via	the	System.Net.WebClient
class	(where	you	can	set	the	auth	token	in	the	header)	and	then	use	the	JSON	type
provider	to	parse	the	results.	You	can	see	that	I	am	using	Parse()	and	not	Load()	in	the
following	line	to	accomplish	that:

let	searchResult	=	weatherServiceContext.Parse(resultJson)

http://www.ncdc.noaa.gov/cdo-web/webservices/v2

Just	like	the	geolocation	data,	I	then	pushed	the	data	frame	to	disk	because	the	number	of
requests	are	limited:

open	System.IO

let	baseDirectory	=	System.IO.DirectoryInfo(__SOURCE_DIRECTORY__)

let	dataDirectory	=	baseDirectory.Parent.Parent.FullName	+	@"\Data"

use	outFile	=	new	StreamWriter(dataDirectory	+	@"\dailyPrecipitation.csv")

dailyPrecipitation	

				|>	Seq.map(fun	(d,p)	->	d.ToString(),	p.ToString())

				|>	Seq.iter(fun	(d,p)	->	outFile.WriteLine(sprintf	"%s,%s"	d	p))

outFile.Flush

outFile.Close()

Also,	like	the	data	geolocation	data,	you	can	do	this	on	your	machine	but	you	will	need	an
apiToken.	You	can	go	to	the	NOAA	developer	website	to	apply	for	one.	I	also	added	the
data	as	a	table	on	the	SQL	Server	so	you	don’t	have	to	pull	the	data	from	the	source	code
to	write	the	remaining	code	in	the	chapter.	Go	into	the	active	kmeans.fsx	script	file	and
enter	this	to	get	the	data	from	the	database:

type	DailyPercipitation	=	{WeatherDate:	DateTime;	Amount:	int;	}

let	dailyWeather	=	

				context.dbo_DailyPercipitation	

				|>	Seq.map(fun	dw	->	{WeatherDate=dw.RecordDate;	Amount=dw.Amount;})

				|>	Seq.toArray

When	you	send	it	to	the	FSI,	you	will	get	the	following:

type	DailyPercipitation	=

		{WeatherDate:	DateTime;

			Amount:	int;}

val	dailyWeather	:	DailyPercipitation	[]	=

		[|{WeatherDate	=	1/9/2012	12:00:00	AM;

						Amount	=	41;};

				{WeatherDate	=	1/10/2012	12:00:00	AM;

						Amount	=	30;};	{WeatherDate	=	1/11/2012	12:00:00	AM;

						Amount	=	5;};

				{WeatherDate	=	1/12/2012	12:00:00	AM;

					Amount	=	124;};	

				{WeatherDate	=	1/13/2012	12:00:00	AM;

					Amount	=	5;};	

				{WeatherDate	=	1/21/2012	12:00:00	AM;

...

Summary
If	you	ask	a	data	scientist	what	they	like	least	about	their	day,	they	will	tell	you	meetings,
building	slide	decks,	and	munging	data	in	no	particular	order.	Although	F#	type	providers
can’t	help	you	with	meetings	and	building	slide	decks,	it	can	decrease	the	amount	of	time
spent	obtaining	and	cleaning	data.	Although	not	completely	frictionless,	type	providers
can	help	you	with	relational	and	non-relational	data	stores	and	enable	you	to	spend	more
time	with	the	“fun”	parts	of	data	science.	Speaking	of	which,	let’s	jump	back	into	the	fun
with	KNN	and	Naïve	Bayes	modeling.

Chapter	6.	AdventureWorks	Redux	–	k-
NN	and	Naïve	Bayes	Classifiers
Let’s	jump	back	to	AdventureWorks	and	put	our	software	engineer	hat	back	on.	A	couple
weeks	after	your	successful	implementation	of	a	model	to	improve	high-margin	bike	sales
to	individual	customers,	the	CEO	comes	to	your	desk	and	says,	“Can	you	help	us	with	a
problem?	If	you	were	not	aware,	we	started	out	as	a	bike-only	company.	Then,	in	May	of
2013,	we	added	additional	merchandise	to	our	product	offering.	Although	it	went	well	in
the	beginning,	we	seem	to	have	plateaued.	We	want	to	try	to	push	a	bit	harder	in	this	area.
Through	some	basic	PowerBI	reporting,	we	see	that	anywhere	from	86	percent	to	88
percent	of	the	customers	who	buy	a	bike	also	buy	additional	merchandise	at	the	time	of
purchase.”

Year	Month Cross Solo Total %Cross

201305 25 295 320 7.8%

201306 429 69 498 86.1%

201307 441 56 497 88.7%

201308 525 83 608 86.3%

201309 536 68 604 88.7%

201310 649 100 749 86.6%

201311 868 136 1,004 86.5%

201312 698 99 797 87.6%

201401 800 97 897 89.2%

201402 702 96 798 88.0%

201403 891 135 1,026 86.8%

201404 965 121 1,086 88.9%

201405 1,034 152 1,186 87.2%

TOTAL 8,563 1,507 10,070 85.0%

The	CEO	continues,	“We	would	love	to	be	able	to	get	that	up	above	90	percent.	We
launched	an	expensive	marketing	campaign,	but	it	really	didn’t	move	the	needle.	Is	there
any	way	you	can	help	us	be	more	focused	and	identify	those	people	on	the	fence	for	cross-
selling	opportunities?”

You	say,	“Sure,”	and	immediately	start	thinking	of	a	way	to	implement	her	instructions.
Perhaps	if	you	could	identify	some	unique	characteristics	of	those	customers	who	buy
additional	merchandise	compared	to	those	customers	who	do	not,	a	more	targeted	method
might	be	implemented	to	get	more	people	to	buy	additional	merchandise.	You
immediately	think	of	classification	models	like	K-Nearest	Neighbor	(k-NN)	and	Naïve
Bayes.	Since	you	are	not	sure	which	one	might	work,	you	decide	to	try	them	both	out.

k-Nearest	Neighbors	(k-NN)
k-NN	stands	for	k-Nearest	Neighbors	and	is	one	of	the	most	basic	classification	models
available.	Since	a	picture	is	worth	a	thousand	words,	let’s	take	a	look	at	k-NN	from	a
graphical	perspective.	Consider	a	group	of	students	who	spent	some	amount	of	time
studying	and	also	drinking	beers	the	night	before	the	exam.	On	a	graph,	it	looks	like	this:

If	I	added	a	seventh	student	to	the	graph	like	this,	would	you	think	that	the	student	passed
or	failed	the	exam?

You	would	likely	say	they	are	a	star—they	passed	the	exam.	If	I	asked	you	why,	you
would	probably	say	that	are	more	like	the	other	stars.	This	kind	of	mental	processing	is
very	much	how	our	minds	work—if	everyone	in	your	neighborhood	buys	a	Japanese	car
and	thinks	it	has	high	quality,	you	are	more	likely	to	buy	one	too	if	you	are	looking	for	a
high	quality	car.	In	fact,	much	of	marketing	is	based	on	the	k-NN	theory.

Unlike	the	brain,	which	makes	associations	effortlessly,	k-NN	actually	uses	some	math	to
classify.	Going	back	to	our	seventh	student,	k-NN	would	put	them	in	the	passing	students’
group	because	the	distance	it	is	from	the	other	passing	students	is	short	relative	to	the
distance	from	the	failing	students:

In	fact,	one	of	the	simplest	k-NN	implementations	is	to	take	the	average	of	all	of	the	items
of	the	category	(five	hours	of	studies	and	drinking	one	beer	for	the	stars,	on	average)	and
measure	that	distance	to	the	new	item.	Hopefully,	the	name	k-NN	makes	sense	now—for	a
given	new	item	K,	what	are	its	nearest	neighbors?

k-NN	example
Let’s	take	a	look	at	k-NN	in	action	using	Accord.NET.	Open	up	Visual	Studio	and	create
a	new	Visual	F#	Windows	Library	project	called	Classification:

Go	into	the	Script.fsx	file	and	remove	all	of	its	contents.	Rename	Scipt.fsx	to	k-
NNAccord.fsx.	Open	up	NuGet	Package	Manager	console	and	enter	this:

PM>	install-package	Accord.MachineLearning

Go	back	to	your	script	and	enter	in	the	following	code:

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

#r	

"../packages/Accord.MachineLearning.3.0.2/lib/net40/Accord.MachineLearning.

dll"

open	Accord

open	Accord.Math

open	Accord.MachineLearning

let	inputs	=	[|[|5.0;1.0|];[|4.5;1.5|];[|5.1;0.75|];[|1.0;3.5|];

[|0.5;4.0|];[|1.25;4.0|]|]

let	outputs	=	[|1;1;1;0;0;0|]

let	classes	=	2

let	k	=	3

let	knn	=	new	KNearestNeighbors(k,	classes,	inputs,	outputs)

Send	this	to	the	REPL	to	see	the	following:

val	inputs	:	float	[]	[]	=

		[|[|5.0;	1.0|];	[|4.5;	1.5|];	[|5.1;	0.75|];	[|1.0;	3.5|];	[|0.5;	4.0|];

				[|1.25;	4.0|]|]

val	outputs	:	int	[]	=	[|1;	1;	1;	0;	0;	0|]

val	classes	:	int	=	2

val	k	:	int	=	3

val	knn	:	KNearestNeighbors

Most	of	this	code	should	look	familiar	to	you	by	now.	The	inputs	represent	six	students
with	two	characteristics:	how	many	hours	they	spent	studying	the	night	before	an	exam
and	how	much	beer	they	drank.	The	outputs	represent	whether	they	passed	the	exam:	1	if
they	passed,	0	if	they	did	not.	The	class’s	value	tells	Accord	that	there	are	two	types	of
values	to	consider.	In	this	case,	those	values	are	the	hours	spent	in	studying	and	the
quantity	of	beer	consumed.	The	k	value	tells	Accord	how	many	data	points	we	want	to	use
for	the	calculation	for	each	class.	If	we	changed	that	to	4,	then	we	would	have	included
one	failing	student	with	the	three	passing	students	(and	vice	versa),	which	would	have
watered	down	our	result.

Go	back	to	the	script	and	enter	these	lines	that	represent	the	seventh	student:

let	input	=	[|5.0;0.5|]

let	output	=	knn.Compute	input

When	you	send	it	to	the	FSI,	you	will	see	that	student	number	7	will	most	likely	pass	the
exam:

val	input	:	float	[]	=	[|5.0;	0.5|]

val	output	:	int	=	1

As	I	mentioned	earlier,	k-NN	is	one	of	the	most	basic	machine	learning	models	you	can
use,	but	in	certain	circumstances	it	can	be	surprisingly	powerful.	One	of	the	more	common
adjustments	to	k-NN	is	weighing	the	distance	from	the	neighbors.	The	closer	a	point	is	to
the	neighbors,	the	more	weight	that	distance	gets.	The	biggest	criticism	of	k-NN	is	that	it
can	overweigh	if	there	are	many	observations	that	center	around	one	point,	so	it	is
important	to	have	a	balanced	dataset,	if	possible.

Naïve	Bayes
Naïve	Bayes	is	a	classification	model	that	attempts	to	predict	if	an	entity	belongs	to	a
series	of	predefined	sets.	When	you	aggregate	all	the	sets	together,	you	have	a	pretty	good
estimation	of	the	final	result.	In	order	to	illustrate,	let’s	go	back	to	the	tennis	example	that
we	used	when	talking	about	decision	trees.

We	have	the	following	observations	for	two	weeks:

Day Outlook Temperature Humidity Wind PlayTennis?

0 sunny Hot High weak No

1 sunny Hot High strong No

2 overcast Hot High weak Yes

3 rain Mild High weak Yes

4 rain Cool Normal weak Yes

5 rain Cool Normal strong No

6 overcast Cool Normal strong Yes

7 sunny Mild High weak No

8 sunny Cool Normal weak yes

9 rain Mild Normal weak yes

10 sunny Mild Normal strong yes

11 overcast Mild High strong yes

12 overcast Hot Normal weak yes

13 rain Mild High strong no

For	each	one	of	the	classes,	let’s	break	down	whether	they	wound	up	playing	tennis	that
day	and	then	do	a	percentage	for	each	possibility:

ID Outlook Yes No %	Yes %	No

0 sunny 2 3 0.22 0.60

1 overcast 4 0 0.44 0.00

2 rain 3 2 0.33 0.40

	 Total 9 5 1.00 1.00

	 	 	 	 	 	

ID Temperature Yes No %	Yes %	No

0 hot 2 2 0.22 0.40

1 mild 4 2 0.44 0.40

2 cool 3 1 0.33 0.20

	 Total 9 5 1.00 1.00

	 	 	 	 	 	

ID Humidity Yes No %	Yes %	No

0 high 3 4 0.33 0.80

1 normal 6 1 0.67 0.20

	 Total 9 5 1.00 1.00

	 	 	 	 	 	

ID Wind Yes No %	Yes %	No

0 weak 6 2 0.67 0.40

1 strong 3 3 0.33 0.60

	 Total 9 5 1.00 1.00

	 	 	 	 	 	

ID Final Yes No %	Yes %	No

0 Play 9 5 0.64 0.36

With	these	grids	available,	we	can	then	predict	if	a	person	will	or	will	not	play	tennis	for	a
series	of	conditions.	For	example,	will	a	person	play	on	a	sunny,	cool	day	with	high
humidity	and	strong	winds?	We	can	pull	the	percentages	from	each	grid:

	 	 Yes No

Outlook sunny 0.222 0.600

Temperature cool 0.333 0.200

Humidity high 0.333 0.800

Wind strong 0.333 0.600

	 final 0.643 0.357

And	then	the	values	can	be	multiplied	together	for	each	possibility:

Probability	of	Yes	=	0.222	*	0.333	*	0.333	*	0.333	*	0.643	=	0.005
Probability	of	No	=	0.600	*	0.200	*	0.800	*	0.600	*	0.357	=	0.021

You	can	see	that	there	is	a	higher	percentage	not	playing	than	playing.	We	can	also	take
the	two	percentages	and	compare	them	to	each	other	like	this:

0.005	+	0.021	=	0.026

0.005/0.026	=	0.205	and	0.021/0.026	=	0.795

There	is	about	a	20	percent	chance	of	playing	tennis	and	80	percent	chance	of	not	playing.

Naïve	Bayes	in	action
Let’s	see	how	Accord.NET	calculates	a	Naïve	Bayes	model.	Go	to	Visual	Studio	and	add	a
new	script	file	called	NaiveBayesAccord.fsx:

In	that	script,	add	the	following	code:

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r	

"../packages/Accord.MachineLearning.3.0.2/lib/net40/Accord.MachineLearning.

dll"

open	Accord

open	Accord.Math

open	Accord.Statistics

open	Accord.MachineLearning.Bayes

let	inputs	=	[|[|0;0;0;0|];[|0;0;0;1|];[|1;0;0;0|];

															[|2;1;0;0|];[|2;2;1;0|];[|2;2;1;1|];

															[|1;2;1;1|];[|0;1;0;0|];[|0;2;1;0|];

															[|2;1;1;0|];[|0;2;1;1|];[|1;1;0;1|];

															[|1;0;1;0|];[|2;1;0;1|]|]

let	outputs	=	[|0;0;1;1;1;0;1;0;1;1;1;1;1;0|]

let	symbols	=	[|3;3;2;2|]

When	you	send	them	to	the	FSI,	you	will	see	the	following:

val	inputs	:	int	[]	[]	=

		[|[|0;	0;	0;	0|];	[|0;	0;	0;	1|];	[|1;	0;	0;	0|];	[|2;	1;	0;	0|];

				[|2;	2;	1;	0|];	[|2;	2;	1;	1|];	[|1;	2;	1;	1|];	[|0;	1;	0;	0|];

				[|0;	2;	1;	0|];	[|2;	1;	1;	0|];	[|0;	2;	1;	1|];	[|1;	1;	0;	1|];

				[|1;	0;	1;	0|];	[|2;	1;	0;	1|]|]

>

val	outputs	:	int	[]	=	[|0;	0;	1;	1;	1;	0;	1;	0;	1;	1;	1;	1;	1;	0|]

>

val	symbols	:	int	[]	=	[|3;	3;	2;	2|]

The	inputs	are	the	values	turned	into	integers.	Consider	the	following	example:

Outlook ID

Sunny 0

Overcast 1

Rain 2

	 	

Temperature ID

Hot 0

Mild 1

Cool 2

	 	

Humidity ID

High 0

Normal 1

	 	

Wind ID

Weak 0

Strong 1

The	position	in	each	array	is	[outlook;temperature;humidity;wind].

The	outputs	are	the	result	values	turned	into	integers:

Play ID

No 0

Yes 1

The	symbols	value	is	an	array	that	tells	Accord	the	total	number	of	possible	values	for
each	feature.	For	example,	the	first	position	is	for	outlook	and	there	are	three	possible
values:	(0,	1,	2).

Go	back	to	the	script	and	add	in	the	Naïve	Bayes	calculation:

let	bayes	=	new	Accord.MachineLearning.Bayes.NaiveBayes(4,symbols)

let	error	=	bayes.Estimate(inputs,	outputs)

Sending	to	the	REPL	gives	the	following:

val	bayes	:	Bayes.NaiveBayes

val	error	:	float	=	0.1428571429

The	error	is	calculated	by	Accord	re-running	its	estimate	several	times	and	comparing	the
actual	to	the	expected.	A	good	way	of	interpreting	the	error	is	that	the	lower	the	number	is
better,	and	the	domain	dictates	if	the	actual	number	is	“good	enough”.	For	example,	a	14
percent	error	is	great	for	social	experiments,	where	humans	are	capable	for	random	and
unpredictable	behaviors.	Conversely,	a	14	percent	error	rate	for	predicting	airplane	engine
failure	would	not	be	considered	acceptable.

Finally,	let’s	see	a	prediction	for	sunny	outlook,	mild	temperature,	normal	humidity,	and
weak	wind.	Go	to	the	script	and	add	this:

let	input	=	[|0;1;1;0|]

let	output	=	bayes.Compute(input)

Sending	to	the	REPL	gives	us	the	following:

val	input	:	int	[]	=	[|0;	1;	1;	0|]

val	output	:	int	=	1

So	we	will	be	playing	tennis	on	that	day.

One	thing	to	keep	in	mind	while	using	Naïve	Bayes
Created	in	the	1950s,	Naïve	Bayes	is	a	highly	effective	classification	model	that	has	stood
the	test	of	time.	In	fact,	many	spam	filters	today	still	use,	in	part,	Naïve	Bayes.	The
biggest	advantages	of	using	Naïve	Bayes	are	its	simplicity	and	its	ability	to,	well,	be	right.
The	biggest	downside	is	the	key	assumption	that	every	x	variable	is	completely	and	utterly
independent.	If	there	is	any	chance	that	the	x	variables	are	collinear,	Naïve	Bayes	breaks
down.	Also,	Naïve	Bayes,	historically,	has	been	applied	to	datasets	that	are	Gaussian—
that	it	follows	a	bell	curve.	If	you	are	not	familiar	with	a	bell	curve,	it	is	a	distribution	of
data	where	the	most	observations	occur	in	the	middle	values	with	the	outliers	to	both	sides
of	the	middle	having	roughly	the	same	number	of	observations.	Here	is	an	example:

In	contrast,	a	skewed	distribution	has	the	most	observations	at	one	end	or	the	other:

When	you	use	Naïve	Bayes,	you	will	have	to	make	sure	the	distribution	you	select
matches	your	data.	Let’s	now	see	if	k-NN	and/or	Naïve	Bayes	can	help	us	with
AdventureWorks.

AdventureWorks
In	this	section,	we	are	going	to	take	the	knowledge	that	we	gained	in	Chapter	5,	Time	Out
–	Obtaining	Data,	to	extract	and	transform	data	and	apply	both	k-NN	and	Naïve	Bayes
machine	learning	models.	Let’s	see	if	none,	one,	or	both	methodologies	will	help	us
increase	cross-sales.

Getting	the	data	ready
Go	into	Visual	Studio	and	add	another	script	called	AdventureWorks.fsx.	Open	up	the
script,	remove	all	of	the	contents,	and	open	NuGet	Package	Manager	console.	In	the
package	manager,	run	the	following	lines:

PM>	Install-Package	FSharp.EntityFramework.MicrosoftSqlServer	–Pre

PM>	Install-Package	fslab

PM>	Install-Package	FSharp.Data.SqlClient

PM>	Install-Package	Microsoft.SqlServer.Types

Go	back	to	the	script	file	and	add	the	following	references:

#I	"../packages"

#r	"EntityFramework.Core.7.0.0-rc1-

final/lib/net451/EntityFramework.Core.dll"

#r	"EntityFramework.MicrosoftSqlServer.7.0.0-rc1-

final/lib/net451/EntityFramework.MicrosoftSqlServer.dll"

#r	"EntityFramework.Relational.7.0.0-rc1-

final/lib/net451/EntityFramework.Relational.dll"

#r	"Inflector.1.0.0.0/lib/net45/Inflector.dll"

#r	"Microsoft.Extensions.Caching.Abstractions.1.0.0-rc1-

final/lib/net451/Microsoft.Extensions.Caching.Abstractions.dll"

#r	"Microsoft.Extensions.Caching.Memory.1.0.0-rc1-

final/lib/net451/Microsoft.Extensions.Caching.Memory.dll"

#r	"Microsoft.Extensions.Configuration.1.0.0-rc1-

final/lib/net451/Microsoft.Extensions.Configuration.dll"

#r	"Microsoft.Extensions.Configuration.Abstractions.1.0.0-rc1-

final/lib/net451/Microsoft.Extensions.Configuration.Abstractions.dll"

#r	"Microsoft.Extensions.Configuration.Binder.1.0.0-rc1-

final/lib/net451/Microsoft.Extensions.Configuration.Binder.dll"

#r	"Microsoft.Extensions.DependencyInjection.1.0.0-rc1-

final/lib/net451/Microsoft.Extensions.DependencyInjection.dll"

#r	"Microsoft.Extensions.Logging.1.0.0-rc1-

final/lib/net451/Microsoft.Extensions.Logging.dll"

#r	"Microsoft.Extensions.Logging.Abstractions.1.0.0-rc1-

final/lib/net451/Microsoft.Extensions.Logging.Abstractions.dll"

#r	"Microsoft.Extensions.OptionsModel.1.0.0-rc1-

final/lib/net451/Microsoft.Extensions.OptionsModel.dll"

#r	"Microsoft.Extensions.Primitives.1.0.0-rc1-

final/lib/net451/Microsoft.Extensions.Primitives.dll"

#r	"Remotion.Linq.2.0.1/lib/net45/Remotion.Linq.dll"

#r	"System.Collections.Immutable.1.1.36/lib/portable-

net45+win8+wp8+wpa81/System.Collections.Immutable.dll"

#r	"System.Diagnostics.DiagnosticSource.4.0.0-beta-

23516/lib/dotnet5.2/System.Diagnostics.DiagnosticSource.dll"

#r	"System.Xml.Linq.dll"

#r	"Ix-Async.1.2.5/lib/net45/System.Interactive.Async.dll"

#r	"FSharp.EntityFramework.MicrosoftSqlServer.0.0.2.0-

alpha/lib/net451/FSharp.EntityFramework.MicrosoftSqlServer.dll"

#r	

"../packages/Microsoft.Extensions.DependencyInjection.Abstractions.1.0.0-

rc1-

final/lib/net451/Microsoft.Extensions.DependencyInjection.Abstractions.dll"

#r	

"../packages/FSharp.Data.SqlClient.1.7.7/lib/net40/FSharp.Data.SqlClient.dl

l"

#r	

"../packages/Microsoft.SqlServer.Types.11.0.2/lib/net20/Microsoft.SqlServer

.Types.dll"

#r	"../packages/FSharp.Data.2.2.5/lib/net40/FSharp.Data.dll"

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

#r	

"../packages/Accord.MachineLearning.3.0.2/lib/net40/Accord.MachineLearning.

dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

open	System

open	FSharp.Data

open	FSharp.Data.Entity

open	Microsoft.Data.Entity

open	Accord

open	Accord.Math

open	Accord.Statistics

open	Accord.MachineLearning

open	Accord.Statistics.Filters

open	Accord.Statistics.Analysis

open	Accord.MachineLearning.Bayes

open	Accord.Statistics.Models.Regression

open	Accord.Statistics.Models.Regression.Fitting

Next	add	the	following	lines	of	code:

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	

id=PacktReader;password=P@cktM@chine1e@rning;"

type	AdventureWorks	=	SqlServer<connectionString,	Pluralize	=	true>

let	context	=	new	AdventureWorks()

If	you	remember	from	Chapter	5,	Time	Out	–	Obtaining	Data,	this	is	creating	our	type
provider	to	pull	data	from	the	database.	Send	everything	so	far	to	the	REPL	to	see	the
following:

				nested	type	Sales.SalesTerritoryHistory

				nested	type	Sales.ShoppingCartItem

				nested	type	Sales.SpecialOffer

				nested	type	Sales.SpecialOfferProduct

				nested	type	Sales.Store

				nested	type	dbo.AWBuildVersion

				nested	type	dbo.DatabaseLog

				nested	type	dbo.ErrorLog

		end

val	context	:	AdventureWorks

Go	back	to	the	script	and	add	this:

let	(|=|)	id	a	=	Array.contains	id	a

let	productSubcategories	=	[|new	System.Nullable<int>(1);	new	

System.Nullable<int>(2);	new	System.Nullable<int>(3)|]

Sending	this	to	the	FSI	gives	the	following:

val	(|=|)	:	id:'a	->	a:'a	[]	->	bool	when	'a	:	equality

val	productSubcategories	:	Nullable<int>	[]	=	[|1;	2;	3|]

This	is	also	from	Chapter	5,	Time	Out	–	Obtaining	Data;	we	are	overriding	the	in	operator
to	handle	null	values	in	the	database.

Go	back	to	the	script	and	add	the	following	code:

let	orderCustomers	=	

				query	{	for	soh	in	context.``Sales.SalesOrderHeaders``	do

												join	sod	in	context.``Sales.SalesOrderDetails``	on	

(soh.SalesOrderID	=	sod.SalesOrderID)

												join	p	in	context.``Production.Products``	on	(sod.ProductID	=	

p.ProductID)

												join	c	in	context.``Sales.Customers``	on	(soh.CustomerID	=	

c.CustomerID)

												where	(soh.OrderDate	>	DateTime(2013,5,1)	&&	

p.ProductSubcategoryID	|=|	productSubcategories	&&	c.StoreID		=	

System.Nullable<int>())

												select(soh.SalesOrderID,c.CustomerID)}	|>	Seq.toArray

Sending	this	to	the	REPL,	we	get:

val	orderCustomers	:	(int	*	int)	[]	=

		[|(50788,	27575);	(50789,	13553);	(50790,	21509);	(50791,	15969);

				(50792,	15972);	(50793,	14457);	(50794,	27488);	(50795,	27489);

				(50796,	27490);	(50797,	17964);	(50798,	17900);	(50799,	21016);

				(50800,	11590);	(50801,	15989);	(50802,	14494);	(50803,	15789);

				(50804,	24466);	(50805,	14471);	(50806,	17980);	(50807,	11433);

				(50808,	115

Even	though	we	haven’t	seen	this	exact	code	before,	we	have	seen	code	that	is	pretty
close.	In	this	block,	we	are	creating	a	computational	expression.	We	are	joining	together
the	SalesOrderHeader,	SalesOrderDetail,	Products,	and	Customer	tables	so	we	can
select	only	the	records	we	are	interested	in	for	this	analysis.	This	would	be:	all	bike	sales
to	individual	customers	after	May	1,	2013.	Notice	that	we	are	returning	two	integers	as	a
tuple:	the	SalesOrderId	and	the	CustomerId.

Go	back	to	the	script	and	add	the	following	code	block:

let	salesOrderIds	=	orderCustomers	|>	Array.distinctBy(fun	(soid,coid)	->	

soid)

																																			|>	Array.map(fun	(soid,cid)	->	soid)

Sending	this	to	the	FSI	gives	us	the	following:

val	salesOrderIds	:	int	[]	=

		[|50788;	50789;	50790;	50791;	50792;	50793;	50794;	50795;	50796;	50797;

				50798;	50799;	50800;	50801;	50802;	50803;	50804;	50805;	50806;	50807;

				50808;	50809

As	you	can	probably	tell,	this	creates	an	array	of	unique	CustomerIds.	Since	a	customer
might	have	bought	two	bikes,	they	might	have	two	SalesOrderIds	so	we	need	to	call	the
distinctBy	high-ordered	function.

Go	back	to	the	script	and	enter	this:

let	orderDetailCounts	=	

				query	{	for	soh	in	context.``Sales.SalesOrderHeaders``	do

												join	sod	in	context.``Sales.SalesOrderDetails``	on	

(soh.SalesOrderID	=	sod.SalesOrderID)

												join	p	in	context.``Production.Products``	on	(sod.ProductID	=	

p.ProductID)

												join	c	in	context.``Sales.Customers``	on	(soh.CustomerID	=	

c.CustomerID)

												where	(sod.SalesOrderID	|=|	salesOrderIds)

												select(sod.SalesOrderID,	sod.SalesOrderDetailID)}	

												|>	Seq.countBy(fun	(soid,	sodid)	->	soid)

												|>	Seq.toArray

Send	this	to	the	FSI	to	get	this	(it	takes	a	couple	of	seconds):

val	orderDetailCounts	:	(int	*	int)	[]	=

		[|(50788,	1);	(50789,	1);	(50790,	1);	(50791,	1);	(50792,	1);	(50793,	1);

				(50794,	1);	(50795,	1);	(50796,	1);	(50797,	1);	(50798,	1);	(50799,	1);

				(50800,	1);	(50801,	1);	(50802,	1);	(50803,	1);	(50804,	1);	(50805,	1);

				(50806,	1);	(50807

This	is	a	similar	query	to	the	first	one.	Here	we	are	joining	together	the	same	four	tables
and	then	selecting	both	the	SalesOrderId	and	the	SalesOrderDetailId	for	the	customers
we	have	already	identified.	We	then	apply	the	countBy	high-order	function	to	count	up	all
of	the	details	for	each	order.	If	there	is	only	one	OrderDetailId,	then	only	the	bike	was
purchased.	If	there	is	more	than	one,	then	the	customer	purchased	items	along	with	the
bike.

We	now	have	to	pull	individual	details	for	a	given	customer.	Since	the	database	is	in	third
normal	form,	these	details	are	scattered	across	many	tables.	Instead	of	generating	a	pretty
nasty	expression,	let’s	use	the	built-in	view	that	has	already	been	created	in	the	database:
vIndividualCustomer.

The	catch	is	that	the	EF	type	provider	cannot	handle	views	at	the	time	of	this	writing.	The
answer	to	this	problem	is	another	type	provider.

Go	to	the	script	and	enter	this:

[<Literal>]

let	commandText	=	"Select	*	from	[Sales].[vIndividualCustomer]"

let	command	=	new	SqlCommandProvider<commandText,connectionString>()

let	output	=	command.Execute()	

let	customers	=	output	|>	Seq.toArray

Sending	this	to	the	REPL,	you	can	see	the	following:

val	commandText	:	string	=	"Select	*	from	[Sales].[vIndividualCustomer]"

val	command	:	SqlCommandProvider<...>

val	output	:	

Collections.Generic.IEnumerable<SqlCommandProvider<...>.Record>

val	customers	:	SqlCommandProvider<...>.Record	[]	=

		[|{	BusinessEntityID	=	9196;	Title	=	None;	FirstName	=	"Calvin";	

MiddleName	=	Some	"A";	LastName	=	"Raji";	Suffix	=	None;	PhoneNumber	=	Some	

"230-555-0191";	PhoneNumberType	=	Some	"Cell";	EmailAddress	=	Some	

"calvin20@adventure-works.com";	EmailPromotion	=	2;	AddressType	=	

"Shipping";	AddressLine1	=	"5415	San	Gabriel	Dr.";	AddressLine2	=	None;	

City	=	"Bothell";	StateProvinceName	=	"Washington";	PostalCode	=	"98011";	

CountryRegionName	=	"United	States";	Demographics	=	Some

		"<IndividualSurvey	

xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey"><TotalPurchaseYTD>-13.5</TotalPurchaseYTD>

<DateFirstPurchase>2003-02-06Z</DateFirstPurchase><BirthDate>1963-06-

14Z</BirthDate><MaritalStatus>M</MaritalStatus><YearlyIncome>50001-

75000</YearlyIncome><Gender>M</Gender><TotalChildren>4</TotalChildren>

<NumberChildrenAtHome>2</NumberChildrenAtHome><Education>Bachelors	

</Education><Occupation>Professional</Occupation>

<HomeOwnerFlag>1</HomeOwnerFlag><NumberCarsOwned>2</NumberCarsOwned>

<CommuteDistance>2-5	Miles</CommuteDistance></IndividualSurvey>"	};

				{	BusinessEntityID

Each	record	is	a	beast!	It	looks	like	the	database	has	a	field	called	IndividualSurvey	that
contains	data	about	some	of	the	customers	that	was	collected	on	a	survey.	Interestingly,
they	decide	to	store	it	as	XML.	I	think	this	proves	the	axiom	that	if	given	a	datatype,
developers	will	use	it,	whether	it	make	sense	or	not.	In	any	event,	how	are	we	going	to
parse	this	XML?	I’ll	give	you	a	hint:	it	rhymes	with	hype	divider.	That’s	right,	the	XML
type	provider.	Go	back	to	the	script	and	add	this	code:

[<Literal>]

let	sampleXml	=	"""<IndividualSurvey	

xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey"><TotalPurchaseYTD>-13.5</TotalPurchaseYTD>

<DateFirstPurchase>2003-02-06Z</DateFirstPurchase><BirthDate>1963-06-

14Z</BirthDate><MaritalStatus>M</MaritalStatus><YearlyIncome>50001-

75000</YearlyIncome><Gender>M</Gender><TotalChildren>4</TotalChildren>

<NumberChildrenAtHome>2</NumberChildrenAtHome><Education>Bachelors	

</Education><Occupation>Professional</Occupation>

<HomeOwnerFlag>1</HomeOwnerFlag><NumberCarsOwned>2</NumberCarsOwned>

<CommuteDistance>2-5	Miles</CommuteDistance></IndividualSurvey>"""

#r	"System.Xml.Linq.dll"

type	IndividualSurvey	=	XmlProvider<sampleXml>

let	getIndividualSurvey	(demographic:Option<string>)	=

				match	demographic.IsSome	with

				|	true	->	Some	(IndividualSurvey.Parse(demographic.Value))

				|	false	->	None

Sending	this	to	the	REPL	gives	us	the	following:

type	IndividualSurvey	=	XmlProvider<...>

val	getIndividualSurvey	:

		demographic:Option<string>	->	XmlProvider<...>.IndividualSurvey	option

The	XML	type	provider	takes	a	representative	sample	to	generate	the	types.	In	this	case,
sampleXML	is	being	used	to	generate	the	types.	With	this	type	provider	handling	the	heavy

lifting	of	parsing	the	XML	for	us,	we	can	now	create	a	data	structure	for	each	CustomerId
and	their	demographic	information	in	an	easy-to-use	format.

Go	back	to	the	script	and	enter	this:

let	customerDemos	=	customers	|>	Array.map(fun	c	->	

c.BusinessEntityID,getIndividualSurvey(c.Demographics))

																														|>	Array.filter(fun	(id,s)	->	s.IsSome)

																														|>	Array.map(fun	(id,s)	->	id,	s.Value)

																														|>	Array.distinctBy(fun	(id,s)	->	id)

Sending	this	to	the	FSI	gives	us	the	following:

</IndividualSurvey>);

				(2455,

					<IndividualSurvey	

xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey">

		<TotalPurchaseYTD>26.24</TotalPurchaseYTD>

		<DateFirstPurchase>2004-01-24Z</DateFirstPurchase>

		<BirthDate>1953-04-10Z</BirthDate>

		<MaritalStatus>M</MaritalStatus>

		<YearlyIncome>25001-50000</YearlyIncome>

		<Gender>F</Gender>

		<TotalChildren>2</TotalChildren>

		<NumberChildrenAtHome>0</NumberChildrenAtHome>

		<Education>Bachelors	</Education>

		<Occupation>Management</Occupation>

		<HomeOwnerFlag>1</HomeOwnerFlag>

		<NumberCarsOwned>1</NumberCarsOwned>

		<CommuteDistance>5-10	Miles</CommuteDistance>

</IndividualSurvey>);

				...|]

There	is	not	much	new	code	here.	Since	we	have	to	take	into	account	customers	that	do
not	have	demographic	information	recorded,	we	are	using	Option	types.	If	there	is
demographic	information,	a	Some	is	returned	with	the	values.	If	not,	a	None	is	returned.	We
then	filter	that	to	only	give	us	the	customers	with	demographic	records	and	distinct	is
called	to	make	sure	that	we	have	only	one	record	per	customer.

With	the	customer	demographic	ready,	we	can	now	build	a	final	data	frame	that	contains
all	of	the	information	we	need.	Go	back	to	the	script	file	and	enter	this:

let	getDemoForCustomer	customerId	=

				let	exists	=	Array.exists(fun	(id,d)	->	id	=	customerId)	customerDemos

				match	exists	with

				|	true	->	Some	(customerDemos	

																				|>	Array.find(fun	(id,d)	->	id	=	customerId)

																				|>	snd)

				|	false	->	None	

let	orderCustomerDemo	=	

				orderCustomers	

				|>	Array.map(fun	oc	->	oc,	getDemoForCustomer(snd	oc))

																															|>	Array.map(fun	(oc,d)	->	fst	oc,	snd	oc,	

d)

																															|>	Array.filter(fun	(oid,cid,d)	->	d.IsSome)

																															|>	Array.map(fun	(oid,cid,d)	->	

oid,cid,d.Value)	

Sending	this	to	the	FSI,	you	can	see	the	following:

</IndividualSurvey>);

				(50949,	19070,

					<IndividualSurvey	

xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey">

		<TotalPurchaseYTD>27.7</TotalPurchaseYTD>

		<DateFirstPurchase>2003-08-20Z</DateFirstPurchase>

		<BirthDate>1966-07-08Z</BirthDate>

		<MaritalStatus>S</MaritalStatus>

		<YearlyIncome>greater	than	100000</YearlyIncome>

		<Gender>F</Gender>

		<TotalChildren>2</TotalChildren>

		<NumberChildrenAtHome>2</NumberChildrenAtHome>

		<Education>Bachelors	</Education>

		<Occupation>Management</Occupation>

		<HomeOwnerFlag>0</HomeOwnerFlag>

		<NumberCarsOwned>4</NumberCarsOwned>

		<CommuteDistance>0-1	Miles</CommuteDistance>

</IndividualSurvey>);

				...|]

We	now	have	a	tuple	with	three	elements:	OrderId,	CustomerId,	and	the	demographic
information.	Note	that	the	output	still	shows	the	demographic	information	as	XML	though
we	will	be	able	to	see	in	a	second	that	indeed,	those	elements	are	part	of	the	demographic
type.

Go	into	the	script	file	and	enter	this:

let	getMultiOrderIndForOrderId	orderId	=

				orderDetailCounts	

				|>	Array.find(fun	(oid,c)	->	oid	=	orderId)

				|>	snd	>	1

let	orders	=	

				orderCustomerDemo	

				|>	Array.map(fun	(oid,cid,d)	->	oid,	getMultiOrderIndForOrderId(oid),	

d)

Sending	this	to	the	REPL	gives	us	the	following:

				(50949,	false,

					<IndividualSurvey	

xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey">

		<TotalPurchaseYTD>27.7</TotalPurchaseYTD>

		<DateFirstPurchase>2003-08-20Z</DateFirstPurchase>

		<BirthDate>1966-07-08Z</BirthDate>

		<MaritalStatus>S</MaritalStatus>

		<YearlyIncome>greater	than	100000</YearlyIncome>

		<Gender>F</Gender>

		<TotalChildren>2</TotalChildren>

		<NumberChildrenAtHome>2</NumberChildrenAtHome>

		<Education>Bachelors	</Education>

		<Occupation>Management</Occupation>

		<HomeOwnerFlag>0</HomeOwnerFlag>

		<NumberCarsOwned>4</NumberCarsOwned>

		<CommuteDistance>0-1	Miles</CommuteDistance>

</IndividualSurvey>);

				...|]

getMultiOrderIndForOrderId	is	a	function	that	takes	in	the	orderId	and	finds	the	record
in	the	orderDetailsCounts	frame.	If	there	is	more	than	one,	it	returns	true.	If	there	is
only	one	order	(just	the	bike),	it	returns	false.

With	that	function,	we	can	create	a	tuple	that	has	orderId,	multiOrderind,	and	the
demographics.	I	think	we	are	ready	to	start	doing	some	modeling!	Before	we	start,	we
need	to	ask	ourselves	one	question:	what	values	do	we	want	to	use?	The	y	variable	is	clear
—the	multiOrderInd.	But	which	one	of	the	demographic	values	do	we	want	to	plug	into
our	model	as	x	variables?	Since	we	want	to	change	our	website	to	account	for	the	model
results,	we	probably	need	variables	that	are	usable	on	the	site.	Some	features	like
BirthDate	are	available	if	the	person	logs	into	our	site	via	their	Facebook	or	Google
accounts,	those	accounts	have	that	information	accurately	populated	and	the	user	agrees	to
let	our	site	access	that	information.	Those	are	big	ifs.	Alternatively,	we	might	be	able	to
use	the	inferred	analytics	via	the	cookies	that	advertisers	place	on	the	user’s	device,	but
that	is	also	an	imprecise	measure,	depending	on	the	feature	used.	It	is	better	to	design	our
model	assuming	that	any	information	that	will	be	input	to	the	model	will	be	accurately
self-reported,	and	let’s	give	the	user	an	incentive	to	accurately	self-report.	This	means
education,	yearly	income,	and	other	sensitive	measures	are	out.	Let’s	look	at	the	gender
and	marital	status,	which	we	should	be	able	to	get	from	the	user,	if	asked	correctly.	So	our
model	will	be	MultiOrder	=	Gender	+	MartialStatus	+	E.

Go	to	the	script	and	enter	this:

let	getValuesForMartialStatus	martialStatus	=

				match	martialStatus	with

				|	"S"	->	0.0

				|	_	->	1.0

let	getValuesForGender	gender	=

				match	gender	with

				|	"M"	->	0.0

				|	_	->	1.0

let	getValuesForMultiPurchaseInd	multiPurchaseInd	=

				match	multiPurchaseInd	with

				|	true	->	1

				|	false	->	0

Sending	this	to	the	REPL,	we	see	the	following:

val	getValuesForMartialStatus	:	martialStatus:string	->	float

val	getValuesForGender	:	gender:string	->	float

val	getValuesForMultiPurchaseInd	:	multiPurchaseInd:bool	->	int

Since	Accord	deals	with	input	float	values	and	output	int	values,	we	need	a	function	to
convert	the	features	of	our	attributes	(current	as	strings)	to	those	types.	If	you	want	to
make	sure	we	have	all	of	the	cases	covered,	you	can	also	send	this	to	the	FSI:

orders	|>	Array.distinctBy(fun	(oid,ind,d)	->	d.Gender)

							|>	Array.map(fun	(oid,ind,d)	->	d.Gender)

//val	it	:	string	[]	=	[|"M";	"F"|]

orders	|>	Array.distinctBy(fun	(oid,ind,d)	->	d.MaritalStatus)

							|>	Array.map(fun	(oid,ind,d)	->	d.MaritalStatus)

//val	it	:	string	[]	=	[|"M";	"S"|]

There	is	one	danger	with	how	the	getValues	function	is	written.	If	you	remember	from
the	previous	chapter,	dealing	with	missing	values	is	an	ongoing	concern	when	doing	any
kind	of	modeling.	The	functions	deal	with	the	null	issue	by	running	away	from	it.
Consider	the	getValuesForGender	function:

let	getValuesForGender	gender	=

				match	gender	with

				|	"M"	->	0.0

				|	_	->	1.0

If	a	gender	code	comes	in	as	UNK,	YOMAMA,	null,	or	any	other	string,	it	gets	assigned	the
female	code.	This	means	we	would	be	over	reporting	the	number	of	females	in	our	model.
We	can	get	away	with	that	with	this	dataset	because	every	record	had	values	M	or	F,	but	if
they	did	not,	we	would	need	a	way	to	handle	the	incorrect	values.	In	this	case,	I	would
create	some	code	like	this:

let	mutable	lastGender	=	"M"

let	getValuesForGender	gender	=

				match	gender,	lastGender	with

				|	"M",_	->	0.0

				|	"F",_	->	1.0

				|	_,"M"	->	lastGender	=	"F"

															1.0

				|	_,_	->	lastGender	=	"M"

													0.0

This	would	balance	the	inferred	values	equally	across	males	and	females.	In	any	event,
let’s	get	to	modeling.

k-NN	and	AdventureWorks	data
Go	back	to	the	script	and	enter	this:

let	inputs	=	orders	|>	Array.map(fun	(oid,ind,d)	->	

[|getValuesForMartialStatus(d.MaritalStatus);getValuesForGender(d.Gender)|]

)

let	outputs	=	orders	|>	Array.map(fun	(oid,ind,d)	->	

getValuesForMultiPurchaseInd(ind))

let	classes	=	2

let	k	=	3

let	knn	=	new	KNearestNeighbors(k,	classes,	inputs,	outputs)

Sending	this	to	the	REPL	gives	us	the	following:

				...|]

val	classes	:	int	=	2

val	k	:	int	=	3

val	knn	:	KNearestNeighbors

Now	that	we	have	our	model	set	up,	let’s	pass	in	the	four	possible	scenarios.	Go	to	the
script	and	enter	this:

knn.Compute([|0.0;0.0|])

knn.Compute([|1.0;0.0|])

knn.Compute([|0.0;1.0|])

knn.Compute([|1.0;1.0|])

Sending	this	to	the	FSI	give	us	the	following:

>	

val	it	:	int	=	1

>	

val	it	:	int	=	1

>	

val	it	:	int	=	0

>	

val	it	:	int	=	1

So	it	looks	like	single	women	are	NOT	buying	multiple	items.

Naïve	Bayes	and	AdventureWorks	data
Go	back	to	the	script	and	enter	this:

let	inputs'	=	orders	|>	Array.map(fun	(oid,ind,d)	->	

[|int(getValuesForMartialStatus(d.MaritalStatus));	

																																																							

int(getValuesForGender(d.Gender));|])

let	outputs'	=	orders	|>	Array.map(fun	(oid,ind,d)	->	

getValuesForMultiPurchaseInd(ind))

let	symbols	=	[|2;2|]

let	bayes	=	new	Accord.MachineLearning.Bayes.NaiveBayes(2,symbols)

let	error	=	bayes.Estimate(inputs',	outputs')

Sending	that	to	the	FSI	gives	us	the	following:

				...|]

val	symbols	:	int	[]	=	[|2;	2|]

val	bayes	:	NaiveBayes

val	error	:	float	=	0.148738812

So	we	have	a	Naïve	Bayes	with	a	15	percent	error.	Not	great,	but	let’s	press	on.	Enter	in
the	same	four	options	for	gender/martialStatus	in	the	script	file:

bayes.Compute([|0;0|])

bayes.Compute([|1;0|])

bayes.Compute([|0;1|])

bayes.Compute([|1;1|])

When	you	send	it	to	the	REPL,	you	will	get	the	following:

val	it	:	int	=	1

>	

val	it	:	int	=	1

>	

val	it	:	int	=	1

>	

val	it	:	int	=	1

>

Rut	Row	Raggy.	Looks	like	we	have	a	problem.	In	fact,	we	do.	If	you	remember	the
previous	description	of	using	the	Naïve	Bayes	model,	it	needs	to	have	the	values
distributed	along	a	bell	curve	to	be	effective.	90	percent	of	the	bike	purchases	have	a
cross-sale—which	means	we	are	heavily	skewed.	No	matter	what	kind	of	tweaks	you	do
to	the	model,	you	can’t	get	around	the	fact	that	you	are	multiplying	by	0.9	to	Yes	for
multiPurchase.

Making	use	of	our	discoveries
What	should	we	do?	We	have	a	k-NN	telling	us	that	single	women	are	not	buying
additional	items	and	we	have	Naïve	Bayes	being	no	help	at	all.	We	could	do	some	more
classification	models,	but	let’s	assume	we	feel	good	enough	about	our	analysis	and	want	to
go	to	production	with	this	model.	How	should	we	do	that?	A	key	issue	to	consider	is	that
the	model	is	based	on	some	static	data	in	one	of	our	database	tables	that	is	not	updated	via
the	normal	transactions	of	the	company.	This	means	we	really	don’t	need	to	retrain	the
model	frequently.	Another	problem	we	have	is	that	we	need	to	figure	out	the	gender	and
marital	status	of	the	people	ordering	our	bikes.	Perhaps	we	are	asking	the	wrong	question.
Instead	of	asking	how	to	get	the	gender	and	marital	status	of	the	user,	what	if	we	already
knew	it?	You	may	be	thinking	that	we	don’t	know	because	we	haven’t	asked	yet.	But	we
might—based	on	the	bike	selected	for	purchase!

Getting	the	data	ready
Go	back	into	the	script	and	enter	this	code	block:

let	customerProduct	=	

				query	{	for	soh	in	context.``Sales.SalesOrderHeaders``	do

												join	sod	in	context.``Sales.SalesOrderDetails``	on	

(soh.SalesOrderID	=	sod.SalesOrderID)

												join	p	in	context.``Production.Products``	on	(sod.ProductID	=	

p.ProductID)

												join	c	in	context.``Sales.Customers``	on	(soh.CustomerID	=	

c.CustomerID)

												where	(sod.SalesOrderID	|=|	salesOrderIds)

												select(c.CustomerID,	sod.ProductID)}	

				|>	Seq.toArray

Sending	this	to	the	REPL,	we	see	the	following:

val	customerProduct	:	(int	*	int)	[]	=

		[|(27575,	780);	(13553,	779);	(21509,	759);	(15969,	769);	(15972,	760);

				(14457,	798);	(27488,	763);	(27489,	761);	(27490,	770);	(17964,	793);

				(17900,

Hopefully,	this	code	should	look	pretty	boring	to	you	by	now.	It	is	creating	a	tuple	of
customerId	and	ProductId	from	all	of	the	bike	sales.

Go	back	to	the	script	and	enter	this:

let	getProductId	customerId	=

				customerProduct	|>	Array.find(fun	(cid,pid)	->	cid	=	customerId)

																				|>	snd

let	getSingleFemaleInd	(martialStatus:string,	gender:string)	=

				match	martialStatus,	gender	with

				|	"S",	"F"	->	1

				|	_,	_	->	0

let	customerDemo	=	orderCustomerDemo	|>	Array.map(fun	(oid,cid,d)	->	cid,	

getSingleFemaleInd(d.MaritalStatus,	d.Gender))

																																					|>	Array.map(fun	(cid,sfInd)	->	cid,	

getProductId(cid),sfInd)

Sending	this	to	the	REPL,	we	can	see	the	following:

val	getProductId	:	customerId:int	->	int

val	getSingleFemaleInd	:	martialStatus:string	*	gender:string	->	int

val	customerDemo	:	(int	*	int	*	int)	[]	=

		[|(13553,	779,	0);	(15969,	769,	0);	(15972,	760,	0);	(14457,	798,	0);

				(17964,	793,	0);

This	code	block	is	shaping	our	data	for	Accord	by	creating	a	frame	of	tuples	of
customerId,	productId,	and	singleFemaleInd.	We	are	almost	ready	to	throw	this	data	at
a	model,	but	we	still	need	to	determine	which	model	we	want	to	use.	We	are	trying	to
determine	the	probability	of	a	customer	being	a	single	female	based	on	the	bike	purchased.
This	seems	like	a	question	that	is	well-suited	for	a	logistic	regression	(Chapter	3,	More

AdventureWorks	Regression).	The	issue	is	that	each	bike	needs	to	become	a	feature	in	this
regression:

singleFemale	=	BikeId0	+	BikeId1	+	BikeId2	+	BikeIdN	+	E

If	you	throw	this	code	into	your	script	and	send	it	to	the	FSI,	you	will	see	we	have	80
different	bike	IDs:

let	numberOfBikeIds	=	customerDemo	|>	Array.map	(fun	(cid,pid,sfInd)	->	

pid)

																																			|>	Array.distinct

																																			|>	Array.length

val	numberOfBikeIds	:	int	=	80

So	how	do	we	create	an	input	of	80	features	from	the	original	frame?	Certainly	not	by
hand.	Let’s	see	if	Accord	can	help	us.

Expanding	features
Open	up	the	script	you	were	using	from	the	previous	section	and	enter	this:

let	inputs''	=	customerDemo	|>	Array.map(fun	(cid,pid,sfInd)	->	pid)

let	outputs''	=	customerDemo	|>	Array.map(fun	(cid,pid,sfInd)	->	

(float)sfInd)

let	expandedInputs	=	Tools.Expand(inputs'')

Sending	this	to	the	REPL,	we	see	the	following:

val	expandedInputs	:	float	[]	[]	=

		[|[|0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;

						0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;	0.0;

						0.0;	0.0

What	we	are	doing	is	taking	the	customerDemo	frame	and	selecting	the	productId.	We	are
then	sending	that	array	to	Accord’s	Tools.Expand	method	that	explodes	the	array	so	that
each	value	becomes	its	own	feature.	Graphically,	it	looks	like	this:

As	you	can	guess	after	reading	Chapter	5,	Time	Out	–	Obtaining	Data,	this	is	considered	a
sparse	data	frame.	With	the	input	and	output	ready,	go	back	to	the	script	file	and	enter	this:

let	analysis	=	new	LogisticRegressionAnalysis(expandedInputs,	outputs'')

analysis.Compute()	|>	ignore

let	pValue	=	analysis.ChiSquare.PValue

let	coefficients	=	analysis.CoefficientValues

let	coefficients'	=	coefficients	|>	Array.mapi(fun	i	c	->	i,c)

																																	|>	Array.filter(fun	(i,c)	->	c	>	5.0)

Before	you	send	this	to	the	REPL,	let	me	warn	you.	The	reason	we	identify	a	sparse	frame
is	that	computing	a	regression	on	80	features	takes	a	while.	So	hit	ALT	+	ENTER	and	go
get	a	cup	of	coffee.	From	Starbucks.	Across	town.	Eventually,	you	will	get	this	back:

val	analysis	:	Analysis.LogisticRegressionAnalysis

>	

val	it	:	unit	=	()

>	

val	pValue	:	float	=	1.0

val	coefficients	:	float	[]	=

		[|-3.625805913;	1.845275228e-10;	7.336791927e-11;	1.184805489e-10;

				-8.762459325e-11;	-2.16833771e-10;	-7.952785344e-12;	1.992174635e-10;

				2.562929393e-11;	-2.957572867e-11;	2.060678611e-10;	-2.103176298e-11;

				-2.3

And	when	we	filter	at	the	coefficient	table,	we	can	see	that	there	is	one	bike	model	that	is
favored	by	single	women.	Add	this	to	your	script	file	and	send	to	the	FSI:

let	coefficients'	=	coefficients	|>	Array.mapi(fun	i	c	->	i,c)

																																	|>	Array.filter(fun	(i,c)	->	c	>	5.0)

val	coefficients'	:	(int	*	float)	[]	=	[|(765,	15.85774698)|]

>

So	perhaps	when	a	person	purchases	item	number	765,	we	try	to	give	them	an	incentive	to
buy	other	products,	either	via	a	coupon	or	a	really	slick	website	experience.	This	is	where
an	excellent	UX	person	with	a	knowledgeable	marketing	person	can	pay	dividends.	Since
I	am	neither,	I	will	leave	that	exercise	to	the	reader.

Summary
In	this	chapter,	we	took	a	look	at	two	common	machine	learning	classifiers:	k-Nearest
Neighbors	and	Naïve	Bayes.	We	saw	them	both	in	action	with	our	AdventureWorks
dataset	to	see	if	we	can	increase	cross	sales.	We	saw	that	k-NN	had	some	limited	success
and	Naïve	Bayes	was	not	useful.	We	then	used	our	old	friend	logistic	regression	to	help	us
narrow	down	a	specific	bike	model	that	can	be	used	to	promote	cross	sales.	Finally,	we
considered	that	since	the	data	is	ad	hoc,	we	can’t	implement	any	real-time	training	on	our
website.	We	would	want	to	periodically	run	this	analysis	to	see	if	our	original	findings
continued	to	hold.

In	the	next	chapter,	we	are	going	to	take	off	our	software	engineer	hat	and	put	on	our	data
scientist	hat	to	see	if	we	can	do	anything	with	that	traffic	stop	data.	We	are	going	to	look	at
augmenting	the	original	dataset	with	another	dataset	and	then	using	a	couple	of	clustering
models:	k-means	and	PCA.	See	you	on	the	next	page!

Chapter	7.	Traffic	Stops	and	Crash
Locations	–	When	Two	Datasets	Are
Better	Than	One
If	you	remember	from	Chapter	4,	Traffic	Stops	–	Barking	Up	the	Wrong	Tree?,	we	used	a
decision	tree	to	help	us	determine	if	a	person	received	a	ticket	or	a	warning	based	on
several	seasonality	factors	like	time	of	day,	day	of	the	week,	and	the	like.	Ultimately,	we
could	not	find	a	relationship.	Your	first	inclination	might	be	to	throw	out	the	dataset,
which	I	think	is	a	mistake	because	there	might	be	data	gold	in	them	thar	hills,	but	we	are
just	using	the	wrong	model.	Also,	if	a	single	dataset	is	not	profitable,	I	typically	start
augmenting	that	set	with	others	to	see	if	the	combination	of	features	will	provide	a	more
satisfactory	answer.	In	this	chapter,	let’s	go	back	to	our	Code-4-Good	group	and	see	if	we
can	both	augment	the	traffic	stop	dataset	and	apply	some	different	models	that	will	help	us
formulate	interesting	questions	and	answers.	Perhaps	even	if	we	are	not	asking	the	right
questions,	the	computer	can	help	us	ask	the	right	questions	too.

Unsupervised	learning
To	this	point	in	the	book,	we	have	used	several	different	models	to	answer	our	questions:
linear	regression,	logistic	regression,	and	kNN	to	name	a	few.	Although	different	in	their
methodology,	they	share	a	common	thread;	we	told	the	computer	the	answer	(called	the
dependent	or	y	variable)	and	then	provided	a	series	of	features	(called	independent	or	x
variables)	that	can	be	associated	with	that	answer.	Consider	the	following	diagram	for
example:

We	then	presented	the	computer	with	some	combination	of	independent	variables	that	it
had	not	seen	before	and	asked	it	to	guess	the	answer:

We	then	compared	to	the	known	answers	via	the	test	and,	if	it	did	a	good	job	guessing,	we
would	use	the	model	in	production:

This	methodology	of	telling	the	computer	the	answer	ahead	of	time	is	called	supervised
learning.	The	term	supervised	is	used	because	we	provide	the	computer	an	answer
explicitly	and	then	tell	it	which	model	to	use.

There	is	another	class	of	models	that	do	not	provide	the	answer	to	the	computer.	This	class
is	called	unsupervised	learning.	If	your	mental	model	of	unsupervised	learning	is	the
chaos	that	engulfs	a	sixth	grade	class	when	a	substitute	teacher	shows	up	the	day	before
summer	vacation,	you	are	not	far	off.	Okay,	maybe	not	that	bad.	With	unsupervised
learning,	we	hand	the	computer	a	data	frame	of	only	attributes	and	ask	it	to	tell	us	about
the	data.	With	that	information,	we	can	then	narrow	down	the	data	that	might	help	us
make	insightful	business	decisions.	For	example,	let’s	say	you	send	this	data	frame	to	the
computer:

It	might	tell	you	that	the	data	seems	to	cluster	in	two	areas:

Although	you	might	have	eye-balled	this	relationship	on	this	simple	2D	data	frame,	the
task	becomes	much	harder,	if	not	impossible,	when	adding	more	rows	and	features.	In	this

chapter,	we	are	going	to	use	the	k-means	model	to	do	this	kind	of	clustering.

Also,	we	can	use	the	computer	to	tell	us	what	features	are	useful	in	a	data	frame	and	what
features	are	just	noise.	For	example,	consider	this	dataset:

Hours	Of	Studying Number	Of	Beers StudyLocation

2 4 Dorm

1 5 Dorm

6 0 Dorm

5 1 Dorm

2 8 Dorm

4 4 Dorm

Will	the	inclusion	of	StudyLocation	in	our	data	frame	lead	to	any	insights?	The	answer	is
no,	because	the	values	are	all	the	same.	In	this	chapter,	we	are	going	to	use	Principle
Component	Analysis	(PCA)	to	this	kind	of	feature	filtering;	it	will	tell	us	what	features
are	important	and	what	can	be	safely	removed.

k-means
As	mentioned	in	the	prior	section,	k-means	is	an	unsupervised	technique:	observations	are
grouped	based	on	mean	of	each	cluster.	Let’s	take	a	look	at	k-means	in	action.	Open	up
Visual	Studio	and	create	a	new	Visual	F#	Windows	Library	Project.	Rename	the
Script.fsx	file	to	kmeans.fsx.	Open	up	the	NuGet	Package	Manager	console	and	enter
the	following:

PM>	install-package	Accord.MachineLearning

Next,	go	to	the	script	and	replace	all	of	the	contents	with	this:

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r	

"../packages/Accord.MachineLearning.3.0.2/lib/net40/Accord.MachineLearning.

dll"

open	Accord.MachineLearning

Next,	let’s	create	an	array	of	different	beverages	that	are	served	at	our	local	restaurant:

let	drinks	=	["Boones	Farm",	0;

																"Mad	Dog",	1;

																"Night	Train",	2;

																"Buckfast",	3;

																"Smirnoff",	4;

																"Bacardi",	5;

																"Johhnie	Walker",	6;

																"Snow",	7;

																"Tsingtao",	8;

																"Budweiser",	9;

																"Skol",	10;

																"Yanjing",	11;

																"Heineken",	12;

																"Harbin",	13]

Sending	this	to	the	FSI,	you	will	see	the	following:

val	drinks	:	(string	*	int)	list	=

		[("Boones	Farm",	0);	("Mad	Dog",	1);	("Night	Train",	2);	("Buckfast",	3);

			("Smirnoff",	4);	("Bacardi",	5);	("Johhnie	Walker",	6);	("Snow",	7);

			("Tsingtao",	8);	("Budweiser",	9);	("Skol",	10);	("Yanjing",	11);

			("Heineken",	12);	("Harbin",	13)]

>

Go	back	to	the	script	and	enter	in	some	records	of	some	patrons	of	the	restaurant.	We	are
using	a	float	value	because	that	is	what	Accord	expects	as	an	input.:

let	observations	=	[|[|1.0;2.0;3.0|];[|1.0;1.0;0.0|];

																																													[|5.0;4.0;4.0|];

[|4.0;4.0;5.0|];[|4.0;5.0;5.0|];[|6.0;4.0;5.0|];

																																													[|11.0;8.0;7.0|];

[|12.0;8.0;9.0|];[|10.0;8.0;9.0|]|]

Sending	that	to	the	REPL	gives	us	the	following:

val	observations	:	float	[]	[]	=

		[|[|1.0;	2.0;	3.0|];	[|1.0;	1.0;	0.0|];	[|5.0;	4.0;	4.0|];	[|4.0;	4.0;	

5.0|];

				[|4.0;	5.0;	5.0|];	[|6.0;	4.0;	5.0|];	[|11.0;	8.0;	7.0|];

				[|12.0;	8.0;	9.0|];	[|10.0;	8.0;	9.0|]|]

You	will	notice	that	there	are	nine	different	patrons	and	each	had	three	drinks.	Patron
number	1	had	a	Boone’s	Farm,	a	Mad	Dog,	and	a	Night	Train.	With	this	data	ready,	let’s
run	a	k-means	against	it.	Enter	this	into	the	script	file:

let	numberOfClusters	=	3

let	kmeans	=	new	KMeans(numberOfClusters);

let	labels	=	kmeans.Compute(observations)

When	you	send	this	to	the	FSI,	you	will	see	the	following:

val	numberOfClusters	:	int	=	3

val	kmeans	:	KMeans

val	labels	:	int	[]	=	[|0;	0;	1;	1;	1;	1;	2;	2;	2|]

This	output	takes	each	patron	and	assigns	them	to	one	of	the	three	clusters.	For	example,
Patrons	number	1	and	2	are	in	cluster	number	0.	If	we	wanted	more	observations	in	each
cluster,	we	could	change	the	numberOfClusters	like	this:

let	numberOfClusters	=	2

let	kmeans	=	new	KMeans(numberOfClusters);

let	labels	=	kmeans.Compute(observations)

And	sending	that	to	the	FSI	would	give	the	following:

val	numberOfClusters	:	int	=	2

val	kmeans	:	KMeans

val	labels	:	int	[]	=	[|1;	1;	1;	1;	1;	1;	0;	0;	0|]

Notice	that	the	computer	does	not	try	to	label	or	otherwise	assign	any	value	to	each	of	the
clusters.	The	data	scientist	would	then	need	to	assign	a	meaningful	value,	if	one	is
possible.	Go	back	to	the	script	and	change	the	numberOfClusters	back	to	three	and	resend
to	the	FSI.	Looking	at	the	input	array,	we	can	say	that	the	cluster	assigned	0	is	for	fortified
wine	drinkers,	cluster	1	is	for	hard	liquor	drinkers,	and	cluster	2	is	for	beer	drinkers.
However,	sometimes	you	may	not	be	able	to	tell	what	each	cluster	means	by	eye-balling
the	input	array.	In	that	case,	you	can	ask	Accord	for	some	(limited)	help.	Enter	this	into
the	script	file:

kmeans.Clusters.[0]

Sending	this	to	the	FSI	will	give	the	following:

val	it	:	KMeansCluster	=

		Accord.MachineLearning.KMeansCluster

				{Covariance	=	[[4.3;	2.6;	3.2]

																			[2.6;	2.266666667;	2.733333333]

																			[3.2;	2.733333333;	3.866666667]];

					Index	=	0;

					Mean	=	[|3.5;	3.333333333;	3.666666667|];

					Proportion	=	0.6666666667;}

Notice	the	mean	is	mid-threes,	which	is	a	low	number	as	we	are	counting	from	0	to	13.	We
could	say	that	category	0’s	label	should	be	Buckfast-like	drinkers,	which	is	generally
correct.

Principle	Component	Analysis	(PCA)
Another	common	task	we	can	do	with	unsupervised	learning	is	to	help	us	throw	out
features	that	are	not	relevant.	If	you	remember	from	the	last	chapter,	we	used	a	stepwise
regression	to	determine	the	best	features	when	building	our	model	and	then	used	Occum’s
Razor	to	toss	insignificant	features.	One	of	the	more	common	things	you	can	do	with	PCA
is	use	this	unsupervised	model	as	a	way	of	picking	the	best	features—the	principle
components	of	the	frame.

Add	another	script	file	to	your	project	and	name	it	pca.fsx.	Add	in	the	following	code:

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

open	Accord.Statistics.Analysis

let	sourceMatrix	=	[|[|2.5;	2.4|];[|0.5;	0.7|];[|2.2;	2.9|];

																				[|1.9;	2.2|];[|3.1;	3.0|];[|2.3;	2.7|];[|2.0;	1.6|];

																				[|1.0;	1.1|];[|1.5;	1.6|];	[|1.1;	0.9|]|]	

Sending	this	to	the	FSI	gives	the	following:

val	sourceMatrix	:	float	[]	[]	=

		[|[|2.5;	2.4|];	[|0.5;	0.7|];	[|2.2;	2.9|];	[|1.9;	2.2|];	[|3.1;	3.0|];

				[|2.3;	2.7|];	[|2.0;	1.6|];	[|1.0;	1.1|];	[|1.5;	1.6|];	[|1.1;	0.9|]|]

In	this	case,	the	sourceMatix	is	a	list	of	students	that	studied	for	a	certain	number	of	hours
for	an	exam	and	the	number	of	beers	that	they	consumed	before	the	exam.	For	example,
the	first	student	studied	2.5	hours	and	drank	2.4	beers.	Unlike	similar	examples	you	have
seen	in	the	book	so	far,	you	will	notice	that	there	is	not	a	dependent	variable	(Y)	in	this
frame.	We	don’t	know	if	these	students	passed	or	not.	But	with	just	these	features,	we	can
determine	which	ones	would	be	the	most	useful	for	an	analysis.	You	might	be	saying	to
yourself,	“How	is	that	possible?”	Without	going	too	much	into	the	math,	the	PCA	will
look	at	the	variance	of	each	of	the	variables	under	a	series	of	scenarios.	If	the	variable	can
explain	differences,	it	is	given	a	higher	score.	If	it	cannot,	it	is	given	a	lower	one.

Let’s	see	what	PCA	tells	us	about	this	dataset.	Enter	this	code	into	the	script:

let	pca	=	new	PrincipalComponentAnalysis(sourceMatrix,	

AnalysisMethod.Center)

pca.Compute()

pca.Transform(sourceMatrix)

pca.ComponentMatrix

Sending	this	to	the	REPL,	we	will	get	the	following:

val	pca	:	PrincipalComponentAnalysis

val	it	:	float	[,]	=	[[0.6778733985;	-0.7351786555]

																						[0.7351786555;	0.6778733985]]

You	will	notice	that	the	output	of	the	ComponentMatrix	property	is	a	2	x	2	array	with	the

complementary	value	as	a	cross.	In	formal	terms,	this	jagged	array	is	called	an	eigenvector
and	the	contents	of	the	array	are	called	eigenvalues.	If	you	start	working	deeply	with	PCA,
you	will	need	to	come	up	to	speed	with	what	those	words	mean	and	the	implications	of	the
values.	For	our	purposes	here,	we	can	safely	ignore	these	values	(unless	you	want	to	toss
around	the	word,	eigenvalue,	at	your	next	family	gathering).

The	important	property	that	we	do	need	to	pay	attention	to	with	PCA	is	the	component
proportions.	Go	back	to	the	script	file	and	enter	this:

pca.ComponentProportions

Sending	this	to	the	REPL	gives	the	following:

val	it	:	float	[]	=	[|0.9631813143;	0.03681868565|]

These	values	are	important	for	our	analysis.	Notice	how	adding	these	two	values	together
amounts	to	100	percent?	These	percentages	tell	you	the	amount	of	variance	(and	therefore
the	amount	of	usefulness)	in	the	data	frame.	In	this	case,	the	hours	of	studying	is	96
percent	of	the	variance	with	the	amount	of	beer	being	only	4	percent,	so	if	we	wanted	to
use	this	data	in	some	kind	of	analysis,	we	would	certainly	pick	the	hours	of	studying	and
safely	discard	the	beer	drinking.	Note	that	if	we	increased	the	range	of	beers	being	drunk,
the	percentages	would	shift	and	perhaps	we	would	want	to	use	both	variables.	This	is	a
fairly	simple	example	with	two	features.	PCA	really	shines	when	you	have	lots	and	lots	of
features	and	you	need	to	determine	their	usefulness.

Traffic	stop	and	crash	exploration
With	the	k-means	and	PCA	theory	under	our	belts,	let’s	see	what	we	can	do	with	open
data.	If	you	remember,	we	had	a	dataset	for	traffic	stops.	Let’s	bring	in	two	more	datasets:
the	number	of	car	crashes	over	the	same	time	period,	and	also	the	amount	of	precipitation
on	the	day	of	the	crash/ticket.

Preparing	the	script	and	the	data
In	Visual	Studio,	create	a	new	Visual	F#	Library	Project	called	Hack4Good.Traffic:

Once	the	project	is	created,	rename	the	Script.fsx	file	to	Clustering.fsx:

Next,	open	the	NuGet	Package	Manager	console	and	enter	this:

PM>	install-package	Accord.MachineLearning

Inside	Clustering.fsx,	enter	in	the	following	code	into	the	script:

#r	"System.Data.Entity.dll"

#r	"FSharp.Data.TypeProviders.dll"

#r	"System.Data.Linq.dll"

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r	

"../packages/Accord.MachineLearning.3.0.2/lib/net40/Accord.MachineLearning.

dll"

open	System

open	System.Linq

open	System.Data.Linq

open	System.Data.Entity

open	Accord.MachineLearning

open	System.Collections.Generic

open	Accord.Statistics.Analysis

open	Microsoft.FSharp.Data.TypeProviders

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=Traffic;user	id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;"

type	Geolocation	=	{Latitude:	float;	Longitude:	float}	

type	EntityConnection	=	SqlEntityConnection<connectionString,Pluralize	=	

true>

let	context	=	EntityConnection.GetDataContext()

When	you	send	this	to	the	FSI,	you	will	see	the	following:

val	connectionString	:	string	=

		"data	source=nc54a9m5kk.database.windows.net;initial	catalog=T"+[61	

chars]

type	Geolocation	=

		{Latitude:	float;

			Longitude:	float;}

type	EntityConnection	=

		class

				static	member	GetDataContext	:	unit	->	

EntityConnection.ServiceTypes.SimpleDataContextTypes.EntityContainer

					+	1	overload

				nested	type	ServiceTypes

		end

val	context	:

		EntityConnection.ServiceTypes.SimpleDataContextTypes.EntityContainer

With	this	prep	code	out	of	the	way,	let’s	bring	down	the	stop	data	from	the	database.	Put
the	following	code	into	the	script	file:

//Stop	Data

type	TrafficStop	=	{StopDateTime:	DateTime;	Geolocation:	Geolocation;	

DispositionId:	int}

let	trafficStops	=	

				context.dbo_TrafficStops	

				|>	Seq.map(fun	ts	->	{StopDateTime	=	ts.StopDateTime.Value;	

																										Geolocation	=	{Latitude	=	

Math.Round(ts.Latitude.Value,3);	

																										Longitude	=	Math.Round(ts.Longitude.Value,3)};	

																										DispositionId	=	ts.DispositionId.Value})

				|>	Seq.toArray

When	you	send	it	to	the	REPL,	you	will	see	the	following:

type	TrafficStop	=

		{StopDateTime:	DateTime;

			Geolocation:	Geolocation;

			DispositionId:	int;}

val	trafficStops	:	TrafficStop	[]	=

		[|{StopDateTime	=	6/30/2012	12:36:38	AM;

					Geolocation	=	{Latitude	=	35.789;

																				Longitude	=	-78.829;};

					DispositionId	=	7;};	{StopDateTime	=	6/30/2012	12:48:38	AM;

																											Geolocation	=	{Latitude	=	35.821;

																																										Longitude	=	-78.901;};

																											DispositionId	=	15;};

				{StopDateTime	=	6/30/2012	1:14:29	AM;

					Geolocation	=	{Latitude	=	35.766;

All	of	this	data	should	be	familiar	to	you	from	Chapter	4,	Traffic	Stops	–	Barking	Up	the
Wrong	Tree?.	The	only	real	difference	is	that	there	is	now	a	geolocation	type	that	holds
both	latitude	and	longitude.	Notice	that	we	assign	whatever	values	are	in	the	database	first
in	this	line:

				|>	Seq.map(fun	ts	->	{StopDateTime	=	ts.StopDateTime.Value;	

																										Geolocation	=	{Latitude	=	

Math.Round(ts.Latitude.Value,3);	

																										Longitude	=	Math.Round(ts.Longitude.Value,3)};	

																										DispositionId	=	ts.DispositionId.Value})

Also,	you	will	notice	that	we	are	making	the	values	to	three	decimal	point	precision	with
the	Math.Round.	With	this	data	local,	let’s	bring	in	the	crash	data.	Enter	the	following	code
into	the	script:

//Crash	Data

type	TrafficCrash	=	{CrashDateTime:	DateTime;		Geolocation:	Geolocation;	

CrashSeverityId:	int;	CrashTypeId:	int;	}

let	trafficCrashes=	

				context.dbo_TrafficCrashes	

				|>	Seq.filter(fun	tc	->	tc.MunicipalityId	=	Nullable<int>(13))

				|>	Seq.filter(fun	tc	->	not	(tc.Latitude	=	Nullable<float>()))

				|>	Seq.map(fun	tc	->	{CrashDateTime=tc.CrashDateTime.Value;	

																										Geolocation	=	{Latitude	

=Math.Round(tc.Latitude.Value,3);	

																								Longitude=Math.Round(tc.Longitude.Value,3)};

																								CrashSeverityId=tc.CrashSeverityId.Value;	

																								CrashTypeId	=tc.CrashTypeId.Value})

				|>	Seq.toArray

Sending	this	to	the	FSI	gives	us	the	following:

type	TrafficCrash	=

		{CrashDateTime:	DateTime;

			Geolocation:	Geolocation;

			CrashSeverityId:	int;

			CrashTypeId:	int;}

val	trafficCrashes	:	TrafficCrash	[]	=

		[|{CrashDateTime	=	12/30/2011	1:00:00	AM;

					Geolocation	=	{Latitude	=	35.79;

																				Longitude	=	-78.781;};

					CrashSeverityId	=	4;

					CrashTypeId	=	3;};	{CrashDateTime	=	12/30/2011	3:12:00	AM;

																									Geolocation	=	{Latitude	=	35.783;

																																								Longitude	=	-78.781;};

																									CrashSeverityId	=	3;

																									CrashTypeId	=	24;};

We	have	one	more	dataset	we	want	to	use:	the	traffic	conditions	for	each	day.	Enter	the
following	into	the	script:

//Weather	Data

type	DailyPercipitation	=	{WeatherDate:	DateTime;	Amount:	int;	}

let	dailyWeather	=	

				context.dbo_DailyPercipitation	

				|>	Seq.map(fun	dw	->	{WeatherDate=dw.RecordDate;	Amount=dw.Amount;})

				|>	Seq.toArray

Sending	this	to	the	FSI	gives	us	the	following:

type	DailyPercipitation	=

		{WeatherDate:	DateTime;

			Amount:	int;}

val	dailyWeather	:	DailyPercipitation	[]	=

		[|{WeatherDate	=	1/9/2012	12:00:00	AM;

					Amount	=	41;};	{WeatherDate	=	1/10/2012	12:00:00	AM;

																					Amount	=	30;};	{WeatherDate	=	1/11/2012	12:00:00	AM;

																																					Amount	=	5;};

				{WeatherDate	=	1/12/2012	12:00:00	AM;

With	these	three	datasets	available,	let’s	combine	the	traffic	stop	and	traffic	crash	datasets
together	into	a	single	data	frame	to	see	if	there	is	anything	going	on	with	geolocation.

Geolocation	analysis
Go	to	the	script	file	and	add	the	following:

let	stopData	=	

				trafficStops

				|>	Array.countBy(fun	ts	->	ts.Geolocation)

Sending	this	to	the	REPL	gives	us	the	following:

val	stopData	:	(Geolocation	*	int)	[]	=

		[|({Latitude	=	35.789;

						Longitude	=	-78.829;},	178);	({Latitude	=	35.821;

																																					Longitude	=	-78.901;},	8);

				({Latitude	=	35.766;

						Longitu…

This	code	should	look	familiar	to	you	by	now;	we	are	counting	up	the	number	of	traffic
stops	by	geolocation.	For	the	first	record,	geopoint	35.789/-78.829	had	178	traffic	stops.

Next,	go	back	to	the	script	and	enter	the	following:

let	crashData	=

				trafficCrashes

				|>	Array.countBy(fun	tc	->	tc.Geolocation)

Sending	this	to	the	REPL	gives	us	the	following:

val	crashData	:	(Geolocation	*	int)	[]	=

		[|({Latitude	=	35.79;

						Longitude	=	-78.781;},	51);	({Latitude	=	35.783;

This	code	is	identical	to	the	stop	data;	we	are	counting	up	the	number	of	traffic	crashes	by
geolocation.	For	the	first	record,	geopoint	35.790/-78.781	had	51	traffic	crashes.

Our	next	step	is	to	combine	these	two	datasets	into	a	single	data	frame	that	we	can	send	to
Accord.	As	for	most	things	in	F#,	let’s	use	types	and	functions	to	achieve	this.	Go	back	to
the	script	file	and	enter	the	following:

type	GeoTraffic	=	{Geolocation:Geolocation;	CrashCount:	int;	StopCount:	

int}

let	trafficGeo	=	

				Enumerable.Join(crashData,	stopData,	

																(fun	crashData	->	fst	crashData),	

																(fun	stopData	->	fst	stopData),	

																(fun	crashData	stopData	->	{	Geolocation	=	fst	crashData;	

StopCount	=	snd	crashData	;	CrashCount	=	snd	stopData	}))

																|>	Seq.toArray

When	you	send	this	to	the	FSI,	you	will	see	something	like	the	following:

type	GeoTraffic	=

		{Geolocation:	Geolocation;

			CrashCount:	int;

			StopCount:	int;}

val	trafficGeo	:	GeoTraffic	[]	=

		[|{Geolocation	=	{Latitude	=	35.79;

																				Longitude	=	-78.781;};

					CrashCount	=	9;

					StopCount	=	51;};	{Geolocation	=	{Latitude	=	35.783;

																																							Longitude	=	-78.781;};

																								CrashCount	=	16;

																								StopCount	=	5;};

				{Geolocation	=	{Latitude	=	35.803;

																				Longitude	=	-78.775;};

					CrashCount	=	76;

					StopCount	=	2;};

There	is	some	new	code	here	that	can	seem	intimidating	at	first	(at	least,	it	was	to	me).	We
are	using	the	LINQ	class	Enumerable’s	Join	method	to	join	the	crashData	and	stopData
together.	The	Join	method	takes	in	several	parameters:

The	first	dataset	(in	this	case	crashData).
The	second	dataset	(in	this	case	stopData).
A	lambda	that	extracts	the	value	from	the	first	dataset,	which	we	will	use	to	join.	In
this	case,	the	first	item	of	the	tuple,	which	is	the	geolocation	value.
A	lambda	that	extracts	the	value	from	the	second	dataset,	which	we	will	use	to	join.
In	this	case,	the	first	item	of	the	tuple,	which	is	the	geolocation	value.
A	lambda	that	specifies	what	the	output	of	the	join	operation	will	look	like.	In	this
case,	it	is	the	record	type	called	GeoTraffic	that	we	defined	on	the	first	line	of	this
code	block.

The	key	thing	to	realize	about	using	the	Join	method	is	that	it	only	keeps	records	that	are
in	both	datasets	(an	inner	join	to	you	SQL	fans).	This	means	if	there	is	a	geolocation	that
has	one	traffic	ticket	and	no	traffic	stops,	it	is	dropped	from	our	analysis.	If	you	want	to	do
an	outer	join,	there	is	the	GroupJoin	method	that	does	this.	Since	we	are	only	really
interested	in	high-activity	areas,	an	inner	join	seems	more	appropriate.

With	our	data	frame	created,	we	are	now	ready	to	send	the	data	to	Accord’s	k-means.	If
you	remember,	Accord’s	k-means	wants	the	input	to	be	a	jagged	array	of	floats.	Therefore,
we	have	one	last	transformation.	Go	to	the	script	file	and	enter	the	following:

let	kmeansInput	=	

				trafficGeo	

				|>	Array.map(fun	cs	->	[|float	cs.CrashCount;	float	cs.StopCount	|])

Sending	to	the	FSI,	we	get	the	following:

val	kmeansInput	:	float	[]	[]	=

		[|[|9.0;	51.0|];	[|16.0;	5.0|];	[|76.0;	2.0|];	[|10.0;	1.0|];	[|80.0;	

7.0|];

				[|92.0;	27.0|];	[|8.0;	2.0|];	[|104.0;	11.0|];	[|47.0;	4.0|];

				[|36.0;	16.0

Go	back	to	the	script	file	and	enter	the	following:

let	numberOfClusters	=	3

let	kmeans	=	new	KMeans(numberOfClusters)

let	labels	=	kmeans.Compute(kmeansInput.ToArray())

kmeans.Clusters.[0]

kmeans.Clusters.[1]

kmeans.Clusters.[2]

Sending	to	the	REPL,	we	will	get	the	following:

val	numberOfClusters	:	int	=	3

val	kmeans	:	KMeans

val	labels	:	int	[]	=

		[|1;	1;	0;	1;	0;	0;	1;	0;	0;	1;	0;	0;	0;	1;	1;	0;	1;	1;	0;	0;	0;	2;	1;	0;	

1;

				2;	0;	2;

Woot!	We	have	a	k-means	working	on	our	traffic	data.	If	you	inspect	each	of	the	clusters,
you	will	see	the	following:

val	it	:	KMeansCluster	=

		Accord.MachineLearning.KMeansCluster

				{Covariance	=	[[533.856744;	25.86726804]

																			[25.86726804;	42.23152921]];

					Index	=	0;

					Mean	=	[|67.50515464;	6.484536082|];

					Proportion	=	0.1916996047;}

>	

val	it	:	KMeansCluster	=

		Accord.MachineLearning.KMeansCluster

				{Covariance	=	[[108.806009;	8.231942669]

																			[8.231942669;	16.71306776]];

					Index	=	1;

					Mean	=	[|11.69170984;	2.624352332|];

					Proportion	=	0.7628458498;}

>	

val	it	:	KMeansCluster	=

		Accord.MachineLearning.KMeansCluster

				{Covariance	=	[[5816.209486;	-141.4980237]

																			[-141.4980237;	194.4189723]];

					Index	=	2;

					Mean	=	[|188.8695652;	13.34782609|];

					Proportion	=	0.04545454545;}

We	have	three	clusters.	I	pulled	the	means	and	the	proportions	from	each	of	the	clusters
and	put	them	into	a	spreadsheet	like	this:

Crashes Stops %	of	records

67.5 6.48 20.2%

11.69 2.62 76.3%

188.87 13.35 4.5%

Looking	at	all	the	three	clusters,	it	is	notable	that	there	are	a	lot	more	traffic	crashes	than
stops.	Also	of	interest	is	that	the	first	and	second	cluster	have	about	a	10:1	ratio	of	crashes
to	stops	but	the	really	high	crash	areas	have	a	higher	proportion	of	crashes	to	stops—about

14:1.	It	seems	reasonable	to	conclude	that	there	are	a	few	high-crash	areas	in	town	and	the
police	are	very	active	there,	but	they	could	be	even	more	active.	I	would	name	each	cluster
after	their	activity	level:	(low,	medium,	and	high).	If	the	geolocation	was	not	in	our	data
frame	(a	majority	of	the	points	in	town),	we	could	call	that	no	activity.

Finally,	enter	this	into	the	script	file:

let	trafficGeo'	=	Array.zip	trafficGeo	labels

Sending	this	to	the	FSI	gives	us	the	following:

val	trafficGeo'	:	(GeoTraffic	*	int)	[]	=

		[|({Geolocation	=	{Latitude	=	35.79;

																					Longitude	=	-78.781;};

						CrashCount	=	9;

						StopCount	=	51;},	1);	({Geolocation	=	{Latitude	=	35.783;

																																													Longitude	=	-78.781;};

																														CrashCount	=	16;

																														StopCount	=	5;},	1);

We	have	seen	.zip	before.	We	are	merging	our	data	frame	that	contains	the	geolocation,
number	of	stops,	and	number	of	crashes	with	the	labels	frame	that	came	out	k-means.
Then	we	can	look	up	a	given	geolocation	and	see	its	cluster	assignment.	For	example,
geolocation	35.790/-78.781	is	in	Cluster	1—or	medium	activity.

PCA
Now	that	we	have	a	pretty	good	sense	of	the	data	via	k-means,	let’s	see	if	we	can	use	PCA
to	uncover	even	more	insights	in	our	traffic	data.	Instead	of	location,	let’s	look	at	date.	As
we	found	in	Chapter	4,	Traffic	Stops	–	Barking	Up	the	Wrong	Tree?,	using	our	decision
tree,	there	was	nothing	we	could	conclude	with	different	bins	of	date/time	and	our	traffic
tickets.	Perhaps	augmenting	the	stop	data	with	crash	and	weather	will	lead	to	something.

Go	back	into	the	Clustering.fsx	script	file	and	enter	the	following:

let	crashCounts	=

				trafficCrashes

				|>	Array.countBy(fun	tc	->	tc.CrashDateTime.DayOfYear)

Sending	this	to	the	FSI	gives	the	following:

val	crashCounts	:	(int	*	int)	[]	=

		[|(364,	10);	(365,	3);	(1,	2);	(2,	3);	(3,	12);	(4,	5);	(5,	3);	(6,	1);

				(7,	9);	(8,	6);	(9,	10);	(10,	6);	(11,	9);

This	code	is	very	much	like	the	code	we	already	wrote	when	creating	the	crashData	for	k-
means.	In	this	case,	we	are	counting	up	traffic	crashes	by	DayOfYear.	DayOfYear	assigns
each	day	of	the	year	an	index	value.	For	example,	January	1	gets	a	1,	January	2	gets	a	2
and	December	31	gets	a	365	or	366,	depending	on	if	it	is	a	leap	year	or	not.	Notice	that	it
is	one-based	because	DateTime.DayOfYear	is	one-based.

Go	back	into	the	script	file	and	enter	the	following:

let	stopCounts	=	

				trafficStops

				|>	Array.countBy(fun	ts	->	ts.StopDateTime.DayOfYear)

Sending	this	to	the	FSI	gives	us	the	following:

val	stopCounts	:	(int	*	int)	[]	=

		[|(182,	58);	(183,	96);	(184,	89);	(185,	65);	(38,	65);

As	you	can	probably	guess,	this	sums	up	the	number	of	traffic	stops	by	the	day	of	the	year.
Pressing	onward,	go	to	the	script	file	and	enter	the	following:

let	weatherData'	=

				dailyWeather

				|>	Array.map(fun	w	->	w.WeatherDate.DayOfYear,	w.Amount)

Sending	this	to	the	REPL	gives	us	the	following:

val	weatherData'	:	(int	*	int)	[]	=

		[|(9,	41);	(10,`	30);	(11,	5);	(12,	124);

Just	like	crash	and	stop	data,	this	creates	a	dataset	with	the	amount	of	precipitation	by	day
of	year.	You	will	notice	that	the	data	was	already	at	the	date	level	(sometimes	called	the
level	of	atomicity),	so	an	Array.map	was	used	to	transform	the	date;	we	don’t	need	to	use
countBy.

With	the	initial	datasets	created,	we	now	need	a	way	to	join	all	three	together.	The

Enumerable.Join	method	that	we	used	in	the	k-means	example	will	not	do	here,	so	we
will	have	to	build	our	own	joiner	function.	Go	into	the	script	file	and	enter	the	following:

let	getItem	dataSet	item		=

				let	found	=	dataSet	|>	Array.tryFind(fun	sd	->	fst(sd)	=	item)

				match	found	with

				|	Some	value	->	snd	value

				|	None	->	0

When	you	send	this	to	the	FSI,	you	will	get	the	following:

val	getItem	:	dataSet:('a	*	int)	[]	->	item:'a	->	int	when	'a	:	equality

This	is	a	pretty	complicated	function	signature.	It	might	help	if	I	added	parameter	hints	to
the	method	as	shown	in	the	following	code:

let	getItem	(dataSet:(int*int)[],	item:int)		=

				let	found	=	dataSet	|>	Array.tryFind(fun	sd	->	fst(sd)	=	item)

				match	found	with

				|	Some	value	->	snd	value

				|	None	->	0

When	you	send	this	to	the	FSI,	you	will	get	the	following:

val	getItem	:	dataSet:(int	*	int)	[]	*	item:int	->	int

This	should	be	slightly	more	accessible	but	less	generic,	which	is	fine	because	all	of	our
datasets	(crash,	stops,	and	weather)	are	arrays	of	int*int.	Reading	the	output,	we	see	that
getItem	is	a	function	that	takes	in	one	parameter	named	dataset	that	is	an	array	of	int
tuples	(int	*	int)[]	and	another	parameter	named	item	that	is	an	int.	The	function	then
attempts	to	find	the	tuple	in	the	array	whose	fst	has	the	same	value	as	the	item.	If	it	is
found,	it	returns	the	second	value	of	the	tuple.	If	it	does	not	find	the	item	in	the	array,	it
returns	0.

This	function	will	work	well	for	all	three	of	our	datasets	(crash,	stops,	and	weather)
because	all	three	only	hold	records	for	days	they	have	observations.	For	traffic	stops,	this
is	not	a	problem	because	there	was	at	least	one	traffic	stop	on	each	day	of	the	year.
However,	there	were	16	days	where	there	were	no	traffic	crashes	recorded,	so	stopData
has	350	records	and	there	were	over	250	days	where	there	was	not	any	precipitation,	so
weatherData	only	has	114	records.

Since	the	first	way	of	creating	getItem	is	more	generic	and	idiomatic	to	F#,	I	will	use	it
for	the	remaining	part	of	the	chapter.	Both	the	examples	are	in	the	example	script	file	that
you	can	download.

Going	back	to	the	script,	enter	the	following:

type	TrafficDay	=	{DayNumber:int;	CrashCount:	int;	StopCount:	int;	

RainAmount:	int}

let	trafficDates	=	

				[|1..366|]

				|>	Array.map(fun	d	->	{DayNumber=d;

																										CrashCount=getItem	crashCounts	d;

																										StopCount=getItem	stopCounts	d;

																										RainAmount=getItem	weatherData'	d})

When	you	send	this	to	the	REPL,	you	will	see	the	following:

type	TrafficDay	=

		{DayNumber:	int;

			CrashCount:	int;

			StopCount:	int;

			RainAmount:	int;}

val	trafficDates	:	TrafficDay	[]	=

		[|{DayNumber	=	1;

					CrashCount	=	2;

					StopCount	=	49;

					RainAmount	=	0;};	{DayNumber	=	2;

																								CrashCount	=	3;

																								StopCount	=	43;

																								RainAmount	=	0;};

The	first	line	creates	a	record	type	that	contains	the	number	of	crashes,	stops,	and
precipitation	for	the	day.	I	used	rain	as	the	field	name	because	we	rarely	get	snow	in	North
Carolina	and	I	want	to	rub	it	in	to	any	reader	who	lives	up	north.	Of	course,	when	we	do
get	snow,	it	is	borderline	Armageddon.

The	next	block	of	code	is	where	we	create	our	final	data	frame.	First,	an	integer	array	is
created	with	every	day	of	the	year.	A	mapper	function	is	then	applied	that	calls	getItem
three	times	for	each	item	of	the	array:	the	first	time	for	crashData,	the	second	for	stop
data,	and	finally	for	weather	data.	The	results	are	put	into	the	TrafficDay	record.

With	the	data	frame	setup,	we	are	now	ready	for	Accord.	Go	to	the	script	file	and	enter	the
following:

let	pcaInput	=	

				trafficDates	

				|>	Array.map(fun	td	->	[|float	td.CrashCount;	float	td.StopCount;	float	

td.RainAmount	|])

When	you	send	it	to	the	REPL,	you	will	get	the	following:

val	pcaInput	:	float	[]	[]	=

		[|[|2.0;	49.0;	0.0|];	[|3.0;	43.0;	0.0|];	[|12.0;	52.0;	0.0|];

				[|5.0;	102.0;	0.0|];

This	is	a	jagged	array	that	Accord	wants.	Go	back	to	the	script	and	enter	the	following:

let	pca	=	new	PrincipalComponentAnalysis(pcaInput,	AnalysisMethod.Center)

pca.Compute()

pca.Transform(pcaInput)

pca.ComponentMatrix

pca.ComponentProportions

When	you	send	this	to	the	REPL,	you	will	get	the	following:

val	pca	:	PrincipalComponentAnalysis

val	it	:	unit	=	()

>	

val	it	:	float	[]	[]	=

		[|[|-43.72753865;	26.15506878;	-4.671924583|];

val	it	:	float	[,]	=	[[0.00127851745;	0.01016388954;	0.999947529]

																						[0.01597172498;	-0.999821004;	0.01014218229]

																						[0.9998716265;	0.01595791997;	-0.001440623449]]

>	

val	it	:	float	[]	=	[|0.9379825626;	0.06122702459;	0.0007904128341|]

>

>

This	shows	that	94	percent	of	the	variance	in	our	data	frame	is	from	crashes,	not	stops	or
the	weather.	This	is	interesting	because	common	wisdom	is	that,	once	it	rains	(or	<gasp>
snows	<gasp>)	in	North	Carolina,	traffic	accidents	spike.	Although	that	might	make	a
good	press	story,	this	one-year	sample	does	not	bear	it	out.

Analysis	summary
We	now	have	a	couple	of	models	that	point	to	some	interesting	ideas:

There	are	a	few	locations	that	account	for	most	of	the	traffic	crashes	and	tickets	in
town
Weather	is	not	as	important	as	you	might	think

With	this	knowledge,	we	are	ready	to	put	machine	learning	to	work	for	us.

The	Code-4-Good	application
Let’s	create	a	Windows	application	that	helps	people	drive	more	safely.	In	addition,	let’s
make	the	application	“smart”	so	that	it	will	progressively	get	more	accurate.	Let’s	start	in
Visual	Studio	with	the	project	you	have	already	created.

Machine	learning	assembly
Go	into	the	Solution	Explorer	and	rename	Library1.fs	to	TrafficML.fs.	Add	a
reference	to	System.Data,	System.Data.Entity,	System.Data.Linq,	and
FSharp.Data.TypeProviders:

Adding	references

Go	into	the	TrafficML.fs	file	and	enter	the	following	code:

namespace	Hack4Good.Traffic

open	System

open	System.Linq

open	System.Data.Linq

open	System.Data.Entity

open	Accord.MachineLearning

open	System.Collections.Generic

open	Accord.Statistics.Analysis

open	Microsoft.FSharp.Data.TypeProviders

type	Geolocation	=	{Latitude:	float;	Longitude:	float}

type	private	EntityConnection	=	SqlEntityConnection<"data	

source=nc54a9m5kk.database.windows.net;initial	catalog=Traffic;user	

id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;",Pluralize	=	true>

type	TrafficStop	=	{StopDateTime:	DateTime;	Geolocation:	Geolocation;	

DispositionId:	int}

type	TrafficCrash	=	{CrashDateTime:	DateTime;		Geolocation:	Geolocation;	

CrashSeverityId:	int;	CrashTypeId:	int;	}

type	GeoTraffic	=	{Geolocation:Geolocation;	CrashCount:	int;	StopCount:	

int}

type	GeoTraffic'	=	{Geolocation:Geolocation;	CrashCount:	int;	StopCount:	

int;	Cluster:	int}

I	know	it	feels	weird	not	to	send	code	you	just	wrote	to	FSI,	but	there	is	no	way	of	getting

immediate	feedback	of	the	code	you	wrote	in	a	compliable	file.	We	will	be	addressing	this
in	the	next	chapter	when	we	talk	TDD.	Until	then,	just	compile	the	project	to	make	sure
you	are	on	the	right	track.

Back	to	the	TrafficML.fs	file,	enter	the	following	wall	of	code	or	copy	it	from	the	book’s
download:

type	TrafficML(connectionString:string)	=	

				let	context	=	EntityConnection.GetDataContext(connectionString)

								let	trafficStops	=	

								context.dbo_TrafficStops	

								|>	Seq.map(fun	ts	->	{StopDateTime	=	ts.StopDateTime.Value;	

																													Geolocation	=	{Latitude	

=Math.Round(ts.Latitude.Value,3);	

																													Longitude=Math.Round(ts.Longitude.Value,3)};	

																													DispositionId	=	ts.DispositionId.Value})

								|>	Seq.toArray

				let	trafficCrashes=	

								context.dbo_TrafficCrashes	

								|>	Seq.filter(fun	tc	->	tc.MunicipalityId	=	Nullable<int>(13))

								|>	Seq.filter(fun	tc	->	not	(tc.Latitude	=	Nullable<float>()))

								|>	Seq.map(fun	tc	->	{CrashDateTime=tc.CrashDateTime.Value;	

																												Geolocation	=	{Latitude	

=Math.Round(tc.Latitude.Value,3);	

																												Longitude=Math.Round(tc.Longitude.Value,3)};

																												CrashSeverityId=tc.CrashSeverityId.Value;	

																												CrashTypeId	=tc.CrashTypeId.Value})

								|>	Seq.toArray

				let	stopData	=	

								trafficStops

								|>	Array.countBy(fun	ts	->	ts.Geolocation)

				let	crashData	=

								trafficCrashes

								|>	Array.countBy(fun	tc	->	tc.Geolocation)

				let	trafficGeo	=	

								Enumerable.Join(crashData,	stopData,	

																				(fun	crashData	->	fst	crashData),	

																				(fun	stopData	->	fst	stopData),	

																				(fun	crashData	stopData	->	{	GeoTraffic.Geolocation	=	

fst	crashData;	

																							StopCount	=	snd	crashData	;	

																							CrashCount	=	snd	stopData	}))

																				|>	Seq.toArray

				let	kmeansInput	=	

								trafficGeo	

								|>	Array.map(fun	cs	->	[|float	cs.CrashCount;	float	cs.StopCount	

|])

																								

				let	numberOfClusters	=	3

				let	kmeans	=	new	KMeans(numberOfClusters)

				let	labels	=	kmeans.Compute(kmeansInput.ToArray())

				let	trafficGeo'	=	Array.zip	trafficGeo	labels

																						|>	Array.map(fun	(tg,l)	->	

{Geolocation=tg.Geolocation;CrashCount=tg.CrashCount;StopCount=tg.StopCount

;Cluster=l})	

This	code	is	very	similar	to	the	k-means	code	we	wrote	in	the	Clustering.fsx	script	file.
Notice	that	all	the	work	of	getting	the	data,	shaping	it,	and	running	a	k-means	on	it
happens	in	the	constructor	of	the	TrafficML	type.	This	means	every	time	you	create	a	new
instance	of	the	class	from	another	location,	you	are	making	database	calls	and	running	the
model.	Also,	notice	that	the	connection	string	is	hardcoded	into	the	SqlEntity	type
provider	for	the	type	but	then	passed	in	via	the	constructor	parameter	when
GetDataContext()	is	actually	called.	This	allows	you	to	move	to	code	around
environments	(dev/test/prod).	The	downside	is	that	you	need	to	have	your	DEV
environment	exposed	always	so	that	the	type	is	generated.	One	way	to	avoid	this	is	to
hardcode	your	Entity	Framework	.edmx/schema	into	the	project.

Go	back	to	the	TrafficML.fs	file	and	enter	in	the	following	function	to	the	TrafficML
type:

				member	this.GetCluster(latitude:	float,	longitude:	float,	distance:	

float)	=

								let	geolocation	=	{Latitude=latitude;	Longitude=longitude}

								let	found	=	trafficGeo'	

																				|>	Array.map(fun	gt	->	gt,(haversine	gt.Geolocation	

geolocation))

																				|>	Array.filter(fun	(gt,d)	->	d	<	distance)

																				|>	Array.sortByDescending(fun	(gt,d)	->	gt.Cluster)

								match	found.Length	with

								|	0	->	-1

								|	_	->	let	first	=	found	|>	Array.head

															let	gt	=	fst	first

															gt.Cluster

This	does	a	search	of	the	geolocations.	If	there	is	a	match,	the	cluster	is	returned.	If	there
is	no	match,	a-1	is	returned,	signifying	that	there	was	not	a	match.	We	now	have	enough	to
make	a	first	pass	at	creating	a	real	time	“smart”	traffic	application.

The	UI
In	the	Solution	Explorer,	add	a	new	Visual	C#	WPF	Application:

After	the	project	is	created,	add	a	reference	from	the	C#	UI	project	to	the	F#	one,
System.Configuration	and	System.Device:

As	a	quick	preparatory	note,	you	are	supposed	to	follow	MVVM	and	command	relay
patterns	when	writing	WFP	applications	which	we	will	not	cover	in	this	book.	This	is	a
book	about	machine	learning,	not	coddling	humans	via	a	delightful	UI,	so	I	code	up
enough	of	the	UI	just	to	get	it	to	work.	If	you	are	interested	in	doing	WPF	following	best
practices,	consider	Windows	Presentation	Foundation	4.5	Cookbook.

Inside	the	UI	project,	open	up	the	MainWindow.xaml	file,	locate	the	Grid	element,	and
enter	in	this	XAML	inside	the	grid:

<Button	x:Name="crashbutton"	Content="Crash"	Click="notifyButton_Click"	

HorizontalAlignment="Left"	Height="41"	Margin="31,115,0,0"	

VerticalAlignment="Top"	Width="123"/>

<Button	x:Name="stopButton"	Content="Stop"	Click="notifyButton_Click"	

HorizontalAlignment="Left"	Height="41"	Margin="171,115,0,0"	

VerticalAlignment="Top"	Width="132"/>

<TextBlock	x:Name="statusTextBlock"	HorizontalAlignment="Left"	Height="100"	

Margin="31,10,0,0"	TextWrapping="Wrap"	Text="Current	Status:	No	Risk"	

VerticalAlignment="Top"	Width="272"/>

Next,	open	up	MainWindow.xaml.cs	and	enter	the	following	using	statements	to	the	block
of	using	at	the	top	of	the	file:

using	System.Configuration;

using	System.Device.Location;

Your	file	should	look	like	the	following:

Inside	the	MainWindow	class,	enter	three	class-level	variables:

								TrafficML	_trafficML	=	null;

								GeoCoordinateWatcher	_watcher	=	null;

								String	_connectionString	=	null;

Your	file	should	look	like	the	following:

Then,	in	the	MainWindow()	constructor,	add	in	the	following	code	below
InitializeComponent():

												InitializeComponent();

												_connectionString	=	

ConfigurationManager.ConnectionStrings["trafficDatabase"].ConnectionString;

												_trafficML	=	new	TrafficML(_connectionString);

												_watcher	=	new	GeoCoordinateWatcher(GeoPositionAccuracy.High);

												_watcher.PositionChanged	+=	Watcher_PositionChanged;

												bool	started	=	this._watcher.TryStart(false,	

TimeSpan.FromMilliseconds(2000));

												StartUpdateLoop();

Your	file	should	look	like	this:

Next,	create	the	Watcher_PositionChanged	method	for	the	event	handler:

								private	void	Watcher_PositionChanged(object	sender,	

GeoPositionChangedEventArgs<GeoCoordinate>	e)

								{

												var	location	=	e.Position.Location;

												var	latitude	=	

Double.Parse(location.Latitude.ToString("00.000"));

												var	longitude	=	

Double.Parse(location.Longitude.ToString("00.000"));

												var	cluster	=	_trafficML.GetCluster(latitude,	longitude);

												var	status	=	"No	Risk";

												switch(cluster)

												{

																case	0:

																				status	=	"Low	Risk";

																				break;

																case	1:

																				status	=	"Medium	Risk";

																				break;

																case	2:

																				status	=	"High	Risk";

																				break;

																default:

																				status	=	"No	Risk";

																				break;

												}

												this.statusTextBlock.Text	=	"Current	Status:	"	+	status;

								}

Next,	create	a	loop	to	refresh	the	MachineLearning	model	every	minute:

								private	async	Task	StartUpdateLoop()

								{

												while	(true)

												{

																await	Task.Delay(TimeSpan.FromMinutes(1.0));

																_trafficML	=	await	Task.Run(()	=>	new	

TrafficML(_connectionString));

												}

								}

Finally,	add	an	event	handler	placeholder	for	the	button	clicks	on	the	screen:

								private	void	notifyButton_Click(object	sender,	RoutedEventArgs	e)

								{

												//TODO

								}

If	you	collapse	the	code	to	definitions	(CTRL	+	M,	L),	your	code	should	look	like	the
following:

Next,	go	into	Solution	Explorer,	right-click	to	add	a	new	Application	Configuration
file:

Adding	new	Application	Configuration	file

Inside	that	app.config	file,	replace	the	contents	with	this	XML	(replace	the	connection
string	with	your	connection	string	if	you	are	using	a	local	instance	of	the	database):

<?xml	version="1.0"	encoding="utf-8"	?>

<configuration>

				<startup>	

								<supportedRuntime	version="v4.0"	sku=".NETFramework,Version=v4.5.2"	

/>

				</startup>

		<connectionStrings>

				<add	name="trafficDatabase"	

									connectionString="data	

source=nc54a9m5kk.database.windows.net;initial	catalog=Traffic;

									user	id=chickenskills@nc54a9m5kk;password=sk1lzm@tter;"	/>

		</connectionStrings>

</configuration>

Go	to	Solution	Explorer	and	make	the	UI	project	the	startup	project:

Compile	your	project.	If	all	is	well,	try	to	run	it.	You	should	get	a	warning	dialog	like	this:

And	then	you	will	get	a	screen	like	this:

Once	you	completely	take	in	the	awesomeness	of	the	user	experience,	stop	running	the
application.	So	far,	this	is	pretty	good.	If	we	put	this	application	on	a	location-aware
device	(like	a	GPS)	in	the	car	and	drive	around,	the	status	bar	will	warn	us	if	we	are	within
a	quarter	mile	of	a	geolocation	that	might	have	a	crash	or	stop	risk.	However,	if	we	want
to	give	ourselves	more	of	a	heads	up,	we	need	to	add	a	bit	more	of	code.

Adding	distance	calculations
Go	back	to	the	F#	project	and	open	up	the	TrafficML.fs	file.	Locate	the	last	line	of	the
constructor.	It	looks	like	the	following	code:

				let	trafficGeo'	=	Array.zip	trafficGeo	labels

																						|>	Array.map(fun	(tg,l)	->	

{Geolocation=tg.Geolocation;CrashCount=tg.CrashCount;StopCount=tg.StopCount

;Cluster=l})	

Below	this	line,	enter	the	following:

				let	toRadian	x	=	(Math.PI/180.0)	*	x

				let	haversine	x	y	=

								let	dlon	=	toRadian	(x.Longitude	-	y.Longitude)

								let	dLat	=	toRadian	(x.Latitude	-	y.Latitude)

								let	a0	=	pown	(Math.Sin(dLat/2.0))	2

								let	a1	=	Math.Cos(toRadian(x.Latitude))	*	

Math.Cos(toRadian(y.Latitude))

								let	a2	=	pown	(Math.Sin(dlon/2.0))	2

								let	a	=	a0	+	a1	*	a2

								let	c	=	2.0	*	Math.Atan2(sqrt(a),sqrt(1.0-a))

								let	R	=	3956.0

								R	*	c

These	two	functions	allow	us	to	calculate	the	distance	between	geolocations.	Since	the
earth	is	curved,	we	can’t	simply	subtract	the	latitudes	and	longitudes	between	the	two
geolocations.	The	Haversine	formula	is	the	most	common	way	to	do	this	calculation.

Go	to	the	end	of	the	file	and	add	the	following:

				member	this.GetCluster(latitude:	float,	longitude:	float,	distance:	

float)	=

								let	geolocation	=	{Latitude=latitude;	Longitude=longitude}

								let	found	=	trafficGeo'	|>	Array.map(fun	gt	->	gt,(haversine	

gt.Geolocation	geolocation))

																																|>	Array.filter(fun	(gt,d)	->	d	<	distance)

																																|>	Array.sortByDescending(fun	(gt,d)	->	

gt.Cluster)

								match	found.Length	with

								|	0	->	-1

								|	_	->	let	first	=	found	|>	Array.head

															let	gt	=	fst	first

															gt.Cluster	

What	we	are	doing	is	overloading	the	GetCluster	function	with	an	additional	parameter
called	distance.	Using	this	input	distance,	we	can	calculate	how	far	it	is	between	the
geolocation	parameter	and	every	geolocation	in	our	trafficGeo	array.	If	there	are	any
matches,	we	sort	by	the	highest	number	of	cluster	(sortByDescending)	and	return	it.

Go	back	to	our	UI	project	and	open	the	MainWindow.xaml.cs	file	and	locate	the
Watcher_PositionChanged	method.	Find	the	following	line	of	code:

var	cluster	=	_trafficML.GetCluster(latitude,	longitude);

Replace	it	with	the	following	line	of	code:

var	cluster	=	_trafficML.GetCluster(latitude,	longitude,	2.0);

We	now	have	a	two	mile	heads-up	to	any	problem	area	on	the	roads.

Augmenting	with	human	observations
There	is	one	more	thing	we	want	to	do	to	our	UI.	If	you	look	at	some	of	the	crowd	source
road	applications	like	Waze,	they	provide	real-time	notifications.	Our	app	bases	its
classification	based	on	historical	data.	However,	if	we	were	driving	down	the	street	in	an
area	that	was	classified	as	low	risk,	and	we	saw	a	traffic	crash,	we	would	want	to	elevate
the	location	to	a	high	risk.	Ideally,	all	the	users	of	our	application	would	get	this	update
and	override	the	model’s	classification	of	the	geolocation	(at	least	for	the	time	being)	and
then	we	would	update	our	database	so	that,	as	we	retrain	our	model,	the	information	gets
more	accurate.

Go	to	the	notifyButton_Click	event	holder	and	replace	//TODO	with	the	following:

												var	location	=	_watcher.Position.Location;

												var	latitude	=	

Double.Parse(location.Latitude.ToString("00.000"));

												var	longitude	=	

Double.Parse(location.Longitude.ToString("00.000"));

												_trafficML.AddGeolocationToClusterOverride(latitude,	

longitude);

The	compiler	will	complain	to	you	because	we	have	not	implemented	the
AddGeolocationToClusterOverride	yet.	Go	back	over	to	the	F#	project	and	open	the
TrafficML.fs	file.	At	the	very	bottom,	add	the	following:

				member	this.AddGeolocationToClusterOverride(latitude:	float,	longitude:	

float)		=

								let	clusterOverride	=	

EntityConnection.ServiceTypes.dbo_ClusterOverride()

								clusterOverride.Latitude	<-	latitude

								clusterOverride.Longitude	<-	longitude

								clusterOverride.Cluster	<-	2

								clusterOverride.OverrideDateTime	<-	DateTime.UtcNow

								context.dbo_ClusterOverride.AddObject(clusterOverride)

								context.DataContext.SaveChanges()	|>	ignore

We	now	have	a	way	of	updating	the	database	for	any	override.	Note	that	you	will	not	be
able	to	write	to	the	shared	database	on	Azure	that	was	created	for	this	book,	but	you	will
be	able	to	write	to	your	local	copy.	As	a	final	step,	go	up	to	where	we	created	the
trafficGeo	on	the	following	line:

				let	trafficGeo'	=	Array.zip	trafficGeo	labels

																						|>	Array.map(fun	(tg,l)	->	

{Geolocation=tg.Geolocation;CrashCount=tg.CrashCount;StopCount=tg.StopCount

;Cluster=l})	

Replace	that	line	with	the	following	code	block:

				let	overrides	=	context.dbo_ClusterOverride

																				|>	Seq.filter(fun	co	->	(DateTime.UtcNow	-	

co.OverrideDateTime)	>	TimeSpan(0,5,0))

																				|>	Seq.toArray

								let	checkForOverride	(geoTraffic:GeoTraffic')	=

								let	found	=	overrides

																				|>	Array.tryFind(fun	o	->	o.Latitude	=	

geoTraffic.Geolocation.Latitude	&&	

																				o.Longitude	=	geoTraffic.Geolocation.Longitude)

								match	found.IsSome	with

								|	true	->	{Geolocation=geoTraffic.Geolocation;

																		CrashCount=geoTraffic.CrashCount;

																		StopCount=geoTraffic.StopCount;

																		Cluster=found.Value.Cluster}

								|	false	->	geoTraffic

				let	trafficGeo'	=	Array.zip	trafficGeo	labels

																						|>	Array.map(fun	(tg,l)	->	

{Geolocation=tg.Geolocation;

																							CrashCount=tg.CrashCount;

																							StopCount=tg.StopCount;

																							Cluster=l})	

																						|>	Array.map(fun	gt	->	checkForOverride(gt))

This	block	goes	to	the	database	and	pulls	down	all	overrides	that	occurred	within	the	last	5
minutes	and	places	them	in	the	overrides	array.	It	then	creates	a	function	called
checkForOverride	that	takes	in	the	geoTraffic	value.	If	the	latitude	and	longitude	match
the	override	table,	the	geoTraffic	value	is	replaced	with	a	new	value	that	has	the	override
value	assigned	by	the	database	and	not	from	the	k-means	model.	If	no	match	is	found,	the
original	value	is	returned.	Finally,	we	pipe	this	function	to	the	creation	of	trafficGeo.
Note	that	if	you	try	and	execute	this	on	our	shared	server,	it	will	throw	an	exception
because	you	don’t	have	rights	to	write	to	the	database.	Hopefully,	though,	the	intention	is
clear	with	this	example.	With	that,	we	have	a	real-time	system	where	we	combine	machine
learning	and	human	observations	to	give	our	end	user	the	best	possible	predictions.

Summary
We	covered	a	lot	of	ground	in	this	chapter.	We	looked	at	k-means	and	PCA	to	help	us	find
hidden	relationships	in	our	traffic	datasets.	We	then	built	an	application	that	took
advantage	of	the	insights	we	gleaned	to	make	drivers	more	aware	and,	hopefully,	safer.
This	application	is	unique	because	it	blended	both	real-time	machine	learning	modeling
and	human	observations	to	provide	the	best	possible	outcome	for	the	driver.

In	the	next	chapter,	we	are	going	to	look	at	some	of	the	limitations	of	our	coding	so	far	in
this	book	and	see	if	we	can	improve	on	both	model	and	feature	selection.

Chapter	8.	Feature	Selection	and
Optimization
In	software	engineering,	there	is	an	old	saying:	make	it	work	first,	then	make	it	fast.	In	this
book,	we	have	adopted	the	strategy	to	make	it	run,	then	make	it	better.	Many	of	the
models	that	we	covered	in	the	initial	chapters	were	correct	in	a	very	limited	sense	and
could	stand	some	optimization	to	make	them	more	correct.	This	chapter	is	all	about
making	it	better.

Cleaning	data
As	we	saw	in	Chapter	5,	Time	Out	–	Obtaining	Data,	obtaining	and	shaping	the	data
(which	is	often	the	largest	problem	in	many	projects)	is	a	snap	using	F#	type	providers.
However,	once	our	data	is	local	and	shaped,	our	work	in	preparing	the	data	for	machine
learning	is	not	complete.	There	might	still	be	abnormalities	in	each	frame.	Things	like	null
values,	empty	values,	and	values	outside	a	reasonable	range	need	to	be	addressed.	If	you
come	from	an	R	background,	you	will	be	familiar	with	null.omit	and	na.omit,	which
remove	all	of	the	rows	from	a	data	frame.	We	can	achieve	functional	equivalence	in	F#	by
applying	a	filter	function	to	the	data.	In	the	filter,	you	can	search	for	null	if	it	is	a	reference
type,	or	.isNone	if	the	column	is	an	option	type.	While	this	is	effective,	it	is	a	bit	of	a
blunt	hammer	because	you	are	throwing	out	a	row	that	might	have	valid	values	in	the
other	fields	when	only	one	field	has	an	inappropriate	value.

Another	way	to	handle	missing	data	is	to	replace	it	with	a	value	that	will	not	skew	an
analysis.	Like	most	things	in	data	science,	there	are	plenty	of	opinions	on	the	different
techniques,	and	I	won’t	go	into	too	much	detail	here.	Rather,	I	want	to	make	you	aware	of
the	issue	and	show	you	a	common	way	to	remediate	it:

Go	into	Visual	Studio	and	create	a	Visual	F#	Windows	Library	project	called
FeatureCleaning:

Locate	Script1.fsx	in	the	Solution	Explorer	and	rename	it	CleanData.fsx:

Open	that	script	file,	and	replace	the	existing	code	with	this:

type	User	=	{Id:	int;	FirstName:	string;	LastName:	string;	Age:	float}

let	users	=	[|{Id=1;	FirstName="Jim";	LastName="Jones";	Age=25.5};

														{Id=2;	FirstName="Joe";	LastName="Smith";	Age=10.25};

														{Id=3;	FirstName="Sally";	LastName="Price";	Age=1000.0};|]

Sending	this	to	the	FSI	gives	us	the	following:

type	User	=

		{Id:	int;

			FirstName:	string;

			LastName:	string;

			Age:	float;}

val	users	:	User	[]	=	[|{Id	=	1;

																									FirstName	=	"Jim";

																									LastName	=	"Jones";

																									Age	=	25.5;};	{Id	=	2;

																																								FirstName	=	"Joe";

																																								LastName	=	"Smith";

																																								Age	=	10.25;};	{Id	=	3;

																																																								FirstName	

=	"Sally";

																																																								LastName	=	"Price";

																																																								Age	=	1000.0;}|]

User	is	a	record	type	that	represents	the	users	of	an	application	while	users	is	an	array	of
three	users.	It	looks	pretty	vanilla	except	user	3,	Sally	Price,	has	an	age	of	1000.0.	What
we	want	to	do	is	take	that	age	out	but	still	keep	Sally’s	record.	To	do	that,	let’s	remove
1,000	and	replace	it	with	the	average	of	the	ages	of	all	of	remaining	users.	Go	back	to	the
script	file	and	enter	this:

let	validUsers	=	Array.filter(fun	u	->	u.Age	<	100.0)	users

let	averageAge	=	Array.averageBy(fun	u	->	u.Age)	validUsers

let	invalidUsers	=	

				users	

				|>	Array.filter(fun	u	->	u.Age	>=	100.0)	

				|>	Array.map(fun	u	->	{u	with	Age	=	averageAge})

let	users'	=	Array.concat	[validUsers;	invalidUsers]

Sending	this	to	the	FSI	should	give	you	the	following:

val	averageAge	:	float	=	17.875

val	invalidUsers	:	User	[]	=	[|{Id	=	3;

																																FirstName	=	"Sally";

																																LastName	=	"Price";

																																Age	=	17.875;}|]

val	users'	:	User	[]	=	[|{Id	=	1;

																										FirstName	=	"Jim";

																										LastName	=	"Jones";

																										Age	=	25.5;};	{Id	=	2;

																																									FirstName	=	"Joe";

																																									LastName	=	"Smith";

																																									Age	=	10.25;};	{Id	=	3;

																																																									FirstName	=	

"Sally";

																																																									LastName	=	

"Price";

																																																									Age	=	17.875;}|]

Notice	that	we	create	a	subarray	of	the	valid	users	and	then	get	their	average	ages.	We	then

create	a	subarray	of	invalid	users	and	map	in	the	average	age.	Since	F#	does	not	like
mutability,	we	create	a	new	record	for	each	of	the	invalid	users	and	use	the	with	syntax
effectively,	creating	a	new	record	that	has	all	the	same	values	as	the	original	record,	except
the	age.	We	then	wrap	up	by	concatenating	the	valid	users	and	the	updated	user	back	into	a
single	array.	Although	this	is	a	fairly	rudimentary	technique,	it	can	be	surprisingly
effective.	As	you	get	further	into	machine	learning,	you	will	develop	and	refine	your	own
techniques	for	dealing	with	invalid	data—and	you	have	to	keep	in	mind	that	the	model
that	you	are	using	will	dictate	how	you	clean	that	data.	In	some	models,	taking	the	average
might	throw	things	off.

Selecting	data
When	we	are	confronted	with	a	large	number	of	independent	variables,	we	often	run	into
the	problem	of	which	values	to	select.	In	addition,	the	variable	might	be	binned,	combined
with	other	variables,	or	altered—all	of	which	might	make	or	break	a	particular	model.

Collinearity
Collinearity	is	when	we	have	multiple	x	variables	that	are	highly	related	to	each	other;
they	have	a	high	degree	of	correlation.	When	using	regressions,	you	always	have	to	be	on
the	watch	for	collinearity	as	you	can’t	be	sure	which	individual	variable	really	affects	the
outcome	variable.	Here	is	a	classic	example.	Suppose	you	wanted	to	measure	the
happiness	of	a	college	student.	You	have	the	following	input	variables:	age,	sex,	money
available	for	beer,	money	available	for	textbooks.	In	this	case,	there	is	a	direct	relationship
between	money	available	for	beer	and	money	available	for	textbooks.	The	more	money
spent	on	textbooks,	the	less	there	is	available	for	beer.	To	solve	for	collinearity,	you	can	do
a	couple	of	things:

Drop	one	of	the	highly-correlated	variables.	In	this	case,	perhaps	drop	money
available	for	text	books.
Combine	correlated	variables	into	a	single	variable.	In	this	case,	perhaps	just	have	a
category	of	money	in	checking	account.

A	common	way	to	test	for	collinearity	is	to	run	your	multiple	regressions	several	times,
each	time	removing	one	x	variable.	If	there	is	not	a	dramatic	change	when	two	different
variables	are	removed,	they	are	good	candidates	for	collinearity.	In	addition,	you	can
always	do	a	visual	scan	of	the	correlation	matrix	of	the	x	variables,	which	you	can	do
using	Accord.Net	with	the	Tools.Corrlelation	method.	Let’s	take	a	look	at	this.	Go	back
into	Visual	Studio	and	add	a	new	script	file	called	Accord.fsx.	Open	the	NuGet	Package
Manager	Console	and	add	in	Accord:

PM>	install-package	Accord.Statistics

Next,	go	into	the	script	file	and	enter	this:

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

open	Accord.Statistics

//Age	

//Sex	-	1	or	0

//money	for	textbooks

//money	for	beer

let	matrix	=	array2D	[[19.0;1.0;50.0;10.0];	

																							[18.0;0.0;40.0;15.0];	

																							[21.0;1.0;10.0;40.0]]

let	correlation	=	Tools.Correlation(matrix)

This	represents	three	students	who	we	interviewed.	We	asked	each	their	age,	their	gender,
how	much	money	they	had	for	textbooks,	and	how	much	money	they	had	for	beer.	The
first	student	is	a	19-year-old,	female,	had	$50.00	for	text	books,	and	$10.00	for	beer.

When	you	send	this	to	the	FSI,	you	get	the	following:

val	correlation	:	float	[,]	=

		[[1.0;	0.755928946;	-0.8386278694;	0.8824975033]

			[0.755928946;	1.0;	-0.2773500981;	0.3592106041]

			[-0.8386278694;	-0.2773500981;	1.0;	-0.9962709628]

			[0.8824975033;	0.3592106041;	-0.9962709628;	1.0]]

It	is	a	bit	hard	to	read,	so	I	reformatted	it:

	 Age Gender $	Books $	Beer

Age 1.0 0.76 -0.84 0.88

Sex 0.76 1.0 -0.28 0.35

$	Books -0.84 -0.28 1.0 -0.99

$	Beer 0.88 0.35 -0.99 1.0

Notice	the	diagonal	values	in	matrix,	1.0,	which	means	that	age	is	perfectly	correlated
with	age,	sex	is	perfectly	correlated	with	sex,	and	so	on.	The	key	thing	from	this	example
is	that	there	is	an	almost	perfect	negative	correlation	between	the	amount	of	money	for
books	and	the	amount	of	money	for	beer:	it	is	-0.99.	What	this	means	is	that,	if	you	have
more	money	for	books,	you	have	less	for	beer,	which	makes	sense.	By	reading	the
correlation	matrix,	you	can	get	a	quick	understanding	of	what	variables	are	correlated	and
can	possibly	be	removed.

A	related	topic	to	collinearity	is	to	always	keep	your	y	variable	as	independent	as	possible
from	the	x	variable.	For	example,	if	you	made	a	regression	where	you	were	trying	to	pick
the	amount	of	money	available	for	beer	for	our	student,	you	would	not	pick	any
independent	variable	that	related	to	the	amount	of	money	the	student	has.	Why?	Because
they	are	measuring	the	same	thing.

Feature	selection
A	related	topic	to	collinearity	is	feature	selection.	If	you	have	a	whole	mess	of	x	variables,
how	do	you	decide	which	ones	will	be	the	best	ones	for	your	analysis?	You	can	start
picking	and	choosing,	but	that	is	time-consuming	and	can	possibly	lead	to	errors.	Instead
of	guessing,	there	are	some	modeling	techniques	that	run	simulations	across	all	your	data
to	determine	the	best	combination	of	x	variables	to	use.	One	of	the	most	common
techniques	is	called	forward-selection	step-wise	regression.	Consider	a	data	frame	that	has
five	independent	variables	and	one	dependent	variable:

Using	forward-selection	step-wise	regression,	the	technique	starts	out	with	a	single
variable,	runs	a	regression,	and	calculates	(in	this	case)	a	rmse:

Next,	the	technique	goes	back	and	adds	in	another	variable	and	calculates	the	rmse:

Next,	the	technique	goes	back	and	further	adds	in	another	variable	and	calculates	the	rmse:

By	now,	you	probably	have	the	idea.	Depending	on	the	implementation,	the	stepwise
might	be	re-run	with	different	combinations	of	independent	variables	and/or	different	test
and	training	sets.	When	the	step-wise	is	done,	you	can	have	a	good	idea	about	what
features	are	important	and	what	can	be	discarded.

Let’s	take	a	look	at	a	step-wise	regression	example	in	Accord.	Go	back	to	your	script	and
enter	this	code	(note	that	this	is	verbatim	from	the	Accord	help	file	on	stepwise
regression):

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

open	Accord.Statistics.Analysis

//Age/Smoking

let	inputs	=	[|[|55.0;0.0|];[|28.0;0.0|];

															[|65.0;1.0|];[|46.0;0.0|];

															[|86.0;1.0|];[|56.0;1.0|];

															[|85.0;0.0|];[|33.0;0.0|];

															[|21.0;1.0|];[|42.0;1.0|];

															[|33.0;0.0|];[|20.0;1.0|];

															[|43.0;1.0|];[|31.0;1.0|];

															[|22.0;1.0|];[|43.0;1.0|];

															[|46.0;0.0|];[|86.0;1.0|];

															[|56.0;1.0|];[|55.0;0.0|];|]

//Have	Cancer

let	output	=	[|0.0;0.0;0.0;1.0;1.0;1.0;0.0;0.0;0.0;1.0;

															0.0;1.0;1.0;1.0;1.0;1.0;0.0;1.0;1.0;0.0|]

let	regression	=	

				StepwiseLogisticRegressionAnalysis(inputs,	output,	

[|"Age";"Smoking"|],"Cancer")

Send	this	to	the	FSI	to	get	the	following:

val	inputs	:	float	[]	[]	=

		[|[|55.0;	0.0|];	[|28.0;	0.0|];	[|65.0;	1.0|];	[|46.0;	0.0|];	[|86.0;	

1.0|];

				[|56.0;	1.0|];	[|85.0;	0.0|];	[|33.0;	0.0|];	[|21.0;	1.0|];	[|42.0;	

1.0|];

				[|33.0;	0.0|];	[|20.0;	1.0|];	[|43.0;	1.0|];	[|31.0;	1.0|];	[|22.0;	

1.0|];

				[|43.0;	1.0|];	[|46.0;	0.0|];	[|86.0;	1.0|];	[|56.0;	1.0|];	[|55.0;	

0.0|]|]

val	output	:	float	[]	=

		[|0.0;	0.0;	0.0;	1.0;	1.0;	1.0;	0.0;	0.0;	0.0;	1.0;	0.0;	1.0;	1.0;	1.0;	

1.0;

				1.0;	0.0;	1.0;	1.0;	0.0|]

val	regression	:	StepwiseLogisticRegressionAnalysis

As	you	can	tell	from	the	comments	in	the	code,	the	inputs	are	20	fictional	people	that	have
been	recently	screened	for	cancer.	The	features	are	their	ages	and	whether	or	not	they
smoke.	The	output	is	whether	the	person	actually	did	have	cancer.

Go	back	to	the	script	and	add	this:

let	results	=	regression.Compute()

let	full	=	regression.Complete;

let	best	=	regression.Current;

full.Coefficients

best.Coefficients

When	you	send	this	to	the	FSI,	you	will	see	something	very	interesting.	The
full.Coefficients	returns	all	of	the	variables	but	the	best.Coefficients	returns	this:

val	it	:	NestedLogisticCoefficientCollection	=

		seq

				[Accord.Statistics.Analysis.NestedLogisticCoefficient

							{Confidence	=	0.0175962716285245,	1.1598020423839;

								ConfidenceLower	=	0.01759627163;

								ConfidenceUpper	=	1.159802042;

								LikelihoodRatio	=	null;

								Name	=	"Intercept";

								OddsRatio	=	0.1428572426;

								StandardError	=	1.068502877;

								Value	=	-1.945909451;

								Wald	=	0.0685832853132018;};

					Accord.Statistics.Analysis.NestedLogisticCoefficient

							{Confidence	=	2.63490696729824,	464.911388747606;

								ConfidenceLower	=	2.634906967;

								ConfidenceUpper	=	464.9113887;

								LikelihoodRatio	=	null;

								Name	=	"Smoking";

								OddsRatio	=	34.99997511;

								StandardError	=	1.319709922;

								Value	=	3.55534735;

								Wald	=	0.00705923290736891;}]

You	can	now	see	that	Smoking	is	the	most	important	variable	when	predicting	cancer.	If
two	or	more	variables	were	considered	important,	Accord	would	have	told	you	the	number
1	variable,	then	the	next	one,	and	so	on.	Stepwise	regressions	are	a	bit	on	the	outs	these
days	as	the	community	has	moved	to	Lasso	and	some	other	techniques.	However,	it	is	still
an	important	tool	in	your	toolkit	and	is	something	that	you	should	know	about.

Normalization
Sometimes	our	models	can	be	improved	by	adjusting	the	data.	I	am	not	talking	about
“adjusting	numbers”	in	the	Enron	accounting	or	US	politician	sense.	I	am	talking	about
adjusting	the	data	using	some	standard	scientific	techniques	that	might	improve	the
model’s	accuracy.	The	general	term	for	this	is	normalization.

There	are	many	different	ways	to	normalize	data.	I	want	to	show	you	two	common	ones
that	work	well	with	regressions.	First,	if	your	data	is	clustered	together,	you	can	take	the
log	of	the	values	to	help	tease	out	relationships	that	might	otherwise	be	hidden.	For
example,	look	at	our	scatterplot	of	product	reviews	from	the	beginning	of	Chapter	2,
AdventureWorks	Regression.	Notice	that	most	of	the	order	quantity	centered	around	250	to
1,000.

By	applying	the	log	to	the	order	quantity	and	doing	the	same	kind	of	scatterplot,	you	can
see	the	relationship	much	more	clearly:

Note	that	taking	the	log	typically	does	not	change	the	relationship	among	the	dependent
and	independent	variables,	so	you	can	use	it	safely	in	replacement	of	the	natural	values	in
regressions.

If	you	go	back	to	the	solution	in	Chapter	2,	AdventureWorks	Regression,	you	can	open	up
the	regression	project	and	add	a	new	file	called	Accord.Net4.fsx.	Copy	and	paste	in	the
contents	from	Accord.Net2.fsx.	Next,	replace	the	data	reader	lines	of	code	with	this:

while	reader.Read()	do

				productInfos.Add({ProductID=reader.GetInt32(0);

							AvgOrders=(float)(reader.GetDecimal(1));

							AvgReviews=log((float)(reader.GetDecimal(2)));

							ListPrice=(float)(reader.GetDecimal(3));})

Sending	this	to	the	REPL,	we	get	the	following:

val	regression	:	MultipleLinearRegression	=

		y(x0,	x1)	=	35.4805245757214*x0	+	-0.000897944878777119*x1	+	

-36.7106228824185

val	error	:	float	=	687.122625

val	a	:	float	=	35.48052458

val	b	:	float	=	-0.0008979448788

val	c	:	float	=	-36.71062288

val	mse	:	float	=	7.083738402

val	rmse	:	float	=	2.661529335

val	r2	:	float	=	0.3490097415

Notice	the	change.	We	are	taking	the	log()	of	our	x	variables.	Also,	notice	that	our	r2
slightly	decreases.	The	reason	for	this	is	that	although	the	log	does	not	change	the
relationship	among	AvgReviews,	it	does	impact	how	it	relates	to	the	other	x	variables	and

potentially	the	y	variable.	You	can	see,	in	this	case,	that	it	didn’t	do	much.

Besides	using	log,	we	can	trim	outliers.	Going	back	to	our	graph,	do	you	notice	that	lonely
dot	at	2.2	average	order	quantity/3.90	average	review?

Looking	at	all	of	the	other	data	points,	we	would	expect	that	a	3.90	average	review	should
have	a	2.75	average	order	quantity	at	least.	Although	we	might	want	to	dive	into	the
details	to	figure	out	what	is	going	on,	we’ll	save	that	exercise	for	another	day.	Right	now,
what	it	is	really	doing	is	messing	up	our	model.	Indeed,	the	biggest	criticism	of
regressions	is	that	they	are	overly	sensitive	to	outliers.	Let’s	look	at	a	simple	example.	Go
to	Chapter	2,	AdventureWorks	Regression,	regression	project	and	create	a	new	script,
called	Accord5.fsx.	Copy	the	first	part	of	the	code	from	Accord1.fsx	into	it:

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

open	Accord

open	Accord.Statistics.Models.Regression.Linear

let	xs	=	[|	[|15.0;130.0|];[|18.0;127.0|];[|15.0;128.0|];	[|17.0;120.0|];

[|16.0;115.0|]	|]

let	y	=	[|3.6;3.5;3.8;3.4;2.6|]

let	regression	=	MultipleLinearRegression(2,true)

let	error	=	regression.Regress(xs,y)

let	a	=	regression.Coefficients.[0]

let	b	=	regression.Coefficients.[1]

let	sse	=	regression.Regress(xs,	y)

let	mse	=	sse/float	xs.Length	

let	rmse	=	sqrt(mse)

let	r2	=	regression.CoefficientOfDetermination(xs,y)

Next,	let’s	add	a	child	prodigy	who	is	bored	with	school	so	he	has	a	low	GPA.	Add	in	a
student	with	an	age	of	10,	an	IQ	of	150,	and	a	GPA	of	1.0:

let	xs	=	[|	[|15.0;130.0|];[|18.0;127.0|];[|15.0;128.0|];	[|17.0;120.0|];

[|16.0;115.0|];[|10.0;150.0|]	|]

let	y	=	[|3.6;3.5;3.8;3.4;2.6;1.0|]

Sending	the	entire	script	to	the	REPL	gives	us	the	following:

val	regression	:	MultipleLinearRegression	=

		y(x0,	x1)	=	0.351124295971452*x0	+	0.0120748957392838*x1	+	

-3.89166344210844

val	error	:	float	=	1.882392837

val	a	:	float	=	0.351124296

val	b	:	float	=	0.01207489574

val	sse	:	float	=	1.882392837

val	mse	:	float	=	0.3137321395

val	rmse	:	float	=	0.5601179693

val	r2	:	float	=	0.6619468116

Notice	what	happens	to	our	model.	Our	r2	moves	from	0.79	to	0.66	and	our	rmse	climbs
from	0.18	to	0.56!	Holy	cow,	that’s	dramatic!	As	you	can	guess,	how	you	deal	with
outliers	will	have	a	large	impact	on	your	model.	If	the	intention	of	the	model	is	to	predict	a
majority	of	students’	GPAs,	we	can	safely	remove	the	outlier	because	it’s	not	typical.
Another	way	of	handling	outliers	is	to	use	a	model	that	does	a	better	job	of	dealing	with
them.

With	that	under	our	belts,	let’s	try	it	with	real	data.	Add	a	new	script	file	and	call	it
AccordDotNet6.fsx.	Copy	and	paste	all	of	AccordDotNet2.fsx	into	it.	Next,	locate	these
lines:

								while	reader.Read()	do

												productInfos.Add({ProductID=reader.GetInt32(0);

																																AvgOrders=(float)(reader.GetDecimal(1));

																																AvgReviews=(float)(reader.GetDecimal(2));

																																ListPrice=(float)(reader.GetDecimal(3));})

								let	xs	=	productInfos	|>	Seq.map(fun	pi	->	[|pi.AvgReviews;	

pi.ListPrice|])	|>	Seq.toArray

								let	y	=	productInfos	|>	Seq.map(fun	pi	->	pi.AvgOrders)	|>	

Seq.toArray

And	replace	them	with	these:

								while	reader.Read()	do

												productInfos.Add({ProductID=reader.GetInt32(0);

																																AvgOrders=(float)(reader.GetDecimal(1));

																																AvgReviews=(float)(reader.GetDecimal(2));

																																ListPrice=(float)(reader.GetDecimal(3));})

								let	productInfos'	=	productInfos	|>	Seq.filter(fun	pi	->	

pi.ProductID	<>	757)

								let	xs	=	productInfos'	|>	Seq.map(fun	pi	->	[|pi.AvgReviews;	

pi.ListPrice|])	|>	Seq.toArray

								let	y	=	productInfos'	|>	Seq.map(fun	pi	->	pi.AvgOrders)	|>	

Seq.toArray

Sending	this	to	the	REPL,	we	get	the	following:

val	regression	:	MultipleLinearRegression	=

		y(x0,	x1)	=	9.89805316193142*x0	+	-0.000944004141999501*x1	+	

-26.8922595356297

val	error	:	float	=	647.4688586

val	a	:	float	=	9.898053162

val	b	:	float	=	-0.000944004142

val	c	:	float	=	-26.89225954

val	mse	:	float	=	6.744467277

val	rmse	:	float	=	2.59701122

val	r2	:	float	=	0.3743706412

The	r2	moves	up	from	0.35	to	0.37	and	our	rmse	drops	from	2.65	to	2.59.	Quite	an
improvement	for	removing	one	data	point!	Feel	free	to	move	this	change	over	to	the
AdventureWorks	project	if	you	want.	I	am	not	going	to	walk	you	through	it,	but	you	now
have	the	skills	to	do	it	independently.	Dropping	outliers	is	a	very	powerful	way	to	make
regressions	more	accurate,	but	there’s	a	cost.	Before	we	start	dropping	data	elements	that
don’t	work	from	our	model,	we	have	to	use	some	judgement.	In	fact,	there	are	textbooks
devoted	to	the	science	of	what	to	do	with	outliers	and	missing	data.	We	are	not	going	to
get	into	that	in	this	book,	other	than	acknowledge	that	the	issue	exists	and	to	advise	you	to
use	some	common	sense	when	dropping	elements.

Scaling
I	want	to	acknowledge	a	common	misperception	about	normalization	and	units	of
measure.	You	might	notice	that	the	different	x	variables	have	significantly	different	units
of	measure	in	Chapter	2,	AdventureWorks	Regression,	and	Chapter	3,	More
AdventureWorks	Regression.	In	our	examples,	the	Units	of	Customer	Review	is	a	1-5
rating	and	the	Price	of	Bikes	is	0-10,000	US	dollars.	You	might	think	that	comparing	such
a	large	range	of	numbers	would	adversely	affect	the	model.	Without	going	into	details,
you	can	be	rest	assured	that	regressions	are	immune	to	different	units	of	measure.

However,	other	models	(especially	classification	and	clustering	models	like	k-NN,	k-
means,	and	PCA)	are	impacted.	When	we	created	these	kinds	of	models	in	Chapter	6,
AdventureWorks	Redux	–	k-NN	and	Naïve	Bayes	Classifiers,	and	Chapter	7,	Traffic	Stops
and	Crash	Locations	–	When	Two	Datasets	Are	Better	Than	One,	we	ran	a	risk	that	we
were	getting	erroneous	results	because	the	data	was	not	scaled.	Fortunately,	the	features
we	selected,	and	the	libraries	we	used	(Numl.net	and	Accord),	bailed	us	out.	Numl.NET
automatically	scales	input	variables	in	all	of	the	classification	models.	Depending	on	the
type	of	model,	Accord	might	scale	for	you.	For	example,	in	the	PCA	we	wrote	in	Chapter
7,	Traffic	Stops	and	Crash	Locations	–	When	Two	Datasets	Are	Better	Than	One,	we
passed	in	an	input	parameter	called	AnalysisMethod.Center	on	this	line:

let	pca	=	new	PrincipalComponentAnalysis(pcaInput.ToArray(),	

AnalysisMethod.Center)

This	scales	the	input	variables	to	the	mean,	which	is	good	enough	for	our	analysis.	When
we	did	the	k-NN	in	Chapter	6,	AdventureWorks	Redux	–	k-NN	and	Naïve	Bayes
Classifiers,	using	Accord,	we	did	not	scale	the	data	because	our	two	input	variables	were
categorical	(MartialStatus	and	Gender)	with	only	two	possibilities	(married	or	not,	male
or	female)	and	you	only	need	to	scale	continuous	variables	or	categorical	variables	with
more	than	two	values.	If	we	had	used	a	continuous	variable	or	a	three-factor	categorical
variable	in	the	k-NN,	we	would	have	had	to	scale	it.

Let’s	walk	through	a	quick	example	of	scaling	using	Accord.	Open	up	the
FeatureCleaning	solution	from	this	chapter	and	add	a	new	script	file	called	AccordKNN:

Go	into	the	NuGet	Package	Manager	Console	and	enter	this:

PM>	install-package	Accord.MachineLearning

Go	into	the	AccordKNN.fsx	file	and	add	the	code	we	used	in	Chapter	6,	AdventureWorks
Redux	–k-NN	and	Naïve	Bayes	Classifiers,	for	students	who	study	and	drink	beer:

#r	"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r	"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

#r	"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r	

"../packages/Accord.MachineLearning.3.0.2/lib/net40/Accord.MachineLearning.

dll"

open	Accord

open	Accord.Math

open	Accord.MachineLearning

open	Accord.Statistics.Analysis

let	inputs	=	[|[|5.0;1.0|];[|4.5;1.5|];

													[|5.1;0.75|];[|1.0;3.5|];

													[|0.5;4.0|];[|1.25;4.0|]|]

let	outputs	=	[|1;1;1;0;0;0|]

let	classes	=	2

let	k	=	3

let	knn	=	KNearestNeighbors(k,	classes,	inputs,	outputs)

let	input	=	[|5.0;0.5|]

let	output	=	knn.Compute(input)

Now,	let’s	scale	the	data	so	that	studying	and	drinking	beer	are	equivalent.	We	are	going	to
take	the	simplest	methodology	of	scaling	called	mean	scaling.	Go	back	to	the	script	and
enter	this:

let	studyingAverage	=	inputs	|>	Array.map(fun	i	->	i.[0])	|>	Array.average

let	drinkingAverage	=	inputs	|>	Array.map(fun	i	->	i.[1])	|>	Array.average

let	scaledInputs	=	inputs	|>	Array.map(fun	i	->	[|i.[0]/studyingAverage;	i.

[1]/drinkingAverage|])

let	scaledKNN	=	KNearestNeighbors(k,	classes,	scaledInputs,	outputs)

When	you	send	this	to	the	REPL,	you	will	see	the	following:

val	studyingAverage	:	float	=	2.891666667

val	drinkingAverage	:	float	=	2.458333333

val	scaledInputs	:	float	[]	[]	=

		[|[|1.729106628;	0.406779661|];	[|1.556195965;	0.6101694915|];

				[|1.763688761;	0.3050847458|];	[|0.3458213256;	1.423728814|];

				[|0.1729106628;	1.627118644|];	[|0.4322766571;	1.627118644|]|]

val	scaledKNN	:	KNearestNeighbors

Notice	that	the	inputs	are	now	relative	to	their	means.	The	person	who	studied	five	hours
and	drank	one	beer	now	studied	73%	more	than	the	average	and	drank	41%	less	than	the
average.	This	k-NN	model	is	now	scaled	and	will	give	a	better	“apples	to	apples”
comparison	when	used	in	practice.

Overfitting	and	cross	validation
If	you	remember	from	Chapters	2,	3,	and	4,	one	of	the	problems	with	our	methodology
when	building	models	was	that	we	were	guilty	of	overfitting.	Overfitting,	the	bane	of
predictive	analytics,	is	what	happens	when	we	build	a	model	that	does	a	great	job	with
past	data	but	then	falls	apart	when	new	data	is	introduced.	This	phenomenon	is	not	just	for
data	science;	it	happens	a	lot	in	our	society:	Professional	athletes	get	lucrative	contracts
and	then	fail	to	live	up	to	their	prior	performances;	fund	managers	get	hefty	salary	bumps
because	of	last	year’s	performance,	and	the	list	goes	on.

Cross	validation	–	train	versus	test
Unlike	the	Yankees,	who	never	seem	to	learn,	our	profession	has	learned	from	its	mistakes
and	has	a	great,	if	imperfect,	tool	to	combat	overfitting.	We	use	the	methodology	of
train/test/eval	to	build	several	models	and	then	select	the	best	one	not	based	on	how	well	it
did	against	an	existing	dataset,	but	how	it	does	against	data	it	has	never	seen	before.	To
accomplish	that,	we	take	our	source	data,	import	it,	clean	it,	and	split	it	into	two	subsets:
training	and	testing.	We	then	build	our	model	on	the	training	set	and,	if	it	seems	viable,
apply	our	test	data	to	the	model.	If	the	model	is	still	valid,	we	can	think	about	pushing	it	to
production.	This	is	represented	graphically	as	follows:

But	there	is	one	more	step	we	can	add.	We	can	split	our	data	several	times	and	build	new
models	to	be	validated.	The	actual	splitting	of	the	dataset	is	its	own	science,	but	typically
each	time	the	base	dataset	is	split	into	Training	and	Testing	subsets,	the	records	are
selected	randomly.	That	means	if	you	split	your	base	data	five	times,	you	will	have	five
completely	different	training	and	test	subsets:

This	kind	of	technique	can	be	more	important	than	the	actual	model	selection.	Both
Accord	and	Numl	do	some	kind	of	splitting	under	the	hoods	and	in	this	book,	we	will	trust
that	they	are	doing	a	good	job.	However,	once	you	start	working	on	models	in	the	wild,
you	will	want	to	dedicate	a	certain	amount	of	time	on	every	project	for	cross	validation.

Cross	validation	–	the	random	and	mean	test
Going	back	to	our	k-NN	example	of	students	that	studied	and	drank	beer,	how	do	we
know	if	we	are	predicting	accurately?	If	we	want	to	guess	whether	a	student	passed	or	not,
we	could	just	flip	a	coin:	heads	they	pass,	tails	they	fail.	The	assumption	in	our	analysis	is
that	the	number	of	hours	studying	and	the	number	of	beers	consumed	have	some	kind	of
causality	on	the	exam	outcome.	If	our	model	does	no	better	than	a	coin	flip,	then	it	is	not	a
model	worth	using.	Open	up	Visual	Studio	and	go	back	to	the	AccordKNN.fsx	file.	At	the
bottom,	enter	in	the	following	code:

let	students	=	[|0..5|]

let	random	=	System.Random()

let	randomPrediction	=	

				students	

				|>	Array.map(fun	s	->	random.Next(0,2))

Sending	this	to	the	FSI,	we	get	the	following	(your	results	will	be	different):

val	students	:	int	[]	=	[|0;	1;	2;	3;	4;	5|]

val	random	:	System.Random

val	randomPrediction	:	int	[]	=	[|0;	1;	0;	0;	1;	1|]

Now,	let’s	enter	in	some	information	about	each	student:	the	number	of	hours	they	studied
and	the	number	of	beers	they	drank	and	run	the	unscaled	k-NN	on	it:

let	testInputs	=	[|[|5.0;1.0|];[|4.0;1.0|];

																	[|6.2;0.5|];[|0.0;2.0|];

																	[|0.5;4.0|];[|3.0;6.0|]|]

let	knnPrediction	=

				testInputs

				|>	Array.map(fun	ti	->	knn.Compute(ti))

Sending	this	to	the	REPL	gives	us	the	following:

val	testInputs	:	float	[]	[]	=

		[|[|5.0;	1.0|];	[|4.0;	1.0|];	[|6.2;	0.5|];	[|0.0;	2.0|];	[|0.5;	4.0|];

				[|3.0;	6.0|]|]

val	knnPrediction	:	int	[]	=	[|1;	1;	1;	0;	0;	0|]

Finally,	let’s	see	how	they	actually	did	on	the	exam.	Add	this	to	the	script:

let	actual	=	[|1;1;1;0;0;0|]

Sending	this	to	the	FSI	gives	us	the	following:

val	actual	:	int	[]	=	[|1;	1;	1;	0;	0;	0|]

Combining	these	arrays	together	in	a	chart,	will	give	us	the	following:

If	we	then	scored	how	well	the	random	test	and	k-NN	did	predicting	the	actual	results,	we
can	see	that	the	random	test	correctly	predicted	the	result	66%	of	the	time	and	k-NN
correctly	predicted	the	result	100%	of	the	time:

Because	our	k-NN	did	better	than	the	random	coin	flip,	we	can	consider	the	model	useful.

This	kind	of	yes/no	random	test	works	well	when	our	model	is	a	logistic	regression	or	a
classification	model	like	k-NN,	but	what	about	when	the	dependent	(Y)	variable	is	a
continuous	value	like	in	a	linear	regression?	In	that	case,	instead	of	using	a	random	coin
flip,	we	can	plug	in	the	mean	of	the	known	values.	If	the	outcome	predicts	better	than	the
mean,	we	probably	have	a	good	model.	If	it	does	worse	than	the	mean,	we	need	to	rethink
our	model.	For	example,	consider	predicting	average	bike	reviews	from	AdventureWorks:

When	you	compare	the	predicted	to	the	actual	(taking	the	absolute	value	to	account	for
being	both	higher	and	lower)	and	then	aggregate	the	results,	you	can	see	that	our	linear
regression	did	a	better	job	in	predicting	the	rating	than	the	mean:

If	you	are	thinking	we	have	already	done	something	like	this	in	Chapters	2	and	3,	you	are
right—this	is	the	same	concept	as	the	RMSE.

Cross	validation	–	the	confusion	matrix	and	AUC
Going	back	to	our	k-NN	example,	imagine	that	we	ran	our	k-NN	against	many	students.
Sometimes	the	k-NN	guessed	correctly,	sometimes	the	k-NN	did	not.	There	are	actually
four	possible	outcomes:

k-NN	predicted	that	the	student	would	pass	and	they	did	pass
k-NN	predicted	that	the	student	would	fail	and	they	did	fail
k-NN	predicted	that	the	student	would	pass	and	they	failed
k-NN	predicted	that	the	student	would	fail	and	they	passed

Each	of	these	outcomes	has	a	special	name:

Predict	Pass	and	Did	Pass:	True	Positive
Predict	Fail	and	Did	Fail:	True	Negative
Predict	Pass	and	Failed:	False	Positive
Predict	Fail	and	Passed:	False	Negative

And	in	a	chart	format,	it	would	look	like	this:

Sometimes	the	False	Positive	is	called	a	Type	I	error	and	the	False	Negative	is	called	a
Type	II	error.

If	we	ran	the	k-NN	against	100	students,	we	could	add	values	to	that	chart	like	this:

Reading	this	chart,	52	students	passed	the	exam.	Of	that,	we	correctly	predicted	50	of
them	would	pass,	but	we	incorrectly	predicted	two	of	the	passing	students	would	fail.

Similarly,	43	failed	the	exam	(must	have	been	a	tough	exam!),	40	of	which	we	correctly
predicted	would	fail,	and	three	we	incorrectly	predicted	would	pass.	This	matrix	is	often
called	a	confusion	matrix.

With	this	confusion	matrix,	we	can	then	do	some	basic	statistics	like:

Accuracy	=	True	Positives	+	True	Negatives	/	Total	Population	=	(50	+	40)	/	100	=	90%

True	Positive	Rate	(TPR)	=	True	Positives	/	Total	Positives	=	50	/	52	=	96%

False	Negative	Rate	(FNR)	=	False	Negatives	/	Total	Positives	=	2	/	52	=	4%

False	Positive	Rate	(FPR)	=	False	Positives	/	Total	Negatives	=	3	/	43	=	7%

True	Negative	Rate	(TNR)	=	True	Negatives	/	Total	Negatives	=	40	/	43	=	93%

(Note	that	TPR	is	sometimes	called	Sensitivity,	the	FNR	is	sometimes	called	Miss	Rate,
the	False	Positive	Rate	is	sometimes	called	Fall-Out	and	the	TNR	is	sometimes	called
Specificity.)

Positive	Likelihood	Ratio	(LR+)	=	TPR	/	FPR	=	96	%	/	1	–	93%	=	13.8

Negative	Likelihood	Ratio	(LR-)	=	FNR	/	TNR	=	4%	/	93%	=	.04

Diagnostic	Odds	Ratio	(DOR)	=	LR+	/	LR-	=	33.3

Since	the	DOR	is	greater	than	1,	we	know	that	the	model	is	working	well.

Putting	this	into	code,	we	could	handwrite	these	formulas,	but	Accord.Net	has	already
taken	care	of	this	for	us.	Go	back	into	Visual	Studio	and	open	AccordKNN.fsx.	At	the
bottom,	enter	in	this	code:

let	positiveValue	=	1

let	negativeValue	=	0

let	confusionMatrix	=	

ConfusionMatrix(knnPrediction,actual,positiveValue,negativeValue)

On	the	next	line,	type	confusionMatrix	and	hit	dot	to	see	all	of	the	properties	that	are
available	to	you:

This	is	a	very	useful	class	indeed.	Let’s	select	the	odds	ratio:

confusionMatrix.OddsRatio

And	then	send	the	entire	code	block	to	the	FSI:

val	positiveValue	:	int	=	1

val	negativeValue	:	int	=	0

val	confusionMatrix	:	ConfusionMatrix	=	TP:3	FP:0,	FN:0	TN:3

val	it	:	float	=	infinity

Since	our	k-NN	is	was	100%	accurate,	we	got	an	odds	ratio	of	infinity	(and	beyond).	In	a
real-world	model,	the	odds	ratio	would	obviously	be	much	lower.

Cross	validation	–	unrelated	variables
There	is	one	more	technique	that	I	want	to	cover	to	for	cross-validation—adding	in
unrelated	variables	and	seeing	the	impact	on	the	model.	If	your	model	is	truly	useful,	it
should	be	able	to	handle	extraneous	“noise”	variables	without	significantly	impacting	the
model’s	result.	As	we	saw	in	Chapter	2,	AdventureWorks	Regression,	any	additional
variable	will	have	a	positive	impact	on	most	models,	so	this	is	a	measure	of	degree.	If
adding	an	unrelated	variable	makes	the	model	seem	much	more	accurate,	then	the	model
itself	is	suspect.	However,	if	the	extra	variable	only	has	a	marginal	impact,	then	our	model
can	be	considered	solid.

Let’s	see	this	in	action.	Go	back	into	AccordKNN.fsx	and	add	the	following	code	at	the
bottom:

let	inputs'	=	[|[|5.0;1.0;1.0|];[|4.5;1.5;11.0|];

															[|5.1;0.75;5.0|];[|1.0;3.5;8.0|];

															[|0.5;4.0;1.0|];[|1.25;4.0;11.0|]|]

let	knn'	=	KNearestNeighbors(k,	classes,	inputs',	outputs)

let	testInputs'	=	[|[|5.0;1.0;5.0|];[|4.0;1.0;8.0|];

																			[|6.2;0.5;12.0|];[|0.0;2.0;2.0|];

																			[|0.5;4.0;6.0|];[|3.0;6.0;5.0|]|]

let	knnPrediction'	=

				testInputs'

				|>	Array.map(fun	ti	->	knn'.Compute(ti))

I	added	a	third	variable	that	represents	each	student’s	zodiac	symbol	(1.0	=	Aquarius,	2.0
=	Pisces,	and	so	on).	When	I	passed	in	the	same	test	input	(also	with	random	zodiac
symbols),	the	predictions	were	the	same	as	the	original	k-NN.

val	knnPrediction'	:	int	[]	=	[|1;	1;	1;	0;	0;	0|]

We	can	conclude	that	the	extra	variable,	although	it	had	an	impact	at	some	point	in	the
modeling	process,	was	not	important	enough	to	alter	our	original	model.	We	can	then	use
this	model	with	a	higher	degree	of	confidence.

Summary
This	chapter	is	a	bit	different	than	other	machine	learning	books	that	you	might	have	read
because	it	did	not	introduce	any	new	models,	but	instead	concentrated	on	the	dirty	job	on
gathering,	cleaning,	and	selecting	your	data.	Although	not	as	glamorous,	it	is	absolutely
essential	that	you	have	a	firm	grasp	on	these	concepts	because	they	will	often	make	or
break	a	project.	In	fact,	many	projects	spend	over	90%	of	their	time	acquiring	data,
cleaning	the	data,	selecting	the	correct	features,	and	building	the	appropriate	cross-
validation	methodology.	In	this	chapter,	we	looked	at	cleaning	data	and	how	to	account	for
missing	and	incomplete	data.	Next,	we	looked	at	collinearity	and	normalization.	Finally,
we	wrapped	up	with	some	common	cross-validation	techniques.

We	are	going	to	apply	all	of	these	techniques	in	the	coming	chapters.	Up	next,	let’s	go
back	to	the	AdventureWorks	company	and	see	if	we	can	help	them	improve	their
production	process	using	a	machine	learning	model	based	on	how	the	human	brain	works.

Chapter	9.	AdventureWorks	Production	–
Neural	Networks
One	day	you	are	sitting	in	your	office,	basking	in	the	glow	of	your	new-found	rock	star
status	at	AdventureWorks	when	your	boss	knocks	on	the	door.	She	says,	“Since	you	did
such	a	good	job	with	the	consumer-facing	portion	of	our	existing	website,	we	want	to
know	if	you	would	be	interested	in	working	on	an	internally-facing	greenfield	project.”
You	cut	her	off	with	a	resounding,	“Yes!”	She	smiles	and	continues,	“Okay.	The	problem
is	in	our	production	area.	Management	is	very	interested	in	how	we	can	reduce	our	scrap
amount.	Every	month	we	get	a	report	from	Excel	that	looks	like	this:”

“The	problem	is	that	we	don’t	know	what	to	do	with	this	data.	Production	is	a	complex
workflow	with	many	variables	that	can	impact	whether	an	item	gets	scrapped.	We	are
looking	for	two	things:

A	way	of	identifying	the	items	that	most	impact	whether	items	get	scrapped
A	tool	that	allows	our	planners	to	alter	the	key	variables	to	play	what	if…	and	make
changes	to	the	production	process”

You	tell	your	boss	okay.	Since	this	is	a	greenfield	application	and	you	have	been	hearing
the	hype	around	ASP.NET	Core	1.0,	this	seems	like	a	great	place	to	try	it.	Also,	you	have
heard	about	one	of	the	hot	models	in	data	science,	neural	networks,	and	want	to	see
whether	the	reality	matches	the	hype.

Neural	networks
A	relative	latecomer	to	data	science,	neural	networks	attempt	to	have	the	computer	imitate
how	the	brain	operates.	The	gray	matter	between	our	ears	is	very	good,	up	to	a	point,	at
making	connections	and	drawing	inferences.	The	promise	of	neural	networks	is	that	if	we
can	build	models	that	are	patterned	after	how	our	brain	works,	we	can	combine	the	speed
of	computers	and	the	pattern-matching	ability	of	our	wetware	to	make	a	learning	model
that	can	provide	insights	that	computers	or	humans	alone	might	miss.

Background
Neural	networks	takes	their	vocabulary	from	the	actual	brain;	a	neural	network	is	a
collection	of	neurons.	If	you	remember	from	Biology	101	(or	Crysis	2),	the	brain	has
billions	of	neurons	that	look	more	or	less	like	this:

The	axon	terminal	of	one	neuron	connects	to	another	neuron’s	dendrite.	Since	an
individual	neuron	can	have	multiple	dendrites	and	axon	terminals,	neurons	can	connect,
and	be	connected	to,	numerous	other	neurons.	The	actual	connection	area	between	two
neurons	is	called	the	synapse.	Our	brains	use	electrical	signals	to	pass	messages	among
neurons.

Since	we	are	modeling	the	human	brain	for	neural	networks,	it	stands	to	reason	that	we
will	use	the	same	vocabulary.	In	a	neural	network,	we	have	a	series	of	inputs	and	an
output.	Between	the	inputs	and	outputs,	there	is	a	hidden	layer	comprising	neurons.	Any
connection	from	the	inputs	into	the	hidden	layer,	among	the	neurons	inside	the	hidden
layer,	and	from	the	hidden	layer	to	the	output	is	called	a	synapse.

Notice	that	every	synapse	connects	only	to	the	neurons	(or	output)	to	its	immediate	right.
Data	always	flows	in	one	direction	in	a	neural	network	and	synapses	never	connect	to
themselves	or	any	other	preceding	neuron	in	the	network.	One	more	thing	to	note	is	that
when	the	hidden	layer	has	many	neurons,	it	is	called	a	deep	belief	network	(or	deep
learning).	We	will	not	be	covering	deep	belief	networks	in	this	book,	though	it	is	certainly
something	you	might	want	to	toss	around	the	next	time	you	are	out	bowling	with	friends.

In	a	neural	network,	the	synapse	has	only	one	job.	They	form	a	connection	from	one
neuron	to	the	next,	applying	a	weight	to	that	connection.	For	example,	Neuron	1	activates
the	synapse	with	a	weight	of	two,	so	that	Neuron	2	receives	an	input	of	two:

Neurons	have	a	more	complicated	job.	They	take	in	the	values	from	all	of	their	input
synapses,	take	input	from	something	called	a	bias	(I’ll	get	to	that	in	a	second),	apply	an
activation	function	to	the	inputs,	and	then	either	output	a	signal	or	do	nothing.	The
activation	function	can	treat	each	input	separately,	combine	them,	or	do	a	mixture	of	both.
There	are	many	kinds	of	activation	functions,	ranging	from	simple	to	mind-boggling.	In
this	example,	the	inputs	are	added	together:

Some	neural	networks	are	smart	enough	to	add	and	drop	neurons	as	needed.	For	this	book,
we	will	not	be	doing	anything	like	that—we	will	fix	the	number	of	neurons	in	each	layer.
Going	back	to	some	vocabulary	that	I	dropped	on	you	in	the	preceding	paragraph,	there
are	two	kinds	of	inputs	for	any	given	activation	function	inside	a	neuron:	the	weights	as

transmitted	by	the	synapses	and	the	bias.	The	weights	are	a	number	that	is	assigned	to	the
synapse,	depending	on	the	nature	of	the	synapse,	and	does	not	change	during	the	lifetime
of	the	neural	network.	The	bias	is	a	global	value	that	is	assigned	to	all	neurons	(and
output)	which,	unlike	the	weights,	changes	frequently.	The	machine	learning	component
of	the	neural	network	is	the	many	iterations	that	the	computer	does	to	create	the	best
combination	of	weights	and	bias	to	give	the	optimal	predictive	score.

Neural	network	demo
With	this	mental	model	in	place,	let’s	take	a	look	at	a	neural	network	in	action.	Let’s	look
at	a	series	of	students	who	studied	and	drank	beer	before	an	exam	and	compare	whether
they	passed	that	exam	or	not:

Since	we	have	two	input	(x)	variables	(Hours	Studying	and	Beers	Drank),	our	neural
network	will	have	two	inputs.	We	have	one	dependent	variable	(Passed?)	so	our	neural
network	will	have	one	output:

One	thing	to	note	is	that	the	number	of	inputs	depends	on	the	range	of	values.	So	if	we	had
a	categorical	input	(such	as	male/female),	we	would	have	a	number	of	inputs	that
correspond	to	the	range	of	values	in	the	category:

1.	 Go	into	Visual	Studio	and	create	a	new	C#	ASP.NET	web	application:

2.	 In	the	next	dialog	box,	select	ASP.NET	5	Templates	and	change	the	authentication
type	to	No	Authentication.	Note	that	the	templates	will	probably	change	from
ASP.NET	5	to	ASP.NET	Core	1	after	the	writing	of	this	book.	You	can	consider	these
two	terms	synonymously.

3.	 If	everything	code-gens	as	it	should,	you	will	get	the	following	project:

4.	 Next,	let’s	add	an	F#	Windows	Library	project:

5.	 Once	the	F#	project	has	been	created,	open	up	the	NuGet	Package	Manager	Console
and	install	numl.	Make	sure	that	you	are	targeting	the	F#	project	for	the	NuGet
installation:

PM>	install-package	numl

6.	 Rename	Scipt1.fsx	to	StudentNeuralNetwork.fsx.
7.	 Go	to	the	script	and	replace	everything	in	it	with	this	code:

#r	"../packages/numl.0.8.26.0/lib/net40/numl.dll"

open	numl

open	numl.Model

open	numl.Supervised.NeuralNetwork

type	Student	=	{[<Feature>]Study:	float;	

																[<Feature>]Beer:	float;	

																[<Label>]	mutable	Passed:	bool}

let	data	=	

				[{Study=2.0;Beer=3.0;Passed=false};

					{Study=3.0;Beer=4.0;Passed=false};

					{Study=1.0;Beer=6.0;Passed=false};

					{Study=4.0;Beer=5.0;Passed=false};

					{Study=6.0;Beer=2.0;Passed=true};

					{Study=8.0;Beer=3.0;Passed=true};

					{Study=12.0;Beer=1.0;Passed=true};

					{Study=3.0;Beer=2.0;Passed=true};]

let	data'	=	data	|>	Seq.map	box

let	descriptor	=	Descriptor.Create<Student>()

let	generator	=	NeuralNetworkGenerator()

generator.Descriptor	<-	descriptor

let	model	=	Learner.Learn(data',	0.80,	100,	generator)

let	accuracy	=	model.Accuracy

8.	 When	you	send	this	to	the	FSI,	you	will	get	the	following:

val	generator	:	NeuralNetworkGenerator

val	model	:	LearningModel	=

		Learning	Model:

		Generator	numl.Supervised.NeuralNetwork.NeuralNetworkGenerator

		Model:

numl.Supervised.NeuralNetwork.NeuralNetworkModel

		Accuracy:	100.00	%

val	accuracy	:	float	=	1.0

If	you	worked	through	the	example	in	Chapter	3,	More	AdventureWorks	Regression,	this
code	will	look	familiar.	The	Student	type	has	three	properties:	Study,	Beer,	and	Passed.
Note	that	Passed	is	marked	as	mutable	because	numl	expects	any	prediction	data	type	to
be	of	the	same	type	that	was	used	when	the	model	was	created.	Numl	then	mutates	the
response	variable	to	whatever	the	model	comes	up	with,	so	we	have	to	use	the	mutable
keyword.	Alternative	implementations	would	be	to	pass	into	the	prediction	function	a	type
without	that	response	variable	or	return	a	new	instance	so	the	value	can	be	immutable.
Feel	free	to	contribute	to	the	open	source	project	if	you	feel	strongly	about	this	(I’ll	see
you	there	J).

In	any	event,	the	data	is	an	array	of	instances	of	our	students.	We	then	create	a	descriptor
of	the	Student	type	and	a	generator	of	a	neural	network.	Notice	that	we	know	the
generator’s	descriptor	property	is	mutable	because	we	assign	it	using	the	<-	symbol	in
this	line:

generator.Descriptor	<-	descriptor

Next,	we	pass	the	generator	to	the	learner	and	create	the	model.	Under	the	hood,	numl	is
scaling	our	data	and	running	multiple	instances	of	a	neural	network	to	determine	the
optimal	solution.	Once	the	generator	has	finished	its	work,	it	reports	that	it	has	an

accuracy	of	100%.	We	can	then	test	our	neural	network	with	some	new	data.	Go	to	the
script	and	add	this:

let	testData	=	{Study=7.0;Beer=1.0;Passed=false}

let	predict	=	model.Model.Predict(testData)

When	you	send	this	to	the	FSI,	you	will	get	this:

val	testData	:	Student	=	{Study	=	7.0;

																										Beer	=	1.0;

																										Passed	=	false;}

>	

val	predict	:	obj	=	{Study	=	7.0;

																					Beer	=	1.0;

																					Passed	=	true;}

In	this	case,	our	student	who	studies	7	hours	and	has	1	beer	will	pass	the	test.

Neural	network	–	try	#1
With	the	theory	out	of	the	way,	let’s	see	if	neural	networks	can	help	us	with
AdventureWorks.	As	in	Chapter	3,	More	AdventureWorks	Regression,	let’s	see	if	we	can
use	a	business	area	expert	to	help	us	formulate	some	viable	hypotheses.	When	we	visit	the
manager	of	manufacturing,	he	says,	“I	think	there	are	a	couple	of	areas	that	you	should
look	at.	See	if	the	production	location	has	an	impact.	We	have	seven	major	locations”:

“I	am	curious	if	our	Paint	location	generates	more	than	expected	defects	because	we	have
high	turnover	in	that	area.”

“Also,	see	if	there	is	a	relationship	between	vendors	and	products	with	defects.	In	some
cases,	we	purchase	parts	for	a	single	vendor;	in	other	cases,	we	have	two	or	three	vendors
supplying	us	parts.	We	don’t	track	which	part	came	from	which	vendor	when	we	build	a
bike,	but	perhaps	you	can	find	that	certain	vendors	are	associated	with	purchase	orders
that	have	defects.”

These	seem	like	two	good	places	to	start,	so	let’s	head	over	to	the	Solution	Explorer	and
create	a	new	script	file	called	AWNeuralNetwork.fsx	in	the	F#	project:

Next,	open	up	the	NuGet	Package	Manager	and	enter	this:

PM>	Install-Package	SQLProvider	-prerelease

Next,	open	the	script	file	and	enter	this	(note	that	the	version	number	might	be	different
for	you):

#r	"../packages/SQLProvider.0.0.11-alpha/lib/FSharp.Data.SQLProvider.dll"

#r	"../packages/numl.0.8.26.0/lib/net40/numl.dll"

#r	

"../packages/FSharp.Collections.ParallelSeq.1.0.2/lib/net40/FSharp.Collecti

ons.ParallelSeq.dll"

open	numl

open	System

open	numl.Model

open	System.Linq

open	FSharp.Data.Sql

open	numl.Supervised.NeuralNetwork

open	FSharp.Collections.ParallelSeq

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	id=	PacktReader;password=	

P@cktM@chine1e@rning;"

type	AdventureWorks	=	SqlDataProvider<ConnectionString=connectionString>

let	context	=	AdventureWorks.GetDataContext()

Sending	this	to	the	REPL	will	give	you	the	following:

val	connectionString	:	string	=

		"data	source=nc54a9m5kk.database.windows.net;initial	catalog=A"+[70	

chars]

type	AdventureWorks	=	SqlDataProvider<...>

val	context	:	SqlDataProvider<...>.dataContext

Next,	let’s	tackle	the	location	hypothesis.	Go	to	the	script	and	enter	the	following:

type	WorkOrderLocation	=	{[<Feature>]	Location10:	bool;	

																										[<Feature>]	Location20:	bool;	

																										[<Feature>]	Location30:	bool;	

																										[<Feature>]	Location40:	bool;	

																										[<Feature>]	Location45:	bool;	

																										[<Feature>]	Location50:	bool;	

																										[<Feature>]	Location60:	bool;	

																										[<Label>]	mutable	Scrapped:	bool}

let	getWorkOrderLocation	(workOrderId,	scrappedQty:int16)	=

				let	workOrderRoutings	=	context.``[Production].

[WorkOrderRouting]``.Where(fun	wor	->	wor.WorkOrderID	=	workOrderId)	|>	

Seq.toArray

				match	workOrderRoutings.Length	with

				|	0	->	None

				|	_	->

								let	location10	=	workOrderRoutings	|>	Array.exists(fun	wor	->	

wor.LocationID	=	int16	10)

								let	location20	=	workOrderRoutings	|>	Array.exists(fun	wor	->	

wor.LocationID	=	int16	20)

								let	location30	=	workOrderRoutings	|>	Array.exists(fun	wor	->	

wor.LocationID	=	int16	30)

								let	location40	=	workOrderRoutings	|>	Array.exists(fun	wor	->	

wor.LocationID	=	int16	40)

								let	location45	=	workOrderRoutings	|>	Array.exists(fun	wor	->	

wor.LocationID	=	int16	45)

								let	location50	=	workOrderRoutings	|>	Array.exists(fun	wor	->	

wor.LocationID	=	int16	50)

								let	location60	=	workOrderRoutings	|>	Array.exists(fun	wor	->	

wor.LocationID	=	int16	60)

								let	scrapped	=	scrappedQty	>	int16	0

								Some	

{Location10=location10;Location20=location20;Location30=location30;Location

40=location40;

								

Location45=location45;Location50=location50;Location60=location60;Scrapped=

scrapped}

Sending	this	to	the	REPL	gives	you	the	following:

type	WorkOrderLocation	=

		{Location10:	bool;

			Location20:	bool;

			Location30:	bool;

			Location40:	bool;

			Location45:	bool;

			Location50:	bool;

			Location60:	bool;

			mutable	Scrapped:	bool;}

val	getWorkOrderLocation	:

		workOrderId:int	*	scrappedQty:int16	->	WorkOrderLocation	option

You	can	see	we	have	a	record	type	with	each	location	as	a	field	and	an	indicator	if	there
was	anything	scrapped.	The	level	of	automacy	for	this	data	structure	is	work	order.	Each
order	might	visit	one	or	all	of	the	locations	and	might	have	some	scrap	quantity.	The

getWorkOrderFunction	takes	the	WorkOrderLocation	table,	where	each	location	is	a	row
in	the	table,	and	flattens	into	this	WorkOrderLocation	record	type.

Next,	go	back	to	the	script	and	enter	this:

let	locationData	=

				context.``[Production].[WorkOrder]``	

				|>	PSeq.map(fun	wo	->	

getWorkOrderLocation(wo.WorkOrderID,wo.ScrappedQty))

				|>	Seq.filter(fun	wol	->	wol.IsSome)

				|>	Seq.map(fun	wol	->	wol.Value)

				|>	Seq.toArray

Sending	this	to	the	REPL	gives	us	the	following:

val	locationData	:	WorkOrderLocation	[]	=

		[|{Location10	=	true;

					Location20	=	true;

					Location30	=	true;

					Location40	=	false;

					Location45	=	true;

					Location50	=	true;

					Location60	=	true;

					Scrapped	=	false;};	{Location10	=	false;

																										Location20	=	false;

																										Location30	=	false;

																										Location40	=	false;

This	code	is	very	much	what	you	saw	in	Chapter	5,	Time	Out	–	Obtaining	Data.	We	go	to
the	database	and	pull	in	all	the	work	orders	and	then	map	the	locations	into	our
WorkOrderLocation	record.	Notice	that	we	are	using	the	PSeq	so	that	we	can	get	a
performance	boost	by	making	simultaneous	calls	to	the	database	to	get	the	locations	for
each	work	order.

With	the	data	local,	let’s	try	out	a	neural	network.	Go	into	the	script	file	and	enter	this:

let	locationData'	=	locationData	|>	Seq.map	box

let	descriptor	=	Descriptor.Create<WorkOrderLocation>()

let	generator	=	NeuralNetworkGenerator()

generator.Descriptor	<-	descriptor

let	model	=	Learner.Learn(locationData',	0.80,	5,	generator)

let	accuracy	=	model.Accuracy

Sending	that	to	the	REPL,	after	a	long	wait,	will	give	you	the	following:

val	generator	:	NeuralNetworkGenerator

val	model	:	LearningModel	=

		Learning	Model:

		Generator	numl.Supervised.NeuralNetwork.NeuralNetworkGenerator

		Model:

numl.Supervised.NeuralNetwork.NeuralNetworkModel

		Accuracy:	0.61	%

val	accuracy	:	float	=	0.006099706745

So,	ugh,	it	does	not	look	like	the	location	can	predict	where	defects	might	occur.	As	we

saw	in	Chapter	3,	More	AdventureWorks	Regression,	sometimes	you	do	not	need	a
working	model	to	make	the	experiment	worthwhile.	In	this	case,	we	can	go	back	to	the
director	and	tell	him	that	scraps	are	occurring	all	over	his	production	location,	not	just	in
the	painting	(so	much	for	blaming	the	new	guy).

Neural	network	–	try	#2
Let’s	see	if	we	can	find	anything	using	the	director’s	second	hypothesis	that	certain
vendors	might	have	higher	defect	rates	than	others.	Go	back	to	the	script	and	enter	this:

type		VendorProduct	=	{WorkOrderID:	int;

																							[<Feature>]BusinessEntityID:	int;	

																							[<Feature>]ProductID:	int;	

																							[<Label>]	mutable	Scrapped:	bool}

let	workOrders	=	context.``[Production].[WorkOrder]``	|>	Seq.toArray

let	maxWorkOrder	=	workOrders.Length

let	workOrderIds	=	Array.zeroCreate<int>(1000)

let	workOrderIds'	=	workOrderIds	|>	Array.mapi(fun	idx	i	->	workOrders.

[System.Random(idx).Next(maxWorkOrder)])

																																	|>	Array.map(fun	wo	->	wo.WorkOrderID)

When	you	send	it	to	the	FSI,	you	will	get	the	following:

type	VendorProduct	=

		{WorkOrderID:	int;

			BusinessEntityID:	int;

			ProductID:	int;

			mutable	Scrapped:	bool;}

							…

				FSharp.Data.Sql.Common.SqlEntity;	FSharp.Data.Sql.Common.SqlEntity;

				FSharp.Data.Sql.Common.SqlEntity;	FSharp.Data.Sql.Common.SqlEntity;	

...|]

val	maxWorkOrder	:	int	=	72591

val	workOrderIds	:	int	[]	=

		[|0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	

0;

				0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	

0;

				0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	

0;

				0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	

0;

				...|]

val	workOrderIds'	:	int	[]	=

The	VendorProduct	record	type	should	be	familiar	to	you.	The	next	code	block	creates	an
array	of	1,000	random	work	order	IDs.	As	we	learned	from	the	first	experiment,	neural
networks	take	a	long	time	to	complete.	We	will	look	at	some	big-data	solutions	in	the	next
chapter,	but	until	then	we’ll	do	what	data	scientists	have	done	for	as	long	as	they	have
done	data	science—take	a	sample	of	the	larger	dataset.	Notice	that	we	are	using	the
Array.Mapi	high-order	function	so	that	we	can	use	the	index	value	to	locate	the	correct
value	in	the	work	orders	array.	Unfortunately,	we	can’t	pass	the	index	into	the	type
provider	and	have	it	evaluate	on	the	server,	so	the	entire	work	order	table	is	brought	local
so	that	we	can	use	the	index.

Next,	enter	this	into	the	script:

let	(|=|)	id	a	=	Array.contains	id	a

let	vendorData	=	

				query{for	p	in	context.``[Production].[Product]``	do

										for	wo	in	p.FK_WorkOrder_Product_ProductID	do

										for	bom	in	p.FK_BillOfMaterials_Product_ProductAssemblyID	do

										join	pv	in	context.``[Purchasing].[ProductVendor]``	on	

(bom.ComponentID	=	pv.ProductID)

										join	v	in	context.``[Purchasing].[Vendor]``	on	

(pv.BusinessEntityID	=	v.BusinessEntityID)

										select		({WorkOrderID	=	wo.WorkOrderID;BusinessEntityID	=	

v.BusinessEntityID;	ProductID	=	p.ProductID;	Scrapped	=	wo.ScrappedQty	>	

int16	0})}

										|>	Seq.filter(fun	vp	->	vp.WorkOrderID	|=|	workOrderIds')

										|>	Seq.toArray

When	you	send	it	to	the	FSI,	after	a	bit	of	a	wait,	you	will	get	the	following:

val	(|=|)	:	id:'a	->	a:'a	[]	->	bool	when	'a	:	equality

val	vendorData	:	VendorProduct	[]	=

		[|{WorkOrderID	=	25;

					BusinessEntityID	=	1576;

					ProductID	=	764;

					Scrapped	=	false;};	{WorkOrderID	=	25;

																										BusinessEntityID	=	1586;

																										ProductID	=	764;

																										Scrapped	=	false;};	{WorkOrderID	=	25;

The	first	line	is	the	in	(|=|)	operator	that	we	ran	across	in	Chapter	5,	Time	Out	–
Obtaining	Data.	The	next	code	block	hydrates	the	vendorData	array	with	the	data	from
the	1,000	randomly	selected	work	orders.	Notice	that	there	is	some	repetition	because	each
work	order	will	use	several	parts	and	each	part	might	be	supplied	by	a	variety	of	vendors
(in	this	case,	called	business	entities).

With	the	data	local,	go	into	the	script	and	enter	this:

let	vendorData'	=	vendorData	|>	Seq.map	box

let	descriptor'	=	Descriptor.Create<VendorProduct>()

let	generator'	=	NeuralNetworkGenerator()

generator'.Descriptor	<-	descriptor'

let	model'	=	Learner.Learn(vendorData',	0.80,	5,	generator')

let	accuracy'	=	model'.Accuracy

When	you	send	it	to	the	FSI,	you	will	get	the	following:

val	generator'	:	NeuralNetworkGenerator

val	model'	:	LearningModel	=

		Learning	Model:

		Generator	numl.Supervised.NeuralNetwork.NeuralNetworkGenerator

		Model:

numl.Supervised.NeuralNetwork.NeuralNetworkModel

		Accuracy:	99.32	%

val	accuracy'	:	float	=	0.9931740614

So,	this	is	interesting.	We	have	a	very	high	accuracy	rate.	One	wonders:	is	this	because	in

the	case	of	a	single	vendor	for	a	product,	all	of	the	scrapped	amount	will	be	associated
with	them	because	they	are	the	only	ones.	However,	since	a	single	vendor	might	supply
multiple	input	products	and	those	products	might	have	different	scrap	rates,	you	can	use
the	model	to	predict	if	a	given	vendor	and	a	given	product	will	have	a	scrap	rate.	Also,
notice	that	instead	of	adding	an	input	for	each	vendor	and	product	(which	would	have
made	a	very	sparse	data	frame),	there	is	one	input	for	vendor	and	one	for	product.
Although	these	can	be	considered	categorical	values,	we	can	sacrifice	some	precision	for
this	exercise.

The	key	thing	about	the	neural	network	that	you	will	want	to	remember	is	that	the	neural
network	can’t	tell	you	how	it	got	its	answer	(very	much	like	the	human	brain,	no?).	So	the
neural	network	won’t	report	back	which	combination	of	vendors	and	products	will	lead	to
defects.	To	do	that,	you	would	need	to	use	a	different	model.

Building	the	application
With	this	neural	network	giving	us	enough	of	what	we	need,	let’s	go	ahead	and	build	out
our	ASP.NET	5.0	application	with	the	model.	At	the	time	of	writing,	ASP.NET	5.0	only
supports	C#	so	we	will	have	to	translate	our	F#	into	C#	and	port	the	code	into	the
application.	Once	the	other	languages	are	supported	by	ASP.NET,	we	will	update	the
sample	code	on	the	website.

If	you	are	not	familiar	with	C#,	it	is	the	most	popular	language	on	the	.NET	stack	and	is
very	similar	to	Java.	C#	is	a	general-purpose	language	that	initially	combined	imperative
and	object-oriented	language	features.	Lately,	functional	constructs	have	been	bolted	onto
the	language	specifications.	However,	as	the	old	carpenter	axiom	goes,	“If	it’s	a	screw,	use
a	screwdriver.	If	it’s	a	nail,	use	a	hammer.”	Since	that’s	the	case,	you	are	much	better
served	to	do	.NET	functional	programming	with	F#.	I’ll	do	my	best	in	the	next	section	to
explain	any	differences	in	the	C#	implementation	when	we	port	the	code	over.

Setting	up	the	models
You	already	have	the	boilerplate	MVC	site	created.	Open	up	NuGet	Package	Manager
Console	and	install	numl	into	it:

PM	>	install-package	numl

Next,	create	a	folder	called	Models	in	the	Solution	Explorer:

In	that	folder,	add	a	new	class	file	named	VendorProduct:

Inside	that	file,	replace	all	of	the	code	with	the	following:

using	numl.Model;

namespace	AdventureWorks.ProcessAnalysisTool.Models

{

				public	class	VendorProduct

				{

								public	int	WorkOrderID	{	get;	set;	}

								[Feature]

								public	int	BusinessEntityID	{	get;	set;	}

								[Feature]

								public	int	ProductID	{	get;	set;	}

								[Label]

								public	bool	Scrapped	{	get;	set;	}

				}

}

As	you	can	guess,	this	is	the	equivalent	of	the	record	type	we	create	in	F#.	The	only	real
difference	is	that	the	properties	are	mutable	by	default	(so	be	careful).	Go	to	the	Solution
Explorer	and	find	the	Project.json	file.	Open	it	and	remove	this	entry	in	the
frameworks	section:

:				"dnxcore50":	{	}

This	section	should	now	look	like	the	following:

Go	ahead	and	run	the	website	to	make	sure	it	is	good:

What	we	are	doing	is	removing	the	site’s	dependency	on	.NET	Core.	Although	numl	does
support	.NET	Core,	we	don’t	need	it	right	now.

If	the	site	is	up	and	running,	let’s	add	the	rest	of	our	helper	classes.	Go	back	into	the
Solution	Explorer	and	add	a	new	class	file	named	Product.cs.	Go	into	that	class	and
replace	the	existing	code	with	this:

using	System;

namespace	AdventureWorks.ProcessAnalysisTool.Models

{

				public	class	Product

				{

								public	int	ProductID	{	get;	set;	}

								public	string	Description	{	get;	set;	}

				}

}

This	is	another	record-equivalent	class	which	will	be	used	when	the	user	selects	the
Product	they	want	to	model.

Go	back	to	the	Solution	Explorer	and	add	a	new	class	file	named	Vendor.cs.	Go	into	that
class	and	replace	the	existing	code	with	this:

using	System;

namespace	AdventureWorks.ProcessAnalysisTool.Models

{

				public	class	Vendor

				{

								public	int	VendorID	{	get;	set;	}

								public	String	Description	{	get;	set;	}

				}

}

Like	the	Product	class,	this	will	be	used	to	populate	the	select	list	for	the	user.

Go	back	into	the	Solution	Explorer	and	add	a	new	class	file	named	Repository.cs.	Go
into	that	class	and	replace	the	existing	code	with	the	following:

using	System;

using	System.Collections.Generic;

using	System.Data.SqlClient;

using	System.Linq;

namespace	AdventureWorks.ProcessAnalysisTool.Models

{

				public	class	Repository

				{

								public	String	ConnectionString	{	get;	private	set;	}

								public	Repository(String	connectionString)

								{

												this.ConnectionString	=	connectionString;

								}

								public	ICollection<Vendor>	GetAllVendors()

								{

												var	vendors	=	new	List<Vendor>();

												using	(var	connection	=	new	

SqlConnection(this.ConnectionString))

												{

																var	commandText	=

																				"Select	distinct	V.BusinessEntityID,	V.Name	from	

[Purchasing].[Vendor]	as	V	"	+

																				"Inner	join[Purchasing].[ProductVendor]	as	PV	"	+

																				"on	V.BusinessEntityID	=	PV.BusinessEntityID	"	+

																				"order	by	2	asc";

																using	(var	command	=	new	SqlCommand(commandText,	

connection))

																{

																				connection.Open();

																				var	reader	=	command.ExecuteReader();

																				while	(reader.Read())

																				{

																								vendors.Add(new	Vendor()	{	VendorID	=	

(int)reader[0],	Description	=	(string)reader[1]	});

																				}

																}

												}

												return	vendors;

								}

								public	ICollection<Product>	GetAllProducts()

								{

												var	products	=	new	List<Product>();

												using	(var	connection	=	new	

SqlConnection(this.ConnectionString))

												{

																var	commandText	=

																				"Select	distinct	P.ProductID,	P.Name	from	[Production].

[Product]	as	P	"	+

																				"Inner	join[Purchasing].[ProductVendor]	as	PV	"	+

																				"on	P.ProductID	=	PV.ProductID	"	+

																				"order	by	2	asc";

																using	(var	command	=	new	SqlCommand(commandText,	

connection))

																{

																				connection.Open();

																				var	reader	=	command.ExecuteReader();

																				while	(reader.Read())

																				{

																								products.Add(new	Product()	{	ProductID	=	

(int)reader[0],	Description	=	(string)reader[1]	});

																				}

																}

												}

												return	products;

								}

								public	ICollection<VendorProduct>	GetAllVendorProducts()

								{

												var	vendorProducts	=	new	List<VendorProduct>();

												using	(var	connection	=	new	

SqlConnection(this.ConnectionString))

												{

																var	commandText	=

																				"Select	WO.WorkOrderID,	PV.BusinessEntityID,	

PV.ProductID,	WO.ScrappedQty	"	+

																				"from[Production].[Product]	as	P	"	+

																				"inner	join[Production].[WorkOrder]	as	WO	"	+

																				"on	P.ProductID	=	WO.ProductID	"	+

																				"inner	join[Production].[BillOfMaterials]	as	BOM	"	+

																				"on	P.ProductID	=	BOM.ProductAssemblyID	"	+

																				"inner	join[Purchasing].[ProductVendor]	as	PV	"	+

																				"on	BOM.ComponentID	=	PV.ProductID	";

																using	(var	command	=	new	SqlCommand(commandText,	

connection))

																{

																				connection.Open();

																				var	reader	=	command.ExecuteReader();

																				while	(reader.Read())

																				{

																								vendorProducts.Add(new	VendorProduct()

																								{

																												WorkOrderID	=	(int)reader[0],

																												BusinessEntityID	=	(int)reader[1],

																												ProductID	=	(int)reader[2],

																												Scrapped	=	(short)reader[3]	>	0

																								});

																				}

																}

												}

												return	vendorProducts;

								}

								public	ICollection<VendorProduct>	GetRandomVendorProducts(Int32	

number)

								{

												var	returnValue	=	new	List<VendorProduct>();

												var	vendorProducts	=	this.GetAllVendorProducts();

												for	(int	i	=	0;	i	<	number;	i++)

												{

																var	random	=	new	System.Random(i);

																var	index	=	random.Next(vendorProducts.Count	-	1);

																returnValue.Add(vendorProducts.ElementAt(index));

												}

												return	returnValue;

								}

				}

}

As	you	can	probably	guess,	this	is	the	class	that	calls	out	to	the	database.	Since	C#	does
not	have	type	providers,	we	need	to	handwrite	the	ADO.NET	code.	We	will	need	to	add	a
reference	to	System.Data	to	make	this	code	work.	Go	into	the	References	in	Solution
Explorer	and	add	it:

You	can	run	the	site	again	to	make	sure	we	are	on	the	right	track.	In	the	Solution
Explorer,	add	a	class	file	called	NeuralNetwork.cs.	Replace	all	of	its	code	with	this:

using	numl;

using	numl.Model;

using	numl.Supervised.NeuralNetwork;

using	System;

using	System.Collections.Generic;

namespace	AdventureWorks.ProcessAnalysisTool.Models

{

				public	class	NeuralNetwork

				{

								public	ICollection<VendorProduct>	VendorProducts	{	get;	private	

set;	}

								public	LearningModel	Model	{	get;	private	set;	}

								public	NeuralNetwork(ICollection<VendorProduct>	vendorProducts)

								{

												if(vendorProducts	==		null)

												{

																throw	new	ArgumentNullException("vendorProducts");

												}

												this.VendorProducts	=	vendorProducts;

												this.Train();

								}

								internal	void	Train()

								{

												var	vendorData	=	VendorProducts;

												var	descriptor	=	Descriptor.Create<VendorProduct>();

												var	generator	=	new	NeuralNetworkGenerator();

												generator.Descriptor	=	descriptor;

												var	model	=	Learner.Learn(vendorData,	0.80,	5,	generator);

												if	(model.Accuracy	>	.75)

												{

																this.Model	=	model;

												}

								}

								public	bool	GetScrappedInd(int	vendorId,	int	productId)

								{

												if(this.Model	==	null)

												{

																return	true;

												}

												else

												{

																var	vendorProduct	=	new	VendorProduct()

																{

																				BusinessEntityID	=	vendorId,	ProductID	=	productId,

																				Scrapped	=	false

																};

																return	

(bool)this.Model.Model.Predict((object)vendorProduct);

												}

								}

				}

}

This	class	does	the	heavy	lifting	of	the	neural	network	calculations	for	us.	Notice	that	the
class	is	data–agnostic,	so	it	can	be	ported	over	to	.NET	Core	easily.	All	we	need	is	a
collection	of	VendorProducts	to	be	passed	into	the	constructor	for	the	neural	network	to
calculate.

With	all	of	these	classes	created,	your	solution	explorer	should	look	like	this:

You	should	be	able	to	compile	and	run	the	website.	Let’s	now	implement	a	user	interface
for	the	neural	network.

Building	the	UX
The	following	steps	will	guide	you	to	build	the	UX:

Go	into	the	Solution	Explorer	and	select	AdventureWorks.ProcessAnalysisTool.
Navigate	to	Add	|	New	Item:

In	the	next	dialog,	select	Class	and	name	it	Global.cs:

Go	to	the	Global	class	and	replace	all	of	the	contents	with	the	following:

using	AdventureWorks.ProcessAnalysisTool.Models;

namespace	AdventureWorks.ProcessAnalysisTool

{

				public	static	class	Global

				{

								static	NeuralNetwork	_neuralNetwork	=	null;

								public	static	void	InitNeuralNetwork()

								{

												var	connectionString	=	"data	

source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	id=	PacktReader;password=	

P@cktM@chine1e@rning;";

												var	repository	=	new	Repository(connectionString);

												var	vendorProducts	=	repository.GetRandomVendorProducts(1000);

												_neuralNetwork	=	new	NeuralNetwork(vendorProducts);

								}

								public	static	NeuralNetwork	NeuralNetwork

								{	get

												{

																return	_neuralNetwork;

												}

								}

				}

}

This	class	creates	a	new	neural	network	for	us.	We	can	access	the	neural	network’s
functions	via	the	read-only	property	called	Neural	Network.	Because	it	is	marked	static,
the	class	will	stay	in	memory	as	long	as	the	application	is	running.

Next,	locate	the	Startup.cs	file	in	the	main	site:

Open	the	file	and	replace	the	constructor	(called	Startup)	with	this	code:

								public	Startup(IHostingEnvironment	env)

								{

												//	Set	up	configuration	sources.

												var	builder	=	new	ConfigurationBuilder()

																.AddJsonFile("appsettings.json")

																.AddEnvironmentVariables();

																Configuration	=	builder.Build();

												Global.InitNeuralNetwork();

								}

When	the	website	starts	up,	it	will	create	a	global	neural	network	that	all	requests	can	use.

Next,	locate	the	HomeController	in	the	Controllers	directory.

Open	that	file	and	add	this	method	to	populate	some	drop	lists	of	vendors	and	products:

								[HttpGet]

								public	IActionResult	PredictScrap()

								{

												var	connectionString	=	"data	

source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	id=	PacktReader;password=	

P@cktM@chine1e@rning;";

												var	repository	=	new	Repository(connectionString);

												var	vendors	=	repository.GetAllVendors();

												var	products	=	repository.GetAllProducts();

												ViewBag.Vendors	=	new	SelectList(vendors,	"VendorID",	

"Description");

												ViewBag.Products	=	new	SelectList(products,	"ProductID",	

"Description");

												return	View();

								}	

Next,	add	this	method	to	run	Calculate	on	the	global	neural	network	when	the	vendor
and	product	are	posted	back	to	the	server:

								[HttpPost]

								public	IActionResult	PredictScrap(Int32	vendorId,	Int32	productId)

								{

												ViewBag.ScappedInd	=	

Global.NeuralNetwork.GetScrappedInd(vendorId,	productId);

												var	connectionString	=	"data	

source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	id=	PacktReader;password=	

P@cktM@chine1e@rning;";

												var	repository	=	new	Repository(connectionString);

												var	vendors	=	repository.GetAllVendors();

												var	products	=	repository.GetAllProducts();

												ViewBag.Vendors	=	new	SelectList(vendors,	"VendorID",	

"Description",	vendorId);

												ViewBag.Products	=	new	SelectList(products,	"ProductID",	

"Description",	productId);

												return	View();

								}

If	you	collapse	to	definitions,	the	HomeController	will	look	like	this:

Next,	go	into	Solution	Explorer	and	navigate	to	AdventureWorks.ProcessAnalysisTool
|	Views	|	Home.	Right-click	on	the	folder	and	navigate	to	Add	|	New	Item:

In	the	next	dialog	box,	select	MVC	View	Page	and	name	it	PredictScrap.cshtml:

Open	this	page	and	replace	all	of	the	contents	with	the	following:

<h2>Determine	Scrap	Rate</h2>

@using	(Html.BeginForm())

{

				<div	class="form-horizontal">

								<h4>Select	Inputs</h4>

								<hr	/>

								<div	class="form-group">

												<div	class="col-md-10">

																@Html.DropDownList("VendorID",	(SelectList)ViewBag.Vendors,	

htmlAttributes:	new	{	@class	=	"form-control"	})

																@Html.DropDownList("ProductID",	

(SelectList)ViewBag.Products,	htmlAttributes:	new	{	@class	=	"form-control"	

})

											</div>

								</div>

								<div	class="form-group">

												<div	class="col-md-offset-2	col-md-10">

																<input	type="submit"	value="Predict!"	class="btn	btn-

default"	/>

												</div>

								</div>

								<h4>Will	Have	Scrap?</h4>

								<div	class="form-group">

												<div	class="col-md-offset-2	col-md-10">

																@ViewBag.ScappedInd

												</div>

								</div>

			</div>

}

This	is	the	input	form	that	will	allow	users	to	select	vendors	and	products	and	see	what	the
neural	network	will	predict—whether	this	combination	will	have	scrap.	When	you	run	the
site	and	navigate	to	localhost:port/home/PredictScrap	for	the	first	time,	you	will	see
the	droplists	ready	for	you:

Select	a	vendor	and	a	product	and	click	on	Predict!:

We	now	have	a	fully	functioning	ASP	.NET	Core	1.0	website	that	uses	a	neural	network	to
predict	AdventureWorks	scrap	percentages.	With	this	skeleton,	we	can	hand	the	site	off	to
a	UX	expert	to	make	the	site	have	a	better	look	and	feel—with	the	core	functionality	in
place.

Summary
This	chapter	broke	some	new	ground.	We	dove	into	ASP.NET	5.0	for	our	website	design.
We	used	numl	to	create	two	neural	networks:	one	that	showed	that	there	is	no	relationship
between	the	area	of	the	company	and	the	scrap	rate,	and	another	that	can	be	used	to
predict	if	there	will	be	scrap	based	on	the	vendor	and	product.	We	then	implemented	the
second	model	in	our	website.

Chapter	10.	Big	Data	and	IoT
Up	to	this	point,	this	book	has	followed	a	pattern	of	extracting	data,	cleaning	and	shaping
the	data,	and	then	building	machine	learning	models.	A	common	element	in	all	of	the
examples	is	that	when	we’ve	extracted	data,	we	have	brought	it	from	the	server	(or	other
external	sources)	locally	to	our	machine.	This	means	our	analysis	is	confined	to	whatever
data	fits	in	the	memory	on	our	local	machines.	While	this	is	good	for	small-	and	medium-
sized	datasets,	there	are	plenty	of	datasets	and	questions	that	do	not	fit	in	RAM.	The	last
couple	of	years	have	seen	the	rise	of	big	data,	where	we	can	ask	questions	of	datasets	that
are	too	large,	unstructured,	or	fast-moving	to	be	analyzed	using	our	conventional	machine
learning	techniques.	One	domain	that	fits	well	with	big	data	is	the	proliferation	of	small,
inexpensive	devices	that	can	send	a	vast	quantity	of	data	to	a	server	for	analysis.	These
Internet	of	Things	(IoT)	devices	have	the	potential	to	reshape	the	world	around	us	in
ways	that	typical	computers	and	smartphones	cannot.	In	this	chapter,	let’s	run	though	a
potential	big	data	and	the	Internet	of	Things	scenario	at	AdventureWorks.

AdventureWorks	and	the	Internet	of
Bikes
One	day	you	are	sitting	in	your	office,	your	boss	comes	in	and	says,	“Since	you	did	such	a
great	job	on	helping	reduce	our	scrap	rate,	we	would	like	you	to	work	on	a	proof	of
concept	with	our	research	and	development	department.	Last	month,	the	management
team	went	to	a	conference	about	the	Internet	of	Things	and	we	think	we	have	an
interesting	use	case:	the	Internet	of	Bikes	(IoB).	We	are	going	to	put	sensors	on	a	bike
model	that	can	read	certain	diagnostic	information	about	the	bike	and	its	riding	patterns.
We	think	that	a	certain	segment	of	our	customers	would	love	to	have	a	“smart	bike”.

You	head	over	to	the	research	and	development	area,	where	they	have	tricked	out	a	bike
like	this:

Tire	pressure	sensors
Speedometer	sensor
Gear	sensor
A	Raspberry	Pi	2	mounted	under	the	seat
A	wireless	Ethernet	shield	attached	to	the	PI
A	GPS	shield	attached	to	the	PI

The	head	of	the	R&D	department	tells	you,	“We	are	trying	to	find	cost-effective	wireless
sensors.	Until	then,	we	are	stringing	wires	through	the	frame’s	tube	to	the	PI.	We	initially

thought	of	using	the	bike	rider’s	phone	as	the	CPU,	but	we	went	with	the	PI	because	it	is
less	bulky	and	weighs	much	less	than	a	phone—bike	riders	are	very	concerned	about
weight.	The	PI	gets	its	power	from	a	rechargeable	battery	and	when	the	bike	gets	docked
at	home	to	recharge,	all	of	its	on-board	data	is	uploaded	to	our	servers	at	that	time.	We
want	to	transmit	data	from	the	PI	to	our	servers	only	at	the	bike’s	home	for	security
reasons	and	so	the	riders	are	not	hit	with	data	plan	limitations	by	using	cell	networks.”

The	head	of	R&D	continues,	“We	envision	a	dashboard	for	people	to	keep	track	of	their
cycling	route,	their	biking	habits,	and	whatnot.	Where	you	come	in	is	on	the	machine
learning	piece.	We	need	a	way	of	analyzing	these	huge	amounts	of	data	we	are	going	to
collect	to	provide	an	enhanced	customer	experience	when	they	are	riding	this	bike.”

Data	considerations
You	look	at	the	data	(called	telemetry)	coming	from	the	bike	as	two	different	problems.
Problem	one	is	getting	the	data	to	the	server	from	individual	bikes	and	problem	two	is
having	the	data	in	a	format	that	allows	for	machine	learning	on	a	large	scale.	You	decide
to	solve	both	those	problems	by	using	the	Microsoft	Azure	IoT	suite	to	stream	the	data
from	the	bikes	into	the	current	Northwind	SQL	Azure	database.	You	add	a	table	called
telemetry	and	add	a	foreign	key	to	PurchaseOrderHeader.

You	then	populate	the	table	with	some	data	from	riders	in	the	AdventureWorks	Early
Adopter	program.	Although	there	is	not	much	data	in	the	table	to	start,	it	is	expected	to
grow	rapidly.	The	level	of	atomacy	of	the	table	is	a	single	reading	that	occurs	about	every
second.	That	means	for	a	30-minute	bike	ride,	we	capture	1,800	rows	of	data.	Since	we
have	about	200	bike	riders	in	our	early	adopter	program,	we	will	generate	about	360,000
rows	of	data	every	time	they	take	a	ride.	This	one	ride	generates	about	as	much	data	as	the
current	AdventureWorks	database	maintains	for	the	entire	company.	After	one	month	of
data	where	these	bikers	go	out	about	every	other	day,	we	will	have	5.4	million	rows	of
data.

One	of	the	data	elements	that	we	are	capturing	is	latitude	and	longitude.	Fortunately,	all	of
our	bike	riders	live	in	Enderlin,	North	Dakota,	and	all	travel	on	the	straightest	road	in	the
United	States,	Highway	46
(https://en.wikipedia.org/wiki/North_Dakota_Highway_46_(54st_SE)).	This	means	our
longitude	does	not	change.	Also,	we	are	capturing	feet	per	second	as	a	speed	gauge	so	we
can	easily	compare	how	riders	perform	against	each	other.

With	the	data	in	place,	let’s	take	a	look	at	how	to	analyze	data	at	scale.

https://en.wikipedia.org/wiki/North_Dakota_Highway_46_(54st_SE)

MapReduce
Open	Visual	Studio	and	create	a	new	Visual	F#	Windows	Library	called
AdventureWorks.IOB:

Go	into	the	NuGet	Package	Manager	Console	and	enter	this:

PM>	install-package	Accord.MachineLearning

Next,	rename	script1.fsx	to	MapReduce.fsx.	Now,	enter	in	the	same	code	from	Chapter
5,	Time	Out	–	Obtaining	Data,	that	created	a	k-NN:

#r"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

#r"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r"../packages/Accord.MachineLearning.3.0.2/lib/net40/Accord.MachineLearnin

g.dll"

open	Accord

open	System

open	Accord.Math

open	Accord.MachineLearning

let	inputs	=	[|[|5.0;1.0|];[|4.5;1.5|];[|5.1;0.75|];[|1.0;3.5|];

[|0.5;4.0|];[|1.25;4.0|]|]

let	outputs	=	[|1;1;1;0;0;0|]

let	classes	=	2

let	k	=	3

let	knn	=	new	KNearestNeighbors(k,	classes,	inputs,	outputs)

let	input	=	[|5.0;0.5|]

let	output	=	knn.Compute(input)

Sending	this	to	the	FSI	gives	us	the	following:

val	inputs	:	float	[]	[]	=

		[|[|5.0;	1.0|];	[|4.5;	1.5|];	[|5.1;	0.75|];	[|1.0;	3.5|];	[|0.5;	4.0|];

				[|1.25;	4.0|]|]

val	outputs	:	int	[]	=	[|1;	1;	1;	0;	0;	0|]

val	classes	:	int	=	2

val	k	:	int	=	3

val	knn	:	Accord.MachineLearning.KNearestNeighbors

val	input	:	float	[]	=	[|5.0;	0.5|]

val	output	:	int	=	1

Notice	this	line:

let	output	=	knn.Compute(input)

We	called	knn.Compute	to	do	a	calculation	on	a	single	input	after	the	k-NN	model	was
created.

This	works	well	enough	or	a	single	calculation,	but	what	if	we	want	to	do	thousands	of
calculations?	For	example,	let’s	call	knn.Compute()	on	250,000	random	samples.	After
we	finish	all	250,000	calculations,	let’s	add	up	the	results	and	then	divide	that	total	by	the
number	of	observations	and	see	if	the	dataset	is	biased	towards	a	particular	category.

First,	let’s	create	a	function	that	will	create	a	random	input:

let	createInput	i	=

				let	random	=	Random(i)

				[|float(random.Next(0,6))	+	Math.Round(random.NextDouble(),2);

						float(random.Next(0,6))	+	Math.Round(random.NextDouble(),2);|]

Sending	this	to	the	FSI	gives	us	the	following:

val	createInput	:	i:int	->	float	[]

Next,	let’s	create	an	array	of	250,000	items	and	populate	it	with	the	random	values:

let	observations	=	Array.zeroCreate<int>	250000

let	inputs'	=	

				observations	

				|>Array.mapi	(fun	idx	_	->	createInput	idx)

Sending	this	to	the	REPL	gives	us	the	following:

val	observations	:	int	[]	=

		[|0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	

0;

				0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	

0;

				0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	

0;

				0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	0;	

0;

				...|]

val	inputs'	:	float	[]	[]	=

		[|[|4.82;	4.56|];	[|1.11;	2.77|];

With	our	data	ready,	let’s	do	our	calculation.	I	added	a	timer	to	give	us	an	idea	of	the
performance	hit	for	running	250,000	records:

let	stopwatch	=	System.Diagnostics.Stopwatch()

stopwatch.Start()

let	predictionTotal	=	

				inputs'	

				|>Seq.map(fun	i	->	knn.Compute	i)

				|>Seq.reduce(fun	acc	i	->	acc	+	i)

let	predictionBias	=	float	predictionTotal/float	250000

stopwatch.Stop()

stopwatch.Elapsed.TotalSeconds

Sending	this	to	the	FSI	will	give	us	the	following:

val	stopwatch	:	Diagnostics.Stopwatch

val	predictionTotal	:	int	=	109826

val	predictionBias	:	float	=	0.439304

val	it	:	float	=	0.1787221

The	interesting	piece	of	code	is	this:

let	predictionTotal	=	

				inputs'	

				|>Seq.map(fun	i	->	knn.Compute	i)

				|>Seq.reduce(fun	acc	i	->	acc	+	i)

Notice	that	we	are	mapping	and	reducing.	Mapping	is	old	hat	to	you	by	now,	but	you
might	not	be	familiar	with	reducing.	Reduce	is	a	high-ordered	function	that	takes	in	two
parameters:	an	accumulator	and	a	value.	Both	parameters	are	of	the	same	type	(in	this
case,	int).	What	reduce	is	doing	is	going	through	each	of	the	items	of	the	array	and
applying	a	function.	It	then	takes	the	results	of	that	calculation	and	adds	it	to	the
accumulator.	In	this	case,	the	accumulator	acc	is	added	to	the	value	from	the	array	(i).

Visually,	this	looks	like	the	following:

You	might	have	heard	the	expression	map/reduce	used	in	the	context	of	big	data.	That’s
because	some	of	the	pioneers	in	big	data	analytics	such	as	Google	and	Yahoo	created
Hadoop	based	on	the	concept	of	map/reduce.	Hadoop	is	a	platform	for	big	data,	including
a	filesystem	(HDFS),	query	languages	(Hive	and	PIG),	and	machine	learning	(Mahdut).
Typically,	when	you	hear	people	talking	about	Hadoop	and	map/reduce,	they	are	talking
about	a	specialized	implementation	using	key/value	pairs.	Also,	usually	the	map	part	of
map/reduce	is	distributed	across	thousands	of	commodity	machines.	The	reduce	can	be
distributed	depending	on	the	nature	of	the	function	that	is	passed	to	reduce.	If	the	function
does	a	groupBy	or	some	other	calculation	on	a	section	of	the	entire	dataset,	it	can	be
distributed.	In	this	chapter,	we	are	going	to	distribute	map	and	are	not	going	to	distribute
reduce.

To	illustrate	why	map/reduce	is	popular	for	big	data,	let’s	distribute	the	mapping	across	all
of	the	cores	on	my	machine.	This	can	simulate	the	way	Hadoop	distributes	processing
across	thousands	of	networked	computers.	Go	into	Visual	Studio	and	open	the	NuGet
Package	Manager	and	enter	this:

PM>	Install-Package	FSharp.Collections.ParallelSeq

Next,	go	into	MapReduce.fsx	and	enter	this	at	the	bottom:

#r"../packages/FSharp.Collections.ParallelSeq.1.0.2/lib/net40/FSharp.Collec

tions.ParallelSeq.dll"

open	FSharp.Collections.ParallelSeq

let	stopwatch'	=	new	System.Diagnostics.Stopwatch()

stopwatch'.Start()

let	predictionTotal'	=	

				inputs'	

				|>PSeq.map(fun	i	->	knn.Compute	i)

				|>Seq.reduce(fun	acc	i	->	acc	+	i)

let	predictionBias'	=	float	predictionTotal'/float	250000

stopwatch'.Stop()

stopwatch'.Elapsed.TotalSeconds

Sending	this	to	the	FSI	gives	us	the	following:

val	stopwatch'	:	Diagnostics.Stopwatch

val	predictionTotal'	:	int	=	109826

val	predictionBias'	:	float	=	0.439304

val	it	:	float	=	0.0700362

Notice	that	the	code	is	identical	to	the	preceding	code	except	that	we	are	now
implementing	PSeq	for	the	mapping	function,	so	we	are	distributing	it	across	all	of	my
cores.	You	can	see	that	the	time	dropped	significantly	by	implementing	parallelism	to	the
mapping	function.

If	you	are	thinking	we	have	an	answer	for	our	big	data	scenario,	you	are	incorrect.	Look
what	happens	when	we	try	and	do	5.4	million	records:

System.OutOfMemoryException:	Exception	of	type	

'System.OutOfMemoryException'	was	thrown.

>				at	Microsoft.FSharp.Collections.ArrayModule.ZeroCreate[T](Int32	count)

We	can’t	analyze	the	data	only	with	my	machine.	To	do	map/reduce	and	distribute	the
mapping	across	many	machines,	we	could	implement	Hadoop	or	its	faster	cousin,	Spark,
but	then	we	would	have	to	leave	Visual	Studio	and	.NET,	and	journey	into	the	JVM.	Also,
we	would	have	to	learn	Java/Python/Scala	and	be	unable	to	easily	integrate	with	our
existing	.NET	applications.	As	an	alternative,	we	could	use	the	Azure	implementation
called	HDInsight,	but	then	we	are	locked-in	to	a	specific	cloud	vendor.	Instead,	let’s	use
MBrace	to	handle	our	distributed	computations.

MBrace
MBrace	is	an	open	source	project	for	scalable	data	scripting	using	F#	or	C#.	You	can	find
the	website	at	http://mbrace.io/.	MBrace	supports	a	local	simulation	of	distributed
computing	and	actual	implementation	on	Azure	and,	coming	soon,	AWS.	For	this	chapter,
we	are	going	to	stick	with	the	local	simulation	so	you	don’t	have	to	get	an	Azure	or	AWS
subscription	to	work	through	the	samples.

Go	back	to	Visual	Studio,	open	the	NuGet	Package	Manager,	and	enter	this:

PM>	Install-Package	MBrace.Thespian	-pre

Once	all	of	the	packages	install,	go	into	MapReduce.fsx	and	add	this	at	the	bottom	(note
that	the	version	number	might	be	different	for	you):

#load"../packages/MBrace.Thespian.1.0.19/MBrace.Thespian.fsx"

open	MBrace.Core.Builders

open	MBrace.Thespian

open	MBrace.Core

open	MBrace.Library.Cloud

//Spin	up	your	clusters

let	cluster	=	ThespianCluster.InitOnCurrentMachine(4)

//Basic	Example

let	number	=	cloud	{	return	5	+	10	}	|>	cluster.Run

Sending	this	to	the	REPL	gives	us	the	following:

namespace	FSI_0007.MBrace

>

val	cluster	:	ThespianCluster

>

val	number	:	int	=	15

But	also	notice	what	is	happening	outside	of	Visual	Studio	on	your	machine.	You	probably
got	this	dialog:

http://mbrace.io/

If	so,	click	on	Allow	access.

Next,	four	dialog	boxes	popped	up,	representing	the	four	machines	that	you	initialized	on
this	line:

let	cluster	=	ThespianCluster.InitOnCurrentMachine(4)

If	you	cycle	through	the	dialog	boxes,	you	will	notice	that	one	of	them	looks	like	this:

Consider	executing	the	following	line:

let	number	=	cloud	{	return	5	+	10	}	|>	cluster.Run

MBrace	sends	the	job	to	one	of	the	four	consoles.	When	working	with	MBrace,	everything
inside	of	the	curly	braces	{}	is	executed.	In	this	case,	it	is	5	+	10,	but	soon	enough	it	will
contain	much	more	complicated	calculations.

Go	back	into	MapReduce.fsx	and	add	this	script	at	the	bottom:

let	mBraceTotal	=

				inputs'

				|>Seq.map(fun	i	->cloud	{	return	knn.Compute	i	})

				|>	Cloud.Parallel

				|>	cluster.Run

				|>Seq.reduce(fun	acc	i	->	acc	+	i)

let	mBracePrediction	=	float	mBraceTotal/float	250000

When	you	send	this	to	the	REPL,	nothing	much	will	happen	for	quite	a	while.	If	you	look
at	the	four	console	windows,	you	will	see	that	they	are	working	hard	calculating	knn.map
on	each	of	those	250,000	values:

Since	this	is	on	our	local	machine	and	there	is	overhead	passing	data	to	the	different
processes,	it	is	much	slower	than	running	the	in-memory	map/reduce	that	we	have	seen
earlier	in	the	chapter.	However,	out	in	the	real	world	when	we	have	more	data	than	any
one	machine	can	handle	and	we	can	spin	up	several	machines	on	Azure	or	AWS,	MBrace
really	shines.	You	will	also	notice	that	we	did	nothing	to	install	Accord.NET	on	those	four
other	machines.	Vagabond,	part	of	the	MBrace	NuGet	package,	handles	installing	missing
assemblies	for	us.	This	is	a	brand	of	awesome	that	should	never	be	on	sale.	Instead	of
worrying	about	standing	up	and	configuring	machines,	we	can	let	MBrace	handle	all	of
that	for	us.

There	is	one	last	bit	of	syntax	we	want	to	use.	Go	back	into	MapReduce.fsx	and	add	this	at
the	bottom:

let	mBraceTotal'	=

				inputs'	|>Balanced.map(fun	i	->	knn.Compute	i)	|>	cluster.Run

												|>Seq.reduce(fun	acc	i	->	acc	+	i)

let	mBracePrediction'	=	float	mBraceTotal/float	250000

Sending	it	to	the	REPL	has	the	same	effect	as	the	first	MBrace	example.	Consider	the
following	line:

|>Balanced.map(fun	i	->	knn.Compute	i)	|>	cluster.Run

This	line	replaces	these	lines	from	the	first	MBrace	example:

				|>Seq.map(fun	i	->cloud	{	return	knn.Compute	i	})

				|>	Cloud.Parallel

				|>	cluster.Run

This	is	the	syntax	we	will	be	using	for	the	AdventureWorks	implementation.	If	you	want
to	dig	into	MBrace	further,	download	the	starter	pack	found	on	GitHub	at
https://github.com/mbraceproject/MBrace.StarterKit/blo.	With	our	intro	to	MapReduce
and	MBrace	out	of	the	way,	let’s	see	what	we	can	do	with	AdventureWorks	data.

https://github.com/mbraceproject/MBrace.StarterKit

Distributed	logistic	regression
In	the	Visual	Studio	Solution	Explorer,	add	a	new	F#	script	file	called
AdventureWorksLR.	Go	back	into	Visual	Studio,	open	up	the	NuGet	Package	Manager,
and	enter	this:

PM>	Install-Package	SQLProvider	-prerelease

In	that	script,	add	the	following	code	(your	version	number	might	be	different):

#r	"../packages/SQLProvider.0.0.11-

alpha/lib/net40/FSharp.Data.SQLProvider.dll"

open	System

open	System.Linq

open	FSharp.Data.Sql

[<Literal>]

let	connectionString	=	"data	source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	id=PacktReader;password=	

P@cktM@chine1e@rning;"

type	AdventureWorks	=	SqlDataProvider<ConnectionString=connectionString>

let	context	=	AdventureWorks.GetDataContext()

type	Telemetry	=	{ID:int;	BusinessEntityID:	int;	TimeStamp:	

System.DateTime;	

																	Longitude:	float;	Latitude:	float;	

																	FrontTirePressure:	float;	BackTirePressure:	float;

																	GearId:	int;	TireSpeed:	float;	RiderLevel:	int}

let	telemetry	=	query	{for	t	in	context.''[Person].[Telemetry]''	do

		join	rl	in	context.''[Person].[RiderLevel]''	on	(t.BusinessEntityID	=	

rl.BusinessEntityID)

		select	{ID=t.ID;	BusinessEntityID=t.BusinessEntityID;

										TimeStamp=t.TimeStamp;

										Longitude=t.Longitude;	Latitude=t.Latitude;	

										FrontTirePressure=t.FrontTirePressure;

										BackTirePressure=t.BackTirePressure;

										GearId=t.GearID;TireSpeed=t.TireSpeed;

										RiderLevel=rl.RiderLevel}}

		|>Seq.toArray

Sending	this	to	the	FSI	gives	us	the	following:

val	connectionString	:	string	=

		"data	source=nc54a9m5kk.database.windows.net;initial	catalog=A"+[72	

chars]

type	AdventureWorks	=	FSharp.Data.Sql.SqlDataProvider<...>

val	context	:	FSharp.Data.Sql.SqlDataProvider<...>.dataContext

type	Telemetry	=

		{ID:	int;

			BusinessEntityID:	int;

			TimeStamp:	System.DateTime;

			Longitude:	float;

			Latitude:	float;

			FrontTirePressure:	float;

			BackTirePressure:	float;

			GearId:	int;

			TireSpeed:	float;

			RiderLevel:	int;}

val	telemetry	:	Telemetry	[]	=

		[|{ID	=	1;

					BusinessEntityID	=	295;

					TimeStamp	=	12/30/2015	3:19:02	PM;

					Longitude	=	46.6297;

					Latitude	=	-97.6087;

					FrontTirePressure	=	100.0;

					BackTirePressure	=	100.0;

					GearId	=	2;

					TireSpeed	=	20.04;

					RiderLevel	=	0;};	{ID	=	2;

																								BusinessEntityID	=	775;

There	is	no	new	code	here.	We	are	creating	a	telemetry	type	that	contains	all	of	the	useful
data	that	we	are	capturing	from	the	IoT	bikes.	We	then	create	an	array	of	telemetries	from
all	of	the	data	in	the	database.	If	you	were	wondering,	there	are	360,000	records	in	the
telemetry	table.

Go	back	to	the	script	and	enter	this:

#r"../packages/Accord.3.0.2/lib/net40/Accord.dll"

#r"../packages/Accord.Math.3.0.2/lib/net40/Accord.Math.dll"

#r"../packages/Accord.Statistics.3.0.2/lib/net40/Accord.Statistics.dll"

#r"../packages/Accord.MachineLearning.3.0.2/lib/net40/Accord.MachineLearnin

g.dll"

open	System

open	Accord

open	Accord.Math

open	Accord.Statistics

open	Accord.MachineLearning

open	Accord.Statistics.Models.Regression.Linear

Tools.Shuffle(telemetry)

let	attachmentPoint	=	float	telemetry.Length	*	0.7	|>	int

let	train	=	telemetry.[..attachmentPoint]

let	test	=	telemetry.[attachmentPoint+1..]

let	trainInputs	=	train	|>	Array.map(fun	t	->	[|float	t.GearId;	float	

t.RiderLevel|])

let	trainOutputs	=	train	|>	Array.map(fun	t	->	t.TireSpeed)

let	target	=	new	MultipleLinearRegression(2,	false)

target.Regress(trainInputs,	trainOutputs)

Sending	this	to	the	FSI	gives	us	the	following:

																								RiderLevel	=	1;};	...|]

val	trainInputs	:	float	[]	[]	=

		[|[|1.0;	1.0|];	[|2.0;	2.0|];	[|2.0;	1.0|];	[|3.0;	1.0|];	[|1.0;	0.0|];

				[|3.0;	1.0|];	[|4.0;	2.0|];	[|2.0;	0.0|];	[|3.0;	1.0|];	[|1.0;	0.0|];

...|]

val	trainOutputs	:	float	[]	=

		[|23.3934008;	30.5693388;	18.2111048;	19.3842;	14.007411;	21.861742;

				36.6713256;	14.5381236;	16.2;	25.451495;	25.4571174;	14.5671708;

				20.1900384;	19.3655286;	27.8646144;	21.6268866;	19.3454316;	...|]

val	target	:	MultipleLinearRegression	=

		y(x0,	x1)	=	5.72463678857853*x0	+	6.83607853679457*x1

val	it	:	float	=	18472679.55

This	chunk	of	code	creates	a	multiple	linear	regression	to	predict	bike	speeds	based	on	the
level	of	the	rider	and	the	gear	they	are	using.	Instead	of	looking	at	the	r2,	let’s	do	a	sniff
test.	Go	back	to	the	script	and	add	this:

let	possible	=	

				[|0..4|]	

				|>		Array.collect(fun	i	->	[|0..2|]	

																															|>	Array.map(fun	j	->	[|float	i;	float	j|]))

let	predict	=	

				possible

				|>	Array.map(fun	i	->	i,	target.Compute(i))

Sending	this	to	the	REPL,	gives	us	the	following:

val	possible	:	float	[]	[]	=

		[|[|0.0;	0.0|];	[|0.0;	1.0|];	[|0.0;	2.0|];	[|1.0;	0.0|];	[|1.0;	1.0|];

				[|1.0;	2.0|];	[|2.0;	0.0|];	[|2.0;	1.0|];	[|2.0;	2.0|];	[|3.0;	0.0|];

				[|3.0;	1.0|];	[|3.0;	2.0|];	[|4.0;	0.0|];	[|4.0;	1.0|];	[|4.0;	2.0|]|]

val	predict	:	(float	[]	*	float)	[]	=

		[|([|0.0;	0.0|],	0.0);	([|0.0;	1.0|],	6.836078537);

				([|0.0;	2.0|],	13.67215707);	([|1.0;	0.0|],	5.724636789);

				([|1.0;	1.0|],	12.56071533);	([|1.0;	2.0|],	19.39679386);

				([|2.0;	0.0|],	11.44927358);	([|2.0;	1.0|],	18.28535211);

				([|2.0;	2.0|],	25.12143065);	([|3.0;	0.0|],	17.17391037);

				([|3.0;	1.0|],	24.0099889);	([|3.0;	2.0|],	30.84606744);

				([|4.0;	0.0|],	22.89854715);	([|4.0;	1.0|],	29.73462569);

				([|4.0;	2.0|],	36.57070423)|]

In	this	script,	possible	is	a	jagged	array	of	all	the	possible	combination	of	gears	(values	0
to	4)	and	biker	level	(values	0	to	2).	We	then	populate	this	matrix	with	the	results	of	the
Compute()	method.	When	you	take	this	data	and	put	it	in	a	more	user-friendly	way,	you
can	see	that	there	is	a	relationship—the	elite	cyclists	go	faster	in	all	gears	than	the
beginners	and	it	looks	like	the	beginners	don’t	use	the	lowest	gear	at	all:

With	this	model	created,	we	can	then	run	classifiers	on	the	data	and	get	expected	speeds
for	a	given	gear	and	biker	level.	Go	into	the	script	file	and	enter	this:

#load"../packages/MBrace.Thespian.1.0.19/MBrace.Thespian.fsx"

open	MBrace.Core.Builders

open	MBrace.Thespian

open	MBrace.Core

open	MBrace.Library.Cloud

let	cluster	=	ThespianCluster.InitOnCurrentMachine(4)

let	testInputs	=	test	|>	Array.map(fun	t	->	[|float	t.GearId;	float	

t.RiderLevel|])

let	mBraceTotal	=

				testInputs	

				|>	Balanced.map(fun	i	->

																				target.Compute(i))	|>	cluster.Run

When	you	send	this	to	the	REPL,	you	will	see	that	the	console	windows	pop	up	and	start
doing	work.	After	a	couple	of	minutes,	you	will	get	this:

val	mBraceTotal	:	float	[]	=

		[|36.57070423;	25.12143065;	36.57070423;	18.28535211;	5.724636789;

				24.0099889;	5.724636789;	25.12143065;	24.0099889;	18.28535211;	

24.0099889;

				5.724636789;	36.57070423;	12.56071533;	24.0099889;	11.44927358;	0.0;

				11.44927358;	25.12143065;	12.56071533;	30.84606744;	12.56071533;

				11.44927358;	18.28535211;

You	might	be	wondering	if	there	is	a	way	to	distribute	the	creation	of	the	model	(the
target.Regress(trainInputs,	trainOutputs)	line).	The	short	answer	is	no,	you	cannot
be	using	the	frameworks	that	we	are	using	to	do	that.	However,	some	models	might	lend
themselves	to	distribution	and	then	re-aggregation,	but	you	would	have	to	extend	what	is
offered	in	numl	and	Accord.

The	IoT
But	before	we	leave	machine	learning	and	IoT,	let’s	get	crazy.	The	PI	is	not	just	an	input
device—heck,	it	is	more	powerful	than	the	laptop	you	bought	five	years	ago.	Let’s	make
our	Raspberry	PI-enabled	bike	the	ultimate	power	in	the	tri-state	area.

PCL	linear	regression
Go	into	Visual	Studio	and	add	a	new	Visual	F#	Windows	Portable	Library	(.NET	4.5)
called	AdventureWorks.IOB.PCL:

Once	the	project	is	created,	go	into	the	NuGet	Package	Manager	Console	and	enter	this:

PM>	Install-Package	portable.accord.statistics

PM>	Install-Package	portable.accord.MachineLearning

Make	sure	that	the	default	project	is	pointed	to	AdventureWorks.IOB.PCL:

One	of	the	issues	when	dealing	with	PCLs	is	that	since	they	are	a	slimmed-down	version
of	the	.NET	Framework,	they	have	no	data	access	support.	This	means	we	can’t	use	our
friendly	neighborhood	type	provider	to	get	the	telemetry	data	to	train	our	models.	Instead,
we	will	need	to	get	our	data	from	a	different	project	and	push	that	data	into	the	PCL	for	it
to	train	the	model.	Another	“gotcha”	is	that	the	script	file	created	in	the	PCL	project	is
evaluated	inside	the	FSI,	which	is	a	full-on	.NET	Framework.	This	means	you	can’t
assume	that	all	of	the	code	you	write	inside	the	.fsx	file	can	be	copied	and	pasted	into	the
.fs	file.	Since	we	are	building	on	code	we	already	wrote,	we	won’t	be	using	the	script	file
for	this	section.	I	know…take	a	deep	breath…functional	programming	without	an	REPL.

Go	into	the	PCL	project	and	delete	the	Script.fsx	file	and	rename	PortableLibrary1.fs
to	SpeedModel.fs.

Inside	the	SpeedModel.fs	file,	replace	all	of	the	existing	code	with	this:

namespace	AdventureWorks.IOB.PCL

open	System

open	Accord

open	Accord.Math

open	Accord.Statistics

open	Accord.MachineLearning

open	Accord.Statistics.Models.Regression.Linear

typeTelemetry	=	{ID:int;	BusinessEntityID:	int;	

																	TimeStamp:	System.DateTime;	

																	Longitude:	float;	Latitude:	float;	

																	FrontTirePressure:	float;	

																	BackTirePressure:	float;

																	GearId:	int;	TireSpeed:	float;	RiderLevel:	int}

typeSpeedModel()	=	

letmutable	model	=	newMultipleLinearRegression(2,	false)

member	this.CurrentModel	

with	get()	=	model

and	set	(value)	=	model	<-	value

member	this.Train(telemetries:Telemetry	array)	=	

								Tools.Shuffle(telemetries)

let	inputs	=	telemetries	|>Array.map(fun	t	->	[|float	t.GearId;	float	

t.RiderLevel|])

let	outputs	=	telemetries	|>Array.map(fun	t	->	t.TireSpeed)

								model.Regress(inputs,	outputs)

member	this.Classify	telemetry	=

let	input	=	[|float	telemetry.GearId;	float	telemetry.RiderLevel|]

								model.Compute(input)								

This	code	creates	two	.NET	classes.	The	Telemetry	class	is	equivalent	to	a	read-only
DTO/POCO	that	you	would	see	in	C#	or	VB.NET.	The	SpeedModel	class	is	a	bit	more
involved.	The	class	has	one	property	and	two	methods:

CurrentModel	is	a	property	that	allows	the	linear	regression	model	to	be	set.	Note

that	the	model	is	an	internal	variable	that	is	mutable.
Train	is	a	method	where	an	array	of	telemetries	is	passed	and	the	linear	regression
model	will	be	updated.	The	implementation	of	Train()	can	be	copied	and	pasted
from	the	script	file	that	you	worked	on	previously.
Classify	is	a	method	where	a	single	telemetry	is	passed	and	the	linear	regression
computes	the	score.	The	implementation	of	Classify()	can	be	copied	and	pasted
from	the	script	file	that	you	worked	on	previously.

You	can	check	to	see	if	everything	is	OK	by	compiling	the	project.

Service	layer
With	our	PCL	ready,	let’s	build	a	service	layer	to	deploy	the	model	to	devices	in	the	field:

1.	 Go	into	Visual	Studio	and	add	a	new	Visual	C#	Web	ASP.NET	Web	Application:

2.	 Add	a	reference:

3.	 Next,	go	into	the	NuGet	Package	Manager	Console	and	add	a	reference	to
Accord.Statistics.	Make	sure	the	Default	project	is	pointing	to
AdventureWorks.IOB.Services:

4.	 Next,	go	into	the	Web.Config	file	and	add	a	connection	string	entry:

<configuration>

<connectionStrings>

<addname="Northwind"connectionString="data	

source=nc54a9m5kk.database.windows.net;initial	

catalog=AdventureWorks2014;user	id=PacktReader;password=	

P@cktM@chine1e@rning;"	/>

</connectionStrings>

<appSettings>

<addkey="webpages:Version"value="3.0.0.0"	/>

5.	 Head	over	to	the	Global.asax.cs	file	and	replace	the	entire	contents	with	the
following:

using	System;

using	System.Collections.Generic;

using	System.Web.Http;

using	System.Web.Mvc;

using	System.Web.Optimization;

using	System.Web.Routing;

using	AdventureWorks.IOB.PCL;

using	System.Threading;

using	System.Configuration;

using	System.Data.SqlClient;

namespace	AdventureWorks.IOB.Services

{

publicclassWebApiApplication	:	System.Web.HttpApplication

				{

staticObject	_lock	=	newObject();

Timer	_timer	=	null;

staticSpeedModel	_speedModel	=	null;

protectedvoid	Application_Start()

								{

AreaRegistration.RegisterAllAreas();

GlobalConfiguration.Configure(WebApiConfig.Register);

FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);

RouteConfig.RegisterRoutes(RouteTable.Routes);

BundleConfig.RegisterBundles(BundleTable.Bundles);

												_speedModel	=	newSpeedModel();

												_timer	=	newTimer(TrainModel,	null,	0,	

TimeSpan.FromMinutes(5).Milliseconds);

								}

protectedTelemetry[]	CreateTelemetries(String	connectionString)

								{

var	telemetries	=	newList<Telemetry>();

using	(var	connection	=	newSqlConnection(connectionString))

												{

var	commandText	=	"Select	T.*,RL.RiderLevel	from	[Person].[Telemetry]	

as	T	"	+

"inner	join[Person].[RiderLevel]	as	RL	"	+

"on	T.BusinessEntityID	=	rl.BusinessEntityID";

using	(var	command	=	newSqlCommand(commandText,	connection))

																{

																				connection.Open();

var	reader	=	command.ExecuteReader();

while(reader.Read())

																				{

																								telemetries.Add(newTelemetry((int)reader[0],	

(int)reader[1],

																								(DateTime)reader[2],	

																								(double)reader[3],	

																								(double)reader[4],

																								(double)reader[5],	

																								(double)reader[6],(int)reader[7],

																								(double)reader[8],	

																								(int)reader[9]));

																				}

																}

												}

return	telemetries.ToArray();

								}

								private	void	TrainModel(object	state)

								{

												var	connectionString	=	

ConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;

												var	telemetries	=	CreateTelemetries(connectionString);

												lock	(_lock)

												{

																SpeedModel.Train(telemetries);

												}

								}

publicstaticSpeedModel	SpeedModel

								{

get

												{

lock	(_lock)

																{

return	_speedModel;

																}

												}

set

												{

lock	(_lock)

																{

																				_speedModel	=	value;

																}

												}

								}

				}

}

You	can	compile	the	project	now.	This	code	is	much	like	Chapter	3,	More	AdventureWorks
Regression,	in	that	we	create	a	timer	that	fires	every	5	minutes.	Also,	we	use	a	lock	to
prevent	the	model	being	read	in	an	illegal	state.	When	the	timer	fires,	the	model	is
recreated,	based	on	the	data	from	the	database.	Notice	that	this	is	where	the	C#	application
is	responsible	for	getting	the	data	that	is	passed	into	the	SpeedModel	class.

Head	over	to	the	Controllers	and	rename	ValuesController	to	SpeedModelController.
Go	into	the	file	and	replace	all	of	the	code	with	this:

using	System.Web.Http;

using	System.Net.Http;

using	System.IO;

using	System.Xml.Serialization;

using	System.Net;

namespace	AdventureWorks.IOB.Services.Controllers

{

		publicclassSpeedModelController	:	ApiController

				{

				//	GET	api/SpeedModel

						publicHttpResponseMessage	Get()

								{

										HttpResponseMessage	result	=	null;

										if	(WebApiApplication.SpeedModel	!=	null)

												{

														using	(MemoryStream	stream	=	newMemoryStream())

																{

																		var	formatter	=	newXmlSerializer(typeof(double[]));

																		formatter.Serialize(stream,	

WebApiApplication.SpeedModel.CurrentModel.Coefficients);

																		var	content	=	stream.ToArray();

																		result	=	Request.CreateResponse(HttpStatusCode.OK);

																		result.Content	=	newByteArrayContent(content);

																		return	result;

																}

												}

														else

												{

														return	Request.CreateResponse(HttpStatusCode.Gone);

												}

								}

				}

}

If	you	compile	the	project	and	run	the	website,	when	you	navigate	to	the	controller,	you
will	get	this:

We	now	have	a	way	of	creating	a	model	based	on	all	the	data	in	the	database	that	we	can
share	to	individual	clients.

Universal	Windows	app	and	Raspberry	Pi	2
This	universal	app	has	a	couple	of	moving	parts:

When	the	app	is	connected	to	its	home	network,	it	will:

Upload	all	of	the	telemetry	that	is	collected	to	Azure’s	IoT	Suite
Download	the	most	recent	global	model	that	was	created	based	on	all	the	riders
in	the	AdventureWorks	database	from	our	service	layer

When	the	app	is	running,	it	will	collect	telemetry	data	from	the	sensors	hooked	up	to
the	bike.	After	a	certain	point,	it	will	start	generating	its	own	local	model	and
compare	it	to	the	global	AdventureWorks	model.	If	the	local	model	begins	diverging
from	the	expected	speed	of	the	global	model,	it	will	instruct	the	biker	to	shift.	The
app	will	keep	the	telemetry	data	on	local	storage	until	it	is	connected	to	the	network,
then	it	will	upload	the	data.

Let’s	code	this	up:

1.	 Go	into	the	Solution	Explorer	and	add	a	new	Visual	C#	Windows	Universal	Blank
App	named	AdventureWorks.IOB.RP2:

2.	 Once	the	project	is	created,	go	to	its	References	section	and	select	Add	Reference:

The	Add	Reference…	option

3.	 Then	navigate	to	Projects	|	Solution	and	select	the	location	of	your	PCL	project:

4.	 Now	navigate	to	Universal	Windows	|	Extensions	|	Windows	IoT	Extensions	for
the	UWP:

5.	 Next,	go	into	the	NuGet	Package	Manager	Console	and	enter	this:

PM>	Install-Package	portable.accord.statistics

6.	 Make	sure	that	the	Default	project	is	pointing	to	AdventureWorks.IOB.RP2:

Build	the	project	to	make	sure	all	is	well.

7.	 Next,	go	to	the	Solution	Explorer	and	add	a	new	folder	called	Sensors:

Adding	new	folder

8.	 Navigate	to	the	Sensors	folder:

9.	 Add	a	new	class	called	TelemetryEventArgs.cs:

Adding	a	new	class

10.	 In	TelemetryEventArgs.cs,	replace	the	existing	code	with	the	following:

using	AdventureWorks.IOB.PCL;

using	System;

namespace	AdventureWorks.IOB.RP2.Sensors

{

		Public	class	TelemetryEventArgs	:	EventArgs

				{

						Public	Telemetry	Telemetry	{	get;	set;	}

				}

}

11.	 In	the	sensors	folder,	add	a	new	interface	called	IBikeController.	After	it	is	created,
replace	all	of	the	code	with	the	following:

using	System;

namespace	AdventureWorks.IOB.RP2.Sensors

{

Public	interface	IBikeController

				{

						Event	EventHandler<TelemetryEventArgs>	TelemetryCreated;

						void	SwitchGear(int	targetGear);

				}

}

This	interface	will	be	used	by	the	main	app	to,	well,	interface	with	the	Raspberry	Pi.
The	Pi	communicates	back	to	the	main	app	via	an	event	called	TelemetryCreated.

The	reason	that	we	used	an	interface	(versus	talking	directly	to	the	PI)	is	that	we	want
to	borrow	a	bit	from	the	SOLID	principles	and	have	several	implementations	for	our
app:	an	in-memory	bike	controller	that	we	can	use	to	make	sure	everything	is	hooked
up	correctly	and	a	Raspberry	Pi	bike	controller	that	actually	talks	to	the	hardware	that
we	currently	have	available.	Also,	there	are	so	many	sensors	available	on	the	market,
we	need	a	way	of	adding	in	new	sensors	without	changing	the	existing	code.

12.	 Go	into	the	Sensors	folder	and	add	a	new	class	called	InMemoryBikeController.
Replace	the	existing	code	with	this:

using	AdventureWorks.IOB.PCL;

using	System;

using	System.Threading;

namespace	AdventureWorks.IOB.RP2.Sensors

{

				public	class	InMemoryBikeController	:	IBikeController

				{

								Timer	_timer	=	null;

								public	InMemoryBikeController()

								{

												_timer	=	new	Timer(GenerateTelemetry,	null,	0,	

TimeSpan.FromSeconds(1).Milliseconds);

								}

								public	event	EventHandler<TelemetryEventArgs>	TelemetryCreated;

								private	void	GenerateTelemetry(object	state)

								{

												var	telemetry	=	new	Telemetry(0,	0,	DateTime.UtcNow,	

46.6297,	-97.6087,	100.0,	100.0,	2,	10.0,	1);

												var	args	=	new	TelemetryEventArgs()	{	Telemetry	=	telemetry	

};

												if	(TelemetryCreated	!=	null)

												{

																TelemetryCreated(this,	args);

												}

								}

								public	void	SwitchGear(int	targetGear)

								{

								}

				}

}

This	code	simulates	an	actual	Raspberry	Pi.	Every	second,	it	fires	an	event	with	some
hardcoded	telemetry	data.	It	also	has	a	method	stub	for	the	SwitchGears	that	does
nothing.

13.	 Make	sure	everything	compiles	and	jumps	over	to	the	MainPage.xaml	file	and

replace	all	of	the	contents	with	this:

<Page

		x:Class="AdventureWorks.IOB.RP2.MainPage"

		xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

		xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

		xmlns:local="using:AdventureWorks.IOB.RP2"

		xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

		xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"

		mc:Ignorable="d">

		<Grid	Background="{ThemeResource	

ApplicationPageBackgroundThemeBrush}">

		<StackPanel	HorizontalAlignment="Center"	VerticalAlignment="Center">

		<TextBox	x:Name="StatusMessage"	Text="IOB	Ready!"	Margin="10"	

IsReadOnly="True"/>

		</StackPanel>

		</Grid>

</Page>

This	creates	a	status	box	that	you	can	use	for	debugging.	When	you	deploy	this	app
to	the	Raspberry	Pi,	this	is	unnecessary	because	there	is	no	graphical	user	interface.

14.	 Next,	go	into	the	MainPage.xaml.cs	file	and	replace	everything	with	this:

using	System;

using	System.IO;

using	System.Linq;

using	Windows.UI.Xaml;

using	Windows.Web.Http;

using	AdventureWorks.IOB.PCL;

using	Windows.UI.Xaml.Controls;

using	System.Xml.Serialization;

using	System.Collections.Generic;

using	AdventureWorks.IOB.RP2.Sensors;

using	Windows.Networking.Connectivity;

using	Accord.Statistics.Models.Regression.Linear;

namespace	AdventureWorks.IOB.RP2

{

		publicsealedpartialclassMainPage	:	Page

				{

						String	_networkName	=	String.Empty;

						SpeedModel	_globalSpeedModel	=	null;

						SpeedModel	_localSpeedModel	=	null;

						List<Telemetry>	_telemetries	=	null;

						IBikeController	_bikeController	=	null;

						DispatcherTimer	_timer	=	null;

						public	MainPage()

								{

											this.InitializeComponent();

											_networkName	=	"MySafeNetwork";

											_globalSpeedModel	=	newSpeedModel();

											_localSpeedModel	=	newSpeedModel();

											_telemetries	=	newList<Telemetry>();

											_bikeController	=	newInMemoryBikeController();

											_timer	=	newDispatcherTimer();

											_timer.Interval	=	newTimeSpan(0,	0,	1);

											NetworkInformation.NetworkStatusChanged	+=	

NetworkInformation_NetworkStatusChanged;

											_bikeController.TelemetryCreated	+=	

_bikeController_TelemetryCreated;

											_timer.Tick	+=	_timer_Tick;

								}

								privatevoid	_timer_Tick(object	sender,	object	e)

								{

										if(_telemetries.Count	>	300)

												{

														_localSpeedModel.Train(_telemetries.ToArray());

														var	targetGlobalGear	=	

_globalSpeedModel.Classify(_telemetries.Last());

														var	targetLocalGear	=	

_localSpeedModel.Classify(_telemetries.Last());

														if	(targetGlobalGear	<	targetLocalGear)

																{

																			_bikeController.SwitchGear((int)targetGlobalGear);

																}

												}

								}

								privatevoid	_bikeController_TelemetryCreated(object	sender,	

TelemetryEventArgs	e)

								{

											_telemetries.Add(e.Telemetry);

								}

								privatevoid	NetworkInformation_NetworkStatusChanged(object	

sender)

								{

										var	connectionProfile	=	

NetworkInformation.GetInternetConnectionProfile();

										if	(connectionProfile.ProfileName	==	_networkName)

												{

															GetGlobalModel();

															UploadLocalTelemetryData();

												}

								}

								privateasyncvoid	GetGlobalModel()

								{

										var	client	=	newHttpClient();

										var	uri	=	newUri("http://localhost:3899/api/SpeedModel");

										try

												{

														var	response	=	await	client.GetAsync(uri);

														if	(response.IsSuccessStatusCode)

																{

																		var	content	=	await	

response.Content.ReadAsInputStreamAsync();

																		using	(var	stream	=	content.AsStreamForRead())

																				{

																						var	formatter	=	

newXmlSerializer(typeof(double[]));

																						var	coefficients	=	

(double[])formatter.Deserialize(stream);

																						var	regression	=	newMultipleLinearRegression(2);

																						Array.Copy(coefficients,	

regression.Coefficients,coefficients.Length);

																						_globalSpeedModel.CurrentModel	=	regression;

																				}

																}

												}

												catch	(Exception	e)

												{

															this.StatusMessage.Text	=	e.ToString();

												}

								}

										privateasyncvoid	UploadLocalTelemetryData()

								{

//TODO:	Send	_telemetries	to	Azure	IoT	Suite

								}

				}

}

This	is	where	the	heavy	lifting	occurs.	When	the	app	starts,	it	begins	a	timer	that	fires
every	second	(_timer_Tick).	If	there	are	over	5	minutes’	worth	of	data	in	the	local
collection,	it	generates	a	SpeedModel.	It	then	compares	this	speed	model	to	the	global
one	and	if	the	global	output	is	less	than	the	local	one,	it	signals	the	biker	via	the
.SwitchGear().	The	actual	implementation	is	up	to	the	controller.	As	you	will	see	in
a	minute,	the	Raspberry	Pi	controller	turns	on	an	LED	that	the	biker	can	see.	In	other
examples,	we	could	hook	the	Pi	up	to	the	bike’s	shifting	assembly	and	shift	the	gears
for	the	biker—an	automatic	transmission	for	the	bike,	as	it	were.

15.	 Next,	go	into	the	Solution	Explorer	and	right-click	on	Properties	and	change	the
startup	project	to	Multiple	startup	projects	with	the	Services	and	RP2	projects
changed	to	Start.	The	Services	project	has	to	be	listed	before	the	RP2	one:

16.	 One	last	thing	you	need	to	do	before	we	run	this	is	to	deploy	the	Universal	Windows
application.	If	you	ask	me	why	you	need	to	deploy	it	first,	I	will	tell	you,	“Because
Microsoft	said	so.”	Go	into	the	Solution	Explorer	and	right-click	on	the	Rp2	project
and	select	Deploy:

The	Deploy	option

17.	 Now	you	can	run	the	app	and	both,	the	browser	will	pop	up	for	the	service	layer	and
the	universal	Windows	app	will	start:

Notice	nothing	much	is	happening—at	least	on	the	screen.	That	is	pretty	typical	of	IoT
projects;	the	action	is	on	the	device	and	connected	peripherals.	If	the	device	fired	the
NetworkStatus_Changed	event,	the	device	would	get	the	most	recent	global	model	and
upload	the	global	model.	You	can	simulate	this	by	placing	GetGlobalModelinMainPage()
and	then	write	it	to	the	status	box	if	you	are	the	type	of	person	who	wants	to	see	something
on	the	screen.

Let’s	build	out	the	Raspberry	Pi	implementation	of	the	BikeController.	Since	this	is	a
book	on	machine	learning	and	not	on	IoT,	I	will	not	be	covering	the	details	of	setting	up	a
Raspberry	Pi	and	doing	all	of	the	wiring	and	coding.	As	a	frame	of	reference,	I	used	the
example	found	at	http://ms-iot.github.io/content/en-US/win10/samples/Potentiometer.htm.
Basically,	each	of	the	sensors	would	be	considered	an	analog	input	device	(such	as	a
potentiometer)	that	converts	its	signal	to	a	digital	signal.	For	each	of	the	inputs,	a
SpiConnection	was	created	like	this:

privateasyncTask<SpiDevice>	InitSPI(int	pin)

								{

												var	settings	=	newSpiConnectionSettings(pin);

												settings.ClockFrequency	=	500000;			

												settings.Mode	=	SpiMode.Mode0;				

http://ms-iot.github.io/content/en-US/win10/samples/Potentiometer.htm

												string	spiAqs	=	SpiDevice.GetDeviceSelector("SPI0");

												var	deviceInfo	=	awaitDeviceInformation.FindAllAsync(spiAqs);

												returnawaitSpiDevice.FromIdAsync(deviceInfo[0].Id,	settings);

								}

And	every	second,	each	device’s	buffer	was	read:

privatevoid	SensorTimer_Tick(ThreadPoolTimer	timer)

								{

byte[]	readBuffer	=	newbyte[3];	

byte[]	writeBuffer	=	newbyte[3]	{	0x00,	0x00,	0x00	};

												writeBuffer[0]	=	0x06;

//Gear

												_gear.TransferFullDuplex(writeBuffer,	readBuffer);

var	gear	=	convertToInt(readBuffer);

The	readings	were	aggregated	into	telemetry	data	and	the	event	was	raised:

var	telemetry	=	newTelemetry(0,	_businessEntityID,	DateTime.UtcNow,

																latitude,	longitude,	frontTire,	backTire,	gear,	tireSpeed,	

_riderLevel);

var	args	=	newTelemetryEventArgs()	{	Telemetry	=	telemetry	};

if	(TelemetryCreated	!=	null)

												{

																TelemetryCreated(this,	args);

												}

Meanwhile,	a	different	timer	was	running	and	shutting	off	the	LED	every	two	seconds.
The	LED	was	set	when	the	SwitchGear	method	was	called:

public	void	SwitchGear(int	targetGear)

								{

												_led.Write(GpioPinValue.Low);

								}

So	the	controller	app	can	turn	the	LED	on,	and	then	the	Pi	turns	it	off	after	two	seconds.
You	can	see	the	final	result	in	the	code	sample	that	accompanies	the	book.

Next	steps
I	glossed	over	some	important	IoT	issues	that	would	need	to	be	addressed	to	make	this
bike	app	fully	functional:

There	are	hundreds	of	input	devices	that	I	could	have	used.	You	will	have	to	write	a
specific	implementation	for	the	devices	that	you	are	interested	in.	Thank	goodness	we
have	an	interface!
How	to	deploy	this	app	to	a	Raspberry	Pi	is	beyond	the	scope	of	this	book.	You	can
learn	more	about	this	at	https://dev.windows.com/en-US/iot.
Telemetry	to	local	storage	is	beyond	the	scope	of	this	book.	This	is	a	universal
Windows	app	issue	that	can	be	researched	at	https://msdn.microsoft.com/en-
us/library/windows/apps/dn894631.aspx.
Uploading	the	data	to	the	Azure	IoT	suite	is	beyond	the	scope	of	this	book.	You	can
find	more	information	on	that	at	https://www.microsoft.com/en-us/server-
cloud/internet-of-things/azure-iot-suite.aspx.

https://dev.windows.com/en-US/iot
https://msdn.microsoft.com/en-us/library/windows/apps/dn894631.aspx
https://www.microsoft.com/en-us/server-cloud/internet-of-things/azure-iot-suite.aspx

Summary
This	was	a	fairly	ambitious	chapter.	We	looked	at	some	of	the	challenges	of	big	data	and
how	to	use	MBrace	to	help	us	with	distributed	machine	learning.	We	then	created	a	sample
IoT	project	to	show	an	example	of	how	big	data	is	generated	and	how	we	can	deploy	ML
models	to	devices.	The	IoT	app	used	two	ML	models	to	give	optimal	results.	We	then
looked	(briefly)	at	how	we	can	use	the	power	of	.NET	to	build	multiple	input	devices	so
that	we	can	extend	across	the	variety	of	hardware	that	is,	and	will	be,	available	for	IoT.

Index
A

Accord	/	Accord
Accord.NET

about	/	Accord.NET,	Accord.NET
URL	/	Accord.NET
regression	/	Regression
regression	evaluation,	RSME	used	/	Regression	evaluation	using	RMSE
regression,	using	with	real	world	/	Regression	and	the	real	world
regression,	against	actual	data	/	Regression	against	actual	data

AdventureWorks
and	Internet	of	Bikes	(IoB)	/	AdventureWorks	and	the	Internet	of	Bikes

Adventure	Works	/	Deedle
URL	/	Regression	against	actual	data
about	/	AdventureWorks
data,	making	available	/	Getting	the	data	ready
and	k-NN	/	k-NN	and	AdventureWorks	data
and	Naïve	Bayes	/	Naïve	Bayes	and	AdventureWorks	data

Adventure	Works	app
about	/	AdventureWorks	app
environment,	setting	up	/	Setting	up	the	environment
existing	web	project,	updating	/	Updating	the	existing	web	project
regression,	implementing	/	Implementing	the	regression

AdventureWorks	data
multiple	linear	regression,	applying	/	AdventureWorks	data
logistic	regression,	applying	/	Applying	a	logistic	regression	to	AdventureWorks
data

Adventure	Works	data
and	k-NN	/	k-NN	and	AdventureWorks	data

Adventure	Works	database	/	SqlProvider
application

logistic	regression,	adding	/	Adding	logistic	regression	to	the	application
building	/	Building	the	application
models,	setting	up	/	Setting	up	the	models
UX,	building	/	Building	the	UX

attachment	point,	logistic	regressions	/	Attachment	point
Azure	IoT	suite

URL	/	Next	steps

B
Bing	Map	API

URL	/	Combining	data

C
classification	models	discoveries

using	/	Making	use	of	our	discoveries
data,	making	available	/	Getting	the	data	ready
features,	expanding	/	Expanding	features

clean	data	block	/	The	scientific	process
Code-4-Good	application

about	/	The	Code-4-Good	application
machine	learning	assembly	/	Machine	learning	assembly
UI	/	The	UI
distance	calculations,	adding	/	Adding	distance	calculations
human	observations,	augmenting	with	/	Augmenting	with	human	observations

Code	for	America
URL	/	Open	data

collinearity	/	Collinearity
cross	validation

about	/	Overfitting	and	cross	validation
training,	versus	testing	/	Cross	validation	–	train	versus	test
random	test	/	Cross	validation	–	the	random	and	mean	test
mean	test	/	Cross	validation	–	the	random	and	mean	test
confusion	matrix	/	Cross	validation	–	the	confusion	matrix	and	AUC
AUC	/	Cross	validation	–	the	confusion	matrix	and	AUC
unrelated	variables	/	Cross	validation	–	unrelated	variables

D
data

cleaning	/	Cleaning	data
selecting	/	Selecting	data

data	combinations
about	/	Combining	data
geolocation	data	/	Combining	data
parallelism	/	Parallelism
JSON	type	provider	/	JSON	type	provider	–	authentication

data	elements
reference	/	Non	SQL	type	providers

data	frame
about	/	Overview

data	lakes	/	The	scientific	process
data	munging	/	The	scientific	process
data	selection

about	/	Selecting	data
collinearity	/	Collinearity
normalization	/	Normalization
scaling	/	Scaling

decision	trees
about	/	Decision	trees
benefits	/	Decision	trees
Accord	/	Accord
numl	/	numl

Deedle	/	Deedle

E
Entity	Framework	(EF)	/	FsLab	and	type	providers

F
F#

about	/	Why	F#?
features	/	Learning	F#
learning	/	Learning	F#
URLs	/	Learning	F#

Fiddler
URL	/	Parallelism

Framework	Class	Library	(FCL)	/	What	version	of	the	.NET	Framework	are	we
using?
FsLab

reference	/	FsLab	and	type	providers

G
GroupJoin	method	/	Geolocation	analysis

H
Hack-4-Good

about	/	Hack-4-Good
FsLab	/	FsLab	and	type	providers
type	providers	/	FsLab	and	type	providers
data	exploration	/	Data	exploration
visualization	/	Visualization

high	risk	/	Augmenting	with	human	observations
Highway	46

URL	/	Data	considerations

I
Internet	of	Bikes	(IoB)

and	AdventureWorks	/	AdventureWorks	and	the	Internet	of	Bikes
overview	/	AdventureWorks	and	the	Internet	of	Bikes
data	considerations	/	Data	considerations
MapReduce	/	MapReduce
MBrace	/	MBrace
distributed	logistic	regression	/	Distributed	logistic	regression

Internet	of	Things	(IoT)	/	Why	write	your	own?
IoT

about	/	The	IoT
PCL	linear	regression	/	PCL	linear	regression
service	layer,	building	/	Service	layer
Universal	Windows	app	/	Universal	Windows	app	and	Raspberry	Pi	2
Raspberry	PI	2	/	Universal	Windows	app	and	Raspberry	Pi	2
issues	/	Next	steps

J
Java	Virtual	Machine	(JVM)	/	What	version	of	the	.NET	Framework	are	we	using?
Join	method

parameters	/	Geolocation	analysis
JSON	type	provider

about	/	JSON	type	provider	–	authentication

K
k-means	/	k-means
k-NN

about	/	k-Nearest	Neighbors	(k-NN)
example	/	k-NN	example
and	Adventure	Works	data	/	k-NN	and	AdventureWorks	data

L
lambda	expression	/	Learning	F#
Language	Integrated	Query	(LINQ)	/	What	version	of	the	.NET	Framework	are	we
using?,	SqlProvider
logistic	regressions

about	/	Intro	to	logistic	regression
URL	/	Intro	to	logistic	regression
x	variable,	adding	/	Adding	another	x	variable
applying,	to	AdventureWorks	data	/	Applying	a	logistic	regression	to
AdventureWorks	data
categorical	data	/	Categorical	data
attachment	point	/	Attachment	point
results,	analyzing	/	Analyzing	results	of	the	logistic	regression
adding,	to	application	/	Adding	logistic	regression	to	the	application

low	risk	/	Augmenting	with	human	observations

M
machine	learning	(ML)

about	/	What	is	machine	learning?,	Getting	ready	for	machine	learning
implementing	/	Why	write	your	own?
Visual	Studio,	setting	up	/	Setting	up	Visual	Studio

Math.NET
URL	/	Math.NET
about	/	Math.NET,	Math.NET
regression,	calculating	/	Regression	try	1,	Regression	try	2

MBrace
URL	/	MBrace
about	/	MBrace
starter	pack,	URL	/	MBrace

Mean	Square	Error	(MSE)	/	Regression	evaluation	using	RMSE
multiple	linear	regression

about	/	Introduction	to	multiple	linear	regression
example	/	Intro	example
x	variables,	adding	/	Keep	adding	x	variables?
applying,	to	AdventureWorks	data	/	AdventureWorks	data
adding,	to	production	application	/	Adding	multiple	regression	to	our	production
application
multiple	x	variables,	considerations	/	Considerations	when	using	multiple	x
variables
third	x	variable,	adding	to	model	/	Adding	a	third	x	variable	to	our	model

N
.NET

advantages	/	Why	.NET?
about	/	Why	.NET?

.NET	Framework
version	/	What	version	of	the	.NET	Framework	are	we	using?
URL	/	What	version	of	the	.NET	Framework	are	we	using?

Naïve	Bayes
about	/	Naïve	Bayes
using	/	Naïve	Bayes	in	action
using,	consideration	/	One	thing	to	keep	in	mind	while	using	Naïve	Bayes

neural	networks
demo	/	Neural	network	demo
testing	/	Neural	network	–	try	#1,	Neural	network	–	try	#2

NOAA	archives
reference	/	JSON	type	provider	–	authentication

numl
about	/	numl

Numl
about	/	Numl
URL	/	Numl

O
object	relational	mapping	(ORM)	/	FsLab	and	type	providers
Open	Data

about	/	Open	data
open	data

about	/	Why	open	data?
overfitting	/	Overfitting	and	cross	validation

P
Pearson’s	Correlation

about	/	Preparing	the	test	data,	Pearson’s	correlation
URL	/	Pearson’s	correlation

Pearson’s	Correlation
about	/	Pearson’s	correlation

Portable	Class	Libraries	(PCLs)	/	Non-type	provider
Portable	Class	Library	(PCL)	/	What	version	of	the	.NET	Framework	are	we	using?
potentiometer

URL	/	Universal	Windows	app	and	Raspberry	Pi	2
Principle	Component	Analysis	(PCA)

about	/	Unsupervised	learning,	Principle	Component	Analysis	(PCA)
principle	components,	frame	/	Principle	Component	Analysis	(PCA)
ProductID	/	Overview
production	application

multiple	linear	regression,	adding	/	Adding	multiple	regression	to	our	production
application

R
Raspberry	Pi

URL	/	Next	steps
RSME

used,	for	evaluating	regression	/	Regression	evaluation	using	RMSE

S
scientific	process	/	The	scientific	process
simple	linear	regression

about	/	Simple	linear	regression
environment,	setting	up	/	Setting	up	the	environment
test	data,	preparing	/	Preparing	the	test	data
standard	deviation	/	Standard	deviation
Pearson’s	Correlation	/	Pearson’s	correlation
performing	/	Linear	regression

SpeedModel	class
CurrentModel	property	/	PCL	linear	regression
Train	method	/	PCL	linear	regression
Classify	method	/	PCL	linear	regression

SQL	Server	providers
about	/	SQL	Server	providers,	SQL	Server	type	provider	wrap	up
non-type	provider	/	Non-type	provider
SqlProvider	/	SqlProvider
Deedle	/	Deedle
MicrosoftSqlProvider	/	MicrosoftSqlProvider
FSharp.Data.TypeProviders.SqlServerProvider	/	SQL	Server	type	provider	wrap
up
FSharp.Data.TypeProviders.EntityFrameworkProvider	/	SQL	Server	type
provider	wrap	up
FSharp.Data.SqlClient	/	SQL	Server	type	provider	wrap	up
FSharp.Data.SqlProvider	/	SQL	Server	type	provider	wrap	up
FSharp.EntityFramework.MicrosoftSqlServer	/	SQL	Server	type	provider	wrap
up
non	SQL	type	providers	/	Non	SQL	type	providers

standard	deviation
URL	/	Standard	deviation
about	/	Standard	deviation

sum	of	squares	error	(SSE)	/	Regression	evaluation	using	RMSE
supervised	learning	/	Unsupervised	learning

T
Task	Parallel	Library	(TPL)	/	What	version	of	the	.NET	Framework	are	we	using?
Test	With	Experiment	block	/	The	scientific	process
third-party	libraries

about	/	Third-party	libraries
Math.NET	/	Math.NET
Accord.NET	/	Accord.NET
Numl	/	Numl

traffic	stop	and	crash	exploration
about	/	Traffic	stop	and	crash	exploration
script,	preparing	/	Preparing	the	script	and	the	data
data,	preparing	/	Preparing	the	script	and	the	data
geolocation	analysis	/	Geolocation	analysis
PCA	/	PCA
analysis	summary	/	Analysis	summary

type	providers
about	/	FsLab	and	type	providers
URL	/	FsLab	and	type	providers
overview	/	Overview

U
Universal	Windows	Applications	(UWA)	/	What	version	of	the	.NET	Framework	are
we	using?
unsupervised	learning

about	/	Unsupervised	learning
k-means	/	k-means
Principle	Component	Analysis	(PCA)	/	Principle	Component	Analysis	(PCA)

V
Visual	Studio

setting	up	/	Setting	up	Visual	Studio
URL	/	Setting	up	Visual	Studio

W
Windows	Communication	Foundation	(WCF)	/	What	version	of	the	.NET	Framework
are	we	using?

X
x	variable

adding,	to	multiple	linear	regression	/	Keep	adding	x	variables?

	Mastering .NET Machine Learning
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Welcome to Machine Learning Using the .NET Framework
	What is machine learning?
	Why .NET?
	What version of the .NET Framework are we using?
	Why write your own?
	Why open data?
	Why F#?
	Getting ready for machine learning
	Setting up Visual Studio
	Learning F#
	Third-party libraries
	Math.NET
	Accord.NET
	Numl
	Summary
	2. AdventureWorks Regression
	Simple linear regression
	Setting up the environment
	Preparing the test data
	Standard deviation
	Pearson's correlation
	Linear regression
	Math.NET
	Regression try 1
	Regression try 2
	Accord.NET
	Regression
	Regression evaluation using RMSE
	Regression and the real world
	Regression against actual data
	AdventureWorks app
	Setting up the environment
	Updating the existing web project
	Implementing the regression
	Summary
	3. More AdventureWorks Regression
	Introduction to multiple linear regression
	Intro example
	Keep adding x variables?
	AdventureWorks data
	Adding multiple regression to our production application
	Considerations when using multiple x variables
	Adding a third x variable to our model
	Logistic regression
	Intro to logistic regression
	Adding another x variable
	Applying a logistic regression to AdventureWorks data
	Categorical data
	Attachment point
	Analyzing results of the logistic regression
	Adding logistic regression to the application
	Summary
	4. Traffic Stops – Barking Up the Wrong Tree?
	The scientific process
	Open data
	Hack-4-Good
	FsLab and type providers
	Data exploration
	Visualization
	Decision trees
	Accord
	numl
	Summary
	5. Time Out – Obtaining Data
	Overview
	SQL Server providers
	Non-type provider
	SqlProvider
	Deedle
	MicrosoftSqlProvider
	SQL Server type provider wrap up
	Non SQL type providers
	Combining data
	Parallelism
	JSON type provider – authentication
	Summary
	6. AdventureWorks Redux – k-NN and Naïve Bayes Classifiers
	k-Nearest Neighbors (k-NN)
	k-NN example
	Naïve Bayes
	Naïve Bayes in action
	One thing to keep in mind while using Naïve Bayes
	AdventureWorks
	Getting the data ready
	k-NN and AdventureWorks data
	Naïve Bayes and AdventureWorks data
	Making use of our discoveries
	Getting the data ready
	Expanding features
	Summary
	7. Traffic Stops and Crash Locations – When Two Datasets Are Better Than One
	Unsupervised learning
	k-means
	Principle Component Analysis (PCA)
	Traffic stop and crash exploration
	Preparing the script and the data
	Geolocation analysis
	PCA
	Analysis summary
	The Code-4-Good application
	Machine learning assembly
	The UI
	Adding distance calculations
	Augmenting with human observations
	Summary
	8. Feature Selection and Optimization
	Cleaning data
	Selecting data
	Collinearity
	Feature selection
	Normalization
	Scaling
	Overfitting and cross validation
	Cross validation – train versus test
	Cross validation – the random and mean test
	Cross validation – the confusion matrix and AUC
	Cross validation – unrelated variables
	Summary
	9. AdventureWorks Production – Neural Networks
	Neural networks
	Background
	Neural network demo
	Neural network – try #1
	Neural network – try #2
	Building the application
	Setting up the models
	Building the UX
	Summary
	10. Big Data and IoT
	AdventureWorks and the Internet of Bikes
	Data considerations
	MapReduce
	MBrace
	Distributed logistic regression
	The IoT
	PCL linear regression
	Service layer
	Universal Windows app and Raspberry Pi 2
	Next steps
	Summary
	Index

