
Peter McGowan

 Mastering
 CloudForms
Automation
AN ESSENTIAL GUIDE FOR CLOUD ADMINISTRATORS

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Peter McGowan

Mastering CloudForms
Automation

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-4919-5722-6

[LSI]

Mastering CloudForms Automation
by Peter McGowan

Copyright © 2016 Red Hat, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Shiny Kalapurakkel
Copyeditor: Rachel Monaghan
Proofreader: Eileen Cohen

Indexer: Angela Howard
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Colleen Cole

July 2016: First Edition

Revision History for the First Edition
2016-06-21: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491957226 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Mastering CloudForms Automation, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491957226
http://www.allitebooks.org

Table of Contents

Preface. xvii

Part I. Working with CloudForms Automate

1. Introduction to CloudForms. 3
What Is CloudForms? 3
Providers 4

Cloud Providers 5
Infrastructure Providers 5
Configuration Management Providers 5
Container Providers 5
Mixing and Matching Providers 5

The Capabilities of CloudForms 7
Insight 7
Control 8
Automate 9
Integrate 9

The CloudForms Appliance 10
Ruby and Rails 10

Projects, Products, and Some History 11
ManageIQ (the Project) 11
Red Hat CloudForms (the Product) 11
CloudForms Management Engine (the Appliance) 11

Summary 12
Further Reading 12

iii

www.allitebooks.com

http://www.allitebooks.org

2. Introduction to the Automate Datastore. 13
The Automate Explorer 13
The Automate Datastore 14
Domains 15

Domain Priority 15
Importing/Exporting Domains 16
Copying Objects Between Domains 16
Importing Old Format Exports 17

Namespaces 17
Classes 17

Schemas 18
Adding or Editing a Schema 18
Relationships 19

Instances 20
Methods 20
Summary 21

Further Reading 21

3. Writing and Running Our Own Automation Scripts. 23
Creating the Environment 24

Adding a New Domain 24
Adding a Namespace 25
Adding a Class 25
Editing the Schema 26

Hello, World! 27
Adding a New Instance 27
Adding a New Method 28

Running the Instance 29
Exit Status Codes 30
Summary 31

4. Using Schema Variables. 33
Preparing the Schema 33
The Instance 34
The Method 35
Running the Instance 36
Summary 36

5. Working with Virtual Machines. 39
Custom Attributes 39
Creating the Service Dialog 40
Creating the Instance and Method 43

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

The Code 43
Creating the /System Entry Point 44

Running Automation Scripts from a Button 46
Creating the Button Group 46
Creating the Button 47
Running the Instance 48

Summary 49
Further Reading 50

6. Peeping Under the Hood. 51
A Little Rails Knowledge (Goes a Long Way) 51

Plain Old Ruby 51
Model-View-Controller 52
Active Record Associations 52
Rails Helper Methods (.find_by_*) 53

Service Models 54
Service Model Object Properties 55

Attributes 55
Virtual Columns 56
Associations 57
Methods 58

Distributed Ruby 58
Summary 60

Further Reading 60

7. $evm and the Workspace. 61
$evm.log 61
$evm.root 62
$evm.object, $evm.current, and $evm.parent 63
$evm.vmdb 63

Single-Argument Form 64
Two-Argument Form 64

$evm.execute 65
Examples 65

$evm.instantiate 66
Summary 67

Further Reading 67

8. A Practical Example: Enforcing Anti-Affinity Rules. 69
Task 69
Solution 69

relocate_vm 69

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

send_email 70
Main Code 71

Summary 72
Further Reading 72

9. Using Tags from Automate. 73
Creating Tags and Categories 74
Assigning and Removing Tags 75
Testing Whether an Object Is Tagged 75
Retrieving an Object’s Tags 75
Searching for Specifically Tagged Objects 76

Practical Example 76
Getting the List of Tag Categories 77
Getting the List of Tags in a Category 78
Finding a Tag’s Name, Given Its Description 78
Finding a Specific Tag (MiqAeServiceClassification) Object 78
Deleting a Tag Category 79
Summary 80

Further Reading 80

10. Investigative Debugging. 81
InspectMe 81
object_walker 82

Black or Whitelisting Associations 82
object_walker_reader 83

Rails Console 84
Rails db 85
Summary 86

Further Reading 86

11. Ways of Entering Automate. 87
Buttons and Simulation 87
RESTful API 88
Control Policy Actions 88
Alerts 89
Service Dialog Dynamic Elements 90
Finding Out How Our Method Has Been Called 90
Summary 91

Further Reading 91

12. Requests and Tasks. 93
The Need for Approval 93

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Request and Task Objects 94
Approval 95
Object Class Ancestry 95
Context 96
Object Contents 97

Dumping the Object Contents 97
Comparing the Objects 100

Summary 101
Further Reading 101

13. State Machines. 103
Building a State Machine 104

State Machine Schema Field Columns 104
State Machine Example 106

State Variables 106
Setting State Result 106
State Retries 107
Getting the State Machine Name 107
Getting the Current Step in the State Machine 107
Getting the on_entry, on_exit, on_error Status State 107

State Machine Enhancements in CloudForms 4.0 107
Error Recovery 107
Skipping States 108
Jumping to a Specific State 108
Nested State Machines 108

Saving Variables Between State Retries 109
Summary 109

Further Reading 110

14. More Advanced Schema Features. 111
Messages 111

Specifying Our Own Messages 112
Assertions 113
Collections 114
Summary 115

15. Event Processing. 117
Event Processing Component Parts 118

The Event Stream Object 118
The Event Switchboard 118
Event Handlers 121

Catching and Handling External Events 122

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Event Catching 122
Event Processing 122

Creating and Processing Internal Events 125
Event-Initiated Control Policy Processing 127
Event-Initiated Alert Processing 128

Event-Initiated Automation Request Workflows 129
Step 1: The request_created Event 130
Step 2: The request_approved Event 132
Step 3: The request_starting Event 133
Step 4: Automation Task Processing 135

Extending Automate Event Handling 135
Adding a New Automation Instance to /System/Event/EmsEvent/ 136

Summary 137
Next Steps 137

Part II. Provisioning Virtual Machines

16. Provisioning a Virtual Machine. 141
The Provisioning Process 141
Group-Specific Considerations, and Common Processing 142
Summary 143

17. The Provisioning Profile. 145
Location 145
Schema 146
Customizing the Profile 147
Profile Processing in Detail 147

The Provisioning Dialog 147
VM Name (Pass 1) 148
Approval 149
Quota 149
VM Name (Pass 2) 150
VM Provisioning State Machine 150

Summary 150
Further Reading 151

18. Approval. 153
Approval Workflow 153

Request Created Event 154
Methods 155
Request Pending Event 156

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Overriding the Defaults 156
Template Tagging 156

VM Provisioning–Related Email 157
Summary 157

Further Reading 158

19. Quota Management. 159
Quotas in Cloudforms 4.0 159

Quota Source 161
Quota Workflow 163
Summary 164

Further Reading 165

20. The Options Hash. 167
Request Object (miq_provision_request) 167
Task Object (miq_provision) 170

Adding Network Adapters 170
Correlation with the Provisioning Dialog 170
Adding Our Own Options: The ws_values Hash 171
Summary 172

21. The Provisioning State Machine. 173
State Machine Schema 173
Filling in the Blanks 174
Summary 175

22. Customizing Virtual Machine Provisioning. 177
Scenario 177
Task 177
Methodology 177

Step 1: Extend the State Machine 178
Step 2: Disable Auto-Power-On 179
Step 3: Create Our New Instances and Methods 180
Step 4: Add Our New Instances to the Copied State Machine 185
Step 5: Provision a Virtual Machine 185

Summary 186
Further Reading 186

23. Virtual Machine Naming During Provisioning. 187
VM Name-Related Provisioning Options 187

Inputs to the Naming Process 187
Outputs from the Naming Process 190

Table of Contents | ix

Name Processing 190
Provisioning a Single VM or Instance 192
Provisioning Multiple VMs or Instances in a Single Request 192

Customizing the Naming Process 192
Summary 193

Further Reading 193

24. Virtual Machine Placement During Provisioning. 195
Placement Methods 195
Method Description 197
Customising Placement 197

Using Alternative Placement Methods 198
Summary 198

Further Reading 198

25. The Provisioning Dialog. 199
Tabs and Input Fields 199
Dialog YAML 200
Selection of VM Provisioning Dialog 201
Group-Specific Dialogs 202

Example: Expanding the Dialog 203
Summary 205

Further Reading 206

26. Virtual Machine Provisioning Objects. 207
Object Overview 207
The Provision Request Object 208

Request Context 208
Task Context 209

The Provision Task Object 210
The Source Object 211
The Destination Object 212
Summary 213

27. Creating Provisioning Requests Programmatically. 215
Making the Call 215
Argument List 216

version 217
templateFields 217
vmFields 217
requester 217
tags 218

x | Table of Contents

additionalValues (aka ws_values) 218
emsCustomAttributes 218
miqCustomAttributes 218

Setting Placement Options 218
Summary 220

Further Reading 220

28. Integrating with Satellite 6 During Provisioning. 221
Hosts and Content Hosts 221
The Satellite 6 Host Entry 222
Non-CloudForms Preparation 223

Creating the Host Groups in Satellite 6 223
Creating the Activation Keys in Satellite 6 224
Adding an SSH Key to the VMware Template 224

Installing and Configuring Ansible on the CloudForms Appliance 224
Modifying the CloudForms Provisioning Workflow 226

RegisterSatellite 226
ActivateSatellite 229

Testing the Integration: Provisioning a New VM 232
Summary 235

Further Reading 236

Part III. Working with Services

29. Service Dialogs. 239
Dialog Elements 240
Dynamic Elements 240

Populating the Dynamic Fields 240
Read-Only and Protected Elements 242

Programmatically Populating a Read-Only Text Box 242
Element Validation 242
Using the Input from One Element in Another Element’s Dynamic Method 243

Example 243
Summary 244

Further Reading 245

30. The Service Provisioning State Machine. 247
Class and Instances 247
Passing Service Dialog Options to the Child and Grandchild Tasks 248
Accessing the Service Dialog Options 249

ConfigureChildDialog 250

Table of Contents | xi

Summary 251
VM Naming for Services 251

31. Catalog{Item,Bundle}Initialization. 253
CatalogItemInitialization 253

Service Dialog Element Naming Convention 254
CatalogBundleInitialization 256
Summary 256

Further Reading 257

32. Approval and Quota. 259
Triggering Events 259
Approval 259

Customizing Approval 260
Quota 260

Email 261
Summary 261

33. Creating a Service Catalog Item. 263
The Service Dialog 263

Finding the Correct Element Names 263
Creating the Service Dialog 266

Creating the Service Catalog Item 267
Create a Catalog 268
Creating the Catalog Item 268

Ordering the Catalog Item 270
Summary 272

Further Reading 273

34. Creating a Service Catalog Bundle. 275
Creating the Service Dialog for the Bundle 276
Preparing the Service Catalog Items 278
Creating the Service Catalog Bundle 279
Ordering the Catalog Bundle 281
Summary 283

Further Reading 283

35. Service Objects. 285
Object Structure 286

Service Template Provision Task 287
Service Template Provisioning Request 287
Child miq_request_task 287

xii | Table of Contents

Grandchild miq_request_task 289
Summary 290

36. Log Analysis During Service Provisioning. 291
Initial Request 291
Profile Lookup 292
Request Processing and Approval 292
Service Template Provisioning Tasks 293
VM Provisioning Task 294
Service State Machine CheckProvisioned 294
VM State Machine CheckProvisioned 295
Virtual Machine Provision Complete 296
Service Provision Complete 297
Summary 297

37. Service Hierarchies. 299
Organizing Our Services 303

Creating an Empty Service 303
Adding VMs and Services to Existing Services 306

Adding the Button 307
Summary 310

38. Service Reconfiguration. 311
Reconfigure Entry Point 311
Service Design 312
Adding a Configuration Management Provider 313
Automate Datastore Components 313

Creating the Namespaces and State Machines 313
Email Classes 315
Policies 316

Modifying the VM Provision Workflow 317
Service Dialog 317

Elements 317
Instances and Methods 319

Dynamic Dialogs 319
Configuration-Related Methods 322

Testing 324
Summary 326

39. Service Tips and Tricks. 329
Test Virtual Machine Provisioning First 329
Re-create the Service Item if the Template Changes 329

Table of Contents | xiii

Custom State Machines 329
Summary 330

Part IV. Retirement

40. Virtual Machine and Instance Retirement. 335
Initiating Retirement 335
Retirement-Related Attributes and Methods 336
VM Retirement State Machine 337

StartRetirement 338
PreRetirement/CheckPreRetirement 338
RemoveFromProvider/CheckRemovedFromProvider 338
FinishRetirement 339
DeleteFromVMDB 339

Summary 339
Further Reading 339

41. Service Retirement. 341
Defining a Service Retirement Entry Point 341
Initiating Retirement 342
Retirement-Related Attributes and Methods 342
Service Retirement State Machine 343

StartRetirement 343
RetireService/CheckServiceRetired 343
FinishRetirement 343
DeleteServiceFromVMDB 344

Summary 344

Part V. Integration

42. Calling Automation Using the RESTful API. 347
API Entry Point 347
Returning Results to the Caller 348
Authentication and auto_approve 349
Zone Implications 349
run_via_api 350
Summary 350

Further Reading 351

xiv | Table of Contents

43. Automation Request Approval. 353
Implementing a Custom Approval Workflow 353

Namespace 354
Group Profile 354
State Machine 356
Email Classes 358

Policies 358
AutomationRequest_created 359
AutomationRequest_pending 360

Testing 360
Summary 361

44. Calling External Services. 363
Calling a SOAP API Using the Savon Gem 363
Calling an OpenStack API Using the fog Gem 365
Reading from a MySQL Database Using the MySQL Gem 366
Summary 367

Further Reading 367

Part VI. Miscellaneous

45. Distributed Automation Processing. 371
Nondistributed Automation Operations 371
Distributed Automation Operations 372
Tracing Queueing/Dequeueing Operations 372
Detailed Queue Analysis 374

Monitoring the Queue During an Automation Operation 375
Troubleshooting 377
Summary 378

46. Argument Passing and Handling. 379
Case 1: Calling from a Button 379
Case 2: Calling from the RESTful API 380
Case 3: Calling from a Relationship or Automate Datastore URI 381
Case 4: Passing Arguments via the ws_values Hash During a VM Provision 381
Passing Arguments When Calling a Method in the Same Class 383
Summary 384

47. Miscellaneous Tips. 385
Updating the Appliance 385
The ManageIQ Coding Style and Standards Guide 386

Table of Contents | xv

Defensive Programming 386
Catch Exceptions 387
Use an External IDE 387
Version Control 387
Use Configuration Domains 388
Summary 389

Index. 391

xvi | Table of Contents

Preface

Red Hat CloudForms is a powerful cloud management platform that allows us to effi‐
ciently manage our virtual infrastructure and Infrastructure as a Service (IaaS)
clouds. Part of this efficient management involves automating many of the day-to-day
tasks that would otherwise require manual involvement, or time-consuming and pos‐
sibly error-prone repetitive steps.

This book is an introduction and how-to guide to working with the Automate feature
of Red Hat CloudForms.

CloudForms Automate simplifies our lives and increases our operational efficiency. It
allows us to do such things as:

• Eliminate many of the manual decisions and operations involved in provisioning
virtual machines and cloud instances.

• Load-balance our virtual machines across our virtual infrastructure to match our
organization’s way of working, be it logical (e.g., cost center, department), opera‐
tional (e.g., infrastructure lifecycle environment), or categorical (e.g., server role
or virtual machine characteristic).

• Create service catalogs to allow our users to provision virtual machines from a
single Order button.

• Create autoscalable cloud applications in which new virtual machines are
dynamically provisioned on demand.

• Manage our complete virtual machine lifecycle.
• Integrate our virtual machine provisioning workflow with the wider enterprise—

for example, automatically registering new virtual machines with a Red Hat Satel‐
lite server.

• Implement intelligent virtual machine retirement workflows that de-allocate
resources such as IP addresses and unregister from directory services.

xvii

A Brief Word on Terminology
This book refers to Automate as the CloudForms capability or product feature, and
automation as the thing that Automate allows us to do. The Automation Engine allows
us to create intelligent automation workflows and run automation scripts written in
Ruby.

Who Should Read This Book?
This book will appeal to cloud or virtualization administrators who are interested in
automating parts of their virtual infrastructure or cloud computing environment.
Although it’s primarily aimed at those with some familiarity with Red Hat Cloud‐
Forms, many of the concepts and terms, such as orchestration and automation work‐
flows, will be easily understood even to those unfamiliar with the product.

Automate can be one of the more challenging aspects of CloudForms to master. The
practitioner requires an unusual blend of skills: a familiarity with traditional “infra‐
structure” concepts such as virtual machines, hypervisors, and tenant networks, but
also a flair for scripting in Ruby and mastery of a programming object model. There
is no black magic, however, and all of the skills can be learned if we are shown the
way.

The book assumes a reasonable level of competence with the Ruby language on the
part of the reader. There are many good online Ruby tutorials available, including
Codecademy’s “Learn to program in Ruby”.

The book also presumes a comfortable level of working experience and familiarity
with the Web User Interface (WebUI) features of CloudForms, particularly Insight,
Control, tagging, and provisioning VMs via the Lifecycle → Provision VMs entry
point. Many of these features will be automated as we follow the examples in the
book, and so an understanding of why tagging is useful (for example) is helpful.

CloudForms is a web application, so interaction is predominantly
via the browser-based WebUI. We only use a command-line termi‐
nal when we initially configure a CloudForms appliance, or when
troubleshooting or examining logfiles.

Why I Wrote This Book
I was fortunate in having two of the early masters of CloudForms Automate, John
Hardy and Brad Ascar from Red Hat, teach me the fundamentals of automation.
They opened my eyes to the possibilities and whetted my appetite to learn more. This
book is an attempt to pass on that knowledge, supplemented with my real-world

xviii | Preface

http://www.codecademy.com/tracks/ruby

experience as an architect at Red Hat, so that others can use this really powerful fea‐
ture of the product.

I’ve tried to structure the book around the periodic revelations that I’ve had while
learning CloudForms Automate, the if only I’d known that weeks ago moments. In
places, this includes some deep code examination and theory, and in-depth logfile
analysis, but hopefully this will help the reader’s understanding process (it did for
me). I also try to illustrate the theory with code snippets and examples.

Versions and Releases
Although the descriptions and screenshots in this book are taken from Red Hat
CloudForms 3.2 and 4.0, most of the content also applies to the ManageIQ Botvinnik
and Capablanca releases. CloudForms 4.0 (ManageIQ Capablanca) is the latest
release at the time of writing.

Navigating This Book
The book is divided into six parts.

Part I, Working with CloudForms Automate
Chapter 1, Introduction to CloudForms, sets the scene and describes the capabilities of
CloudForms as a cloud management product.

Chapter 2, Introduction to the Automate Datastore, takes us on a tour of the objects
that we work with when we use the Automate capabilities of CloudForms.

Chapter 3, Writing and Running Our Own Automation Scripts, introduces us to writ‐
ing automation scripts in Ruby, with a simple “Hello, World!” example.

Chapter 4, Using Schema Variables, shows how we can use our instance’s schema to
store and retrieve variables.

Chapter 5, Working with Virtual Machines, demonstrates how to work with an Auto‐
mation Engine virtual machine object, and how to run an automation script from a
custom button in the WebUI.

Chapter 6, Peeping Under the Hood, introduces some background theory about Rails
models, and how CloudForms abstracts these as service models that we work with
when we write our automation scripts.

Chapter 7, $evm and the Workspace, takes us on a tour of the useful $evm methods
that we frequently use when scripting, such as $evm.vmdb and $evm.object.

Preface | xix

Chapter 8, A Practical Example: Enforcing Anti-Affinity Rules, is a real-world, full-
script example of how we could use the techniques learned so far to implement anti-
affinity rules in our virtual infrastructure, based on tags.

Chapter 9, Using Tags from Automate, describes in detail how we can create, assign,
read, and work with tags from our Ruby automation scripts.

Chapter 10, Investigative Debugging, discusses the ways that we can discover which
Automate objects are available to us when scripting. This is useful both from an
investigative viewpoint when we’re developing scripts, and for debugging our scripts
when things are not working as expected.

Chapter 11, Ways of Entering Automate, shows us the various workflow entry points
into the Automate Datastore. It also illustrates how we can determine programmati‐
cally the way that our automation script has been called, enabling us to create re-
usable scripts.

Chapter 12, Requests and Tasks, illustrates how more advanced Automate operations
are separated into a Request stage, which requires administrative approval to progress
into the Task stage. The corresponding request and task objects are described and
their usage compared.

Chapter 13, State Machines, introduces us to state machines and how we can use them
to intelligently sequence our workflows.

Chapter 14, More Advanced Schema Features, discusses the more advanced but less
frequently used schema features: messages, assertions, and collections.

Chapter 15, Event Processing, describes the way that CloudForms responds to external
events such as a virtual machine shutting down, and traces the event handling
sequence through the Automate Datastore. It also shows how Automate manages its
own internal events such as request_started.

Part II, Provisioning Virtual Machines
Chapter 16, Provisioning a Virtual Machine, introduces the concept of virtual machine
provisioning, the most complex out-of-the-box Automate operation that is per‐
formed by CloudForms.

Chapter 17, The Provisioning Profile, describes how the provisioning profile is refer‐
enced to determine the initial group-specific processing that is performed at the start
of a virtual machine provisioning operation.

Chapter 18, Approval, shows how the approval workflow operates and how we can
adjust auto-approval criteria, such as the number of virtual machines to be provi‐
sioned or the amount of storage, to suit our needs.

xx | Preface

Chapter 19, Quota Management, gives details of the new CloudForms 4.0 quota han‐
dling mechanism and how it enables us to establish quotas for tenants or groups.

Chapter 20, The Options Hash, explains the importance of a data structure called the
options hash and how we can use it to retrieve and store variables to customize the
virtual machine provisioning operation.

Chapter 21, The Provisioning State Machine, discusses the stages in the state machine
that governs the sequence of operations involved in provisioning a virtual machine.

Chapter 22, Customizing Virtual Machine Provisioning, is a practical example showing
how we can customize the state machine and include our own methods to add a sec‐
ond hard disk during the virtual machine provisioning operation.

Chapter 23, Virtual Machine Naming During Provisioning, explains how we can cus‐
tomize the naming logic that determines the name given to the newly provisioned vir‐
tual machine.

Chapter 24, Virtual Machine Placement During Provisioning, explains how we can
customize the placement logic that determines the host, cluster, and datastore loca‐
tions for our newly provisioned virtual machine.

Chapter 25, The Provisioning Dialog, describes the WebUI dialogs that prompt for the
parameters that are required before a new virtual machine can be provisioned. The
chapter also explains how the dialogs can be customized to expand optional ranges
for items like size of memory or to present a cut-down, bespoke dialog to certain user
groups.

Chapter 26, Virtual Machine Provisioning Objects, details the four main objects that
we work with when we write Ruby scripts to interact with the virtual machine provi‐
sioning process.

Chapter 27, Creating Provisioning Requests Programmatically, shows how we can ini‐
tiate a virtual machine provisioning operation from an automation script, instead of
from the WebUI.

Chapter 28, Integrating with Satellite 6 During Provisioning, is a practical example
showing how to automate the registration of a newly created virtual machine with
Red Hat Satellte 6, both as a host and content host.

Part III, Working with Services
Chapter 29, Service Dialogs, introduces the components that make up a service dialog,
including elements that can be dynamically populated by Ruby methods.

Chapter 30, The Service Provisioning State Machine, discusses the stages in the state
machine that governs the sequence of operations involved in creating a service.

Preface | xxi

Chapter 31, Catalog{Item,Bundle}Initialization, describes two specific instances of the
service-provisioning state machine that have been designed to simplify the process of
creating service catalog items and bundles.

Chapter 32, Approval and Quota, shows the approval workflow for services, and how
the new consolidated quota-handling mechanism for CloudForms 4.0 also applies to
services.

Chapter 33, Creating a Service Catalog Item, is a practical example showing how to
create a service catalog item to provision a virtual machine.

Chapter 34, Creating a Service Catalog Bundle, is a practical example showing how to
create a service catalog bundle of three virtual machines.

Chapter 35, Service Objects, is an exposé of the various objects that work behind the
scenes when a service catalog item is provisioned.

Chapter 36, Log Analysis During Service Provisioning, is a step-by-step walk-through,
tracing the lines written to automation.log at various stages of a service provision
operation. This can help our understanding of the several levels of concurrent state-
machine activity taking place.

Chapter 37, Service Hierarchies, illustrates how services can contain other services and
how we can arrange our service groups into hierarchies for organizational and man‐
agement convenience.

Chapter 38, Service Reconfiguration, describes how we can create reconfigurable serv‐
ices. These are capable of accepting configuration parameters at order time via the
service dialog and can later be reconfigured with new configuration parameters via
the same service dialog.

Chapter 39, Service Tips and Tricks, mentions some useful tips to remember when we
are developing services.

Part IV, Retirement
Chapter 40, Virtual Machine and Instance Retirement, discusses the retirement pro‐
cess for virtual machines and instances.

Chapter 41, Service Retirement, discusses the retirement process for services.

Part V, Integration
Chapter 42, Calling Automation Using the RESTful API, shows how we can make
external calls into CloudForms to run Automate instances via the RESTful API. We
can also return results to our caller in this way, enabling us to create our own pseudo-
API endpoints within CloudForms.

xxii | Preface

Chapter 43, Automation Request Approval, explains how to customize the default
approval behavior for automation requests, so that nonadministrators can submit
RESTful API requests without needing administrative approval.

Chapter 44, Calling External Services, shows the various ways that we can call out
from Automate to integrate with our wider enterprise. This includes making out‐
bound REST and SOAP calls, connecting to MySQL databases, and interacting with
OpenStack using the fog gem.

Part VI, Miscellaneous
Chapter 45, Distributed Automation Processing, describes how CloudForms Automate
has been designed to be horizontally scalable. The chapter describes the mechanism
by which automation requests are distributed among multiple appliances in a region.

Chapter 46, Argument Passing and Handling, explains how arguments are passed to,
and handled internally by, Automate methods for each of the different ways that we’ve
called them up to this point in the book.

Chapter 47, Miscellaneous Tips, closes the book with some useful tips for Automate
method development.

Online Resources
There are several online resources that any student of CloudForms Automate should
be aware of.

Official Documentation
The official Red Hat documentation for CloudForms is here: http://red.ht/1rfeDkq.

Code Repositories
One of the best sources of reference material is the excellent CloudForms_Essentials
code collection maintained by Kevin Morey from Red Hat (https://github.com/
ramrexx/CloudForms_Essentials). This contains a wealth of useful code samples, and
many of the examples in this book originate from this source.

There is also the very useful Red Hat Consulting (https://github.com/rhtconsulting)
GitHub repository maintained by several Red Hat consultants.

Forums
The ManageIQ project hosts the ManageIQ Talk forum.

Preface | xxiii

http://red.ht/1rfeDkq
https://github.com/ramrexx/CloudForms_Essentials
https://github.com/ramrexx/CloudForms_Essentials
https://github.com/rhtconsulting
http://talk.manageiq.org

Blogs
There are several blogs that have good CloudForms-related articles, including some
useful “notes from the field.” These include:

• CloudForms NOW (http://cloudformsblog.redhat.com/)
• Christian’s blog (http://www.jung-christian.de)
• Laurent Domb OSS blog (http://blog.domb.net/)
• ALL THINGS OPEN (http://allthingsopen.com/)
• TigerIQ (http://www.tigeriq.co/)

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

xxiv | Preface

http://cloudformsblog.redhat.com/
http://www.jung-christian.de
http://blog.domb.net/
http://allthingsopen.com/
http://www.tigeriq.co/

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/pemcg/oreilly-mastering-cloudforms-automation.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Mastering CloudForms Automation
by Peter McGowan (O’Reilly). Copyright 2016 Red Hat, Inc., 978-1-4919-5722-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐

Preface | xxv

https://github.com/pemcg/oreilly-mastering-cloudforms-automation
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://shop.oreilly.com/product/
0636920050735.do.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Anyone who works for Red Hat and starts to write a book like this has the advantage
of working in an incredible culture of knowledge sharing (one of Red Hat’s mottos is
“we grow when we share”). There is a long list of people who have helped me in one
way or another, but in particular the following people deserve a special mention.

For code samples (many of which have been used in this book), ideas for content, and
general sounding-board advice over a long period, thanks goes to Kevin Morey, Bill
Helgeson, Cameron Wyatt, Tom Hennessy, Lester Claudio, Brett Thurber, Fabien
Dupont, Ed Seymour, and George Goh.

I’ve lost count of the number of times that Christian Jung, Krain Arnold, Loic Avenal,
and Nick Catling from the EMEA CloudForms “Tiger Team” have helped me, and
made me wonder now why didn’t I think of that?

xxvi | Preface

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://shop.oreilly.com/product/0636920050735.do
http://shop.oreilly.com/product/0636920050735.do
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

For their patience with my questions and help in proofreading this book for technical
correctness, I’d like to thank Tina Fitzgerald, Madhu Kanoor, and Greg McCullough
from the CloudForms/ManageIQ engineering Automate team.

For their suggestion of turning a documentation hobby project borne of frustration
into a real book, and for the behind-the-scenes organization to make it happen, I am
indebted to the CloudForms marketing team members Marty Wesley and Geert Jen‐
sen.

I would like to thank Brian Anderson from O’Reilly for his encouragement and
patience with a new and naive author, and Mark Reynolds from HPE for reviewing
the book from a useful non–Red Hat point of view.

And finally, a big thank you to my wife Sarah, for her tireless support and encourage‐
ment, and tolerance of the other woman in my life for the past two years, named
Ruby.

Preface | xxvii

www.allitebooks.com

http://www.allitebooks.org

PART I

Working with CloudForms Automate

Part I introduces the objects and concepts that we work with when we develop our
automation scripts. Some of the chapters contain practical coding examples to assist
the learning process, while others are more theoretical and contain background
information to help build an overall understanding of the object model.

CHAPTER 1

Introduction to CloudForms

Welcome to this guide to mastering the Automate feature of Red Hat CloudForms.
Before we begin our journey through Automate, it’s worth taking a general tour of
CloudForms to establish a context for all that we’ll be learning.

What Is CloudForms?
Red Hat CloudForms is a cloud management platform that is also rather good at man‐
aging traditional server virtualization products such as VMware vSphere or Red Hat
Enterprise Virtualization (RHEV). This broad capability makes it ideal as a hybrid
cloud manager, able to manage both public clouds, and on-premises private clouds
and virtual infrastructures. It provides a single management interface into a hybrid
environment, enabling cross-platform orchestration to be achieved with relative sim‐
plicity.

Although originally a virtualization and Infrastructure as a Service (IaaS) cloud man‐
ager, CloudForms 4.0 introduced support for Docker container management, includ‐
ing Red Hat’s OpenShift Enterprise 3.x Platform as a Service (PaaS) cloud solution
(see Figure 1-1).

3

Figure 1-1. Red Hat CloudForms high-level overview

Requirements of a Cloud Management Platform
Cloud management platforms (CMPs) are software tools that allow for the integrated
management of public, private, and hybrid cloud environments. There are several
requirements that are generally considered necessary for a product to be classified as
a cloud management platform. These are:

• Self-service catalog-based ordering of services
• Metering and billing of cloud workloads
• Policy-based workload optimization and management
• Workflow orchestration and automation
• The capability to integrate with external tools and systems
• Role-based access control (RBAC) and multitenancy

Providers
CloudForms manages each cloud, container, or virtual environment using modular
subcomponents called providers. Each provider contains the functionality required to
connect to and monitor its specific target platform, and this provider specialization
enables common cloud management functionality to be abstracted into the core
product. In keeping with the manager of managers concept, CloudForms providers

4 | Chapter 1: Introduction to CloudForms

communicate with their respective underlying cloud or infrastructure platform using
the native APIs published for the platform manager (such as VMware vCenter Server
using the vSphere SOAP API).

The pluggable nature of the provider architecture makes it relatively straightforward
to develop new providers to support additional cloud and infrastructure platforms.
For example, the last two versions of CloudForms have added five new providers,
with more currently under development.

Providers are broadly divided into categories, and with CloudForms 4.0 these are
cloud, infrastructure, configuration management, and container.

Cloud Providers
CloudForms 4.0 ships with cloud providers that connect to and manage two public
clouds: Amazon Web Services and Microsoft Azure. It also has a cloud provider that
can connect to and manage a private or on-premises Red Hat OpenStack Platform
(OSP) cloud (this is the OverCloud in the case that OSP is managed by the Red Hat
OpenStack Platform 7 Director).

Infrastructure Providers
CloudForms 4.0 ships with infrastructure providers that connect to and manage
VMware vCenter Server, Red Hat Enterprise Virtualization Manager, and Microsoft
System Center Virtual Machine Manager. It also has an infrastructure provider that
can connect to and manage a private or on-premises Red Hat OpenStack Platform 7
Director UnderCloud.

Configuration Management Providers
CloudForms 4.0 ships with a configuration management provider that can connect to
and manage Red Hat Satellite 6. This enables CloudForms to import and use Satellite
6 host groups, and extends the provisioning capability to include bare-metal (i.e., non‐
virtual) servers.

Container Providers
CloudForms 4.0 ships with container providers that can connect to and manage two
Docker container managers: Red Hat Atomic Platform and Red Hat OpenShift Enter‐
prise.

Mixing and Matching Providers
When deploying CloudForms in our enterprise we often connect to several providers.
We can illustrate this with an example company.

Providers | 5

1 CloudForms is virtual machine operating system neutral; it can manage Windows, Red Hat, Fedora, Debian,
Ubuntu, or SUSE VMs (or their derivatives) with equal ease.

Company XYZ Inc.
Our example organization has an established VMware vSphere 5.5 virtual environ‐
ment, containing many hundreds of virtual machines. This virtual infrastructure is
typically used for the stable, long-lived virtual machines, and many of the organiza‐
tion’s critical database, directory services, and file servers are situated here. Approxi‐
mately half of the VMware virtual machines run Red Hat Enterprise Linux,1 and to
facilitate the patching, updating, and configuration management of these VMs, the
organization has a Satellite 6 server.

Company XYZ is a large producer of several varieties of widget, and the widget devel‐
opment test cycle involves creating many short-lived instances in an OpenStack pri‐
vate cloud, to cycle through the test suites. The developers like to have a service
catalog from which they can order one of the many widget test environments, and at
any time there can be several hundred instances running various test configurations.

The web developers in the company are in the process of redeveloping the main
Internet web portal as a scalable public cloud workload hosted in Amazon Web Serv‐
ices (AWS). The web portal provides a rich product catalog, online documentation,
knowledge base, and ecommerce shopping area to customers.

In this organization, CloudForms manages the workflows that provision virtual
machines into the vSphere virtual infrastructure, AWS, and OpenStack. The users
have a self-service catalog to provision individual virtual machine workloads into
either VMware or Amazon, or entire test suites into OpenStack. CloudForms orches‐
tration workflows help with the maintenance of an image factory that keeps virtual
machine images updated and published as VMware templates, Amazon Machine
Images (AMIs), and OpenStack Glance images.

As part of the provisoning process CloudForms also manages the integration work‐
flows that allow newly provisoned virtual machines to be automatically registered
with the Satellite 6 server, and an in-house configuration management database (see
Figure 1-2). This ensures that newly provisioned virtual machines are configured by
Puppet according to server role and patched with the latest updates, with a full inven‐
tory visible to the help-desk system.

6 | Chapter 1: Introduction to CloudForms

Figure 1-2. Red Hat CloudForms providers and workflows

The Capabilities of CloudForms
We’ve already mentioned some of the capabilities of CloudForms such as orchestra‐
tion, a service catalog, and integration workflows. Let’s have a look at the four main
areas of capability: insight, control, automate, and integrate.

Insight
Insight is the process of gathering intelligence on our virtual or cloud infrastructure
so that we can manage it effectively. It is one of the most fundamental but important
capabilities of the product.

When we first connect a provider, CloudForms begins a process of discovery of the
virtual or cloud infrastructure. An infrastructure provider will collect and maintain
details of the entire virtual infrastructure, including clusters, hypervisors, datastores,
virtual machines, and the relationships among them. Cloud vendors do not typically
expose infrastructure details, so cloud providers will typically gather and monitor
tenant-specific information on cloud components such as instances, images, availa‐
bility zones, networks, and security groups.

CloudForms also stores and processes any real-time or historical performance data
that the provider exposes. It uses the historical data to calculate useful trend-based

The Capabilities of CloudForms | 7

analytics such as image or VM right-sizing suggestions and capacity-planning recom‐
mendations. It uses the real-time performance statistics and power-on/off events to
give us insight into workload utilization and also uses this information to calculate
metering and chargeback costs.

One of the roles of a CloudForms server is that of Smart Proxy. A server with this role
has the ability to initiate a SmartState Analysis on a virtual machine, template,
instance, or even Docker container. SmartState Analysis (also known as fleecing) is a
patented technology that scans the container or virtual machine’s disk image to exam‐
ine its contents. The scan discovers users and groups that have been added and appli‐
cations that have been installed, and searches for and optionally retrieves the contents
of specified configuration files or Windows Registry settings. This is an agentless
operation that doesn’t require the virtual machine to be powered on.

CloudForms allows us to apply tags to infrastructure or cloud components to help us
identify and classify our workloads or resources in a way that makes sense to our
organization. These tags might specify an owning department, cost center, operating
system type, location, or workload classification, for example. We can create powerful
filters in the WebUI that allow us to display managed components such as VMs along
organizational and business lines, rather than physical placement or characteristic.

To round off the summary of its insight ability, CloudForms also has a powerful
reporting capability that can be used to create online or exportable CSV or PDF
reports.

Control
We can use the Control functionality of CloudForms to enforce security and configu‐
ration policies, using the information retrieved from insight. For example, the Smart‐
State Analysis of a virtual machine might discover a software package containing a
known critical security vulnerability. We could implement a control policy to shut
down the VM, or migrate it to a hypervisor in a quarantined network so that it can be
patched.

Using real-time performance statistics, we might configure alerts to warn us when
critical virtual machines are running at unusually high utilization levels. Many moni‐
toring tools can do this, but with CloudForms we could also use such an alert to trig‐
ger an Automate workflow to dynamically scale out the application workload by
provisioning more servers.

We can monitor for compliance with corporate security policies, by gathering and
intelligently processing the contents of selected configuration files. In this way we
might detect if SELinux has been disabled, for example, or that sshd is running with
an insecure configuration. We can run such compliance rules automatically and mark

8 | Chapter 1: Introduction to CloudForms

a virtual machine as noncompliant, whereupon its status will be immediately visible in
the WebUI.

Automate
One of the most powerful features of CloudForms is its ability to automate the
orchestration of workloads and resources in our virtual infrastructure or cloud. Auto‐
mate allows us to create and use powerful workflows using the Ruby scripting lan‐
guage and features provided by the Automation Engine, such as state machines and
service models.

CloudForms comes preconfigured with a large number of out-of-the-box workflows,
to orchestrate such things as:

• Provisioning or scaling out of workloads, such as virtual machines or cloud
instances

• Provisioning or scaling out of infrastructure, such as bare-metal hypervisors or
compute nodes

• Scaling back or retirement of virtual machine or cloud instances

Each of these is done in the context of comprehensive role-based access control, with
administrator-level approval of selected Automate operations required where appro‐
priate.

We can extend or enhance these default workflows and create whole new orchestra‐
tion workflows to meet our specific requirements.

Service catalog
We can create self-service catalogs to permit users to order our orchestration work‐
flows with a single button click. CloudForms Automate comes with an interactive ser‐
vice dialog designer that we use to build rich dialogs, containing elements such as text
boxes, radio buttons, or drop-down lists. These elements can be dynamically prepo‐
pulated with values that are specific and relevant to the logged-in user or workload
being ordered.

Integrate
As an extension of its Automate capability, CloudForms is able to connect to and inte‐
grate with many enterprise tools and systems. The system comes with Ruby gems to
enable automation scripts to connect to both RESTful and SOAP APIs, as well as
libraries to connect to several SQL and LDAP databases, and the ability to run remote
PowerShell scripts on Windows servers.

The Capabilities of CloudForms | 9

Typical integration actions might be to extend the virtual machine provisioning
workflow to retrieve and use an IP address from a corporate IP address management
(IPAM) solution; to create a new configuration item (CI) record in the central config‐
uration management database (CMDB), or to create and update tickets in the enter‐
prise service-management tool, such as ServiceNow.

The CloudForms Appliance
To simplify installation, CloudForms is distributed as a fully installed virtual
machine, known as the CloudForms Management Engine (often referred to as appli‐
ance for convenience).

A CloudForms 4.0 appliance comes preconfigured with everything we need. It runs
Red Hat Enterprise Linux 7.2, with PostgreSQL 9.4, Rails 4.2.5, the CloudForms
application, and all associated Ruby gems installed. An appliance is downloadable as a
virtual machine image template in formats suitable for VMware, Red Hat Enterprise
Virtualization, OpenStack, or Microsoft System Center Virtual Machine Manager.

All software packages in a CloudForms appliance are installed from RPM files, just as
with any other Red Hat Enterprise Linux server. The packages can be updated with
yum update from a Satellite 6 server or the Red Hat content delivery network.

Ruby and Rails
CloudForms is a Ruby on Rails application that uses PostgreSQL as its database.
When we use the Automate functionality of CloudForms, we work extensively with
the Ruby language and write scripts that interact with a Ruby object model defined
for us by the Automation Engine. We certainly don’t need to be Rails developers,
however (we don’t really need to know anything about Rails), but as we’ll see in Chap‐
ter 6, some understanding of Rails concepts can make it easier to understand the
object model and what happens behind the scenes when we run our scripts.

Why Rails? Ruby on Rails is a powerful development framework
for database-centric web-based applications. It is popular for open
source product development; for example, Foreman, one of the
core components of Red Hat’s Satellite 6.x product, is also a Rails
application.

10 | Chapter 1: Introduction to CloudForms

2 The ManageIQ home is at http://manageiq.org/.
3 CloudForms System Engine didn’t completely disappear. It was based on the upstream Katello project, which

now forms a core part of Red Hat’s Satellite 6.x product.

Projects, Products, and Some History
Red Hat is an open source company, and its products are derived from one or more
“upstream” open source projects. In the case of CloudForms, the upstream project is
ManageIQ. 2

ManageIQ (the Project)
The ManageIQ project releases a new version every six months (approximately). Each
version is named alphabetically after a chess Grand Master, and so far these have been
Anand, Botvinnik, and Capablanca. At the time of writing, Capablanca is the current
release.

Red Hat CloudForms (the Product)
Red Hat CloudForms 1.0 was originally a suite of products comprising CloudForms
System Engine, CloudForms Cloud Engine, and CloudForms Config Server, each
with its own upstream project.

When Red Hat acquired ManageIQ (a privately held company) in late 2012, it deci‐
ded to discontinue development of the original CloudForms 1.0 projects3 and base a
new version, CloudForms 2.0, on the much more capable and mature ManageIQ
Enterprise Virtualization Manager (EVM) 5.x product. EVM 5.1 was rebranded as
CloudForms Management Engine 5.1.

It took Red Hat approximately 18 months from the time of the ManageIQ acquisition
to make the source code ready to publish as an open source project. Once completed,
the ManageIQ project was formed, and development was started on the Anand
release.

CloudForms Management Engine (the Appliance)
CloudForms Management Engine is the name of the CloudForms virtual appliance
that we download from redhat.com. The most recent versions of CloudForms Man‐
agement Engine have been based on corresponding ManageIQ project releases. The
relative versions and releases are summarized in Table 1-1.

Projects, Products, and Some History | 11

http://manageiq.org/

Table 1-1. Summary of the relative project and product versions

ManageIQ project release CloudForms Management Engine version CloudForms version
5.1 2.0

5.2 3.0

Anand 5.3 3.1

Botvinnik 5.4 3.2

Capablanca 5.5 4.0

Summary
This chapter has introduced CloudForms at a fairly high level but has hopefully
established a product context. The remainder of the book focuses specifically on the
Automate functionality of CloudForms. Let’s roll up our sleeves and get started!

Further Reading
Red Hat CloudForms

A Technical Overview of Red Hat Cloud Infrastructure (RHCI)

The Forrester Wave™: Hybrid Cloud Management Solutions, Q1 2016

ManageIQ Architecture Guides—Provider Overview

12 | Chapter 1: Introduction to CloudForms

http://red.ht/1XcHYK2
http://bit.ly/1YgGKwY
http://bit.ly/22WpTQx
http://bit.ly/1PMCq6Z

CHAPTER 2

Introduction to the Automate Datastore

When we use the Automate capability of CloudForms, we write scripts in the Ruby
language and use objects that the CloudForms Automation Engine makes available to
us. The CloudForms Web User Interface (WebUI) allows us to access the Automate
functionality via the Automate top-level menu (see Figure 2-1).

Figure 2-1. Automate top-level menu

The Automate Explorer
The first menu item that we see takes us to the Explorer. This is our visual interface
into the Automate Datastore, and it contains the various kinds of Automate objects
that we’ll use throughout this book (see Figure 2-2).

13

Figure 2-2. Automate Explorer

Before we start our journey into learning CloudForms Automate, we’ll take a tour of
the Automate Datastore to familiarize ourselves with the objects that we’ll find there.

The Automate Datastore
The Automate Datastore has a directory-like structure, consisting of several types of
organizational units arranged in a hierarchy (see Figure 2-3).

Figure 2-3. Automate Datastore icon styles

Next, we’ll look at each type of object in more detail.

14 | Chapter 2: Introduction to the Automate Datastore

Domains
A domain is a collection of namespaces, classes, instances, and methods. The Man‐
ageIQ project provides a single ManageIQ domain for all supplied automation code,
while Red Hat adds the supplemental RedHat domain containing added-value code
for the CloudForms product. Both the ManageIQ and RedHat domains are locked,
indicating their read-only nature, but we can create new domains for our own custom
automation code. Figure 2-2 shows the two default domains and two custom
domains: Bit63 and ACME.

Organizing our own code into custom domains greatly simplifies the task of export‐
ing and importing code (simplifying code portability and reuse). It also leaves Man‐
ageIQ or Red Hat free to update the locked domains through minor releases without
fear of overwriting our customizations.

Domain Priority
User-added domains can be individually enabled or disabled and can be ordered by
priority such that if code exists in the same path in multiple domains (for example, /
Cloud/VM/Provisioning/StateMachines), the code in the highest-priority enabled
domain will be executed. We can change the priority order of our user-added
domains using the Configuration → Edit Priority Order of Domains menu (see
Figure 2-4).

Figure 2-4. Editing the priority order of domains

Domains | 15

Importing/Exporting Domains
We can export domains using rake from the command line and import them either
using rake or from the WebUI. (Using rake enables us to specify more import and
export options.) A typical rake import line is as follows:

bin/rake evm:automate:import YAML_FILE=bit63.yaml IMPORT_AS=Bit63 SYSTEM=false \
ENABLED=true DOMAIN=Export PREVIEW=false

Copying Objects Between Domains
We frequently need to customize code in the locked RedHat or ManageIQ domains—
for example, when implementing our own custom VM placement method. Fortu‐
nately, we can easily copy any object from the locked domains into our own, using
Configuration → Copy this (see Figure 2-5).

Figure 2-5. Copying a class

When we copy an object such as a class, we are prompted for the From and To
domains. We can optionally deselect “Copy to same path” and specify our own desti‐
nation path for the object (see Figure 2-6).

Figure 2-6. Specifying the destination domain and path

16 | Chapter 2: Introduction to the Automate Datastore

Importing Old Format Exports
Domains were a new feature of the Automate Datastore in CloudForms 3.1. Prior to
this release, all factory-supplied and user-created automation code was contained in a
common structure, which made updates difficult when any user-added code was
introduced (the user-supplied modifications needed exporting and reimporting/
merging whenever an automation update was released).

To import a Datastore backup from a CloudForms 3.0 and prior format Datastore, we
must convert it to the new Datastore format first, like so:

cd /var/www/miq/vmdb
bin/rake evm:automate:convert FILE=database.xml DOMAIN=SAMPLE \
ZIP_FILE=/tmp/sample_converted.zip

Namespaces
A namespace is a folder-like container for classes, instances, and methods, and is used
purely for organizational purposes. We create namespaces to arrange our code logi‐
cally, and namespaces often contain other namespaces (see Figure 2-7).

Figure 2-7. Namespaces

Classes
A class is similar to a template: it contains a generic definition for a set of automation
operations. Each class has a schema that defines the variables, states, relationships, or
methods that instances of the class will use.

Namespaces | 17

The Automate Datastore uses object-oriented terminology for
these objects. A class is a generic definition for a set of automation
operations, and these classes are instantiated as specific instances.
The classes that we work with in the Automate Datastore are not
the same as Ruby classes that we work with in our automation
scripts.

Schemas
A schema is made up of a number of elements, or fields, that describe the properties
of the class. A schema often has just one entry—to run a single method—but in many
cases it has several components. Figure 2-8 shows the schema for a placement class,
which has several different field types.

Figure 2-8. A more complex schema

Adding or Editing a Schema
We add or edit each schema field in the schema editor by specifying the field type
from a drop-down list (see Figure 2-9).

18 | Chapter 2: Introduction to the Automate Datastore

Figure 2-9. Schema field type

Each field type has an associated data type, which is also selectable from a drop-down
list (see Figure 2-10).

Figure 2-10. Schema field data type

We can define default values for fields in a class schema. These will be inherited by all
instances created from the class but can be optionally overridden in the schema of
any particular instance.

Relationships
One of the schema field types is a relationship, which links to other instances else‐
where in the Automate Datastore. We often use relationships as a way of chaining
instances together, and relationship values can accept variable substitutions for flexi‐
bility (see Figure 2-11).

Classes | 19

Figure 2-11. Relationship fields showing variable substitutions

Instances
An instance is a specific instantiation or “clone” of the generic class and is the entity
run by the Automation Engine. An instance contains a copy of the class schema but
with actual values of the fields filled in (see Figure 2-12).

Figure 2-12. Single class definition with three instances

Methods
A method is a self-contained block of Ruby code that gets executed when we run any
automation operation. A typical method looks like this:

#
Description: This method checks to see if the VM has been powered off or
suspended
#

Get vm from root object
vm = $evm.root['vm']

if vm
 power_state = vm.attributes['power_state']
 ems = vm.ext_management_system
 $evm.log('info', "VM:<#{vm.name}> on provider:<#{ems.try(:name)} has Power \
 State:<#{power_state}>")

 # If VM is powered off or suspended exit

20 | Chapter 2: Introduction to the Automate Datastore

www.allitebooks.com

http://www.allitebooks.org

 if %w(off suspended).include?(power_state)
 # Bump State
 $evm.root['ae_result'] = 'ok'
 elsif power_state == "never"
 # If never then this VM is a template so exit the retirement state machine
 $evm.root['ae_result'] = 'error'
 else
 $evm.root['ae_result'] = 'retry'
 $evm.root['ae_retry_interval'] = '60.seconds'
 end
end

Methods can have one of three location values: inline, built-in, or URI. In practice
most of the methods that we create are inline methods, which means they run as a
separate Ruby process outside of Rails.

Summary
In this chapter we’ve learned about the fundamental objects or organizational units
that we work with in the Automate Datastore: domains, namespaces, classes, instan‐
ces, and methods.

We are now ready to use this information to write our first automation script.

Further Reading
Scripting Actions in CloudForms, Chapter 2—Automate Model

CloudForms 3.1 Exporting Automate Domains

CloudForms 3.1 Importing Automate Domains

CloudForms 3.1 Automate Model Conversion

Summary | 21

http://red.ht/1YekXFN
https://access.redhat.com/solutions/1225313
https://access.redhat.com/solutions/1225383
https://access.redhat.com/solutions/1225413

CHAPTER 3

Writing and Running Our Own
Automation Scripts

Let’s jump right in and start writing our first automation script. In time-honored
fashion we’ll write “Hello, World!” to the Automate Engine logfile.

Before we do anything, we need to ensure that the Automation Engine server role is
selected on our CloudForms appliance. We do this from the Configure → Configura‐
tion menu, selecting the CloudForms server in the Settings accordion (see
Figure 3-1).

The Automation Engine server role is now enabled by default in
CloudForms 4.0, but it’s still worthwhile to check that this role is
set on our CloudForms appliance.

23

Figure 3-1. Setting the Automation Engine server role

The Automation Engine Role
Setting the Automation Engine role is necessary to be able to run queued Automate
tasks (this includes anything that starts off as an automation request, which we’ll cover
in Chapter 12). Automate actions initiated directly from the WebUI—such as running
instances from Simulation, or processing methods to populate dynamic dialogs—are
run on the WebUI appliance itself, regardless of whether it has the Automation
Engine role enabled.

Our first Automate examples in the book will be run from Simulation, so we don’t
need the Automation Engine role to be set for these to work. When we move on to
more advanced ways of running our scripts, however, we will need the role enabled,
so by checking that it’s set now, we’ll have one less thing to troubleshoot as we pro‐
gress through the book.

Creating the Environment
Before we create our first automation script, we need to put some things in place.
We’ll begin by adding a new domain called ACME. We’ll add all of our automation
code into this new domain.

Adding a New Domain
In the Automate Explorer, highlight the Datastore icon in the sidebar, and click Con‐
figuration → Add a New Domain (see Figure 3-2).

24 | Chapter 3: Writing and Running Our Own Automation Scripts

Figure 3-2. Adding a new domain

We’ll give the domain the name ACME, give it the description ACME Corp., and ensure
that the Enabled checkbox is selected.

Adding a Namespace
Now we’ll add a namespace into this domain, called General. Highlight the ACME
domain icon in the sidebar, and click Configuration → Add a New Namespace (see
Figure 3-3).

Figure 3-3. Adding a new namespace

Give the namespace the name General and the description General Content.

Adding a Class
Now we’ll add a new class, called Methods.

Naming a class Methods may seem somewhat confusing, but many
of the generic classes in the ManageIQ and RedHat domains in the
Automate Datastore are called Methods to signify their general-
purpose nature.

Creating the Environment | 25

Highlight the General domain icon in the sidebar, and click Configuration → Add a
New Class (see Figure 3-4).

Figure 3-4. Adding a new class

Give the class the name Methods and the description General Instances and Meth
ods. We’ll leave the display name empty for this example.

Editing the Schema
Now we’ll create a simple schema. Click the Schema tab for the Methods class, and
click Configuration → Edit selected Schema (see Figure 3-5).

Figure 3-5. Editing the schema

Click New Field, and add a single field with name execute, type Method, and data
type String (see Figure 3-6).

26 | Chapter 3: Writing and Running Our Own Automation Scripts

Figure 3-6. Adding a new schema field

Click the checkmark in the lefthand column to save the field entry, and click the Save
button to save the schema. We now have our generic class definition called Methods
set up, with a simple schema that executes a single method.

Hello, World!
Our first Automate method is very simple; we’ll write an entry to the automation.log
file using this two-line script:

$evm.log(:info, "Hello, World!")
exit MIQ_OK

Adding a New Instance
First we need to create an instance from our class. In the Instances tab of the new
Methods class, select Configuration → Add a New Instance (see Figure 3-7).

Figure 3-7. Adding a new instance to our class

We’ll call the instance HelloWorld, and it’ll run (execute) a method called hello_world
(see Figure 3-8).

Hello, World! | 27

Figure 3-8. Entering the instance details

Click the Add button.

Adding a New Method
In the Methods tab of the new Methods class, select Configuration → Add a New
Method (see Figure 3-9).

Figure 3-9. Adding a new method to our class

Name the method hello_world, and paste our two lines of code into the Data win‐
dow (see Figure 3-10).

28 | Chapter 3: Writing and Running Our Own Automation Scripts

1 Alternatively, ssh into the CloudForms appliance as root and enter tail -f /var/www/miq/vmdb/log/automa
tion.log.

Figure 3-10. Entering the method details

Click Validate and then Add.

Get into the habit of using the Validate button; it can save you a lot
of time catching Ruby syntactical typos when you develop more
complex scripts.

Running the Instance
We’ll run our new instance using the Simulation functionality of Automate, but
before we do that, log in to CloudForms again from another browser or a private
browsing tab, and navigate to Automate → Log in the WebUI.1

The CloudForms WebUI uses browser session cookies, so if we
want two or more concurrent login sessions (particularly as differ‐
ent users), it helps to use different web browsers or private/incog‐
nito windows.

In the simulation, we actually run an instance called Call_Instance in the /System/
Request/ namespace of the ManageIQ domain, and this in turn calls our HelloWorld
instance using the namespace, class, and instance attribute/value pairs that we pass to
it (see Chapter 11).

From the Automate → Simulation menu, complete the details (see Figure 3-11).

Running the Instance | 29

Figure 3-11. Completing the Simulation details

Click Submit.

If all went well, we should see our “Hello, World!” message appear in the automa‐
tion.log file:

Invoking [inline] method [/ACME/General/Methods/hello_world] with inputs [{}]
<AEMethod [/ACME/General/Methods/hello_world]> Starting
<AEMethod hello_world> Hello, World!
<AEMethod [/ACME/General/Methods/hello_world]> Ending
Method exited with rc=MIQ_OK

Success!

Exit Status Codes
In our example we used an exit status code of MIQ_OK. Although with simple methods
such as this we don’t strictly need to specify an exit code, it’s good practice to do so.
When we build more advanced multimethod classes and state machines, an exit code
can signal an error condition to the Automation Engine so that action can be taken.

There are four exit codes that we can use:

30 | Chapter 3: Writing and Running Our Own Automation Scripts

MIQ_OK (0)

Continues normal processing. This is logged to automation.log as:

Method exited with rc=MIQ_OK

MIQ_WARN(4)

Warning message, continues processing. This is logged to automation.log as:

Method exited with rc=MIQ_WARN

MIQ_ERROR / MIQ_STOP (8)

Stops processing current object. This is logged to automation.log as:

Stopping instantiation because [Method exited with rc=MIQ_STOP]

MIQ_ABORT (16)

Aborts entire automation instantiation. This is logged to automation.log as:

Aborting instantiation because [Method exited with rc=MIQ_ABORT]

The difference between MIQ_STOP and MIQ_ABORT is subtle but
comes into play as we develop more advanced Automate work‐
flows.
MIQ_STOP stops the currently running instance, but if this instance
was called via a reference from another “parent” instance, the sub‐
sequent steps in the parent instance would still complete.
MIQ_ABORT stops the currently running instance and any parent
instance that called it, thereby terminating the Automate task alto‐
gether.

Summary
In this chapter we’ve seen how simple it is to create our own domain, namespace,
class, instance, and method, and run our script from Simulation. These are the funda‐
mental techniques that we use for all of our automation scripts, and we’ll use this
knowledge extensively as we progress through the book.

We’ve also discovered the status codes that we should use to pass our exit status back
to the Automation Engine.

Summary | 31

CHAPTER 4

Using Schema Variables

Our simple HelloWorld instance in the previous chapter had a very simple schema,
containing a single field that ran a simple self-contained method. As we become more
adventurous with Automate, we’ll find that the schema can be used to associate vari‐
ables or attributes with an instance. Any Automate method run by the instance can
read these instance attributes, allowing us to define variables or constants outside of
our Ruby scripts. This simplifies maintenance and promotes code reuse. Methods can
also write to these instance attributes, allowing a degree of data sharing between mul‐
tiple methods that might be run in sequence from the same instance.

In our next Automate example, we’ll add some attribute fields to our class schema, set
values for those attributes in our instance, and read them from our method.

Preparing the Schema
Let’s edit the schema of the Methods class (see Figure 4-1).

Figure 4-1. Editing the schema of the Methods class

33

We’ll add three attributes: servername, username, and password. The servername and
username attributes will be simple text strings, but the password attribute will have a
data type of Password, meaning it will be stored in an encrypted form in the database
(see Figure 4-2).

Figure 4-2. Adding attributes

Click Save.

We need to ensure that the schema method (our execute field) is listed after the three
new schema attributes in the field list; otherwise, the attributes won’t be visible to the
method when it runs. If necessary, run Configuration → Edit sequence to shuffle the
schema fields up or down (see Figure 4-3).

Figure 4-3. Editing a class schema sequence

The Instance
Now we’ll create a new instance in our Methods class as before, but this time called
GetCredentials. We’ll also fill in some values for the servername, username, and pass
word schema attributes (see Figure 4-4).

34 | Chapter 4: Using Schema Variables

Figure 4-4. Entering the instance schema field details

Notice that our password schema value has been obfuscated.

The Method
Each of the schema attributes will be available to our method as hash key/value pairs
from $evm.object, which is the Automate object representing our currently running
instance.

Our code for this example will be as follows:

$evm.log(:info, "get_credentials started")

servername = $evm.object['servername']
username = $evm.object['username']
password = $evm.object.decrypt('password')

$evm.log(:info, "Server: #{servername}, Username: #{username}, Password: \
#{password}")
exit MIQ_OK

We’ll create a method in our Methods class as we did before, but this time called
get_credentials. We’ll add our code to the Data box, click Validate, and then click Save.

The Method | 35

Running the Instance
Finally, we’ll run the new instance through Automate → Simulation again, invoking
Call_Instance once more with the appropriate attribute/value pairs (see Figure 4-5).

Figure 4-5. Argument name/value pairs for Call_Instance

We check automation.log and see that the attributes have been retrieved from the
instance schema and the password has been decrypted:

Invoking [inline] method [/ACME/General/Methods/get_credentials] with inputs [{}]
<AEMethod [/ACME/General/Methods/get_credentials]> Starting
<AEMethod get_credentials> get_credentials started
<AEMethod get_credentials> Server: myserver, Username: admin, Password: guess
<AEMethod [/ACME/General/Methods/get_credentials]> Ending
Method exited with rc=MIQ_OK

The password value is encrypted using the v2_key created when
the CloudForms database is initialised and is unique to that Cloud‐
Forms region. If we export an Automate Datastore containing
encrypted passwords and import it into a different CloudForms
region, we won’t be able to decrypt the password.

Summary
In this chapter we’ve seen how we can store instance variables called attributes in our
schema and that they can be accessed by the methods run from that instance.

Using class or instance schema variables like this is very common. One example is
when we use CloudForms to provision virtual machines. The out-of-the-box virtual
machine provisioning workflow includes an approval stage (see Chapter 18) that
allows us to define a default for the number of VMs and their sizes (CPUs and mem‐
ory), which can be autoprovisioned without administrative approval. The max_vms,

36 | Chapter 4: Using Schema Variables

max_cpus, and max_memory values used at this workflow stage are stored as schema
attributes in the approval instance and are therefore available to us to easily custom‐
ize without changing any Ruby code.

When writing our own integration methods, we often need to specify a valid user‐
name and password to connect to other systems outside of CloudForms—for exam‐
ple, if we’re making a SOAP call to a hardware load balancer (see Chapter 44 for an
example). We can use the technique shown in this example to securely store and
retrieve credentials to connect to anything else in our enterprise.

Summary | 37

CHAPTER 5

Working with Virtual Machines

Our two Automate examples so far have been slightly abstract, but in this chapter
we’ll work with a real virtual machine. Our script will find and use the Automation
Engine object representing the virtual machine, and we’ll call one of the object’s
methods. Rather than running our script from Simulation as we have up to now, we’ll
customize the WebUI display for our virtual machine and add a new toolbar button
to run our script.

Custom Attributes
CloudForms naturally collects a large amount of data about each virtual machine or
instance that it manages and displays this in the WebUI. We can examine such
attributes as IP address, operating system, CPU count, or disk configuration, for
example, but sometimes it is useful to be able to add our own comments or notes to
the virtual machine. CloudForms allows us to do this in the form of custom attributes,
which have two parts: a name (sometimes called the key) and a text string value (see
Figure 5-1).

Figure 5-1. Example custom attributes

39

Custom attributes are a useful way to store any related free-text
information with an object, particularly a virtual machine. We
might store a CMDB configuration item ID, for example, or per‐
haps some text describing the configuration status. Virtual machine
custom attributes are visible in the WebUI and readable from an
automation script.

In this example we’ll create an Automate method that adds a custom attribute to a
virtual machine. The attribute will be visible to any user who clicks on the virtual
machine details in the WebUI.

We’ll launch the Automate instance from a custom button that we’ll add to the tool‐
bar in the virtual machine details web frame, and we’ll include a dialog to prompt for
the text to add to the custom attribute.

Creating the Service Dialog
The first thing we must do is create the service dialog to be displayed when our cus‐
tom button is clicked. Creating a service dialog is a multistage process, involving the
addition of tabs, boxes, and dialog elements such as text boxes, radio buttons, or
drop-down lists.

Navigate to Automate → Customization, and select Service Dialogs in the accordion.
Highlight All Dialogs, then select Configuration → Add a new Dialog (don’t click the
Add button yet). See Figure 5-2.

Figure 5-2. Adding a new service dialog

Enter Button for the dialog information label and description, select the Submit and
Cancel options, and click + → Add a new Tab to this Dialog (don’t click the Add but‐
ton yet). See Figure 5-3.

40 | Chapter 5: Working with Virtual Machines

Figure 5-3. Adding a new tab to the dialog

Enter Main for the tab information label and description, and click + → Add a new
Box to this Tab (don’t click the Add button yet). Notice how the shape of the dialog
dynamically builds in the lefthand accordion pane (see Figure 5-4).

Figure 5-4. Adding a new box to the tab

Enter Custom Attribute for the box information label and description, and click +
→ Add a new Element to this Box (don’t click the Add button yet). The dialog contin‐
ues to take shape in the accordion (see Figure 5-5).

Creating the Service Dialog | 41

Figure 5-5. Adding a new element to the box

We’ll give the first element the label of Key, the name of key, and a type of Text Box.
Leave the other values as the default (don’t click the Add button yet). The Key
attribute appears in the accordion as soon as we add the element name (see
Figure 5-6).

Figure 5-6. Entering the element information

Click + → Add a new Element to this Box to create a second element. We’ll give the
second element the label of Value, the name of value, and a type of Text Box. Leave
the other values as the default, and now, finally, click the Add button. The completed
dialog is saved and displayed (see Figure 5-7).

42 | Chapter 5: Working with Virtual Machines

Figure 5-7. The completed dialog

Creating the Instance and Method
We create a new instance in our Methods class just as we did before, called AddCusto
mAttribute. We leave the password, servername, and username schema fields blank
but add the value add_custom_attribute in the execute field.

As we see here, defining attributes in our class schema doesn’t
mean that we have to use them in every instance created from the
class. We can create generic class schemas that contain a number of
attributes that the instances may need to use.

The Code
Values entered into a dialog box are available to our method through $evm.root. The
Automation Engine prefixes the dialog element names with dialog_, so the values
that we want to read are $evm.root['dialog_key'] and $evm.root['dia

log_value'].

Creating the Instance and Method | 43

1 Most automation operations enter the Automate Datastore at /System/Request. Call_Instance is already there
as a “convenience” instance that we can call with arguments to redirect straight to our own instance, which is
why we’ve used that up to now. There are occasions, however, when we need to create our own entry point
directly in /System/Request, so this example illustrates how we do that.

Our code for this example will be as follows:

$evm.log(:info, "add_custom_attribute started")
#
Get the VM object
#
vm = $evm.root['vm']
#
Get the dialog values
#
key = $evm.root['dialog_key']
value = $evm.root['dialog_value']
#
Set the custom attribute
#
vm.custom_set(key, value)
exit MIQ_OK

We create a new method in our Methods class as we did before and call it add_cus‐
tom_attribute. We paste the code into the Data box, click Validate, and then click
Save.

Creating the /System Entry Point
To illustrate an alternative way of calling an instance, we’re going to be creating our
own entry point directly in the /System/ namespace, rather than redirecting through
Call_Instance as before.1

First we must copy the ManageIQ/System/Request class into our own domain (see
Figure 5-8).

44 | Chapter 5: Working with Virtual Machines

Figure 5-8. Copying the /System/Request class

Copy the class into the ACME domain, and ensure that “Copy to same path” is
selected.

Now we have to create a new instance of the class (see Figure 5-9).

Figure 5-9. Adding a new instance to the copied /System/Request class

For the new instance, enter the name AddCustomAttribute, and then enter /
General/Methods/AddCustomAttribute into the rel1 field (see Figure 5-10).

Creating the Instance and Method | 45

Figure 5-10. Setting the new instance name and rel1 field

Running Automation Scripts from a Button
CloudForms allows us to extend the WebUI functionality by adding our own custom
buttons to selected object types in the user interface. Rather than using the Simula‐
tion feature of Automate as we did before, though, we’re going to be launching this
automation script from a custom button that we’ll add to the virtual machine display
object.

Creating the Button Group
Buttons are always displayed from a Button Group drop-down list, so first we must
create a new button group.

Navigate to Automate → Customization, and select Buttons in the accordion. Now
highlight Object Types → VM and Instance, then select Configuration → Add a new
Button Group (see Figure 5-11).

46 | Chapter 5: Working with Virtual Machines

Figure 5-11. Adding a new button group

Set the Button Group Text and Button Group Hover Text to be VM Operations. Select
a suitable Button Group Image from the available drop-down list, and click the Add
button to create the button group.

Creating the Button
Now that we have our button group, we can add a button to it to call our script.

Highlight the new VM Operations button group in the accordion, and select Config‐
uration → Add a new Button (see Figure 5-12).

Running Automation Scripts from a Button | 47

Figure 5-12. Adding a new button to the button group

Set the Button Text and Button Hover Text to Add Custom Attribute. Select a suit‐
able Button Image from the available drop-down list, and pick our new Button dialog
from the Dialog drop-down list. In the Object Details section we’ll select the new /
System/Request instance that we created called AddCustomAttribute (see
Figure 5-13).

Figure 5-13. Completing the button details

Running the Instance
If we navigate to a virtual machine in the WebUI and examine its details, we should
see our new VM Operations button group displayed in the toolbar. If we click the
Button Group icon, we should see the button displayed as a drop-down (see
Figure 5-14).

48 | Chapter 5: Working with Virtual Machines

Figure 5-14. The new button group and button added to the toolbar

If we click on the Add Custom Attribute button, we should be presented with our
dialog (see Figure 5-15).

Figure 5-15. Completing the service dialog

Enter some text, click Submit, and wait a few seconds. We should see the new custom
attribute displayed at the botton of the VM details pane (see Figure 5-16).

Figure 5-16. The newly added custom attribute

Summary
In this chapter we’ve learned several new useful skills. In our automation script we’ve
seen how to work with the Automation Engine object representing a virtual machine.
We’ve extended the WebUI functionality by creating a custom button, and we’ve
added a service dialog to prompt our user for input. To top it off we’ve discovered the
utility of custom attributes. Good work!

Summary | 49

This has been a useful introduction to “real world” automation. Adding a custom but‐
ton in this way to run a short automation script is fairly common in production envi‐
ronments. We would typically use a custom button to start a virtual machine backup,
add a disk, reconfigure the number of CPUs, or extend memory, for example.

We can add buttons to the WebUI display toolbars for clusters, datastores, hosts, and
providers, but we most frequently add them to virtual machines as we have in this
chapter, and to services (which we cover in Part III).

Further Reading
ManageIQ: Using Custom Attributes

50 | Chapter 5: Working with Virtual Machines

https://access.redhat.com/articles/311753

CHAPTER 6

Peeping Under the Hood

We’ve now worked with an Automation Engine object that represents a virtual
machine, and we’ve called one of its methods to add a custom attribute to the VM.

In this chapter we’ll take a deeper look at these Automation Engine objects and at
some of the technology that exists behind the scenes in Rails when we run automa‐
tion scripts. It is useful background information but can be skipped on first read if
required.

A Little Rails Knowledge (Goes a Long Way)
Firstly, by way of reassurance…

We do not need to know Ruby on Rails to write CloudForms Automation scripts.

It can, however, be useful to have an appreciation of Rails models, and how the Auto‐
mation Engine encapsulates these as Ruby objects that we can program with. The
objects represent the things that we are typically interested in when we write automa‐
tion code, such as VMs, clusters, guest applications, or even provisioning requests.

Plain Old Ruby
The Ruby scripts that we write are just plain Ruby 2.2, although the Active Support
core extensions to Ruby are available if we wish to use them.

The Active Support extensions can make our lives easier. For
example, rather than adding math to our Automation script to
work out the number of seconds in a two-month time span (per‐
haps to specify a VM retirement period), we can just specify
2.months.

51

1 See also Ruby on Rails/Getting Started/Model-View-Controller.

Our automation scripts access Ruby objects, made available to us by the Automation
Engine via the $evm variable ($evm is described in more detail in Chapter 7). Behind
the scenes these are Rails objects, which is why having some understanding of Rails
can help our investigation into how we can use these objects to our maximum benefit.

Model-View-Controller
Rails is a model-view-controller (MVC) application (see Figure 6-1).1

Figure 6-1. An MVC application

The model is a representation of the underlying logical structure of data from the
database (which in the case of CloudForms is PostgreSQL). When writing automa‐
tion scripts, we work with models extensively (although we may not necessarily real‐
ize it).

Rails models are called active records. They always have a singular CamelCase name
(e.g., GuestApplication), and their corresponding database tables have a plural
snake_case name (e.g., guest_applications).

Active Record Associations
Active record associations link the models together in one-to-many or one-to-one
relationships that allow us to traverse objects.

52 | Chapter 6: Peeping Under the Hood

http://bit.ly/1TZftd8

We can illustrate this by looking at some of the Rails code that defines the host (i.e.,
hypervisor) active record:

class Host < ActiveRecord::Base
 ...
 belongs_to :ext_management_system, :foreign_key => "ems_id"
 belongs_to :ems_cluster
 has_one :operating_system, :dependent => :destroy
 has_one :hardware, :dependent => :destroy
 has_many :vms_and_templates, :dependent => :nullify
 has_many :vms
 ...

We see that there are several associations from a host object, including to the cluster
of which it’s a member, and to the virtual machines that run on that host.

Although these associations are defined in Rails, they are available to us when we
work with the corresponding service model objects from the Automation Engine (see
“Service Models” on page 54).

Rails Helper Methods (.find_by_*)
Rails does a lot of things to make our lives easier, including dynamically creating
helper methods. The most useful ones to us as CloudForms automation scripters are
the find_by_columnname methods:

owner = $evm.vmdb('user').find_by_id(ownerid.to_i)
vm = $evm.vmdb('vm').find_by_name(vm_name)

We can .find_by_ any column name in a database table. For example, in PostgreSQL
we can look at the services table that represents services created via a service cata‐
log:

vmdb_production=# \d services
 Table "public.services"
 Column | Type | Modifiers
----------------------+-----------------------------+---------------------------
 id | bigint | not null default nextva...
 name | character varying(255) |
 description | character varying(255) |
 guid | character varying(255) |
 type | character varying(255) |
 service_template_id | bigint |
 options | text |
 display | boolean
 ...

We see that there is a description column, so if we wanted we could call:

$evm.vmdb('service').find_by_description('My New Service')

A Little Rails Knowledge (Goes a Long Way) | 53

Don’t try searching the CloudForms sources for def

find_by_description; these are not statically defined methods
and so don’t exist in the CloudForms code. In a future version of
CloudForms they will be deprecated in favor of a more current
Rails-like syntax using where—for example:

$evm.vmdb('service').where(:description =>'My New Service')

Service Models
We saw earlier that Rails data models are called active records. We can’t access these
directly from an automation script, but fortunately most of the useful ones are made
available to us as Automation Engine service model objects.

The objects that we work with in the Automation Engine are all service models—
instances of an MiqAeService class that abstract and make available to us their corre‐
sponding Rails active record.

For example, if we’re working with a user object (representing a person, such as the
owner of a virtual machine), we might access that object in our script via
$evm.root['user']. This is actually an instance of an MiqAeServiceUser class,
which represents the corresponding Rails user active record. There are service model
objects representing all of the things that we need to work with when we write auto‐
mation scripts. These include the traditional components in our infrastructure, such
as virtual machines, hypervisor clusters, operating systems, or Ethernet adapters, but
also the intangible objects, such as provisioning requests or automation tasks.

All of the MiqAeService objects extend a common MiqAeServiceModelBase class that
contains some common methods available to all objects (also see Chapter 9), such as:

.tagged_with?(category, name)

.tags(category = nil)

.tag_assign(tag)

Many of the service model objects have several levels of superclass—for example:

MiqAeServiceMiqProvisionRedhatViaPxe <
 MiqAeServiceMiqProvisionRedhat <
 MiqAeServiceMiqProvision <
 MiqAeServiceMiqRequestTask <
 MiqAeServiceModelBase

The following list shows the class definition for some of the CloudForms 3.2 MiqAe
Service model classes, showing their immediate superclass:

 class MiqAeServiceAuthentication < MiqAeServiceModelBase
 class MiqAeServiceAuthPrivateKey < MiqAeServiceAuthentication
 class MiqAeServiceAuthKeyPairCloud < MiqAeServiceAuthPrivateKey
 class MiqAeServiceAuthKeyPairOpenstack < MiqAeServiceAuthKeyPairCloud
...

54 | Chapter 6: Peeping Under the Hood

 class MiqAeServiceAutomationRequest < MiqAeServiceMiqRequest
 class MiqAeServiceAutomationTask < MiqAeServiceMiqRequestTask
...
 class MiqAeServiceAvailabilityZone < MiqAeServiceModelBase
 class MiqAeServiceAvailabilityZoneAmazon < MiqAeServiceAvailabilityZone
 class MiqAeServiceAvailabilityZoneOpenstack < MiqAeServiceAvailabilityZone
...
 class MiqAeServiceHost < MiqAeServiceModelBase
 class MiqAeServiceHostMicrosoft < MiqAeServiceHost
 class MiqAeServiceHostOpenstackInfra < MiqAeServiceHost
 class MiqAeServiceHostRedhat < MiqAeServiceHost
 class MiqAeServiceHostVmware < MiqAeServiceHost
 class MiqAeServiceHostVmwareEsx < MiqAeServiceHostVmware
 ...
 class MiqAeServiceMiqProvision < MiqAeServiceMiqProvisionTask
 class MiqAeServiceMiqProvisionAmazon < MiqAeServiceMiqProvisionCloud
 class MiqAeServiceMiqProvisionCloud < MiqAeServiceMiqProvision
 class MiqAeServiceMiqProvisionConfiguredSystemRequest < MiqAeServiceMiqRequest
 class MiqAeServiceMiqProvisionMicrosoft < MiqAeServiceMiqProvision
 class MiqAeServiceMiqProvisionOpenstack < MiqAeServiceMiqProvisionCloud
 class MiqAeServiceMiqProvisionRedhat < MiqAeServiceMiqProvision
 class MiqAeServiceMiqProvisionRedhatViaIso < MiqAeServiceMiqProvisionRedhat
 class MiqAeServiceMiqProvisionRedhatViaPxe < MiqAeServiceMiqProvisionRedhat
 class MiqAeServiceMiqProvisionRequest < MiqAeServiceMiqRequest
 class MiqAeServiceMiqProvisionRequestTemplate < MiqAeServiceMiqProvisionRequest
 class MiqAeServiceMiqProvisionTask < MiqAeServiceMiqRequestTask
...
 class MiqAeServiceServiceTemplateProvisionTask < MiqAeServiceMiqRequestTask
...
 class MiqAeServiceVmOrTemplate < MiqAeServiceModelBase
 class MiqAeServiceVm < MiqAeServiceVmOrTemplate
 class MiqAeServiceVmCloud < MiqAeServiceVm
 class MiqAeServiceVmInfra < MiqAeServiceVm
 class MiqAeServiceVmMicrosoft < MiqAeServiceVmInfra
 class MiqAeServiceVmOpenstack < MiqAeServiceVmCloud
 class MiqAeServiceVmAmazon < MiqAeServiceVmCloud
 class MiqAeServiceVmRedhat < MiqAeServiceVmInfra

Service Model Object Properties
The service model objects that the Automation Engine makes available to us have
four properties that we frequently work with: attributes, virtual columns, associations,
and methods.

Attributes
Just like any other Ruby object, the service model objects that we work with have
attributes that we often use. A service model object represents a record in a database
table, and the object’s attributes correspond to the columns in the table for that
record.

Service Model Object Properties | 55

For example, some attributes for a Red Hat Enterprise Virtualization (RHEV) host
(i.e., hypervisor) object (MiqAeServiceHostRedhat), with typical values, are:

host.connection_state = connected
host.created_on = 2014-11-13 17:53:34 UTC
host.ems_cluster_id = 1000000000001
host.ems_id = 1000000000001
host.ems_ref = /api/hosts/b959325b-c667-4e3a-a52e-fd936c225a1a
host.ems_ref_obj = /api/hosts/b959325b-c667-4e3a-a52e-fd936c225a1a
host.guid = fcea82c8-6b5d-11e4-98ac-001a4aa01599
host.hostname = 192.168.1.224
host.hyperthreading = nil
host.id = 1000000000001
host.ipaddress = 192.168.1.224
host.last_perf_capture_on = 2015-06-05 10:25:46 UTC
host.name = rhelh03.bit63.net
host.power_state = on
host.settings = {:autoscan=>false, :inherit_mgt_tags=>false, :scan_frequency=>0}
host.smart = 1
host.type = HostRedhat
host.uid_ems = b959325b-c667-4e3a-a52e-fd936c225a1a
host.updated_on = 2015-06-05 10:43:00 UTC
host.vmm_product = rhel
host.vmm_vendor = RedHat

We can enumerate an object’s attributes using:

this_object.attributes.each do |key, value|

Virtual Columns
In addition to the standard object attributes (which correspond to real database col‐
umns), Rails dynamically adds a number of virtual columns to many of the service
models.

A virtual column is a computed database column that is not physi‐
cally stored in the table. Virtual columns often contain more
dynamic values than attributes, such as the number of VMs cur‐
rently running on a hypervisor.

Some virtual columns for our same RHEV host object, with typical values, are:

host.authentication_status = Valid
host.derived_memory_used_avg_over_time_period = 790.1026640002773
host.derived_memory_used_high_over_time_period = 2586.493300608264
host.derived_memory_used_low_over_time_period = 0
host.os_image_name = linux_generic
host.platform = linux
host.ram_size = 15821
host.region_description = Region 1

56 | Chapter 6: Peeping Under the Hood

host.region_number = 1
host.total_cores = 4
host.total_vcpus = 4
host.v_owning_cluster = Default
host.v_total_miq_templates = 0
host.v_total_storages = 3
host.v_total_vms = 7

We access these virtual columns just as we would access attributes, using object.vir
tual_column_name syntax. If we want to enumerate through all of an object’s virtual
columns getting the corresponding values, we must use .send, specifying the virtual
column name, like so:

this_object.virtual_column_names.each do |virtual_column_name|
 virtual_column_value = this_object.send(virtual_column_name)

Associations
We saw earlier that there are associations between many of the active records (and
hence service models), and we use these extensively when scripting.

For example, we can discover more about the hardware of our virtual machine by fol‐
lowing associations between the VM object (MiqAeServiceVmRedhat), and its hard‐
ware and guest device objects (MiqAeServiceHardware and
MiqAeServiceGuestDevice), as follows:

hardware = $evm.root['vm'].hardware
hardware.guest_devices.each do |guest_device|
 if guest_device.device_type == "ethernet"
 nic_name = guest_device.device_name
 end
end

Fortunately, we don’t need to know anything about the active records or service mod‐
els behind the scenes; we just magically follow the association. See Chapter 10 to find
out what associations there are to follow.

Continuing our exploration of our RHEV host object (MiqAeServiceHostRedhat),
the associations available to this object are:

host.datacenter
host.directories
host.ems_cluster
host.ems_events
host.ems_folder
host.ext_management_system
host.files
host.guest_applications
host.hardware
host.lans
host.operating_system

Service Model Object Properties | 57

host.storages
host.switches
host.vms

We can enumerate an object’s associations using:

this_object.associations.each do |association|

Methods
Most of the objects that we work with have useful methods defined that we can use,
either in their own class or one of their parent superclasses. For example, the methods
available to call for our RHEV host object (MiqAeServiceHostRedhat) are:

host.authentication_password
host.authentication_userid
host.credentials
host.current_cpu_usage
host.current_memory_headroom
host.current_memory_usage
host.custom_get
host.custom_keys
host.custom_set
host.domain
host.ems_custom_get
host.ems_custom_keys
host.ems_custom_set
host.event_log_threshold?
host.get_realtime_metric
host.scan
host.ssh_exec
host.tagged_with?
host.tags
host.tag_assign

Enumerating a service model object’s methods is more challenging, because the actual
object that we want to enumerate is running in the Automation Engine on the remote
side of a dRuby call (see the following section, “Distributed Ruby”), and all we have is
the local DRb::DRbObject accessible from $evm. We can use method_missing, but we
get returned the entire method list, which includes attribute names, virtual column
names, association names, superclass methods, and so on:

this_object.method_missing(:class).instance_methods

Distributed Ruby
The Automation Engine runs in a CloudForms worker thread, and it launches one of
our automation scripts by spawning it as a child Ruby process. We can see this from
the command line using ps to check the PID of the worker processes and its children:

58 | Chapter 6: Peeping Under the Hood

_ /var/www/miq/vmdb/lib/workers/bin/worker.rb
| _ /opt/rh/rh-ruby22/root/usr/bin/ruby <-- automation script running

An automation script runs in its own process space, but it must somehow access the
service model objects that reside in the Automation Engine process. It does this using
Distributed Ruby.

Examining CloudForms Workers
We can use rake evm:status to see which workers are running on a CloudForms
appliance:

vmdb
bin/rake evm:status

...
 Worker Type | Status |
---+---------+
 ManageIQ::Providers::Redhat::InfraManager::EventCatcher | started |
 ManageIQ::Providers::Redhat::InfraManager::MetricsCollectorWorker | started |
 ManageIQ::Providers::Redhat::InfraManager::MetricsCollectorWorker | started |
 ManageIQ::Providers::Redhat::InfraManager::RefreshWorker | started |
 MiqEmsMetricsProcessorWorker | started |
 MiqEmsMetricsProcessorWorker | started |
 MiqEventHandler | started |
 MiqGenericWorker | started |
 MiqGenericWorker | started |
 MiqPriorityWorker | started |
 MiqPriorityWorker | started |
 MiqReportingWorker | started |
 MiqReportingWorker | started |
 MiqScheduleWorker | started |
 MiqSmartProxyWorker | started |

Distributed Ruby (dRuby) is a distributed client-server object system that allows a cli‐
ent Ruby process to call methods on a Ruby object located in another (server) Ruby
process. This can even be on another machine.

The object in the remote dRuby server process is locally represented in the dRuby cli‐
ent by an instance of a DRb::DRbObject object. In the case of an automation script,
this object is our $evm variable.

The Automation Engine cleverly handles everything for us. When it runs our auto‐
mation script, the Engine sets up the dRuby session automatically, and we access all of
the service model objects seamlesssly via $evm in our script. Behind the scenes the
dRuby library handles the TCP/IP socket communication with the dRuby server in
the Automation Engine worker.

Distributed Ruby | 59

We gain insight into this if we examine some of these $evm objects using
object_walker—for example:

$evm.root['user'] => #<MiqAeMethodService::MiqAeServiceUser:0x0000000c5431c8> \
 (type: DRb::DRbObject, URI: druby://127.0.0.1:38842)

Although the use of dRuby is mostly transparent to us, it can occasionally produce
unexpected results. Perhaps we are hoping to find some useful user-related method
that we can call on our user object, which we know we can access as
$evm.root['user']. We might try to call a standard Ruby method, such as:

$evm.root['user'].instance_methods

If we were to do this we would actually get a list of the instance methods for the local
DRb::DRbObject object, rather than the remote MiqAeServiceUser service model—
probably not what we want.

When we get more adventurous in our scripting, we also occasionally get a
DRb::DRbUnknown object returned to us, indicating that the class of the object is
unknown in our dRuby client’s namespace.

Summary
This chapter has given us some good insight into the Rails active records that Cloud‐
Forms uses internally to represent our virtual infrastructure, and how these are made
available to us as service model objects. We’ve also seen how these service model
objects have four specific properties that we frequently make use of: attributes, virtual
columns, associations, and methods.

Further Reading
Methods Available for Use with CloudForms Management Engine

Change Automate Methods to Communicate via REST API

Support ‘where’ Method for Service Models

Masatoshi Seki, The dRuby Book (Pragmatic)

60 | Chapter 6: Peeping Under the Hood

http://red.ht/1syq2Nv
https://github.com/ManageIQ/manageiq/issues/2215
https://github.com/ManageIQ/manageiq/pull/6046

1 The original ManageIQ product was called Enterprise Virtualization Manager, often abbreviated to EVM.

CHAPTER 7

$evm and the Workspace

When we write automation scripts, we access the Automation Engine and all of its
objects through a single $evm variable.1 This is sometimes referred to as the work‐
space.

As discussed in Chapter 6, the $evm variable is a DRb::DRbObject object representing
a dRuby client connection back to the Automation Engine. The object at the dRuby
server side of our $evm variable is an instance of an MiqAeService object, which con‐
tains over 40 methods. In practice we generally use only a few of these methods, most
commonly:

$evm.root
$evm.object
$evm.current (this is equivalent to calling $evm.object(nil))
$evm.parent
$evm.log
$evm.vmdb
$evm.execute
$evm.instantiate

We will look at these methods in more detail in the next sections.

$evm.log
$evm.log is a simple method that we’ve used already. It writes a message to automa‐
tion.log and accepts two arguments: a log level and the text string to write. The log
level can be written as a Ruby symbol (e.g., :info, :warn), or as a text string (e.g.,
"info", "warn").

61

$evm.root
$evm.root, illustrated in Figure 7-1, is the method that returns to us the root object
in the workspace (environment, variables, linked objects, etc.). This is the instance
whose invocation took us into the Automation Engine. From $evm.root we can
access other service model objects, such as $evm.root['vm'], $evm.root['user'], or
$evm.root['miq_request'] (the actual objects available depend on the context of the
Automate tasks that we are performing).

Figure 7-1. The object model

$evm.root contains a lot of useful information that we use programmatically to
establish our running context—for example, to see if we’ve been called by an API call
or from a button (see also Chapter 10):

$evm.root['vmdb_object_type'] = vm (type: String)
...
$evm.root['ae_provider_category'] = infrastructure (type: String)
...
$evm.root.namespace = ManageIQ/SYSTEM (type: String)
$evm.root['object_name'] = Request (type: String)
$evm.root['request'] = Call_Instance (type: String)
$evm.root['instance'] = ObjectWalker (type: String)

62 | Chapter 7: $evm and the Workspace

$evm.root also contains any variables that were defined on our entry into the Auto‐
mation Engine, such as the $evm.root['dialog*'] variables that were defined from
our service dialog.

$evm.object, $evm.current, and $evm.parent
As we saw, $evm.root returns to us the object representing the instance that was
launched when we entered Automate. Many instances have schemas that contain
relationships to other instances, and as each relationship is followed, a new child
object is created under the calling object to represent the called instance. Fortunately,
we can access any of the objects in this parent-child hierarchy using $evm.object.

Calling $evm.object with no arguments returns the currently instantiated/running
instance. As automation scripters we can think of this as “our currently running
code,” and we can access it using the alias $evm.current. When we wanted to access
our username schema variable, we accessed it using $evm.object['username'].

We can access our parent object (the one that called us) using $evm.object(".."), or
the alias $evm.parent.

$evm.root is the same as $evm.object("/").

When we ran our first example script, HelloWorld (from Simulation), we specified an
entry point of /System/Process/Request, and our request was to an instance called
Call_Instance. We passed to this the namespace, class, and instance that we wanted it
to run (via a relationship).

This would have resulted in an object hierarchy (when viewed from the hello_world
method) as follows:

 --- object hierarchy ---
 $evm.root = /ManageIQ/SYSTEM/PROCESS/Request
 $evm.parent = /ManageIQ/System/Request/Call_Instance
 $evm.object = /ACME/General/Methods/HelloWorld

$evm.vmdb
$evm.vmdb is a useful method that can be used to retrieve any service model object
(see “Service Models” on page 54). The method can be called with one or two argu‐
ments.

$evm.object, $evm.current, and $evm.parent | 63

Single-Argument Form
When called with a single argument, the method returns the generic service model
object type, and we can use any of the Rails helper methods (see Chapter 6) to search
by database column name:

vm = $evm.vmdb('vm').find_by_id(vm_id)
clusters = $evm.vmdb(:EmsCluster).find(:all)
$evm.vmdb(:VmOrTemplate).find_each do | vm |

The service model object name can be specified in CamelCase (e.g., Availability
Zone) or snake_case (e.g., availability_zone) and can be a string or symbol.

Two-Argument Form
When called with two arguments, the second argument should be the service model
ID to search for:

owner = $evm.vmdb('user', evm_owner_id)

We can also use more advanced query syntax to return results based on multiple con‐
ditions, like so:

$evm.vmdb('CloudTenant').find(:first,
 :conditions => ["ems_id = ? AND name = ?",
 src_ems_id, tenant_name])

VM or Template?
Question: When should we use vm (:Vm) or vm_or_template (:VmOrTemplate) in our
$evm.vmdb searches?

Answer: Searching for a vm_or_template (MiqAeServiceVmOrTemplate) object will
return both virtual machines and templates that satisfy the search criteria, whereas
searching for a vm object (MiqAeServiceVm) will return only virtual machines. Think
about whether you need both returned.

There are some subtle differences between the objects. MiqAeServiceVm is a subclass
of MiqAeServiceVmOrTemplate that adds two further methods that are not relevant
for templates: add_to_service and remove_from_service.

Both MiqAeServiceVmOrTemplate and MiqAeServiceVm have a Boolean attribute, tem
plate, which is true for an image or template, and false for a VM.

64 | Chapter 7: $evm and the Workspace

$evm.execute
We can use $evm.execute to call one of 13 miscellaneous but useful methods. The
methods are defined in a service model called Methods (MiqAeServiceMethods) and
are as follows:

• send_email(to, from, subject, body, content_type = nil)

• snmp_trap_v1(inputs)

• snmp_trap_v2(inputs)

• category_exists?(category)

• category_create(options = {})

• tag_exists?(category, entry)

• tag_create(category, options = {})

• service_now_eccq_insert(server, username, password, agent, queue,

topic, name, source, *params)

• service_now_task_get_records(server, username, password, *params)

• service_now_task_update(server, username, password, *params)

• service_now_task_service(service, server, username, password, *par

ams)

• create_provision_request(*args)

• create_automation_request(options, userid = "admin", auto_approve =

false)

Examples
Let’s look at some examples of calling these methods.

Creating a tag if one doesn’t already exist
unless $evm.execute('tag_exists?', 'cost_center', '3376')
 $evm.execute('tag_create', "cost_center", :name => '3376',
 :description => '3376')
end

In this example we call the tag_exists? method to see if the cost_center/3376 tag
exists. If it doesn’t (i.e., tag_exists? returns false), then we call the tag_create
method to create the tag, passing the tag category arguments, :name and :descrip
tion.

$evm.execute | 65

Sending an email
to = 'pemcg@redhat.com'
from = 'cloudforms01@uk.bit63.com'
subject = 'Test Message'
body = 'What an awesome cloud management product!'
$evm.execute('send_email', to, from, subject, body)

Here we define the to, from, subject, and body arguments, and call the send_email
method.

Creating a new automation request

The create_automation_request method is new with CloudForms 4.0, and it ena‐
bles us to chain automation requests together. This is also very useful when we wish
to explicitly launch an automation task in a different zone than the one in which our
currently running script resides:

options = {}
options[:namespace] = 'Stuff'
options[:class_name] = 'Methods'
options[:instance_name] = 'MyInstance'
options[:user_id] = $evm.vmdb(:user).find_by_userid('pemcg').id
options[:attrs] = attrs
options[:miq_zone] = zone
auto_approve = true

$evm.execute('create_automation_request', options, 'admin', auto_approve)

In this example we define the namespace, class, and instance names to be used for the
automation request, and we look up the service model object of the user as whom we
want to run the automation task. The admin user in the argument list is the requester
to be used for approval purposes.

$evm.instantiate
We can use $evm.instantiate to launch another Automate instance programmati‐
cally from a running method, by specifying its URI within the Automate namespace,
like so:

$evm.instantiate('/Discovery/Methods/ObjectWalker')

Instances called in this way execute synchronously, so the calling method waits for
completion before continuing. The called instance also appears as a child object of the
caller (it sees the caller as its $evm.parent).

66 | Chapter 7: $evm and the Workspace

2 There are a further three state-machine specific $evm methods that we frequently use, but we’ll cover those in
Chapter 13

Summary
This has been a more theoretical chapter, examining the eight most commonly used
$evm methods.2 In our simple scripts so far, we have already used three of them:
$evm.log, $evm.object, and $evm.root. Our next example in Chapter 8 uses two
others, and we will use the remaining three as we progress through the book. These
methods form a core part of our scripting toolbag, and their use will become second
nature as we advance our automation scripting skills.

Further Reading
MiqAeService class

Summary | 67

http://bit.ly/1TZilqg

CHAPTER 8

A Practical Example:
Enforcing Anti-Affinity Rules

We can use the techniques that we’ve learned so far to write an automation script to
solve a realistic task.

Task
Write an Automate method that enforces anti-affinity rules for virtual machines,
based on a server_role tag applied to each VM. There should be only one VM of
any server_role type running on any host in the cluster.

The Automate method should be run from a button visible on the VM details page. If
another VM with the same server_role tag is found running on the same host
(hypervisor) as the displayed VM, then we live-migrate the current VM to another
host with no other such tagged VMs. We also email all users in the EvmGroup-
administrator group to notify them that the migration occurred.

Solution
We can achieve the task in the following way (the entire script is also available on Git‐
Hub). We’ll define two methods internally within our Ruby script, relocate_vm and
send_email. Our main code will be a simple iteration loop.

relocate_vm
The first method, relocate_vm, makes use of a virtual column (vm.host_name), and
several associations to find a suitable host (hypervisor) to migrate the virtual machine
to. These associations are vm.ems_cluster to find the cluster that our VM is running

69

http://bit.ly/1YhSRd0
http://bit.ly/1YhSRd0

on, ems_cluster.hosts to find the other hypervisors in the cluster, and host.vms to
get the list of VMs running on a hypervisor. Finally, it calls a method (vm.migrate) to
perform the VM migration.

def relocate_vm(vm)
 #
 # Get our host name
 #
 our_host = vm.host_name # <-- Virtual column
 #
 # Loop through the other hosts in our cluster
 #
 target_host = nil
 vm.ems_cluster.hosts.each do |this_host| # <-- Two levels of association
 next if this_host.name == our_host
 host_invalid = false
 this_host.vms.each do |this_vm| # <-- Association
 if this_vm.tags(:server_role).first == our_server_role
 host_invalid = true
 break
 end
 end
 next if host_invalid
 #
 # If we get to here then no duplicate server_role VMs have been found
 # on this host
 #
 target_host = this_host
 break
 end
 if target_host.nil?
 raise "No suitable Host found to migrate VM #{vm.name} to"
 else
 $evm.log(:info, "Migrating VM #{vm.name} to host: #{target_host.name}")
 #
 # Migrate the VM to this host
 #
 vm.migrate(target_host) # <-- Method
 end
 return target_host.name
end

send_email
The second method, send_email, sends an email to all members of a user group. It
uses the group.users association to find all users in a particular group, uses the
user.email attribute to find a user’s email address, and calls $evm.execute to run the
internal :send_email method:

70 | Chapter 8: A Practical Example: Enforcing Anti-Affinity Rules

www.allitebooks.com

http://www.allitebooks.org

def send_email(group_name, vm_name, new_host)
 #
 # Find the group passed to us, and pull out the user emails
 #
 recipients = []
 group = $evm.vmdb('miq_group').find_by_description(group_name)
 group.users.each do |group_member| # <-- Association
 recipients << group_member.email # <-- Attribute
 end
 #
 # 'from' is the current logged-user who clicked the button
 #
 from = $evm.root['user'].email
 subject = "VM migration"
 body = "VM Name: #{vm_name} was live-migrated to Host: #{new_host}"
 body += " in accordance with anti-affinity rules"
 #
 # Send emails
 #
 recipients.each do |recipient|
 $evm.log(:info, "Sending email to <#{recipient}> from <#{from}> \
 subject: <#{subject}>")
 $evm.execute(:send_email, recipient, from, subject, body)
 end
end

Main Code
We’ll wrap our main section of code in a begin/rescue block so that we can catch and
handle any exceptions:

begin
 #--
 # Main code
 #--
 #
 # We've been called from a button on the VM object, so we know that
 # $evm.root['vm'] will be loaded
 #
 vm = $evm.root['vm']
 #
 # Find out this VM's server_role tag
 #
 our_server_role = vm.tags(:server_role).first
 $evm.log(:info, "VM #{vm.name} has a server_role tag of: #{our_server_role}")
 #
 # Loop through the other VMs on the same host
 #
 vm.host.vms.each do |this_vm| # <-- Two levels of Association
 next if this_vm.name == vm.name
 if this_vm.tags(:server_role).first == our_server_role
 $evm.log(:info, "VM #{this_vm.name} also has a server_role tag of: \

Solution | 71

 #{our_server_role}, taking remedial action")
 new_host = relocate_vm(vm)
 send_email('EvmGroup-administrator', vm.name, new_host)
 end
 end
 exit MIQ_OK

rescue => err
 $evm.log(:error, "[#{err}]\n#{err.backtrace.join("\n")}")
 exit MIQ_STOP
end

The main code determines the virtual machine service model object from
$evm.root['vm'], and retrieves the first server_role tag applied to the VM (see
Chapter 9 for more details on using tags from Automate). It then chains two associa‐
tions together (vm.host and host.vms) to determine the other VMs running on the
same hypervisor as our VM. If any of these VMs has the same server_role tag as our
VM, we call the relocate_vm method and notify the EvmGroup-administrator group
via email that the VM has been relocated.

Summary
Here we’ve shown how we can achieve a realistic task with a relatively simple Ruby
script, using many of the concepts that we’ve learned so far in the book. We’ve worked
with service model objects representing a user, a group, a virtual machine, a cluster,
and a hypervisor, and we’ve traversed the associations between some of them. We’ve
read from an object’s attribute and virtual column, and called an object’s method to
perform the migrate operation. Finally, we’ve explored working with tags, and we’ve
used $evm.execute to send an email.

Although most modern virtualization platforms have an anti-affinity capability built
in, this is still a useful example of how we can achieve selected workload placement
based on tags. When we implement this kind of tag-based placement, we need to
ensure that our VM workloads aren’t tagged multiple times with possibly conflicting
results—for example, one tag implying affinity, and another anti-affinity.

Further Reading
Workload Placement by Type (Not Near That)

72 | Chapter 8: A Practical Example: Enforcing Anti-Affinity Rules

http://red.ht/1WIjxV0

CHAPTER 9

Using Tags from Automate

Tags are a very powerful feature of CloudForms. They allow us to add Smart Manage‐
ment capabilities to the objects in the WebUI such as virtual machines, hosts, or clus‐
ters; to create tag-related filters; and to group, sort, or categorize items by tag.

For example, we might assign a tag to a virtual machine to identify which department
or cost center owns the VM. We could then create a chargeback rate for billing pur‐
poses and assign the rate to all VMs tagged as being owned by a particular depart‐
ment or cost center.

We might also tag virtual machines with a Location or Data Center tag. We could cre‐
ate a filter view in the WebUI to display all VMs at a particular location so that we
instantly can see which systems might be affected if we run a data center failover or
power test.

Tags are not only applied to virtual machines. We often tag our virtual infrastructure
components—such as hosts, clusters, or datastores—with a Provisioning Scope tag.
When we provision new virtual machines, our Automate workflow must determine
where to put the new VM (a process known as placement). We can use the Provision‐
ing Scope tag to determine a best fit for a particular virtual machine, based on a user’s
group membership. In this way we might, for example, place all virtual machines pro‐
visioned by users in a development group on a nonproduction cluster.

73

These are just three examples of how tags can simplify systems administration and
help our Automate workflows. Fortunately, Automate has comprehensive support for
tag-related operations.

Tag or Custom Attribute?
We’ve already seen the use of a custom attribute on a virtual machine. At first glance
tags and custom attributes seem to be similar, but there are good reasons to use one
over the other.

Tags are better if we wish to categorize, sort, or filter an object based on its tag. We
could, for example, quickly search for all items tagged with a particular value. A tag
must exist within a category before it can be used, however, so we have to consider
the manageability of tag categories that contain many hundreds of different tags.

Custom attributes are better if we just wish to assign a generic text string to an object
but don’t need to sort or categorize objects by the attribute name or string.

Creating Tags and Categories
Tags are defined and used within the context of tag categories. We can check whether
a category exists, and if not, create it:

unless $evm.execute('category_exists?', 'data_center')
 $evm.execute('category_create',
 :name => 'data_center',
 :single_value => false,
 :perf_by_tag => false,
 :description => "Data Center")
end

We can also check whether a tag exists within a category, and if not, create it:

unless $evm.execute('tag_exists?', 'data_center', 'london')
 $evm.execute('tag_create',
 'data_center',
 :name => 'london',
 :description => 'London East End')
end

Tag and category names must be lowercase, and optionally contain
underscores. They have a maximum length of 30 characters. The
tag and category descriptions can be free text.

74 | Chapter 9: Using Tags from Automate

Assigning and Removing Tags
We can assign a category/tag to an object (in this case, a virtual machine) as follows:

vm = $evm.root['vm']
vm.tag_assign("data_center/london")

We can remove a category/tag from an object like so:

vm = $evm.root['vm']
vm.tag_unassign("data_center/paris")

Testing Whether an Object Is Tagged
We can test whether an object (in this case, a user group) is tagged with a particular
tag, like so:

ci_owner = 'engineering'
groups = $evm.vmdb(:miq_group).find(:all)
groups.each do |group|
 if group.tagged_with?("department", ci_owner)
 $evm.log("info", "Group #{group.description} is tagged")
 end
end

Retrieving an Object’s Tags
We can use the tags method to retrieve the list of all tags assigned to an object:

group_tags = group.tags

This method also enables us to retrieve the tags in a particular category (in this case,
using the tag name as a symbol):

all_department_tags = group.tags(:department)
first_department_tag = group.tags(:department).first

When called with no argument, the tags method returns the tags
as "category/tag" strings. When called with an argument of tag
category, the method returns the tag name as the string.

Assigning and Removing Tags | 75

Searching for Specifically Tagged Objects
We use the find_tagged_with method to search for objects tagged with a particular
tag:

tag = "/managed/department/legal"
hosts = $evm.vmdb(:host).find_tagged_with(:all => tag, :ns => "*")

This example shows that categories themselves are organized into namespaces behind
the scenes. In practice the only namespace that seems to be in use is /managed, and
we rarely need to specify this.

The find_tagged_with method has a slightly ambiguous past. It
was present in CloudForms 3.1 but returned active records rather
than MiqAeService objects. It disappeared as an Automate method
in CloudForms 3.2 but thankfully is back with CloudForms 4.0 and
now returns service model objects as expected.

Practical Example
We could discover all infrastructure components tagged with /department/engineer
ing. We might wish to find out the service model class name of the object and the
object’s name, for example. We could achieve this using the following code snippet:

tag = '/department/engineering'
[:vm_or_template, :host, :ems_cluster, :storage].each do |service_object|
 these_objects = $evm.vmdb(service_object).find_tagged_with(:all => tag,
 :ns => "/managed")
 these_objects.each do |this_object|
 service_model_class = "#{this_object.method_missing(:class)}".demodulize
 $evm.log("info", "#{service_model_class}: #{this_object.name}")
 end
end

On a small CloudForms 4.0 system, this prints:

MiqAeServiceManageIQ_Providers_Redhat_InfraManager_Template: rhel7-generic
MiqAeServiceManageIQ_Providers_Redhat_InfraManager_Vm: rhel7srv010
MiqAeServiceManageIQ_Providers_Openstack_CloudManager_Vm: rhel7srv031
MiqAeServiceManageIQ_Providers_Redhat_InfraManager_Host: rhelh03.bit63.net
MiqAeServiceStorage: Data

76 | Chapter 9: Using Tags from Automate

This code snippet shows an example of where we need to work
with or around Distributed Ruby (dRuby). The following loop enu‐
merates through these_objects, substituting this_object on
each iteration:

these_objects.each do |this_object|
 ...
end

Normally this is transparent to us and we can refer to the object
methods, such as name, and all works as expected.
Behind the scenes, however, our automation script is accessing all
of these objects remotely via its dRuby client object. We must bear
this in mind if we also wish to find the class name of the remote
object.
If we call this_object.class, we get the string "DRb::DRbObject",
which is the correct class name for a dRuby client object. We have
to tell dRuby to forward the class method call on to the dRuby
server, and we do this by calling this_object.method_miss
ing(:class). Now we get returned the full module::class name
of the remote dRuby object (such as MiqAeMethodService::MiqAe
ServiceStorage), but we can call the demodulize method on the
string to strip the MiqAeMethodService:: module path from the
name, leaving us with MiqAeServiceStorage.

Getting the List of Tag Categories
On versions prior to CloudForms 4.0, getting the list of tag categories was slightly
challenging. Both tags and categories are listed in the same classifications table,
but tags also have a nonzero parent_id value that ties them to their category. To find
the categories from the classifications table, we had to search for records with a
parent_id of zero:

categories = $evm.vmdb('classification').find(:all,
 :conditions => ["parent_id = 0"])
categories.each do |category|
 $evm.log(:info, "Found category: #{category.name} (#{category.description})")
end

With CloudForms 4.0 we now have a categories association directly from an MiqAe
ServiceClassification object, so we can say:

$evm.vmdb(:classification).categories.each do |category|
 $evm.log(:info, "Found category: #{category.name} (#{category.description})")
end

Getting the List of Tag Categories | 77

Getting the List of Tags in a Category
We occasionally need to retrieve the list of tags in a particular category, and for this
we have to perform a double lookup—once to get the classification ID, and again to
find MiqAeServiceClassification objects with that parent_id:

classification = $evm.vmdb(:classification).find_by_name('cost_center')
cost_center_tags = {}
$evm.vmdb(:classification).find_all_by_parent_id(classification.id).each do |tag|
 cost_center_tags[tag.name] = tag.description
end

Finding a Tag’s Name, Given Its Description
Sometimes we need to add a tag to an object, but we only have the tag’s free-text
description (perhaps this matches a value read from an external source). We need to
find the tag’s snake_case name to use with the tag_apply method, but we can use
more Rails syntax in our find call to look up two fields at once:

department_classification = $evm.vmdb(:classification).find_by_name('department')
tag = $evm.vmdb('classification').find(
 :first,
 :conditions => ["parent_id = ? AND description = ?",
 department_classification.id, 'Systems Engineering'])
tag_name = tag.name

The tag names aren’t in the classifications table (just the tag description). When
we call tag.name, Rails runs an implicit search of the tags table for us, based on the
tag.id:

irb(main):051:0> tag.name
 Tag Load (0.6ms) SELECT "tags".* FROM "tags" WHERE "tags"."id" = 44 LIMIT 1
 Tag Inst Including Associations (0.1ms - 1rows)
 => "syseng"

Finding a Specific Tag (MiqAeServiceClassification) Object
We can just search for the tag object that matches a given category/tag, as follows:

tag = $evm.vmdb(:classification).find_by_name('department/hr')

Anything returned from $evm.vmdb(:classification) is a MiqAe
ServiceClassification object, not a text string.

78 | Chapter 9: Using Tags from Automate

Deleting a Tag Category
With CloudForms 4.0 we can now delete a tag category using the RESTful API:

require 'rest-client'
require 'json'
require 'openssl'
require 'base64'

begin

 def rest_action(uri, verb, payload=nil)
 headers = {
 :content_type => 'application/json',
 :accept => 'application/json;version=2',
 :authorization => "Basic #{Base64.strict_encode64("#{@user}:#{@pass}")}"
 }
 response = RestClient::Request.new(
 :method => verb,
 :url => uri,
 :headers => headers,
 :payload => payload,
 verify_ssl: false
).execute
 return JSON.parse(response.to_str) unless response.code.to_i == 204
 end

 servername = $evm.object['servername']
 @user = $evm.object['username']
 @pass = $evm.object.decrypt('password')

 uri_base = "https://#{servername}/api/"

 category = $evm.vmdb(:classification).find_by_name('network_location')
 rest_return = rest_action("#{uri_base}/categories/#{category.id}", :delete)
 exit MIQ_OK

rescue RestClient::Exception => err
 unless err.response.nil?
 $evm.log(:error, "REST request failed, code: #{err.response.code}")
 $evm.log(:error, "Response body:\n#{err.response.body.inspect}")
 end
 exit MIQ_STOP
rescue => err
 $evm.log(:error, "[#{err}]\n#{err.backtrace.join("\n")}")
 exit MIQ_STOP
end

In this example we define a generic method called rest_action that uses the Ruby
rest-client gem to handle the RESTful connection. We extract the CloudForms

Deleting a Tag Category | 79

server’s credentials from the instance schema just as we did in Chapter 4, and we
retrieve the service model of the tag category that we wish to delete, to get its ID.

Finally, we make a RESTful DELETE call to the /api/categories URI, specifying the tag
category ID to be deleted.

Summary
In this chapter we’ve seen how we can work with tags from our Automation scripts,
and we’ll use these techniques extensively as we progress through the book.

Further Reading
Creating and Using Tags in Red Hat CloudForms

80 | Chapter 9: Using Tags from Automate

https://access.redhat.com/articles/421423

CHAPTER 10

Investigative Debugging

As we saw in Chapter 6, there is a lot of useful information in the form of service
model object attributes and virtual columns, links to other objects via associations,
and service model methods that we can call. The challenge is sometimes knowing
which objects are available to us at any particular point in our workflow, and how to
access their properties and traverse associations to find the information that we need.

Fortunately there are several ways of exploring the object structure in the Automation
Engine, both to investigate what might be available to use, and to debug and trouble‐
shoot our own automation code. This chapter will discuss the various tools that we
can use to reveal the service model object structure available during any Automate
operation.

InspectMe
InspectMe is an instance/method combination supplied out-of-the-box that we can
call to dump some attributes of $evm.root and its associated objects. As an example,
we can call InspectMe from a button on a “VM and Instance” object as we did when
running our AddCustomAttribute instance in Chapter 5. As both the instance and
method are in the ManageIQ/System/Request namespace, we can call InspectMe
directly rather than calling Call_Instance as an intermediary.

81

1 object_walker is available from https://github.com/pemcg/object_walker, along with instructions for use.

We can view the InspectMe output in automation.log:

vmdb
grep inspectme log/automation.log | awk 'FS="INFO -- :" {print $2}'
Root:<$evm.root> Attributes - Begin
 Attribute - ae_provider_category: infrastructure
 Attribute - miq_server: #<MiqAeMethodService::MiqAeServiceMiqServer:0x00000...
 Attribute - miq_server_id: 1000000000001
 Attribute - object_name: Request
 Attribute - request: InspectMe
 Attribute - user: #<MiqAeMethodService::MiqAeServiceUser:0x0000000b86b540>
 Attribute - user_id: 1000000000001
 Attribute - vm: rhel7srv001
 Attribute - vm_id: 1000000000025
 Attribute - vmdb_object_type: vm
Root:<$evm.root> Attributes - End
...

This log snippet shows the section of a typical InspectMe output that dumps the
attributes of $evm.root.

Kevin Morey from Red Hat has written an improved version of
InspectMe, available from https://github.com/ramrexx/Cloud
Forms_Essentials. His InspectMe provides a very clear output of the
attributes, virtual columns, associations, and tags that are available
for the object on which it was launched. For example, if called from
a button on a virtual machine, InspectMe will list all of that VM’s
properties, including hardware, operating system, and the provi‐
sioning request and task details.

object_walker
object_walker1 is a slightly more exploratory tool that walks and dumps the objects,
attributes, and virtual columns of $evm.root and its immediate objects. It also recur‐
sively traverses associations to walk and dump any objects that it finds, much like a
web crawler would explore a website. It prints the output in a Ruby-like syntax that
can be copied and pasted directly into an automation script to access or walk the
same path.

Black or Whitelisting Associations
One of the features of object_walker is the ability to selectively choose which associa‐
tions to “walk” to limit the output. We do so by setting a @walk_association_policy
to :whitelist or :blacklist, and then defining a @walk_association_whitelist or

82 | Chapter 10: Investigative Debugging

https://github.com/pemcg/object_walker
https://github.com/ramrexx/CloudForms_Essentials
https://github.com/ramrexx/CloudForms_Essentials

@walk_association_blacklist to list the associations to be walked (whitelist), or
not walked (blacklist).

In practice a @walk_association_policy of :blacklist produces so much output
that it’s rarely used, and so a :whitelist is more often defined, like so:

@walk_association_whitelist =
 'MiqAeServiceVmRedhat' => ['ems_cluster',
 'ems_folder',
 'resource_pool',
 'storage',
 'service',
 'hardware'
],
 'MiqAeServiceUser' => ['current_group'],
 'MiqAeServiceGuestDevice' => ['hardware',
 'lan',
 'network']

object_walker_reader
There is a companion script, object_walker_reader, that can be copied to the Cloud‐
Forms appliance to extract the object_walker outputs from automation.log. The reader
script can also list all outputs by timestamp, dump a particular output by timestamp,
and even diff two outputs—useful when we are running object_walker before and
after a built-in method (for example, in a state machine) to see what the method has
changed:

Object Walker 1.7 Starting
 --- $evm.current_* details ---
 $evm.current_namespace = Bit63/stuff (type: String)
 $evm.current_class = methods (type: String)
 $evm.current_instance = objectwalker (type: String)
 $evm.current_message = create (type: String)
 $evm.current_object = /Bit63/stuff/methods/objectwalker (type: DRb::DRb...
 $evm.current_object.current_field_name = Execute (type: String)
 $evm.current_object.current_field_type = method (type: String)
 $evm.current_method = object_walker (type: String)
 --- automation instance hierarchy ---
 /ManageIQ/SYSTEM/PROCESS/Request ($evm.root)
 | /ManageIQ/System/Request/call_instance ($evm.parent)
 | | /Bit63/stuff/methods/objectwalker ($evm.object)
 --- walking $evm.root ---
 $evm.root = /ManageIQ/SYSTEM/PROCESS/Request (type: DRb::DRbObject)
 | --- attributes follow ---
 | $evm.root['ae_provider_category'] = infrastructure (type: String)
 | $evm.root.class = DRb::DRbObject (type: Class)
 | $evm.root['dialog_walk_association_whitelist'] = (type: String)
 | $evm.root['instance'] = objectwalker (type: String)
 | $evm.root['miq_group'] => #<MiqAeMethodService::MiqAeServiceMiqGro...
 | | --- attributes follow ---

object_walker | 83

 | | $evm.root['miq_group'].created_on = 2015-09-23 12:39:48 UTC
 | | $evm.root['miq_group'].description = EvmGroup-super_administrator
 | | $evm.root['miq_group'].group_type = system (type: String)
...
 | | --- end of attributes ---
 | | --- virtual columns follow ---
 | | $evm.root['miq_group'].allocated_memory = 59055800320 (type: ...
 | | $evm.root['miq_group'].allocated_storage = 560493232128 (type: .
 | | $evm.root['miq_group'].allocated_vcpu = 27 (type: Fixnum)
...
 | $evm.root['vm'] => intraweb005 (type: DRb::DRbObject, URI: dru...
 | | --- attributes follow ---
 | | $evm.root['vm'].boot_time = 2016-04-06 14:51:52 UTC (type: ...
 | | $evm.root['vm'].cloud = false (type: FalseClass)
 | | $evm.root['vm'].connection_state = connected (type: String)
 | | $evm.root['vm'].cpu_limit = -1 (type: Fixnum)
 | | $evm.root['vm'].cpu_reserve = 0 (type: Fixnum)
...
 | | ems_cluster = $evm.root['vm'].ems_cluster
 | | (object type: MiqAeServiceEmsCluster, object ID: 1000000000001)
 | | | --- attributes follow ---
 | | | ems_cluster.created_on = 2015-09-23 13:21:59 UTC
 | | | ems_cluster.drs_automation_level = fullyAutomated
 | | | ems_cluster.drs_enabled = true (type: TrueClass)
 | | | ems_cluster.drs_migration_threshold = 3 (type: Fixnum)
...
 | | | --- methods follow ---
 | | | ems_cluster.register_host
 | | | ems_cluster.tag_assign
 | | | ems_cluster.tag_unassign
 | | | ems_cluster.tagged_with?
 | | | ems_cluster.tags

Here we see a partial output from object_walker_reader, showing the traversal of the
associations between objects, and a list of attributes, virtual columns, associations,
and methods for each object encountered.

Rails Console
We can connect to the Rails console to have a look around.

When we’re working with the Rails command line, we have full
read/write access to the objects and tables that we find there. We
should use this technique purely for read-only investigation, and at
our own risk. Making any additions or changes may render our
CloudForms appliance unstable, and unsupported by Red Hat.

On the CloudForms appliance itself:

84 | Chapter 10: Investigative Debugging

2 A diagram of the database layout is available from http://people.redhat.com/~mmorsi/cfme_db.png.

vmdb # alias vmdb='cd /var/www/miq/vmdb/' is defined on the appliance
source /etc/default/evm
bin/rails c
Loading production environment (Rails 3.2.17)
irb(main):001:0>

Once in the Rails console, there are many things that we can do, such as use Rails
object syntax to look at all host active records:

irb(main):002:0> Host.all
 (3.6ms) SELECT version()
 Host Load (0.7ms) SELECT "hosts".* FROM "hosts"
 Host Inst (85.2ms - 2rows)
=> [#<HostRedhat id: 1000000000002, name: "rhelh02.bit63.net", \
 hostname: "192.168.12.22", ipaddress: "192.168.12.22",...

irb(main):003:0>

We can even generate our own $evm variable that matches the Automation Engine
default:

$evm=MiqAeMethodService::MiqAeService.new(MiqAeEngine::MiqAeWorkspaceRuntime.new)

With our $evm variable we can emulate actions that we perform from an automation
script:

irb(main):002:0> $evm.log(:info, "test from the Rails console")
=> true

As with a “real” automation method, this writes our message to automation.log:

...8:45:11.223058 #2109:eb9998] INFO -- : <AEMethod > test from the Rails console

Rails db
It is occasionally useful to be able to examine some of the database tables (such as to
look for column headers that we can find_by_* on).2 We can connect to Rails db,
which puts us directly into a psql session:

[root@cloudforms ~]# vmdb
[root@cloudforms03 vmdb]# source /etc/default/evm
[root@cloudforms03 vmdb]# bin/rails db
psql (9.4.5)
Type "help" for help.

vmdb_production=#

Once in the Rails db session, we can freely examine the VMDB database. For exam‐
ple, we could look at the columns in the guest_devices table:

Rails db | 85

http://people.redhat.com/~mmorsi/cfme_db.png

vmdb_production=# \d guest_devices
 Table "public.guest_devices"
 Column | Type | Modifiers
-------------------+------------------------+------------------------------------
 id | bigint | not null default nextval('guest_...
 device_name | character varying(255) |
 device_type | character varying(255) |
 location | character varying(255) |
 filename | character varying(255) |
 hardware_id | bigint |
 mode | character varying(255) |
 controller_type | character varying(255) |
 size | bigint |
 free_space | bigint |
 size_on_disk | bigint |
 address | character varying(255) |
 switch_id | bigint |
 lan_id | bigint |
...

We could list all templates on our appliance (templates are in the vms column, but
have a Boolean template attribute that is true):

vmdb_production=# select id,name from vms where template = 't';
 id | name
---------------+--
 1000000000014 | RedHat_CFME-5.5.0.13
 1000000000015 | rhel7-generic
 1000000000016 | rhel-guest-image-7.0-20140930.0.x86_64
 1000000000017 | RHEL 7
 1000000000029 | ManageIQ_Capablanca
 1000000000053 | Fedora 23
(6 rows)

Summary
In this chapter we’ve learned four very useful ways of investigating the object model.
We can use InspectMe or object_walker to print the structure to automation.log, or we
can interactively use the Rails command line.

We use these tools and techniques extensively when developing our scripts, both to
find out the available objects that we might use, and also to debug our scripts when
things are not working as expected.

Further Reading
inspectXML—Dump Objects as XML

86 | Chapter 10: Investigative Debugging

http://cloudformsblog.redhat.com/tag/xml-format/

CHAPTER 11

Ways of Entering Automate

We are starting to see how powerful CloudForms Automate can be, so let’s look at the
various ways that we can initiate an automation operation.

There are six methods that we generally use to launch into Automate to run our
instances or initiate our custom workflows. The method that we choose determines
the Automate Datastore entry point and the objects that are available to our method
when it runs.

Buttons and Simulation
So far we have launched automation scripts in two ways: from Simulation and from a
custom button. With either of these methods we were presented with a drop-down
list of entry points under /System/Process into the Automate Datastore (see
Figure 11-1).

Figure 11-1. Entry points into the Automate Datastore from Simulation

87

In practice we only use /System/Process/Request to launch our own automation
requests from a button or Simulation. Entries at /System/Process/Request get redi‐
rected to the Request instance name that we specified with the call, which should be
an instance in the /System/Request namespace. In our examples so far, we’ve used
Request instances of Call_Instance and AddCustomAttribute (which we added to our
ACME domain).

The usage of /System/Process/Event has changed with CloudForms
4.0. We would need to pass an EventStream object with our request
to use this entry point.
The /System/Process/Automation entry point is used internally
when tasks are created for such operations as virtual machine pro‐
visioning or retirement:

Instantiating [/System/Process/AUTOMATION? \
MiqProvision%3A%3Amiq_provision=1000000000091& \
MiqServer%3A%3Amiq_server=1000000000001& \
User%3A%3Auser=1000000000001& \
object_name=AUTOMATION& \
request=vm_provision& \
vmdb_object_type=miq_provision]

RESTful API
We can initiate an Automate operation using the RESTful API (see Chapter 42 for
more details). In this case we can directly invoke any instance anywhere in the Auto‐
mate Datastore; we do not need to call /System/Process/Request.

Control Policy Actions
We can create control policy action that launches a custom automation instance (see
Figure 11-2).

88 | Chapter 11: Ways of Entering Automate

Figure 11-2. Launching a custom automation as a control action

This can launch any instance in /System/Request, but as before we can use
Call_Instance to redirect the call via the built-in rel2 relationship to an instance in
our own domain and namespace.

Alerts
We can create an alert that sends a management event. The Event Name field corre‐
sponds to the name of an instance that we create to handle the alert (see Figure 11-3).

Figure 11-3. Creating an alert that sends a management event called ScaleOut

In CloudForms 3.2 and prior, this called an instance under /System/Event in the Auto‐
mate Datastore that corresponds to the management event name. In CloudForms 4.0
the new location name corresponds to the position in the event switchboard /System/
Event/CustomEvent/Alert. We can clone the /System/Event/CustomEvent/Alert name‐
space into our own domain and add the corresponding instance (see Figure 11-4).

Alerts | 89

Figure 11-4. Adding an instance to process an alert management event

This instance will now be run when the alert is triggered.

Service Dialog Dynamic Elements
We can launch an Automate instance anywhere in the Automate Datastore from a
dynamic service dialog element. In practice this type of script is designed specifically
to populate the element, and we wouldn’t launch a general workflow in this manner.
We cover dynamic service dialog elements more in Chapter 29.

Finding Out How Our Method Has Been Called
Our entry point into Automate governs the content of $evm.root—this is the object
whose instantiation took us into Automate. If we write a generically useful method
such as one that adds a disk to a virtual machine, it might be useful to be able to call it
in several ways, without necessarily knowing what $evm.root might contain.

For example, we might wish to add a disk during the provisioning workflow for the
VM, from a button on an existing VM object in the WebUI, or even from an external
RESTful call into the Automate Engine, passing the VM ID as an argument. The con‐
tent of $evm.root is different in each of these cases.

For each case we need to access the target VM object in a different way, but we can
use the $evm.root['vmdb_object_type'] key to help us establish context:

90 | Chapter 11: Ways of Entering Automate

case $evm.root['vmdb_object_type']
when 'miq_provision' # called from a VM provision workflow
 vm = $evm.root['miq_provision'].destination
 ...
when 'vm'
 vm = $evm.root['vm'] # called from a button
 ...
when 'automation_task' # called from a RESTful automation request
 attrs = $evm.root['automation_task'].options[:attrs]
 vm_id = attrs[:vm_id]
 vm = $evm.vmdb('vm').find_by_id(vm_id)
 ...
end

Summary
In this chapter we’ve learned the various ways that we can enter Automate and start
running our scripts. We’ve also learned how to create generically useful methods that
can be called in several ways, and how to establish their running context using
$evm.root['vmdb_object_type'].

Many of the Automate methods that we write are usable in several different contexts
—as part of a virtual machine provisioning workflow or from a button, for example.
They can be run from the first instance called when we enter Automate, or via a rela‐
tionship in another instance already running in the Automation Engine. This
instance might even be a state machine (we discuss state machines in Chapter 13), in
which case we might need to signal an exit condition using
$evm.root['ae_result']:

 # Normal exit
 $evm.root['ae_result'] = 'ok'
 exit MIQ_OK
rescue => err
 $evm.root['ae_result'] = 'error'
 $evm.root['ae_reason'] = "Unspecified error, see automation.log for backtrace"
 exit MIQ_STOP

If we take all of these possible factors into account when we write our scripts, we add
flexibility in how they can be used and called. We also increase code reuse and reduce
the sprawl of multiple similar scripts in our custom domains.

Further Reading
Scripting Actions in CloudForms Chapter 3—Invoking Automate

Summary | 91

http://red.ht/21cx2uB

CHAPTER 12

Requests and Tasks

We have seen several references to automation requests and tasks so far in the book.
This chapter explains what they are, their differences, and why it’s useful to under‐
stand them. This is a deep-dive chapter, so feel free to skip it for now and return later
if curious.

The Need for Approval
Some relatively simple automation operations result in the Automate instance being
run directly with no need for approval by an administrator. Examples of these are:

• Running an Automate instance from simulation
• Automate instances that run to populate dynamic dialog elements
• Running an Automate instance from a button
• Automate instances entered as a result of a control policy action type of Invoke a

Custom Automation
• Alerts that send a management event

The automation scripts that we’ve developed so far fall into ths first category.

Other, more complex automation operations—such as provisioning virtual machines
or cloud instances—can alter or consume resources in our virtual or cloud infrastruc‐
ture. For this type of operation, CloudForms allows us to insert an approval stage into
the Automate workflow. It does this by separating the operation into two distinct
stages—the request and the task—with an administrative approval being required to
progress from one to the other.

Examples of these are:

93

• Calling an automation request via the RESTful API
• Provisioning a host
• Provisioning a virtual machine
• Requesting a service
• Reconfiguring a virtual machine
• Reconfiguring a service
• Migrating a virtual machine

Let’s now look at these in more detail.

Request and Task Objects
There are Automation Engine objects representing the two stages of each of these
more complex operations. Each type of object holds information relevant to its par‐
ticular stage (see Table 12-1). The request object contains information about the
requester and the operation to be performed. The task object holds the details about
and status of the actual automation operation (the “task”):

Table 12-1. Object stages

Operation Request object Task object
Generic operation miq_request miq_request_task

Automation request automation_request automation_task

Provisioning a host miq_host_provision_request miq_host_provision

Provisioning a VM miq_provision_request miq_provision

Reconfiguring a VM vm_reconfigure_request vm_reconfigure_task

Requesting a service service_template_provi
sion_request

service_template_provi
sion_task

Reconfiguring a service service_reconfigure_request service_reconfigure_task

Migrating a VM vm_migrate_request vm_migrate_task

In addition to those listed here, a kind of pseudo–request object is created when we
add a service catalog item to provision a VM.

When we create the catalog item, we fill out the Request Info fields, as if we were pro‐
visioning a VM interactively via the Infrastructure → Virtual Machines → Lifecycle
→ Provision VMs menu (see Chapter 33).

The values that we select or enter are added to the options hash in a newly created
miq_provision_request_template object (see Table 12-2). This then serves as the

94 | Chapter 12: Requests and Tasks

“request” template for all subsequent VM provision operations from this service cata‐
log item.

Table 12-2. Adding values to the options hash

Operation Request object Task object
VM ordered from a service catalog Item miq_provision_request_template miq_provision

Approval
Automation requests must be approved before the task object that handles the auto‐
mation workflow is created. Admin users can auto-approve their own requests,
whereas standard users need their requests explicitly approved by anyone in an
access-control group with the roles EvmRole-super_administrator, EvmRole-

administrator, or EvmRole-approver.

Some automation workflows have an approval stage that can auto-approve requests,
even from standard users. The most common automation operation that standard
users frequently perform is to provision a virtual machine, and for this there are
approval thresholds in place (max_vms, max_cpus, max_memory, max_retire

ment_days). VM provision requests specifying numbers or sizes below these thresh‐
olds are auto-approved, whereas requests exceeding these thresholds are blocked,
pending explicit approval.

Object Class Ancestry
If a request is approved, one or more task objects will be created from information
contained in the request object (a single request for three VMs will result in three task
objects, for example).

We can examine the class ancestry for the CloudForms 3.2 request objects:

MiqAeServiceAutomationRequest < MiqAeServiceMiqRequest
MiqAeServiceMiqHostProvisionRequest < MiqAeServiceMiqRequest
MiqAeServiceMiqProvisionRequest < MiqAeServiceMiqRequest
MiqAeServiceMiqProvisionRequestTemplate < MiqAeServiceMiqProvisionRequest
MiqAeServiceMiqRequest < MiqAeServiceModelBase
MiqAeServiceServiceTemplateProvisionRequest < MiqAeServiceMiqRequest
MiqAeServiceVmMigrateRequest < MiqAeServiceMiqRequest
MiqAeServiceVmReconfigureRequest < MiqAeServiceMiqRequest

Approval | 95

and for the task objects:

MiqAeServiceAutomationTask < MiqAeServiceMiqRequestTask
MiqAeServiceMiqHostProvision < MiqAeServiceMiqRequestTask
MiqAeServiceMiqProvision < MiqAeServiceMiqRequestTask
MiqAeServiceMiqProvisionAmazon < MiqAeServiceMiqProvisionCloud
MiqAeServiceMiqProvisionCloud < MiqAeServiceMiqProvision
MiqAeServiceMiqProvisionOpenstack < MiqAeServiceMiqProvisionCloud
MiqAeServiceMiqProvisionRedhat < MiqAeServiceMiqProvision
MiqAeServiceMiqProvisionRedhatViaIso < MiqAeServiceMiqProvisionRedhat
MiqAeServiceMiqProvisionRedhatViaPxe < MiqAeServiceMiqProvisionRedhat
MiqAeServiceMiqProvisionVmware < MiqAeServiceMiqProvision
MiqAeServiceMiqProvisionVmwareViaNetAppRcu < MiqAeServiceMiqProvisionVmware
MiqAeServiceMiqProvisionVmwareViaPxe < MiqAeServiceMiqProvisionVmware
MiqAeServiceMiqRequestTask < MiqAeServiceModelBase
MiqAeServiceServiceTemplateProvisionTask < MiqAeServiceMiqRequestTask
MiqAeServiceVmReconfigureTask < MiqAeServiceMiqRequestTask

We see that there are twice as many types of task object. This is because a request to
perform an action (e.g., provision a VM) can be converted into one of several types of
workflow (e.g., provision a VMware VM via PXE, or clone from template).

Context
When we develop our own automation scripts, we may be working with either a
request or a task object, depending on the workflow stage of the operation that we’re
interacting with (for example, provisioning a VM). Sometimes we have to search for
one and if that fails, fall back to the other, like so:

prov = $evm.root['miq_provision_request'] ||
 $evm.root['miq_provision'] ||
 $evm.root['miq_provision_request_template']

If we have a request object, there may not necessarily be a task object (yet), but if we
have one of these more complex task objects, we can always follow an association to
find the request object that preceded it.

96 | Chapter 12: Requests and Tasks

When we’re developing Automate methods, having an understand‐
ing of whether we’re running in a request or task context can be
really useful. Think about what stage in the automation flow the
method will be running—before or after approval.
Example scenario: we wish to set the number of VMs to be provi‐
sioned as part of a VM provisioning operation. We know that
a :number_of_vms options hash key can be set, but this appears in
the options hash for both the task and request objects. (See Chap‐
ter 20 for more details.) Where should we set it?
Answer: the task objects are created after the request is approved,
and the number of VMs to be provisioned is one of the criteria that
auto-approval uses to decide whether or not to approve the request.
The :number_of_vms key also determines how many task objects
are created (it is the task object that contains the VM-specific
options hash keys such as :vm_target_name, :ip_addr, etc.).
We must therefore set :number_of_vms in the request options hash,
before the task objects are created.

Object Contents
The request object contains details about the requester (person), approval status,
approver (person), and reason, and the parameters to be used for the resulting task in
the form of an options hash. The options hash contains whatever optional informa‐
tion is required for the automation operation to complete, and its size depends on the
automation request type. In the case of an miq_provision_request, the options hash
has over 70 key/value pairs, specifying the characteristics of the VM to be provi‐
sioned—for example:

...
miq_provision_request.options[:vlan] = ["rhevm", "rhevm"] (type: Array)
miq_provision_request.options[:vm_auto_start] = [true, 1] (type: Array)
miq_provision_request.options[:vm_description] = nil
miq_provision_request.options[:vm_memory] = ["2048", "2048"] (type: Array)
miq_provision_request.options[:vm_name] = rhel7srv003 (type: String)
...

Much of the information in the request object is propagated to the task object,
including the options hash.

Dumping the Object Contents
We can use object_walker to show the difference between an automation request and
task object, by setting the following @walk_association_whitelist:

@walk_association_whitelist = \
 { "MiqAeServiceAutomationTask" => ["automation_request", "miq_request"]}

Object Contents | 97

We can call the ObjectWalker instance from the RESTful API, using the /api/automa‐
tion_requests URI.

The request object
When the Automate instance (in this case, ObjectWalker) runs, the request has
already been approved, and so our $evm.root only has a direct link to the task object.
The request object is still reachable via an association from the task object, however:

automation_request = $evm.root['automation_task'].automation_request
(object type: MiqAeServiceAutomationRequest, object ID: 2000000000003)
| automation_request.approval_state = approved (type: String)
| automation_request.created_on = 2015-06-07 09:14:03 UTC (type: ...
| automation_request.description = Automation Task (type: String)
| automation_request.id = 2000000000003 (type: Fixnum)
| automation_request.message = Automation Request initiated (type: String)
| automation_request.options[:attrs] = {:userid=>"admin"} (type: Hash)
| automation_request.options[:class_name] = Methods (type: String)
| automation_request.options[:delivered_on] = 2015-06-07 09:14:10 UTC
| automation_request.options[:instance_name] = ObjectWalker (type: String)
| automation_request.options[:namespace] = Bit63/Discovery (type: String)
| automation_request.options[:user_id] = 2000000000001 (type: Fixnum)
| automation_request.request_state = active (type: String)
| automation_request.request_type = automation (type: String)
| automation_request.requester_id = 2000000000001 (type: Fixnum)
| automation_request.requester_name = Administrator (type: String)
| automation_request.status = Ok (type: String)
| automation_request.type = AutomationRequest (type: String)
| automation_request.updated_on = 2015-06-07 09:14:13 UTC (type: ActiveSup...
| automation_request.userid = admin (type: String)
| --- virtual columns follow ---
| automation_request.reason = Auto-Approved (type: String)
| automation_request.region_description = Region 2 (type: String)
| automation_request.region_number = 2 (type: Fixnum)
| automation_request.request_type_display = Automation (type: String)
| automation_request.resource_type = AutomationRequest (type: String)
| automation_request.stamped_on = 2015-06-07 09:14:04 UTC (type: ActiveSup...
| automation_request.state = active (type: String)
| automation_request.v_approved_by = Administrator (type: String)
| automation_request.v_approved_by_email = (type: String)
| --- end of virtual columns ---
| --- associations follow ---
| automation_request.approvers (type: Association (empty))
| automation_request.automation_tasks (type: Association)
| automation_request.destination (type: Association (empty))
| automation_request.miq_request (type: Association)
| automation_request.miq_request_tasks (type: Association)
| automation_request.requester (type: Association)
| automation_request.resource (type: Association)
| automation_request.source (type: Association (empty))
| --- end of associations ---
| --- methods follow ---

98 | Chapter 12: Requests and Tasks

| automation_request.add_tag
| automation_request.approve
| automation_request.authorized?
| automation_request.clear_tag
| automation_request.deny
| automation_request.description=
| automation_request.get_classification
| automation_request.get_classifications
| automation_request.get_option
| automation_request.get_option_last
| automation_request.get_tag
| automation_request.get_tags
| automation_request.pending
| automation_request.set_message
| automation_request.set_option
| automation_request.user_message=
| --- end of methods ---

The task object

The task object is available directly from $evm.root:

$evm.root['automation_task'] => #<MiqAeMethodService::MiqAeServiceAutomation \
 Task:0x0000000800a0c0> (type: DRb::DRbObject, URI: druby://127.0.0.1:35...)
| $evm.root['automation_task'].created_on = 2015-06-07 09:14:10 UTC
| $evm.root['automation_task'].description = Automation Task (type: String)
| $evm.root['automation_task'].id = 2000000000003 (type: Fixnum)
| $evm.root['automation_task'].message = Automation Request initiated
| $evm.root['automation_task'].miq_request_id = 2000000000003 (type: Fixnum)
| $evm.root['automation_task'].options[:attrs] = {:userid=>"admin"}
| $evm.root['automation_task'].options[:class_name] = Methods (type: String)
| $evm.root['automation_task'].options[:delivered_on] = 2015-06-07 09:14:10
| $evm.root['automation_task'].options[:instance_name] = ObjectWalker
| $evm.root['automation_task'].options[:namespace] = Bit63/Discovery
| $evm.root['automation_task'].options[:user_id] = 2000000000001
| $evm.root['automation_task'].phase_context = {} (type: Hash)
| $evm.root['automation_task'].request_type = automation (type: String)
| $evm.root['automation_task'].state = active (type: String)
| $evm.root['automation_task'].status = retry (type: String)
| $evm.root['automation_task'].type = AutomationTask (type: String)
| $evm.root['automation_task'].updated_on = 2015-06-07 09:14:13 UTC
| $evm.root['automation_task'].userid = admin (type: String)
| --- virtual columns follow ---
| $evm.root['automation_task'].region_description = Region 2 (type: String)
| $evm.root['automation_task'].region_number = 2 (type: Fixnum)
| --- end of virtual columns ---
| --- associations follow ---
| $evm.root['automation_task'].automation_request (type: Association)

 <as above>

| automation_request = $evm.root['automation_task'].automation_request
 (object type: MiqAeServiceAutomationRequest, object ID: 2000000000003)

Object Contents | 99

 | automation_request.approval_state = approved (type: String)
 | automation_request.created_on = 2015-06-07 09:14:03 UTC (type: Ac...
 | automation_request.description = Automation Task (type: String)
 | automation_request.id = 2000000000003 (type: Fixnum)
 | automation_request.message = Automation Request initiated
 ...
 </as above>

| $evm.root['automation_task'].destination (type: Association (empty))
| $evm.root['automation_task'].miq_request (type: Association)
| miq_request = $evm.root['automation_task'].miq_request
| (object type: MiqAeServiceAutomationRequest, object ID: 2000000000003)
| $evm.root['automation_task'].miq_request_task (type: Association (empty))
| $evm.root['automation_task'].miq_request_tasks (type: Association (empty))
| $evm.root['automation_task'].source (type: Association (empty))
| --- end of associations ---
| --- methods follow ---
| $evm.root['automation_task'].add_tag
| $evm.root['automation_task'].clear_tag
| $evm.root['automation_task'].execute
| $evm.root['automation_task'].finished
| $evm.root['automation_task'].get_classification
| $evm.root['automation_task'].get_classifications
| $evm.root['automation_task'].get_option
| $evm.root['automation_task'].get_option_last
| $evm.root['automation_task'].get_tag
| $evm.root['automation_task'].get_tags
| $evm.root['automation_task'].message=
| $evm.root['automation_task'].set_option
| $evm.root['automation_task'].statemachine_task_status
| $evm.root['automation_task'].user_message=
| --- end of methods ---
$evm.root['automation_task_id'] = 2000000000003 (type: String)

Comparing the Objects
We can see some interesting things when we compare these two objects:

• From the task object, the request object is available from either of two associa‐
tions: its specific object type $evm.root['automation_task'].automa

tion_request and the more generic
$evm.root['automation_task'].miq_request. These both link to the same
request object, and this is the case with all of the more complex task objects—we
can always follow an miq_request association to get back to the request, regard‐
less of request object type.

• We see that the request object has several approval-specific methods that the task
object doesn’t have (or need):

100 | Chapter 12: Requests and Tasks

automation_request.approve
automation_request.authorized?
automation_request.deny
automation_request.pending

We can use these methods to implement our own approval workflow mechanism if
we wish (see Chapter 43 for an example).

Summary
The chapter has illustrated how more complex automation workflows are split into a
request stage and a task stage. This allows us to optionally insert an administrative
approval “gate” between them and thus maintain a level of control over our standard
users to prevent them from running uncontrolled automation operations in our vir‐
tual infrastructure.

We have discussed request and task objects, and why it can be beneficial to keep track
of whether our automation scripts are running in request or task context (and there‐
fore which of the two objects to make use of).

This has been quite a detailed analysis, but they are very useful concepts to grasp.

Further Reading
Methods Available for Automation—Requests (Miq_Request)

Summary | 101

http://red.ht/1Ul0I8b

CHAPTER 13

State Machines

We have mentioned workflows several times in the preceding chapters. A workflow
can be simply defined as a sequence of operations or steps that make up a work pro‐
cess. Many tasks that we perform as cloud or systems administrators can be broken
down into simple workflow steps:

1. Do something.
2. Do something.
3. Do something.

CloudForms Automate allows us to add intelligence to our workflow steps by defin‐
ing steps as states. Each state is capable of performing pre and postprocessing around
the main task, and can handle and potentially recover from errors that occur while
performing the task (see Table 13-1). Individual states can enter a retry loop, with the
maximum number of retries and overall timeout for the state being definable.

Table 13-1. Adding intelligence to workflow steps via states

Step On entry Task On exit On error
1 Preprocess before doing

something.
Do something. Postprocess after doing

something.
Handle any errors while doing
something.

2 Preprocess before doing
something.

Do something. Postprocess after doing
something.

Handle any errors while doing
something.

3 Preprocess before doing
something.

Do something. Postprocess after doing
something.

Handle any errors while doing
something.

When we assemble several of these intelligent states together, it becomes an Automate
state machine. The logic flow through an Automate state machine is shown in
Figure 13-1.

103

Figure 13-1. Simple Automate state machine workflow

Building a State Machine
We build an Automate state machine in much the same way that we define any other
class schema. One of the types of schema field is a state, and if we construct a class
schema definition comprising a sequence of states, this then becomes a state machine.

A state machine schema should comprise only assertions,
attributes, or states. We should not have any schema lines that have
a Type field of Relationship in a state machine.

State Machine Schema Field Columns
If we look at all of the attributes that we can add for a schema field, in addition to the
familar Name, Description, and Value headings, we see a number of column headings
that we haven’t used so far (see Figure 13-2).

Figure 13-2. Schema field column headings

The schema columns for a state machine are the same as in any other class schema,
but we use more of them.

104 | Chapter 13: State Machines

Value (instance)/Default Value (schema)
As in any other class schema, this value is a relationship to an instance to be run to
perform the main processing of the state. Surprising as it may seem, we don’t neces‐
sarily need to specify a value here for a state machine (see On Entry, next), although it
is good practice to do so.

On Entry
We can optionally define an On Entry method to be run before the “main” method
(the Value entry) is run. We can use this to set up or test for preconditions to the
state; for example, if the “main” method adds a tag to an object, the On Entry method
might check that the category and tag exist.

The method name can be specified as a relative path to the local class (i.e., just the
method name), or in namespace/class/method syntax.

Note that some older state machines, such as /Infrastructure/VM/Provisoning/State‐
Machines/ProvisionRequestApproval/, use an On Entry method instead of a Value
relationship to perform the main work of the state. This usage is deprecated, and we
should always use a Value relationship in our state machines.

On Exit
We can optionally define an On Exit method to be run if the “main” method (the
Value relationship/instance or On Entry method) returns $evm.root['ae_result']
= ok.

On Error
We can optionally define an On Error method to be run if the “main” method (the
Value relationship/instance or On Entry method) returns $evm.root['ae_result']
= error.

Max Retries
We can optionally define a maximum number of retries that the state is allowed to
attempt. Defining this in the state rather than the method itself simplifies the method
coding and makes it easier to write generic methods that can be reused in a number
of state machines.

Max Time
We can optionally define a maximum time (in seconds) that the state will be permit‐
ted to run for, before being terminated.

Building a State Machine | 105

State Machine Example
We can look at the out-of-the-box /Infrastructure/VM/Provisoning/StateMachines/
ProvisionRequestApproval/Default state machine instance as an example and see that
it defines four attributes and has just two states: ValidateRequest and ApproveRe
quest (see Figure 13-3).

Figure 13-3. The /ProvisionRequestApproval/Default state machine

Neither state has a Value relationship, but each runs a locally defined class method to
perform the main processing of the state.

The ValidateRequest state runs the validate_request On Entry method and pend‐
ing_request as the On Error method.

The ApproveRequest state runs the approve_request On Entry method.

State Variables
There are several state variables that can be read or set by state methods to control the
processing of the state machine.

Setting State Result
We can run a method within the context of a state machine to return a completion
status to the Automation Engine, which then decides which next action to perform
(such as whether to advance to the next state).

We do this by setting one of three values in the ae_result hash key:

Signal an error
$evm.root['ae_result'] = 'error'
$evm.root['ae_reason'] = "Failed to do something"

Signal that the step should be retried after a time interval
$evm.root['ae_result'] = 'retry'
$evm.root['ae_retry_interval'] = '1.minute'

106 | Chapter 13: State Machines

Signal that the step completed successfully
$evm.root['ae_result'] = 'ok'

State Retries
We can find out whether we’re in a step that’s being retried by querying the
ae_state_retries key:

state_retries = $evm.root['ae_state_retries'] || 0

Getting the State Machine Name
We can find the name of the state machine that we’re running in, as follows:

state_machine = $evm.current_object.class_name

Getting the Current Step in the State Machine
We can find out which step (state) in the state machine we’re executing in (useful if
we have a generic error-handling method):

step = $evm.root['ae_state']

Getting the on_entry, on_exit, on_error Status State
A method can determine which status state (on_entry, on_exit, or on_error) it’s
currently executing in, as follows:

if $evm.root['ae_status_state'] == "on_entry"
 ...

State Machine Enhancements in CloudForms 4.0
Several useful additions to state machine functionality were added in CloudForms
4.0.

Error Recovery
Rather than automatically aborting the state machine (the behavior prior to Cloud‐
Forms 4.0), an on_error method now has the capability to take recovery action from
an error condition and set $evm.root['ae_result'] = 'continue' to ensure that
the state machine continues.

State Machine Enhancements in CloudForms 4.0 | 107

Skipping States
To allow for intelligent on_entry preprocessing, and to advance if preconditions are
already met, an on_entry method can set $evm.root['ae_result'] = 'skip' to
advance directly to the next state, without calling the current state’s Value method.

Jumping to a Specific State
Any of our state machine methods can set $evm.root['ae_next_state'] =
<state_name> to allow the state machine to advance several steps.

Note that setting ae_next_state allows us only to go forward in a state machine. If
we want to go back to a previous state, we can restart the state machine but set
ae_next_state to the name of the state at which we want to restart. When issuing a
restart, if we do not specify ae_next_state, the state machine will restart at the first
state:

Currently in state4
$evm.root['ae_result'] = 'restart'
$evm.root['ae_next_state'] = 'state2'

Nested State Machines
As has been mentioned, the Value field of a state machine should be a relationship to
an instance. Prior to CloudForms 4.0 this could not be another state machine, but
with 4.0 this requirement has been lifted, so now we can call an entire state machine
from a step in a parent state machine (see Figure 13-4).

Figure 13-4. Nested state machines

108 | Chapter 13: State Machines

Saving Variables Between State Retries
When a step is retried in a state machine, the Automation Engine reinstantiates the
entire state machine, starting from the state issuing the retry.

This is why state machines should not contain lines that have a
Type field of Relationship. A state is a special kind of relationship
that can be skipped during retries. If we had a Relationship line
anywhere in our state machine, then it would be rerun every time a
later state issued a $evm.root['ae_result'] = 'retry'.

This reinstantiation makes life difficult if we want to store and retrieve variables
between steps in a state machine (something we frequently want to do). Fortunately,
there are three $evm methods that we can use to test for the presence of, save, and
read variables between reinstantiations of our state machine:

$evm.set_state_var(:server_name, "myserver")
if $evm.state_var_exist?(:server_name)
 server_name = $evm.get_state_var(:server_name)
end

We can save most types of variables, but because of the dRuby mechanics behind the
scenes, we can’t save hashes that have default initializers—for example:

my_hash=Hash.new { |h, k| h[k] = {} }

Here the |h, k| h[k] = {} is the initializer function.

Summary
State machines are incredibly useful, and we often use them to create our own intelli‐
gent, reusable workflows. They allow us to focus on the logic of our state methods,
while the Automation Engine handles the complexity of the on-entry and on-exit
condition handling and the state retry logic.

When deciding whether to implement a workflow as a state machine, consider the
following:

• Could I skip any of my workflow steps by intelligently preprocessing?
• Would my code be cleaner if I could assume that preconditions had been set up

or tested before entry?
• Might any of my workflow steps result in an error that could possibly be handled

and recovered from?
• Do any of my workflow steps require me to retry an operation in a wait loop?

Saving Variables Between State Retries | 109

• Do I need to put a timeout on my workflow completing?

If the answer to any of these questions is yes, then a state machine is a good candidate
for implementation.

Further Reading
Automate State Machine Enhancements

110 | Chapter 13: State Machines

http://bit.ly/1TZL0f1

CHAPTER 14

More Advanced Schema Features

Our Automate examples so far have used relatively simple class schema features. We
have used the attribute and method field types, and we’ve seen how to store attributes
as strings or encrypted passwords. We’ve called our instances using simple URI path‐
names such as /General/Methods/HelloWorld, and our instances have run single
methods. This simple type of schema allows us to create many different and useful
instances, but there are times when we need additional flexibility. For example, it is
sometimes useful to be able to select which of several methods in our schema to run,
based on criteria established at runtime.

There are three more class schema features that we can use to extend the usefulness
of our instances: messages, assertions, and collections.

Messages
Each schema field has a Message column/value that we can optionally use to identify
a particular field to execute or evaluate when we call the instance. We can think of
this as a filter to determine which schema values to process.

The default message is create, and if we look at the schema that we created for our /
ACME/General/Methods class, we see that the default message value of create was
automatically set for us for all fields (see Figure 14-1).

111

Figure 14-1. The schema of the /ACME/General/Methods class, showing the message

We specify the message when we create a relationship to an instance, by appending
#message after the URI to the instance. If we don’t explicitly specify a message, then
#create is implicitly used.

For example, we could create a relationship to run our first HelloWorld instance,
using a URI of either:

/ACME/General/Methods/HelloWorld

or:

/ACME/General/Methods/HelloWorld#create

In both cases, the hello_world method would execute, as this is the method schema
field “filtered” by the create message.

Specifying Our Own Messages
It can be useful to create a class/instance schema that allows for one of several meth‐
ods to be executed, depending on the message passed to the instance at runtime. For
example, the schema for the /Infrastructure/VM/Provisioning/Placement class allows
for a provider-specific VM placement algorithm to be created (see Figure 14-2).

112 | Chapter 14: More Advanced Schema Features

Figure 14-2. Schema for the /Infrastructure/VM/Provisioning/Placement class

We can therefore call any instance of the class as part of the VM provisioning state
machine, by appending a message created from a variable substitution corresponding
to the provisioning source vendor (i.e., redhat, vmware, or microsoft):

/Infra.../VM/Provisioning/Placement/default#${/#miq_provision.source.vendor}

In this way we are able to create a generic class and instance definition that contains
several methods, and we can choose which method to run dynamically at runtime by
using a message.

Assertions
One of the schema field types that we can use is an assertion. This is a Boolean check
that we can put anywhere in our class schema (assertions are always processed first in
an instance). If the assertion evaluates to true, the remaining instance schema fields
are processed. If the assertion evaluates to false, the remainder of the instance fields
are not processed.

We can see an example of an assertion (called placement) at the start of the schema
for the Placement class in Figure 14-2. Placement methods are relevant only if the
Automatic checkbox has been selected at provisioning time, and this checkbox sets a
Boolean value, miq_provision.placement_auto. The placement assertion checks
that this value is true and prevents the remainder of the instance from running if
automatic placement has not been selected.

Assertions | 113

Another use for assertions is to put a “guard” field in an instance whose methods are
applicable only to a single provider. For example, we might have an instance that con‐
figures VMware NSX software-defined networking during the provisioning of a vir‐
tual machine. The methods would fail if called during an OpenStack provisioning
operation, but we can add an assertion field to the instance, as follows:

'${/#miq_provision.source.vendor}' == 'VMware'

This will return true if the provisioning operation is to a VMware provider but false
otherwise, thereby preventing the methods from running in a non-VMware context.

Collections
As we have seen, there is a parent-child relationship between the $evm.root object
(the one whose instantiation took us into the Automation Engine) and subsequent
objects created as a result of following schema relationships or by calling
$evm.instantiate.

If a child object has schema attribute values, it can read or write to them by using its
own $evm.object hash (e.g., we saw the use of $evm.object['username'] in Chap‐
ter 4). Sometimes we need to propagate these values back up the parent $evm.root
object, and we do this using collections.

We define a value to collect in the Collect schema column, using this syntax (see
Figure 14-3):

/root_variable_name = schema_variable_name

Figure 14-3. Collections defined in the schema of a provisioning profile

114 | Chapter 14: More Advanced Schema Features

This provisioning profile has several schema attributes defined, such as dialog_name
and auto_approval_state_machine. The Collect value makes these attribute values
available to this instance’s caller as $evm.root['dialog_name'] and
$evm.root['state_machine'].

Summary
This chapter completes our coverage of the objects that we work with in the Auto‐
mate Datastore. The three schema features that we’ve learned about here are used less
frequently but are still very useful tools to have in our scripting toolbag.

Summary | 115

CHAPTER 15

Event Processing

One of the most powerful features of CloudForms Automate is its capability to pro‐
cess events. CloudForms can monitor and respond to external (provider) events, such
as a virtual machine starting or stopping, or a hypervisor going into maintenance.
These events can then be used as triggers for Automate operations. We might wish to
initiate a SmartState Analysis scan on a new VMware virtual machine when a VmCrea
tedEvent event is detected, for example. Perhaps we’d like to intercept and cancel a
USER_INITIATED_SHUTDOWN_VM event being detected on a critical Red Hat Enterprise
Virtualization (RHEV) virtual machine that we’ve tagged as do_not_shutdown.

CloudForms Automate also raises its own events internally, which can then be used as
workflow triggers. We see an example of this when we provision a new virtual
machine (we cover VM provisioning in Part II of the book). The workflow for provi‐
sioning a virtual machine includes an approval stage—we can optionally allow
administrators to approve large VM requests—followed by a quota-checking stage to
ensure that users are not exceeding their quota. The successful approval of the VM
provisioning request results in Automate raising a request_approved internal event.
This request_approved event is then used as the trigger to automatically start the
quota-checking workflow (see Chapter 19 for more details on this workflow).

In this chapter we’ll examine in detail how events are processed by the Automation
Engine. This is a deep-dive chapter containing useful background information but can
be skipped for now if required. Event handling happens automatically in Cloud‐
Forms, and an understanding of the event processing workflow can help us as we
advance our Automate skills. In Chapter 43 we create an entirely new approval work‐
flow, based largely on our knowledge of event processing.

To improve the scalability of event handling, particularly with the advent of new pro‐
viders and provider types, the event processing mechanism has been substantially re-
written in CloudForms 4.0. We’ll first look at the new component parts of Automate’s

117

event processing, and then we’ll study how external events are caught and internal
events are raised and handled.

Event Processing Component Parts
The are several new components involved in processing events in CloudForms 4.0,
including an event stream object type, the Event Switchboard, and event handlers.

The Event Stream Object
Events are now handled by an EventStream object, derived from a parent
EventStream class. An EventStream object is created in response to an external or
internal event, and this object is sent to Automate to initiate the event handling pro‐
cess.

Events enter Automate at the /System/Process/Event instance, and this contains a rel5
relationship that redirects the handling of the event into the Event Switchboard. The
root of the Event Switchboard is at /System/Event (see Figure 15-1).

Figure 15-1. Entry relationship into the Event Switchboard

The Event Switchboard
The Event Switchboard is a new set of namespaces, classes, instances, and methods,
written to handle the processing of events in a scalable manner.

/System/Process/Event contains a rel5 relationship into the switchboard, and this
relationship URI comprises three parts: the event namespace, the event source, and
the event type. Each is selected from the substitution of a runtime variable:

/System/Event/${/#event_stream.event_namespace} /
${/#event_stream.source} /
${/#event_type}

The substituted values are taken from attributes of the EventStream object represent‐
ing the event and the event type.

Event stream namespace

The ${/#event_stream.event_namespace} part of the relationship translates to one
of three event stream namespaces:

118 | Chapter 15: Event Processing

• EmsEvent if the event’s origin was an external management system (i.e., a pro‐
vider). An EmsEvent instance contains all information about its virtual machine,
host, and provider related to the event.

• MiqEvent if the event’s origin was an internal CloudForms/ManageIQ-initiated
policy event.

• RequestEvent if the event is related to an automation request (e.g., request_cre
ated).

These can be seen in Figure 15-2.

Figure 15-2. Event stream namespaces

Event stream source
Within each of the event stream namespaces are classes that define the event stream
source instances. The selection of source class is made from the substitution of the $
{/#event_stream.source} part of the /System/Process/Event rel5 relationship. We
can see that for the EmsEvent namespace, these represent the various external man‐
agement systems (Amazon, OpenStack, etc.). See Figure 15-3.

Event Processing Component Parts | 119

Figure 15-3. Event stream sources

Event type
Under the appropriate event stream source classes are instances that define the pro‐
cessing required for each event type. The selection of event type is made from the sub‐
stitution of the ${/#event_type} part of the /System/Process/Event rel5 relationship.
We can see that these represent the various events that the EventCatcher::Runner
workers detect from the provider message bus. Figure 15-4 shows the event types in
the Amazon namespace.

120 | Chapter 15: Event Processing

Figure 15-4. Event types for the Amazon event stream source

The event type instances contain one or more relationships to event handlers in the /
System/event_handlers namespace that define the actions to take for that event. For
example, the Amazon event AWS_EC2_Instance_running will call the event_action_pol‐
icy handler to push a new vm_start policy event through the Switchboard. It also
calls the event_action_refresh handler to trigger a provider refresh so that the current
instance details can be retrieved (see Figure 15-5).

Figure 15-5. The actions defined by the event type instance

Event Handlers
Event handlers are instances and methods that perform the actual granular process‐
ing for each event. The methods are built in for execution efficiency; their code is not
visible in the Automate Explorer (see Figure 15-6).

Event Processing Component Parts | 121

Figure 15-6. Event handler instances

Catching and Handling External Events
One of the CloudForms server roles that can be configured is Event Monitor. If we
enable this role, we get two additional types of worker threads started on our appli‐
ance, to detect (catch) and process (handle) external provider events.

Event Catching
External (provider) events are monitored by EventCatcher workers, and these moni‐
tor the real-time message or event buses on the various providers: AWS:config for
Amazon, AMQP/RabbitMQ for OpenStack, the native VMware message bus, or the
RHEV-M events exposed through the RESTful API, for example.

There is a specific EventCatcher worker for each provider configured on an appli‐
ance. The EventCatcher workers are named in accordance with the new CloudForms
4.0 provider namespace format, so entries in evm.log appear as:

ManageIQ::Providers::Redhat::InfraManager::EventCatcher::Runner#process_event) \
 EMS [rhevm01] as [admin@internal] Caught event [USER_INITIATED_SHUTDOWN_VM]
ManageIQ::Providers::Redhat::InfraManager::EventCatcher::Runner#process_event) \
 EMS [rhevm01] as [admin@internal] Caught event [VM_DOWN]
...IQ::Providers::Openstack::CloudManager::EventCatcher::Runner#process_event) \
 EMS [rhosp-cont] as [admin] Caught event [compute.instance.power_on.start]

Event Processing
The EventCatcher workers queue the handling and processing of the specific event to
one or more EventHandler workers. The arguments passed to the EventHandler
include the provider-specific details for the event source.

We can trace the steps in the event processing workflow on an RHEV USER_RUN_VM
event being caught.

122 | Chapter 15: Event Processing

Step 1
The first thing that we see in evm.log is the call to the EventHandler, along with argu‐
ments containing the RHEV API ids and hrefs describing the event source:

Args: [{:id=>"26790", \
 :href=>"/api/events/26790", \
 :cluster=>{
 :id=>"00000001-0001-0001-0001-000000000249", \
 :href=>"/api/clusters/00000001-0001-0001-0001-000000000249"}, \
 :data_center=>{
 :id=>"00000002-0002-0002-0002-000000000314",
 :href=>"/api/datacenters/00000002-0002-0002-0002-000000000314"}, \
 :host=>{
 :id=>"b959325b-c667-4e3a-a52e-fd936c225a1a", \
 :href=>"/api/hosts/b959325b-c667-4e3a-a52e-fd936c225a1a"}, \
 :user=>{
 :id=>"fdfc627c-d875-11e0-90f0-83df133b58cc", \
 :href=>"/api/users/fdfc627c-d875-11e0-90f0-83df133b58cc"}, \
 :vm=>{
 :id=>"4e7b66b7-080d-4593-b670-3d6259e47a0f", \
 :href=>"/api/vms/4e7b66b7-080d-4593-b670-3d6259e47a0f"}, \
 :description=>"VM rhel7srv010 started on Host rhelh03.bit63.net", \
 :severity=>"normal", \
 :code=>32, \
 :time=>2016-01-31 15:53:29 UTC, \
 :name=>"USER_RUN_VM"}]

Step 2
The EventHandler worker feeds the event into the Event Switchboard by creating and
passing an EmsEvent EventStream object into Automate in the form of a queued
request (we discuss queued requests more in Chapter 45). The EventHandlers trans‐
late the provider-specific arguments (API hrefs) into CloudForms object IDs and
include these as arguments to the Automate request:

Args: [{:object_type=>"EmsEvent", \
 :object_id=>1000000007999, \
 :attrs=>{:event_id=>1000000007999, \
 :event_stream_id=>1000000007999, \
 :event_type=>"USER_RUN_VM", \
 "VmOrTemplate::vm"=>1000000000023, \
 :vm_id=>1000000000023, \
 "Host::host"=>1000000000002, \
 :host_id=>1000000000002}, \
 :instance_name=>"Event", \
 :user_id=>1000000000001, \
 :miq_group_id=>1000000000002, \
 :tenant_id=>1000000000001, \
 :automate_message=>nil}]

Catching and Handling External Events | 123

Step 3
The request is dequeued and passed to the Automation Engine, which instantiates
the /System/Process/Event entry point to the Event Switchboard, along with the argu‐
ments passed by the EventHandler:

<AutomationEngine> Instantiating [/System/Process/Event?
 EventStream%3A%3Aevent_stream=1000000007999& \
 Host%3A%3Ahost=1000000000002& \
 MiqServer%3A%3Amiq_server=1000000000001& \
 User%3A%3Auser=1000000000001& \
 VmOrTemplate%3A%3Avm=1000000000023& \
 event_id=1000000007999& \
 event_stream_id=1000000007999& \
 event_type=USER_RUN_VM& \
 host_id=1000000000002& \
 object_name=Event& \
 vm_id=1000000000023& \
 vmdb_object_type=event_stream]

Step 4

In the case of our RHEV USER_RUN_VM event, the Event Switchboard directs the pro‐
cessing to the /System/Event/EmsEvent/RHEVM/USER_RUN_VM instance, which
contains relationships to two Automation event_handler instances (see Figure 15-7).

Figure 15-7. Relationships to event_handler instances

Step 5

The rel4 relationship of the /System/Event/EmsEvent/RHEVM/USER_RUN_VM
instance calls /System/event_handlers/event_action_policy to initiate the creation of an
internal generic vm_start event.

This completes the event processing workflow for the external USER_RUN_VM event.

124 | Chapter 15: Event Processing

Creating and Processing Internal Events
In addition to catching external events, CloudForms can raise its own events that can
be processed by control policies or alerts. These are generated and handled by two
internal (non-Automate) methods, build_evm_event and process_evm_event.

We saw in “Step 5” on page 124 that the rel4 relationship of the /System/Event/EmsE‐
vent/RHEVM/USER_RUN_VM instance initiates the creation of a generic vm_start
event. We find that most of the provider-specific events (such as USER_RUN_VM for
RHEV or AWS_EC2_Instance_running for Amazon) are reraised as their generic
equivalent event (such as vm_start).

We can continue following the processing of the USER_RUN_VM into the internal
vm_start event by examining evm.log.

Step 6
We see the /System/event_handlers/event_action_policy event handler being invoked
as requested in “Step 5” on page 124:

Invoking [builtin] method [/ManageIQ/System/event_handlers/event_action_policy] \
 with inputs [{"target"=>"src_vm", "policy_event"=>"vm_start", "param"=>""}]

This event handler calls the internal build_evm_event method to assemble the
parameters for the creation of the new vm_start event:

<AutomationEngine> MiqAeEvent.build_evm_event >> event=<"vm_start">
 inputs=<{:"manageiq::providers::redhat::inframanager::vm"=>
 #<ManageIQ::Providers::Redhat::InfraManager::Vm
 id: 1000000000023,
 ...>,
 :ext_management_systems=>
 #<ManageIQ::Providers::Redhat::InfraManager
 id: 1000000000001,
 ...>,
 :ems_event=>
 #<EmsEvent
 id: 1000000007999,
 event_type: "USER_RUN_VM",
 message: "VM rhel7srv010 started on Host rhelh03.bit63.net",
 ...>,
 "MiqEvent::miq_event"=>1000000008000,
 :miq_event_id=>1000000008000,
 "EventStream::event_stream"=>1000000008000,
 :event_stream_id=>1000000008000}>

Creating and Processing Internal Events | 125

Step 7
The new event is queued for processing by the Automation Engine (much of the work
of the Automate Engine involves queueing and dequeuing further Automate work
tasks):

MIQ(MiqAeEngine.deliver) Delivering {:event_type=>"vm_start",
 :"manageiq::providers::redhat::inframanager::vm"=>
 #<ManageIQ::Providers::Redhat::InfraManager::Vm
 ...
 :event_stream_id=>1000000008000} for object \
 [ManageIQ::Providers::Redhat::InfraManager::Vm.1000000000023] \
 with state [] to Automate

Step 8
The Automation Engine dequeues the task and instantiates the /System/Process/Event
entry point into the Event Switchboard, along with the arguments assembled and
passed by the build_evm_event internal method:

<AutomationEngine> Instantiating [/System/Process/Event?
 EventStream%3A%3Aevent_stream=1000000008000& \
 MiqEvent%3A%3Amiq_event=1000000008000& \
 MiqServer%3A%3Amiq_server=1000000000001& \
 User%3A%3Auser=1000000000001& \
 VmOrTemplate%3A%3Avm=1000000000023& \
 ems_event=1000000007999& \
 event_stream_id=1000000008000& \
 event_type=vm_start& \
 ext_management_systems=1000000000001&
 manageiq%3A%3Aproviders%3A%3Aredhat%3A%3Ainframanager%3A%3Avm=1000000000023& \
 miq_event_id=1000000008000& \
 object_name=Event& \
 vmdb_object_type=vm] \

Step 9
The Event Switchboard directs the processing to the /System/Event/MiqEvent/
POLICY/vm_start instance, which does not exist by default (we could create one if we
wished). The /System/Event/MiqEvent/POLICY/.missing instance is run in its place:

Following Relationship [miqaedb:/System/Event/MiqEvent/POLICY/vm_start#create]

Instance [/ManageIQ/System/Event/MiqEvent/POLICY/vm_start] \
 not found in MiqAeDatastore - trying [.missing]

The .missing instance contains a rel2 relationship to /System/event_handlers/
event_enforce_policy, so we follow the relationship chain:

Invoking [builtin] method [/ManageIQ/System/event_handlers/ \
 event_enforce_policy] with inputs [{}]

126 | Chapter 15: Event Processing

Step 10
The event_enforce_policy event handler initiates the processing of any control policies
and alerts that may be associated with the event being handled.

This completes the event processing workflow for the internal vm_start event.

Event-Initiated Control Policy Processing
The next part of the event processing workflow handles any control policies that we
might have associated with the event. This is where, for example, we would initiate a
SmartState Analysis scan on a VM Create Complete policy event.

We can continue tracing the event processing from the previous sections, which
started with an RHEV USER_RUN_VM event being caught. We saw “Step 10” on page
127 calling /System/event_handlers/event_enforce_policy.

This method calls the internal process_evm_event method with a target argument
corresponding to the VM object that raised the event:

MIQ(MiqEvent#process_evm_event) \
 target = [#<ManageIQ::Providers::Redhat::InfraManager::Vm \
 id: 1000000000023, ...>]

Step 11

The process_evm_event internal method raises the vm_start (VM Power On) policy
event and processes any actions (i.e., control policies) associated with the triggering
of this policy event:

MIQ(MiqEvent#process_evm_event) Event Raised [vm_start]

In our case we have a VM control policy that runs an Invoke a Custom Automation
action when the VM Power On event is triggered. The custom automation instance
runs /Stuff/Methods/ObjectWalker (via /System/Request/Call_Instance). See
Figure 15-8.

Creating and Processing Internal Events | 127

Figure 15-8. VM control policy that links a VM Power On event to Run ObjectWalker

Step 12
The automation request to run Call_Instance is queued for processing by the Auto‐
mation Engine. This is subsequently dequeued and delivered to Automate:

MIQ(MiqAeEngine.deliver) Delivering \
 {"namespace"=>"stuff", \
 "class"=>"methods", \
 "instance"=>"objectwalker", \
 :request=>"call_instance", \
 "MiqPolicy::miq_policy"=>1000000000001} \
 for object [VmOrTemplate.1000000000023] with state [] to Automate

We see object_walker running in the automation.log file.

Event-Initiated Alert Processing
The final part of the event processing workflow handles any alerts that we might have
associated with the event.

Step 13

The internal process_evm_event method now raises the vm_start (VM Operation:
VM Power On) alert and processes any actions associated with the triggering of this
alert:

MIQ(MiqEvent#process_evm_event) Alert for Event [vm_start]

In our case we have an alert that sends a management event called test when the VM
Operation: VM Power On alert is triggered (see Figure 15-9).

128 | Chapter 15: Event Processing

Figure 15-9. An alert to send a test management event

Step 14

The alert is queued for processing by the internal evaluate_alerts method, and our
test event is run:

MIQ(MiqAlert.evaluate_alerts) [vm_start] Target: \
 ManageIQ::Providers::Redhat::InfraManager::Vm Name: [rhel7srv010], \
 Id: [1000000000023] Queuing evaluation of Alert: [VM Powered On]

This completes the full event processing workflow that started when the USER_RUN_VM
event was detected from the RHEV provider. We saw the workflow pass through four
stages: the handling of the external event, the raising and processing of the corre‐
sponding internal event, and the subsequent control policy and alert processing that
may have been been associated with the event type.

Event-Initiated Automation Request Workflows
Automation Engine workflows that involve separated requests and tasks (see Chap‐
ter 12) also use raised events to control the processing sequence.

We can take a detailed look at the Automation Engine’s workflow by examining the
steps involved in handling a RESTful API call to run the Automate /Stuff/Methods/
Test instance.

We know that this type of API call will be handled in request and task stages, where
the “task” is the actual running of our automation script. We also know that requests
must go through an approval workflow. We can follow the sequence of steps through
the processing of the various events using automation.log, and the helpful “Follow‐
ing…Followed” messages that the Engine prints.

Event-Initiated Automation Request Workflows | 129

Step 1: The request_created Event
The first messages that we see after the API call has been made notify us of the
request_created event happening. We’re looking at CloudForms 4.0, so we see the
new event stream information added to the event:

MIQ(AutomationRequest#call_automate_event) \
 Raising event [request_created] to Automate
MiqAeEvent.build_evm_event >> event=<"request_created"> \
 inputs=<{"EventStream::event_stream"=>1000000009327, \
 :event_stream_id=>1000000009327}>
MIQ(AutomationRequest#call_automate_event) \
 Raised event [request_created] to Automate
Instantiating [/System/Process/Event? \
 AutomationRequest%3A%3Aautomation_request=1000000000029& \
 EventStream%3A%3Aevent_stream=1000000009340& \
 MiqRequest%3A%3Amiq_request=1000000000029& \
 MiqServer%3A%3Amiq_server=1000000000001& \
 User%3A3Auser=1000000000001& \
 event_stream_id=1000000009340& \
 event_type=request_created& \
 object_name=Event& \
 vmdb_object_type=automation_request]

Here we see the event being triggered, which takes us into the standard /System/
Process/Event entry point instance. As we’ve seen, /System/Process/Event directs us
into the Event Switchboard:

/System/Event/${/#event_stream.event_namespace}/ \
 ${/#event_stream.source}/${/#event_type}

Step 1.1

The variable substitutions are made from the EventStream object’s attributes, and we
follow the relationship chain through the Switchboard:

Following Relationship [miqaedb:/System/Event/RequestEvent/Request/\
 request_created#create]

Step 1.2
The /System/Event/RequestEvent/Request/request_created instance contains a single
rel5 relationship to /System/Policy/request_created. Once again we follow the rela‐
tionship chain:

Following Relationship [miqaedb:/System/Policy/request_created#create]

130 | Chapter 15: Event Processing

Step 1.3
We are now in the /System/Policy namespace, which is where the event-specific poli‐
cies are defined—that is, what to do when this type of event happens. Instances in this
namespace typically have several entries (see Figure 15-10).

Figure 15-10. The schema of the /System/Policy/request_created instance

A request_created event is raised for all types of request, so before any event-
specific policy can be implemented, the type of request must be determined.

Step 1.4
The /System/Policy/request_created instance first runs the get_request_type method to
find out what type of request has been created:

Invoking [inline] method [/ManageIQ/System/Policy/get_request_type] \
 with inputs [{}]
<AEMethod [/ManageIQ/System/Policy/get_request_type]> Starting
<AEMethod get_request_type> Request Type:<AutomationRequest>
<AEMethod [/ManageIQ/System/Policy/get_request_type]> Ending

The get_request_type method returns Request Type:<AutomationRequest>.

Step 1.5

The next entry in the /System/Policy/request_created schema is the rel4 relationship
to /System/Process/parse_provider_category, so we continue to follow the relationship
chain:

Following Relationship [miqaedb:/System/Process/parse_provider_category#create]

Some event processing can be provider-specific; for example, we may wish to handle
the same event in a different way, depending on whether it came from VMware or
OpenStack. The rel4 relationship from /System/Policy/request_created takes us to the
parse_provider_category instance to determine the provider.

Event-Initiated Automation Request Workflows | 131

The parse_provider_category instance runs the parse_provider_category method:

Invoking [inline] method [/ManageIQ/System/Process/parse_provider_category] \
 with inputs [{}]
<AEMethod [/ManageIQ/System/Process/parse_provider_category]> Starting
<AEMethod parse_provider_category> Parse Provider Category Key: nil \
 Value: unknown
<AEMethod [/ManageIQ/System/Process/parse_provider_category]> Ending

The parse_provider_category method returns a value of unknown, as this automation
request does not involve any provider operations (as it would if we were provisioning
a VM, for example).

Step 1.6

The final entry in the /System/Policy/request_created schema is the rel5 relationship
to /System/Policy/AutomationRequest_created (AutomationRequest having been sub‐
stituted for ${#request_type}).

This doesn’t exist, so we see this warning message:

Instance [/ManageIQ/System/Policy/AutomationRequest_created] not found in \
 MiqAeDatastore - trying [.missing]

We can create a /System/Policy/AutomationRequest_created instance if we choose, but
in this case the .missing instance does nothing, so we end that event-initiated chain.

Step 2: The request_approved Event
The next event that we see is request_approved, which follows a very similar chain
of relationships (we find that request_approved executes almost concurrently with
request_created because we specified :auto_approve to be true in the automation
request API call). Here we see the extract from evm.log:

MIQ(AutomationRequest#call_automate_event) \
 Raising event [request_approved] to Automate
MiqAeEvent.build_evm_event >> event=<"request_approved"> \
 inputs=<{"EventStream::event_stream"=>1000000009436,
 :event_stream_id=>1000000009436}>
MIQ(AutomationRequest#call_automate_event) \
 Raised event [request_approved] to Automate
Instantiating [/System/Process/Event? \
 AutomationRequest%3A%3Aautomation_request=1000000000031& \
 EventStream%3A%3Aevent_stream=1000000009436& \
 MiqRequest%3A%3Amiq_request=1000000000031& \
 MiqServer%3A%3Amiq_server=1000000000001& \
 User%3A%3Auser=1000000000001& \
 event_stream_id=1000000009436& \
 event_type=request_approved& \
 object_name=Event& \
 vmdb_object_type=automation_request]

132 | Chapter 15: Event Processing

Step 2.1
Following Relationship [miqaedb:/System/Event/RequestEvent/Request/ \
 request_approved#create]

Step 2.2
Following Relationship [miqaedb:/System/Policy/request_approved#create]

Step 2.3
Following Relationship [miqaedb:/System/Process/ \
 parse_provider_category#create]
Invoking [inline] method [/ManageIQ/System/Process/ \
 parse_provider_category] with inputs [{}]
<AEMethod [/ManageIQ/System/Process/parse_provider_category]> Starting
<AEMethod parse_provider_category> Parse Provider Category Key: nil \
 Value: unknown
<AEMethod [/ManageIQ/System/Process/parse_provider_category]> Ending

Step 2.4
Following Relationship [miqaedb:/System/Policy/ \
 AutomationRequest_Approved#create]
Instance [/ManageIQ/System/Policy/AutomationRequest_Approved] not found \
 in MiqAeDatastore - trying [.missing]

The request_approved event processing doesn’t call get_request_type, as there is
no need for type-specific processing at this stage.

Once again we have no AutomationRequest_Approved method, so we terminate this
event-initiated chain at this point.

Step 3: The request_starting Event
The third event that we see is request_starting. At this stage we’re running within
the context of an automation request; each of these log lines is preceded by the text Q-
task_id([automation_request_1000000000031]).

MIQ(AutomationRequest#call_automate_event_sync) \
 Raising event [request_starting] to Automate synchronously
MiqAeEvent.build_evm_event >> event=<"request_starting"> \
 inputs=<{"EventStream::event_stream"=>1000000009437,
 :event_stream_id=>1000000009437}>

Instantiating [/System/Process/Event? \
 AutomationRequest%3A%3Aautomation_request=1000000000031& \
 EventStream%3A%3Aevent_stream=1000000009437& \
 MiqRequest%3A%3Amiq_request=1000000000031& \
 MiqServer%3A%3Amiq_server=1000000000001& \
 User%3A%3Auser=1000000000001& \
 event_stream_id=1000000009437& \

Event-Initiated Automation Request Workflows | 133

 event_type=request_starting& \
 object_name=Event& \
 vmdb_object_type=automation_request]

Step 3.1
Following Relationship [miqaedb:/System/Event/RequestEvent/Request/ \
 request_starting#create]

Step 3.2
Following Relationship [miqaedb:/System/Policy/request_starting#create]
Invoking [inline] method [/ManageIQ/System/Policy/get_request_type] \
 with inputs [{}]
<AEMethod [/ManageIQ/System/Policy/get_request_type]> Starting
<AEMethod get_request_type> Request Type:<AutomationRequest>
<AEMethod [/ManageIQ/System/Policy/get_request_type]> Ending

Step 3.3
Following Relationship [miqaedb:/System/Process/ \
 parse_provider_category#create]
Invoking [inline] method [/ManageIQ/System/Process/ \
 parse_provider_category] with inputs [{}]
<AEMethod [/ManageIQ/System/Process/parse_provider_category]> Starting
<AEMethod parse_provider_category> Parse Provider Category Key: nil \
 Value: unknown
<AEMethod [/ManageIQ/System/Process/parse_provider_category]> Ending

Step 3.4
Following Relationship [miqaedb:/System/Policy/ \
 AutomationRequest_starting#create]
Instance [/ManageIQ/System/Policy/AutomationRequest_starting] \
 not found in MiqAeDatastore - trying [.missing]

Step 3.5
MIQ(AutomationRequest#call_automate_event_sync) \
 Raised event [request_starting] to Automate

At the end of this chain we see the automation request queuing the automation task:

Q-task_id([automation_request_1000000000031]) \
 MIQ(AutomationTask#deliver_to_automate) \
 Queuing Automation Request: [Automation Task]...
Q-task_id([automation_request_1000000000031]) \
 MIQ(AutomationTask#execute_queue) \
 Queuing Automation Request: [Automation Task]...

134 | Chapter 15: Event Processing

Step 4: Automation Task Processing
Finally, we see the actual automation task running, which invokes our /Stuff/Methods/
Test instance. At this stage, each of these log lines is preceded by the text Q-
task_id([automation_task_1000000000034]) to indicate that we’re running within
the context of an automation task:

MIQ(AutomationTask#execute) Executing Automation Request request: \
 [Automation Task]
MIQ(AutomationTask#execute) Automation Request initiated
Instantiating [/Stuff/Methods/Test? \
 AutomationTask%3A%3Aautomation_task=1000000000034& \
 MiqServer%3A%3Amiq_server=1000000000001& \
 User%3A%3Auser=1000000000001& \
 object_name=test& \
 userid=admin& \
 vmdb_object_type=automation_task]
Invoking [inline] method [/Stuff/Methods/Test] with inputs [{}]
<AEMethod [/Stuff/Methods/Test]> Starting
<AEMethod test> This is a test!
<AEMethod [/Stuff/Methods/Test]> Ending
Method exited with rc=MIQ_OK

Extending Automate Event Handling
The provider-specific event stream source classes and associated instances under /
System/Event/EmsEvent do not necessarily handle every possible event that can be
raised by the provider. Sometimes we need to extend event handling to process a
nondefault event.

We can extend the out-of-the-box event handling by creating our own instances
under /System/Event (CloudForms 3.2) or /System/Event/EmsEvent/{Provider}
(CloudForms 4.0) to handle these nondefault events caught by the EventCatcher
workers.

As an example, the compute.instance.power_on.end OpenStack event is not han‐
dled by default with CloudForms 4.0. If we look in evm.log we see:

Instance [/ManageIQ/System/Event/EmsEvent/OPENSTACK/ \
 compute.instance.power_on.end] not found in MiqAeDatastore - trying [.missing]

As a result, the Cloud instance’s tile quadrant in the WebUI that shows power status
doesn’t always change to reflect the instance being powered on.

Extending Automate Event Handling | 135

Adding a New Automation Instance to /System/Event/EmsEvent/
There is already a ManageIQ/System/Event/EmsEvent/OpenStack/
compute.instance.power_off.end instance to handle the com

pute.instance.power_off.end event. This instance calls two event_handlers (see
Figure 15-11).

Figure 15-11. Event handlers called by the compute.instance.power_off.end instance

We can copy this instance to our domain and rename it as /System/Event/EmsEvent/
OpenStack/compute.instance.power_on.end (see Figure 15-12).

Figure 15-12. Creating a compute.instance.power_on.end instance

We change the second event_handler line to trigger a vm_start policy event (see
Figure 15-13).

Figure 15-13. Editing the event handlers as required

136 | Chapter 15: Event Processing

Now when we power on an OpenStack instance, we see the instance’s tile quadrant
change correctly, and we see the raising and processing of the vm_start event:

Instantiating [/System/Process/Event? \
 EventStream%3A%3Aevent_stream= \
 1000000009501&MiqEvent%3A%3Amiq_event=1000000009501& \
 MiqServer%3A%3Amiq_server=1000000000001& \
 User%3A%3Auser=1000000000001& \
 VmOrTemplate%3A%3Avm=1000000000035& \
 ems_event=1000000009500& \
 event_stream_id=1000000009501& \
 event_type=vm_start& \
 ext_management_systems= 1000000000002& \
 manageiq%3A%3Aproviders%3A%3Aopenstack%3A%3Acloudmanager%3A%3Avm= \
 1000000000035& \
 miq_event_id=1000000009501& \
 object_name=Event& \
 vmdb_object_type=vm]

This will ensure that any control policies that are triggered by a VM Power On event
will run correctly.

Summary
Phew! This has been a long theoretical chapter that has taken us on a detailed tour of
how the Automation Engine handles events.

We have familiarized ourselves with the component parts of the new event handling
mechanism in CloudForms 4.0. We have seen how external provider events are detec‐
ted (“caught”) and handled, and we have followed the event processing workflow
from the detection of an RHEV provider event through the raising of the correspond‐
ing internal event and seen how related control policies and alerts are processed.

We have seen that Automate actions involving separated requests and tasks also use
event-initiated workflows, and we have seen how to extend event handling to handle
additional events.

Next Steps
This concludes Part I of the book. We now have enough knowledge of the Automate
Datastore and the structures, concepts, and objects it comprises to be able to tackle
most automation challenges.

In Part II we will put this knowledge to good use and start investigating the Automate
operations involved in provisioning a virtual machine.

Summary | 137

PART II

Provisioning Virtual Machines

Provisioning a virtual machine is probably the most complex operation that is per‐
formed by the out-of-the-box Automation Engine.

Part II introduces the steps and workflows involved in provisioning virtual machines
and how we can customize these for our own purposes. It uses all of the automation
features that we’ve discussed so far in the book.

CHAPTER 16

Provisioning a Virtual Machine

One of the most common things that we do as cloud or virtualization administrators
is to create new virtual machines or instances. We get used to the procedure: picking
a template; selecting a target cluster, datastore, and network; and choosing a suitable
name. These are generally manual steps, but CloudForms has an out-of-the-box vir‐
tual machine provisioning workflow that automates the process.

There are many steps involved in automatically provisioning a virtual machine. The
CloudForms provisioning workflow has been designed to be extremely flexible, and it
allows a great deal of customization based on tagging, the requesting user’s group
membership, and the destination provider type (e.g., RHEV, VMware, OpenStack,
etc.).

The Provisioning Process
The virtual machine provisioning process starts with a user (the requester) selecting
either Provision VMs from under the Infrastructure → Virtual Machines → Lifecycle
button group, or Provision Instances from under the Cloud → Instances → Lifecycle
button group (see Figure 16-1).

141

Figure 16-1. Initiating a provisioning operation

This takes us into a selection dialog where we pick an image or template to provision
from and click the Continue button (see Figure 16-2).

Figure 16-2. Selecting the provisioning source template

Once we click Continue, we enter into the virtual machine provisioning workflow,
starting with information retrieved from the profile and moving into the state
machine.

Group-Specific Considerations, and Common Processing
Provisioning a virtual machine or instance involves many separate decisions, and
steps that come together to form the VM provisioning workflow.

Some of these steps need to be performed or evaluated within the context of the
requesting user’s access-control group membership, such as the choice of provision‐
ing dialog to present to the user in the WebUI. We may, for example, wish to custom‐
ize the WebUI dialog to present a restricted set of options to certain groups of users
(see also Chapter 25). We can decide to apply quotas to access-control groups, or cre‐
ate specific customizations such as group-specific virtual machine naming schemes.
Group-specific processing is typically performed in the request context, before the
tasks are created (see Chapter 12 for a description of requests and tasks).

142 | Chapter 16: Provisioning a Virtual Machine

Other steps in the virtual machine provisioning workflow are common to all virtual
machine or instance provisioning operations. These typically include the allocation of
an IP address, registration with a CMDB, or emailing the requester that the provision
has completed, for example.

The group-specific provisioning profile contains the per-group attributes, instance
names, and state machine names that are used in processing the provisioning request
and in preparing the provisioning task(s).

The more generic sequence of common steps involved in provisioning a virtual
machine or instance comes from the VM provisioning state machine. This is processed
in the context of the provisioning task.

Summary
This short chapter has introduced the group-specific provisioning profile and the
more generic VM provisioning state machine that combine to form the virtual
machine provisioning workflow.

In the following chapters, we will examine these in more detail, starting with the pro‐
visioning profile.

Summary | 143

CHAPTER 17

The Provisioning Profile

As we have seen, some of the selections or choices involved in automating the provi‐
sioning process for virtual machines should be made within the context of the
requesting user’s access-control group. This allows our automation workflow to
include group-specific processing logic. For example, we may wish to direct develop‐
ment and test virtual machines to a specific cluster, or automatically name some vir‐
tual machines according to our own group-specific naming convention.

The attributes, relationships, and method names that are used to determine these
operations and decisions are stored in group-specific provisioning profiles. These
include the selection of the appropriate provisioning dialog, checking the provision‐
ing request against quota, an optional approval workflow for large VM requests, and
the option to use group-specific VM naming and network allocation methods.

Location
The provisioning profiles are stored under /{Cloud,Infrastructure}/VM/Provisioning/
Profile. There is one out-of-the-box group-specific profile for the EvmGroup-

super_administrator group, but we can create new profiles for any user groups that
we wish to provision from. If a user who is not a member of a listed group profile
provisions a VM, the .missing profile will be used (see Figure 17-1).

145

Figure 17-1. Provisioning profiles

Schema
The provisioning profile schema contains a number of attributes, relationships, and
methods (see Figure 17-2).

Figure 17-2. The Name and Value fields in the profile schema

Each of these is selected using a message and most use collect to propagate the
attributes up to $evm.root in the provisioning operation (see Figure 17-3).

146 | Chapter 17: The Provisioning Profile

Figure 17-3. The Collect and Message fields in the profile schema

Customizing the Profile
The profile is designed to be user-customizable, and in fact we frequently add profiles
for specific user groups or edit the .missing profile to account for updated VM nam‐
ing methods or modified provisioning dialogs.

Profile Processing in Detail
Let’s take a detailed look at how we use the group provisioning profile when provi‐
sioning a virtual machine.

The Provisioning Dialog
The first profile query is performed as soon as the requesting user selects a template
to provision from and clicks the Continue button. The WebUI must launch the cor‐
rect provisioning dialog for the target platform, operation type, and (optionally) the
user group, and it determines this information from the profile.

The provisioning dialog presents the main set of tabs and elements that prompt us for
all the information that we need to provision the VM: VM name, number of CPUs,
VLAN, and so on (see Figure 17-4).

Customizing the Profile | 147

Figure 17-4. The provisioning dialog

To find the correct provisioning dialog to launch when we select a template and click
the Continue button, the profile instance is launched using the messages
get_pre_dialog_name and get_dialog_name. This action queries the pre_dia
log_name and dialog_name attributes and runs the vm_dialog_name_prefix method.
The dialog name to load is assembled from the runtime substitution of the variables
in the string "${#dialog_name_prefix}_${/#dialog_input_request_type}".

The profile querying at this stage is performed by the internal Rails
class MiqRequestWorkflow, rather than by a method that we can see
in the Automation Datastore.

We can see the output in evm.log:

...Querying Automate Profile for dialog name

...Invoking [inline] method [.../Profile/vm_dialog_name_prefix] with inputs [{}]

...vm_dialog_name_prefix> Detected Platform:<redhat>

...vm_dialog_name_prefix> Platform:<redhat> \
 dialog_name_prefix:<miq_provision_redhat_dialogs>
...
...Loading dialogs <miq_provision_redhat_dialogs_template> for user <admin>

VM Name (Pass 1)
The profile is queried using the message get_vmname to retrieve the instance URI to
be used to formulate the name of the VM to be provisioned. The VM name is saved
as the collect variable vmname.

148 | Chapter 17: The Provisioning Profile

This VM name is then inserted into the text string that will form the request object’s
description attribute (miq_provision_request.description)—for example, "Pro
vision from [rhel7-generic] to [rhel7srv004]".

If we are provisioning two or more VMs in a single request and letting Automate
handle the VM auto–number-incrementing (e.g., rhel7srv005, rhel7srv006, etc.) then
the request object description is more generic—for example, "Provision from

[rhel7-generic] to [rhel7srvxxx]".

Approval
Once the request object is created, we begin a series of event-driven processing steps
based on instances in /System/Policy (see Figure 17-5).

Figure 17-5. MiqProvision-related policy instances

The first of these to be triggered is MiqProvisionRequest_created. This contains two
relationships, the first of which queries the profile using the message get_auto_appro
val_state_machine to retrieve the state machine name to be used to handle the auto-
approval process. The second relationship runs the Default instance of this state
machine.

Approved, pending, or denied
Depending on the outcome of the approval process (approved, pending, or denied),
an email is sent to the requester by the corresponding event/policy instance.

Quota
The next event-driven policy instance to be triggered is MiqProvisionRequest_starting.
On CloudForms 3.2 this contains two relationships. The first of these queries the pro‐
file using the message get_quota_state_machine to retrieve the state machine name
to be used to handle the quota-checking process. The second relationship runs the
Default instance of this state machine.

Profile Processing in Detail | 149

Quota handling has been rewritten for CloudForms 4.0, and so the MiqProvisionRe‐
quest_starting policy instance just contains a single relationship to the /System/
CommonMethods/QuotaStateMachine/quota state machine.

Once the quota has been checked and passed, the request continues processing, and
the task objects are created.

VM Name (Pass 2)
The profile is again queried using the message get_vmname to retrieve the instance
URI to be used to formulate the name of the VM to be provisioned. This second call
is made while processing the provisioning request as part of the creation of the tasks
that will handle the provisioning of each VM in the request. The VM name is saved as
the collect variable vmname.

The derived VM name is added to the task object’s options hash as miq_provi
sion.options[:vm_target_name] and miq_provision.options[:vm_target_host
name]. This is performed once per task object (there may be several task objects
created for a single request object).

VM Provisioning State Machine
Finally, the profile is used by the provisioning task to determine the state machine
instance to be used to provision the VM. A call is made to /Infrastructure/VM/Lifecy‐
cle/Provisioning#create.

This instance contains two relationships. The first is /Infrastructure/VM/Provision‐
ing/Profile/${/#user.normalized_ldap_group}#get_state_machine. This queries the
profile using the message get_state_machine to retrieve the state machine class
name to be used to handle the provisioning of the VM. The state machine class name
is saved as the collect variable state_machine.

The second relationship is /Infrastructure/VM/Provisioning/StateMachines/${/
#state_machine}/${/#miq_provision.provision_type}. This uses the state_machine

variable retrieved from collect in the previous relationship and runs the instance of
this state machine whose name corresponds to a variable substitution for miq_provi
sion.provision_type. When we are performing a VM clone from a template (the
most common VM provision operation), this will be template.

Summary
In this chapter we have seen how the access-control-group-specific selections are
made as part of the virtual machine provisioning automation workflow. The provi‐
sioning profiles allow us considerable flexibility in customizing the workflow to take
into account group-specific choices that we might wish to make.

150 | Chapter 17: The Provisioning Profile

The concept of using a group profile to hold group-specific options is not limited to
virtual machine provisioning. It is also used for service provisioning, and we create a
group profile to handle our automation request approval workflow in Chapter 43.

Further Reading
Provisioning Virtual Machines and Hosts—Provisioning Profiles

Summary | 151

http://red.ht/1sz08ZX

CHAPTER 18

Approval

A newly provisioned virtual machine consumes resources in a virtual infrastructure
and potentially costs money in a public cloud. To control the consumption of resour‐
ces and keep cloud costs in check, an approval stage is built into the virtual machine
and instance provisioning workflow. By default, requests for single small virtual
machines are auto-approved, but attempts to provision larger or multiple VMs are
redirected for administrative approval.

This chapter describes the approval process and shows how we can fine-tune the
approval thresholds based on the number of VMs, number of CPUs, or amount of
memory in the request.

Approval Workflow
The provision request approval workflows are triggered by the request_created and
request_pending events (see Figure 18-1).

153

Figure 18-1. Event-triggered provision request approval workflows

Request Created Event
The approval workflow for a virtual machine provision request is entered as a result
of the /System/Policy/MiqProvisionRequest_created policy instance being run from a
request_created event. This policy instance contains two relationships, rel5 and
rel6.

The rel5 relationship performs a group profile lookup to read the value of the
auto_approval_state_machine attribute, which by default is ProvisionRequestAp‐
proval for an infrastructure virtual machine or cloud instance provision request.

The rel6 relationship runs the Default instance of this state machine (see
Figure 18-2).

154 | Chapter 18: Approval

Figure 18-2. The ProvisionRequestApproval state machine instances and methods

The Default instance of the ProvisionRequestApproval state machine has the field val‐
ues shown in Figure 18-3.

Figure 18-3. The ProvisionRequestApproval/Default instance

This instance will auto-approve any VM provisioning request containing a single
VM, but requests for more than this number will require explicit approval from an
administrator or anyone in a group with the EvmRole-approver (or equivalent) role.

Methods
The ProvisionRequestApproval state machine uses three methods to perform the vali‐
dation.

validate_request

The validate_request method is run from the On Entry field of the ValidateRequest
state. It checks the provisioning request against the schema max_ attributes, and if the
request doesn’t exceed these maxima, the method exits cleanly. If the request does
exceed the maxima, the method sets $evm.root['ae_result'] = 'error' and a rea‐
son message before exiting.

Approval Workflow | 155

pending_request

The pending_request method is run from the On Error field of the ValidateRequest
state. This will be run if validate_request exits with $evm.root['ae_result'] =
'error'. The method is simple and merely raises a request_pending event to trigger
the MiqProvisionRequest_pending policy instance:

Raise automation event: request_pending
$evm.root["miq_request"].pending

approve_request

The approve_request method is run from the On Entry field of the ApproveRequest
state. This will be run if validate_request exits cleanly. This is another very simple
method that merely auto-approves the request:

Auto-Approve request
$evm.log("info", "AUTO-APPROVING")
$evm.root["miq_request"].approve("admin", "Auto-Approved")

Request Pending Event
If the ProvisionRequestApproval state machine doesn’t approve the request, it calls
$evm.root["miq_request"].pending, which triggers a request_pending event. This
is the trigger point into the second workflow through the MiqProvisionRequest_pend‐
ing policy instance. This instance sends the emails to the requester and approver,
notifying them that the provisioning request has not been auto-approved and needs
manual approval.

Overriding the Defaults
We can copy the Default instance (including path) to our own domain and change or
set any of the auto-approval schema attributes—that is, max_cpus, max_vms, max_mem
ory, or max_retirement_days. Our new values will then be used when the next vir‐
tual machine is provisioned.

Template Tagging
We can also override the auto-approval max_* values stored in the ProvisionReques‐
tApproval state machine on a per-template basis, by applying tags from one or more
of the following tag categories to the template:

156 | Chapter 18: Approval

Tag category name Tag category display name

prov_max_cpu Auto Approve - Max CPU

prov_max_memory Auto Approve - Max Memory

prov_max_retirement_days Auto Approve - Max Retirement Days

prov_max_vm Auto Approve - Max VM

If a template is tagged in such a way, then any VM provisioning request from that
template will result in the template’s tag value being used for auto-approval consider‐
ations, rather than the attribute value from the schema.

VM Provisioning–Related Email
There are four email instances with corresponding methods that are used to handle
the sending of VM provisioning–related emails. The instances each have the
attributes to_email_address, from_email_address, and signature, which we can
(and should) customize, after copying the instances to our own domain.

Figure 18-4. Copying and editing the approval email schema fields

Three of the instances are approval-related. The to_email_address value for the
MiqProvisionRequest_Pending instance should contain the email address of a user (or
mailing list) who is able to log in to the CloudForms appliance as an administrator or
as a member of a group with the EvmRole-approver role or equivalent (see
Figure 18-4).

Summary
This chapter has shown how the virtual machine provisioning workflow allows for
the approval stage to filter requests for large virtual machines while auto-approving
small requests. This simplifies our life as virtualization administrators considerably. It
allows us to retain a degree of control over large resource requests, even allowing us
to define our own concept of large by setting schema attributes accordingly. It also

VM Provisioning–Related Email | 157

allows us to delegate responsibility for small virtual machine requests to our standard
users. Automation allows us to intervene for the exceptional cases yet auto-approve
the ordinary “business as usual” requests.

We have also seen how we can fine-tune these approval thresholds on a per-template
basis, so that if some of our users have valid reasons to provision large virtual
machines from specific templates, we can allow them to without interruption.

The approval state machine and methods are a good example of the utility of defining
thesholds as schema attributes or by using tags. We can customize the approval pro‐
cess to our own requirements without the need to write or edit any Ruby code.

Further Reading
Provisioning Virtual Machines and Hosts Chapter 3—Working with Requests

158 | Chapter 18: Approval

http://red.ht/1tn9Zmv

CHAPTER 19

Quota Management

In the last chapter we saw how every virtual machine or instance provisioning
request involves an approval process, and that requests for larger VMs would nor‐
mally require administrative approval. Even with auto-approval thresholds set at their
low defaults, however, our users could still, over time, create a large number of small
virtual machines, consume our virtual infrastructure resources, and increase cloud
costs.

For this reason CloudForms also allows us to establish quotas on tenants or user
groups. Quotas can be set for the number of virtual machines, number of CPUs,
amount of memory, or quantity of storage owned by the tenant or group. If a virtual
machine provisioning request would result in the quota being exceeded, the request
is rejected and the requesting user is emailed.

Quotas are not enabled by default with CloudForms 4.0, but they are simple to turn
on and configure.

Quotas in Cloudforms 4.0
Quota management has been completely rewritten for CloudForms 4.0. Prior to this
release, quota management for cloud instance, infrastructure virtual machine, and
service provisioning was handled in different places under the respective /Cloud, /
Infrastructure, and /Service namespaces. In CloudForms 4.0 these have been consoli‐
dated under /System/CommonMethods in the Automate Datastore (see Figure 19-1).

159

Figure 19-1. Quota classes, instances, and methods

The ManageIQ/System/CommonMethods/QuotaStateMachine/quota state machine
instance has the field values shown in Figure 19-2.

160 | Chapter 19: Quota Management

Figure 19-2. Schema of the quota state machine

We can see that quota processing follows a simple workflow of:

1. Determine the quota source.
2. Determine the quota limits assigned to that source.
3. Determine the resources currently used by that source.
4. Determine the new resources requested by the source.
5. Validate whether the new requested amount would exceed the quota.

Quota Source
A new concept with the reimplemented quota management mechanism is the quota
source. This is the entity to which the quota is applied, and by default is a tenant. Ten‐
ant quotas can be edited in the WebUI under Configure → Configuration → Access
Control → Tenants → tenant (see Figure 19-3).

Quotas in Cloudforms 4.0 | 161

Figure 19-3. Setting quotas for a tenant

The tenant object keeps track of allocated values in virtual columns:

--- virtual columns follow ---
$evm.root['tenant'].allocated_memory = 48318382080 (type: Fixnum)
$evm.root['tenant'].allocated_storage = 498216206336 (type: Fixnum)
$evm.root['tenant'].allocated_vcpu = 23 (type: Fixnum)
$evm.root['tenant'].provisioned_storage = 546534588416 (type: Fixnum)

Alternative Quota Sources
If we wish to use an alternative quota source, we can copy the quota_source method
to our own domain and edit it to define $evm.root['quota_source'] and
$evm.root['quota_source_type'] as required. This commented-out example shows
how to define a group as the quota source, in which case quota handling is done in
the pre-Cloudforms 4.0 way:

Sample code to enable group as the default quota source.
$evm.root['quota_source'] = @miq_request.requester.current_group
$evm.root['quota_source_type'] = 'group’

When we use an alternative quota source, we can set a quota in two ways.

Defining a quota in the state machines schema (the model)

We can set generic warn and max values for VM Count, Storage, CPU, and Memory
by copying the ManageIQ/System/CommonMethods/QuotaStateMachine/quota
instance into our domain and editing any of the eight schema attributes.

Quotas defined in the model in this way apply to all instances of the quota source
(e.g., all groups).

162 | Chapter 19: Quota Management

Defining a quota using tags
We can override the default model attributes by applying tags from one or more of
the tag categories listed in Table 19-1 to individual quota source entities (e.g., individ‐
ual groups).

Table 19-1. Override tags

Tag category name Tag category display name Pre-exists

quota_warn_vms Quota - Warn VMs No; must be created

quota_max_vms Quota - Max VMs No; must be created

quota_warn_storage Quota - Warn Storage No; must be created

quota_max_storage Quota - Max Storage Yes

quota_warn_cpu Quota - Warn CPUs No; must be created

quota_max_cpu Quota - Max CPUs Yes

quota_warn_memory Quota - Warn Memory No; must be created

quota_max_memory Quota - Max Memory Yes

If a group is tagged in such a way, then any VM or service provisioning request from
any group member is matched against the currently allocated CPUs, memory, or stor‐
age for the group.

If quotas are defined both in the model and with tags, the tagged value takes priority.

Quota Workflow
The quota-checking process for a virtual machine or instance provision request is
triggered by a request_starting event (see Figure 19-4).

Quota Workflow | 163

Figure 19-4. Event-triggered provision request quota workflow

This event policy is handled by the /System/Policy/MiqProvisionRequest_starting pol‐
icy instance, which has a single rel5 relationship that calls the /System/CommonMe‐
thods/QuotaStateMachine/quota state machine.

If the provisioning request would result in the quota being exceeded, then the request
is rejected, and the requesting user is emailed through the /
{Infrastructure,Cloud}/VM/Provisioning/Email/MiqProvisionRequest_Denied email
class.

If the request is within the quota, then the workflow simply exits.

Summary
Quotas allow us to maintain a degree of control over the depletion of our expensive
virtualization resources while still empowering our users to create their own virtual
machines or instances.

164 | Chapter 19: Quota Management

Quotas can be applied to access control groups or tenants. A quota allocated to a ten‐
ant can be further subdivided between any child tenants or tenant projects. For exam‐
ple, we might have a tenant representing our application development team, and they
might have tenant projects representing applications currently under development.
We can allocate the EvmRole-tenant_quota_administrator access-control role to a
virtualization administrator, who can then further subdivide the development team’s
quota between projects as requested.

When we apply quotas to access-control groups, we can additionally tag the groups
with warn and max threshold tags on a per-group basis to fine-tune the quota alloca‐
tion.

Further Reading
Consolidated Service/VM quota validation

Summary | 165

https://github.com/ManageIQ/manageiq/pull/4338

CHAPTER 20

The Options Hash

A user starts the virtual machine provisioning workflow by clicking on the Lifecycle
→ Provision VMs button in the Virtual Machines toolbar of the WebUI. After select‐
ing a template to provision from, the requesting user completes the provisioning dia‐
log and enters all of the details that are required to create the virtual machine—the
number of CPUs, memory, network to connect to, and hard disk format, for example.
Somehow this information collected from the WebUI must be added to the Automate
provisioning workflow.

Provisioning a virtual machine or instance is a complex operation that, as we have
just seen, involves an approval stage. We saw in Chapter 12 that an automation opera‐
tion involving an approval stage is split into two parts, the request and the task. In the
case of a virtual machine provisioning operation, the request is represented by an
miq_provision_request object, and the task is represented by an miq_provision
object.

The inputs and options selected from the provisioning dialog are added to the
miq_provision_request object as key/value pairs in a data structure known as the
options hash. When we write our custom Ruby methods to interact with the provi‐
sioning workflow, we frequently read from and write to the options hash.

If the provisioning request is approved, the options hash from the request object is
propagated to the task object, but there are slight differences between the two hashes.
We’ll examine these next.

Request Object (miq_provision_request)
The contents of the request object’s options hash varies slightly between provisioning
targets (VMware, OpenStack, RHEV, etc.) and target VM operating system (Linux,

167

Windows, etc.), but a typical hash for a Linux virtual machine provision to an RHEV
provider is:

request.options[:addr_mode] = ["static", "Static"] (type: Array)
request.options[:cluster_filter] = [nil, nil] (type: Array)
request.options[:cores_per_socket] = [1, "1"] (type: Array)
request.options[:current_tab_key] = customize (type: Symbol)
request.options[:customization_template_script] = nil
request.options[:customize_enabled] = ["disabled"] (type: Array)
request.options[:delivered_on] = 2015-06-05 07:33:20 UTC (type: Time)
request.options[:disk_format] = ["default", "Default"] (type: Array)
request.options[:initial_pass] = true (type: TrueClass)
request.options[:ip_addr] = nil
request.options[:linked_clone] = [nil, nil] (type: Array)
request.options[:mac_address] = nil
request.options[:miqrequestdialog_name] = miq_provision_redhat_dialogs_template
request.options[:network_adapters] = [1, "1"] (type: Array)
request.options[:number_of_sockets] = [1, "1"] (type: Array)
request.options[:number_of_vms] = [1, "1"] (type: Array)
request.options[:owner_email] = pemcg@bit63.com (type: String)
request.options[:owner_first_name] = Peter (type: String)
request.options[:owner_last_name] = McGowan (type: String)
request.options[:pass] = 1 (type: Fixnum)
request.options[:placement_auto] = [false, 0] (type: Array)
request.options[:placement_cluster_name] = [1000000000001, "Production"]
request.options[:placement_dc_name] = [1000000000002, "Default"] (type: Array)
request.options[:placement_ds_name] = [1000000000001, "Data"] (type: Array)
request.options[:placement_host_name] = [1000000000001, "rhevh12.bit63.net"]
request.options[:provision_type] = ["native_clone", "Native Clone"]
request.options[:retirement] = [0, "Indefinite"] (type: Array)
request.options[:retirement_warn] = [604800, "1 Week"] (type: Array)
request.options[:root_password] = nil
request.options[:schedule_time] = 2015-06-06 00:00:00 UTC (type: Time)
request.options[:schedule_type] = ["immediately", "Immediately on Approval"]
request.options[:src_ems_id] = [1000000000001, "RHEV"] (type: Array)
request.options[:src_vm_id] = [1000000000004, "rhel7-generic"] (type: Array)
request.options[:start_date] = 6/6/2015 (type: String)
request.options[:start_hour] = 00 (type: String)
request.options[:start_min] = 00 (type: String)
request.options[:stateless] = [false, 0] (type: Array)
request.options[:subnet_mask] = nil
request.options[:vlan] = ["public", "public"] (type: Array)
request.options[:vm_auto_start] = [false, 0] (type: Array)
request.options[:vm_description] = nil
request.options[:vm_memory] = ["2048", "2048"] (type: Array)
request.options[:vm_name] = rhel7srv002 (type: String)
request.options[:vm_prefix] = nil
request.options[:vm_tags] = [] (type: Array)

When we work with our own methods that interact with the VM provisioning pro‐
cess, we can read any of the options hash keys using the miq_provi

sion_request.get_option method, like so:

168 | Chapter 20: The Options Hash

memory_in_request = miq_provision_request.get_option(:vm_memory).to_i

We can also set most options using the miq_provision_request.set_option

method, as follows:

miq_provision_request.set_option(:subnet_mask,'255.255.254.0')

Several options hash keys have their own set method, listed in Table 20-1, which we
should use in place of request.set_option.

Table 20-1. Options hash keys set methods

Options hash key set method

:vm_notes request.set_vm_notes

:vlan request.set_vlan

:dvs request.set_dvs

:addr_mode request.set_network_address_mode

:placement_host_name request.set_host

:placement_ds_name request.set_storage

:placement_cluster_name request.set_cluster

:placement_rp_name request.set_resource_pool

:placement_folder_name request.set_folder

:pxe_server_id request.set_pxe_server

:pxe_image_id (Linux server provision) request.set_pxe_image

:pxe_image_id (Windows server provision) request.set_windows_image

:customization_template_id request.set_customization_template

:iso_image_id request.set_iso_image

:placement_availability_zone request.set_availability_zone

:cloud_tenant request.set_cloud_tenant

:cloud_network request.set_cloud_network

:cloud_subnet request.set_cloud_subnet

:security_groups request.set_security_group

:floating_ip_address request.set_floating_ip_address

:instance_type request.set_instance_type

:guest_access_key_pair request.set_guest_access_key_pair

All but the first four of the set methods just listed perform a validity check to verify
that the value we’re setting is an eligible resource for the provisioning instance. They
also take an object as an argument, rather than a text string—for example:

cloud_network = $evm.vmdb('CloudNetwork', '1000000000012')
prov.set_cloud_network(cloud_network)

Request Object (miq_provision_request) | 169

Use one of the techniques discussed in Chapter 10 to find out what
key/value pairs are in the options hash to manipulate.

Task Object (miq_provision)
The options hash from the request object is propagated to each task object, where it is
subsequently extended by task-specific methods such as those handling VM naming
and placement:

miq_provision.options[:dest_cluster] = [1000000000001, "Default"]
miq_provision.options[:dest_host] = [1000000000001, "rhelh03.bit63.net"]
miq_provision.options[:dest_storage] = [1000000000001, "Data"]
miq_provision.options[:vm_target_hostname] = rhel7srv002
miq_provision.options[:vm_target_name] = rhel7srv002

Some options hash keys, such as :number_of_vms, have no effect if changed in the
task object; they are relevant only for the request.

Adding Network Adapters
There are two additional methods that we can call on an miq_provision object, to
add further network adapters. These are .set_nic_settings and .set_net

work_adapter:

idx = 1
miq_provision.set_network_adapter(idx,
 {
 :network => 'VM Network',
 :devicetype => 'VirtualVmxnet3',
 :is_dvs => false
 })

miq_provision.set_nic_settings(idx,
 {
 :ip_addr => '10.2.1.23',
 :subnet_mask => '255.255.255.0',
 :addr_mode => ['static', 'Static']
 })

Correlation with the Provisioning Dialog
The key/value pairs that make up the options hash initially come from the provision‐
ing dialog. If we look at an extract from one of the provisioning dialog YAML files,
we see the dialog definitions for the number_of_sockets and cores_per_socket
options:

170 | Chapter 20: The Options Hash

 :number_of_sockets:
 :values:
 1: '1'
 2: '2'
 4: '4'
 8: '8'
 :description: Number of Sockets
 :required: false
 :display: :edit
 :default: 1
 :data_type: :integer
 :cores_per_socket:
 :values:
 1: '1'
 2: '2'
 4: '4'
 8: '8'
 :description: Cores per Socket
 :required: false
 :display: :edit
 :default: 1
 :data_type: :integer

These correspond to:

miq_provision_request.options[:cores_per_socket]
miq_provision_request.options[:number_of_sockets]

Adding Our Own Options: The ws_values Hash
Sometimes we wish to add our own custom key/value pairs to the request or task
object, so that they can be used in a subsequent stage in the VM provision state
machine for custom processing. An example might be the size and mount point for a
secondary disk to be added as part of the provisioning workflow. Although we could
add our own key/value pairs directly to the option hash, we risk overwriting a key
defined in the core provisioning code (or one added in a later release of Cloud‐
Forms).

There is an existing options hash key that is intended to be used for this, called
ws_values. The value of this key is itself a hash, containing our key/value pairs that
we wish to save:

miq_provision.options[:ws_values] = {:disk_dize_gb=>100, :mountpoint=>"/opt"}

The ws_values hash is also used to store custom values that we might supply if we
provision a VM programmatically from either the RESTful API or from create_pro
vision_request. One of the arguments for a programmatic call to create a VM is a
set of key/value pairs called additional_values (it was originally called additional

Adding Our Own Options: The ws_values Hash | 171

Values in the SOAP call). Any key/value pairs supplied with this argument for the
automation call will automatically be added to the ws_options hash.

By using the ws_options hash to store our own custom key/value pairs, we make our
code compatible with the VM provision request being called programmatically.

Summary
The options hashes in the miq_provision_request and miq_provision objects are
some of the most important data structures that we work with. They contain all of the
information required to create the new virtual machine or instance, and by setting
their key values programmatically we can influence the outcome of the provisioning
operation.

As discussed in Chapter 12, the challenge is sometimes knowing whether we should
access the options hash in the miq_provision_request or miq_provision objects,
particularly when setting values. We need to apply our knowledge of requests and
tasks to determine which context we’re working in.

We also need to be aware of which options hash keys have their own set method, as
these keys typically require an array formatted in a particular way.

172 | Chapter 20: The Options Hash

CHAPTER 21

The Provisioning State Machine

So far in Part II we have studied the access-control-group-specific processing related
to provisioning a virtual machine. We have seen how approval and quotas are han‐
dled, and how the entries from the WebUI provisioning dialog are added to the pro‐
visioning request and task objects in the options hash.

The common workflow for provisioning virtual machines is handled by the VM pro‐
vision state machine.

The virtual machine and instance provisoning workflows are each controlled by a
VM provision state machine in their respective /Infrastructure and /Cloud namespa‐
ces. These state machines define the steps in the virtual machine provisioning work‐
flow and contain flexible preprovision and postprovision processing options.
Instances run as part of this state machine have access to the provisioning task object
via $evm.root['miq_provision'].

State Machine Schema
The VM provision state machine ({Cloud/Infrastructure}/VM/Provisioning/StateMa‐
chines/VMProvision_VM) class schema contains a number of states (see Figure 21-1).

173

Figure 21-1. The VMProvision_VM state machine

Several of these states (such as RegisterCMDB or RegisterAD) contain no out-of-the-
box values but are there as placeholders should we wish to add the functionality to
our own customized instance.

Some states (such as PreProvision) have values that include an appended message—
for example:

...StateMachines/Methods/PreProvision#${/#miq_provision.source.vendor}

The message is selected at runtime from a variable substitution for #${/#miq_provi
sion.source.vendor} and allows for the dynamic selection of provider-specific pro‐
cessing options (in this case allowing for alternative preprovisioning options for
VMware, RedHat, Microsoft, Amazon, or OpenStack).

Filling in the Blanks
We can copy the VM provision state machine into our own domain and add instance
URIs to any of the blank states as required, or extend the state machine by inserting
new states. A common addition is to add a method at the AcquireIPAddress step to
retrieve an IP address from a corporate IPAM solution such as an Infoblox appliance.
Once retrieved, the IP address is inserted into the task’s options hash using the
set_option method, like so:

174 | Chapter 21: The Provisioning State Machine

$evm.root['miq_provision'].set_option(:ip_addr, allocated_ip_address)

Summary
The VM provisioning state machine is one of the most complex that we find in
CloudForms. There are versions of this state machine in both the /Infrastructure and /
Cloud namespaces, and they orchestrate the provisioning steps into their respective
providers.

The state machines are designed to be extensible, however, and we’ll develop this con‐
cept in the next chapter, where we’ll copy the state machine to our own domain and
extend it to add a second disk as part of the provisioning process.

Summary | 175

CHAPTER 22

Customizing Virtual Machine Provisioning

In Chapter 21 we saw how the VM provision state machine was designed to be cus‐
tomizable. In this chapter we’ll go through the steps involved in copying and extend‐
ing the state machine to add a second hard disk to the virtual machine. This is a
simple example but a typical real-world requirement.

Scenario
We are using an RHEV provider with our CloudForms installation, and we can suc‐
cessfully provision virtual machines using the Native Clone provision type from fully
configured RHEV templates. The templates all have a single 30 GB thin-provisioned
hard drive.

Task
We would like all virtual machines provisioned from these templates to have a second
30 GB hard drive added automatically during provisioning. The second drive should
be created in the same RHEV storage domain as the first drive (i.e., not hardcoded to
a storage domain).

Methodology
Edit the VMProvision_VM state machine to add two new states to perform the task.
We’ll add the second disk using the RHEV RESTful API, using credentials stored for
the provider. We can achieve this in a series of steps.

177

Step 1: Extend the State Machine
We’re going to extend the VM provisioning state machine by adding states, but we
cannot do this to the state machine in the locked ManageIQ domain.

Copy the state machine
The first thing that we must do is copy the ManageIQ/Infrastructure/VM/Provision‐
ing/StateMachines/VMProvision_VM/Provision VM from Template (template) state
machine instance into our own ACME domain so that we can edit the schema.

Edit the schema
Now we edit the schema of the copied class (see Figure 22-1).

Figure 22-1. Editing the schema of the copied class

Add the new states

We add two more steps, AddDisk and StartVM, to the bottom of the schema (see
Figure 22-2).

Figure 22-2. Adding two further states

178 | Chapter 22: Customizing Virtual Machine Provisioning

Adjust the sequence

Now we adjust the class schema sequence so that our new states come after PostPro
vision (see Figure 22-3).

Figure 22-3. Adjusting the class schema sequence

Step 2: Disable Auto-Power-On
We’re going to override the default behavior of the VM provisioning workflow, which
is to autostart a VM after provisioning. We do this because we want to add our new
disk with the VM powered off, and then power on the VM ourselves afterward.

Copy the method
We copy the /Infrastructure/VM/Provisioning/StateMachines/Methods/
redhat_CustomizeRequest method from the RedHat domain into ours (see
Figure 22-4).

Methodology | 179

Figure 22-4. The redhat_CustomizeRequest method

The RedHat domain contains an enhanced version of redhat_Cus‐
tomizeRequest. Make sure you copy and extend the RedHat version
rather than the ManageIQ domain version.

Edit the method

We edit redhat_CustomizeRequest to set the options hash key :vm_auto_start to be
false. We must do this after the line:

prov = $evm.root["miq_provision"]

The additional lines are as follows:

Get provisioning object
prov = $evm.root["miq_provision"]

Add the following lines
Set the autostart parameter to false so that RHEV won't start the VM directly
$evm.log(:info, "Setting vm_auto_start to false")
prov.set_option(:vm_auto_start, [false, 0])
End of additional lines

Step 3: Create Our New Instances and Methods
We’ll create a new namespace, Integration/RedHat, in our own domain, and create a
simple one-field Methods class as we did in Chapter 3. We add two new instances,
AddDisk and StartVM, and two new methods, add_disk and start_vm, to this class
(see Figure 22-5).

180 | Chapter 22: Customizing Virtual Machine Provisioning

Figure 22-5. Adding two new instances and methods

Next we’ll examine the interesting parts of the code in each of the methods.

add_disk
add_disk defines its own method, call_rhev, that handles the REST communication
with the Red Hat Enterprise Virtualizaton Manager:

 def call_rhev(servername, username, password, action,
 ref=nil, body_type=:xml, body=nil)
 #
 # If ref is a url then use that one instead
 #
 unless ref.nil?
 url = ref if ref.include?('http')
 end
 url ||= "https://#{servername}#{ref}"

 params = {
 :method => action,
 :url => url,
 :user => username,
 :password => password,
 :headers => { :content_type=>body_type, :accept=>:xml },
 :verify_ssl => false
 }
 params[:payload] = body if body
 rest_response = RestClient::Request.new(params).execute
 #
 # RestClient raises an exception for us on any non-200 error
 #

Methodology | 181

 return rest_response
 end

In the main section of code we account for the fact that we’re allowing add_disk to be
callable in either of two ways: from a button on a virtual machine in the WebUI, or as
part of the VM provision workflow (see Chapter 11). We first need to find out how
add_disk has been called and retrieve the virtual machine service model object
accordingly.

We also need to determine the new disk size. If add_disk has been called from a but‐
ton, the new disk size will have been passed as a service dialog element. If it’s called as
part of a VM provisioning operation, we’ll hardcode this as the NEW_DISK_SIZE con‐
stant (for this example it’s 30 GB):

 case $evm.root['vmdb_object_type']
 when 'miq_provision' # called from a VM provision workflow
 vm = $evm.root['miq_provision'].destination
 disk_size_bytes = NEW_DISK_SIZE * 1024**3
 when 'vm'
 vm = $evm.root['vm'] # called from a button
 disk_size_bytes = $evm.root['dialog_disk_size_gb'].to_i * 1024**3
 end

We’re going to create the new disk on the same storage domain as the existing first
disk, so we need to find the existing storage domain details:

 storage_id = vm.storage_id rescue nil
 #
 # Extract the RHEV-specific Storage Domain ID
 #
 unless storage_id.nil? || storage_id.blank?
 storage = $evm.vmdb('storage').find_by_id(storage_id)
 storage_domain_id = storage.ems_ref.match(/.*\/(\w.*)$/)[1]
 end

Next we extract the credentials of the RHEV Manager (from the ext_manage
ment_system object), as we’ll need to use these when we make the REST call. We also
build our XML payload using the Nokogiri gem:

 unless storage_domain_id.nil?
 #
 # Extract the IP address and credentials for the RHEV provider
 #
 servername = vm.ext_management_system.ipaddress ||
 vm.ext_management_system.hostname
 username = vm.ext_management_system.authentication_userid
 password = vm.ext_management_system.authentication_password

 builder = Nokogiri::XML::Builder.new do |xml|
 xml.disk {
 xml.storage_domains {
 xml.storage_domain :id => storage_domain_id

182 | Chapter 22: Customizing Virtual Machine Provisioning

 }
 xml.size disk_size_bytes
 xml.type 'system'
 xml.interface 'virtio'
 xml.format 'cow'
 xml.bootable 'false'
 }
 end

 body = builder.to_xml

We make the REST call to the RHEV Manager and parse the response:

 $evm.log(:info,
 "Adding #{disk_size_bytes / 1024**3} GByte disk to VM: #{vm.name}")
 response = call_rhev(servername, username, password, :post, \
 "#{vm.ems_ref}/disks", :xml, body)
 #
 # Parse the response body XML
 #
 doc = Nokogiri::XML.parse(response.body)

The initial response back from the API contains some hrefs that we need to use, so
we extract those:

 #
 # Pull out some reusable hrefs from the initial response
 #
 disk_href = doc.at_xpath("/disk")['href']
 creation_status_href = \
 doc.at_xpath("/disk/link[@rel='creation_status']")['href']
 activate_href = doc.at_xpath("/disk/actions/link[@rel='activate']")['href']

We poll the API for the completion status:

It’s not good practice to sleep in an Automate method. For sim‐
plicity in this example, we’re handling the sleep → retry counter
logic ourselves to avoid the possibility of sleeping forever. In a pro‐
duction environment we’d use the built-in state machine retry logic
to handle this for us.

 #
 # Validate the creation_status (wait for up to a minute)
 #
 creation_status = doc.at_xpath("/disk/creation_status/state").text
 counter = 13
 while creation_status != "complete"
 counter -= 1
 if counter == 0
 raise "Timeout waiting for new disk creation_status to reach \
 \"complete\": Creation Status = #{creation_status}"
 else

Methodology | 183

 sleep 5
 response = call_rhev(servername, username, password, :get,
 creation_status_href, :xml, nil)
 doc = Nokogiri::XML.parse(response.body)
 creation_status = doc.at_xpath("/creation/status/state").text
 end
 end

If the disk has been attached to a powered-on VM (as it may have been if the method
is called from a button), we would need to activate the disk in RHEV. If the VM is
powered off when the disk is added, this stage is unnecessary:

 #
 # Disk has been created successfully,
 # now check its activation status and if necessary activate it
 #
 response = call_rhev(servername, username, password, :get,
 disk_href, :xml, nil)
 doc = Nokogiri::XML.parse(response.body)
 if doc.at_xpath("/disk/active").text != "true"
 $evm.log(:info, "Activating disk")
 body = "<action/>"
 response = call_rhev(servername, username, password, :post,
 activate_href, :xml, body)
 else
 $evm.log(:info, "New disk already active")
 end
 end
 #
 # Exit method
 #
 $evm.root['ae_result'] = 'ok'
 exit MIQ_OK

start_vm
The code for start_vm is as follows:

begin
 vm = $evm.root['miq_provision'].destination
 $evm.log(:info, "Current VM power state = #{vm.power_state}")
 unless vm.power_state == 'on'
 vm.start
 vm.refresh
 $evm.root['ae_result'] = 'retry'
 $evm.root['ae_retry_interval'] = '30.seconds'
 else
 $evm.root['ae_result'] = 'ok'
 end

rescue => err
 $evm.log(:error, "[#{err}]\n#{err.backtrace.join("\n")}")

184 | Chapter 22: Customizing Virtual Machine Provisioning

 $evm.root['ae_result'] = 'error'
end

The full scripts are also available from GitHub.

Step 4: Add Our New Instances to the Copied State Machine
Now we edit our copied Provision VM from Template state machine instance to add
the AddDisk and StartVM instance URIs to the appropriate steps (see Figure 22-6).

Figure 22-6. Adding the instance URIs to the provisioning state machine

Step 5: Provision a Virtual Machine
We’ll provision a VM to test this. We should see that the VM is not immediately
started after creation, and suitable messages in automation.log show that our addi‐
tional methods are working:

...<AEMethod add_disk> Adding 30GB disk to VM: rhel7srv006

...<AEMethod add_disk> Creation Status: pending

...<AEMethod add_disk> Creation Status: complete

...<AEMethod add_disk> New disk already active

...

...<AEMethod start_vm> Current VM power state = off

...<AEMethod start_vm> Current VM power state = unknown

...<AEMethod start_vm> Current VM power state = on

We can take a look at the number of disks in the virtual machine details page in the
CloudForms WebUI (see Figure 22-7).

Figure 22-7. VM details pane showing additional disk

Here we see the second disk attached to the virtual machine. Our modified VM pro‐
visioning workflow has been successful.

Methodology | 185

http://bit.ly/1VOFeSa

Summary
This chapter has shown how we can extend the provisioning state machine to add our
own workflow stages. Although this has been a simple example, some kind of provi‐
sioning workflow extension is very common in practice. We see another example in
Chapter 28 where we extend the workflow to register our newly provisioned virtual
machine with a Satellite 6 server.

The example has also shown the integration functionality of CloudForms, and how
we can use API calls—in this case, using the REST client—to extend our workflows
into the wider enterprise.

Further Reading
Red Hat Enterprise Virtualization 3.6 REST API Guide

REST Client Gem

Nokogiri Gem

186 | Chapter 22: Customizing Virtual Machine Provisioning

http://red.ht/21d36hT
http://www.rubydoc.info/github/rest-client/rest-client
http://www.rubydoc.info/github/sparklemotion/nokogiri

CHAPTER 23

Virtual Machine Naming During
Provisioning

When we provision a virtual machine using the native provider manager—VMware
vSphere or the Red Hat Enterprise Virtualization Manager, for example—we must
provide the name of the new virtual machine to be created. One of the benefits of a
cloud management platform like CloudForms is that we can partially or fully auto‐
mate the creation of virtual machine names as part of the provisioning workflow.

CloudForms has a very flexible way of letting us assign names to virtual machines at
provisioning time, in a process known as naming. It allows us to explicitly name the
VM (fine for single-VM provisioning operations) or to auto-append a zero-padded
number for multi-VM provisioning requests. It also allows us to use or create a cus‐
tom naming policy whereby CloudForms autogenerates VM names based on a num‐
ber of factors, including a common prefix, tags, or group membership, for example.

VM Name-Related Provisioning Options
The naming process has several inputs and usually two outputs. The inputs to the
naming process are a number of variables and symbols that are set (and we can cus‐
tomize) during the provisioning dialog, or defined in the Naming class schema. The
outputs from the naming process are the VM name and optionally the hostname (i.e.,
fully qualified domain name [FQDN] first part) to be applied to the VM’s operating
system.

Inputs to the Naming Process
The following subsections detail the variables and symbols used as inputs to the VM
naming logic.

187

vm_name

vm_name is given the value from the VM Name box in Provision Virtual Machines →
Catalog (see Figure 23-1).

Figure 23-1. Prompting for the VM name during provisioning

The symbol is added to the request options hash as:

miq_provision_request.options[:vm_name]

vm_prefix

vm_prefix can be used to build a custom VM name and is read from the vm_prefix
variable in the naming instance schema; the default is cfme, but we can define our
own if required (see Figure 23-2).

Figure 23-2. Defining the vm_prefix value in the default naming instance

Alternatively, we can set a value in the request options hash:

miq_provision_request.options[:vm_prefix]

188 | Chapter 23: Virtual Machine Naming During Provisioning

hostname

hostname is given the value of the Host Name box in Provision Virtual Machines →
Customize (see Figure 23-3).

Figure 23-3. Prompting for the VM hostname during provisioning

The symbol is added to the request options hash as:

miq_provision_request.options[:hostname]

linux_host_name

If a VMware customization specification for Linux is used, linux_host_name is the
specific name extracted from the template. The naming logic uses it to set the operat‐
ing system hostname.

The symbol is added to the request options hash as:

miq_provision_request.options[:linux_host_name]

sysprep_computer_name

If a VMware customization specification for Windows is used, sysprep_com
puter_name is the specific name extracted from the template. CloudForms naming
uses it as input to the sysprep process to set the NetBIOS name.

The symbol is added to the request options hash as:

miq_provision_request.options[:sysprep_computer_name]

miq_force_unique_name

miq_force_unique_name is used internally when we provision VMs from a service
catalog. When the miq_provision task is created for the VM provision catalog item,
its options hash key is set as:

miq_provision.options[:miq_force_unique_name] = [true, 1]

VM Name-Related Provisioning Options | 189

Outputs from the Naming Process
The symbols discussed in the folliowing subsections are derived by the VM naming
method and added to the task options hash.

vm_target_name

vm_target_name represents the new VM name. It is added to the task options hash as:

miq_provision.options[:vm_target_name]

vm_target_hostname

vm_target_hostname is the VM $(hostname) assigned from the output of the VM
naming logic (15 characters for Windows, 63 characters for Linux). It is added to the
task options hash as:

miq_provision.options[:vm_target_hostname]

Name Processing
Much of the VM naming logic happens in the Rails code that is not exposed to the
Automation Engine. This code does, however, call the naming instance/method
defined in the provisioning group profile (the vmname field), and we can use this to
add our own customizations. The profile-defined naming method writes its suggested
name into $evm.object['vmname'], which is propagated back to the internal Rails
method via a collect.

If the profile-defined naming method suggests a name that should be numerically
suffixed (e.g., #{vm_name}$n{3}), then the backend Rails code will allocate the next
free number in the sequence and form the VM name accordingly.

The default profile-defined naming method for infrastructure VMs in CloudForms
4.0 is /Infrastructure/VM/Provisioning/Naming/vmname. It is a relatively simple
method, as follows:

#
Description: This is the default vmnaming method
1. If VM name was not chosen during dialog processing then use vm_prefix
from dialog; else use model and [:environment] tag to generate name
2. Else use VM name chosen in dialog
3. Then add 3-digit suffix to vm_name
4. Added support for dynamic service naming
#

$evm.log("info", "Detected vmdb_object_type:<#{$evm.root['vmdb_object_type']}>")

prov = $evm.root['miq_provision_request'] || \
 $evm.root['miq_provision'] || \

190 | Chapter 23: Virtual Machine Naming During Provisioning

 $evm.root['miq_provision_request_template']

vm_name = prov.get_option(:vm_name).to_s.strip
number_of_vms_being_provisioned = prov.get_option(:number_of_vms)
diamethod = prov.get_option(:vm_prefix).to_s.strip

If no VM name was chosen during dialog
if vm_name.blank? || vm_name == 'changeme'
 vm_prefix = nil
 vm_prefix ||= $evm.object['vm_prefix']
 $evm.log("info", "vm_name from dialog:<#{vm_name.inspect}> \
 vm_prefix from dialog:<#{diamethod.inspect}> \
 vm_prefix from model:<#{vm_prefix.inspect}>")

 # Get provisioning tags for VM name
 tags = prov.get_tags
 $evm.log("info", "Provisioning Object Tags: #{tags.inspect}")

 # Set a prefix for VM naming
 if diamethod.blank?
 vm_name = vm_prefix
 else
 vm_name = diamethod
 end
 $evm.log("info", "VM Naming Prefix: <#{vm_name}>")

 # Check :environment tag
 env = tags[:environment]

 # If environment tag is not nil
 unless env.nil?
 $evm.log("info", "Environment Tag: <#{env}> detected")
 # Get the first 3 characters of the :environment tag
 env_first = env[0, 3]

 vm_name = "#{vm_name}#{env_first}"
 $evm.log("info", "Updating VM Name: <#{vm_name}>")
 end
 derived_name = "#{vm_name}$n{3}"
else
 if number_of_vms_being_provisioned == 1
 derived_name = "#{vm_name}"
 else
 derived_name = "#{vm_name}$n{3}"
 end
end

$evm.object['vmname'] = derived_name
$evm.log("info", "VM Name: <#{derived_name}>")

If we examine this code we can start to see the logic that the virtual machine naming
methods use to determine names. There are two main conditions, as follows.

Name Processing | 191

Provisioning a Single VM or Instance
Provisioning a single VM from either Infrastructure → Virtual Machines → Lifecycle
→ Provision VMs or from a service catalog will result in the VM being given the
value of :vm_name, unless :vm_name is blank or has the value changeme. If :vm_name is
blank or changeme, then we loop through the logic in the Automation Engine naming
method, which assembles a VM name by combining the value of :vm_prefix with
the first three characters of the :environment tag (if it exists) and appending three
zero-padded digits.

Provisioning Multiple VMs or Instances in a Single Request
Provisioning multiple servers from a service catalog will result in
the :miq_force_unique_name symbol being set to true for each task. If :vm_name is
not blank or changeme, then the servers will be named as :vm_name with _n{4}
appended—for example, server_0001, server_0002, and so on—according to the logic
in the internal Rails class MiqProvision::Naming. In this scenario the profile-defined
naming method is not used.

Provisioning multiple servers from Infrastructure → Virtual Machines → Lifecycle →
Provision VMs will not result in :miq_force_unique_name being set to true, and the
VM naming logic in the profile-defined naming method will apply. The servers will
be given the value of :vm_name, appended by three zero-padded digits—for example,
server001, server002, and so on.

Customizing the Naming Process
We often wish to customize the naming process to our own requirements. For exam‐
ple, we might wish to name all servers using a fixed prefix (:vm_prefix), followed by
the value of the server_role tag, followed by a zero-padded digit extension. We can
do this using a slight modification of the profile-defined naming method, in conjunc‐
tion with tagging the servers that we wish to special-case:

...
prefix = prov.get_option(:vm_prefix).to_s.strip
#
Special-case the any servers tagged with "server_role" - pemcg
#
Get provisioning tags for VM name
tags = prov.get_tags
#
Check :server_role tag
#
server_role = tags[:server_role]
unless server_role.nil?
 derived_name = "#{prefix}#{server_role}$n{2}"

192 | Chapter 23: Virtual Machine Naming During Provisioning

 $evm.object['vmname'] = derived_name
 $evm.log("info", "#{@method} - VM Name: <#{derived_name}>") if @debug
 #
 # Exit method
 #
 $evm.log("info", "#{@method} - EVM Automate Method Ended")
 exit MIQ_OK
end
#
End of special case for servers tagged with "server_role"
#
...

We copy the /Infrastructure/VM/Provisioning/Naming/default instance and /Infra‐
structure/VM/Provisioning/Naming/vmname method into our own domain and edit‐
ing the schema or method accordingly.

Summary
As we have seen, the naming process for virtual machines is very flexible and allows
us to create a custom naming scheme for our cloud or virtual infrastructure. The
naming logic is called during the processing of the group profile during provisioning,
so different user groups can have entirely different VM naming schemes if we wish.

We have also seen that the naming process generates operating system hostnames as
well as the virtual machine names. Setting a hostname is an operating system (rather
than virtual machine container) function, so we must pass this value to some other
process for it to be set.

If we are PXE-booting our new Red Hat virtual machines and performing a kickstart
installation, then we can inject the hostname value into the kickstart script at run-
time. If we are provisioning from fully configured templates, then we need to use a
VMware customization specification or cloud-init script to perform the hostname
injection.

Further Reading
Red Hat CloudForms Management Engine PXE and ISO Provisioning with RHEV

Complying with Name Restrictions for Hosts and Domains

Picking server hostnames

Summary | 193

https://access.redhat.com/articles/349393
http://bit.ly/1UaNf1k
http://bit.ly/1Xey36F

CHAPTER 24

Virtual Machine Placement During
Provisioning

The process of deciding where in our virtual infrastructure to position a new virtual
machine—the hypervisor or cluster, and datastore—is another step that can be auto‐
mated as part of the VM provisioning workflow. We might wish to locate VMs on the
cluster with the lightest current load, for example, or restrict visibility of selected
datastores to some of our users.

CloudForms refers to this process as placement, and there is a corresponding Place‐
ment stage in the VMProvision_VM state machine.

In this chapter we’ll look at the various options for automating placement, and how
we can create customized placement algorithms to suit our own requirements.

Placement Methods
There are several alternative placement methods that we can use out-of-the-box to
determine where to place our new virtual machines. For example, there are three in
the ManageIQ domain (see Figure 24-1).

195

Figure 24-1. Placement methods in the ManageIQ domain

The default value for the Placement stage in the VMProvision_VM/template state
machine is as follows:

/Infra.../VM/Provisioning/Placement/default#${/#miq_provision.source.vendor}

We can see that this URI includes a message component at the end, which corre‐
sponds to the runtime value of the ${/#miq_provision.source.vendor} attribute.
This is the string value for the provider type that we are provisioning into.

If we look at the schema fields in the /Infrastructure/VM/Provisioning/Placement/
default placement instance, we see that the messages correspond to the same provider
type string: redhat, vmware, or microsoft (see Figure 24-2).

Figure 24-2. The schema fields of the default placement instance

This is a neat way of handling provider-specific placement requirements in an auto‐
mated manner. The message is dynamically translated for each provisioning opera‐
tion, and this selects the correct placement method.

196 | Chapter 24: Virtual Machine Placement During Provisioning

Method Description
The redhat_best_fit_cluster method just places the new VM into the same cluster as
the source template. The other two methods select the host with the least running
VMs and most available datastore space.

Customising Placement
As part of the added value that CloudForms brings over ManageIQ, the RedHat
domain includes improved placement methods that we can optionally use (see
Figure 24-3).

Figure 24-3. Placement methods in the RedHat domain

The _with_scope methods allow us to apply a tag from the prov_scope (provisioning
scope) tag category to selected hosts and datastores. This tag indicates whether or not
they should be included for consideration for automatic VM placement. The
prov_scope tag should be all, or the name of a CloudForms user group. By tagging
with a group name, we can direct selected workloads (such as developer VMs) to spe‐
cific hosts and datastores.

The vmware_best_fit_with_tags method considers any host or datastore tagged with
the same tag as the provisioning request—that is, selected from the Purpose tab of the
provisioning dialog.

All three RedHat domain methods also allow us to set thresholds for datastore usage
in terms of utilization percentage and number of existing VMs when considering
datastores for placement.

Method Description | 197

Using Alternative Placement Methods
To use the RedHat domain placement methods (or any others that we choose to
write), we copy the ManageIQ/Infrastructure/VM/Provisioning/Placement/default
instance into our own domain and edit the value for the redhat, vmware, or micro
soft schema fields as appropriate to specify the name of our preferred method.

For example, if we wished to use the RHEV placement method from the RedHat
domain we would set the redhat schema field value to be redhat_best_place
ment_with_scope.

Summary
We can see that we have a lot of control of the placement options available to us when
we provision a virtual machine. We also start to see some of the added value that the
CloudForms product brings over the ManageIQ project, with the inclusion of place‐
ment methods that enable us to use Smart Management tags to control where our vir‐
tual machines are positioned.

When we start working with custom placement methods, we also need to take into
account the infrastructure components that users can see from their role-based
access-control filters. When we configure CloudForms access control for groups, we
can set optional assigned filters to selected hosts and clusters. We can also restrict a
group’s visibility of infrastructure components to those tagged with specific tags. If we
use assigned filters in this way, we need to ensure that our placement logic doesn’t
select a host, cluster, or datastore that the user doesn’t have RBAC permission to see;
otherwise, the provisioning operation will fail.

Further Reading
Placement Profile—Best Fit Cluster using Tags

198 | Chapter 24: Virtual Machine Placement During Provisioning

http://red.ht/1PkyS6g

CHAPTER 25

The Provisioning Dialog

So far in Part II we have looked at several ways in which the virtual machine provi‐
sioning process can be customized. We have seen how we can automate the selection
of the virtual machine name, decide where to place the virtual machine, and expand
the state machine to insert our own provisioning workflow steps.

This chapter will look at how the initial dialog that launched the provisioning process
can also be customized. We might want to do this to expand the options available to
us, or to preconfigure and hide other dialog elements for certain groups of users.

The specification for the new virtual machine or instance is entered into the provi‐
sioning dialog that is displayed to the user in the WebUI. This dialog prompts for all
of the parameters and characteristics that will make up the new VM, such as the
name, number of CPUs, and IP address.

Tabs and Input Fields
The provisioning dialog contains a number of tabs (Request, Purpose, Catalog, Envi‐
ronment, etc.), and a number of input fields per tab (see Figure 25-1).

199

Figure 25-1. The Hardware tab of the VM provisioning dialog

The provisioning dialog is context-sensitive, so a different set of input field options
will be displayed when we’re provisioning into VMware or OpenStack, for example.

Dialog YAML
Each provisioning dialog is formatted from a large (900+ lines) YAML file, specifying
the main tabs, dialogs, and fields to be displayed—for example:

:buttons:
- :submit
- :cancel
:dialogs:
 :requester:
 :description: Request
 :fields:
 :owner_phone:
 :description: Phone
 :required: false
 :display: :hide
 :data_type: :string
...
 :owner_email:
 :description: E-Mail
 :required: true
 :display: :edit
 :data_type: :string
 ...
 :purpose:
 :description: Purpose
 :fields:
 :vm_tags:
 :required_method: :validate_tags
 :description: Tags

200 | Chapter 25: The Provisioning Dialog

 :required: false
 :options:
 :include: []
...
 :display: :edit
 :required_tags: []
 :data_type: :integer
 :display: :hide
 :field_order:
 ...
 :dialog_order:
- :requester
- :purpose

Dialog tabs and fields have four useful attributes that can be set:

• Hidden (:display: :hide)
• Visible (:display: :show)
• Editable (:display: :edit)
• Mandatory (:required: true)

Selection of VM Provisioning Dialog
There are a number of VM provisioning dialogs supplied out-of-the-box with Cloud‐
Forms, each of which provides the context sensitivity for the particular provisioning
operation (see Table 25-1). They are found under the Automate → Customization
menu, in the Provisioning Dialogs accordion.

Table 25-1. VM provisioning dialogs for provisioning operations

Name Description

miq_provision_amazon_dialogs_template Sample Amazon instance provisioning dialog

miq_provision_microsoft_dialogs_template Sample Microsoft VM provisioning dialog

miq_provision_openstack_dialogs_template Sample OpenStack instance provisioning dialog

miq_provision_redhat_dialogs_clone_to_vm Sample RedHat VM clone to VM dialog

miq_provision_redhat_dialogs_template Sample RedHat VM provisioning dialog

miq_provision_dialogs_clone_to_template Sample VM clone to template dialog

miq_provision_dialogs_clone_to_vm Sample VM clone to VM dialog

miq_provision_dialogs_pre_sample Sample VM preprovisioning dialog

miq_provision_dialogs Sample VM provisioning dialog

miq_provision_dialogs_template Sample VM provisioning dialog (template)

miq_provision_dialogs-user Sample VM provisioning dialog for user

Selection of VM Provisioning Dialog | 201

The various dialogs contain values that are relevant to their target provider type
(Amazon, OpenStack, Microsoft, VMware, or Red Hat), and also to the operation
type (clone from template, clone to template, or clone to vm).

The selection of VM provisioning dialog to display to a user depends on the dia
log_name attribute in the provisioning group profile. The default dialog_name value
for the .missing and EvmGroup-super_administrator profiles is:

${#dialog_name_prefix}_${/#dialog_input_request_type}

The two variables are substituted at runtime and provide the context sensitivity. The
dialog_name_prefix value is determined by the vm_dialog_name_prefix method,
which contains the lines:

dialog_name_prefix = "miq_provision_#{platform}_dialogs"
dialog_name_prefix = "miq_provision_dialogs" if platform == "vmware"

The dialog_input_request_type value is translated by the Rails class MiqRequest
Workflow to be the instance name of the VM provisioning state machine that we are
using—that is, template, clone_to_vm, or clone_to_template.

So for a VM provision request from template into an RHEV provider, the dia
log_name value will be substituted as follows:

miq_provision_redhat_dialogs_template

Group-Specific Dialogs
We can set separate provisioning dialogs for individual groups if we wish. As an
example, the VMware-specific miq_provision_dialogs-user dialog presents a
reduced set of tabs, dialogs, and input fields. The hidden tabs have been given default
values, and automatic placement has been set to true:

 :placement_auto:
 :values:
 false: 0
 true: 1
 :description: Choose Automatically
 :required: false
 :display: :edit
 :default: true
 :data_type: :boolean

We can create per-group dialogs as we wish, customizing the values that are hidden
or set as default.

202 | Chapter 25: The Provisioning Dialog

Example: Expanding the Dialog
In some cases it’s useful to be able to expand the range of options presented by the
dialog. For example, the standard dialogs only allow us to specify VM memory in
units of 1 GB, 2 GB, or 4 GB (see Figure 25-2).

Figure 25-2. Default memory size options

These options come from the :vm_memory dialog section:

 :vm_memory:
 :values:
 '2048': '2048'
 '4096': '4096'
 '1024': '1024'
 :description: Memory (MB)
 :required: false
 :display: :edit
 :default: '1024'
 :data_type: :string

We sometimes need to be able to provision larger VMs, but fortunately we can cus‐
tomize the dialog to our own needs.

Copy the existing dialog

If we identify the dialog that is being used (in this example case, it is miq_provi
sion_redhat_dialogs_template as we’re provisioning into RHEV using native
clone), we can copy the dialog to make it editable (we’ll call the new version
bit63_miq_provision_redhat_dialogs_template).

We can then expand the :vm_memory section to match our requirements:

Group-Specific Dialogs | 203

 :vm_memory:
 :values:
 '1024': '1024'
 '2048': '2048'
 '4096': '4096'
 '8192': '8192'
 '16384': '16384'
 :description: Memory (MB)
 :required: false
 :display: :edit
 :default: '1024'
 :data_type: :string

Create a group profile
Now we copy the /Infrastructure/VM/Provisioning/Profile class into our own domain
and create a profile instance for the group that we wish to assign the new dialog to, in
this case Bit63Group-user (see Figure 25-3).

Figure 25-3. Creating a new profile instance

The dialog_name field in the new profile should contain the name of our new dialog
(see Figure 25-4).

204 | Chapter 25: The Provisioning Dialog

Figure 25-4. The dialog_name schema field value changed to the new profile name

Testing the provisioning dialog

To test this we log in as a user who is a member of the Bit63Group-user group and
provision a virtual machine. If we navigate to the Hardware tab of the provisioning
dialog, we should see the expanded range of memory options (see Figure 25-5).

Figure 25-5. Expanded range of memory sizes

Summary
In this chapter we’ve seen how the virtual machine provisioning dialog is used and
how it can be customized.

Summary | 205

We often create group-specific dialogs that contain a default set of provisioning
options, and we can take advantage of this when we make an API call to provision a
virtual machine as a particular user, for example. The user’s group profile will provide
default values for the virtual machine, so we need only specify override values in our
API call parameters.

Further Reading
Provisioning Virtual Machines and Hosts—Customizing Provisioning Dialogs

206 | Chapter 25: The Provisioning Dialog

http://red.ht/1UHEDz3

CHAPTER 26

Virtual Machine Provisioning Objects

When we write our own automation scripts to interact with the virtual machine pro‐
visioning workflow, we need to know how to locate the useful service model objects
that are involved in the process. We might, for example, wish to determine the virtual
machine operating system being provisioned, so that we can decide whether or not to
register the new VM with a Red Hat Satellite server. Our experience up to now tells us
that this is likely to be a service model attribute, but which one?

This chapter will examine the main service model objects that are involved in the vir‐
tual machine provisioning workflow, and how and why we access them.

Object Overview
There are several service model objects involved in the virtual machine or instance
provisioning process, but we generally only work with four of them when we write
our own Automate methods to interact with the provisioning workflow (see
Figure 26-1).

207

Figure 26-1. VM provisioning objects

The Provision Request Object
We’ve discussed the provision request object in detail already. It is the object that con‐
tains all of the information relating to the virtual machine provisioning request.

Request Context
When working at the request stage of the provisioning process (i.e., prior to appro‐
val), we can access the provision request object directly from our workspace:

$evm.root['miq_provision_request']

There are a number of useful attributes that we can read from the provision request
object, including the requester (person) details, and we can set key/value pairs in the
options hash to control the virtual machine provisioning process itself.

The provision request object has a number of useful methods that we can use, such
as:

miq_provision_request.add_tag
miq_provision_request.approve
miq_provision_request.authorized?
miq_provision_request.check_quota
miq_provision_request.ci_type
miq_provision_request.clear_tag
miq_provision_request.deny
miq_provision_request.description=
miq_provision_request.eligible_resources
miq_provision_request.get_classification
miq_provision_request.get_classifications
miq_provision_request.get_folder_paths
miq_provision_request.get_option

208 | Chapter 26: Virtual Machine Provisioning Objects

miq_provision_request.get_option_last
miq_provision_request.get_retirement_days
miq_provision_request.get_tag
miq_provision_request.get_tags
miq_provision_request.pending
miq_provision_request.register_automate_callback
miq_provision_request.set_cluster
miq_provision_request.set_customization_template
miq_provision_request.set_dvs
miq_provision_request.set_folder
miq_provision_request.set_host
miq_provision_request.set_iso_image
miq_provision_request.set_message
miq_provision_request.set_network_adapter
miq_provision_request.set_network_address_mode
miq_provision_request.set_nic_settings
miq_provision_request.set_option
miq_provision_request.set_pxe_image
miq_provision_request.set_pxe_server
miq_provision_request.set_resource
miq_provision_request.set_resource_pool
miq_provision_request.set_storage
miq_provision_request.set_vlan
miq_provision_request.set_vm_notes
miq_provision_request.set_windows_image
miq_provision_request.src_vm_id
miq_provision_request.target_type

In particular, notice the various set methods that are available to define values for
some options hash keys (see Chapter 20 for more details on these methods).

Task Context
When working at the provision task stage we have a different workspace ($evm), and
here $evm.root does not link directly to miq_provision_request. We can, however,
still get to the provision request object via an association from the miq_provision
task object:

$evm.root['miq_provision'].miq_provision_request

By the time we’re in the provision task, setting options in the provi‐
sion request object will have no effect. It’s still useful, however, to
be able to read values from the provision request object when at the
provision task stage of the virtual machine provisioning process.

The Provision Request Object | 209

The Provision Task Object
The provision task object is created once the virtual machine provisioning request has
been approved. Most of the information in the provision request object—most
important, the options hash—is propagated into the provision task object.

The provision task object has a similar set of methods to the request object:

miq_provision.add_tag
miq_provision.check_quota
miq_provision.clear_tag
miq_provision.eligible_resources
miq_provision.execute
miq_provision.finished
miq_provision.get_classification
miq_provision.get_classifications
miq_provision.get_domain_details
miq_provision.get_domain_name
miq_provision.get_folder_paths
miq_provision.get_network_details
miq_provision.get_network_scope
miq_provision.get_option
miq_provision.get_option_last
miq_provision.get_tag
miq_provision.get_tags
miq_provision.message=
miq_provision.register_automate_callback
miq_provision.set_cluster
miq_provision.set_customization_spec
miq_provision.set_customization_template
miq_provision.set_dvs
miq_provision.set_folder
miq_provision.set_host
miq_provision.set_iso_image
miq_provision.set_network_adapter
miq_provision.set_network_address_mode
miq_provision.set_nic_settings
miq_provision.set_option
miq_provision.set_pxe_image
miq_provision.set_pxe_server
miq_provision.set_resource
miq_provision.set_resource_pool
miq_provision.set_storage
miq_provision.set_vlan
miq_provision.set_vm_notes
miq_provision.set_windows_image
miq_provision.statemachine_task_status
miq_provision.target_type
miq_provision.user_message=

210 | Chapter 26: Virtual Machine Provisioning Objects

1 This internal state machine performs the granular provider-specific steps to create the new virtual machine. It
is implemented in the Rails MiqProvision::StateMachine module and is not customizable from Automate.

The most important of these is execute, which launches the internal virtual machine
provisioning state machine.1

The Source Object
When provisioning a virtual machine from a template, we need an object to represent
the source template itself; this is the source object.

The source object is accessible via either of two associations from a request or task
object:

$evm.root['miq_provision_request'].source
$evm.root['miq_provision_request'].vm_template

or:

$evm.root['miq_provision'].source
$evm.root['miq_provision'].vm_template

We can therefore access the source object when working in either the request or task
context.

The source object contains a very useful attribute:

source.vendor

This has the value of either RedHat, VMware, or Microsoft if we’re provisioning to an
infrastructure provider. We can use this to determine the provider type for this provi‐
sioning operation and make workflow decisions accordingly. This attribute is used in
several places in the out-of-the-box VMProvision_VM state machine to select the
appropriate instance to handle vendor-specific tasks such as virtual machine place‐
ment:

/Infra.../VM/Provisioning/Placement/default#${/#miq_provision.source.vendor}

There is also an equally useful virtual column:

source.platform

This has the value of either linux or windows, and we can similarly use it to make
provisioning workflow decisions. We would typically use it to decide whether or not
to register a new virtual machine in Foreman/Satellite 6 as part of the provisioning
process, for example.

The Source Object | 211

All of the source object classes extend from MiqAeServiceVmOrTemplate and so have
the same methods as a generic virtual machine. In practice we rarely need to run a
source method.

The Destination Object
Once the virtual machine has been created (i.e., after the Provision state of the
VMProvision_VM state machine), we have an object that represents the newly created
VM. This is the destination object.

The destination object is accessible as an association from the task object:

$evm.root['miq_provision'].destination

If we wish to make any customizations to the virtual machine as part of the provi‐
sioning workflow—such as add a disk or NIC, change VLAN, and so on—we make
the changes to the destination object.

The destination object is a subclass of MiqAeServiceVmOrTemplate, so it has the stan‐
dard set of VM-related methods:

destination.add_to_service
destination.changed_vm_value?
destination.collect_running_processes
destination.create_snapshot
destination.custom_get
destination.custom_keys
destination.custom_set
destination.ems_custom_get
destination.ems_custom_keys
destination.ems_custom_set
destination.ems_ref_string
destination.error_retiring?
destination.event_log_threshold?
destination.event_threshold?
destination.finish_retirement
destination.group=
destination.migrate
destination.owner=
destination.performances_maintains_value_for_duration?
destination.reboot_guest
destination.reconfigured_hardware_value?
destination.refresh
destination.registered?
destination.remove_all_snapshots
destination.remove_from_disk
destination.remove_from_service
destination.remove_from_vmdb
destination.remove_snapshot
destination.retire_now
destination.retired?

212 | Chapter 26: Virtual Machine Provisioning Objects

destination.retirement_state=
destination.retirement_warn=
destination.retires_on=
destination.retiring?
destination.revert_to_snapshot
destination.scan
destination.shutdown_guest
destination.snapshot_operation
destination.standby_guest
destination.start
destination.start_retirement
destination.stop
destination.suspend
destination.sync_or_async_ems_operation
destination.unlink_storage
destination.unregister

In the case of provisioning a virtual machine, the same destination object is also
available via the vm association:

$evm.root['miq_provision'].vm

We often find that objects are accessible via multiple association names.

Summary
This chapter has discussed the four main service model objects that we work with
when we interact with the virtual machine or instance provisioning workflow, and
we’ve seen the methods that are available to call on each object.

The virtual machine provisioning workflow is the same for all VMs that we provision
into the same provider category: Infrastructure or Cloud. Our provisioning state
machine is used to provision virtual machines into all providers within that category
(both VMware and RHEV, for example), all provisioning methods (such as PXE boot
or clone from fat template), and regardless of the operating system being provisioned.
We must frequently make choices within our workflow based on some of these crite‐
ria, particularly the destination provider vendor and the operating system being pro‐
visioned. Using the various properties of the source and request objects, we can
ascertain exactly the flavor of virtual machine being provisioned, the provisioning
type being used, and the provider being targeted.

We also have several options to fine-tune the characteristics of the final virtual
machine by calling methods on the destination object. We might want to explictly set
the owning group and perhaps set a custom attribute. We could call destina
tion.group= and destination.custom_set toward the end of the provisioning
workflow to achieve this.

Summary | 213

CHAPTER 27

Creating Provisioning Requests
Programmatically

As we’ve seen, the most common way to provision a virtual machine is via the Cloud‐
Forms WebUI (see Chapter 16). We click on Lifecycle → Provision VMs, complete
the provisioning dialog, and a few minutes later our new virtual machine is ready.

There are times, however, when it is useful to be able to start the virtual machine pro‐
visioning process from an automation script, with no manual interaction. This then
allows us to autoscale our virtual infrastructure, based on real-time or anticipated
performance criteria. Perhaps we are an online retailer selling barbeques, for exam‐
ple. We could automatically monitor the short-range weather forecast via the API of a
well-known weather website and scale out our online store servers if a period of fine
weather is anticipated.

Making the Call
We can initiate the provisioning process programmatically by calling $evm.execute
to run the method create_provision_request (see Chapter 7 for more information
on these methods).

The create_provision_request method takes a number of arguments, which corre‐
spond to the argument list for the original EVMProvisionRequestEx SOAP API call. A
typical call to provision a VM into RHEV might be:

215

arg1 = version
args = ['1.1']

arg2 = templateFields
args << {'name' => 'rhel7-generic',
 'request_type' => 'template'}

arg3 = vmFields
args << {'vm_name' => 'rhel7srv010',
 'vlan' => 'public',
 'vm_memory' => '1024'}

arg4 = requester
args << {'owner_email' => 'pemcg@bit63.com',
 'owner_first_name' => 'Peter',
 'owner_last_name' => 'McGowan'}

arg5 = tags
args << nil

arg6 = additionalValues (ws_values)
args << {'disk_size_gb' => '50',
 'mountpoint' => '/opt'}

arg7 = emsCustomAttributes
args << nil

arg8 = miqCustomAttributes
args << nil

request_id = $evm.execute('create_provision_request', *args)

Argument List
The arguments to the create_provision_request call are described next. The argu‐
ments match the fields in the provisioning dialog (and the values from the corre‐
sponding YAML template), and any arguments that are set to required: true in the
dialog YAML, but don’t have a :default: value, should be specified. The exception
for this is for subdependencies of other options; for example, if :provision_type: is
pxe, then the suboption :pxe_image_id: is mandatory. If the :provision_type:
value is anything else, then :pxe_image_id: is not relevant.

In CloudForms versions prior to 4.0, the arguments were specified as a string, with
each value separated by a pipe (|) symbol, like so:

"vm_name=rhel7srv010|vlan=public|vm_memory=1024"

With CloudForms 4.0, however, this syntax has been deprecated, and the options
within each argument type should be defined as a hash as shown in the preceding

216 | Chapter 27: Creating Provisioning Requests Programmatically

example. This is more compatible with the equivalent RESTful API call to create a
provisioning request.

The value for each hashed argument pair should always be a string; for example:

{'number_of_vms' => '4'}

rather than:

{'number_of_vms' => 4}

version
The version argument refers to the interface version. It should be set to 1.1.

templateFields
The templateFields argument denotes fields specifying the VM or template to use as
the source for the provisioning operation. We supply a guid or ems_guid to protect
against matching same-named templates on different providers within CloudForms
Management Engine. The request_type field should be set to one of: template,
clone_to_template, or clone_to_vm as appropriate. A normal VM provision from
template is specified as:

'request_type' => 'template'

vmFields
vmFields allows for the setting of properties from the Catalog, Hardware, Network,
Customize, and Schedule tabs in the provisioning dialog. Some of these are provider-
specific, so when provisioning an OpenStack instance, for example, we need to spec‐
ify the instance_type, as follows:

arg2 = vmFields
arg2 = {'number_of_vms' => '3',
 'instance_type' => '1000000000007', # m1.small
 'vm_name' => "#{$instance_name}",
 'retirement_warn' => "#{2.weeks}"}
args << arg2

requester
The requester argument allows for the setting of properties from the Request tab in
the provisioning dialog. owner_email, owner_first_name, and owner_last_name are
required fields.

Argument List | 217

tags
The tags argument refers to tags to apply to the newly created VM—for example:

{'server_role' => 'web_server',
 'cost_center' => '0011'}

additionalValues (aka ws_values)
Additional values, also known as ws_values, are name/value pairs stored with a pro‐
vision request, but not used by the core provisioning code. These values are usually
referenced from Automate methods for custom processing. They are added into the
request options hash and can be retrieved as a hash from:

$evm.root['miq_provision'].options[:ws_values]

emsCustomAttributes
emsCustomAttributes are custom attributes applied to the virtual machine through
the provider as part of provisioning. Not all providers support this, although VMware
does support native vCenter custom attributes, which if set are visible both in Cloud‐
Forms and in the vSphere/vCenter UI.

miqCustomAttributes
miqCustomAttributes are custom attributes applied to the virtual machine and
stored in the CloudForms Management Engine database as part of provisioning.
These VMDB-specific custom attributes are displayed on the VM details page (see
Chapter 5 for an example of setting a custom attribute from a script).

Setting Placement Options
The Rails code that implements the create_provision_request call makes the
assumption that any noninteractive provision request will use automatic placement,
and it sets options[:placement_auto] = [true, 1] as a request option. This also
means, however, that it disregards any vmFields options that we may set that are nor‐
mally found under the Environment tab of an interactive provision request, such as
cloud_tenant or cloud_network (these are hidden in the WebUI if we select Choose
Automatically; see Figure 27-1).

218 | Chapter 27: Creating Provisioning Requests Programmatically

Figure 27-1. Setting the environment placement options for a cloud instance

If we try adding one of these (such as cloud_network), we see in evm.log:

Unprocessed key <cloud_network> with value <"1000000000007">

The only way that we can set any of these placement options is to add them to the
additionalValues/ws_values (arg6) argument list and then handle them ourselves in
the CustomizeRequest stage of the state machine.

For example, in our call to create_provision_request we can set:

arg6 = additionalValues (ws_values)
args << {'cloud_network' => '10000000000031'
 'cloud_tenant' => '10000000000012'}

We can then copy ManageIQ/Cloud/VM/Provisioning/StateMachines/Methods/open‐
stack_CustomizeRequest into our own domain, and edit as follows:

Setting Placement Options | 219

#
Description: Customize the OpenStack provisioning request
#
def find_object_for(rsc_class, id_or_name)
 obj = $evm.vmdb(rsc_class, id_or_name.to_s) ||
 $evm.vmdb(rsc_class).find_by_name(id_or_name.to_s)
 $evm.log(:warn, "Couldn\'t find an object of class #{rsc_class} \
 with an ID or name matching \'#{id_or_name}\'") if obj.nil?
 obj
end

Get provisioning object
prov = $evm.root["miq_provision"]
ws_values = prov.options.fetch(:ws_values, {})

if ws_values.has_key?(:cloud_network)
 cloud_network = find_object_for('CloudNetwork', ws_values[:cloud_network])
 prov.set_cloud_network(cloud_network)
end
if ws_values.has_key?(:cloud_tenant)
 cloud_tenant = find_object_for('CloudTenant', ws_values[:cloud_tenant])
 prov.set_cloud_tenant(cloud_tenant)
end

$evm.log("info", "Provisioning ID:<#{prov.id}> \
 Provision Request ID:<#{prov.miq_provision_request.id}> \
 Provision Type: <#{prov.provision_type}>")

Summary
Being able to create provisioning requests programmatically gives us complete con‐
trol over the process and has many uses. For example, when managing a scalable
cloud application, we can configure a CloudForms alert to detect high CPU utiliza‐
tion on any of the existing cloud instances making up the workload. We could use the
alert to send a management event that runs an Automate method to scale out the
workload by provisioning additional instances (see Chapter 11).

We can also use create_provision_request to create custom service catalog items,
when the out-of-the-box service provisioning state machines do not provide the
functionality that we need (see Chapter 39).

Further Reading
Provision Request Attribute Groups

220 | Chapter 27: Creating Provisioning Requests Programmatically

http://bit.ly/1sz7Jrp

CHAPTER 28

Integrating with Satellite 6 During
Provisioning

It is a relatively common requirement to register newly provisioned Red Hat Enter‐
prise Linux virtual machines directly with Satellite 6 as part of the provisioning pro‐
cess. This ensures that the resultant VM is patched and up to date, and is configured
by Puppet according to a server role.

This chapter describes the steps involved in adapting the provisioning workflow so
that Red Hat virtual machines are automatically registered with Satellite 6 as part of
the provisioning operation. We’ll be preparing the Satellite environment slightly for
the automation, and we’ll call the Satellite RESTful API to perform some of the inte‐
gration steps. This is a relatively simple use case that demonstrates the capability of
CloudForms to integrate with our wider enterprise.

Hosts and Content Hosts
Registering a new system with Satellite 6.1 currently requires two operations. We
need to create a Satellite host entry, which registers the server as a configuration man‐
agement client, manageable by Puppet. We also need to use subscription_manager
to activate the server as a content host, which associates one or more Red Hat sub‐
scriptions with the server and makes software package repository content available.

221

The Challenge of Triggering the Client Operations
For this example, we’ll be provisioning into a VMware provider and cloning from
fully installed fat templates (i.e., no kickstarting).

Cloning from a template (infrastructure providers) or image (cloud providers)
presents us with the challenge of how to initiate several commands on the new VM,
including subscription-manager register, using dynamic arguments such as --
activationkey or --org.

There are several ways of remotely running commands in a newly created VM,
including:

• Using the VMware VIX SDK library to connect to VMware tools running in a
guest (VMware providers only)

• Using cloud-init (RHEV, OpenStack, and Amazon providers)
• Using ssh, including Ansible (all providers)

For flexibility (at the expense of some added complexity), we’ll be triggering the sub‐
scription manager registration of the newly provisioned system using an Ansible
playbook, dynamically created as part of the provisioning workflow.

The Satellite 6 Host Entry
A host entry in Satellite 6 requires certain parameters:

• Hostname
• Host’s MAC address
• Location
• Organizaton
• Puppet environment
• Architecture
• Operating system
• Media
• Partition table
• Domain
• Root password

222 | Chapter 28: Integrating with Satellite 6 During Provisioning

We can, however, define a host group in Satellite, containing defaults for several of
these parameters. When we create the host entry, we can specify a host group as a
configuration template.

Non-CloudForms Preparation
We need to do some preparation of our environment. To keep the example simple,
we’ll allow for provisioning Red Hat Enterprise Linux 6 and 7 servers (both x86_64),
but we’ll create a single generic host group and activation key for each operating sys‐
tem version.

Creating the Host Groups in Satellite 6
We’ll create two host groups in Satellite 6: Generic_RHEL6_Servers and
Generic_RHEL7_Servers (see Figure 28-1).

Figure 28-1. Preparation of two Satellite 6 host groups

These host groups will define defaults for:

• Puppet environment
• Architecture
• Operating system
• Media
• Partition table
• Domain
• Root password

The host group will also install the motd and ntp Puppet modules.

Non-CloudForms Preparation | 223

Creating the Activation Keys in Satellite 6
When a newly provisioned system registers with Satellite as a content host, it can
include an activation key name as an argument to subscription_manager.

We’ll create two activation keys in Satellite 6: RHEL6-Generic and RHEL7-Generic
(see Figure 28-2).

Figure 28-2. Preparation of two Satellite 6 activation keys

These activation keys will define defaults for:

• Content view and lifecycle environment (Production)
• Red Hat subscriptions
• Repository content sets

Adding an SSH Key to the VMware Template
We’re going to be using Ansible from the CloudForms server to set the new VM’s
hostname, register the new VM with Satellite, and install and run Puppet. We need to
copy root’s public key from the CloudForms server to the VMware template and add
it to /root/.ssh/authorized_keys.

Installing and Configuring Ansible on the CloudForms
Appliance
For convenience we’ll install Ansible from the EPEL repository. We need to add the
rhel-7-server-optional-rpms repository, and then the EPEL installation RPM on the
CloudForms appliances with the Automation Engine role set:

subscription-manager repos --enable=rhel-7-server-optional-rpms
rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

224 | Chapter 28: Integrating with Satellite 6 During Provisioning

Installing extra packages from the EPEL repository may leave your
CloudForms installation unstable and unsupported by Red Hat.

Now we can install Ansible:

yum -y install ansible
Loaded plugins: product-id, search-disabled-repos, subscription-manager
Resolving Dependencies
--> Running transaction check
---> Package ansible.noarch 0:1.9.4-1.el7 will be installed
--> Processing Dependency: sshpass for package: ansible-1.9.4-1.el7.noarch
--> Processing Dependency: python-paramiko for package: ansible-1.9.4-1.el7.no...
--> Processing Dependency: python-keyczar for package: ansible-1.9.4-1.el7.noa...
--> Processing Dependency: python-jinja2 for package: ansible-1.9.4-1.el7.noarch
--> Processing Dependency: python-httplib2 for package: ansible-1.9.4-1.el7.no...
--> Running transaction check
---> Package python-httplib2.noarch 0:0.7.7-3.el7 will be installed
---> Package python-jinja2.noarch 0:2.7.2-2.el7 will be installed
--> Processing Dependency: python-babel >= 0.8 for package: python-jinja2-2.7....
--> Processing Dependency: python-markupsafe for package: python-jinja2-2.7.2-...
---> Package python-keyczar.noarch 0:0.71c-2.el7 will be installed
--> Processing Dependency: python-crypto for package: python-keyczar-0.71c-2.e...
---> Package python-paramiko.noarch 0:1.15.1-1.el7 will be installed
--> Processing Dependency: python-ecdsa for package: python-paramiko-1.15.1-1....
---> Package sshpass.x86_64 0:1.05-5.el7 will be installed
--> Running transaction check
---> Package python-babel.noarch 0:0.9.6-8.el7 will be installed
---> Package python-ecdsa.noarch 0:0.11-3.el7 will be installed
---> Package python-markupsafe.x86_64 0:0.11-10.el7 will be installed
---> Package python2-crypto.x86_64 0:2.6.1-9.el7 will be installed
--> Processing Dependency: libtomcrypt.so.0()(64bit) for package: python2-cry...
--> Running transaction check
---> Package libtomcrypt.x86_64 0:1.17-23.el7 will be installed
--> Processing Dependency: libtommath >= 0.42.0 for package: libtomcrypt-1.17-...
--> Processing Dependency: libtommath.so.0()(64bit) for package: libtomcrypt-1...
--> Running transaction check
---> Package libtommath.x86_64 0:0.42.0-4.el7 will be installed
--> Finished Dependency Resolution
...

We probably want to disable the EPEL repo after installing this to ensure that we
don’t accidentally pull anything else down from it:

sed -i -e 's/enabled=1/enabled=0/' /etc/yum.repos.d/epel.repo

Uncomment host_key_checking in /etc/ansible/ansible.cfg:

uncomment this to disable SSH key host checking
host_key_checking = False

Installing and Configuring Ansible on the CloudForms Appliance | 225

Modifying the CloudForms Provisioning Workflow
We need to make two additions to the VMProvision_VM state machine. The first is to
add a RegisterSatellite state to register the new VM with Satellite 6 as a host. The
second is to add an ActivateSatellite state to create the Ansible playbook and ini‐
tiate the subscription-manager activation of the new system as a content host.

Both of these states must be added at some point after the VM has been provisioned.
The registration must include the MAC address of the new VM, and the activation
uses Ansible to connect via ssh to the running VM.

Figure 28-3 shows the new states added.

Figure 28-3. RegisterSatellite and ActivateSatellite states added to the VM provision
state machine

RegisterSatellite
Our new RegisterSatellite instance schema can store some more defaults. In this case
we’ll create per-organization/location instances, so that we can store the organization
name and location in the schema (see Figure 28-4).

226 | Chapter 28: Integrating with Satellite 6 During Provisioning

Figure 28-4. RegisterSatellite instance schema

The register_satellite method can access these in the usual way, from $evm.object:

 servername = $evm.object['servername']
 username = $evm.object['username']
 password = $evm.object.decrypt('password')
 organization = $evm.object['organization']
 location = $evm.object['location']

We need to ensure that we register only Linux VMs with Satellite, and we can select a
host group by testing the VM operating_system object’s product_name attribute
(we’re only provisioning RHEL 6 or 7, both x86_64):

...
prov = $evm.root['miq_provision']
template = prov.source
vm = prov.destination

if template.platform == "linux"
 #
 # Pick a host group based on the operating system being provisioned
 #
 if vm.operating_system.product_name == 'Red Hat Enterprise Linux 6 (64-bit)'
 hostgroup = 'Generic_RHEL6_Servers'
 elsif vm.operating_system.product_name == 'Red Hat Enterprise Linux 7 (64-bit)'
 hostgroup = 'Generic_RHEL7_Servers'
 else
 raise "Unrecognised Operating System Name"
 end
...

Modifying the CloudForms Provisioning Workflow | 227

In a more advanced example we could present a selection of host
groups to register with in a service dialog drop-down list (see
Chapter 38).

We’ll be creating the new host entry using the Satellite API, and this requires us to use
the internal Satellite ID for each parameter, rather than a name. We define a generic
query_id method and call it three times to retrieve the IDs for the location, organiza‐
tion, and host group:

def query_id (uri, field, content)

 url = URI.escape("#{@uri_base}/#{uri}?search=#{field}=\"#{content}\"")
 request = RestClient::Request.new(
 method: :get,
 url: url,
 headers: @headers,
 verify_ssl: OpenSSL::SSL::VERIFY_NONE
)

 id = nil
 rest_result = request.execute
 json_parse = JSON.parse(rest_result)

 subtotal = json_parse['subtotal'].to_i
 if subtotal == 1
 id = json_parse['results'][0]['id'].to_s
 elsif subtotal.zero?
 $evm.log(:error, "Query to #{url} failed, no result")
 id = -1
 elsif subtotal > 1
 $evm.log(:error, "Query to #{url} returned multiple results")
 id = -1
 else
 $evm.log(:error, "Query to #{url} failed, unknown condition")
 id = -1
 end
 id
end

...
$evm.log(:info, "Getting hostgroup id for '#{hostgroup}' from Satellite")
hostgroup_id = query_id("hostgroups", "name", hostgroup)
raise "Cannot determine hostgroup id for '#{hostgroup}'" if hostgroup_id == -1
$evm.log(:info, "hostgroup_id: #{hostgroup_id}")

Finally, we create the host record. We specify the :build parameter as false because
we don’t want Satellite to provision the VM:

228 | Chapter 28: Integrating with Satellite 6 During Provisioning

#
Create the host record
#
hostinfo = {
 :name => vm.name,
 :mac => vm.mac_addresses[0],
 :hostgroup_id => hostgroup_id,
 :location_id => location_id,
 :organization_id => organization_id,
 :build => 'false'
 }
$evm.log(:info, "Creating host record in Satellite")

uri = "#{@uri_base}/hosts"
request = RestClient::Request.new(
 method: :post,
 url: uri,
 headers: @headers,
 verify_ssl: OpenSSL::SSL::VERIFY_NONE,
 payload: { host: hostinfo }.to_json
)
rest_result = request.execute

ActivateSatellite
Our new ActivateSatellite instance schema can also store some defaults. In this case
we’ll create per-organization instances, and we’ll store the organization name in the
schema (see Figure 28-5).

Figure 28-5. ActivateSatellite instance schema

Once again we check that the system being provisioned is running Linux and select
the activation key based on the operating system version:

Modifying the CloudForms Provisioning Workflow | 229

if template.platform == "linux"
 #
 # Pick an activation key based on the operating system being provisioned
 #
 if vm.operating_system.product_name == 'Red Hat Enterprise Linux 6 (64-bit)'
 activationkey = 'RHEL6-Generic'
 elsif vm.operating_system.product_name == 'Red Hat Enterprise Linux 7 (64-bit)'
 activationkey = 'RHEL7-Generic'
 else
 raise "Unrecognised Operating System Name"
 end

We need to check that the VM is booted and has an IP address:

if vm.ipaddresses.length.zero?
 $evm.log(:info, "VM doesnt have an IP address yet - retrying in 1 minute")
 $evm.root['ae_result'] = 'retry'
 $evm.root['ae_retry_interval'] = '1.minute'
 exit MIQ_OK
end
ip_address = vm.ipaddresses[0]

For this example, we’ll be connecting to the newly provisioned VM by IP address
rather than hostname, so we have to add the new IP address to /etc/ansible/hosts if it
doesn’t already exist:

unless File.foreach('/etc/ansible/hosts') \
.grep(/#{Regexp.escape(ip_address)}/).any?
 open('/etc/ansible/hosts', 'a') do |f|
 f.puts "#{ip_address}"
 f.close
 end
end

We need to remove the hosts key for that IP address if it already exists:

cmd = "ssh-keygen -R #{ip_address}"
`#{cmd}`

We create a temporary file and write the Ansible playbook to it:

tempfile = Tempfile.new('ansible-')

playbook = []
this_host = {}
this_host['hosts'] = []
this_host['hosts'] = "#{ip_address}"
this_host['tasks'] << { 'name' => 'Set hostname',
 'hostname' => "name=#{vm.name}"
 }
this_host['tasks'] = []
this_host['tasks'] << { 'name' => 'Install Cert',
 'command' => "/usr/bin/yum -y localinstall \
 http://#{servername}/pub/katello-ca-consumer-latest.noarch.rpm"

230 | Chapter 28: Integrating with Satellite 6 During Provisioning

 }
this_host['tasks'] << { 'name' => 'Register with Satellite',
 'command' => "/usr/sbin/subscription-manager register \
 --org #{organization} --activationkey #{activationkey}",
 'register' => 'registered'
 }
this_host['tasks'] << { 'name' => 'Enable Repositories',
 'command' => "subscription-manager repos \
 --enable=rhel-*-satellite-tools-*-rpms",
 'when' => 'registered|success'
 }
this_host['tasks'] << { 'name' => 'Install Katello Agent',
 'yum' => 'pkg=katello-agent state=latest',
 'when' => 'registered|success',
 'notify' => ['Enable Katello Agent', \
 'Start Katello Agent']
 }
this_host['tasks'] << { 'name' => 'Install Puppet',
 'yum' => 'pkg=puppet state=latest',
 'when' => 'registered|success',
 'register' => 'puppet_installed',
 'notify' => ['Enable Puppet']
 }
this_host['tasks'] << { 'name' => 'Configure Puppet Agent',
 'command' => "/usr/bin/puppet config set server \
 #{servername} --section agent",
 'when' => 'puppet_installed|success'
 }
this_host['tasks'] << { 'name' => 'Run Puppet Test',
 'command' => '/usr/bin/puppet agent --test --noop \
 --onetime --waitforcert 60',
 'when' => 'puppet_installed|success'
 }
this_host['tasks'] << { 'name' => 'Start Puppet',
 'service' => 'name=puppet state=started'
 }
this_host['tasks'] << { 'name' => 'Update all packages',
 'command' => '/usr/bin/yum -y update'
 }
this_host['handlers'] = []
this_host['handlers'] << { 'name' => 'Enable Katello Agent',
 'service' => 'name=goferd enabled=yes'
 }
this_host['handlers'] << { 'name' => 'Start Katello Agent',
 'service' => 'name=goferd state=started'
 }
this_host['handlers'] << { 'name' => 'Enable Puppet',
 'service' => 'name=puppet enabled=yes'
 }
playbook << this_host

Modifying the CloudForms Provisioning Workflow | 231

tempfile.write("#{playbook.to_yaml}\n")
tempfile.close

Finally, we run ansible-playbook:

cmd = "ansible-playbook -s #{tempfile.path}"
ansible_results = `#{cmd}`
$evm.log(:info, "Finished ansible-playbook, results: #{ansible_results}")
tempfile.unlink

The full scripts are available on GitHub.

Testing the Integration: Provisioning a New VM
First we check that we have no hosts with test in their name in our Satellite (see
Figure 28-6).

Figure 28-6. The number of “test” hosts in Satellite before provisioning

We’ll provision a RHEL 6 virtual machine and call it rhel6test (see Figure 28-7).

Figure 28-7. Provisioning a new virtual machine called rhel6test

Once the VM has finished cloning, we see the output from register_satellite in
automation.log:

232 | Chapter 28: Integrating with Satellite 6 During Provisioning

http://bit.ly/1VOFeSa

<AEMethod register_satellite> Getting hostgroup id for 'Generic_RHEL6_Servers' \
 from Satellite
<AEMethod register_satellite> hostgroup_id: 3
<AEMethod register_satellite> Getting location id for 'Winchester' from Satellite
<AEMethod register_satellite> location_id: 4
<AEMethod register_satellite> Getting organization id for 'Bit63' from Satellite
<AEMethod register_satellite> organization_id: 3
<AEMethod register_satellite> Creating host record in Satellite with the \
 following details: {:name=>"rhel6test", :mac=>"00:50:56:b8:51:da", \
 :hostgroup_id=>"3", :location_id=>"4", \
 :organization_id=>"3", :build=>"false"}
<AEMethod register_satellite> return code => 200

In Satellite we see the new host entry, but the N icon indicates that no reports have
been received from it yet (see Figure 28-8).

Figure 28-8. Newly added host record

Soon afterward we see the output from activate_satellite in automation.log:

activate_satellite> VM doesnt have an IP address yet - retrying in 1 minute
...
activate_satellite> IP Address is: 192.168.1.185
activate_satellite> Running ansible-playbook using /tmp/ansible-20151026-26705...
<AEMethod activate_satellite> Finished ansible-playbook, results:
PLAY [192.168.1.185] **

GATHERING FACTS ***
ok: [192.168.1.185]

TASK: [Set hostname] **
changed: [192.168.1.185]

TASK: [Install Cert] **
changed: [192.168.1.185]

TASK: [Register with Satellite] ***
changed: [192.168.1.185]

Testing the Integration: Provisioning a New VM | 233

TASK: [Enable Repositories] ***
changed: [192.168.1.185]

TASK: [Install Katello Agent] ***
changed: [192.168.1.185]

TASK: [Install Puppet] **
changed: [192.168.1.185]

TASK: [Configure Puppet Agent] **
changed: [192.168.1.185]

TASK: [Run Puppet Test] ***
changed: [192.168.1.185]

TASK: [Start Puppet] **
changed: [192.168.1.185]

TASK: [Update all packages] ***
changed: [192.168.1.185]

NOTIFIED: [Enable Katello Agent] **
ok: [192.168.1.185]

NOTIFIED: [Start Katello Agent] ***
ok: [192.168.1.185]

NOTIFIED: [Enable Puppet] ***
changed: [192.168.1.185]

PLAY RECAP **
192.168.1.185 : ok=14 changed=11 unreachable=0 failed=0

In Satellite we now see the new content host entry, showing that all packages have
been updated (see Figure 28-9).

Figure 28-9. Newly added content host record

We also see that the new host record is shown as active, showing that the Puppet
agent is connecting to the Puppet Master (see Figure 28-10).

234 | Chapter 28: Integrating with Satellite 6 During Provisioning

Figure 28-10. Host record activated

Summary
This chapter has shown how we can integrate our virtual machine provisioning work‐
flow with our wider enterprise, in this case by registering new VMs with a Satellite 6
server. The example is deliberately simple in having only one host group and activa‐
tion key per operating system version, but hopefully this simplicity conveys the rela‐
tive ease of integration.

If we prefer to provision our new virtual machine by PXE boot/kickstart, we simply
pass any additional parameters that are required for the kickstart in the hostinfo
hash and set the key :build to be true, as follows:

hostinfo = {
 :name => vm.name,
 :mac => vm.mac_addresses[0],
 :hostgroup_id => hostgroup_id,
 :location_id => location_id,
 :organization_id => organization_id,
 :operatingsystem_id => operatingsystem_id,
 :architecture_id => architecture_id,
 :domain_id => domain_id,
 :subnet_id => subnet_id,
 :root_pass => root_password,
 :ip => ip_address,
 :disk => partition_layout,
 :build => 'true'
}

In this example we’ve also installed Ansible directly onto our CloudForms appliance.
At the time of writing it seems likely that a future version of CloudForms will have a
dedicated Ansible provider, thereby rendering this step unnecessary.

Summary | 235

Further Reading
How to Provision VMs with Foreman and ManageIQ

Check Provisioning State in ManageIQ with Foreman

Foreman API—Create a Host

236 | Chapter 28: Integrating with Satellite 6 During Provisioning

http://bit.ly/1XeBSZL
http://bit.ly/25SoYlU
http://bit.ly/1OhbVpE

PART III

Working with Services

We saw in Part II how we can provision virtual machines from the WebUI. This pro‐
cess involves entering values for the many provisioning dialog options, such as our
name and email address, and the desired configuration of the virtual machine—the
number of CPUs, amount of memory, disk format, and vLAN, for example.

CloudForms also enables us to create service catalogs with which we can provision
preconfigured virtual machines from a single Order button (see Figure III-1).

Figure III-1. Simple service catalog

In Part III we’ll learn about creating and using services.

CHAPTER 29

Service Dialogs

When we design our services in CloudForms, we try to simplify the ordering process
for our users as much as possible. We preconfigure as many provisioning choices as
we can and, ideally, offer a small selection of options in the form of a service dialog to
allow our users to customize their service request. An example might be to offer a
simple T-shirt size ordering style to specify the size of a virtual machine (see
Figure 29-1).

Figure 29-1. Ordering VMs in T-shirt sizes

We have already seen how to create a simple service dialog in Chapter 5. This chapter
will discuss service dialogs in more detail and show how we can create dynamic ele‐
ments that are populated at runtime when the user orders the catalog item.

239

Dialog Elements
The service dialog that we created in Chapter 5 used two simple text box elements. In
addition to text boxes, there are several other element types that we can use (see
Figure 29-2).

Figure 29-2. The available dialog element types

Service dialog elements gained several useful new features with recent versions of
CloudForms, as we’ll see in this chapter.

Dynamic Elements
Prior to CloudForms 3.2 only one element type was capable of dynamic (runtime)
population, the Dynamic Drop Down List. CloudForms 3.2 extended the dynamic
population capability to most other dialog element types, so the Dynamic Drop
Down List has been removed as a separate element type.

Dynamic elements are populated from a method, called either when the service dia‐
log is initially displayed or from an optional Refresh button (dynamic elements can
also be autorefreshed, as we’ll see shortly). The URI to the method is specified when
we add the element and select the checkbox to make it dynamic.

Populating the Dynamic Fields
The dynamic element has its own $evm.object. We need to populate some prede‐
fined hash key/value pairs in this object to define the dialog field settings, and to load
the data to be displayed. Here is an example of how we do this:

240 | Chapter 29: Service Dialogs

dialog_field = $evm.object

sort_by: value / description / none
dialog_field["sort_by"] = "value"

sort_order: ascending / descending
dialog_field["sort_order"] = "ascending"

data_type: string / integer
dialog_field["data_type"] = "integer"

required: true / false
dialog_field["required"] = "true"

dialog_field["values"] = {2 => "2GB", 4 => "4GB", 16 => "16GB"}
dialog_field["default_value"] = 2

If the dynamic element type is a drop-down list, the values key of this hash is also a
hash of key/value pairs. Each key/value pair in this hash represents a value to be dis‐
played in the element, and the corresponding data_type value to be returned to
Automate as the dialog_* option if that choice is selected.

Here is another, more real-world example of the versatility of dynamic elements:

 values_hash = {}
 values_hash['!'] = '-- select from list --'
 user_group = $evm.root['user'].ldap_group
 #
 # Everyone can provision to DEV and UAT
 #
 values_hash['dev'] = "Development"
 values_hash['uat'] = "User Acceptance Test"
 if user_group.downcase =~ /administrators/
 #
 # Administrators can also provision to PRE-PROD and PROD
 #
 values_hash['pre-prod'] = "Pre-Production"
 values_hash['prod'] = "Production"
 end

 list_values = {
 'sort_by' => :value,
 'data_type' => :string,
 'required' => true,
 'values' => values_hash
 }
 list_values.each { |key, value| $evm.object[key] = value }

This example populates a dynamic drop-down list with infrastructure lifecycle envi‐
ronments into which a user can provision a new virtual machine. If the user is a
member of group containing the string administrators, then a further two environ‐
ments, Pre-Production and Production, are added to the list.

Dynamic Elements | 241

Read-Only and Protected Elements
CloudForms 3.1 added the ability to mark a text box as protected, which results in
any input being obfuscated. This is particularly useful for inputting passwords (see
Figure 29-3).

Figure 29-3. Dialog that prompts for a password in a protected element

CloudForms 3.2 introduced the concept of read-only elements for service dialogs that
cannot be changed once displayed. Having a text box dynamically populated, but
read-only, makes it ideal for displaying messages.

Programmatically Populating a Read-Only Text Box
We can use dynamically populated read-only text or text area boxes as status boxes to
display messages. Here is an example of populating a text box with a message,
depending on whether the user is provisioning into Amazon or not:

 if $evm.root['vm'].vendor.downcase == 'amazon'
 status = "Valid for this VM type"
 else
 status = 'Invalid for this VM type'
 end
 list_values = {
 'required' => true,
 'protected' => false,
 'read_only' => true,
 'value' => status,
 }
 list_values.each do |key, value|
 $evm.object[key] = value
 end

Element Validation
CloudForms 3.2 introduced the ability to add input field validation to dialog ele‐
ments. Currently the only validator types are None or Regular Expression, but regular
expressions are useful for validating input for values such as IP addresses (see
Figure 29-4).

242 | Chapter 29: Service Dialogs

Figure 29-4. Validator rule for an IP address element

Using the Input from One Element in Another Element’s
Dynamic Method
We can link elements in such a way that a user’s input in one element can be used by
subsequent dynamic elements that are refreshable. The subsequent dynamic method,
when refreshed, can use $evm.root['dialog_elementname'] or $evm.object['dia
log_elementname'] to access the first element’s input value. Elements can be
refreshed with a Refresh button, but CloudForms 4.0 added the ability to mark
dynamic elements with the “Auto refresh” characteristic. There is a corresponding
characteristic, “Auto Refresh other fields when modified,” that we can apply to the ini‐
tial element at the start of this refresh chain.

We can use this in several useful ways, such as to populate a dynamic list based on a
value input previously, or to create a validation method.

Example

Requirement

We have a service dialog containing a text box element called tenant_name. Into this
element the user should type the name of a new OpenStack tenant to be created in
each of several OpenStack providers. The tenant name should be unique and not cur‐
rently exist in any provider.

We would like to add a validation capability to the service dialog to check that the
tenant name doesn’t already exist before the user clicks on the Submit button.

Solution

In the following example a read-only text area box element called validation is used
to display a validation message. Users are instructed to click the Refresh button to
validate their input to the tenant_name field.

Until the Refresh button is clicked, the validation text area box displays “Valida‐
tion…”. Once the Refresh button is clicked, the validation message changes according
to whether the tenant exists or not:

Using the Input from One Element in Another Element’s Dynamic Method | 243

display_string = "Validation...\n"
tenant_found = false

tenant_name = $evm.root['dialog_tenant_name']
unless tenant_name.length.zero?
 lowercase_tenant = tenant_name.gsub(/\W/,'_').downcase
 tenant_objects = $evm.vmdb('CloudTenant').find(:all)
 tenant_objects.each do | tenant |
 if tenant.name.downcase == lowercase_tenant
 tenant_found = true
 display_string += " Tenant \'#{tenant.name}\' exists in OpenStack "
 display_string += "Provider: #{$evm.vmdb('ems', tenant.ems_id).name}\n"
 end
 end
 unless tenant_found
 display_string += " Tenant \'#{lowercase_tenant}\' is available for use"
 end
end

list_values = {
 'required' => true,
 'protected' => false,
 'read_only' => true,
 'value' => display_string,
}
list_values.each do |key, value|
 $evm.log(:info, "Setting dialog variable #{key} to #{value}")
 $evm.object[key] = value
end
exit MIQ_OK

Summary
This chapter has shown the flexibility we have when we build our service dialogs. We
can use dynamic methods to preload appropriate options into dialog elements,
thereby customizing the dialog options on a per-user basis. We can also create confir‐
mation text boxes that allow users to validate their inputs and thus allow them to
make changes if necessary before clicking Submit.

It is worth noting that dynamic dialog methods always run on the WebUI appliance
that we are logged into, whether or not this appliance has the Automation Engine
server role set. This can have unexpected consequences. Our real-world CloudForms
installations may comprise several appliances distributed among multiple zones,
often with firewalls between (see Figure 29-5).

244 | Chapter 29: Service Dialogs

Figure 29-5. Typical real-world CloudForms installation with multiple appliances and
zones

If we write a dynamic dialog method to retrieve any information from an external
system, we might expect the method to run on any of our provider zone worker appli‐
ances, but it doesn’t. We must ensure that the WebUI zone firewalls allow our WebUI
appliances to directly connect to any external systems that our dialog methods need
access to.

Further Reading
Service Dialogs

Service Dialog Enhancements

Summary | 245

http://red.ht/24Gw22p
https://github.com/ManageIQ/manageiq/pull/2479

CHAPTER 30

The Service Provisioning State Machine

As might be expected, CloudForms uses a state machine to intelligently handle the
workflow for provisioning a service. Although we rarely modify the service provi‐
sioning state machine, it is useful to have an understanding of its steps and the func‐
tions that it performs. This more theoretical chapter examines the state machine and
discusses its role in passing into the provisioning workflow the service dialog values
that the user has input.

Class and Instances
The service provisioning state machine (the ServiceProvision_Template class) controls
the sequence of steps involved in provisioning the service. The ManageIQ domain
contains four instances of this state machine (see Figure 30-1).

Figure 30-1. ServiceProvision_Template class, instances, and method

The ServiceProvision_Template class schema contains a number of states. Figure 30-2
shows the default instance of this state machine.

247

Figure 30-2. ServiceProvision_Template class schema

As we can see, most of the fields are pre and post placeholders around the main provi
sion and checkprovisioned states, to allow for optional processing if required. The
configurechilddialog state (by default commented out) can be used to populate the
options[:dialog] hash in the child task if required.

Passing Service Dialog Options to the Child and
Grandchild Tasks
One of the more complex tasks that must be achieved by some state in the service
provisioning state machine is to pass the values received from the service dialog (if
there is one) to the actual tasks performing the provisioning of the virtual
machine(s). The complexity arises from the three generations of task object involved
in creating the service, the service resources, and the actual VMs (see Figure 30-3).

248 | Chapter 30: The Service Provisioning State Machine

Figure 30-3. Task object hierarchy

This object hierarchy is represented at the highest level by the service template provi‐
sion task. We access this from:

$evm.root['service_template_provision_task']

The service_template_provision_task has an assocation, miq_request_tasks,
containing the miq_request_task objects representing the creation of the service
resource(s). These are the items or resources making up the service request (even a
single service catalog item is treated as a bundle containing one service resource).

Each child (service resource) miq_request_task also has an miq_request_tasks
association containing the VM provisioning tasks associated with creating the actual
VMs for the service resource. This miq_request_task is provider-specific.

It is to the second level of miq_request_task (also known as the grandchild task) that
we must pass the service dialog values that affect the provisioning of the VM (such
as :vm_memory or :vm_target_name).

Chapter 35 discusses the service object structure in more detail.

Accessing the Service Dialog Options
If a service dialog has been used in the creation of an automation request (either from
a button or from a service), then the key/value pairs from the service dialog are added
to the request and subsequent task objects. These are available in two places: as indi‐
vidual keys accessible from $evm.root, and from the task object’s options hash as
the :dialog key:

Accessing the Service Dialog Options | 249

$evm.root['service_template_provision_task'].options[:dialog] = \
 {
 "dialog_option_0_service_name" => "New Server",
 "dialog_option_0_service_description" => "My New Server",
 "dialog_option_0_vm_name" => "rhel7srv023",
 "dialog_tag_0_department" => "engineering",
 "request" => "clone_to_service"
 }

or:

$evm.root['dialog_option_0_service_description'] = My New Server
$evm.root['dialog_option_0_service_name'] = New Server
$evm.root['dialog_option_0_vm_name'] = rhel7srv023
$evm.root['dialog_tag_0_department'] = engineering

Accessing the dialog options from options[:dialog] is easier when we don’t neces‐
sarily know the option name.

ConfigureChildDialog
When we have several generations of child task object (as we do when provisioning
VMs from a service), we also need to pass the dialog options from the parent object
(the service template provision task) to the various child objects; otherwise, they
won’t be visible to the children.

This is generally done at the configurechilddialog state of the state machine. In the
Default instance of the ServiceProvision_Template state machine, this state is not used
(the value is commented out in the class schema), but we can uncomment it or add
our own instance/method if we wish to use this functionality.

If we do decide to add our own method at this stage, we can insert the key/value pairs
from the service dialog into the options[:dialog] hash of a child task object using
the set_dialog_option method.

For example:

stp_task = $evm.root["service_template_provision_task"]
vm_size = $evm.root['dialog_vm_size']
stp_task.miq_request_tasks.each do |child_task|
 case vm_size
 when "Small"
 memory_size = 4096
 when "Large"
 memory_size = 8192
 end
 child_task.set_dialog_option('dialog_memory', memory_size)
end

This enables the child and grandchild virtual machine provision workflows (which
run through the standard VM provision state machine that we have already studied)

250 | Chapter 30: The Service Provisioning State Machine

to access their own task object options[:dialog] hash and set the custom provision‐
ing options accordingly.

Summary
This has been a brief overview of the service provisioning state machine, showing its
relative simplicity.

One of the main tasks of the state machine is to pass values from the service dialog
into the provisioning workflow, and we’ve seen how to navigate down the three gen‐
erations of task object involved in a service provision operation in order to achieve
this. Two out-of-the-box state machine instances have been created to simplify this
task for us, and we will study those in the next chapter.

Although not immediately obvious, the service provision state machine is run in task
context, so any access-control group profile processing, including naming and appro‐
val, has already taken place by the time any of our state machine methods run (we
have $evm.root['service_template_provision_task'] rather than
$evm.root['service_template_provision_request']).

VM Naming for Services
As we’re working in the task context of the provisioning process, the input variables
to the naming process—:vm_name, :vm_prefix, and so on—are of no use to us (see
Chapter 23). The naming process has already been run; they will not be referenced
again.

We can, however, directly update the :vm_target_name and :vm_target_hostname
values in the task object’s options hash at any point before the Provision state of the
VMProvision_VM state machine, like so:

task.set_option(:vm_target_name, "server001")
task.set_option(:vm_target_hostname, "server001")

Unfortunately, at this stage we don’t have the ability to add the $n{2}–style syntax to
our VM name either, hoping that the Automate Engine will assign us the next unique
number. If we wanted to guarantee uniqueness, we’d have to use something like the
following code:

for i in (1..999)
 new_vm_name = "#{vm_prefix}#{function}#{i.to_s.rjust(2, "0")}#{suffix}"
 break if $evm.vmdb('vm_or_template').find_by_name(new_vm_name).blank?
end

Summary | 251

This loop iterates through all numbers from 1 to 999, appending each number as a
zero-padded three-digit suffix to the virtual machine name prefix part. The script
performs a service model lookup of a vm_or_template object containing that name/
suffix combination, and if a virtual machine of that name doesn’t exist, the loop exits
with the variable new_vm_name set accordingly.

252 | Chapter 30: The Service Provisioning State Machine

CHAPTER 31

Catalog{Item,Bundle}Initialization

In Chapter 30 we saw that two of the service provisioning state machine instances are
called CatalogItemInitialization and CatalogBundleInitialization. These two state
machines greatly simplify the process of creating service catalog items and bundles,
fronted by rich service dialogs, without the need for any Ruby scripting.

A service catalog item generally provisions a single type of virtual
machine (although it may result in multiple VMs of the same type
being provisioned). A service catalog bundle can provision multiple
service items in one go, allowing us to deploy multitier server
workloads from a single click.

In this chapter we’ll take a look at these two state machine instances in detail. We’ll
see how they allow us to name our service dialog elements in such a way that values
are automatically passed into the provisioning workflow, with no need for further
automation scripting.

CatalogItemInitialization
We can specify the CatalogItemInitialization state machine as the provisioning entry
point when we create a service catalog item.

The state machine has been written to simplify the process of customizing the provi‐
sioned VMs, using values read from the service dialog. It does this by setting options
hash values or tags in the child and grandchild miq_request_task objects, from spe‐
cially constructed service dialog element names. It also allows us to specify a new
unique name and description for the resulting service.

The schema for the CatalogItemInitialization instance is shown in Figure 31-1.

253

Figure 31-1. The schema of the CatalogItemInitialization state machine instance

We can see that the schema uses the pre1 state to add a dialog parser (common
between the CatalogItemInitialization and CatalogBundleInitialization state
machines). It also uses the pre2 state to specify the CatalogItemInitialization method,
which sets the child object options_hash values and/or tags accordingly.

The CatalogItemInitialization method itself relies on the dialog inputs having been
parsed correctly by dialog_parser, and this requires us to use a particular naming con‐
vention for our service dialog elements.

Service Dialog Element Naming Convention
To perform the service dialog → options hash or tag substitution correctly, we must
name our service dialog elements in a particular way.

Single options hash key
The simplest service dialog element to process is one that prompts for the value of a
single options_hash key. We name the service dialog element as:

option_0_key_name (for backward compatibility with CloudForms 3.1)

or just:

key_name (valid for CloudForms 3.2 and later)

254 | Chapter 31: Catalog{Item,Bundle}Initialization

For example, we can create a service dialog element as shown in Figure 31-2.

Figure 31-2. Service dialog element to prompt for an options hash key

The resulting value input from this dialog at runtime will be propagated to the child
task’s options hash as:

miq_request_task.options[:vm_memory]

The 0 in the dialog name refers to the item sequence number during provisioning.
For a service dialog fronting a single catalog item, this will always be zero. For a ser‐
vice dialog fronting a catalog bundle comprising several items, the sequence number
indicates which of the component items the dialog option should be passed to (an
element with a name sequence of 0 will be propagated to all items).

Several key_name values are recognized and special-cased by the CatalogItemInitiali‐
zation method. We can name a text box element as either vm_name or vm_tar
get_name, and the resulting text string input value will be propagated to all of:

miq_request_task.options[:vm_target_name]
miq_request_task.options[:vm_target_hostname]
miq_request_task.options[:vm_name]
miq_request_task.options[:linux_host_name]

If we name a text box element as service_name, then the resulting service will be
named from the text value of this element.

If we name a text box element as service_description, then the resulting service
description will be updated from the text value of this element.

Single tag
We can also create a text box service dialog element to apply a single tag. The naming
format is similar to that of naming an option but uses a prefix of tag_ and a suffix of
the tag category name.

CatalogItemInitialization | 255

For example, we can prompt for a tag in the department category by naming the ser‐
vice dialog element as tag_0_department (see Figure 31-3).

Figure 31-3. Service dialog element to prompt for a tag value

The value input into the service dialog element at runtime should be a tag within this
tag category. When an element of this type is processed by the CatalogItemInitializa‐
tion method, if either the category or tag doesn’t currently exist, it will be created.

CatalogBundleInitialization
The CatalogBundleInitialization state machine should be specified when we create a
service catalog bundle.

The schema for the CatalogBundleInitialization instance is the same as for CatalogIte‐
mInitialization, except that the pre2 stage calls the CatalogBundleInitialization
method.

The CatalogBundleInitialization method passes the service dialog element values on
to each catalog item’s CatalogItemInitialization method, which is still required in
order to set the miq_request_task’s options hash keys for the provision of that cata‐
log item.

Summary
This chapter has introduced the two service provision state machines that we can use
to create service catalog items and bundles, with no need for any Ruby scripting. We
can create simple but impressive service catalogs in minutes using these entry points,
and we’ll see a practical example of this in Chapter 33.

256 | Chapter 31: Catalog{Item,Bundle}Initialization

Further Reading
It is worth familiarizing ourselves with the three methods that perform the parsing
and transposing of the dialog values. These are DialogParser, CatalogItemInitializa‐
tion, and CatalogBundleInitialization:

DialogParser method

CatalogItemInitialization method

CatalogBundleInitialization method

Summary | 257

http://bit.ly/25kbN06
http://bit.ly/1Wg9h66
http://bit.ly/1TUEyVQ

CHAPTER 32

Approval and Quota

We discovered in Chapters 18 and 19 that the virtual machine provisioning process
includes an approval stage—to allow administrators to optionally approve large VM
requests—and a quota-checking stage that enforces quotas applied to access-control
groups or tenants. We also learned that these workflows were triggered from MiqPro‐
visionRequest_created and MiqProvisionRequest_starting policy instances. When we
create a virtual machine from a service catalog item, however, our request object is
different, so we cannot rely on the existing approval and quota workflow triggers.

This chapter examines the approval and quota workflows for when we provision a
virtual machine from a service catalog.

Triggering Events
When we order a new virtual machine from a service catalog, our request still needs
to be approved and matched against our current tenant or group quota. As with vir‐
tual machine provisioning, each of the corresponding service provision workflows is
triggered by the request_created and request_approved events, but the request
object type is different. It is now a service_template_provision_request.

Approval
The approval process for a service provision request starts with the /System/Policy/
ServiceTemplateProvisionRequest_created instance being run as a result of a
request_created event. This instance contains two relationships, rel5 and rel6.

The rel5 relationship performs a service provisioning profile lookup to read the
value of the auto_approval_state_machine attribute, which by default is ServicePro‐
visionRequestApproval for a service provision request.

259

The rel6 relationship runs the Default instance of this state machine (see
Figure 32-1).

Figure 32-1. ServiceProvisionRequestApproval state machine instance and methods

The schema for the ServiceProvisionRequestApproval/Default state machine is shown
in Figure 32-2.

Figure 32-2. ServiceProvisionRequestApproval/Default state machine schema

The methods pending_request and approve_request are the same as their counterparts
for virtual machine provisioning approval. The default value of validate_request
does nothing, so this state machine instance will auto-approve all service provision‐
ing requests.

Customizing Approval
If universal auto-approval is not the required behavior, we can copy the ServiceProvi‐
sionRequestApproval/Default state machine methods to our own domain and edit
them as necessary.

Quota
Quota checking for a service provision request in CloudForms 4.0 uses the same con‐
solidated quota mechanism as described in Chapter 19.

260 | Chapter 32: Approval and Quota

The quota-checking process for a service provision request starts with the /System/
Policy/ServiceTemplateProvisionRequest_starting instance being run as a result of a
request_starting event. This policy instance runs the /System/CommonMethods/
QuotaStateMachine/quota state machine from its rel2 relationship.

Email
The email instances that handle the sending of “approval denied/pending” and “quota
exceeded” emails are in the RedHat domain but by default are not wired in to any pol‐
icy instances.

If we wish to use them we can add a policy instance called /System/Policy/ServiceTem‐
plateProvisionRequest_denied to our own domain. This should contain a relationship
to the /Service/Provisioning/Email/ServiceTemplateProvisionRequest_Denied email
instance in the RedHat domain.

We should ideally copy the Email/ServiceTemplateProvisionRe‐
quest_Denied instance into our own domain so that we can cus‐
tomize the from_email_address, to_email_address, and
signature schema attributes.

Summary
We have seen how the approval and quota-checking mechanism for services mirrors
that for virtual machines but uses different policy instances to trigger the workflows.
The out-of-the-box approval workflow auto-approves all service requests, but we can
copy the instance to our own domain to customize the behavior if we wish.

In practice we rarely need to customize these workflows. As virtualization adminis‐
trators, when we provide a self-service catalog to our users, we generally accept the
delegation of control and degree of responsibility that we pass to our users. This is,
after all, one of the many benefits of implementing an Infrastructure as a Service
cloud model. We almost certainly allocate quotas, but we rarely need to implement
per-order approval as well. The default behavior of auto-approval of all service
requests is valid in most situations.

Summary | 261

CHAPTER 33

Creating a Service Catalog Item

In this chapter we’ll go through the steps involved in creating a service catalog item to
provision a virtual machine into Red Hat Enterprise Virtualization (RHEV). We’ll
create a service dialog that allows the user to specify a name for both the new virtual
machine and the service, and specify the number of CPUs and memory size of the
provisioned virtual machine from a drop-down list.

Although for this example we’ll be provisioning into RHEV, the
same procedure can be used to create a service catalog item to pro‐
vision into other providers.

The Service Dialog
We’re going to create a service dialog to prompt for the number of CPUs and the
amount of memory for the new virtual machine. These two characteristics will be
added to the provisioning task object for the new VM, and we know that such items
are stored in the task object’s options hash for a provisioning operation. The CatalogI‐
temInitialization state machine can handle the insertion of our dialog values into the
options hash for us, as long as we name our dialog elements correctly.

Finding the Correct Element Names
We saw from Chapter 31 that CatalogItemInitialization recognizes and special-cases
some element names, including vm_name and service_name, so we can create two of
our elements with these names. If this is all we wish to prompt for, then we can move
straight on to creating the service dialog.

263

For our use case, however, we are also prompting for number of CPUs and memory
size. Any service dialog fields that we create with the intention of altering the final
VM configuration (such as the number of CPUs or memory size) must also be named
in a particular way. The element name must match the key in the provisioning task’s
options hash that we wish to overwrite.

We can find this key name in either of two ways: by examining the YAML code that
makes up the provisioning dialog, or by performing an interactive provision of a vir‐
tual machine and examining the provisioning task’s options hash during the provi‐
sioning process.

Searching the provisioning dialog
The simplest way to search the provisioning dialog is to copy the appropriate one,
edit, and then select and paste the contents to a flat file that can be grepped, like so:

grep -i "memory\|cpu\|core\|socket" miq_provision_redhat_dialogs_template.yaml
 :number_of_sockets:
 :description: Number of Sockets
 :cores_per_socket:
 :description: Cores per Socket
 :vm_memory:
 :description: Memory (MB)

This shows that we probably need to name our elements cores_per_socket and
vm_memory.

Examining the options hash during provisioning
As an alternative (or confirmation) to finding the key names from the provisioning
dialog, we can use one of the techniques that we learned in Chapter 10 to dump the
contents of the provisioning task’s options hash during a normal interactive provi‐
sion. Here is an example of calling object_walker after the Placement stage in the
VMProvision_VM/template state machine (see Figure 33-1).

Figure 33-1. State added to the VM provisioning state machine to run ObjectWalker

Using the object_walker_reader after we’ve provisioned a virtual machine, we see that
the same values are in the miq_provision task’s options hash:

264 | Chapter 33: Creating a Service Catalog Item

object_walker_reader.rb | grep 'miq_provision' | grep "memory\|cpu\|core\|socket"
 | $evm.root['miq_provision'].options[:cores_per_socket] = [1, "1"]
 | $evm.root['miq_provision'].options[:memory_reserve] = nil
 | $evm.root['miq_provision'].options[:number_of_sockets] = [1, "1"]
 | $evm.root['miq_provision'].options[:vm_memory] = ["1024", "1024"]

Some commonly used element names
Table 33-1 lists some commonly used element names for typical VM characteristics
that can be modified from a service dialog.

Table 33-1. Element names of modifiable VM characteristics

VM characteristic to be modified Element name
VM name vm_name

Number of CPUs cores_per_socket &/or number_of_sockets

VM memory vm_memory

Root password root_password

MAC address (first NIC) mac_address

IP address (first NIC) ip_addr

OpenStack flavor instance_type

Any of the options hash values that set a parameter inside the vir‐
tual machine’s operating system (such as root_password or
ip_addr) needs a mechanism to inject these parameters into the
VM once it’s booted. We typically do this using a VMware customi‐
zation specification in conjunction with VMware tools, or cloud-
init.
We can define a template cloud-init script that contains substitu‐
tion variables (from Infrastructure → PXE in the WebUI). Our
value from options[:root_password] will be substituted into a
cloned version of this script at runtime and used when cloud_init is
executed in the guest:

...
<% root_password = evm[:root_password] %>
chpasswd:
 list: |
 root:<%=root_password%>
 expire: False
...

The Service Dialog | 265

Creating the Service Dialog
We know from the preceding investigation that we must name our service dialog ele‐
ments vm_name, service_name, option_0_cores_per_socket, and option_0_vm_mem
ory.

We’ll create a new service dialog called RHEL7 VM. Our new service dialog will be
similar to the example that we created in Chapter 5, but this time we’ll create two
boxes—Service and VM Names, and VM Characteristics—each containing two ele‐
ments (see Figure 33-2).

Figure 33-2. Service dialog with two boxes and four elements

The Service Name and VM Name elements in the first box are both of type Text Box
and have the names service_name and vm_name, respectively.

The Number of CPUs element in the second box is of type Drop Down List (see
Figure 33-3).

Figure 33-3. Number of CPUs element

We’ll populate the list with options to provision one, two, or four CPUs (see
Figure 33-4).

266 | Chapter 33: Creating a Service Catalog Item

Figure 33-4. Defining the selection of available CPUs

The VM Memory element in the second box is of type Drop Down List (see
Figure 33-5).

Figure 33-5. VM Memory element

We’ll populate the list with options to provision 1, 2, 4, or 8 GB of memory (see
Figure 33-6).

Figure 33-6. Defining the selection of available memory

Creating the Service Catalog Item
We need to create a service catalog item, but we’ll also create a new service catalog to
put the item into.

Creating the Service Catalog Item | 267

Create a Catalog
The first thing we should do is create a service catalog to store the service item. We
can have many catalogs; they are used to organize or categorize our service items and
bundles.

Navigate to the Catalogs section in the accordion, and select Configuration → Add a
New Catalog (see Figure 33-7).

Figure 33-7. Adding a new catalog

Give the catalog a name (for this example we’ll use Generic Servers), leave every‐
thing else as the default, and click Add.

Creating the Catalog Item
Navigate to the Catalog Items section in the accordion, highlight the newly created
Generic Servers catalog, and then select Configuration → Add a New Catalog Item
(see Figure 33-8).

Figure 33-8. Adding a new catalog item

Select RHEV from the Catalog Item Type drop-down list (see Figure 33-9).

268 | Chapter 33: Creating a Service Catalog Item

Figure 33-9. Selecting the catalog item type

Enter a name and description for the catalog item, and select the Display in Catalog
checkbox to expose the remaining fields to be filled in. Select our newly created
Generic Servers catalog and RHEL7 VM dialog in the appropriate drop-downs. For
the Provisioning Entry Point field, navigate to ManageIQ/Service/Provisioning/State‐
Machines/ServiceProvision_Template/CatalogItemInitialization (see Figure 33-10).

Figure 33-10. Completing the basic info tab

Click on the Details tab, and enter some HTML-formatted text to describe the catalog
item to anyone viewing in the catalog:

<h1>Generic RHEL 7 Server</h1>
<hr>
<p>This catalog item will deploy a Red Hat Enterprise Linux 7
server, built from the @Base package set, and patched to 01-March-2016.

A selection of CPU count and memory size can be made when ordering</p>

Creating the Service Catalog Item | 269

Click on the Request Info tab and fill in the details. Select an appropriate template
and Environment, Hardware, and Network tab settings that are known to work when
a VM is provisioned interactively (see Chapter 39). The VM name will be overwritten
during the provisioning process, so here we just set it as changeme (see Figure 33-11).

Figure 33-11. Completing the Request Info tab

Finally, click the Add button.

Select a suitably sized icon for a custom image, and save.

Ordering the Catalog Item
Navigate to the Service Catalogs section in the accordion, expand the Generic Servers
catalog, and highlight the Generic RHEL 7 Server (RHEV) catalog item (see
Figure 33-12).

270 | Chapter 33: Creating a Service Catalog Item

Figure 33-12. Navigating to the service catalog item

Click Order, and fill out the service dialog values (see Figure 33-13).

Figure 33-13. Completing the service dialog

Click Submit.

After a few minutes, the new service should be visible in My Services, containing the
new VM (see Figure 33-14).

Ordering the Catalog Item | 271

Figure 33-14. The finished service

If we examine the details of the VM, we see that it has been created with our reques‐
ted CPU count and memory size (see Figure 33-15).

Figure 33-15. Confirmation of VM configuration

Summary
This example has described the procedure for creating a service catalog item to provi‐
sion a single virtual machine. We can follow the same procedure to populate a service
catalog with many types of virtual machine, both Windows and Linux. Although the
service dialog used in this example was quite basic, it is typical of many generic serv‐

272 | Chapter 33: Creating a Service Catalog Item

ices that we can create for our users. We can add further dialog elements, but we must
be careful to balance the trade-off between simplicity of design and presenting addi‐
tional choices to our users. Using dynamic elements can help in this regard. They
enable us to create dialogs with “intelligent” elements that offer a reduced selection of
choices, filtered by relevance for the requesting user. Rather than offering a drop-
down list of all possible networks to provision the virtual machine onto, for example,
we might filter based on the requesting user’s group membership, or based on the
input from another dialog element indicating that the VM should be tagged as Devel‐
opment.

Further Reading
Provisioning Virtual Machines and Hosts—Chapter 5, Catalogs and Services

Summary | 273

http://red.ht/1TUGDBa

CHAPTER 34

Creating a Service Catalog Bundle

We learned in Chapter 33 how to create service catalog items that enable our users to
provision fully configured virtual machines from a single Order button.

We can populate our service catalog with useful items (see Figure 34-1).

Figure 34-1. A service catalog containing three services

In these examples the virtual machines are provisioned from fully installed VMware
templates, preconfigured with the application packages. The service dialog purely
prompts for the Service and VM Names (see Figure 34-2).

Figure 34-2. The service dialog for each catalog item

275

The next logical step is to be able to provision several items together as a single ser‐
vice catalog bundle.

Creating the Service Dialog for the Bundle
When we create a service catalog bundle, we handle the dialog input for each of the
catalog items in a single service dialog that we create for the bundle. For our web,
middleware, and database server items, we must prompt for the VM name of each,
but we’ll also prompt for a service name (see Figure 34-3).

Figure 34-3. The service dialog for a catalog bundle

We name the dialog elements according to the sequence in which we want our indi‐
vidual items provisioned. Our sequence will be:

1. Database Server
2. Middleware Server
3. Web Server

Our four dialog elements are therefore constructed as follows. We’ll create a text box
element to prompt for Service Name (see Figure 34-4).

Figure 34-4. Dialog element to prompt for Service Name

We add a second text box element to prompt for Web Server Name (see Figure 34-5).

276 | Chapter 34: Creating a Service Catalog Bundle

Figure 34-5. Dialog element to prompt for Web Server Name

We add a third text box element to prompt for Middleware Server Name (see
Figure 34-6).

Figure 34-6. Dialog element to prompt for Middleware Server Name

Finally, we add a fourth text box element to prompt for Database Server Name (see
Figure 34-7).

Figure 34-7. Dialog element to prompt for Database Server Name

Creating the Service Dialog for the Bundle | 277

The number in the element name reflects the sequence number, and the CatalogIte‐
mInitialization and CatalogBundleInitialization methods use this sequence number to
pass the dialog value to the correct grandchild miq_request_task (see Chapter 30).

The value option_n_vm_name is recognized and special-cased by CatalogItemInitiali‐
zation, which sets both the :vm_target_name and :vm_target_hostname keys in the
miq_request_task’s options hash to the value input.

The :vm_target_name key sets the name of the resulting virtual machine.

The :vm_target_hostname key can be used to inject a Linux hostname (i.e., FQDN)
into a VMware customization specification, which can then set this in the virtual
machine using VMware tools on first boot.

Preparing the Service Catalog Items
As we will be handling dialog input when the bundle is ordered, we need to edit each
catalog item to set the Catalog to <Unassigned> and the Dialog to <No Dialog>. We
also deselect the Display in Catalog option, as we no longer want this item to be indi‐
vidually orderable (see Figure 34-8).

Figure 34-8. Preparing the existing service catalog items

Once we’ve done this, the items will appear as Unassigned (see Figure 34-9).

278 | Chapter 34: Creating a Service Catalog Bundle

Figure 34-9. Unassigned catalog items

Creating the Service Catalog Bundle
Now we can go ahead and create our catalog bundle. Highlight a catalog name, and
select Configuration → Add a New Catalog Bundle (see Figure 34-10).

Figure 34-10. Adding a new catalog bundle

Enter a name and description for the bundle, then select the Display in Catalog
checkbox. Select an appropriate catalog and the newly created bundle dialog from the
appropriate drop-downs.

For the Provisioning Entry Point, navigate to ManageIQ/Service/Provisioning/State‐
Machines/ServiceProvision_Template/CatalogBundleInitialization (see Figure 34-11).

Creating the Service Catalog Bundle | 279

Figure 34-11. Service bundle basic info

Click on the Details tab, and enter some HTML-formatted text to describe the catalog
item to anyone viewing in the catalog:

<h1>Three Tier Web Server Bundle</h1>
<hr>
<p>Deploy a Web, Middleware and Database \
 server together as a single service</p>

Click on the Resources tab, and select each of the three unassigned catalog items to
add them to the bundle (see Figure 34-12).

Figure 34-12. Adding resources to the bundle

280 | Chapter 34: Creating a Service Catalog Bundle

Change the Action Order and Provisioning Order according to our desired sequence
(3 won’t be visible until 2 is set for an option); see Figure 34-13. The sequence should
match the option_n_vm_name sequence that we gave our dialog elements.

Figure 34-13. Setting the action and provision orders

Finally, click the Add button.

Select a suitably sized icon for a custom image, and save.

Ordering the Catalog Bundle
Navigate to the Service Catalogs section in the accordion, expand the VMware Serv‐
ices catalog, and highlight the Three Tier Web Server Bundle catalog item (see
Figure 34-14).

Figure 34-14. Ordering the catalog bundle

Click Order, and fill out the service dialog values (see Figure 34-15).

Ordering the Catalog Bundle | 281

Figure 34-15. Entering the service and server names in the service dialog

Click Submit.

After a few minutes, the new service should be visible in My Services, containing the
new VMs (see Figure 34-16).

Figure 34-16. The completed service

282 | Chapter 34: Creating a Service Catalog Bundle

If we weren’t watching the order that the VMs were created in, we could look in the
database to check that our desired provisioning sequence was followed:

vmdb_production=# select id,name from vms order by id asc;
 id | name
---------------+--
...
 1000000000177 | jst-db01
 1000000000178 | jst-mid01
 1000000000179 | jst-web01

Here we see that the VMs were created (and named) in the correct order.

Summary
This has been a useful example that shows the flexibility of service catalogs to deploy
entire application bundles. When we link this concept to a configuration manage‐
ment tool such as Puppet running from Red Hat Satellite 6, we start to really see the
power of automation in our enterprise. We can deploy complex workloads from a
single button click.

One of the cool features of service bundles is that we can mix and match catalog
items that provision into different providers. For example, we may have a Bimodal IT
infrastructure comprising RHEV for our traditional Mode 1 workloads, and an in-
house OpenStack private cloud for our more cloud-ready Mode 2 workloads. Using
CloudForms service bundles, we could provision our relatively static servers into
RHEV, and our dynamically scalable mid-tier and frontend servers into OpenStack.

Further Reading
Filtering out service catalog items during deployment

Summary | 283

http://www.gartner.com/it-glossary/bimodal/
http://bit.ly/1ZF4kSH

CHAPTER 35

Service Objects

We saw in Chapter 26 that provisioning operations always include a request object,
and a task object that links to source and destination objects.

When we provision a virtual machine from a service there are many more objects
involved, because we are creating and referencing more items (creating both a service
and potentially several new component VMs). When we provision from a service
bundle, there will be several individual items to provision as part of the bundle. Even
when we provision from a single service item, however, the objects are structured as if
we were provisioning a bundle containing only one item.

In this chapter we will look at some of the objects involved in provisioning a single
VM from a service catalog item. The objects are visible to us during the processing of
the CatalogItemInitialization state machine.

For this example:

• We are using CloudForms 3.2.
• The provider is VMware.
• The service catalog item name that we’ve ordered from is called “Web Server.”
• The service catalog item was created to clone from a VMware template called

rhel65-template.
• The new service name is “My New Service.”
• The resulting service contains a VM called test05.

We can use object_walker with the following @walk_association_whitelist to
dump the objects:

285

{ 'MiqAeServiceServiceTemplateProvisionTask' => ['source',
 'destination',
 'miq_request',
 'miq_request_tasks',
 'service_resource'],
'MiqAeServiceServiceTemplateProvisionRequest' => ['miq_request',
 'miq_request_tasks',
 'requester',
 'resource',
 'source'],
'MiqAeServiceServiceTemplate' => ['service_resources'],
'MiqAeServiceServiceResource' => ['resource',
 'service_template'],
'MiqAeServiceMiqProvisionVmware' => ['source',
 'destination',
 'miq_request'],
'MiqAeServiceMiqProvisionRequestTemplate' => ['source',
 'destination'],
'MiqAeServiceVmVmware' => ['service'] }

We’ll call the ObjectWalker instance from the post5 state/stage of the CatalogItemIni‐
tialization state machine.

Object Structure
We can illustrate the main object structure in Figure 35-1 (some objects and links/
relationships have been omitted for clarity).

Figure 35-1. Service object relationship

286 | Chapter 35: Service Objects

Service Template Provision Task
Our entry point into the object structure from $evm is to the main ServiceTemplate
ProvisionTask object. We access this from:

$evm.root['service_template_provision_task']

From here we can access any of the other objects by following associations.

Source
The source is accessed from:

$evm.root['service_template_provision_task'].source

This is the ServiceTemplate object representing the service catalog item that has
been ordered from.

Destination
The destination is accessed from:

$evm.root['service_template_provision_task'].destination

This is the Service object representing the new service that will be created under My
Services.

Service Template Provisioning Request
The service template provisioning request is accessed from:

$evm.root['service_template_provision_task'].miq_request

This is the initial ServiceTemplateProvisionRequest object that was created when
we first ordered the new service. It is the request object for the entire service provi‐
sion operation, including all VMs created as part of the service. This request object
has associations to each of the task objects involved in assembling the service, and
they in turn have backlinks to this request object.

Child miq_request_task
The child miq_request_task is accessed from:

$evm.root['service_template_provision_task'].miq_request_tasks.each do |child|

This is also a ServiceTemplateProvisionTask object and is the task object that rep‐
resents the creation of an item for the new service. There will be a child
miq_request_task for each item (e.g., virtual machine) that makes up the final ser‐
vice, so for a service bundle containing three VMs, there will be three child
miq_request_tasks.

Object Structure | 287

Service resource
The service resource is accessed from:

child_task.service_resource

This ServiceResource object stores details about this particular service item and its
place in the overall service structure. A ServiceResource object has attributes such
as:

service_resource.group_idx
service_resource.provision_index
...
service_resource.start_action
service_resource.start_delay
service_resource.stop_action
service_resource.stop_delay

These are generally zero or nil for a single-item service but represent the values
selected in the WebUI for a multiitem service bundle (see Figure 35-2).

Figure 35-2. Start and stop actions and delays in a multiitem bundle

The service resource has a relationship to the ServiceTemplate object via
child_task.service_resource.service_template.

Source
The source is accessed from:

child_task.source

or:

child_task.service_resource.resource

This is the MiqProvisionRequestTemplate object that describes how the resulting
VM will be created. The object looks very similar to a traditional VM provisioning
request object and contains an options hash populated from the dialog options that
were selected when the service item was created (e.g., placement options, memory
size, CPUs, etc.).

288 | Chapter 35: Service Objects

Destination
The destination is accessed from:

child_task.destination

This is the same Service object that is accessible from $evm.root['service_tem
plate_provision_task'].destination.

Grandchild miq_request_task
The grandchild miq_request_task is accessed from:

child_task.miq_request_tasks.each do |grandchild_task|

This is an MiqProvisionVmware miq_request_task object (renamed to ManageIQ_Pro
viders_Vmware_InfraManager_Provision in CloudForms 4.0) and is the task object
that represents the creation of the VM. This is exactly the same as the task object
described in Chapter 26.

It is the grandchild miq_request_task that contains the options hash for the VM to
be provisioned; this is being cloned from the options hash in the MiqProvisionRe
questTemplate object. If we have a service dialog that prompts for properties affect‐
ing the provisioned VM (such as VM name, number of CPUs, memory, etc.), we
must pass these dialog values to the grandchild task options hash.

Source
The source is accessed from:

grandchild_task.source

This is the TemplateVmware object (renamed to ManageIQ_Providers_Vmware_Infra
Manager_Template in CloudForms 4.0) that represents the VMware template that the
new VM will be cloned from.

Destination
The destination is accessed from:

grandchild_task.destination

or:

grandchild_task.vm

This is the VmVmware object (renamed to ManageIQ_Providers_Vmware_InfraMan
ager_Vm in CloudForms 4.0) that represents the newly created VM. This VM object
has an association service that links to the newly created service object.

Object Structure | 289

Summary
In this chapter we’ve taken a detailed look at the various objects that are involved in
provisioning a virtual machine from a service. This is the object view from any
method running as part of the service provision state machine.

The lowest layer of objects in Figure 35-1—the grandchild miq_request_task with its
source and destination objects—corresponds to the virtual machine provisioning
objects that we discussed in Chapter 26. When the service provision state machine
hands over to the VM provision state machine, these are indeed the objects that are
referenced at this latter stage, just like any other VM provision workflow. Any VM
provision state machine methods that we may have written that access the attributes
of these objects will see no difference. The only change is in the type of request object;
$evm.root['miq_provision'].miq_provision_request will in this case be a ser
vice_template_provision_request object.

290 | Chapter 35: Service Objects

CHAPTER 36

Log Analysis During Service Provisioning

The workflow of provisioning a virtual machine from a service catalog involves a
request, an approval stage, several tasks, and multiple concurrently running state
machines.

If we are curious to discover more about their interaction, we can follow this work‐
flow by examining the log lines written to automation.log during the service provi‐
sioning operation. This can reveal some interesting details about the interleaving of
the various operations and state machines.

For this example we’ve grepped for the Following.. Followed message pairs in auto‐
mation.log on CloudForms 3.2 (the workflow is similar in CloudForms 4.0). The ser‐
vice provisioning request was from a nonadmin user in the Bit63Group_vm_user
group, so we see some group-specific profile processing. For the brevity, service_tem
plate_provision is abbreviated to stp in the following outputs.

Initial Request
We see the initial automation request being created though the /System/Request/
UI_PROVISION_INFO entry point:

Following /System/Request/UI_PROVISION_INFO
Following /unknown/VM/Provisioning/Profile/Bit63Group_vm_user#get_domains
Followed /unknown/VM/Provisioning/Profile/Bit63Group_vm_user#get_domains
Followed /System/Request/UI_PROVISION_INFO
Following /System/Event/request_created
Following /System/Policy/request_created
Following /System/Process/parse_provider_category
Followed /System/Process/parse_provider_category
Following /System/Policy/ \
 ServiceTemplateProvisionRequest_created

291

Profile Lookup
We see a service provisioning profile lookup to get the auto-approval state machine,
and some events raised and processed:

Following /service/Provisioning/Profile/ \
 Bit63Group_vm_user#get_auto_approval_state_machine
Followed /service/Provisioning/Profile/ \
 Bit63Group_vm_user#get_auto_approval_state_machine
Following /service/Provisioning/StateMachines/ServiceProvisionRequestApproval/ \
 Default
Followed /service/Provisioning/StateMachines/ServiceProvisionRequestApproval/ \
 Default
Followed /System/Policy/ServiceTemplateProvisionRequest_created
Followed /System/Policy/request_created
Followed /System/Event/request_created
Following /System/Event/request_approved
Following /System/Policy/request_approved
Following /System/Process/parse_provider_category
Followed /System/Process/parse_provider_category

Request Processing and Approval
We see the request approval and the creation of the service template provisioning
request (service_template_provision_request_11). We see some processing in
request context:

Following /System/Policy/ServiceTemplateProvisionRequest_Approved
Following /Service/Provisioning/Email/ServiceTemplateProvisionRequest_Approved
([stp_request_11]) Following /System/Event/request_starting
([stp_request_11]) Following /System/Policy/request_starting
([stp_request_11]) Following /System/Process/parse_provider_category
Followed /Service/Provisioning/Email/ServiceTemplateProvisionRequest_Approved
Followed /System/Policy/ServiceTemplateProvisionRequest_Approved
Followed /System/Policy/request_approved
Followed /System/Event/request_approved
([stp_request_11]) Followed /System/Process/parse_provider_category
([stp_request_11]) Following /System/Policy/ \
 ServiceTemplateProvisionRequest_starting
([stp_request_11]) Following /service/ \
 Provisioning/Profile/Bit63Group_vm_user#get_quota_state_machine
([stp_request_11]) Followed /service/ \
 Provisioning/Profile/Bit63Group_vm_user#get_quota_state_machine
([stp_request_11]) Following /service/Provisioning/StateMachines/ \
 ServiceProvisionRequestQuotaVerification/Default
([stp_request_11]) Followed /service/Provisioning/StateMachines/ \
 ServiceProvisionRequestQuotaVerification/Default
([stp_request_11]) Followed /System/Policy/ \
 ServiceTemplateProvisionRequest_starting
([stp_request_11]) Followed /System/Policy/request_starting
([stp_request_11]) Followed /System/Event/request_starting

292 | Chapter 36: Log Analysis During Service Provisioning

([stp_request_11]) Following /System/Request/UI_PROVISION_INFO
([stp_request_11]) Following /infrastructure/ \
 VM/Provisioning/Profile/Bit63Group_vm_user#get_vmname
([stp_request_11]) Following /Infrastructure/VM/Provisioning/Naming/Default
([stp_request_11]) Followed /Infrastructure/VM/Provisioning/Naming/Default
([stp_request_11]) Followed /infrastructure/ \
 VM/Provisioning/Profile/Bit63Group_vm_user#get_vmname
([stp_request_11]) Followed /System/Request/UI_PROVISION_INFO

Notice that this request processing runs the naming method, which is therefore pro‐
cessed before CatalogItemInitialization (which is processed in task context).

Service Template Provisioning Tasks
Next we see two service template provisioning tasks created: our top-level and child
task objects (service_template_provision_task_31 and service_template_provi
sion_task_32):

The two tasks are actually running through two separate state
machines.
Task service_template_provision_task_31 is running through /
Service/Provisioning/StateMachines/ServiceProvision_Template/
CatalogItemInitialization.
Task service_template_provision_task_32 is running through /
Service/Provisioning/StateMachines/ServiceProvision_Template/
clone_to_service.

([stp_task_31]) Following /Service/Provisioning/StateMachines/Methods/ \
 DialogParser
([stp_task_31]) Followed /Service/Provisioning/StateMachines/Methods/DialogParser
([stp_task_31]) Following /Service/Provisioning/StateMachines/Methods/ \
 CatalogItemInitialization
([stp_task_31]) Followed /Service/Provisioning/StateMachines/Methods/ \
 CatalogItemInitialization
([stp_task_31]) Following /Service/Provisioning/StateMachines/Methods/Provision
([stp_task_31]) Followed /Service/Provisioning/StateMachines/Methods/Provision
([stp_task_31]) Following /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned
([stp_task_31]) Followed /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned
([stp_task_32]) Following /Service/Provisioning/StateMachines/Methods/ \
 GroupSequenceCheck
([stp_task_32]) Followed /Service/Provisioning/StateMachines/Methods/ \
 GroupSequenceCheck
([stp_task_32]) Following /Service/Provisioning/StateMachines/Methods/Provision
([stp_task_32]) Followed /Service/Provisioning/StateMachines/Methods/Provision
([stp_task_32]) Following /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned

Service Template Provisioning Tasks | 293

([stp_task_32]) Followed /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned

VM Provisioning Task
We see our grandchild miq_provision task object created (miq_provision_33), and it
processes the /Infrastructure/VM/Provisioning/StateMachines methods in the state
machine defined in our user profile:

([miq_provision_33]) Following /infrastructure/VM/Lifecycle/Provisioning
([miq_provision_33]) Following /Infrastructure/ \
 VM/Provisioning/Profile/Bit63Group_vm_user#get_state_machine
([miq_provision_33]) Followed /Infrastructure/ \
 VM/Provisioning/Profile/Bit63Group_vm_user#get_state_machine
([miq_provision_33]) Following /Infrastructure/ \
 VM/Provisioning/StateMachines/VMProvision_vm/template
([miq_provision_33]) Following /Infrastructure/ \
 VM/Provisioning/StateMachines/Methods/CustomizeRequest#VMware
([miq_provision_33]) Followed /Infrastructure/ \
 VM/Provisioning/StateMachines/Methods/CustomizeRequest#VMware
([miq_provision_33]) Following /Infrastructure/ \
 VM/Provisioning/Placement/default#VMware
([miq_provision_33]) Followed /Infrastructure/ \
 VM/Provisioning/Placement/default#VMware
([miq_provision_33]) Following /Infrastructure/ \
 VM/Provisioning/StateMachines/Methods/PreProvision#VMware
([miq_provision_33]) Followed /Infrastructure/ \
 VM/Provisioning/StateMachines/Methods/PreProvision#VMware
([miq_provision_33]) Following /Infrastructure/ \
 VM/Provisioning/StateMachines/Methods/Provision
([miq_provision_33]) Followed /Infrastructure/ \
 VM/Provisioning/StateMachines/Methods/Provision
([miq_provision_33]) Following /Infrastructure/ \
 VM/Provisioning/StateMachines/Methods/CheckProvisioned
([miq_provision_33]) Followed /Infrastructure/ \
 VM/Provisioning/StateMachines/Methods/CheckProvisioned
([miq_provision_33]) Followed /Infrastructure/ \
 VM/Provisioning/StateMachines/VMProvision_vm/template
([miq_provision_33]) Followed /infrastructure/VM/Lifecycle/Provisioning
([miq_provision_33]) Following /System/Request/UI_PROVISION_INFO
([miq_provision_33]) Following /infrastructure/ \
 VM/Provisioning/Profile/Bit63Group_vm_user#get_host_and_storage
([miq_provision_33]) Followed /infrastructure/ \
 VM/Provisioning/Profile/Bit63Group_vm_user#get_host_and_storage
([miq_provision_33]) Followed /System/Request/UI_PROVISION_INFO

Service State Machine CheckProvisioned
We see both top-level and child service template provisioning tasks running their
CheckProvisioned methods:

294 | Chapter 36: Log Analysis During Service Provisioning

([stp_task_31]) Following /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned
([stp_task_31]) Followed /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned
([stp_task_32]) Following /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned
([stp_task_32]) Followed /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned

VM State Machine CheckProvisioned
We see the VM provision state machine running its CheckProvisioned method. We
can see the entire /Infrastructure/VM/Provisioning/StateMachines state machine being
reinstantiated for each call of its CheckProvisioned method, including the profile
lookup:

Following /infrastructure/VM/Lifecycle/Provisioning
Following /Infrastructure/VM/Provisioning/Profile/ \
 Bit63Group_vm_user#get_state_machine
Following /Infrastructure/VM/Provisioning/StateMachines/VMProvision_vm/template
Following /Infrastructure/VM/Provisioning/StateMachines/Methods/CheckProvisioned

Recall that if a state exits with $evm.root['ae_result'] =

'retry', the entire state machine is relaunched after the retry
interval, starting at the state to be retried.

We see the service and VM provisioning state machines both running their CheckPro‐
visioned methods:

([miq_provision_33]) Following /infrastructure/VM/Lifecycle/Provisioning
([miq_provision_33]) Following /Infrastructure/ \
 VM/Provisioning/Profile/Bit63Group_vm_user#get_state_machine
([miq_provision_33]) Followed /Infrastructure/ \
 VM/Provisioning/Profile/Bit63Group_vm_user#get_state_machine
([miq_provision_33]) Following /Infrastructure/ \
 VM/Provisioning/StateMachines/VMProvision_vm/template
([miq_provision_33]) Following /Infrastructure/ \
 VM/Provisioning/StateMachines/Methods/CheckProvisioned
([miq_provision_33]) Followed /Infrastructure/ \
 VM/Provisioning/StateMachines/Methods/CheckProvisioned
([miq_provision_33]) Followed /Infrastructure/ \
 VM/Provisioning/StateMachines/VMProvision_vm/template
([miq_provision_33]) Followed /infrastructure/VM/Lifecycle/Provisioning
([stp_task_31]) Following /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned
([stp_task_31]) Followed /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned
([stp_task_32]) Following /Service/Provisioning/StateMachines/Methods/ \

VM State Machine CheckProvisioned | 295

 CheckProvisioned
([stp_task_32]) Followed /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned
([miq_provision_33]) Following /infrastructure/VM/Lifecycle/Provisioning
([miq_provision_33]) Following /Infrastructure/ \
 VM/Provisioning/Profile/Bit63Group_vm_user#get_state_machine
([miq_provision_33]) Followed /Infrastructure/ \
 VM/Provisioning/Profile/Bit63Group_vm_user#get_state_machine
([miq_provision_33]) Following /Infrastructure/ \
 VM/Provisioning/StateMachines/VMProvision_vm/template
([miq_provision_33]) Following /Infrastructure/ \
 VM/Provisioning/StateMachines/Methods/CheckProvisioned
([miq_provision_33]) Followed /Infrastructure/ \
 VM/Provisioning/StateMachines/Methods/CheckProvisioned
([miq_provision_33]) Followed /Infrastructure/ \
 VM/Provisioning/StateMachines/VMProvision_vm/template
([miq_provision_33]) Followed /infrastructure/VM/Lifecycle/Provisioning
([stp_task_31]) Following /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned
([stp_task_31]) Followed /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned
([stp_task_32]) Following /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned
([stp_task_32]) Followed /Service/Provisioning/StateMachines/Methods/ \
 CheckProvisioned
...

Virtual Machine Provision Complete
We see the Infrastructure/VM provisioning state machine CheckProvisioned method
return success and continue with the remainder of the state machine:

([miq_provision_33]) Following /infrastructure/VM/Lifecycle/Provisioning
([miq_provision_33]) Following /Infrastructure/VM/ \
 Provisioning/Profile/Bit63Group_vm_user#get_state_machine
([miq_provision_33]) Followed /Infrastructure/VM/ \
 Provisioning/Profile/Bit63Group_vm_user#get_state_machine
([miq_provision_33]) Following /Infrastructure/VM/ \
 Provisioning/StateMachines/VMProvision_vm/template
([miq_provision_33]) Following /Infrastructure/VM/ \
 Provisioning/StateMachines/Methods/CheckProvisioned
([miq_provision_33]) Followed /Infrastructure/VM/ \
 Provisioning/StateMachines/Methods/CheckProvisioned
([miq_provision_33]) Following /Infrastructure/VM/ \
 Provisioning/StateMachines/Methods/PostProvision#VMware
([miq_provision_33]) Followed /Infrastructure/VM/ \
 Provisioning/StateMachines/Methods/PostProvision#VMware
([miq_provision_33]) Following /Infrastructure/VM/ \
 Provisioning/Email/MiqProvision_Complete?event=vm_provisioned
([stp_task_31]) Following /Service/Provisioning/ \
 StateMachines/Methods/CheckProvisioned
([miq_provision_33]) Followed /Infrastructure/VM/ \

296 | Chapter 36: Log Analysis During Service Provisioning

 Provisioning/Email/MiqProvision_Complete?event=vm_provisioned
([stp_task_31]) Followed /Service/Provisioning/ \
 StateMachines/Methods/CheckProvisioned
([miq_provision_33]) Following /System/CommonMethods/ \
 StateMachineMethods/vm_provision_finished
([miq_provision_33]) Following /System/Event/service_provisioned
([miq_provision_33]) Followed /System/Event/service_provisioned
([miq_provision_33]) Followed /System/CommonMethods/ \
 StateMachineMethods/vm_provision_finished
([miq_provision_33]) Followed /Infrastructure/VM/ \
 Provisioning/StateMachines/VMProvision_vm/template
([miq_provision_33]) Followed /infrastructure/VM/Lifecycle/Provisioning

Service Provision Complete
Finally, we see both of the service provisioning state machine CheckProvisioned meth‐
ods return success and continue with the remainder of their state machines:

([stp_task_32]) Following /Service/Provisioning/ \
 StateMachines/Methods/CheckProvisioned
([stp_task_32]) Followed /Service/Provisioning/ \
 StateMachines/Methods/CheckProvisioned
([stp_task_32]) Following /Service/Provisioning/Email/ \
 ServiceProvision_complete?event=service_provisioned
([stp_task_32]) Followed /Service/Provisioning/Email/ \
 ServiceProvision_complete?event=service_provisioned
([stp_task_32]) Following /System/CommonMethods/ \
 StateMachineMethods/service_provision_finished
([stp_task_32]) Followed /System/CommonMethods/ \
 StateMachineMethods/service_provision_finished
([stp_task_31]) Following /Service/Provisioning/ \
 StateMachines/Methods/CheckProvisioned
([stp_task_31]) Followed /Service/Provisioning/ \
 StateMachines/Methods/CheckProvisioned
([stp_task_31]) Following /Service/Provisioning/Email/ \
 ServiceProvision_complete?event=service_provisioned
([stp_task_31]) Followed /Service/Provisioning/Email/ \
 ServiceProvision_complete?event=service_provisioned
([stp_task_31]) Following /System/CommonMethods/ \
 StateMachineMethods/service_provision_finished
([stp_task_31]) Followed /System/CommonMethods/ \
 StateMachineMethods/service_provision_finished

Summary
Tracing the steps of various workflows though automation.log can reveal a lot about
the inner workings of the Automation Engine. All students of automation are encour‐
aged to investigate the Following.. Followed message pairs in the logs to get a feel
for how state machines sequence tasks and handle retry operations.

Service Provision Complete | 297

CHAPTER 37

Service Hierarchies

We have seen how service catalogs made up of catalog items and bundles can simplify
the process of ordering infrastructure or cloud instance and virtual machines. Sim‐
plicity of ordering is not the only benefit of services, however.

When we order one or more virtual machines from a service catalog, a new service is
created for us that appears in All Services in the WebUI. This service gives us a useful
summary of its resources in the Totals for Service VMs section. We can use this fea‐
ture to extend the utility of services into tracking and organizing resources. We could,
for example, use a service to represent a project comprising many dozens of virtual
machines. We would be able to see the total virtual machine resource consumption
for the entire project in a single place in the WebUI.

In line with this organizational use, we can arrange services in hierarchies for further
convenience (see Figure 37-1).

Figure 37-1. A service hierarchy

In this example we have three child services, representing the three tiers of our simple
intranet platform. Figure 37-2 shows the single server making up the database tier of
our architecture.

299

Figure 37-2. The database tier

Figure 37-3 shows the two servers making up the middleware tier of our architecture.

300 | Chapter 37: Service Hierarchies

Figure 37-3. The middleware tier

Figure 37-4 shows the four servers making up the web tier of our architecture.

Service Hierarchies | 301

Figure 37-4. The web tier

When we view the parent service, we see that it contains details of all child services,
including the cumulative CPU, memory, and disk counts (see Figure 37-5).

302 | Chapter 37: Service Hierarchies

Figure 37-5. Parent service view

Organizing Our Services
To make maximum use of service hierarchies, it is useful to be able to create empty
services, and to be able to move both services and VMs into existing services.

Creating an Empty Service
We could create a new service directly from automation, using the lines:

new_service = $evm.vmdb('service').create(:name => "My New Service")
new_service.display = true

For this example, though, we’ll create our new empty service from a service catalog.

State machine
First we’ll copy ManageIQ/Service/Provisioning/StateMachines/ServiceProvi‐
sion_Template/default into our own domain and rename it EmptyService. We’ll add a

Organizing Our Services | 303

pre5 relationship to a new instance that we’ll create, called /Service/Provisioning/
StateMachines/Methods/RenameService (see Figure 37-6).

Figure 37-6. Schema of the EmptyService state machine

Method

The pre5 stage of this state machine is a relationship to a RenameService instance.
This instance calls a rename_service method containing the following code:

begin
 service_template_provision_task = $evm.root['service_template_provision_task']
 service = service_template_provision_task.destination
 dialog_options = service_template_provision_task.dialog_options
 if dialog_options.has_key? 'dialog_service_name'
 service.name = "#{dialog_options['dialog_service_name']}"
 end
 if dialog_options.has_key? 'dialog_service_description'
 service.description = "#{dialog_options['dialog_service_description']}"
 end

304 | Chapter 37: Service Hierarchies

 $evm.root['ae_result'] = 'ok'
 exit MIQ_OK
rescue => err
 $evm.log(:error, "[#{err}]\n#{err.backtrace.join("\n")}")
 $evm.root['ae_result'] = 'error'
 $evm.root['ae_reason'] = "Error: #{err.message}"
 exit MIQ_ERROR
end

Service dialog

We create a simple service dialog called New Service with element names ser
vice_name and service_description (see Figure 37-7).

Figure 37-7. Service dialog

Putting it all together
Finally, we assemble all of these parts by creating a new service catalog called General
Services and a new catalog item of type Generic called Empty Service (see
Figure 37-8).

Organizing Our Services | 305

Figure 37-8. The completed Empty Service service catalog item

We can order from this service catalog item to create our new empty services.

Adding VMs and Services to Existing Services
We’ll provide the ability to move both services and virtual machines into existing
services from a button. The button will present a drop-down list of existing services
that we can add as a new parent service (see Figure 37-9).

Figure 37-9. Listing available services in a dynamic drop-down

306 | Chapter 37: Service Hierarchies

Adding the Button
As before, the process of adding a button involves the creation of the button dialog
and a button script. For this example, however, our dialog will contain a dynamic
drop-down list, so we must create a dynamic element method as well to populate this
list.

Button dialog
We create a simple button dialog with a dynamic drop-down element named service
(see Figure 37-10).

Figure 37-10. Button dialog

Dialog element method
The dynamic drop-down element in the service dialog calls a method called list_serv‐
ices. We only wish to display a service in the drop-down list if the user has permis‐
sions to see it via their role-based access control (RBAC) filter. We define two
methods: get_current_group_rbac_array to retrieve a user’s RBAC filter array, and
service_visible? to check that a service has a tag that matches the filter:

def get_current_group_rbac_array(user, rbac_array=[])
 unless user.current_group.filters.blank?
 user.current_group.filters['managed'].flatten.each do |filter|
 next unless /(?<category>\w*)\/(?<tag>\w*)$/i =~ filter
 rbac_array << {category=>tag}
 end
 end
 rbac_array
end

def service_visible?(rbac_array, service)

Adding VMs and Services to Existing Services | 307

 $evm.log(:info, "Evaluating Service #{service.name}")
 if rbac_array.length.zero?
 $evm.log(:info, "No Filter, service: #{service.name} is visible to this user")
 return true
 else
 rbac_array.each do |rbac_hash|
 rbac_hash.each do |category, tag|
 if service.tagged_with?(category, tag)
 $evm.log(:info, "Service: #{service.name} is visible to this user")
 return true
 end
 end
 end
 false
 end
 end

When we enumerate the services, we check on visibility to the user before adding to
the drop-down list:

$evm.vmdb(:service).find(:all).each do |service|
 if service['display']
 $evm.log(:info, "Found service: #{service.name}")
 if service_visible?(rbac_array, service)
 visible_services << service
 end
 end
end
if visible_services.length > 0
 if visible_services.length > 1
 values_hash['!'] = '-- select from list --'
 end
 visible_services.each do |service|
 values_hash[service.id] = service.name
 end
else
 values_hash['!'] = 'No services are available'
end

Here we use a simple technique of keeping the string '-- select from list --' at
the top of the list, by using a key string of '!', which is the first ASCII printable non‐
whitespace character.

Button method
The main instance and method called from the button are called AddToService and
add_to_service, respectively. This method adds the current virtual machine or service
into the service selected from the drop-down list. As we wish to be able to call this
from a button on either a Service object type or a “VM and Instance” object type, we
identify our context using $evm.root['vmdb_object_type'].

308 | Chapter 37: Service Hierarchies

If we are adding a virtual machine to an existing service, we should allow for the fact
that the virtual machine might itself have been provisioned from a service. We detect
any existing service membership, and if the old service is empty after we move the
virtual machine, we delete the service from the VMDB:

begin
 parent_service_id = $evm.root['dialog_service']
 parent_service = $evm.vmdb('service').find_by_id(parent_service_id)
 if parent_service.nil?
 $evm.log(:error, "Can't find service with ID: #{parent_service_id}")
 exit MIQ_ERROR
 else
 case $evm.root['vmdb_object_type']
 when 'service'
 $evm.log(:info, "Adding Service #{$evm.root['service'].name} to \
 #{parent_service.name}")
 $evm.root['service'].parent_service = parent_service
 when 'vm'
 vm = $evm.root['vm']
 #
 # See if the VM is already part of a service
 #
 unless vm.service.nil?
 old_service = vm.service
 vm.remove_from_service
 if old_service.v_total_vms.zero?
 old_service.remove_from_vmdb
 end
 end
 $evm.log(:info, "Adding VM #{vm.name} to #{parent_service.name}")
 vm.add_to_service(parent_service)
 end
 end
 exit MIQ_OK
rescue => err
 $evm.log(:error, "[#{err}]\n#{err.backtrace.join("\n")}")
 exit MIQ_ERROR
end

The scripts in this chapter are available on GitHub.

Putting it all together
Finally, we create two Add to Service buttons: one on a Service object type, and one
on a “VM and Instance” object type. We can go ahead and organize our service hier‐
archies.

Adding VMs and Services to Existing Services | 309

http://bit.ly/1VOFeSa

Exercise

Filter the list of services presented in the drop-down to remove the
current service—we would never wish to add a service as its own
parent.

Summary
Organizing our services in this way changes the way that we think about our cloud or
virtual infrastructure. We start to think in terms of service workloads, rather than
individual virtual machines or instances. We can start to work in a more “cloudy”
way, whereby we treat our virtual machines as anonymous entities, and scale out or
scale back according to point-in-time application demand.

We can also use service bundles and hierachies of bundles to keep track of the resour‐
ces in projects and subprojects. This can help from an organizational point of view;
for example, we can tag services, and our method to add a virtual machine to a ser‐
vice can propagate any service tags to the virtual machine. In this way we can assign
project-related chargeback costs to the tagged VMs or apply WebUI display filters
that display project resources.

310 | Chapter 37: Service Hierarchies

CHAPTER 38

Service Reconfiguration

Our virtual machine or instance provisioning workflows have so far created new
ready-configured virtual machines, or virtual machines integrated with Satellite 6 so
that a Puppet configuration can be applied (see Chapter 28).

In these cases we must log in to two separate systems to get our provisioned and con‐
figured servers into operation. We log in to the CloudForms WebUI to start the pro‐
visioning operation and a second WebUI for the configuration management platform
(such as Satellite) to set or reset the configuration parameters.

When we provision new virtual machines as services, however, we can consolidate
the provisioning and configuration functions in a single user interface. We can set
initial configuration parameters in a service dialog and then mark a service as Recon‐
figurable to allow these parameters to be updated from the same CloudForms service
dialog.

This duel use of a service dialog for both initial configuration and reconfiguration
works well if we are using a configuration management tool such as Satellite 6, and
Puppet. We can specify Puppet smart class parameters in our service dialog that can
be passed to Foreman and used to override the statically defined Puppet class param‐
eters.

Reconfigure Entry Point
So far when we have created our service catalog items, we have specified a provision‐
ing entry point state machine to handle the provisioning workflow for the new ser‐
vice. There are two other entry points that we can optionally hook into: a retirement
entry point (see Chapter 41) and a reconfigure entry point (see Figure 38-1).

311

Figure 38-1. Setting the reconfigure entry point when creating a service item

If we create a service catalog item to have a reconfigure entry point state machine,
then any service created from that catalog item will have a Reconfigure this Service
option available under its Configuration menu (see Figure 38-2).

Figure 38-2. Reconfiguring a service

If we select this option, we are presented with the original service dialog once more.
Entering new values and clicking the Submit button will create a ServiceReconfigur
eRequest to perform the reconfiguration action, based on the revised values that we
have have entered into the dialog.

Service Design
When we create a service that can be reconfigured in this way, we need to put extra
thought into our service design and provisioning workflow. We need to make some of
our service dialog elements reconfigurable so that we can enter new values when re-
presented with the dialog on a service reconfiguration request (elements not marked

312 | Chapter 38: Service Reconfiguration

as Reconfigurable will be greyed out). We need to create a set_configuration method
that can be called from either the virtual machine provision or service reconfigura‐
tion state machines, and retrieve dialog values from the correct location in each case.
This method must detect whether the VM provision was initiated from a service that
passed the correct dialog values or an interactive VM provision request that did not.

Adding a Configuration Management Provider
We can add our Satellite 6 server as a CloudForms configuration management pro‐
vider. This imports the Foreman host groups as CloudForms configuration profiles,
saving us from having to make a REST call to the Satellite server to list them (see
Figure 38-3).

Figure 38-3. Configuration profiles imported from Satellite 6

Automate Datastore Components
Even though a service reconfiguration capability is provided for us by CloudForms,
we still need to add several Automate Datastore components if we wish to use it.

Creating the Namespaces and State Machines
In our own domain, we’ll create a /Service/Reconfiguration/StateMachines namespace
(see Figure 38-4).

Figure 38-4. /Service/Reconfiguration/StateMachines namespace

Adding a Configuration Management Provider | 313

We’ll create a simple state machine class called ServiceReconfigure, with seven states
(see Figure 38-5).

Figure 38-5. ServiceReconfigure state machine class schema

pre{1-3} and post{1-3} are future-proofing placeholders in case we wish to enhance
the functionality in future. For now we’ll just be using the reconfigure state.

We’ll copy the ManageIQ/Service/Provisioning/StateMachines/ServiceProvi‐
sion_Template/update_serviceprovision_status method into our domain and rename it
update_servicereconfigure_status. We change line 6 from:

prov = $evm.root['service_template_provision_task']

to:

reconfigure_task = $evm.root['service_reconfigure_task']

We also change the variable name in line 13 from prov to reconfigure_task.

We’ll edit the On Entry, On Exit, and On Error columns in the state machine class
schema to refer to the new update_servicereconfigure_status method (see
Figure 38-6).

314 | Chapter 38: Service Reconfiguration

Figure 38-6. Setting the On Entry methods

We create a Default instance of the ServiceReconfiguration state machine class, and
we’ll point the reconfigure stage to the /Integration/Satellite/Methods/SetConfigura‐
tion instance that we’ll create (see Figure 38-7).

Figure 38-7. Schema of the default instance

Email Classes
We need to create two new email instances with associated methods, to send emails
when a service reconfigure is approved and completed. For convenience we’ll just
copy, rename, and edit the ManageIQ/Service/Provisioning/Email instances and meth‐
ods (see Figure 38-8).

Automate Datastore Components | 315

Figure 38-8. Copied and renamed email instances and methods

Policies
We need to generate policy instances for two ServiceReconfigure events: ServiceRe‐
configureRequest_created and ServiceReconfigureRequest_approved.

We copy ManageIQ/System/Policy/ServiceTemplateProvisionRequest_created into our
domain as System/Policy/ServiceReconfigureRequest_created. We can leave the schema
contents as they are because we’ll use the same auto-approval state machine as when
the service was originally provisioned.

We copy ManageIQ/System/Policy/ServiceTemplateProvisionRequest_approved into
our domain as /System/Policy/ServiceReconfigureRequest_approved, and we edit the
rel5 state to point to our new /Service/Reconfiguration/Email/ServiceReconfiguration‐
RequestApproved email instance (see Figure 38-9).

Figure 38-9. Copied and renamed policy instances

316 | Chapter 38: Service Reconfiguration

Modifying the VM Provision Workflow
We need to change our VM provision workflow to add a state to perform the initial
configuration, using the values input from the service dialog. We’ll take the state
machine that we used in Chapter 28 and add a SetConfiguration stage after Regis
terSatellite. SetConfiguration points to the same instance as our new ServiceRe‐
configuration state machine’s reconfigure stage (see Figure 38-10).

Figure 38-10. Adding the SetConfiguration stage to the VM provision state machine

Service Dialog
We’re going to create a completely dynamic service dialog, interacting with Satellite to
retrieve information. The dialog will search the VMDB for configuration profiles
(host groups) and present them in a drop-down list. For the host group selected, Sat‐
ellite will be queried for the configured activation keys and Puppet classes, and these
will be presented in drop-down lists. For the Puppet class selected, Satellite will be
queried for the available smart class parameters, and these will be presented in a
drop-down list. Finally, a text area box will be presented to optionally input an over‐
ride parameter.

Elements
The service dialog will contain seven elements, of which the Puppet Class, Smart
Class Parameter, and New Parameter Value elements will be marked as Reconfigura‐
ble. The dialog elements are summarized in Table 38-1.

Modifying the VM Provision Workflow | 317

Table 38-1. Dialog elements

Name Type Dynamic Instance Auto-
refresh

Auto-
refresh
other fields

Reconfigurable

Service Name Text Box No N/A N/A N/A No

VM Name Text Box No N/A N/A N/A No

Host Group Drop Down List Yes ListHostGroups No Yes No

Activation Key Drop Down List Yes ListActivationKeys Yes No No

Puppet Class Drop Down List Yes ListPuppetClasses Yes Yes Yes

Smart Class
Parameter

Drop Down List Yes ListSmartClassPara
meters

Yes No Yes

New Parameter
Value

Text Area Box No N/A N/A N/A Yes

When ordered, the dialog will look like Figure 38-11.

Figure 38-11. The final service dialog

318 | Chapter 38: Service Reconfiguration

Instances and Methods
We need to create a number of instances and methods to populate the dynamic dialog
elements of the service dialog.

Dynamic Dialogs
The dynamic dialog instances and methods are defined under an /Integration/Satel‐
lite/DynamicDialogs namespace in our domain (see Figure 38-12).

Figure 38-12. Dynamic dialog instances and methods

The schema for the Methods class holds variables containing the credentials to con‐
nect to our Satellite server (we first used this technique in Chapter 4).

Common functionality

Each of the dynamic methods has a simple rest_action method to perform the
RESTful call to Satellite:

def rest_action(uri, verb, payload=nil)
 headers = {
 :content_type => 'application/json',
 :accept => 'application/json;version=2',
 :authorization => \
 "Basic #{Base64.strict_encode64("#{@username}:#{@password}")}"
 }
 response = RestClient::Request.new(
 :method => verb,

Instances and Methods | 319

 :url => uri,
 :headers => headers,
 :payload => payload,
 verify_ssl: false
).execute
 return JSON.parse(response.to_str)
end

They each pull the credentials from the instance schema and define the base URI and
an empty values_hash:

servername = $evm.object['servername']
@username = $evm.object['username']
@password = $evm.object.decrypt('password')

uri_base = "https://#{servername}/api/v2"
values_hash = {}

ListHostGroups
The list_hostgroups method does not need to connect to the Satellite RESTful API, as
the Satellite server is registered as a configuration management provider. The method
performs a simple VMDB lookup of all configuration profiles:

hostgroups = $evm.vmdb(:configuration_profile).all

if hostgroups.length > 0
 if hostgroups.length > 1
 values_hash['!'] = '-- select from list --'
 end
 hostgroups.each do |hostgroup|
 $evm.log(:info, "Found Host Group '#{hostgroup.name}' \
 with ID: #{hostgroup.manager_ref}")
 values_hash[hostgroup.manager_ref] = hostgroup.name
 end
else
 values_hash['!'] = 'No hostgroups are available'
end

ListActivationKeys

The list_activationkeys method retrieves the hostgroup_id from the Host Group ele‐
ment and makes a Satellite API call to get the hostgroup parameters:

hg_id = $evm.object['dialog_hostgroup_id']

if hg_id.nil?
 values_hash['!'] = "Select a Host Group and click 'Refresh'"
else
 rest_return = rest_action("#{uri_base}/hostgroups/#{hg_id}/parameters", :get)
 rest_return['results'].each do |hostgroup_parameter|
 if hostgroup_parameter['name'].to_s == "kt_activation_keys"

320 | Chapter 38: Service Reconfiguration

 hostgroup_parameter['value'].split(',').each do |activationkey|
 values_hash[activationkey] = activationkey
 end
 end
 end
 if values_hash.length > 0
 if values_hash.length > 1
 values_hash['!'] = '-- select from list --'
 end
 else
 values_hash['!'] = 'This Host Group has no Activation Keys'
 end
end

ListPuppetClasses

The list_puppetclasses method retrieves the hostgroup_id from the Host Group ele‐
ment and makes a Satellite API call to get the Puppet classes associated with the host
group:

hg_id = $evm.object['dialog_hostgroup_id']

if hg_id.nil?
 values_hash['!'] = "Select a Host Group and click 'Refresh'"
else
 rest_return = rest_action("#{uri_base}/hostgroups/#{hg_id}/puppetclasses",:get)
 if rest_return['total'] > 0
 if rest_return['total'] > 1
 values_hash['!'] = '-- select from list --'
 end
 rest_return['results'].each do |classname, classinfo|
 values_hash[classinfo[0]['id'].to_s] = classname
 end
 else
 values_hash['!'] = 'No Puppet Classes are defined for this Hostgroup'
 end
end

ListSmartClassParameters

The list_smart_class_parameters method retrieves the hostgroup_id and puppet
class_id from previous elements and makes a Satellite API call to get the Puppet
smart class parameters associated with the host group. For each parameter returned it
then makes a further Satellite API call to cross-reference against the requested Puppet
class:

hg_id = $evm.object['dialog_hostgroup_id']
puppet_class_id = $evm.object['dialog_puppet_class_id']

if puppet_class_id.nil?
 values_hash['!'] = "Select a Puppet Class and click 'Refresh'"

Instances and Methods | 321

else
 call_string = "#{uri_base}/hostgroups/#{hg_id}/smart_class_parameters"
 rest_return = rest_action(call_string, :get)
 rest_return['results'].each do |parameter|
 #
 # Retrieve the details of this smart class parameter
 # to find out which puppet class it's associated with
 #
 call_string = "#{uri_base}/hostgroups/#{hg_id}/"
 call_string += "smart_class_parameters/#{parameter['id']}"
 parameter_details = rest_action(call_string, :get)
 if parameter_details['puppetclass']['id'].to_s == puppet_class_id
 values_hash[parameter['id'].to_s] = parameter_details['parameter']
 end
 end
 if values_hash.length > 0
 if values_hash.length > 1
 values_hash['!'] = '-- select from list --'
 end
 else
 values_hash['!'] = 'This Puppet class has no Smart Class Parameters'
 end
end

Making several cross-referencing API calls to Satellite in this way can be slow if many
Puppet classes with smart class variables are defined in our host group, but this tech‐
nique is suitable for our example.

Configuration-Related Methods
We have three methods that handle the registration with Satellite and the setting of
configuration.

RegisterSatellite
We edit the register_satellite method from Chapter 28 to take out the hardcoded selec‐
tion of host group. We also bypass Satellite registration entirely if we don’t find the
hostgroup_id:

#
Only register if the provisioning template is linux
#
if template.platform == "linux"
 #
 # Only register with Satellite if we've been passed a
 # hostgroup ID from a service dialog
 #
 hg_id = $evm.root['miq_provision'].get_option(:dialog_hostgroup_id)
 unless hg_id.nil?
 ...

322 | Chapter 38: Service Reconfiguration

ActivateSatellite
We edit the activate_satellite method from Chapter 28 to take out the hardcoded
selection of activation key. We also bypass Satellite activation entirely if we don’t find
the activation key name:

#
Only register if the provisioning template is linux
#
prov = $evm.root['miq_provision']
if template.platform == "linux"
 #
 # Only register and activate with Satellite if we've been passed an
 # activation key from a service dialog
 #
 activationkey = prov.get_option(:dialog_activationkey_name)
 unless activationkey.nil?
 ...

SetConfiguration
The set_configuration method will be called from two completely different state
machines, once to perform an initial configuration during provisioning and possibly
again during a service reconfigure request. The method must retrieve the service dia‐
log values from either of two different places:

 if $evm.root['vmdb_object_type'] == 'miq_provision'
 prov = $evm.root['miq_provision']
 parameter_id = prov.get_option(:dialog_parameter_id)
 parameter_value = prov.get_option(:dialog_parameter_value)
 hg_id = prov.get_option(:dialog_hostgroup_id)
 hostname = prov.get_option(:dialog_vm_name)
 elsif $evm.root['vmdb_object_type'] == 'service_reconfigure_task'
 parameter_id = $evm.root['dialog_parameter_id']
 parameter_value = $evm.root['dialog_parameter_value']
 hg_id = $evm.root['dialog_hostgroup_id']
 hostname = $evm.root['dialog_vm_name']
 end

If a smart class parameter override value has not been input, the method simply exits:

 #
 # Only set the smart class parameter if we've been passed a
 # parameter value from a service dialog
 #
 unless parameter_value.nil?
 ...

The method must fetch the default domain name from the host group to assemble
the correct FQDN for the match:

Instances and Methods | 323

rest_return = rest_action("#{uri_base}/hostgroups/#{hg_id}", :get)
domain_name = rest_return['domain_name']
match = "fqdn=#{hostname}.#{domain_name}"

The method must also determine whether the override match already exists. If it
doesn’t exist, it must be created with a POST action; if it does exist, it must be updated
with a PUT action:

call_string = "#{uri_base}/smart_class_parameters/"
call_string += "#{parameter_id}/override_values"
rest_return = rest_action(call_string, :get)
override_value_id = 0
if rest_return['total'] > 0
 rest_return['results'].each do |override_value|
 if override_value['match'] == match
 override_value_id = override_value['id']
 end
 end
end
if override_value_id.zero?
 payload = {
 :match => match,
 :value => parameter_value
 }
 call_string = "#{uri_base}/smart_class_parameters/"
 call_string += "#{parameter_id}/override_values"
 rest_return = rest_action(call_string, :post, JSON.generate(payload))
else
 payload = {
 :value => parameter_value
 }
 call_string = "#{uri_base}/smart_class_parameters/"
 call_string =+ "#{parameter_id}/override_values/#{override_value_id}"
 rest_return = rest_action(call_string, :put, JSON.generate(payload))
end

Here we see that match is the FQDN of the server. If an override match doesn’t exist
for this smart class parameter, we create one using the server FQDN and the value to
override. If an override match based on the FQDN does exist, we simply update the
override value.

The full code for the methods is available on GitHub.

Testing
We’ll order a new service and select appropriate host group and activation keys from
the drop-downs. We’ll select the motd Puppet class and override the content smart
class parameter (see Figure 38-13).

324 | Chapter 38: Service Reconfiguration

http://bit.ly/1TxEtrE

Figure 38-13. Setting an initial value for motd when provisoning a service

We click Submit and wait for our newly provisioned service.

Logging in to the newly provisioned server confirms that the motd has been set:

Last login: Wed Mar 23 17:14:34 2016 from cloudforms05.bit63.net
#
Next Q/A Team meeting 23rd April 2016
#
[root@rhel7srv034 ~]#

If we look at the details of our new service in My Services and select Configuration →
Reconfigure this Service, we are again presented with the service dialog, but the ele‐
ments not marked as Reconfigurable are read-only (see Figure 38-14).

Figure 38-14. Setting a new value for motd when reconfiguring the service

Testing | 325

We can select the motd Puppet class again, enter a new value for the content smart
class parameter, and click Submit.

We receive an email informing us that the reconfiguration request has been approved:

Hello,
Your Service reconfiguration request was approved. If Service reconfiguration
is successful you will be notified via email when the Service is available.

Approvers notes: Auto-Approved

To view this Request go to: https://cloudforms05/miq_request/show/1000000000109

Thank you,
Virtualization Infrastructure Team

We can log in to the Satellite 6 user interface to confirm that the “Override value for
specific hosts” contains our updated value against the match filter (see Figure 38-15).

Figure 38-15. Confirming the Puppet smart class parameter in Satellite

Once the Puppet agent has run on the client again, we can log in and see the new
message:

Last login: Wed Mar 23 17:35:50 2016 from cloudforms05.bit63.net
#
Next Q/A Team meeting date changed, now 21st April 2016
#
#[root@rhel7srv034 ~]#

Summary
This chapter has built on several topics and examples that we’ve worked through so
far in the book. It extends the integration with Satellite 6 that we covered in Chap‐
ter 28, and shows how we can dynamically present lists of activation keys or Puppet
classes with values retrieved from the Satellite server at runtime. We configured some
of the service dialog elements to autorefresh, so that a selection made from one ele‐

326 | Chapter 38: Service Reconfiguration

ment automatically runs the refresh methods to populate other dependent elements.
Some of the dialog elements were reconfigurable as well, so that their values can be
updated. This is a pretty advanced example that shows what can be done from a ser‐
vice catalog.

Finally, this example builds on the concept of using services as workload orchestra‐
tors and shows how we can set and update our service configuration from a single
tool. This is a powerful concept and means that we can use our service catalog as the
single control point for deploying and configuring our workloads.

Summary | 327

CHAPTER 39

Service Tips and Tricks

There are three useful tips and tricks to be aware of when developing services, and
we’ll discuss them here.

Test Virtual Machine Provisioning First
Before developing a service catalog item to provision a virtual machine, test that an
interactive provision (Infrastructure → Virtual Machines → Lifecycle → Provision
VMs) from the same virtual machine template, using the same virtual machine set‐
tings, works successfully.

This should include the same placement type (auto or manually selected), and the
same CPU count and memory size ranges that will be offered from the service dialog.

Troubleshooting a failing interactive VM provision is simpler than troubleshooting a
failing service order.

Re-create the Service Item if the Template Changes
If any changes are made to the template that would result in a new internal template
ID, then the service catalog item must be re-created (even if the new template has the
same name as the old). The new template will be represented by a new object in the
VMDB, so the service provision request template will need to be re-created with the
new template ID.

Custom State Machines
There are times when an out-of-the-box service provision state machine does not
provide the flexibility that we need to create the service that we require. An example

329

1 The CloudForms Essentials repository has several examples of such custom state machines that we can use or
adapt.

of this would be wishing to present a service dialog offering a drop-down list prompt‐
ing for the number of virtual machines to provision as part of the order from the cat‐
alog item (by default this number is fixed when the catalog item is created).
Fortunately, we are not constrained to use the as-supplied state machines.

When we create a new service catalog item, we are presented with a drop-down list of
catalog item types to choose from (see Figure 39-1).

Figure 39-1. Selection of catalog item type

As Figure 39-1 shows, there’s a Generic selection that we can use. If we select this cat‐
alog item type, we can create our own custom instance of the ServiceProvision_Tem‐
plate state machine class. This can handle the parsing of any service catalog elements
and assemble arguments for a call to $evm.execute('create_provision_request')
to complete the VM provision (see Chapter 27).

By hand-rolling the arguments to create_provision_request in this way, we have
complete control over the VM provision request. We could easily prompt the user for
the template name to provision from or the number of VMs to provision with the
request, for example.1

Summary
This chapter has shown us three simple tips to consider when working with services.
Generic services, in particular, are useful if we wish to create a single service catalog
item to provision a new virtual machine into a choice of providers (such as VMware
or OpenStack). With a traditional service catalog item, we must select a template first,
and this decides the destination provider. With a Generic service type, we can present
our users with a list of VMware templates or OpenStack Glance images to choose

330 | Chapter 39: Service Tips and Tricks

https://github.com/ramrexx/CloudForms_Essentials

from at runtime. Depending on the template or image selected, we can then supply
the appropriate provider-specific arguments to $evm.execute('create_provi

sion_request') in order to complete the request.

Summary | 331

PART IV

Retirement

The retirement process for virtual machines, instances, and services was substantially
rewritten for CloudForms 3.2. Part IV describes the current retirement workflows for
virtual machines and services.

CHAPTER 40

Virtual Machine and Instance Retirement

CloudForms is a virtual machine and instance lifecycle management tool, and so far
we have concentrated on the provisioning phase of that lifecycle. CloudForms also
has a virtual machine retirement workflow that lets us manage the retirement and
deletion of our virtual machines or instances, both from the provider and from the
CloudForms VMDB if required.

The retirement process allows us to treat virtual machines that were provisioned with
CloudForms differently from those that might have existed on the provider infra‐
structure before CloudForms was installed.

We may wish to keep the VMDB record of a virtual machine long
after its deletion from the provider, for recording and auditing
purposes.

In this chapter we’ll examine the retirement process for virtual machines and instan‐
ces.

Initiating Retirement
Virual machine or instance retirement is initiated from the Lifecycle menu on the
VM details page (see Figure 40-1).

335

Figure 40-1. Virtual machine or instance retirement menu

Clicking on Retire this VM raises a request_vm_retire event that begins a chain of
relationships through the datastore:

• request_vm_retire →
— /System/Event/MiqEvent/POLICY/request_vm_retire →
— /{Cloud,Infrastructure}/VM/Lifecycle/Retirement →
— /{Cloud,Infrastructure}/VM/Retirement/StateMachines/VMRetirement/

{Default,Unregister}

The relationship from Lifecycle/Retirement forwards the event processing into the
preferred virtual machine retirement state machine: Default for cloud instances, and
Default or Unregister for infrastructure virtual machines. We can select our preferred
infrastructure state machine (Default is the default) by copying the /
Infrastructure/VM/Lifecycle/Retirement instance to our own domain and editing
accordingly.

Retirement-Related Attributes and Methods
A virtual machine object has a number of retirement-related methods:

$evm.root['vm'].start_retirement
$evm.root['vm'].finish_retirement
$evm.root['vm'].retire_now
$evm.root['vm'].retired?
$evm.root['vm'].retirement_state=
$evm.root['vm'].retirement_warn=
$evm.root['vm'].retires_on=
$evm.root['vm'].retiring?

It also has several attributes:

$evm.root['vm'].retired = nil
$evm.root['vm'].retirement_last_warn = nil
$evm.root['vm'].retirement_requester = nil
$evm.root['vm'].retirement_state = nil

336 | Chapter 40: Virtual Machine and Instance Retirement

$evm.root['vm'].retirement_warn = nil
$evm.root['vm'].retires_on = nil

During the retirement process some of these are set to indicate progress:

$evm.root['vm'].retirement_requester = admin (type: String)
$evm.root['vm'].retirement_state = retiring (type: String)

and completion:

$evm.root['vm'].retired = true (type: TrueClass)
$evm.root['vm'].retirement_requester = nil
$evm.root['vm'].retirement_state = retired (type: String)
$evm.root['vm'].retires_on = 2015-12-10 (type: Date)

VM Retirement State Machine
The VM retirement state machines(s) undo many of the operations performed by the
VM provision state machine. They allow us to optionally deactivate a CI record from
a CMDB; unregister from DHCP, Active Directory, and DNS; and release both MAC
and IP addresses (see Figure 40-2).

Figure 40-2. VM retirement state machine

VM Retirement State Machine | 337

StartRetirement
The StartRetirement instance calls the start_retirement state machine method, which
checks whether the VM is already in the retired or retiring state, and if so it
aborts. If the VM is in neither of these states, it calls the VM’s start_retirement
method, which sets the retirement_state attribute to retiring.

PreRetirement/CheckPreRetirement
The state machine allows us to have provider-specific instances and methods for
these stages. The out-of-the-box infrastructure PreRetirement instance runs a vendor-
independent pre_retirement method that just powers off the VM. The out-of-the-box
cloud PreRetirement instance runs the appropriate vendor-specific pre_retirement
method—that is, amazon_pre_retirement, azure_pre_retirement, or open‐
stack_pre_retirement.

CheckPreRetirement checks that the power off has completed. The cloud versions
have corresponding vendor-specific check_pre_retirement methods.

RemoveFromProvider/CheckRemovedFromProvider
The RemoveFromProvider stage allows us some flexibility in handling the actual
removal of the VM, and this is where the Default and Unregister state machines differ.

Default

The RemoveFromProvider stage of the Default state machine links to the Remove‐
FromProvider instance, which calls the remove_from_provider state machine method,
passing the removal_type argument of remove_from_disk. This checks whether the
VM was provisioned from CloudForms (vm.miq_provision is not nil) or if the VM
is tagged with lifecycle/retire_full. If either of these is true, it fully deletes the
VM from the underlying provider, including the disk image. Having done so, it sets
the Boolean vm_removed_from_provider state variable to true.

If neither of these checks returns true, no action is performed.

Unregister

The RemoveFromProvider stage of the Unregister state machine links to the Unregi‐
sterFromProvider instance, which calls the remove_from_provider state machine
method, passing the removal_type argument of unregister. This checks whether the
VM was provisioned from CloudForms (vm.miq_provision is not nil) or if the VM
is tagged with lifecycle/retire_full. If either of these is true, it deletes the VM
from the underlying provider but retains the VM’s disk image, allowing the VM to be

338 | Chapter 40: Virtual Machine and Instance Retirement

re-created if required in the future. Having done so, it sets the Boolean
vm_removed_from_provider state variable to true.

If neither of these checks is true, no action is performed.

FinishRetirement
The FinishRetirement instance calls the finish_retirement state machine method that
sets the following VM object attributes:

:retires_on => Date.today
:retired => true
:retirement_state => "retired"

It also raises a vm_retired event that can be caught by an Automate action or control
policy.

DeleteFromVMDB
The DeleteFromVMDB instance calls the delete_from_vmdb state machine method
that checks for the state variable vm_removed_from_provider, and if the variable is
found (and true), it removes the virtual machine record from the VMDB.

Summary
This chapter has shown that retirement is a more complex process than simply delet‐
ing the virtual machine. We must potentially free up resources that were allocated
when the VM was created, such as an IP address. We might need to delete a CI record
from a CMDB, unregister from Active Directory, or even keep the VMDB object
inside CloudForms for auditing purposes.

Fortunately, the retirement workflow allows us to fine-tune all of these options and
handle retirement in a manner that suits us.

Further Reading
Provisioning Virtual Machines and Hosts, Chapter 6: Retirement

Deleting VMs from Foreman During Retirement

Summary | 339

http://red.ht/25hjYXC
http://bit.ly/1UdAUZP

CHAPTER 41

Service Retirement

We saw in Chapter 40 how individual virtual machines or instances can be retired
from their Lifecycle menu button, and we can also retire services in the same way.
The service retirement process follows a similar workflow to the VM retirement pro‐
cess, but we have the flexibility to specify per-service retirement state machines if we
wish.

Defining a Service Retirement Entry Point
When we create a service catalog item, we can optionally specify a retirement entry
point (see Figure 41-1).

Figure 41-1. Setting a service retirement entry point state machine

If we specify our own retirement entry point, then this state machine will be used to
retire any services created from this catalog item. If we do not specify our own entry
point here, then then the Default retirement state machine will be used.

341

Initiating Retirement
Service retirement is initiated from the Lifecycle menu on the service details frame
(see Figure 41-2).

Figure 41-2. Service retirement menu

Clicking on Retire this Service raises a request_service_retire event that begins a
chain of relationships through the datastore:

• request_service_retire →
— /System/Event/MiqEvent/POLICY/request_service_retire →
— /Service/Retirement/StateMachines/Methods/GetRetirementEntrypoint

GetRetirementEntrypoint runs a method called get_retirement_entry_point that
returns the retirement entry point state machine defined when the service catalog
item was created (see Figure 41-3). If this is empty, then /Service/Retirement/StateMa‐
chines/ServiceRetirement/Default is returned.

Retirement-Related Attributes and Methods
A service object has a number of retirement-related methods:

$evm.root['service'].automate_retirement_entrypoint
$evm.root['service'].finish_retirement
$evm.root['service'].retire_now
$evm.root['service'].retire_service_resources
$evm.root['service'].retired?
$evm.root['service'].retirement_state=
$evm.root['service'].retirement_warn=
$evm.root['service'].retires_on=
$evm.root['service'].start_retirement

and attributes:

$evm.root['service'].retired = nil
$evm.root['service'].retirement_last_warn = nil
$evm.root['service'].retirement_requester = nil
$evm.root['service'].retirement_state = nil
$evm.root['service'].retirement_warn = nil
$evm.root['service'].retires_on = nil

342 | Chapter 41: Service Retirement

Service Retirement State Machine
The Default service retirement state machine is simpler than its VM counterpart (see
Figure 41-3).

Figure 41-3. Default service retirement state machine

StartRetirement
The StartRetirement instance calls the start_retirement state machine method, which
checks whether the service is already in the retired or retiring state, and if so it
aborts. If the service is in neither of these states, it calls the service’s start_retire
ment method, which sets the retirement_state attribute to retiring.

RetireService/CheckServiceRetired
The RetireService instance calls the retire_service state machine method, which in turn
calls the service object’s retire_service_resources method. This method calls the
retire_now method of every VM comprising the service, to initiate their retirement.
CheckServiceRetired retries the stage until all VMs are retired or deleted.

FinishRetirement
The FinishRetirement stage sets the following service object attributes:

:retires_on => Date.today
:retired => true
:retirement_state => "retired"

It also raises a service_retired event that can be caught by an Automate action or
control policy.

Service Retirement State Machine | 343

DeleteServiceFromVMDB
The DeleteServiceFromVMDB instance calls the delete_service_from_vmdb state
machine method, which removes the service record from the VMDB.

Summary
We have seen in this chapter how the process of retiring a service will also trigger the
retirement of its virtual machines. If we are using service hierarchies, however, or
services to manage cloud-style workloads as single entities, this might not be our
desired behavior.

Fortunately, the service retirement mechanism is flexible enough that we can create
per-service retirement state machines that we can customize to suit our individual
use cases and workloads.

344 | Chapter 41: Service Retirement

PART V

Integration

One of the powerful features of CloudForms is integration—its ability to orchestrate
and coordinate with external services as part of a workflow. These services might
include a corporate IP address management (IPAM) solution, ticketing system, or a
configuration management database (CMDB), for example.

Part V looks at the integration capabilities of CloudForms Automate.

1 We need to enable the Web Services server role on any of our CloudForms appliances to which we wish to
make RESTful calls.

CHAPTER 42

Calling Automation Using the RESTful API

Our first look at the integration capabilities of CloudForms examines how external
systems can make inbound calls to CloudForms to run Automate instances using the
RESTful API.1

Being able to call automation in this way enables our workflows to be utilized by
other enterprise tools in a number of ways. For example, organizations may wish to
use a help-desk ticketing system as their starting point for new virtual machine provi‐
sioning requests. The ticketing system can make a RESTful call to CloudForms Auto‐
mate to initiate the workflow.

API Entry Point
We can call any Automate instance from the RESTful API, by issuing a POST call
to /api/automation_requests and enclosing a JSON-encoded parameter hash such as
the following:

post_params = {
 :version => '1.1',
 :uri_parts => {
 :namespace => 'ACME/General',
 :class => 'Methods',
 :instance => 'HelloWorld'
 },
 :requester => {
 :auto_approve => true
 }
}.to_json

347

We can call the RESTful API from an external Ruby script by using the rest-client
gem:

url = 'https://cloudforms_server'
query = '/api/automation_requests'
rest_return = RestClient::Request.execute(
 method: :post,
 url: url + query,
 :user => username,
 :password => password,
 :headers => {:accept => :json},
 :payload => post_params,
 verify_ssl: false)
result = JSON.parse(rest_return)

The request ID is returned to us in the result from the initial call:

request_id = result['results'][0]['id']

We call poll this to check on status:

query = "/api/automation_requests/#{request_id}"
rest_return = RestClient::Request.execute(
 method: :get,
 url: url + query,
 :user => username,
 :password => password,
 :headers => {:accept => :json},
 verify_ssl: false)
result = JSON.parse(rest_return)
request_state = result['request_state']
until request_state == "finished"
 puts "Checking completion state..."
 rest_return = RestClient::Request.execute(
 method: :get,
 url: url + query,
 :user => username,
 :password => password,
 :headers => {:accept => :json},
 verify_ssl: false)
 result = JSON.parse(rest_return)
 request_state = result['request_state']
 sleep 3
end

Returning Results to the Caller
The automation request’s options hash is included in the return from the Rest
Client::Request call, and we can use this to our advantage, by using set_option to
add return data in the form of key/value pairs to the options hash from our called
automation method.

348 | Chapter 42: Calling Automation Using the RESTful API

For example, from the called (Automate) method, we can include the following:

automation_request = $evm.root['automation_task'].automation_request
automation_request.set_option(:return, JSON.generate({:status => 'success',
 :return => some_data}))

From the calling (external) method, we can then parse the return key from the
returned options hash and print the contents, as follows:

result = JSON.parse(rest_return)
puts "Results: #{result['options']['return'].inspect}"

Using this technique, we can write our own pseudo-API calls for CloudForms to han‐
dle anything that the standard RESTful API doesn’t support. We implement the “API”
using a standard Automate method and call it using the RESTful automate call; and
we can pass parameters to, and retrieve result back from, the called method.

Authentication and auto_approve
When we make a RESTful call, we must authenticate using a valid username and
password. This user must be an admin or equivalent, however, if we wish to specify
an :auto_approve value of true in our calling arguments (only admins can auto-
approve automation requests).

If we try making a RESTful call as a nonadmin user, the automation request will be
blocked, pending approval (as expected). If we want to submit an auto-approved
automation request as a nonadmin user, we would need to write our own approval
workflow (see Chapter 43).

Zone Implications
When we submit an automation request via the API, by default the Automate task is
queued on the same appliance that the web service is running on. This will be
dequeued to run by any appliance with the Automation Engine role set in the same
zone. If we have separated out our UI/web service appliances into a different zone,
this may not necessarily be our desired behavior.

We can add the parameter :miq_zone to the automation request to override this:

 :requester => {
 :auto_approve => true
 },
 :parameters => {
 :miq_zone => 'Zone Name'
 }

The behavior of this parameter is as follows:

Authentication and auto_approve | 349

• If the parameter is not passed, the request should use the zone of the server that
receives the request.

• If passed but empty (e.g., parameters => "miq_zone="), the zone should be set
to nil and any appliance can process the request.

• Passing a valid zone name parameter (e.g., parameters => "miq_zone=Test")
should process the work in the Test zone.

• Passing an invalid zone name should raise an error of unknown zone Zone_name
back to the caller.

run_via_api
The accompanying code on GitHub contains an example script called run_via_api.rb
that can be used to call any Automate instance, using arguments to pass server name,
credentials, and URI parameters to the instance to be called. Its usage is as follows:

Usage: run_via_api.rb [options]
 -s, --server server CloudForms server to connect to
 -u, --username username Username to connect as
 -p, --password password Password
 -d, --domain Domain
 -n, --namespace Namespace
 -c, --class Class
 -i, --instance Instance
 -P, --parameter <key,value> Parameter (key => value pair) for the instance
 -h, --help

Edit the default values for server, username, and password if required. Run the script
as:

./run_via_api.rb -s 192.168.1.1 -u cfadmin -p password -d ACME -n General \
-c Methods -i AddNIC2VM -P vm_id,1000000000195
-P nic_name,nic1 -P nic_network,vlan_712

Summary
This chapter has examined how we can make RESTful API calls into Automate and, if
necessary, return results back to the caller. This is a very powerful feature that lets us
harness the power of CloudForms Automate from external systems.

We can implement bidirectional workflows, for example, whereby CloudForms
makes outgoing calls to integrate with some other enterprise tool, perhaps to initiate
an asynchronous action that may take some time to complete. We can implement
callback routines as REST-callable Automate instances that can be called to signal that
the external processing has finished.

350 | Chapter 42: Calling Automation Using the RESTful API

http://bit.ly/1VOFeSa

Further Reading
https:http://bit.ly/1szXHpL[API Reference—Automation Requests]

Trigger a Single Automation Request

Trigger Multiple Automation Requests

Summary | 351

http://bit.ly/1YZHQLD
http://bit.ly/20BTyN6

CHAPTER 43

Automation Request Approval

In Chapter 42 we looked at how external systems can make use of CloudForms Auto‐
mate workflows by calling the RESTful API. In the examples we speci‐
fied :auto_approve => true in the REST call so that our requests were immediately
processed; however, we can only auto-approve our own requests if we authenticate as
an admin user.

Embedding admin credentials in our external (calling) scripts is generally considered
unwise, but if we still want our automation requests to be auto-approved, what can
we do?

Fortunately, by this stage in the book we have learned enough to be able to implement
our own approval workflow for automation requests. The example in this chapter
uses an access-control group profile to control which groups can submit auto-
approved automation requests.

Implementing a Custom Approval Workflow
Our automation request approval workflows will follow a very similar pattern to
those for provision request approval, and we’ll reuse and adapt several of the compo‐
nents. We’ll implement two workflows: one triggered from a request_created event
and one from a request_pending event (see Figure 43-1).

353

Figure 43-1. Event-triggered automation request approval workflows

Before we implement anything, we need to create some new Automate Datastore
components to hold our workflow objects.

Namespace
We’ll create a new namespace called Automation in our own domain.

Group Profile
We’ll create a simple variant of the virtual machine provisioning group profile (we
can copy this from the ManageIQ domain and edit it). Our profile class will contain
two instances (profiles): Bit63Group_vm_user and .missing (see Figure 43-2).

354 | Chapter 43: Automation Request Approval

Figure 43-2. Automation approval group profiles

The profile merely contains the name of the auto-approval state machine instance
that will be used to determine whether or not the request is auto-approved. The pro‐
file is queried using the message get_auto_approval_state_machine_instance and
returns the Value field via a collect as /state_machine_instance.

We’ll allow members of the Bit63Group_vm_user group to have their requests auto-
approved, and everyone else (including admins who haven’t specified :auto_approve
=> true) will require explicit approval.

The profile for the Bit63Group_vm_user group is shown in Figure 43-3.

Figure 43-3. Profile schema for the Bit63Group_vm_user group

The .missing profile for all other groups is shown in Figure 43-4.

Implementing a Custom Approval Workflow | 355

Figure 43-4. Profile schema for .missing

State Machine
Now we’ll create a StateMachines namespace and a simple variant of the VM Provi‐
sionRequestApproval class. We’ll copy the ProvisionRequestApproval class from the
ManageIQ domain into ours under the new StateMachines namespace and call it
AutomationRequestApproval. We’ll copy the associated instances and methods as well
(see Figure 43-5).

Figure 43-5. AutomationRequestApproval instances and methods

Instances

The RequireApproval instance has an approval_type value of require_approval (see
Figure 43-6).

356 | Chapter 43: Automation Request Approval

Figure 43-6. Schema of the RequireApproval instance

The Auto instance is similar but has an approval_type value of auto.

Methods
The validate_request method is as follows:

request = $evm.root['miq_request']
resource = request.resource
raise "Automation Request not found" if request.nil? || resource.nil?

$evm.log("info", "Checking for auto_approval")
approval_type = $evm.object['approval_type'].downcase
if approval_type == 'auto'
 $evm.root["miq_request"].approve("admin", "Auto-Approved")
 $evm.root['ae_result'] = 'ok'
else
 msg = "Request was not auto-approved"
 resource.set_message(msg)
 $evm.root['ae_result'] = 'error'
 $evm.object['reason'] = msg
end

The pending_request method is as follows:

#
This method is executed when the automation request is NOT auto-approved
#
Get objects
msg = $evm.object['reason']
$evm.log('info', "#{msg}")

Raise automation event: request_pending
$evm.root["miq_request"].pending

The method definition is also given an input parameter with input name reason and
the data type string.

Implementing a Custom Approval Workflow | 357

The approve_request method is as follows:

#
This method is executed when the automation request is auto-approved
#
Auto-Approve request
$evm.log("info", "AUTO-APPROVING automation request")
$evm.root["miq_request"].approve("admin", "Auto-Approved")

Email Classes
Next we create an Email class with an AutomationRequest_Pending instance and
method (see Figure 43-7).

Figure 43-7. Email classes and methods

The method code is copied and adapted as appropriate from the VM ProvisionRe‐
quest_Pending method. We specify as the to_email_address a user that will act as
approver for the automation requests.

The full code for the methods is on GitHub.

Policies
We need to generate policy instances for two AutomationRequest events: Automation
Request_created and AutomationRequest_approved. We copy the standard /System/
Policy class to our domain and add two instances (see Figure 43-8).

358 | Chapter 43: Automation Request Approval

http://bit.ly/1XUDAPf

Figure 43-8. New policy instances

AutomationRequest_created
Our policy instance AutomationRequest_created has three entries: an assertion and
two relationships. We need to recognize whether an automation request was made
with the :auto_approve => true parameter. If it was, we need to skip our own
approval workflow.

We know (from some investigative debugging using ObjectWalker) that when a
request is made that specifies :auto_approve => true, we have an $evm.root['auto
mation_request'].approval_state attribute with a value of approved. When a
request is made that specifies :auto_approve => false, this value is pending_appro
val. We can therefore create our assertion to look for $evm.root['automa

tion_request'].approval_state == 'pending_approval' and continue with the
instance only if the Boolean test returns true.

The rel1 relationship of this instance performs a profile lookup based on our user
group, to find the auto-approval state machine instance that should be run. The rel2
relationship calls this state machine instance (see Figure 43-9).

Figure 43-9. Schema of the AutomationRequest_created instance

Policies | 359

AutomationRequest_pending
The AutomationRequest_pending instance contains a single relationship to our Auto‐
mationRequest_pending email instance (see Figure 43-10).

Figure 43-10. Schema of the AutomationRequest_pending instance

Testing
We’ll submit three automation requests via the RESTful API, calling a simple Test
Instance. The calls will be made as follows:

• As user admin, specifying :auto_approve => true
• As user admin, specifying :auto_approve => false
• As a user who is a member of the Bit63Group_vm_user group

For the first call, our assertion correctly prevents our custom approval workflow from
running (the request has already been auto-approved). From automation.log we see:

Evaluating substituted assertion ["approved" == "pending_approval"]
Assertion Failed: <"approved" == "pending_approval">
Followed Relationship [miqaedb:/System/Policy/AutomationRequest_created#create]
Followed Relationship [miqaedb:/System/Policy/request_created#create]
Followed Relationship [miqaedb:/System/Event/request_created#create]

For the second call we see that the assertion evaulates to true, but the user admin’s
group (EVMGroup-super_administrator) doesn’t have a group profile. The .missing
profile is used, and the automation request is not auto-approved.

The admin user receives an email:

Request was not auto-approved.

Please review your Request and update or wait for approval from an Administrator.

To view this Request go to: https://192.168.1.45/miq_request/show/125

Thank you,
Virtualization Infrastructure Team

360 | Chapter 43: Automation Request Approval

The approving user also receives an email:

Approver,
An automation request received from admin@bit63.com is pending.

Request was not auto-approved.

For more information you can go to: https://192.168.1.45/miq_request/show/125

Thank you,
Virtualization Infrastructure Team

Clicking the link takes us to an approval page, and we can approve the request, which
then continues.

For the third call we see that the assertion evaluates to true, but this time we see the
valid group profile being used:

Evaluating substituted assertion ["pending_approval" == "pending_approval"]
Following Relationship [miqaedb:/Automation/Profile/Bit63Group_vm_user#get_auto..

This group’s profile auto-approves the automation request, and the Test instance is
successfully run:

Q-task_id([automation_task_186]) \
 <AEMethod test> Calling the test method was successful!

Success!

Summary
In this chapter we’ve assembled many of the Automate components that we’ve studied
throughout the book to create our own custom approval workflow. We’ve done it by
copying and adapting slightly several existing components in the ManageIQ domain,
and adding our own pieces where necessary.

We started off by creating our own namespace to work in, and we added an access-
control group profile so that we can apply the auto-approval to specific groups. We
cloned the ProvisionRequestApproval class and its methods to become our Automa‐
tionRequestApproval state machine, and we created two instances, one called Auto
and one called RequireApproval. We added an email class and cloned and adapted the
ProvisionRequest_Pending instance and method to become our AutomationRe‐
quest_Pending versions. Finally, we added two policy instances to handle the two
automation request_created and request_pending events.

Summary | 361

Creating an approval workflow such as this is really just a case of putting the pieces in
place and wiring it together. We know that approval workflows start with an event,
and that the event is translated to a policy. As long as our policy instances route the
workflow into the appropriate handlers (generally a state machine or email class), all
that is left is to adapt the method code to our specific purposes, and test.

362 | Chapter 43: Automation Request Approval

1 There are more and complete examples of integration code on GitHub.

CHAPTER 44

Calling External Services

We saw in Chapter 42 how external systems can make incoming calls to CloudForms
using the RESTful API and run automation instances, perhaps to initiate workflows
that we’ve defined.

From Automate we can also make outgoing calls to external systems. We typically use
SOAP or RESTful APIs to access theses external services, and there are several Ruby
gems that make this easy for us, including Savon (SOAP client), RestClient, XmlSim
ple and Nokogiri (XML parsers), and fog (a Ruby cloud services library).

We have already seen an example of making a RESTful API connection to the RHEV
Manager in Chapter 22. Now we will look at some more ways that we can integrate
with external services.1

Calling a SOAP API Using the Savon Gem
The following snippet makes a SOAP call to an f5 BIG-IP load balancer to add an IP
address to a pool (some lines have been omitted for brevity/clarity):

 def call_F5_Pool(soap_action, body_hash=nil)
 servername = nil || $evm.object['servername']
 username = nil || $evm.object['username']
 password = nil || $evm.object.decrypt('password')

 require "rubygems"
 gem 'savon', '=2.3.3'
 require "savon"
 require 'httpi'

363

https://github.com/ramrexx

 # configure httpi gem to reduce verbose logging
 HTTPI.log_level = :info # changing the log level
 HTTPI.log = false # diable HTTPI logging
 HTTPI.adapter = :net_http # [:httpclient, :curb, :net_http]

 soap = Savon.client do |s|
 s.wsdl "https://#{servername}/iControl/iControlPortal.cgi? \
 WSDL=LocalLB.Pool"
 s.basic_auth [username, password]
 s.ssl_verify_mode :none
 s.endpoint "https://#{servername}/iControl/iControlPortal.cgi"
 s.namespace 'urn:iControl:LocalLB/Pool'
 s.env_namespace :soapenv
 s.namespace_identifier :pool
 s.raise_errors false
 s.convert_request_keys_to :none
 s.log_level :error
 s.log false
 end

 response = soap.call soap_action do |s|
 s.message body_hash unless body_hash.nil?
 end

 # Convert xml response to a hash
 return response.to_hash["#{soap_action}_response".to_sym][:return]
 end
 ...
 vm.ipaddresses.each do |vm_ipaddress|
 body_hash = {}
 body_hash[:pool_names] = {:item => [f5_pool]}
 body_hash[:members] = [{:items =>
 { :member =>
 {:address => vm_ipaddress,
 :port => f5_port}
 }
 }]
 # call f5 and return a hash of pool names
 f5_return = call_F5_Pool(:add_member, body_hash)
 end

This script defines a method, call_F5_Pool, that handles the connection to the load
balancer. The method first retrieves the connecting credentials from the instance
schema, then specifies a particular version of the Savon gem to use, and sets the
required HTTP logging levels. It initializes the Savon client with the required param‐
eters (including a WSDL path) and then makes the SOAP call. The method finally
returns with the SOAP XML return string formatted as a Ruby hash.

The method is called in a loop, passing an IP address into the body_hash argument
on each iteration.

364 | Chapter 44: Calling External Services

Calling an OpenStack API Using the fog Gem
The fog gem is a multipurpose cloud services library that supports connectivity to a
number of cloud providers.

The following code uses the fog gem to retrieve OpenStack networks from Neutron
and present them as a dynamic drop-down dialog list. The code filters networks that
match a tenant’s name and assumes that the CloudForms user has a tenant tag con‐
taining the same name:

require 'fog'
begin
 tenant_name = $evm.root['user'].current_group.tags(:tenant).first
 $evm.log(:info, "Tenant name: #{tenant_name}")

 dialog_field = $evm.object
 dialog_field["sort_by"] = "value"
 dialog_field["data_type"] = "string"
 openstack_networks = {}
 openstack_networks[nil] = '< Select >'
 ems = $evm.vmdb('ems').find_by_name("OpenStack DC01")
 raise "ems not found" if ems.nil?

 neutron_service = Fog::Network.new({
 :provider => 'OpenStack',
 :openstack_api_key => ems.authentication_password,
 :openstack_username => ems.authentication_userid,
 :openstack_auth_url => "http://#{ems.hostname}:35357/v2.0/tokens",
 :openstack_tenant => tenant_name
 })

 keystone_service = Fog::Identity.new({
 :provider => 'OpenStack',
 :openstack_api_key => ems.authentication_password,
 :openstack_username => ems.authentication_userid,
 :openstack_auth_url => "http://#{ems.hostname}:35357/v2.0/tokens",
 :openstack_tenant => tenant_name
 })

 tenant_id = keystone_service.current_tenant["id"]
 $evm.log(:info, "Tenant ID: #{tenant_id}")
 networks = neutron_service.networks.all
 networks.each do |network|
 $evm.log(:info, "Found network #{network.inspect}")
 if network.tenant_id == tenant_id
 network_id = $evm.vmdb('CloudNetwork').find_by_ems_ref(network.id)
 openstack_networks[network_id] = network.name
 end
 end

 dialog_field["values"] = openstack_networks

Calling an OpenStack API Using the fog Gem | 365

 exit MIQ_OK

rescue => err
 $evm.log(:error, "[#{err}]\n#{err.backtrace.join("\n")}")
 exit MIQ_STOP
end

This example first retrieves the value of a tenant tag applied to the current user’s
access-control group. It then makes a fog connection to both Neutron and Keystone,
using the Fog::Network.new and Fog::Identity.new calls, specifying a :provider
type of OpenStack, the credentials defined for the CloudForms OpenStack provider,
and the tenant name retrieved from the tag.

The script iterates though all of the Neutron networks, matching those with a ten
ant_id that matches our tenant tag. If a matching network is found, it retrieves the
CloudNetwork service model object ID for the network and uses that as the key for
the hash that populates the dynamic drop-down list. The corresponding hash value is
the network name retrieved from Neutron.

Reading from a MySQL Database Using the MySQL Gem
We can add gems to our CloudForms appliance if we wish. The following code snip‐
pet uses the mysql gem to connect to a MySQL-based CMDB to extract project codes
and create tags from them:

require 'rubygems'
require 'mysql'

begin
 server = $evm.object['server']
 username = $evm.object['username']
 password = $evm.object.decrypt('password')
 database = $evm.object['database']

 con = Mysql.new(server, username, password, database)

 unless $evm.execute('category_exists?', "project_code")
 $evm.execute('category_create', :name => "project_code",
 :single_value => true,
 :description => "Project Code")
 end
 con.query('SET NAMES utf8')
 query_results = con.query('SELECT description,code FROM projectcodes')
 query_results.each do |record|
 tag_name = record[1]
 tag_display_name = record[0].force_encoding(Encoding::UTF_8)

 unless $evm.execute('tag_exists?', 'project_code', tag_name)
 $evm.execute('tag_create', "project_code", :name => tag_name,

366 | Chapter 44: Calling External Services

2 This is required if the database contains “non-English” strings with character marks such as umlauts.

 :description => tag_display_name)
 end
 end
end
rescue Mysql::Error => e
 puts e.errno
 puts e.error
ensure
 con.close if con
end

This example first makes a connection to the MySQL database, using credentials
stored in the instance schema. It then checks that the tag category exists, before speci‐
fying SET NAMES utf82 and making a SQL query to the database to retrieve a list of
project codes and descriptions. Finally, the script iterates through the list of project
codes returned, creating a tag for each corresponding code.

Summary
These examples show the flexibility that we have to integrate with other enterprise
components. We have called a load balancer API as part of a provisioning operation
to add new IP addresses to its pool. This enables us to completely automate the
autoscaling of our application workload. We have called two OpenStack components
to populate a dynamic drop-down list in a service dialog, and we have made a SQL
call to a MySQL database to extract a list of project codes and create tags from them.

Further Reading
Heavy metal SOAP client

The Ruby cloud services library

MySQL API module for Ruby

Summary | 367

https://github.com/savonrb/savon
https://github.com/fog/fog
https://rubygems.org/gems/mysql/

PART VI

Miscellaneous

Part VI wraps up the book with some miscellaneous topics.

CHAPTER 45

Distributed Automation Processing

As we start using CloudForms Automate to expand our workflows into the wider
enterprise, we may find that we need to add further CloudForms appliances to spread
the workload in our region.

CloudForms Automate has been designed to be scalable by supporting distributed
worker appliances, each running the Automation Engine role and polling the VMDB
database appliance for work. In this chapter we’ll take an in-depth look at how the
automation operations are distributed among appliances via a central queue. This is
another background information chapter, so feel free to skip it on first read or book‐
mark it for later reference.

Nondistributed Automation Operations
Not all automation operations need to have a distributed capability. Some automation
operations interact with a user through the WebUI, and these require an instance/
method to be run directly on the WebUI node to which the user is logged in. Such
operations include:

• Running an Automate instance from simulation
• Automate instances that are run to populate dynamic dialog elements

Some other automation operations need to be executed synchronously and in a spe‐
cific order, and these are also run on a single appliance to guarantee execution order.
An example of this is running a control policy synchronous action type of Invoke a
Custom Automation.

The Automation Engine role does not need to be enabled for these nondistributed
automation operations to run.

371

Distributed Automation Operations
Most automation operations benefit from being scalable and distributed, and capable
of running on any appliance in our zone with the Automation Engine role set. These
include:

• Running an Automate instance from a custom button
• A control policy asynchronous action type of Invoke a Custom Automation
• Any automation operations that involve separated requests and tasks

Distributed automation tasks are passed to the Automation Engine using the stan‐
dard message-passing mechanism by which all workers communicate. This is via a
queue, modeled in the database as the miq_queue table. Generic workers, running on
appliances with the Automation Engine role set, monitor this queue for messages
with a queue_name field of generic and a role field of automate. If such a message is
found, it is dequeued and processed.

Tracing Queueing/Dequeueing Operations
We can examine evm.log to see the interworker message queueing/dequeueing activ‐
ity when a custom button is clicked that launches an automation task (here the lines
have been wrapped for clarity). The first activity that we see is the ResourceAction
message (button activities are run as resource actions):

MIQ(ResourceAction#deliver_to_automate_from_dialog) \
 Queuing <ResourceAction:1000000000066> for <CustomButton:1000000000001>

This is immediately followed by the insertion of a new message (#1000000158789)
into the queue, containing the task details. The Role: [automate] parameter signi‐
fies that the message is intended for the Automation Engine:

MIQ(MiqQueue.put) Message id: [1000000158789], \
 id: [], \
 Zone: [default], \
 Role: [automate], \
 Server: [], \
 Ident: [generic], \
 Target id: [], \
 Instance id: [], \
 Task id: [resource_action_1000000000066], \
 Command: [MiqAeEngine.deliver], \
 Timeout: [3600], \
 Priority: [20], \
 State: [ready], \
 Deliver On: [], \
 Data: [], \
 Args: [{:namespace=>"SYSTEM", \

372 | Chapter 45: Distributed Automation Processing

 :class_name=>"PROCESS", \
 :instance_name=>"Request", \
 :automate_message=>nil, \
 :attrs=>{"class"=>"methods", \
 "instance"=>"objectwalker", \
 "namespace"=>"stuff", \
 "request"=>"call_instance", \
 "dialog_walk_association_whitelist"=>""}, \
 :object_type=>"VmOrTemplate", \
 :object_id=>1000000000024, \
 :user_id=>1000000000001, \
 :miq_group_id=>1000000000002, \
 :tenant_id=>1000000000001}] \

The next log line that mentions Message id: [1000000158789] shows it being
dequeued by an MiqPriorityWorker thread:

MIQ(MiqPriorityWorker::Runner#get_message_via_drb) Message id: [1000000158789], \
 MiqWorker id: [1000000000504], \
 Zone: [default], \
 Role: [automate], \
 Server: [], \
 Ident: [generic], \
 Target id: [], \
 Instance id: [], \
 Task id: [resource_action_1000000000066], \
 Command: [MiqAeEngine.deliver], \
 Timeout: [3600], Priority: [20], \
 State: [dequeue], \
 Deliver On: [], \
 Data: [], \
 Args: [{:namespace=>"SYSTEM", \
 :class_name=>"PROCESS", \
 :instance_name=>"Request", \
 :automate_message=>nil, \
 :attrs=>{"class"=>"methods", \
 "instance"=>"objectwalker", \
 "namespace"=>"stuff", \
 "request"=>"call_instance", \
 "dialog_walk_association_whitelist"=>""}, \
 :object_type=>"VmOrTemplate", \
 :object_id=>1000000000024, \
 :user_id=>1000000000001, \
 :miq_group_id=>1000000000002, \
 :tenant_id=>1000000000001}], \
 Dequeued in: [3.494673879] seconds

From here we see the message payload being delivered to the Automation Engine.
Notice that in the logfile the task action is now prefixed by Q-task_id, followed by
the task ID in the message:

Tracing Queueing/Dequeueing Operations | 373

Q-task_id([resource_action_1000000000066]) MIQ(MiqQueue#deliver) \
 Message id: [1000000158789], Delivering...
Q-task_id([resource_action_1000000000066]) MIQ(MiqAeEngine.deliver) Delivering \
 {"class"=>"methods", \
 "instance"=>"objectwalker", \
 "namespace"=>"stuff", \
 "request"=>"call_instance", \
 "dialog_walk_association_whitelist"=>""} \
 for object [VmOrTemplate.1000000000024] with state [] to Automate

We see the Q-task_id string many times in evm.log. This is an indication that the log
line was generated by a task that was created as a result of a dequeued message, and
that the message contained a valid task ID.

Finally, the target instance itself is run by the Automation Engine:

Q-task_id([resource_action_1000000000066]) \
 <AutomationEngine> Instantiating [/SYSTEM/PROCESS/Request? \
 MiqServer%3A%3Amiq_server=1000000000001& \
 User%3A%3Auser=1000000000001& \
 VmOrTemplate%3A%3Avm=1000000000024& \
 class=methods& \
 dialog_walk_association_whitelist=& \
 instance=objectwalker& \
 namespace=stuff& \
 object_name=Request& \
 request=call_instance& \
 vmdb_object_type=vm]

Detailed Queue Analysis
At any time, the miq_queue table in the PostgreSQL database contains several mes‐
sages:

 vmdb_production=# select id,priority,method_name,state,queue_name,class_name,
 vmdb_production=# zone,role,msg_timeout from miq_queue;
 id | priority | method_name | state | queue_name |
---------------+----------+----------------------+---------+------------------...
 1000000160668 | 100 | perf_rollup | ready | ems_metrics_processor | ...
 1000000160710 | 20 | deliver | ready | generic | ...
 1000000160673 | 100 | perf_rollup | ready | ems_metrics_processor | ...
 1000000126295 | 100 | refresh | ready | ems_1000000000004 | ...
 1000000160711 | 20 | deliver | ready | generic | ...
 1000000153572 | 100 | perf_rollup | ready | ems_metrics_processor | ...
 1000000154220 | 100 | perf_rollup | ready | ems_metrics_processor | ...
...

Each worker type queries the miq_queue table to see if there is any work to be done
for its respective role. The workers search for messages with a specific queue_name
field; for automation-related messages this is generic.

374 | Chapter 45: Distributed Automation Processing

When work is claimed by a worker, the message status is changed from ready to
dequeue and the worker starts processing the message.

Monitoring the Queue During an Automation Operation
We can monitor the miq_queue table during an automation operation initiated from a
RESTful call. The following SQL query enables us to see the relevant messages:

vmdb_production=# select id,priority,method_name,state,queue_name,
vmdb_production-# class_name,zone,role,msg_timeout from miq_queue where
vmdb_production-# class_name like '%Automation%' or class_name like '%MiqAe%';

Searching for specific class_name fields in this way enables us to also see auto
mate_event messages, which aren’t handled by the Automation Engine but are still
relevant to an automation operation.

We see several messages created and dispatched over a short time period:

 id | pri | method_name | state | queue | class_name | ...
---------+-----+----------------------+-------+---------+-------------------+----
 ...1068 | 100 | call_automate_event | ready | generic | AutomationRequest | ...
 ...1069 | 100 | call_automate_event | ready | generic | AutomationRequest | ...
 ...1070 | 100 | create_request_tasks | ready | generic | AutomationRequest | ...
(3 rows)

 id | pri | method_name | state | queue | class_name ...
---------+-----+----------------------+---------+---------+------------------+...
 ...1071 | 20 | deliver | ready | generic | MiqAeEngine ...
 ...1070 | 100 | create_request_tasks | ready | generic | AutomationRequest ...
 ...1069 | 100 | call_automate_event | dequeue | generic | AutomationRequest ...
(3 rows)

 id | pri | method_name | state | queue | class_name ...
---------+-----+----------------------+---------+---------+-------------------...
 ...1071 | 20 | deliver | ready | generic | MiqAeEngine ...
 ...1072 | 20 | deliver | ready | generic | MiqAeEngine ...
 ...1070 | 100 | create_request_tasks | dequeue | generic | AutomationRequest ...
(3 rows)

 id | pri | method_ | state | queue | class_name | zone | role
---------+-----+---------+-------+---------+----------------+---------+-------...
 ...1071 | 20 | deliver | ready | generic | MiqAeEngine | default | automa...
 ...1072 | 20 | deliver | ready | generic | MiqAeEngine | default | automa...
 ...1073 | 100 | execute | ready | generic | AutomationTask | default | automa...
(3 rows)

 id | pri | method_ | state | queue | class_name | zone | ro...
---------+-----+---------+---------+---------+----------------+---------+-----...
 ...1071 | 20 | deliver | dequeue | generic | MiqAeEngine | default | auto...
 ...1073 | 100 | execute | dequeue | generic | AutomationTask | default | auto...
(2 rows)

 id | pri | method_ | state | queue | class_name | zone | ro...
---------+-----+---------+---------+---------+----------------+---------+-----...

Detailed Queue Analysis | 375

 ...1073 | 100 | execute | dequeue | generic | AutomationTask | default | auto...
(1 row)

 id | pri | method_name | state | queue_name | class_name | zone | role | msg_...
----+-----+-------------+-------+------------+------------+------+------+-----...
(0 rows)

We can search for any of these message IDs in evm.log and expand them to examine
the message content. For example, searching for Message id: 1000000161070

reveals:

MIQ(MiqQueue.put) Message id: [1000000161070], \
 id: [], \
 Zone: [default], \
 Role: [automate], \
 Server: [], \
 Ident: [generic], \
 Target id: [], \
 Instance id: [1000000000016], \
 Task id: [automation_request_1000000000016], \
 Command: [AutomationRequest.create_request_tasks], \
 Timeout: [3600], \
 Priority: [100], \
 State: [ready], \
 Deliver On: [], \
 Data: [], \
 Args: []

MIQ(MiqGenericWorker::Runner#get_message_via_drb) Message id: [1000000161070], \
 MiqWorker id: [1000000000503], \
 Zone: [default], \
 Role: [automate], \
 Server: [], \
 Ident: [generic], \
 Target id: [], \
 Instance id: [1000000000016], \
 Task id: [automation_request_1000000000016], \
 Command: [AutomationRequest.create_request_tasks], \
 Timeout: [3600], \
 Priority: [100], \
 State: [dequeue], \
 Deliver On: [], \
 Data: [], \
 Args: [], \
 Dequeued in: [5.622553094] seconds

Q-task_id([automation_request_1000000000016]) MIQ(MiqQueue#deliver) \
Message id: [1000000161070], Delivering...

Q-task_id([automation_request_1000000000016]) MIQ(MiqQueue#delivered) \
Message id: [1000000161070], State: [ok], Delivered in [1.866825831] seconds

This corresponds to the message queueing activity generated by the execute method
in the backend vmdb/app/models/miq_request.rb:

376 | Chapter 45: Distributed Automation Processing

 def execute
 task_check_on_execute

 deliver_on = nil
 if get_option(:schedule_type) == "schedule"
 deliver_on = get_option(:schedule_time).utc rescue nil
 end

 # self.create_request_tasks
 MiqQueue.put(
 :class_name => self.class.name,
 :instance_id => id,
 :method_name => "create_request_tasks",
 :zone => options.fetch(:miq_zone, my_zone),
 :role => my_role,
 :task_id => "#{self.class.name.underscore}_#{id}",
 :msg_timeout => 3600,
 :deliver_on => deliver_on
)
 end

If we search the sources for MiqQueue.put, we see the extent to which the distributed
nature of CloudForms is used.

Troubleshooting
As (by design) queued automation operations can be dequeued and run by any appli‐
ance in a zone with the Automation Engine role set, we cannot necessarily predict
which appliance will run our code. This can make troubleshooting $evm.log output
more challenging, as we may need to search automation.log on several appliances to
find our method’s log output. When we are tracing message passing, the enqueue Miq
Queue.put and corresponding dequeue Worker::Runner#get_message_via_drb calls
might even be on different appliances as well.

If Automate tasks are not being run in a distributed CloudForms installation, it is
often worth examining the contents of the miq_queue table to see whether Automate
messages are accumulating, and which zone the messages are targeted for (the Zone:
[] field). If messages are not being dequeued as expected, then check that the Auto‐
mation Engine role is set on at least one appliance in the zone.

We often see this when separating appliances into various role-specific zones, such as
a WebUI zone and a Worker Appliance zone. Automation calls made using the REST‐
ful API to an appliance in the WebUI zone will fail to run if the Automation Engine
role is not enabled on any of the WebUI zone appliances or the RESTful call does not
specify an alternative zone to run in.

Troubleshooting | 377

Summary
In this chapter, we have studied the way that automation tasks can be distributed
among multiple CloudForms appliances, which enables us to scale out our automa‐
tion infrastructure as the workload increases. An approximate rule of thumb that is
often used when planning a CloudForms deployment is to allow for one worker
appliance per 300–500 managed virtual machines. However, in practice, this is
workload-dependent. If we see automation tasks taking longer than expected to pro‐
cess, we can monitor the performance of each of our CloudForms worker appliances
and check the number of outstanding requests in the miq_queue database table. This
should give a good indication as to whether adding additional worker appliances will
improve the overall performance, or whether we should look at individual workflow
optimizations.

378 | Chapter 45: Distributed Automation Processing

CHAPTER 46

Argument Passing and Handling

Over the preceding chapters we have discovered several ways of calling Automate
instances. In some cases we need to pass arguments into the instance’s method, but
the way that we pass arguments into methods, and receive them from inside the
method, varies depending on how the instance is called. We need to consider this if
we’re writing code that can be called in several ways, such as from a button and/or
from an API call.

In this chapter we’ll look at how we pass arguments into instances and how we
retrieve them from inside the method. We will call the same instance (ObjectWalker)
four ways, passing two arguments each time: lunch and dinner. We can use
object_walker_reader to show us where the arguments can be read from inside our
called method.

Case 1: Calling from a Button
For this first case we call ObjectWalker (via /System/Process/Request/Call_Instance)
from a button. We create a button dialog that prompts for two text box fields (see
Figure 46-1).

Figure 46-1. Simple dialog to prompt for input values

We then add the button to a button group anywhere.

379

If we click on the button and enter the values salad and pasta into the dialog boxes,
we see the dialog values appear in $evm.root in the receiving method, indexed by the
key name prefixed by dialog_:

~/object_walker_reader.rb | grep -P "lunch|dinner"
 | $evm.root['dialog_dinner'] = salad (type: String)
 | $evm.root['dialog_lunch'] = pasta (type: String)

Case 2: Calling from the RESTful API
For this use case we have an external Ruby script that calls our internal CloudForms
instance via the REST API:

url = "https://#{server}"

post_params = {
 :version => '1.1',
 :uri_parts => {
 :namespace => 'Stuff',
 :class => 'Methods',
 :instance => 'ObjectWalker'
 },
 :parameters => {
 :lunch => "sandwich",
 :dinner => "steak"
 },
 :requester => {
 :auto_approve => true
 }
}.to_json
query = "/api/automation_requests"

rest_return = RestClient::Request.execute(method: :post, url: url + query,
 :user => username,
 :password => password,
 :headers => {:accept => :json},
 :payload => post_params,
 verify_ssl: false)
result = JSON.parse(rest_return)

In the called method we see the arguments visible in several places: in the task’s
options hash as the attrs key, under $evm.root because this is the Instance that we
launched when entering Automate, and under $evm.object because this is also our
current object:

~/object_walker_reader.rb | grep -P "lunch|dinner"
 | object_walker: $evm.root['automation_task'].options[:attrs] = \
 {:lunch=>"sandwich", :dinner=>"steak", :userid=>"admin"} (type: Hash)
 object_walker: $evm.root['dinner'] = steak (type: String)
 object_walker: $evm.root['lunch'] = sandwich (type: String)

380 | Chapter 46: Argument Passing and Handling

 object_walker: $evm.object['dinner'] = steak (type: String)
 object_walker: $evm.object['lunch'] = sandwich (type: String)

Case 3: Calling from a Relationship or Automate Datastore
URI
When we call instances via a relationship (such as from a state machine), we specify
the full URI of the instance. We can append arguments to this URI using standard
web form query string syntax.

For this use case, we’ll call ObjectWalker from an already running automation script,
using $evm.instantiate. The argument to $evm.instantiate is the full URI of the
instance to be launched, as follows:

$evm.instantiate("/Stuff/Methods/ObjectWalker?lunch=salad&dinner=spaghetti")

When instantiated in this way, the receiving method retrieves the arguments from
$evm.object (one of our [grand]parent instances is $evm.root; our immediate caller
is $evm.parent):

~/object_walker_reader.rb | grep -P "lunch|dinner"
 object_walker: $evm.object['dinner'] = spaghetti (type: String)
 object_walker: $evm.object['lunch'] = salad (type: String)

Case 4: Passing Arguments via the ws_values Hash During
a VM Provision
We can pass our own custom values into the virtual machine provisioning process so
that they can be interpreted by any method in the Provision VM from Template
state machine.

The facility to do this is provided by the additional_values field in an /api/provi‐
sion_requests REST call (additionalValues in the original SOAP EVMProvisionRe
questEx call) or from the sixth element in the argument list to an
$evm.execute('create_provision_request',…) call (see Chapter 27).

For this use case we’ve edited the Provision VM from Template state machine to add
a few extra stages (see Figure 46-2).

Figure 46-2. Calling ObjectWalker from the VmProvision_VM state machine

Case 3: Calling from a Relationship or Automate Datastore URI | 381

These stages could modify the provisioning process if required based on the custom
values passed in. An example of this might be to specify the disk size for an additional
disk to be added by the AddDisk stage.

For this example we’re using a simple automation method to call $evm.exe
cute('create_provision_request',…) to provision a new virtual machine. We
specify the custom values in arg6:

arg1 = version
args = ['1.1']

arg2 = templateFields
args << {'name' => 'rhel7-generic',
 'request_type' => 'template'}

arg3 = vmFields
args << {'vm_name' => 'test10',
 'vlan' => 'rhevm'}

arg4 = requester
args << {'owner_email' => 'pemcg@bit63.com',
 'owner_first_name' => 'Peter',
 'owner_last_name' => 'McGowan'}

arg5 = tags
args << nil

arg6 = Web Service Values (ws_values)
args << {'lunch' => 'soup',
 'dinner' => 'chicken'}

arg7 = emsCustomAttributes
args << nil

arg8 = miqCustomAttributes
args << nil

request_id = $evm.execute('create_provision_request', *args)

When we call this method and the virtual machine provisioning process begins, we
can retrieve the custom values at any stage from the miq_provision_request or
miq_provision options hash using the ws_values key:

~/object_walker_reader.rb | grep -P "lunch|dinner"
 | $evm.root['miq_provision'].options[:ws_values] = \
 {:lunch=>"soup", :dinner=>"chicken"} (type: Hash)
 | | miq_provision_request.options[:ws_values] = \
 {:lunch=>"soup", :dinner=>"chicken"} (type: Hash)

382 | Chapter 46: Argument Passing and Handling

Passing Arguments When Calling a Method in the Same
Class
When an instance (such as a state machine) calls a method in the same class as itself,
it can pass key/value argument pairs in parentheses as input parameters with the call.
We see the VMProvision_VM state machine do this when it calls update_provi‐
sion_status during the processing of the On Entry, On Exit, and On Error (see
Figure 46-3).

Figure 46-3. Text arguments passed to update_provision_status

When we create a method that accepts input parameters in this way, we need to spec‐
ify the name and data type of each parameter in the method definition (see
Figure 46-4).

Figure 46-4. Specifying input parameters

The method then reads the parameters from $evm.inputs:

update_provision_status(status => 'pre1',status_state => 'on_entry')

 # Get status from input field status
 status = $evm.inputs['status']

 # Get status_state ['on_entry', 'on_exit', 'on_error'] from input field
 status_state = $evm.inputs['status_state']

Passing Arguments When Calling a Method in the Same Class | 383

Summary
This chapter shows how we can send arguments when we call instances and how we
process them inside the method. The way that a method retrieves an argument
depends on how the instance has been called, but we can use
$evm.root['vmdb_object_type'] as before to determine this, and access the argu‐
ment in an appropriate manner.

384 | Chapter 46: Argument Passing and Handling

CHAPTER 47

Miscellaneous Tips

We’ve reached the final chapter in the book, and our journey toward automation
mastery is almost complete. In this last chapter we’ll cover some miscellaneous tips
that can help us when we work with CloudForms Automate.

Updating the Appliance
When a minor update to CloudForms Management Engine is released and installed
(e.g., 5.5.0 → 5.5.2), any changes to the Automate code are not automatically visible to
the Automate Explorer.

Go to Import/Export, and “Reset all Datastore custom classes and instances to
default” to get the updates added and visible (see Figure 47-1).

Figure 47-1. Resetting the locked domains after an appliance upgrade

385

This does not, as the wording might suggest, reset our custom
domains; it merely reloads the ManageIQ and RedHat domains.

The ManageIQ Coding Style and Standards Guide
There is a ManageIQ Coding Style and Standards Guide and a Ruby Style Guide.
Although the guides don’t specifically refer to Automate coding style (they’re more a
guideline for ManageIQ code development), we can adopt the recommendations to
keep our code clean and standards-compliant.

The guides recommend using snake_case for symbols, methods, and variables, and
CamelCase for classes and modules. Although this doesn’t explicitly refer to Auto‐
mate Datastore classes and methods, we can adopt the same guidelines for our code.

The style guide doesn’t currently mention whether we should name
instances in CamelCase or snake_case. Although the examples in
this book have used CamelCase naming for instances, it is likely
that future versions of CloudForms will standardize on snake_case
naming for both instances and methods.

Defensive Programming
The dynamic nature of the object structure means that we have to be more careful
about testing for nil conditions, testing whether hash keys exist before we access
them, testing whether variables are enumerable before we call each on them, and so
on.

Some examples are:

if this_object.respond_to?(:attributes)
 if this_object.attributes.respond_to? :each
 this_object.attributes.each do |key, value|
 ...

user = $evm.root['user'] rescue nil
unless user.nil?
 ...

prov = $evm.root['miq_provision']
if prov.options.key?(:ws_values)
 ws_values = prov.options[:ws_values]
 ...

386 | Chapter 47: Miscellaneous Tips

http://bit.ly/1TWQbfa
http://bit.ly/1OeElk9

1 The project code is located on Github.

Catch Exceptions
As an extension of the tip “Defensive Programming” on page 386, we should also
catch and handle exceptions wherever possible in our scripts. We have seen several
examples of this in the scripts that we’ve studied in the book—for example:

begin
...
rescue RestClient::Exception => err
 unless err.response.nil?
 error = err.response
 $evm.log(:error, "The REST request failed with code: #{error.code}")
 $evm.log(:error, "The response body was:\n#{error.body.inspect}")
 $evm.root['ae_reason'] = "The REST request failed with code: #{error.code}"
 end
 $evm.root['ae_result'] = 'error'
 exit MIQ_STOP
rescue => err
 $evm.log(:error, "[#{err}]\n#{err.backtrace.join("\n")}")
 $evm.root['ae_reason'] = "Unspecified error, see automation.log for backtrace"
 $evm.root['ae_result'] = 'error'
 exit MIQ_STOP
end

Use an External IDE
The built-in WebUI code editor is fairly basic. It is often easier to develop in an exter‐
nal editor or IDE, and copy and paste code into the built-in editor when complete.

Version Control
There isn’t any version control yet, although Git integration for the Automate Data‐
store is in development for a future release of CloudForms. In the meantime we
should use our own Git repository, but this is a manual process, unfortunately.

Several of Red Hat’s United States consultants have created an open source project for
handling version control and continuous integration (CI) of CloudForms artifacts,
such as Automate code and dialogs, across regions.1

The CI workflow is created using Jenkins. It provides a pipeline view that allows us to
visualize which version of any of the artifacts is in any region at a given time. We can
implement regions as lifecycle stages in our development process—such as DEV,
TEST, and QA—and promote code through the lifecycle as our testing progresses (see
Figure 47-2).

Catch Exceptions | 387

https://github.com/rhtconsulting/miq-ci

Figure 47-2. Continuous integration workflow for CloudForms automation development

Use Configuration Domains
We have seen several examples in the book in which system credentials have been
retrieved from an instance schema, using $evm.object['attribute'].

When we work on larger projects and implement some kind of version control as
previously described, we will have separate CloudForms installations for our various
automation code lifecycle environments—DEV, TEST, and QA, for example. It is
likely (and good practice) that the credentials to connect to our various integration
services will be different for each lifecycle environment, but we want to be able to
promote our code through each environment with minimal change.

In this case it can be useful to create a separate configuration domain for each lifecycle
environment, containing purely the classes and instances that define the usernames,
passwords, or URLs specific to that environment. The configuration domain typically
contains no methods; these are in the code domain being tested. When a method calls
$evm.object['attribute'], the attribute is retrieved from the running instance in
the configuration domain, which has the highest priority.

The process of testing then becomes simpler as we cycle the code domain through
each lifecycle environment, without having to modify any credentials; these are stati‐
cally defined in the configuration domain. The process is illustrated in Table 47-1.

388 | Chapter 47: Miscellaneous Tips

Table 47-1. Promoting code domains through lifecycle environments

Sprints/
environments

DEV TEST Q/A PROD

Sprint1 Dev + Code_v4
domains

Test + Code_v3
domains

QA + Code_v2 domains Prod + Code_v1
domains

Sprint2 Dev + Code_v5
domains

Test + Code_v4
domains

QA + Code_v3 domains Prod + Code_v2
domains

Sprint3 Dev + Code_v6
domains

Test + Code_v5
domains

QA + Code_v4 domains Prod + Code_v3
domains

Summary
This completes our study of the Automate capability of Red Hat CloudForms. Over
the preceding chapters we have learned about the Automate Datastore and the enti‐
ties that we use to create our automation scripts. We have taken a look behind the
scenes at the objects that we work with and learned about their attributes, virtual col‐
umns, associations, and methods.

We discovered how these components come together to create the workflows that
provision infrastructure virtual machines and cloud instances, and we have seen
examples of how we can customize the provisioning state machines for our own pur‐
poses.

We created service catalogs to deploy servers both singly and in bundles, and we inte‐
grated our Automate workflows with an external Red Hat Satellite 6.1 server.

We have seen how CloudForms is able to manage our entire virtual machine lifcycle,
including retirement, and we have studied the retirement process for virtual
machines and services.

We looked at the integration capabilities of CloudForms Automate and saw how
easily we can integrate our automation workflows with our wider enterprise.

Our journey toward automation mastery is now complete. All that is left is to prac‐
tice, and start automating!

Summary | 389

Index

A
access control (see groups)
ActivateSatellite state, 229
activate_satellite method, 323
active records, 52-53

accessing with service model objects, 53, 54
associations for, 52, 57-58
viewing in Rails console, 85

Active Support extensions, 51
alerts, 89-90, 128-129
Amazon Web Services, 5
Ansible, 224-226
anti-affinity rules, enforcing, 69-72
appliance, 10, 11

configuration of, 10
distributed worker appliances, 371-377
server role, enabling, 23-24
updating, 385-386

approval workflow, 95
overriding defaults for, 156
request objects, 94, 95-96
for RESTful API calls, 349, 353-358
for service provisioning request, 259-260,

292
task objects, 94, 95-96
for virtual machine provisioning, 153-157
when required, 93-94

approve_request method, 156, 358
argument passing and handling, 379-384
assertion fields, 113-114
associations

black or whitelisting, 82
for active records, 52, 57-58
traversing, 81

asynchronous actions, as distributed, 372
Atomic Platform, 5
attribute fields (variables), of schema, 33-36
attributes, 55

(see also custom attributes)
Automate, xvii

distributed operations using, 371-377
integrating with external services, 363-367
integrating with RESTful API (see RESTful

API)
nondistributed processing using, 371
provisioning VMs (see provisioning virtual

machines)
retirement of VMs, instances, and services

(see retirement)
scripts (see automation scripts)
services (see services)

Automate Datastore, 13-21
argument passing and handling with, 381
classes in, 16, 17-19, 25-26
components for service reconfiguraton,

313-317
domains in, 15-17, 24
namespaces in, 17, 25
older formats of, importing, 17
structure of, 14

Automate Explorer, 13-14
adding classes, 25-26
adding domains, 24
adding instances, 27-28, 34
adding methods, 28-29, 35
adding namespaces, 25
editing schemas, 26-27, 33-34

automation, xviii, 9

391

Automation Engine, xviii
accessing Ruby objects using, 52

(see also Ruby objects; service model
objects)

dRuby used by, 58-60
enabling as server role, 23-24
service model objects in (see service model

objects)
Automation Engine role, 24, 349, 371-372
Automation entry point, 87-88
automation scripts, xviii

creating, 27-29, 35
dRuby used by, 58-60
exit codes for, 30
Ruby for, 10
running from a button, 46-49, 87-88
running from alerts, 89-90
running from control policy actions, 88
running from dynamic service dialog ele‐

ments, 90
running from RESTful API, 88
running in Simulation, 29-30, 36, 87-88
validating, 29

automation.log file
script results in, 30-31, 36
service provisioning information in,

291-297
writing to, 27, 61

AutomationRequest_created instance, 359
AutomationRequest_pending instance, 360

B
button groups, 46
buttons

argument passing and handling with,
379-380

creating, 46-48, 307-310
running automation scripts from, 87-88

C
CatalogBundleInitialization state machine, 256
CatalogItemInitialization state machine,

253-254
catching exceptions, 387
categories for tags, 74

assigning to an object, 75
creating, 74
deleting, 79
listing tags in, 78

removing from an object, 75
retrieving list of, 77

CheckRetirement instance, 338
CheckServiceRetired instance, 343
classes

in Datastore, 16, 17-19, 25-26
naming conventions for, 386
Ruby (see Ruby objects; service model

objects)
classifications table, 77
cloud management platform (CMP), 4

(see also CloudForms)
cloud providers, 5
cloud services (see fog gem)
CloudForms, xvii, 3-4, 7-10

history of, 11
providers, 4-6
resources for, xxiii-xxiv
versions of, xix

CloudForms Appliance (see appliance)
CloudForms Automate (see Automate)
CloudForms Management Engine, 10, 11

(see also appliance)
CloudForms WebUI (see WebUI)
CMP (cloud management platform), 4

(see also CloudForms)
code examples, permission to use, xxv
collection fields, 114-115
configuration

of virtual machines (see provisioning dia‐
logs; service dialogs)

reconfiguration from services (see service
reconfiguration)

configuration domains, 388
configuration management providers, 5, 313
container management, 3
container providers, 5
control, 8
control policy, 88, 127-128
create_provision_request method, 215-220
custom attributes, 39-40

accessing in methods, 43-44
adding from button, 47-49
applied at provisioning, 218
compared to tags, 74
service dialog for, 40-42

custom automation instances, 88
Customization menu

adding service dialogs, 40-42

392 | Index

choosing provisioning dialog, 201
creating button groups, 46

D
data type, for schema fields, 19
database server, 277, 300
databases

MySQL (see MySQL database)
PostgreSQL, 10
VMDB (see VMDB)

Datastore (see Automate Datastore)
Default Value attribute, 105
defensive programming, 386
DeleteServiceFromVMDB instance, 344
destination object, 212-213
distributed automation processing, 371-377

queues used by, 372-377
troubleshooting, 377

Distributed Ruby (see dRuby)
Docker container management, 3, 5
domains, 15-17

adding, 24
copying objects between, 16
importing and exporting, 16
priority of, 15

DRb::DRbObject object, 59-60, 61
dRuby (Distributed Ruby), 58-60

forwarding message to server instead of cli‐
ent, 77

E
editors, 387
email

for RESTful API approval, 358
sending, 70
for service provisioning, 261
for service reconfiguration, 315-316
for VM provisioning, 157

encryption
keys for, unique to region, 36
Password data type using, 34, 36

Enterprise Virtualization Manager, 5
entry points, 87-88

Automation entry point, 87-88
Event entry point, 87-88
for instances, 44-45
Request entry point, 87-89
Retirement entry point, 341
for service reconfiguration, 311-312

Event entry point, 87-88
event processing, 117-137

alerts associated with, 128-129
event handlers, 121
event stream namespaces, 118-119
event stream sources, 119-120
Event Switchboard, 118-121
event types, 120-121
EventStream object, 118
extending for nondefault events, 135-137
external events, 117, 122-124
internal events, 117, 125-127
policy events, 127-128
request_approved event, 132-133
request_created event, 130-132, 154-155
request_pending event, 156
request_starting event, 133-134
scalability of, 117
task processing resulting from, 135

$evm variable, 52, 59-60, 61
generating, 85
methods for, 61-66

$evm.current method, 63
$evm.execute method, 65-66
$evm.instantiate method, 66
$evm.log method, 61
$evm.object method, 35, 63
$evm.parent method, 63
$evm.root method, 62, 90
$evm.vmdb method, 63-64
exceptions, catching, 387
exit status codes, 30
Explorer (see Automate Explorer)
external events, 117

catching, 122
extending for nondefault events, 135-137
processing, 122-124

external services, 363-367

F
fields, in schema, 18-19
find method, 75
find_all_by_parent method, 78
find_by_* methods, 53-54
find_by_name method, 78
find_tagged_with method, 76-77
FinishRetirement instance, 339, 343
fleecing (see SmartState Analysis)
fog gem, 365-366

Index | 393

Foreman host groups, 313

G
Git version control, 387
groups

provisioning dialogs for, customizing, 202
provisioning steps specific to, 142-143

(see also provisioning profiles)

H
helper methods, Rails, 53-54
hostname variable, 189
hosts (hypervisors), 56

(see also placement stage)
active records for, 53
attributes for, 56
migrating virtual machines between, 69

hybrid cloud manager, 3
hypervisors (see hosts)

I
IaaS (Infrastructure as a Service), 3
IDE, 387
images, provisioning from, 142
Infrastructure as a Service (IaaS), 3
infrastructure providers, 5, 7-8
inline methods, 21
insight, 7-8
InspectMe tool, 81-82
instances, 20

adding, 27-28, 34
calling from RESTful API, 347-348, 350
entry point for, creating, 44-45
retiring, 335-337
running from a button, 46-49
running from alerts, 89-90
running from control policy actions, 88
running from dynamic service dialog ele‐

ments, 90
running from RESTful API, 88
running in Simulation, 29-30, 36

integration, 9
internal events, 117, 125-127
IP address, adding to pool, 363-364

L
lifecycle environments

configuration domains for, 388

dynamic elements for, 241
linux_host_name variable, 189
list_activationkeys method, 320
list_hostgroups method, 320
list_puppetclasses method, 321
list_smart_class_parameters method, 321
logging (see automation.log file)

M
ManageIQ Coding Style and Standards Guide,

386
ManageIQ domain, 15
ManageIQ project, xxiii, 11
management events, alerts for, 89-90, 128-129
Max Retries attribute, 105
Max Time attribute, 105
message fields, 111-113
methods, 20-21

(see also specific methods by name)
accessing attributes in, 35
accessing custom attributes in, 43-44
adding, 28-29
for approval requests, 155-156
argument passing and handling, 379-384
in Automate Datastore, 20-21
fields for, adding, 26-27
helper methods, Rails, 53-54
inline, 21
naming conventions for, 386
for placement, 195-198
for retirement, 336-337, 342
running context for, determining, 90
of service model objects, 58
for service reconfiguration, 319-324

Microsoft Azure, 5
Microsoft System Center Virtual Machine

Manager, 5
microsoft_best_ methods, 196-198
MiqAeService class, 54-55
MIQ_ABORT exit code, 31
MIQ_ERROR exit code, 31
miq_force_unique_name variable, 189
MIQ_OK exit code, 31
miq_queue table, 372-377
MIQ_STOP exit code, 31
MIQ_WARN exit code, 31
MVC (model-view-controller), 52
MySQL database, 366-367
MySQL gem, 366-367

394 | Index

N
namespaces, 17, 25
naming conventions, 386
network adapters, 170
Nokogiri gem, 182

O
objects (see Ruby objects; service model

objects)
object_walker tool, 82-84
object_walker_reader tool, 83-84
On Entry attribute, 105
On Error attribute, 105
On Exit attribute, 105
online resources

anti-affinity code, 69
Automate methods, 60
automation scripts, 21
CloudForms, 12
CloudForms blogs, xxiv
CloudForms code repositories, xxiii
CloudForms documentation, xxiii
CloudForms Management Engine, 60
domains, importing and exporting, 21
external services, 367
InspectMe tool, 82
ManageIQ project, xxiii, 12
MangeIQ Coding Style and Standards

Guide, 386
Nokogiri gem, 186
provisioning virtual machines, 235
RESTful API, 186
retirement of virtual machines, 339
Ruby tutorials, xviii
scripting actions, 91
service dialog parsing, 257
service model object methods, 60
state machines, 110
tags, 80
virtual machine naming, 193
virtual machine placement, 198
workload placement, 72

OpenShift Enterprise, 3, 5
OpenStack API, 365-366
OpenStack Platform 7 Director, 5
OpenStack Platform cloud, 5
options hash, for provisioning, 167-172

adding options to, 171-172
created from provisioning dialog, 170-171

examining, 264
request objects using, 167-170
task objects using, 170, 249-251, 253-255

OSP (see OpenStack Platform entries)
OverCloud, 5

P
PaaS (Platform as a Service), 3
Password data type, 34, 36
pending_request method, 156, 357
performance, 7, 8

(see also alerts)
placement stage, 195-198, 218-220
Platform as a Service (PaaS), 3
policies

control policy, 88, 127-128
for RESTful API approval, 358-360
for service reconfiguration, 316

PreRetirement instance, 338
providers, 4-6

configuration management providers, 313
events initiated by (see external events)
infrastructure providers, 7-8
removing retired virtual machines from,

338
provisioning dialogs, 199-205

choosing which dialog to use, 201-202
customizing, 201-205
determined from profile, 147-148
options hash created using, 170-171
YAML file for formatting, 200-201

provisioning profiles, 143, 145-150
approval process using, 149
customizing, 147
dialog determined from, 202
location of, 145-146
processing of, 147-150
provisioning dialog determined from,

147-148, 204-205
quota-checking process using, 149
for RESTful API approval, 354-356
schema for, 146-147
for services, 259, 292
state machine determined by, 150
VM name determined from, 148, 150

Provisioning Scope tag, 73
provisioning services, 247-251
provisioning state machines, 173-174

custom, 329

Index | 395

customizing, 174, 177-185
schema for, 173-174
for services, 247-251
for virtual machines, 143, 150

provisioning virtual machines, 141-143
approval process for, 149, 153-157
emails sent regarding, 157
group-specific options for, 142-143

(see also provisioning profiles)
images for, 142
initiating, 141-142
naming VM during, 187-193
options hash for, 167-172
placement of VM during, 195-198, 218-220
profile for (see provisioning profiles)
quota-checking process for, 149, 163
with Satellite 6 (see Satellite 6)
service model objects for, 207-213
with services (see services)
templates for, 142, 211-212
triggering commands on new VM, 222

Puppet
Satellite 6 using, 221, 234
service reconfiguration using, 311, 317, 321,

324
PXE provisioning, 193

Q
queued requests, 123-129

Automation Engine role for, 24
distributed, 372-377
zones used by, 349-350

quotas, 159-164
checking, for service provision request, 260
quota-checking process for, 149, 163
setting for a source (tenant), 161-163

R
Rails, 10, 52

console, object hierarchy in, 84-85
helper methods, 53-54

Rails db, 85-86
Rails models, 51-52
rake command, 16
reconfiguration of services (see service reconfi‐

guration)
Red Hat, 11
Red Hat Atomic Platform, 5
Red Hat CloudForms (see CloudForms)

Red Hat Enterprise Virtualization Manager, 5
Red Hat OpenShift Enterprise, 3, 5
Red Hat Satellite, 5
RedHat domain, 15
redhat_best_ methods, 196-198
RegisterSatellite state, 226
register_satellite method, 322
relationships

argument passing and handling with, 381
fields for, in schema, 19

RemoveFromProvider instance, 338
Request entry point, 87-89
request objects, 94, 95-96

compared to task objects, 94, 100
contents of, 97-101
context for, 96, 208-209
events raised by, 129-134
for service provisioning, 259, 287
for VM provisioning, 167-170, 208-209

request_approved event, 132-133, 259
request_created event, 130-132, 154-155, 259
request_pending event, 156
request_service_retire event, 342
request_starting event, 133-134
request_vm_retire event, 336
RequireApproval instance, 356
rest-client gem, 348
RESTful API, 88, 347-350

approval for, 349, 353-358
argument passing and handling with, 380
calling instances, 347-348, 350
customizing provisioning state machine,

177-185
returning results from, 348-349
testing automation requests from, 360-361
zones used by, 349-350

retirement
of instances, 335-337
of services, 341-344
of virtual machines, 335-339

Retirement entry point, 341
RetireService instance, 343
Ruby language, 10, 51

Active Support extensions, 51
resources for, xviii

Ruby objects, 52
(see also service model objects)

Ruby on Rails, 51
run_via_api script, 350

396 | Index

S
Satellite 6, 5, 221-235

ActivateSatellite state, 229-232
activation keys, creating, 224
Ansible used with, 224-226
content host for, 221
host entry for, 221-223
host groups, creating, 223
integration of, testing, 232-235
RegisterSatellite state, 226-228
service reconfiguration using, 311, 313, 317,

319, 322
SSH key for VMware template, 224

Savon gem, 363-364
schemas, 18-19

adding attribute fields, 33-34
adding method fields, 26-27
assertion fields in, 113-114
attributes for state machines, 104-105
collection fields in, 114-115
message fields in, 111-113
for provisioning profiles, 146-147
for provisioning state machine, 173-174
reordering fields in, 34

scripts (see automation scripts)
server roles

anti-affinity rules using, 69-72
enabling, 23-24
Event Monitor, 122
naming process using, 192-193

service catalogs, 9
bundles, creating, 256, 275-281
bundles, ordering, 281-283
creating, 268-270
generic items in, for customization, 329
initialization of, 253-256
items, creating, 94, 253-254, 267
items, ordering, 270-272
items, recreating if template changes, 329

service dialogs, 239-245
accessing elements in, 43-44
accessing options in, 249-251
adding, 40-42
for bundles, creating, 276-278
creating, 263-267
dynamic elements in, 90, 240-241, 243-244
dynamic instances and methods for,

319-322
element names, 254-256, 263-267

element types, 240
input field validation for, 242
passing options to tasks, 248-251
protected elements in, 242
read-only elements in, 242
reconfigurable elements in, 312, 317-319
for service reconfiguration, 317-319
user input affecting elements in, 243-244

service hierarchies, 299-310
adding virtual machines to, 306-310
empty services in preparation for, 303-306
WebUI views of, 299-303

service model objects, 54-58
(see also request objects; task objects)
accessing, 63-64
active records accessed with, 53, 54
associations for, 57-58
attributes for, 55
methods for, 58
properties for, 55
structure of, determining, 81-86
types of, 54
virtual columns for, 56-57
for virtual machines (see virtual machine

objects)
service objects, 285-289

service template provision request object,
259, 287

service template provision task object, 287,
293

task object hierarchy, 249, 287-289, 294
service reconfiguration, 311-326

configuration methods for, 322-324
dynamic instances and methods for,

319-322
emails regarding, 315-316
entry point for, 311-312
policies for, 316
service dialog for, 317-319
state machines for, 313-315, 317
testing, 324-326

services
approval workflow for, 259-260, 292
catalog of service items (see service catalogs)
checkprovisioned states, 248, 294-296
custom state machines for, 329
dialogs for (see service dialogs)
email regarding requests for, 261
empty, creating, 303-306

Index | 397

external, calling, 363-367
log analysis of workflows, 291-297
naming virtual machines during, 251
organizing (see service hierarchies)
provisioning profile for, 259, 292
provisioning state machines for, 247-251
quota checking for, 260
reconfiguration of virtual machines in (see

service reconfiguration)
retiring, 341-344
testing interactively before using, 329

set_configuration method, 323
Simulation, running instances using, 29-30, 36,

87-88
smart proxy, 8
SmartState Analysis, 8
SOAP API, 363-364
source object, 211-212
StartRetirement instance, 338, 343
state machines, 103-109

attributes for, 104-105
building, 104-106
current step in, determining, 107
error recovery, 107
jumping to a state, 108
name of, determining, 107
nested, 108
retry state, determining, 107
for service provisioning, 247-251
skipping states, 108
state result, setting, 106
status of, determining, 107
variables for, 106-107
variables for, saving between retries,

109-109
status codes, 30
synchronous actions, as nondistributed, 371
sysprep_computer_name variable, 189

T
tags, 8, 73-80

assigning to an object, 75
categories for, creating, 74
categories for, deleting, 79
categories for, list of, 77
compared to custom attributes, 74
creating, 74
determining name of, 78
finding specific tag object, 78

listing for a category, 78
quotas defined using, 163
removing from an object, 75
retrieving for an object, 75
searching objects for, 76-77
service dialog elements prompting for, 255
for templates, 156
testing an object for, 75
virtual machine placement using, 197

tags method, 75
tag_assign method, 75
tag_unassign method, 75
task objects, 94-96

compared to request objects, 94, 100
contents of, 97-101
context for, 96, 209
event processing associated with, 135
for service provisioning, 287, 293
for VM provisioning, 170, 210

templates
for provisioning virtual machines, 142,

211-212
recreating service catalog items if changed,

329
searching based on, 64
service objects from, 287
tagging, 156
VMware template, 224

testing
nil conditions, 386
RESTful API, 360-361
service reconfiguration, 324-326
VM provisioning, 232-235
whether an object is tagged, 75

U
UnderCloud, 5
user groups (see groups)

V
validate_request method, 155, 357
validating scripts, 29
Value attribute, 105
variables

attribute fields, of schema, 33-36
$evm variable (see $evm variable)
for state machines, 106-109

version control, 387
virtual columns, of service model objects, 56-57

398 | Index

virtual machine objects
buttons for, adding, 46-49
custom attributes for, accessing, 43-44
custom attributes for, adding, 39-40
destination object, 212-213
for provisioning, 207-213
source object, 211-212

virtual machines
adding hard drive to, 177-185
anti-affinity rules for, enforcing, 69-72
migrating between hosts, 69
naming during provisioning, 187-193, 251
placement during provisioning, 195-198
provisioning (see provisioning virtual

machines)
quotas for, 159-164
reconfiguration from services (see service

reconfiguration)
retiring, 335-339
tags for, 73

virtualization management
CloudForms as, 3
infrastructure, discovering, 7-8

VM provisioning state machine, 143
VMDB

custom attributes in, 218
deleting retired virtual machines from, 339
examining, 85-86, 317
queue messages in, 374
removing retired service from, 344
retaining for retired virtual machines, 335

searching by column name, 53-54
VMware customization specification, 189
VMware vCenter Server, 5
vmware_best_ methods, 196-198
vm_name variable, 188
vm_prefix variable, 188, 192-193
vm_target_hostname symbol, 190
vm_target_name symbol, 190

W
WebUI

Automate Explorer (see Automate Explorer)
editor in, limitations of, 387
provisioning virtual machines (see provi‐

sioning virtual machines)
session cookies used by, 29
Simulation (see Simulation)

workflows, 9
approval (see approval workflow)
provisioning workflow, 141-143, 177-185,

226-232
quota workflow, 163
retirement (see retirement)
state machines for, 103-109

workspace, 61
(see also $evm variable)
object hierarchy for, 63
root object of, 62

ws_values hash, 171-172, 381-384

Index | 399

About the Author
Peter McGowan has worked for Red Hat in the United Kingdom since 2012, both as
a consulting architect and, more recently, in the Systems Engineering team, where he
works with Red Hat’s Cloud Suite of products.

Peter started his IT career programming on PDP-11s, before weaving a trail through
various Microsoft technologies and into open source software. For much of this time,
he has specialized in enterprise systems management and automation.

When not programming Ruby, he can be found trying to locate the best cappuccinos
and crate-digging for old records to play on his beloved Linn record player. He is
step-dad to three wonderful grown-up children—Luke, Lucie, and Imogen—and hus‐
band to the very lovely Sarah.

Colophon
The animal on the cover of Mastering CloudForms Automation is a red-breasted
goose (Branta ruficollis). It is part of the Anatidae family and can be found in Arctic
Siberia on the Taymyr, Yamal, and Gydan peninsulas, as well as Azerbaijan when
breeding. Bulgaria, Romania, and Ukraine are where most decide to winter. The spe‐
cies population appears to be in decline in all areas.

Both males and females look alike, with plummage of reddish-brown, black, and
white. You can probably guess that the chest is red from the name, but so are the sides
of their faces, outlined by white. There are also white patches between the eye and
upper bill, as well as the upper legs, and parts of the wings, leaving the rest of the
head, most of the wings, and back in black. Adults range in lengths from 21 to 22
inches, making them fairly small in size.

Red-breasted geese have a mostly vegetarian diet that consists of grass, leaves, shoots,
aquatic plants, and other such items. They also eat barley, maize, and wheat when in
more agricultural areas.

In the beginning of June, these geese nest near high and dry places, such as cliffs or
rock outcrops, close to predatory birds, such as falcons and owls. The proximity helps
protect their eggs from predators, such as the arctic fox. They begin breeding around
3 years of age, and each clutch consists of 3 to 8 eggs that are incubated for about 25
days.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

http://animals.oreilly.com

The cover image is from British Birds. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://oreil.ly/ops-perf

	Cover
	
	Copyright
	Table of Contents
	Preface
	A Brief Word on Terminology
	Who Should Read This Book?
	Why I Wrote This Book
	Versions and Releases
	Navigating This Book
	Part I, Working with CloudForms Automate
	Part II, Provisioning Virtual Machines
	Part III, Working with Services
	Part IV, Retirement
	Part V, Integration
	Part VI, Miscellaneous

	Online Resources
	Official Documentation
	Code Repositories
	Forums
	Blogs

	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Working with CloudForms Automate
	Chapter 1. Introduction to CloudForms
	What Is CloudForms?
	Providers
	Cloud Providers
	Infrastructure Providers
	Configuration Management Providers
	Container Providers
	Mixing and Matching Providers

	The Capabilities of CloudForms
	Insight
	Control
	Automate
	Integrate

	The CloudForms Appliance
	Ruby and Rails

	Projects, Products, and Some History
	ManageIQ (the Project)
	Red Hat CloudForms (the Product)
	CloudForms Management Engine (the Appliance)

	Summary
	Further Reading

	Chapter 2. Introduction to the Automate Datastore
	The Automate Explorer
	The Automate Datastore
	Domains
	Domain Priority
	Importing/Exporting Domains
	Copying Objects Between Domains
	Importing Old Format Exports

	Namespaces
	Classes
	Schemas
	Adding or Editing a Schema
	Relationships

	Instances
	Methods
	Summary
	Further Reading

	Chapter 3. Writing and Running Our Own Automation Scripts
	Creating the Environment
	Adding a New Domain
	Adding a Namespace
	Adding a Class
	Editing the Schema

	Hello, World!
	Adding a New Instance
	Adding a New Method

	Running the Instance
	Exit Status Codes
	Summary

	Chapter 4. Using Schema Variables
	Preparing the Schema
	The Instance
	The Method
	Running the Instance
	Summary

	Chapter 5. Working with Virtual Machines
	Custom Attributes
	Creating the Service Dialog
	Creating the Instance and Method
	The Code
	Creating the /System Entry Point

	Running Automation Scripts from a Button
	Creating the Button Group
	Creating the Button
	Running the Instance

	Summary
	Further Reading

	Chapter 6. Peeping Under the Hood
	A Little Rails Knowledge (Goes a Long Way)
	Plain Old Ruby
	Model-View-Controller
	Active Record Associations
	Rails Helper Methods (.find_by_*)

	Service Models
	Service Model Object Properties
	Attributes
	Virtual Columns
	Associations
	Methods

	Distributed Ruby
	Summary
	Further Reading

	Chapter 7. $evm and the Workspace
	$evm.log
	$evm.root
	$evm.object, $evm.current, and $evm.parent
	$evm.vmdb
	Single-Argument Form
	Two-Argument Form

	$evm.execute
	Examples

	$evm.instantiate
	Summary
	Further Reading

	Chapter 8. A Practical Example: Enforcing Anti-Affinity Rules
	Task
	Solution
	relocate_vm
	send_email
	Main Code

	Summary
	Further Reading

	Chapter 9. Using Tags from Automate
	Creating Tags and Categories
	Assigning and Removing Tags
	Testing Whether an Object Is Tagged
	Retrieving an Object’s Tags
	Searching for Specifically Tagged Objects
	Practical Example

	Getting the List of Tag Categories
	Getting the List of Tags in a Category
	Finding a Tag’s Name, Given Its Description
	Finding a Specific Tag (MiqAeServiceClassification) Object
	Deleting a Tag Category
	Summary
	Further Reading

	Chapter 10. Investigative Debugging
	InspectMe
	object_walker
	Black or Whitelisting Associations
	object_walker_reader

	Rails Console
	Rails db
	Summary
	Further Reading

	Chapter 11. Ways of Entering Automate
	Buttons and Simulation
	RESTful API
	Control Policy Actions
	Alerts
	Service Dialog Dynamic Elements
	Finding Out How Our Method Has Been Called
	Summary
	Further Reading

	Chapter 12. Requests and Tasks
	The Need for Approval
	Request and Task Objects
	Approval
	Object Class Ancestry
	Context
	Object Contents
	Dumping the Object Contents
	Comparing the Objects

	Summary
	Further Reading

	Chapter 13. State Machines
	Building a State Machine
	State Machine Schema Field Columns
	State Machine Example

	State Variables
	Setting State Result
	State Retries
	Getting the State Machine Name
	Getting the Current Step in the State Machine
	Getting the on_entry, on_exit, on_error Status State

	State Machine Enhancements in CloudForms 4.0
	Error Recovery
	Skipping States
	Jumping to a Specific State
	Nested State Machines

	Saving Variables Between State Retries
	Summary
	Further Reading

	Chapter 14. More Advanced Schema Features
	Messages
	Specifying Our Own Messages

	Assertions
	Collections
	Summary

	Chapter 15. Event Processing
	Event Processing Component Parts
	The Event Stream Object
	The Event Switchboard
	Event Handlers

	Catching and Handling External Events
	Event Catching
	Event Processing

	Creating and Processing Internal Events
	Event-Initiated Control Policy Processing
	Event-Initiated Alert Processing

	Event-Initiated Automation Request Workflows
	Step 1: The request_created Event
	Step 2: The request_approved Event
	Step 3: The request_starting Event
	Step 4: Automation Task Processing

	Extending Automate Event Handling
	Adding a New Automation Instance to /System/Event/EmsEvent/

	Summary
	Next Steps

	Part II. Provisioning Virtual Machines
	Chapter 16. Provisioning a Virtual Machine
	The Provisioning Process
	Group-Specific Considerations, and Common Processing
	Summary

	Chapter 17. The Provisioning Profile
	Location
	Schema
	Customizing the Profile
	Profile Processing in Detail
	The Provisioning Dialog
	VM Name (Pass 1)
	Approval
	Quota
	VM Name (Pass 2)
	VM Provisioning State Machine

	Summary
	Further Reading

	Chapter 18. Approval
	Approval Workflow
	Request Created Event
	Methods
	Request Pending Event

	Overriding the Defaults
	Template Tagging

	VM Provisioning–Related Email
	Summary
	Further Reading

	Chapter 19. Quota Management
	Quotas in Cloudforms 4.0
	Quota Source

	Quota Workflow
	Summary
	Further Reading

	Chapter 20. The Options Hash
	Request Object (miq_provision_request)
	Task Object (miq_provision)
	Adding Network Adapters

	Correlation with the Provisioning Dialog
	Adding Our Own Options: The ws_values Hash
	Summary

	Chapter 21. The Provisioning State Machine
	State Machine Schema
	Filling in the Blanks
	Summary

	Chapter 22. Customizing Virtual Machine Provisioning
	Scenario
	Task
	Methodology
	Step 1: Extend the State Machine
	Step 2: Disable Auto-Power-On
	Step 3: Create Our New Instances and Methods
	Step 4: Add Our New Instances to the Copied State Machine
	Step 5: Provision a Virtual Machine

	Summary
	Further Reading

	Chapter 23. Virtual Machine Naming During Provisioning
	VM Name-Related Provisioning Options
	Inputs to the Naming Process
	Outputs from the Naming Process

	Name Processing
	Provisioning a Single VM or Instance
	Provisioning Multiple VMs or Instances in a Single Request

	Customizing the Naming Process
	Summary
	Further Reading

	Chapter 24. Virtual Machine Placement During Provisioning
	Placement Methods
	Method Description
	Customising Placement
	Using Alternative Placement Methods

	Summary
	Further Reading

	Chapter 25. The Provisioning Dialog
	Tabs and Input Fields
	Dialog YAML
	Selection of VM Provisioning Dialog
	Group-Specific Dialogs
	Example: Expanding the Dialog

	Summary
	Further Reading

	Chapter 26. Virtual Machine Provisioning Objects
	Object Overview
	The Provision Request Object
	Request Context
	Task Context

	The Provision Task Object
	The Source Object
	The Destination Object
	Summary

	Chapter 27. Creating Provisioning Requests Programmatically
	Making the Call
	Argument List
	version
	templateFields
	vmFields
	requester
	tags
	additionalValues (aka ws_values)
	emsCustomAttributes
	miqCustomAttributes

	Setting Placement Options
	Summary
	Further Reading

	Chapter 28. Integrating with Satellite 6 During Provisioning
	Hosts and Content Hosts
	The Satellite 6 Host Entry
	Non-CloudForms Preparation
	Creating the Host Groups in Satellite 6
	Creating the Activation Keys in Satellite 6
	Adding an SSH Key to the VMware Template

	Installing and Configuring Ansible on the CloudForms Appliance
	Modifying the CloudForms Provisioning Workflow
	RegisterSatellite
	ActivateSatellite

	Testing the Integration: Provisioning a New VM
	Summary
	Further Reading

	Part III. Working with Services
	Chapter 29. Service Dialogs
	Dialog Elements
	Dynamic Elements
	Populating the Dynamic Fields

	Read-Only and Protected Elements
	Programmatically Populating a Read-Only Text Box

	Element Validation
	Using the Input from One Element in Another Element’s Dynamic Method
	Example

	Summary
	Further Reading

	Chapter 30. The Service Provisioning State Machine
	Class and Instances
	Passing Service Dialog Options to the Child and Grandchild Tasks
	Accessing the Service Dialog Options
	ConfigureChildDialog

	Summary
	VM Naming for Services

	Chapter 31. Catalog{Item,Bundle}Initialization
	CatalogItemInitialization
	Service Dialog Element Naming Convention

	CatalogBundleInitialization
	Summary
	Further Reading

	Chapter 32. Approval and Quota
	Triggering Events
	Approval
	Customizing Approval

	Quota
	Email

	Summary

	Chapter 33. Creating a Service Catalog Item
	The Service Dialog
	Finding the Correct Element Names
	Creating the Service Dialog

	Creating the Service Catalog Item
	Create a Catalog
	Creating the Catalog Item

	Ordering the Catalog Item
	Summary
	Further Reading

	Chapter 34. Creating a Service Catalog Bundle
	Creating the Service Dialog for the Bundle
	Preparing the Service Catalog Items
	Creating the Service Catalog Bundle
	Ordering the Catalog Bundle
	Summary
	Further Reading

	Chapter 35. Service Objects
	Object Structure
	Service Template Provision Task
	Service Template Provisioning Request
	Child miq_request_task
	Grandchild miq_request_task

	Summary

	Chapter 36. Log Analysis During Service Provisioning
	Initial Request
	Profile Lookup
	Request Processing and Approval
	Service Template Provisioning Tasks
	VM Provisioning Task
	Service State Machine CheckProvisioned
	VM State Machine CheckProvisioned
	Virtual Machine Provision Complete
	Service Provision Complete
	Summary

	Chapter 37. Service Hierarchies
	Organizing Our Services
	Creating an Empty Service

	Adding VMs and Services to Existing Services
	Adding the Button

	Summary

	Chapter 38. Service Reconfiguration
	Reconfigure Entry Point
	Service Design
	Adding a Configuration Management Provider
	Automate Datastore Components
	Creating the Namespaces and State Machines
	Email Classes
	Policies

	Modifying the VM Provision Workflow
	Service Dialog
	Elements

	Instances and Methods
	Dynamic Dialogs
	Configuration-Related Methods

	Testing
	Summary

	Chapter 39. Service Tips and Tricks
	Test Virtual Machine Provisioning First
	Re-create the Service Item if the Template Changes
	Custom State Machines
	Summary

	Part IV. Retirement
	Chapter 40. Virtual Machine and Instance Retirement
	Initiating Retirement
	Retirement-Related Attributes and Methods
	VM Retirement State Machine
	StartRetirement
	PreRetirement/CheckPreRetirement
	RemoveFromProvider/CheckRemovedFromProvider
	FinishRetirement
	DeleteFromVMDB

	Summary
	Further Reading

	Chapter 41. Service Retirement
	Defining a Service Retirement Entry Point
	Initiating Retirement
	Retirement-Related Attributes and Methods
	Service Retirement State Machine
	StartRetirement
	RetireService/CheckServiceRetired
	FinishRetirement
	DeleteServiceFromVMDB

	Summary

	Part V. Integration
	Chapter 42. Calling Automation Using the RESTful API
	API Entry Point
	Returning Results to the Caller
	Authentication and auto_approve
	Zone Implications
	run_via_api
	Summary
	Further Reading

	Chapter 43. Automation Request Approval
	Implementing a Custom Approval Workflow
	Namespace
	Group Profile
	State Machine
	Email Classes

	Policies
	AutomationRequest_created
	AutomationRequest_pending

	Testing
	Summary

	Chapter 44. Calling External Services
	Calling a SOAP API Using the Savon Gem
	Calling an OpenStack API Using the fog Gem
	Reading from a MySQL Database Using the MySQL Gem
	Summary
	Further Reading

	Part VI. Miscellaneous
	Chapter 45. Distributed Automation Processing
	Nondistributed Automation Operations
	Distributed Automation Operations
	Tracing Queueing/Dequeueing Operations
	Detailed Queue Analysis
	Monitoring the Queue During an Automation Operation

	Troubleshooting
	Summary

	Chapter 46. Argument Passing and Handling
	Case 1: Calling from a Button
	Case 2: Calling from the RESTful API
	Case 3: Calling from a Relationship or Automate Datastore URI
	Case 4: Passing Arguments via the ws_values Hash During a VM Provision
	Passing Arguments When Calling a Method in the Same Class
	Summary

	Chapter 47. Miscellaneous Tips
	Updating the Appliance
	The ManageIQ Coding Style and Standards Guide
	Defensive Programming
	Catch Exceptions
	Use an External IDE
	Version Control
	Use Configuration Domains
	Summary

	Index
	About the Author
	Colophon

